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Résumé : Le cycle de l’eau joue un rôle essentiel
pour toute vie sur Terre. L’observation et la quan-
tification de ses divers composants sous la pression
du changement climatique sont devenues de plus
en plus importantes pour la société et la science.
Les réponses de chaque composante du cycle de
l’eau au réchauffement climatique diffèrent forte-
ment d’une région à l’autre. Par exemple, certaines
régions ont connu une augmentation des précipi-
tations, tandis que d’autres ont connu une diminu-
tion. Il est donc nécessaire d’observer le cycle de
l’eau à l’échelle globale.

La télédétection a permis d’acquérir une
grande quantité de données d’observation spatiale.
Concernant les précipitations, la mission Global
Precipitation Measurement (GPM) (2014-présent)
offre une constellation de satellites équipés de ra-
diomètres micro-ondes, ce qui permet d’obtenir
une vaste base de données de température de
brillance (TB). Les TB contiennent des informa-
tions implicites sur plusieurs variables géophysiques
importantes, notamment l’intensité de la pluie, la
vapeur d’eau, la température de surface de la mer
(SST), la neige et le contenu en eau liquide et
glacé dans les nuages.

Notre présente étude utilise le radiomètre
(GMI) du GPM Core Observatory, qui est le sa-
tellite de référence pour unifier les satellites de
la constellation. En considérant les mesures de
TB comme des images non conventionnelles, nous
proposons une nouvelle méthode pour observer le
cycle de l’eau à partir de ces mesures. La segmen-
tation sémantique non-supervisée est appliquée
aux données GMI pour extraire des informations
sans l’aide d’une annotation ou de données auxi-
liaires. L’avantage d’une telle approche est qu’elle
peut être appliquée à n’importe quel radiomètre
de la constellation. Elle est également exempte
des incertitudes liées aux données auxiliaires. Des
modèles de segmentation non-supervisés de dif-
férentes complexité sont explorés. Nous avons

testé des approches qui s’appuient sur des réseaux
entièrement convolutifs (FCN) pour extraire des
cartes de caractéristiques à partir de l’entrée. Dans
cette optique, nous avons utilisé dans un premier
temps un modèle FCN relativement simple com-
posé de quelques couches de convolution 2D. Dans
un second temps, afin d’augmenter la complexité
du module d’extraction de caractéristiques, nous
l’avons remplacé par un réseau de type U-Net. Un
modèle FCN basé sur une architecture de type auto
encodeur avec un mécanisme d’attention a égale-
ment été développé. Enfin, une approche par pixel
de type k-moyenne a été testée.

Pour comparer les performances de ces dif-
férents modèles, nous proposons une évaluation
externe où les variables géophysiques pertinentes
sont utilisées pour le calcul des métriques de seg-
mentation. D’abord, les classes sont attribuées aux
variables géophysiques. Ensuite, en convertissant
ces variables quantitatives (précipitation et SST)
en catégories, elles peuvent être comparées à la
segmentation à l’aide de différentes métriques.

Dans l’apprentissage non-supervisé, il est es-
sentiel que chaque classe obtenue représente une
variable géophysique ainsi que ses caractéristiques.
Les classes de pluie identifiées montrent la variabi-
lité intra-annuelles des précipitations régionales. La
segmentation préserve également les structures de
précipitations telles que les cyclones. À plus grande
échelle, les classes de pluie montrent les zones de
convergence intertropicale (ITCZ), tandis que les
classes sur les océans peuvent représenter la sai-
sonnalité de la SST.

Une approche non-supervisée exige une évalua-
tion et une validation. Le travail substantiel réa-
lisé dans cette thèse confirme que la segmentation
non-supervisée de TB permet une représentation
valide des variables géophysiques, ce qui est une
étape critique avant de tirer des conclusions sur
les changements dans le cycle de l’eau.
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Abstract : The water cycle has a significant role
in all life on Earth. Observing and quantifying its
various components under the effects of climate
change has become increasingly important to so-
ciety and to advancing scientific knowledge. Res-
ponses of each component of the water cycle to the
warming climate differ highly from one region to
another. For instance, some regions have seen an
increase in precipitation, while some have experien-
ced a decrease. Consequently, there is an urgent
need for global observation of the water cycle.

Remote sensing has amassed an unprecedented
amount of global observation data. Regarding pre-
cipitation, the Global Precipitation Measurement
(GPM) mission (2014-present) offers a constella-
tion of satellites with microwave radiometers ope-
rating at a similar range of frequency, resulting in a
large microwave brightness temperature (TB) da-
taset from different instruments. The TB contains
implicit information on several important geophy-
sical variables, including rain intensity, atmosphe-
ric water vapor, sea surface temperature (SST),
snowfall, and cloud liquid water.

This study experiments on the TB measure-
ment from the GPM Microwave Imager (GMI) of
the Core Observatory, which is the reference satel-
lite for unifying the observations of the constella-
tion. We propose a novel method for observing the
water cycle from TB measurements by considering
them as unconventional images. Unsupervised se-
mantic segmentation is applied to GMI data to ex-
tract information without the help of any labeling
or ancillary data. Consequently, an unsupervised
approach can be applied to any microwave radio-
meters. It is also excluded from the uncertainties
involved in obtaining the ancillary data.

Unsupervised segmentation models of different
levels of complexity are explored in this study. The
non-pixel-wise approaches rely on fully convolutio-
nal networks (FCN) to extract feature maps from

the input. The simplest FCN-based model consists
of several convolutional layers as its feature ex-
tractor. To increase the complexity, we deepen the
network by using U-Net as a feature extractor. The
final FCN model comprises an encoder-decoder
network with an attention mechanism. Lastly, the
pixel-wise approach K-means is tested.

To compare the performance of the models,
this study proposes an external evaluation where
relevant geophysical variables are used for the
calculation of segmentation metrics. First, the
classes are labeled using geophysical variables.
Only classes representing precipitation and SST are
used for further analysis. By converting these quan-
titative measurements to categorical data, they
can be compared to the segmentation using tradi-
tional metrics, such as accuracy, precision, recall,
and F1-score.

One of the main challenges in the unsuper-
vised approach is the validation of the resulting
segmentation. Without any supervision, it is cru-
cial that each class obtained from the segmen-
tation represents geophysical variables and exhi-
bits their characteristics. Identified rain classes
are shown to be able to follow intra-annual re-
gional precipitation patterns. The segmentation
also preserves precipitation structures such as cy-
clones. On a larger scale, the rain classes show the
Inter-tropical Convergence Zones (ITCZ), while
the ocean classes can represent the seasonality of
SST.

Using an unsupervised deep-learning approach
requires thorough evaluation and validation regar-
ding geophysical representation. The substantial
work in this thesis confirms that the unsupervised
segmentation of TB results in meaningful represen-
tation of geophysical variables, which is a critical
step before drawing any conclusion on the changes
in the water cycle.
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Introduction

The water cycle is a crucial life-sustaining system that can vary naturally.
However, increasing evidence shows that anthropogenic factors have contributed
to an accelerated change over the last 50 years. According to the Sixth Assessment
Report (AR6) by the Intergovernmental Panel on Climate Change (IPCC), billions
of people now live in unfamiliar conditions in terms of the water cycle (Douville
et al., 2023). Changes in the water cycle include an increase in heavy precipitation,
floods, and droughts, which could threaten food security and induce water scarcity.
In addition, these conditions pose a threat to the global biodiversity. Observing and
quantifying the changes in the water cycle is, therefore, of utmost importance.

Observing the water cycle means measuring its components. In addition to
in-situ measurement, remote sensing has since created a large amount of data, es-
pecially image data. This thesis makes use of a satellite measurement called passive
microwave brightness temperatures. It is one of the major indirect observations of
the water cycle, which can be used to retrieve many variables, for instance, rain in-
tensity, atmospheric water vapor, cloud liquid water, and surface wind speed. After
the launch of many missions with a passive microwave aboard their satellite, such
as the Tropical Rain Measuring Mission (TRMM, 1997-2015) (Kummerow et al.,
1998) and the Global Precipitation Measurement Mission (GPM, 2014 to present)
(Hou et al., 2014), there are multi-decades worth of satellite images containing
important information about the evolution of the global water cycle.

This thesis aims to offer a novel approach to observing the water cycle and its
evolution. With the ever-growing potential of using Artificial Intelligence to solve
the big data problem in remote sensing, unsupervised image semantic segmenta-
tion is used to extract information about the water cycle directly from microwave
brightness temperature images. The first advantage of an unsupervised approach
is that it does not require any ground truth or ancillary data. Therefore, it can
be applied directly to a large image dataset. This method avoids any uncertain-
ties involved in the retrieval methods of the ancillary data and the annotations. In
addition, the resulting classes from the segmentation can potentially represent at
least one geophysical variable.

One of the major challenges tackled in this thesis is the validation of the classes.
Without any supervision, it is essential that the segmentation classes are meaningful
in their representation of geophysical variables. First, the classes are labeled using
a particular variable, for example, precipitation or sea surface temperature. Then,
they are compared to this variable using a reference dataset with traditional metrics
used in segmentation. In order to further consolidate the segmentation results, the
labeled classes are used in several case studies, such as tracking the monsoon
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arrival and departure, identifying the Inter-tropical Convergence Zone (ITCZ), and
regrouping isothermic sea surface temperatures.

Although the main body of work is the unsupervised approach, this thesis also
includes a supervised deep-learning approach for rain intensity retrieval from TB
data. In addition, my work also includes a transfer learning step, which allows
machine-learning algorithms trained on one satellite to be applicable on another
satellite.

In this manuscript, I described these three approaches for extracting information
from TB that I explored during my thesis work. Chapter 2 describes the supervised
approach in retrieving rain intensity using TB and rain rates. Chapter 4 details the
main body of work, which is the unsupervised segmentation of TB. Finally, Chapter
6 is about a transfer learning approach using unsupervised domain adaptation,
which is necessary for the application of machine learning algorithms trained on
GPM to other satellites. The content of each chapter is summarized as follows.

— Chapter 1 The Water Cycle under Climate Change
The observed and projected changes in the water cycle differ from one
region to another. This chapter aims to report and summarize these findings
with an emphasis on remote sensing and brightness temperature data. The
end of the chapter presents some challenges in observing the water cycle
as well as the motivation for the approach proposed in this thesis.

— Chapter 2 A Supervised Approach in Observing Precipitation with
Remote Sensing Data
Before going into the unsupervised segmentation approach, I present a
supervised deep-learning approach for retrieving rain rates from brightness
temperatures. Using a precipitation radar for supervision, precipitation is
retrieved from the brightness temperature images by a deep learning model
(Deep Rain, DRAIN). This chapter includes a description of TB data and
an article detailing the DRAIN algorithm and its evaluation.

— Chapter 3 Segmenting Images without Labels
Unsupervised learning of images is an emerging field in machine learning.
Due to a lack of recent review articles on the topic of unsupervised semantic
segmentation, Chapter 4 contributes to the categorizations of the methods
in this domain and provides several example algorithms. The chapter also
includes evaluation metrics for the unsupervised image segmentation.

— Chapter 4 Training, Validating, and Interpreting
This chapter presents the implementation of the unsupervised approach
and the analysis of the result. It includes training the models, comparing
the models, and interpreting the resulting segmentations. As the models are
trained without any supervision, it is essential to verify that the segmenta-
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tions deliver a meaningful representation of the geophysical variables. This
is done by using the segmentations on simple application cases such as
tracking the monsoons, identifying the ITCZ, and segmenting isothermic
sea surface temperatures.

— Chapter 5 Time Series Analysis
This chapter presents the trend analysis of the GPM Core Observatory
data from 2014 to 2024. First, the trend in the brightness temperature
measurement is explored. Then, the supervised approach (DRAIN) and the
unsupervised segmentation approach are applied to the brightness tempe-
rature data to analyze the trends in the resulting products.

— Chapter 6 Unsupervised Domain Adaptation
This chapter presents a domain adaptation approach for brightness tem-
perature images. In this thesis, only the data from GPM Core Observatory
is used was used. The GPM mission consists of a constellation of satellites
that are essential for a better observation of the global water cycle. The
satellites in the constellation may differ slightly in their configurations, re-
sulting in differences in the brightness temperature dataset. Although unsu-
pervised methods can directly be applied to any satellite, a transfer learning
approach is necessary to harmonize the segmentation from different satel-
lites. One possible solution is to use domain adaptation. A feasibility study
on an unsupervised domain adaptation approach is explored to transform
measurements from similar instruments to the domain of the GPM Core
Observatory for DRAIN. For a supervised approach such as DRAIN, the
transfer learning step is crucial. This chapter presents a paper on a domain
adaptation technique tested for DRAIN.
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The water cycle is a term that covers all of the movement of water in the
climate system in its liquid, gaseous, and solid form through the Earth’s surface,
atmosphere, and sub-surfaces (Douville et al., 2023). Figure 1.1 shows the various
components of the water cycle and its fluxes, which include water vapor, liquid wa-
ter, evapotranspiration, soil moisture, vegetation, snow cover, groundwater, runoff,
and the oceans (Oki et al., 1999). The primary drivers of the global water cycle
are evaporation and precipitation (Douville et al., 2023). Rainfall replenishes the
stock of water in rivers, soil moisture, and groundwater, which, in turn, depletes
through evaporation or evapotranspiration.

The IPCC Working Group I Assessment Report 6 (AR6) reports with high
confidence that the intensification of the water cycle worsens current water-related
risks and vulnerability around the world (Douville et al., 2023). The overall consen-
sus is that the increase in moisture due to the rising temperatures will result in
more or more intense rainfall in wet regions. At the same time, the increase in land
temperature leads to more severe droughts. Quantifying the changes happening to
the water cycle is essential in mitigating extreme events such as storms, floods,
and drought.

This chapter describes the recent changes in the water cycle and the methods to
observe these findings. As this study is limited to microwave brightness temperature
data, the scope of the water cycle elements presented here focuses mostly on
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Figure 1.1 – The water cycle elements with storages and fluxes (Oki et al., 1999).The boxes represent the storage, while the arrows represent the fluxes. Thevalues are estimated using data from 1989-1992.

the observations retrievable from the brightness temperature (TB) data, such as
precipitation, snowfall, and sea surface temperature (SST).

1.1 . Observed changes in the water cycle

Although the water cycle can vary due to natural variations, there is increasing
evidence that human activities are the dominating cause of the current changes to
the water cycle (Allan et al., 2020). On a regional level, the aerosol has an impor-
tant role in modifying the precipitation. The aerosol amount varies geographically,
influencing local atmospheric circulation, which, in turn, can modify the local preci-
pitation patterns (Caretta et al., 2022). This effect could be observed in the Indian
Summer Monsoon (Singh et al., 2019). Urbanization and land use increase risks of
runoff and flood as they cause a decrease in surface permeability (Caretta et al.,
2022). In addition, urbanization can reduce rainfall by decreasing evaporation while
increasing the risk of extreme rainfall by increasing sensible heat flux. Agriculture
and irrigation can further influence local precipitation by modifying the moisture
transport through (Caretta et al., 2022; Alter et al., 2015). Furthermore, they can
reduce river flow and groundwater levels.

Simultaneously, river flow is dependent on snowmelt or glaciers, which are
influenced by snowfall. Rising temperatures can decrease snowfall and shorten snow
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seasons, which inevitably reduces the amount of water in the rivers (Caretta et al.,
2022). Additionally, an increase in sea surface temperatures can lead to increasing
evaporation, affecting the precipitation (Alexander et al., 2009; van der Ent and
Savenije, 2013).

The key observations essential to quantifying these changes in the water cycle
include water vapor, precipitation, evapotranspiration, snow, runoff, streamflow,
aridity, droughts, and freshwater reservoirs (Douville et al., 2023). In addition to
these variables, it is crucial to study the changes in the characteristics of large-
scale phenomena such as the Inter-tropical Convergence Zones (ITCZ), the Hadley
cell circulation, the Walker circulation, Monsoons, tropical cyclones, extratropical
cyclones, storm tracks, atmospheric blocking, and atmospheric rivers (Douville
et al., 2023).

Changes in precipitation patterns can result in further changes in other water
cycle elements connected to rain. Rain has a role in transporting heat between the
surface and the atmosphere (Trenberth, 2011). It can also influence the reflectivity
of the Earth’s surface. Thus, rain plays a crucial role in the Earth’s energy balance.
Furthermore, modification in rainfall patterns can also lead to other changes, such
as vegetation growth (Chen et al., 2020), sea surface temperature, and ocean
salinity surface (Katsaros and Buettner, 1969).

With high confidence, the AR6 reports a thermodynamic increase in moisture to
the weather system, affecting the global and regional precipitation (Douville et al.,
2023). As climate change leads to modification of the global and local heating and
cooling patterns, it is inevitable that there will be changes in precipitation in terms
of intensity, type, duration, and frequency (Pendergrass and Hartmann, 2014).

In terms of large-scale circulation, the AR6 projects multiple effects with low
to medium confidence (Douville et al., 2023). The effect of the poleward shift of
the Hadley cells, the regional shift of the ITCZ, and the poleward shift of the
storm tracks in the Northern Hemisphere are projected with low confidence. With
medium confidence are the projections about the Walker circulation weakening, the
strengthening of the ITCZ core, and the poleward movement of the storm track in
the Southern Hemisphere.

This section aims to further discuss recent findings regarding the changes in
several water cycle components. The first subsection is about precipitation, one
of the most important drivers of the water cycle. Multiple aspects of precipitation
changes, such as monsoons, the ITCZ, and tropical cyclones, are examined. Next,
we look at how snowfall and snow cover respond to global warming. Then, recent
changes in extreme hydrological events, including droughts and floods, are briefly
discussed. The last subsection describes sea surface surface temperature and its
impact on the water cycle.
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1.1.1 . Precipitation

Climate change is likely to affect precipitation amount and characteristics in
terms of intensity, frequency, and type (Trenberth, 2011; Pendergrass and Hart-
mann, 2014). The characteristics of precipitation significantly impact society as
they control water resources, agriculture, infrastructure, and the economy. For
example, light to moderate rainfall over a long period can benefit agriculture, but
heavy rain over a short time can lead to flood (Trenberth, 2011).

The warmer condition causes more evaporation. As the weather system tends
to gather moisture over a large region, precipitation can intensify. However, there is
only a slight increase (or a much lower increase rate) in the total amount of rainfall,
which could mean a decrease in the duration and frequency of precipitation (Tren-
berth, 2011). In contrast to the trend in temperature, the change in precipitation
is very spatially heterogeneous (Donat et al., 2013). According to the IPCC Sixth
Assessment Report (AR6) from Working Group I and Working Group II, in most
areas, the annual mean in precipitation has increased, while a few regions have
seen a decrease (Douville et al., 2023; Caretta et al., 2022). Some of the findings
reported include :

— The tropical land areas experienced the patterns of "wet convergent re-
gimes get wetter" and "dry divergent regimes get drier." Since 1979, the
convergence zone of the atmospheric circulation has received an increase in
precipitation amount, while the descending branch has received a decreased
amount (Douville et al., 2023).

— A decrease in rainfall amount is observed in southern Australia, South
America (southern Andes), and eastern Africa. A drying effect is observed
in dry summer climates such as the Mediterranean, western North America,
southwestern South America, southwestern Australia, and South Africa
(Caretta et al., 2022).

— An increase in rainfall amount is observed in northern Australia, southeas-
tern South America, central and north-eastern North America.

— The intensity of heavy precipitation has increased in some regions, inclu-
ding the majority of North America, Europe, the Indian Subcontinent, and
some parts of Asia (northern and southeastern regions), Africa (southern
regions), and Australia (central, northern, and western regions) (Caretta
et al., 2022).

— Heavy precipitation has decreased in several regions, including South Ame-
rica, Australia (eastern regions), and Africa (eastern regions) (Caretta
et al., 2022).

Figure 1.2 describes visually the trends described above. For the trend between
1901 and 1984, the data used is from the Global Precipitation Climatology Center
(GPCC). The GPCC is a gauge-only dataset. The errors in GPCC products could
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be due to measurement errors (evaporation from gauge or strong wind near gauge)
and sampling errors due to a sparse network of gauges (Schneider et al., 2008).

For the trend between 1985 and 2014, the data used is the Global Precipitation
Climatology Project (GPCP). The GPCP combines rain gauge analysis from GPCC
(gauge only) and satellite-based products, including passive microwave radiometers
and infrared satellites (Adler et al., 2018). The quality of the GPCP Monthly
analysis is affected by the differences in sensors and their estimates of precipitation.
Better adjustment between sensors can lead to better estimates over the ocean,
while better rain gauge analysis can improve precipitation over land.

Monsoons

Monsoons are important precipitation patterns upon which rely up to two-thirds
of the world’s population for water resources (Wang et al., 2020). Anthropogenic
forcing resulting from greenhouse gas, aerosol, and land use could influence the
global and regional monsoon (Seth et al., 2019). Understanding and quantifying
the changes in monsoons is an essential step in adapting and mitigating water
scarcity and natural disasters.

South, Southeast, and East Asian Monsoon

The Asian monsoon is one of the most important rainfall distributions upon
which up to 60% of the world’s population and many of the most vulnerable bio-
diversity zones depend (Buckley et al., 2014). The Asian monsoon comprises three
sub-systems : the Indian Summer Monsoon (ISM), the East Asian Monsoon, and
the Western North Pacific Summer Monsoon (Buckley et al., 2014). Although these
three sub-systems are not explicitly correlated to one another, their interaction can
modify the rainfall received over their respective regions.

Over the past 50 years, there is evidence that the Indian Summer Monsoon
(ISM) over the Indian Subcontinent has seen a decrease in rainfall (Roxy et al.,
2015; Samanta et al., 2020). The strength of the monsoon is strongly influenced by
the temperature contrast between the Indian Subcontinent and the tropical Indian
Ocean (Roxy et al., 2015; Jin and Wang, 2017). The ISM can be weakened by
the increase in sea surface temperature (SST) in the tropical Indian Ocean and
the western and central-eastern tropical Pacific (Singh et al., 2019). Warmer SST
directly affects meridional tropospheric temperature contrast, which changes the
amount and location of the rainfall. Regarding SST, El Niño-Southern Oscillation
(ENSO) plays a significant role in controlling the annual precipitation in the mon-
soon as it contributes to the warming of the Pacific Ocean (Singh et al., 2019).
More frequent El Niño in recent years could result in less precipitation over the In-
dian Subcontinent. Although rising SST temperatures weaken the monsoon, there
is a possible revival caused by the temperature increase over the subcontinent,
which reduces the contrast (Jin and Wang, 2017). However, the competition bet-
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Figure 1.2 – Linear trends in annual mean precipitation per decade (mm/dayper decade) based on observational dataset (a,e), CMIP6 multi-model en-semble simulations driven by : all radiative forcings (b,f), GHG-only (c,g), andaerosol only (d,h). The cross over each grid represents a non-significant trend(Douville et al., 2023)
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ween the continent temperature and the SST would only end in disaster as hotter
temperatures over the Indian Subcontinent lead to heat waves and flash floods,
while warmer ocean brings more droughts (Roxy et al., 2015). At this stage, there
are many debates on whether the ISM will weaken or strengthen in the future.

East Asian monsoon brings roughly 60% of the total rainfall received in Eas-
tern China (Day et al., 2018). From 1951 to 2007, there is evidence of "South
Flood–North Drought" over China due to the change in the frontal precipitation
system (Day et al., 2018; Zhang et al., 2020). The increase in rainfall in the Sou-
thern regions, which received more moderate and heavy rain, may have been caused
by greenhouse gas forcings (Zhang et al., 2020). The Northern regions received
less moderate and light rain, leading to decreased total rainfall, which is linked to
aerosol emissions (Zhang et al., 2020).

Southeast Asia is surrounded by the ISM, the East Asian Monsoon, and the
Western North Pacific Summer Monsoon, which interact and influence the preci-
pitation regime (Buckley et al., 2014). While some regions have seen a decrease in
precipitation trend, there is an increasing risk of flood (Loo et al., 2015). Obser-
vation data from 2001 to 2010 shows that the rainy season seemed to last longer,
with an earlier start date and a later end date (Suepa et al., 2016). However, there
was a decrease in total rainfall in this period.

The West African Monsoon

The West African monsoon is essential to water resources and agriculture in
the Sudano-Sahelian region (Sultan and Janicot, 2003). The monsoon transports
moisture and precipitation from the Atlantic Ocean to West Africa, varying from
interannual to interdecadal scale (Quagraine et al., 2020). The West African re-
gion experienced a period of increased rainfall between 1950 and 1970, followed
by an arid period between 1970 and 1980, and then a recovery with increased
precipitation in the 1990s (Douville et al., 2023). In the Sahelian region, there has
been an increase in extreme rainfall since the 1980s (Taylor et al., 2017; Zhang
et al., 2017). The western and central Sahelian region has seen increased rainfall
amounts and extreme events, while the eastern region experienced an opposite
trend (Zhang et al., 2017). Along with the increase in extreme precipitation, Wes-
tern Africa is susceptible to dry spells and localized droughts (Douville et al., 2023).

North and South American Monsoon

The North American monsoon has not shown any significant trend (Seth et al.,
2019). With a lot of spatial variability, observation data between 1948-2010 shows
a decrease in precipitation for June to September in central and southern Mexico
and an increase in northwest Mexico and the southwestern USA (Seth et al., 2019).
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The South American Monsoon is projected to have some onset delay with
the increase of greenhouse gas (Douville et al., 2023). The anomalous low-level
moisture flux reversal over central South America determines the South American
monsoon onset and withdrawal (Thome Sena and Magnusdottir, 2020). The de-
velopment and strength of the monsoon are heavily influenced by the evapotrans-
piration over the Amazon Rain Forest (Thome Sena and Magnusdottir, 2020).
Accompanied by the delays, the wet season is projected to last longer, while the
Amazon becomes dryer in all seasons (Thome Sena and Magnusdottir, 2020).
Although observations are very sparse, data since the 1950s suggests that the Sou-
theast regions of South America experienced an increasing trend in precipitation
(Seth et al., 2019).

Australian and Maritime Continent Monsoon

The Australian monsoon is responsible for most of the freshwater supply in Nor-
thern Australia (Heidemann et al., 2023). On an inter-annual scale, the monsoon
variability is controlled by oceanic processes such as El Niño-Southern Oscillation
(ENSO) (Heidemann et al., 2023). On a multi-decadal scale, it is strongly influen-
ced by the Interdecadal Pacific Oscillation (IPO). For long-term changes, some
studies suggest, with some uncertainties, a relationship between anthropogenic ae-
rosol and an increase in precipitation over Northern Australia. Observations suggest
a change in short-duration rainfall events, called burst regime, have become more
frequent and longer in duration (Dey et al., 2020).

The Maritime Continent rainfall is controlled by the Asian and Australian Mon-
soon (Douville et al., 2023). Observation data from 1981-2014 shows a trend of
increasing precipitation over many regions in the Maritime Continent. However, for
regions with highly variable intra-annual precipitation, like the Maritime continent,
the time period for calculating the trend can strongly influence the result.

Inter-Tropical Convergence Zone (ITCZ)

Located at the ascending branch of the Hadley cell, there is abundant and in-
tense rainfall in the Inter-Tropical Convergence Zone (ITCZ) (Byrne and Schneider,
2016). It is an important feature of the world’s precipitation, as its characteristics,
including width and position, determine the tropical rain belt (Douville et al., 2023).
It also has a major influence on the monsoon dynamics and the global energy bud-
get. Based on observational and reanalysis data between 1980 and 2014, there is a
trend of narrowing and intensifying precipitation in the ITCZ (Lau and Tao, 2020).
The more intense precipitation in the ITCZ is accompanied by more drying areas
in both hemispheres (Lau and Tao, 2020; Wodzicki and Rapp, 2016; Byrne and
Schneider, 2016). It is important to examine the regional response to the streng-
thening of the ITCZ to understand its global effect.
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Tropical cyclones

Although tropical cyclones typically have the negative connotation of extreme
rainfall and flood, they are also an important source of freshwater supply and
moisture transport for the coastal area in East Asia (Douville et al., 2023). Due to
a lack of data coverage, it is difficult to determine how the tropical cyclones have
changed due to anthropogenic forcings. Some evidence, albeit very limited, suggests
an increased rain intensity and a slower translation speed. There is, however, theory
and modelization that agree on the reduction of tropical cyclones’ translation speed.

1.1.2 . Snowfall and snow cover

Snowfall is an essential component of the global water cycle due to its impor-
tant role in the cryosphere (Tamang et al., 2020). It refills the stock of fresh water
in the form of snow in winter and melts in summer to replenish the water supply
(Tamang et al., 2020). A warmer climate could lead to less snowfall and earlier
snowmelt, which can cause a shortage of fresh water and less streamflow.

The snowfall response to global warming differs from one region to another.
As the annual mean potential snowfall areas over land in the Northern Hemisphere
decreases, the Tibetan Plateau as a whole receives more snow during winter and
less snowfall during summer (Douville et al., 2023).

On a large scale, passive microwave remote sensing primarily contributes to
monitoring the variation in snow depth (Dai et al., 2017; Tanniru and Ramsanka-
ran, 2023). The brightness temperatures are responsible for observing important
snowpack regions such as the Himalayas and the Qinghai-Tibetan Plateau (Dai
et al., 2017; Tanniru and Ramsankaran, 2023). In addition to snow depth, bright-
ness temperature at high frequency can be used to retrieve snowfall (Edel et al.,
2019).

1.1.3 . Droughts

There are several types of droughts (Caretta et al., 2022; McVicar and Jupp,
1998). Periods of persistent low precipitation lead to meteorological droughts. A
meteorological drought can persist over a long period of time, causing deficits
in soil moisture, streamflow, and water storage, which results in a hydrological
drought that reduces the water supply. Hydrological drought can cause shortages
in drinking water and substantial economic damage. The level of social and eco-
nomic loss defines a socioeconomic drought. Additionally, increased atmospheric
evaporative demand increases plant water stress and causes agricultural and ecolo-
gical drought. Agricultural drought threatens food production, whereas ecological
drought increases wildfire risk.
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Agricultural drought can be monitored through soil moisture as it is a good
indicator of water and energy fluxes between the land surface and the atmosphere
(Liu et al., 2019). Although soil moisture can be observed by in-situ measurement
and land surface modeling, low-frequency passive microwave radiometer satellites
provide unprecedented advantages as they offer coverage of global soil moisture,
sensitivity to soil permittivity, and the possibility of measuring in all types of weather
(Liu et al., 2019; Zeng et al., 2020). Satellite soil moisture observation shows a
decreasing trend for the last two decades in several regions, including central and
southern America, southern and eastern South America, central Eurasia, and large
areas of southern China, most of which are arid and semi-arid (Liu et al., 2019).

There is a strong link between anthropogenic factors, such as emissions of
greenhouse gases and aerosol, and the trend of aridity (Douville et al., 2023).
Figure 1.3, extracted from the Sixth Assessment Report of the Working Group II,
shows regions that are susceptible to hazardous droughts by evaluating precipitation
deficits from the Global Precipitation Climatology Centre (GPCC) for 1901–2010
(Caretta et al., 2022). The report concluded that the risks of agricultural and
ecological drought trends in the Mediterranean and western North America are
substantial due to an increase in evaporative demand. In addition, there is high
confidence the increase in meteorological drought in southwestern Australia can be
attributed to anthropogenic causes (Caretta et al., 2022). However, there is only
a medium confidence that recent severe droughts occurring in southern Africa and
southwestern South America are caused by human influences.

1.1.4 . Floods

The link between flood and heavy precipitation is complex (Caretta et al.,
2022). While the increase in heavy rainfall causes an increase in floods in some
regions, it can also result in no change in flood observation due to factors such
as soil moisture conditions, land cover change, cryospheric change, and quality of
river system management. In regions where rain is rare but intense when it occurs,
the ground becomes hard and does not absorb water quickly, resulting in more
surface runoff and severe floods (Douville et al., 2023).

Figure 1.4 shows the historical and projected flood water depths using model
simulations. In the past several decades, many regions have seen vastly different
trends in the frequency and magnitude of river floods (Caretta et al., 2022). The
Observation data between 1985 and 2015 based on in-situ and satellite data shows
that flood events have increased 4-fold in the tropics and 2.5-fold in northern
mid-latitudes.

Remote sensing data contributes to indirectly observing floods by measuring
the root causes of floods (Douville et al., 2023). For example, one of the main fac-
tors causing floods is extreme precipitation. In the tropics, data from an ensemble
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Figure 1.3 – Drought hazard between 1901 and 2020 estimated by the probabi-lity of surpassing the median of global severe precipitation deficits. The datafor this estimation is the precipitation data from the GPCC data from 1901 to2010 (Caretta et al., 2022).

of satellite products shows that extreme precipitation events are mainly caused by
long-lived mesoscale convective systems (Roca and Fiolleau, 2020). Soil moisture
is another important factor as it has a role in determining the location and timing
of the initiation of the convective systems (Douville et al., 2023). For more direct
observation, passive microwave satellites can map the flood as they can penetrate
clouds, which usually cover the flood areas (De Groeve, 2010). However, monito-
ring through satellite observation can be limited by the satellite’s revisit time and
resolution.

1.1.5 . Sea Surface Temperature (SST)

The ocean is responsible for providing a large portion of the moisture neces-
sary for continental precipitation (van der Ent and Savenije, 2013). SST variability,
which affects evaporation, can significantly impact surface temperature and preci-
pitation (Alexander et al., 2009; van der Ent and Savenije, 2013). In El Niño years,
the global average of extreme temperatures is observed to be warmer (Alexander
et al., 2009). However, for precipitation extremes, the response to SST is not as
significant, as it is different from one region to another (Alexander et al., 2009).
On a global level, there are more dry extremes during strong El Niño and more wet
extremes during strong El Niña (Alexander et al., 2009).
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Figure 1.4 – Historical (1961-2005) and projected (2051-2070) fluvial flood depthfrom a combination of land surface model and inundation model in (meters).The simulation of the model is based on the reanalysis of the CMIP5 GCMs.

The rising SST is one of many important global warming indicators (Ruela
et al., 2020). Model projections show that SST is increasing globally, with different
intensities depending on the region (Ruela et al., 2020). In terms of observations,
SST has been measured for at least 150 years through in-situ measurements such
as ships and drifting buoys, and more recently through satellite observations (Alers-
kans et al., 2022). Satellite data offers a high-resolution and global average of SST
observations (Garcia-Soto et al., 2021). Particularly, passive microwave satellites
are capable of observing SST through non-precipitating clouds and small amounts
of aerosol, whereas its Infrared counterpart is obstructed by aerosols and clouds
(Alerskans et al., 2022).

The agreement between in-situ and remote sensing data has increased the
confidence in observing the trend in SST (Garcia-Soto et al., 2021). Multiple ob-
servational datasets confirm that SST has been increasing since the 1900s, with the
five warmest years recorded since 2014 (Garcia-Soto et al., 2021). The warming
response is observed over most of the oceans, with the exception of the North
Atlantic Ocean, which has experienced a cooling trend (Garcia-Soto et al., 2021).

1.2 . Methods of observing the evolution of the water cycle

Studying the evolution of the water cycle requires measuring its key components
and understanding the changes in large-scale circulations. The major setback is the
difficulty in measuring and retrieving these key components.

1.2.1 . Challenges in observing geophysical variables

Difficulties in obtaining the measurements

The first step in observing the water cycle is obtaining a high-quality dataset
of its major drivers. For precipitation, the difficulty in obtaining observation is due
to the fact that it has a very intermittent nature in space and time. In addition to
its intermittent nature, there are differences between land and ocean in terms of
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water availability and the relation between precipitation and temperature (Tren-
berth, 2011). Therefore, to study the daily mean accumulation or mean intensity of
precipitation, it is essential to have global fine-scaled data in both times and space
(Trenberth, 2011). In-situ data, such as rain gauges, are essential, but they can-
not offer good enough coverage to acquire global homogeneous fine-scale datasets
(Kidd et al., 2017). Ground-based instruments can also be quite lacking in some
areas where the topography is complex, as well as over the ocean. They can also
suffer from wind effects that make it challenging to observe light rain and snow.
Additionally, there is also the issue of strict policies on data sharing in many coun-
tries (Donat et al., 2013). Remote sensing measurements (radar and space-based),
on the other hand, only observe instantaneous rates but take measurements in a
regular manner between the areas that the satellite overflies.

Besides precipitation, in-situ alone is also insufficient for observing other data
that are less intermittent, such as SST, soil moisture, and snow cover. Satellite
data is a good solution for obtaining a global dataset.

Differences among datasets

With many measurements, in-situ and remote sensing, combining these data-
sets for a better scale and coverage is a key process. However, it is very important
that the data is homogeneous and free from inconsistency, which could show up as
an outlier or extreme (Alexander et al., 2006). The mismatch of spatial and tem-
poral scales in the dataset is a big obstacle in correctly assessing the evolution of
the extremes. Furthermore, different datasets might present differences in retrieval
algorithms and, therefore, differences in uncertainties and errors. In order to over-
come these limitations, it is important that data sources are utilized with careful
consideration (reanalyses, various satellites, radar, and remote sensing products).

For precipitation, the limitations concerning the data sets include (Alexander
et al., 2006) :

— Differences between the precipitation datasets, including their representa-
tion of extremes.

— Critical gaps in the amount, quality, and consistency of the data.
— Uncertainties due to gridding methods causing problems between extreme

values and scaling.
— Heterogeneous data due to, for example, when an observation station is

moved.
Another approach to improving the dataset is to use reanalysis, which makes

use of a wide array of historical data, remote sensing data, numerical models, and
assimilation schemes (Tarek et al., 2020). Precipitation reanalysis data are limited
by the lack of in-situ observations, differences between assimilated datasets, and
errors in the numerical models (Tarek et al., 2020; Dorigo et al., 2021).

Combining multiple datasets is a persistent problem for many observations.
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For example, in the study of drought trends, the soil moisture datasets present
discrepancies due to differences in sensor design, retrieval algorithm, topology, and
vegetation state (Liu et al., 2019).

Differences in definitions

The limitation to the study of temperature and precipitation extremes starts
with their definitions (Alexander et al., 2006). Particularly, the inconsistency of
spatial and temporal scales in the observations can impact the determination of
extremes. For instance, the coordination between different meteorological services
and the rigorous data quality control hinder the global gathering of homogeneous
data needed for defining extremes.

1.2.2 . Deep Learning approaches for remote sensing data

Remote sensing has been used to observe many water cycle elements (Cui
et al., 2018). Since the 1980s, various remote sensing missions have collected
an extensive dataset of Earth observation. The large amount of data has opened
up an unprecedented opportunity for the application of the emerging success of
Machine Learning. Among the many types of remote sensing measurement, this
thesis focuses on the Microwave Brightness Temperature (TB), which has been
used to observe many water cycle elements, including precipitation, glaciers, snow,
sea ice, and soil moisture. Therefore, a decade-long dataset of TB can be considered
an important climate record containing insightful information about the global
water cycle.

This thesis explores supervised and unsupervised approaches to retrieving infor-
mation from TB. First, a supervised learning approach for retrieving rain intensity
from TB data is described. Deploying this supervised approach to other satellites
requires a transfer learning step due to differences in data distribution. A domain
adaptation between two satellites is briefly explored in the last chapter of this thesis
work.

As a complement to studying and observing each water cycle component, I pro-
pose an alternative approach where an unsupervised deep learning model extracts
multiple information from satellite observations. Although there is a large dataset,
these remote-sensing observations do not contain ground-truth labels. In this un-
supervised approach, neither auxiliary variables nor data annotations are needed.
As a result, it is also free from any uncertainties and mismatches involved in using
auxiliary data. In addition, in methods where a geophysical variable is retrieved
from TB, it is assumed that the relationship between TB and said variable is not
modified under the condition of climate change. In the case where this hypothesis
does not hold, the performance of these retrieval algorithms can be decreased. This
issue does not affect the unsupervised approach where only TB is used.
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The main objective of the present study is the application of unsupervised
learning approaches to TB, which is a key measurement in the observation of the
water cycle. Since the launch of the Tropical Rainfall Measuring Mission (TRMM)
(Kummerow et al., 1998) and Global Precipitation Measurement (GPM) mission
(Hou et al., 2014), there have been multiple decades of TB data collected by mul-
tiple satellites containing important information about the water cycle. Therefore,
a wealth of information can be extracted from this data. The large amount of data
is a great opportunity to apply a Deep Learning model.

In the proposed unsupervised approach, multiple channels of brightness tem-
perature images are fed into an unsupervised image semantic segmentation model.
This results in a labeling of each pixel of the image. Each obtained "segmenta-
tion class" represents one or a combination of geophysical variables. These classes
are validated qualitatively and quantitatively before they can be used to study the
evolution observed by the TB time series.

23



1.3 . References

R. F. Adler, M. R. P. Sapiano, G. J. Huffman, J.-J. Wang, G. Gu, D. Bolvin,
L. Chiu, U. Schneider, A. Becker, E. Nelkin, P. Xie, R. Ferraro, and D.-B.
Shin. The global precipitation climatology project (GPCP) monthly analysis
(new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9(4),
2018. ISSN 2073-4433. doi : 10.3390/atmos9040138. URL https://www.
mdpi.com/2073-4433/9/4/138.

E. Alerskans, A.-S. P. Zinck, P. Nielsen-Englyst, and J. L. Høyer. Exploring machine
learning techniques to retrieve sea surface temperatures from passive microwave
measurements. Remote Sensing of Environment, 281 :113220, 2022. ISSN
0034-4257. doi : https://doi.org/10.1016/j.rse.2022.113220. URL https:
//www.sciencedirect.com/science/article/pii/S0034425722003261.

L. V. Alexander, X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G.
Klein Tank, M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour,
K. Rupa Kumar, J. Revadekar, G. Griffiths, L. Vincent, D. B. Stephenson,
J. Burn, E. Aguilar, M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci,
and J. L. Vazquez-Aguirre. Global observed changes in daily climate extremes
of temperature and precipitation. Journal of Geophysical Research : Atmos-
pheres, 111(D5), 2006. doi : https://doi.org/10.1029/2005JD006290.

L. V. Alexander, P. Uotila, and N. Nicholls. Influence of sea surface tempera-
ture variability on global temperature and precipitation extremes. Journal of
Geophysical Research : Atmospheres, 114(D18), 2009.

R. P. Allan, M. Barlow, M. P. Byrne, A. Cherchi, H. Douville, H. J. Fowler, T. Y.
Gan, A. G. Pendergrass, D. Rosenfeld, A. L. Swann, et al. Advances in unders-
tanding large-scale responses of the water cycle to climate change. Annals of
the New York Academy of Sciences, 1472(1) :49–75, 2020.

R. E. Alter, E.-S. Im, and E. A. Eltahir. Rainfall consistently enhanced around
the Gezira Scheme in East Africa due to irrigation. Nature Geoscience, 8(10) :
763–767, 2015.

B. M. Buckley, R. Fletcher, S.-Y. S. Wang, B. Zottoli, and C. Pottier. Monsoon
extremes and society over the past millennium on mainland Southeast Asia. Qua-
ternary Science Reviews, 95 :1–19, 2014. ISSN 0277-3791. doi : https://doi.
org/10.1016/j.quascirev.2014.04.022. URL https://www.sciencedirect.
com/science/article/pii/S0277379114001462.

24

https://www.mdpi.com/2073-4433/9/4/138
https://www.mdpi.com/2073-4433/9/4/138
https://www.sciencedirect.com/science/article/pii/S0034425722003261
https://www.sciencedirect.com/science/article/pii/S0034425722003261
https://www.sciencedirect.com/science/article/pii/S0277379114001462
https://www.sciencedirect.com/science/article/pii/S0277379114001462


M. P. Byrne and T. Schneider. Energetic constraints on the width of the intertro-
pical convergence zone. Journal of Climate, 29(13) :4709–4721, 2016.

M. Caretta, A. Mukherji, M. Arfanuzzaman, R. Betts, A. Gelfan, Y. Hirabayashi,
T. Lissner, J. Liu, E. L. Gunn, R. Morgan, S. Mwanga, and S. Supratid. Water.
In : Climate Change 2022 : Impacts, Adaptation and Vulnerability. Contribution
of Working Group II to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. 2022. doi : 10.1017/9781009325844.006.

Z. Chen, W. Wang, and J. Fu. Vegetation response to precipitation anomalies under
different climatic and biogeographical conditions in China. Scientific reports, 10
(1) :830, 2020.

Y. Cui, X. Chen, J. Gao, B. Yan, G. Tang, and Y. Hong. Global water cycle and
remote sensing big data : overview, challenge, and opportunities. Big Earth Data,
2(3) :282–297, 2018. doi : 10.1080/20964471.2018.1548052. URL https:
//doi.org/10.1080/20964471.2018.1548052.

L. Dai, T. Che, Y. Ding, and X. Hao. Evaluation of snow cover and snow depth on
the Qinghai–Tibetan Plateau derived from passive microwave remote sensing.
The Cryosphere, 11(4) :1933–1948, 2017.

J. A. Day, I. Fung, and W. Liu. Changing character of rainfall in eastern China,
1951–2007. Proceedings of the National Academy of Sciences, 115(9) :2016–
2021, 2018.

T. De Groeve. Flood monitoring and mapping using passive microwave remote
sensing in Namibia. Geomatics, Natural Hazards and Risk, 1(1) :19–35, 2010.

R. Dey, A. J. Gallant, and S. C. Lewis. Evidence of a continent-wide shift of episodic
rainfall in Australia. Weather and Climate Extremes, 29 :100274, 2020. ISSN
2212-0947. doi : https://doi.org/10.1016/j.wace.2020.100274. URL https:
//www.sciencedirect.com/science/article/pii/S2212094719302403.

M. G. Donat, L. V. Alexander, H. Yang, I. Durre, R. Vose, R. J. H. Dunn, K. M.
Willett, E. Aguilar, M. Brunet, J. Caesar, B. Hewitson, C. Jack, A. M. G.
Klein Tank, A. C. Kruger, J. Marengo, T. C. Peterson, M. Renom, C. Oria Ro-
jas, M. Rusticucci, J. Salinger, A. S. Elrayah, S. S. Sekele, A. K. Srivastava,
B. Trewin, C. Villarroel, L. A. Vincent, P. Zhai, X. Zhang, and S. Kitching.
Updated analyses of temperature and precipitation extreme indices since the
beginning of the twentieth century : The HadEX2 dataset. Journal of Geophysi-
cal Research : Atmospheres, 118(5) :2098–2118, 2013. doi : https://doi.org/10.
1002/jgrd.50150. URL https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/jgrd.50150.

25

https://doi.org/10.1080/20964471.2018.1548052
https://doi.org/10.1080/20964471.2018.1548052
https://www.sciencedirect.com/science/article/pii/S2212094719302403
https://www.sciencedirect.com/science/article/pii/S2212094719302403
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50150
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50150


W. Dorigo, S. Dietrich, F. Aires, L. Brocca, S. Carter, J.-F. Cretaux, D. Dunkerley,
H. Enomoto, R. Forsberg, A. Güntner, et al. Closing the water cycle from
observations across scales : Where do we stand ? Bulletin of the American
Meteorological Society, 102(10) :E1897–E1935, 2021.

H. Douville, K. Raghavan, J. Renwick, R. P. Allan, P. A. Arias, M. Barlow,
R. Cerezo-Mota, A. Cherchi, T. Y. Gan, J. Gergis, et al. Water Cycle Changes,
page 1055–1210. Cambridge University Press, 2023.

L. Edel, J.-F. Rysman, C. Claud, C. Palerme, and C. Genthon. Potential of passive
microwave around 183 GHz for snowfall detection in the Arctic. Remote Sensing,
11(19) :2200, 2019.

C. Garcia-Soto, L. Cheng, L. Caesar, S. Schmidtko, E. B. Jewett, A. Cheripka,
I. Rigor, A. Caballero, S. Chiba, J. C. Báez, et al. An overview of ocean climate
change indicators : Sea surface temperature, ocean heat content, ocean pH,
dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea
level and strength of the AMOC (Atlantic Meridional Overturning Circulation).
Frontiers in Marine Science, 8 :642372, 2021.

H. Heidemann, T. Cowan, B. J. Henley, J. Ribbe, M. Freund, and S. Power. Va-
riability and long-term change in Australian monsoon rainfall : A review. Wiley
Interdisciplinary Reviews : Climate Change, 14(3) :e823, 2023.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima,
R. Oki, K. Nakamura, and T. Iguchi. The Global Precipitation Measurement Mis-
sion. Bulletin of the American Meteorological Society, 95(5) :701 – 722, 2014.
doi : 10.1175/BAMS-D-13-00164.1. URL https://journals.ametsoc.org/
view/journals/bams/95/5/bams-d-13-00164.1.xml.

Q. Jin and C. Wang. A revival of Indian summer monsoon rainfall since 2002.
Nature Climate Change, 7(8) :587–594, Aug. 2017. ISSN 1758-6798. doi :
10.1038/nclimate3348. URL https://doi.org/10.1038/nclimate3348.

K. Katsaros and K. J. Buettner. Influence of rainfall on temperature and salinity of
the ocean surface. Journal of Applied Meteorology (1962-1982), pages 15–18,
1969.

C. Kidd, A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson,
and D. B. Kirschbaum. So, how much of the earth’s surface is covered by rain
gauges ? Bulletin of the American Meteorological Society, 98(1) :69–78, 2017.

C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson. The tropical rainfall
measuring mission (TRMM) sensor package. Journal of atmospheric and oceanic
technology, 15(3) :809–817, 1998.

26

https://journals.ametsoc.org/view/journals/bams/95/5/bams-d-13-00164.1.xml
https://journals.ametsoc.org/view/journals/bams/95/5/bams-d-13-00164.1.xml
https://doi.org/10.1038/nclimate3348


W. K. M. Lau and W. Tao. Precipitation–radiation–circulation feedback processes
associated with structural changes of the ITCZ in a warming climate during
1980–2014 : An observational portrayal. Journal of Climate, 33(20) :8737 –
8749, 2020. doi : https://doi.org/10.1175/JCLI-D-20-0068.1. URL https://
journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml.

Y. Liu, Y. Liu, and W. Wang. Inter-comparison of satellite-retrieved and Glo-
bal Land Data Assimilation System-simulated soil moisture datasets for global
drought analysis. Remote Sensing of Environment, 220 :1–18, 2019. ISSN
0034-4257. doi : https://doi.org/10.1016/j.rse.2018.10.026. URL https:
//www.sciencedirect.com/science/article/pii/S0034425718304802.

Y. Y. Loo, L. Billa, and A. Singh. Effect of climate change on seasonal monsoon
in Asia and its impact on the variability of monsoon rainfall in Southeast Asia.
Geoscience Frontiers, 6(6) :817–823, 2015. ISSN 1674-9871. doi : https://
doi.org/10.1016/j.gsf.2014.02.009. URL https://www.sciencedirect.com/
science/article/pii/S167498711400036X. Special Issue : Geoinformation
techniques in natural hazard modeling.

T. R. McVicar and D. L. Jupp. The current and potential operational uses of
remote sensing to aid decisions on drought exceptional circumstances in Aus-
tralia : a review. Agricultural Systems, 57(3) :399–468, 1998. ISSN 0308-521X.
doi : https://doi.org/10.1016/S0308-521X(98)00026-2. URL https://www.
sciencedirect.com/science/article/pii/S0308521X98000262. Drought
Policy, Assessment and Declaration.

T. Oki, D. Entekhabi, and T. I. Harrold. The global water cycle. Global energy
and water cycles, 10 :27, 1999.

A. G. Pendergrass and D. L. Hartmann. Two modes of change of the dis-
tribution of rain. Journal of Climate, 27(22) :8357 – 8371, 2014. doi :
10.1175/JCLI-D-14-00182.1. URL https://journals.ametsoc.org/view/
journals/clim/27/22/jcli-d-14-00182.1.xml.

K. A. Quagraine, F. Nkrumah, C. Klein, N. A. B. Klutse, and K. T. Quagraine. West
African summer monsoon precipitation variability as represented by reanalysis
datasets. Climate, 8(10) :111, 2020.

R. Roca and T. Fiolleau. Extreme precipitation in the tropics is closely associated
with long-lived convective systems. Communications Earth & Environment, 1
(1) :18, 2020.

M. K. Roxy, K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. Goswami.
Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening
land-sea thermal gradient. Nature communications, 6(1) :7423, 2015.

27

https://journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml
https://journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml
https://www.sciencedirect.com/science/article/pii/S0034425718304802
https://www.sciencedirect.com/science/article/pii/S0034425718304802
https://www.sciencedirect.com/science/article/pii/S167498711400036X
https://www.sciencedirect.com/science/article/pii/S167498711400036X
https://www.sciencedirect.com/science/article/pii/S0308521X98000262
https://www.sciencedirect.com/science/article/pii/S0308521X98000262
https://journals.ametsoc.org/view/journals/clim/27/22/jcli-d-14-00182.1.xml
https://journals.ametsoc.org/view/journals/clim/27/22/jcli-d-14-00182.1.xml


R. Ruela, M. Sousa, M. deCastro, and J. Dias. Global and regional evolution of sea
surface temperature under climate change. Global and Planetary Change, 190 :
103190, 2020. ISSN 0921-8181. doi : https://doi.org/10.1016/j.gloplacha.
2020.103190. URL https://www.sciencedirect.com/science/article/
pii/S0921818120300813.

D. Samanta, B. Rajagopalan, K. B. Karnauskas, L. Zhang, and N. F. Goodkin. La
niña’s diminishing fingerprint on the central Indian summer monsoon. Geophy-
sical Research Letters, 47(2) :e2019GL086237, 2020.

U. Schneider, T. Fuchs, A. Meyer-Christoffer, and B. Rudolf. Global precipita-
tion analysis products of the GPCC. Global Precipitation Climatology Centre
(GPCC), DWD, Internet Publikation, 112 :3819–3837, 2008.

A. Seth, A. Giannini, M. Rojas, S. A. Rauscher, S. Bordoni, D. Singh, and S. J.
Camargo. Monsoon responses to climate changes—connecting past, present and
future. Current Climate Change Reports, 5 :63–79, 2019.

D. Singh, S. Ghosh, M. K. Roxy, and S. McDermid. Indian summer monsoon :
Extreme events, historical changes, and role of anthropogenic forcings. Wiley
Interdisciplinary Reviews : Climate Change, 10(2) :e571, 2019.

T. Suepa, J. Qi, S. Lawawirojwong, and J. P. Messina. Understanding spatio-
temporal variation of vegetation phenology and rainfall seasonality in the mon-
soon Southeast Asia. Environmental Research, 147 :621–629, 2016. ISSN
0013-9351. doi : https://doi.org/10.1016/j.envres.2016.02.005. URL https:
//www.sciencedirect.com/science/article/pii/S0013935116300482.

B. Sultan and S. Janicot. The west african monsoon dynamics. Part II : The
“preonset” and “onset” of the summer monsoon. Journal of climate, 16(21) :
3407–3427, 2003.

S. K. Tamang, A. M. Ebtehaj, A. F. Prein, and A. J. Heymsfield. Linking global
changes of snowfall and wet-bulb temperature. Journal of Climate, 33(1) :
39 – 59, 2020. doi : 10.1175/JCLI-D-19-0254.1. URL https://journals.
ametsoc.org/view/journals/clim/33/1/jcli-d-19-0254.1.xml.

S. Tanniru and R. Ramsankaran. Passive microwave remote sensing of snow depth :
Techniques, challenges and future directions. Remote Sensing, 15(4), 2023.
ISSN 2072-4292. doi : 10.3390/rs15041052. URL https://www.mdpi.com/
2072-4292/15/4/1052.

M. Tarek, F. P. Brissette, and R. Arsenault. Evaluation of the ERA5 reanalysis
as a potential reference dataset for hydrological modelling over North America.
Hydrology and Earth System Sciences, 24(5) :2527–2544, 2020.

28

https://www.sciencedirect.com/science/article/pii/S0921818120300813
https://www.sciencedirect.com/science/article/pii/S0921818120300813
https://www.sciencedirect.com/science/article/pii/S0013935116300482
https://www.sciencedirect.com/science/article/pii/S0013935116300482
https://journals.ametsoc.org/view/journals/clim/33/1/jcli-d-19-0254.1.xml
https://journals.ametsoc.org/view/journals/clim/33/1/jcli-d-19-0254.1.xml
https://www.mdpi.com/2072-4292/15/4/1052
https://www.mdpi.com/2072-4292/15/4/1052


C. M. Taylor, D. Belušić, F. Guichard, D. J. Parker, T. Vischel, O. Bock, P. P.
Harris, S. Janicot, C. Klein, and G. Panthou. Frequency of extreme Sahelian
storms tripled since 1982 in satellite observations. Nature, 544(7651) :475–
478, Apr. 2017. ISSN 1476-4687. doi : 10.1038/nature22069. URL https:
//doi.org/10.1038/nature22069.

A. C. Thome Sena and G. Magnusdottir. Projected end-of-century changes in the
South American Monsoon in the CESM large ensemble. Journal of Climate, 33
(18) :7859–7874, 2020.

K. E. Trenberth. Changes in precipitation with climate change. Climate research,
47(1-2) :123–138, 2011. doi : https://doi.org/10.3354/cr00953.

R. J. van der Ent and H. H. Savenije. Oceanic sources of continental precipitation
and the correlation with sea surface temperature. Water Resources Research,
49(7) :3993–4004, 2013.

B. Wang, C. Jin, and J. Liu. Understanding future change of global monsoons
projected by CMIP6 models. Journal of Climate, 33(15) :6471 – 6489, 2020. doi :
10.1175/JCLI-D-19-0993.1. URL https://journals.ametsoc.org/view/
journals/clim/33/15/JCLI-D-19-0993.1.xml.

K. Wodzicki and A. Rapp. Long-term characterization of the Pacific ITCZ using
TRMM, GPCP, and ERA-Interim. Journal of Geophysical Research : Atmos-
pheres, 121(7) :3153–3170, 2016.

J. Zeng, K.-S. Chen, C. Cui, and X. Bai. A physically based soil moisture index from
passive microwave brightness temperatures for soil moisture variation monito-
ring. IEEE Transactions on Geoscience and Remote Sensing, 58(4) :2782–2795,
2020. doi : 10.1109/TGRS.2019.2955542.

B. Zhang, B. Dong, and R. Jin. Forced decadal changes in summer precipitation
characteristics over China : The roles of greenhouse gases and anthropogenic
aerosols. Journal of Meteorological Research, 34(6) :1226–1241, 2020.

W. Zhang, M. Brandt, F. Guichard, Q. Tian, and R. Fensholt. Using long-term daily
satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in
the sahelian rainfall regime. Journal of Hydrology, 550 :427–440, 2017. ISSN
0022-1694. doi : https://doi.org/10.1016/j.jhydrol.2017.05.033. URL https:
//www.sciencedirect.com/science/article/pii/S0022169417303220.

29

https://doi.org/10.1038/nature22069
https://doi.org/10.1038/nature22069
https://journals.ametsoc.org/view/journals/clim/33/15/JCLI-D-19-0993.1.xml
https://journals.ametsoc.org/view/journals/clim/33/15/JCLI-D-19-0993.1.xml
https://www.sciencedirect.com/science/article/pii/S0022169417303220
https://www.sciencedirect.com/science/article/pii/S0022169417303220


30



2 - A Supervised approach for observing pre-
cipitation with remote sensing data
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Precipitation is one of the components of the water cycle that can be retrieved
from the microwave brightness temperature (TB) measures. The Tropical Rain
Measuring Mission (TRMM) (1997-2015) (Kummerow et al., 1998), which aims
to advance the knowledge of the distribution and variability of the precipitation
in the tropics, is one of the major advancements in observing precipitation with
a microwave radiometer. TRMM carried a microwave imager and a precipitation
radar, which opened a new horizon for rain retrieval algorithms (Viltard et al.,
2020).

The Global Precipitation Measurement (GPM) mission, the successor of TRMM,
comprises a constellation of satellites, each equipped with a radiometer, with the
aim of offering the global observation of precipitation. To unify the precipitation
measurement in the constellation, the GPM constellation has a reference satellite
called the GPM Core Observatory (GPM-CO). Aboard the GPM-CO, there is a ra-
diometer (GPM Microwave Imager, GMI) and a precipitation radar (Dual-frequency
Precipitation Radar, DPR).

This chapter presents a supervised Deep-learning Rain (DRAIN) retrieval ap-
proach for TB images. The supervised approach is possible due to the availability
of more direct observations of precipitation offered by DPR to be used as targets
during training. The colocated data of GMI and DPR is used for training DRAIN.
The precipitation radar is not available for all satellites in the constellation, which
renders the training DRAIN impossible for these satellites.

GPM Microwave Imager (GMI)
GMI is a microwave radiometer operating at multiple frequency channels ranging
from 10 GHz to 183 GHz. The choice of channels is to optimize the detection of
precipitation and the availability of similar frequencies on other satellites for the
future possibility of transfer learning. Two channels are used as inputs to DRAIN :
the 37 GHz (mostly sensitive to light to moderate precipitation over the ocean)
and the 89 GHz (mostly sensitive to ice particles in precipitation events over land
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and ocean) (Hou et al., 2014).

Dual-frequency Precipitation Radar (DPR)
DPR provides a more direct observation of precipitation. The sensitivity of the
DPR for rain intensity is approximately 0.2 mm/h (Hou et al., 2014). Due to the
difference in resolution between the DPR and the GMI, the pixels are colocated.

2.1 . Microwave Brightness temperature (TB)

A passive microwave radiometer measures the microwave radiant energy emit-
ted from the Earth’s surface and atmosphere. As a passive instrument, it is equipped
with a rotating mirror that receives signals continuously. Then, the signal received
is calculated as brightness temperature (TB) in Kelvin. In addition, the continuous
signal is integrated over time to create discrete “pixels.” A passive microwave ra-
diometer observes the TB through multiple channels designed to be sensitive to
different frequencies of microwave energy. Consequently, the observation of TB is a
complex function depending on the scene that the radiometer is observing (vertical
profile of the atmosphere and surface characteristics) and the channel that is used.

Figure 2.1 – Scanning geometry of GMI (NESDIS STAR, 2021)
Figure 2.1 shows the scanning geometry of the GMI. Scanning geometry of

a satellite can determine the characteristics of the data it provides. For example,
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the scanning geometry and the channel frequency determine the resulting TB pixel
size. Figure 2.2 shows the pixel size for each channel frequency of the GMI. In a
constellation of satellites, the differences in scanning geometry, in addition to dif-
ferences in instrument configuration, can cause differences in the data distribution
of the observed TB.

(a) The Instantaneous Field of View (IFOV) for each GMI channel along-scan direction(AS) and cross-scan direction (CS) (NESDIS STAR, 2021). The lower frequency has abigger footprint than the higher frequency.

(b) The rows of pixels can be considered as a matrix and, therefore,an image in the conventional sense.
Figure 2.2 – GMI’s pixel details.

Figure 2.3 shows an example of a precipitation event observed by the DPR
(Figure 2.3b) and the GMI at 19 GHz, 37 GHz, and 89 GHz (Figure 2.3a). The value
of TB observed depends on the observed precipitation event and the instrument
frequency channel used. In this example, the precipitation zone observed using 19
and 37 appears warmer due to the emission of the water particles, while at 89
GHz, the raindrops appear colder due to the scattering of the ice particles. This
precipitation event appears warmer than the ocean background in the two lower
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(a) TB measurements (19GHz, 37GHz, and 89 GHz) in Kelvin of Cyclone Amphan ob-served by GPM-CO on 16/05/2020.

(b) DPR observation of the rain inten-sity of the same event (mm/h).
Figure 2.3 – GPM-CO observation of Cyclone Amphan on 16/05/2020.
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frequencies due to the high emissivity of the precipitation zone. In addition, there
is also a contrast between the ocean (lower emissivity) and land (higher emissivity)
at 19 and 37 GHz.

The TB is an indirect observation of geophysical variables. For example, rain
intensity needs to be retrieved from TB observation. A Bayesian-based pixel-wise
approach for rain retrieval consists of building a large database of TB and rain
intensity, subdivided using auxiliary data (cloud cover, land surface, temperature,
etc.) (Kummerow et al., 2015; Viltard et al., 2006). These pixel-to-pixel approaches
lack the useful information contained in the structure of precipitation events. This
structural information can be taken into account in the rain retrieval algorithm
using machine learning techniques such as convolution layers. It should be noted
that the data used in this study is the ’Level 1C-R’ product of GMI, which is the
geolocated and intercalibrated TB (Hou et al., 2014). The row of pixels in this
product can be considered a conventional image (Figure 2.2b), which can then be
used to train deep-learning algorithms.

2.2 . Deep-learning RAIN (DRAIN)

Deep-learning Rain (DRAIN) is a deep-learning rain retrieval algorithm for the
GPM-CO based on a quantile regression U-Net (Viltard et al., 2023). The inputs
to DRAIN are cropped images of the channels 37 GHz and 89 GHz of GMI in both
the horizontal and vertical polarization, while the targets are the images of DPR
rain intensity observation. The first motivation for choosing these two channels as
inputs for DRAIN is the transferability to other satellites in the constellation, as
the majority of conical-scanning passive microwave radiometers in the constellation
offer channel frequencies similar to those of these two. In addition, these frequencies
provide good horizontal gradients and resolution.

There is a difference in resolution between GMI and DPR. Several pixels of
DPR closest to a pixel of GMI are averaged to match the resolution of GMI. The
DRAIN dataset includes 70,000 images for the training dataset and 33,000 images
for the validation set, taken from observations between 2014 and 2018.

U-Net is a fully convolutional network (FCN) first proposed for semantic seg-
mentation by Ronneberger et al. (2015). The convolution kernels allow it to ex-
tract structural information within the image. U-Net has three important parts :
the contraction path that condenses the feature maps to a latent space, the expan-
sion path that expands the feature maps back up, and the skip-connections that
connect the contraction and expansion paths. The skip-connections are concate-
nation of the feature maps of the contraction path to the corresponding feature
map of the expansion path. Previous study (Viltard et al., 2020) shows that these
skip-connections are efficient at preserving the fine-scale structures present in the
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TB images. Quantile regression loss (Koenker and Hallock, 2001) replaces the
cross-entropy loss of the original U-Net paper, which allows the current DRAIN to
estimate 99 quantiles of rain intensity.

In most precipitation events, DRAIN achieved similar to slightly better retrieval
than the official GPM algorithm GPROF. Unlike GPROF, DRAIN does not contain
different levels of errors in its estimates between land and ocean. However, as
DRAIN relies on DPR as its ground truth and DPR is not very sensitive to low
rain intensity, the resulting rain intensity estimation does not show very low rain
intensity.

Previous improvement efforts for DRAIN (not described in the attached article)
include :

— Inclusion of 19 GHz in input
In this case, the TB input to DRAIN is 19, 37, and 89 GHz in horizontal
and vertical polarization. The brightness temperature at 19GHz is sensi-
tive to the integrated liquid water in the atmosphere and very sensitive to
the surface conditions. Results from this test show a slight improvement
in rainfall estimation over the ocean and a small degradation in the esti-
mations over the continent. This might be due to the sensitivity of the 19
GHz to surface conditions and the large number of data points over the
ocean compared to land, leading to the model’s better efficiency over the
ocean.

— Multi-task learning
Multi-task learning is an approach where the deep-learning models try to
predict two different outputs, aiming to improve the training of the first
tasks due to implicit data augmentation, attention focusing, and eaves-
dropping (Ruder, 2017). In addition to precipitation intensity, U-Net also
predicts types of precipitation (convective, stratiform, and other) given by
DPR. These two predictions share all U-Net parameters except for the
output layers. The objective function includes the loss from the prediction
of rain intensity (quantile regression loss) and precipitation types (cross-
entropy loss). The two losses are balanced by a coefficient that is considered
a parameter of the model, which can then be learned during training (Ken-
dall et al., 2018). The output using DPR is of a higher resolution than the
TB input. In order to match the resolution, one pixel of GMI is made up
of several pixels of DPR. For intensity, the pixels are averaged. However,
the precipitation types are combined using the majority vote, which might
reduce the quality of the data. The results of this experiment did not show
any improvement in DRAIN. Future improvement efforts for this approach
should include careful consideration of the suitability of the loss function,
multi-task training technique, and the quality of data.

— U-net with attention mechanism

36



The model tested is the SmaAt-UNet (Trebing et al., 2021), which is a
U-Net architecture that includes spatial and channel-wise attention (Woo
et al., 2018) to its skip-connections. This results in reducing the total
number of parameters to be updated during back-propagation. The test
with SmaAt-UNet was done on a smaller dataset using only four quantiles.
Results show that the SmaAt-UNet was able to achieve marginal improve-
ment in the high rain intensity estimates. Although the improvement is very
small, attention mechanism could be a potential improvement approach.

The improvement from these efforts is marginal. Therefore, the current version
of DRAIN does not include any of the above modifications. The following attached
article includes the implementation and evaluation of the current DRAIN algorithm.
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Abstract— Retrieval of rain from Passive Microwave 
radiometers data has been a challenge ever since the 
launch of the first Defense Meteorological Satellite 
Program in the late 1980s. Enormous progress has 
been made since the launch of the Tropical Rainfall 
Measuring Mission (TRMM) in 1997 but until 
recently the data were processed pixel-by-pixel or 
taking a few neighboring pixels into account. Deep 
learning has obtained remarkable improvement in 
the computer vision field, and offers a whole new 
way to tackle the rain retrieval problem. The Global 
Precipitation Measurement (GPM) Core satellite 
carries similarly to TRMM, a passive microwave 
radiometer and a radar that share part of their 
swath. The brightness temperatures measured in the 
37 and 89 GHz channels are used like the RGB 
components of a regular image while rain rate from 
Dual Frequency radar provides the surface rain. A 
U-net is then trained on these data to develop a 
retrieval algorithm: Deep-learning RAIN (DRAIN). 
Using only the brightness temperatures from four 
channels as input and no other a priori information, 
DRAIN is offering similar or slightly better 
performances than GPROF, the GPM official 
algorithm, in most situations. These performances 
are assumed to be due to the fact that DRAIN works 
on an image basis instead of the classical pixel-by-
pixel basis.   

I .  MOTIVATION  

We have developed a rain retrieval algorithm, DRAIN, 
based on the use of deep-learning techniques. The 
architecture and principles driving DRAIN are 
presented in more detail in [1] but, namely, a database 
of co-located rain rates from the Dual frequency 
Precipitation Radar (DPR) and brightness temperatures 
from the Global Precipitation Measurement Microwave 
radiometer (GPM-GMI) were fed into a U-net [2]. This 
type of convolutional network was successfully used to 
de-clutter radar images [3] and thus appeared to be well 
adapted to detect the contours of rain events. 
The main difference between more classical retrieval 
algorithms, either Bayesian-based [4, 5] or machine 
learning-based [6-12], and DRAIN arises from the fact 
that the latter processes the data as images while the 
formers work on a pixel-by-pixel basis. These image-
based approaches are developing fast as shown also in 
[13] and [14] 
 
In the present paper, we will not go into the details of 
DRAIN which have already been presented in [1], but 
we will focus on a more thorough validation of a more 
mature version of the algorithm. The two main 

improvements that must be highlighted between the 
initial version presented in [1] and the current version 
are described hereafter. First, the database was increased 
from about 52,000 images to about 103,000 allowing us 
to build a training database of 70,000 images for training 
and 33,000 images for validation. Data from the whole 
years 2014 to 2018 and a few months from 2020 and 
2021 are used but the whole year 2019 was kept separate 
for the performance assessment (test) and most results 
presented hereafter are computed for that year. This 
large database is meant to dampen the effects of 
seasonal and interannual variability of rain. 
Second, DRAIN retrieves now a set of 99 quantiles 
instead of a simple averaged rain rate as in [1]. These 
quantiles represent the probability that the rain rate is 
below a certain threshold. Hereafter, when unspecified, 
the quantile 50 % (median) is used as the rain proxy. The 
loss function for quantile regression is the one proposed 
in [15]. Retrieving quantile for rain is interesting 
because as shown hereafter, it is possible to infer a 
confidence interval for the results. It would also be 
possible from the retrieved Cumulative Distribution 
Function (CDF) of rain intensity to deduce a Probability 
Density Function (PDF, not presented here). 
 
Section II will give a short presentation of the database 
construction while section III gives some elements 
about the methodology and the associated cost function. 
Section IV offers a detailed validation of DRAIN rain 
rate against DPR and GPROF for the year 2019. Section 
V presents the comparison for the same year with 
Meteo-France five-minute 1x1 km2 rain mosaic. Finally, 
section VI presents the conclusions and perspectives. 
 

I I .  DATABASE  

GMI is a conically-scanning radiometer with channels 
at 10.65, 18.7, 23.8, 36.6, 89.0, 166.0, 183.3+/-3 and 
183+/-7 GHz. All the channels are measured in both 
Horizontal (H) and Vertical (V) polarization except for 
23.8 and the two 183.3 GHz sounding channels (V 
only). In the present study, only the two 36.6 (hereafter 
noted 37 GHz) and 89.0 GHz channels were used. This 
choice was driven by the idea that most conical-
scanning passive microwave radiometers for rain 
retrievals have channels in the 37 and 89 GHz region 
thus making a transposition of DRAIN to other 
platforms potentially easier. These two frequencies 
were selected because they offer a good spatial 
resolution with well-defined horizontal gradients. For 
the GMI, the pixel resolutions are respectively: 15.6x9.4 
km2 for the 37 GHz and 7.2x4.4 km2 for 89 GHz [16-
17] (the GMI product used here is 1C-
R.GPM.GMI.XCAL2016-C, PPS V05A). 
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Since [1], some tests (not shown) were made to check if 
the addition of the 19 GHz channels would improve the 
performances of DRAIN but the results were 
inconclusive.  
The DPR surface rain product results from the merged 
use of the Ku- (13.4 GHz) and Ka-band (35.5 GHz) 
radars. The DPR measures a three-dimensional 
reflectivity field with vertical resolution of 250 m and a 
horizontal resolution of 5 km. The resulting surface rain 
product offers a swath width of 245 km [18]. 
The DPR and GMI pixels are co-located spatially and 
temporally assuming that the effective one-minute lag 
between the two observations is negligible at the 
considered spatial resolution. To perform the co-
location, the surface rain (precipRateESurface from 
2A.GPM.DPR.V8-20180723, PPS V06A) of the DPR 
pixels falling within 5 km of a GMI pixel center position 
are averaged. On average, three to four DPR pixels fall 
into the 5 km-radius. 
We will hereafter refer to training and validation 
database as the data used to adjust the weights and 
hyperparameters of the network and the test database as 
the one used for generalization and assessment of 
performances.  
Because rain occurrence is naturally low, a scene 
selection is made as follow: images with at least 100 
pixels with rain > 0.1 mm.hr-1 or at least 10 pixels > 100 
mm.hr-1 are used to build the training/validation 
database. Each image is composed of 4 channels: the 37 
and 89 in both H and V polarization while the surface 
rain is used as target. 

I I I .  METHOD  

The general architecture of the U-net used for DRAIN 
is described in [2]. More specifically, the configuration 
used here is made of two convolutional layers as input 
layers.  Then, a contraction path follows, made of four 
downward steps each containing a max pooling and two 
convolution blocks. Each convolution block contains a 
convolution layer, a batch normalization, and a ReLU. 
Next, four expansion steps made of a transpose 
convolution and two convolutional layers increase the 
size of the image back up. In addition, each upward step 
is concatenated with its corresponding downward step 
(skip-connections). Finally, the output layer is a 1x1-
kernel convolutional layer. The initial input layer is a 
4x128x128 subset of GMI orbit with a padding size of 1 
pixel on each side of the image. As stated previously, a 
similar U-net was successfully used for detection and 
restoration of clutter echoes in weather radar raw data 
[3]. 
 

Weights, optimization method (Adam, [18]) and initial 
learning rate (10-4) are set to the default values found in 
literature [19]. The trained U-net has about ~15 million 
parameters to be adjusted through the training phase. 
 
The loss function used here is the classical one used for 
quantile regression (e.g. [15]) where the loss function is 
given by: 
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𝑞#(𝑦" − 𝑦%")																								𝑖𝑓	𝑦" − 𝑦%" 	≥ 0
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𝐿(𝑦, 𝑦%) = 	5𝐿!!(𝑦, 𝑦%)
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where ŷ is the prediction, y is the target, qj is the jth 
quantile to be estimated and N the number of pixels. 
Besides the fact that retrieving quantiles gives access to 
more information than the mere retrieved average rain 
rate, the quantile regression is of particular interest here 
because of its demonstrated robustness to outliers. In the 
present study, we chose to retrieve percentiles because 
computation of the rain intensity probability density 
function is easier to compute through simple numerical 
derivation.  
 
The network presented here results in a 460-epoch 
training on the learning and validation bases described 
above. We will use hereafter the median (50th quantile) 
as the retrieved rain rate. 
 
Because the chosen architecture is made of a 16-level of 
filtering, the retrieval image sizes have to be multiple of 
16. For the moment the retrieved images are thus limited 
to 208 pixels per 2960 scans from the original 221 pixels 
and up to 2963 scans (the effective number of scans may 
vary slightly from one granule to the next but remains 
larger than 2960). 
 

IV.  COMPARISON WITH DPR 

Two example cases, excluded from the learning and 
validation dataset, are given on Fig. 2 and 3. The first 
case is super typhoon Nanmadol observed on September 
16th, 2022, while close to its peak intensity over the 
Philippine Sea, South of Japan. The second case is a 
frontal band over France observed on August 18th, 2018. 
The first case is a good illustration of oceanic retrieval 
while the second case is a mixed continental and coastal 
case.  
 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3293932

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



In addition to comparisons with the DPR in the common 
part of the swath, comparisons with the GPROF 
algorithm [4] are also presented 
(2A.GPM.GMI.GPROF2017v1, PPS V05A). GPROF is 
the GPM operational product, based on a per-pixel-
Bayesian approach. It is considered as a reference in the 
GPM community and uses auxiliary data to constrain 
the solutions (2m temperature, TPW, and surface type 
etc…). Its native resolution is close to 11 km according 
to [22] and uses a priori databases that are build using 
different sources depending on the surface type [22]. 
Over ocean, the Combined MS DPR product is used. 
Over land, the DPR-Ku surface precipitation is used for 
most situation except snow covered ground when 
MRMS is used. Finally, additional adjustments, 
described in [22] were performed based on CloudSat 
measurements for drizzle and light rain to overcome the 
DPR sensitivity.   
 
Note that for all the comparisons presented hereafter 
with DPR and GPROF and in part V also, we use the 
50th quantile (median) as our best estimator for DRAIN.  
For both situations, DRAIN and DPR are qualitatively 
very close and resemble GPROF except that the latter 
exhibits a lot of light rain pixels (< 0.2-0.3 mm/hr). The 
DPR algorithm is estimated to have a minimal detection 
threshold near 0.2 mm.hr-1 [20]. Because we perform a 
spatial average over two to four DPR pixels, DRAIN is 
expected to have a theoretical detection threshold 
between 0.03 and 0.1 mm.hr-1 depending on the number 
of averaged pixels. 
 
The most noticeable difference between GPROF and 
DRAIN is particularly visible on Fig. 2 (super typhoon 
Nanmadol) where the GPROF retrieves many more 
rainy pixels with intensities below 0.4 mm/hr than both 
DRAIN and DPR. DRAIN on this aspect is very 
consistent with the DPR as one would expect since 
DRAIN was developed solely from DPR data without 
any other assumptions concerning the brightness 
temperatures – rain intensities relationship. The reasons 
behind this light rain enhancement in GPROF is 
described in [20]. This light rain difference is more 
likely to be visible over ocean where, in addition to the 
higher frequency channels, GPROF uses 10 and 19 GHz 
channels which are directly linked to liquid water 
emission.  
 
The second comparison is made at global level over the 
whole year 2019. A few granules with bad TBs at either 
37 or 89 GHz are excluded. A mask is used to check 
systematic differences between land and ocean. Unlike 
for GPROF, this mask is not used as an input in DRAIN 
but only once the retrieval is performed to assess the 

performances over the two different surface types. This 
mask is the python “regionmask” package which is 
based on Natural Earth, a free vector and raster map data 
(naturalearthdata.com). 
 

 
Figure 2: surface rain for super Typhoon Nanmadol (16W) on 16th 
September 2022 at 08:00 UTC.  DPR at DRAIN resolution (top left), 
DRAIN (top right) and GPROF (Bottom left). 

 

 
Figure 3: same as Fig. 2 but for a frontal rain band over France on 
18th of August 2018. 

Table 1 and 2 give respectively the contingency table for 
OCEAN (approximately 530 million pixels) and LAND 
(approximately 218 million pixels). DRAIN is well-
balanced between False Alarm (FA) and Bad Detection 
(BD) occurrence although the False Alarm has a high 
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RMSE of 10.77 mm/hr (17.36 above ocean and 7.70 
above land). The high probability of FA for GPROF are 
mostly due to the light rain treatment of the latter, as 
mentioned above. On the other hand, these FA have a 
very small RMSE of 0.30 mm/hr because they are made 
of very light rain rates. 
 
OCEAN DRAIN GPROF 
DPR Rain No Rain Rain No Rain 
Rain 6.01 1.97 5.93 2.05 
No Rain 1.23 90.79 13.14 78.88 

Table 1: Contingency in % table for OCEAN pixels on 
the whole dataset of 2019. 
 
LAND DRAIN GPROF 
DPR Rain No Rain Rain No Rain 
Rain 3.49 1.26 3.46 1.29 
No Rain 0.91 94.34 10.44 84.81 

Table 2: same as Table 1 but for LAND pixels. 
 
 
 OCEAN LAND 
 POD FAR POD FAR 
DRAIN 0.75 0.17 0.74 0.21 
GPROF 0.74 0.69 0.72 0.75 

Table 3: Probability of Detection (POD) and False 
Alarm Ratio (FAR) over land and ocean for DRAIN and 
GPROF, when comparing with DPR in the common part 
of the swath. 
 
 DRAIN GPROF 
 Bias RMSE Bias RMSE 
LAND 0.31 2.67 -0.24 3.39 
OCEAN 0.26 2.98 0.08 3.18 
TOTAL 0.27 2.92 0.01 3.22 

Table 4: The numbers are computed on the respective 
true positive with a threshold of 10-4 mm/hr. Bias, in 
mm/hr are respectively DPR-DRAIN and DPR-
GPROF. 
 
In the case of BD for both DRAIN and GPROF, DPR 
average rain estimates are 0.33 mm/hr and 0.50 mm/hr 
respectively showing that they are consistently light rain 
situations. 
 
Table 3 shows the Probability Of Detection (POD) and 
the False Alarm Ratio (FAR) which are often used to 
assess the performances of rain retrieval algorithms 
[21]. Perfect POD is 1 while perfect FAR is 0. Both 
algorithms offer similar PODs with a small advantage 
for DRAIN, especially over land. The low score of 
GPROF’s FAR is logically due to the light rain over-
detection with respect to DPR as mentioned above. 

 
Table 4 shows the bias and Root Mean Square Error 
(RMSE) for the two algorithms, compared to DPR for 
their respective true positive only. A 10-4 mm/hr 
threshold is applied to make sure that no random 
numerical noise will contaminate the results. GPROF is 
always better in terms of bias but DRAIN is better in 
terms of RMSE. This is supported by Fig 4 that shows 
the corresponding scatter plots for rain intensities 
between 0 and 100 mm/hr. DRAIN has been trained 
with the DPR so, once again it is expected that its 
performances with respect to the latter will be optimal. 
 

 
Figure 4: scatter plot of DRAIN (top row) and GPROF (bottom row) 
against DPR for OCEAN pixels (left hand side column) LAND pixels 
(right hand side column) for the whole of 2019. Colors show the 
density of point from red (densest) to blue (least dense) with a 
lognormal scale. The red dashed line on each of the graph is the x=y 
line. 

A substantial spread is however observed which is 
expected due to the potential parallax effects between 
the GMI TBs and the DPR surface rain which cannot be 
totally compensated. Over both land and ocean, 
systematic underestimation starts appearing at about 20 
mm/hr and increases as the DPR rain rate increases. 
Over ocean, GPROF shows similar features, slightly 
exacerbated for DPR rain rates above 25 mm/hr. Over 
land, comparison is made difficult by the fact that the 
GPROF rain rate is made of the DPR estimates 
complemented by NOAA’s Multi-Radar/Multi-Sensor 
system (MRMS) [22]. 
 
Fig. 5 shows the histograms of DRAIN, GPROF and 
DPR for the light rain rates, emphasizing the higher 
probability of rain below 0.25 mm/hr proposed by 
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GPROF when compared to the two other estimators. 
This is true for land and even more for ocean. It is to be 
once again mentioned that these light rain rates have 
been enhanced in GPROF’s a priori database, based on 
Cloudsat statistics [21] to compensate in particular for 
the Ku-DPR detection threshold (~12 dBZ). 
 

  
Figure 5: pdf of rain intensity for DPR, GPROF and DRAIN for the 
year 2019, focusing on the light rain between 0 and 2 mm.hr-1 with 
0.1 mm.hr-1 bins. 

Rain interval mm/hr 50% 90% 
0 to 0.1 73.96 97.03 
0.1 to 1. 56.36 93.93 
1 to 10 46.49 87.01 
10 and above 33.65 75.47 
All 53.96 91.78 

Table 5: retrieved confidence intervals as a function of 
rain intensities. 
 

 
Figure 6: 2-D histogram of the retrieved rain vs. initial (DPR) rain, 
color indicates density of points with similar scale as Fig. 4. Blue-
shaded area is the 90 % confidence interval and brow-shaded area 
is the 50 % confidence interval. 

Since percentiles are retrieved by the network, among 
other applications, it is possible to define confidence 
intervals for the retrieved rain intensity. The rain rate, 
RRj, given for the jth percentile means that the a-priori 
probability that the DPR rain rate is between 0 and RRj 
is j%. In Table 5 the 50% and 90% confidence interval 
are verified against the DPR surface rain. For the true 
positive, pixels for which the DPR rain rates falls in 
between percentiles 25 and 75% and 5 and 95% are 
counted.  It can be seen that overall, the confidence 

interval is indeed reliable but does actually depends on 
the rain interval under consideration. Up to about 10 
mm/hr, the confidence interval is robust but above this, 
the systematic underestimation of the retrieved rain rate 
degrades the results. 
 

 

 
Figure7: 1°x1° averaged difference between top: DPR -DRAIN and 
bottom DPR - GPROF. The differences are performed at pixel level 

and then averaged over all the orbits of 2019. 

Figure 6 is a zoom for rain rates between 0 and 50 mm/hr 
of DRAIN vs DPR. The scatter plot is not differentiating 
land and ocean. On top of the scatter plot is the 90 % 
confidence (shade of blue) and the 50 % confidence 
(shade of brown). These confidences are computed 
using the 5th and 95th retrieved percentiles and the 25th 
and 75th retrieved percentiles respectively. It can be seen 
that, as stated from Table 5, up to 12-15 mm/hr, the 
confidence interval is reliable. It then slowly degrades 
and after 20 mm/hr, it is just an indicator but cannot be 
considered as accurate. One can also see that as for 
GPROF and most retrieval methods, DRAIN cannot 
overcome the rain underestimation starting in the 20 
mm/hr region even if it is mitigated to some extent. 
 
Figure 7 shows these differences between GPROF, 
DRAIN and DPR on a 1°x1° global map. The three 
estimators are first averaged on 1-degree squares, 
keeping only the pixels above 10-3 mm/hr.  
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DRAIN offers a very consistent bias overall. No 
difference is noticeable between land and ocean or 
artifact over coastal area which is always very difficult 
to handle for such retrieval methods. However, the bias 
appears to be mostly positive (underestimation) while a 
more balanced distribution of positive and negative 
values was expected. This might be due to the choice of 
the median quantile as the rain estimator, which is 
somewhat arbitrary.  
 
A slight latitude dependence of the error can be 
observed as the error seems smaller above 50° N and 
below 50° S over ocean and slightly larger in the ITCZ. 
Errors appear to be also larger above mountainous areas 
like the Tibetan plateau, the Rocky Mountains and 
somewhat the Andes. 
GPROF’s error range is very similar to DRAIN’s but 
with a marked difference between land and ocean which 
was already mentioned. A slight dependence to the 
latitude can also be observed but less marked than 
DRAIN. 
 

V.  RESULTS ON MÉTÉO-FRANCE MOSAIC  

An assessment of the performances was also conducted 
using Météo-France five-minute mosaic product which 
is a good reference for mid-latitude QPE. The used 
product is described in [23] and comes as a 1536x1536 
pixels grid of 1 km resolution every 5 minutes over the 
whole of year 2019. Co-location in time was performed 
by matching the closest mosaic in time with the mid-
time of GMI overpass (the GMI overpass lasts about 3 
minutes). The accumulation over 5 minutes is converted 
in mm.hr-1 by simple multiplication by a factor 12. A 
quality flag is associated with the Météo-France product 
ranging from 0 (unreliable) to 100 % (very reliable). 
After visual comparison on a series of cases, it appeared 
that a threshold of 80 % reliability should be applied in 
order to eliminate spurious rain estimates particularly in 
the mountainous areas. 
 
The mosaic data are then co-located and averaged at the 
DRAIN resolution and pixels position. Between January 
1st 2019 and December 31st 2019, 1565 overpasses are 
kept, with the condition that more than 50 DRAIN 
pixels fall into the mosaic domain: 8° West to 12° East 
and 39° North to 54° North. 
 
First, a pixel-by-pixel performance is evaluated for the 
three rain estimators: DRAIN, DPR and GPROF. 
Contingency table and F1-scores are computed and 
presented Table 6, 7 and 8 respectively. The total 
number of pixels taken into account differs for each 

estimator because of the swath difference. The three 
estimators show performances that are close with a few 
differences. GPROF shows a better POD than both 
DRAIN and DPR but its FAR is degraded by the excess 
of light rain detected. On the other hand, DPR and 
DRAIN miss some of the rain which degrades their 
respective POD but their precision remains high.  
 
 
 

Ref.\DRAIN Rain No Rain POD 
Rain 4.85 % 9.81 % 0.33 
No Rain 0.36 % 84.98 % FAR 
Precision 0.93  0.07 
F1-score 0.49   

Table 6:  Contingency table and F1-score for DRAIN 
with Météo-France mosaic as a reference. The total 
number of co-located pixels is 6645997. 
 

Ref.\DPR Rain No Rain POD 
Rain 5.59 % 8.53 % 0.40 
No Rain 0.44 % 84.44 % FAR 
Precision 0.93  0.07 
F1-score 0.56   

Table 7: same as Table 4 but for DPR. The total number 
of co-located pixels is 1434964.    
              

Ref.\GPROF Rain No Rain POD 
Rain 7.38 % 7.26 % 0.50 
No Rain 4.49 % 80.88 % FAR 
Precision 0.62  0.38 
F1-score 0.56   

Table 8:    same as Table 4 but for GPROF. The total 
number of co-located pixels is 5611805.                   
 
The DRAIN, DPR and GPROF data are also averaged 
on 0.2°x0.2° grid to minimize the possible impact of 
localization errors between the ground and satellite-
based estimates. Figure 8 shows the scatter plot for each 
of the estimators against the Météo-France mosaic. Only 
the grid-boxes where the mosaic >= 0 mm.hr-1 are 
accounted for. For each scatter plot, the associated linear 
regression (blue-dotted line) is shown. For DRAIN the 
corresponding R2=0.29 while it is 0.10 for DPR and 0.20 
for GPROF. Below 1 mm/hr, all estimators are mostly 
centered on the x=y line and then the points spread out 
with a general underestimation. DPR appears more 
spread than both DRAIN and GPROF but the data 
sample is about four times smaller and the narrow swath 
might induce more important edges artifacts. GPROF 
appears to show a slight underestimation (~0.1 mm/hr) 
around 0.6-0.7 mm/hr, in the densest part of the scatter 
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plot. Globally however, GPROF and DRAIN appear to 
offer similar performances. 
 

 
Figure 8: Scatter plot of DRAIN (top left), DPR (top right) and 
GPROF (bottom left) vs Météo-France mosaic over all the 
overpasses of 2019. In each graph, red-dashed line is the x=y line, 
blue-dotted line is the linear regression and the color are 
proportional to the density of points according to the colorbar.  

Figure 9 shows the maps of the biases Mosaic-DRAIN 
and Mosaic-GPROF, in mm.hr-1, for 2019. Except for a 
few grid-boxes, the difference remains between -2 and 
+2 mm.hr-1. The general pattern and amplitude of the 
difference are similar between the two estimators.  
 
In the mountainous area of the Alps and somewhat on 
the Mediterranean shores, the errors are almost identical 
on a surprising number of boxes which might show a 
problem with the Météo-France estimate. It is noticeable 
though, that GPROF has a very clear artifact of 
overestimating the land part of the coastal regions. This 
is likely due to the difference between the land and the 
ocean version of GPROF. Most of DRAIN error 
structure appears to be much more random and better 
balanced, yet there is continuity from one box to the 
next, showing that the errors are not pure noise. This 
spatial continuity of the errors is also true for GPROF. 
 
Figure 10 shows the dependance with time of the Mean 
Average Error for the three estimators. Environmental 
conditions change depending on the season and this is 
eventually even more pronounced over land with 
possible snow cover on the ground. All three estimators 
follow more or less the same patterns with an increase 
in the errors during winter. The DPR should be 

 
Figure 9: Bias between Météo-France mosaic and DRAIN on top 
and GPROF on bottom. The difference is computed over 0.2°x0.2° 
boxes over the whole year 2019. 

 
 

 
Figure 10: Mean Average Error between the DRAIN, GPROF and 

DPR as a function of time over 2019. 

considered with some care because its coverage is 
substantially lower than both DRAIN and GPROF 
inducing some possible representativeness artifacts. 
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VI.  CONCLUSIONS  

 
From a set of 103,000 images of co-located data 
between GMI brightness temperatures and DPR surface 
rain, a U-net was trained to retrieve the latter over the 
whole swath of the radiometer. To minimize the impact 
of surface emissivity, work with the highest spatial 
resolution possible and at the same time remaining 
easily transposable to other instruments, only 37 and 89 
GHz horizontal and vertical polarization brightness 
temperatures are used as an input. The strength of U-
nets is their ability to process brightness temperature 
scenes as an image, as opposed to most existing 
algorithms that proceed pixel by pixel. 
Evaluation of the developed algorithm is performed two 
ways. First, a comparison with the DPR surface rain 
itself on a set of images that was not in the training 
database (whole of 2019) is presented. DRAIN shows a 
good agreement in terms of structure and intensities 
which ensures the good quality of the generalization. 
When compared on the same dataset, DRAIN is 
generally on par with GPROF or slightly better. This is 
most noticeable over land where GPROF does not use 
only the DPR rain rate in its database. 
Second, a comparison is performed with Météo-France 
1 km2-resolution mosaic over the same period as a fully 
independent dataset. The trends are similar. DRAIN 
performances are close to GPROF if not slightly better. 
The most noticeable difference is observed in the coastal 
regions where GPROF tends to overestimate the rain 
intensities when compared to the mosaic.  
These four channels used here are present on most 
passive microwave radiometers of the GPM 
constellation which will facilitate transposition of the 
developed U-net to other available sensors of the 
constellation as proposed in [24].  
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In Computer Vision, there are three types of image segmentation : semantic,
instance, and panoptic image segmentation (Figure 3.1) (Jung et al., 2022). A
semantic segmentation classifies each pixel in an image into a class. It does not
distinguish between two different instances. For example, it classifies pixels of two
different cats into the same class. An instance segmentation only labels the fore-
ground of the image. In addition, it differentiates between two different instances,
i.e., cat 1 and cat 2. Panoptic segmentation combines semantic and instance seg-
mentations. It offers a pair of labels : a semantic label and an instance label for all
pixels in the image.

In this study, semantic segmentation best serves our objective. We aim to
extract information from the brightness temperature images by classifying the pixels
in the images into a number of classes. These classes should represent geophysical
variables observable in brightness temperature.

Supervised semantic segmentation could be considered as a process of classi-
fying all pixels of an image based on a known ontology (Hamilton et al., 2022). In
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supervised semantic image segmentation, the objective function is calculated using
the ground truth labels available for each pixel in the image. Although it can isolate
the object very efficiently, it requires a large amount of precise ground truth labe-
ling that is often lacking due to the lack of human annotators or the complexity in
the image where the precise boundary is unknown (medicine, biology, and physics)
(Hamilton et al., 2022).

Figure 3.1 – Different types of image segmentation (Jung et al., 2022). Anexample of semantic (b), instance (c), and panoptic segmentation (d).
The focus of this thesis is segmenting unconventional images without any

ground truth labels. We turn to two types of training approaches in deep learning :
unsupervised learning and self-supervised learning.

Unsupervised image segmentation

Unsupervised image segmentation has historically been considered a clustering
problem (Xia and Kulis, 2017). The pixel clustering is usually based on color,
brightness, or texture. With the introduction of Machine Learning, more innovative
approaches to creating an objective function without the supervision of ground
truth labels are emerging.

Self-supervised image segmentation

Self-supervised image segmentation tries to learn representation from the data
via a pretext task (Chen et al., 2022). Contrary to unsupervised approaches, where
the objective function is clearly defined to train the model to segment the image,
the loss function of the self-supervised models is a pretext task that does not
provide a segmentation. A downstream task is needed to get the model to classify
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each pixel. Sometimes, a small set of labeled data is required for the downstream
task.

This chapter aims to provide an overview of unsupervised and self-supervised
approaches in image segmentation. Before presenting these various training ap-
proaches, we present a few tools and architectures commonly used for dealing with
image data in Computer Vision (Section 3.1). Next, we delve into the two learning
approaches : Unsupervised Learning (Section 3.2) and Self-supervised Learning
(Section 3.3). Each section presents a non-exhaustive list of models categorized
by its training framework. Section 3.4, the Summary of Methods, provides some
commentary on the listed methods regarding the application to the brightness tem-
perature images. Finally, Section 3.5 provides details on the evaluation metrics for
assessing model performances for an unsupervised approach.

3.1 . Computer Vision Toolbox

The particularity of image data is that it contains spatial information. It is
important to consider the relationship between adjacent pixels. In this section, we
describe three techniques that allow the model to analyze the structure of the
image data : Convolutional Neural Networks (CNN), Auto-regressive models, and
Transformers.

3.1.1 . Convolutional Neural Networks (CNN)

Ever since the introduction of CNN for written digit recognition in Le Cun et al.
(1997), it has played a major role in the performance of computer vision models.
CNN is advantageous in computer vision for its capacity for feature extraction
of images and the reduction of the number of parameters when compared to a
multilayer perceptron (MLP).

In Li et al. (2021), the authors provide a detailed description of CNN and its
application. The most essential component of the CNN is the convolution kernel,
whose size is a hyperparameter of the model. This kernel contains shared weights
that glide through the image with a certain length of stride. A bigger stride results
in a lower density of convolving. In order to deal with the size of the input and
avoid losing information around the border of the image, padding can be added
around the image. The padding could be, for example, extra rows of zeros or a
row reflecting the values in the image. The convolutional kernel glides through the
image from left to right, creating a feature map. To avoid redundancy and reduce
the number of weights needed to deal with the feature map, a pooling, either
calculating the average or choosing the maximum value, is applied to the feature
map. A summary of this process is shown in Figure 3.2. It should be noted that
the number of layers in a kernel needs to be equal to the number of layers in the
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input image. This will then result in a single-layer feature map (Figure 3.3).

Figure 3.2 – An example of a 2-D convolution kernel Li et al. (2021). The hyper-parameters of a convolutional kernel include padding of the input, stride ofthe kernel, size of the kernel, and Max pooling size. The parameters of themodel are the kernel values.

Figure 3.3 – The application of 2D convolutional layers on an image with threelayers.
The structure of CNN offers weight sharing, local connection, and dimensiona-

lity reduction that are highly advantageous in solving image-level problems (clas-
sification) and pixel-level problems (object detection and image segmentation) (Li
et al., 2021). Some downsides of CNN include computational cost and the need for
a large amount of diverse data (Li et al., 2021). An efficient CNN for a complex
problem often requires a deep and wide network, which could be challenging to
deploy in real-time devices. Sometimes, a model compression technique is needed.
CNN also requires many examples of a particular item to be able to efficiently re-
cognize it with rotation and size changes. Another critique of a common technique
in CNN is the pooling layer, which, although it offers many advantages, ignores
the relationship between the local part of the image and the whole image and can
sometimes lead to loss of spatial information during training (Li et al., 2021).

3.1.2 . Auto-regressive model
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An auto-regressive model for image segmentation is based on the concept that
a pixel xi is influenced by the previous pixels that come before it (Menick and
Kalchbrenner, 2018). In other words, it treats an image as a sequence of pixels,

p(x) = Πn2

i=1p(xi|x1, x2, ..., xi−1) (3.1)

Figure 3.4 – Subscale Pixel for an image (Menick and Kalchbrenner, 2018). Theinput image is subsampled to allow better information sharing among pixels.
The auto-regressive model is often used to generate a pixel in an image using

previously known pixels. It has the advantage of forcing its loss function to consider
the entire data distribution as it uses the negative log-likelihood function. However,
it is not sufficient for producing high-resolution images. In addition, in an image,
a pixel is related to all the other pixels surrounding it, not only the pixels behind
it. Pixel Subscale Network, a model for generating images proposed by Menick
and Kalchbrenner (2018), makes use of all the pixels by dividing the image into
sub-images (Figure 3.4). It increases the use of spatial information while reducing
the computation cost.

The auto-regressive approach is often used with the help of a convolution
kernel. For example, PixelCNN used masked convolution for pixel generation to
not take into account the previous pixels (Van Den Oord et al., 2016).

3.1.3 . Transformer

The Transformer mechanism was first introduced in the paper "Attention is all
you need" with impressive application on machine translation (Vaswani et al., 2017)
and later became the foundation of many Natural Language Processing (NLP)
models. A Transformer model is a sequence-to-sequence type of deep learning
model that relies on attention mechanisms without needing any recurrent structure
to consider the previous elements in a sequence. The attention mechanism for
sequential models is first introduced by Bahdanau et al. (2014). The attention
mechanism allows the model to learn how much attention to give to the sequence
that comes before.
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Figure 3.5 – Transformer architecture as presented in (Vaswani et al., 2017)

Figure 3.5 shows the architecture of the Transformer proposed by Vaswani et al.
(2017). In NLP, the input is a phrase or a subset of a phrase and, therefore, needs
to be embedded (this process is also called tokenization). As the Transformer does
not contain any convolution or recurrent network, the positional encoding, such as
cosine positional encoding, allows it to take into account the position or order of
tokens. The input to the Transformer is the sum of the word embedding and the
positional embedding. As a machine translation algorithm, the architecture has an
encoder and a decoder. There is a cross-attention where the output of the encoder
is used as an input to the multi-head attention blocks of the decoder.

The key element in the Transformer introduced by (Vaswani et al., 2017) is the
self-attention module. Self-attention is a type of attention mechanism that relies
only on the input. The first step is to calculate the Key (K), Query (Q), and Value
(V ) matrices from the embedded input. In the application of NLP, each token is
a vector of values. The K, Q, and V are obtained by feeding the embedded input
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(a) Calculating the key, Query, and value from input

(b) Calculating the key, Query, and value from input

(c) Masked attention
Figure 3.6 – The calculation of attention in attention mechanism.
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Figure 3.7 – Architecture of the Vision Transformer (ViT) (Dosovitskiy et al.,2020)

row by row into a different feed-forward neural network for each matrix (Figure
3.6a). Next, the softmax of the multiplication of Q and KT gives the attention
matrix. The softmax allows the resulting matrix to have each row summing to one
and with values between 0 and 1 (Figure 3.6b). The intuition behind the attention
matrix is that the parameters in the feed-forward neural network can be trained,
and consequently, the model will be able to pay attention to relevant parts of the
sequence. Then, the value V is multiplied by the attention matrix, which acts as
the coefficient for each row. Similarly, the multi-head attention block is just the
attention block divided into multiple parts that can then focus its attention on
different things. The number of heads is a hyper-parameter of the model. The
masked attention (figure 3.6c) replaces the upper triangle of the attention matrix
with 0 to not consider the subsequent words in the sequence.

The Vision Transformer (ViT) is a modified Transformer for applying to image
data Dosovitskiy et al. (2020). As an imitation of NLP data, the input image is
transformed into fixed-size patches, which go through a linear projection to be
flattened and then given a positional embedding. The embedded flattened patches
are then fed into the Transformer Encoder. In the paper that proposed Vision
Transformer Dosovitskiy et al. (2020), the goal is image recognition. Therefore,
the output of the Transformer Encoder is fed into a Multilayer Perceptron (MLP)
that classifies the image. The performance of ViT depends on pre-training on a
large dataset. However, supervised training on a large dataset can be very costly.

It should be noted that besides the three approaches presented above, using
graphs is another method, albeit not very popular, for treating an image while
considering the surrounding pixels. For example, a Markov Random Field (MRF) is
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a graph-based approach for image segmentation (Kato et al., 2012). For example,
in an image, each pixel is a node. The MRF segments images based on energy
function that favors smoothness. Consequently, it has a tendency to minimize the
difference between two adjacent pixels.

3.2 . Unspervised image segmentation

This section is divided into two categories : the pixel-wise and the non-pixel-
wise approaches. The pixel-wise approaches refer to algorithms where the clustering
relies on a form of distance-based metrics (spectral distance) between pixels without
taking into consideration the structural information of the neighboring pixels. The
algorithms that will be detailed here are K-Means, DBSCAN, OPTIC, and SLIC. On
the other hand, non-pixel-wise models take into account the structure of the image,
for example, as in convolution neural networks. The non-pixel-wise approaches are
regrouped by the construction of their objective function, which can serve to train
models without labeled data.

Figure 3.8 – The categories of unsupervised image segmentation approachespresented in this chapter

3.2.1 . Pixel-wise approach

The common thread in the algorithms here is that they classify the pixels
together based on the distance, either between points or to the centroid of the
cluster. The brightness temperature images are treated by pixels, with each pixel
containing the chosen channels of brightness temperatures. We present two pixel-
wise algorithms that are applicable to very large samples : K-means and DBSCAN.
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The third approach, SLIC, is not very suitable for a large dataset of brightness
temperature images. It is included due to its usefulness in aiding the non-pixel-wise
approach (Section 3.2.2).

K-means

K-means clustering is a method for grouping unlabeled data points into a
predetermined number of clusters using the distance between points. To separate
the pixels, it relies on minimizing the inertia or the intra-cluster sum of squares
of points from the centroids (Hastie et al., 2001). The K-means algorithm begins
by choosing the centroids based on the predefined number of centroids and the
specified approach. One basic initialization is to randomly select the centroids from
the data. A more innovative approach, greedy k-means++ (Arthur et al., 2007),
chooses the centroid to be very distant from each other. After the centroids are
initialized, the points are assigned to the closest centroid. After this step, a new
centroid is calculated based on the points in the clusters. These two steps are
repeated until a criterion is reached ; for example, there is no significant change
between the old and the new centroid.

Figure 3.9 – Examples of possible issues in K-means clustering. Figure obtai-ned using the Scikit-Learn Python Machine Learning library (Pedregosa et al.,2011)
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However, as K-means minimizes inertia, it only works well on convex and iso-
tropic data points (Sciikit-Learn User Guide, Pedregosa et al. (2011)). In addition,
as a non-normalized metric, the inertia encounters problems in a higher dimension.
Therefore, a dimension reduction algorithm is recommended. Figure 3.9 shows
some problematic cases of the K-means algorithm. The K-means will not give a
good partition if the number of clusters is insufficient. Therefore, it is necessary
to understand the data well and perform silhouette and elbow tests to determine
the number of clusters. For uneven sizes (Figure 3.9 (d)), the possible workaround
is multiple initializations of K-means to avoid local minima. However, unequal
variance and anisotropically distributed points are limitations of K-means.

When K-means is used for image segmentation, it classifies each pixel into
a cluster based on its values. It does not take into account the structure within
the image, which might be essential in the study of the brightness temperature
images. For a large dataset, the mini-batch variation of K-means is more suitable
for reducing computation time.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN considers clusters as high-density areas separated by low-density areas
(Ester et al., 1996; Schubert et al., 2017). As a result, unlike K-means, which only
works well with convex shapes, it can deal with various shapes (Scikit-Learn User
Guide, Pedregosa et al. (2011)). DBSCAN works by finding sample cores, which
are defined as a sample in the dataset that has a predefined number of core sample
neighbors within a predefined distance. This results in core samples being in den-
sely populated areas in the data. A cluster is then built by taking one core sample,
finding its neighbors, then its neighbors’ neighbors, and so on. A cluster also has
non-core samples around its fringes. This approach is deterministic, giving the same
clusters if the same order of data is given. However, this algorithm can be slow
for very large datasets, which is the case in most image segmentation tasks, as it
requires large memory.

Simple linear iterative clustering (SLIC) on super-pixels

Super-pixel can be defined as a group of pixels with similar characteristics, ge-
nerally a color-based determination. Super-pixel is useful for segmentation because
it carries more information than a single pixel. In addition, it can be effective in
terms of computational power (Achanta et al., 2010). On the other hand, it can
be challenging to determine the number of pixels and how to regroup them into
clusters. If this process is not done correctly, it is impossible to have sharp edges
in segmentation. Approaches involving super-pixels in image segmentation can be
a method to regroup pixels based on their properties or an intermediate step for
another unsupervised algorithm.
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SLIC Super-pixel was introduced by (Achanta et al., 2010). Each super-pixel
is approximately the same size. The super-pixels are regrouped together based on
their similarity and proximity. The SLIC algorithm starts by initializing the cluster
by taking pixels at a regular grid step. Then, iteratively, the pixels are associated
with the nearest cluster center, and the new cluster centers are recalculated. These
two steps are repeated until a certain preset threshold is met. This algorithm differs
from K-means as it avoids the calculation of redundant distances. It is one among
many speed-up schemes for the K-means algorithms.

Figure 3.10 – SLIC algorithm on medical image

3.2.2 . Non-pixel-wise approach

In this section, non-pixel-wise approaches are discussed. These methods rely on
the technique previously described in Section 3.1 : CNN, Auto-regressive models,
and Transformers. These types of models are preferable as they can take into
calculation the gradient of the brightness temperatures of the neighboring pixels
as well as the structural information.

The main difference between the deep learning models described here is the
training framework. Therefore, we will categorize the models by their training me-
thod, including creating pseudo-labels, reconstructing input images, and compa-
ring/contrasting input images. In each category, the objective is to create the loss
function to optimize the parameters. To better illustrate the framework, these
training methods will then be discussed with a few examples.
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Figure 3.11 – Categorization of the non-pixel-wise approach.

3.2.2.1 Pseudo-labelling

In unsupervised learning, where there are no ground truth labels, models that
rely on pseudo-labels create temporary labels that act as supervision in their trai-
ning. These models use a simple approach (K-Means and SLIC) to create labels
that serve a very similar role to the target labels in supervised learning. These
models often contain feature extraction blocks.

The following examples are architectures that make use of pseudo-labeling. In
the first example, the creation of the pseudo-labels is outside of the model and
directly relies on the inputs (Separated pseudo-labeling), while in the two following
examples, the creation of the pseudo-labels is integrated into the model and relies
on the features extracted by the model (Integrated pseudo-labeling).

Separated pseudo-labeling

In this example, Barthakur and Sarma (2019) combines Seg-Net and K-means
clustering. Seg-Net (Badrinarayanan et al., 2015) is an encoder-decoder network
very similar to U-Net (Ronneberger et al., 2015). Instead of a concatenation of the
feature maps like in U-Net, Seg-Net only uses the max-pooling indices from the
contraction path and, therefore, requires less memory usage.

K-means is applied to the color space that is converted from the image. The
regrouped clusters are then labeled. Next, these labels are used to train a Seg-Net
model. The final result is the output of the Seg-Net containing a label for each
pixel. Figure 3.12 shows the architecture of this model.

However, this model takes only one image as input. Consequently, it cannot be
generalized to multiple images with different contents in the image.

Integrated pseudo-labelling

Kanezaki (2018) proposed a method for unsupervised image segmentation by
combining a convolutional approach and super-pixels regrouping of pixels. The
pseudo-labeling is a refinement of the output of the model using SLIC super-
pixels. It is developed based on three criteria : the constraint on feature similarity,
the constraint on spatial continuity, and the constraint on the number of unique
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Figure 3.12 – Architecture with CNN and K-Means for unsupervised image seg-mentation (Barthakur and Sarma, 2019).

cluster labels.

The unsupervised training of the model by back-propagation works in two
steps : the forward pass to get the predictions of the clusters, followed by a back-
ward process of training the parameter. More precisely, the model gets the feature
maps from the input using convolution layers. Then, these so-called response maps
are normalized. Next, cluster labels can be obtained by an argmax function. The
next step is a super-pixel refinement step in order to satisfy the spatial continuity
criterion. Using the SLIC method (Achanta et al., 2010), the pixels are regrouped
into super-pixels, and the most frequent label among the containing pixels is as-
signed. A softmax loss is calculated between the obtained cluster labels and the
normalized response map. All the parameters of the network are updated by this
loss. Figure 3.13 shows the architecture of this network.

The disadvantage of this method is that it passes over the images one by one.
As a result, there is a problem with generalization as we cannot get the same class
labeled as the same thing over different images.

In a second example of the integrated pseudo-labeling, (Kim et al., 2020) pro-
posed a novel CNN method for unsupervised image segmentation, which is an
update on their last architecture (Kanezaki, 2018). It is very similar to the pre-
vious method but without the reliance on super-pixel. The outputs of the feature
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Figure 3.13 – The architecture for the unsupervised image segmentation byback-propagation using SLIC (Kanezaki, 2018).
extraction blocs pass through another batch normalization to become the norma-
lized response map. The model uses this normalized response map pass through
an argmax to create the pseudo-target to train in an unsupervised approach. The
architecture of the model is shown in Figure 3.14.

The loss function is calculated using the response map. It consists of two terms,
one for feature similarity and one for spatial continuity (Equation 3.2).

Figure 3.14 – The architecture proposed by Kimet al. (2020) as an improvementto Figure 3.13

L = Lsim({r′n, cn}) + µLcon({r′n}) (3.2)
The feature similarity loss compares the response map r′n to the cluster labels

cn obtained by applying the argmax function on the response map. In comparison to
the supervised segmentation approach, the cluster labels cn are used as a pseudo-
target. The loss, as a result, is a cross-entropy loss between cn and r′n.

The spatial continuity loss imposes similarity between adjacent pixels. It is the
sum of the pixel difference in the vertical and horizontal direction in the response
map r′n (Equation 3.3).
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Lcon({r′n}) =
W−1∑
ξ=1

H−1∑
η=1

∥r′ξ+1,η − r′ξ,η∥+ ∥r′ξ,η+1 − r′ξ,η∥ (3.3)

3.2.2.2 Reconstruction of input images

The reconstruction of input images is another method for creating the loss
function and adding extra information for the unsupervised segmentation. Usually,
in this approach, the segmentation happens in an intermediate step before the
reconstruction of the input image.

Two examples are presented here. In the first example, the objective function is
the weighted sum of the segmentation loss and the construction loss. In the second
example, the objective function of Generative Adversarial Nets (GAN) (Goodfellow
et al., 2014) is used.

Weighted sum loss

W-Net (Xia and Kulis, 2017) makes use of the very successful supervised se-
mantic segmentation U-Net (Ronneberger et al., 2015) by extending it from a
U-shape to a W-shape. It contains two fully convolutional networks, with the first
one (UEnc) encoding the input image into a k-way segmentation and the second
one (UDec) reversely reconstructing the image (Figure 3.15). The first loss is the
soft normalized cut loss for the segmented images used only for updating UEnc.
The second loss is the reconstruction loss comparing the generated image and the
original image used for updating the whole W-Net.

Figure 3.15 – W-Net architecture (Xia and Kulis, 2017).
Normalized cut loss is the application of graph theory in image segmentation.

Each pixel and its value become the nodes in a graph. The soft normalized cut loss
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(Shi and Malik, 2000) is the sum of weights of the ratio between cut (two disjoint
subsets of a graph) and association (the total connections from nodes in a cut to
all the nodes in the graph). The weights, on the other hand, signify the distance
in locations and color values between nodes. In other words, the N-Cut loss could
also be viewed as the ratio between the weights of the nodes in a cut to the nodes
outside of the cut and the weights between these nodes to all nodes in the graphs,
including those in the same cut.

Advarsarial loss

GAN is very useful in image reconstruction as it is one of the most common me-
thods for image-to-image generation. GAN is a generative model via an adversarial
process first proposed by Goodfellow et al. (2014). It consists of two components.
The generator, G, creates fake images resembling the input data and aims to learn
the distribution of the input data. The discriminator, D, is trained to classify if
an image is generated by G or if it is from the training data. The generator G

aims to fool the discriminator D. As a result, the two functions have an adversarial
relationship. Once convergence is achieved, the training samples and the generated
samples are indistinguishable from each other. This adversarial process became the
basis of many unsupervised image segmentation methods.

Figure 3.16 – ReDO architecture (Chen et al., 2019)

ReDO (Chen et al., 2019) is a GAN-based approach to object segmentation
(Figure 3.16). It consists of three main steps : the segmentation step, the gene-
ration step, and the discrimination step. The concept of ReDO is based on the
assumption that there is information in the segmented image for image genera-
tion. The generative process itself has three steps : the composition step for the
segmentation, the generating process for each region, and the assembling step,
where the two generated regions are combined. Then, the discriminator tries to
correctly label the real and fake images. The final product is only the segmenter
that provides labeling for the pixels of the object of interest and the background.
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3.2.2.3 Comparing and contrasting images within the dataset

Comparing or contrasting images can allow the model to find the relevant
information for the semantic segmentation of an image. The comparison can be
made to an augmented version of the input image or a different image in the
dataset.

Comparing the augmented inputs

Figure 3.17 – Autoregressive Unsupervised Image Segmentation (Ouali et al.,2020). Two ordering of the image o1 and o2 goes through the encoder-decoder
F . The objective is to have similar cluster assignments regardless of ordering.

Built on Mutual Information, Ouali et al. (2020) proposed to compare two
different views of the inputs obtained from different ordering of the pixels. In an
Autoregressive Clustering approach, the two views are fed into an encoder-decoder
network (F) that produces probability distribution of cluster assignment for all
the pixels (Figure 3.17). The pixels are then re-ordered to their original position.
The goal is to have the same distribution regardless of the views. There are many
possible views or ordering of the pixels, as it can also be a zig-zag pattern.

Comparing input with a different image in the database

STEGO (Self-supervised Transformer with Energy-based Graph Optimization)
is trained using an image similar to the input and an image completely different
(Hamilton et al., 2022). The architecture of STEGO (Figure 3.18) contains first a
backbone for extracting the global image features used for finding and comparing
similar and different images (Hamilton et al., 2022). This backbone does not require
to be re-trained or fine-tuned, therefore allowing STEGO to be very efficient in
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training. The feature extraction in the backbone is done by global average pooling
(GAP). GAP was first proposed to replace the fully connected layer in CNN for
classification (Lin et al., 2013). Instead of flattening the feature map and feeding
it into a fully connected MLP, each feature map is averaged. The advantage of
GAP is that it allows a more native representation of the convolution structure
by enforcing correspondences between categories and feature maps. In addition,
it also reduces over-fitting as there is no parameter to train. Based on the cosine
similarity, a look-up table of each image’s K-Nearest Neighbors is constructed from
the backbone’s feature space. The output of the backbone is also used for the input
of the Segmentation Head, which is an MLP (Figure 3.18).

Figure 3.18 – STEGO architecture and prediction scheme (Hamilton et al., 2022)
In the prediction phase, the outputs of the Segmentor head, which are seg-

mentation features, go through a clustering step (cosine distance-based minibatch
K-Means) in order to obtain cluster labels. Next, there is a refinement step using
Conditional Random Field (Krähenbühl and Koltun, 2011).

3.3 . Self-supervised image segmentation

Self-supervised learning learns one part of the input from another part of the
input, a process called pretext learning. It uses the supervisory signals from the
input data. One way to do this is by training a predictive model that tries to predict
the missing part of the data from the available ones, for example, predicting the
next part of a video given the previous sequence. This can be done by using an
energy-based model. For instance, if the sequence x and y are compatible, they
are trained to have low energy, and if they are not, the energy is high. This is done
through a two-part process (LeCun and Misra, 2021) :

(1) When two compatible sequences x and y are shown to the model, it is
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trained to produce a low energy,

(2) Impose on the model for a particular x, an incompatible value y produce
higher energy than a more compatible value y

The difference between self-supervised learning and unsupervised learning is
that they have different objectives. Self-supervised learning aims to learn the data
feature, whereas unsupervised learning has a more direct and specific goal. Another
interesting approach is the weakly supervised semantic segmentation, which does
not rely on pixel-level labels as a fully supervised learning approach. It can use
weakly labeled information such as bounding boxes, scribbles, and picture-level
labels (Wang et al., 2020).

Using self-supervised learning means defining pretext tasks and downstream
tasks. In computer vision, a pretext task means learning the features within the
images to use in another task. These pretext tasks in treating images include
in-painting and colorization. Self-supervision in pretext tasks can also act as a
pretraining step that could be used to transfer knowledge to downstream tasks
such as object detection, image segmentation, image classification, etc.

This section explores some models in self-supervised learning for semantic
image segmentation. We will discuss two main types of architectures in self-
supervised learning : Vision Transform (ViT) and Convolutional Neural Networks
(CNN). One prominent approach that links both ViT and CNN models is to use an
attention mechanism, especially self-attention in the pretext task. In each category
of architecture, we also describe several training frameworks based on contrastive
learning, which has gained a lot of success in self-supervised learning of image
representation.

3.3.1 . Self-supervised Vision Transformer

Despite its success in NLP, the Transformer encountered many challenges in
computer vision. ViTs, in particular, are competitive in performance with CNN.
Many publications have proposed supervised learning approaches for image classifi-
cation using ViTs. However, ViT applications are still very limited compared to CNN
models, as they demand a large database for training and are very costly in com-
putation. The success of Transformer in NLP might be due to the self-supervised
pre-training step. Caron et al. (2021) proposed to self-train DINO (self-distillation
with no labels) without using any labels.

DINO (Caron et al., 2021) made use of the ViT and Knowledge Distillation
(Hinton et al., 2015) to implement self-supervision. Self-training DINO is done
by using two identical ViTs, with different parameters, called the student and the
teacher network (Figure 3.19). The student and teacher networks are given two
different crops of the input image. The loss is the similarity of the two outputs
of the teacher and student network. During training, the teacher is only updated
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Figure 3.19 – DINO framework (Caron et al., 2021). The "sg" (stop gradient) inthe teacher network indicates that the weights are not updated by the gra-dient descent. Instead, the teacher’s weights are updated through exponen-tial moving average (ema) from the student network.

using the exponential moving average (EMA) of the student network.

In self-training methods, where the model tries to compare and contrast the
input image, the data is augmented for the local and global crops. The issue with
data augmentation is that most of the conventional approaches used on RGB
data cannot be applied to brightness temperatures. These conventional data aug-
mentation techniques involving the color space include changing the color value,
grayscaling, and blurring, which can cause the physical meaning in TB to change.
One simple solution is to test the omission of these types of data augmentations
and use only some of the geometric augmentations that do not change the contai-
ning structures, such as random flips, random crops, and random rotations. Other
solutions include transforming TB data in a way that preserves its gradient and
values, for example, randomly rotating the cropped images.

The obtained features from the self-supervised training of DINO contain explicit
information about the input data that can then be used for a downstream task, such
as image classification and segmentation. These emerging features appear more
clearly than supervised ViTs and convolutional neural networks (Caron et al., 2021).
In DINO, one of the downstream tasks is image classification. Using k-Nearest-
Neighbors (k-NN), which requires some labeled data, the features are classified
into different categories.

In our case, to do semantic segmentation without labeled data, we need me-
thods that analyze and make use of the information in the attention output. For
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example, Grad-CAM analyzes the attention map (Selvaraju et al., 2017). Other
approaches include using K-means (Ziegler and Asano, 2022).

3.3.2 . Self-supervised CNN

The attention mechanism is a fundamental part of the Transformers. However,
it can be adapted and applied to CNN. For instance, Attention U-Net is built upon
the architecture of U-Net (Oktay et al., 2018). In the skip connection part, the
current layer and the previous block layer are fed into an attention gate before
concatenating to the upsampled layer. The attention gate is shown in figure 3.20b.
The two inputs, xl and g go through a 1x1 convolution that equalizes the number
of channels without changing the size. Their sum then passes through a ReLU
activation, another 1x1 convolution layer, and a Sigmoid activation to flatten the
result to between 0 and 1.

(a) Architecture of U-Net with attention mechanism

(b) Attention gate
Figure 3.20 – U-Net with attention mechanism (Oktay et al., 2018).

Self-supervised learning on images aims to learn the visual representations in
an image. Techniques in training a model for this task without human supervision
are mainly based on generative and discriminative approaches (Chen et al., 2020).
These generative approaches can be computationally expensive as they need to ge-
nerate many pixels in the input. In discriminative approaches, contrastive learning
in the latent space has gained a lot of popularity. Chen et al. (2020) proposed a
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training framework, SimCLR (Simple Framework for Contrastive Learning of Vi-
sual Representations), where the input goes through two different stochastic data
augmentation, then two different encoders. The outputs of the encoder are pro-
jected (using MLP) to a latent space where the contrastive loss is then estimated.
Similarly to the contrastive learning applied to ViT, data augmentation has an
important role in the performance of the model (Chen et al., 2020).

Also focused on the representation in the latent space, Bootstrap Your Own
Latent (BYOL) is a self-supervised learning framework with a smaller drop in per-
formance than SimCLR when only random crop is used as the data augmentation
approach (Grill et al., 2020). BYOL, similar to SimCLR, also creates two different
representations and projections of the augmented input by two encoders and pro-
jectors with the same architectures and different weights. One side is called the
online networks, where the weights are updated for each batch. The other side is
the target networks that are updated by the moving average of the online networks.

3.4 . Summary of Methods

Some of the unsupervised segmentation approaches presented in the previous
section (Section 3.2) are tested. Here, we summarize the models into three catego-
ries in Table 3.1 : (1) if a model is selected for further study (Selected), (2) if it is
not suitable (Not suitable), or (3) if it has potential but was not tested (Potential).

The chosen models are presented in detail in terms of training and validation
in Chapter 4.3. The selected models moving forward are K-means and the model
proposed by Kim et al. (2020) called "Unsupervised learning of image segmenta-
tion based on differentiable feature clustering". They offer promising and coherent
segmentation.

Table 3.1 – Summary of unsupervised approaches presented

Pixel-wise
K-means SelectedDBSCAN Not suitableSLIC Not suitable

Non-pixel-wise
Pseudo-labeling Barthakur and Sarma (2019) Not suitableKanezaki (2018) Not suitableKim et al. (2020) Selected
Reconstruction Xia and Kulis (2017) Not suitableChen et al. (2019) Not suitable

Compare and contrast (Ouali et al., 2020) Potential(Hamilton et al., 2022) Potential

Among the "Not suitable" models, the model by Kanezaki (2018), the first
iteration of the model by Kim et al. (2020), was not retained due to its inferior
results to the updated model and its issue with generalization. Similarly, (Bartha-
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Figure 3.21 – Preliminary result of DINO. On the left are cropped brightnesstemperatures fromGMI observation used as inputs, and the DPR used just forcomparison. On the right are the attention outputs from the multi-attentionheads of DINO.

kur and Sarma, 2019) also has generalization problem. On the other hand, W-Net
(Xia and Kulis, 2017) was tested, and the resulting segmentation did not show any
coherent structure. Another model in the "Reconstruction" category, the ReDO
model (Chen et al., 2019), was not tested but deemed unsuitable due to the fact
that it relies on the shape of the segmented objects in the image to reconstruct the
input. Structures found in brightness temperature are highly irregular and, there-
fore, could be undesirable in this technique. In the pixel-wise approach, DBSCAN
was tested and was too slow compared to its counterpart, Mini-batch K-means.
SLIC is also not applicable as it is better suited for the segmentation of one image
at a time.

The rest of the models were not tested. Nonetheless, their architectures and
training frameworks might hold some potential for the application of brightness
temperature. For example, the "Compare and contrast" approaches are both mar-
ked as "Potential" because they are quite different from the previous approaches
and might offer a new perspective.

The self-supervised models are not as extensively explored as the unsupervised
approaches in this study. However, preliminary results show that they have the
potential to offer geophysically meaningful segmentation. Figure shows the preli-
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minary results from the DINO algorithm. The images on the left in Figure 3.4 show
the brightness temperatures used as inputs to DINO and the rain rates used for
comparison. The images on the right are the attention head (self-attention block,
Section 3.1.3) output of the DINO model (Section 3.3.1). The data augmentation
is omitted in this test. We could observe some promising similar structures present
in the input brightness temperatures and the attention head outputs. An important
notion of the self-supervised approaches is that they require a downstream task
that makes use of these attention outputs to create a segmentation.

Attention mechanisms normally used in self-supervised learning can also serve
as a backbone to an unsupervised approach. For example, U-Net architecture used
in unsupervised segmentation can be replaced by Attention U-Net (Oktay et al.,
2018).

3.5 . Evaluation Metrics for Unsupervised Image Segmentation

In the case of unsupervised image segmentation, where there is no ground truth
readily available, the evaluation of the results is a very challenging task. The inputs
to the model consist of only the brightness temperature images. The resulting
segmentation regroups the brightness temperature in a way that is unknown to
us. Consequently, the evaluation of the segmentation is done in two steps : the
internal and external evaluations. In internal evaluation, the same variables used for
training are used in order to find the interclass and intraclass dispersions between
each class. External evaluation, on the other hand, compares the segmentation
to other relevant variables, such as precipitation, sea surface temperatures, etc.
To compare to external variables, the segmentation classes are labeled with these
geophysical variables.

These two approaches described above evaluate the segmentation pixel-by-
pixel. Approaches that use a spatial correlation may provide more information
regarding the structure of the obtained segmentation and an external variable.

3.5.1 . Internal Evaluation

The internal evaluation uses only the variable used for the segmentation, which
is the brightness temperature in our case. It is mainly comprised of the distance
between the intra-class and inter-class classes. However, this approach might be
more favorable to pixel-to-pixel approaches such as K-means. It also depends on
the number of segmentation classes. Two measures are presented here : Calinski-
Harabasz (Calinski and Harabasz, 1974) and Davies-Bouldin index (Davies and
Bouldin, 1979).

Calinski-Harabasz
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Calinski-Harabasz index is the ratio between the sum of inter-cluster dispersion
and intra-cluster dispersion (Calinski and Harabasz, 1974; Pedregosa et al., 2011).
Therefore, a higher Calinski-Harabasz score means a better-defined cluster. For a
dataset E of size nE and center cE , clustered into k clusters, the index is defined
as,

s =
tr(Bk)

tr(Wk)
× nE − k

k − 1
(3.4)

where tr(Bk) is the trace of the between-group dispersion with

Bk = Σk
q=1nq(cq − cE)(cq − cE)

T (3.5)
and tr(Wk) the trace of within-cluster dispersion with

Wk = Σk
q=1Σx∈Cq(x− cq)(x− cq)

T (3.6)
Here, for a cluster q, Cq is the set of points, and cq is the center.

Davies-Bouldin index

The Davies-Bouldin index measures the similarity between clusters. The si-
milarity for cluster i and j, Rij , is defined by the distance between clusters and
the size of the clusters (Davies and Bouldin, 1979; Pedregosa et al., 2011). The
Davies-Bouldin index is then the average of the similarity between each cluster and
its most similar cluster. It is defined as,

DB =
1

k
Σk
imaxi ̸=jRij (3.7)

where Rij =
si+sj
dij

. Rij , therefore, is a trade-off between the sum of cluster
diameters si and sj (average distance between each point of the cluster to its
centroid) and the distance dij (distance between cluster centroids ci and cj). The
lower score indicates a better-defined cluster, with zero as the lowest possible score.

3.5.2 . External evaluation

External evaluation involves using a new variable that was not in the training
database. This comparison should be made to relevant data that can be retrieved
from the brightness temperatures, such as precipitation and sea surface tempera-
ture. Due to the nature of these data, this approach requires a conversion step
of a quantitative variable to a categorical one. For instance, when precipitation is
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compared to the resulting segmentation, the rain intensity needs to be converted
to a categorical variable, for example, Rain vs. Non-rain.

After the conversion of the quantitative variables into categorical variables, the
metrics for comparison are the same as those used in a supervised segmentation
approach. These metrics include the Rand index, the Jaccard index (or IoU), the
Dice coefficient (or F1-score for images), accuracy, and precision.

Rand index

The Rand Index (Hubert and Arabie, 1985) allows a comparison between two
segmented images with different labeling. It counts the number of pairs of pixels
being in the same class for both images as well as the pairs that are in different
classes for both images. Given two set S and S′ with labels li and l′i, Rand index
is given by,

R(S, S′) =
1(
N
2

)Σi,j,i̸=j [I(li = lj ∧ l′i = l′j) + I(li ̸= lj ∧ l′i ̸= l′j)] (3.8)

where I is an identity function. However, the Rand Index can be sensitive to
images with slightly different segmentation borders due to the comparison between
pairs of pixels. In addition, in the case of comparison with precipitation, rain struc-
tures are small and rare in the images. These small structures can be overlooked
in the score. It is also very dependent on the number of clusters. For example, a
random segmentation with a high number of clusters can have a high Rand index
(Wagner and Wagner, 2007).

The Adjust Rand Index is the Rand Index adjusted for chance (Hubert and
Arabie, 1985). The Rand Index is adjusted using the expected similarity provided
by a random model. Adjusted Rand Index is advantageous when the number of
predicted clusters is much higher than the number of ground truth clusters or vice
versa (Sciikit-Learn User Guide, Pedregosa et al. (2011)).

IoU and DICE

Intersection over Union (IoU), or the Jaccard Index, is the ratio between the
intersection of the pixels of a class over the union of this class in two segmen-
tations of the same image. The Dice or Sørensen-Dice coefficient for comparing
the predicted and ground-truth segmentations is the ratio between twice the in-
tersection of the predicted and ground-truth pixels divided by the total number of
pixels. For binary variables, the Dice score is also known as the F1-score in image
segmentation. Although it is used in more scientific publications, Dice penalizes
under and over-segmentation less compared to IoU (Müller et al., 2022).

Accuracy, precision, recall, F1-score
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Figure 3.22 – Visiual representation of intersection and Union.

Accuracy, precision, recall, and F1-score are the traditional metrics used in
the evaluation of image segmentation. Accuracy is simply the ratio between the
correctly predicted pixels (TP + TN) over the total number of pixels. Accuracy is
a good indicator of performance only when the classes are balanced. In the case
of imbalanced classes, i.e., a low number of rain pixels, a relatively high accuracy
might be misleading as the model might miss most of the minority class (Rain
pixels). Precision is the ratio between the TP and all the predicted positive pixels,
whereas Recall is the ratio between the True Positives and all the positive pixels.
For an imbalanced dataset, a segmentation might achieve a good precision score
and low recall score if it only captures a few positive pixels but correctly predicts
most of those pixels. On the other hand, we can have a low precision but high
recall if the segmentation captures a large percentage of TP but also has a lot
of FP. F1-score is a better metric for an imbalanced dataset as it tries to balance
between Precision and Recall.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score =
2

1
Precision + 1

Recall

With TP for True Positive, FP for False Positive, and FN for False Negative.

3.5.3 . Spatial Correlation

The purpose of using spatial correlation is to compare the occurrence of each
class obtained from the segmentation model to various geophysical variables. It is
thus also an external evaluation.
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V-measure differs slightly from the previously presented methods as it does
not compare pixels to the corresponding pixels. Instead, it looks at pixels in each
partition. V-measure is an entropy-based external evaluation that aims to compare
two clusterings using homogeneity and completeness (Rosenberg and Hirschberg,
2007). An advantage of the V-measure is that it is independent of the labeling of
the two clusterings, i.e., a permutation of the cluster label value will not change the
score. It is also symmetric. For the same domain, we define a set of classes C and
a set of clusters K to be compared. Homogeneity is satisfied when all points from
a cluster belong to the same class. On the contrary, completeness is satisfied when
all points of the same class belong to the same cluster. These two values change
in opposite directions : increasing completeness leads to decreasing homogeneity
and vice versa.

Nowosad and Stepinski (2018) proposed a modified V-measure to apply to a
spatial context. Instead of Information Theory, the authors reformulate the method
to an analysis of variance. As a result, the modified V-measure provides more in-
formation about the comparison, including indices of global association and local
association indicators. For example, it can compare the segmentation from the un-
supervised to a segmentation based on another variable, for example, precipitation.

Conclusion

This chapter offers an overview of architectures and training frameworks as well
as some evaluation metrics for unsupervised image segmentation. The main cate-
gories are pixel-wise and non-pixel-wise approaches. Only distance-based pixel-wise
approaches are presented. For non-pixel approaches, the categorization is based
on its training framework : pseudo-labeling, reconstruction of inputs, and compa-
ring/contrasting inputs. In addition, we include some pros and cons of the appli-
cation of presented models on brightness temperature data. In the next chapter,
the selected algorithms (details in Section 3.4) will be implemented.
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As described in Chapter 1, it has become increasingly important to study the
evolution of the water cycle. However, detecting and quantifying changes in preci-
pitation variability, and more generally in the evolution of the water cycle, remains
highly challenging and uncertain. Ground-based measurements such as rain gauges
are lacking in terms of coverage (Kidd et al., 2017), while datasets derived from
reanalyses have significant limitations (Dorigo et al., 2021; Tarek et al., 2020). In
order to analyze the variability of the Earth’s climate based on spatial observations,
this chapter proposes an analysis method using unsupervised segmentation of re-
mote sensing images. The first step is to verify that the obtained segmentations
are linked to geophysical variables. As spatial data have been available for several
decades, the study of the temporal evolution of the various segments will eventually
enable us to quantify the climate evolution observed by satellite.

This chapter focuses on the unsupervised segmentation of passive radiometric
remote sensing observation of microwave brightness temperatures. The microwave
spectrum provides diverse transmission conditions. Lower frequencies, near 10 GHz,
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are very sensitive to liquid water emission and nearly transparent to the atmosphere,
even with clouds and moderate rainfall, making them ideal for surface observations.
In contrast, higher frequencies, near 90 GHz, are highly sensitive to iced precipita-
tion through scattering and clouds but have reduced sensitivity to surface features
due to significant atmospheric attenuation. These distinct characteristics make ra-
diometric remote sensing observation well-suited for water cycle applications. For
instance, microwave brightness temperatures are used for retrieving precipitation
(Skofronick-Jackson et al., 2017), land surface temperature, sea surface tempera-
ture, wind direction, and snow cover.

After decades of observations, remote sensing big data has become an emerging
field with numerous applications (Cui et al., 2018). Missions such as the Tropical
Rain Measurement Mission (TRMM) (Kummerow et al., 1998) and the Global
Precipitation Measurement (GPM) mission (Hou et al., 2014) have contributed
to the accumulation of microwave brightness temperature images, which offer a
valuable source of information about the Earth’s water cycle over the last three
decades. To extract this information, elements of the water cycle are retrieved
from the radiometric observations with state-of-the-art algorithms (Viltard et al.,
2023) (Kummerow et al., 2001; Pfreundschuh et al., 2022). Then, the resulting
retrieved data is analyzed. If a Bayesian approach is used, the retrieval algorithm
requires many auxiliary variables. The novelty of the proposed approach is that
using an unsupervised model to analyze various elements of the water cycle does
not require any help from any other variables besides the brightness temperature
images. These images are inputs to unsupervised semantic segmentation models,
and the resulting segmentation classes are studied.

These deep-learning models are trained and evaluated on conventional RGB
images. In these images, objects have consistent structures or forms, such as cars,
trees, pedestrians, animals, etc. This chapter aims to show the importance and the
challenges in evaluating unsupervised semantic segmentation on unconventional
images. Objects such as clouds, precipitation systems, and snow-covered surfaces
do not have a predefined or consistent form in brightness temperature images.

In addition, in terms of evaluating the performance of the models, the chal-
lenge lies in labeling the obtained segmentation classes to a geophysical variable.
This step requires comparing each class to multiple datasets to determine its mea-
ning. Therefore, the quality of the segmentation is controlled through two steps :
the comparison of segmentation from different model implementations and the
validation of the segmentation. The first step aims to choose the best segmenta-
tion model by comparing its ability to find geophysical variables within an image
compared to a reference dataset and the level of detail it provides in the segmen-
tation. The second step consists of validating the segmentation capacity to find
patterns and variability in geophysical variables. Here, precipitation and sea surface
temperature are chosen as external variables.
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This chapter aims to show that an unsupervised approach can offer a geophysi-
cally significant segmentation of brightness temperatures and tackle the challenges
involved in validating and interpreting the segmentation. The structure of this
chapter is as follows. Section 4.1 describes the data used in this study. Section 4.2
presents the three approaches in unsupervised segmentation tested in this study :
a fully convolutional neural network (FCN) model proposed by Kim et al. (2020)
(previously discussed in Chapter 3), an FCN-based model with attention mecha-
nism, and a K-mean model. The hyper-parameters tested in the implementation
of each approach are also presented. Next, Section 4.3 shows how the models are
compared in the absence of ground truth labeling. After the model comparison,
only one model is chosen for the next step. Finally, the characteristics and behavior
of the segmentations obtained from the chosen model are analyzed in Section 4.4.

4.1 . Training dataset

The Global Precipitation Measurement (GPM) mission contains a constellation
of satellites whose ambitions include unifying and improving the remote sensing
measurement of precipitation from space, observing the global water cycle variabi-
lity, and improving weather forecast (Hou et al., 2014). The cooperation between
different agencies allows the GPM constellation to have both conical-scanning and
cross-track-scanning microwave radiometers with channels between 6 and 183 GHz
(Hou et al., 2014). The constellation contributes to better coverage by lessening
the revisit time of precipitation observation. The GPM data has served many socie-
tal applications, including hurricane track prediction, flood monitoring, agricultural
drought monitoring, and even disease tracking (Kirschbaum et al., 2017). This is
done by, for example, using GPM data for assimilation and contributing to glo-
bal precipitation datasets such as IMERG (Integrated Multi-Satellite Retrievals for
GPM, Pradhan et al. (2022)).

The amount of brightness temperatures images observed using similar frequen-
cies from the whole constellation offers an unprecedented opportunity for analysis
by Computer Vision. The present study experiments with data from the GPM Core
Observatory as a first step in processing brightness temperature images using an
unsupervised approach. The GPM Core Observatory (GPM-CO), launched in Fe-
bruary 2014, is a reference of the constellation and serves as a standard for unifying
the satellites within the constellations. It carries a Microwave Imager (GMI) and
a Dual-frequency Precipitation Radar (DPR). Since its launch, the GPM-CO has
amassed up to 10 years of satellite observations. The availability of the more direct
observation of precipitation by DPR offers the target data for a deep-learning rain
retrieval (previous work, Viltard et al. (2023)).

GMI is a conically scanning radiometer that measures the brightness tempera-
tures at a wide range of frequencies in both vertical and horizontal polarization (Hou

87



Figure 4.1 – Training example from cropped satellite observation on13/01/2017.

et al., 2014). Its channels include 10.65, 18.7, 23.8, 36.6, 89.0, 166.0, 183.3+/-3,
and 183+/-7 GHz. Its swath is approximately 885 km. The GPM-CO is on a non-
sun-synchronous orbit with a 65° inclination, which gives its radiometer, GMI, a
coverage of latitudes between 68°N and 68°S. This configuration, which allows it to
complete approximately 16 revolutions around Earth per day, was chosen because
it enables the satellite to observe precipitation between the Arctic Circle and the
Antarctic Circle at different times of the day.

In the present study, we compare two choices of GMI channels as inputs to the
model. The first choice is the 36.6 GHz (hereafter referred to as 37 GHz) and the
89 GHz in horizontal and vertical polarizations. The resolution of these channels is
8.6 km by 15.0 km and 4.4 km × 7.3 km, respectively. This choice is motivated
by the resolution of the observation, the availability of similar channels across the
satellites in the GPM constellation, and the previous study by Viltard et al. (2023)
that has shown that these channels are very efficient for rain retrieval. The second
choice is the inclusion of the 18.7 GHz (hereby 19 GHz, resolution 11.2 km ×
18.3 km) to the previous two channels. This lower frequency channel is sensitive
to surface emissivity and exhibits different sensitivities depending on the surface
type : for continental surfaces, it is sensitive to variables such as soil moisture
and vegetation, while for oceanic surfaces, it is primarily influenced by sea surface
temperature (Carver et al., 1985).

The training database consists of 30,000 cropped satellite images of 221 pixels
by 256 pixels, measured during 2017 and 2018. The measurements taken during
2019 are reserved as the test dataset for evaluating the performance. The brightness
temperature images are normalized using their mean and standard deviation. Figure
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4.1 shows an example of the cropped orbit used as the input data.

The results of the unsupervised segmentation are evaluated using two external
variables : precipitation and sea surface temperatures. The details of these data
are described in their respective comparison sections.

4.2 . Model architectures

The architectures of unsupervised segmentation models tested in this study
include approaches based on fully convolutional networks (FCN) and mini-batch
K-means (Scikit-Learn implementation, Pedregosa et al. (2011)). The fully convo-
lutional network (FCN) models (labeled Mi and Ui), proposed by Kim et al. (2020),
consist of a simple architecture based primarily on a feature extraction block. Next,
we proposed to test another FCN model (labeled Li), which takes inspiration from
Kim et al. (2020) and includes an attention mechanism. These models use convo-
lution layers, allowing them to consider the spatial structures in an image. The last
algorithm tested was K-means (labeled Ki), which is a pixel-to-pixel approach.

The choice of the first FCN Kim et al. (2020) is due to preliminary testing
and its simplicity. The second FCN is more complex as it has a deeper network
and includes an attention mechanism. The last choice, K-means, is to compare the
two FCN architectures to a simple clustering method. The objective is to compare
models of different complexities and evaluate their performance.

The application of the unsupervised approach on TB images has two im-
portant axes : the training of the models and the evaluation of the resulting
segmentation. The implementation of each algorithm can add up to many dif-
ferent models by changing their respective hyper-parameters. The architectures
and hyper-parameters are described in this section. However, choosing the best
hyper-parameters is a complex task as the output labeling alone does not provide
any indication of the geophysical variable that it represents. In addition, the trai-
ning loss is not indicative of a good model. In the model by Kim et al. (2020), the
loss function continues to decrease as the training progresses until multiple classes
collapse into a single class. Early stopping is activated when the number of unique
clusters reaches a predetermined number of classes. If the number of classes ex-
ceeds the minimum, the training continues until completion. The minimum number
of classes is set empirically to be 15 due to qualitative evaluation using numerous
training. Below 15 classes, the segmentation is not detailed enough to be useful.

In this study, we propose to train multiple models with different hyperpara-
meters. Then, the choice of the most suitable model depends on comparison to
external variables, described in Section 4.3.

4.2.1 . FCN models proposed by Kim et al. (2020)
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The unsupervised segmentation model proposed by Kim et al. (2020) contains
multiple convolution blocks serving as feature extractors. Each convolution block
consists of a convolution kernel, a ReLU, and a batch normalization. The model
relies on the creation of pseudo targets cn to train. These targets are obtained by
first applying a 1D convolution kernel and batch normalization on the output of
the feature extractor, resulting in a normalized response map r′n. Next, a softmax
function converts the r′n into cluster labels, the so-called pseudo targets cn.

Table 4.1 – Hyper-parameters for the simple FCN model proposed byKim et al. (2020). The total number of models tested is 12. Thesemodelsare labeledMi.
Input Number of

output class
Spatial

continuity
Feature
similarity37 GHz, 89 GHz 32 1 137 GHz, 89 GHz 64 25

Table 4.2 – Hyper-parameters for the FCNmodel proposed by Kim et al.(2020) with U-Net as the feature extractor. The total number of modelstested is 20. These models are labeled Ui.
Input Number of

output class
Spatial

continuity
Feature
similarity37 GHz, 89 GHz 32 1 137 GHz, 89 GHz 64 3 25 4

The objective function of this model includes two losses : the feature similarity
loss and the spatial continuity loss. The feature similarity loss is obtained by compa-
ring the normalized response map r′n and the pseudo labels cn using cross-entropy.
It aims to induce similarity within the same cluster. The second loss, spatial conti-
nuity, imposes similarity between adjacent pixels. Using the response map, it is
the sum of the differences between pixels in vertical and horizontal directions. A
coefficient balances the two losses. Further information about this model can be
found in Kim et al. (2020).

Better performance was achieved by replacing the feature extraction block with
the U-Net architecture (Ronneberger et al., 2015), which has proven to be very
efficient on rain retrieval from microwave brightness temperature (Viltard et al.,
2023). U-Net contains a contracting path where convolutional layers reduce the size
of feature maps and increase the number of feature channels. Then, its expanding
path upsamples the feature maps and decreases the number of feature channels.
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Between these two paths, there are skip connections where corresponding feature
maps are cropped from the contracting paths and concatenated to the expanding
path. After the feature extraction block, the rest of the architecture remains the
same as the original paper (Kim et al., 2020).

Multiple hyper-parameters are tested for this architecture : the number of
output classes, the architecture of the feature extractor, the input channels of the
brightness temperature, and the coefficient that balances the two losses. The list
of hyper-parameters tested is presented in Table 4.1. For the model with U-Net as
a feature extractor, the hyper-parameters are shown in Table 4.2. As the training
time per model is short, the hyper-parameters in both tables are chosen for further
analysis due to their promising results in a few case studies.

In line with the findings from previous deep-learning models applied to bright-
ness temperatures (Viltard et al., 2023; Sambath et al., 2022), data augmentation
(random crop and random flip) is added to the training to keep the model from
picking up any particular patterns within the satellite orbits.

4.2.2 . Our proposed FCN

Our proposed FCN model is based on an autoencoder architecture. In our case,
it involves reconstructing the brightness temperature maps presented as inputs at
the output (Figure 4.2). Let

{
xj,k ∈ Rt

}j,k ∈ NH,W

be a set of t-dimensional
brightness temperature vectors of maps pixels, where H and W denotes the height
and width of an input map and {cj,k ∈ [1 . . . q}j,k ∈NH,W

the cluster labels to
assign to each pixel. In this study, we set empirically the number of classes to q = 40

(using qualitative evaluation over several trainings). The developed model consists
of 3 parts : encoder, decoder, and attention class module. The feature extraction
performed by the encoder is composed of 2D convolution layers associated with
ReLU activation functions and batch normalizations (Table 4.3). It outputs m

feature maps (with m = 32, m = 64, or 128) of the same sizes as the input ones.
The decoder is slightly more complex than a standard decoder. It is composed of
t sub-decoders of identical architecture (t = 4 if the input channels are 37 GHz
and 89 GHz ; t = 6 if the input channels are 19 GHz, 37 GHz, and 89 GHz), each
dedicated to a brightness temperature channel. Each of them outputs q maps of the
same size as the input maps. The last module, called the attention class module,
generates for each class and each pixel a "probability" that the latter belongs to
this class. Finally, each decoder is connected to the operator

∑∏
in order to

reconstruct the corresponding input map. For each pixel, the operator
∑∏

sums
the q values weighted by its probability of belonging to the corresponding class
provided by the class attention module :
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outputj,k =

q∑
i=1

Ai,j,k ⊗ Yi,j,k (4.1)

where ⊗ denotes element-wise multiplication with A and Y ∈ Rq,H,W . The
last step consists of stacking the t outputs in the same way as the input maps. The
segmentation map is finally derived from the class attention module as follows :

cj,k = argmaxi∈[1...q]Ai,j,k (4.2)

Table 4.3 – Our proposed architecture. Conv2d(K) means 2D convolu-tion with a KxK kernel size.
Encoder Decoder Attention class DoubleConvDoubleConv(K1,K2) DoubleConv(3,3) DoubleConv(3,3) Conv2d(K1)DoubleConv(3,3) Conv2d(3,3) DoubleConv(3,3) BatchNormConv2d(3,3) BatchNorm Softmax ReluBatchNorm Conv2d(K2)BatchNormReLU

Figure 4.2 – The proposed architecture. The choice of input channels t = 6, i.e19H, 19V, 37H, 37V, 89H, 89V, is shown as an example.
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The loss function is divided into 2 parts. The first part consists of a constraint
on maps quality reconstitution defined by a standard mean square error loss LMSE

between input and output maps, while the second part LC is to favor each pixel
one class among the q classes.

L = LMSE − α LC

With α positive or null constant

LC loss aims to maximize the variance in the attention output.

The training was done on the same dataset as the previous model using an
Adam optimizer and a fixed learning rate (5× 10−4).

Table 4.4 – List of hyper-parameters tested for our proposed model.The total number of models tested is 162. These models are labeled Li.
Input α m K1 K237 GHz, 89 GHz 0.1 32 3 319 GHz, 37 GHz, 89 GHz 0.01 64 5 50 128 7 7

4.2.3 . K-means models

Table 4.5 – Kmeans hyper-parameters tested. The total number of mo-dels is 18. These models are labeledKi.
Input Output class Minibatch size37 GHz, 89 GHz 10 1619GHz, 37 GHz, 89 GHz 13 3215 64

Due to the large number of pixels, the mini-batch K-means is more suitable as
it works significantly faster. Mini-batch K-means offers a faster computing speed
as it uses randomly sampled subsets of input data, called mini-batches, to optimize
the same objective function as K-means (Sculley, 2010). The algorithm works in
two steps. First, a pre-determined number of samples are drawn from the training
dataset and assigned to the closest centroid. Next, the centroids are updated using
the streaming average of the current sample and all the previous samples. The
initialization used is "K-Means++" (Arthur et al., 2007). Although Mini-batch
K-means is faster than K-means, it comes with a slight reduction in performance.

K-means is a pixel-to-pixel approach. Therefore, its inputs contain the chosen
dimensions (4 or 6 brightness temperature channels) in the spectral dimension and
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a single dimension in the spatial dimension. The input is normalized the same way
as for the convolutional models described above. The hyper-parameters tested for
mini-batch K-means include the number of TB channels (4 and 6), the mini-batch
size (32, 16, and 64), and the number of clusters (10, 13, and 15) (Tabel 4.5).
There are 18 total models trained.

4.3 . Comparison of segmentation models without ground truth

To evaluate the performance of the models, the segmentations can be com-
pared using two approaches : an internal and an external comparison. In internal
comparison, the only variable used for comparison is the model’s inputs, which
are the brightness temperature in our case. Metrics for internal comparison mainly
rely on intra-class and inter-class dispersions, such as Calinski-Harabasz (Calinski
and Harabasz, 1974) and Davies-Bouldin index (Davies and Bouldin, 1979). Ho-
wever, metrics relying on pixel-to-pixel distances in the feature space tend to favor
pixel-to-pixel models (K-Means) as they calculate the distances between classes
pixel-to-pixel using the input data. The internal scores can be influenced by the
difference in the number of classes. In addition, they do not offer any indication
of the model’s performance on the important geophysical variables. Therefore, we
choose the most suitable model based on the external evaluation.

Figure 4.3 – The process of external comparison. The first step is to label theclasses obtained from the segmentation. Those that represent precipitationand SST are compared to reference data using traditional segmentation me-trics such as accuracy, recall, and F1-score. The classes that represent othergeophysical variables are not used for model evaluation in this study.

In external comparison, variables that the model has not seen during training are
used to evaluate the segmentation. These variables should be relevant ; for instance,
geophysical quantities are generally retrieved from the brightness temperature. The
present study compares the clusters to precipitation (over land and ocean) and sea
surface temperature (Figure 4.3). However, as the labeling of the outputs does not
directly provide any indication of their geophysical significance, the first step is to
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label the class to a geophysical variable (Figure 4.3). Then, they can be compared
using traditional segmentation metrics such as accuracy and F1-score.

In the absence of ground truth, labeling the classes in the segmentation to
the geophysical variable that it represents can be a very challenging task. The
class labels in the output of the segmentation models can change with each run,
meaning that the labels are not fixed and can be assigned differently each time.
For example, a precipitation structure in one model can have a completely different
label number than another model. Even in multiple initializations, the label number
for the same geophysical variable can be completely different. Therefore, comparing
all the models presented above cannot be done manually. A prerequisite to model
comparison is automatically labeling the class labels to a physical variable.

This section aims to describe the process of efficiently comparing the seg-
mentation between many different models to choose the model with classes that
represent geophysical variables well. The evaluation requires an identification of
the characteristics of the segmented class and choosing appropriate metrics to
compare it to the corresponding geophysical variable. A good segmentation model
must fulfill two criteria : the accuracy of the segmented objects compared to the
geophysical variables and the level of detail contained in the segmentation. The
selected model will then be used in the application in Section 4.4.

4.3.1 . External comparison with precipitation

The different implementations are compared using qualitative and quantitative
approaches. The quantitative approach serves mainly as a pre-selection step, as
there are too many models to evaluate qualitatively first. The goal is to keep only
similar-performance models that are then judged on several different case studies
of vastly different natures.

The reference precipitation used for the external comparison is the retrieved
rain rates from GMI using a deep learning rain retrieval algorithm (DRAIN) (Viltard
et al., 2020, 2023). In DRAIN, 37 and 89 GHz channels of brightness temperatures
are used as the sole input to a quantile regression U-Net. The model is trained
in a supervised approach using the Precipitation Radar (DPR) aboard the same
satellite as the target rain rates. Extensive evaluation of DRAIN can be found in
Viltard et al. (2023).

The first step of comparison is class labeling. Due to the number of models to
be compared, each class’s geophysical property must be identified automatically.
Using a separate set of data, the pixels of the segmentation are compared to the
pixels of the retrieved rain rates of the same observation. Next, the number of
rain pixels per class is counted. If the percentage of rain pixels shared by a class is
superior to a pre-defined threshold (15 %), that class is designated as a rain class
(1). Classes below the threshold become non-rain classes (0). This step results in
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a binary rain/non-rain segmentation of the image.

After identifying the rain classes, a score for each model is calculated by com-
paring the now binary segmented images and the precipitation images (converted
to binary data using a threshold of 0.1 mm/h for rain) using the Intersection over
Union (IoU), accuracy, recall, and F1-score, which are metrics commonly used
in segmentation evaluation. Accuracy is the ratio between the correct predicted
pixels over all pixels. Recall is the ratio of the True Positives over all actual po-
sitive pixels. Finally, the F1-score is a preferred metric for the case of imbalanced
data. For example, in our case, there is an overwhelming amount of non-rain pixels
and very few rain pixels. F1-score balances the precision score (the ratio of True
Positive over all the predicted positive pixels) and the recall score. For all the four
metrics presented, higher scores represent better segmentation agreement.

The external comparison is first used as a pre-selection of models to choose
two best-perfoming models for each approach before the in-depth comparison (the
scores of this step are not presented here). As there are many models per approach,
this is a comparison step for comparing the same algorithm but with different hyper-
parameters. These top two models per each approach (models Mi, Ui, Li, and Ki)
are chosen based on their average F1-score per 450 orbits. All models struggle to
distinguish the precipitation and the presence of snow and ice on the surface. Due
to this issue, the scores are limited to latitudes between 40°S to 40°N. In this
step, the hyper-parameters of each approach are investigated separately to study
their influence on the segmentation. The most notable finding in this step is that,
across all approaches, models with 19, 37, and 89 GHz channels as inputs perform
consistently better than their counterparts where the 19 GHz is not included.

Table 4.6 – Top two models for the algorithm proposed by Kim et al.(2020). M1 and M2 are the models with simple feature extractors. U1and U2 have U-Net as their feature extractor.
ModelName Input Output SpatialContinuity FeatureSimilarity
M1 19 GHz, 37 GHz,89 GHz 32 1 1
M2 19 GHz, 37 GHz,89 GHz 64 1 5
U1 19 GHz, 37 GHz,89 GHz 64 1 1
U2 19 GHz, 37 GHz,89 GHz 32 3 1

The inter-comparison between different approaches uses another set of 450
orbits chosen randomly from the validation set (within 40°S to 40°N latitudes).
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Table 4.7 – The hyper-parameters of the top two models of our propo-sed architecture.
Model name a m K1 K2L1 0.1 32 3 5L2 0 128 5 5

Table 4.8 – The hyper-parameters for the top two K-Mean models.
Model name Input Output Minibatch sizeK1 19 GHz, 37 GHz, 89 GHz 13 64K2 19 GHz, 37 GHz, 89 GHz 15 16

Figure 4.4 – Comparison of two of the best models from each approach. IoU,F1-score, Accuracy, and Recall score are calculated on 450 orbits observed in2019. M1 and M2 are models from Kim et al. (2020) with simple convolutionlayers as feature extractors. K1 and K2 are K-Means models. L1 and L2 are ourproposed models. U1 and U2 are models from Kim et al. (2020) with U-Nets asfeature extractors.

97



Table 4.9 – Average and standard deviation of F1-scores for the 450orbits shown in Figure 4.4.
Model name Average F1-scores Standard deviation of scoresU1 0.55 0.13K1 0.52 0.15L1 0.49 0.13M2 0.47 0.11L2 0.47 0.14U2 0.46 0.11M1 0.43 0.10K2 0.35 0.10

Figure 4.4 shows the scores for the top two models of each type. Here, M1 and
M2 are the best models from Kim et al. (2020) approach (Table 4.6), U1 and U2
are the models with Kim et al. (2020) approach using U-Nets as feature extractor
(Table 4.6), L1 and L2 are the models proposed above (Table 4.7), and K1 and
K2 are K-means models (Table 4.8).

The boxplots can offer more information as they show how much the score
varies from orbit to orbit. A good model should have a higher mean score and
smaller variance between orbits. All models seem to be able to achieve similar
performance for all metrics considered. However, the models with U-Net as feature
extractors (U1 and U2) have relatively higher median and smaller variance. Table
4.9 shows the average and standard deviation of the F1-scores for the 450 orbits.

The selected best models of each type are then compared again on several case
studies (Figures 4.5, 4.6, and 4.7). The qualitative approach consists of comparing
the segmented image to the reference precipitation images. The segmented images
are evaluated based on their structure compared to the precipitation images, their
level of detail, and the number of classes. Ideally, the segmented images should
have classes that represent different types of precipitation (for example, convective
or stratiform rain) and their intensity. It should also contain classes representing the
continent and the ocean with a certain level of detail. For the first case study, figure
4.5, which shows Typhoon Nanmadol (16/09/2022), all the best models selected
above are able to segment the precipitation structure. However, only models U1,
U2, M1, and L2 show more than three levels of rain intensity. In all three case
studies, K-means segmentation is very pixelated. This might hinder object analysis
in the long run as the isolated pixels cannot be easily regrouped together to form
an object. Similarly, in case 2 (Figure 4.6), all models can capture the precipitation
zone, with K-means models offering the coarsest segmentation. Finally, case 3
shows a frontal system over France (Figure 4.7). The models seem to struggle
more to segment the precipitation structure. Most models show the precipitation
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(a) Model M1 and M2 (b) Model M1 and M2 (c) Model M1 and M2

(d) Model M1 and M2 (e) DRAIN rain intensity
Figure 4.5 – Comparison between segmentation and reference rain rate forTyphoon Nanmadol observed by GMI on 16th September 2022.
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(a) Model M1 and M2 (b) Model M1 and M2 (c) Model M1 and M2

(d) Model M1 and M2 (e) DRAIN rain intensity
Figure 4.6 – Comparison between segmentation and reference rain rate for arain structure observed by GMI on 29th May 2017.
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(a) Model M1 and M2 (b) Model M1 and M2 (c) Model M1 and M2

(d) Model M1 and M2 (e) DRAIN rain intensity
Figure 4.7 – Comparison between segmentation and reference rain rate for afrontal system observed by GMI on 18th August 2018.
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zone except for model M2. Models M1, U2, L1, L2, and K2 offer the most similar
structure to the reference image.

When compared to the precipitation, the preselected best models have very
similar performance. The main difference is that K-means segmentation is very
noisy as it does not take into account the structure of the brightness temperatures.
The overall top model is model U1, as it is among the top scorers across all metrics
considered, and it has a smaller variance in its scores for the 450 orbits. In terms
of precipitation structure, this model contains a sufficient amount of detail in its
segmentation and follows the structure of the reference data well.

4.3.2 . External comparison with sea surface temperatures

The sea surface temperature (SST) data to be compared to the segmentation
is the product of GMI brightness temperature by the Group for High-Resolution Sea
Surface Temperature (GHRSST) (Remote Sensing Systems, 2017). This product
is the temperature of ocean water’s top layer (approximately -1 mm), ranging from
-3 to 34.5 degrees Celsius. The data is available for each orbit of the GPM Core
Observatory from its launch up to the present day with a resolution of 0.25 by 0.25
degrees. Data unavailability in this dataset can be caused by high wind speed, rain,
cloud cover, or pixels near sea ice and land.

Figure 4.8 – An example of SST obtained from GMI brightness temperaturesorbits by the GHRSST.
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Figure 4.9 – The sea surface temperatures (K) of the non-rain ocean classes forthe topmodels described in Section 4.3.1. The result of eachmodel is obtainedfrom the same 100 orbits.

Similarly to the previous comparison, the evaluation of the segmentation results
using SST as the reference needs to be automated. Ocean classes are simply defined
as non-rain classes that only occur over the ocean. Next, the corresponding SST
pixels for each class are regrouped. Figure 4.9 shows the SST values in each class
observed over 150 orbits from 2019 for the chosen models from the previous section.

We evaluate the segmentation performance on SST based on whether the SST
in each cluster is densely populated and well-separated. Calinski-Harabasz index
is the ratio of the sum of between-cluster dispersion and within-cluster dispersion
(Calinski and Harabasz, 1974). Therefore, a higher Calinski-Harabasz score means a
better-defined cluster. Another metric is the Davies-Bouldin index, which compares
the compactness and separation of clusters by measuring the similarity between
clusters by comparing the distance between clusters with the size of the clusters
themselves (Davies and Bouldin, 1979). The lower score indicates a better-defined
cluster, with zero as the lowest possible score.

The models with more output classes tend to have multiple classes representing
the same SST range, which results in lower Davies-Bouldin scores. Similar clusters
can be regrouped together during post-processing to deal with this issue. If the
mean SST of two clusters is similar enough, they will be combined into one cluster.
This results in an improvement of scores. Consequently, all best-performing models
achieve similar scores in terms of SST clustering as models with more classes (lower
scores) can have their SST classes regrouped to achieve a better score. A model
with more classes also has the advantage of offering a better representation of
different SST ranges.

4.3.3 . Model choice

The quantitative and qualitative comparisons with the reference precipitation
and SST show that all the top-performing models of different approaches perform
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similarly. They are all capable of segmenting geophysical structures in the bright-
ness temperature images. In addition to the classes representing precipitation and
SST that are evaluated here, there are other classes that show similarity to other
geophysical variables, such as soil humidity and snow-covered surfaces. The model
choice lies in the minor detail of the performance. With more priority placed on
precipitation, the chosen model for the next step is the best model for precipitation
under the condition that it achieves similar performance on SST among its peers.
The model that fulfills these criteria is model U1. It should be noted that, regarding
calculation time, the convolutional models run approximately 10 times faster than
the K-means models. To segment one orbit, the FCN models take approximately
0.05 seconds, while mini-batch K-Means require 0.5 seconds.

4.4 . Validating the characteristics of the segmentation classes
with geophysical knowledge

The previous section selects the top-performing model by identifying rain and
SST classes and comparing them to reference data using traditional segmentation
metrics. In this section, the classes are examined in terms of their characteristics
and behavior. It is important to verify that we can observe precipitation and SST
patterns regionally and globally using only these classes. Using the chosen model,
three application case studies are investigated. The first application is on a regional
scale (Section 4.4.1). Two regions from the IPCC reference regions Iturbide et al.
(2020) are observed using the GMI data from 2019. Next, on a global scale, GMI
data from 2019 is used to study the seasonal rain structure over the ocean and the
position of the Inter-tropical Convergence Zone (Section 4.4.2). Finally, we look at
the seasonal gradient of the SST using the non-rain ocean classes (Section 4.4.3).

4.4.1 . Precipitation patterns over two regions

The previously identified rainy classes are studied in two different regions. To
facilitate the choice of regions, the application relies on the updated IPCC refe-
rence regions Iturbide et al. (2020). The IPCC reference regions are homogenous
gridboxes with consistent regional climate features. The study is applied to two
reference regions, the Bay of Bengal (BOB) and Western Africa (WAF), as shown
in figure 4.10. These two regions have vastly different features. The BOB grid box
contains mainly the ocean and is driven by the Indian Monsoon. On the other hand,
WAF mostly consists of land with a large coastal area.

For each region, the segmentation of a cyclone observed near or in the region
observed by the GMI is compared to the retrieved rain intensity by DRAIN. Then,
the rain pixels are counted using both the unsupervised segmentation and the su-
pervised retrieval approach, DRAIN. The aim is to analyze the pattern of monsoon
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precipitation in the two regions.

Figure 4.10 – IPCC reference region Iturbide et al. (2020). The two chosen re-gions, BOB and WAF, are highlighted.

4.4.1.1 BayofBengal (BOB) and the Indian SummerMonsoon (ISM)

Tropical cyclones are among the extreme weather phenomena that occur over
tropical or sub-tropical waters. It can last at least 6 hours and has wind speed up to
34 kt (Bhardwaj and Singh, 2020). On average, the Bay of Bengal (BOB) region
saw 152 tropical cyclones between 1972 and 2017 (Bhardwaj and Singh, 2020).
During this period, an average of 3.3 tropical cyclones formed yearly without any
significant trend. However, there is an intensification of approximately 40% of all
tropical cyclones observed. The number of tropical cyclones peaked twice, first in
May and then higher in November. The highest number of tropical cyclones form
during post-monsoon, while the lowest number occurs during winter.

Figure 4.11 shows an example of segmentation done on Cyclone Amphan on
May 16th, 2020, as it was observed in its early stage by the GPM Core Observatory
(Kelly, 2020). The structure of the cyclone is composed of four classes (Figure
4.11a). Compared to the precipitation retrieved by DRAIN (Figure 4.11b), the rain
classes represent different intensity ranges. For example, class 41 shows the highest
intensity, while class 4 shows the lowest intensity in the cyclone. The segmentation
is representative of the structure of the Cyclone. The next step is to verify if it can
also capture the precipitation patterns in this region.

In terms of precipitation over the BOB region, it is heavily influenced by the
Indian Monsoon. The summer Monsoon over India, occurring from June to Sep-
tember, is responsible for providing at least 70% of rainfall (Wang et al., 2009).
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(a) Segmentation results (b) Rain intensity from DRAIN
Figure 4.11 – Cyclone Amphan observed by the GPM Core Observatory onMay16th, 2020. (a) shows the segmentation results. (b) shows the rain intensityretrieved by DRAIN.

(a) Pixel counts of rain classes in the BOB region

(b) Pixel counts of rain pixels above 0.1 mm/h retrieved by DRAIN in the BOB region
Figure 4.12 – Count of rain pixels per month inside the BOB region in 2019. (a)The count of pixels of the rain class was obtained from the segmentation. (b)The pixel of rain above 0.1 mm/h retrieved by DRAIN.
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Predicting its onset and retreat dates significantly impacts agriculture and food
production. The beginning of the Indian Summer Monsoon (ISM) is marked by the
precipitation over the Bay of Bengal region, the southern Indian peninsula. The
precipitation then moves inland from South to Northern India. On the other hand,
the end of ISM is marked by the retreating rainfall from North to South India. The
authors in Bombardi et al. (2020) reviewed the detection methods of Monsoon
onset dates globally. They categorized the techniques into two groups : based on
a local scale and based on a regional-to-large scale. The local-scale approach is
characterized by the data from a grid point data or single rain gauge. For ISM,
it includes, for example, the surface moist static energy exceeding a certain thre-
shold. For a regional scale method, the Indian Meteorological Department defined
the onset dates of the Monsoon as the amount and persistence of precipitations
over Kerela (a state on India’s tropical Malabar Coast), the depth of the westerlies,
zonal wind speed, and outgoing longwave radiation (or OLR). (Joseph et al., 2006)
defined ISM using zonal wind average and OLR over Kerela.

In Section 4.3, we have identified classes that contain rain. It is necessary to
verify that these identified rain classes can demonstrate the intra-annual preci-
pitation pattern (Figure B.5). Figure B.5b shows the number of rain pixels per
month (above 0.1 mm/h) retrieved by DRAIN in the BOB region for the 2019
GMI observations. The number of pixel counts per month in the two cases is
nearly identical. We can observe the preonset (April-May) and the monsoon sea-
son (June-July-August-September) (Rai et al., 2015) from both the segmentation
approach (Figure B.5a) and the retrieval approach (Figure B.5b).

Figure 4.13 – A Hovmöller diagram of the advancing and retreating Monsoonprecipitation over India in 2019. Each date on the x-axis represents the startof the week. The count is the sum of rain class occurrences from the first dayof the week to the seventh day.
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Figure 4.14 – Using data from 2019, the number of rain class occurrences foreach 0.5°x0.5° gridpoint is counted for each month. The area shown is bet-ween 5°N-27°N and 6°E to 100°E. The blue line indicates the BOB region.

According to Skofronick-Jackson et al. (2017), GPM constellation data is ca-
pable of tracking the movement of the ISM from the Bay of Bengal to Northern
India, thanks to the abundance of rainfall. The authors believe that, with multiple
years of GPM precipitation records, one can identify the interannual variation of the
ISM resulting from large-scale oceanic or atmospheric patterns or climate change.

Using rain pixel counts per latitude, Figure 4.13 shows a Hovmöller diagram
of the onset and withdrawal dates of the ISM in 2019. The number of rain class
occurrences per pixel is counted over a box bounded by latitudes 7°N to 27°N and
longitudes 73°E to 80°E. However, as only one satellite is used to create the time-
latitude graph, the time interval for summing the pixel counts is one week. Reports
from the Indian Department of Meteorology stated that the 2019 ISM started on
May 19th for the Southern BOB and on June 8th for Kerala (Balachandran et al.,
2019). The retreat began on October 15th-16th, with full withdrawal on the 16th
of October (Balachandran et al., 2019). Using the time-latitude plot, we observe
some preonset rain around April and some rain around the week of May 19th for
the very Southern region. The full onset of Monsoon began in the first week of
June. The red line in Figure 4.13 represents the latitude 18°N. No rain above this
latitude after the week of October 20th, which coincides with the retreat date of
the 2019 ISM. The 2019 ISM is particular due to the strong connection between the
ISM and the El Niño Southern Oscillation (ENSO) over the Pacific, (Gadgil et al.,
2019). The authors remarked on a weaker monsoon in June and above-average
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rainfall in July.

Figure 4.14 is a supplementary result of the time-latitude plot. It shows, on a
map, the occurrence of rain classes per gridpoint of 0.5 by 0.5 degrees. It shows
less rainfall in June than in July, August, and September. There was no more rain
over India after October. It should be noted that the result would be clearer if more
satellites were added to the analysis.

The results of the segmentation in BOB show that the precipitation classes
represent both the structure of the precipitation event in an image and the pre-
cipitation pattern. Although the data is only from one satellite, the segmentation
shows the approximate dates of the arrival and departure of the monsoon.

4.4.1.2 Western Africa (WAF)

The rainfall in Western Africa is controlled by the West African Monsoon, which
transports moisture inland from the Atlantic Ocean (Quagraine et al., 2020). Most
rainfall occurs between June and September, while the dry season is from January
to March. The WAM can vary from interannual to interdecadal (Quagraine et al.,
2020). In addition, agriculture in the Sudano-Sahelian region heavily depends on
the arrival of the Monsoon (Sultan and Janicot, 2003).

(a) Segmentation Results (b) Rain intensity from DRAIN
Figure 4.15 – Tropical storm Fred observed by the GPM Core Observatory onAugust 30th, 2015. (a) shows the segmentation results, (b) shows the rain in-tensity obtained by DRAIN on the brightness temperature data.

Similarly to the previous section, first, a single case of satellite observation
is examined. Figure 4.15 shows the tropical storm Fred on August 30th, 2015,
before it developed into a hurricane near the coast of WAF (Kekesi et al., 2023).
Compared to the precipitation obtained by DRAIN (Figure 4.15b), The structures
of the tropical storm can be found in the segmentation (class labels 1, 4, 41, 63).
Class 41 again represents high-rain intensity, while class 4 represents low-intensity
rain. The next step is to again verify the precipitation pattern.
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Figure 4.16 – Using data from 2019, the number of rain class occurrences foreach 0.5°x0.5° gridpoint is counted for each month. The area shown is bet-ween 5°S to 20°N and 15°W to 15°E. The blue line indicates the WAF region.

(a) Pixel counts of rain classes in the WAF region

(b) Pixel counts of rain pixels above 0.1 mm/h retrieved by DRAIN in the WAF region
Figure 4.17 – Rain pixel counts per month in 2019 inside the WAF region. TopFigure (a) shows the counts obtained by the segmentation. Bottom Figure (b)shows the count from rain pixels above 0.1 mm/h retrieved by DRAIN.

110



There are multiple ways to define the preonset and the onset of the WAM. The
preonset of WAM can be characterized by rainfall arriving in the Sudano-Sahelian
zone in mid-May (Sultan and Janicot, 2003). The onset of WAM is signaled by the
abrupt change in the position of the ITCZ, from its position along the 5°N latitude
to around 10°N in mid to end of June (Sultan and Janicot, 2003). From Figure
4.16, which shows the occurrences of rain classes per gridpoint on a map, we can
observe the rain over the Sudano-Sahelian region in May as well as the shift of the
ITCZ from 5°N to 10°N in May and June. Furthermore, the figure also shows the
position of the ITCZ at its highest at around 10°N in July and August (Sultan and
Janicot, 2003).

The rain pixels obtained through the segmentation and DRAIN for the pixels
inside the WAF region are compared in Figure 4.17. The rain count shows the
same pattern as the count from DRAIN rain retrieval. However, between July and
October, there are fewer counts using the segmentation as the model seems to
struggle more to find rain pixels on land than on the ocean.

The tropical storm case study and the monthly precipitation count result show
that the precipitation class can again represent rain structure and pattern in WAF
(mainly continent area), which is a very different region from BOB (mainly ocean
area).

4.4.2 . Precipitation over the ocean and the ITCZ precipitation
band

Figure 4.18 shows the total occurrences of rainfall pixels per each 0.5x0.5
gridpoint in 2019 obtained from the precipitation classes. As the satellite passes
over the tropics less often than in higher latitudes in the Northern and Southern
hemispheres, the number of occurrences is divided by the total annual satellite
passages per latitude. The rain class pixel counts correctly indicate wet areas and
dry areas in the ocean. With the exception of the Indian Ocean, the dry areas are
located in the subtropics on the eastern basins (Yuan and Miller, 2002). These dry
regions have an almost triangular shape, with bigger dry regions along the eastern
coast of the basin. In the Indian Ocean, the dry region is found in the western part
of the basin. Most wet regions are found in the Intertropical Convergence Zone
(ITCZ) and the Northwestern Pacific and Atlantic Oceans storm tracks (Yuan and
Miller, 2002). One of the most important characteristics of rainfall over the ocean
is the ITCZ. It is located at the ascending branch of the Hadley cell and is subjected
to abundant and intense rainfall (Byrne and Schneider, 2016b). It stretches from
the eastern equatorial Indian Ocean through the equatorial Pacific Ocean to the
eastern equatorial Atlantic Ocean (Yuan and Miller, 2002). In the Indian Ocean,
the wet regions of the ITCZ extend North, while in the Pacific Ocean, the areas
extend to the South Pacific Convergence Zone (SPCZ) (Yuan and Miller, 2002).
It should be noted that the higher occurrence of rain classes in the high latitudes
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is due to snow on the surface being misclassified as rain.

Figure 4.18 – Annual Precipitation over the Ocean in 2019 using pixel countsof the same rain classes as the previous sections. As there are more satellitepassages near the poles than in the tropics, the pixel counts are adjusted bythe total number of pixels per latitude.

An understanding of the structure of the ITCZ is critical in answering many
scientific questions, such as its implications in the monsoon dynamics, its evolution
in seasonal cycles, its interannual variability, and its role in the global energy budget.
Based on observational and reanalysis data between 1980 and 2014, (Lau and Tao,
2020) found that there is a multidecadal trend of a narrowing and intensifying ITCZ
precipitation. The precipitation intensity in the climatological ITCZ has increased,
accompanied by drying areas in both hemispheres (Lau and Tao, 2020) Wodzicki
and Rapp (2016). Using data from the Coupled Model Intercomparison Project
Phase 5 (CMIP5), the authors found evidence of the ITCZ width narrowing as
the climate warms (Byrne and Schneider, 2016a). The width of the ITCZ getting
smaller means a substantial impact on the regional water cycle, especially around
the edge of the ITCZ.

The annual mean latitude of the ITCZ has been the subject of interest in
numerous studies, while the width (meridional extent) has gained relatively smaller
interest (Byrne and Schneider, 2016b). There are several definitions of the ITCZ
width. (Dias and Pauluis, 2011) defined the ITCZ as a cross-equatorial meridional
distance between latitudes with brightness temperature being equal to a certain
threshold. Due to the sensitivity to brightness temperatures, another definition of
the ITCZ width is proposed in (Byrne and Schneider, 2016b) using the pressure
velocity.

Figure B.6 shows the occurrences of rain class over the ocean in DJF and JJA.
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(a) ITCZ from segmented objects over the ocean in DJF

(b) ITCZ from segmented objects over the ocean in JJA
Figure 4.19 – Rainfall on the ocean using the precipitation classes. Figure (a)is the data from DJF (December 2018 and January-February 2019). Figure (b)shows data from JJA (June- July- August 2019).
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From the count of precipitation class occurrences, we can observe a seasonal shift
between DJF and JJA. In JJA, the ITCZ precipitation band is thicker than in DJF.
In the Pacific Ocean, the precipitation occurs closer to the coast of Mexico. In
addition, the SPCZ sees more rainfall in DJF than in JJA. In the Atlantic Ocean,
the precipitation band shifts North from DJF to JJA. In the Indian Ocean, there
is more rainfall in JJA. The wet area also moves up North in JJA.

The pixel count of rain classes over the ocean shows a coherent annual preci-
pitation structure over the ocean. These classes can also capture the seasonality
of precipitation in DJF and JJA. The global analysis is limited to only the ocean
due to the models’ issue in distinguishing between precipitation and snow-covered
surfaces at higher latitudes.

4.4.3 . Sea surface temperature (SST)

Sea surface temperature is a key variable in determining the interaction bet-
ween the atmosphere and the ocean (O’carroll et al., 2019). It is essential in
quantifying large ocean gyres and atmospheric circulation cells, which have major
societal impacts by influencing climate, weather systems, local phenomena (sea
breeze and convective clouds), and severe storms. Obtaining a daily map of SST
leads to more accurate maritime forecasting, while a decadal record of SST allows
for an understanding of the role of the ocean in climate variability. Efforts in map-
ping the SST include retrieval algorithms for infrared and microwave brightness
temperatures (Chen et al., 2022).

The sea surface temperature (SST) data to be compared to the segmentation is
the ESA SST CCI and C3S reprocessed sea surface temperature analyses provided
by the E.U. Copernicus Marine Service Information (DOI : https://doi.org/
10.48670/moi-00169). The seasonal means (DJF, MAM, JJA, and SON) are
calculated from the daily global analyzed SST of the dataset. The seasonal average
of SST in Kelvin is shown in Figure 4.20 (a)-(d).

Figure 4.20 (e)-(h) shows how the ocean classes represent the SST. The label
for each gridpoint is obtained by the majority vote based on the number of oc-
currences of each class. This representation shows a north-to-south gradient with
isothermal zones varying between seasons. The temperatures decrease further away
from the equator, which reflects the heating received from the Sun. Across all sea-
sons, in the Atlantic Ocean, we observe higher temperatures in the ocean basin
of the eastern border of the United States in both Figures 4.20 (a)-(d) and 4.20
(e)-(h). Similarly, the temperature is higher in the North Western of the Pacific
Ocean. The western border of most ocean basins is warmer due to the effects of
the ocean gyres transporting warmer water from the tropics to higher latitudes
(Merchant et al., 2019). The eastern basins, on the other hand, receive the return
flow from the Polar regions to the equator (Merchant et al., 2019).
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(a) SST averaged over December 2018 toFebruary 2019 (b) SST averaged overMarch toMay 2019

(c) SST averaged over June to July 2019 (d) SST averaged over September to No-vember 2019

(e) Segmentation majority votes for De-cember 2018 to February 2019 (f) Segmentation majority votes forMarch to May 2019

(g) Segmentationmajority votes for Juneto July 2019 (h) Segmentationmajority votes for Sep-tember to November 2019
Figure 4.20 – Seasonal SST comparison. (a)-(d) Seasonal average SST usingdata from the ESA SST CCI and C3S reprocessed sea surface temperature ana-lyses. (e)-(h) SST represented by the ocean classes from the segmentation. Thelabel for each pixel is obtained by the majority vote from the occurrences ofeach class.
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To validate the ocean classes, we compare them to some seasonal characte-
ristics of the SST. For example, the SST in the Gulf of Mexico is uniformly warm
in JJA, while in other seasons, the SST is less warm with a slightly tilted North-
to-South gradient (Allard et al., 2016). The ocean classes in Figure 4.20 (e)-(h)
show a seasonal pattern over the Gulf of Mexico. In DJF and MAM, the area is
represented by lower SST classes. The gradient in SST can be observed in MAM
and SON. In JJA, the representation in the region is uniform, as suggested by (Al-
lard et al., 2016). However, for DJF, the gradient is unclear, which might be due
to an under-representation of the cold SST ranges. The seasonal cycle of SST can
also be observed in the Oman Sea and the Bay of Bengal. The higher temperature
classes move up to the coast in JJA and SON, while DJF and MAM see lower
temperature classes.

Historically, El Niño is described as warmer SST than usual around the coast
of Peru in DJF (Cai et al., 2020). As 2019 is an El Niño year, we observed higher
temperatures along the coast of Peru in Figure 4.20 (a). In Figure 4.20 (e), the
third highest temperature class (Class 0) extends to the coast of Peru in DJF.

These results show that the classes corresponding to SST are able to capture
its global structure and seasonality. Each class regroups SST at similar levels. The-
refore, depending on the objective, more SST classes allow for the representation
of more ranges of SST.

Conclusion

This study sets out to develop a tool to extract information from brightness
temperature (TB) images without any ancillary data or labeling. The chosen ap-
proach is an unsupervised semantic segmentation of TB images. In this study, we
tested FCN models (Mi, Ui, and Li) that take into account the spatial information
of an image, as well as a pixel-wise model (Ki) that only considers the TB values.

The first challenge to solve is the comparison of models’ performance and the
selection of the top model. In this study, we propose to evaluate the segmentation
using two external variables : precipitation and SST. First, the classes corresponding
to precipitation and SST are identified. Then, they are compared to the reference
precipitation and SST data using traditional segmentation metrics. All models
tested achieved very similar scores. The top-performing model is chosen based on
its overall performance on 450 orbits and the level of detail in segmentation that
it can offer. The next step is to verify that the classes can capture the patterns
and seasonality of these geophysical variables.

The results on precipitation in BOB and WAF, as well as precipitation over the
ocean, show that the precipitation classes are able to show intra-annual patterns of
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precipitation. They also provide a good structure for precipitation events. The SST
classes show the seasonality of the ocean’s temperature. These results confirm the
validity of the segmentation classes.

As these classes have proven to be meaningful, the next step is to apply the
unsupervised model to a longer dataset and analyze the evolution of these classes.
It is interesting to further explore what kind of information is contained in these
classes and study how they evolved in the 10 years of GMI data. In addition to GMI,
an unsupervised approach is key to analyzing data from other microwave remote-
sensing instruments. It is an approach that does not require any ancillary data
besides the brightness temperature images while offering observation of several
geophysical variables.

In this study, rain classes are defined simply as classes that correspond to rain
pixels when compared to the reference precipitation data. However, these classes
might hold more information. For example, they could represent rain of different
intensities and types (convective or stratiform). In addition, the segmentation class
might represent more than one geophysical variable. They could, for example, be
a mixture of two geophysical variables. Furthermore, segmentation offers other
classes besides precipitation and SST, which have not yet been explored in this
study. For example, there are classes that closely resemble soil moisture and per-
mafrost. In future studies, the properties of all classes need to be analyzed.

Another thing to address in future studies is the improvement of the model, as it
does not perform well for precipitation at higher latitudes. Without any supervision,
the signal in the brightness temperature is not enough for the model to distinguish
between heavy to moderate rain and snow on the ground. This limits the study for
precipitation to the latitudes between 40°S to 40° N.

117



4.5 . References

J. Allard, J. V. Clarke III, and B. D. Keim. Spatial and temporal patterns of in situ
sea surface temperatures within the Gulf of Mexico from 1901-2010. American
Journal of Climate Change, 5(3) :314–343, 2016.

D. Arthur, S. Vassilvitskii, et al. k-means++ : The advantages of careful seeding.
In Soda, volume 7, pages 1027–1035, 2007.

S. Balachandran, B. Geetha, K. Ramesh, R. Deepa, Y. Mourya, and K. Rakhil.
Southern Peninsular India : Southwest Monsoon - Report, 2019. URL https:
//mausam.imd.gov.in/chennai/mcdata/sw_monsoon_2019.pdf. Accessed
on May 17th, 2014.

P. Bhardwaj and O. Singh. Climatological characteristics of Bay of Bengal tropical
cyclones : 1972–2017. Theoretical and Applied Climatology, 139 :615–629, 2020.

R. J. Bombardi, V. Moron, and J. S. Goodnight. Detection, variability, and predic-
tability of monsoon onset and withdrawal dates : A review. International Journal
of Climatology, 40(2) :641–667, 2020.

M. P. Byrne and T. Schneider. Narrowing of the ITCZ in a warming climate :
Physical mechanisms. Geophysical Research Letters, 43(21) :11–350, 2016a.

M. P. Byrne and T. Schneider. Energetic constraints on the width of the intertro-
pical convergence zone. Journal of Climate, 29(13) :4709–4721, 2016b.

W. Cai, M. J. McPhaden, A. M. Grimm, R. R. Rodrigues, A. S. Taschetto, R. D.
Garreaud, B. Dewitte, G. Poveda, Y.-G. Ham, A. Santoso, et al. Climate impacts
of the El Niño–southern oscillation on south america. Nature Reviews Earth &
Environment, 1(4) :215–231, 2020.

T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communica-
tions in Statistics-theory and Methods, 3(1) :1–27, 1974.

K. Carver, C. Elachi, and F. Ulaby. Microwave remote sensing from space. Pro-
ceedings of the IEEE, 73(6) :970–996, 1985. doi : 10.1109/PROC.1985.13230.

Z. Chen, R. Jin, Q. Li, G. Zhao, C. Xiao, Z. Lei, and Y. Huang. Joint inversion
algorithm of sea surface temperature from microwave and infrared brightness
temperature. IEEE Transactions on Geoscience and Remote Sensing, 60 :1–13,
2022.

118

https://mausam.imd.gov.in/chennai/mcdata/sw_monsoon_2019.pdf
https://mausam.imd.gov.in/chennai/mcdata/sw_monsoon_2019.pdf


Y. Cui, X. Chen, J. Gao, B. Yan, G. Tang, and Y. Hong. Global water cycle and
remote sensing big data : overview, challenge, and opportunities. Big Earth Data,
2(3) :282–297, 2018. doi : 10.1080/20964471.2018.1548052. URL https:
//doi.org/10.1080/20964471.2018.1548052.

D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1(2) :224–227, 1979. doi :
DOIifavailable.

J. Dias and O. Pauluis. Modulations of the phase speed of convectively coupled
kelvin waves by the ITCZ. Journal of the atmospheric sciences, 68(7) :1446–
1459, 2011.

W. Dorigo, S. Dietrich, F. Aires, L. Brocca, S. Carter, J.-F. Cretaux, D. Dunkerley,
H. Enomoto, R. Forsberg, A. Güntner, et al. Closing the water cycle from
observations across scales : Where do we stand ? Bulletin of the American
Meteorological Society, 102(10) :E1897–E1935, 2021.

S. Gadgil, P. Francis, and P. Vinayachandran. Summer monsoon of 2019. Current
Science, 117(5) :783–793, 2019.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima,
R. Oki, K. Nakamura, and T. Iguchi. The Global Precipitation Measurement Mis-
sion. Bulletin of the American Meteorological Society, 95(5) :701 – 722, 2014.
doi : 10.1175/BAMS-D-13-00164.1. URL https://journals.ametsoc.org/
view/journals/bams/95/5/bams-d-13-00164.1.xml.

M. Iturbide, J. M. Gutiérrez, L. M. Alves, J. Bedia, E. Cimadevilla, A. S. Cofiño,
R. Cerezo-Mota, A. Di Luca, S. H. Faria, I. Gorodetskaya, et al. An update
of IPCC climate reference regions for subcontinental analysis of climate model
data : definition and aggregated datasets. Earth System Science Data Discus-
sions, 2020 :1–16, 2020.

P. Joseph, K. Sooraj, and C. Rajan. The summer monsoon onset process over
South Asia and an objective method for the date of monsoon onset over Kerala.
International Journal of Climatology : A Journal of the Royal Meteorological
Society, 26(13) :1871–1893, 2006.

A. Kekesi, G. Skofronick Jackson, G. Huffman, D. Kirschbaum, R. Gran, R. Fitz-
gibbons, and R. Gutro. NASA’s Scientific Visualization Studio, 2023. URL
https://svs.gsfc.nasa.gov/4354. Accessed on May 17th, 2014.

O. Kelly. NASA’s Scientific Visualization Studio, 2020.
URL https://gpm.nasa.gov/applications/weather/
gpm-sees-cyclone-amphan-approach-india. Accessed on May 17th,
2014.

119

https://doi.org/10.1080/20964471.2018.1548052
https://doi.org/10.1080/20964471.2018.1548052
https://journals.ametsoc.org/view/journals/bams/95/5/bams-d-13-00164.1.xml
https://journals.ametsoc.org/view/journals/bams/95/5/bams-d-13-00164.1.xml
https://svs.gsfc.nasa.gov/4354
https://gpm.nasa.gov/applications/weather/gpm-sees-cyclone-amphan-approach-india
https://gpm.nasa.gov/applications/weather/gpm-sees-cyclone-amphan-approach-india


C. Kidd, A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson,
and D. B. Kirschbaum. So, how much of the Earth’s surface is covered by rain
gauges ? Bulletin of the American Meteorological Society, 98(1) :69–78, 2017.

W. Kim, A. Kanezaki, and M. Tanaka. Unsupervised learning of image segmen-
tation based on differentiable feature clustering. IEEE Transactions on Image
Processing, 29 :8055–8068, 2020.

D. B. Kirschbaum, G. J. Huffman, R. F. Adler, S. Braun, K. Garrett, E. Jones,
A. McNally, G. Skofronick-Jackson, E. Stocker, H. Wu, and B. F. Zaitchik.
NASA’s remotely sensed precipitation : A reservoir for applications users.
Bulletin of the American Meteorological Society, 98(6) :1169 – 1184, 2017.
doi : 10.1175/BAMS-D-15-00296.1. URL https://journals.ametsoc.org/
view/journals/bams/98/6/bams-d-15-00296.1.xml.

C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson. The tropical rainfall
measuring mission (TRMM) sensor package. Journal of atmospheric and oceanic
technology, 15(3) :809–817, 1998.

C. Kummerow, Y. Hong, W. Olson, S. Yang, R. Adler, J. McCollum, R. Ferraro,
G. Petty, D.-B. Shin, and T. Wilheit. The evolution of the goddard profiling algo-
rithm (GPROF) for rainfall estimation from passive microwave sensors. Journal
of Applied Meteorology and Climatology, 40(11) :1801–1820, 2001.

W. K. M. Lau and W. Tao. Precipitation–radiation–circulation feedback processes
associated with structural changes of the ITCZ in a warming climate during
1980–2014 : An observational portrayal. Journal of Climate, 33(20) :8737 –
8749, 2020. doi : https://doi.org/10.1175/JCLI-D-20-0068.1. URL https://
journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml.

C. J. Merchant, P. J. Minnett, H. Beggs, G. K. Corlett, C. Gentemann, A. R.
Harris, J. Hoyer, and E. Maturi. Global sea surface temperature. In Taking the
Temperature of the Earth, pages 5–55. Elsevier, 2019.

A. G. O’carroll, E. M. Armstrong, H. M. Beggs, M. Bouali, K. S. Casey, G. K.
Corlett, P. Dash, C. J. Donlon, C. L. Gentemann, J. L. Høyer, et al. Observational
needs of sea surface temperature. Frontiers in Marine Science, 6 :420, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn : Ma-
chine learning in Python. Journal of Machine Learning Research, 12 :2825–2830,
2011.

120

https://journals.ametsoc.org/view/journals/bams/98/6/bams-d-15-00296.1.xml
https://journals.ametsoc.org/view/journals/bams/98/6/bams-d-15-00296.1.xml
https://journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml
https://journals.ametsoc.org/view/journals/clim/33/20/jcliD200068.xml


S. Pfreundschuh, P. J. Brown, C. D. Kummerow, P. Eriksson, and T. Norres-
tad. GPROF-NN : a neural-network-based implementation of the goddard pro-
filing algorithm. Atmospheric Measurement Techniques, 15(17) :5033–5060,
2022. doi : 10.5194/amt-15-5033-2022. URL https://amt.copernicus.org/
articles/15/5033/2022/.

R. K. Pradhan, Y. Markonis, M. R. Vargas Godoy, A. Villalba-Pradas, K. M.
Andreadis, E. I. Nikolopoulos, S. M. Papalexiou, A. Rahim, F. J. Tapia-
dor, and M. Hanel. Review of GPM IMERG performance : A global pers-
pective. Remote Sensing of Environment, 268 :112754, 2022. ISSN 0034-
4257. doi : https://doi.org/10.1016/j.rse.2021.112754. URL https://www.
sciencedirect.com/science/article/pii/S0034425721004740.

K. A. Quagraine, F. Nkrumah, C. Klein, N. A. B. Klutse, and K. T. Quagraine. West
African summer monsoon precipitation variability as represented by reanalysis
datasets. Climate, 8(10) :111, 2020.

A. Rai, S. K. Saha, S. Pokhrel, K. Sujith, and S. Halder. Influence of preonset
land atmospheric conditions on the Indian summer monsoon rainfall variability.
Journal of Geophysical Research : Atmospheres, 120(10) :4551–4563, 2015.

Remote Sensing Systems. GHRSST Level 3U Global Subskin Sea Surface Tem-
perature from GMI onboard GPM satellite, 2017. URL https://podaac.jpl.
nasa.gov/dataset/GMI-REMSS-L3U-v8.2a.

O. Ronneberger, P. Fischer, and T. Brox. U-net : Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015 : 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer,
2015.

V. Sambath, N. Viltard, L. Barthès, A. Martini, and C. Mallet. Unsupervised
domain adaptation for global precipitation measurement satellite constellation
using Cycle Generative Adversarial Nets. Environmental Data Science, 1 :e24,
2022. doi : 10.1017/eds.2022.16.

D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th international
conference on World wide web, pages 1177–1178, 2010.

G. Skofronick-Jackson, W. A. Petersen, W. Berg, C. Kidd, E. F. Stocker,
D. B. Kirschbaum, R. Kakar, S. A. Braun, G. J. Huffman, T. Iguchi, P. E.
Kirstetter, C. Kummerow, R. Meneghini, R. Oki, W. S. Olson, Y. N. Ta-
kayabu, K. Furukawa, and T. Wilheit. The global precipitation measure-
ment (GPM) mission for science and society. Bulletin of the American Me-
teorological Society, 98(8) :1679 – 1695, 2017. doi : https://doi.org/10.

121

https://amt.copernicus.org/articles/15/5033/2022/
https://amt.copernicus.org/articles/15/5033/2022/
https://www.sciencedirect.com/science/article/pii/S0034425721004740
https://www.sciencedirect.com/science/article/pii/S0034425721004740
https://podaac.jpl.nasa.gov/dataset/GMI-REMSS-L3U-v8.2a
https://podaac.jpl.nasa.gov/dataset/GMI-REMSS-L3U-v8.2a


1175/BAMS-D-15-00306.1. URL https://journals.ametsoc.org/view/
journals/bams/98/8/bams-d-15-00306.1.xml.

B. Sultan and S. Janicot. The West African monsoon dynamics. Part II : The
“preonset” and “onset” of the summer monsoon. Journal of climate, 16(21) :
3407–3427, 2003.

M. Tarek, F. P. Brissette, and R. Arsenault. Evaluation of the ERA5 reanalysis
as a potential reference dataset for hydrological modelling over North America.
Hydrology and Earth System Sciences, 24(5) :2527–2544, 2020.

N. Viltard, P. Lepetit, C. Mallet, L. Barthès, and A. Martini. Retrieving rain rates
from space borne microwave sensors using u-nets. In Proceedings of the 10th
International Conference on Climate Informatics, pages 30–36, 2020.

N. Viltard, V. Sambath, P. Lepetit, A. Martini, L. Barthès, and C. Mallet. Eva-
luation of DRAIN, a deep-learning approach to rain retrieval from gpm passive
microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing,
2023.

B. Wang, Q. Ding, and P. V. Joseph. Objective definition of the Indian Summer
Monsoon onset. Journal of Climate, 22(12) :3303 – 3316, 2009. doi : https://
doi.org/10.1175/2008JCLI2675.1. URL https://journals.ametsoc.org/
view/journals/clim/22/12/2008jcli2675.1.xml.

K. Wodzicki and A. Rapp. Long-term characterization of the Pacific ITCZ using
TRMM, GPCP, and ERA-Interim. Journal of Geophysical Research : Atmos-
pheres, 121(7) :3153–3170, 2016.

J. Yuan and R. L. Miller. Seasonal variation in precipitation patterns to the global
ocean : An analysis of the GPCP version 2 data set. Global biogeochemical
cycles, 16(4) :50–1, 2002.

122

https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00306.1.xml
https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00306.1.xml
https://journals.ametsoc.org/view/journals/clim/22/12/2008jcli2675.1.xml
https://journals.ametsoc.org/view/journals/clim/22/12/2008jcli2675.1.xml


5 - Analysis of GMI data from 2014 to 2024
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In the previous chapters, we present the supervised approach DRAIN for re-
trieving rain intensity from TB images and the unsupervised approach (Chapter
2), which relies on an unsupervised image segmentation model to extract multiple
geophysical variables from the TB images (Chapter 4.3). In this chapter, these
two approaches are used to analyze the GMI data between 2014 and 2024. The
results from DRAIN are used to study the precipitation intensity and occurrence
in the dataset. For the unsupervised segmentation, the evolution of the identified
rain and SST classes is examined. In addition, we include a trend analysis using
the brightness temperature measurements directly.

The Mann-Kendall test adjusted for seasonality (Hirsch et al., 1982) is applied
to the trend in the monthly data using the Python package proposed by Hussain
and Mahmud (2019). The slope and intercept of the trend are obtained using Sea-
sonal Theil-Sen’s Slope Estimator (Hipel and McLeod, 1994) and Conover method
(Conover, 1999), respectively. For annual data, the original Mann-Kendall test is
used (Mann, 1945; Kendall, 1948). The Mann-Kendall tests have been used in se-
veral studies to analyze the trend in precipitation and hydrological cycles (Mondal
et al., 2012; Kampata et al., 2008; Xu et al., 2010).

5.1 . Trends in brightness temperature

The TB at 89 GHz is sensitive to ice particle scattering in both land and ocean
precipitations (Hou et al., 2014). The coldest 89GHz in horizontal polarization
(TBH89) for only rain pixels is an indicator of the convective nature of the precipi-
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Figure 5.1 –Mean of 1% of the coldest 89 GHz (TBH89) in horizontal polarizationfor 5° x 5° grids using rain pixels between 2014 and 2024.

tation as it is almost proportional to the amount of ice produced in the convective
parts of clouds.

Using only rain pixels from 2014-2024, Figure 5.1 shows the average of the 1%
coldest 89 GHz in horizontal polarization (TBH89) for 5° x 5° grids. The average
coldest TBH89 corresponds to regions where convective precipitations are most
likely to occur, which includes most of the tropics and subtropics regions (Liu
et al., 2013). These regions include South America (particularly over the Amazon
forest), southern parts of North America (including the Great Plains), central Africa
and the southern Sahaelian region, the regions influenced by the Indian Summer
Monsoon (ISM), the ITCZ, and the South Pacific Convergence Zone (SPCZ).

Figure 5.2a shows the map of trend per 5° x 5° grid box for the seasonal average
of the 1% coldest TBH89 of rain pixels between 2014 and 2024. However, there
are only a few significant pixels based on the Mann-Kendall test. In some regions,
we could observe a significant decreasing trend, such as in the Amazon forest,
the south of North America, and the Gulf of Guinea. Around the ITCZ, one can
observe some warming trends of the TBH89, with very few significative grid boxes.
This might suggest less convective activities around the edges of the ITCZ. The
summary of water cycle changes in Chapter 1 also points to more drying areas on
both sides of the hemispheres separated by the ITCZ.

Figure 5.2b shows the trend of the global seasonal average of the 1% coldest
TBH89 of rain pixels between 2014 and 2024. There is a non-significant decreasing
trend. On a global scale, there seems to be no significant increase in ice particle
amounts during rainstorms.
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(a) The trend in the seasonal average (DJF, MAM, JJA, SON) coldest
TBH89 for 5° x 5° grid boxes using only rain pixels from 2014-2024.The solid-colored grid boxes represent a significant Mann-Kendalltrend.

(b) Trend in the global seasonal average(DJF, MAM, JJA, SON) of the coldest TBH89for only rain pixels in the same period.The Mann-Kendall test found no signifi-cant trend.
Figure 5.2 – Trend of the seasonal average of the 1% coldest TBH89 of rainpixels between 2014 and 2024. Figure 5.2a shows the trend for each 5° x 5°grid box. Figure 5.2b shows the global trend.
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It should be noted that, due to saturation, the observed TBH89 cannot descend
below a certain threshold even if there are more ice particles present in the clouds.
Consequently, a decrease in the average 1% coldest TBH89 of the TB distribution
could be due to an increase in the number of cold TBH89 pixels observed and not
necessarily due to the decrease in the temperatures themselves.

5.2 . Trend in DRAIN precipitation

The DRAIN algorithm, presented in Chapter 2, is applied to the GMI data
from 2014 to 2024 to retrieve rain intensity. Some preliminary results, including an
analysis of the trend of rain intensity and the number of rain pixels, are presented
here.

5.2.1 . Rain intensity

Figure 5.3 – Mean DRAIN rain intensity in a 5° x 5° grid for GMI data from 2014to 2024.
Figure 5.3 shows the average rain intensity per grid box of 5° x 5° for 2014-

2024. Next, we analyzed the trend in each grid box using the Mann-Kendall test.
The grid boxes with stripes have no significant trend (Figure 5.4a). There are
more grid boxes with downward trends than upward trends. The grid boxes with
a negative slope are located mostly in the East Pacific Ocean, while those with
positive slopes are in the East Atlantic Ocean, the Arabian Sea, and the Indian
Ocean. However, very few of these grid boxes contain significant trends.

On a global scale, the seasonal average rain intensity is decreasing with a
significant trend (Figure 5.4b). Nonetheless, as this analysis is limited to only one
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(a) The trend in rain intensity for 5° x 5° grid boxes using DRAIN datafrom 2014-2024. The solid-colored grid boxes represent a significantMann-Kendall trend.

(b) Trend in the global seasonal average(DJF, MAM, JJA, SON) rain intensity for thesame period
Figure 5.4 – Trend in rain intensity using DRAIN data from 2014-2024. (a) showsthe trend for each grid box, while (b) shows the global average rain intensitytrend.
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satellite, the cause of this decrease is unclear. It could be due to a general decrease
in rain intensity for all precipitation events. It is also possible that the occurrences
of low rain events increase, which leads to a decrease in global average intensity.

5.2.2 . Total rain pixels

Figure 5.5 – Average occurrences of rain pixels seen by DRAIN from 2014-2024for grid boxes of 5° x 5°. The mean number of rain pixels in each grid is ad-justed for the difference in satellite passage over each latitude.
Observing the total accumulation of rain requires determining the number of

occurrences, the intensity, and the duration of precipitation events. With only GMI,
neither the total occurrences nor the duration is available for analysis. As a result,
the number of rain pixels is used as a proxy to observe the trend in precipitation.

The rain pixels are pixels with rain intensity above 0.1 mm/h. Figure 5.5 shows
the annual average number of rain pixels per 5° x 5° grid box for 2014-2024. Due
to the number of satellite passages per latitude in the high latitudes being more
than in the tropics (more land area in the tropics than in the high latitudes), the
average number of rain pixels is adjusted by a coefficient based on the total number
of pixels observed by the satellites per latitude.

The average number of rain pixels per grid box is representative of the global
wet and dry regions. Over the ocean, the wet regions are normally found in the
ITCZ, the SPCZ, and the storm tracks in the Northwestern Pacific and Atlantic
Oceans (Yuan and Miller, 2002).

Figure 5.6a shows the trend in average rainy pixels per year for the period
2014-2024 in 5° x 5° grid boxes. Similarly to Figure 5.4a, the striped boxes are
non-significative. Across the globe, most of the grid boxes show a positive trend.
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(a) Trend for the annual average rain pixel counts for 2014-2024.The solid-colored grid points are statistically significant based on theMann-Kendall test.

(b) Trend for the global average rain pixelscounts for 2014-2024. The average is doneper 3-month period (DJF, MAM, JJA, andSON).
Figure 5.6 – Trend in rain pixel counts using DRAIN. (a) shows the trend per 5°x 5° grid boxes. (b) shows the trend in the global seasonal average annually.
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The seasonal average of global rain pixels has a significant increasing trend (Figure
5.6b). There are many possibilities for the cause of the increase in total rain pixel
counts. For example, the precipitation events could be becoming larger, last longer,
or occur more frequently.

5.3 . Trend in the unsupervised segmentation results

Identified rain classes and SST classes from the chosen optimal model presented
in Chapter 4.3 are examined for the GMI data between 2015-2023. The trend
analysis is done for regional precipitation and global SST.

5.3.1 . Regional analysis of precipitation

Figure 5.7 – The IPCC reference region (Iturbide et al., 2020).
Based on the summary of changes in the water cycle presented in Chapter 1,

changes in precipitation differ from one region to another. Assessing the global
change of precipitation could lead to averaging processes that cancel each other
out.

Due to the regionalized response of the water cycle to climate change, we
choose to analyze several regions for this preliminary result. Using the IPCC re-
ference regions (Iturbide et al., 2020), also presented in Chapter 4.3, the study
focuses on three regions : Western Africa (WAF), Southeast Asia (SEA), and the
Bay of Bengal (BOB) (Figure 5.7). According to the trend in annual mean precipi-
tation from 1985-2014 (Figure 1.2, Douville et al. (2023)) for these three regions
include,

— Western Africa (WAF)
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WAF is one of the regions that have experienced an increase in mean an-
nual precipitation between 1985 and 2014. It should be noted that in Figure
1.2, not all trends in the gridpoints are statistically significant. For WAF,
the significant pixels are located in the center of the region.

— Bay of Bengal (BOB)
The ocean region BOB also saw an increase in annual precipitation in
1985-2023. The trend in BOB is higher than in WAF, with a higher ratio
of significant grid points.

— Southeast Asia (SEA)
Most of the SEA region experienced an increasing trend between 1985 and
2015. However, some parts of the region experienced a decreasing trend.

Rain pixel count

We extend the application of rain pixel count presented in Chapter 4.3 to the
GMI data from 2015-2023. Figure 5.8 shows the monthly rain pixel count of all
rain classes combined for WAF (Figure 5.8a), SEA (Figure 5.8b), and BOB (Figure
5.8c). For the regions WAF and BOB, there is a clear seasonality to precipitation as
these regions are influenced by a monsoon regime. On the other hand, the region
SEA is influenced by several regimes of Monsoons, including the Indian Summer
Monsoon (ISM), the East Asian Monsoon, and the Australian Monsoon. It also
includes a region where it rains almost all year round.

There is a positive slope in the trend for the monthly precipitation in all three
regions. However, only SEA (Figure 5.8b) and BOB (Figure 5.8c) show a significant
increasing trend according to the Mann-Kendall test.

Figure 5.9 shows the total pixel count annually for 2015-2023. We could observe
some annual variability. The slopes of the trends in all three regions are increasing.
However, there is no significant trend using the Mann-Kendall test. The time series,
consisting of only nine data points, might be too short to determine any trend. The
increasing trend observed in the monthly count for BOB and SEA might be due to
the availability of more data points. In addition, there might be a compensational
effect of increasing and decreasing rainfall occurrence in monsoon months and
non-monsoon months.

Next, the pixels are counted separately for each rain class. Compared with
DRAIN rain retrieval, the four precipitation classes contain different rain intensities
(Figure 5.10). Although the range differs slightly, the order of rain intensities in
the rain classes is the same in WAF, which comprises mainly land, and in BOB,
which comprises mainly ocean. The two classes with high rain intensity (class 41
and 63) contain relatively higher rain intensity in BOB than in WAF. The lower
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(a) WAF

(b) SEA

(c) BOB
Figure 5.8 – Monthly rain pixel counts from 2015 to 2023. The pixels of therain classes are counted for the IPCC regions : (a) WAF, (b) SEA, and (c) BOB.The dashed lines show the trend in the data. ’No trend’ represents a non-significant trend, while ’increasing’ represents a significative increasing trend.
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(a) WAF (b) SEA

(c) BOB
Figure 5.9 – Annual rain pixel counts from 2015 to 2023. The pixels of the rainclasses are counted for the IPCC regions : (a) WAF, (b) SEA, and (c) BOB. TheMann-Kendall test shows no significant trends.

(a) WAF (b) BOB
Figure 5.10 – Rain intensity per class by comparison to DRAIN data. The orderof the range of rain intensity in each class from highest to lowest is class 4, 1,63, and 41 for both regions.
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(a) WAF

(b) SEA

(c) BOB

Figure 5.11 – Monthly pixel counts for each rain class from 2015 to 2023 : (a)WAF, (b) SEA, and (c) BOB. The order of rain intensity from lowest to highestis Class 4, 1, 63, 41. The Mann-Kendall test shows a significant increasing trendin SEA for Class 4.
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rain intensity classes (classes 1 and 4) are also lower in WAF.

Figure 5.11 shows the pixel count for each rain class in the three regions. The
SEA and BOB regions are more dominated by the lower intensity class (Class 1
and 4, approximately 0.1 to 1 mm/h), while WAF is dominated by the medium
intensity class (Class 63, approximately 1 to 2.5 mm/h).

In WAF, the rain classes do not have any trend. In BOB and SEA, the medium
and low-intensity classes (classes 1 and 4) show an upward trend. However, only
the low-intensity rain (class 4) shows a significant increasing trend. The significant
trend in total monthly rain pixels in BOB and SEA might be contributed to by the
low rain intensity classes (classes 1 and 4).

The trends in the results of the unsupervised approach tend to go in the same
direction as the results from TB and DRAIN, especially the increase in low rain
intensity.

Rain object analysis

In addition to analyzing the pixel count of the rain classes, it is possible to
consider occurrences of precipitation events as separate objects. This approach
allows us to study the size of precipitation classes and their occurrence as separate
events instead of accumulating all pixels together.

The isolation of rain objects for each rain class is done by drawing a contour
around the object using the Python package OpenCV (Bradski, 2000). In order
to optimize the contour detection, the rain classes are treated one by one, and
the segmentation is converted to binary (1 for the selected class and 0 for other
classes). The contour is defined as a continuous curve with points of the same
values. However, an issue with this method is that if an object contains another
object of a different class inside, the contour considers all the pixels inside the
contour of such object as its size. In the results presented here, the issue with
object size has not yet been resolved and will be addressed in the next iteration.

For BOB (Figure 5.12), there is a positive slope, albeit non-significant, in the
trend for the total object counts. There is no clear trend in the average size of the
objects. For WAF (Figure 5.13), there is no observed trend in the number of rain
objects and the average rain object size.

Although the number of rain objects and the average rain object size do not
show any significant trend, the total rain pixel counts per month in BOB present
a significant increasing trend. There is likely a small increase in the number of
objects and sizes that results in a significant increase in the total pixel counts.
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(a) Monthly number of objects

(b) Average object size per month for each rain class (To be updated)

Figure 5.12 – Monthly rain object counts per class (a) andmonthly average ob-ject size for BOB (b). There is no significant trend based on the Mann-Kendalltest.
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(a) Monthly number of objects

(b) Average object size per month for each rain class (To be updated)

Figure 5.13 – Monthly rain object counts per class (a) andmonthly average ob-ject size for BOB (b). There is no significant trend based on the Mann-Kendalltest.
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Figure 5.14 – Mann-Kendall per each grid box of 5° by 5° for each rain class. Inorder of increasing rain intensity representation are Class 4, Class 1, Class 63,and Class 41. The solid-colored grid points are statistically significant based onthe Mann-Kendall test.

5.3.2 . Global analysis of rain classes

Similarly to the global trend analysis using DRAIN rain pixels, the Mann-
Kendall trend per 5°x5° grid box is also done for each rain class of the unsupervised
segmentation. The difference between the global trend here and that of DRAIN
is the number of decreasing trends in the low rain intensity class (Class 4) found
by the segmentation. It is possible that the segmentation found more decreasing-
trend grid boxes than DRAIN because DRAIN is not very sensitive to very low rain
intensity. The general structure of trends is otherwise similar for the two analysis
approaches ; for example, the drying trend around the ITCZ and the increasing
trend in the Maritime continent. However, due to the confusion between rain and
ice on the surface of the unsupervised model, some trends should not be solely
interpreted as precipitation trends. This includes mainly regions that are normally
covered by ice, such as the Himalayas mountain range, the permafrost, and the
Arctic sea.

5.3.3 . SST

Similar to the previous section, the pixels of SST classes are counted for the
GMI data from 2015 to 2023. The pixel counts are averaged for DJF, MAM, JJA,
and SON each year. Figure 5.15a shows the ranges of SST in each SST class.
Figure 5.15b only shows the highest SST (Class 43) and the lowest SST (Class
33). There is a slight downward non-significant trend for the highest SST.

Figure 5.15c regrouped SST of similar ranges into three categories : Low SST
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(a) The SST ranges in each class using comparisonwith GHRSST data (Remote Sensing Systems, 2017).

(b) SST class pixel counts 2015-2023.

(c) Regrouped SST per season : Low SST (Class 22, 31, and 34), medium SST (Class 62,30, 11, and 46), high SST (Class 2, 29, and 43).

Figure 5.15 – Seasonal mean of SST class pixel count for GMI data from 2015-2023.. Figure (a) shows the average pixel count for DJF, MAM, JJA, and SONfor each class. Figure (b) shows the ranges in SST per class when comparedto GHRSST data (Remote Sensing Systems, 2017). Figure (c) shows the sumof regrouped SST classes based on their ranges of temperatures. The Mann-Kendall test does not show any significant trend.
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(Class 22, 31, and 34), medium SST (Class 62, 30, 11, and 46), high SST (Class 2,
29, and 43). Instead of pixel counts, we present the proportion of each category per
season to avoid the problem of missing pixels due to SST pixels being replaced by
precipitation pixels in certain months. No trend is observed for any of the categories.

Conclusion

In this chapter, the trend in the coldest TBH89 for the rain pixels between 2014
and 2024 is analyzed due to its interpretability. We could observe some cooling in
the coldest TBH89. However, most regional and global trends are non-significative
based on the Mann-Kendall test. The analysis of the trend is limited without an
intermediate step to extract the information available in the TB dataset.

Preliminary results on DRAIN retrieval for 2014-2024 show an increase in rain
pixels and a decrease in rain intensity on the global scale. Using the unsupervised
segmentation classes for precipitation, the regional analysis of the GMI data from
2015-2023 shows trends that are coherent with the results from DRAIN as well as
the trends from 1985 to 2014 presented in the IPCC AR6 (Douville et al., 2023).
All three regions, WAF, SEA, and BOB show an upward trend, although only a
few cases are statistically significant.

It should be noted that these results are obtained from a single satellite. GMI
could only observe instantaneous precipitation. For wet regions, monthly counts of
precipitation events could be representative of the rainfall received. For example,
the results in Chapter 4.3 show that monthly pixel counts can capture monsoon
seasonality in BOB and WAF. However, it could not offer a complete picture of
the observed trends. For instance, the cause of the increase in the number of rain
pixels or decrease in intensity is not known. The increase in the number of rain
pixels could be hypothesized to be due to either an increase in precipitation events,
an increase in size, or an increase in the life cycle of precipitation events. Using
multiple satellites from the GPM constellation is an essential step in analyzing
the trends. An unsupervised domain adaptation model to adapt between the TB
observation of two satellites is presented in Chapter 6.

For SST, no particular trend is observed. The changes in the temperature
might be too small, while the segmentation model does not offer enough nuances
to capture the change.
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The Global Precipitation Measurement (GPM) mission aims to provide a high-
quality global observation of precipitation (Hou et al., 2014). To achieve this pur-
pose, the GPM mission relies on the collaboration between multi-national space
agencies to create a constellation of satellites that offer unprecedented global cove-
rage and revisit time. Most of these satellites share a similar configuration for their
instruments : they carry either conical-scanning or cross-track-scanning microwave
radiometers with frequencies ranging between 6 and 183 GHz. However, not all of
these satellites carry aboard the precipitation radar as the GPM Core Observatory.
The difference in the data distribution in the constellation degrades the perfor-
mance of DRAIN. In the absence of the precipitation radar, it is impossible to
retrain DRAIN in the same way as on GMI. In addition, using overpasses between
GMI and other satellites offers a very limited rainfall dataset due to differences
in trajectory and the intermittency of rain. Therefore, a transfer learning step is
essential.

The unsupervised segmentation model can be trained to any of the micro-
wave radiometers in the constellation and be analyzed separately. However, to take
advantage of the increased number of observations, it is important to harmonize
the classes obtained from different satellites. This could be done after the seg-
mentation by comparing the properties of the classes and regrouping similar ones.
Another possible approach is to do a domain adaptation approach to adapt the
brightness temperature images from other satellites to the domain of the GMI be-
fore applying the segmentation model. This can ensure that the properties of the
resulting segmentations are the same.

Unsupervised domain adaptation is advantageous in our case because it requires
a large dataset for each domain but does not require the images in each dataset
to be of the same observations. Consequently, it can be easily applied to the
constellation without requiring overpass data.

This Chapter presents a study on a transfer learning approach using unsu-
pervised domain adaptation for DRAIN. The transferability of DRAIN is a good
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indicator of the transferability of the unsupervised segmenter.

6.1 . Unsupervised domain adaptation as a transfer learning
approach for DRAIN

The Deep Learning algorithm for rain retrieval from the brightness temperature
(DRAIN) described in Chapter 2 is trained on the GPM Core Observatory. Its input
database is from GMI. Consequently, the slight difference in radiometer configura-
tion in the GPM constellation does not allow a direct application of DRAIN on new
satellites. In order to test the transferability of DRAIN to a new satellite, a transfer
learning step is explored for SSMI/S, a microwave imager aboard the DMSP-F18
Defense Meteorological Satellite Program.

The SSMI/S is chosen due to its similarity to GMI, including similar frequency
channels, particularly those for training DRAIN. However, there are also differences
in data distribution between these two satellites. First, SSMI/S orbits at higher
altitudes than GMI, which causes its pixel size to be bigger. Due to the complex
nature of precipitation processes, this difference could lead to the field of view of the
radiometers not observing the same uniform rain field (Mallet et al., 2023; Harris
and Foufoula-Georgiou, 2001). This introduces a non-linear relationship between
the two data domains. In addition, as the SSMI/S orbits at higher altitudes, it
also has a larger swath, which can cause differences due to the curvature of the
Earth. Another difference is due to their orbitography. SSMI/S is a Sun-synchronous
satellite and has global coverage, while GMI is non-sun-synchronous and does not
cover latitudes higher than 70 degrees. This leads to differences in the datasets
due to different meteorological situations observed.

There are many possible approaches to transfer a deep-learning model trained
on one domain to another. Some approaches require a small dataset annotated
ground truth. For example, fine-tuning is a process where some or all of the hyper-
parameters of the previously trained model are frozen during training on a new
dataset. This method is not suitable in this case since the re-training dataset
is insufficient. The re-training database is created from the overpasses between
the two satellites. However, these overpasses are not evenly distributed as the
majority happen at latitudes higher than 60 degrees. As rain is very intermittent
in time and space, the resulting overpass dataset does not contain a sufficient
amount of rain observations. Moreover, most of these rain observations are of
lower rain intensity happening at higher latitudes. Consequently, the dataset is not
representative enough of rain events to be used as a retraining dataset. The most
advantageous approach for transfer learning between DRAIN and SSMI/S is one
that is not limited to training on overpasses. One way to solve this issue is to use
the unsupervised domain adaptation, where only the data from each radiometer is
required.
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The attached article is about the application of Cycle Generative Adversarial
Nets (CycleGAN) as an unsupervised domain adaptation model that adapts the
brightness temperature images of the SSMI/S satellite to the domain of the GMI.
The 37 GHz and 91 GHz (horizontal and vertical polarization) of the SSMI/S
are adapted to the 37 GHz and 89 GHz (horizontal and vertical polarization) of
the GMI, respectively. CycleGAN is a generative approach that does not require
corresponding images between the two domains. It contains two GANs, each adap-
ting from one domain to another. Most of the hyper-parameters and architecture
choices are from the previous feasibility study presented in Appendix A. With two
GANS working together, CycleGAN is very unstable and difficult to converge. The
best generators are saved during each training epoch. These best generators are
then tested on the rain retrieval downstream task.

In order to evaluate the rain retrieval performance of DRAIN after the domain
adaptation is applied, two tactics are used : a qualitative comparison over several
case studies and a quantitative analysis using overpasses. This overpass comparison
includes overpasses with GMI and its precipitation radar DPR. Next, a regional
evaluation of France is done using the Mosaic Rain Product provided by Météo-
France (Figueras i Ventura and Tabary, 2013). The qualitative evaluation shows
an improvement in precipitation structure when the data is adapted, while the
quantitative evaluation shows a decrease in rain intensity errors.

The significant increase in the performance of DRAIN on SSMI/S when the
data is adapted proves that deep learning models are viable approaches for quanti-
tative precipitation retrieval in the constellation of satellites. Nonetheless, a gene-
rative approach like CycleGAN is very difficult to train. Moreover, it can only adapt
between two satellites at a time. A constellation will require multiple CycleGANs,
which could have a varying performance. Future applications should focus on a
more stable approach that could work on multiple domains at once.

The following attached article contains the implementation and evaluation of
CycleGAN for domain adaptation between GMI and SSMI/S.
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Unsupervised Domain Adaptation to mitigate
out-of-distribution problem of spatial radiometer
images: Application to Quantitative Precipitation

Estimation
Vibolroth Sambath, Natanaël Dubois-Quilici, Nicolas Viltard, Audrey Martini, Cécile Mallet

Abstract—A major issue limiting the successful deployment
of deep learning algorithms in geophysical applications is their
inability to generalize to new contexts. Regarding the quantitative
precipitation estimation (QPE) from the Global Precipitation
Mission (GPM) satellite constellation, the GPM Microwave Im-
ager (GMI) contains enough co-located brightness temperatures
and rain rates data to train a deep learning inverse model
to retrieve precipitation intensity. However, the difference in
instrumental configurations makes it impossible to directly apply
this inverse operator to another space-borne radiometric imager.
A domain adaptation is thus necessary to solve the domain shift
problem encountered when applying the model trained on one
satellite to another satellite. The present paper tests a method
to map the SSMI/S data to the GMI data. In the absence of
sufficient paired images between the two satellites, we applied
a Cycle consistent Generative Adversarial Network (CycleGAN),
which allows for an Unsupervised Domain Adaptation approach.
Evaluating the quality of adapted images is a complex problem.
This paper employs two tactics: a brief evaluation of adapted
radiometric images and a qualitative/quantitative evaluation of
rain retrieval. Over several case studies, the results show that
the domain adaptation step produces adapted SSMI/S images
that retain the majority of the rain structure. Next, the rain
detection score and intensity bias are then compared using 847
overpasses. The same analysis is carried out over mainland
France by comparing the results with rainfall products supplied
by Météo-France. In both comparisons, the adapted images allow
the inverse operator to provide a better score in rain detection
and intensity.

Index Terms—Precipitation estimation, Unsupervised domain
adaptation, Passive Microwave Radiometer, Satellite.

I. INTRODUCTION

A homogeneous and fine-scaled global precipitation map is
essential to a wide range of scientific research and societal
applications [1]. For instance, global precipitation estimates
lead to a better understanding of the water budget on a regional
and global scale, to monitoring the changes in the water cycle
due to climate change, and to following floods, storms, and dry
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spells. However, constructing such a map is very challenging
due to the intrinsically intermittent nature of precipitation and
the scarcity of precipitation observations. Rain intensity varies
drastically over time and space. Ground-based instruments
alone can only cover small regions and are insufficient for
complex terrain, over the oceans, or in developing countries.
Therefore, the estimation of rainfall fields from space using
remote sensing satellites is a key issue both for the global
Quantitative Precipitation Estimates (QPE) and for its evolu-
tion in the context of climate change. The Global Precipitation
Measurement (GPM) Mission is an international collaboration
that aims to provide global precipitation products from a
heterogeneous constellation of passive microwave radiometers.
The consistency of the constellation is reached through the
support of the Core Observatory (GPM-Core), launched in
2014, whose orbit was chosen so that it would cross the path of
all the other satellites. The Core Observatory carries a conical-
scanning passive microwave radiometer (GPM Microwave Im-
ager, GMI) and a Dual-frequency Precipitation Radar (DPR).
In contrast, the other satellites in the constellation carry mainly
a passive microwave radiometer for rain retrieval [1].

Recently, a supervised deep learning model of the U-Net
type for rain retrieval has achieved excellent performance in
the field [2]. The images of brightness temperatures from four
GMI channels are used as the sole input, and the precipitation
deduced from the collocated radar observations (DPR) are used
as the targets for a quantile regression. The resulting algorithm
is called Deep-RAIN (DRAIN), and its complete evaluation
can be found in [3]. The DRAIN model, which has learned
to generalize well on GMI data, performs poorly on another
radiometer due to the differences in instrument characteristics
(channel frequency, angle of view, pixel resolution). Using
co-located data between GPM-Core and the other satellites
of GPM is, in theory, possible to build a supervised learning
approach to deploy a version of DRAIN for each constellation
member. However, these overpasses are not evenly distributed
in latitude, with a much higher probability of occurrence near
60° North or South. An alternate solution is to set up a transfer
learning step to convert brightness temperature images of any
satellite of the constellation into a GMI-like image on the
closest channel basis.

Other rain retrieval algorithms for the GPM constellation
face the same challenge due to the differences in characteristics
between the various passive microwave radiometer instru-
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ments. The most prominent among these algorithms is the
operational NASA passive microwave precipitation retrieval
algorithm, GPROF [4], which is a Bayesian-based retrieval
algorithm. In a recent effort to use neural networks for rain
retrieval, a new version, GPROF-NN, has been proposed. The
authors rely on simulated brightness temperatures for the other
sensors in the constellation [5]. The neural networks for each
instrument use the same dataset as the original version of
GPROF to train. In GPROF-NN, there are two approaches to
estimating rain intensity: a one-dimensional model (in spectral
dimension) where a single pixel of brightness temperature
is considered and a three-dimensional model (the spectral
dimension plus the two spatial dimensions in the horizontal
plane) where two-dimensional brightness temperatures ( with
multiple channels of brightness temperature images) are con-
sidered. In both cases, GPROF-NN uses ancillary data coming
from global numerical models’ (re-)analyses, such as total
column water vapor, surface type, and surface temperature.
For the one-dimensional model, a new training database of
brightness temperatures is simulated from the observations
by taking into account the different viewing geometries and
resolutions. On the other hand, for the three-dimensional
model, a convolutional neural network model is trained to
simulate a GMI swath from another satellite swath. Then, this
simulated image is mapped into the GMI viewing geometries.
The authors noted that the simulation does not guarantee that
the distribution of brightness temperatures for the database
matches the observations. Therefore, they are corrected with
surface types and total column water vapor. It also should be
noted that both DRAIN and the 3D version of GPROF-NN
are convolutional models.

Transfer learning is an emerging field in machine learning
that deals with the scarcity of data. It relies on the transfer
of knowledge of a model obtained from a larger dataset
to a slightly different but smaller dataset. Transfer learning
can take many different approaches, such as fine-tuning the
trained model, combining a domain adaptation step and the
predictive model within one algorithm, or adapting only the
data [6]. Fine-tuning is a supervised approach where a small
labeled dataset is needed in order to retrain some or all
hyper-parameters of the model. The dataset size depends
on the complexity of the task and the number of hyper-
parameters to retrain. Models guided by the targeted task, for
instance, [7], try to adapt the new data to the known domain
under the constraint of the target task’s error. However, while
this approach sounds advantageous, it still requires a set of
labeled data. Domain adaptation aims to solve the domain
shift problem encountered and is extensively studied in many
applications, such as computer vision, speech recognition,
and medical imaging. In [8], the authors presented a review
of Deep Learning domain adaptation from theoretical and
practical points of view and mentioned some applications in
the geoscience field. These applications concerning discrim-
inative tasks (classification, segmentation) deal with satellite
images in the visible and IR domain. [9] provides an overview
of unsupervised domain adaptation on remote sensing data.
However, to our knowledge, no application on microwave
radiometric images, whose multi-frequency and multi-scale

structures are very specific, and no evaluation of the ability of
unsupervised domain adaptation to fill the gap of distribution
for regression task application has been made. The challenge
for domain adaptation in regression tasks is that pixel values in
the adapted images need to be as precise as possible in order
to obtain a good performance of the downstream regression
task.

Image-to-image translation refers to a class of problems that
aims to learn the correspondence between a source domain
image and a target domain image using a training set of
image pairs [10]. In the application considered in this paper,
co-located images between two satellites are scarce and do
not provide a representative dataset; paired training images
are thus not available. Our goal is to learn a mapping from
source to target domain without paired images. Consequently,
we turned to unsupervised domain adaptation, which does not
assume the availability of labeled target data [11].

The choice of architecture here is based on the previous
feasibility study [12], where CycleGAN was used to trans-
form between the 89 GHz horizontal and 89 GHz vertical
polarisation of the GMI. CycleGAN [13] is an architecture
developed for computer vision problems and trained on con-
ventional RGB images. The previous feasibility study analyzed
the applications and limitations of CycleGAN on brightness
temperature images and rain retrieval in a simple case.

This article explores the domain adaptation between two
different satellites and an in-depth validation of rain retrieval.
The second satellite, the DMSP-F18 Defense Meteorological
Satellite Program, carries a microwave imager SSMI/S that
measures brightness temperatures at frequencies similar to the
GMI. An in-depth analysis of a domain adaptation model
between these two radiometers, which enables the brightness
temperature measurements of all GPM constellation satellites
to be converted into GMI-like observations, is a crucial step
toward the deployment of a single precipitation restitution
algorithm for the whole constellation of satellites. The main
objective of this study is to extend the use of DRAIN to all
satellites in the GPM constellation. As a result, the choice
of channels for DRAIN and for the domain adaptation here
depends on the common or similar channels aboard all satel-
lites in the constellations, i.e., the 19, 37, and 89 GHz. In the
DRAIN paper [3], it was shown that the 36.6 and 89 GHz
channels in vertical and horizontal polarizations are sufficient
for rain retrieval. Therefore, in this paper, we choose to adapt
these two similar channels of the SSMI/S.

The organization of this paper is as follows. Section 2
describes the characteristics, similarities, and differences be-
tween the two instruments, GMI and SSMI/S. It also includes
the details of the training and validation database. Section
3 describes the unsupervised domain adaptation model, Cy-
cleGAN, and its implementation details. The results of the
domain adaptation are shown in sections 4 and 5. First,
section 4 offers a visual evaluation of the adapted brightness
temperatures. Next, section 5 presents an in-depth evaluation
of the rain retrieval performance on the adapted data. Section
6 discusses the advantages and limitations of using CycleGAN
as a domain adaptation algorithm for brightness temperatures.
Finally, section 7 provides the conclusion and perspective.
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TABLE I
TECHNICAL INFORMATION ON THE GMI CHANNELS OF INTEREST [14]

Central Frequency Bandwidth Polarisation NEDT IFOV Pixel Incidence angle
36.64 GHz 1000 MHz V 0.65 K 8.6 × 14 Km 6.0 × 13.4 Km 52.8°
36.64 GHz 1000 MHz H 0.65 K 8.6 × 14 Km 6.0 × 13.4 Km 52.8°
89.0 GHz 6000 MHz V 0.57 K 4.4 × 7.2 Km 3.0 × 13.4 Km 52.8°
89.0 GHz 6000 MHz H 0.57 K 4.4 × 7.2 Km 3.0 × 13.4 Km 52.8°

Conical: 53° zenith angle; useful swath: 850 km - Scan rate: 32 scan/min = 13.4 km/scan
Near-global coverage in 2 days; high latitudes (> 70°) not covered.

TABLE II
TECHNICAL INFORMATION ON THE SSMI/S CHANNELS OF INTEREST [15]

DMSP-F18 Defense Meteorological Satellite Program - SSMI/S
Central Frequency Bandwidth Polarisation NEDT IFOV Pixel Incidence angle
37.0 GHz 1580 MHz H 0.24 K 27.5 × 44.2 Km 25.0 × 12.5 Km 53.1°
37.0 GHz 1580 MHz V 0.24 K 27.5 × 44.2 Km 25.0 × 12.5 Km 53.1°
91.655 GHz 2829 MHz H 0.19 K 13.1 × 14.4 Km 12.5 × 12.5 Km 53.1°
91.655 GHz 2829 MHz V 0.19 K 13.1 × 14.4 Km 12.5 × 12.5 Km 53.1°

Conical: 53.1° zenith angle, swath 1700 km – Scan rate: 31.9 scan/min = 12.5 km/scan
Sun-synchronous orbit, Altitude 850 km, Global coverage once/day.

II. DATA

A. Brightness temperature images

The application of CycleGAN on brightness temperature
scenes is not straightforward due to the differences in nature
from the conventional images used by the computer vision
community in previous applications. In passive microwave
remote sensing, a radiometer records the radiant energy arising
from the earth’s surface and atmosphere. The signal is detected
by an electro-optical scanner using a rotating mirror and a set
of detectors. The power of the received signal is expressed as
a temperature in Kelvin but is called ”brightness temperature”
(TB) to be distinguished from the physical temperature. The
TB in Earth observation results from three main effects:
emission and scattering from the atmosphere after reflection
by the earth’s surface, emission by the earth’s surface, and
emission and scattering from the atmosphere. The resulting
TB is a frequency-dependent complex function of the vertical
profiles of the atmosphere and the surface characteristics.

Around 90 GHz, TB responds mainly to scattering from
atmospheric ice in the upper part of the clouds; the TB
decreases somewhat proportionally in the presence of atmo-
spheric ice over both ocean and land. Near 37 GHz, TB
responds on the one hand to emission from atmospheric liquid
water (rain or cloud below freezing level) and, when the ice
content aloft increases, to scattering by the latter. Depending
on precipitation characteristics, the TB of a precipitating cloud
will appear either warmer (emission-dominated) or colder
(scattering-dominated) than the environment.

In addition, passive microwave radiometers observe the
atmosphere with an Earth incidence angle near 50°; the ob-
served atmospheric volume is thus a tilted column. The signal
measured by the radiometer appears in a pixel corresponding
to the beam intercepting the precipitation column. The higher
up in the atmosphere for a given channel, the more horizontal
shift should be expected. This angle effect, called parallax
shift, is well documented in several publications [16] [17] [18]

[19]. Consequently, a rainy system with a particular 3D spatial
structure observed with the same sensor but from different
directions may give different measured TB and a frequency-
dependent localization of the rainy pixels.

B. Differences between the GMI and SSMI/S

The Instantaneous Field-Of-View (IFOV) is determined by
the size of the main reflector, the altitude of the satellite, and
the considered channel. However, a fixed receiver integration
time and sampling period are used for each radiometric
channel. The resulting samples are averaged in the along-
scan direction to improve the Noise Equivalent Difference
Temperature (NEDT), which characterizes the radiometric
sensitivity. The relative motion of the IFOV thus reduces the
effective spatial resolution because of the integration time.

The GPM-Core is a non-Sun-synchronous satellite orbiting
at an altitude of 407 km and at 65° inclination at the equator
[20]. Its main instrument, the GMI, is a conical-scanning
microwave radiometer with channels at 10.65, 18.7, 23.8,
36.6, 89.0, 166.0, 183.3+/-3 and 183+/-7 GHz. Among these
channels, only the 36.5 GHz and 89 GHz in their horizontal
(H) and vertical (V) polarizations are chosen for the domain
adaptation. This choice is motivated, first by the performance
of these four channels in the training of the deep learning rain
retrieval algorithm DRAIN [3] and second, by the number
of conically scanning radiometer instruments in the GPM
constellation measuring at similar frequencies.

The Defense Meteorological Satellite Program-F18 (DMSP-
F18), operated by the National Oceanic and Atmospheric
Administration (NOAA), has a set of channel frequencies
very similar to GPM-Core. It is, however, a Sun-synchronous
satellite at 98.7° inclination at the Equator, carrying on-
board an instrument called Special Sensor Microwave Im-
ager/Sounder (SSMI/S) with channels at 19.35, 22.235, 37,
91.67, 150, 183+/-1, 183+/-3, 183+/-6.6 GHz plus some ad-
ditional channels in the 50-60 GHz for temperature sounding
(www.eoportal.org).
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(a) SSMI/S - 37 V and GMI - 36.5 V

(b) SSMI/S - 91 V and GMI - 89 V
Fig. 1. Overpass example between GMI and SSMI/S that occurred on 29th
May, 2017 over South-East Asia. The first row (a) shows the 37 V channel
of SSMI/S and the 36.5 V of GMI. The second row (b) shows the 91 V
of SSMI/S and the 89 V of GMI. The geometry at the Earth’s surface is
taken into account (see text for explanation). The grey area on each image
corresponds to the swath of the other satellite.

Tables I and II give a summary of the characteristics of the
channels relevant to the present study for the two instruments.
It can be seen that SSMI/S and GMI are very close in terms
of central frequency channels (36.6 GHz instead of 37 GHz
and 89 instead of 91.6 GHz) with similar bandwidths. Though
there is a slight degradation of the radiometric sensitivity of
GMI compared to SSMI/S (0.6 K instead of 0.2 K), DMSP-
F18 being about twice higher in altitude than GPM-Core,
SSMI/S pixel sizes are thus about twice as large as GMI ones.

This difference in pixel size, combined with the highly
intermittent and varying nature of the underlying precipitating
processes, has important consequences for the observed TB
values. The beam-filling effect is a well-known effect [21],
[22] introduced when the field of view of the radiometer
is not filled with a uniform rain field. Due to the complex
relationships between the atmospheric parameters, the ground
parameters, and the observed TB, the difference in spatial
resolution necessarily introduces non-linear relationships be-
tween TB observed at different resolutions, making it difficult
to estimate the relationships between the two scales.

Another side effect of this higher altitude is the much
broader swath of SSMI/S when compared to GMI. This

induces an adverse effect on the learning database. Because
the training is performed on geometrically uncorrected images,
the deformation due to Earth sphericity is not exactly the same
for the two instruments. Figure 1 shows an overpass case
between the two satellites over Southeast Asia while coastal
convection is developing. The time difference between the two
overpasses is less than 5 minutes. It illustrates the different
swath sizes and slight differences in TB for the SSMI/S and
GMI channels. One should note that these types of highly
favorable overpasses in the Tropics are relatively rare due to
the respective orbit inclination of the two satellites. The TB
in the 36-37 GHz (figure 1.a) are in the 280-300 K range
over land and 240 K over the ocean. The rain systems appear
as warm spots at about 260-270 K along the coast over the
ocean. This increase in TB is due to emissions by the liquid
water. In the 89-91 GHz channels (figure 1.b), the contrast
between the land and the ocean background is not as clear
as for the 36-37 GHz channels. The overall TB is near 280
K, and the rain systems appear as colder spots going down
to 210-220 K, which is due to ice scattering in the cloud.
In figure 2, when this overpass is flattened and plotted in a
regular grid instead of on a map, the deformation effect due to
the instrumental differences as described above is particularly
visible when looking at the land masses (yellow-green at 36-37
GHz, darker purple at 89-91 GHz).

Another critical difference in the context of domain adapta-
tion is the difference in orbitography since SSMI/S aboard the
DMSP-F18 has global coverage, whereas the GMI aboard the
GPM-Core does not overfly high latitudes. One consequence
is that the areas overflown are different; even considering long
observation periods, the statistical distributions of the observed
meteorological situations are different. Thus, the observed TB
distributions will reflect the difference in the precipitation
distribution. A second consequence is that although the two
satellites fly over the same area, their trajectories are different,
and the same scene is not observed from the same azimuthal
view angle. Thus, the three-dimensional variability of the
precipitation systems will be reflected in different ways in the
observed two-dimensional TB fields.

C. Training and validation datasets

Due to the relatively rare occurrence of rain in an image, the
set of GMI images goes through a pre-selection step to only
keep those images with non-zero rain rates from the DPR [2].
The selection criteria are either images with at least 100 pixels
containing more than 10 mm/h rain or images with at least 10
pixels containing more than 100 mm/h rain rates. The pre-
selection ensures that the transformations could work on rain
pixels even though they are quite rare in terms of proportions.
On the other hand, there is no rain pre-selection of rain images
for F18 as it does not carry a precipitation radar instrument. In
addition, as the F18 overfly higher latitudes than the GPM core
observatory, F18 measurements from polar regions (latitude
greater than 70° N or lower than 70° S) are excluded from the
dataset to maintain the similarity of the types of meteorological
situations observed. After the pre-selection, the training data
set consists of 12,000 images for each domain, making 24,000
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Fig. 2. The same overpass case as in figure 1, but for the four channels of interest for each sensor respectively: top row SSMI/S, bottom row GMI. The
brightness temperatures are normalized, and the latitude/longitude geometry is disregarded.

TABLE III
SUMMARY OF TRAINING AND VALIDATION DATASET

GPM-GMI F18-SSMI/S
Period of observation Number of images Period of observation Number of images

Training dataset 2017 12 000 2017 12 000
Validation dataset 2017 4 000 2017 4 000

images in total of different observations measured during
2017 for both satellites. The validation set comprises 4,000
images for each domain taken from the same period. Table III
summarizes the training and validation datasets. None of the
images are a corresponding pair. These images contain 221
x 256 pixels and 180 x 256, respectively, for the GMI and
SSMI/S images. Next, the training and validation sets undergo
the pre-processing step: data normalization, random crop (to
128 x 128 pixels), and random rotation. The random crop
(cropping randomly within the image) and random rotation
(choosing an angle at random to rotate the image) are added
as a data augmentation method to increase the difficulty of the
task for the CycleGAN model.

III. METHOD

The deep learning rain retrieval algorithm DRAIN is trained
on the GMI TB as input and DPR rain rates as targets [3]. In
the DRAIN paper, it was shown that only four channels of TB,
36.6 GHz and 89 GHz in vertical and horizontal polarization,
were sufficient (figure 3a). The architecture in DRAIN is based
on the U-Net architecture, which is a fully convolutional neural
network first introduced for medical imagery semantic seg-
mentation [23]. The cross-entropy loss for image segmentation
is changed to quantile regression loss to estimate the rain
intensity. The complete evaluation of DRAIN can be found
in [3].

The DRAIN model was trained in a supervised approach,
which is optimized on the TB from GMI. Consequently, it per-
forms best on the unseen TB drawn from the same distribution
as its training set. However, due to the differences in SSMI/S
and GMI described in section II, the TB from the two satellites

is similar but not enough to apply DRAIN directly. We chose
an unsupervised domain adaptation approach to solve this
problem for two main reasons. Firstly, the dataset of SSMI/S is
unlabeled, which is to say, without the reference rain rates. As
a result, neither fine-tuning nor retraining DRAIN on SSMI/S
is possible. Secondly, the number of colocated overpasses
between the two satellites is limited, which eliminates the
supervised domain adaptation approach. We thus proposed
to test a Cycle-consistent Generative Adversarial Network
(CycleGAN) approach [13] for the unsupervised domain adap-
tation between GMI and SSMI/S (figure 3b).

Once the CycleGAN is trained, only the generator that trans-
forms SSMI/S to GMI images is used. The adapted images are
then used as inputs to DRAIN, which was previously trained
on GMI data (figure 3c). The resulting precipitation estimates
will then be compared to the colocated DRAIN rain intensity,
the DPR rain intensity, as well as the Mosaic product from
Météo-France [24].

A. CycleGAN architecture

CycleGAN is an unsupervised domain adaptation method
based on the Generative Adversarial Networks (GANs) [13].
It contains two GANs working together, one for each domain.
Given two domains X and Y , the first generator G transforms
images from its source domain X to its target domain Y . The
second generator F works inversely by transforming data from
its source domain Y to its target domain X . To complete the
GAN structure, two discriminators, DX and DY , try to classify
real and generated images of their respective domains.

To train the two GAN generators in an unsupervised ap-
proach, the weights of the models are updated using the sum
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(a) The rain retrieval algorithm DRAIN is
trained with GMI brightness temperature as
inputs and DPR rain rates as targets.

(b) The CycleGAN has two generators that
can transform back and forth between the GMI
and SSMI/S brightness temperatures.

(c) The SSMI/S brightness temperatures need to be
adapted to the domain of the GMI before applying the
DRAIN model for rain retrieval.
Fig. 3. The summary of the proposed approach. (a) shows the DRAIN rain
retrieval on GMI. (b) shows the training of CycleGAN. (c) shows the domain
adaptation and precipitation estimation on SSMI/S.

of identity loss, cycle consistency loss, and adversarial loss.
The identity loss is the difference between an image and a
transformation to its domain, for example, |x − F (x)| for x
in X . Based on the seminal paper [13], the identity loss helps
to regularize the generator to be near an identity mapping; it
preserves the color of the input paintings in computer vision
applications. In the same way, the feasibility study [12] shows
that the identity loss allows the model to conserve the correct
intensity of the TB. On the other hand, cycle consistency is
the difference between the original image and its complete
transformation; that is, |x−F (G(x))| for x in X . Considering
that a complete transformation of an image should be close
to the original image, the training of the generators does not
require paired images. The adversarial loss is based on the
performance of the discriminators and operates on the same
principle as in a conventional GAN.

B. Implementation details

Since the U-Nets architecture has proven suitable for the
rain/TB problems [2], two such networks are used as the two
generators (F and G) in the CycleGAN. The skip-connections
in U-Net are very efficient in preserving the fine-scaled struc-
ture within the brightness temperature images, as previously
stated in [2]. As described in [13], the discriminators are based
on the PatchGAN discriminator [25], whose architecture is a
series of convolution layers.

The results of our experiments show that the convergence of
the CycleGAN is not trivial. The adapting domain performed
with unpaired data does not rely on any task-specific, and the
problem is thus under-constrained. Given the specificity of our
images, unlike computer vision images, visually determining
whether the result is realistic is impossible. In our case, the
resulting TB fields must retain the essential properties of
the precipitation characteristics that cannot be assessed by
simple visual analysis. During training, the optimization of
the hyperparameters relies on the learning curves to obtain
the behavior shown in figure 4. An empirical approach based
on the following principles is used: keeping similar loss for
both domains, keeping discriminator loss slightly lower than
generator loss, and stabilizing the training curve.

In order to obtain similar losses for both domains, different
learning rates are necessary. The optimization of the generator
depends in parts on its ability to deceive the discriminator.
Therefore, the quality of the generated images depends on
the performance of the discriminator. Each time the generator
deceives the discriminator, the discriminator needs to find
another criterion to differentiate between real and generated
images. The rivalry principle is then essential. Based on the
results of our experiments, the discriminator should always be
the best of the two models. Still, the generator must sometimes
be able to catch up to stimulate the discriminator. In numerous
runs of the model, the discriminator converges quite easily
and quickly. To solve this problem, the generator’s and the
discriminator’s learning rates are set differently due to the
two-time-scale update rule (TTUR) [26]. It has been shown
that GANs converge better and with fewer epochs using this
method. The learning rate of the generator is twice that of
the discriminator due to the complexity of its task and to
increase the rivalry. In addition, the task for the generator and
discriminator pair for one domain (generating a distribution
corresponding to a higher spatial resolution image from one
of a lower resolution image, i.e., generating GMI domain from
SSMI domain) is more complicated than the opposite (from
GMI to SSMI domain). For this reason, the learning rate
for the SSMI to GMI pair is twice as high as for the GMI
to SSMI pair. Therefore, the learning rate for the generator
and discriminator pair for GMI to SSMI/S is 2e-4 and 1e-4,
respectively, while the pair for SSMI to GMI is 4e-4 and 2e-4,
respectively. This results in a similar loss for both domains,
as shown in the training loss in figure 4.

The choice of cost functions, normalization, and weighting
coefficients is fundamental to achieving a balanced reduction
in the three terms of loss. Many different configurations were
tested before an acceptable one was found.
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Fig. 4. Training loss for the generators and discriminators for the two domains
(left column for the GMI and right column for the SSMI/S). The first row
shows the three losses of the generator, while the last row shows the loss of
the discriminator. The middle row shows the adversarial loss of the generators
alone for better comparison to the discriminator loss.

To train CycleGAN, the L1 loss is used for the cycle and
identity losses, while the Mean Squared Error (MSE) loss is
used for the discriminator and the adversarial loss. For the
discriminator, due to the value of the labels (0 for generated
images and 1 for real images), these errors are, therefore,
between 0 and 1, as shown in figure 4. With MSE, squaring
the error will then lead to a decrease in the value used for
backpropagation. To increase the impact of the adversarial
loss in the generator, the MSE loss has been replaced by the
L1 loss. Results from multiple training in this study using
this approach show better-generated satellite images. On the
other hand, replacing the MSE loss with the L1 loss for
the discriminator did not result in any improvement, as the
discriminator encountered more difficulty in converging. As
there are three losses for training the generators, they are
balanced by three coefficients. In both the feasibility study
[12] and the proposed model here, the same coefficients as
proposed by [13] were used (10-5-1 as the coefficients for the
cycle-identity-adversarial losses, respectively).

Therefore, our full loss function for the generators is
Lgenerator = 10Lcycle + 5Lidentity + Ladversarial, where:

Lcycle =Ex∼pdata(x)[∥F (G(x))− x∥1]+
Ey∼pdata(y)[∥G(F (y))− y∥1]

Lidentity =Ex∼pdata(x)[∥F (x)− x∥1]+
Ey∼pdata(y)[∥G(y)− y∥1]

Ladversarial =Ex∼pdata(x)[∥DY (G(x))− 1∥1]+
Ey∼pdata(y)[∥DX(F (y))− 1∥1]

In order to stabilize the training of CycleGAN, spectral
normalization introduced by [27] was used to replace the
batch normalizations. In [27], spectral normalization is only
proposed for the discriminator. However, according to [28],
spectral normalization can also be applied to the generator.
In the present study, spectral normalization was thus used
to replace the normalization methods for the two U-Nets
(generators) and the discriminators. The effect of the spectral
normalization results in a relatively smoother loss curve, as
shown in figure 4. This normalization results in the best score
in the validation by rain intensity shown in section V. Spectral
normalization is a method for controlling the variations of the
model function under a constant by normalizing the weights
to satisfy the 1-Lipschitz constraint. This greatly reduces the
large variations and thus makes the training more stable, limits
the impact of local minima, and, as a result, allows the model
to converge faster. It has also been shown that this method
avoids the vanishing gradient problem.

After defining the implementations using the empirical ap-
proach described above that makes the training loss smoother
and retains a balanced loss between the two domains, Cycle-
GAN is still very sensitive to initialization. Several models
have been trained with different initial conditions. As shown
in figure 4, the discriminator and adversarial loss for the
two domains exhibit extremely slow convergence. In each
training, the current model was saved along with the best
generator model. The best generator here is defined as having
the lowest cycle and identity losses on the validation set.
As the problem is under-constrained, the downstream rain
retrieval task results differ for each training. Therefore, the best
generator in each training (corresponding to different initial
conditions) was tested on the rain retrieval task to evaluate the
whole performance of the process as defined in figure 1.c. The
model presented here was trained over 100 epochs. However,
the best generator on the validation set appeared at around
epochs 20. It is also the generator that gives the best score
in the rain retrieval task. More discussions on that aspect are
presented in section VI.

IV. EVALUATION OF ADAPTED BRIGHTNESS
TEMPERATURE IMAGES

The main difficulty in the present application of CycleGAN
on TB fields is the assessment of the quality of the adaptation
since the images that are used are somewhat abstract. Unlike in
the original paper [13], one can not easily recognize an object
inside the image and immediately and subjectively measure
how well it was transformed. Concerning the spatial properties,
CycleGAN is a model that cannot make any drastic changes to
the structure of the image [13]. It contains the Cycle Loss and
the Identity Loss, which are pixel-to-pixel differences between
the images. Cycle loss is the pixel-to-pixel differences between
an image and its complete cycle adaptation; for example, an
SSMI/S adapted to GMI then adapted back to SSMI/S. It
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Fig. 5. Brightness temperatures in Kelvin in the same observation as figure 2 but middle row shows the adapted SSMI/S channels (SSMI/S transformed into
GMI).

quantifies the dissimilarity between an image and its complete
cycle adaptation. That means that the dissimilarity between
SSMI/S adapted to GMI, then adapted back to SSMI/S, and the
dissimilarity between GMI adapted to SSMI/S, then adapted
back to GMI, are minimized during training. Identity loss,
on the other hand, is the difference between an image and
its identity transformation, i.e., SSMI/S adapted to SSMI/S.
The first step in evaluating the generated images is to confirm
that the structures are preserved throughout the cycle of
transformations. To monitor that there is no transfiguration of
the structure, we monitored the loss and displayed the pixel
difference between the images and their transformations to
ensure that there is no structural high error. The quantification
of these losses during the validation process further confirms
that they are also minimized when considering unseen images.

Secondly, the visual evaluation is done in complement to
the monitoring of the training and validation loss. A few

overpasses of the two radiometers GMI and SSMI/S over the
same area are used to qualitatively analyze the TB fields.
As mentioned earlier, and as shown in Figure 1, the two
radiometers do not have the same swath width or the same
angle of view. It is, therefore, not expected to obtain precisely
the same TB field. The model is supposed to correct for
systematic differences such as resolution and frequency but
not for differences due to different viewing angles of the same
system since this is not an image translation problem. During
its flight, each satellite encounters different precipitation sys-
tems, which it sees from different angles depending on the
relative positions of the latters and the satellites.

Figure 5 shows the adaptation results of SSMI/S to GMI
on the overpass case presented before. The first row is the
original images of the four SSMI/S channels. The second row
shows the adapted images, and the third row shows the GMI
channels. The most prominent feature is the small increase



JOURNAL OF –, VOL. –, NO. –, – – 9

TABLE IV
SUMMARY OF TEST DATASET

Number of pixels
Overpass between GMI and SSMI/S (section V-A) ∼ 88× 105

Overpass between DPR and SSMI/S (section V-B) ∼ 36× 105

Colocation between Météo-France and SSMI/S (section V-C) ∼ 25× 105

in the perceived resolution of the adapted images, particularly
the 37-GHz channel, as some details become visible in the
adapted images. This validates the SSMI/S-to-GMI generator’s
capacity to increase the lower resolution of the SSMI/S to
match the higher resolution of the GMI. The adapted images
also conserve all precipitation structures, even if they appear
somewhat deformed because of the difference in view angle.

V. EVALUATION ON QUANTITATIVE PRECIPITATION
ESTIMATION TASK IN THE TARGET DOMAIN

The previous section shows an evaluation of the domain
adaptation between F18 and GPM observations. Since the
goal of the adaptation is ultimately rain retrieval, an in-depth
assessment of the latter is required to evaluate the transfer
learning method’s potential. The rain retrieval step takes the
adapted SSMI/S data from the CycleGAN generator directly
as inputs to the DRAIN model. The complete details of the
training and performance of DRAIN on GPM can be found in
[3].

Quantitative comparisons are performed on three different
data sets (Table 4). The 847 passes of the two satellites
between latitudes 70° N and 70° S during the whole year
2019 are considered. A first test set is constituted from the
intersection of the swaths of the two radiometers. A subset
containing only the observation area covered by the narrower
swath of the DPR radar constitutes the second test set. The
third test is a co-location in time and space over the whole
of 2019 with the Météo-France five-minute rain product at a
resolution of 1 km, which is a good reference for mid-latitude
QPEs.

For these three test sets, a pixel-by-pixel comparison is
performed. The ability to detect rain, which is to distinguish
rain and no-rain pixels, is analyzed through the contingency
table. As the rainy/non-rainy classes are not balanced, we have
a majority of non-rain pixels, which completely distorts the
computation of accuracy. For example, due to the rare cases
of rain pixels, if a model predicts non-rain for all pixels, it still
has a relatively high accuracy score. Therefore, the F1-score
that appears more appropriate than the latter is calculated to
facilitate comparison. F1-score resolves the unbalanced data
by taking into consideration both recall and precision scores.
The recall score is the ratio of the True Positives to all the
positive samples in the dataset. In contrast, the precision score
is the ratio of True Positives to all the predicted positives.
Combining these two metrics can deal with the rarity of
positive data points. The F1-score formula is given by,

F1 =
2

1
Recall +

1
Precision

=
2× Precision×Recall

Precision+Recall

Probability of Detection (POD) and False Alarm Rate (FAR)
are other metrics popular in classification. POD is another

term for recall, which indicates the model’s ability to identify
positive cases out of all the actual positive cases. FAR, on
the contrary, focuses on the False Positive by measuring the
proportion of negative cases that were identified incorrectly as
positive. It is the ratio of the False Positive to all the actual
negative cases.

The bias and standard deviation calculated on all pixels are
dominated by zero values, which correspond to the majority
of true non-rain pixels. To emphasize the improvement in
rain intensities, the true positives (pixels considered as rainy
simultaneously by DRAIN and by the used rain reference)
are then retained. The bias and the standard deviation of the
rainfall rate differences are finally calculated on these pixels.

A. Comparison between overpasses

As described in section II, the resolution and swath of the
two satellites are different. In order to compare the DRAIN
estimation on GMI, non-adapted, and adapted SSMI/S, it
is essential to colocate the pixels of GMI and SSMI/S. A
KD-Tree algorithm [29] (implemented with SciPy library in
Python) is used to calculate the nearest SSMI/S pixels of a
given GMI pixel. The rain rate computed for that nearest pixel
from the SSMI/S TB (adapted or not) is then affected to the
GMI pixel in question to allow a direct comparison.

Figure 6 shows the result for the Southeast Asian case
presented in Figure 1. Pixels with no rain (RR=0) are not
plotted. The left-hand side image is the reference DRAIN
applied directly to GMI data. The center image is the fully
adapted, and the right-hand-side image is the non-adapted
result. In this example, dominated by tropical convection, the
non-adapted result does not perform too poorly in terms of
the general structure of the rain regions. Locally, however,
some rain pixels are retrieved as non-rainy, and the rain
intensities are substantially off, with rain rates no greater than
20 mm/hr. On the fully adapted image, both the structure and
intensities appear much closer to the reference, showing that
the adaptation indeed succeeded in transforming the SSMI/S
TB image into a GMI TB image. Two more overpasses are
shown in the Annex.

Table V presents the contingency and base statistics of the
adapted and original SSMI/S TB against DRAIN-GMI used
as a reference for the 847 overpasses mentioned above. One
must note that most of these overpasses occur at high latitudes
where the GPM-core reaches its maximum latitude (65°). As
expected in both cases, nearly 95 % of the pixels are non-
rainy. However, adaptation clearly improves the fraction of
true positives, which goes from 0.66 % before adaptation to
2.61 % after. This improvement comes mainly from the bad
detections, which go from 3.12 % before adaptation down to
1.17 % after. Table V also shows that the adaptation clearly
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Fig. 6. Same as figure 1 but for the rain intensities retrieved by DRAIN. The left-hand side is DRAIN on GMI data. The Center is DRAIN on adapted
SSMI/S data. The right-hand side is DRAIN on unadapted data. All rain rates in mm/hr. Both SSMI/S-inferred rain rates are co-located with the GMI pixels
for comparisons.

Fig. 7. Scatter plot for the 847 overpasses between GMI and SSMI/S data, after retrieval with DRAIN and co-location to the GMI pixels. The left-hand side
plot is for non-adapted SSMI/S data, and the right-hand side is for adapted ones. The number of points above each plot indicates the points where at least
one of the three datasets (DRAIN on GMI, on original SSMI/S, and on adapted SSMI/S) has non-zero rain rates.

improves the score on both rain and non-rain predictions. The
F1-score increases from 0.20 for the non-adapted images to
0.66 for the adapted data. Both the bias and standard deviation
of errors are significantly reduced from 1.64 to 0.75 mm/hr
and 3.05 to 1.74 mm/hr, respectively, while the number of rain
pixels has increased considerably for the adapted data. The
reduction in overall error may be largely due to the number of
low rain-intensity pixels that the adapted images are able to
capture. The improvement in intensity is comparable between
adapted and non-adapted for the rain intensity between 1-3
mm/hr. The bias reduced from 1.24 mm/hr (mean target rain
rates at 1.75 mm/hr) to 0.90 mm/hr (mean target rain rates at
1.66 mm/hr).

Figure 7 shows the scatter plots corresponding to the statis-
tics of Table V. The improvement brought by the adaptation
is clear, although, above 3 to 4 mm/hr, an underestimation of
the intensities can still be seen. However, these overpasses
comparisons must be taken with some degree of caution
because first, the co-location of the SSMI/S pixels with the
GMI pixels might affect the statistics, and second, most of
these overpasses happen at high latitudes where rain intensity

is predominantly light, and DRAIN might not be giving its best
performances (see [3]). In addition, the difference between the
three cases is the ability to capture low rain rates. DRAIN and
the adapted case are better at estimating low rain, which leads
to lower average rain rates for the colocated pixels.

B. Comparison with DPR

In this section, DRAIN estimation on colocated data be-
tween the GMI and the SSMI/S is compared to the DPR data.
As in the previous section, data of the 847 overpasses between
F18 and GPM-Core are considered. The SSMI/S data are used
as an input in DRAIN and co-located afterward with the GMI
pixels. The co-location of DPR pixels was carried out in a
previous study ( [2]) as follows: depending on the location of
the pixels in the swath and in an orbit, 1 to 5 DPR pixels are
averaged for each GMI pixel within the DPR swath. Due to
the smaller swath of DPR, there are less colocated data than in
Table V. As expected, the performance in Table VI is slightly
worse than in Table V. The precipitation rates estimated by
DRAIN in the adapted target domain (adapted SSMI/S) are
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TABLE V
RAIN RETRIEVAL RESULTS WITH DRAIN ON GMI AS THE REFERENCE.

non-adapted SSMI/S adapted SSMI/S
DRAIN on GMI Rain Non-Rain Rain Non-Rain
Rain 0.66% 3.12% 2.61% 1.17%
Non-Rain 1.85% 94.35% 1.45% 94.75%
F1 score 0.20 0.66
Bias on rain (mm/hr) (TP) 1.64 0.75
Standard deviation of error (TP) 3.05 1.74
Number of rain pixels (TP) 58799 232164
Mean of rain rates in mm/hr (TP) 2.19 1.21

TABLE VI
RAIN RETRIEVAL RESULTS WITH DPR AS THE REFERENCE.

non-adapted SSMI/S adapted SSMI/S GMI
DPR Rain Non-Rain Rain Non-Rain Rain Non-Rain
Rain 0.67% 5.27% 2.66% 3.28% 4.25% 1.95%
Non-Rain 1.81% 92.23% 1.16% 92.88% 0.76% 93.02%
F1 score 0.16 0.55 0.75
Bias on rain (mm/hr) (TP) 2.47 1.13 0.46
Standard deviation of error (TP) 6.36 3.65 1.76
Number of rain pixels 24584 96740 286884
Mean of rain rates in mm/hr (TP) 2.98 1.61 1.17

closer to those estimated in the source domain (GMI) than to
the labels (DPR) learned by DRAIN.

However, performance improvements are brought by the
adaptation and are clearly shown in Table VI. The True
Positives go from 0.67 % for the non-adapted data to 2.66
% for the adapted ones. This result is to be compared with
the 4.25 % of the GMI data. True Negatives are similar for
all three configurations, and, once again, it’s the False Alarm
rate that changes the most between non-adapted at 5.27 %
and adapted at 3.28 %. These values remain higher than the
optimal 1.95 % for GMI data. A substantial improvement is
also seen in the F1 score, the bias, and the standard deviation
of the error, but the performances of DRAIN on the adapted
data cannot quite match the performances on the original GMI
ones. Similar to the previous evaluation, the lower mean target
rain rates in Table VI are due to the increase in the capability
of capturing low rain rates. However, for rain rates between 1-3
mm/hr, the non-adapted error is 1.33 mm/hr (for mean target
rain rates of 1.79 mm/hr), while the adapted model error is
1.00 mm/hr (for mean target rain rates of 1.69 mm/hr). For
this interval of rain rates, the error for DRAIN is 0.55 mm/hr
with the mean target rain of 1.63 mm/hr.

The same caution should be used when looking at these
results as for the previous ones, but they give an idea of
the potential of the domain adaptation and the margin of
progression left.

C. Comparison with Météo-France Mosaic product

This section presents an evaluation of the rain retrieval
results of the adapted images over an independent set of
validation data. As in section V-A and V-B, the results will
be evaluated over the whole year 2019, which was not part
of the training of either DRAIN or CycleGAN. The Météo-
France mosaic [24], hereafter mosaic, provides a precipitation
product at 5-minute intervals over a 1536x1536 pixel grid

with a resolution of 1 km. Due to the difference in data
structure between the mosaic and the satellite observation,
the comparison requires a co-localization process again. All
satellite and mosaic data are averaged in a 0.2 ° x 0.2 ° grid.
Each satellite overpasses France at a different time and on
different days over the course of the year 2019. In particular,
DMSP-F18 is a geosynchronous platform, while GPM-Core is
not. We can, therefore, expect their rain rate distributions to be
significantly different. However, the errors between the mosaic
and the three satellite-based estimates, SSMI/S non-adapted,
SSMI/S adapted, and GMI, should give us robust estimates of
the adaptation performances.

Table VII shows the performances of the three satellite
estimators against the mosaic. As in Table V, the performances
are better for the adapted data when compared to the non-
adapted and are very similar to the GMI. Interestingly, the
True Positive for SSMI/S adapted is slightly better than that
of GMI (4.94 % vs 4.85 % resp.). It is also noticeable that
the imbalance between False Alarm and Bad Detection is also
similar for the three estimators. The Bad Detection starts at
13.34 % for the non-adapted and goes down to 10.80 % for the
adapted and 9.81 % for the GMI. This shows that the mosaic
detects rain more often than the satellite estimators about 10%
of the time, and it comes as no surprise since one would expect
ground-based radars to be more efficient at detecting very light
rains near the surface.

Figure 8.a and .b show the scatter plots of non-adapted and
adapted SSMI/S, respectively, vs the mosaic rain rates. The
shades of color show the density of points from dark blue,
low density, to purple, high density. For the non-adapted case,
the densest area of points is clearly off the x = y line with
an underestimation of about 0.3 mm/hr. For the adapted case,
the points are definitely closer to the x = y line and are less
scattered than for the non-adapted case. After the adaptation,
there are also fewer outliers; even if above 1.5 mm/hr, there
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TABLE VII
RAIN RETRIEVAL RESULTS WITH DRAIN ON THE MOSAIC AS THE REFERENCE.

non-adapted SSMI/S adapted SSMI/S GMI
Mosaic Rain Non-Rain Rain Non-Rain Rain Non-Rain
Rain 2.40% 13.34% 4.94% 10.80% 4.85 % 9.81 %
Non-Rain 2.14% 82.13% 1.49% 82.78% 0.36% % 84.98 %
F1 score on rain 0.24 0.45 0.49
Bias on rain (mm/hr) (TP) 0.21 0.07 0.02
Standard deviation on rain (TP) 0.33 0.21 0.33
Number of rain pixels 2556036 2556036 6645997

(a) Non-adapted

(b) Adapted
Fig. 8. (a) Scatter plot of retrieved rain from non-adapted SSMI/S vs. Météo-
France Mosaic. (b) same as (a) but for adapted SSMI/S.

is still a clear signature of underestimation.
To further analyze the scatter plot, the Orthogonal Distance

Regression (ODR), as proposed by [30], is used to represent
the points. This approach is chosen over the simple linear
regression due to the fact that both the Mosaic rain rate
and the retrieved rain rates are affected by uncertainties. The
regression line for the non-adapted may appear to be closer
to the identity line (y = x) in figure 8. However, this is
misleading as the explained variance by each of these linear

(a) Non-adapted

(b) Adapted
Fig. 9. Maps of the difference Mosaic-DRAIN for the True Positives. (a) for
the non-adapted et (b) for the adapted. Data of all the overpasses are averaged
in 0.2x0.2 boxes over the whole year 2019.

regressions is 0.14 before adaptation and 0.32 after. Even
though the regression slope on the non-adapted case (0.81)
seems closer to the x=y line, the barycentre of the histogram
is off-center, and the regression is poor. The position of the
regression line being closer to the identity line may be due
to the wrong estimates that are coincidently almost symmetric
for both the low and high rain intensity. After adaptation, the
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regression slope is further (0.55) from the x=y line, but the
barycentre of the scattered points is spot on the x=y line, and
the explained variance was multiplied by a factor of two. In
addition, lower rain rates are better estimated in the adapted
case.

Figure 9 show respectively the difference Mosaic-DRAIN
averaged in 0.2x0.2 boxes for all the DMSP overpasses of
2019. In order to enhance the differences, only True Positive
has been kept here. In the non-adapted case (figure 9.a),
almost no rain is retrieved over the ocean, a lot of rain is
missed along the Loire Valley, and south of the latter, a clear
underestimation of the rain intensities can be seen. Over the
Alps and the Pyrennees mountains, the Météo-France mosaic
might be affected by larger errors due to imperfectly filtered
ground clutter despite the use of the quality flag provided in the
Météo-France product: only rain estimates with a confidence
greater or equal 80% were kept here. The adapted case
(figure 9.b), on the other hand, shows a much more balanced
distribution of the differences, even if oceanic regions seem to
be slightly underestimated. The northern part of France (where
rain is usually dominated by frontal systems) seems to be
overestimated, while the southern part of the country appears
to be more underestimated, maybe due to the difference in the
nature of the rain regimes as mentioned above.

VI. DISCUSSIONS

The validation process is one of the main challenges in
training CycleGAN since it is meant to be used when no
paired data are available. In order to get the best performance,
it is important to monitor the training loss and save the best
generator. Without any paired data for comparison, cycle and
identity loss on a validation set determine the best epoch
to select the optimal generators. In numerous trainings, the
generators that ultimately give the best F1-score on the rain
retrieval step are the ones in the earlier epochs (around epoch
14) rather than the later epochs. This may be due to the
different properties of the two datasets, in particular, one
containing images that were selected on rain-based criteria
(GMI), while in contrast, the other dataset contains images
that were only filtered for latitudes (SSMI/S). It is very likely
that the discriminator working with the first dataset forces its
generator to generate rain systematically. Data selection for a
more balanced dataset requires an algorithm, either rule-based
or with a Machine Learning approach, to identify rain pixels
from TB alone in the SSMI/S dataset. An in-depth study of
such an algorithm is important for the future application of
CycleGAN or other unsupervised domain adaptation methods.

Another challenge in optimizing a CycleGAN model is
that it is very sensitive to initialization. Indeed, a common
weakness of generative models is that performance can vary
greatly from one learning experiment to another for a given
set of hyperparameters. Although choosing the best model for
the domain adaptation between GMI and SSMI/S involved the
model with the lowest validation score, as described above, the
performances in terms of low rain retrieval errors also had to
be taken into account. Moreover, each modification of Cy-
cleGAN’s hyper-parameters leads to different performances,

which means that CycleGAN has to be trained several times
to select the best model.

CycleGAN is a domain-to-domain adaptation. In its appli-
cation on rain retrieval for the GPM constellation, the domain
of each satellite microwave imager needs to be adapted to
that of the GMI as it is the only satellite that allows for
the supervised training of the DRAIN algorithm. As a result,
a different CycleGAN is required for each satellite in the
constellation. This can lead to different rain retrieval errors
for each satellite, as CycleGAN works better when the two
domains are close. Nevertheless, the results presented validate
the machine learning approach to domain adaptation for rain
retrieval applications. In future applications, a multi-source
domain adaptation approach where one model can be used for
all satellites in the constellation might be a more sustainable
method. For instance, an approach of domain generalization
proposed by [31] using an auxiliary vision bridge domain
with mappings from multiple domains. Combined with self-
supervision learning techniques, it can train an effective and
efficient model for generalization across multi-domain tasks.
Instead of cross-domain adaptation, StarGAN is a GAN-based
model capable of learning multiple domains with a single
generator [32]. StarGAN comprises a discriminator and a
generator. Its discriminator is trained to distinguish between
real and fake images as well as predict the label of identified
real images. The training of the generators contains more
steps. The generator first tries to transform an input image
to a target domain. Next, it transforms the fake image and its
concatenated original label back to the original domain. The
generator tries to fool the discriminator with fake images to
train the model with adversarial loss. After optimization, the
generator will have learned mapping from multiple domains.

VII. CONCLUSION

In this paper, CycleGAN was used to adapt the passive
microwave brightness temperatures from the SSMI/S domain
to the GMI domain. Ultimately, the goal is to use the adapted
data as input in a deep-learning rain retrieval algorithm,
DRAIN, trained on GMI data. The adaptation process is an
unsupervised approach that does not rely on any paired images.
One of the unique characteristics of the present study is the use
of a technique originally developed for computer vision and
its application to abstract pseudo-images made of geophysical
measurements. Unlike RGB images, our task deals with four
channels of brightness temperatures describing the condition
of the atmosphere over a given scene. Multiple tests regarding
hyper-parameters have thus carefully been examined to find
the best configuration. This process has shown that using
CycleGAN with the intention of a downstream task for the
adapted images is very challenging in terms of optimization
of the hyper-parameters.

However, the adapted SSMI/S data significantly increase
DRAIN performances over the unadapted data. The retrieved
rain field is improved both in terms of structure and intensity
on the test case of coastal convection in Southeast Asia.
An in-depth analysis using the whole year 2019 over three
different successive references, DRAIN on GMI, DPR, and
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Fig. 10. Rain retrieval of an overpass on 16/09/2022. From left to right: DRAIN on GMI data, DRAIN on adapted SSMI/S, DRAIN on original SSMI/S.
The rain rates are in mm/hr

Fig. 11. Rain retrieval of an overpass on 01/02/2019. From left to right: DRAIN on GMI data, DRAIN on adapted SSMI/S, DRAIN on original SSMI/S.
The rain rates are in mm/hr

Meteo-France mosaic, also shows an improvement in rain
detection and rain intensity estimation. The most noticeable
improvement is reached in the comparison with the Météo-
France mosaic. Although spatially limited to mainland France,
the total number of overpasses is much higher than between
the two satellites, providing a more robust estimate for the
considered region.

The results in this paper validate the Deep Learning ap-
proach to rain retrieval from passive microwave brightness
temperatures from the GPM constellation. The success of Deep
Learning Unsupervised Domain Adaptation to mitigate the dis-
crepancy in the distribution of radiometric images observed by
the different satellites proves that DRAIN can be applied to the
whole constellation. However, with the difficulties in training
CycleGAN described in this paper, as well as its limitation
within the one-to-one domain, we believe that future methods
for unsupervised domain adaptation of brightness temperatures
should consider a domain generalization approach or a multi-
source domain adaptation approach.
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gramme National de Télédétection Spatiale and CNES-
TOSCA. The HAL GPU cluster from IPSL-ESPRI was used
for the training of the CycleGAN. The GMI, DPR, and
SSMI/S datasets were downloaded from NASA’s Precipitation
Processing System (PPS). The Météo-France datasets were
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APPENDIX

As in section V-A, figure 10 and 11 show the rain retrieval
by DRAIN on GMI image, adapted SSMI/S image, and
original SSMI/S image on two different overpass cases. The
orbit of the SSMI/S can be recognized by the larger swath.
The first case, figure 10, is a cyclone between 0N-40N and
120E to 150E on the 16th of September 2022. It should be
noted that there is approximately a one-hour delay between
the passage of GMI and SSMI/S. The second case, figure 11,
shows another rain structure in the Pacific Ocean on the 1st
of February 2019 with a 4-minute delay. In both cases, the
estimated rain structure on the adapted images shares more
similarity to that of the GMI images. The difference in the
first case could be due to the delay between the two passages.
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Conclusion and Perspectives

The water cycle is a life-sustaining system that demands our utmost attention
under the current pressure of climate change. The modification of the water cycle
due to climate change is a complex issue as each component in the water cycle
interacts with and influences each other. Chapter 1 summarizes some of the
current observed and projected changes in the water cycle, including regional and
global precipitation patterns, such as the monsoons and the ITCZ, and extreme
hydrological events, such as floods and droughts. The changes differ greatly from
one region to another.

Remote sensing missions in the past few decades have accumulated an unpre-
cedented amount of data on Earth observation. Among these missions, the Global
Precipitation Measurement (GPM) mission is the center of this study. GPM offers
a constellation of satellites equipped with microwave imagers. These instruments
measure the brightness temperature (TB) at a wide range of frequencies, which
allows for a retrieval of multiple geophysical quantities related to the water cycle.
The present study uses data from the GPM Core Observatory (GPM-CO), the re-
ference satellite of the constellation, which carries a Microwave Imager (GMI) and
a precipitation radar (DPR).

This thesis aims to develop a method to extract information from microwave
TB images without requiring any ancillary data. Using Computer Vision, I explo-
red unsupervised image segmentation models to extract information from the TB
images and how to validate and interpret the resulting segmentation. As a comple-
ment to the unsupervised approach, I also present a supervised learning approach
for rain retrieval from TB images. Finally, this thesis offers a feasibility study on
an unsupervised domain adaptation as a transfer learning technique to apply these
approaches to multiple microwave radiometers.

In line with treating TB measurements as images, Chapter 2 presents a su-
pervised model for retrieving rain rates from TB images using U-Net models and
quantile regression. Using only TB images and DPR rain rates, DRAIN achieves a
performance similar to that of the state-of-the-art reference algorithm of the GPM
algorithm. Additionally, its performance does not differ between land and ocean.
The supervised approach poses less challenge for the evaluation and interpreta-
tion of the results. However, DRAIN can only be trained on the GPM-CO, as it
carries precipitation radar, observing precipitation events simultaneously with the
GMI, which can be used as the target during training. In contrast, unsupervised
segmentation can be trained on any satellite as it does not require a target.

163



Chapter 3 offers an overview of machine-learning approaches for image seg-
mentation that require little to no labels using unsupervised learning and self-
supervised learning. First, for unsupervised algorithms, two major branches of al-
gorithms are discussed : the pixel-wise distance-based approaches (K-means, DBS-
CAN, Super-pixels) and non-pixel-wise approaches (convolutional layers and vision
transformer). The non-pixel-wise approaches, which consider the spatial structure
within an image, are categorized based on their training framework. In unsupervi-
sed training, the training frameworks revolve around the creation of the objective
function to segment the image without any labels. This chapter gives example
algorithms for three methods for defining the objective function : pseudo-labeling,
reconstruction of the input image, and contrasting images within the dataset. Se-
condly, self-supervised learning differs from unsupervised learning as it aims to first
learn information from the input before segmenting the image in a downstream
task. Similarly, Chapter 3 presents some training frameworks for self-supervised
learning.

The summary of methods provides some pros and cons of the presented example
algorithms as well as some metrics for evaluating the segmentation. The evaluation
metrics include indexes based on intra-class and inter-class dispersion and tradi-
tional segmentation scores such as accuracy, precision, recall, and F1-score. The
selected models are implemented and compared in Chapter 4.

Chapter 4 details the implementation and evaluation of the selected unsuper-
vised segmentation models. The approaches tested include a K-means model as
well as several models based on fully convolutional networks of different levels of
depth. A challenge that arises when using an unsupervised approach is the evalua-
tion, validation, and interpretation of the results. In this study, these models are
evaluated based on two external variables : precipitation and SST. All the optimal
models for each approach achieved very similar scores. The choice of an optimal
model is based on its overall performance on multiple orbits and its number of
segmentation classes. Before studying the evolution of these classes on a longer
dataset, it is necessary that the labeled precipitation and SST classes can capture
the regional and global patterns of precipitation and SST. On a regional level, the
identified rain classes are shown to be able to follow the seasonality in monsoon
precipitation. They can recover the same patterns and number of rain pixels as
the DRAIN algorithm. For global ocean precipitation, the count of rain classes is
able to indicate the pattern of areas where rainfall occurs more frequently and
the seasonality of precipitation. Similarly, the SST classes are representative of the
general structure of SST and are able to follow the seasonality in SST.

The main limitations of current optimal models include their difficulty in dis-
tinguishing between snow-covered surfaces and rain in high latitudes. In addition,
there is room for improvement in terms of the recall score for precipitation classes.
Future efforts to improve the segmentation model for TB data should focus on
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these aspects.

After presenting and evaluating the supervised model in Chapter 2 and the
unsupervised model in Chapter 4, trend analysis of the ten years of data of the
GMI (2014-2024) using the Mann-Kendall test is discussed in Chapter 5. First, the
trend estimation is done directly on the TB data, using the 89 GHz channel due to
its interpretability in terms of convective rain. There is a non-significant decreasing
trend in the coldest TB89H . The interpretation of this trend is difficult. Nonetheless,
some regional changes are clearly observed, even if it is impossible to attribute a
cause to these changes. Next, the DRAIN result for the GMI dataset shows an
increase in the global number of rain pixels and a decrease in rain intensity. Lastly,
the unsupervised segmentation classes show an upward trend in the number of
rain classes for three IPCC regions : WAF (Non-significative), BOB (Significative),
and SEA (Significative). The trends observed in DRAIN and in the unsupervised
segmentation are coherent with the continuity of precipitation trend presented in
the IPCC AR6 for data between 1985-2014. However, the conclusion of the nature
of the trend observed using GMI data alone is impossible. With only GMI, it is
only possible to observe instantaneous precipitation. The trend could be due to
multiple factors, such as the life cycle, the size, and the number of occurrences of
precipitation events.

For supervised rain retrieval DRAIN, the application on other satellites requires
a transfer learning step, as the performance of a Machine Learning algorithm de-
grades significantly if the input data distribution is different from the one it was
trained on. An unsupervised domain adaptation model is presented in Chapter 6.
In the presented feasibility study on unsupervised domain adaptation, the model
transforms the TB from the SSMI/S to the GMI domain. The adapted TB allows
DRAIN to retrieve better precipitation structure and intensity. Using overpasses
between SSMI/S and GMI, the scores on rain intensity significantly improve when
the adapted images are used. The efficiency of the domain adaptation proves that
deep-learning algorithms can be applied to any satellites in the constellation. No-
netheless, the domain adaptation with a generative model such as CycleGAN poses
many challenges in obtaining convergence during training. In addition, it is more
effective to simultaneously transfer multiple satellites to the GMI domain instead
of transferring them one by one.

The large amount of data collected by remote sensing Earth observations of-
fers an unprecedented opportunity for the application of the high-performance and
cutting-edge machine learning algorithm. However, the extraction of information
from these climatic records is not straightforward, as no labels are readily available
for training. Human annotation for each pixel comes at a high cost or is simply im-
possible. Unsupervised learning has great potential. However, as this deep-learning
is basically a black box, it is important to thoroughly analyze the resulting seg-
mentation. The results of the unsupervised segmentation allow us to conclude that
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an unsupervised segmentation of TB images is able to provide valid and geophy-
sically meaningful segmentation that can capture the pattern and characteristics
of geophysical variables. The trend found using the unsupervised approach is also
compared to the more traditional approaches to verify its validity.

As the geophysical properties of the result are verified, this unsupervised ap-
proach can be applied to any microwave radiometer. Thus, the next step is to
apply this method on multiple satellites to expand the extraction of information
from TB images and solve the challenge of harmonizing the segmentation. Next, I
will discuss the perspectives for future studies.

Perspectives

Merging segmentations from several models

The results from Chapter 4 show that the algorithms tested provide similar seg-
mentation that has very similar scores. Improvement of the segmentation could be
achieved by creating an ensemble model by merging the segmentations from mul-
tiple models. It can be advantageous to verify if any of the current models actually
specializes in any geophysical variables or if it’s possible to train a segmentation
model that specializes in a particular quantity. If this is possible, it is advantageous
to create an ensemble model with different coefficients for different specializations.
This could potentially solve the problem of the current optimal models not being
able to distinguish between rain and snow/ice-covered surfaces if it is possible to
train an unsupervised model specialized in recognizing snow/ice-covered surfaces.

Application on the whole GPM constellation

Using GMI data from 2014 to 2024, there is a statistically significant increase
in the total number of rain pixels through both the supervised and unsupervised
methods. However, relying on only GMI, the dataset comprises only an instanta-
neous observation of precipitation events. Consequently, the nature of the increase
in total rain pixels is not known. The GPM constellation consists of multiple sa-
tellites carrying radiometers. Using data from the whole constellation will allow us
to have more observations and better coverage due to less revisit time.

For the supervised approach to retrieving the rain intensity, DRAIN, the ap-
plication on other satellites in the constellation requires a transfer learning step.
A feasibility study is presented in Chapter 6 for a domain adaptation effort in
transforming the observations of other satellites to the domain of the GPM Core
Observatory.

For the unsupervised approach, the model can be retrained on all of the sa-
tellites in the constellation. The resulting segmentations will have different label
numbers but will again represent geophysical variables. Using their overpass, it is
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possible to regroup the classes that represent the same geophysical quantity. Ad-
ditionally, the domain adaptation approach could be used as an intermediate step
to harmonize the resulting segmentations.

Improvement of the unsupervised segmentation algorithm

Computer vision is a field that is constantly evolving, with numerous new
algorithms emerging. Now that the evaluation tactics for the application in TB
are established, it is essential to test innovative new algorithms. In addition, it
is interesting to test a self-supervised learning approach where the information
extracted from the output can be used to explore the evolution of the water cycle
directly without first creating a segmentation.

Irregularity due to instrument deterioration or adjustment

The analysis of the evolution of geophysical quantities based on the satellite
dataset requires the distribution of the observed data to stay the same. It is essential
to verify if there are any changes due to the degradation of the instrument or simply
an adjustment of the instrument.
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A - Appendix : Feasibility study on unsuper-
vised domain adaptation

The conference paper presented in this Appendix is the precedent feasibility
study for the article in Chapter 6. To test the transferability of DRAIN using
CycleGAN as an unsupervised domain adaptation model, the 89 GHz in horizontal
polarization (89H) is transformed to the domain of the 89 GHz in vertical polariza-
tion (89V), and the 89V is transformed into the domain of the 89H. The differences
between the horizontal and the vertical polarization are due to the surface emissi-
vity. The TB at 89V is almost always higher than 89H since the surface emissivity
at 89V is generally higher than at 89H, except for some rare cases. However, this
adaptation is notably less complicated than an adaptation between two satellites
due to the fact that these are two channels of the same instruments. Therefore,
there are no differences in orbitography.

A modified version of DRAIN that only takes the 89 GHz in both polarization as
inputs is trained. Then, we evaluated the performance of this modified DRAIN on
the adapted 89H and 89V data. The motivation behind applying domain adaptation
to different polarizations of the same satellites is that it allows us to have pixel
correspondence for the evaluation, which is the key to deciding if this feasibility
study could lead to a real application. Results on rain retrieval show that domain
adaptation significantly increases the performance of DRAIN.

The hyper-parameters, model choice, and implementation techniques from this
feasibility study serve as the starting point for the actual application of domain
adaptation between two different satellites described in Chapter 6. In particular,
this feasibility study shows the importance of identity loss in CycleGAN as well as
the importance in keeping the training loss balanced between the two domains.

Reference of the attached article :

V. Sambath, N. Viltard, L. Barthès, A. Martini, and C. Mallet. Unsupervi-
sed domain adaptation for global precipitation measurement satellite constellation
using cycle generative adversarial nets. Environmental Data Science, 2022.
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Abstract
Artificial Intelligence has provided many breakthroughs in the field of computer vision. The fully convolutional
networks U-Net in particular have provided very promising results in the problem of retrieving rain rates from
space-borne observations, a challenge that has persisted over the past few decades. The rain intensity is estimated
from the measurement of the brightness temperatures on different microwave channels. However, these channels
are slightly different depending on the satellite. In the case where a retrieval model has been developed from a
single satellite, it may be advantageous to use domain adaptation methods in order to make this model compatible
for all the satellites of the constellation. In this proposed feasibility study, a CycleGAN model is used for adapting
one set of brightness temperature channels to another set. Results on a toy experiment show that this method is
able to provide qualitatively good precipitation structure but still could be improved in terms of precision.

Impact Statement
Early supervised and end-to-end deep learning approaches in climate studies, especially in satellite observa-
tions, are very limited in application due to the lack of available annotated samples, the high demand for pixel
accuracy and the non-conventional nature of the data. The present feasibility study on unsupervised domain
adaptation will allow for the increase in re-usability of a deep learning model pre-trained on one satellite
to many more with similar physical characteristics. While previous unsupervised image domain adaptation
approaches focus on qualitative aspect and on classification task, the present objective involves a regression
task and non-RGB image data. The results obtained on the unsupervised domain adaptation with CycleGAN
on microwave imagery have a significant impact on the practical perspectives of applying deep learning mod-
els to the spatial observation of the earth. In terms of climate studies, this unsupervised transfer learning
approach will improve the knowledge of the precipitation evolution over the last 30 years. Hence, the study
has an important scientific impact in the analysis of the relation between precipitation and climate change as
well as a societal impacts on the forecast and preparation for climate change.

1. Introduction
The estimation of precipitation for a given date and location is a very challenging task because rain
is very intermittent in time and space. Ground-based observations alone could be very lacking due
to the difficulty in obtaining a uniformly calibrated observation with a good spatial resolution over a

© The Authors(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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large region, especially over the oceans (Hou et al., 2014). On the other hand, global satellite cover-
age offers a great advantage in estimating a uniform global precipitation. For this exact purpose, the
Global Precipitation Measurement (GPM, 2014-present) mission, the successor of the Tropical Rain-
fall Measuring Mission (TRMM 1997-2015 (Kummerow et al., 1998)), has launched a mother satellite
called the GPM Core Observatory and a constellation of daughters. Aboard the GPM Core Observatory,
a passive microwave radiometer (GPM Microwave Imager or GMI) provides the brightness tempera-
tures while a Dual-frequency Precipitation Radar (DPR) provides a more direct measurement of the
precipitation. The main purpose of the Core Observatory is to serve as the reference for unifying the
precipitation estimates from the other satellites in the constellation. The co-located data of brightness
temperatures and surface rain rates also open up the opportunity to develop a supervised deep learning
model for rain retrieval. Numerous studies have been done on the subject of rain retrieval with a list of
literature available in Viltard et al. (2020).

Viltard et al. (2020) developed a deep learning model using U-Net for rain retrieval (DRAIN) on the
co-located data of the GPM Core Observatory. U-Net is a fully convolutional neural network containing
a contraction path, an expansion path and skip connections (Ronneberger et al., 2015). In DRAIN, U-
Net is trained to estimate quantiles of rain products with the brightness temperature from the GMI as
inputs and the rain rates of the DPR as targets, with further details available in (Viltard et al., 2020).
The next step is to take full advantage of the GPM constellation with this deep learning approach. The
GPM constellation, made up of a network of international satellites, can provide up to 80% of the global
coverage in less than 3 hours (Hou et al., 2014). Successfully utilizing the whole constellation of GPM
will offer a uniform global precipitation map.

GPM official radiometer algorithm is based upon a Bayesian approach in which the GPM core
satellite is used to generate an a-priori database of observed cloud and precipitation profiles (Pas-
sive Microwave Algorithm Team Facility, 2017). One year (sept 2014-August 2015) of matched
GMI/hydrometor observations is used to construct the a-priori database. The combined product is built
with a forward radiative transfer model calculation to compute brightness temperatures sets for the dif-
ferent radiometers, that is to say with different frequency channels and viewing angles. As a description
of temperature and water vapor profiles and surface emissivity is needed to perform the simulations,
ancillary data coming from GCM’s reanalysis are associated with each pixel. The variability of the spa-
tial resolution of the different PMRs (Passive Microwave Radiometers) of the constellation is neglected
in GMP-V5. The use of simulated brightness temperatures to develop the retrieval algorithm is an
important source of uncertainty especially in the presence of scattering by hydrometeors. The differ-
ences in PMR’s field of view that are not taken into account can also introduce significant errors (Kidd
et al., 2016).

As DRAIN is trained on the co-located brightness temperatures and rain rates from the GMI and the
DPR respectively, this model only works for the brightness temperatures of the GPM Core Observatory.
This model could not be applied directly to the constellation because between different satellites, there
are differences in viewing angle, frequency band, and spatial resolution. In addition, these other satel-
lites are only equipped with microwave imagers and therefore, there is no co-located data available for
a supervised learning approach. In order to benefit from the frequent revisit time and better coverage of
the whole constellation, a method to transfer the knowledge gained from the GPM Core Observatory is
required.

Transfer learning differs from the traditional machine learning algorithms as it relies on a previously
trained knowledge. In traditional machine learning algorithm, a model is trained on the source domain
and is applied to the source domain. Current Machine Learning techniques, which have given very good
results in the field of computer vision, require a large database to train on and are only valid for this
domain. As a result, a new model needs to be trained each time the data are from a different feature
space or distribution. On the other hand, in transfer learning, a model is first trained with the source
domain. Next, the knowledge is transferred in order to create a model for a new task. This is particular
advantageous in many cases where there is a lack of data for the targeted task but an abundance of data
in a similar domain.
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Figure 1. (a) The architecture of CycleGAN. (b) and (c) The illustration of cycle-consistency loss. (Zhu
et al., 2017a).

The first challenge in transferring the knowledge is, of course, the lack of training data in the target
domain. It is possible to co-locate various satellite observations and GPM Core Observatory data. How-
ever, due to the highly intermittent nature of rain and the difference in orbit of the satellites, co-located
data are very scarce and certainly inefficient for relying on fine-tuning as a method of transfer learning.
In order to use as many satellites data as possible, we have to turn to the transductive transfer learning
method where the target domain labels are unavailable while the source domain labels are available
(Pan and Yang, 2010). With some unsupervised methods, the domain adaptation and regression could
be achieved with one model, for example, the Unsupervised Domain Adaptation by Back-propagation
(UDA) (Ganin and Lempitsky, 2015). In UDA, there are three components: the feature extractor, the
label predictor, and the domain classifier (Ganin and Lempitsky, 2015). By integrating the domain
classifier within the model, UDA is able to make the two domains as common as possible while pro-
viding the predictions at the same time. Though with several modifications tested, this model could not
be successfully implemented to this experiment. We have then turned to a domain adaptation method
done outside of the rain retrieval model. In order to perform this domain adaptation task, the Cycle
Generative Adversarial Nets (CycleGAN) was used.

The end goal is to adapt any satellite scans in the GPM Constellation (target domain) to that of the
GPM Core Observatory (source domain) in order to be able to use the U-Net for rain retrieval previ-
ously trained on the source domain. The feasibility study presented here, the GMI 89 GHz channels in
horizontal and vertical polarisation (hereafter 89H and 89V) are the two domains to be adapted using
CycleGAN. In the following text, section 2 describes the domain adaptation method. Next, section 3
provides details about the data used for training and testing. Section 4 shows the evaluation of the
method in terms of the similarity between original and adapted domain as well as its performance in
rain retrieval. Finally, in section 5, next steps and possible improvements will be discussed.

2. Method
The method used in this feasibility study consists of applying an unsupervised domain adaptation on
satellite images using a Generative Adversarial Nets (GAN, (Goodfellow et al., 2014)) based approach
called CycleGAN (Zhu et al., 2017a). Then, the newly transformed images are tested on a rain retrieval
model that was previously trained with original images.

2.1. CycleGAN
CycleGAN is a an image transformation technique that does not require paired images (Zhu et al.,
2017a). It consists of two GANs working together, each containing a generator and a discriminator
(figure 1). The first generator 𝐺 takes an image from the source domain 𝑋 and transforms it into the
target domain 𝑌 . The second generator 𝐹 works the other way around, by transforming an image in 𝑌
into 𝑋 . The discriminators 𝐷𝑋 and 𝐷𝑌 try to correctly label if a sample is from its respective domain.
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The weights of the two generators are updated by their combine loss. Each generator has three terms
of loss: cycle-consistency loss, identity loss and adversarial loss. Cycle-consistency is based on the idea
that a complete image translation cycle (from 𝑋 to 𝑌 and back to 𝑋) as shown in figure 1 (a) should be
able to bring back a close enough image to the original (Zhu et al., 2017a). The identity loss is included
since it has previously showed the ability to preserve color when transforming between photos and
painting (Zhu et al., 2017a). It is the difference between an image and the transformation to its own
domain, for example, ∥ 𝐹 (𝑥) − 𝑥 ∥1. In the presented experiment, without identity loss, the generator
is able to reconstruct the form of the structure but unable to reproduce the value of the brightness
temperature. The discriminator loss, on the other hand, is calculated upon its ability to distinguish the
real images and the fake images generated by the generators. The complete objective function could be
found in (Zhu et al., 2017a).

Zhu et al. (2017a) concluded that the CycleGAN worked best for color and texture changes, for
example transforming between different painting styles. However, it is less successful when geometric
transformation is involved, for example cat to dog transfiguration. Furthermore, de Bézenac et al. (2019)
emphasizes CycleGAN capacity to only perform well for distributions that are close to one another.
In the experiment here, this is not really a problem because the rain cells have similar geometries
whatever the selected channel. Zhu et al. (2017a) also highlighted the impossibility to achieve as good
performance as in the case of paired data approach and the failure when the training characteristic
distribution is not representative enough of the test data.

2.2. Training details
Several architectures of the generator proposed by Zhu et al. (2017a) were tested. With previous success
shown by Viltard et al. (2020), U-Net seems to be a very good candidate for working with satellite
images, particularly the brightness temperatures. Using U-Net as generator, the generated images are
able to better imitate the structure native to the targeted domain. The second challenge is the imbalance
in the training loss between the two domains. In the first few attempts, with the learning rate schedulers
for both generators evolving the same way as the training progresses, the losses remain very imbalance.
Hence, different learning rates are set for each generator with higher learning rate for the generator that
seems to struggles more. This results in similar losses for both domains, which may be due to the fact
that the two generators work together to establish the cycle-consistency loss. It should also be noted
that the batch size has an important impact. In this toy experiment, batch of sizes 1, 4, 8 and 16 were
tested. After several initialisation of the network, eight images per batch gave the best results in terms
of structure within the satellite observation. Smaller or bigger batch size seems to degrade the results.
Batch size effect is an empirical remark made equally on the official GitHub depository of CycleGAN
(Zhu et al., 2017b). Therefore, it should warrant a careful testing for future application.

3. Toy Experiment Data
The GMI is a multi-channel conically scanning radiometer with a swath of 904 km and with channels
ranging from 10 GHz to 183 GHz. These channels are measured in both Horizontal (H) and Vertical (V)
polarization. In this toy experiment, only the 89 GHz-channel is used. This channel has the resolution of
4.4 km by 7.3 km. We aim to transform between the horizontal and vertical polarization of the GMI 89
GHz channel using CycleGAN. In this case, 𝑋 in figure 1 represents 89V while 𝑌 represents 89H. This
choice of toy data set will later allow comparisons of the adapted image and the targeted satellite scan.
The training and validation data sets for each domain do not contain overlapping events to properly test
the unpaired image domain adaptation method. The difference between 89H and V is mostly due to
the surface emissivity difference between the two channels. The V surface emissivity is almost always
higher than the H surface emissivity leading to a generally higher V brightness temperature. However,
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Figure 2. Vertical (89V) and horizontal (89H) polarisation of the 89-GHz channel brightness tempera-
ture in Kelvin from the GMI. The image is of 128 by 128 pixels representing roughly (1024 km by 1024
km).

Figure 3. Training and validation losses for different components of the CycleGAN. The training loss
(first plot) plot shows the generator and discriminator loss throughout training. Then, generator loss
plot (second plot) and discriminator loss plot (third plot) show the details of each component. Finally,
validation loss plot (fourth plot) shows the cycle-consistency and identity loss of each domain on vali-
dation dataset.

polarisation due to scattering by ice might occur in (rare) cases of oriented particles leading to a H
brightness temperature higher than V. This is true for both land and ocean situations.

The training data set consists of 24 000 images for each domain, making 48 000 images in total of
different observations taken between 2015 and 2017. The validation set is made up of 4 000 images
for each domain taken from the same period. These images contain 221 × 256 pixels and are chosen
with the conditions that they either have at least 100 pixels with more than 10 mm/h rain or at least 10
pixels with more than 100 mm/h rain rates. The selection process is essential to obtain enough images
with a precipitation event. Next, the training and validation sets undergo the pre-processing step: data
normalisation, random crop (to 128 × 128 pixels) and random rotation. The random crop (cropping
randomly within the image) and random rotation (choosing an angle at random to rotate the image)
are added as a data augmentation method and to increase the difficulty of the task for the CycleGAN
model. An example of training data is given in figure 2. Note that, though the example given here is of
the same event, neither train nor validation images of each domain correspond to each other.

4. Results
Figure 3 shows the training and validation losses. As discussed previously, different learning rate sched-
ules for each domain allows the losses of both domains to evolve in the same way and without a gap
between them. According to experiments, this could not be achieved if the learning rates for all net-
works involved have the same learning rate schedules. To evaluate the performance of CycleGAN on
domain adaptation between 89V and 89V, its ability to reconstruct complex rain structure as well as its
accuracy in terms of brightness temperatures are discussed.
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Figure 4. Original, adapted, and their difference of the 89-GHz channel observation from GMI on the
29th May 2017 with latitude 5-15° N and longitude 96-105° E (over parts of Thailand and Cambodia).

Figure 5. Comparison of the histogram of original 89V data and the adapted 89V data (left) and
original 89H data and the adapted 89H (right).

4.1. Results on adapted satellite images
Figure 4 shows the original satellites scans and the adapted images (89V adapted from 89H and 89H
adapted from 89V) on a case study. CycleGAN can reproduce very well all the precipitation structures
in the original images. However, in terms of values, there are differences of brightness temperature
between the original and the adapted images that could not be picked up on qualitatively. Hence, after
confirming the re-created structure of brightness temperature for a complex precipitation event, the next
step is to investigate the accuracy. With the test data consisting of two months of observation including
December 2018 and May 2020, figure 5 shows the comparison between the original normalised data
and the adapted results. The original and adapted histograms are almost superimposed though with
some inaccuracy. Calculating the Kullback-Leiber divergence (Bishop et al., 1995) also confirms that
there is more similarity between the original and adapted domain than without the transformation.

4.2. Results on rain retrieval
Relying on the previous work by Viltard et al. (2020), a U-Net model is used to train a rain retrieval
model with the GMI 89 GHz channel as inputs. The U-Net model takes two layers as inputs, the first
one is the 89V and the second one being 89H. The target data is the spatially and temporally co-located
data from the DPR of the GPM Core Observatory. The DPR surface rain product is the result from the
merged of Ka- (13.4 GHz) and Ku-band (35.5 GHz) radars. It has a horizontal resolution of 5 km and
a swath of 245 km. Further information about the treatment of this data is available in Viltard et al.
(2020).

The rain retrieval is evaluated on three criteria, its ability to distinguish rain and no-rain cases (tables
1 and 2), the mean absolute error when compared to the DPR rain rates, and its ability to reconstruct the



Environmental Data Science 7

Figure 6. (Same observation as figure 4) Comparison of retrieved surface rain rates in mm/h in Case 1
(left), Case 2 (middle) and Case 3 (right).

Table 1. Classification score for rain vs no-rain cases using the two-month test data.

Score Case 1 Case 2 Case 3

Recall 0.74 0.002 0.38
Precision 0.81 0.007 0.27
f1-score 0.77 0.003 0.31

Table 2. Mean absolute errors using the two-month test data.

Rain rates (mm/h) Case 1 Case 2 Case 3

0.1 to 3 0.28 0.57 0.52
3 to 10 2.13 5.01 4.60

Above 10 19.85 20.26 19.0

rain structure. Three cases are compared. Case 1 is the best case scenario, where the rain retrieval model
is tested on [89V, 89H] input data, the correct order on which it was train. Case 2, on the other hand, is
the worst case scenario, which is using a model trained on [89V, 89H] inputs and tested on [89H, 89V]
inputs. The last one, Case 3, the rain retrieval model is tested on the adapted brightness temperature,
that is to say, the pair [89V (adapted from 89H), 89 H (adapted from 89V)]. The objective is to situate
ideally as close to Case 1 as possible. Figure 6 shows the rain retrieval on the same case study as in the
above sub-section. Comparing to the ideal case (Case 1), the retrieved rain intensity with the adapted
data as inputs (Case 3) is much weaker. In other words, Case 3 has approximately the same structure
but very weak in terms of intensity. Case 2, on the other hand, could not reproduce precipitation at all.
Next, the classification score in table 1 shows the ability to distinguish between rain and no rain cases.
No-rain cases refer to the prediction below 0.1 mm/h. With domain adaptation, clear improvement was
observed across all scores. We could also observe a small improvement in terms of mean absolute error
score in table 2.

5. Conclusions and Perspectives
Although this domain adaptation method performs very well in terms of qualitative assessment, there
is still room for improvement for its application in rain retrieval. Based on the results presented in
section 4, the pre-trained U-Net model is very sensitive to both the structure, and in turns the gradi-
ent, as well as the value of the brightness temperature itself. Nevertheless, the results from this toy
experiment present a promising proof of concept. The next step would be to study the real applica-
tion with GPM core observatory as the source domain and one of the satellite in the constellation, for
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example SSMI/S, as the target domain. This feasibility study also highlights the importance of quanti-
tative assessment in image domain adaptation for a regression task. In order to give better estimation,
a more elegant approach consists of constraining the CycleGAN training process with the loss from
rain retrieval model. Prior works related to this approach include the Conditional Generative Adver-
sarial Nets (Conditional GAN) (Mirza and Osindero, 2014) and one of its many variations, Red-GAN
(Qasim et al., 2020). In Conditional GAN, additional information, for example class label, is added
to the training of the GANs. Red-GAN is built upon the concept of Conditional GAN with a third-
player integrated into the two-player Conditional GAN (generator and discriminator) in order to better
favor the final objective. In future application on rain retrieval, the U-Net could become an extension
of the CycleGAN model. The error in rain rate could then be integrated into the training loss in order
to update the generators and discriminators weights. As a consequence, the domain adaptation process
is constrained to best work on the rain retrieval application.
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B - Appendix : Résumé de Thèse en français

Le cycle de l’eau joue un rôle essentiel pour toute vie sur Terre. L’observation
et la quantification de ses divers composantes sous la pression du changement
climatique sont devenues de plus en plus importantes pour la société et la science.
Toutefois, les réponses de chaque composante du cycle de l’eau au réchauffement
climatique diffèrent fortement d’une région à l’autre. Certaines régions ont ainsi
connu une augmentation des précipitations, tandis que d’autres ont connu une
diminution. Il est donc urgent d’observer le cycle de l’eau à l’échelle régionale mais
de façon globale et les mesures spatiales sont particulièrement adaptées pour cela,
à condition de surmonter les difficultés méthodologiques associées à la mesure par
télédétection.

La télédétection a accumulé une grande quantité de données d’observation spa-
tiale. Concernant les précipitations, la mission Global Precipitation Measurement
(GPM) (2014-présent) offre une constellation de satellites équipés de radiomètres
micro-ondes permettant d’obtenir une vaste base de données de températures de
brillance (TB) à diverses fréquences et polarisations. L’utilisation de plusieurs ca-
naux est essentielle, chacun ayant une sensibilité propre aux différents constituants
de l’atmosphère, notamment la vapeur d’eau ainsi que l’eau sous forme liquide ou
glacée. Ainsi les canaux aux fréquences les plus basses, beaucoup moins sensibles
aux constituants atmosphériques, seront affectés par la surface comme par exemple
la température de la surface de la mer (SST), alors que les canaux aux fréquences
les plus hautes seront plutôt sensibles à la partie supérieure de l’atmosphère no-
tamment à la température des sommets des nuages de glace.

De façon classique, dans les produits standards, ces températures de brillance
sont utilisées en entrée de modèles d’inversion afin d’estimer un certain nombre
de variables d’intérêt telles que l’intensité de pluie ou le contenu en eau nuageuse
ou des profils d’humidité. Ces modèles sont généralement développés soit à partir
de modèles physiques de transfert radiatif permettant de simuler les températures
de brillance à partir de profils verticaux atmosphérique, soit à partir de bases de
données de télédétection spatiales associées à des modèles de type Bayesian Neural
Networks (BNNs). L’approche utilisée dans cette thèse est différente, et peut être
assimilée à une approche par objet. Plus précisément, il s’agit sans l’introduction
d’aucun à priori ou de variables auxiliaires d’isoler des objets définis par les seules
températures de brillance. Ces objets (ou une partie) sont ensuite caractérisés à
postériori à l’aide de variables auxiliaires. L’intérêt d’une telle approche est de ne
faire intervenir dans la définition des objets qu’un seul type d’instrument (radio-
mètre) et qu’elle supprime ainsi les sources d’erreurs liées soit à la modélisation de
la physique soit aux problèmes liés à l’observation d’une même scène par deux ins-
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truments différents, comme par exemple, la colocalisation des pixels et la résolution
différente.

La présente étude utilise le radiomètre micro-onde (GMI) du GPM Core Obser-
vatory (GPM-CO), qui est le satellite de référence pour unifier les satellites de la
constellation. En effet, ce satellite et contrairement aux autres satellites embarque
également un radar précipitation permettant une estimation plus directe des pré-
cipitations. En considérant les différents canaux de TB comme des images non
conventionnelles, je propose une nouvelle méthode de segmentation sémantique
non-supervisée pour observer le cycle de l’eau à partir de ces dernières. Il s’agit
d’extraire des informations sous forme d’objet sans l’aide d’une annotation ou de
données auxiliaires. Outre les intérêts cités au paragraphe précédent, une approche
non-supervisée est applicable à n’importe quel satellite de la constellation indépen-
damment de sa configuration spécifique (sélection de canaux, incidence de visée,
résolution des pixels). Elle est également exempte des incertitudes liées aux don-
nées auxiliaires. Enfin, elle est indépendante d’un algorithme d’inversion forcément
imparfait.

En résumé, deux axes principaux sont explorés : une approche plus classique
d’inversion par apprentissage supervisé et l’approche non-supervisée mentionnée ci-
dessus. L’approche supervisée, DRAIN, est un algorithme d’apprentissage profond
de l’inversion de pluie à partir des images de température de brillance issues de
quatre canaux de GMI : 36.5 GHz en polarisation horizontale et verticale et 89
GHz également en polarisation horizontale et verticale. L’approche non-supervisée
explorée dans cette étude est une segmentation non-supervisée des images (sur les
mêmes canaux). Les principaux défis abordés pour la méthode non-supervisée sont
la labellisation, l’interprétation et la validation de la segmentation par rapport aux
variables géophysiques.

Une fois démontré que la partition obtenue est bien interprétable d’un point
de vue géophysique., l’étude de l’évolution temporelle des différents segments au
cours du temps permet d’analyser leur sensibilité à l’évolution du climat. L’objectif
est ainsi de pouvoir identifier, sans a priori, uniquement à partir des observations
spatiales, les régions dans lesquelles certaines composantes du cycle de l’eau sont
plus particulièrement sensibles au réchauffement climatique.

B.1 . Approche supervisée : DRAIN

En premier lieu, en traitant les mesures de TB comme des images, nous pré-
sentons un algorithme d’inversion de pluie supervisé (DRAIN). DRAIN est une
régression quantile basée sur l’algorithme U-Net qui contient un encodeur, un dé-
codeur, et une étape de « skip connections » qui sers à conserver les détails et
les structures de fine échelle dans une image, ce qui est essentiel dans le cas de la
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pluie. Sur le GPM-CO, nous disposons non seulement de mesures de températures
de brillance dans les différents canaux évoqués précédemment mais aussi d’un pro-
duit de pluie obtenu à partir des mesures du Dual-frequency Precipitation Radar
(DPR) qui couvre les 250 km du centre de la fauchée du GMI. En utilisant uni-
quement des images TB en entrée et des taux de pluie de DPR en sortie, DRAIN
atteint une performance similaire à l’algorithme de référence de GPM. Ces très bons
résultats sont liés au fait que DRAIN cherche à caractériser la fonction de transfert
de l’image des TB à l’image de la pluie en prenant donc en compte la topologie des
deux champs, contrairement aux algorithmes classiques qui fonctionnent en pixel-
par-pixel. D’autre part, DRAIN a une performance équivalente entre les continents
et les océans car l’algorithme s’appuie sur les mesures elles-mêmes pour détecter
le type de surface et n’est donc pas affecté par une information a-priori qui peut
biaiser les zones de transition.

Cette approche supervisée pose moins de problèmes pour l’évaluation et l’in-
terprétation des résultats. Cependant, DRAIN ne peut être entraîné que sur le
GPM-CO, car c’est le seul satellite qui permet de colocaliser la cible pluie issue
du DPR et les images de TB. L’application de DRAIN aux autres satellites de la
constellation nécessite une étape de l’apprentissage par transfert. En revanche, la
segmentation non supervisée peut être entraînée sur n’importe quel satellite de la
constellation car les données de cible ne sont pas nécessaires.

Dans la suite, DRAIN est utilisée comme une référence pour évaluer l’approche
non-supervisé. Ce choix est motivé par le fait que les données en entrée pour les
deux approches sont les images de TB de GMI.

B.2 . Approche non-supervisée

B.2.1 . Les méthodes non-supervisées

La famille des méthodes de segmentation non-supervisée est catégorisée dans
deux branche principales (Figure B.1). Les approches « pixel-wise » classifient les
pixels un par un sans prendre en compte les structures dans l’image. Un exemple
de cette approche est K-means. Les approches « non-pixel-wise » utilisent des
techniques de l’apprentissage qui peuvent prendre en compte l’information apportée
par la topologie contenue dans les images. Ces approches sont ensuite regroupées
par leur fonction de coût. Les modèles qui s’appuient sur des pseudo-labels créent
des labels à partir des cartes de caractéristiques obtenues à partir de données en
entrée qui servent de supervision pendant leur entraînement. Dans la deuxième
approche, la fonction de coût est guidée par la différence de l’image en entrée et
sa reconstruction par le réseau. Finalement, la fonction de coût peut se baser sur
la comparaison des images en entrée contre l’ensemble de l’image dans la base
d’apprentissage.
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Figure B.1 – Catégories des méthodes de segmentation non-supervisée.

Dans cette étude, des modèles de segmentation non-supervisée de différentes
complexités sont explorés. Nous avons testé les approches qui s’appuient sur des
réseaux entièrement convolutifs (FCN) pour extraire des cartes de caractéristiques
à partir de l’entrée. Premièrement, le modèle FCN le plus simple se compose de
plusieurs couches de convolution pour extraire des caractéristiques (modèles M1
et M2 dans la Figure B.2). Ce modèle fait partie des modèles de type « Pseudo-
labels ». La fonction de coût est basée sur les labels créés à partir des cartes
caractéristiques obtenues par les couches de convolution. Pour le deuxième modèle
FCN, nous approfondissons le réseau en utilisant un U-Net comme extracteur de
caractéristiques afin d’augmenter la complexité (modèles U1 et U2 dans la Figure
B.2). Enfin, le dernier modèle FCN utilisé comprend un réseau encodeur-décodeur
avec un mécanisme d’attention. Ce dernier est un modèle de type « reconstruction
des données en entrée » car la fonction de coût est construite à partir de la
différence entre la sortie de décodeur et les images en entrée (modèles L1 et L2
dans la Figure B.2). En outre, afin d’avoir un élément de comparaison avec une
approche par pixel, j’ai testé dans cette étude le Mini-batch K-means qui est efficace
pour les grandes quantités de données (modèles K1 et K2 dans la Figure B.2).

Pour l’approche non-supervisée, l’évaluation de la performance des modèles
n’est pas une tâche simple car la fonction de coût n’est pas indicative de la qualité
de la segmentation. Un bon model de segmentation réalise une partition qui est in-
terprétable d’un point de vue géophysique. En conséquent, pour trouver un modèle
optimal, les modèles de chaque algorithme sont d’abord entraînés avec plusieurs
choix d’hyperparamètres. Ensuite, l’évaluation se base sur les variables externes qui
n’ont pas servi pour l’entrainement des modèles.
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B.2.2 . La comparaison des modèles

Pour comparer les performances des modèles, nous proposons une évaluation
externe où les variables géophysiques pertinentes sont utilisées pour le calcul des
métriques de segmentation. Les classes sont attribuées aux variables géophysiques.
En convertissant ces variables quantitatives (précipitation et SST) en catégories,
elles peuvent être comparées à la segmentation à l’aide de différentes métriques.

Figure B.2 – Comparaison de modèle utilisant la précipitation comme réfé-rence. Les scores ont été calculés avec 450 orbites en 2019. M1 et M2 : mo-dèles FCN simple ; K1 et K2 : modèles de K-means ; L1 et L2 : modèles avecmécanisme d’attention, U1 et U2 : modéles avec U-Net (voir section B.2.1 pourplus de détail).
L’intensité de pluie de référence utilisée pour la comparaison est la sortie de

DRAIN. La première étape est la labélisation des classes « pluie » pour la sortie
de la segmentation non-supervisée. En raison du nombre de modèles à évaluer, la
labélisation doit être automatisée. Dans un ensemble de données séparé, les pixels
de la segmentation sont comparés avec les pixels correspondants de la donnée de
précipitation. Ensuite, la classe pluie est définie comme une classe qui partage au
moins 15% de pixels de pluie. Par la suite, les intensités de pluie sont discrétisés
en pluie (1) et non-pluie (0). Finalement, la segmentation et l’intensité de pluie de
référence peuvent être comparées avec les métriques d’évaluation de segmentation.

Utilisant cette démarche, deux modèles optimaux de chaque approche non-
supervisée sont sélectionnés pour une comparaison complémentaire. Ces modèles
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optimaux ont une performance très similaire. Figure B.2 montre les boîtes à mous-
tache des scores des modèles sur 450 orbites. Un modèle optimal doit avoir un bon
score et une faible variance de scores entre orbites. En outre, en matière de struc-
ture des précipitations, on remarque que la segmentation de K-Means est beaucoup
plus bruitée que les modèles FCN.

La deuxième variable géophysique utilisée pour l’évaluation des modèles est la
SST. Le produit de SST NASA (GHRSST) obtenu à partir de GMI est la référence
de la comparaison. De manière similaire à la comparaison précédente, les classes de
SST sont labelisé automatiquement. Ces classes sont simplement définies comme
des classes de non-pluie sur les océans. L’évaluation de modèle se base sur la
compacité et la séparation de leurs classes de SST. L’indice de Calinski-Harabasz
est utilisé pour évaluer si des classes de SST sont bien définies (Figure B.3). Les
modèles optimaux de chaque approche ont une performance similaire.

Figure B.3 – Les températures de surface de la mer (K) des classes océaniquesnon pluvieuses pour les meilleurs modèles. Le résultat de chaque modèle estobtenu à partir des mêmes 100 orbites.

La comparaison quantitative et qualitative avec les précipitations et la SST
montre que tous les modèles optimaux de chaque approche ont une performance
très similaire. Ils sont capables de segmenter les structures géophysiques dans les
images de TB. Le choix d’un modèle optimal pour l’application se pose sur sa
capacité à obtenir une partition sensible aux précipitations (bon score et bonne
structure de précipitation), sous condition qu’elle discrimine également en fonction
de la SST. Figure B.4 montre la segmentation d’un cyclone par le modèle optimal
choisi. Le nombre de classes qui représente la pluie a aussi un rôle important dans
le choix final. En outre, le temps d’exécution de différentes approches n’est pas
de même ordre de grandeur. Pour une orbite, les modèles de mini-batch K-means
prends 10 fois plus de temps (0.5 secondes) que les modèles FCN (0.05 secondes).

B.2.3 . Interprétation
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Figure B.4 – Comparaison entre la segmentation d’unmodèle otimal et le tauxde pluie de référence pour le typhon Nanmadol observé par le GMI le 16 sep-tembre 2022.

Dans l’utilisation d’un modèle non supervisé pour étudier l’évolution des com-
posantes du cycle de l’eau atmosphérique dans le contexte de l’évolution du climat,
il est essentiel que chaque classe obtenue représente les variables géophysiques ainsi
que leurs caractéristiques. Les classes de pluie identifiées sont capables de montrer
la variabilité intra-annuelles de la précipitation régionale. À plus grande échelle, les
classes de pluie montrent les zones de convergence intertropicale (ITCZ), tandis
que les classes d’océan peuvent représenter la saisonnalité de la SST. La segmen-
tation préserve également les structures de précipitations telles que les cyclones.

Pour l’analyse régionale, deux régions de référence définies dans le rapport du
GIEC et situées entre 40°S et 40°N sont étudiées : BOB (Bay of Bengal) and WAF
(Western Africa). BOB contient en majorité de l’océan tandis que WAF contient
en majorité des surfaces continentales.

Les précipitations dans BOB sont principalement influencées par la mousson
d’été indienne. La mousson commence vers le sud de l’Inde et s’avance vers le
nord du pays. A la fin de la mousson, le mouvement s’inverse et la pluie se retire
du nord vers le sud du pays. La date de l’arrivée et du départ de la mousson est
essentielle pour l’agriculture et l’économie indienne. Avec les données d’un an de
GMI (2019), un diagramme de Hovmöller (temps-latitudes) peut être construit à
partir de l’occurrence de pixel de pluie de la segmentation. Ce diagramme montre
la date approximative de l’arrivée et du départ de la mousson qui sont les même que
dans le rapport annuel du département météorologique indien. La Figure B.5 vérifie
de plus que le nombre total de pixels de pluie par mois vu par la segmentation et
par DRAIN sont comparables et que les variations annuelles sont comparables.

WAF est une région sous l’influence de la mousson de l’Afrique de l’ouest.
Les précipitations se produisent entre juin et septembre. Similairement à BOB,
le nombre total de pixels de pluie par mois donné par la segmentation et par
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(a) Pixels de pluie par la segmentation

(b) Pixels de pluie (supérieurs à 0.1 mm/h) par DRAIN

Figure B.5 –Nombre de pixels de pluie parmois dans la région BOBen 2019. (a)Le nombredepixels de la classe pluie a été obtenu àpartir de la segmentation.(b) Les pixels de pluie au-dessus de 0,1 mm/h récupérés par DRAIN.

DRAIN se ressemble. Par contre, il y a plus de différences entre les deux pour WAF
car le modèle de segmentation a plus de mal à détecter les précipitations sur les
surfaces continentales que sur les océans. Le début de la mousson est signalé par le
changement brusque des latitudes de l’ITCZ, passant de sa position initiale le long
de la latitude 5°N à environ 10°N entre mi-juin et fin juin. Ces comportements de
la mousson de l’Afrique de l’ouest peuvent être observés avec les occurrences des
pixels de class de pluie dans WAF par la segmentation.

Par la suite, l’occurrence de pixels de classe de pluie sur les océans est comptée
pour une grille de 0.5°x0.5°. Le comptage est normalisé par le nombre de passages
du satellite par bandes de latitude car la distribution de ces derniers n’est pas
du tout homogène (orbite inclinée à 65° par rapport à l’équateur). Les résultats
montrent que les classes de pluie peuvent bien représenter les régions humides et
sèches dans le monde. De plus, les classes de pluie de la segmentation non supervi-
sée suivent les changements saisonniers. Par exemple, la largeur de l’ITCZ est plus
grande en JJA qu’en DJF (Figure B.6). La zone de convergence de Pacifique Sud
SPCZ voit plus de précipitations en DJF qu’en JJA. Dans l’océan Atlantique, la
bande de précipitations se déplace vers le nord de DJF à JJA. Dans l’océan Indien,
il y a plus de précipitations en JJA. Les zones humides se déplacent également vers
le nord en JJA.
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Le comptage de pixels de pluie régionale et globale montre une structure et un
comportement saisonnier cohérents pour les classes de pluie. L’analyse globale est
ici limitée aux régions océaniques à cause du fait que les modèles de segmentation
développés ont du mal à distinguer les précipitations des surfaces recouvertes de
glace. Celles-ci ont en effet des signatures très similaires dans les TB et malgré de
nombreuses tentatives, aucune segmentation non-supervisée n’a réussi à filtrer les
surfaces glacées.

(a) 12/2018 - 02/2019 (b) 06/2019 - 08/2019
Figure B.6 – Précipitations sur l’océan en utilisant les classes de précipitation.La figure (a)montre les données deDJF (décembre 2018 et janvier-février 2019).La figure (b) montre les données de JJA (juin-juillet-août 2019).

(a) 12/2018 - 02/2019 (b) 03/2019 - 05/2019

(c) 06/2019 - 08/2019 (d) 09/2019 - 11/2019
Figure B.7 – La SST représentée par les classes océaniques de segmentationpour (a) DJF, (b) MAM, (c) JJA, et (d) SON. L’étiquette de chaque pixel est obte-nue par vote majoritaire des occurrences de chaque classe.

La carte saisonnière de classes d’océan est obtenue à partir de vote majoritaire
dans chaque grille sur la période de DJF, MAM, JJA, et SON. Pour valider ces
classes, on les compare à certaines caractéristiques saisonnières de la SST. Par
exemple, La SST dans le golfe du Mexique est uniformément chaude en JJA, tandis
que pendant les autres saisons, la SST est moins chaude avec un léger gradient
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nord-sud. Pendant DJF et MAM, cette région est représentée par les classes de SST
les moins chaudes. On observe également des gradients de température selon les
saisons. Concernant la structure générale, les classes d’océan montrent les gradients
par latitudes qui varie selon la quantité de chaleur reçue. Pour toutes les saisons,
le bassin de l’est de l’océan Atlantique est plus chaud que le bassin à l’ouest. La
bordure ouest de la plupart des océans est plus chaude en raison des effets des gyres
océaniques qui transportent de l’eau plus chaude des tropiques vers des latitudes
plus hautes.

Ces résultats montrent que les classes correspondant à la SST sont capables de
capturer sa structure globale et sa saisonnalité. Chaque classe regroupe des SST
à des niveaux similaires. Par conséquent, en fonction de l’objectif, un plus grand
nombre de classes de SST permettra de représenter une gamme de températures
plus étendue.

B.3 . Application sur une série chronologique de GPM

Après la validation des résultats de la segmentation, les classes obtenues sont
utilisées pour analyser les données de GMI sur la période 2014-2024 et la significati-
vité des tendances est évaluée avec le test de Mann-Kendall. En parallèle, l’analyse
sur les tendances est aussi faite avec DRAIN et directement sur les températures
de Brillance observées dans le canal 89 GHz en polarisation horizontale (TB 89H).
Ces analyses sont réalisées à l’échelle globale entre 70°S et 70°N, sur la période
2014-2024 avec une résolution spatiale de 5°.

Notons que DRAIN dans sa version actuelle ne donne pas accès aux cumuls de
pluie mais uniquement aux intensités observées. Ceci est dû au fait que GPM-CO
ne passe qu’une à deux fois par jour sur la majorité des régions du globe et il est
donc impossible de calculer une lame d’eau. On peut toutefois utiliser le nombre
de pixels total normalisé par le nombre de pixel par latitude afin de réaliser une
analyse statistique.

La TB 89H est un bon indicateur de la nature de convection de la précipitation
car elle est presque proportionnelle à la quantité de glace produite dans la partie
convective des nuages. Entre 2014 et 2024, on observe une tendance décroissante
non significative dans les TB89H les plus froides. L’interprétation de cette ten-
dance reste difficile. Néanmoins, certains changements régionaux sont clairement
observés même s’il est impossible d’attribuer une cause. Par exemple, il y a une
tendance décroissante significative au-dessus de la forêt d’Amazonie, de la région
sud de l’Amérique du Nord, et du Golfe de Guinée. Avec peu de points de grille
présentant des tendances significatives, on observe également ce qui semble être
une diminution de l’activité convective autour de l’ITCZ.

Ensuite, le résultat DRAIN sur 10 ans de GMI montre une tendance signifi-
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cative de l’augmentation du nombre total de pixels de pluie et la diminution de
l’intensité de la pluie à l’échelle globale. Concernant l’intensité de pluie, au niveau
régional, la majorité des points de grille présentant une tendance avec une tendance
négative se trouve dans la région est de l’océan Pacifique. La région est de l’océan
Atlantique, la mer d’Arabie, et l’océan Indien voit quelques points de grilles avec
une tendance positive. En termes de nombre de pixel pluvieux, une augmentation
de l’occurrence de pluie se trouve en majorité dans les régions humides comme le
continent maritime, les trajectoires des tempêtes dans le nord-ouest du Pacifique
et Atlantique, l’Amazonie, et le SPCZ, avec l’exception de l’ITCZ. Il existe de
nombreuse explication possible pour l’augmentation du nombre total de pixels de
pluie. Par exemple, les cellules de pluie pourraient devenir plus grandes, durer plus
longtemps ou se produire plus fréquemment. Avec uniquement les données GMI, il
n’est toutefois pas possible de déterminer la cause exacte pour les raisons indiquées
ci-dessus.

Pour l’approche non-supervisée, les résultats montrent une tendance croissante
du nombre de pixels de classes de pluie pour trois régions du GIEC : WAF (non
significatif), BOB (significatif) et SEA (significatif). Au-delà de l’analyse « par
pixels », on peut étudier les objets de pluie dans la segmentation en définissant
un objet comme un groupe de pixels de classe pluvieux qui sont adjacent dans
l’image. Il y a globalement une augmentation non-significative de nombre d’objets
pluvieux. Les tailles des objets ne montrent pas de tendance pendant cette période.
Les tendances observées dans la segmentation non supervisée et dans DRAIN sont
cohérentes avec la continuité de la tendance des précipitations présentée dans le
sixième rapport du GIEC pour les données entre 1985-2014.

La conclusion de la nature de la tendance observée en utilisant uniquement les
données GMI est difficile. Avec GMI seule, nous n’observons que des précipitations
instantanées. La tendance pourrait être due à de multiples facteurs, tels que le
cycle de vie, la taille et le nombre d’occurrences des événements de précipitations.

B.4 . Adaptation de domaine

Comme mentionné en partie A.3, DRAIN ne fonctionne que pour GPM-CO qui
est le seul satellite de la constellation à proposer un radar qui permet d’avoir une
mesure partiellement colocalisée avec le radiomètre. Un travail effectué en parallèle
a consisté à tenter d’adapter DRAIN pour les autres satellites de la constellation
GPM dans le but d’augmenter significativement le nombre de passages en un point
du Globe donné. Chaque satellite contient un radiomètre qui mesure la tempéra-
ture de brillance dans différents canaux hyperfréquences avec des fréquences allant
généralement de 6 à 183 GHz. Cependant, il existe des différences de configura-
tion dans ces instruments qui font varier la distribution des données d’un satellite
à l’autre (choix des canaux, incidence des mesures, résolution des instruments).
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Pour une approche par apprentissage statistique, ce changement de distribution
des données détériore significativement la performance des modèles. Par ailleurs,
les orbitographies des différents instruments sont différentes et le nombre d’ob-
servations colocalisées est trop faible pour une approche supervisée. Une étude
de faisabilité sur une adaptation de domaine pour DRAIN utilisant CycleGAN est
présentée dans cette étude. L’objectif est d’augmenter la performance de DRAIN
sur l’instrument Special Sensor Microwave Imager/Sounder (SSMI/S) sur le De-
fense Meteorological Satellite Program F18, sans réentraînement. Le SSMI/S est
assez proche du GMI en choix de canaux, incidence à la surface et résolution mais
les différences sont suffisantes pour que les résultats de DRAIN soient fortement
dégradés si l’on ne procède pas à une adaptation de domaine des TB SSMI/S vers
les TB GMI.

CycleGAN est une transformation image-à-image qui contient deux GANs (Ge-
nerative Adversarial Networks) qui adaptent les images venant d’un domaine à un
autre domaine et vice versa. Grâce à sa performance supérieure dans l’algorithme
d’inversion DRAIN, U-Net est utilisé comme générateur pour les deux GANs.

Il y a peu d’images colocalisées entre GMI et SSMI/S qui contiennent de la
pluie. De plus, ces images sont mal distribuées en latitude avec des fortes occur-
rences aux hautes latitudes où les précipitations ne sont pas de nature très variée.
Le cycle GAN permet de transformer une image SSMI/S en image GMI puis de
retransformer l’image GMI en image SSMI/S.

Afin d’évaluer les données adaptées, l’intensité de pluie de DRAIN sur les TBs
adaptées sont d’abord comparées avec le radar de précipitation DPR et la sortie
de DRAIN à partir de données GMI en utilisant les intersections des orbites de
GMI et SSMI/S. Les résultats montrent qu’il y a une réduction significative de
l’erreur quand les TBs de SSMI/S sont adaptées. En outre, la structure de système
de précipitation s’améliore avec l’adaptation (Figure B.8). Ensuite, l’intensité de
pluie à partir de la donnée adaptée est comparé avec le produit de pluie de Météo-
France. Les résultats montrent encore une augmentation de performance de DRAIN
sur SSMI/S grâce à l’adaptation de domaine.

Cette étude sur l’adaptation de domaine entre SSMI/S et GMI montrent le
potentiel d’un modèle de l’apprentissage profond pour une inversion de précipitation
à partir d’observation satellitaire de TBs. Cependant, CycleGAN est un algorithme
difficile à entraîner et faire converger. En outre, CycleGAN ne peut que transformer
les données entre deux domaines. Il existe désormais des algorithmes plus innovants
qui permettent d’adapter entre plusieurs satellites simultanément.

L’approche de l’adaptation de domaine non-supervisée est avantageuse car
elle ne dépend pas de données colocalisées entre satellites et ne nécessite pas de
données auxiliaires. Par conséquent, l’approche non-supervisée peut être entrainée
sur n’importe quel satellite. Cette étape d’adaptation de domaine pourrait être utile
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Figure B.8 – L’intensité de pluie par DRAIN à partir de TB de GMI, TB de SSMI/Sadaptée, et TB de SSMI/S non-adaptée

pour homogénéiser les segmentations non-supervisées. En outre, la performance de
domaine adaptation sur DRAIN est un bon indicateur de l’efficacité sur l’approche
non-supervisé.

B.5 . Conclusion et perspectives

Ces résultats montrent que la segmentation non-supervisée est un outil po-
tentiel pour extraire des informations sur le cycle de l’eau à partir d’une immense
base de données d’observation spatial. La labélisation et l’interprétation des résul-
tats avec les données de précipitation et de SST montrent que la segmentation
peut retrouver la structure de variable géophysique et peut suivre la saisonnalité
de chaque variable. De plus, la segmentation permet de discriminer des classes
correspondant à d’autres variables géophysiques qui ne sont pas encore explorées
dans cette étude.

Sur des données multi-décennales, l’évolution des classes de segmentation pour-
rait contenir des informations importantes sur les changements dans le cycle de
l’eau. L’application de la méthode supervisée et non-supervisée sur les données de
GMI entre 2014 et 2024 montre les résultats cohérents avec la continuité de la ten-
dance de précipitation dans le rapport du GIEC. Les résultats de DRAIN montrent
une tendance de l’augmentation de nombre de pixels de pluie et une diminution de
l’intensité de pluie.

Les perspectives concernant le futur de ce travail consistent à améliorer la
performance de la segmentation non-supervisée et l’application sur l’ensemble des
satellites de la constellation de GPM.

Les modèles optimaux obtiennent des scores très similaires. L’amélioration de la
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segmentation pourrait être réalisée en créant un modèle d’ensemble en fusionnant
les segmentations de plusieurs modèles. Il peut être avantageux de vérifier si l’un
des modèles actuels se spécialise dans une variable géophysique particulière. Par
exemple, une solution possible pour aider le modèle à distinguer la pluie et la glace
sur les continents est de créer un ensemble de modèles avec un spécialisé dans la
pluie sur continent.

Par ailleurs, la vision par ordinateur est un domaine en constante évolution, et
de nouveaux algorithmes plus performants sont régulièrement mis à disposition de
la communauté scientifique. Le travail dans cette thèse a exploré en profondeur le
processus d’évaluation de la segmentation non supervisée sans vérité terrain. La
prochaine étape consiste à tester des algorithmes innovants potentiels en appuyant
sur cette démarche d’évaluation pour trouver des améliorations supplémentaires.

En utilisant les données GMI de 2014 à 2024, on observe une augmentation
significative du nombre total de pixels de pluie à la fois par les méthodes super-
visées et non supervisées. Cependant, en se basant uniquement sur les données
GMI, l’ensemble de données ne comprend que des observations instantanées des
précipitations. Par conséquent, la nature de l’augmentation du nombre total de
pixels de pluie n’est pas connue. L’utilisation des données de la constellation GPM
permettra une meilleure fréquence de revisite. Pour l’approche supervisée, l’appli-
cation sur d’autres satellites de la constellation nécessite une étape d’adaptation.
L’approche non supervisée, en revanche, peut être entraînée sur n’importe quel
satellite. Cependant, la segmentation qui en résulte aura des étiquettes différentes
pour les variables géophysiques. En utilisant leurs passages, nous pourrions regrou-
per les classes qui représentent la même variable géophysique. De plus, l’approche
d’adaptation de domaine pourrait être utilisée comme une étape intermédiaire
pour harmoniser les segmentations résultantes. Il convient également de noter que
l’analyse de l’évolution des quantités géophysiques basée sur l’ensemble de données
satellite nécessite que la distribution des données observées reste la même. Il est
essentiel de vérifier s’il y a des changements dus à la dégradation ou à l’ajustement
de l’instrument.
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C - Appendix : Acronyms and abbreviations

AR6 . . . . . . . . . The Sixth Assessment Report of the IPCC
BNN . . . . . . . . Bayesian Neural Networks
BOB . . . . . . . . Bay of Bengal
CNN . . . . . . . . Convolutional Neural Networks
CycleGAN . . . Cycle Generative Adversarial Nets
DBSCAN . . . . Density-Based Spatial Clustering of Applications with Noise
DJF . . . . . . . . . December-January-February
DPR . . . . . . . . . Dual-frequency Precipitation Radar
DRAIN . . . . . . Deep-RAIN
ENSO . . . . . . . El Niño-Southern Oscillation
FCN . . . . . . . . . Fully Concolutional Networks
GAN . . . . . . . . Generative Adversarial Nets
GHRSST . . . Group for High Resolution Sea Surface Temperature
GHz . . . . . . . . . Gigahertz
GIEC . . . . . . . . Groupe d’experts intergouvernemental sur l’évolution du climat
GMI . . . . . . . . . GPM Microwave Imager
GPCC . . . . . . . Global Precipitation Climatology Centre
GPCP . . . . . . . Global Precipitation Climatology Project
GPM . . . . . . . . Global Precipitation Measurement
GPM-CO . . . . GPM Core Observatory
GPROF . . . . . Goddard profiling algorithm
IPCC . . . . . . . . Intergovernmental Panel on Climate Change
ISM . . . . . . . . . Indian Summer Monsoon
ITCZ . . . . . . . . Inter-tropical Covergence Zone
JJA . . . . . . . . . . June-July-August
LATMOS . . . . Laboratoire Atmosphères, Observations Spatiales
MAM . . . . . . . . March-April-May
MLP . . . . . . . . Multilayer Perceptron
MRF . . . . . . . . Markov Random Field
NASA . . . . . . . National Aeronautics and Space Administration
NLP . . . . . . . . . Natural Language Processing
NOAA . . . . . . . National Oceanic and Atmospheric Administration
ReLU . . . . . . . . Rectifier Linear Unit
SEA . . . . . . . . . Southeast Asia
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SLIC . . . . . . . . . Simple linear iterative clustering
SON . . . . . . . . . September-October-November
SPCZ . . . . . . . South Pacific Convergence Zone
SSMI/S . . . . . Special Sensor Microwave Imager/Sounder
SST . . . . . . . . . Sea Surface Temperature
TB . . . . . . . . . . Brightness Temperature
TMI . . . . . . . . . TRMM Microwave Imager
TRMM . . . . . . Tropical Rainfall Measuring Mission
ViT . . . . . . . . . . Vision Transformer
WAF . . . . . . . . Western Africa
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