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Résumé
Cette thèse présente le développement de techniques avancées basées sur les don-
nées pour automatiser la détection et la classification des modes plasma dans les
expériences de fusion, en se concentrant particulièrement sur les instabilités d’Alfvén
et les modes magnétohydrodynamiques (MHD).

La première contribution de ce travail est le développement d’un algorithme de
codage parcimonieux capable d’identifier des modes directement à partir des signaux
bruts du plasma. Cette méthode, appelée “Elastic Random Mode Decomposition”,
applique une régression en réseau élastique parallélisée à des dictionnaires aléatoires
d’atomes de Gabor. Cet algorithme isole les composantes oscillatoires significatives,
même dans des signaux bruités.

De plus, des techniques d’apprentissage non supervisé sont utilisées pour regrouper
les modes MHD en se basant sur les signaux plasma et l’information mutuelle, per-
mettant la classification automatique de différents modes oscillatoires sans nécessiter
de données étiquetées. Ces étapes de création de caractéristiques et ces méthodes
de regroupement offrent une solution évolutive pour traiter de grands ensembles de
données issus des expériences de fusion, permettant d’identifier systématiquement
les instabilités plasma importantes.

La thèse explore également des méthodes de filtrage en vision par ordinateur pour
l’extraction de caractéristiques à partir d’images de spectrogrammes. Ces filtres
reposent sur l’analyse spectrale : transformée de Fourier, transformée en ondelettes et
transformée de Hough. Ils améliorent la qualité des données de spectrogrammes en
réduisant le bruit et les caractéristiques indésirables, améliorant ainsi les structures
temporelles et fréquentielles liées aux oscillations du plasma.

En outre, des algorithmes de segmentation couramment utilisés en vision par ordi-
nateur sont adaptés pour identifier les modes dans les images de spectrogrammes,
permettant une segmentation précise des motifs oscillatoires. Le flux d’algorithmes
de vision par ordinateur pour la segmentation est le suivant : des filtres de bruit, un
détecteur de crêtes, un seuillage automatique et l’étiquetage des régions.

Ce résultat pourrait être déterminant pour l’étiquetage systématique des signaux,
une étape cruciale vers l’automatisation de l’étiquetage des signaux diagnostiques du
plasma. Les méthodes développées ici constituent une étape nécessaire pour la for-
mation future de modèles d’apprentissage profond, qui pourraient encore améliorer
la surveillance et le contrôle en temps réel du plasma dans les réacteurs de fusion.

Mots clés : modes MHD, instabilités d’Alfvén, apprentissage automatique, parci-
monieux, réseau élastique, atomes de Gabor, analyse de signaux, apprentissage non
supervisé, vision par ordinateur, segmentation, étiquetage.
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Abstract

This thesis presents the development of advanced data-driven techniques to automate
the detection and classification of plasma modes in fusion experiments, focusing
particularly on Alfvén instabilities and magnetohydrodynamic (MHD) modes.

The first contribution of this work is the development of a sparse coding algorithm
capable of identifying modes directly from raw plasma signals. This method called
Elastic Random Mode Decomposition applies parallelized elastic net regression to
random dictionaries of Gabor atoms, this algorithm isolates significant oscillatory
components, even with noisy signals.

In addition, unsupervised learning techniques are employed to cluster MHD modes
using plasma signals and mutual information, enabling the automatic classification
of different oscillatory modes without needing labeled data. These feature creation
steps and clustering methods offer a scalable solution for processing large datasets
from fusion experiments, allowing for systematically identifying important plasma
instabilities.

The thesis also explores computer vision filtering methods for feature extraction
from spectrogram images. These filters are based on spectral analysis: Fourier trans-
form, wavelet transform, and Hough transform. They improve the quality of the spec-
trogram data by reducing noise and undesired features, enhancing time frequency
structures related to the plasma oscillations.

Furthermore, segmentation algorithms commonly used in computer vision (CV) are
adapted to identify modes in spectrogram images, enabling precise segmentation of
oscillatory patterns. The pipeline of CV algorithms for segmentation is the following:
noise filters, ridge detector, automatic thresholding, and labeling regions.

This result might be key for systematic signal labeling, a crucial step toward au-
tomating the labeling of plasma diagnostic signals. The methods developed here
provide a necessary step for future training of deep learning models, which could
further enhance real-time plasma monitoring and control in fusion reactors.

Key words: MHD modes, Alfvén instabilities, machine learning, sparse, elastic net,
Gabor atoms, signal analysis, unsupervised learning, computer vision, segmentation,
labelling.
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Résumé de la Thèse

Introduction
Cette thèse explore l’application des techniques d’apprentissage automatique, d’analyse
de signaux et de vision par ordinateur à la détection et à la caractérisation non super-
visée des modes plasma dans les expériences de fusion nucléaire, en mettant l’accent
sur les instabilités d’Alfvén.

Le travail est structuré en trois blocs thématiques. Les deux premiers chapitres
sont introductifs et offrent une vue d’ensemble des concepts de base de la fusion et
de l’apprentissage automatique. Les chapitres 3 et 4 examinent l’apprentissage non
supervisé des motifs MHD à travers le regroupement et le codage parcimonieux. Les
chapitres 5 et 6 se concentrent sur l’utilisation de l’analyse spectrale et de la vision par
ordinateur pour détecter les modes MHD.

Chapitre 1 : Physique de la fusion
L’énergie de la fusion nucléaire est le produit de la réaction entre deux noyaux iso-
topiques différents de l’hydrogène : le deutérium (D) et le tritium (T). Le processus
nucléaire se termine par la fusion des deux isotopes, ce qui entraîne la formation
d’isotopes d’hélium (He) et la libération de neutrons. La réaction nucléaire peut être
représentée comme suit :

D (2
1H)+T (3

1H) → 4
2He(3.5MeV )+ 1

0n(14.1MeV ). (0.1)

La différence de masse entre les réactifs et les produits est convertie en énergie
cinétique pure, E = mc2. L’énergie cinétique est répartie entre les particules alpha
(noyaux d’He) et les neutrons, 3,5 MeV pour chaque particule alpha et 14,1 MeV pour
chaque neutron.

Les densités, températures et temps de confinement nécessaires pour que la réac-
tion de fusion ait lieu sont définis par le critère de Lawson, qui pour la réaction D-T,
s’exprime sous la forme d’un produit triple [WC11] :

nTτE ≥ 3×1021 m−3 keVs, (0.2)

où n est la densité du plasma (en particules par mètre cube), T est la température
du plasma (en keV) et τE est le temps de confinement d’énergie (en secondes). Aux
températures et densités requises pour la fusion, le combustible se trouve à l’état de
plasma, un état de la matière où les électrons sont séparés des noyaux. Le plasma
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est confiné par des champs magnétiques dans des dispositifs appelés tokamaks ou
stellarators.

Les fréquences caractéristiques des ondes MHD sont comparables à la fréquence
de précession des ions confinés. Cela est important car une onde peut gagner de
l’énergie grâce à l’interaction avec des particules énergétiques. Si une perturbation
dispose d’énergie pour croître, une instabilité peut apparaître et conduire à une perte
de confinement. L’une des instabilités les plus courantes dans les plasmas de fusion
sont les ondes d’Alfvén, qui sont des ondes MHD se propageant le long des lignes
de champ magnétique. La détection de ces ondes est essentielle pour le contrôle du
plasma.

La vitesse d’Alfvén est proportionnelle au champ magnétique B , et inversement
proportionnelle à la racine carrée de la densité de masse du plasma

∑
ni mi . Lorsque

le plasma est composé d’espèces avec le même rapport charge/masse, la densité de
masse [Hei08] est proportionnelle à la densité électronique, VA ∝ B/

p
ne . Dans ces

cas, en substituant dans la relation de dispersion, nous obtenons :

f ∝ Bp
ne

∝ 1p
ne

. (0.3)

Cette équation nous permet de distinguer les modes d’Alfvén des autres ondes plasma,
car ils sont fortement corrélés avec le signal de diagnostic de densité du plasma.

Il existe de nombreux types de modes d’Alfvén qui peuvent être excités dans les
dispositifs de fusion, tels que les modes d’Alfvén globaux (GAE), les modes d’Alfvén
toroïdaux (TAE), les modes d’Alfvén elliptiques (EAE) et les modes d’Alfvén compress-
ibles (CAE).

L’identification des différents types d’instabilités ou leur prévision est essentielle
pour le contrôle du plasma. La détection de ces modes se fait généralement en
analysant les signaux des bobines magnétiques ou de l’interférométrie.

Chapitre 2 : Science axée sur les données

Apprentissage automatique
Une définition informelle de l’apprentissage automatique (ML) pourrait être : “ Les
ordinateurs se programment eux-mêmes avec des données. ” Ou une définition
plus détaillée : Étant donné un ensemble de données, les ordinateurs peuvent ap-
prendre à détecter des motifs (représentation optimale des données), puis effectuer des
actions complexes selon certaines contraintes (décisions optimales). En d’autres termes,
nous pouvons modéliser des relations fonctionnelles complexes entre les données
disponibles et la solution du problème d’intérêt : en supposant que y = f (x) existe
pour une fonction inconnue f , l’objectif de l’apprentissage statistique est d’estimer la
fonction f en utilisant un ensemble de données d’apprentissage X , afin de faire des
prédictions à partir de l’estimation ŷ = f̂ (X ) [Jam+14].

La différence principale entre l’apprentissage supervisé et non supervisé réside dans
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la présence d’étiquettes dans les données. En apprentissage supervisé, les données
possèdent des étiquettes, et l’algorithme apprend à les prédire. En apprentissage non
supervisé, les données n’ont pas d’étiquettes, et l’algorithme apprend à trouver des
motifs dans les données.

Un problème courant de l’apprentissage automatique est d’éviter le surapprentis-
sage (overfitting). Pour éviter cela, nous pouvons utiliser des techniques de régular-
isation. La régularisation ajoute un terme de pénalité à la fonction de perte pour
empêcher le modèle d’apprendre des motifs trop complexes.

Traitement du signal
Les informations contenues dans les signaux temporels et les images sont incroyable-
ment denses ; pour démêler les informations pertinentes, les scientifiques utilisent
des techniques de traitement du signal. Essentiellement, le traitement du signal est la
recherche de représentations alternatives des données qui révèlent les détails d’intérêt:
la transformée de Fourier, l’analyse par ondelettes et la transformée de Hough sont
des exemples de techniques de traitement du signal. Un exemple de décomposition
d’image utilisant cette DWT est montré dans la Fig. 2.8, et comparé à la Fig. 2.10.

Vision par ordinateur
La vision par ordinateur (CV) étudie les algorithmes et les modèles pour traiter, anal-
yser et interpréter des images et des vidéos. L’objectif ultime est d’imiter la perception
visuelle humaine. Pour s’attaquer à la complexité de la compréhension visuelle, la
recherche dans ce domaine est divisée en tâches spécialisées ou en sujets.

Dans ce travail de thèse, nous avons exploré des techniques de vision par ordinateur
traditionnelles et basées sur l’apprentissage profond pour analyser les données de
diagnostic du plasma. Les techniques traditionnelles de vision par ordinateur utilisées
incluent la détection de crêtes, le seuillage automatique et l’étiquetage de région. Les
techniques de vision par ordinateur basées sur l’apprentissage profond incluent les
réseaux de neurones convolutifs profonds (CNN) et l’apprentissage par transfert. Les
détecteurs de crêtes mentionnés ont été appliqués à une photographie de JET pour
comparer les différents résultats, Fig. 2.13. Une fois les crêtes améliorées, la même
technique de seuillage est appliquée. Dans la Fig. 2.14, les méthodes de seuillage
automatique sont comparées.

Chapitre 3 : Identification des modes à l’aide de la
régression parcimonieuse et des dictionnaires
aléatoires de Gabor
Dans ce chapitre, un nouvel algorithme de décomposition de mode appelé “ Elastic
Random Mode Decomposition ” (ERMD) est introduit. Il traite les signaux bruts des
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bobines Mirnov de TJ-II pour trouver des structures temps-fréquence. La phase de
codage du signal est détaillée dans la Fig. 3.13.

Le problème de l’analyse du signal peut être compris comme un problème de
régression linéaire. Étant donné un signal s, et une matrice de formes d’onde D, on
cherche les poids c , qui représentent le signal s = Dc . La matrice D est connue sous le
nom de matrice dictionnaire. Dans le cas de SRMD [RST22], les colonnes de D sont
composées d’atomes de Gabor réels, avec des fréquences, phases et emplacements
temporels aléatoires (d’où le terme aléatoire).

L’objectif est de trouver une représentation qui conserve les modes correspondant
aux harmoniques MHD tout en éliminant les caractéristiques indésirables comme
le bruit. Pour construire une matrice dictionnaire, nous supposons que le signal de
la bobine Mirnov peut être reproduit comme une combinaison linéaire d’atomes de

Gabor : si = W (t −τi )cos(2π fi t +φi ), où W (t −τi ) = exp
(
− (t−τi )2

2σ2

)
est une fonction

gaussienne de largeur σ. Le terme cos
(
2π fi t +φi

)
reconstruit la structure oscilla-

toire, et la fonction gaussienne module l’amplitude sur un temps spécifique τ. Une
représentation des différents atomes de Gabor est visible dans la Fig. 3.3.

Le signal peut être reconstruit en utilisant la combinaison linéaire de tous les atomes,
à condition que nous connaissions les coefficients ci qui représentent l’amplitude de
chaque atome.

s ≈∑
i

ci · si =
∑

i
ci ·exp

(
− (t −τi )2

2σ2

)
cos(2π fi t +φi ). (0.4)

Pour calculer les coefficients ci , il est possible d’utiliser un ajustement par régression
linéaire, où la pratique courante consiste à minimiser l’erreur quadratique ||s −Dc ||2.
Cependant, les valeurs des coefficients ci représenteront également le bruit dans le
signal audio.

Nous pouvons utiliser un réseau de neurones à une seule couche avec une fonction
d’activation linéaire y = X ·w +b, et b = 0. Nous entraînons le réseau de manière à ce
que l’entraînement soit équivalent à la résolution de notre représentation du signal
s = D ·c . En d’autres termes, l’architecture du réseau de neurones est équivalente à
l’équation du décodeur (ou équation de synthèse)(

Décodeur

équation

)
s = D ·c , (0.5)

et l’entraînement du réseau de neurones est équivalent à résoudre le problème
d’optimisation de l’équation de l’encodeur (ou équation d’analyse)(

Encodeur

équation

)
c = argmin

c

{||D ·c −s||22 +λ1||c ||1 +λ2||c ||2
}

. (0.6)

Il est important de noter la grande asymétrie entre le codage et le décodage. Parce
que l’équation du décodeur est linéaire, alors que l’équation de l’encodeur est non
linéaire. La Fig. 3.13 illustre schématiquement l’architecture du réseau de neurones
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utilisé. Même si la fonction d’activation est linéaire, la non-linéarité est présente dans
l’atome de Gabor, qui agit comme un noyau non linéaire. La profondeur est remplacée
par la grande longueur de la couche d’entrée. Dans ce travail, PyTorch [Pas+19] avec
les modules Lightning ont été utilisés pour implémenter ce modèle. En utilisant ce
réseau de neurones, nous pouvons bénéficier du calcul parallèle sur GPU.

Il convient de noter que l’équation de l’encodeur est différente de la formulation
BPDN, la fonction de perte dans l’équation de l’encodeur est connue sous le nom de
elastic net [ZH05]. Il y a cependant deux principales différences. Premièrement, la
formulation du problème est non contrainte (elle ne nécessite pas de paramètre de
bruit σ). Deuxièmement, il y a deux termes de régularisation λ1 et λ2 associés aux
modules du code c dans la norme ℓ1 ||c ||1 et la norme ℓ2 ||c ||2 respectivement, tandis
que dans BPDN, seule la norme ℓ1 est utilisée. La norme ||c ||2 favorise la présence de
groupes corrélés dans le code c [ZH05].

Une fois le signal encodé, nous pouvons créer des groupes d’atomes proches dans
le temps et la fréquence. Les algorithmes de regroupement basés sur la densité sont
adaptés à notre application, car les atomes encodés tendent à se concentrer sur les
structures de modes temps-fréquence, et ils sont équipés pour gérer les points de bruit
et les regroupements non linéairement séparables de formes et tailles arbitraires. Nous
proposons l’utilisation de DBSCAN hiérarchique (HDBSCAN) [Cam+15] qui n’assume
pas une densité constante et est capable de déterminer la structure de densité variable.
Un exemple du résultat de HDBSCAN est montré dans la Fig. 3.20.

Pour chaque mode identifié, à l’exception des regroupements de bruit (-1), il existe
deux options pour déterminer leur caractère potentiellement Alfvénique : (1) Calculer
la corrélation de Pearson entre les fréquences des modes et 1/

p
n. Si la corrélation est

supérieure au seuil de corrélation ρthr , étiqueter le mode comme 1 (Alfvénique), sinon
0 (Non Alfvénique). (2) Utiliser l’information mutuelle (MI) à la place, ce qui peut
aider à récupérer plus de modes. (Les détails peuvent être trouvés dans le chapitre
4). Le nouvel algorithme appelé Elastic Random Mode Decomposition (ERMD) est
résumé dans l’algorithme 2.

Chapitre 4 : Reconnaissance de motifs de haut
niveau
Une fois les atomes représentant le signal de la bobine Mirnov convenablement
extraits et regroupés en modes, un second regroupement peut être appliqué pour
extraire des motifs de plus haut niveau. Les signaux du plasma utilisés en plus de
la fréquence des modes sont le courant Ip , l’énergie magnétique W , et la densité
1/

p
n. Un exemple de ces signaux est tracé dans la Fig. 3.21. Le profilage de chaque

regroupement aidera à comprendre le résultat de l’exécution de l’ERMD, et la nature
des modes collectés. La méthode de regroupement choisie est K-means.

Le résultat du (t-distributed Stochastic Neighbor Embedding) T-SNE est montré
dans la Fig. 4.14, tous les modes découverts sont représentés dans un espace bidi-
mensionnel. Les numéros des étiquettes sont positionnés sur le tracé en prenant
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les valeurs moyennes des dimensions 1 et 2 dans chaque groupe. Enfin, l’étiquette
de classe résultant du regroupement K-means est utilisée pour assigner une couleur
aux points de projection et interpréter le résultat de la projection. L’interprétation
de l’analyse des regroupements est résumée dans le tableau 4.4. Pour plus de clarté,
nous fournissons des exemples de regroupements dans la Fig. 4.15.

Une autre façon d’analyser les relations entre les modes et les signaux du plasma est
la suivante : pour chaque mode, nous aurons des catégories binaires : La fréquence
du mode est-elle corrélée à la densité 1/

p
n ? (Oui ou Non) ; La fréquence du mode

est-elle corrélée au courant Ip ? (Oui ou Non) ; La fréquence du mode est-elle corrélée
à l’énergie W ? (Oui ou Non). Le tableau de contingence résultant (Tableau 4.2) pour
les caractéristiques des modes montre la distribution de fréquence multivariée de
la classe de mode Alfvénique, quantifiant la dépendance à ces nouvelles variables
catégorielles, et interprétant les fréquences relatives comme une probabilité si le
tableau est normalisé.

Chapitre 5 : Extraction de caractéristiques
spectrales par analyse du signal : Transformée de
Fourier, ondelette et transformée de Hough

Suppression du bruit large bande à l’aide des ondelettes
discrètes
Les ondelettes discrètes sont des réseaux de filtres multiscale-multidirectionnels. Un
exemple de décomposition spectrogramme est montré dans la Fig. 5.2. Le caractère du
bruit dans les spectrogrammes est fortement anisotrope, en raison de la fuite spectrale
du STFT dans chaque fenêtre temporelle. Ce bruit large bande se situe principalement
dans la sous-image des détails verticaux. Ainsi, en supprimant les détails verticaux de
l’image, nous pouvons réduire considérablement le bruit dans les spectrogrammes.
La Fig. 5.3 montre le résultat, y compris l’effet des événements d’injection de pellets
dans cet exemple particulier. Les étapes sont résumées dans l’algorithme 3. Le résultat
est une image propre ne contenant que les structures de mode.

Détection de motifs de lignes droites
Certains signaux observés dans les spectrogrammes apparaissent comme des lignes
droites avec des orientations spécifiques. Dans de nombreux cas, ces signaux ne sont
pas causés par des instabilités du plasma. Par exemple, l’antenne TAE crée un motif de
balayage de fréquence, visible dans la Fig. 5.4. Nous devons développer une méthode
pour détecter et extraire ces lignes droites des images, algorithme 4. Dans la première
étape de la détection, nous avons utilisé la transformée de Hough [DH72; GMK99]
pour trouver les lignes droites y = mx +b dans les images des spectrogrammes.
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Le résultat de la détection de lignes droites est montré dans la Fig. 5.6. La trans-
formée de Hough probabiliste [GMK99] peut être utilisée pour intégrer des priorités
telles que la longueur de ligne, l’orientation angulaire ou la séparation entre les lignes.
Les résultats de l’application de cette technique sont présentés dans la Fig. 5.7.

Suppression des motifs orientés avec la FFT2D
Pour procéder à la suppression des motifs orientés, nous commençons par les lignes
droites détectées à l’aide de la transformée de Hough. Dans l’espace de Fourier, les
informations de l’image sont exprimées sous forme de fréquences spatiales dans
deux directions. Les étapes sont résumées dans l’algorithme 5. Nous pouvons alors
concevoir un masque sur le spectre d’amplitude pour supprimer les fréquences dans
les directions souhaitées.

Si les algorithmes 3 et 5 sont combinés, l’image résultante offre un contraste amélioré,
mettant en évidence les caractéristiques MHD du signal. Dans la Fig. 5.9, la majeure
partie du bruit large bande et le signal complet de l’antenne TAE sont supprimés.

Correspondance de motifs multiscale-multidirectionnelle avec
les curvelets
La transformée de curvelet [Can+06] est une généralisation multidirectionnelle des
ondelettes discrètes (DWT), mieux adaptée aux images avec des bords courbes et
des caractéristiques directionnelles multiples, comme les modes MHD dans nos
spectrogrammes. Pour éliminer le bruit et les composants indésirables dans une
direction angulaire sélectionnée, nous fixons les sous-images correspondantes à 0,
puis appliquons la transformée inverse des curvelets.

Le résultat de l’utilisation de l’algorithme 6 est montré dans la Fig. 5.11. Les curvelets
éliminent efficacement le bruit anisotrope et améliorent le contraste des spectro-
grammes. Le signal de l’antenne TAE et les sous-harmoniques ICRH sont également
supprimés avec succès du spectrogramme, ainsi que l’élimination des dents de scie.

Chapitre 6 : Segmentation des modes avec la vision
par ordinateur
La segmentation d’une image I (x, y) peut être définie (page 131 de la Ref. [AR05])
comme l’identification d’un ensemble fini de régions, ou segments (R1,R2,R j , . . . ,RN )
tels que où la propriété de définition P détermine le résultat de la segmentation.

La fluctuation et la structure de l’intensité des pixels déterminent les caractéris-
tiques d’une image. La valeur de l’intensité des pixels peut être vue comme une
carte de paysage avec des vallées, des plateaux, des montagnes avec des crêtes et des
changements brusques comme des arêtes, ou des pics causés par du bruit. Dans la
Fig. 2.11, nous représentons une coupe simplifiée en une dimension de l’intensité des
pixels de l’image, avec les arêtes et crêtes mises en évidence.
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Les filtres de crêtes utilisés dans cette thèse sont les détecteurs de crêtes de Sato
[Sat+98], de Meijering [Mei+04], de Frangi [Fra+98] et de Hessian [Ng+15].

Une fois que les arêtes des spectrogrammes sont améliorées, la binarisation d’une
image I (x, y) peut être effectuée par la sélection d’un seuil global T . Le paramètre
seuil T peut être ajusté manuellement. Cependant, cela n’est pas pratique pour
analyser différentes expériences dans de grandes bases de données. Les algorithmes
de seuillage automatique global utilisés dans cette thèse sont ceux d’Otsu [Ots79] et
de Li [LL93; LT98]. À des fins de comparaison, nous montrons également le résultat de
la méthode de Yen [YCC95; San04], la méthode ISODATA [RC78; San04], la méthode
du triangle [ZRL77], le seuil minimal [Gla93; PM66], et le seuil moyen.

Les structures des modes binarisées sont clairement identifiables après l’amélioration
des caractéristiques et l’application du seuillage automatique. Cela souligne la néces-
sité d’utiliser la détection des arêtes ou des crêtes, avant la binarisation pour garantir
que les modes sont correctement séparés de l’arrière-plan. L’exemple 6.8 est utilisé
pour démontrer les méthodes de seuillage.

Il peut y avoir des cas où il n’y a pas de signaux indésirables, peut-être parce que
l’antenne TAE ou l’ICRH ne sont pas en fonctionnement dans ces cas. L’algorithme
présenté 7 peut être appliqué directement. Un exemple complet de pipeline de vision
par ordinateur est donné par l’algorithme 8. Il est à noter que ces pipelines sont
flexibles et peuvent être adaptés à différents signaux et différents spectrogrammes.

Nous pouvons utiliser le résultat de la Fig. 5.11 pour comparer les différentes
méthodes de détection des crêtes. Nous pouvons observer dans la Fig. 6.9, la Fig. 6.10,
et la Fig. 6.11, que des résultats équivalents pour séparer les modes de l’arrière-plan
sont obtenus avec les méthodes DoG, Meijering, Sato et Frangi à plusieurs échelles
σ= [1,2,3,4]. Dans ce cas, seuls les seuils calculés par la méthode de Yen fonctionnent.
Nous pouvons voir que les valeurs de seuil de la première rangée de la Fig. 6.11 sont
significativement plus élevées que les autres valeurs calculées par Otsu et la méthode
moyenne. Des preuves supplémentaires de l’efficacité de la méthode de Yen pour les
images traitées avec des curvelets peuvent être trouvées dans la Fig. 6.12.

Après avoir amélioré le contraste et supprimé d’autres composantes indésirables
du signal, il est raisonnable de supposer que les zones connectées de pixels d’image
représentent des modes MHD, qui peuvent être détectés en utilisant un filtre de
connectivité [WOS05; FG96]. L’application de l’algorithme 8 à un signal de bobine
Mirnov de l’expérience JET 92416 donne le résultat présenté dans la Fig. 6.15. Nous
pouvons conclure que les modes individuels sont étiquetés de manière satisfaisante.

Application aux spectrogrammes d’interférométrie
Les interféromètres laser sont des outils très utiles pour le diagnostic des plasmas.
Selon la conception de la machine, plus ou moins de composants optiques sont mon-
tés autour de la chambre à vide. Les oscillations mécaniques peuvent créer des motifs
parasites dans le spectrogramme. En outre, il peut y avoir d’autres sources de bruit
non identifiées ou d’interférences électriques qui peuvent affecter le spectrogramme
résultant. Dans la Fig. 6.17 (premier panneau), nous pouvons voir un spectrogramme
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de l’interféromètre rapide FIR de JET (KG1F) canal 3.
Dans le chapitre précédent, nous avons introduit comment créer des masques dans

l’espace de Fourier. Nous pouvons utiliser un masque très fin dans l’espace de Fourier
pour supprimer les lignes horizontales dans le spectrogramme.

Dans la deuxième rangée de la Fig. 6.17, le résultat du filtrage du spectrogramme est
visible, ainsi que le bruit supprimé de l’image. Il est maintenant possible de distinguer
certaines structures de modes présentes dans le noyau du plasma, juste en dessous de
200 et 400 kHz. Dans la troisième rangée de la Fig. 6.17, nous montrons le résultat du
seuillage du spectrogramme. Enfin, l’algorithme d’étiquetage a été appliqué à l’image
binaire pour identifier les modes dans la Fig. 6.18.

Segmentation d’un spectrogramme d’un décharge avec des
fishbones
Dans les algorithmes introduits au chapitre 5, nous supposions que toutes les in-
formations contenues dans la direction verticale étaient du bruit ou des artefacts
indésirables. Ce n’est pas le cas lorsque des fréquences balayées rapidement d’origine
physique, comme les modes “ fishbones ” ou les modes de particules énergétiques,
sont présents.

Une approche plus simple, si la segmentation est appliquée en premier (algorithme
7), consiste à utiliser les propriétés des régions après segmentation pour séparer et
filtrer les structures de mode du résultat. Le spectrogramme de la décharge JET 54300
illustré dans la Fig. 6.19 est un exemple d’un décharge avec des fishbones. Dans la Fig.
6.20, l’orientation des régions est utilisée pour séparer le résultat de la segmentation
en structures orientées horizontalement et verticalement.

Utilisation de l’apprentissage par transfert pour la détection
des modes
Enfin, nous avons revisité l’analyse des données TJ-II avec des algorithmes de vision
par ordinateur. Nous avons démontré l’utilisation de l’apprentissage par transfert
pour faire face à un faible volume de données. L’apprentissage par transfert est
le processus dans lequel des modèles pré-entraînés sont ajustés pour fonctionner
avec un ensemble de données spécifique. Les modèles pré-entraînés utilisés dans
ce travail sont SAM [Kir+23] (Segment Anything Model), Detectron2 [Wu+19] (un
framework open-source de Facebook pour la vision par ordinateur), et YOLOv8 [Ult]
(un framework open-source de vision par ordinateur de la société Ultralytics). Ces
frameworks incluent des modèles de pointe dans la segmentation et la segmentation
d’instance.

Les résultats montrent que l’apprentissage par transfert en utilisant Detectron2
produit la meilleure segmentation de l’activité MHD : un indice de Jaccard de 0.491 ±
0.130 sur l’ensemble de test (l’indice de Jaccard le plus élevé précédent était de 0.427
[Bus+21]). De plus, très peu de données étiquetées sont nécessaires (≈20 décharges
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pour Detectron2) pour obtenir des résultats avec un indice de Jaccard = 0.438 ± 0.13.

Conclusions
Dans le chapitre 3, un nouvel algorithme, ERMD, a été proposé, qui surpasse son
prédécesseur, SRMD, en travaillant efficacement dans le domaine temporel avec
des signaux bruts. Malgré certaines limitations liées aux coûts computationnels et
à l’ajustement des hyperparamètres, ERMD montre des résultats prometteurs, en
particulier pour l’identification des motifs Alfvéniques dans les signaux du plasma.
L’puissance de l’algorithme ERMD est remarquable, car il peut étiqueter plus de 700
décharges en une semaine, ce qui est difficilement possible lorsque l’étiquetage se
réalise manuellement. Bien que la mise en œuvre actuelle soit orientée vers l’analyse
inter-décharge, des travaux futurs pourraient inclure le développement d’un modèle
de substitution d’apprentissage automatique pour permettre la détection en temps
réel de l’activité Alfvénique à partir des signaux bruts des bobines Mirnov. L’algorithme
développé pour ce travail est hautement adaptable et peut être appliqué à une gamme
de signaux temporels non stationnaires et à haute résolution au-delà de la fusion
nucléiare. Les applications potentielles incluent l’analyse d’électrocardiogrammes,
l’activité sismique, et même l’analyse musicale, démontrant ainsi la large applicabilité
des techniques d’apprentissage automatique et de traitement du signal présentées.

Dans le chapitre 4, nous avons étudié des méthodes innovantes pour détecter
des motifs dans les données de fusion. L’une des innovations majeures de cette
recherche est l’utilisation de l’information mutuelle (MI) pour capturer à la fois les
relations linéaires et non linéaires entre les variables. Cette amélioration augmente la
robustesse de la détection des modes, la rendant plus résistante au bruit et aux valeurs
aberrantes. De plus, une technique de regroupement appliquée aux modes récupérés
par ERMD s’est avérée efficace pour résumer l’activité des modes et filtrer les données
bruyantes.

Dans les chapitres 5 et 6, nous avons démontré le potentiel de l’analyse du signal et
des algorithmes de vision par ordinateur pour filtrer le bruit et identifier les caractéris-
tiques clés dans les spectrogrammes. Cette thèse introduit des approches innovantes
pour le filtrage du bruit dans les spectrogrammes à l’aide de techniques classiques de
vision par ordinateur telles que les ondelettes et les curvelets. Les résultats obtenus à
l’aide d’un pipeline de segmentation en vision par ordinateur classique (extraction
de caractéristiques - détection de crêtes - seuillage - étiquetage) offrent une méthode
flexible capable d’étiqueter systématiquement les données des spectrogrammes. De
plus, un avantage majeur de ces algorithmes est qu’ils ne nécessitent pas de GPU et
que le temps de calcul est faible. Enfin, l’application de l’apprentissage par transfert
avec des modèles de pointe comme YOLOv8 a montré une amélioration de la précision
et de la vitesse de détection des modes en temps réel. Cela ouvre la voie à l’application
de telles techniques aux nouveaux dispositifs de fusion, où les données sont limitées,
contribuant ainsi à l’automatisation et à la surveillance en temps réel des diagnostics
de fusion.
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Introduction

This thesis explores the application of machine learning, signal analysis, and computer
vision techniques to the detection and unsupervised characterization of plasma modes
in nuclear fusion experiments, with a particular focus on Alfvén instabilities.

The work is structured into three thematic blocks, with each chapter addressing
a key aspect. In addition, a certain level of redundancy is included to allow each
chapter to be read independently. The first two chapters are introductory, providing
an overview of basic concepts in fusion and machine learning. Readers may choose to
skip one of these chapters, depending on their expertise or interest. Chapters 3 and 4
examine the unsupervised learning of MHD patterns through clustering and sparse
coding. Chapters 5 and 6 focus on the use of spectral analysis and computer vision for
detecting MHD modes.

Chapter 1 introduces the physics and engineering principles of fusion, offering a
basic understanding of nuclear fusion and MHD instabilities. It discusses key concepts
such as fusion reactions, plasma confinement, and Alfvén eigenmodes, while giving a
context of fusion research. The goal is to give the reader a foundational understanding
of the physics of Alfvén eigenmodes behind this thesis work.

Chapter 2 shifts the focus to data-driven science and the role of machine learning
(ML) in analyzing fusion plasma data. This chapter introduces the three key disci-
plines necessary for the development of the results in this work: machine learning,
spectral signal analysis, and computer vision. ML is presented as the culmination of
a data analysis process that begins with data extraction, processing, and statistical
analysis. Moreover, the spectral analysis introduced is essential for detecting periodic,
multiscale patterns in images before applying computer vision techniques to identify
MHD activity.

The next block begins with Chapter 3, which develops sparse regression and the use
of Gabor random dictionaries for mode identification in plasma signals. It starts with
a musical analogy, which recurs throughout the text. This material was part of the
seminar “From Music to Fusion: How Artificial Intelligence Helps Interpret Complex
Signals”, presented at AMU in May 2024. This chapter introduces sparse regression
as a key tool for identifying specific oscillations in time series data, demonstrating its
relevance in decomposing signals into meaningful modes.

Chapter 4 builds on these ideas by focusing on high-level pattern recognition. Ex-
panding on the signal decomposition techniques introduced in the previous chapter,
this chapter explores the application of unsupervised learning methods to identify
more complex, higher-level patterns in plasma signals. It covers techniques for dis-
covering relationships between variables—both continuous and categorical—and
introduces the concept of Alfvénic modes, a critical type of plasma instability. The

1



List of Tables

chapter demonstrates how large datasets from fusion experiments can be mined to
uncover hidden patterns and relationships, highlighting the potential of unsupervised
learning in plasma diagnostics. The algorithms and results discussed in chapters 3 and
4 were published in Nuclear Fusion [Zap+24b] just before the defense of this thesis.

Chapter 5 shifts to signal analysis and feature extraction, aiming to filter noise
and identify key features in spectrograms. The chapter introduces Fourier, wavelet,
and Hough transforms as tools for spectral feature extraction, emphasizing their
role in improving data quality by removing noise and highlighting critical patterns.
These techniques enhance the performance of the computer vision (CV) algorithms
developed in the following chapter. Some of the material in these two chapters has
been published in Plasma Phys. Control. Fusion [Zap+24a].

Chapter 6 explains how CV methods can be used to analyze complex modal struc-
tures in spectrogram images. Most of this chapter focuses on classic CV algorithms
that do not require GPUs, and are often used in other disciplines, such as microscopy
imaging, to label data. Key techniques such as ridge detection, automatic threshold-
ing, and region labeling are highlighted, demonstrating their effectiveness in breaking
down spectrograms into mode structures. The chapter also introduces the use of
transfer learning in deep learning models to enable fast inference of MHD modes.
State-of-the-art models like Detectron2 and YOLOv8 are used to improve the accuracy
of segmentation and pattern recognition in plasma data. These computer vision
methods allow for the automated identification of time-frequency structures, paving
the way for future real-time diagnostics using machine learning.

Finally, a brief conclusion to this thesis is presented. In addition, some appendices
provide supplementary material: metrics of ML, ML feature selection methods, and
the images of processed spectrograms in Chapter 5 are presented in Fourier space.
The thesis ends with the bibliographic references cited throughout the text.
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1. Fusion Physics

“The sun and its light,
the ocean and the wave,
the singer and his song.
Not one. Not two.”

— Anthony de Mello s.j.

Summary
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Fusion reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. What is plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4. Plasma confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5. Waves in plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6. Plasma diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7. Thesis problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1. Introduction
Nuclear fusion is an extremely rich field that connects with almost all disciplines
of physics and engineering. Although the history of fusion research involves many
characters and institutions, our intention is to provide a brief perspective of this
rich context, including some of the people and places historically involved, and the
associated time scales. Many references provide more detailed accounts of fusion
history [Mor18; Che11; Wag07; Mir19; Azi12; MSC21; Wag07].

What fuels the Sun? Behind this simple question lie some of the most important dis-
coveries in physics. Determining the energy source of the Sun is essential to estimate
its age. Curiously, this was of particular interest to both supporters and detractors
of Darwin’s theory of evolution [BS02], because early calculations based on energy
conservation and experimental measurements showed that the Earth was orders of
magnitude older than the Sun.

In 1920, Sir Arthur Eddington proposed that only 5% of hydrogen in the Sun could
account for its energy production if the transmutation of hydrogen into helium con-
verted the mass difference into free energy [Edd20]. Eddington’s proposal directly
cited Rutherford’s work on the transmutation of elements and F.W. Aston’s work on
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mass spectroscopy, which showed that the mass of helium is slightly less than the
mass of four hydrogen nuclei. Of course, he was also influenced by Einstein’s work on
relativity and Marie Curie’s work on radioactivity.

At the time, it was believed that the Sun was composed of the same matter as Earth’s
crust, and the neutron had not yet been discovered (the neutron was discovered later
by Chadwick in 1932). The hypothesis was that every atomic nucleus was made of
hydrogen ions (as explained by Rutherford’s early atomic model). Regarding the state
of matter in the Sun, it was believed that at least a large portion of stars should be in
a gaseous state where electrons are free particles, resembling an ideal gas. The term
“plasma” to describe this state was introduced in 1928 by Langmuir. Initially, the ideal
gas theory and the Stefan-Boltzmann law were used to estimate the temperature of
stars. Remarkably, the kinetic theory developed by Boltzmann to describe ideal gases
is still used today to describe plasmas in fusion devices.

But how can you measure something you cannot touch? The history goes back to
1666 when Newton separated the light of the Sun into a continuous “spectrum” of col-
ors, thus initiating the field of spectroscopy. Later, in 1814, Fraunhofer systematically
studied the existence of black lines in the light spectrum, and Kirchhoff identified
these lines with different atomic compositions years later. Today, we know, thanks
to Cecilia Payne-Gaposchkin’s thesis (1925), that the Sun’s most abundant element
is hydrogen (≈ 3/4), followed by helium (≈ 1/4). Once the composition of the Sun
became better understood, Hans Bethe proposed a detailed theory of nucleosyn-
thesis involving several fusion reactions in 1938. Remarkably, the development of
spectroscopy was also instrumental in the development of modern quantum theory,
which is necessary to describe collisions between atomic nuclei. Specifically, quantum
tunneling is needed to account for the correct probability of fusion reactions occurring
during collisions.

How can we reproduce fusion reactions on Earth to obtain energy in a controlled
way? We need to confine a plasma under controlled and sustained conditions so that
the fusion reaction can occur, i.e., a fusion reactor. The conditions for plasma density,
temperature, and confinement time were established by Lawson [Law57], and they
are detailed later in this chapter. The first man-made controlled fusion reactions were
achieved in particle accelerators led by Mark Oliphant at Cavendish Laboratory in
1932. However, in this approach, the energy input is much greater than the energy
output.

The first experiments aimed at developing a fusion reactor were variants of pinch
machines, in which a current j is discharged through a gas, ionizing it and creating
a magnetic field B that pulls the ions together through a compressing force j×B.
However, the first plasma instabilities (particularly kink instabilities) were observed in
these devices.

The Stellarator machine was introduced by Spitzer in 1958 [Spi58]. The twisted
shape of the magnetic coils in the machine theoretically compensates for the par-
ticle drifts by adding a rotational transform, “a twist” to the magnetic field. Other
approaches considered various magnetic mirror configurations to trap the particles.

Tokamak is an acronym derived from Russian, meaning “toroidal chamber with
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magnetic coils.” The “twist” in the magnetic field is produced by a current induced
in the plasma by a central solenoid. The first proper tokamak was constructed at
the Kurchatov Institute of Atomic Energy and named T3. In 1965, Lev Artsimovich
presented the tokamak at an IAEA conference in Culham. Soviet scientists had been
working with this approach for a decade in isolation, as nuclear research was classified
until the Atoms for Peace conference in 1958. However, their plasma temperature
measurements were not reliable. A team from the UK visited the USSR to use their
Thomson scattering technique to measure the plasma temperature. It was a success,
and the results were published in 1968 [Pea+69], marking a leap forward in plasma
confinement. The tokamak subsequently became the leading device in fusion research.
Its axisymmetry favored both ease of construction and the theoretical development of
plasma physics.

During the next decades, many experiments followed. The next generation of large
tokamaks was constructed in the 1980s: TFTR in Princeton, JET and ASDEX in Europe,
and DIII-D in California. A significant event during this decade was the discovery of the
high-confinement mode in ASDEX (1982) [Wag+82; Wag07], a plasma configuration
that improves the achievable density and temperatures.

With the turn of the millennium, the next generation of superconducting tokamaks
began operations: EAST in China (2006), KSTAR in Korea (2007), and JT-60SA in
Japan (2023). Recently, fusion ignition was achieved using inertial confinement at NIF
[Abu+22; Zyl+22]. Moreover, private investment has started to be attracted to nuclear
fusion, and the number of start-ups is growing. Overall, there are good reasons for
optimism at this time.

The ITER project began its technical design phase in the 1990s and is now under
construction in the south of France. ITER represents a critical milestone in demon-
strating the feasibility of nuclear fusion as a large-scale, carbon-free energy source. Its
aim is to achieve self-sustaining ’burning plasmas,’ where fusion reactions primarily
heat the fuel, by operating plasmas with currents up to 15,MA, magnetic fields up to
5.3,T, and the highest plasma volume ever produced, with almost 1000 m3. Moreover,
it serves as a technological demonstrator for overcoming construction and operational
challenges. Until it is commissioned, research on fusion physics, materials that can
withstand plasma conditions, and improving diagnostic methods, to name a few,
continues all over the world.

The Stellarator continued to be studied in some laboratories. The lack of axisym-
metry made its construction and design more difficult. With the development of
computational power in recent decades, it became possible to optimize the design of
coils and fields. In 1998, the Large Helical Device (LHD) began operations in Japan,
the same year as TJ-II in Spain. The Helically Symmetric Experiment (HSX) was com-
missioned in 1999 in the US. Recently, Wendelstein 7-X began operations, validating
the optimization models and construction process [Ped+16]. Because of the absence
of an externally induced plasma current that drives many of the instabilities and
disruptions in tokamaks, among other advantages [Boo21], interest in Stellarators has
been renewed.

Not only is it necessary to achieve high density, temperature, and confinement time,
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but it is also essential to maintain steady operation with controlled instabilities. An
instability is a plasma perturbation that can grow over time, disrupting confinement.
As mentioned earlier, the first type of instabilities discovered were macroscopic (kink),
which were understood using magnetohydrodynamic (MHD) theory. Modern MHD
theory was born in 1942 [Alf42] with Alfvén’s realization of a new kind of coupled
fluid-field wave. This was another gift from the Sun, as the first use of Alfvén waves
was to explain the velocity displacement of sunspots [Alf42]. Once macroscopic insta-
bilities were reasonably understood, microscopic instabilities (neoclassical transport,
turbulence, and other anomalous transport) became new lines of research. The fron-
tier is now to understand and predict the behavior of burning plasmas, which are
predominantly heated by fusion reactions and will occur in future fusion devices.

In this chapter, we introduce the basic physics of fusion to understand the exper-
imental data involved in this thesis work. We begin with fusion reactions and basic
magnetic confinement theory. Next, a description of MHD waves is necessary to
understand the types of instabilities studied in this thesis. The chapter concludes with
the problem statement of this thesis work.

1.2. Fusion reactions
Nuclear fusion energy results from the reaction between two atomic nuclei. The
most easily achievable fusion reaction on Earth is between two different isotopes of
hydrogen: Deuterium (D) and Tritium (T). The nuclear process concludes with the
fusion of the two isotopes, resulting in the formation of Helium (He) isotopes and the
release of neutrons.

The reaction can be represented by the following equation:

D (2
1H)+T (3

1H) → 4
2He(3.5MeV )+ 1

0n(14.1MeV ). (1.1)

The difference in masses between the reactants and the products is converted into
pure kinetic energy, as follows from the famous Einstein equation:

E = mc2 (1.2)

The kinetic energy is distributed between the alphas (He nuclei) and the neutrons, 3.5
MeV for each alpha particle and 14.1 MeV for each neutron.

The main advantage of fusion fuel is its high energy gain per unit of fuel mass. It is
the densest energy source accessible to humankind. The energy gain per unit of mass
is greater in fusion reactions than in fission reactions or chemical reactions.

D −T fusion : 17.6 MeV → 3.5 MeV/amu (1.3)

U fission : ∼ 200 MeV → 0.85 MeV/amu (1.4)

Carbon combustion : ∼ 1 eV → 0.08 eV/amu (1.5)
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As we can see, nuclear reactions release roughly 10 million times more energy than
chemical reactions, and since the combustion of hydrocarbons is the basis of our
energy source, their substitution by nuclear fuels would not only result in a more
efficient energy source but could also help mitigate the problems of massive burning
of hydrocarbons.

For the fusion reaction to take place, Deuterium and Tritium must collide; in other
words, they should approach each other at a necessary distance and speed. Both
isotopes have positive charges, so they repel each other with the electric force, which
has a very long action distance. Only when the short-range attractive nuclear force
can overcome the electrical force and keep the nuclei together, can nuclear reactions
take place. The nuclear particles naturally seek a state of minimum energy, emitting a
neutron and redistributing the difference of mass into kinetic energy.

The densities, temperatures, and confinement time necessary for the fusion reaction
to occur are given by Lawson’s criteria, which for D-T reaction is expressed as a triple
product [WC11]:

nTτE ≥ 3×1021 m−3 keVs, (1.6)

where n is the plasma density (in particles per cubic meter), T is the plasma tem-
perature (in keV), and τE is the energy confinement time (in seconds). When the
reactants are in thermal equilibrium and follow a Maxwellian distribution, the process
is referred to as thermonuclear fusion. These reactions are said to be thermonuclear.
When density plays the dominant role, the reactants undergo inertial fusion. In this
thesis, we focus on data from magnetic confinement devices that aim to achieve
thermonuclear fusion.

1.3. What is plasma
There are four states of matter: solid, liquid, gas, and plasma. At low enough tempera-
tures, most substances are solid, and atoms or molecules pack together in an ordered
structure. When kinetic energy is given to the particles, their velocity increases. First,
they start vibrating relative to their minimum energy positions, and progressively the
ordered structure begins to lose periodicity and form. The particles are then free to
move while occupying a similar volume, colliding with one another. At this point,
the liquid state is reached. Following the liquid state, if the temperature is increased
further, particles travel longer distances and collide more frequently. If they occupy
the maximum volume possible, the matter becomes a gas. During the processes of
melting and evaporation, atoms remain neutrally charged.

Finally, if more energy is given to gas particles through collisions, two phenomena
can occur: first, if the energy is below a certain threshold, electrons excite to higher
atomic orbits, emitting electromagnetic radiation when they return to lower energy
states. Second, if the energy exceeds a threshold known as ionization energy, which
depends on the atomic structure, collisions between atoms remove electrons from
their orbits, allowing nuclei and electrons to move separately. This gas, composed
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1. Fusion Physics – 1.3. What is plasma

of charged particles that act together in a collective manner, is known as plasma.
Due to the long-range action of electric forces and the high speed of particles, very
complex collective behavior emerges, as plasma particles try to compensate for every
small volumetric charge difference. This process is illustrated in the following (classic)
cartoon.

Figure 1.1.: States of matter. Adapted from [Sha+13].

After this description of the change of states in matter, we can take from Chen’s book
[Che18] a definition of plasma: “A plasma is a quasineutral gas of charged and neutral
particles which exhibits collective behavior”.

It is important to note that it is not necessary for the gas to be fully ionized to behave
like a plasma. The degree of ionization is modeled by Saha’s equation [Che18], ni /nn ∝
(T 3/2/ni )e−Ui /kB T . This equation shows how the ratio of ionized particles ni to neutral
atom densities nn depends on temperature T , their ionization energy (the energy
required to ionize an atom), and the Boltzmann constant kB . As temperature increases,
the ratio of ionized particles ni to neutral particles nn also increases, meaning more
particles become ionized at higher temperatures.

This state of matter has unique properties. Because most substances we perceive in
our daily lives are in solid, liquid, or gaseous states, some plasma physical properties
appear counterintuitive. However, most matter in the universe is actually in the
plasma state. For instance, ions and electrons act as different particle populations,
so they have different distribution functions, meaning they have different velocities
Vi ≈

p
(Ti /mi ) and Ve ≈

p
(Te /me ). The velocity of electrons is on the order of 40 times

higher than that of ions, Ve > 40 ·Vi . An example of plasma is the gas contained in
neon lamps, which can be held with a bare hand. This is possible thanks to the low
ionic temperature, while the electronic temperature can reach 20,000 K [Che18]. In
contrast, the plasma in ITER is expected to have Vi ≈ 1000 km/s and T ≈ 100 MK. It
is also important to note that in a plasma mixture of different species, ions of each
species can have different temperatures and density distributions.

8



1. Fusion Physics – 1.3. What is plasma

The definition of plasma needs to be done in quantitative terms, as not every ionized
gas behaves like plasma. The following three conditions must hold [Che18; Rax11]:

λD = 69
p

(Te /n) ≪ L (quasineutrality)

ND = n 4
3πλ

3
D ≫ 1 (collective behavior)

ω ·τ > 1 (enough collisions)

where λD is the Debye length, ω is the proper frequency of plasma waves, τ is the
mean time between collisions, ND is called the plasma parameter, representing the
number of particles inside a Debye sphere, and L is the length of the system.

Quasineutrality refers to the property of plasma in which the densities of positive
and negative charges are nearly equal over large volumes. In other words, even though
the plasma contains charged particles—electrons and ions—on average, the plasma is
electrically neutral when viewed on macroscopic scales. This is because the positive
charges (due to ions) and negative charges (due to electrons) tend to cancel each other
out. However, small local deviations from neutrality can exist on very short length
scales.

The condition λD ≪ L is a mathematical expression of quasineutrality, where λD ,
the Debye length, is much smaller than the overall size of the plasma L. The Debye
length is the scale over which electric fields within the plasma can affect charged
particles. Beyond this length, the shielding effects of surrounding charges neutralize
any electric field generated by an individual particle. Essentially, quasineutrality
implies that the plasma behaves as if it is neutral beyond a distance of λD , even
though it’s composed of charged particles.

Collective behavior in a plasma refers to the fact that individual particle interactions
are influenced by the presence of many other charged particles, leading to behav-
ior that cannot be understood by considering just a few particles in isolation. This
is different from neutral gases, where individual particle collisions can be treated
independently.

The final condition ω ·τ> 1 ensures that the gas exhibits plasma-like behavior in-
stead of behaving as a neutral gas [Che18]. Here, ω is the natural frequency of plasma
oscillations, and τ is the mean time between collisions. For the plasma to behave
collectively and maintain its quasineutrality, the particles must interact frequently
enough. When ω ·τ> 1, the particles are colliding frequently compared to the charac-
teristic timescale of plasma oscillations, ensuring that the plasma exhibits collective
effects.

The proper plasma oscillations described by ω tell us how fast the electrons or
ions in the plasma will oscillate if they are displaced from their equilibrium positions.
This is a characteristic frequency of the plasma and is independent of temperature,
depending only on the electron or ion density. For instance, the electron plasma
frequency is of the order of gigahertz (GHz) for typical laboratory plasmas, much
higher than the frequency of MHD waves, which are discussed later in this thesis.

It is interesting to know that plasma is the most abundant state of visible matter
in the universe: stars, nebulas, and galaxies. Although the plasma state can endure
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only in a vacuum, and we live in an atmosphere that does not favor its existence,
plasma is present in many earthly phenomena: fire, lightning, auroras, some types
of televisions, and fluorescent tubes. Plasma can exist at many temperature scales,
from a few hundred degrees Kelvin to several hundred million in Tokamak reactors.
The electron ND varies from 104 m−3 in interstellar space to 1031 m−3 in the solar
core, λD can vary from 100 m in interstellar space to 1 µm in the stellar core, and the
proper frequencies ω vary from a few 104 rad/s to 1014 rad/s. A diagram indicating
the different types of plasmas and their parameters can be found on page 12 of Ref.
[BB04].

1.4. Plasma confinement
Electric particles moving in a homogeneous magnetic field experience a force perpen-
dicular to the field and their velocity, as depicted in (Fig. 1.2 - right). The Lorentz force
equation describes their movement accurately:

F = e Z (E+v×B). (1.7)

The Lorentz force does not have a component along the magnetic field B , it is always
directed perpendicular to the magnetic field. It causes the particle to have a helical
movement around the field lines (Fig. 1.2 - left). The helical trajectory of these particles
is called Larmor orbits, or gyro-orbits.

Figure 1.2.: Lorentz force: parallel and perpendicular velocities motion of particles in
a magnetic field. The resultant combined motion is helical (Larmor orbits
on the left).

The Larmor radius ρ = mv
∥q∥B and the cyclotron frequency ω = ∥q∥B

m describe the
circular movement component (also known as gyro-radius and gyro-frequency, re-
spectively). The Larmor radius depends on the respective kinetic energies of the
electrons and ions. The linear movement depends on the particle velocity component
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along the field lines. The cyclotron frequency is ≈150 GHz for the electrons and ≈40
MHz for the ions.

Several magnetic configurations allow partial confinement of charged particles. For
instance, the cyclotron was one of the first particle accelerators. It used a constant
magnetic field to confine the particles and accelerate them in a spiral trajectory before
releasing them into the target. Since charged particles follow magnetic field lines with
a parallel velocity, it is natural to think about bending the magnetic field to confine
the particles. Another example is the magnetic mirror: two parallel rings of currents
can create a potential magnetic well that can partially confine particles. However, for
the case of fusion, we need a special magnetic field topology configuration so we can
confine particles long enough (many orbits) while they are heated and collide. We
need to bend the field lines so all particles are confined in a volume. The tools we have
to do so are external magnets and the magnetic field produced by the plasma current
itself.

Figure 1.3.: Hairy ball:
the vector field is not confined
on the surface (from [24d]).

Figure 1.4.: Hairy torus:
the vector field is confined to
the surface (from [24d]).
Also the toroidal and poloidal
directions are indicated.

Two theorems from topology explain how to configure a vector field on a surface
so that it does not have singularities. The hairy ball theorem tells us that a vector
field cannot be confined to a spherical surface without creating a singularity (any
continuous tangent vector field on the sphere has at least one point where the field
is zero [BK17]), see Fig. 1.3. In contrast, the geometrical shape that allows us to
“comb” magnetic field lines and close them is a torus, Fig. 1.4. Note how the field lines
twist around the torus. These helicoidal magnetic lines are closed, and particles can
theoretically circulate the torus without leaving it.

The hairy ball theorem is a special case of the Poincaré-Hopf theorem, which tells
us that [Ric08] “for any vector field on a closed surface S with only finitely many zeros,
the sum of the indices of all zeros equals the Euler number of the surface”. Without
entering into the details of how to calculate the indices and the Euler characteristic,
we can say that the Euler characteristic of the 2-sphere is two [Ric08]. Therefore, there
must be at least one zero. However, in the case of the torus, the Euler characteristic is
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0; therefore, it is possible to create a field without zeros and “comb a hairy doughnut
flat”. It is important to note that this is only a necessary condition; not all vector fields
that can be held in a torus are free of zeros.

The Lorentz force and the hairy ball theorem help build an intuition of how one
particle may follow this ideal field configuration. However, we have ignored many
physical factors: the situation becomes more complex if we consider a system of
particles, as the electric field causes them to interact with each other. In addition,
the Lorentz force assumes a constant field. In real scenarios, the trajectory passes
through inhomogeneous fields, experiencing additional force components called
drifts. Moreover, accelerated charges emit radiation, losing kinetic energy. It is worth
mentioning that, since the Larmor radius is different for electrons and ions, they will
have different trajectories.

In Fig. 1.4, the toroidal and poloidal directions are indicated. The toroidal direction
is the direction around the torus, and the poloidal direction is the direction in the plane
perpendicular to the toroidal direction. The toroidal direction is toroidal direction is
the long direction around the “hole” in teh torus. The poloidal direction is the short
way around the “bend” cylinder.

In this text, we will not discuss particle drifts in detail; they are discussed in many
plasma physics references. However, it is important to mention the basic cases. A
Larmor orbit can be drifted: in the presence of external forces, when the magnetic
field is inhomogeneous, in the presence of an electric field, when a static magnetic
field has curvature, or when the electric field is time-dependent. The drift directions
depend on the charge sign in the case of drifts due to magnetic field gradients and
field curvature. Therefore, when ions and electrons are present in an inhomogeneous
curved magnetic field, they drift in opposite directions, causing a charge separation.

There is another reason, besides topology, to choose a torus. If the field is only
toroidal, one might think that particles can be confined in the toroidal direction,
orbiting around a center. However, this configuration has a problem: the particles
will drift away from the torus because of the presence of an inhomogeneous curved
magnetic field. In Fig. 1.5, an “only toroidal field” device is shown (left), along with the
tokamak (center) and stellarator (right) field configurations. The toroidal magnetic
field has a gradient in the radial direction, which produces a charge separation, and
the electric field generated by this charge separation will cause a E×B drift, pushing
the particles away from the torus.

To cancel the E×B drift, the idea is to average the drift E×B for each Larmor orbit
around the torus so that the result is zero. It is necessary to add a “twist” to the toroidal
field line so that the drift E×B rotates around the torus. This way, the drift for each
Larmor orbit is compensated around the torus. This has been often compared to
holding honey with a spoon; if the spoon is straight, the honey will fall, but if the
spoon is twisted, the honey will remain.

In other words, it is necessary to add a poloidal field component to the magnetic
field so that B = Btoroidal +Bpoloidal. This poloidal field can be generated by external
coils, as in the case of the stellarator, or by the plasma current itself, as in the case of
the tokamak. This is depicted in Fig. 1.5.
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Figure 1.5.: Toroidal field vs Tokamak vs Stellarator magnetic configurations. Adapted
from [Igo14].

In the case of the tokamak, the plasma current is generated by a central solenoid,
which induces a current in the plasma. The plasma current Jpl asma generates the
poloidal magnetic field. The orientation of the poloidal field is determined by the
right-hand rule: imagining the thumb of the right hand pointing in the direction of
the current Jpl asma , closing the hand curls the fingers in the direction of the magnetic
field.

Figure 1.6.: Toroidal geometry and alternative coordinate systems: general coor-
dinates (or curvilinear) (ϕ,θ,ζ), cartesian (x, y, Z ), polar (R,φ,Z), and
toroidal (ρ,θ,φ). Adapted from [Sha+13]
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To describe the magnetic field in a torus, it is necessary to choose an appropriate
coordinate system. Alternative systems are shown in Fig. 1.6. In a torus, the two main
directions are the toroidal and poloidal directions. The toroidal angle is the angle
around the torus, and the poloidal angle is the angle in the plane perpendicular to the
toroidal direction. The major radius is the distance from the center of the torus to the
magnetic axis; the minor radius is the distance from the magnetic axis to the plasma.
The aspect ratio of the device is given by the ratio of the major to the minor radius.

The Cartesian coordinates (x, y, Z ) are the most familiar system, but they are not
ideal for describing the toroidal geometry of a fusion device. The magnetic field lines
in these devices follow curved paths, making Cartesian coordinates cumbersome
for representing the circular and helical shapes inherent to the plasma. The polar
coordinates (R,φ, Z) are an extension of Cartesian coordinates, which can be useful
for some applications in axisymmetric systems like tokamaks.

The toroidal coordinates (ρ,θ,φ) are particularly useful for the torus-shaped geome-
try of tokamaks. In this system, ρ is the radial distance from the magnetic axis, θ is the
poloidal angle (around the small circular cross-section), and φ is the toroidal angle
(around the large axis of the torus). This system aligns better with the magnetic field
structure, where field lines follow helical paths in concentric surfaces.

The general coordinates (curvilinear coordinates) (ϕ,θ,ζ) are often used in stel-
larators, which lack the axisymmetry of tokamaks, or in tokamaks when 3D effects
are considered. Unlike toroidal coordinates, curvilinear systems can account for the
helical, non-symmetric magnetic field lines. Their rigorous definition requires tensor
calculus, which is out of the scope of this introduction. A specialized monograph on
the subject is Ref. [Dha12] and for the sign conventions Ref. [SM13].

1.4.1. Magnetohydrodynamics (MHD) equilibrium
Three lines of research in plasma physics derive from the triple product [Fre14]: heat-
ing, transport, and MHD. However, density and temperature are roughly proportional
to plasma pressure, which is studied by magnetohydrodynamics theory, while con-
finement time (transport) is studied by kinetic theory.

In kinetic theory, the Boltzmann equation describes the evolution of the distribution
function f , which represents the probability of finding a particle with a given velocity
at a given position. The Boltzmann equation includes the effects of external forces
and collisions:

∂ f

∂t
+v ·∇ f + F

m
· ∂ f

∂v
=

(
∂ f

∂t

)
coll

(1.8)

where the force F acting on a particle with charge q is given by the Lorentz force:

F = q(E+v×B), (1.9)

and the collision term
(
∂ f
∂t

)
coll

accounts for particle-particle interactions.

It is worth noting that MHD equations can be derived from kinetic theory ([GP04]
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chapter 3) by appropriate averaging. The MHD equations describe the macroscopic
behavior of the plasma, treating it as a continuous fluid rather than a distributions of
individual particles. That is why MHD is appropriate for describing the equilibrium
and stability of magnetically confined plasmas.

Many references offer a more detailed and rigorous treatment of MHD and kinetic
theory with applications to magnetic confinement devices, such as Refs. [Fre14; Rax05;
Rax11; BB04; GP04; GKP10; Zoh15; HM03; Jar10; WC11]. It is important to note that
there are many variations or “flavors” of MHD models. The simplest model is ideal
MHD, which considers the plasma as a single superconducting fluid.

The MHD equations are a set of coupled, highly non-linear differential equations
that describe the behavior of a magnetized plasma as a fluid. These equations are
derived from first principles like the conservation laws of mass, momentum, and
energy, combined with Maxwell’s equations for electromagnetism, or by averaging the
kinetic equations.

The MHD equations are valid when [Fre14]: the plasma is highly collisional, char-
acteristic dimensions much larger than an ion gyro radius and the resistive effects
can be neglected despite increased resistivity from collisions. They also describe
low-frequency phenomena, where MHD frequencies are much smaller than the gyro
frequency of the particles and the proper frequencies of the plasma, as mentioned in
the order of GHz.

In MHD, the plasma behavior is described by a set of equations that combine the
principles of electromagnetism and fluid dynamics. These equations govern the
behavior of the magnetic fields, electric fields, and the motion of plasma particles. The
change in particle orbits (gradients of pressure) can create what are called diamagnetic
fields and diamagnetic currents. The fields themselves are responsible for the plasma
confinement and the particle orbits. Perturbations to the field can create waves, and
the particles can interact with the waves and vice versa. This phenomenon is all
coupled together. However, the coupling between individual particle orbits and MHD
waves is not directly modeled by ideal MHD.

The MHD equations include Maxwell’s equations for modeling the electromagnetic
fields. The Gauss law for electric fields is given by:

∇·E = ρe

ϵ0
, (1.10)

where ρe is the charge density. In MHD, where the net charge density ρe is often
negligible (since the plasma is quasineutral), this simplifies to:

∇·E = 0. (1.11)

The magnetic field B is divergence-free, leading to the condition:

∇·B = 0. (1.12)

In other words, there are no magnetic monopoles, and the magnetic field lines form
closed loops.
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Faraday’s law of induction describes how changing magnetic fields induce electric
fields:

∇×E =−∂B

∂t
. (1.13)

Ampère’s law, which relates the magnetic field to the electric current density J, is:

∇×B =µ0J+µ0ϵ0
∂E

∂t
. (1.14)

In MHD, the displacement current termµ0ϵ0
∂E
∂t is often negligible due to the timescales

involved, so Ampère’s law simplifies to:

∇×B =µ0J. (1.15)

The generalized Ohm’s law in MHD is given by:

E+v×B = ηJ, (1.16)

where η is the resistivity, and v is the plasma velocity. In ideal MHD, the resistivity
is zero (η = 0), and the fluid is superconducting. Therefore, ideal MHD does not
model resistivity effects like magnetic reconnection. This equation represents how
the electric field E is influenced by the magnetic field and the motion of the plasma.

The continuity equation, which expresses mass conservation, is:

∂ρ

∂t
+∇· (ρv) = 0. (1.17)

The momentum equation (also called the MHD Euler equation in [Rax11]), which
describes the force balance on a plasma element, is:

∂v

∂t
+ (v ·∇)v =− 1

ρ
∇p + 1

ρ
(J×B), (1.18)

where J = 1
µ0
∇×B. This equation shows that plasma motion is influenced by both

pressure gradients and the Lorentz force J×B. Note that qE in the Lorentz force is a
current.

The magnetic induction equation describes how the magnetic field evolves over
time:

∂B

∂t
=∇× (v×B)−∇× (ηJ). (1.19)

This equation also describes the convection and diffusion of the magnetic field (this
equation is called the convection-diffusion equation in [Rax11]), where the first term
represents convection created by the plasma flow, and the second term represents the
diffusion of the magnetic field due to resistivity, which again is zero for ideal MHD.

The equation of state relates the pressure p to the plasma density ρ and temperature
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T :
p = p(ρ,T ). (1.20)

Some models assume an ideal gas equation of state, where p = (ρ/m)kB T , with kB

being the Boltzmann constant. This leads to the energy equation (d/dt )
(
p/ργ

)= 0,
where γ is the ratio of specific heats, and d/dt is the fluid derivative.

The necessary condition for equilibrium is that time derivatives of the vector field
quantities are zero. Setting the time derivatives to zero in Ampère’s law and the
momentum equation gives the MHD conditions for equilibrium:{

J×B =∇P

∇×B =µ0J,
(1.21)

These conditions are valid for both tokamaks and stellarators. The first equation
describes the force balance between the pressure gradient and the Lorentz force,
while the second equation governs the relationship between the magnetic field and
the plasma current. Fig. 1.7 shows the force equilibrium in a tokamak, where the
magnetic field confines the plasma.

Figure 1.7.: Equilibrium of forces in a tokamak

In equilibrium, the plasma satisfies conditions like J·∇P = 0 and B·∇P = 0, meaning
that the current and magnetic fields are aligned with the pressure gradient isobaric
surfaces. This fact can be used to construct a coordinate system that follows flux lines
[HM03; Rax11]. The magnetic field can be expressed in flux coordinates as:

B = 1

2π
(∇ΨT ×∇θ−∇ΨP ×ζ) (1.22)

where ΨT and ΨP are the toroidal and poloidal fluxes, respectively. The fluxes are
calculated by either surface integrals or volume integrals of the magnetic field as in
Ref. [HM03] pages 53ff. When the equilibrium is axisymmetric (as in tokamaks), the
magnetic surfaces are nested toroids like in Fig. 1.7. In stellarators, the existence of
nested surfaces depends on the external coil design. It is worth noting that there are
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Figure 1.8.: Typical plasma profiles of temperature T , density n, toroidal field Bϕ,
poloidal field Bθ, and toroidal current Bϕ varying with minor radius r .
Adapted from Ref. [Rax11].

alternative flux coordinate definitions, for example, Boozer coordinates or Hamada
coordinates, which are appropriate for stellarators and 3D equilibria in tokamaks. As
explained in Hazeltine’s book [HM03] there are also straight-line coordinates: for an
arbitrary system of coordinates, if the field lines are drawn in a ζ-θ plane, the field
lines look curved. However, if “straight-line” coordinates are used, each field line
looks straight in theΨT -ΨP plane. To summarize, we have Cartesian, polar, toroidal,
curvilinear coordinates, and some flux coordinate alternatives, each appropriate for
different purposes.

When there is axisymmetry, the MHD equilibrium of Eq. 1.21 can be transformed
into the Grad-Shafranov equation [Fre14; Rax11]. The equilibrium can then be solved
by taking into account the poloidal flux, the pressure profile, and the poloidal current
profiles. This task is often done with numerical codes such as HELENA [HGK+91;
Goe81; Poe+96]. Although this equation is nonlinear and usually solved numerically,
there are some cases where analytic solutions can be found (Solovev solutions).

In the case of stellarators, the MHD equilibrium described by Eq. 1.21 has to be
solved directly, and the 3D plasma confinement theory mathematics are more complex
[Hel14]. 3D equilibria is solved numerically with codes such as VMEC [HW83; HVM86]
or its variants [Gar90; Str97; Spo+01].

Many quantities help to characterize the plasma equilibrium that cannot be mea-
sured directly. The use of a equilibrium reconstruction like EFIT or a surrogate model
[Lao+22] is necessary. Plasma profiles, such as temperature T , density n, the toroidal
current Iϕ, and magnetic fields Bϕ and Bθ, vary with the minor radius r of the plasma,
as shown in Fig. 1.8.

The plasma β represents the ratio of plasma pressure to magnetic pressure (from
[WC11]):

β≡ thermal pressure

magnetic pressure
= p

B 2/2µ0
, (1.23)

The plasma β is a measure of the plasma pressure relative to the magnetic pressure,
and it quantifies the importance of plasma pressure in the equilibrium of the plasma.
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A high β indicates that the plasma pressure is significant compared to the magnetic
pressure, which can affect the stability and confinement of the plasma. It is important
to note that this quantity varies with the minor radius r of the plasma, so alternative
averaged definitions of β exist.

The safety factor q , which describes the twisting of magnetic field lines in the
tokamak, is defined as:

q ≡ dΨT

dΨP
= dζ

dθ
. (1.24)

The q factor is usually set slightly greater than 1 in the core of the plasma to ensure
stability against internal kinks, and it increases monotonically toward the edge of the
plasma.

The rotational transform ι (the q-profile of stellarators) describes the number of
toroidal rotations per poloidal rotation:

ι≡ 2π
dΨP

dΨT
= 2π

dθ

dζ
. (1.25)

The reason to define ι for stellarators is likely due to the fact that the q factor evolves to-
ward negative values at the edge (the shear is usually reversed in stellarators compared
with tokamaks), and ι gives a monotonically increasing quantity.

The magnetic shear s, which measures the variation of the safety factor with radius,
is given by:

s ≡ d q

dψP
= d 2ψT

dψ2
P

. (1.26)

Magnetic shear is beneficial for plasma stability, as it prevents the propagation of
perturbations along the perpendicular field direction. A reversed shear is key for
the production of internal transport barriers (ITB) in advanced tokamak scenarios
[Sha21].

Finally, at certain surfaces the fields join up with them selves again when there is
an integer number of toroidal (n) and poloidal turns. This happens when the safety
factor q is rational, given by:

q ≡ dζ

dθ
= m

n
, (1.27)

where m and n are integers, representing the poloidal and toroidal mode numbers,
respectively. It can be shown, using Hamiltonian theory, that resonant magnetic
perturbations (see [Rax11], pages 165-167) are located in this surfaces.

Therefore, the q-profile, rotational transform ι, and magnetic shear s are essential
for understanding the behavior of the plasma and designing magnetic confinement
devices. It is important to note that these quantities are dimensionless. By controlling
these parameters, scientists and engineers can optimize plasma stability and confine-
ment, leading to more efficient and reliable fusion reactors. It is important to note
that these quantities are not measured directly, and their values are inferred from
equilibrium reconstruction codes.
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1.4.2. Tokamaks vs Stellarators

Figure 1.9.: JET tokamak (from Eurofusion) and TJ-II stellarator (from CIEMAT).

In magnetic fusion, achieving ignition—the point where plasma self-heats and sus-
tains the fusion reaction—can be approached in three ways [Sha21]: increasing energy
confinement time, increasing magnetic field strength, or increasing beta (the ratio
of plasma to magnetic pressure). Each of these methods has distinct technological
challenges and physical limitations, but together they offer different research lines for
the design of fusion devices.

One approach to achieving ignition is by increasing the energy confinement time τE .
This involves ensuring that the plasma retains energy for longer periods before it cools.
A longer confinement time can be achieved by increasing the volume of the fusion
reactor, as larger volumes help sustain energy. For example, in a reactor generating
1 GW of power, a plasma volume of approximately 1000 m3 is required. The ITER
project is designed to come close to this critical size. Current reactors like the Joint
European Torus (JET), with volumes around 100 m3, are still subcritical in volume,
meaning they cannot yet achieve ignition based on confinement time alone [Sha21].

Another method to achieve ignition is by increasing the magnetic field B , which
enhances the plasma confinement. However, raising the magnetic field strength
beyond 5 T is technologically difficult due to the increased pressure on magnetic coils.
The magnetic pressure on the structure rises significantly with higher fields, making
it a major engineering challenge. For instance, magnetic pressures around 1 kg/cm2

for a 0.5 T field escalate to approximately 400 kg/cm2 for a 10 T field. Projects such as
Alcator C-MOD and IGNITOR have been designed to push the boundaries of magnetic
field strength, while high-temperature superconducting magnets offer a promising
future solution for increasing B [Sha21].

Finally, increasing betaβ, the ratio of plasma pressure to magnetic pressure, presents
another path to ignition. Higher beta values allow more plasma pressure to be con-
fined for a given magnetic field. This method is limited by physical constraints, specif-
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ically magnetohydrodynamic (MHD) instabilities, which cap the maximum beta.
However, optimizing the magnetic field topology, such as using spherical tokamak
designs, can achieve higher beta values. Spherical tokamaks, like MAST and NSTX,
have demonstrated much higher beta levels than traditional machines, making them
a promising concept for future fusion reactors [Sha21].

Figure 1.10.: Triple product of some Tokamaks and Stellarators

In Fig. 1.10, we compare a sample of different triple products achieved by tokamaks
and stellarators. We can see that the triple product of tokamaks under construction is
close to the ignition threshold. Additionally, the performance of optimized stellara-
tors is approaching that of tokamaks. However, tokamaks are able to achieve higher
temperatures than stellarators. The triple product depends on the experimental con-
ditions, so Fig. 1.10 offers only a sample of many experiments. For a more exhaustive
comparison of the triple product between stellarators and tokamaks, consult Ref.
[WH22].

It’s worth including for comparison other fusion reactions that are being studied,
D-D and D-He3.

D (2
1H)+D (2

1H) → 3
2He(0.82MeV)+ 1

0n(2.45MeV) (1.28)

2
1H+ 3

2He → 4
2He(3.6MeV)+ 1

1p(14.7MeV) (1.29)

Their triple product dependency with temperature is included in Fig. 1.10. Their
reactivity is much lower than that of D-T, therefore the triple product needed to
achieve ignition is an order of magnitude higher than for D-T.

Stellarators and tokamaks have both advantages and disadvantages compared to
each other. Tokamaks achieve higher triple products than stellarators, heat the plasma
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to higher temperatures, and have better particle confinement (neoclassical). Stellara-
tors, on the other hand, have fewer current-drive instabilities because the poloidal
field is produced by external coils, and they do not experience disruptions, or runaway
electrons [Boo21]. Stellarators offer many possible magnetic configurations and opti-
mization possibilities. However, once the coils are optimized, the operational margin
is usually less flexible compared with tokamaks.

The major physical difference between tokamaks and stellarators is the axisymme-
try of tokamaks and the non-axisymmetry of stellarators, as it can be appreciated in
Fig.1.9. The axisymmetry allows the conservation of particle toroidal angular momen-
tum [Hel14] (also called canonical angular momentum), which enables better particle
confinement than stellarators. In stellarators, the lack of axisymmetry produces many
local minima in the field lines around the torus. The particles are easily trapped in
these minima and drift away quickly (this trapped particle orbits of local minima—also
called banana orbits—do not precess around the torus like in a tokamak). An analo-
gous effect is produced in tokamaks when there are gaps or misalignments between
toroidal coils, producing small perturbations to the axisymmetry; this 3D effect is
called error field in tokamaks. Therefore, the optimization of magnetic configurations
in stellarators must take into account trapped particle orbits to improve particle con-
finement, aiming for what is called quasisymmetry. In addition, other parameters
like transport or plasma wall wall interactions can be optimized. For a more detailed
comparison between tokamaks and stellarators, see Ref. [Hel+12; Boo21].

1.5. Waves in plasmas
Wave phenomena is ubiquitous in all physical disciplines, and plasmas are no excep-
tion. Waves propagate energy perturbations through matter or fields. The waves in
plasmas can be classified into three main categories [Rax11]-chapter 8: electromag-
netic waves (light), heating waves, and destabilizing waves.

Electromagnetic waves (light, x-rays) are the same as in a vacuum, and they are
used for diagnostic purposes. They have frequencies much higher than the rest, in
the order of THz, and the characteristic wavelength is the shortest of all (smaller
than the electron gyrofrequency). Heating waves are used to heat the plasma and
have frequencies in the order of GHz (frequencies ranging from ion gyrofrequency,
lower-hybrid frequency, pulsating plasma frequency to the electron gyrofrequency)
and characteristic wavelengths in the order of cm-mm.

Destabilizing waves are characteristic of MHD instabilities and turbulence. They
have frequencies in the order of kHz for MHD waves and kHz-MHz for turbulence.
Their characteristic wavelength is in the order of the machine’s major R radius or the
minor radius a (meters) for MHD waves, and between the ion gyroradius and the
electron gyroradius for turbulence (cm-mm).

The characteristic frequencies of MHD waves are comparable to the precession fre-
quency of confined ions or any other bouncing frequency of confined particles. This is
important because a wave can interact with distributions of particles through an effect
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known as Landau damping. If the wave frequency is close to the confined bouncing
frequency of confined particles, the wave can gain energy from the slowing-down
distribution to grow and become an instability; otherwise, the waves get damped
and disappear. An immediate consequence of the formation of resonant waves is a
perturbation of the equilibrium configuration of the plasma, leading to the deteriora-
tion of confinement. Particle and energy loss occurs, reducing the triple product and,
consequently, plasma performance. In this thesis, we focus our attention on MHD
waves and MHD instabilities. Their ability to generate growing stationary waves on
the scale of fusion devices, when resonating with confined particle orbits, makes them
an important phenomenon to understand and control in fusion devices.

Other types of waves worth mentioning are sound waves, which are compressional
waves that propagate through the plasma at the sound speed, and drift waves, which
are driven by density gradients and propagate perpendicular to the magnetic field.
The velocity of propagation for the different waves has to be calculated using their
dispersion relation ω(k) and the wave vector k. Additionally, waves can have different
velocities in different directions; this is called anisotropy. The waves can be classified
by their polarization, the direction of the electric field with respect to the magnetic
field. The waves can be longitudinal, transverse, or elliptical. They can also be classi-
fied by their phase velocity, the velocity of the wavefronts, and the group velocity, the
velocity of the energy transport. Discussing all these details is beyond the scope of this
introduction, but detailed discussions are available in the plasma physics literature.

In conclusion, waves in plasmas are a multiscale, complex phenomenon. The waves
can interact with particles, fields, and couple with other waves. However, in this thesis,
we focus on MHD waves and instabilities, particularly Alfvén waves, which are the
ones observed in our diagnostic data and are relevant for the macroscopic plasma
confinement in burning plasmas.

1.5.1. MHD waves in homogeneous plasmas
The MHD wave equations can be derived from a perturbed MHD equilibrium J0 ×
B0 =∇P0, where the subindex 0 denotes the equilibrium quantities. The perturbed
quantities are [Sha+13]: B = B0 +δB, J = J0 +δJ, v = δv, P = P0 +δP , ρ = ρ0 +δρ, and
E = δE, where ρ is the plasma density.

It can be shown [Fre14] (page 51) by conservation of the magnetic flux in the ideal
non-resistive plasma MHD approximation that magnetic lines are frozen into plasma,
so magnetic lines move with the plasma. This means that plasma displacement ξ from
the equilibrium δv = ∂ξ

∂t translates into a magnetic signal that we can measure.
The MHD wave equations are obtained by linearizing the MHD equations around

the equilibrium configuration. After some algebra, the following equation can be
obtained [Sha+13]:

∂2ξ

∂t 2
= c2

S∇divξ+V 2
A∇⊥ divξ⊥+V 2

A
∂2ξ⊥
∂z2

(1.30)

This equation describes linear MHD perturbations in ideal homogeneous plasmas.
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Where the speed of sound is

cS =
√
γp0

ρ0
, (1.31)

and the Alfvén speed is

VA = B0p
µ0ρ0

. (1.32)

The vector equation 1.30 can be separated into three wave equations for the shear

Alfvén waves ∂2ξ⊥
∂t 2 = V 2

A
∂2ξ⊥
∂z2 , the compressional Alfvén waves ∂2 divξ⊥

∂t 2 = V 2
A∆⊥ divξ⊥,

and the slow magnetosonic waves ∂2ξz
∂t 2 = c2

S
∂2ξz
∂z2 . Shear Alfvén waves are transverse

waves that propagate along the magnetic field lines, compressional Alfvén waves are
longitudinal waves that propagate along the magnetic field lines, and slow magne-
tosonic waves are longitudinal waves that propagate perpendicular to the magnetic
field lines. This is depicted in Fig. 1.11. Of the three types of waves, the shear Alfvén
waves are the easiest to excite [Sha+13].

Figure 1.11.: Types of MHD wave perturbations of ideal homogeneous plasmas in a
cylinder: Compressional Alfvénic waves (CA), shear Alfvén Waves (SA),
and slow magnetosonic waves (SM). Adapted from [Sha+13].

In the case of shear Alfvén waves, the perturbed magnetic field lines can vibrate
transversally like a guitar string. The waves propagate in the parallel direction with
respect to the field. The dispersion relation can be written as

ω= k||VA, (1.33)

where the wave vector k|| is parallel to magnetic field lines. We can rewrite VA by
expressing the density as the sum of the mass of the species in the plasma ρ0 =∑

ni mi :

VA = B√
µ0

∑
ni mi

. (1.34)

The Alfvén speed is proportional to the magnetic field B , and inversely proportional
to the square root of the mass density of the plasma

∑
ni mi . When the plasma is
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composed of species with the same charge/mass ratio, the mass density [Hei08] is
proportional to electron density, VA ∝ B/

p
ne . In these cases, substituting into the

dispersion relation, we have

f ∝ Bp
ne

∝ 1p
ne

. (1.35)

This equation allows us to distinguish Alfvén modes from other plasma waves, because
they are strongly correlated with the plasma density diagnostic signal.

Waves are often expressed with a Fourier expansion in which one harmonic (or one
mode) represents a displacement ξ. A harmonic can be defined for toroidal geometry
as follows [Igo14]:

ξ(ρ,θ,φ, t ) = ξr (ρ)cos
(
nφ−mθ−2π f t

) ·eγt , (1.36)

where ξr is the radial amplitude function (depending on the radial coordinate ρ), φ
and θ are the toroidal and poloidal harmonic angles, respectively, and m, n are the
toroidal and poloidal harmonic numbers associated. The above parameters determine
the spatial distribution and the temporal evolution of the mode. A sea of such modes
can exist in the plasma

1.5.2. Alfvén waves in inhomogeneous plasmas
In the beginning, it was believed that shear Alfvén waves would be strongly damped
and not be discretely observable. The reason is that in an inhomogeneous plasma with
VA =VA(r ) and k|| = k||(r ), the frequency varies with radius. Additionally, the varying
q-profile (varying shear) along the minor radius changes the direction of wave vectors.
Therefore, the waves propagate with different velocities and directions, dispersing
quickly. This type of mode is known as a continuum mode, where mode perturbations
are highly localized in the radial direction, but these perturbations are highly damped.
In Fig. 1.12, we can see the dispersion relationships of the different types of modes
and their radial distribution. The first row shows the continuum type. An antenna
sending a signal with a frequency in the continuum will create a highly localized radial
structure but with high damping.

The first discovery contradicting this expectation was the experimental finding of
the Global Alfvén Eigenmodes (GAE) in plasma cylinders [RCM82]. In cylindrical
geometry, the length of the cylinder L determines the smallest parallel wave vector as
kmin = 2π

L > 0. Therefore, the lowest shear Alfvén (SA) frequency remains above zero.
It was found experimentally that a resonance of frequency ωGAE <ωA can exist if the
current profile in the cylinder creates a minimum in the Alfvén continuum. This is
allowed by the condition:

1

k||
dk||
dr

=− 1

VA

dVA

dr
(1.37)

which occurs in the vicinity of a minimum in the Alfvén continuum,

25



1. Fusion Physics – 1.5. Waves in plasmas

(
dωA(r )

dr

)
rmin

= 0. (1.38)

These are depicted in the second row of Fig. 1.12. The perturbation can extend
along the radial direction and the mode can be excited.

The GAE wave propagation is analogous to total internal reflection in optical fibers
[Sha21]. The GAEs propagate through a waveguide in the plasma defined by a maxi-
mum in the radial refractive index Nr = c/kr (a minimum in frequency ωA(r )).

Figure 1.12.: Dispersion relationships and Mode structures. Adapted from [Pin96]

There is a third type of shear Alfvén wave that appears in inhomogeneous plasmas:
the coupling type. It was found [CCC85] that due to the non-uniform toroidal magnetic
field, the continuum is broken up into small continuum bands, and new discrete
toroidal eigenmodes can exist inside the continuum gaps.
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The parallel wave vector for the mode m in toroidal geometry is given by:

k∥m(r ) = 1

R

(
n − m

q(r )

)
. (1.39)

The coupling between adjacent modes, m and m +1, is given by the condition:

k2
∥m−1V 2

A =−k2
∥mV 2

A . (1.40)

The condition for the safety factor q at which TAE modes can occur can be calculated
by substituting Eq. 1.39 into Eq. 1.40:

1

R

(
n − m

q(r )

)
=− 1

R

(
n − m +1

q(r )

)
, (1.41)

and then solving for q , which gives:

q = m −1/2

n
. (1.42)

Substituting this value of q into Eq. 1.39, and the result intoω= k∥m(r )VA, we obtain
the frequency of the gap formed by the coupling of the m and m+1 modes. This mode
is known as the Toroidal Alfvén Eigenmode (TAE) and has a frequency:

ωTAE
∼= VA (rTAE)

2R0q (rTAE)
. (1.43)

In the last row of Fig. 1.12, we can see the dispersion relationship of the coupling
type. The two harmonics of the mode are localized in the radial direction and the
mode can be excited easily, overcoming damping.

The formation of frequency gaps is a common wave phenomenon observed in vari-
ous physical systems [Hei08]. Examples include the electron band gap in conductors
and Bragg reflection in optical filters. As Lord Rayleigh noted, any periodic modu-
lation of the refractive index N creates a band gap. In conductors, the periodic ion
lattice causes changes in N in the electron wave equation, while in photonic crystals,
alternating layers of materials with different N produce a frequency gap. Similarly, in
optical fibers, periodic variations in the core’s refractive index create a “fiber Bragg
grating”.

These gaps arise due to the interference of counterpropagating waves reflected
backwards by the periodic modulations [Hei08]. In toroidal plasmas, variations in the
magnetic field B , which occur due to rotational transform and poloidal currents, result
in a variation of the Alfvén speed along a field line, effectively acting like a periodic
refractive index. Since the Alfvén speed is proportional to B , these variations lead to
frequency gaps. Additionally, factors like elliptical or helical geometry, changes in
compressibility, and electron dynamics can introduce further couplings and influence
gap formation. The nomenclature of the different types of shear Alfvén eigenmodes
can be found in Table 1.1.

The equilibrium stability can be analyzed with codes like the MHD linear code
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Acronym Name Necessary condition
RSAE Reversed-shear qmin (Also known as Alfvén cascades)
BAE Beta Compressibility
GAE Global Minimum in Alfvén continuum
TAE Toroidal m and m +1 coupling (toroidicity)
KTAE Kinetic Electron dynamics
EAE Ellipticity m and m +2 coupling (elipticity)
NAE Noncircularity m and m +3 coupling (triangularity)
MAE Mirror n and n +1 coupling
HAE Helicity n and m coupling combinations

Table 1.1.: Nomenclature of shear Alfvén eigenmodes. Theoretical and experimental
observations are available in Ref. [Hei08].

MISHKA [Mik+97] or its CASTOR variants [Ker+98; BK99; SG16]. Non linear stabil-
ity can be studied with codes like LIGKA [Lau+07] with HAGIS [Pin+98] or FAR3D
[Spo+21].

It is worth noting that by identifying the Alfvén mode type, their frequency and mode
number, we can infer equilibrium properties using their propierties. This method is
called MHD spectroscopy [Fas+02; Sha+01].

1.5.3. Energetic particle drive
The waves explained in the last section need a source of free energy to be excited,
also known as a drive. Inhomogeneous plasmas in fusion devices have many types of
gradients: pressure, current, magnetic field, shear, etc., which can act as sources of free
energy. To compile this introduction, information from monographs about energetic
particle instabilities [Sha+13; Hei08; Pin+15; GPT14] and detection-control [Igo14] has
been used. The historical development of the field (experiments and theory) can be
consulted in Refs. [Hei08; GPT14].

The Alfvén wave instabilities are extensively studied because energetic particles
(EPs) can transfer energy to plasma waves. Gradients in the EP distribution come
either from external heating, like Ion Cyclotron Resonance Heating (ICRH) or Neutral
Beam Injection (NBI), or from the nuclear fusion reactions, like alpha particles. In
burning plasma, He2+ ions coming out of the deuterium-tritium reaction have a high
energy of 3.5 MeV and fulfill the conditions mentioned to drive the different kinds
of Alfvén waves. With the energy coming from EPs, the instabilities can increase
their amplitude (positive γ), causing particle and energy losses, reducing the reactor
efficiency due to loss of energetic particles (reduction of alpha confinement). On
fusion fuel-less experimental devices, EPs are provided by heating systems, allowing
researchers to study this phenomenon before achieving ignition.

The general expression for power transfer between a particle and the fields of a
long-wavelength, low-frequency wave is given by the rate of change of energy dW

d t .
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According to Ref. [Hei08], the formula is:

dW

d t
= e Z vd ·E⊥+e Z v∥E∥+µ

∂B∥
∂t

. (1.44)

The terms in the formula are defined as follows: e represents the elementary charge of
an electron, while Z is the charge state of the particle, typically greater than 1 for ions.
The drift velocity of the particle orbits is denoted by vd , and E⊥ refers to the transverse
electric field, which is perpendicular to the magnetic field. The velocity component of
the particle orbits parallel to the magnetic field is given by v∥, and the parallel electric
field is represented as E∥. Additionally, µ is the magnetic moment of the particle, and
∂B∥
∂t describes the time variation of the magnetic field parallel to the particle trajectory.

The first term e Z vd ·E⊥ describes the power transfer due to the drift motion of
the particle in the transverse electric field. For shear Alfvén waves, this term is often
dominant because the transverse electric field can be significant, and the drift velocity
of the particle orbits is the main contributor to energy transfer between the particle
and the wave.

The second term e Z v∥E∥ represents power transfer due to the particle’s parallel
velocity v∥ in the presence of a parallel electric field E∥. In shear Alfvén waves, this
term is generally small because the electric field component parallel to the magnetic
field is small unless mode conversion occurs (to a wave with a large electrostatic
component).

The third term µ
∂B∥
∂t corresponds to the power transfer due to the time variation of

the parallel magnetic field. Since the magnetic perturbation of shear Alfvén waves is
mostly transverse, this term is typically small, especially in low-β tokamaks (where
plasma pressure is much smaller than the magnetic pressure).

Alfvén Eigenmodes (AEs) can be excited by EPs if three primary conditions are
satisfied, as explained in Chapter 9 of Igochine’s book [Igo14].

First, the drift frequency resulting from the radial gradient of EPs pressure Pα must
exceed the Alfvén frequency ωAE = 2π fAE. This condition is mathematically expressed
as [Igo14]:

ωdα ≡−m

r

Tα
eαB0

d ln pα
dr

>ωAE, (1.45)

where m represents the poloidal harmonic, r is the minor radius, Tα is the EP
temperature, eα is the EP charge, B0 is the equilibrium magnetic field strength, and
pα denotes EP pressure. This condition is necessary because in curved fields, power
transfer can occur, but only the drift velocity vd ∝ωd contributes, as shown in the
power transfer equation.

Second, the free energy from the radial gradient of EP pressure needs to be coupled
to the energy of the AEs through wave-particle resonances, such as the Landau res-
onance, where the parallel velocity of alpha particles V∥α equals the Alfvén velocity
VA.
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To the later we can also add a resonance condition for the particle orbits

ω+pωθ−nωζ ≃ 0 (1.46)

where ω denotes the wave frequency of the Alfvén eigenmode (AE), the orbit poloidal
frequency is given by ωθ, ωζ is the toroidal orbit frequency. The integer p indicates
that resonance can occur at different harmonics of the poloidal orbit, and the integer
n is the toroidal mode number.

Finally, the power transfer from EPs to the AEs, denoted as Pα, must exceed the
wave damping caused by the thermal plasma. This is represented by the inequality:

γα = Pα
2WAE

> γplasma. (1.47)

where WAE is the wave energy, and γplasma is the damping rate of the thermal
plasma. The main mechanisms of damping are four [Pin+15]: Landau damping due
to collisions with ions, or collisions with trapped electrons, radiative damping and
continuum damping.

Non linear effects that can also be observed should be mentioned. They reveal sev-
eral behaviours in the mode amplitude and frequency evolution that can be observed
in diagnostic data, including [Sha21]:

(a) the amplitude grows until saturation at nearly constant frequency, following the
Alfvén scaling law f ∝ B0p

ni
;

(b) the amplitude becomes modulated at constant frequency, leading to phenomena
such as “pitchfork splitting” and chaotic structures in Fourier spectrograms;

(c) the amplitude shows rapid bursts over time, with the mode frequency sweeping,
commonly referred to as “chirping” modes.

In conclusion, it is important to note that many other types of instabilities can be
observed in fusion devices, such as fishbones (internal kink driven by EPs), neoclassi-
cal tearing modes (NTMs), edge localized modes (ELMs) in tokamaks, and magnetic
islands rotating with the plasma. More information can be found in Refs. [WC11;
Igo14]. The abundance of instability phenomena presents a challenge to detect and
classify the different types of instabilities.

1.6. Plasma diagnostics
There is a large variety of diagnostics used in fusion plasmas. They can be active or
passive, meaning that they either interact with the plasma or not. They can also play a
role in real-time control or be used for data collection and later analysis. The plasma
diagnostics used in Tokamaks, which can also be used in Stellarators, are extensively
discussed, for example, in Igochine’s book [Igo14] and in chapter 10 of Wesson’s book
[WC11]. The following text provides a brief introduction.
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Light is studied in the infrared, visible, and X-ray regions by cameras, bolometers,
and spectroscopy devices. Radiation is measured by particle counters, Faraday cups
(which measure the energy of fast ions), scintillators, and bolometers. Bolometry and
soft X-ray diagnostics are capable of reconstructing 2D profiles of the plasma.

Various diagnostics are used to measure MHD perturbations, plasma current, elec-
tron density, and plasma energy in fusion plasmas. Mirnov coils, Electron Cyclotron
Emission (ECE), Far Infrared (FIR) interferometry, and reflectometry are particularly
effective for capturing MHD activity. Plasma current is commonly measured with
Rogowski coils, while electron density is measured using interferometry and reflec-
tometry. Diamagnetic loops provide measurements of the total plasma energy content.
These complementary diagnostics offer a comprehensive understanding of plasma
behavior and are essential for controlling and studying fusion plasmas in fusion de-
vices. Cameras in the visible and infrared regions are used to monitor the heating of
plasma-facing components.

Mirnov coils (also called pickup coils) are the most commonly used diagnostic for
detecting MHD perturbations. Their construction is very simple, they consist of a
coiled wire. The magnetic flux is proportional to the number of turns N in the coil,
the area A defined by the turns, and the alignment B ·n with the measured magnetic
field: Φ= N · A ·B ·n [WC11]. The magnetic flux can be measured by integrating the
voltage induced in the coil V ∝−dΦB

d t . These coils measure the time-varying magnetic
flux and are effective in capturing oscillatory magnetic perturbations, such as Alfvén
Eigenmodes (AEs), which have frequencies ranging from 10 kHz to 500 kHz.

By placing arrays of Mirnov coils toroidally and poloidally around the plasma, re-
searchers can determine the mode numbers and propagation direction of these in-
stabilities. However, Mirnov coils are most sensitive near the plasma edge, making
them less effective for detecting perturbations deep in the core. Other tools like ECE
and FIR interferometry can fill this gap by providing better resolution of the internal
structure of the plasma.

When measuring the frequency and toroidal mode number of MHD modes using
Mirnov coils in rotating plasmas, it is essential to account for the Doppler effect. In de-
vices like tokamaks, plasma often undergoes significant toroidal rotation, particularly
when driven by external heating methods such as neutral beam injection (NBI). This
rotation causes a Doppler shift in the observed frequency of MHD modes, including
Alfvén eigenmodes (AEs), between the laboratory reference frame and the plasma’s
reference frame.

The observed frequency fLAB,n in the laboratory frame and the mode frequency
f0,n in the plasma reference frame are related through the Doppler shift as fLAB,n =
f0,n +n frot(r ), where n is the toroidal mode number, and frot(r ) is the plasma’s local
rotation frequency [Sha21]. The Doppler shift increases or decreases the observed
frequency based on the direction and speed of the plasma’s toroidal rotation. Ignoring
this effect could lead to misinterpretation of the actual mode frequency, which is
critical for diagnosing plasma stability and dynamics.

Furthermore, when several MHD modes with neighboring toroidal mode numbers
are excited in a rotating plasma, the frequency separation between these modes
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is approximately the plasma’s rotation frequency: fLAB,n+1 − fLAB,n ≈ frot(r ). This
frequency separation can be used to estimate the plasma’s rotation frequency.

ECE measures the electron temperature in localized regions, making it useful for
detecting temperature perturbations associated with MHD instabilities like Alfvén
modes. This diagnostic provides high spatial resolution and helps in analyzing the
mode structure inside the plasma. FIR interferometry, on the other hand, measures
the line-integrated electron density across different lines of sight. With a high sampling
rate, FIR interferometry can detect density perturbations related to MHD modes deep
in the plasma core, which are often missed by Mirnov coils. Reflectometry, which
analyzes the reflection of microwaves from density layers in the plasma, also plays a
significant role in diagnosing density fluctuations caused by AEs.

To measure the plasma current Ip , Rogowski coils are typically employed. These
coils surround the plasma column and detect the magnetic fields generated by the
current. As explained in [WC11], Ampère’s law relates the integral of the magnetic field
strength around a closed loop with the total current enclosed by the loop I = 1

µ0

∮
B ·dl,

so the plasma current can be obtained by integrating the loop voltages over time.
Rogowski coils provide real-time measurements of the net plasma current and are
widely used in fusion experiments, including TJ-II and JET. They are particularly
effective for measuring plasma current in the presence of MHD instabilities, as they
can detect the fast changes in current associated with these perturbations.

The energy content of the plasma, specifically the magnetic energy W , is measured
using diamagnetic loops. In TJ-II, the loops consist of primary and compensating
loops, which subtract the background magnetic field to provide accurate energy
measurements [24a]. This diagnostic is essential for understanding the overall energy
dynamics of the plasma.

Finally, for measuring electron density, interferometry and reflectometry are the
primary tools. Laser interferometry, particularly FIR interferometry, provides continu-
ous and accurate line-integrated measurements of electron density. Though it lacks
spatial resolution, it is fast and reliable, making it one of the standard methods in
fusion research. Reflectometry complements this by offering localized measurements,
particularly in areas with steep density gradients.

1.7. Thesis problem
Understanding, predicting, and controlling plasma instabilities is of major importance
on the path towards achieving steady-state burning plasma scenarios, where energetic
particles must remain well confined in order to transfer their energy to the plasma.
In this respect, the accurate identification of various plasma instabilities that might
tend to de-confine particles and their energy is required to develop possible control
techniques. Machine learning offers the possibility to detect patterns in diagnostic
data that can identify the presence of instabilities. This thesis focuses on the identifi-
cation of plasma instabilities using machine learning (ML) techniques. The ultimate
goal for control in fusion devices is to identify instabilities in real time or predict their
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appearance. Many approaches are possible to address this problem.
One supervised approach could consist of the following process: first, building a

database using synthetic experimental data for various calculated instabilities such as
MHD and energetic particle-driven modes; second, training a multi-class classifica-
tion model based on supervised algorithms; and finally, applying the model to test
cases and experimental data to investigate the portability of the AI model between
machines. However, this approach presents several challenges. For instance, synthetic
data is not always representative of real diagnostic data, and therefore models trained
this way may be biased towards the synthetic data and may not generalize well to real
test data. Additionally, simulation codes are not always accurate or fast enough to
construct large databases. Indeed, MHD linear codes give the frequencies of unstable
waves and are fast enough to construct large databases. However, they do not provide
the growth rate of the waves, and non-linear codes that determine which waves are
driven are computationally expensive. During this PhD research, a scarcity of both
labeled data and systematic methods to label them has been found.

Another supervised approach consists of manually labeling the data and then train-
ing the model to predict the labels. This approach is more accurate, but it is highly
time-consuming and requires people with expertise in fusion. As shown in previous
sections, the number of possible types of instabilities is staggering. In this thesis, we
will explore the possibility of using unsupervised learning to detect instabilities in the
data. This approach is more flexible and does not require labeled data. A model can
learn the patterns in the data and detect the instabilities without the need for human
intervention. Models can also be trained with a small amount of labeled data and then
used to detect instabilities in the rest of the data. Then, simulations can be used for
data augmentation purposes. This approach is more efficient, and it can be used to
detect instabilities in real time if enough data is labeled.
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“machine learning is just glorified
curve fitting”

— popularized by Judea Pearl.
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2.1. Introduction
Machine learning (ML) needs to be understood as the final step in a journey that begins
with data. Therefore, it is convenient to frame ML from the data science perspective.
Data science is a relatively new area that aggregates several classic disciplines. The
role of a data scientist merges those of a data analyst, a statistician, and a machine
learning engineer. The first task in a data science project involves data extraction,
process and analysis, then statistics or signal analysis helps to describe the data
available and the possible machine learning applications. Finally, it is necessary to
implement the ML solutions and evaluate their performance. Moreover, different
technologies and solutions are involved from data collection to data storage. In case
of need, some tasks overlap with those proper of data architects: designing database
applications and extracting transform-load pipelines (ETLs), developing simple end-
user applications, or deploying and maintaining models through their life cycle. That
means evaluating and re-training periodically the machine learning pipelines and
sometimes automating the process.

Before continuing, we should advance informal definitions of machine learning
(ML). One could be: “computers program themselves with data”. Or a more detailed
one: Given some data, computers can learn to detect patterns (optimal representation
of data), and then perform complex actions according to some constraints (optimal
decisions). In other words, we can model complex functional relationships between
the data available and the solution to the problem of interest. ML models act as a
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function between input data and the solution output of the corresponding use case.
The solution is found by solving a optimization problem in most cases.

We can use ML algorithms to model physics or approach many scientific and engi-
neering problems. The (data-driven science) terms emphasize the application of ML
and other algorithms to modeling physical and engineering applications.

Regarding the problem of this thesis work, Alfvén waves are magnetohydrodynamic
waves propagating through the plasma, the vacuum field and the plasma-facing
components of the fusion reactor. The experimental data is collected by the different
diagnostics and stored in different databases. The types of data available to detect
Alfvén instabilities are mainly two, raw time series and their processed spectrograms.

The signal processing field is a vast research area that looks for alternative signal
representations of signals. Through alternative representations patterns can be recog-
nized, or data can be compressed. More importantly for our purpose, it can help to
study diagnostics signals and to separate noise from features in signals and images.

How can ML help to represent signals? ML models can represent time-dependent
signals. In general, most successful models in ML are usually parametric models, and
optimization (in particular gradient descent) is the most extended method to find
model parameters. In this thesis, we use the connection between optimization and
ML to explore new interpretable representations of signals.

Considering the matter from another standpoint: MHD experts just “look” at the
spectrograms of Mirnov coils to identify the magnetic modes and different types of
instabilities. Therefore, we can imitate this natural perception of fusion researchers
using artificial vision (computer vision). Which is the field that studies problems
regarding the use of images, from processing to detection of objects. It incorporates
all classes of algorithms from classic, to ML and DL approaches.

In this chapter, we develop the necessary concepts and present the positioning
of the thesis with respect to the state-of-the-art in the context of machine learning,
signal analysis, and computer vision. Finally, we discuss current applications of these
disciplines to the identification of plasma instabilities.

2.2. Machine learning
Nowadays, probably the more popular words (and abused) are Artificial intelligence
(AI). A formal definition of AI is a more elusive or confusing concept than defining ML,
because it has not been reached yet, or perhaps as a consequence of our difficulties in
defining rigorously human intelligence or human conscience. However, we can agree
that AI involves the imitation of human cognitive capabilities (or even overcoming
them). In addition, AI must be a superset of ML. Because AI has to contain all modern
ML, the term has been popularized as a synonym of ML. To recover the original
intended meaning of AI, we talk about Artificial General Intelligence, AGI.

Thanks to the progress of computational power, ML has achieved many successes
in specialized tasks in recent years, especially regarding artificial vision o modeling
human language. AI is being popularized as a way to name all ML applications. The
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Figure 2.1.: Disciplines of Artificial intelligence (Adapted from [Pri23], page 2)

specialized tasks that ML can perform are very varied: they range from detection
of objects in an image [VV24], to solving equations [RPK17], or discovering physical
equations in data [BPK16], or helping robots to learn how to walk [Rud+22].

The availability of labeled data, unlabeled data, or an environment (real or simu-
lated) determines the ML type, as approaches are substantially different. The areas of
AI/ML are represented in Fig.2.1. When labeled data is available the family of prob-
lems to solve is known as supervised learning, because the “answers” or “ground truth”
are known through the labels and they can be used as part of the learning algorithms.
If there is no ground truth, multiple approaches are available to detect patterns in
data and create artificial labels, or to solve the problem of interest in each use case. In
addition, generative learning closes the gap between supervised and unsupervised
learning, it uses data to self-supervise pattern detection, by making models to simulate
data until it can not be distinguished from the real data. Finally, if a real or simulated
environment can be used in the learning process, we use reinforcement learning, in
which actions of the algorithm are evaluated using their response to the environment.

Deep learning (DL) is a subset of ML characterized by the accumulation of hidden
layers in its neural networks (NNs) and the learning of data representations. For that,
DL models have extremely high complexity. For instance, nowadays, a “small” model
has millions of parameters. This allows ML models to continue learning patterns
when big databases are available. When the data is very abundant, DL can outperform
other ML methods, which do not have enough complexity to continue the learning.
Another key characteristic is that the deep networks are capable of extracting patterns
and defining a data representation of their own, via trained convolution filters in
convolutional neural networks (CNN) [KSH17], latent representations in autoencoders
(based originally in helmholtz machines [Day+95; KW19]), or attention mechanisms
in transformers [Vas+23]. As it is illustrated in Fig.2.1, DL is nowadays used in all types
of ML applications.

The literature on ML is vast, and it is not the purpose of this thesis to review it.
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However, we give the following references, consulted to write this section: an attempt
to rigorously review the field is given by Kevin P. Murphy’s book [Mur22], some in-
troductions to deep learning are the books by Goodfellow et al. [GBC16] and Prince
[Pri23], and classical approachs to ML is in the book by James et al. [Jam+14] and
Hastie et al. [HTF09], and the Bayesian approach to ML is cover by Bishop [Bis16].
The reference in data driven approaches to science and engineering is the book by
Brunton et al. [BK22].

2.2.1. Machine learning definition
We can attempt to define ML using the popular Tom Mitchell’s definition ([Mit97],
page 2): “A computer program is said to learn from experience E with respect to
some class of tasks T, and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.” According to this definition there are
many types of ML [Mur22], depending on the class of tasks T, the type of experience
E, and the performance measure P. However, the most common task is to learn a
function that maps input data X to output data Y (also called target). The data X is
compound of predictor variables X1, ..., Xp or features. We use lowercase to indicate
an observation x ∈ X and its output y ∈ Y .

Assuming that an unknown function f exists such that Y = f (X )+ϵ, where ϵ is an
irreducible error. The objective of statistical learning is to approximate the function
f by an estimation f̂ using data. To this goal, data X in a training dataset is used in
order to make the predictions Y ≈ Ŷ = f̂ (X ) [Jam+14].

A probabilistic definition of ML is based on the fact that X and Y are sets of random
variables governed by probability distributions [Mur22]. The power of a probabilistic
approach is having a unifying theory for ML that handles uncertainty. If the function
f̂ is an estimate, again, it is more appropriate to interpret Ŷ probabilistically to model
the errors of estimation.

Because Y is a function of X and an error ϵ, it is usual to split X into several sets of
data to perform cross-validation of the model performance: datasets are often divided
into subsets to train and evaluate machine learning models effectively.

A common split might be 60% for the training set, 20% for the validation set, and
20% for the test set. However, when data is scarce, traditional splitting can lead to
insufficient data in each subset. In such cases, K-fold cross-validation methods are
used. One of the most computationally demanding of these is the leave-one-out
cross-validation, where the model is trained multiple times, each time leaving out a
different single data point for validation. This approach maximizes the use of limited
data for both training and validation.

The model parameters are “fitted” in the training dataset and validated in the test
dataset. The model learns with the training data, that is why we say that models are
trained (or fitted) when we are just optimizing its parameters. Sometimes we can use
pre-trained models with external data and train the model again, in that case, we are
doing transfer learning, or in case of optimizing the parameters of part of the model,
this method is called fine-tuning.
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Finally, there as many ML types as types of data X and Y are used. The input X can
be scalars, tabulated data, vectors of categorical variables, vectors of floats or integers,
time series, or images. If the input X and the output Y are a sets of different types of
data, the resulting models are known as multimodal. It is worth mentioning that each
modality has different statistics and combining them can be quite difficult.

2.2.2. Parametric vs Non-parametric models, Linear vs
Nonlinear models

Depending on how our ML models model the relationship between X and Y there are
two types of models parametric and no parametric models.

The parametric models use a probability p(Y |θ). Therefore, instead of aiming for
the distribution functions themself, we search for the parameters θ that model Y
distributions. For instance, when fitting a line to some data distribution often we
are only interested in the slope θ1 and the intercept θ0 so Y = θ1X +θ0, but not the
distribution of slopes and intercepts that fits the data. Even if we model the noise of
the data around the straight line with a Gaussian distribution, the mean and standard
deviation of such distribution are the only parameters of interest.

The parametric models used in this work are linear regression and neural networks.
In general, they have the advantage of being simple, fast and requiring less data than
non-parametric models. On the downside, they have the weakness that it is necessary
to assume a function form, they have limited complexity and may not fit well to certain
data structures.

Non-parametric models model the relationship of X and Y via more general as-
sumptions of a geometrical, algebraic or probabilistic kinds. For instance, to predict
the class label of an observation, we can work out the geometric distance (in the
features space) to previous observations, and give it the class label of the closest group
of observations, this is the approach behind k-nearest neighbors (kNN) [CH67]. Other
examples of non-parametric models are support vector machines [CR08], tree models
[Kas80; Bre+17; Bre01], Gaussian processes [RW05], or principal component analysis
(PCA) [FRS01; Hot33].

Non-parametric methods do not assume hypotheses about the form of the function
f [Jam+14]. They only attempt to make a fit so that the results Ŷ best match Y . They
usually have the advantage of being able to estimate a wider variety of data structures,
as they do not assume a form for f , but they usually require many more observations
and computation time and are prone to overfitting. In this work, non-parametric
methods have been used for clustering analysis: k-means [AV07], DBSCAN [Sch+17]
and HDBSCAN [CMS13].

Another dichotomy in model classification is that of linear vs non-linear models. For
example, in the classification problem, the categories can be linearly separable or not.
An easy example to explain is support vector machines; it is easy to draw or imagine
datasets in the plane or space that are not separable by a plane but are separable by a
paraboloid, for example (the plane equation used to define the margins is linear in its
weights).
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It is important to mention that a linear model can become non-linear by replacing
the product of parameters with a transformation functionφ(X ), known as basis expan-
sion [Kra16] so that f̂ (X ) = θ·φ(X ). A method of this type is known as the “kernel trick”,
which modifies support vector machines, logistic regression (classification), or linear
regression. The “kernel trick” has been used in thesis PhD to add non-linearity to the
linear regression so it can be used in complex signal representations. Other models
are non-linear in their nature, such as decision trees and deep neural networks.

2.2.3. Frequentist vs Bayesian approaches
The frequentist statistics emphasizes parameter estimation (like the mean and stan-
dard deviation) and assume that frequencies can be interpreted as probabilities if
there is enough data. In contrast, Bayesian statistics emphasize working with proba-
bility distributions (there are no parameters, there are probability distributions), and
the unsettled fact is that priors define probability as belief.

A fully probabilistic approach implies that random variables come from probability
distribution functions that should follow the Bayes theorem. Therefore, we could say
that any “intelligent” computer program is somehow trying to solve the Bayes theorem

p(Y |X ) = p(X |Y )p(Y )

p(X )
, (2.1)

where p(X |Y ) is called likelihood function, p(Y ) is the prior probability, and p(X ) is
known as evidence.

The frequentist approach has conceptual difficulties handling sources of uncertain-
ties in data. For example, it is common practice to remove outliers before fitting a
model instead of accounting for their presence in the model itself. In this case, the
frequentist approach assumes that the uncertainties come from having “incorrect”
data. Otherwise, why does it need to be removed?

Robust regression models offer a frequentist alternative to outlier removal, but they
lack a unified modeling strategy. In contrast, a fully probabilistic approach changes
the model so the probability distribution functions account for observations that
could be considered outliers, for example using priors, as in chapter 8 of Ref. [SS12].
Of course, accounting for outliers requires extra modeling effort in both approaches.

The Bayesian approach offers a more general interpretation of probability. There-
fore, it is an adequate formalism to define problems with uncertainty. However, it
is often not possible to implement a practical use case because the general integra-
tion method used to solve the realistic posterior distributions p(θ|x) are Monte Carlo
simulations and they are slow, expensive, and do not scale well with data size. In
contrast, frequentist approaches are faster and scale well with data size. A good com-
promise is to use the Bayesian “mindset” for hypothesis testing, when having little
data, or in special cases (for instance when variable independence is a reasonable
assumption), and to use a frequentist approach when the data is abundant. After all,
the Bayesian approach acknowledges fundamental limitations that the frequentist
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approach can not do: model parameters are indeed random variables governed by
unknown probabilistic distributions, which might have their respective priors.

2.2.4. The four basic problems: regression, classification,
clustering and dimensionality reduction

The four workhorses of ML are regression, classification, clustering and dimensionality
reduction. Most ML applications involve at least one of them. The formulation of
these problems is tightly linked to the models we use to solve them.

Regression

The simplest ML regression example is linear regression. If we want to fit a line
Y = θ1X +θ0 to some data, we need to estimate the parameters θ. Let us consider for
the sake of simplicity and clarity of the notation a straight line in 2D a space. In that
case, we need to find only 2 parameters. Then, the generalization to higher dimensions
is straightforward.

As it is mentioned in our informal definition of ML. A learning process involves a
performance metric P. For simplicity, we discuss first the Mean Squared Error (MSE),
which is proper of regression

MSE = 1

N

N∑
i=1

(yi − ŷi (θ))2, (2.2)

where yi are data points in the output Y , related with xi in X .
The usual approach to linear regression is to minimize the mean-squared error

(MSE)

θmse = argmin
θ

MSE(θ) = argmin
{θ1,θ0}

1

N

N∑
i=1

(yi − ŷi (θ1,θ0))2 (2.3)

therefore, minimizing the error ϵ between the data points yi and their model predic-
tions ŷi . It can be demonstrated ([Mur22], page 9) that this is equivalent to maximizing
the likelihood (minimizing negative log-likelihood, N LL)

θml e = argmin
θ

N LL(θ) = argmin
θ

{
− 1

N

N∑
i=1

log p(yi |ŷi (X ;θ))

}
. (2.4)

When the likelihood is a Gaussian distribution N (y |ŷ(X ;θ),σ2) then

N LL(θ) ∝ 1

2σ2
MSE(θ) (2.5)

This means, when we consider that the regression errors follow a Normal distribution,
then N LL and MSE are equivalent. Therefore, we find the parameters that give the
less probable error. This is an important result because maximizing the likelihood (or
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equivalently, minimizing the negative log-likelihood) can be seen as solving Bayes’
theorem with uniform priors and ignoring the evidence.

However, the MSE can be calculated much more easily. Therefore, given the as-
sumption of normally distributed errors with constant variance, the MSE is said to be
indeed a good estimator of the N LL because they are proportional up to an additive
integration constant. When good estimators are found, Bayesian and frequentist
approaches are linked. More regression metrics can be found in the appendix A.

Classification

The next most extended application is to solve a classification problem, we can for-
mulate it again as learning a mapping from an input vector X to an output vector Y
[Mur22], where Y ∈ {0, ...,C }, with C being the number of classes. If C = 1 we have a
binary classification problem. The values of Y would be {Y = 0,Y = 1}, or {Y = No,Y =
Yes}, or more interestly for our work {Y = No plasma Instabily,Y = Plasma Instability}.
Logically, if C is greater than 1 we have a multiclass classification problem. For exam-
ple, {y = N T M , y = T AE , y = AE A, y = EG AM ...} could be the classes for a classifica-
tion model that identify different Alfvén eigenmodes.

Given an array of predictor variables X = (X1, X2, ..., Xp ), then p(Y |X ) is the proba-
bility distribution for the different classes. Thus our best guess of the true class will be
given by

Ŷ = f̂ (X ) = argmax
c=0...C

{
p(Y = c|X )

}
, (2.6)

or in other words, the class will be decided by choosing the most probable one (argmax
is an operation that finds the argument that returns the maximum value of an ob-
jective function. Thus, a decision problem, classification, can be understood as an
optimization problem).

The evaluation metrics of classification problems are mostly based on the confusion
matrix.

Data Class Classified as 0 Classified as 1
0 true negative (tn) false positive (fp or Type I Error)
1 false negative (fn, or Type II Error) true positive tp

Table 2.1.: Confusion Matrix

This is elaborated by counting the number of correct classifications and the number
of errors for each class label. More metrics are available in the appendix A.

Clustering

Sometimes, there is no Y available. For instance, there is data X but is not labeled.
Finding an artificial set of labels L ≡ Y ∈ {0, ...,C } that best suits a data distribution is
known as clustering, belonging to unsupervised learning.
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Clustering is the task of dividing a set of observation xi ∈ X into groups, or clusters,
in such a way that objects in the same cluster are more similar to each other than
to those in other clusters. The goal is to find a mapping from the input space X to a
set of labels L ∈ 0, ...,C where C is the number of clusters. Unlike classification, the
labels L are not provided beforehand. Instead, the algorithm must discover these
labels based on the data distribution. As we mentioned, most clustering algorithms
are non-parametric. Although we only mentioned the methods used in this work
many others exist. The choice of clustering algorithm and the number of clusters C
can significantly impact the results, and different metrics such as silhouette score can
be used to evaluate the quality of the clustering. However, the best evaluation involves
expert knowledge of the dataset and profiling each group by the input features.

Dimensionality reduction

The fourth type of ML algorithm more extended is dimensionality reduction: adding
features (predictor variables) to solve an ML problem might sound appealing as we are
adding more information. However, because of the so called curse of dimensionality
(Term introduced by Richard E. Bellman), this can be very counterproductive.

Suppose we have a Cartesian input space X having two dimensions, let us sample a
fixed squared area with 100 points (observations). If we want to sample a cartesian
input space of three dimensions and we require the same data density, i.e. at least
1000 observations. In this example, the amount of data necessary grows exponentially
as 10N , with N the number of dimensions. Therefore, adding more features requires
much more data in order to have enough samples.

If we have a dataset in matrix form X , this matrix needs to have more rows than
columns (more observations than features). When the number of dimensions is
high there is a variety of techniques to transform variables in a new set of lower
dimensionality (dimension reduction) or to select the most relevant variables (feature
selection). In Table 2.2 and Table 5 of appendix B, we summarize the different types
of dimensional reduction and variable selection suggested by the literature [BSA15].
These techniques are essential to tackle the problem of high dimensionality, and a
requisite for successful applications.

Dimensionality reduction techniques depend on the type of variables being used,
as shown in Table 2.2 below.
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Dimensionality Reduction Technique Acronym Data Type
Principal Component Analysis PCA Numerical
t-Distributed Stochastic Neighbor Embedding t-SNE Numerical
Self Organizing (Kohonen [Koh82]) Maps SOM Numerical
Contingency Tables CA 2 categories
Multiple Correspondence Analysis MCA More than 2 categories
Multiple Factor Analysis MFA Numerical and categorical
Factor Analysis for Mixed Data FAMD Numerical and categorical

Table 2.2.: Summary of Dimensionality Reduction Techniques as a Function of Data
Type

Some techniques like t-SNE [MH08] are more suitable for data representation in
lower dimensional spaces than dimension reduction. For instance, PCA is used for
both use cases. In this thesis work, we have used t-SNE to visualize clustering analysis.

The feature selection methods are basically 3 classes: filtering (keeping most corre-
lated variables), wrapping (recursive permutation of features, train and selection by
performance), embedded (feature selection someway is incorporated in the model)
[BSA15].

It is also worth mentioning latent-representation methods, most of which are part
of generative learning. These are methods that learn optimal representations of data,
usually of lower dimensions. These representations can be understood as a nonlinear
dimension reduction, and they can even be used to create new data instances. The
most extended right now are the DL autoencoders (AEs) or variational autoencoders
(VAEs).

2.2.5. Fundamental limitations for ML
The accuracy with which we can estimate f and make predictions of Y depends on the
model we use, but there is a fundamental limit intrinsic to the data (X ,Y ), so that even
if we obtain a perfect reproduction Y = f (X ) we will always get an error in predictions,
because in reality Y is a function of both X and a random error term ϵ [Jam+14], so

Y = f (X )+ϵ. (2.7)

Since y is a function of both X and ϵ, we cannot obtain Ŷ perfectly, exclusively from
the data (X ,Y ).

Assuming that f̂ and X are fixed, it can be shown [Jam+14] that

E(Y − Ŷ )2 = E [ f (X )+ϵ− f̂ (X )]2 = E [ f (X )− f̂ (X )]2 +V ar (ϵ) (2.8)

where E in this case stands for the expected value (average for all points in the data).
The last term ϵ in Eq.2.8 determines the irreducible error, which will always be

present regardless of the model we choose. We can find the one that eliminates the
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most reducible error in our problem, but “there is no universally best model” [Mur22].
In other words, there is no best model a priori. This result is also known as the No Free
Lunch theorem. (Wolpert 1996 [Wol96]) .

Another important result regarding the irreducible error is the bias-variance trade-
off. It can be demonstrated that, for unseen data (a test set) the model’s MSE error
can be decomposed into a bias term and a variance term. That is it for each test point
xtest , ytest we have, that the expected test MSE is (page 34 of [Jam+14]).

MSEtest = E(ytest − f̂ (xtest ))2 = Var( f̂ (xtest ))+ [Bias( f̂ (xtest ))]2 +Var(ϵ). (2.9)

The bias refers to the error introduced by approximating a real-life problem, which
may be complex, using a simpler model (fewer parameters or degrees of freedom than
necessary). It represents the difference between the true underlying relationship and
the model’s approximation of that relationship. High bias means the model is too
simple and may not capture the true complexity of the data.

The variance is related to the amount by which the estimated model would change
if we used a different training dataset. It measures the sensitivity of the model to the
specific data points used for training. High variance means the model is too complex
and may overfit the training data, leading to large changes in f̂ with different training
sets.

We can conclude that if we want a good model, we need to reduce both the bias and
variance. However, it is not possible to reduce the bias (increase model complexity)
without increasing the variance and vice versa.

In general, not only do we want to make predictions, but also to understand the
behavior of the function f (X ), i.e., the relationship between the different predictor
variables X1, ..., Xp [Jam+14]. This helps us understand and explain the phenomenon
we are statistically analyzing. A linear parametric estimation, for example, assumes a
dependence of the form f (X ) = f (θ0 +θ1X1 +θ2X2 + ...+θp Xp ), estimating f (θT ·x)
reduces to estimating these parameters θi associated with each variable. These pa-
rameters can help to interpret the predictions of the model, but the interpretability
decreases fast with the number of parameters, and vice versa. This is known as Trade-
Off Between Prediction Accuracy and Model Interpretability (page 24 of Ref. [Jam+14]).

Finally, it is worth mentioning that even in the case of DL models, scaling laws has
been found recently that limits the improvement of performance, even adding more
data or computation [Kap+20; Hen+20; Bah+24; Wel24].

2.2.6. Deep Learning and optimization of neural networks
Most problems in ML involve minimizing a loss function or maximizing a reward. We
have already shown that regression involves minimizing the N LL , and classification
involves maximizing the probabilities of separating classes. Now, we introduce a
simple neural network to further discuss this concept.

Neural networks have been researched for many years. Like many bio-inspired
algorithms, the motivation is to mimic neuron function. It is important to emphasize
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that, for many years, it was not well understood how to train them. The challenge
was making the neurons learn correctly without overfitting. Additionally, the compu-
tational power required was not broadly available until recent years. For example, a
photograph of the “Knobby” ADALINE network can be seen in Fig.2.3. An ADALINE
network was the first neural network to learn how to recognize digits in a primitive
segmented display [Are08] and other filtering applications [24e]. Once the training
problems problems were solved, neural networks advanced rapidly. Let us look at a
simple example. Fig. 2.2 shows the structure of an Adaline-type neuron.

From the left, we have an input of 1 (the bias term) and the other variables to be
learned. Each variable is assigned a weight (in NNs the parameters θ are called weights
w), forming the linear combination z = wT x+w0 of variable values and weights (Input
Function). This generates a prediction through the activation function g (z) = z (linear
activation in this case). Then, the result is quantized (thresholded), for instance, 1
if z ≥ 0, 0 otherwise. Learning involves changing the weights (model parameters) so

Figure 2.2.: Adaline: a simple neural network. Based on [20].

that the prediction of the target variable is accurate. To achieve this, an error or cost
function is defined and minimized to adjust the weights and improve the prediction.
In this example, we use SSE (sum of squared errors), but there is flexibility in choosing
the appropriate one. We want to minimize [20]:

J (w) =∑
(target(i )−output(i ))2 (2.10)

Here, a crucial nonlinear optimization method comes into play: gradient descent. The
gradient of the error function

∆w j =−η ∂J

∂w j
(2.11)

is used to find the direction in which changes to the weights improve the prediction.
w = w+∆w. This concept is illustrated in the following figure: in each iteration, the
prediction of a data sample is computed, the prediction error is calculated, and then
each model parameter j is slightly changed by a value ∆w j . The prediction error is
progressively reduced as the values of the loss J (w) approach a minimum.

The rate at which we descend along the curve is given by the parameter η, which
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Figure 2.3.: “Knobby Adaline”
(Stanford Today magazine
© 1963)

Figure 2.4.: Gradient-descent cartoon.

is known as the learning rate. In a real case, we have a large number of dimensions.
It is impossible to determine the shape of the curve, so adjusting this parameter is
essential for the method to converge. That means avoiding overshooting the minimum
or learning too slowly. It is also important to avoid local minima.

Seen this way, optimization is a special search problem. Many ML optimizers are
based on variations of pure gradient descent. Some of the most used are ADAM
(Adaptive Moment Descent [KB17]) and SGD (Stochastic Gradient Descent [Rud17]).
It is important to emphasize that optimization problems can be extremely complex.
Many of them are N P -hard problems, and in such cases it is hard to tell if the
solution found is the best one. When this happens, a good enough solution is already
celebrated.

To generalize gradient descent to more complex architectures, every network com-
ponent (added layers, activation functions, etc.) must be differentiable, so automatic
differentiation algorithms can properly calculate how much the weights should change
in each iteration.

Neural networks architectures

To assemble a network model, it is sufficient to add the desired layers and neurons and
apply this principle systematically to each neuron in each layer. The weights of one
layer depend on the weights of the previous layer, and the process of differentiation
extends to the previous layers, layer by layer. This is called backpropagation.

The most commonly used model, even as part of more complex architectures, is
the multilayer perceptron (MLP). An MLP is a neural network consisting of multiple
layers of neurons, each fully connected to the neurons in adjacent layers. An MLP
typically includes an input layer, one or more hidden layers, and an output layer. Each
neuron in a layer computes a weighted sum of its inputs, applies a nonlinear activation
function to this sum, and passes the result to the next layer. Mathematically, if x is the
input vector, the output h(l ) of the l -th hidden layer is given by h(l ) = g (w(l )h(l−1)+b(l )),
where w(l ) and b(l ) are the weights and biases of the l-th layer, respectively, and g ()
is a nonlinear activation function such as ReLU or sigmoid. The depth (number of
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layers) and width (number of neurons per layer) of an MLP can be adjusted to suit the
complexity of the problem, with deeper networks often capable of capturing more
intricate relationships in the data.

In addition to MLPs, there are many types of layers, but they follow two missions:
(1) learn features from data automatically or (2) facilitate the optimization process
(avoid overfitting and other problems during gradient descent).

Convolutional Neural Networks (CNNs) are particularly effective for processing
data with a grid-like topology, such as images. CNNs consist of convolutional layers
that apply filters to the input, pooling layers that reduce the spatial dimensions of
the feature maps, and fully connected layers that make final predictions. Recurrent
layers, such as LSTMs [HS97], are particularly suitable for sequential data like time
series and text. However, a more modern approach to capturing features in sequential
data is the use of attention layers, as in transformers. These are highly effective for
tasks requiring focus on specific parts of the input in very long sequential data, such
as natural language processing. They are directly responsible for the revolution of
ChatGPT [Liu+23] and other large language models of 2022.

The other types of layers that facilitate training are: Batch normalization layers,
which normalize the inputs of each layer to stabilize and accelerate the process;
Dropout layers, which help avoid overfitting by randomly setting a fraction of input
units to zero during training; and Residual layers, often used in deep networks, which
facilitate training by allowing gradients to flow more easily.

It is commonly agreed that the first model that started the DL revolution was AlexNet
[KSH17]. AlexNet, used for image classification in the ImageNet dataset, outperformed
the state-of-the-art (SOTA) models at the time. It has all the main ingredients that
made DL possible, including automatic feature extraction with deep stacking of CNN
layers; regularization to avoid overfitting (data augmentation and dropout); and
training on multiple GPUs with a large dataset.

MLP networks with approximately 100 neurons and one hidden layer, along with
their variations, were the first successful applications in ML. In recent years, model
sizes have increased exponentially. Nowadays, a model like AlexNet with 60 million pa-
rameters and 650,000 neurons is considered small in comparison with large language
models like Llama 3.1, which has 405 billion parameters ([fac24]).

But what exactly are the advantages of adding so much depth? For example, in
computer vision, deep networks have allowed automatic feature extraction. Previously,
to recognize a face, it was necessary to specify which geometric parameters (features)
allowed a face to be identified. Another advantage is improved performance in areas
where classical ML was stagnating, taking advantage of increased amounts of data.
However, if the amount of data is not enough, these advantages might disappear.

Remarkably, it was not believed that models with this many parameters could be
trained due to the bias-variance trade-off. Nevertheless, they work. Exactly why
deep neural networks work is still an open question. Although big datasets and
regularization appear to play a big role in it, understanding how DL makes predictions
is fundamental to deploying high-risk applications, like driving a car (or a tokamak).
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2.2.7. Regularization: avoiding overfitting and facilitating
training

Given its importance in DL and this thesis work, we further discuss what is regulariza-
tion and how is implemented.

If the gradient descent is like a boat sailing the sea, sometimes the sea is very rough
and stormy. Not always is easy to find the direction to port (the optimal solution -
the best model parameters). Convex optimization offers some guarantees (that the
solution found is optimal). However, real-life loss function landscapes are uncharted
territory, and they can be highly nonconvex, so there are multiple local minima to sort
out.

To ameliorate the situation, some techniques that modify the loss function land-
scapes have been developed. There are 4 types of regularization strategies: (1) Smooth
the loss function so the gradient descent does not keep trapped in local minima (2)
inflate data artificially (increase variance of data) (3) combine different models (with
different parameters, bias-variance) (4) find wider minima during optimization. Most
popular techniques are summarized in Fig.2.5 (More details in chapter 9 [Pri23]). In

Figure 2.5.: Regularization types (Adapted from [Pri23].

this thesis, we used Explicit regularization that modifies the loss function, and use
random features that create noisy weights in input layers.

In the case at hand, we can use explicit regularization: Lasso (L1 regularization)
[Tib96] and Ridge (L2 regularization) [HK00] , which add a penalty term to the loss
function to prevent overfitting and limit the influence of outliers.

The penalization of weights is done using different norms, that give different
relevance to the parameters. We could use for instance the ℓ0 norm, denoted as
∥x∥0, which is defined as the number of non-zero elements in a vector x, noted as
∥x∥0 =∑n

i=1 1(xi ̸= 0) where 1 is the indicator function. When minimized, it promotes
the sparsity of weights during training. The problem is that the indicator function is
not differentiable, so we can not use gradient descent.
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The ℓ1 norm, also known as Manhattan or city-block norm, is the sum of the abso-
lute values of the elements of x, given by ∥x∥1 =∑n

i=1 |xi |. It promotes sparsity (more
relaxed than ℓ0) and it is differentiable.

The ℓ2 norm, or Euclidean norm ∥x∥2 =
√∑n

i=1 x2
i , is the square root of the sum of

the squares of the elements of x. These norms measure the size or length of vectors
in different ways. It produces a shrinkage of all the parameters, in other words, any
parameter is much bigger than the others. This situation is favorable when there are
difficulties in the optimization (backpropagations are more stable).

The lasso loss function can be written as

Lasso: argmin
θ

{
1

N

N∑
i=1

(yi − ŷi )2 +λ∥θ∥1

}
, (2.12)

and the Ridge regression loss is

Ridge: argmin
θ

{
1

N

N∑
i=1

(yi − ŷi )2 +λ∥θ∥2
2

}
. (2.13)

The frequentist interpretation or regularization is usually explained with Fig.2.6. The
equipotential curves of the loss function are ellipses. On the left, the surfaces of
the square represent norm values equidistance to the origin for different penalty λ1

strengths of L1 norm. Comparing, to the Euclidean norm on the right we can see that
distances are measured differently. The parameters β1 and β2 for an arbitrary given
module ∥x∥1 can lay along the squared lines. However, if this norm ∥x∥1 is minimized,
the parameter values will tend to be located on one of the axes. In contrast, the L1

norm promotes to have some mixture in β1 and β2.

Figure 2.6.: ℓ1 and ℓ2 effect on a 2-parameter model.

It is worth noting that the Bayesian approach to add regularization is adding prior
parameter distributions like the Laplace prior (most probable weight is 0 or very close
to 0). The effect of regularization can be also understood as a feature selection, only
the most important are kept.

To conclude, it’s worth summarizing the ingredients that made the DL revolution
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possible, regarding the training process: (1) automatic differentiation and better
gradient descent algorithms (2) regularization (3) massive parallelization using GPUs.
Concerning the feature extraction (1) Deep CNNs for images, (2) Attention mechanism
for transformers (text).

2.2.8. Approaches to implement a ML solution
Let us comment on the 3 basic approaches to developing an ML application. The
differences between classical algorithms, ML or DL approaches to design a ML appli-
cation are summarized in Fig.2.7.

Figure 2.7.: Approaches to data modeling (Adapted from [Sze22] page 189 and [GBC16]
page 10).

It is important to remark that ML is not a new subject by any means. Scientists have
developed over the years a huge variety of algorithms to interpret the data collected.
We call this approach, classical scientific approach (I) in Fig.2.7. In this approach, all
data is analyzed and studied, then the experience gained by scientists mining and
knowing the data can be added to a mathematical model.

Classic ML approaches (II) still relied on hand-crafted features and the Mapping
to the output is done mainly with a statistical model. Good performance and auto-
matic learning can be achieved while understanding the model input. In contrast, DL
approaches (III) learn the features, for example by CNN networks or latent representa-
tions, and then more NN layers map the learned representation to the output.

Although it depends on the particular case. The advantages of more classical ap-
proaches are interpretability and potential generalization outside the available dataset
(classical approaches potentially work for any tokamak), while the advantages of more
modern approaches are better performance if enough data is available. The disadvan-
tages of classical approaches are that feature extraction and mathematical modeling
can be time-consuming, while the drawbacks of DL are mainly the concerns about its
lack of interpretability and generalization.

The 3 approaches explained have been explored in this thesis work. For this reason,
3 major research areas are investigated: signal processing, ML and computer vision
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(for feature extraction).

2.3. Signal analysis: alternating data
representations

The data contained in time signals and images is incredibly dense, easily reaching
millions of samples per instance. Consequently, disentangling relevant information
from noise can be extremely difficult. In the area of signal analysis, data is transformed
into alternative representations that help recognize patterns and interpret the signals.

Many applications have emerged from researching alternative data representations.
For instance, data can be compressed, reducing memory and computational resources.
In addition, noise can be removed, or certain types of features can be enhanced.

In natural language, words stored in a dictionary form sentences and transmit
information. Moreover, the choice of words depends on the dictionary used, as many
different languages are spoken worldwide. Stéphane Mallat used this analogy to
construct a theoretical framework for modern signal analysis, where a signal can be
represented using different dictionaries. His monograph [Mal09], “A Wavelet Tour
of Signal Processing”, covers most established techniques in the field. The following
introduction to signal analysis is based on notes from its introductory chapter. For
convenience, we use the same notation of this book. In addition, a monograph on
Sparse signal coding that can be consulted is Elad’s book [Ela10] or Hastie’s book
[HTW20] on statistical learning with sparsity.

2.3.1. Fourier transform
Modern signal analysis began in the early nineteenth century with Fourier’s harmonic
analysis. Fourier, while studying the heat equation, discovered that any periodic signal
can be represented as a sum of sine and cosine functions. He presented this result to
the Paris Institute in 1807. The coefficients (expressed as amplitude and phases) of
this series of trigonometric functions (harmonics) reveal patterns in the signal.

For continuous functions f (t) (or signals), the Fourier transform (FT) is defined
by projecting the signal onto a basis of complex exponentials, using the following
integral:

f̂ (ω) =
∫ +∞

−∞
f (t )exp−iωt d t , (2.14)

expressing the signal in terms of its harmonic frequencies ω. This equation solves the
analysis problem, or decomposition of the signal. The signal can be recovered from
the frequency space using

f (t ) =
∫ +∞

−∞
f̂ (ω)expiωt dω, (2.15)

which solves the synthesis problem, or reconstruction of the signal.
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Without detailing the rigorous definition of the discrete version, we can say that the
integrals are replaced by discrete sums over the signal samples. The most widely used
algorithm for calculating the Fourier transform in digital signals is quite fast, with
O (N log N ) time complexity (N is the number of signal samples). Interestingly, this
algorithm was introduced by IBM researchers while the U.S. military was searching
for a fast way to detect Soviet nuclear tests. Later, it was found that Gauss had already
developed it centuries earlier.

For discrete signals (all digital signals), the signal is projected onto a discrete orthog-
onal basis:

D = {expi 2πkmt }m∈Z, (2.16)

where the coefficients have amplitude values between 0 and 1 (and a phase between
-∞ and ∞, or wrapped between 0 and 2π). This basis constitutes our first type of
dictionary D. If the signal is regular enough, very few frequencies will represent it, and
in such cases, FT offers a sparse representation of the signal.

FT is ubiquitous in signal analysis. Its most remarkable property is that it “diagonal-
izes time-invariant convolution operators”, [Mal09]. In other words, in the frequency
space, convolution operations between two functions become simple multiplications.
Consequently, FFT is the foundation for other signal transformations.

2.3.2. Wavelet transforms
An alternative to Fourier bases is wavelet bases. The first wavelet function, introduced
by Haar in 1910 [Haa10], is defined as:

ψ(t ) =


1 if 0 ≤ t < 1

2 ,

−1 if 1
2 ≤ t < 1,

0 otherwise.

(2.17)

Using the Haar wavelet, a signal is represented by a basis of piecewise stepped
waveforms, in contrast to the trigonometric functions of FT. The Haar waveform can

be located at a given time t using dilations 1/
p

(2 j ) and translations t−2 j n
2 j . These are

used to construct a dictionary:

D =
{
ψ j ,n(t ) = 1p

2 j
ψ

(
t −2 j n

2 j

)}
( j ,n)∈Z2

. (2.18)

The scale is roughly equivalent to FT frequencies, being larger for lower-frequency
components and shorter for high-frequency components.

This wavelet orthonormal basis is used to reconstruct the signal f (t ) as:

f (t ) =
+∞∑
−∞

+∞∑
−∞

〈 f ,ψ j ,n〉ψ j ,n , (2.19)
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where 〈 f ,ψ j ,n〉 is the inner product defined by:

〈 f ,ψ j ,n〉 =
∫ +∞

−∞
f (t )ψ j ,n(t )d t . (2.20)

These coefficients 〈 f ,ψ j ,n〉 will be large if the signal has localized stepped variations
(or transitions). The Haar wavelet is particularly useful for processing “square-like”
signals. Under the right conditions, this wavelet can provide a sparse representation
of the signal, while FT may struggle with stepped discontinuities.

The next major breakthrough in wavelet analysis came in the 1980s. While Meyer
was attempting to prove that a piecewise function could not provide a better approx-
imation of continuous signals [Mey86] (unaware of Strömberg’s proof [Str82]), he
ended up creating a new family of continuously differentiable wavelets [MM04]. This
led to a race to extend the available functions, with significant contributions from
Daubechies (compactly supported wavelets [Dau88]) and Mallat-Meyer (multires-
olution expansion [Mal89]). The culmination of this research was the discovery of
a link between wavelet bases and filter banks, which allowed for fast calculations
(O (N )) using cascades of mirrored filters [Mal09]. Mallat demonstrated that any set of
conjugate mirrored filters can define a wavelet family with orthonormal bases. This
relationship between filter banks and wavelet families was inspired by an algorithm
from the computer vision field called pyramid filters [BA87].

An important property of these filter bank decompositions is that each decomposi-
tion level corresponds to a different scale, in contrast to the Fourier transform, which
has the same basis vector scale for all frequencies. These abstract concepts are better
illustrated with examples. The three mother wavelets represent the horizontal, vertical,
and diagonal features of the signal across different scales (or levels).

A 2D gray image of N pixels can be represented as f (x) = f (x1, x2), using three
mother wavelets ψ1(x), ψ2(x), ψ3(x) (horizontal, vertical, and diagonal details). The
signal can be expanded using the dictionary:

D =
{
ψ j ,n(x) = 1

2 j
ψk

(
t −2 j n

2 j

)}
j∈Z,n∈Z2,1≤k≤3

. (2.21)

An example of an image decomposition using this dictionary is shown in Fig.2.8, where
for each level, we have the approximation image CA, horizontal CH, vertical CV, and
diagonal components CD.

2.3.3. 2D Fourier transform
Alternatively, a 2D version of the FFT for a rectangular image f (x1, x2) of N = N1 ×N2

pixels can be implemented using two separable bases: B1 = {expi 2πk1n1/N1 }0≤k1≤N1

and B2 = {expi 2πk2n2/N2 }0≤k2≤N2 , or:

D = {B1,B2} =
{

{expi 2πk1n1/N1 }0≤k1≤N1 , {expi 2πk2n2/N2 }0≤k2≤N2

}
. (2.22)
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Figure 2.8.: Example of DWT decomposition levels 0, 1, and 4.

The analysis is defined in 2D as:

f̂ (k1,k2) = 1

N1N2

N1−1∑
(x1=0)

N2−1∑
(x2=0)

f (x1, x2)exp
−i 2π

(
k1x1

N1
+ k2x2

N2

)
, (2.23)

or for continuous functions:

f̂ (ω1,ω2) =
∫ +∞

−∞

∫ +∞

−∞
f (x1, x2)exp−i (ω1x1+ω2x2) d x1d x2. (2.24)

A toy example of FFT2D use is shown in Fig.2.9, which reveals high-frequency details
of the image.
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Figure 2.9.: Example of 2D Fourier decomposition and high-pass 2D filter.

2.3.4. Time-frequency analysis: Spectrograms and
scalograms

When a signal is measured and digitized, a continuous function is approximated by a
discrete one. It is worth mentioning that the discretization using Fourier and Wavelet
bases is a linear expansion. However, complex signals can benefit from a nonlinear
basis expansion, where basis vectors concentrate along edges, contours, or other
localized features to improve the signal approximation.

The reader might have noticed that FT does not provide time-localized information.
When transforming to the frequency domain, we lose time-specific features. However,
in natural sounds, music, or plasma signals, different features occur at different times.
To address this, let us introduce time-frequency dictionaries: Gabor or Windowed-
Fourier, and the Continuous Wavelet Transform (CWT).

The first author to propose such a basis was Gabor in 1946. Inspired by quantum
mechanics’ wave-particle duality, he referred to the elements of this basis as “atoms.”
He applied a window function g to the Fourier basis to localize the waveform in time.
The time-frequency “atoms” g(u,ξ)(t ) form a dictionary:

D = {
g (t −u)exp{iξt }

}
(u,ξ)∈R2 . (2.25)

Typically, Gabor’s atoms use a Gaussian window function:

g (t −u) = exp

{−(t −u)2

2σ2

}
. (2.26)
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In addition, the discrete Cosine transform is commonly used instead of the complex
Fourier basis. The coefficients of this dictionary are calculated using the Short-Time
Fourier Transform (STFT), where the windowed signal is projected onto a Fourier
basis:

ST F T { f (u,ξ)} = 〈 f , gu,ξ〉 =
∫ +∞

−∞
f (t )g (t −u)exp−iξt d t . (2.27)

This is equivalent to computing the Fourier transform on a windowed segment of
the signal. In practice, the signal is digitized, and FFT is used. The result can be
interpreted as a 2D image representation (time-frequency spectrogram).

It is important to note the trade-off between time and frequency resolution. Increas-
ing the window size δt reduces frequency uncertainty δω but delocalizes the waveform
in time, and vice versa. This phenomenon is known as the Heisenberg uncertainty
principle: δtδω ≥ 1

2 , or the time-frequency trade-off.
So far, we have constructed dictionaries with linear bases of various functions:

orthonormal bases, continuous or piecewise. Other orthonormal bases include the
Local Cosine Transform and wavelet packets. The issue with orthogonal bases is that
they can be too rigid for representing complex signals, as the projection between basis
components may not separate features well. Sometimes redundancy is needed to
represent complex regions of an image.

While omitting the full mathematical framework, it is essential to define dual frames
to establish the mathematical conditions for a redundant basis to provide stable anal-
ysis and synthesis. Analogous to our original metaphor, dictionaries composed of
frames have more “words” to describe the same signal. The duality in frames ensures
stable analysis and synthesis, while redundancy (determined by frame bounds) im-
proves the representation. Thus, frames can be seen as a generalization of bases. Both
STFT and CWT are rigorously defined with dual frames. Additionally, to address the
lack of directionality in wavelets for images, new frame families have been introduced:
Gabor wavelets (which model image features similarly to the V1 brain cortex [OF97a]),
Steerable wavelets, and the Curvelet transform.

2.3.5. Curvelet transform
The Curvelet transform, introduced by Candés and Donoho [CD05], enhances the
representation of multiscale and multidirectional features, such as edges and curves.
The synthesis problem is defined as in page 198 of [Mal09]:

f (x) = ∑
j∈Z

∑
a∈Θ

∑
m∈Z

〈 f ,cαj ,m〉cαj ,m(x), (2.28)

where α represents a direction and m a translation along that direction, with a scale
width of 2 j . Translations along a direction are almost symmetrical, so we can describe
the process in terms of both scale and angles. This concept is better understood with
an example: in Fig.2.10, wedges of different scales are represented. Notice how they
capture more directional details compared to the DWT shown in Fig.2.8.
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Figure 2.10.: Curvelet decomposition example showing only some wedges.

Each curvelet cαj ,m(x) represents localized ridges in the image. In the fast Curvelet al-

gorithm, each edge curvelet cαj ,m(x) corresponds to a “wedge” ĉαj ,m(ω) in the frequency
domain. Therefore, Curvelets are calculated by tessellating the Fourier space.

2.3.6. Basis pursuit
Can we go further than frames? We can reformulate the analysis and synthesis prob-
lem as an optimization problem to obtain a sparse representation using redundant
dictionaries. Given a dictionary D = {φp }p ∈ Γ and a signal f , the ideal representation
is obtained by minimizing the Lagrangian L0: we seek a combination of vectors Λ
that reconstruct the signal fΛ with minimal error || f − fΛ||2:

L0(λ0, f ,c) = || f − fΛ||2 +λ2
0||Λ||0. (2.29)
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The main obstacle is that this problem is NP-hard (non-deterministic polynomial-
time hard), making it impractical to solve exactly. However, finding a “good enough”
solution is a tractable alternative. Several approaches exist: (1) thresholding with
dictionaries of orthonormal bases, (2) greedy algorithms, and (3) basis pursuit with l1

relaxation.
The “best basis theorem” [DJ+94] states that the best basis for sparse approximation

can be obtained when working with dictionaries of orthonormal bases, provided
the basis is conveniently thresholded. Bases like wavelet packets, local cosine bases,
or bandlet orthonormal bases can be used. However, orthogonal bases may lack
sufficient degrees of freedom (too rigid) to represent complex signals.

Greedy algorithms, such as matching pursuit or orthogonal matching pursuit [MZ93],
can be very useful due to their defined convergence properties (complexity O (M N log(N ))
with M iterations). They can also be applied to find the best basis in Gabor dictionaries
with carefully designed time-frequency locations, such as those introduced by Qian
and Chen, with a complexity of O (N 2 log(N )). These algorithms are fast but can fall
into local minima, as greedy strategies are not always optimal.

In this thesis work, a novel approach to obtain a sparse basis decomposition using
l1 and l2 norms is introduced.

2.4. Computer vision
Computer vision (CV) studies algorithms and models for processing, analyzing, and
interpreting images and videos. The ultimate goal is to imitate human visual per-
ception. To tackle the complexity of visual understanding, the field is divided into
specialized tasks or topics.

Among the tasks studied in CV are [Sze22]: image formation, image processing,
image recognition (image classification, object detection, segmentation, etc.), feature
detection and matching (points, patches, edges, ridges, contours, straight lines), image
alignment and stitching, motion estimation, computational photography, structure
from motion, simultaneous localization and mapping, depth estimation, 3D recon-
struction, rendering, and mathematical modeling (ML, Bayesian approaches, and
DL).

Deep learning has significantly disrupted this field. However, the knowledge base
of CV still contains approaches of all types (Fig.2.7). The classic computer vision
approach differs from the deep learning approach in several aspects. In classic CV,
image features are extracted by designing a workflow of algorithms and mathematical
models. For example, a composition of wavelet filters can remove grain noise in a
photograph, and then objects can be detected by comparing them to a database.

Signal analysis introduced earlier in this chapter, such as Fourier transforms and
wavelet transforms, are part of CV algorithms and represent a whole field on their own.
For instance, wavelets are extensively used for image compression and manipulation
(filtering, merging, imprinting).

To illustrate how diverse the problems and approaches in CV are, we can fol-
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low a rough timeline [Sze22] of the most active research topics in CV over the last
decades: (1970s) Digital image processing, Blocks world, Line labeling, Generalized
cylinders, Pattern recognition, Stereo correspondence, Intrinsic images, Optical flow;
(1980s) Structure from motion, Image pyramids, Shape from shading/texture/focus,
Physically-based modeling, Regularization, Markov random fields, Kalman filters;
(1990s) 3D range data processing, Projective invariants, Factorization, Physics-based
vision, Graph cuts; (2000s) Particle filtering, Energy-based segmentation, Face recog-
nition and detection, Image-based modeling and rendering, Texture synthesis and
inpainting, Computational photography; (2010s) Feature-based recognition, Category
recognition, ML, Modeling and tracking humans, Semantic segmentation, SLAM and
VIO, Deep learning; (2020s) Vision and language.

These algorithms were developed over years of research and now require very few
computational resources. They do not require a dataset of images. Their effectiveness
relies on assumptions about the image properties, making the mathematical manipu-
lation of the image deterministic and highly interpretable. For instance, the strength
of wavelets lies in recognizing multiscale features in signals and images. However, it is
necessary to experiment with different algorithms and parameters for each image.

In contrast, feature extraction in DL models is done automatically. For example,
using convolutional neural networks (CNNs), features are learned using inductive bias,
so deep neural networks need to be trained with labeled datasets. Roughly speaking,
a CNN can be understood as a concatenation of image filters, where the parameters
are learned using statistics from a given dataset to solve a specific problem. The
fundamental difference between classic CV and DL approaches is that in classic CV,
image features are calculated, whereas in DL, image features are inferred.

If the amount of data is sufficient, deep learning can outperform classic CV. How-
ever, large image datasets are needed to achieve this advantage, and DL performance
collapses when the patterns to detect are absent from the training dataset [ON21].
Additionally, DL models often require multiple GPUs, and datasets need careful prepa-
ration before use. For instance, images must be downsampled, centered, and cropped
to ensure objects occupy most of the image area. Moreover, labeling images is still
a time-consuming task necessary for training DL models. Therefore, CV and signal
processing are useful when data is scarce or computational resources are constrained.
CV is also used to prepare data for deep learning algorithms, often enhancing DL
performance [OMa+20].

2.4.1. Feature extraction with edge and ridge filters
We can conclude that classic CV can be valuable for fusion applications since its
models are much more interpretable than DL models, and CV algorithms can be
applied easily to data from different machines if their assumptions hold.

In this thesis, we have explored the use of feature extraction algorithms, particularly
ridge detectors combined with automatic threshold selection, to mark modes in
spectrograms. Before continuing, we should clarify the difference between edges and
ridges and provide some details about our image data.
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Given a color image, we most likely have three matrices of pixel data corresponding
to the RGB channels. It’s worth noting that other color schemes, such as HSV, define
color with three matrices as well: Hue (color frequency), Value (brightness), and
Saturation (amount of color mixed with white). In contrast, grayscale images have
only one matrix of pixels. In the case of spectrograms, the time-frequency amplitude
of the STFT is used to form an image. Consequently, spectrograms are grayscale
images. However, we use false color palettes to distinguish details better, as color
improves our perception of contrast and dissimilarity.

The fluctuation and structure of pixel intensity determine the features of an image.
The pixel magnitude value (intensity) can be seen as a map of a landscape with valleys,
plateaus, mountains with ridges, and abrupt changes like edges or spikes caused by
noise. In Fig.2.11, we depict an oversimplified 1D cut of an image’s pixel intensity,
highlighting edges and ridges.

Figure 2.11.: Edges and ridges.

To mathematically define ridges and edges, we use calculus: the gradient (first
derivatives) and the Laplacian or Hessian matrix (second derivatives). The gradient
value of an image indicates changes in pixel intensity, and the zero-crossings of the
Laplacian indicate maxima or minima.

Without diving into the mathematical details, the magnitude, gradient, and Lapla-
cian are the basis for different detectors. For example, pixel magnitude is used in
the “watershed” [NS94; BLM14] segmentation algorithm, the gradient is used in the
Sobel edge detector [Sob+22], and the Laplacian is used in the “Canny” edge detector
[Can86]. Additionally, the eigenvalues of the Hessian matrix are used in most ridge
detection algorithms.

To illustrate the difference between edge and ridge detector results, we could have
used classic benchmark images like Lena, the cameraman, or the peppers. Instead,
we used a fusion-related image: a photograph from JET’s shot 99971 (a fusion power
record shot). The results of applying the Sobel edge detector and Meijering ridge
detector are shown in the first row of Fig.2.12. In the second row, the image is binarized
with the automatic threshold algorithm called Sato. Four observations can be made:
(1) Thresholding the original image without feature enhancement reveals few details.
(2) Using edge and ridge detectors reveals many details of the in-vessel components,
such as the tiles or the divertor edges, though the results differ. (3) Edge detectors mark
borders around structures, while ridge detectors label the structures themselves (e.g.,
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look at the ceiling tiles). (4) The edge detector detects both increasing and decreasing
pixel fluctuations, making the result noisier.

Figure 2.12.: Comparison between edge detection and ridge detection, and their
thresholded results.

We can conclude that modes present in spectrograms can be detected using seg-
mentation, edge, and ridge detectors. However, ridges more accurately model the
presence of time-frequency structures. Interestingly, the human eye detects modes
using edge detectors: experiments identify neurons called simple cells in the visual
cortex V1 as oriented edge detectors (directional Gabor filters [OF97a]), and later,
other parts of the brain identify the objects.

There are several types of ridge detectors available in open-source libraries like
Scikit-Image [Van+14]. In this work, we tested Meijering, Sato, Frangi, and Hessian
ridge detectors. These algorithms are extensively used in microscopy imaging to
detect vessels and other structures. Sometimes, ridge structures appear as black in
the images, so the algorithms have an option to detect them. Another feature of these
algorithms is that they can be applied at multiple scales to detect both broad and
narrow ridges simultaneously, which can also be useful for detecting modes.
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The mentioned ridge detectors were applied to the JET photograph to compare
the different results (Fig.2.13). Once the ridges are enhanced, the same threshold
technique is applied to all of them. The parameter σ (or a list) determines the scale
in pixel units to which the detectors are applied. It can be seen that Hessian tends
to be noisier, the Frangi method detects broader ridges, and Meijering and Sato give
intermediate results.

2.4.2. Automatic thresholding
Thresholding is used to separate the image’s foreground and background. Threshold-
ing an image is not a trivial task for two reasons. First, a single value for the entire
image might not work due to abundant local features. Second, the result is very sen-
sitive to the selected value, as pixel intensity changes rapidly. It is also important to
note that in color images, the results change if channels are thresholded separately
or after converting the image to grayscale. To address these issues, several automatic
thresholding algorithms have been developed over the years, including Isodata, Li,
the Mean method, the Minimum method, Otsu, the Triangle method, and Yen. These
algorithms analyze the modality of the pixel intensity distribution to determine a
global value. All are available in the Scikit-Image library [Van+14].
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Figure 2.13.: Examples of different ridge detection algorithms on JET in-vessel view
(shot 99971).
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Figure 2.14.: Comparison of different automatic thresholding algorithms on Features
from Meijering ridge detector of Fig. 2.12.

In Fig.2.14, the following automatic threshold methods (Isodata, Li, the Mean
method, the Minimum method, Otsu, the Triangle method, and Yen) are used to bina-
rize the same image. They all use different approaches for global auto-thresholding.
To give some details (from page 69 of Ref. [Kri16]): the Isodata method iteratively
refines the threshold by computing the means of foreground and background regions
until convergence; Li’s method uses an iterative cross-entropy thresholding approach;
the Mean method sets the threshold at the image’s mean intensity; the Minimum
method assumes a bimodal histogram and iteratively identifies the threshold as the
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minimum point between two peaks; Otsu’s method maximizes the variance between
classes; and the Triangle method uses the histogram’s peak, assuming the peak is not
centered, and sets the threshold in the largest region. These methods can be used
like black boxes as they do not have hyperparameters to adjust. Depending on the
image statistics, some methods perform better than others, so comparing the results
is necessary before incorporating one into a CV pipeline.

2.5. Machine learning and Computer Vision on
detection of Alfvén instabilities

To this date and to the best of our knowledge, several works have approached the detec-
tion of EP modes using supervised ML with data from different tokamaks: in COMPASS
[Škv+20] generative neural networks (Variational autoencoders and Gaussian Mix-
ture models) have been trained to detect chirping modes; in NSTX [Woo+20] the use
Random Forest tree models to predict several labels (quiescence, fixed-frequency,
frequency sweeping, chirping, and fishbone-like and abrupt large events); in DIIID,
the availability of a big labeled dataset of the ECE and CO2 interferometers spectro-
gram (with 4 labels: LFM, BAE, RSAE, TAE, EAE) has produced many results [Jal+21;
Jal+22; Kap+22a; Gar+23] with different model architectures ranging from RCN, MLP
or LSTM architectures. All of the works mentioned mainly use models that are trained
on labeled spectrogram images, with various neural network architectures.

In TJ-II stellarator, previous work from Bustos et al. [Bus+21], used supervised
deep learning to extract modes automatically from Mirnov coils signals spectrograms.
They manually annotated ∼500 spectrograms to create a training dataset for image
segmentation. The trained model was able to segment the spectrogram images,
recovering 989 modes on the full dataset.

Because labeling spectrograms is a costly and tedious task. These works moti-
vated us to research an unsupervised labeling technique of mode signals. Because
deep learning networks can potentially boost their performance by employing more
training data [Hes+17], the capability to create a bigger labeled database of modes
with intershot analysis is a necessary step to generate enough data to train real-time
accurate models.

Another application close to this thesis work is the toroidal mode number calcu-
lation [Kle+08] of Mirnov coil signals using sparse regression of the complex Fourier
spectra. The SparSpec algorithm [BCB07] original purpose was calculating periods
(frequencies) in unevenly sampled astrophysical signals. This work uses a ℓ1 regular-
ization and an optimization algorithm based on step coordinate descent [BCB07]. In
this model, the detection of MHD activity requires the existence of a coherent signal
detected by the array of magnetic diagnostics. Other approaches using coherence or
cross-power spectra can identify mode activity [Mel+12]. In fact, all methods for mode
number calculation can be used to extract patterns from MHD spectra using the 3D
phase information as well. They are based on: phase fitting of two or multiple coils,
using the FFT or wavelets [Pok+10]; using Kalman filters to fit the phase [ACt13]; using
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SVD of the matrix of raw signals [Nar92] or the Fourier complex matrix [HA07]; or
applying unevenly sampled spectral methods like the Lomb’s periodogram [Zeg+06].
In addition, phase coherence between different signals can be used to enhance the
mode trace [Pok+10; Tin+22].

It is important to mention that there is a growing research effort on other applica-
tions of ML to fusion use cases. To give some examples, experiments with real control
of plasma equilibrium by reinforcement learning [Deg+22] have been carried out, or
very recent work avoiding tearing instability [Seo+24] has reached real experiments.
One of the earliest applications of ML to Fusion was disruption prediction [Her+96;
Pau+02; Mur+08], and it has undergone significant development [Mur+09; OMM13;
Veg+13; Veg+15; Veg+16; Mor+16; RG18; Rea+18; KST19; Veg+22; Zhe+23; She+23;
Mur+24]. Therefore, disruption prediction literature is already quite extensive, an his-
torical review on the topic [Rea23] can be consulted by the interested reader. Although
disruption prediction sometimes observe MHD features of the plasma [FMR22], these
works will not be further discussed, as this thesis work focuses on the identification of
Alfvénic type of instabilities.

Research using full unsupervised learning approaches is less studied. This might be
caused by its intrinsic difficulties: the labels and patterns detected are often difficult
to interpret, and when they do, the result might appear evident. To provide some
references: in [Veg+09] similarity search is employed to query databases for close
waveforms and images; SVD and cluster trees are used in [PB09; Yam+10] to find
different MHD modes and Alfvénic activity [Bla+] in multichannel Mirnov coil data
with some configuration parameters of the H-1 heliac stellarator, work from [HBP14]
uses SVD and STFT feature extraction, complementing each other to label MHD
modes in H-1 NF spectrograms. And finally, [Veg+20] uses unsupervised clustering
of multi-signal patterns and develope supervised classifiers of multisignal plasma
relevant events.

In contrast, the research on the application of classic CV and wavelet for image
processing in Fusion applications is limited (outside Camera diagnostics). To our
knowledge, only previous work [Kap+22a] from DIIID uses computer vision algo-
rithms, morphological filters specifically, to prepare data for using ML. For automatic
identification of MHD modes: Ridge detection and multi-wavelet convolutional neu-
ral networks have been explored in two master theses [Col23; Oro23] respectively.
This gap in knowledge regarding the use of CV to extract information from plasma
spectrograms motivated the research presented in this thesis work.
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3. Mode identification using sparse
regression and Gabor’s random
dictionaries

“the search for the Holy Grail of an
ideal sparse transform adapted to all
signals is a hopeless quest.”

— Stéphane Mallat [Mal09]. page 1.
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3.1. Introduction
Given plasma diagnostic data in a time-series format, such as a Mirnov coil signal,
our goal is to identify the signal’s modal components. These components correspond
to distinct types of finite frequency oscillations that can be observed in the signal’s
spectrum. To illustrate this problem, we begin with a musical analogy: given a sound
sample of a musical instrument, our goal is to identify different musical notes from
different instruments. In Western music, there are 7 musical notes, and each one is
composed of several harmonics, which are groups of specific time-frequency oscilla-
tions associated with the stationary waves produced in the instruments. One possible
data-driven approach would be to use a spectrogram to identify which frequencies
are present in the sound. Since the harmonic frequencies of different instruments
are well known, we could compare the information obtained in the spectrogram with
our prior knowledge of musical sounds, finally obtaining a transcription of the sound.
Once the transcription is done, if we repeat the process with many songs, we might be
able to have enough data to train a computer to do automatic score transcriptions.
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A musical note has many harmonics associated with a fundamental frequency:
their frequencies, higher or lower than the fundamental, determine the tone of the
instrument. Similarly, plasma modes can have many harmonics. Like a musical
instrument, the waves in the plasma have a three-dimensional distribution, which we
also want to study.

Musical instruments are usually tuned before recording, and their production is
highly standardized making differences between different instruments very subtle.
This makes the frequency patterns almost equivalent between many situations, and
subtle variability is in the hands of the musicians and their will. This advantage
allows us to recognize recorded songs with our phones very easily. However, the
situations inside a fusion device are different: physical conditions change rapidly
and frequencies do not remain stationary. The musical analogous would be a guitar
changing in length or string tensions while playing. Although a shot can be repeated
and instabilities appear again with similar signal patterns (time-frequencies in the case
of the spectrograms), the goal of experiments is often changing physical conditions to
understand the plasma behavior. The changing experimental conditions difficult to
establish a fixed library of prior knowledge about plasma patterns.

In the spirit of the analogy, we can find an inspiration to approach the problem
of plasma modes identification: the sparse properties of musical language used for
transcribing music are extraordinary. Complex sounds between 20Hz and 20 kHz are
encoded, employing only seven musical notes and different indications for rhythm. A
continuous range of frequency is transformed in a very sparse code of musical notes.
This is possible because fundamental frequencies are not dense in the audible range
of frequencies 20Hz and 20 kHz. Therefore, a sparse codification like the musical
language, contains much meaningful information. Given the fact that instability
frequencies are sparse in the frequency range between 0 and 500 kHz, we use frequency
sparsity as the prior knowledge of our plasma modes identification. In this chapter,
we aim to find groups of sparse frequencies that can represent waveforms extracted
from plasma diagnostics.

3.2. Sparse coding with a musical example
In order to demonstrate how the algorithm Sparse Random Mode Decomposition
(SRMD) [RST22] works, we use a well-known piano score to extract the harmonic
content of the signal using SRMD. The piano piece is a recording of “The Entertainer”
by Scott Joplin (1902) which was registered on a piano roll and recorded in audio years
later. In Fig. 3.1, a copy of the original score is shown. The raw audio waveform can
be seen in Fig. 3.4 along a Fourier Spectrogram of the signal. In addition, the musical
note frequencies can be calculated using f (n) = 440(2(1/12))(n−49) Hz for each n key
from 1 to 88 [BK22] (page 80). The A (La) note of the central octave is the key 49 and
the fundamental frequency oscillates at 440 Hz. The notes around the central octave
are represented in Fig. 3.2, over the audio spectrogram.

The problem of musical transcription can be understood as a linear regression
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Figure 3.1.: Piano score: First 5 bars of The Entertainer by Scott Joplin (1902) from
NYPL’s open archive.

problem. Given the signal s, a matrix of musical waveforms D, find the weights c , such
that s = D ·c . The matrix D is known as the dictionary matrix. In the case of SRMD, the
columns of D are composed of real Gabor atoms, with random frequencies, phases,
and time locations (hence the word Random in SRMD).

The goal is to find a representation that keeps the modes corresponding to the
piano harmonics but discards undesired features like noise. In order to construct a
dictionary matrix, we assume that the audio signal registered by the microphone can
be reproduced as a linear combination of Gabor atoms: si =W (t −τi )cos(2π fi t +φi ),

where W (t −τi ) = exp
(
− (t−τi )2

2σ2

)
is a Gaussian window function of bandwidth σ. The

term cos
(
2π fi t +φi

)
reconstructs the oscillatory structure and the window function

modulates de amplitude over a specific time τ. A representation of different Gabor
atoms can be seen in Fig. 3.3

The audio signal can be reconstructed using the linear combination of all atoms,
given that we know the coefficients ci , that represent each atom amplitude.

s ≈∑
i

ci · si =
∑

i
ci ·exp

(
− (t −τi )2

2σ2

)
cos(2π fi t +φi ). (3.1)

To calculate the coefficients ci it is possible to use a linear regression fit, where the
common practice is to minimize the squared error ||s −D ·c ||2. However, the values of
coefficient ci will also represent the noise in the audio signal.

Signal representations can be also obtained by a projection over a basis. The Gabor
transform of a signal s(t) is the projection of this signal onto the Gabor dictionary
Dτ, f = {

W (t −τ)exp
{
i 2π f t

}}
(τ, f )∈R2 . Such transform inspired the actual windowed

Fourier transform used to plot the spectrograms, the STFT explained in chapter 2. It
allows us to calculate time-frequency representations (spectrograms) efficiently. We
use it in Fig. 3.2 and Fig. 3.4 as a reference representation to evaluate the result of
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Figure 3.2.: Raw audio signal of The Entertainer’s first bar and its spectrogram.

Figure 3.3.: Gabor atoms of different frequencies and bandwidth.
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SRMD. However, in the case of the Fourier spectrogram, the signal and noise are not
directly separated.

To extract the modal amplitudes without noise interference, sparsity of c has to
be promoted in the optimization algorithm. A vector is sparse if the majority of
components are 0. If we sum the absolute values of all vector components, we obtain
the ℓ1 norm of a vector. Therefore, we can express sparsity mathematically using :
||c ||1 =∑

i |ci | ≈ 0.
We promote the sparsity of the code vector by adding a regularization term to the

square error. Therefore, we obtain the code c by solving the following optimization
problem (

Encoder

equation

)
c = argmin

c
{||c ||1} such that ||D ·c −s||22 < r ||s||2, (3.2)

which we have called (encoder equation). Once the code is known, the decoder
equation is a straightforward linear combination:(

Decoder

equation

)
s = D ·c (3.3)

In practice, the optimization algorithm does not always set to zero no-sparse com-
ponents of c . The values of c are divided into 100 quantiles and the bottom quantiles
below a given threshold value are discarded. This collection of atoms composes a
signal, as words in a dictionary represent sentences. The terms dictionary and atoms
were proposed by Mallat and Zhang [MZ93] in 1993. If the matrix product D ·c recon-
structs the signal D · c = s, the role of the vector c is both the selection of columns
in D, and setting the amplitude of each Gabor atom. For this reason, the vector of
amplitudes c is also known as code. Following the Mallat’s notation introduced in
chapter 2, our dictionary can be defined as

Dτ, f ,φ = {
W (t −τ)cos(2π f t +φ)

}
(τ, f ,φ)∈R3 , (3.4)

where τ, f and φ are randomly chosen from uniform distributions of time shifts,
frequency and phase shifts.

Once the signal is encoded we can create groups of atoms close in time and fre-
quency. For that, SRMD uses the DBSCAN algorithm (density-based spatial clustering
of applications with noise). The result of applying SRMD can be seen in Fig. 3.4:
the scatter plot over the spectrogram represents the set of points {τi , fi }, each dot
represents the time-frequency position of a Gabor’s atom encoded by SRMD. The
result has been cropped so we can identify easily which cluster corresponds to each
musical note. The raw signal above the spectrogram reflects the oscillations of the
different clusters with the same color palette. The reader able to read the musical
score in Fig. 3.1 would identify the melody notes of the first bar (B,E,C,A,D,G) with
the cluster centers. In addition, it can be seen that some modal groups are individual
notes merged together because of the result of the cluster analysis.
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Figure 3.4.: Mode decomposition obtained by SRMD: raw signal and time-frequency
location over spectrogram

To summarize SRMD (algorithm 1), the basic steps are 3: create a dictionary of
random atoms (1), run an optimization algorithm to determine the sparse collections
of atoms that can generate the signal, in other words, obtain the sparse code (2), and
run a cluster analysis algorithm to identify a mode out of a group of close atoms in the
time-frequency space. Once the analysis is completed the result can be seen in Fig.
3.4.

Before applying SRMD to magnetic signals we need to discuss its limitations: Mirnov
coil signals are sampled at 1 or 2 MHz, that is 1 or 2 million samples per second of
signal. Without taking into account the coil startup and plasma formation time, TJ-II
shots duration is approximately 1 second. In addition, the Alfvénic activity that we
want to analyze has a very high frequency between 100 and 400 kHz. This discards
the possibility of downsampling the signal: because of the Nyquist limit, which is
approximately half the sampling frequency, we need all samples registered. Therefore
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Algorithm 1: SRMD algorithm from [RST22]

Input: signal s
Parameters: number of atoms N, maximum frequency fmax , window size ∆,

noise noise level r , quantile threshold thr
Output: c , labels, τ, f ,φ
Steps:

1 Construct dictionary matrix drawing random τi , fi , φi from uniform
distributions

D = [si (t )] =
[

exp
(
− (t−τi )2

2σ2

)
·cos(2π fi t +φi )

]
2 Solve the encoder equation(

Encoder

equation

)
c = argminc {||c ||1} s.t. ||D ·c −s||22 < r ||s||2

Discard lower quantile of c values: ci = 0 if Q(ci ) < thr .
getting c τ, f ,φ

3 Cluster τ- f space using DBSCAN, labeling the modes
Return c , labels, τ, f ,φ

Figure 3.5.: SRMD memory usage against signal length and number of atoms (in log
scale)

SRMD should be able to cope with 1 million samples. However, the allocation of
matrix D demands high amounts of memory as the number of atoms has to be very
high to correctly describe the signal. Moreover, the optimization algorithm also is
computationally expensive, requiring time to perform all computations needed.
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Figure 3.6.: SRMD execution time against signal length and number of atoms (in log
scale)

To demonstrate the computing resources needed by SRMD and its scaling in mem-
ory and time: we run SRMD on a signal increasing the number of samples. The
dictionary size increase with the number of samples. We set the number of atoms
equal to the number of samples so dictionary matrix is a square matrix of size: 1000,
10000, 20000, 30000, 40000, 50000, 60000, and 70000 samples/atoms respectively (the
size of the matrix gives the number of atoms and samples, hence the samples/atoms
notation). In Fig. 3.5 it can be seen that the memory required increases almost with
the cube of the signal size. On the other side, in Fig. 3.6, the execution time grows
approximately as the square of the signal length, this make sense as the dictionary
matrix D is chosen to be a square matrix for this experiment (same number of atoms as
the signal length, in practice there will be more atoms than samples). The experiment
ended with 80000 samples/atoms as the program was not able to allocate 47.7 GiB
on memory. Therefore, 80k samples is a figure far from the 1 million samples per
second needed. The situation would be even more adverse in the case of other fusion
machines. For instance, JET pulses are approximately 10 seconds long, and future
ITER’s hybrid scenarios aim for more than 1000 seconds. Because of these reasons, it
is necessary to adapt SRMD to work with high-resolution time series which are very
common in plasma diagnostics.

“There is not a universally ideal representation for all signals” as Mallat said in
its reference book [Mal09], which is the reason why a good data analyst compares
several representations. Also, the convenience and computational cost vary widely
between different methods of representation. For instance, the ℓ0 norm is equivalent
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to counting the number of components in a vector different than 0. Using ℓ0 in
regularization to obtain a sparse code, that makes the optimization problem an N P

hard problem [Til15]. That is the reason why the ℓ1 convex relaxation is used instead.
However, the effort to obtain a sparse representation of data is not justified only by the
need for separating signal from noise: sparsity is an important prior in many domains,
and the reasons are deep. If we accept Ocham’s razor principle, in the situation
of having two different competing representations of a signal, the one with fewer
components, i.e. the simpler one, should be the correct one. This principle translates
mathematically in choosing the vector of weights c with more null components, in
other words, the sparsest one.

The importance of sparsity in physics, statistics, and nature can not be understated.
In physics, generally, the coordinate system that facilitates calculations (generalized co-
ordinates) and formulation of physical laws has the minimum degrees of freedom. For
instance in biology, blocks of neurons called simple cells, located in the visual cortex
V1 and organized in columns, specialize in detecting edges with a determined orienta-
tion. This discovery allowed Hubel and Wiesel to win the Nobel Prize of Medicine in
1981. Later, the way simple cells in visual cortex V1 operate was modeled by a sparse
coding of images via an overcomplete Gabor’s atoms dictionary [OF97b]. Using a
filter bank of Gabor atoms is a bio-inspired method of image feature extraction in the
machine learning literature.

Dimensional reduction also involves sparse assumptions, and its need is justified
because the data required to correctly sample learning spaces increase exponentially
when adding dimensions. This fact is known as dimensionality curse and it makes
difficult the statistical learning of algorithms. Therefore sparse representations can
help to learn patterns in high dimensional spaces. Finally, the parsimonious principle
is used in statistics to improve model generalization (it avoids overfitting), and model
interpretability. Because of this reasons, using sparsity is a key concept for data-driven
physics and machine learning, and it is gaining attention in plasma physics [Kap+23],
with applications as different as calculating mode numbers [Kle+08] or optimizing
stellarators [Kap+22b].

3.3. TJ-II stellarator signals
Raw signal plots from Mirnov coils are indistinguishable (at least at first sight) from
an audio waveform: like the first bar of the Entertainer 3.2 and the TJ-II shot 38339 in
Fig.3.8. The properties of the signal are revealed by close inspection of the spectrogram
Fig.3.8, or by the use of algorithms like SRMD.

The variation in the magnetic field is registered in TJ-II’s array of Mirnov coils. These
coils record the voltage induced by the plasma magnetic fluctuations. Particularly, the
signals are extracted from the MIR5C coil, belonging to the straight line array. The
spectrograms generated using this coil are exceptionally clear because it is positioned
inside the vessel very close to the plasma’s last-closed surface. In Fig.3.8 we illustrate
the spectrogram of a typical shot observed in TJ-II measured by the MIR5C.
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Figure 3.7.: Shot 38399: MIR5C coil raw signal.

Figure 3.8.: Spectrogram of shot 38399, using MIR5C coil signal sampled at 2MHz,
having complex mode activity between 0 and 400 kHz.

Other signals used in this thesis work have been: the electron density, the plasma
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current, and the magnetic energy (in Fig. 3.9). They are obtained from magnetic sen-
sors (microwave interferometer, Rogowski coil, and the diamagnetic loop respectively.

The microwave interferometer is responsible for measuring the plasma density
along a specific line of sight. This line passes by the plasma close to the magnetic axis
with an inclination of 18.7◦ with the vertical axis. The correlations of this measurement
with the frequency of the modes are key to identifying Alfvénic activity.
The plasma current is measured in kA using a Rogowski coil, This current is the
contribution of 4 currents: one induced by NBI heating system, the current driven by
oblique ECRH injection, and the bootstrap current or ripple currents in coils close
enough to the plasma. Due to the proximity of the TJ-II’s main field conductors to the
plasma, an unwanted Ohmic contribution due to the ripple in the currents flowing
through the conductors induces current fluctuations in the plasma [Mul+23].

A diamagnetic loop measures the energy stored in the plasma. It is important to
mention that the diamagnetic loop can be affected by the plasma current, part of the
current fluctuations will be present in the energy’s time traces.

The sampling frequencies for the different measurements varies as follows: the
Mirnov coil is sampled most frequently, between 1 and 2 MHz, whereas the magnetic
energy is collected at the least frequency (≈ 10 kHz). Therefore, linear interpolation is
needed to calculate relationships between variables.

Figure 3.9.: TJ-II signals in a.u.: plasma current, magnetic energy and 1/
p

n

The stellarator has two heating systems: two NBI (Neutral Bean Injection) units, and
two ECRH (Electron Cyclotron Resonant Heating) beams. Fig.3.8 shows the spectro-
gram of magnetic fluctuations registered by the MIR5C pickup coil in a NBI heated
plasma, the ECRH was not activated in this shot. When both NBI’s are consecutively
engaged, a complex mode activity is formed between 0 and 400 kHz along broadband
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frequency noise. It is important to mention, that not all modes that can be observed
are necessarily Alfvénic, identifying the instability mechanisms might require addi-
tional study with plasma simulations and theoretical analysis. In addition, Alfvénic
activity can be generated in plasma regions out of the interferometer’s line of sight,
with different density fluctuations. This can cause a misidentification of Alfvénic
modes.

The Alfvénic mode activity in TJ-II has been widely observed with frequencies in the
range of 50kHz to 400 kHz, some studies are [Jim+11; Mel+12; Mel+14; Mel+18; Eli+21;
VSG17; SOL15; Cap+21; Ghi+24]. The Alfvénic activity can be observed along a rich
variety of phenomena, which makes its identification difficult.

In the case of most plasma signals, the data is collected as a time series. The
approach of this work for clustering time series is based on the observation that
finding modes in a signal is equivalent to creating a new signal representation in
which only the modes are presented. It is important to note that, the mentioned
previous work employing unsupervised learning to mine fusion databases does not
specifically address the problem of labeling Alfvénic activity by using sparse coding
on raw signals.

3.4. The Elastic Random Mode Decomposition
algorithm (ERMD)

Figure 3.10.: Examples of atoms that minimize reconstruction error, corresponding
code values ci will be significantly greater than zero.

To construct the dictionary matrix D, we can use Gabor’s atoms as in Eq.(3.1),
assuming a uniform distribution of parameters (τi , fi , φi ) time, frequency, and phase.
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By taking random samples of these distributions we can assign an atom to each
column of the matrix D:,i . We use the notation D:,i to refer to the i -th column of the
matrix. Then, each atom (D:,i column) constitutes a time series’s feature. It should be
noted that the number of atoms in the basis is not predetermined, and the variance of
the parameters (τi , fi , φi ) has to be enough to represent the signal accurately.
This method for constructing the dictionary is derived from an algorithm called Sparse
Random Mode Decomposition (SRMD) [RST22], explained in the previous section.
The complete algorithm is available as open-source code. In Figs. 3.10-3.11-3.12 an
application of the algorithm on a synthetic signal is shown. The atoms in Fig.3.10
have a similar frequency and phase to the original signal, the code values will adjust to
set a proper amplitude for each atom to represent the sign. On the other side, atoms
in Fig.3.11 cannot represent the local features of the time signal, SRMD will adjust
their amplitudes to be close to zero. In Fig.3.12 we can see that very few atoms can
reconstruct the right frequency, and increasing the number of atoms improves the
capability of representation of the signal’s features.

Figure 3.11.: Examples of atoms that do not minimize reconstruction error, respective
code values ci need to be close to zero.

3.4.1. A tailored optimization algorithm
Two needs lead us to introduce a tailored optimization algorithm: to improve the
computation so that it can be used with high time-resolution plasma diagnostics, and
to improve the performance of coding in large dictionaries.

In this subsection, we formulate the signal representation by starting with the most
general constrained minimization problem and subsequently introducing step-by-
step different alternative approaches to achieve sparsity in the codification. A detailed
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Figure 3.12.: Examples of reconstruction improvement by adding atoms to the code.

discussion can be found in Elad’s book [Ela10].
It is assumed that the dictionary matrix has more columns than rows, so the system

of equations D · c = s is undetermined as there are more unknowns than equations.
If the system is consistent, in the sense that s can be linearly generated by columns
of D, there will be infinite solutions. Therefore, to cope with infinite solutions we
aim to find the solution c with minimum norm. The problem can be formulated as a
constrained optimization problem (PL ),

(PL ) ≡ min
c

L (c) subject to s = D ·c , (3.5)

where the loss function L (c) controls the solutions we can obtain. Choosing L (c) to
be the Euclidean squared norm ||c||22 is the common choice,

(P 2
2 ) ≡ min

c
||c ||22 subject to s = D ·c (3.6)

as it can be shown [Ela10] (page 4), the problem P 2
2 has a unique solution because

the objective functional is convex and the solution can be obtained [Ela10] using the
Moore-Penrose pseudoinverse matrix X+.

We can formulate an unconstrained version of the problem (P 2′
2 ) which has equiva-

lent results, and it is stated as the minimization of the signal’s mean squared recon-
struction error (MSE), so choosing the cost function as L (c) ≡ ||D · c − s||22 results
in

(P 2′
2 ) ≡ min

c
||D ·c −s||22. (3.7)

The unconstrained formulation can be more familiar to the reader because it is by
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definition the ordinary least squared (OLS) estimator for linear regression. Remark-
ably, the unconstrained version does not enforce obtaining a solution of s = D ·c , nor
does it assume any property of the components of the solution vector c . Above all, we
can get a result that is as good as the optimization algorithm’s performance.
However, the solution of the OLS estimator is not adequate for creating a basis, be-
cause generally all c ’s components [c1,c2, ...,cN ] can be different than zero, and the
explanatory power of the code is thereby lost. We need to ensure that as many code
components [c1,c2, ...,cN ] as possible vanish. This can be achieved using l0 norm
instead of l2 in the constrained problem P 2

2 . The norm l0 is defined as the number of
vector components different than zero, so minimizing l0 and the MSE simultaneously
can lead to a suitable basis. Hence, we can define the problem P0 as

(P0) ≡ min
c

||c ||0 subject to s = D ·c . (3.8)

This problem is significantly difficult to solve since (P0) is an N P hard problem
[Til15], so trying to solve it directly is not a common practice. Nevertheless, we can
relax the constraints if we use the ℓ1 norm which is defined as the sum of the vector’s
components. Consequently, minimization of the ℓ1 norm will shrink some vector
components close to zero. This optimization strategy [CDS01] is called basis pursuit
(BP) , it will be noted as P1

(P1) ≡ min
c

||c ||1 subject to s = D ·c . (3.9)

Additionally, we need to take into account that most signals will not be pure and they
will have noise. That can be modeled by adding an σ error parameter to the functional
in the following way

(BPDN ) ≡ min
c

||c ||1 subject to ||D ·c −s||22 ≤σ. (3.10)

The later version is called basis pursuit denoised (BPDN). Though it was first proposed
[CDS01] in its unbound version (P ′

1), it can be formulated as follows:

(P ′
1) ≡ min

c

{||D ·c −s||22 +λ1||c ||1
}

. (3.11)

This problem is also found in machine learning known as Lasso regression.
Another alternative for regularization is using ℓ2 norm (no squared). The functional

takes the form
(P ′

2) ≡ min
c

{||D ·c −s||22 +λ2||c ||2
}

(3.12)

in its unconstrained version. As in this case, the equivalent problem in machine
learning is named Ridge regression. which is useful for avoiding shrinkage of the
solution vector when data have multicollinearities [ZH05; Tib11].

The effect of ℓ1 regularization on a group of correlated variables is the selection of
one variable, discarding the rest, even if these discarded variables have explanation
power or are part of the solution. If there are correlated features and a sparse solution
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that conserves groups of correlated variables is desired, adding ℓ2 to the functional,
like in (

ELASTIC

NET

)
≡ min

c

{||D ·c −s||22 +λ1||c ||1 +λ2||c ||2
}

, (3.13)

is a good alternative. This problem is known in the machine learning community as
elastic net regression.

About the decision of using constrained or unconstrained versions of the optimiza-
tion problems, it usually resolves in favor of the unconstrained version, because more
and faster algorithms are available with guaranteed performance and studied con-
vergence. For instance, solvers [VF09; VF11] can be used to solve the basis pursuit
problem with a random dictionary as with SRMD [RST22]. However, a major difficulty
to be solved is the allocation of the matrix in memory. The features in matrix D must
have at least the same number of samples as the signal. Moreover, because we have sig-
nals sampled with 1MHz with a pulse duration of 1 second and thousands of features
are necessary to represent the modes accurately, the matrix size can easily exceed all
available memory in the computing node (of the order of hundred terabytes).

A first valid idea to address this issue is to divide the signal into chunks and process
each chunk sequentially on one CPU, or in a parallel process on several computing
nodes. But this approach has one inconvenience, namely each signal chunk has
a different signal-to-noise ratio, and the weights of vector c may be unevenly set
along chunks. In addition, there are discontinuities in the reconstruction of the joins
between chunks. The gradient accumulation proposed in this work tackles this issue.

The motivation for finding a sparse code for the dictionary is not only algebraic.
Indeed, a closer look at the spectrograms with mode activity reveals that MHD mode
signals are very sparse in the frequency domain. Imposing sparsity in the dictionary
representation will help to encode and cluster the MHD activity. Finding a sparse
code c such that D ·c ≈ s constitutes an optimization problem. By changing the linear
projection method of STFT with a non linear optimization, the flexibility to reproduce
the signal is dramatically increased.

In [RST22], a Basis Pursuit De-Noised optimizer (BPDN) was used the obtain the
code vector; the optimization problem is formulated as follows: c = {argminc {||c ||1}
subject to ||D · c − s||22 ≤ σ}. The norm ||c ||1 is responsible for promoting sparsity in
the code c [ZH05]. However, the optimizers that solve BPDN require the allocation of
the full dictionary matrix D. This difficult the analysis of Mirnov signals for complete
shots, which usually comprise several million samples. To solve this problem, we
propose the use of a linear neural network to encode the atoms dictionary using the
elastic net regularization [ZH05; Tib11] in the loss function.

We can use a single-layer neural network with linear activation function y = X·w+b,
and b = 0. We train the network in such a way that the training is equivalent to solving
our signal representation s = D ·c . In other words, the neural network architecture is
equivalent to the decoder equation 3.3. and training the neural network is equivalent
to solving the optimization problem of the encoder equation using the elastic net
regularization loss of equation 3.13.
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Figure 3.13.: Diagram of the proposed neural network architecture: dictionary
columns D:,i are inputs of the neural network with weights ci .

It is worth noting the large asymmetry between coding and decoding: because
the decoder equation is linear, whereas the encoder equation is nonlinear. Fig.3.13
illustrates schematically the architecture of the employed neural network. Even though
the activation function is linear, nonlinearity is present in the Gabor atom, which acts
as a nonlinear kernel. The deepness is replaced by the large length of the input layer.
In this work, PyTorch [Pas+19] with Lightning modules have been used to implement
this model. By using this neural network, we can benefit from parallel computing on
GPUs.

Note that the encoder equation is different from the BPDN formulation, the loss
function inside the encoder equation is known as elastic net [ZH05], there are two
main differences though. First, the problem formulation is unconstrained (it does
not need a noise parameter σ). Second, there are two regularization terms λ1 and
λ2 associated with the modules of the code c in ℓ1 norm ||c ||1 and ℓ2 norm ||c ||2
respectively, while in BPDN only the norm ℓ1 is used. The norm ||c ||2 is responsible
for promoting the presence of correlated groups in the code c [ZH05].

In this work, the use of the elastic net is proposed based on a fundamental obser-
vation: the random atoms used in the construction of the random dictionary can be
correlated. This idea is illustrated in Fig.3.14. It can be seen that atoms with the same
frequency and phase but different amplitudes are highly correlated, while atoms out
of phase are not correlated at all. Most importantly, atoms with connecting tails in
phase have some correlation. The improvement of adding ℓ1 regularization can be
appreciated by comparing Fig.3.15 and Fig.3.16. It is important to emphasize that the
atom’s correlations can be exploited to promote the time continuity of the encoded
modes, which is an essential physical feature of the signal.

Two major improvements in memory usage have been implemented. First, it is
possible to use the atom formula given by Eq.3.1 and the random number generator
seed to allocate dictionary atoms only when a signal’s batch is allocated in the GPU.
This is a breakthrough in memory optimization; we can refer to this method as in-
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Figure 3.14.: Varying correlations between different pairs of atoms: Overlapping
needed to reconstruct the signal can correlate.

Figure 3.15.: Result of ℓ1 encoding: setting λ1 ̸= 0 and λ2 = 0 in Elastic Net regulariza-
tion loss.

GPU dictionary construction. Second, we can adapt the gradient descent to optimize
the weights of the full signal while working by batches. This technique is known as
gradient accumulation. The gradient update is worked out for each batch until a given
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Figure 3.16.: Result of mixed ℓ1 and ℓ2 encoding: setting λ1 ̸= 0 and λ2 ̸= 0 in Elastic
Net regularization loss.

number of batches is reached, then all updates are combined indicating the direction
of the gradient descent. This method works assuming that the averaged gradient
direction of all batches considered is in the right direction. Gradient accumulation
allows the encoding of high-resolution signals, and to the best of our knowledge, it is
used to encode signals for the first time in this work. It is worth mentioning that we
used PyTorch’s Adam optimizer with its default parameters.
Finally, a strong scaling test has been carried out to quantify the speed-up of the
proposed encoding algorithm. The result can be seen in Figs. 3.17.a-3.17.b. The test
was carried out using 8 NVIDIA Tesla P100 GPUs, each one with 16384 MB of memory.
Execution times are averaged over 5 epochs, the error bars cannot be appreciated in
the figure. The result shows that the time execution scales linearly with the number
of atoms in the dictionary, as is evidenced in Fig.3.17. Also, the speed-up saturates
over 8 GPUs due to data communication, as reported in Fig.3.17. Therefore, an epoch
can be completed in less than 5 minutes. On the contrary, the encoding can be done
on the CPU with the SPGL1 algorithm [VF09; VF11], dividing the signal into 10-15
chunks, running times take from 40 to 60 minutes, and chunks codes need to be
re-weighted at the end. If we compare the performance with SPGL1’s running times,
the improvement achieved using the neural network is remarkable.
It is to be noted that the elastic net regularization has been used before for images in
dictionary learning algorithms (when code and dictionary need to be learned simul-
taneously [Jon19; SLW16]). Recent works accelerated image encoding using a linear
neural network [SSK23]. In addition, there are some previous works with deterministic
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Gabor’s dictionaries [Kel+12][FG24] but not with dictionaries of random features. The
use of elastic net regularization in these publications consistently improves perfor-
mance, when identifying correlated atoms (modes) is needed.

Figure 3.17.:a Strong Scaling Benchmark. Each experiment has been repeated 5 times,
error bars can not be appreciated.

Figure 3.17.:b Linear scaling with number of atoms. Each experiment has been re-
peated 5 times, error bars can not be appreciated.

The algorithm can be used on GPUs. To process the signals in one GPU, it is recom-
mended to select a reduced number of features and a smaller batch size. We show two
different train losses in Fig.3.18 and Fig.3.19. In Fig.3.18, we can notice two epochs
iterations, and in Fig.3.19 we can distinguish the point at which the gradient is up-
dated by a big step at the end of each epoch. Notice how a bigger batch size stabilizes
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the learning, because a bigger size allows a better estimation of the direction of the
gradient descent. If there is enough memory it is good practice to set the number of
batches for gradient accumulation equal to the number of batches of the signal so
each epoch is equivalent to a pass of all data through the GPU.

Figure 3.18.: Batch size of 32 samples, gradient accumulation of 1024 batches, 2
epochs. (1 GPU). Dashed vertical lines indicate the end of an epoch.

Figure 3.19.: Batch size of 2048 samples, gradient accumulation of 1 epoch, 5 epochs.
(8 GPUs). Dashed vertical lines indicate the end of an epoch.
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Figure 3.20.: Cluster result using HDBSCAN (Annotated the centers of 10 largest clus-
ters and noise (-1).)

3.4.2. A parameter-free cluster method: HDBSCAN
The different atoms are grouped using an unsupervised cluster algorithm. The result-
ing clusters are identified as modes. In addition, improvements have been made in
the clustering algorithm. The clustering algorithms based on density are adequate for
our application as encoded atoms tend to concentrate on the time-frequency mode
structures, and they are equipped to handle noise points and non-linearly separable
clusters of arbitrary shapes and sizes. The clustering algorithm initially proposed in
[RST22] for grouping the atoms in modes is DBSCAN [Est+96]. However, DBSCAN has
two limitations. First, the most sensitive hyperparameter ϵ, which controls the maxi-
mum neighbor distance, varies between shots. Second, DBSCAN assumes constant
density clusters, which is not true for the results of encoding. In contrast, hierarchical
DBSCAN (HDBSCAN) [Cam+15] does not assume constant density and is capable
of determining the varying density structure. Moreover, HDBSCAN does not have
a sensitive hyperparameter to modify on each shot. For these reasons, HDBSCAN
is more adequate than DBSCAN. An example of an HDBSCAN’s result is shown in
Fig.3.20.

3.4.3. ERMD algorithm and its hyperparameters
We propose the adoption of the name Elastic Random Mode Decomposition (ERMD)
to refer to our new algorithm. ERMD is summarized as follows:

88



3. Mode identification using sparse regression and Gabor’s random dictionaries – 3.4.
The Elastic Random Mode Decomposition algorithm (ERMD)

Algorithm 2: Elastic Random Mode Decomposition (ERMD) for Alfvénic mode
classification

INPUTS: signal s, time t .
OUTPUT: code c , best model code c best, atom’s time position τ, frequencies f , phases φ,
cluster labels l and Alfvénic character a. All with the same vector length.
PARAMETERS: {λ1, λ2, σ, Nmax , N f , Bs , η, maxepoch , Q, Qc minsi ze , ρthr . } See table (3.1).
STEPS:

1. Standardize signal s−µ(s)
σ(s) and time t−µ(t )

σ(t ) arrays.

2. Apply high-pass filter (Optional: it can help to detect high-frequency modes)

3. Set a global seed for all GPUs, it is necessary because sampling features space {τi , fi , φi }
has to be deterministic.

4. Set the number of atoms in the random dictionary N as a multiple of signal length
s l , N = N f × lenght(s). It is useful to set a maximum number of atoms Nmax to avoid
out-of-memory problems.

5. Repeat in parallel until reaching maxepoch :

a) For each batch of time signals, load the data (segment of size Bs) to an assigned
GPU and compute a segment of matrix D batch in the assigned GPU. Use seed and
atom equations to calculate the value of corresponding atoms in D batch (in-GPU
dictionary construction)

Dbatch = [si (t batch)] =
[

exp

(
− (t batch −τi )2

2σ

)
·cos(2π fi t batch +φi )

]
. (3.14)

b) Forward pass for each batch: calculate elastic net regression loss

Lbatch = ||Dbatch ·c − s batch||22 +λ1||c ||1 +λ2||c ||2, (3.15)

then calculate each batch gradient gbatch(c) and store it.

c) When the number of batches processed completes the epoch: accumulate gradient
(the sum of all batches gradients determine the descend direction), and actualize
code weights.

c new = c old −η
∑

batches
gbatch(c) (3.16)

d) Keep the best code c best: model with best loss
∑

batches L batch so far.

6. Return c , c best, τ, f ,φ.

7. Code thresholding: group atoms code values c best by quantiles, using the specified
(number of quantiles Q) and keep those above the (quantile cut Qc ).

8. Cluster modes using HDBSCAN with desired Min. cluster size minsi ze . Return l .

9. For each identified mode, except noise clusters (-1), there are two options:
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a) Calculate Pearson’s correlation between mode frequencies and 1/
p

n. If the cor-
relation is greater than the correlation cut ρthr , label the mode as 1 (Alfvénic)
otherwise 0 (No Alfvénic). Return a.

b) Use mutual information (MI) instead, this can help to retrieve more modes. (The
details can be found in the next chapter). Return a.

10. Store result c , c best, τ, f ,φ, l , a.

The relevant hyperparameters and used values are summarized in the table 3.1.
Among them, the most important parameters are the regularization terms λ1 and λ2,
which adjust the promotion of sparsity and regularization. The values of λ1 and λ2

depend on the signal-to-noise ratio and they have an important effect on the mode
retrieval. Unfortunately, there is no rule to adjust these parameters as they heavily
depend on the data and the hyperparameter search space has multiple local minima.
Using hyperparameter optimization is difficult, as there can be multiple objectives
(minimize reconstruction error, minimize the number of modes, or minimize the
number of epochs). Instead, it is advisable to first determine λ1 with λ2 = 0 and then
add λ2 as needed. All in all, it can be found values of λ1 and λ2 that work reasonably
well with all shots. Nevertheless, to obtain the best result, avoiding the loss of modes,
or fully eliminating broadband noise, it is necessary to fine-adjust λ1 and λ2.

The selection of the regularization parameters is influenced by the dictionary size.
Quoting Zou and Hastie [ZH05], the creators of Elastic Net, “The elastic net is partic-
ularly useful when the number of predictors (p) is much bigger than the number of
observations (n). By contrast, the Lasso is not a very satisfactory variable selection
method in the p ≫ n case.” They also observed that Elastic Net only performs well
when it is closely aligned with either Ridge regression or Lasso regression. This implies
that the choice of λ1 and λ2 is biased towards Ridge or Lasso depending on the shape
of the dictionary matrix, which is determined by the number of features and the signal
length. These observations align with our experience. The reader can see that λ2

is much bigger than λ1 in table 3.1. In addition, the dictionary size also affects the
learning rate choice.

In our study, we employed Bayesian multi-objective hyperparameter optimization
to minimize the mean squared error (MSE) and the number of training epochs. To
achieve a sparse reconstruction, we kept the learning rate resulting of this Bayesian
search, but we had to manually fine-tune the obtained λ1 and λ2 until the atom
selection matched the spectrograms. While grid hyperparameter searches with cross-
validation are common practice to minimize reconstruction error and code vector
energy [FG24], for our use case this approach is prohibitive. Therefore, we relied on a
more manual parameter selection strategy.
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Parameter Value(s)
λ1 0.00005
λ2 0.001

Atom standard deviation σ 256 samples
Maximum number of atoms Nmax 14×106

Feature factor N f 20
Batch size Bs 32-64 samples

Learning rate η 0.00008
Maximum epochs maxepoch 5

Number of quantiles Q 1000
Quantile cut Qc 999

Minimum cluster size minsi ze 10
Correlation threshold ρthr 0.9

Table 3.1.: ERMD Hyperparameters. This values are the selected for running the analy-
sis in the 1291 shots of our database.

3.5. Results of unsupervised feature extraction of
Alfvén activity using ERMD

To evaluate the performance of the algorithm, we run ERMD on 1000 shots with a
fixed set of parameters. The hyperparameters were first selected by trial and error
to obtain good performance on a selection of shots. About the execution times, it
took 206.8 hours to run the 1000 shots, so this gives an average of 4.8 shots per hour
approximately. The shots have different numbers of samples so this number can
fluctuate from 3 to 7 shots per hour. In total, we accumulated 1291 shots in the
database.

As an example of a typical result, the encoding and clustering of shot 23811 are
shown in Fig.3.22. Three high-frequency modes are correctly identified, with the
assigned numbers 0,2, and 3. Some noise atoms are correctly identified as noise
by HDBSCAN. Finally, in Fig.3.23 the two higher-frequency modes are identified as
Alfvénic, as they are strongly correlated with the 1/

p
n signal. However, part of the

broadband noise structure is misidentified with fragmented low-frequency modes,
this behavior is found to be common but does not affect the labeling of Alfvénic
modes if the correlation threshold is set high. It is to be noted, how the amplitude
of broadband noise increases when heating systems are activated, this can be seen
comparing power inputs in Fig.3.21 with the spectrogram in Fig.3.22 and Fig.3.23.

Because each mode has a different density of atoms, the algorithm is capable of
labeling crossing modes, as is shown in Fig.3.24. This task is very difficult for algo-
rithms based on the segmentation of the spectrogram. Therefore, this is a remarkable
advantage of this algorithm which is reinforced with the addition of the density signal
1/
p

n to the analysis. However, there is a trade-off: the density-based clustering also
tends to divide one mode into different sub-modes. In consequence, ERMD results
might not be reliable to measure mode duration ∆t .
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Figure 3.21.: Shot 23811 signals, from top to bottom: heating power, electron density
< n > and temperatures T 0

e , T 0
i ×100, and the MIR5C signal, Ip , and Wp .

Figure 3.22.: Clustering result of shot 23811. The labels mark the center of the top 10
numerous clusters. Black circles (-1) are noise.
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Figure 3.23.: Result of labeling shot 23811: modes identified as Alfvénic (big blue
circles) follow 1/

p
n.

Figure 3.24.: Cluster results of shot 38393: ERMD handles crossing modes (7,8,9).
Noise (-1) is distributed between low and high frequencies.
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The frequency distribution of atoms in Alfvén modes is checked for agreement with
the frequencies expected from the literature. As can be seen in Fig.3.25 and Fig.3.26.
Alfvén frequencies range from 100 kHz to 400 kHz, overlapping with the mentioned
interval 50kHz to 400kH z [Jim+11; Mel+12; Mel+14; Mel+18; Eli+21; VSG17; SOL15;
Cap+21; Ghi+24]. Most Alfvénic modes appear between 50 ms and 200 ms, and the
majority of modes (80%) in this set of shots is chirping down. The use of the algorithm

Figure 3.25.: Time-frequency distributions of Alfvénic mode atoms of this set of 1291
shots.

is not exempted from difficulties, as some modes can be missed in this encoding
(Fig.3.24). The risk of missing modes is in general low except for two cases: when there
are several modes stacked in parallel frequencies or when the signal-to-noise ratio
is very low. Because the algorithm is based on minimizing the signal reconstruction
error with some regularization, these two errors will persist without fine-tuning the
parameters for each shot. The reconstruction error is small in the case of modes with
less amplitude, this makes the encoding difficult as other frequencies with greater
amplitude are encoded first (lower frequencies have usually more amplitude). When
the signal-to-noise ratio is very low, the regularization needs to have very shot-specific
values to separate modes from broadband noise, like in some modes of Fig.3.24. We
address this problem with a different approach in chapters 5 and 6.

More difficulties have been found in the presence of sawteeth. These fast transient
signals generate broad frequency spectral leakage, as it happens in STFFT. When mini-
mizing the signal reconstruction error, many different atoms can fit these transients.
Therefore, the sparsity assumption does not hold anymore and the regularization
parameters should tuned to address this difficulty. This phenomenon could be tackled
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Figure 3.26.: Frequency distribution of Alfvénic mode activity in the analyzed shots.

in principle by adding “sawteeth atoms” with the shape of Gaussian’s first derivatives
to the dictionary, which recreates the transients. These difficulties could be addressed
in future investigations.

In the next chapter we examine the time-frequency analysis performed in 1291 shots
with the ERMD, and we use mutual information and clustering to detect relationships
between mode activity and other plasma signals, creating a profile of the different
types of modes observed, which we have called high-level patterns.

To conclude, we summarize the main advantages of the proposed algorithm are:
(1) Robust mode detection, allowing for effective identification of complex modes
in raw Mirnov signals. (2) Use of elastic net regularization, which enhances the
algorithm’s ability to handle correlated features. (3) Scalability to large datasets, the
resulting table of atoms is highly convenient for further pattern recognition using
multiple diagnostics. (4) High parallelization allowed by GPU optimizations enables
efficient processing of high-resolution signals. (5) Improved clustering with HDBSCAN
compared with preceding works which better handles varying densities and noise.

In addition, the main disadvantages of ERMD would be: (1) Complex parameter
tuning, requiring careful adjustment of multiple hyper-parameters to achieve optimal
results. (2) Computational cost, which is dependent on the availability and perfor-
mance of GPU resources. (3) Sensitivity to noise in low signal-to-noise ratio scenarios,
which may lead to challenges in accurate mode detection; and (4) Difficulty with fast
transients, similar to challenges faced by the Fourier transform, where the algorithm
may struggle to capture rapid signal changes effectively. However, the latter can be
addressed in principle by changing the dictionary waveforms.
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3.6. Summary
In this chapter, we first introduce the mode decomposition of Mirnov coil signals
using a musical analogy in which interpreting plasma signals (finding MHD modes)
has parallelism with musical transcription. For this purpose, we introduced SRMD
as an algorithm for sparse coding of the signal with a dictionary of random Gabor
atoms. The algorithms presented in this chapter are a combination of regularized
linear regression and unsupervised learning.

The mode decomposition of the TJ-II plasma’s signal is allowed by recognizing that
sparsity is a good prior (sparse regression). However, this algorithm has limitations
in speed and memory to be used in high-frequency sampled signals proper of fusion
diagnostics.

Then, a novel algorithm called ERMD is introduced to cope with SRMD limitations.
In order to do that, the optimization problem needs to be tailored for the use case of
plasma diagnostics.

The signal reconstruction is enhanced by adding a multicollinearity term to the
regularization (using Elastic-Net regression). The combination with optimization
schedule techniques (gradient accumulation) from deep learning training, allows
the encoding of codes bigger than before. We achieved improvements in speed and
memory, therefore increasing the code’s maximum length. In addition, a more suitable
clustering technique (HDBSCAN) is proposed to avoid the tunning of DBSCAN’s ϵ
between shots. Finally, ERMD has been applied over 1291 shots with the same set of
hyperparameters and the frequencies of the Alfvénic modes retrieved agree with the
literature.
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Joi: Mere data makes a man. A and C
and T and G. The alphabet of you. All
from four symbols. I am only two: 1
and 0.
’K’: Half as much but twice as elegant,
sweetheart.

— Blade Runner 2049.
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4.1. Introduction
Following the musical analogy of the last chapter’s introduction: if we can recognize
musical notes out of audio waveforms, how can we recognize melodies? Can we
differentiate bass lines from the main motives played by different instruments? Or
how can we detect chords and rhythms? Moreover, songs have different parts such as
chorus, bridges, intro, or finals. Most concepts in musical theory serve the purpose
of describing high-level patterns in music. As in music, fusion plasmas can exhibit
oscillations and time-frequency structures leading to high-level patterns. The goal of
this chapter is to find different kinds of mode structures determined by ERMD, this
serves a double purpose of interpreting the result of ERMD when it is applied to a set
of shots and explore pattern discovery algorithms.

Patterns are often hidden in the data. Indeed, there is a substantial difference
between information and data. Data mining is the process of extracting knowledge
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from a dataset. This knowledge can be achieved by different means. Over years of
research, petabytes of data are stored coming from thousands of shots, and a minimum
level of data understanding is required to prepare the data to create successful machine
learning models. The word mining often implies hard and dirty work, as the complexity
of understanding what is in the dataset is highly time-consuming for the data analyst.
In addition, there is a risk of falling into many pitfalls leading to false conclusions as
the analyst explores a complete uncharted territory. If data is structured (i.e. tabular
form, or hierarchical), visualization, or descriptive statistics can be employed to
inspect variable distributions and relationships. However, interpreting the result
of exploratory analysis requires domain expertise, which also requires learning time or
expert aid. Best analysis often involves the creation of new variables that are relevant
to the given domain, and that can only be done with domain knowledge and expertise.
The creation of new variables that facilitate the analysis is called feature engineering,
as we discussed in chapter 2.

If data is unstructured, for instance, images or text, the analysis gets even more com-
plex. First, the number of pixels necessary to plot an image increases the number of
dimensions, which can be orders of magnitude greater than a table. These dimensions
need to be reduced. Second, objects present in an image create local relationships
between the object’s pixels, these pixel relationships are called features and they need
to be extracted. One approach to extracting knowledge from the dataset consists of
calculating similarities between images and then creating groups of similar images.
This high-level pattern recognition is called clustering.

Relationships between variables can be used to create new features. There are many
mathematical models to estimate relationships between two variables. In addition,
caution must be held when estimating relationships. It is well known that correlation
does not imply causality, but what is often ignored is that the relationship estimated
by this model might not be even true. For instance, noise can often create spurious
relationships. In other words, one can fit anything into a noisy dataset. Moreover, a
correlation between two variables can be explained by an unknown third one with
shared relationships with the other two. This third variable is known in statistics as a
confounder.

Physics has a true advantage over other disciplines like biology, sociology, etc. The
true relationship between variables can be explained by known physical mechanisms,
based on first principles. In addition, experiments isolating variables can be used to
prove hypotheses and validate mathematical models. However, finding correlations in
data is often a common starting point for researching first principle laws. For instance,
Kepler’s laws were a starting point for Newton’s gravitation, and scaling laws are used
in fusion to design future reactors. Given the fact that isolating variables is such a
demanding task in a complex system like fusion plasmas, searching patterns and
relationships can be a seed for future physical discoveries.

As we mentioned before, the Alfvén waves’ frequencies f follow a linear depen-
dency with the inverse square root of density 1/

p
n. Once modes are retrieved by the

ERMD algorithm, we have a database of modes that can be mined for finding Álfvén
instabilities.
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In this chapter, we use feature engineering and clustering techniques to explore
the result of applying ERMD to 1291 TJ-II shots. First, we discuss various statistical
methods that can be used to determine if two continuous variables have a relation-
ship (Pearson’s correlation and Mutual information), and how we can find groups of
observations in a dataset (discretization and clustering). The results of the clustering
are interpreted with our knowledge of Alfvén activity.

4.2. Finding relationships between continuous
random variables

Linear relationships can be identified using Pearson’s correlation r = cov(x, y)/(σxσy ).
Pearson’s correlation model assumes a linear relationship (straight line) between
variables X and Y . The correlation coefficient r varies between -1 and 1. Given two
variables X and Y : the positive sign of the correlation coefficient r indicates a positive
slope (when X increases, Y increases linearly), and the negative sign negative slope
(when X increases, Y decreases linearly). It is to be noted that Pearson’s correlation
does not capture the slope of the data, but the strength of the relationship and the
directionality of this relationship, which roughly matches the slope of a straight line
fitted to the data.

However, assumptions made for Pearson model need to be true. We assume the
data X Y lies in a straight line to begin with. In addition, the variables X and Y have to
be normally distributed, with approximately equal variance along the regression line,
and without outliers. In other words, Pearson’s correlation is particularly sensitive
to outliers and noise. If the mentioned assumptions are true, and Pearson’s value
r ( f ,1/

p
n) is close to 1, we can say that we have identified an Alfvénic mode. Pearson’s

correlation can handle noise if the noise is evenly distributed along a straight line
with a normal distribution (homoscedasticity) and there are no outliers. However, it is
important to note that these conditions are not true for all clustered modes, especially
for noisy modes determined by ERMD.

For n observations of random variables X , Y with continuous distributions, Pear-
son’s correlation can be calculated as

r = cov(X ,Y )

σXσY
=

∑n
i=1(Xi − X̄ )(Yi − Ȳ )√∑n

i=1(Xi − X̄ )2 ∑n
i=1(Yi − Ȳ )2

. (4.1)

Pearson’s model is easily interpretable, but there are other options to estimate
relationships between two variables: like Spearman’s correlation (useful with non-
linear monotonic data) and mutual information regression (which captures non-linear
relationships), among others.

The Spearman’s correlation is calculated using Peason’s model but transforming
the variables X , Y in ranks R(X ) and R(Y ) first. The rank is calculated by assigning
a natural number to each value of X with increasing order. The same with Y . For
instance, given the small dataset X = {1,3,5,7} and Y = {9,3,1,5}: R(X ) = {1,2,3,4} and
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R(Y ) = {4,2,1,3}. Therefore the Spearman’s rank correlation can be defined by

rS = cov(R(X ),R(Y ))

σR(X )σR(Y )
. (4.2)

Spearman’s correlation has several advantages over Pearson’s correlation. First, it is
less sensitive to outliers than Pearson’s. Moreover, it is capable of capturing non-linear
relationships, as long as X and Y increase or decrease monotonically. And it can be
used with ordinal data, including categorical data that can be ordered.

Having two sets of data X and Y, we can say that if we can relate X with the output
Y, it is because we have some “shared information” relating X and Y. Certainly, if the
relationship is linear, having the information of parameters m, and b can explain the
relationship of X and Y via the parametric model y = mx+b. Remarkably, the straight
line parameters m, and b can code the data X and Y with very small errors in some
cases.

But, what is information exactly? Everybody has an intuition about its meaning.
However, it was not until Claude Shanonn’s seminal paper [Sha48] that a solid founda-
tion of the concept was established. The concept of information is unambiguously
defined for discrete variables. Given a random variable X with a discrete probability
distribution p(x) = {p(x1), ...p(xm)}, its information I is the average entropy H(X )
[Sto22]

I ≡ H(X ) =
m∑

i=1
p(xi ) log2

1

p(xi )
(bits). (4.3)

It is important to mention, that most information theory literature notation assumes
log2 ≡ log, unless indicated otherwise. If natural logarithm is used in Eq. 4.3 instead
of log2 the unit for information is called nats.

The intuition behind entropy is that a high-entropy system has higher levels of
disorder or unpredictability than a system with lower entropy. In information theory,
a source that produces high-entropy signals generates more information because its
outputs are less predictable. While a low-entropy source produces more predictable
(and thus less informative) signals, it can still carry information. This is why informa-
tion is also called a measure of surprise, with “surprise” defined as the logarithm (base
2) of the inverse probability log2(1/p(xi )) of an event. The rarer the event, the greater
the surprise and the higher the information content.

A transmission channel’s capacity to carry information depends on its physical
characteristics, such as bandwidth and noise level, not on entropy. However, the
efficiency with which a channel is used depends on matching the source’s entropy to
the channel’s capacity.

The information unit is the bit. One bit is the information needed to choose be-
tween two equally probable options [Sto22]. The simplest example to understand the
information definition given by Eq. 4.3 is the coin tossing case. A random variable X
which has values {0,1} representing {heads,tails} can describe the coin tosses. Effec-
tively, if the coin is unbiased, the phenomenon follows a Bernoulli distribution and
p(xhead s) = p(xt ai l ) = 1/2, so the surprise is log2(1/0.5) = log2(2) = 1 bit. Moreover, 1
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bit is the memory needed to store the result of one flipping (fair) coin using binary
digits.

If we have collected 100 samples from this distribution, we might have 50 heads
and 50 tails. Hence, the average entropy can be calculated H(X ) = [50log2 p(xhead s)+
50log2 p(xt ai l s]/100 = 0.5 · log2(1/0.5)+0.5 · log2(1/0.5) = 1 bit per coin flip. It can be
easily demonstrated [Sto22], that the information given from the events of a fair coin
is higher than the information given by tossing a biased coin. Because the biased coin
is more predictable than the fair coin.

It is worth discussing briefly the thermodynamical entropy concept as it differs
from information entropy (or Shanonn’s entropy) but they are closely related. For-
mally, thermodynamic entropy S is defined as the natural logarithm of the number of
microstates W , times the Boltzmann constant kB : S ≡ kB ln(W ) Joules/degree. The
parallelism with Shanonn’s information is even clearer if we use Gibbs’ generalization
[Sto22]:

S = kB

m∑
i=1

p(xi ) ln
1

p(xi )
(Joules/Kelvin), (4.4)

where m is the number of macroscopically distinguishable physical configurations[Sto22]
and p(xi ) is the probability of each microstate. If each microstate corresponds to one
macrostate m = W , then all microscopic states have to be equally probable, it fol-
lows that p(xi ) = 1/W . For example, an 20-sided die would have 20 equally probable
macrostates (outcomes), and 20 microstates.

The results enabled by these concepts are even more important than the definition.
Given certain physical processes: we can demonstrate using the thermodynamical
entropy that the amount of energy that can be released from a system, depends on
the availability of a low entropy source. In particular, as the second law of thermody-
namics declares, spontaneous processes always result in entropy increasing. Whereas
the information theory tells us the limit of uncorrupted information that a transmis-
sion channel can transmit (channel capacity theorem), the thermodynamical entropy
determines the limits of work that thermal machines can perform. Therefore every ma-
chine that needs to interchange energy through heat has an efficiency limit. Moreover,
the explicit relationship between thermodynamical entropy and information tells us
how much information a system can acquire, and how much energy the information
costs: to acquire one bit of information a system must expend at least, 0.693kB T joules
of energy (also known as Landauer limit [Lan61; Sto22]).

We have defined the information entropy for discrete variables, but defining an
absolute information entropy for continuous random variables can be problematic
as it ends up diverging (the reader can find the details in [Sto22]). We can intuitively
explain why it is complicated: we need to define absolute entropy for real numbers,
as real numbers are infinitely dense, the entropy can grow arbitrarily up to infinity.
However, relative information between two continuous random variables distributions
can be defined without falling into infinities if we use conditional probabilities.

We can define Mutual Information using a simple linear regression model between
a feature variable X (or predictor) and a target variable Y (dependent variable). In
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a realistic case, the input feature information (input entropy H(X )) contains some
noise H(X |Y ) (X given Y ) and some information I (Y , X ) (Y and X ) about the target.
In addition, the target value also contains noise H(Y |X ) (Y given X ) and information
I (X ,Y ) (X and Y ) about the predictor variable.

If the features X have information about the target values Y , they can be predicted
(and vice versa). Therefore I (X ,Y ) = I (Y , X ), and knowing the values of Y also allows
the prediction of values of X . The relationship between conditional entropies H (X |Y )
and H(Y |X ) and joint entropy H(X ,Y ) is expressed as follows

M I (X ,Y ) = H(X )−H(X |Y )

= H(Y )−H(Y |X ).
(4.5)

It follows that the noise H(X |Y ) < H(X ) and H(Y |X ) < H(Y ), this is depicted in Fig.
4.1.

Figure 4.1.: Relation of Mutual Information with conditional and joint entropy sets.
(Adapted from [Sto22])

It can be shown, after some algebraic manipulation, that MI is the intersection over
the union of H(X ) and H(Y ), with total entropy H(X ,Y ) as it is commonly illustrated
in Fig. 4.2.

M I (X ,Y ) = H(X )−H(X |Y )

= H(Y )−H(Y |X )

= H(X )−H(Y )−H(X ,Y )

= H(X ,Y )−H(X |Y )−H(Y |X ).

(4.6)

A practical definition of MI that we can compute involves the Kullback-Leibler (KL)
divergence. The Kullback-Leibler (KL) divergence, which measures the similarity
(or “distance”) between two probability distributions p(X) and q(X) is defined as

102



4. High-level pattern recognition – 4.2. Finding relationships between continuous
random variables

Figure 4.2.: Relation between different entropy quantities of X and Y.

[Mur22](pages 213ff)

DK L(p(X )||q(X )) =
∫

x
p(x) log

(
p(x)

q(x)

)
dx. (4.7)

The KL divergence between µ(x, y) and joint distribution µx(x)µy (y) (as product of
the marginal densities µx(x), µy (y)) can be estimated using [KSG04] the formula

MI(X ;Y ) = DK L(µ(x, y)||µ(x)µ(y)) =
∫ ∫

µ(x, y) log

(
µ(x, y)

µ(x)µ(y)

)
dx dy. (4.8)

It will be 0, if x and y are independent variables, i.e. µ(x, y) =µx(x)µy (y)(separable).
In other words, KL divergence will be 0 if both variables do not have a relationship.

For the mathematical details of a complete Bayesian interpretation of mutual infor-
mation, please refer to [Sto22], page 149. We can say, if p(X |y) (y ∈ Y ) is the posterior
distribution and p(X ) is the prior distribution, the mutual information between X
and Y is the expected KL-divergence between the posterior and prior distributions.

Without digging into the details, the integration of continuous variables is per-
formed by binning the data and other methods [KSG04][Ros14], we have used scikit-
learn implementation [Ped+11] for mutual information regression, which uses non-
parametric entropy estimation.

It is important to note that, the output of scikit-learn implementations for estimating
MI are not given in bits unit but nats (from natural logarithm). To convert nats to bits,
divide nats values by ln(2). From now on, unless otherwise indicated, we consider
that the result is in nats.

The different behavior between Pearson’s, Spearman’s and MI can be analyzed using
the Anscombe’s-quartet datasets in Fig.4.3. For each dataset, the different values of
Pearson’s, Spearman’s and MI have been calculated. Since we are using the Scikit-
learn implementations of MI, the so-called Mutual information coefficient, and the
Mutual information regression values are included. The former is used for categorical
variables (though it admits real-valued data) whereas the latter is used for real-valued
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data.

Figure 4.3.: Anscombe’s-quartet datasets, showing different values of Pearson’s correla-
tion, Spearman’s, Mutual Information regression, and Mutual information
coefficient

The 4 datasets in Anscombe’s-quartet show different cases: (I) linearly related data
with Gaussian noise, (II) nonlinear data (quadratic), (III) linearly related data with one
outlier, and non-related data with one outlier (IV).

Examining the values of the different measures of correlation we can see that Pear-
son’s value is the same for all cases I-4. The fact that Pearson’s is insensitive to these
changes is problematic, as in datasets (II) and (IV) there is no linear relationship at all.
The Spearman’s values show better behavior.

For this example, MI values are better behaved when there is no relationship be-
tween the variables. The values of the MI coefficient are insensitive as well (remem-
ber that the MI coefficient is designed for categorical data). We conclude that only
MI regression shows different responses to the different datasets and its value is
reduced when the relationship between the two variables is not clear. In order to
illustrate the behavior of these relationship estimators under the amount of data
available we did the following experiment. For a given straight line modeled data by
y=mx+c+N(µ=0,σ=1), and we randomly selected 3, 4,...100 data points. Like it is shown
in Fig.4.4 for n=3, 5, 10, 20.

Then the values for the different estimators are calculated to show how they evolve
when the amount of data points is increasing, the result is shown in Fig.4.5. It can
be appreciated how the values of Pearson’s and Spearman’s fluctuate close to one
until they stabilize. The value of the MI coefficient increases indefinitely when data
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Figure 4.4.: Random samples from y=mx+c+N(µ=0,σ=1) with increasing data size (n=
3, 5, 10, 15).

Figure 4.5.: Behavior of correlation measure with increasing data size for methods:
Pearson’s, Spearman’s, and Mutual Information coefficient, and Mutual
Information Regression.
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is added, we remember that the MI coefficient should not be used with continuous
data. On the contrary, MI increases with fluctuations from values close to 0 when
the number of data points is small, and then slowly stabilizes. In this case, the MI
estimator is biased to 0 when data is scarce. This bias with few data points is not
always desirable. However, this bias is very convenient when using data extracted
from ERMD modes, as it will discard modes with very few Gabor atoms.

This estimator bias is caused because the values of X and Y can vary in a big range,
and when the data is binned the resulting sampling is very sparse. Therefore, if the
data volume is not densely sampled enough to show a relationship, then the resulting
information value is underestimated.

It is important to note, that in other scenarios different than our experiment, the bias
can overestimate the true relationship between variables. For doing this experiment,
data points are uniformly sampled from the real distribution. Instead, if the sampling
is not uniform the MI estimated can be higher than the true relationship, which would
be inconvenient for our use case.

MI is known as “generalized correlation” [Mur22](pages 213ff) as it is capable of
capturing linear and nonlinear dependencies on continuous and categorical data,
with better resistance to outliers, and fewer assumptions. However, MI does have
limitations though. It does not distinguish between positive and negative correlation
(negative or positive slope sign). In addition, the the MI value depends on the chosen
method of estimation, and this is an active area of research (compared with Pearson’s
and Spearman’s whose estimation is well established).

It is commonly known that correlation does not imply causation; however, corre-
lation does not even imply correlation in many circumstances. As we could see in
Anscombe’s quartet discussion and our experiment with varying data sizes. Estimating
the relationship between variables is a complex task that should be done with caution,
because in a noisy dataset, always is possible to fit a linear model. A good practice is
to try and compare different methods.

In this work, we have used Pearson’s correlation and Mutual information to de-
termine the Alfvénic character, and we explored the possibility of mixing the two
methods. Then, MI is used to explore general relations between the mode activity and
the behavior of plasma signals.

It is important to remark that there is no perfect or better method for estimating
relationships between variables (“There is no free lunch”). Choosing a method de-
pends on the data, and use case. However, we can conclude that MI captures the more
general (and deeper) relationship between random variables, which is always useful in
mining big datasets without many prior assumptions. Besides, Pearson’s correlation is
a good method when the linear relationship is known to exist for the given dataset. In
table 4.1 the advantages and disadvantages of the methods have been summarized.

A few final words of caution are needed when determining the relationship between
variables that include different groups. If the variables have different groups, the
correlation value can vary and even be contradictory when the separation between
groups is not considered. This phenomenon is known as Simpson’s paradox and
it is best illustrated with an example. In Fig.4.6 a synthetic dataset with 3 different

106



4. High-level pattern recognition – 4.2. Finding relationships between continuous
random variables

Method Strengths Weaknesses
Pearson’s Easy to interpret (values between -1 and 1) Sensitive to outliers

Widely used and understood. Assumes linearity
(only captures linear relationships).
Not suitable for non-numeric data.

Spearman’s Less sensitive to outliers Weaker interpretation of strength/direction
than Pearson’s correlation. compared to Pearson’s.

Applicable to ordinal categories. Does not capture strength of nonmonotonic
relationships as well as MI.

Mutual Information Captures any kind of statistical dependence Harder to interpret
(linear or non-linear). (unitless value - no direction).

Less sensitive to outliers Can be computationally expensive
than Pearson’s correlation. (for high-dimensional data)

Works with non-numeric data. Bias with binning methods.

Table 4.1.: Comparison between methods for estimating correlation

Figure 4.6.: Synthetic dataset with 3 Gaussian blobs non-linearly separable

Gaussian blobs is created, they have different densities and orientations, and the true
centers of the groups are marked with black dots.

The grouping in Fig.4.6 is not known a priori, therefore a cluster analysis is needed
to estimate the shape of the mixed groups (k-means for this example). Often the
variables in the dataset are not enough to separate the groups, the result of clustering
in Fig.4.7 shows some misclassified points between group borders. However, the
cluster result is accurate enough to estimate the correlation for each group.

If the correlation is calculated using all points, a negative value ρ =−0.16 is obtained
(the corresponding fitted line is displayed in Fig.4.7 with a red dashed line). In contrast,
the correlation values for groups 0 and 2 have positive signs and values of 0.88 and
0.078 respectively (represented by the blue and green solid lines). This contradictory
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Figure 4.7.: Result of Clustering and Variable relationship using Pearson’s correlation.
The dashed line represents the correlation of all groups.

result (change of sign) is known as Simpson’s paradox. We can conclude if the cluster
analysis does not perform correctly (in other words, if the modes are mixed) there is a
danger of obtaining spurious correlations.

4.3. Determining the modes Alfvénic character
As mentioned, Alfvén waves frequency follows the evolution of 1/

p
n. In consequence,

if there are changes in plasma density there will be changes in mode frequencies.
Then, Pearson’s correlation or mutual information can be used to determine which
modes are Alfvénic.

As we have shown in Anscombe’s datasets, Pearson’s correlation is very sensitive
to outliers and noise. Moreover, by the results shown in the last chapter, we can see
that the clustered modes often have outliers. Therefore, the normality assumption
and equal noise variance may not hold true, causing problems when using Pearson’s
model. To avoid false correlations the threshold value can be set high ≈0.9, but Alfvén
modes can be lost.

In addition, the plasma conditions can be modified very fast, in this case, Alfvén’s
instabilities frequency follows the evolution of 1/

p
n, with some non-linear distortion.

Another effect that might distort the relationship is the fact that the measured density
is integrated along one line of sight, and the changes in density might be localized
outside this line of sight.

Modes with very few data points (less than 10 points) especially appear in low
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frequencies with multiple “slopes”, when part of the background noise is encoded by
SRMD. This can cause many modes to be determined as Alfvénic just by chance (by
random alignment with 1/

p
n fluctuations).

To summarize, the potential problems are outlier sensitivity, non-linear distortion,
and false positives caused by modes with very few data points. To cope with these
problems, we make us of mutual information (MI) to determine if the frequencies are
related to the density variation.

Mutual information ranges from 0 to ∞, 0 meaning full statistical independence,
then the higher the value the stronger the dependence. However, as MI does not
have a sign, it cannot capture the directionality (or “slope sign”) of the relationship.
Consequently, MI can not distinguish between Alfvénic ( f ∝ 1/

p
n) and Anti-Alfvénic

( f ∝−1/
p

n.), so in this work, we propose a mixed approach.
The directionality can be estimated by different methods, for instance working out

the average frequency-slope of a mode ∆ f = fmax − fmi n ∆t = tmax − tmi n and taking
the sign of ∆ f /∆t . Given that we have already calculated Pearson’s correlation, and
we have its sign: we take the sign from Pearson’s correlation, to determine the Alfvénic
character (or Anti-Alfvénic).

Figure 4.8.: Pearson correlation of modes frequencies and density

As we can see in figures 4.8 and 4.9 the results of using MI and Pearson’s correlation
are comparable. In both cases, at time 0.15 s we identify a possible Alfvén mode
(dark-red) crossing other modes at ≈225 kHz approximately, and another one at ≈35
kHz. However, at time 0.17 s, subtle differences can be appreciated. For instance, at a
time 0.17 s and ≈100 kHz, there is a mode that shows mild correlation but high mutual
information. This can be caused by the bias of MI when there are a high number of
observations, it tends to overestimate the relationship between variables. There is
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Figure 4.9.: MI of modes frequencies and density.

some level of relationship expected only by chance. When the number of observations
is small, the opposite might occur. MI could underestimate relationships.

As discussed in the experiment varying the data size, since MI is more robust to noise
and needs more data to estimate a relation, it can avoid establishing a relationship
with few and noisy observations. This can be appreciated on the long mode at ≈120
kHz from 0.15 to 0.19 s in Fig. 4.9, which is broken into smaller density groups by the
encoding. It can be seen in this case that Pearson’s values are higher than MI, but there
is not a clear relationship with 1/

p
n.

This example from shot 38399 was selected to show how complex can be encoding
and finding Álfvén eigenmodes, in other shots this relationship is clearer. Selecting a
different value cut to consider modes Alfvénic significantly varies the result. Therefore,
to compare both methods, we show the result for the same threshold value of 0.9 in
Fig.4.10 and Fig.4.11.

In total, when using Pearson’s correlation method, 1315 modes are retrieved. While
using the MI with sign method recovers 1433 Alfvénic modes, 8.9% more modes. This
can be appreciated in Fig.4.10 and Fig.4.11. This result gives us an average of Alfvénic
mode 1.1 per shot. On the other hand, if we examine the negative class we have 35472
(Pearson’s) and 35354 (MI) non-Alfvénic modes respectively. As we can see, the dataset
is heavily imbalanced towards the negative class, only 3-4 % of the mode structures
are Alfvénic. Given this imbalance of classes, an 8.9% more Alfvénic modes is a
relevant result. Because each mode counts for training models in imbalanced datasets.
Therefore, because of its better performance in handling noisy false positives, and
keeping a higher atom count in the frequency interval, the MI method was selected to
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Figure 4.10.: Distributions of Alfvénic atoms frequencies using Pearson’s for labeling

Figure 4.11.: Distributions of Alfvénic mode frequencies using MI for labeling

continue the analysis.
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4.4. Finding relationships between categorical
variables

Before estimating relationships between mode frequency and other plasma signals
in the created dataset of 1291 shots, (next section 4.5). We need to explain how to
estimate relationships between categorical variables using MI and indicator functions.

It is possible to create categorical variables to analyze the relationships between
continuous variables. Transforming continuous variables into categorical is a common
practice in business intelligence. It serves as an additional descriptive effort of the
results of ERMD.

The analysis method is illustrated with a toy example first. In Fig. 4.12 a Gaussian
distribution of points is shown. To transform x and y to their categoric versions
respectively, we create a threshold value of 0.5 for both variables. This divides the
dataset into 4 regions indicated by black dashed lines. Hence, the first category has a
value of 1 if x is greater than 0.5, and it is valued as 0 when the first category is less than
0.5, the same can be done with the second category. This type of function is known as
the indicator function, which is noted as 1x>0.5 and 1y>0.5 for each feature.

Once we have two categorical variables, contingency tables (or crosstabulations, or
cross-tables) can be calculated, as shown in Fig. 4.12. The table has been colored with
a heatmap. The contingency table just resumes all possibilities counting the number
of samples (absolute frequency) for each one.

Figure 4.12.: Example of a contingency table for a data distribution with correlated
variables

The numbers in the table of Fig . 4.12, show the count of data points belonging
to the 4 possibilities. The normalized contingency table can be calculated as well,
dividing by 100 (the total number of data points in this case is N = 40 + 12 + 3 + 45 =
100), then we obtain the relative frequency of dataset points with the respective values
of the categories. If we interpret these relative frequencies as probabilities, we can
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see that two corners are more probable than the others. This asymmetry indicates a
relationship between the categories.

In order, to have a quantification we can run a χ2 test or we can estimate the MI,
using the KL-divergence which in the case of categorical variables, the integrals in Eq.
4.8 are replaced by a sum like

MI(X ;Y ) = DK L(p(i , j )||p(i )p( j )) =∑
i

∑
j

p(i , j ) log2

(
p(i , j )

p(i )p( j )

)
. (4.9)

x <= 0.5 x > 0.5 Row Sum
y > 0.5 45 3 48

y <= 0.5 12 40 52
Column Sum 57 43 100

The marginal probabilities can be calculated with the rows and columns summa-
tions: N1,: first row, second row N2,:, first column N:,1 and second column N:,2.

N1,: = 45+3 = 48, N2,: = 12+40 = 52

N:,1 = 45+12 = 57, N:,2 = 3+40 = 43

Then, the joint and marginal probabilities are:

P (y > 0.5, x <= 0.5) = 45

100
= 0.45, P (y > 0.5, x > 0.5) = 3

100
= 0.03

P (y <= 0.5, x <= 0.5) = 12

100
= 0.12, P (y <= 0.5, x > 0.5) = 40

100
= 0.4

P (y > 0.5) = 48

100
= 0.48, P (y <= 0.5) = 52

100
= 0.52

P (x <= 0.5) = 57

100
= 0.57, P (x > 0.5) = 43

100
= 0.43.

Note that if we use the indicator function notation we would have:

P (y <= 0.5, x <= 0.5) ≡ P (1y>0.5 = 0,1x>0.5 = 0) ∼ P (0,0),

P (y <= 0.5, x > 0.5) ≡ P (1y>0.5 = 0,1x>0.5 = 1) ∼ P (0,1),

P (y > 0.5, x <= 0.5) ≡ P (1y>0.5 = 1,1x>0.5 = 0) ∼ P (1,0),

P (y > 0.5, x > 0.5) ≡ P (1y>0.5 = 1,1x>0.5 = 1) ∼ P (1,1).

Now, by using Eq. 4.9 we can estimate the MI for the indicator functions:
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I (X ;Y ) = P (y > 0.5, x <= 0.5) log2

(
P (y > 0.5, x <= 0.5)

P (y > 0.5)P (x <= 0.5)

)
+P (y > 0.5, x > 0.5) log2

(
P (y > 0.5, x > 0.5)

P (y > 0.5)P (x > 0.5)

)
+P (y <= 0.5, x <= 0.5) log2

(
P (y <= 0.5, x <= 0.5)

P (y <= 0.5)P (x <= 0.5)

)
+P (y <= 0.5, x > 0.5) log2

(
P (y <= 0.5, x > 0.5)

P (y <= 0.5)P (x > 0.5)

)
. (4.10)

By substituting the values we finally obtain:

I (X ;Y ) = 0.45log2

(
0.45

0.48×0.57

)
+0.03log2

(
0.03

0.48×0.43

)
+0.12log2

(
0.12

0.52×0.57

)
+0.4log2

(
0.4

0.52×0.43

)
= 0.419 bits. (4.11)

It is to be noted, that MI is not defined when some joint probability is 0, as log (0) is
undefined. However, it is common practice to consider the limit limx→0 x log(x) = 0,
consequently ignoring these terms to perform the calculations. This way MI can
be estimated when some value in the contingency matrix is 0. In addition, we can
distinguish now that KL-divergence is not symmetrical, marginal distributions equal
to 0 create more serious problems as the limx→0 x log(x) =∞, if the event is impossible,
the surprise has to be infinity.

The reader might have realized already that the threshold selection introduces a
bias. This bias phenomenon is exactly what occurs when continuous variables are
binned to work out the integrals in Eq. 4.8. In this toy example, we have binned the
variables x, y in 2 bins respectively, we could take more bins but the algebra would be
too tedious to serve as a demonstration. If we use the mutual information regression
designed for continuous variables on the data x, y we obtain a value of 0.699 nats (or
1.008 bits).

4.5. Estimating relationships between mode
frequency and other plasma signals

Revisiting the plasma signals, for each mode we can define indicator functions that
revealing if the mode frequency is correlated with the density M I ( f ,1/

p
n), current

M I ( f , Ip ), or the magnetic energy M I ( f ,W ).
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To be more confident that a relationship exists we can select a threshold value close
to 1 (0.9). Then for each mode, we have binary categories: is the mode frequency
correlated with the density 1/

p
n? (Yes or No); Is the mode frequency correlated with

the current Ip ? (Yes or No); Is the mode frequency correlated with the energy W ? (Yes
or No).

The mathematical notation to express each indicator function is: 1M I ( f ,1/
p

n)>0.9(modes),
1M I ( f ,Ip )>0.9(modes) and 1M I ( f ,W )>0.9(modes), in a shorter notation; 11/

p
n , 1Ip , 1W .

The resulting contingency table (Table. 4.2) for the modes features, shows the
multivariate frequency distribution of the Alfvénic mode class, quantifying the depen-
dence on these new categorical variables, and interpreting relative frequencies as a
probability if the table is normalized.

It is to be noted that, all modes labeled as noise by HDBSCAN (-1) are discarded.
Then, MI is used to establish the relationship between the modes frequency chirp f
and other diagnostic signals like Ip , W , 1/

p
n. Once MI is calculated, if the value is

greater than 0.9 the indicator variables 11/
p

n , 1Ip and 1W , are set to 1, otherwise to
0: for all atoms in the mode. Finally, the table needs to be grouped to count modes
instead of atoms if necessary. The contingency table can be calculated indicating the
relative frequency of having an Alfvénic mode related to the given plasma signals.

If we study the result in Table 4.2 we can count 1433 Alfvénic modes in total, and
35354 non Alfvénic. This analysis incorporates all frequencies, and due to the need for
numerous low-frequency components to describe the signal, 35,111 low-frequency
modes are unrelated to any variables. We note that if there is no correlation with 1p

n
,

no Alfvénic mode count is observed, as expected. Meanwhile, 515 Alfvénic modes are
related to variations of the density exclusively. Remarkably, 533 Alfvénic modes are
related to changes in plasma energy as well, and 308 Alfvénic modes are related to
changes in all variables; density, plasma energy, and current simultaneously.

It is worth mentioning that the χ2 statistical test can be used to find evidence of
the relationships of variables in the cross-table, rejecting the null hypothesis in all
combinations. However, this dependence is obvious if we observe the large difference
between the values of the first and second columns. We can conclude that there is
a strong relationship between the Alfvén class variable and all the plasma signals
considered.

11/
p

n 1Ip 1W Alfvén=0 Alfvén=1
0 0 0 35111 0
0 0 1 44 0
0 1 0 78 0
0 1 1 22 0
1 0 0 46 515
1 0 1 13 533
1 1 0 26 77
1 1 1 14 308

Table 4.2.: Alfvénic modes’ contingency table
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If the low frequencies are included, P(Alfvén = 0| 11/
p

n ,1Ip ,1W )= 0.95, but the re-
maining 5% is distributed over 15 possibilities, which difficults the interpretation of
the result.

Next, if we examine the Table 4.3 of relative frequencies (in %), ≈6% of modes over
100 kHz are Alfvénic modes related to the plasma energy, and 6.4% of modes are
Alfvénic modes related to the plasma current as well.

11/
p

n 1Ip 1W f(Alfvén=0) (%) f(Alfvén=1) (%)
0 0 0 80.168150 0.000000
0 0 1 0.519288 0.000000
0 1 0 0.927300 0.000000
0 1 1 0.272008 0.000000
1 0 0 0.408012 5.984174
1 0 1 0.123640 6.441642
1 1 0 0.272008 0.952028
1 1 1 0.160732 3.771019

Table 4.3.: Normalized contingency table for modes over 100kHz in (%)

By using MI to construct the categorical variables, linear and nonlinear relationships
between variables can be detected. However, when using MI to establish relationships,
the positive or negative relation is not captured. Capturing nonlinear relationships is
more general and therefore more important than knowing the sign of the relationship
when studying modes in all shots. Moreover, the sign of the relationship can be
calculated later.

We can conclude that there is a strong nonlinear dependence between mode fre-
quency and the plasma signals, because most Alfvénic modes in this dataset are
strongly driven when the heating systems are connected. If the plasma is denser, it
can potentially store more energy and drive more current.

4.6. Profiling TJ-II modes
Once the atoms representing the Mirnov coil signal have been conveniently extracted
and clustered into modes, a second clustering can be applied to extract higher-level
patterns. The plasma signals used in addition to the frequency of the modes are
the current Ip , the magnetic energy W , and the inverse square root of density 1/

p
n.

An example of these signals is plotted in Fig.3.21. Profiling each cluster will help to
understand the result of the ERMD run, and the nature of the collected modes. The
clustering method selected is K-means, which differs from HDBSCAN. K-means is
based on minimizing within-cluster variance, it does not use density like HDBSCAN,
and it has great scalability with the number of samples [AV07].

If we project the modes obtained by ERMD into a lower dimensional embedding,
using the T-distributed Stochastic Neighbor Embedding (T-SNE) algorithm [MH08],
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Figure 4.13.: Modes of contingency table 4.3

we can mark the cluster numbers and visualize which groups are similar by their
separation distance and neighborhood.
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Figure 4.14.: T-SNE embedding of mode features. Clusters 2, 21, 16, 8, 10, and 18 are
mostly Alfvénic modes the rest can be noise or a mix of different modes.

The features used for the projections are the same as the features used for clustering:
the mutual information (MI) of the mode’s frequencies with the density MI(f,1/

p
n),

current MI(f,Ip ), and energy of the plasma MI(f,W ). In stellarators, and particularly in
TJ-II, small changes in plasma current can have a measurable impact on the spectrum
of shear Alfvén waves and therefore, evaluating the correlations between changes in
mode frequency and plasma current is necessary. In addition, the modes’s frequency
chirp∆ f = fmax− fmin, the variation of density∆(1/

p
n) = (1/

p
n)max−(1/

p
n) min, the

variation of current ∆Ip = Ip max − Ip min, and plasma energy ∆W =W max −W min are
included to give directionality and magnitude of parameters change.

The result of T-SNE is shown in Fig.4.14 all detected modes are represented in a
two-dimensional space. The numbers of the labels are positioned in the plot by taking
the mean values of dimension 1 and dimension 2 in each group. Finally, the class label
that results from the K-means clustering is used to assign a color to the projection
points and interpret the projection result.

The interpretation of the cluster analysis is summarized in the table 4.4. For the
sake of clarity, we provide some examples of clusters in Fig.4.15. We can observe that
the clustering algorithm is capable of separating the Alfvénic class from other types of
modes with the given variables. The region of Alfvénic modes is highlighted with a
dashed red line polygon, in the upper right corner of Fig.4.14. Groups 8, 16, 21, and 2
are mostly composed of Alfvénic modes, whereas clusters 10, 18, and 7 have a mixed
composition, as their position is close to the border of the polygonal region.

The groups neighboring cluster 0 in the opposite region to the Alfvénic class are
noisy. We consider noise broadband frequency structures mislabeled in some cases by
ERMD. In addition, we consider as noise the very low-frequency structures misiden-
tified by modes that can be seen in Fig.3.22, which also occurs when broadband
noise is present. The MI values of these groups are close to 0, as they do not have
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Cluster
Number

Interpretation

8, 16, 21 Strongly driven Alfvénic
modes occurring when
heating is engaged

2 Alfvénic modes correlated
with magnetic energy

7 Mix of Alfvénic and Non-
Alfvénic modes around 100
kHz correlated with current

18 Mix of Alfvénic and Non-
Alfvénic modes (probably
False negatives)

10 Mix of Alfvénic and Non
Alfvénic modes

17 Anti-Alfvénic modes
strongly correlated with
current

1 Non Alfvénic modes and
mid-frequency noise

4-5, 9, 11-
13,
19-20, 22-
23

Noise + low-frequency
modes (No-Alfvénic)

0, 3, 6,
12, 14-15

Broadband and low-
frequency noise produced
by heating systems

Table 4.4.: Clusters interpretation
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Figure 4.15.: Time-frequency histograms of mode distributions from different clusters.

any relationship with fluctuating plasma signals, which helps discard errors of the
algorithm.

If we look at the time-frequency distributions of modes in Fig.4.15 we can appreciate
variate behavior. Note that the intensity of color gets very high in some values due
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to the presence of repeated shots. Moreover, even if the time variable has not been
used, the modes appear to be grouped around specific times at the beginning of the
pulse when NBI is engaged. We can observe as well that the less Alfvénic activity,
the more probable the presence of noise. Though some noise might be present, the
identification of Alfvénic activity is satisfactory. In addition, some clusters appear to
have different natures, like clusters 7 and 17, in which modes are correlated with the
current, in this case, modes appear to have lower frequencies.

It is of interest that this clustering technique can be used for looking for patterns
in shot databases and eventually finding unexplored plasma activity. However, a
detailed physical interpretation of each cluster requires further analysis based on
complementary simulations and first physical principles. For instance, once the
presence of modes is detected it is possible to run equilibrium reconstruction and
stability analysis to determine the physical nature of the modes. This could add labels
like HAE, TAE, GAE or MIAE to the clusters groups. The mode identification problem
in TJ-II from the physics point of view has been addressed in [VSG17; SOL15; Cap+21].

It is worth mentioning that the MI information can be replaced by Pearson’s cor-
relation or even combined, and the results of the cluster are comparable. Still, we
prioritize the use of MI as it is capable of capturing nonlinear relationships, and it is
more robust to outliers than Pearson’s. The interested reader can find an alternative
to clustering in Appendix C. It is possible to create categorical features using MI and
constructing contingency tables to analyze the mode’s relationship with other plasma
signals.

Other mode variables can be created and added to the clustering. However, we
follow the parsimony principle, i.e. adding variables until the result is interpretable,
and then stop including features. The same principle is followed when selecting the
number of clusters, i.e. the number of clusters is increased until the granularity is fine
enough to describe Alfvénic subgroups.

4.7. Discussion
Comparing the results of the clustering with the results of the contingency tables, by
examining the histograms of Fig.4.13, we can find a resemblance with the results of
K-means clustering explained in the previous section. In fact, some modes of cluster
2 appear to be correlated with the density only; modes correlated with energy and
density appear in clusters 21 and 8 and non-Alfvénic modes of cluster 17 are strongly
correlated with the current. However, establishing a complete equivalence between
the cluster analysis and the contingency tables of categorical features it is not possible,
as we arbitrarily selected a criterion of the category creation.

The treatment of the full variance in the cluster analysis appears more general than
the use of contingency tables. In other words, the cluster analysis has finer granularity
because the values of MI are not discretized and we included directionality with ∆ f ,
∆Ip , ∆W and ∆(1/1

p
n).

For future statistical experiments, the MI values between the frequencies and plasma
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signals can be binned in more categories (for example low, medium, high) instead of
using only indicator functions. In addition, other variables like the mode amplitude
could be investigated.

The manual creation of features (new variables) is a common practice in the indus-
trial application of machine learning. In many cases, performance gains are better
obtained by creating features product of domain knowledge than by optimizing the
hyperparameters of more complex models.

We conclude this chapter with a last remark: establishing a relationship between
variables with statistics is a complex task that needs to be carried out with caution,
and often conclusions are limited. In a noisy dataset, it is always possible to find
correlations. However, as a byproduct of this effort, we could jointly visualize the
results of analyzing a big dataset of plasma modes, and separate noise from true
modes.

4.8. Summary
In this chapter, we discussed how can we estimate if a relationship (correlation) exists
between random variables. First, we review the basics of statistics and information
theory to explain the trade-offs of using Pearson’s correlation and mutual information.

The first goal is to determine which modes retrieved by ERMD are Alfvénic. We
explored the possibilities of using a mixed approach, using Pearson’s correlation sign
and MI strength to determine Alfvenic character.

The second goal was to investigate the relationship between plasma signals like
density, current, and magnetic energy with the frequencies of the modes retrieved by
ERMD in a TJ-II dataset. In order to do that, we followed two approaches: analysis
of contingency tables (previous creation of indicator functions), and profiling of the
modes retrieved by ERMD by using a clustering analysis. Thanks to this study we
found alternative ways of visualizing MHD activity in a dataset.
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signal analysis: Fourier, Wavelet
and Hough transform

“A picture is worth a thousand words”

— popular

“... a formula is worth a thousand
pictures”

— Dijkstra 1996
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5.1. Introduction
For years, experimental physicist looked at their computer screens to identify plasma
instabilities. The researchers scanned the spectrograms for very specific patterns.
Therefore, a natural approach to automating the identification of MHD activity would
be to use computer vision to recognize the same patterns, imitating this human
behavior.

Working with images has several advantages. For instance, time-frequency repre-
sentations facilitate the study of time signals. In time series patterns the information
is so localized that we need to create spaces with additional dimensions to investigate
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them, passing from 1D to a 2D representation. This contrasts with the usual effort of
trying to reduce dimensions.

Images differ significantly from raw time series in their statistical properties. For ex-
ample, a colored image has three RGB channels, resulting in 5 dimensions (x,y,R,G,B).
The number of possible black and white images in a 256x256 pixel space is 265536, a
number with 19729 digits, much greater than the estimated number of atoms in the
universe (≈ 1080). Moreover, images pose unique challenges such as object recogni-
tion, filtering, and generation, each requiring specialized algorithms tailored to the
visual domain.

Common tasks in computer vision include manipulating exposure, color, size, and
geometry; filtering and restoration (denoising); and detecting edges, ridges, contours,
or other geometric shapes. More advanced problems involve object detection, texture
analysis, image classification, segmentation, and thresholding. In recent years the
development of deep convolutional neural networks has changed the field, achieving
unprecedented performance and advanced applications. Although image complexity
is very high, having many applications to business and daily life applications, they
have been researched and developed quite extensively.

A shared family of algorithms between time signal analysis and image analysis are
the Fourier transform and the wavelet transform since they can be extended to 2D
easily. An image can be understood as a collection of 1D signals along a horizontal
direction and vertical direction.

The fact that plasma phenomena have multiple scales is partially reflected in the
spectrogram. MHD modes usually are macroscale perturbations of the plasma, and
microscale phenomena translate into broadband noise and other artifacts. Wavelets
can be useful in this task since they are designed to handle the presence of different
scales in data, allowing the separation of distinct features.

In the previous chapters, we worked to model the signal adding sparsity of the modes
as an important model assumption. The sparsity property allows the identification of
mode structures embedded in broadband noise. Nevertheless, we need to translate
this assumption to an equivalent statement for pixel space. Wavelets can help with
this task since sparse mode features will appear with low spatial frequency in the
image space, or equivalently: modes will have a larger scale (lower frequency) than
noise in the image space.

Because many computer vision algorithms are created with real-time applications
in mind, their computational requirements can be very low. GPUs are only mandatory
for the training of deep learning models. Having models without GPU requirements
can be helpful in the situation of mining big databases.

In this chapter, we explore the application of Fourier transforms, wavelets, and
classic computer vision algorithms to identify and remove noise and other unwanted
features from JET spectrograms. This preprocessing step is crucial for the subsequent
identification of time-frequency structures, which will be discussed in the following
chapters.
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5.2. Signal analysis for feature extraction of
spectrograms

In this section, we briefly revisit the signal processing and computer vision (CV)
algorithms introduced in Chapter 2, with a focus on their implementation for feature
extraction in spectrograms.

Before continuing, it is important to remark that magnetohydrodynamic (MHD)
instabilities like energetic particles (EP) driven Alfvén eigenmodes [Hei08; GPT14],
can be observed with different diagnostic systems: magnetic sensors [Sha+13] (Mirnov
coils [MS74]), electron cyclotron emission (ECE) [Van+06; Fre+16], soft X-ray measure-
ments [Naz+97], or Far infrared interferometry (FIR) [Sha+06]. Frequently, the end
product of the diagnostic analysis is often a spectrogram.

To analyze these signals, we begin by calculating the spectrograms using the discrete
short-time Fourier transform (STFT), PS f (u,ξ) = |ST F T { f (u,ξ)}|2, as defined by Eq.
2.27. We employ the Scipy implementation with the following settings: a window
length of 2048 samples for the FFT, spectral amplitude on a dB scale, the Tukey window
function g (t−u), and the “turbo” colormap—a rainbow colormap proposed by Google
AI Research for its perceptual uniformity and enhanced value dissimilarities. The
remaining parameters use the default library settings. Before applying the processing
pipeline, we resize the images to 1024 by 1024 pixels.

Although we defined the DWT as a projection over an orthogonal dictionary basis
in Eq. 2.21, discrete wavelets can also be visualized as pyramids of multiscale and
multidirectional filters. These filters are extensively used in image processing to
remove noise and extract features. By applying the discrete wavelet transform (DWT),
an image can be decomposed into four sub-images: an approximation image, vertical
details, horizontal details, and diagonal details. The approximation images are used
iteratively to continue the decomposition at the next level, as illustrated in Fig. 5.1. An
example of spectrogram decomposition is shown in Fig. 5.2. This thesis work used the
PyWavelets implementation [Lee+19].

Figure 5.1.: Cartoon showing wavelet cascade of filters; Approximation, Vertical details,
Horizontal Details, Diagonal details
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Figure 5.2.: Example of a JET’ spectrogram (top) and its third level wavelet decompo-
sition (bottom) Approximation image, horizontal details, vertical details
and diagonal details.

The approximation image is essentially the result of applying a low-pass filter to
both the rows and columns of the image (hence the notation LL in the literature).
The vertical details image is obtained by applying a low-pass filter to the rows and
a high-pass filter to the columns (LH), while the horizontal details image (HL) and
diagonal details image (HH) complement the decomposition. In this work, the Haar
wavelet is employed for these transformations.

The discrete wavelet transform (DWT) is particularly valuable because MHD insta-
bilities, observable in spectrograms, tend to have low spatial frequencies, meaning
they exhibit low repetition rates across the spectrogram image. In contrast, signal
noise usually appears as high spatial frequencies.

The frequency content of an image can also be analyzed by extending the discrete
Fourier transform to two dimensions. This allows for the detection of periodic patterns
in the frequency domain. In this thesis, the primary application of the 2D Fourier
transform is the manipulation of images in the frequency space, particularly through
the filtering of specific spectral components. For example, filtering out certain fre-
quencies can effectively remove periodic patterns [HS]. The 2D Fourier transform
implementations used in this work are available in Python’s NumPy library.

The discrete wavelet decomposition of images is a powerful tool for denoising and
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feature extraction [Oro; GKF02; San04; BRH20; KU18; TZ21]. However, the number
of directions might be too coarse in some scenarios. For instance, a vertical and
horizontal multiscale pattern could not be enough to describe curved ridges filling
the image space. A similar situation can occur with MHD activity on spectrograms.
Variants of the DWT like the contourlet transform [DV05] or the curvelet transform
[Can+06; MP10] were introduced to cope with the lack of directionality of DWT.

The idea of using filter banks in the fast discrete wavelet transform can also be ap-
plied to the 2D Fourier space of images. By tessellating the Fourier space into windows,
we can create a multi-scale, multi-directional filter bank. The fast Curvelet transform
of an image f (x1, x2) is defined by Eq. 2.28. However, because translations in the same
direction are symmetrical, we can define curvelets informally as a decomposition over
scales and angles:

Curvelet transform{ f (x1, x2)}

= ∑
scales

∑
ang l es

〈 f ,φscale,ang l e〉φscale,ang l e , (5.1)

where 〈 f ,φscale,ang l e〉 is the coefficient corresponding to the “wedge” φscale,ang l e

[Can+06].
This work uses CurveLab implementation, copyrighted by the authors [Can+06],

and it is available for academic use. The Python library Curvelops allows curvelops
integration with the rest of the workflow.

In this thesis, we used the Hough transform [DH72; GMK99] to detect straight lines
y = mx +b in images (section 5.4). Without discussing all the details: for each pixel
point, multiple straight lines represented by x cos(θ)+ y sin(θ) = ρ are considered.
Each one is situated at a distance ρ from the origin and the perpendicular to each
candidate line forms a θ angle with x-axis. The image is then transformed into a
2D space (Hough space) in which all straight lines are transformed into sine curves.
The accumulation of sinusoids in a point of Hough space indicates the presence of a
straight line characterized by ρ and θ (Fig.5.5). It is important to mention that some
edge detection (or ridge detection) is needed before running the Hough transform.
Otherwise, accumulation points are not clear and the straight-line detection might
not be efficient enough. For this reason, the Canny edge detector [Can86] or Ridge
detection combined with thresholding have been used in this case.

All these CV algorithms are available in the scikit-image library [Van+14]. Rather
than focusing on hyperparameter tuning, we compared different algorithm perfor-
mances using the default parameters, aiming to identify the ones that best suited our
data features.
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Figure 5.3.: Example of broadband spectral noise removal. Clips caused by pellets
injections are removed from the spectrogram, leaving MHD activity. TAEs
and EAEs are observed.

5.3. Broadband noise removal using discrete
wavelet transforms

In JET shot in Fig.5.3 we can see various toroidal Alfvén eigenmodes over 200 kHz
and between 56.5 and 57 s approximately. Then 15 periodic pellet injections fuel the
plasma (they can be distinguished by the vertical lines in the spectrogram). The pellet
injections fundamentally increase plasma density and reduce its temperature. It can
be seen in the first pellet injection just after 57 (s), how they affect the TAE modes. As
the density increases abruptly, the TAE frequency fTAE ∝ 1/

p
n decreases, and then
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the TAE disappears soon afterward. A similar effect can be observed on an elliptical
Alfvén eigenmode at ≈420 kHz and ≈57.5s. More deeply, the effect of pellet injection
is a modification of the Alfvén continuum spectrum, which is studied [Oli+19] in shots
similar to the one in Fig.5.3.

Time series signals from JET magnetic diagnostics are characterized by abundant
spikes and discontinuities. It is well known that the Fourier transform struggles with
non-differentiable or non-stationary time series, resulting in Gibbs artifacts in the sig-
nal reconstruction and spectral leakage in the frequency domain. A classic example is
the Fourier transform of a square signal, where ripples (known as Gibbs phenomenon)
are present at the edges of the reconstructed square wave. The Fourier decomposition
of sines and cosines inherently struggles to accurately recreate this type of signal.
A more dramatic example is the Fourier transform of a unit impulse (Dirac’s delta
δ(τ= 0)), which theoretically requires an infinite range of frequencies to reconstruct
the pulsed signal. Due to these challenges, JET’s time-frequency spectrograms often
exhibit abundant broadband noise.

The character of spectrograms noise is highly anisotropic, due to the spectral leakage
of the STFFT on each time window. This broadband noise is predominantly located
in the vertical details sub-image. Therefore, by removing the vertical details of the
image, we can significantly reduce the noise in the spectrograms. When the pixels in
the vertical detail sub-images (across all levels) are set to zero and the inverse DWT is
applied, broadband spectral noise is substantially diminished. Fig.5.3 demonstrates
this process, including the effect of pellet injection events in this particular example.
The steps are summarized in Algorithm 3.

The approximation and horizontal details subimages are left unchanged. In addi-
tion, some high-frequency noise is present in the diagonal subimages, so they have set
a soft thresholding (all pixel values in diagonal subimages are multiplied by αD = 0.5).

Algorithm 3: Remove broadband noise, clics and pops from spectrogram
Input: Time series s
Parameters: Levels deep: N=8
Vertical threshold: αV = 0,
diagonal threshold: αD = 0.5
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Obtain spectrogram matrix Sxx using STFT(s).
2 Workout DWT tree.
3 Set αV = 0 in all vertical details images in levels 1:N (hard thresholding).
4 Set αD = 0.5 in all diagonal details images in level 1:N (soft thresholding).
5 Use inverse DWT to generate a filtered spectrogram.

It is important to remark that we are modeling noise through the selection of one
direction and the selection of the parameters, therefore it is necessary to check these
prior assumptions while using this algorithm. So far we have assumed that all the
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information contained in the vertical direction is noise or undesired artifacts. However,
this is not the case when rapid sweeping frequencies of physical origin like fishbones
or energetic particle modes. The algorithm removes these types of modes and the
information removed can not be discarded.

Given this case, it is convenient to examine the removed image and evaluate how
much information has been removed. Then several approaches are valid: (1) if all
vertical modes are removed, it is necessary to continue the analysis on the vertical
components, this way vertical and horizontal components can be segmented sepa-
rately and finally merged together; (2) use soft thresholding to (αV = 0.5 or greater)
to adjust the subtracted fraction of the vertical component on proceed with segmen-
tation (these modes are strongly driven and contrast is good to segment them); (3)
use the approximation image of level 1 or 2 instead, because keeping one of the first
approximation sub-images can also result in a spectrogram with an improved signal-
to-noise ratio, though omitting details sub-images could produce modes with coarser
details.

The maximum number of levels that can be calculated depends on the number of
pixels in the image. More pixels allow for a greater number of levels. Given an optimal
time-frequency uncertainty, determined by the window size in the STFFT, one way to
increase the number of pixels in the spectrogram is by allowing more overlap in time
windows. The maximum number of levels can be determined by the appearance of
border effects, and we calculate as many levels as possible.

5.4. Straight line pattern detection
Some signals observed in spectrograms appear as straight lines with specific orien-
tations. In many instances, these signals are not caused by plasma instabilities. For
example, the TAE antenna creates a frequency sweeping pattern, which can be seen in
Fig.5.4. Shot 92416, an afterglow experiment, has been studied in detail [Fit+22]. To
remove the straight line patterns present in this shot, we must generalize the method
used for pellet signals to accommodate other orientations beyond the vertical.

Algorithm 4: Straight line detection using Hough transform

Input: s diagnostic signal
Parameters: N=100000, θ1 =−π/2,θN =+π/2, θt est = [θ1, ...θN ]
Output: l i nes
Steps:

1 Obtain spectrogram using STFT(s)
2 Apply Canny edge detector/Ridge detectors to enhance features
3 Use scikit-image implementation of Hough transform (hough_line(θt ex t )) or

probabilistic_Hough(threshold=85, line_length=12, line_gap=6) for Fig.5.7.

It is to be expected that the pellet’s injection time or requested TAE antenna frequen-
cies are available in the shot database. However, side lobes (harmonics) of the TAE
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Figure 5.4.: Spectrogram of JET shot 92416.

antenna signal may also appear.
Before applying the Hough transform (Algorithm 4), it is necessary to enhance the

edges in the spectrogram image. The Canny edge detector is a standard choice, but
better results can often be obtained using ridge detectors, which are discussed in
the next chapter. The Hough transform then expresses the image in its own space.
The main hyperparameter for the Hough transform is the number of test angles
N = 100000 that need to be sampled between ±π/2. The more angles tested, the
better the result, though this comes at the cost of increased computational time.
When overlapping sinusoids converge at a point in Fig.5.5, it indicates the presence
of a straight line in the image space. Notice how some curves converge to points at
±90 degrees (corresponding to horizontal lines in images) and around ±10 degrees
(corresponding to the antenna sweep).

The result of the straight-line detection is shown in Fig.5.6. The angles detected
are centered around 0.39 ± 1.63, 77.59± 2.63, 83.1± 1.63, 95.97± 2.01, 103.32± 2.61,
and 179.61 ± 1.65 (in degrees). It is also worth noting that the probabilistic Hough
transform [GMK99] can be used to incorporate priors such as line length, angular
orientation, or separation between lines. The results of applying this technique are
shown in Fig.5.7. This result extends the further applications of the Hough transform.
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Figure 5.5.: Result of Hough transform. The accumulation of sinusoids passing
through a point indicates the presence of a straight line in the image
space.

Figure 5.6.: Result of Hugh transform analysis showing the straight lines detected.

132



5. Spectral feature extraction with signal analysis: Fourier, Wavelet and Hough
transform – 5.5. Removal of oriented patterns with 2DFFT

Figure 5.7.: Result of probabilistic Hugh transform. Prior length is 12 pixels.

5.5. Removal of oriented patterns with 2DFFT
To proceed with the removal of oriented patterns, we start with the straight lines
detected using the Hough transform. Our first approach would be to transform the
spectrogram’s image f (x1, x2) to the Fourier space F (k1,k2). The steps are summarized
in the algorithm (5).

In the Fourier space, the image information is expressed as spatial frequencies
along two directions. We can then design a mask over the magnitude spectrum to
remove frequencies along the desired directions. It is important to note that the
FFT2D rotates the straight line angles by π/2 or 90o , as detected with the Hough
transform. For instance, lines detected at 77.59o generate features at 77.59o-90o =
12.4o in the Fourier space. The supplementary angles of ±12.4o are 12.4o+180o=192.4o

and -12.4o+180o=167.6o .
Therefore, the mask angles used in this example are

θ = [θ1,θ2,θ3,θ4] = [12.4o ,−12.4o ,192.4o ,167.6o] (5.2)

. Then, the angular mask widths are set to

∆θ = [∆θ1,∆θ2,∆θ3,∆θ4] = [8o ,8o ,8o ,8o]. (5.3)

In addition, the radial mask is set so it reaches the end of the Fourier 2D space, so the
mask cut-off is

δ= [δ1,δ2,δ3,δ4] = [1024,1024,1024,1024]. (5.4)
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When the inverse Fourier transform is applied to the masked spectra, the resulting
image is free from features along these angles. The inverse 2D FFT produces a complex
number matrix, so the real part (or the absolute value) of this matrix must be taken
to plot the spectrogram. Taking the real part preserves the original dynamic range of
the spectrogram (colors) while effectively removing the TAE antenna signal, as shown
in Fig.5.8. It is important to note that this process may alter the amplitude values
(observe the color bar scale in Fig.5.8). Taking the absolute value yields a similar result,
but it may produce a negative image, which can change the color range in Fig.5.8.

To summarize, Fig.5.8 shows the original spectra, the 2D FFT magnitude spec-
trum with a filter mask, the resulting spectrogram, and the features removed from
the images: the TAE antenna signal is successfully removed from the spectrogram.
Remarkably, removing these directions preserves most of the information from the
original signal, allowing sawteeth or MHD activity to remain observable in the re-
moved features. However, modes aligned with these directions may be attenuated
or disappear. As mentioned earlier, if vertical modes are present, further processing
of the vertical image may be necessary. In the case of 2DFFT, it is also possible to
redesign the mask to create a directional band-pass filter that allows lower frequencies
to pass through.

Figure 5.8.: Use of 2D FFT to remove TAE antenna sweeps: Original image, Mask over
2D FFT, Filtered image, and noise removed.
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Algorithm 5: Remove straight line patter using 2D FFT high pass directional
filters

Input: Time series s
Parameters:
Mask angles: θ = [θ1, ...θN ].
Angle width: ∆θ = [∆θ1, ...∆θN ].
Mask cut-off: δ= [δ1, ...δN ]
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Obtain spectrogram matrix Sxx using STFT(s).
2 Resize image Sxx to have squared size: 1024 × 1024.
3 Transform resized image to frequency space.
4 Apply Mask to frequency space (truncated circle sectors centered at θi , width
∆θi , and maximum radius δi ).

5 Inverse transform the masked image to obtain the filtered image Sxx(mod).
6 Return Re

{
Sxx(mod)

}
If algorithms (3) and (5) are combined, the resulting image offers an improved

contrast highlighting MHD features of the signal. In Fig.5.9 most of the broadband
noise and the complete TAE antenna signal are removed. However, this approach is not
without limitations. If the MHD activity aligns with the TAE antenna sweeps, we might
lose these modes. For instance, two elliptic alfvén eigenmodes (EAE)s disappear, these
small modes are situated at 51s and 475 kHz approximately (decreasing in frequency).
Moreover, sawteeth signals are still crossing the MHD modes.

Depending on the application, designing the mask may require some trial and error
to select the appropriate parameters. In the 2D FFT, low frequencies are located at
the center. To avoid covering this region, the mask consists of radial circle sectors
centered at angles θ with respective apertures∆θ. The mask begins at a radial cut-off
distance δ from the origin, so low spatial frequencies are not filtered. Moreover, it has
been found useful to resize the spectrogram to a square image beforehand. This helps
create a symmetric mask (the radial mask apertures∆θ are centered around the given
angles θ).

We found that this algorithm is remarkably useful for removing straight lines cross-
ing the whole image, like the ones commonly present in spectrograms from interfer-
ometers. Once the mask is designed for this use case ( θ = 0 or 90 and ∆θ = 1) the
fine-tuning of parameters is optional. An example of this application is presented in
the following chapter.

Manipulating the Fourier space is also crucial for understanding the curvelet trans-
form. Given the success of using discrete wavelets in Algorithm 3, we extended this
approach by employing curvelets.
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Figure 5.9.: Result of combining Algorithm 3 and 5. On the left the original spectro-
gram is shown, in the right picture the result of using both algorithms.

5.6. Multiscale-multidirection pattern matching
using curvelets

The curvelet transform [Can+06] is a multidirectional generalization of the DWT, better
suited for images with curved edges and multiple directional features, like the MHD
modes in our spectrograms. To remove noise and unwanted components in a selected
angular direction, we set the corresponding sub-images to 0 and then apply the inverse
curvelet transform.

In Fig.5.10, a polar representation of the 2D Fourier space is shown. The 2D Fourier
space is divided into a tessellation of “wedges” [Can+06]. Each wedge corresponds to
a sub-image with specific scale and directional properties. The wedges closer to the
center represent sub-images with large-scale (low-frequency) features. The colored
wedges indicate the regions selected for removal before applying the inverse Curvelet
transform. These directions include vertical, horizontal, and the antenna’s sweep
directions. The scales to be removed in these directions exclude the two largest scales
(the low frequencies represented by the central wedge and the first concentric wedges).

The result of using Algorithm 6 is shown in Fig.5.11. Curvelets effectively remove
anisotropic noise and improve the contrast of the spectrogram. The TAE antenna
signal and the ICRH subharmonics are also successfully removed from the spectro-
gram, along with the elimination of sawteeth. The wedge tessellation is configured by
selecting the number of scales and wedges corresponding to the angles detected with
the Hough transform. For more details on the curvelet transform, readers may refer to
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Figure 5.10.: Cartoon of curvelet’s wedges in polar coordinates. Colored wedges are
set to zero before doing the inverse Curvelet transform

Algorithm 6: Removing directional patterns with Curvelets
Input: s
Parameters: σ= 1, θ = [θ1, ...θN ]
Output: Sxx(mod)

Steps:
1 STFT(s) to obtain spectrogram
2 Detect straight line patterns (optional).
3 Apply curvelet transform.
4 Set to 0 (hard thresholding) wedges corresponding to directions θ
5 Apply inverse curvelet transform.

Ma’s review paper [MP10]. In Appendix A, original and processed images are plotted
in Fourier space (Cartesian coordinates), highlighting the difference between a simple
mask and the curvelets.

In Fig.5.12, we examine the information removed by the curvelet algorithm (6). It
contains the removed TAE antenna signal, the ICRH signal, and a couple of lost EAE
modes. The sawteeth pattern, which is of interest for studying edge localized modes
(ELMs), can be analyzed separately. By applying Algorithm 5 to the curvelet’s result,
removing the vertical components of the image, we obtain a separate spectrogram
of the sawteeth signals, as shown in Fig.5.13, lower panel. Although the image reso-
lution in this example (1024 pixels) may not be sufficient for precise measurements,
increasing the number of pixels can resolve this issue.
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Figure 5.11.: Result of applying curvelet transform algorithm to remove TAE antenna:
Algorithm (6)

Figure 5.12.: Features extracted using curvelets
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Figure 5.13.: Sawteeth extracted from Noise residuals using FFT2D

5.7. Summary
In this chapter, we presented a set of image spectral algorithms applied for the first
time to spectrograms of magnetic diagnostics. The algorithms developed here can
remove unwanted image components, thereby enhancing specific spatial features of
spectrograms. The first development involved the introduction of DWT to remove
broadband noise and pellet injections from spectrograms. Subsequently, the Hough
transform was introduced to detect straight-line patterns, which helped identify the
angles of directions to be removed. We found that 2DFFT could manipulate spectro-
gram features by masking the image in frequency space. We then extended DWT to
multiple directions using the Curvelet transform and concluded by demonstrating how
these methods can be applied to a complex spectrogram of shot 92416, showing how
MHD activity can be separated from sawteeth oscillations and other features. These
algorithms serve as a preprocessing step for the segmentation algorithms explained in
the next chapter.
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“Never send a human to do a
machine’s job”

— Agent Smith (The Matrix, 1999)
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6.1. Introduction
The segmentation of an image I (x, y) can be defined (page 131 of Ref. [AR05]) as the
identification of a finite set of regions, or segments (R1,R2,R j , . . . ,RN ) such that:

1. I (x, y) = R1 ∪R2 ∪·· ·∪RN .

2. Ri ∩R j =;, ∀ i ̸= j .

3. P (Ri ) = True, ∀ i .

4. P (Ri ∪R j ) = False, ∀ i ̸= j .

where the definition property P determines the result of the segmentation.
The first property ensures complete coverage of the image by all segments, while

the second guarantees non-overlapping segments. The third property imposes a
specific criterion that each region must satisfy, and the fourth prevents merging
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distinct regions by maintaining that combining them would violate the segmentation
criterion. Notably, this definition of segmentation allows for different partitions of the
image without assuming region connectivity.

In chapter 3, we illustrated the mode decomposition of a signal with a musical anal-
ogy. Expanding on this concept, we now explore how segmentation of spectrograms,
like the one in Fig.3.2 can be used for modal decomposition.

In Fig.6.1 a 3D version of spectrogram Fig.3.2 is presented. Additionally, a “sea level”
has been set so individual musical notes can be identified. After setting a threshold, we
can find connected components, or “islands”, which identify musical notes of score 3.1.
The segmentation result and the subsequent identification of separated components
can be examined in Fig.6.2. The property P that governs the segmentation problem is
the presence or absence of a musical note in a spectrogram’s pixel.

Figure 6.1.: 3D view of thresholded spec-
trogram (Fig.3.2)

Figure 6.2.: Notes labeled by segmenta-
tion of thresholded spectro-
gram (Fig.3.2)

This CV approach offers direct advantages. First, it is much faster than the dictionary
encoding approach presented in chapter 3. Additionally, the spectral time-frequency
representation relies only on STFT, which is the algorithm of choice to analyze signals
in the fusion community. Because the STFT is a projection over a dictionary method,
it is not necessary to run complex and costly optimizations. However, it has also
disadvantages. First, the threshold selection is not trivial, as it might vary between
different time and frequency regions and it is very sensitive to noise. Moreover, to
separate modes or musical notes we assume that they are regions of connected pixels,
which might not be always true, especially with crossing modes. We can also use
the feature extraction methods introduced in the last chapter to cope with noise and
crossing signals.

Regarding fusion diagnostic spectrograms, we can consider two basic regions in a
spectrogram image: regions with MHD activity and those without it. Consequently,
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the property P can be defined as the presence of an MHD mode in a spectrogram’s
pixel. Then, there are then two distinct regions: R1, with MHD activity (P (R1) = 1),
and R0, representing the background (P (R0) = 0). We assume that if the segmentation
is correct, non-connected regions of MHD activity constitute different time-frequency
modes. Then, it is very easy to separate different modes using pixel connectivity.

In the first part of this chapter, we introduce ridge detection as a feature-enhancement
method necessary to solve the threshold difficulty. In addition, different methods for
the automatic selection of threshold are also discussed. The second part explores
how segmentation can be combined with the feature extraction techniques from the
previous chapter. The last part explores the use of deep learning for segmentation
of spectrograms using fine tuning of state of the art models: SAM, Detectron2 and
YOLOv8.

6.2. Contour-based segmentation of MHD
spectrograms

According to Lei’s book ([LN23], page 5) there are 4 types of segmentation: (1) pixel-
based, (2) contour-based, (3) region-based, and (4) deep learning based.

First, the pixel-based segmentation algorithm includes global thresholding or clus-
tering methods like k-means, which classify pixels based on similar pixel intensity (or
color) but often they ignore spatial relationships. The musical example in figures 6.1
and 6.2 is a pixel-based segmentation method. This type of method works well with
colored images, and with features with the same pixel intensity, like the spectrogram
of a ragtime’s pianola recording. However, they have difficulties distinguishing MHD
activity from the background, as the background is not homogeneous.

Second, contour-based segmentation focuses on detecting object boundaries using
methods like edge detection followed by a threshold. This is the approach followed in
this chapter as we aim to distinguish ridges in the image.

Next, region-based segmentation grows regions from seed points or splits and
merges regions based on feature consistency. Two common examples of region-
based segmentation algorithms are the “watershed” methods [NS94; BLM14] and
other superpixels algorithms [SHL18; Ach+12; NP14]. These methods are too coarse,
merging areas with MHD activity and the background.

Finally, neural network–based segmentation uses deep learning models like CNNs,
offering superior feature extraction but facing challenges in data requirements, model
robustness, and inference speed, as discussed by Lei [LN23], page 5ff. This is the
approach followed in the next chapter.

As mentioned in chapter 2, calculus is used for edge and ridge detection. The edge
detection based on the first derivative is called first-order edge detection, page 162
of Ref. [NA12]. For example, the Sobel edge detector is based on the gradients of the
image. The first derivative has a maximum along an edge position. In contrast, the
second-order edge detection, based on the second derivative, has a zero crossing in
the presence of an edge.
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Figure 6.3.: Comparision of thresholding with and without feature enhancement. The
DoG is used to detect pixel fluctuations

To take into account the directional properties of an image I (x, y), the gradient
∇uI (x, y) along the direction of unit vector u are used for the first order edge detection.
The directions for vectors u are usually the x (vertical) and y (horizontal) directions in
the image I (x, y). The orientation of an edge for each pixel can be calculated using
tan−1(∇yI (x, y)/∇xI (x, y)).

The Laplacian ∇2I (x, y) is used for the second-order edge detection. The zero
crossings of the Laplacian reveals an edge. In contrast with the gradient, the Laplacian
is a magnitude, not a vector. In addition, the Laplacian is invariant to rotations of the
image, a very useful property for extracting features.

Both gradient-based and Laplacian-based estimators are commonly used because
they are easy to discretize and implement. However, these estimators are very sensitive
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to image noise [DMT16], page 70. To improve their robustness against noise, the image
is usually smoothed using a Gaussian kernel before calculating the derivatives.

A Gaussian filter is a very simple process, taking an image and convolving it with a
Gaussian G(x, y,σ) = 1

2πσ exp
(
(x2 + y2)/2σ2

)
results in an “blurred” image G(x, y,σ)∗

I (x, y), with smooth details and edges. The main parameter of a Gaussian filter is the
Gaussian σ, which determines the Gaussian spreading (scale) and consequently the
intensity of the blurring effect. The “blurring” effect is caused because the Gaussian
kernel acts like a low pass filter. It is important to note that using a Gaussian kernel
is a necessary step to remove noise fluctuations at scales irrelevant to the objects of
interest.

The low pass effect of a Gaussian filter also acts as a scale selection mechanism. A
similar “low pass” effect can be also obtained by wavelet decompositions discussed
in previous chapters (by keeping approximation images). Indeed, using a Gaussian
filter with a σ between 1 and 2 pixels also improves the contrast of spectrograms
because noise fluctuations are smoothed out. The effect is comparable to using DWT
introduced last chapter to remove broadband noise in spectrograms.

The Laplacian of Gaussian operator (also known as Marr-Hildreth operator[MH80])
is constructed taking the Laplacian of the image convolved with a Gaussian∇2(G(x, y,σ)∗
I (x, y)) =∇2(G(x, y,σ))∗ I (x, y). It can be shown that the LoG is [NA12]

LoG(x, y,σ) =∇2(G(x, y,σ)) = 1

σ2

(
x2 + y2 −2σ2

σ4

)
e− x2+y2

2σ2 . (6.1)

The 3D shape of this operator is known as “Mexican hat”, which can be also approxi-
mated by the difference of two Gaussians (DoG), as illustrated in Fig.6.4 (in 2D). The
convolution with this operator is equivalent to applying a bandpass filter that omits
low and high frequencies. Indeed, the difference between two low-pass filters of differ-
ent scales forms a bandpass filter. This can be demonstrated by applying the Fourier
transform to a Mexican hat curve (or the DoG curve), as on page 168 of Ref. [NA12].

Figure 6.4.: Difference of Gaussians: The DoG

The DoG operator [Mar10; Lin94; WKO12] is mathematically defined as
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DoG(x, y,σ1,σ2) = 1

σ2
1

e
− x2+y2

2σ2
1 − 1

σ2
2

e
− x2+y2

2σ2
2 . (6.2)

The ratio of σ1 and σ2 is set to a value between 1 and 2 for a good edge detection,
[AR05] page 143. The DoG operator has a positive response in the presence of increas-
ing edges, or ridges. And negative response in the presence of a decreasing edge or
a negative ridge (or a valley). In other words, it does not make a difference between
edges and ridges. However, in the case of our spectrograms, the edges have a smaller
scale than the ridges.

The DoG is commonly used as an artistic effect [WKO12] to simulate human draw-
ings or photocopies from a given image. Although this may seem unrelated to fusion
research, it becomes relevant when manual mode labeling requires sketching over
spectrograms. The pencil effect, a DoG-based technique, could be particularly useful
for automatically labeling mode structures in fusion spectrograms.

It is also possible to generalize the DoG to multiple scales to N multiple scales
σ= [σ1, ...,σN ], applying the DoG repeatedly with different σ values in pairs. Then,
there are alternative ways of selecting or aggregating the features from different scales,
as discussed in [Sze22] page 191ff. This “stacking” of filters of different scales is known
as the DoG scale space (page 242 of Ref. [BB13]), and it can be used to extract complex
features from different image scales.

After the edges of spectrograms are enhanced, the binarization of an image I (x, y)
can be performed by the selection of a global threshold T (page 169 of Ref. [Kle14]),
mathematically

J (x, y) =
{

0 if I (x, y) < T

1 otherwise
. (6.3)

The threshold T parameter can be tuned manually. However, this is not convenient
for analyzing different shots in large databases. However, there are global automatic
thresholding algorithms that can calculate T for a given image J(x, y). In Fig. 6.3 we
can see the result of applying the dog with Otsu’s [Ots79] automatic global thresholding
algorithm to the original image (Fig. 6.3 left), compared with the result of thresholding
after the edge detection (Fig. 6.3 right).

The binarized mode structures are clearly identifiable after feature enhancement.
This remarks the necessity of using some kind of feature enhancement, such as edge
detection or ridge detection, before binarization to ensure modes are properly sepa-
rated from the background. Otherwise, modes are lost or mixed with the background
as we can see in Fig. 6.3 (left).

6.3. Ridge detection algorithms for spectrograms
The DoG can detect ridges well if the scales selected are close to the ridge’s size.
However, if the scales of DoG are smaller than the ridges in the image, there is no
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way to differentiate between edges and ridges, as the DoG captures all changes of
curvature. Therefore, it is necessary to further develop the model if the structures that
we want to detect have a ridge structure. These algorithms were developed for the
analysis of biological images taken by microscopy. Under the microscope, vessels,
neurites (part of neurons), some types of bacteria, and many other objects of study
have a ridge structure. Sometimes is necessary to label and count them. For example,
when studying the growth of certain bacteria, it is also necessary to measure their
size variation. Consequently, detecting only the edges of the image structures is
insufficient.

The ridge filters used in this thesis are Sato’s [Sat+98] ridge detector, Meijering’s
[Mei+04], Frangi’s [Fra+98] and Hessian’s [Ng+15] results. All these ridge detectors use
the image Hessian matrix as part of the algorithm.

The second-order directional derivatives are used to capture complex directional
structures, [DMT16] pag 74. The Hessian matrix H(x0, y0) at a pixel point (x0, y0) is
composed of the second-order partial derivatives:

H(x0, y0) =
∂2 f (x0,y0)

∂x2
∂2 f (x0,y0)
∂x∂y

∂2 f (x0,y0)
∂x∂y

∂2 f (x0,y0)
∂y2

 (6.4)

This matrix is smoothed by a kernel G , leading to the smoothed Hessian matrix:

H(x0, y0) =
(
(Gxx ∗ I (x, y))(x0, y0) (Gx y ∗ I (x, y))(x0, y0)
(Gy x ∗ I (x, y))(x0, y0) (Gy y ∗ I (x, y))(x0, y0)

)
(6.5)

The dominant orientation of a ridge at (x0, y0) is determined by finding the eigen-
vector corresponding to the largest eigenvalue of the Hessian matrix. Specifically, the
eigenvector u2 that maximizes uT Hu subject to ∥u∥ = 1 provides the ridge direction.
The eigenvalues λ1 and λ2 of the Hessian matrix give information about the curvature
in orthogonal directions, with the eigenvector associated with the smallest eigenvalue
λ1 indicating the direction orthogonal to the ridge, as explained in [DMT16] page 74.

Different authors modify the Hessian method slightly because there are different
ways of interpreting the eigenvalue information. Consequently, there are different
criteria to determine the presence of a ridge. For example, Frangi defines a “vesselness”
V(x,y) [Fra+98] which is the likelihood of the pixel eigenvalues representing a vessel’s
ridge

V (x0, y0) =
0 if λ1 > 0

exp
(
− λ2

1

2β2
1

)(
1−exp

(
− λ2

2

2β2
2

))
otherwise

(6.6)

where β1 and β2 are sensitive parameters.
It is also possible to add a sensitive parameter α [Mei+04] directly to the Hessian

matrix, [Mei+04]. representing fi j as (Gi j ∗ I (x, y))(x0, y0) we have a modified Hessian
H’

H ′(x0, y0) =
(

fxx +α fy y (1−α) fx y

(1−α) fy x fy y +α fxx

)
(6.7)
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Meijering then defines a “neuriteness” ρ(x, y) [Mei+04] which is the likelihood of
the eigenvalues representing a ridge (neurites from microscopic images).

ρ(x0, y0) =
{

0 if λ(x, y) ≥ 0
λ(x0,y0)

λ(x0,y0)min
if λ(x0, y0) < 0

(6.8)

whereλ(x0, y0) is the larger magnitude of the two egenvalues [Mei+04], andλ(x0, y0)min

is the minimum eigenvalue in all image.
Sato [Sat+98] proposed an alternative measure of “vesselness”, and Li et al [Ng+15]

used a hybrid approach using both Hessian and directional gradients. The bottom
line is that these ridge detectors use image curvature information, in contrast to other
segmentation methods, with different criteria for “ridgeness”.

These ridge operators can be extended to multiple scales, or a set of σ= [σ1, ...,σN ].
The ridge filtering is repeated for each σi , keeping the maximum value of “ridgeness”
combining features from different scales. As explained in [Fra+98], the response of
the ridge filter will be maximum at a scale that approximately matches the size of the
ridge to detect.

The global automatic thresholding algorithms used in this thesis are [Ots79] and
Lneuritenessi’s [LL93; LT98], for comparison, we also show the result of Yen’s method
[YCC95; San04], ISODATA method [RC78; San04], triangle’s method [ZRL77], mini-
mum’s threshold [Gla93; PM66] and mean threshold. It is not necessary to dig into
their model assumptions at least we need to explain the result.

The result of the binarization varies depending on the combination of the ridge
filter, scales selected, and the thresholding method result. In Fig.6.7, the first row
shows the image with enhanced ridges. The original image and the DoG result are
included for comparison. In addition, the results for different scales are calculated for
each algorithm, the σ parameter is indicated. The second, third and fourth rows show
the result of binarizing the image with different threshold methods: Yen’s, Otsu’s and
Mean methods respectively. In addition, the value of T is indicated for comparison
between threshold methods.

The bigger the differences between background and foreground (contrast) the more
successful results the segmentation. When binarizing a spectrogram, most of the
pixels should appear white, as the modes and TAE antenna signal occupy a small
fraction of the image area. In contrast, if most of the pixels are black that means that
the value T is too low, causing noise to be mistaken for significant signals. It may
also indicate that the performance of the feature enhancement is not good enough to
separate background from foreground.

First, regarding the scales, two options have been used for this comparison: one-
pixel scale σ= [1], and four scales of width σ= [1,2,3,4] pixels. If we compare both
in Fig. 6.5 and Fig.6.6 and first row of Fig.6.7, we can conclude that the multiscale
analysis is able to recover more features from the image spectrogram. Note how the
ridges of the TAE antenna signal and the modes are more intense when multiple scales
are used.

We can appreciate in Fig.6.7 that binarizing the original image (without feature
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enhancement) results in a failure to identify modes, mixing the MHD signal with
the background. Also, the so-called Hessian method, based on Ref. [Ng+15] and
implemented by scikit-image developers does not perform well, detecting most noise
in the spectrogram background.

Comparing thresholding methods, we can observe that in the fourth row of Fig.6.7,
the Mean’s threshold method selects a value of T that does not separate background
and foreground. In addition, Otsu’s method in the third appears very noisy except
when it is combined with Frangi’s ridge filter. Meanwhile, it can be seen in the second
row of Fig.6.7 that Yen’s method performs well while separating background from
foreground, except when the original image or the Hessian filter is used. That also
means that the DoG, Meijering’s, Sato’s and Frangi ridge detectors can be used for
processing spectrograms, if the right σ and T parameters are chosen.

To better compare different threshold methods with an example. The results of
segmenting a spectrogram with Meijering’s method can be seen in Fig. 6.8. It can
be appreciated straightaway that the minimum, mean and triangle methods do not
work, because they do not detect any signal (T is too high) or because they capture
too much noise (T is too low). In contrast, the Isodata, Li’s and Yen’s methods give
comparable results, varying slightly the amount of background recovered.

We can conclude this exercise by comparing Ridge filters and thresholding methods
with the following observations. First, we trace time-frequency signals and separate
them from the spectrogram background successfully. Moreover, we have several
combinations of methods available. Second, it is necessary to remove vertical and
horizontal patterns as well as the TAE antenna signal, before or after the binarization
is completed.

There might be cases in which there are not any undesired signals. Maybe because
the TAE antenna or ICRH are not operating, or the spectrograms came from another
machine different than JET without these features. In those cases, the presented
algorithm 7 can be applied directly, for example, Fig.6.20 later in this chapter.

Algorithm 7: Segmentation of fusion spectrograms
Input: s
Parameters: σ= [σ1, ...σN ]
Output: Sxx(bi nar i zed)

Steps:
1 STFT(s) to obtain spectrogram
2 Apply a Ridge detector with σ= [1,2,3,4] using Sato’s method or equivalent.
3 Calculate threshold T using Yen’s method or equivalent.
4 Binarize the image I(x,y) using T
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Figure 6.5.: Ridge filter comparison σ= 1
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Figure 6.6.: Multi-scale Ridge filter comparison
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Figure 6.7.: Examples of different ridge detection algorithms on JET spectrogram
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Figure 6.8.: Comparision of thresholding algorithm results with Meijering enhanced
image
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6.4. Automatic mode labeling using feature
extraction and automatic thresholding

Now we can inspect the behavior of the ridge filters and threshold methods with the
result of Fig.5.11 in which we used curvelets to remove broadband noise and the TAE
antenna signal. Repeating the exercise of the last section, we can observe in Fig. 6.9,
Fig. 6.10, and Fig. 6.11, that the equivalent results for separating modes from the
background are obtained with the DoG, Meijering’s, and Sato’s and Frangi’s methods
with multiple scales σ= [1,2,3,4]. In this case, only the thresholds calculated by Yen’s
methods work. We can see that the threshold values of the first row of Fig.6.11 are
significantly higher than the other values calculated by Otsu and the mean method.
Additional evidence of the effectiveness of Yen’s method for images processed with
curvelets can be found in Fig.6.12.

After improving contrast and having removed other undesired signal components.
It is a reasonable assumption that connected areas of image pixels are MHD modes,
which can be detected using a connectivity filter [WOS05; FG96].

Two neighboring pixels with the same value are linked. In a 2-connectivity filter (full),
diagonal linking is allowed, whereas a 1-connectivity filter permits only vertical and
horizontal linking. To give some examples, in a 3×3 image, among all combinations,
five connected pixels on a binarized image can be1 0 0

1 0 0
1 1 1

 ,

1 0 0
1 0 1
1 1 1

 ,

0 1 0
1 1 1
0 1 0

 ,

1 1 1
0 1 0
1 0 1

 ,

1 0 1
0 1 0
1 0 1

 . (6.9)

In order to compare the results of labeling with different ridge operators. Given
the result of the spectrogram processed with curvelets in Fig.5.11, all multiscale ridge
operators are applied to enhance the mode pixels. Then, Yen’s automatic thresholding
is used to binarize the image. Once the pixel values are 0 or 1, the Scikit-Image
implementation of [Van+14] is used to label separated elements in the binary images.
The result is shown in Fig.6.13 and Fig.6.14.

These labeling algorithms not only assign a natural number and a bounding box
to each mode, but they also calculate very useful properties for each pixel region.
For instance, the region’s pixel areas can be used to discard most modes that are
mislabeled as noise. We can consider noisy regions as those regions with less than 9
pixels connected (the size of one fully connected pixel). Moreover, low eccentricity
can reveal noisy points mislabeled as modes. Some of the basic properties available in
Scikit-Image region properties [Van+14] are included in table 6.1.

The correct number of modes in Fig. 6.11 and Fig.6.14 is uncertain. It lay between
40 and 60, the uncertainty depending on the criteria of the person counting the
modes. All ridge detectors except Hessian’s have a similar performance. However,
Sato’s algorithm ridges have fewer noisy points mislabeled than the others, justifying
its selection for our final CV pipeline in the algorithm 8.
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Figure 6.9.: Ridge filter comparison σ= [1,2]
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Figure 6.10.: Ridge filter comparison σ= [1,2] on false color (“turbo” palette).
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Figure 6.11.: Examples of different ridge detection algorithms on JET spectrogram
processed with curvelets
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Figure 6.12.: Comparision of thresholding algorithm results with Meijering enhanced
image
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Figure 6.13.: Modes labeled with different methods (red boxes) over curvelet’s spectro-
gram
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Figure 6.14.: Modes labeled with different methods (red boxes) over original spectro-
gram
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Property Description
Area Number of pixels in the region

Bounding Box (bbox) Coordinates of the smallest rectangle containing the region
Centroid Center of mass of the region

Convex Area Area of the smallest convex polygon that can enclose the region
Eccentricity Measure of how elongated the region is

Equivalent Diameter Diameter of a circle with the same area as the region
Extent Ratio of the region’s area to the area of its bounding box

Orientation Angle between the region’s major axis and the horizontal axis
Perimeter Length of the region’s boundary

Solidity Ratio of the area of the region to the area of its convex hull

Table 6.1.: Some properties included in scikit-image representation

It is worth summarizing the intrinsic limitations of every segmentation algorithm,
including the ones presented in this work: missing modes (false negatives if ground
truth exit), identifying noise as modes (false positives), merging crossing structures
or fragmentizing (separating) continuous structures (because of fluctuations in pixel
intensity). Ridge detectors assume that the mode signal has a ridge structure, elimi-
nating details like extended shadows or large blobs.

Since no ground truth exists in our case, the algorithms presented in this chapter are
unsupervised learning techniques. Consequently, they require human interpretation.
However, if the results are satisfactory, these classic CV algorithms can serve as a
ground truth for DL algorithms. Especially because the results of using a CV pipeline
like the algorithm (8) have potentially more consistency than humans labeling spec-
trograms manually.

We can consider eliminating possible noisy regions using the region’s properties.
Those regions with less than 9 pixels connected (the size of one pixel fully linked with
surroundings) can be removed in the last step in the algorithm (8). To give an example
of their size, they are marked in Fig. 6.16 with red boxes. The 54 modes labeled with
Sato’s filter are reduced to 45. This parameter can vary depending on the number of
pixels in the spectrogram.

The application of algorithm (8) to a Mirnov coil signal of JET shot 92416 results
in Fig.6.15. We can conclude that individual modes are satisfactorily labeled with
minor errors like a few modes missed and only three false positives out of 45 regions of
pixels detected. In addition, some modes of very low signal-to-noise ratio and mostly
aligned with the removed directions are missed.

To summarize all steps from the calculation of the spectrogram, feature extraction,
to labeling. The pipeline combination of algorithms introduced in the algorithm (8).

It is to be noted that, an application with a graphical user interface could be used
to discard these minor labeling errors. An application called “Wavystar” with a GUI
has been implemented, available under request in JET. This application implements
algorithms discussed in this work, and other analysis capabilities of transitory signals
not treated in this work.
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Algorithm 8: Complete pipeline for automatic labeling of MHD activity
Input: Time series s
Parameters: σ= 1, σscales = [1,2], θ = [θ1, ...θN ], ς=9 (optional)
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Calculate the spectrogram STFT(s);
2 Detect straight line patterns or specify angles manually.
3 Apply curvelet transform (or use Algorithm 5 and skip steps 4 and 5).
4 Set to 0 (hard thresholding) wedges corresponding to directions θ
5 Apply inverse curvelet transform, take the absolute value and invert the image.
6 Apply Sato’s ridge operator with σscales = [1,2]. (Or equivalent)
7 Smoothing: Gaussian(σ=1).
8 Yen’s automatic thresholding (binarize the image).
9 Mark up pixel-connected areas (for labeling MHD activity), using a

full-connectivity filter
10 Removed noisy labels: modes with less than ς=9 pixels. (Optional)

It is also important to remark that identifying the instability name for each time-
frequency structure is an ill-posed problem as the spectrogram alone does not possess
enough information. However, the methods introduced in this thesis can be enhanced
by combining information from other diagnostics or using robust theory-based results
from physics. For instance, it is easy to add 3D phase information from other mag-
netic sensors via mode number analysis or coherence of the signals, this would help
to separate crossing modes and label some instabilities. Moreover, physical theory
or simulations can complete the analysis. For example, the Alfvén spectra can be
calculated by contributing with useful prior frequencies corresponding to different in-
stabilities. Further MHD numerical calculation can identify time-frequency properties
of the plasma, inferring equilibrium information or kinetic effects.

In addition, it is to be noted that an application with a graphical user interface could
be used to discard these minor labeling errors. For instance, a tool called Wavystar
with a GUI has been implemented, available under request in JET. This application
implements algorithms discussed in this work, and other analysis capabilities of
transitory signals not treated in this thesis.

We conclude this section by mentioning that the computational resources needed
to run these algorithms are very low. A common laptop (11th Gen Intel(R) Core(TM)
i7-1185G7, 3.00GHz) can run these algorithms in a few seconds without special mem-
ory requirements (16-32 GB RAM). Also, the presented algorithms have few hyper-
parameters. These facts make them suitable for mining big databases.
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Figure 6.15.: Result of automatic labeling over original spectrogram. In total, 43 modes
are segmented and numbered correctly. Note that only modes 0 and 1
correspond to part of the TAE antenna signal.

Figure 6.16.: Detail of Result of automatic labeling: red squares are modes with less
than 9 pixels (discarded), black squares are modes (detected).
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6.5. Application to interferometer spectrograms

Figure 6.17.: Algorithms of feature extraction applied to the Fast infrared FIR inter-
ferometry signal showing modes present in the plasma core of JET shot
91304.
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Figure 6.18.: Results of labeling using box properties (area>10 pixels, eccentricity>0.6,
and horizontal orientation) to filter out noise.

Laser interferometers are a very useful tool for plasma diagnostics. Their working
principle is very simple, a far infrared laser beam is split into two equal-length beams,
with one of them passing through the plasma. After passing through the plasma,
they are recombined creating an interference pattern that reveals a phase difference
between incoming beams, which is proportional to the integrated electron density
across the plasma path ∆φ∝ ∫

ne dl as detailed in Wesson’s book [WC11].
Interferometers can be designed so multiple lines of sight can pass through the

plasma. This is very useful for example to detect instabilities in the core that are not
present in the plasma edge and vice versa. The signal sampling can be very high so is
possible to create spectrograms.

Depending on the machine’s design, more or less optical components are mounted
in the vessel. The mechanical oscillations can create spurious patterns in the spec-
trogram. In addition, there can be other unidentified sources of noise or electric
interference that can affect the resulting spectrogram. In Fig. 6.17 (first panel) we can
see a spectrogram of JET’s fast FIR interferometer (KG1F) channel 3. We can see that,
at least without zooming the image is not possible to see any modes.

In the previous chapter, we introduced how to create masks in Fourier space, we can
use a very thin mask in Fourier space to remove horizontal lines in the spectrogram
(low). This mask is so narrow in the vertical direction (1 pixel width in Fig. 6.17 second
panel) that it is barely visible. This kind of filter is known as a notch reject filter (page
344 of Ref. [GW18]).

In the second row of Fig. 6.17 it can be seen the result of filtering the spectrogram,
and the removed noise from the image. Now it is possible to distinguish some modes
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structures present in the plasma core, just below 200 and 400 kHz. In the third row of
Fig. 6.17 the result of thresholding the spectrogram

Finally, the labeling algorithm has been applied to the binary image identifying
the modes in Fig.6.18. To filter out remaining noisy structures, the region proper-
ties have been use to only include pixel regions with area>10 pixels (big enough),
eccentricity>0.6 (elongated enough), and with ∥θ∥ > 0.1π (horizontal enough).

It is worth mentioning that thanks to a recent collaboration with Princeton Plasma
Physics Laboratory using DIII-D data. The presented result has been reproduced with
the DIII-D’s CO2 interferometer. Although permission to display this data in this thesis
work has not been requested.

We can conclude that this CV pipeline, algorithm 9, can help to detect instabilities
in spectrograms that are not visible to the bare eye. This method for removing noise
from spectrograms has been presented for the first time in this thesis work, and it
could help in analyzing interferometer data from different fusion devices.

Algorithm 9: Segmentation of interferometer spectrograms
Input: s
Parameters: σ= [σ1, ...σN ]
Output: Sxx(bi nar i zed)

Steps:
1 STFT(s) to obtain spectrogram
2 Apply notch filter (Algorithm 5 with θ = [+π/2,−π/2], ∆θ = 1, δ= image size) to

remove horizontal pattens.
3 Apply a Ridge detector with σ= [1,2,3,4] using Sato’s method or equivalent.
4 Calculate threshold T using Yen’s method or equivalent.
5 Binarize the image I(x,y) using T
6 Label connected regions.
7 Filter out noisy regions, using area, eccentricity and orientation.

6.6. Segmentation of a shot spectrogram with
fishbones

Under certain scenarios, especially when heating power is high, there is an interaction
between the energetic particles generated and the n = 1, m = 1 surface, generating
a kink perturbation, page 400 of Ref. [WC11]. This perturbation rapidly increases
oscillation frequency, while the magnitude of perturbation quickly grows and dimin-
ishes. The time-voltage signal drawn in Mirnov coils resembles a fishbone, naming the
perturbation. This cycle of rapids frequency burst repeats quasiperiodically, creating
almost vertical mode patterns in spectrograms.

In the algorithms introduced in the last chapter. We assumed that all the information
contained in the vertical direction was noise or undesired artifacts. It is important
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to remark that if we are modeling noise and undesired features in a spectrogram
through the selection of one direction, it is necessary to check this prior assumption
while using the algorithms introduced in this thesis. This is not the case when rapid
sweeping frequencies of physical origin like fishbones or energetic particle modes
are present. The algorithm removes this type of modes and the information removed
should not be discarded.

If the algorithms for feature extraction or noise removal are being used before seg-
mentation, it is convenient to examine the result and the removed-noise image. Then
evaluate how much information has been removed from the original spectrogram.
If MHD activity has been removed, several approaches are valid: (1) if all vertical
modes are removed, it is necessary to continue the analysis on the vertical compo-
nents, this way vertical and horizontal components can be segmented separately and
finally merged together; (2) use soft thresholding to (αV = 0.5 or greater) to adjust the
subtracted fraction of the vertical component on proceed with segmentation (this
modes are strongly driven and contrast is good to segment them); (3) use the approxi-
mation image of level 1 or 2 instead, because keeping one of the first approximation
sub-images can also result in a spectrogram with an improved signal-to-noise ratio,
though omitting details sub-images could produce modes with coarser details.

Figure 6.19.: JET shot 54300 with abundant Fishbone activity
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Figure 6.20.: Results of labeling of JET shot 54300 (red-boxes around detected modes),
region properties (area-orientation-eccentricity) have been used to sepa-
rate quasi-stationary modes from fast time-frequency chirping activity,
and noise.

A simpler approach, if the segmentation is applied first (algorithm 7), consists of
using the region properties after segmentation to separate and filter mode stricture
the result.

JET shot 54300 in Fig. 6.19 is an example of a shot with fishbones. This shot is
studied in [Zon+09], where rapid frequency sweeping modes are visible. To preprocess
this shot, a combination of techniques introduced in this thesis can be used. However,
if the segmentation is applied first (algorithm 7), the region properties can be used to
filter the result after segmentation.

In Fig.6.20, the region orientation is used to separate the result of segmentation
in vertical and horizontal-oriented structures. In addition, small pixel regions and
roughly circular regions are discarded. Remarkably, most horizontal and vertical
regions are separately succesfully and many regions detected that appear to be noise
can be discarded. However, some crossing regions create bigger bounding boxes, in
which the algorithm struggles to separate longer mode structures. Future work could
look to tackle this limitation.

An alternative to treat this problem would be to preprocess the spectrogram with
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the spectral algorithms. To begin with, DWT could be used to remove some noise,
then continuous horizontal straight lines should be removed by the 2DFFT mask,
and finally, the ridge and threshold operators could be applied to the vertical and
horizontal images separately so both results are merged together at the end.

It is also important to note that adding mode number information (or coherent
phase) to each pixel region could help to separate crossing MHD time-frequency
signatures. As discussed in Ref. [KAC22] time-frequency signatures can become
non-overlapping in the time-frequency-spatial domain.

We can conclude that ridge detection and thresholding could be used to analyze
spectrograms of shots with fishbones or rapid frequency bursts. However, the analysis
needs to account for the different pattern orientations in the preprocess before the
segmentation, or after the segmentation.

6.7. Detection of MHD modes using transfer
learning and deep learning

Finally, we revisit TJ-II data analysis performed in [Bus+21] using computer vision
algorithms to demonstrate the use of transfer learning when only very few amount
of data is available. Transfer learning is the process in which pre-trained models are
fine-tuned to work with a specific dataset.

The dataset used in this study consists of 500 spectrogram images from the TJ-II
stellarator manually annotated to mark regions of MHD mode activity [Bus+21]. The
images are RGB, though all the information is contained in a single channel, and
they capture frequencies up to 500 kHz. The dataset was divided into training (70%),
validation (15%), and test (15%) sets, we keep same partitions so we can make a fair
comparison. Spectrograms were calculated from 1 ms intervals, providing 256 Fourier
modes per image. The diversity of discharges ensures the dataset’s representativeness,
including both successful and failed plasma experiments (empty spectrograms).

The authors of Ref. [Bus+21] used three encoder architectures—VGG, MobileNet,
and a simple Vanilla CNN—paired with two decoder architectures, FCN8 and FCN32,
for image segmentation. After the neural network predicts mode locations, a blob
detection algorithm is used to clean up the noisy outputs and identify relevant modes.
The effectiveness of the model is evaluated using Intersection over Union (IoU) and
Area Under the Curve (AUC) metrics. The best Jaccard index obtained was 0.427, and
the AUC was 0.599, indicating a reasonable mode detection capability. The work of
Bustos et al. [Bus+21] serves as our state-of-the-art benchmark.

The pre-trained models used in our work are: SAM [Kir+23] (Segment Anything
Model), Detectron2 [Wu+19; 24b] (Facebook’s open-source framework for computer
vision), and YOLOv8 [Ult] (an open-source CV framework from Ultralytics). These
frameworks include state-of-the-art models for segmentation and panoptic segmen-
tation. They are open source and easy to use (an important source to learn how to use
them was Ref. [Bha]).
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SAM is Facebook’s open-source model for instance and panoptic segmentation as
well as prompt-based segmentation. The unique feature of the SAM model is that it
was trained with 1 billion images to work with image prompts. It does not have labels;
the human user draws boxes, points, or writes text to indicate the regions to segment.
Its architecture is based on vision transformers [Dos+21], and for this application, we
repurposed the mask generator to identify the MHD activity.

The Detectron2 model used in this experiment is the Mask R-CNN (Mask Region-
based Convolutional Neural Network [Gir+14; 24c]). It was trained with the COCO
dataset, which contains 80 classes of objects. It performs panoptic segmentation,
which is simultaneous instance and semantic segmentation (it determines the regions
and the class name of the regions).

YOLO stands for “you only look once” [Red+16]. This model is state-of-the-art for
object detection and instance segmentation in real time. In contrast to SAM and
Detectron2, which are optimized for performance, YOLO is optimized for speed,
capable of performing panoptic segmentation at 30 fps. YOLOv8’s architecture is
based on a Feature Pyramid Network (FPN) and Path Aggregation Network (PAN)
[Rei+24], and it is designed to process image feature extraction and labeling in one
unified step.

Both Detectron2 and YOLO can easily implement data augmentation (DA) to im-
prove model performance. Data augmentation is a technique used to increase the
size of the training dataset by applying transformations to the images. These image
modifications are not stored; instead, the augmentations are performed online. For
Detectron2, we used random brightness changes, random flips, and random crops. For
YOLO, we used the default segmentation techniques, as well as “copy-paste” [Ghi+20]
and “mixup” with a 50% probability.

The number of epochs was 10 for SAM, approximately 743 for Detectron2, and 100
for YOLO, respectively. For Detectron2, the maximum number of iterations is 1000
wich translates to 743 epochs: N _EPOC HS = MAX_ITER×BATCH_SIZE

TOTAL_NUM_IMAGES = 1000×256
345 ≈ 743.

To fine tune the mask decoder of SAM, we needed to select a loss function apropiate
for segmentation. We found that using a weighted loss compossed of DICE loss
[Sud+17] and FOCAL loss [Lin+18] offers the best result. The weights of the loss
function were optimized using a Bayesian optimization framework called OPTUNA
[Aki+19], the result is shown in appendix E. This way, we found that FOCAL loss is more
relevant than DICE loss for this application, as it is designed to handle imbalanced
datasets. Finally we set the weights to be 0.05 for DICE loss and 0.95 for FOCAL loss.

The evaluation metrics for binary segmentation are detailed in Appendix A, Table 4.
We aimed to improve the Jaccard index, also known as Intersection over Union (IoU).
However, the different metrics reveal various aspects of the model’s performance. It is
also important to improve precision and recall, which indicate the model’s ability to
recognize the positive and negative classes. The normalized values are displayed, as
most metrics are based on the confusion matrix. The F1 score is also a good indicator
of performance, especially since the positive and negative classes are unbalanced
(there are more pixels without objects than with objects). As a result of this imbalance,
we can observe that accuracy is insensitive to changes in the model’s performance.
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Metric Bustos et al. SAM Detectron2 YOLO Detectron2 YOLO CV
(No DA) (No DA)

accuracy 0.991 0.988 0.988 0.988 0.988 0.988 0.987
Jaccard 0.427 0.486 0.498 0.478 0.472 0.496 0.238
ROC AUC 0.599 0.857 0.825 0.83 0.833 0.838 0.876
f1 (N/A) 0.637 0.654 0.635 0.626 0.651 0.362
precision (N/A) 0.631 0.693 0.652 0.629 0.662 0.262
recall (N/A) 0.721 0.655 0.673 0.673 0.682 0.811
tn 0.996 0.993 0.946 0.924 0.992 0.994 0.893
fp 0.004 0.007 0.054 0.076 0.008 0.006 0.107
fn 0.421 0.308 0.342 0.330 0.005 0.323 0.213
tp 0.579 0.692 0.658 0.670 0.995 0.676 0.787

Table 6.2.: Comparison of Bustos et al [Bus+21]. results with SAM, Detectron2, YOLOv8
(with and without DA), and CV pipeline. The best results in each row are
indicated in bold. Overall, Detectron2 with DA obtained the best perfor-
mance.

Figure 6.21.: Metric distributions for the best model in the test set (Detectron2 with
data augmentation).
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The results of the different experiments in the test set are presented in Table 6.2. We
included experiments with and without DA for Detectron2 and YOLO. In addition, a
CV pipeline has been designed for this dataset: (2D FFT for removing noise (horizontal
and vertical lines) - Sato’s ridge detector - Yen method for thresholding - (lower 10% of
the frequency range is removed)).

In Fig. 6.21, the distributions of the metrics for the best model in the test set are
shown. Moreover, Appendix D and Table 7 include the values of the metrics along
with their standard deviations. It is crucial to acknowledge that performance metrics
exhibit an error distribution function with multiple modalities. This implies that,
within the error distributions, distinct groups of spectrograms can be identified, and
that the segmentation of some image groups is more effective than that of others.

The results show that transfer learning using Detectron2 achieves a new state-of-
the-art segmentation of MHD activity: a Jaccard index of 0.491 ± 0.130 on the test
dataset (the previous best Jaccard index was 0.427 [Bus+21]).

There are some caveats though. The Jaccard Index can be improved by increasing
the area of the modes detected, meaning that missing small and thin modes does
not impact the Jaccard Index. In other words, the Jaccard Index can be improved
by detecting the larger modes first, even if smaller ones are missed. This is why
monitoring the F1 score is important for assessing model performance, which is also
the case for the Detectron2 model.

In addition, it is also good to visually inspect the results of the inference for each
model. In Figures 6.22, 6.23, 6.24, 6.25, we compare one example of TJ-II shot 38446
for SAM, Detectron2, YOLO, and the CV pipeline, respectively. In all figures, the input
of the model and the ground truth as provided by the human labelling are on the left
column, while the output over the spectrogram and the binary mask are displayed on
the right. In the case of SAM, a probability map is plotted instead.

There is variability in the output of the different models. We can appreciate that
the deep learning models have learned to join modes of different intensities, as the
human did when labeling the data. SAM is the only model whose output has some
noisy points as a result of fluctuations in the probability map. The regions determined
by Detectron2 and the CV pipeline have particularly smooth contours. Furthermore,
some modes that were not labeled by the human are also detected.

The results of the CV pipeline are not as good as the deep learning models. This is
because to handle shots without modes, only Yen’s thresholding can be used, which
sets a very high threshold. Note that the CV pipeline has the best recall but the worst
precision. This implies that the model can lose pixels from the mode structures, as
can be seen in Fig. 6.25. However, we should note that future research could aim to
improve this outcome. As illustrated in the results of Fig. 6.26, there is potential for
improvement in the CV pipeline.

Therefore, using directly the same parameters (and components) for the CV pipeline
on image dataset is detrimental to the model’s performance. However, if we compare
the modes detected in Fig. 6.26 with those in SAM (Fig. 6.22), we can see that both the
CV pipeline and SAM are capable of detecting modes that were not labeled by humans.
The differences in criteria between different data labelers can also introduce a source
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of error when training and evaluating these models, making model comparisons less
straightforward. With this result, we can affirm that SAM and the CV pipelines could
be very useful tools for labeling datasets in a semi-supervised way, with superior
consistency to human labeling.

Figure 6.22.: Results of SAM on TJ-II shot 38446: On the right columns, the results of
SAM inference are shown. SAM uses a probability map to segment the
objects in images.
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Figure 6.23.: Results of Detectron2 on TJ-II shot 38446: 11 modes are detected (some
of them overlap).
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Figure 6.24.: Results of YOLOv8 on TJ-II shot 38446: 5 modes are detected, missing
some in this case. A probability is shown in the bounding boxes of the
masks generated.
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Figure 6.25.: Results of the CV pipeline on TJ-II shot 38446: 10 modes are detected,
close to Detectron2 results. However, the area of the retrieved modes is
smaller, which is detrimental.
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Figure 6.26.: Results of the CV pipeline (fine-tuned) on TJ-II shot. This pipeline uses
Meijering’s ridge detector and Otsu thresholding only. The result is com-
parable with SAM. Note the increased detail when labeling.
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Figure 6.27.: Results of Detectron2 and YOLOv8 (on the test and validation dataset)
with varying percentages of the training dataset. Data augmentation is
used.

Figure 6.28.: Results of Detectron2 and YOLOv8 (on the test and validation dataset)
with varying percentages of the training dataset. No data augmentation
is used.
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Data with specific physics like Alfvén activity in recently commisionned machines
may be scarce, which motivates the use of models with limited data. We apply transfer
learning with a decreasing percentage of the training dataset. The results are shown
in Figures 6.27 and 6.28. We can see how the Jaccard index decreases slightly as the
percentage of the training dataset decreases. However, the performance remains
reasonable.

Our reference benchmark [Bus+21] with a Jaccard index of 0.427 is indicated as a
horizontal dashed black line. We can see that the effect of data augmentation is subtle
but reduces the error bars of the Jaccard index. Additionally, we can see that the results
of YOLOv8 are comparable, although Detectron2 has less variance in the error bars.
However, YOLOv8 has the advantage of having the fastest inference time, only 8 ms for
this dataset. If the spectrogram could be plotted in real-time, this architecture could
be used for real-time detection in fusion devices with longer shots.

The minimum data percentage needed to achieve a Jaccard index greater than
0.427 corresponds to 5% of the original dataset (not displayed in the figures), which is
approximately 18 spectrogram images in the training dataset (for Detectron2), with a
result of Jaccard index = 0.438 ± 0.13. This demonstrates that very few labeled data are
needed to train these models. This result is of the most interest for applying machine
learning mode detection in new fusion devices, where the amount of labeled data is
scarce. However, the behavior in the case of multi-class classification (type of modes)
remains to be tested.

6.8. Summary
In this chapter, we introduced the use of segmentation for labeling MHD activity. The
application of computer vision techniques, particularly ridge detection and thresh-
olding, for segmenting spectrograms has been explored. These methods allow us to
distinguish between regions of interest in spectrograms, such as MHD activity, and
the background noise. We compared various segmentation approaches, including
different combinations of ridge filters and global thresholding algorithms with feature
extraction and denoising techniques presented in Chapter 2.

This chapter emphasizes the importance of feature enhancement techniques like
ridge detection, which improves the accuracy of segmentation by enhancing mode
structures before applying thresholding. Different ridge detection algorithms, includ-
ing Sato’s, Meijering’s, and Frangi’s methods, were tested on spectrograms, with Yen’s
method proving effective for thresholding after feature enhancement.

We also examined the application of these methods to specific cases, such as in-
terferometer spectrograms and shots with fishbone activity. The removal of periodic
patterns in interferometer spectrograms can reveal hidden features and help to lo-
calize MHD activity. For preprocessing shots with fishbones, we discussed several
possibilities. Then, for post-processing after segmentation, a practical example was
given.

The comparison of the CV pipeline with deep learning models gives another per-
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spective on model performance. The CV pipeline is a good alternative when the
amount of data is scarce, and computational resources are limited, and it can be used
to label the data in a semi-supervised way. The deep learning models outperform the
CV pipeline in terms of precision and recall because small adjustments need to be
made for each image.

The results of the deep learning models improve our previous state-of-the-art bench-
mark, with Detectron2 achieving the best performance. However, the CV pipeline
and SAM are capable of detecting modes that were not labeled by humans. This
demonstrates the limitations of human labeling and the potential of these models
to label datasets in a semi-supervised way with superior consistency compared to
human labeling.

Finally, we explored the possibility of using deep learning models with limited data.
The results show that the performance of the models remains reasonable even with
a small percentage of the training dataset. This is particularly relevant for applying
machine learning mode detection in new fusion devices where the amount of labeled
data is scarce. If this can be achieved with the YOLOv8 model, modes might be
detected in spectrograms with a lag of only a few milliseconds, in addition to the time
required for plotting the spectrogram. This information could be utilized in other
control systems or algorithms.

179



Conclusion

The results of this thesis work demonstrate the potential of unsupervised machine
learning (ML) and signal processing techniques to automate the detection and classi-
fication of plasma modes in fusion experiments.

In chapters 3 and 4, we successfully illustrated the practical use of sparse coding
in plasma instabilities detection. Overall, the results shown using our new proposed
algorithm called ERMD are promising. However, it has some practical limitations,
mostly the computational cost, and the hyperparameter tuning. Nevertheless, ERMD
allows us to work on the time domain with raw signals, it can extract the Alfvénic
pattern in a TJ-II sample of shots, and it is capable of outperforming its antecessor
SRMD in less computing time.

This novel approach required algorithmic innovations as well. The major contribu-
tions to the sparse coding field are (1) the use of an in-GPU dictionary construction of
Gabor’s atoms, (2) the use of accumulated gradient descend for parallelizing the opti-
mization algorithm in multiple GPUs with small signal batches, (3) the improvement
of mode identification by using a variable density based clustering HDBSCAN, and
(5) the acknowledge of the multicollinearity in random atoms dictionaries by using
elastic net regularization to improve mode decomposition.

The use of MI information to capture linear and nonlinear relationships between
variables is another innovation in mode detection, that provides more robustness
against noise and outliers. Moreover, the clustering technique used for profiling the
modes retrieved by ERMD has proven to be useful in summarizing mode activity in
the 1291 shots. It complements the ERMD algorithm as it can be used to remove noisy
clusters from the ERMD result.

Mirnov signals have a very high sampling rate, up to 2 MHz, which is the main
factor slowing down the ERMD runs. Nevertheless, the algorithm can label more
than 700 shots in a week, with consistency that cannot be provided by a human team.
Though the technique is useful for inter-shot analysis, a ML surrogate model of ERMD
could in principle detect Alfvén activity using raw Mirnov coil signals in real-time.
Subsequent work might investigate the training of machine learning models using the
created database for the detection of the Alfvénic class or the clustering sub-classes.
In addition, researching the use of dictionary learning (learning dictionary elements
while encoding) opens new possibilities to process plasma signals.

ERMD is adapted to analyze high-resolution, non-stationary time signals in any
field. Future applications can be as variate as mode decomposition of heart electro-
cardiograms, seismic analysis, animal calls, or musical analysis. Owing to the broad
application of ML and signal processing, our algorithm could impact other scientific
disciplines as well.
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In chapters 5 and 6, we have shown the potential of signal analysis and computer
vision (CV) algorithms to filter noise and identify key features in spectrograms.

The main innovations introduced in this work are the use of wavelets, curvelets,
along simple CV algorithms: to filter (reassign) the spectrograms of magnetic sensors.
The results are satisfactory and the proposed algorithms are fully interpretable: the ad-
dition of removed noise and filtered spectrogram returns the original signal. Moreover,
these algorithms do not require GPUs and the computational time is low. Although
some parameter adjustment is needed, the algorithms show enough flexibility to be
adjusted to data from different fusion devices. Which make them a good candidate for
labeling spectrograms between shots.

The main concepts that allowed these results are two: (1) noise present in spectro-
grams is highly anisotropic, and (2) the plasma phenomena observed in spectrograms
are multi-scale. Therefore, removing features in a certain scale and direction main-
tains a high fraction of the original information. This method could be particularly
useful for the processing of spectrograms from interferometers, or the reflectometers,
where the noise is present in the form of horizontal lines.

Nowadays, the state of the art in computer vision algorithms is the use of deep
CNNs and other neural network architectures. However, they require large amounts
of curated data. The application of classic computer vision algorithms has not been
extensively researched in Fusion applications, this constitutes a gap of knowledge
that this work aims to reduce. The results allow a flexible method that is capable of
systematically labeling spectrogram data. The application of these classic algorithms
can contribute to creating curated datasets, improving the performance of future deep
learning algorithms.

Future work can be to incorporate mode numbers (masking the result of a mode
analysis), and labels for different types of instabilities observed: Alfvén eigenmodes
and others. This new analysis tool opens the door to new physical studies, such as
investigating the relationship between AE and turbulence, or searching for scaling
laws of MHD activity in large data sets.

The detection of different types of instabilities, with time-frequency-mode number
information could be crucial to determine equilibrium properties through MHD
spectroscopy, as the instabilities reveal equilibrium information that might be hard
to retrieve using reconstruction codes. Finally, the database obtained can be used to
train DL networks for real-time mode detection or prediction.

Finally, we demonstrated the use of transfer learning with state-of-the-art segmenta-
tion models. The accuracy and inference speed of YOLOv8 improves previous research
and opens the possibility of using it for real-time detections if diagnostic spectrograms
are plotted in real-time. Also, its capability to perform well with less data makes it a
suitable solution for newly commissioned fusion devices where the number of shots
is scarce.

Hopefully, the results presented in this work will contribute to the automation of
fusion diagnostics, contributing in the future to the realization of real-time monitoring
and control in fusion reactors by giving systematic way of label time-frequency data.

The difficulty of labeling systematically large amounts of data motivated the devel-
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opment of the algorithms introduced in this thesis. A principle of parsimony and the
development of explainable algorithms have always driven the development of this re-
search, leaving more “black-box” approaches such as deep learning for the final stage
while prioritizing feature engineering and classical machine learning approaches
(approaches I and II of Fig. 2.7).

The analysis of the raw time series was motivated by the fact that future online
mode detectors may work with the raw signals from the Mirnov coils. Therefore, direct
labelling of the raw signal is convenient in this use case. First, the sparsity assumption
of the mode structures was considered, resulting in the development of ERMD.

In addition, to cope with plasma diagnostics’ multimodality, a mode clustering
method involving feature engineering with Mutual Information was envisioned. It has
been shown that the proposed method is capable of recognizing real physical patterns
and artifacts of the ERMD processing in a large database.

Although several aspects of the computation efficiency were improved, exploring
faster and more efficient methods was necessary. The cumbersome parameter selec-
tion of ERMD also motivated finding a method with fewer free parameters.

Then, the use of a computer vision pipeline on spectrograms (directional filters-
ridge-threshold-label) provided a fast and practical method for labeling data in a semi-
supervised way. Finally, the use of transfer learning with deep learning segmentation
models complemented the computer vision pipeline offering a fully adaptive and
free-parameter method if enough labeled data is provided.

The methods proposed in this thesis identify time-frequency structures in single
time traces from one individual Mirnov coil signal, or one individual spectrogram
channel in an unsupervised way. The only alternative with similar performance is the
manual selection of pixel’s mode structures or training deep learning models with
human labeled data [Bus+21].

Previous mode identification uses the phase information from different channels
to workout mode numbers which can be used to identify time-frequency structures.
However, this approach may suffer from the aliasing between different mode numbers
and phase noise. As mentioned in section 2.5, also phase coherence between different
signals can be used to enhance the mode trace. For these reasons, it is to be expected
that future implementation of phase information could further improve the mode
segmentation by computer vision.

As a final remark, given that labeling large databases of modes is a necessary step
before training ML models (for real-time instability identification and prediction in
fusion devices), this thesis work has the potential to impact many data science projects
in fusion research.
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Bibliography – A. Evaluation metrics

A. Evaluation metrics

Metric Formula Evaluates
Error-based Metrics

Mean Squared Error (MSE) 1
N

∑N
i=1(yi − ŷi )2 Average squared difference between actual and pre-

dicted values

Root Mean Squared Error (RMSE)
√

1
N

∑N
i=1(yi − ŷi )2 Square root of MSE, interpretable in original units

Mean Absolute Error (MAE) 1
N

∑N
i=1 |yi − ŷi | Average absolute difference between actual and pre-

dicted values
Percentage-based Metrics

Mean Absolute Percentage Error (MAPE) 100%
N

∑N
i=1

∣∣∣ yi−ŷi
yi

∣∣∣ Average percentage difference between actual and pre-
dicted values

Symmetric Mean Absolute Percentage Error (sMAPE) 100%
N

∑N
i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 Average of the absolute percentage errors, symmetrical

Scale-independent Metrics

R-squared (R2) 1−
∑N

i=1(yi−ŷi )2∑N
i=1(yi−ȳ)2 Correlation

Other Metrics

Mean Squared Logarithmic Error (MSLE) 1
N

∑N
i=1

(
log

(
1+ yi

)− log
(
1+ ŷi

))2 Measures the ratio between actual and predicted values,
less sensitive to large differences

Median Absolute Error median(|yi − ŷi |) Median of the absolute differences, robust to outliers

Table 1.: Some Metrics used in regression

Data Class Classified as 0 Classified as 1
0 true negatives false positives (Type I Error)
1 false negatives (Type II Error) true positive

Table 2.: Confusion Matrix

Metric Formula Evaluates
Threshold-based Metrics

Accuracy t p+tn
t p+tn+ f p+ f n Overall effectiveness of the classifier

Balanced Accuracy 1
2

(
t p

t p+ f n + tn
tn+ f p

)
Ability to avoid false classification

Sensitivity-Specificity Metrics
Specificity tn

tn+ f p Effectiveness in identifying the negative class

Geometric Mean
√

t p
t p+ f n · tn

tn+ f p Effectiveness in identifying both classes

Precision-Recall Metrics

Precision t p
t p+ f p Correct classifications in the positive class

(fewer false positives)
Recall t p

t p+ f n Correct classifications in the positive class
(fewer false negatives)

F-score (β2+1)·t p
(β2+1)·t p+β2· f n+ f p

Correct classifications in the positive class
(fewer false positives and false negatives)
β= 1.0 or 0.5
Ranking Metrics

AUC ROC [DDC88] 1
mn

∑m
i=1

∑n
j=1 1pi>p j Ability of the classifier to

AUC PR
∑N

i=1 P (k) ·∆r (k) (areas) avoid false classification

Probabilistic Metrics

Brier Score 1
N

∑N
i=1

(
p(yi )− yi

)2

Cross-Entropy (i) − 1
N

∑N
i=1 yi · log

(
pi

)
Calibrated probabilities

Log Loss (ii) − 1
N

∑N
i=1−(1− yi ) · log

(
1−p(yi )

)
Table 3.: Metrics used in binary classification (from [SL09])
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Bibliography – A. Evaluation metrics

Metric Definition
Accuracy The ratio of correctly predicted pixels (True Positives +

True Negatives) to the total number of pixels:
Accuracy = T P+T N

T P+T N+F P+F N
Jaccard Index (IoU) Intersection over Union (IoU), the ratio of the intersection

of the predicted and ground truth masks to their union:
Jaccard = T P

T P+F P+F N (only binary classes)
ROC AUC Area Under the Receiver Operating Characteristic Curve,

which measures the ability of the model to distinguish
between classes. AUC is the probability that a randomly
chosen positive sample ranks higher than a randomly cho-
sen negative sample.

F1 Score The harmonic mean of precision and recall, providing a
balance between the two:
F1 = 2·Precision·Recall

Precision+Recall
Precision The proportion of true positives (TP) among all pixels pre-

dicted as positive:
Precision = T P

T P+F P
Recall The proportion of true positives (TP) among all actual

positive pixels:
Recall = T P

T P+F N
Average Precision (AP) The average of precision values across all recall thresholds,

often computed from the precision-recall curve.
True Negative (TN) The number of pixels correctly classified as background

(negative class).
False Positive (FP) The number of pixels incorrectly classified as foreground

(positive class).
False Negative (FN) The number of pixels incorrectly classified as background

(negative class).
True Positive (TP) The number of pixels correctly classified as foreground

(positive class).

Table 4.: Definitions of Metrics Used in Binary Mask Segmentation
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B. Feature selection and latent representation
models

Method Type Advantages Disadvantages Variants
SUPERVISED LEARNING
Filtered

+Model-independent -No interaction Variance Threshold σ2

+Very Fast with the classifier Chi-square χ2

+Generalization (Categorical)
ANOVA
(Continuous)

Embedded
+Integrated into the model -Depends on Trees, Elastic-net
+Less slow than wrappers model selection (Lasso and/or Ridge),
+Captures dependencies LDA, LQA, etc...
between features

Wrapper
+Interacts with model -Very slow Recursive elimination
+Captures dependencies -Risk of overfitting (Forward,
between features -Model-dependent backward,

or random)
UNSUPERVISED LEARNING
Correlations

+Model-independent -No target var. Correlation

Table 5.: Feature Selection Techniques (tabulated data) [p. 17][BSA15]

Method Acronym Data Type
Latent Dirichlet Allocation LDA Text data
Autoencoders AE Numerical and image data
Variational Autoencoders VAE Numerical and image data
Generative Adversarial Networks GAN Image and text data
Word2Vec W2V Text data
Transformer Models TM Text and sequential data

Table 6.: Summary of Latent Representation Methods
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Bibliography – C. Image modification in Fourier space

C. Image modification in Fourier space
The multiscale character of the Curvelets is demonstrated by examining Figs. 2-5.12
in Fourier space. Note how Fourier Space is modified in Fig.3 to remove TAE antenna
signal. All images are in dB scale. The directions filtered can be appreciated.

Figure 1.: FFT2D space of original spectrogram
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Bibliography – C. Image modification in Fourier space

Figure 2.: FFT2D space of processed spectrogram using a radial mask in FFT2D

Figure 3.: FFT2D of processed spectrogram using curvelets
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Figure 4.: Noise extracted using curvelets (Fourier space)
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Bibliography – D. Evaluation metrics of CV algorithms with error bars
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Bibliography – E. Bayesian optimization of hyperparameters for SAM

E. Bayesian optimization of hyperparameters for
SAM

Figure 5.: Contour plot of Jaccard index for SAM as a function of the parameters of loss
function, which is a weighted sum of DICE loss [Sud+17] and FOCAL loss
[Lin+18]. The results shows that FOCAL loss is more important than DICE
loss.
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