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Résumé: Cette thèse explore des techniques
d’apprentissage par transfert efficientes pour
des environnements contraints, où la réduction
du nombre de paramètres ajustables devient
centrale.

Dans un premier temps, nous examinons
l’impact de la quantité de données de pré-
entraînement ainsi que du nombre de classes
associées. Lors du transfert, nous étudions
également la méthode de transfert employée
ainsi que le nombre d’exemples par classe dans
la tâche cible. Nos résultats montrent que, du-
rant le pré-entraînement, les performances sa-
turent après une certaine quantité de données,
et qu’une fois ce seuil atteint, le nombre de
classes a peu d’influence, même s’il est élevé et
que la précision du modèle sur la tâche de pré-
entraînement diminue. Nous avons également
observé que, bien que l’apprentissage d’une
couche de classification linéaire soit générale-
ment moins performant qu’un fine-tuning com-
plet, il peut être plus efficace lorsque la quan-
tité de données est faible et que la tâche cible
est similaire à la tâche source.

Nous étudions ensuite l’impact du temps
sur les extracteurs de caractéristiques basés
sur des modèles neuronaux profonds. Pour
cela, nous introduisons un nouveau jeu de don-
nées qui met en évidence le manque de ro-
bustesse des modèles pré-entraînés face aux
décalages temporels. Nous évaluons la capac-
ité de plusieurs stratégies de pré-entraînement
et méthodes d’adaptation à mitiger ce prob-

lème. Nos résultats soulignent l’importance
de mettre régulièrement à jour les modèles
pour s’adapter aux changements dans le temps
des distributions des classes visuelles, même
lorsque le modèle est fortement pré-entraîné.
De plus, la vitesse de ce changement varie selon
les classes.

Enfin, nous proposons une nouvelle méth-
ode d’apprentissage par transfert optimisée en
termes de paramètres ajustables. Cette méth-
ode se base sur notre découverte d’un biais
dans l’approximation de la métrique de sensi-
bilité permettant de déterminer les paramètres
importants à ajuster. Ce biais, favorisant les
couches ayant une grande variance dans les
valeurs des poids, a pu être éliminé grâce à
une nouvelle approximation de la sensibilité.
La méthode offre également une alternative au
fine-tuning non structuré grâce à des adapta-
tions dont le rang est déterminé avant le trans-
fert, en fonction de la sensibilité des paramètres
du réseau. Les gains apportés par cette méth-
ode ont été mis en évidence sur un ensemble
de 19 datasets.

Ainsi, nos travaux contribuent à
l’amélioration de l’apprentissage par trans-
fert dans des environnements contraints en
optimisant l’utilisation des données de pré-
entraînement, en renforçant la robustesse des
modèles face aux décalages temporels, et en
proposant une nouvelle méthode de fine-tuning
efficiente en termes de paramètres.
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Abstract: This thesis explores efficient trans-
fer learning techniques for constrained envi-
ronments, where reducing the number of ad-
justable parameters becomes central.

Firstly, we examine the impact of pre-
training data volume and the number of asso-
ciated classes. During transfer, we also investi-
gate the transfer method used and the number
of examples per class in the target task. Our
results show that, during pre-training, perfor-
mance saturates after a certain data threshold.
Beyond this point, the number of classes has
little influence even when high and despite a
decrease in model accuracy on the pre-training
task. We also observe that, while freezing the
feature extractor generally performs worse than
full fine-tuning, it can be more effective when
the data are scarce and the target and source
tasks are similar.

Next, we study the impact of temporal
shifts on feature extractors based on deep neu-
ral network models. To this end, we intro-
duce a new dataset highlighting the lack of
robustness of pre-trained models against tem-
poral shifts. We evaluate the effectiveness of
several pre-training strategies and adaptation
methods in mitigating this issue. Our findings

underscore the importance of regularly updat-
ing models to adapt to temporal changes in
the distribution of visual classes, even when
the model is heavily pre-trained. Moreover, the
rate of this change varies across classes.

Finally, we propose a new transfer learn-
ing method optimized to minimize the num-
ber of adjustable parameters. This method
is based on our discovery of a bias in sensi-
tivity metric approximation currently used to
identify the important parameters for adjust-
ment. This bias, favoring layers with high vari-
ance in weight values, was eliminated through
a new sensitivity formulation. The method
also offers an alternative to unstructured fine-
tuning through adaptations, with a ranks de-
termined before transfer and based on the sen-
sitivity of network parameters. The benefits of
this method were established on a set of 19
datasets.

Our work contributes to advancing transfer
learning in constrained environments by opti-
mizing the use of pre-training data, enhanc-
ing model robustness against temporal shifts,
and proposing an new parameter-efficient fine-
tuning method.
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Chapter 1

Introduction

In recent years, deep learning has revolutionized the field of computer vision, with applications

spanning from satellite imagery analysis and facial recognition to healthcare diagnostics. The

growing adoption of this technique has been driven primarily by the development of very large

models, the collection of large datasets, as well as the deployment of powerful computing infras-

tructure. The features provided by these deep neural networks have demonstrated transferability

to specific tasks, contributing to their wide adoption, even in cases where data is scarce. How-

ever, while the utility of transfer learning in such contexts is well-recognized, many challenges

remain, especially regarding its application in embedded environments, where hardware acceler-

ators and neural architectures create new constraints, such as limited memory, processing power,

and energy efficiency.

This thesis contributes to the growing field of research on transfer learning, specifically focus-

ing on the capabilities of transfer learning when the models are constrained in terms of trainable

parameters. In this introductory section, we outline the broader context of this thesis, emphasiz-

ing the key factors that motivated the research. We explore the challenges and research questions

that define the objectives of this work. Finally, we will present an overview of the contributions

made in this thesis and the structure of the document.
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1.1 Motivation

The size and complexity of machine learning models, particularly neural networks, have grown

exponentially. In terms of computations, models have become more expensive to train and

operate. Traditional general-purpose processors, such as CPUs, struggle to manage the demands

of this increasingly large workload, particularly regarding operational phases like training or

inference in real-time. Therefore Graphics Processing Units (GPUs) are used to accelerate these

processes, offering significant improvements in parallel processing capabilities. Building on this,

more specialized AI accelerators, such as Google’s Tensor Processing Unit, announced in 2016,

have been developed, enabling much higher energy efficiency and inference speed compared to

what is achieved with traditional CPUs or even GPUs.

Owing to their effectiveness, the range of applications of deep models has expanded. This

includes embedded environments where memory and energy constraints are more stringent, as

well as applications where latency is critical, such as autonomous driving and edge AI. In this

context, even more specialized accelerators have emerged, allowing inference to be performed with

almost no costly memory accesses [204, 79]. However, this has come at a cost. The supported

neural network is unique, both in terms of architecture and parameters, which are fixed and

cannot be updated once the circuit is manufactured.

The viability of such a circuit mainly depends on its ability to adapt to changes or variations

in tasks. The adaptation of a feature extractor to a new task is called transfer learning, and it has

already been widely studied and proven effective. It is, therefore, important to understand how

and to what extent the network can be adapted. However, a problem arises: current studies on

transfer learning [29, 32, 49, 90, 224] primarily focus on very large models and mostly recommend

adapting the network’s weights. Neither of these is feasible here.

The most common alternative to fine-tuning network weights is training a new linear classifier

to directly reuse the features produced by the pretrained neural network. This approach, known

as linear probing, is particularly useful in embedded environments. Indeed, it can be used

in hardware like the one mentiened earlier, but even more importantly, it is considerably less

computationally expensive, as it requires tuning far fewer parameters. However they are not a

10



panacea, transfer performance are usually very limited compared to a full fine-tuned [91].

Parameter-efficient transfer learning has gained traction [57], and it focuses on modifying

a small number of network parameters to adapt feature extractors to target tasks. However,

they are not directly usable, particularly because the set of learned parameters varies or lacks

structure. Similarly, numerous studies examine essential elements in the pre-training of feature

extractors, such as dataset composition, but these studies focus on networks whose compactness

is far from what is required.

The development of these accelerators is one of the many factors that make transfer learning

an essential tool in deep learning and motivate research, such as this work, aimed at improving

transfer learning methods and understanding their limitations. Beyond the transfer method and

embedded constraints, more general challenges are also important for transfer learning. As is

often the case in deep learning, data play a significant role, both during pre-training, where

the choice of data can enhance the model’s transfer capabilities but may also make pre-training

costly if the data volume is large, and during transfer, where the low quantity of task-specific

data and its divergence from the source data one can impact performance. Hence, the selection

of upstream data and consideration of the downstream data represent multiple challenges that

need to be addressed.

The next section will describe in more detail the challenges and questions explored in this

thesis.

1.2 Challenges and Objectives

The challenges addressed in this thesis revolve around three very general questions, motivated

in the previous section, and to which this thesis attempts to provide insights.

• How can we effectively pre-train a feature extractor for transfer learning?

• What are the limitations of a frozen network?

• How can we transfer a pre-trained network while minimizing the number of parameters to

be fine-tuned?
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These three general questions, too broad to be studied directly, can be subdivided into more

specific research questions. We identified them by examining the extensive research corpus on

these topics. We will, therefore, describe the research questions identified and linked to each of

these three questions.

The first point is particularly complex due to the number of factors that impact a model’s

ability to generalize to other tasks. The literature shows, for instance, that the architecture, the

data used during pre-training, and the training procedure are important elements to consider.

The concept of transferability is also difficult to measure, as a model may generalize well to some

tasks but not to others. The research corpus on this subject is quite extensive [91, 224, 113, 33]

but several challenges remain open. The first concerns the size of the dataset to be used for pre-

training, whose benefits appear to plateau according to certain findings. However, these studies

focus on large models and overlook the potential benefit of adding more classes as scaling occurs.

This is important because it is unclear whether the plateau is due to overly represented classes

or model capacity. The research questions to which this thesis provides insights are: Can the

saturation of the gains from increasing the dataset size be pushed further by adding more classes,

and thus more diversity, during training? And, what is the influence of downstream dataset size,

number of classes, and transfer method on the transferability of compact neural networks?

Transfering with a frozen feature extractor allows for efficient training due to the small

number of parameters to tune and can be used in accelerators mentioned in the motivations [204,

79]. When considering this type of transfer, called linear probing, an important limitation to

study is the robustness to temporal shifts in the input data. This limitation is crucial because

hardware accelerators relying on a model that cannot be modified would see their viability greatly

diminished if temporal shifts in the input data render the network obsolete. Moreover, while

studies on certain domain shifts, such as representation style [65, 140], are quite comprehensive,

temporal shifts have been very minimally explored. In this thesis, we will therefore address the

following research questions: Are pre-trained models robust to temporal shifts? If not, how can

the issue be mitigated? Finally, in the context of object recognition, are all types of objects equally

affected?

Finally, to answer the third general question, it seems natural to turn to Parameter-Efficient

12



Fine-Tuning (PEFT) methods, whose aim is to balance transfer learning effectiveness and ef-

ficiency by only modifying a small set of relevant network parameters(see Section 2.4). These

methods have recently sought to estimate the importance of each weight in order to improve

efficiency. Following a review of existing methods, which we will describe in the next chapter,

the research questions addressed are as follows: Can we improve the parameter’s importance

estimation in order to better allocate the budget of trainable parameters? And, can unstructured

fine-tuning be replaced by an alternative to avoid the widely distributed fixed weights, which are

not leveraged in the hardware architecture mentioned in the motivation section[204, 78]?

1.3 Contributions overview

After reviewing related work in Chapter 2 to ground the research questions and justify the

approaches chosen to answer them, we present the three main contributions in the following

chapters:

• Chapter 3 investigates how scaling pretraining datasets impacts the performance of deep

learning models, particularly compact ones. Multiple factors are considered, such as the

transfer strategy, the amount of data, the number of classes in the pretraining dataset,

and the number of samples per class in the target datasets. The findings indicate that

the saturation in the benefits provided by scaling up the pretraining dataset cannot be

pushed further by adding more classes at the same time. Even more interestingly, the

number of classes has almost no influence on downstream accuracy once saturation is

reached, even when it causes the network’s accuracy to drop significantly on the upstream

dataset. We also show that linear probing can outperform full fine-tuning in few-shot

scenarios when the final and source tasks are similar. The work presented in this chapter

has resulted in the following publication: Pégeot, T., Kucher, I., Popescu, A., & Delezoide,

B. (2023). A comprehensive study of transfer learning under constraints. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV) workshops (pp.

1148-1157).
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• Chapter 4 introduces a new dataset, VCT-107, designed to explore the effect of temporal

shifts on visual classification models. We investigate how these changes affect model per-

formance and show that different categories of objects are impacted to varying extents. We

also examine various methods to mitigate these effects in pre-trained models and analyze

factors impacting robustness, such as data augmentation and pretraining strategies. Our

results highlight the lack of robustness of pre-trained models and, therefore, the need to

adapt them regularly. They also demonstrates that it can be done without updating the

feature extractor using linear probing with stored data or continual learning algorithm

depending on the memory constraints. The work, results, and dataset presented in this

chapter have been accepted for the WACV 2025 conference.

• Chapter 5 analyses current approximations made to estimate the importance of fine-tuning

specific weights. We show that these approximations introduce a bias towards layers whose

weights have a high standard deviation. This causes significant inconsistency in the layers

considered important, which can become even more critical when scaling factors, such as

those found in quantization, are used. Therefore, we propose a new formulation for the im-

portance estimation to mitigate this bias. While current methods leverage this importance

metric for both structured and unstructured PEFT, our analyses reveal that both the ex-

isting and new approximations are too noisy to effectively guide unstructured fine-tuning.

Consequently, we propose an alternative by adapting the size of LoRA modules based on

sensitivity, which is also easier to leverage in the context of specific hardware design. Using

all these elements, we propose a new PEFT method. We were able to measure the gains

provided by our method and propose a new adversarial attack to highlight the additional

benefits in the case of scaling factors, such as those found in quantization methods. The

two innovations of this new method (the unbiased importance metric and the alternative

to unstructured fine-tuning) were also independently tested on a wide range of 19 datasets

to provide an ablation study of their individual contributions. The work presented in

this section, along with the new PEFT method, has been accepted at the International

Conference on Neural Information Processing 2024 (ICONIP), which will take place in
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December.

Finally, in the last chapter, we put the results into perspective and discuss their impact in

the context of fixed networks. In particular, we will discuss the key elements to consider, such as

the pre-training dataset, the limitations of the transferability of fixed neural networks, and the

necessity of regularly adapting the network once in production. We will also discuss methods for

transfer and adaptation. We will present the limitations of this work and explore future research

directions that could improve the performance of predominantly fixed networks, as well as their

utility in the context of specific hardware accelerators.
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Chapter 2

Background and Related Works

2.1 Image Classification via Supervised Learning

The classification tasks regroup all tasks in which we predict the category a sample belongs to. In

the case of computer vision, the samples are often images, and the categories represent the type

of object represented in the image. While this common case of classification, known as object

recognition, is very common, other classification tasks exist. For instance, counting the number

of elements in the CLEVER dataset [84] or predicting the azimuth of the object represented in

the small NORB dataset [101]. These classification tasks can thus be found in fields as diverse

as the medical field, with the classification of retinopathy from fundus images [34] or the or the

classification of trafics sign for autonomous vehicles [167, 168]. In this document, we will focus

on cases where a sample belongs to only one category.

Formally, given a dataset D = (xi, yi)
N
i=1, where each xi represents a sample from the input

space X and each yi is a label from the set of possible classes Y = {1, 2, . . . ,K}, the classification

tasks consist in learning a function f : X → Y predicting the class label yi associated with xi.

In practice the output of f is a vector of size K. Each position in this vector correspond to one

element of Y. A softmax function can be applied to the vector to normalize it into a probability

distribution, and the predicted class is the index of the maximum element in the vector. However,

the probability after a softmax aren’t easily usable as the neural network tend to be overconfident
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as pointed out by [176].

Supervised learning is a method of machine learning, where the parameters θ of the model

f are optimized using a set of labeled examples. These labels represent the ground truth for the

model’s predictions. The set of examples used for training the model is called the training set.

The goal is to generalize the model’s performance to unseen data, allowing it to make predictions

on new samples.

To learn the parameter θ, the difference between the current prediction of f on the training

set and the ground truth is measured. This measurement, called the loss, is often expressed using

the cross-entropy loss. This loss takes as input the prediction ŷ of f as a vector as discussed

previously. This prediction is compared to the one-hot vector representing the ground truth

label, that is the vector y with a 1 only on the index corresponding to the classes associated to

the input. The following formulation already includes the softmax transformation of ŷ.

LCE(ŷ, y) = −
K∑
i=1

yi · log

(
exp(ŷi)∑K
j=1 exp(ŷj)

)
(2.1)

The model parameters can be optimized by minimizing this loss computed on the training

dataset Dt. In this work the gradient descent will be performed using Stochastic Gradient

Descent. The stochastic gradient descent (SGD) consists of iteratively sampling a small batch

of samples B ⊂ Dt on which the gradient is computed. The weights are then updated using this

gradient and a factor called learning rate, which usually decreases during the training.

The loss can be regularized using, for exemple, weight decay [94]. The other most common

method to perform gradient descent is Adam [88]. Both have a variant in which the weight

decay regularization is applied decoupled from the gradient-based update, allowing for better

control over the regularization during optimization. those are called AdamW and SGDW [110].

This supervised learning method is opposed to the self-supervised methods that can train a part

or the totality of the model f without requiring labeled data [15, 80]. These methods can be

particularly useful when training on very large datasets.

The model structure can be divided into two parts. The first, called feature extractor

or backbone, takes the image and outputs a vector called embedding. This embedding is a
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numerical representation of the input data, usually in a lower-dimensional space, that is easier to

analyze and process for tasks such as classification. In this work, those embeddings will also be

used for clustering and similarity comparison in Section 4. The second part of the network call

classification head performs the actual classification based on this embedding. It typically consists

of one or more fully connected (dense) layers, which are simple matrix multiplication converting

the embedding into a vector containing scores for each class. In practice, both parts can be

learned simultaneously, but some research has shown that embeddings produced by the feature

extractor can be reused through different tasks [161]. This transferability of the representation

is the foundation of the transfer-learning methods we discuss in the next sections.

2.2 Transfer learning

2.2.1 Definition

Network-based Transfer learning is a machine learning technique where we reuse the optimized

model weights from one task to solve a different, but related, task. These weights are often

interpreted as containing useful information or patterns learned from the source task. This

approach removes the need to train a model entirely from scratch for the new task. It also allows

the model to benefit from the larger dataset used in the source task, which can help compensate

for limited data in the target task.

In 2018, the survey by Tan et al. [179] categorizes methods that leverage an auxiliary data

source to improve performance on a target task. This broader definition of transfer learning

include the following types of approaches: (1) Instance-based transfer refers to selecting samples

from the source dataset and adding them to the dataset used to train the target task. (2)

Mapping-based transfer consists of mapping both source and target data into a space where they

share the same domain, making it possible to use the union of both data sources. (3) Adversarial-

based transfer learning consists of constructing a feature space that is suitable for both source

and target data. Unlike mapping-based transfer, the common representation and the task are

learned simultaneously. Ensuring that the produced representation is indistinguishable between
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the two datasets becomes an additional objective when optimizing the weights. (4) Network-

based transfer learning is the method we described earlier, based on reusing part or all of the

weights and features produced. This type of transfer is very common, as pre-training on the

upstream dataset can be reused multiple times, eliminating the need to share the pre-training

data and reducing the cost of training on the target task. In an older survey, this type of transfer

is also called feature transfer [134], although this term overlooks the possibility of fine-tuning the

pre-trained weights.

In this document, "Transfer Learning" will refer to Network-based transfer learning. The

terms "upstream dataset" and "downstream dataset" will refer to the source and target datasets,

respectively, reflecting their sequential roles in the transfer learning process.

2.2.2 Motivation

Transfer learning is motivated by its ability to solve multiple challenges of deep learning. First,

transfer learning helps to improve the accuracy and reliability of deep neural networks. As an

example, in 2014, Sharif et al reused the features produced by a model trained to solve the

ILSVRC 2013 challenge [155] to surpass the state-of-the-art methods in various tasks such as ob-

ject recognition and image retrieval. In the same year, two other works demonstrated empirically

that using a pre-trained model can improve the prediction quality of neural network [219, 28].

It can also make the model more robust [66].

Another motivation for Transfer learning is the important cost of training. Deep learning

models require long optimization processes, which are computationally and financially costly.

Even when transfer learning does not improve performance, it helps shorten the training proce-

dure [63]. This is a critical challenge in a field where training costs keep growing [185].

In addition to improving accuracy and reducing costs, transfer learning allows the appli-

cation of deep learning methods to tasks with limited available data. Deep learning models

typically require large datasets for optimal performance, and a lack of data directly impacts

model quality [68]. However, transfer learning is particularly effective in such scenarios, as it

leverages pre-trained models from larger datasets [16, 230]. Medical imaging is a good example,
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as collecting large amounts of data for tasks such as diagnosing rare diseases is often difficult.

A recent research paper benchmarked pre-trained models and acknowledged their effectiveness

in few-shot learning tasks, such as diagnosing diabetic retinopathy and classifying breast cancer

from mammograms [205]. The paper also highlights the need for more research and datasets

to improve the pre-training of foundation models. Statistical analysis of transferring the repre-

sentation for few-shots has also been realized in 2021 [31]. We refer to the process of learning

from downstream tasks with very few data as ’few-shot’ learning. In this document, we will

use ’low-shot’ to describe cases where the number of samples is limited but not small enough to

qualify as ’few-shot.’ Typically, ’few-shot’ refers to scenarios with 1 to 5 samples per class, while

’low-shot’ applies when there are between 5 and 100 samples per class.

Finally, transfer learning also allows for efficient hardware design. Indeed, memory accesses

are costly. Several research works have developed hardware architectures that do not require

such access, resulting in low power consumption and latency [204, 78]. However, the drawback is

that the feature extractor need to be fixed. Therefore, the applicability of these results relies on

the transferability of the representations produced by the pre-trained network. In other words,

transfer learning enables these hardware implementations to adapt, at least partially, to domain

changes or new tasks.

Motivated by this challenge, this document will explore the transfer performance of fixed

feature extractors and the methods that allow the largest possible portion of the network to

remain static while maintaining strong performance in diverse tasks.

2.2.3 Challenges and Current methods

As explained previously, transfer learning is a valuable method in various ways. However, transfer

learning also have drawbacks and can be challenging. Here, we will present open problems and

current works aiming at solving each one of them.
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Adapting or Freezing the feature extractor

A challenge when selecting a transfer learning method is finding the right tradeoff between

adapting the representation or directly reusing it. In that sense, the two most common trans-

fer techniques are also the more extreme. In Linear Probing (LP), the representation is used

directly as produced after the pretraining. Only the final classification layer is learned on the

downstream dataset. This method is sometimes called representation learning. The other one,

called Full Fine-Tuning, also updates the weights of the feature extractor during the gradient de-

scent. Those two methods have been compared multiple times, and Full Fine-Tuning has shown

superior performances [91, 224]. Those results align with the previous research pointing out that

reusing features can lead to weak co-adaptation and a drop in performance due to representation

specificity [219]. However, Full Fine-Tuning also has drawbacks. Indeed, during the fine-tuning

process, the features produced by the pretrained models can be distorted and underperform out

of distribution (OOD) [96]. A metric for robustness to out-of-distribution data has been pro-

posed in [182], by comparing the accuracy in and out of distribution. This metric was used to

measure the evolution of the robustness during the fine-tuning, confirming that the fine-tuning

process affects OOD performances.

This issue is also crucial in incremental learning, as it involves transferring multiple times

while preserving the performances on the upstream domains. The distortion of features can,

therefore, lead to a performance loss in the upstream domains called catastrophic forgetting [39].

Le choix est également essential dans le cadre du hardware design car les backbones figer

peuvent être leveraged to reduce the number of memory read as we will see in Section 2.3.

Recent research has shown that the limited accuracy provided by Linear Probing can be

partially mitigated by using intermediate representations in the features extractor. Indeed,

depending on the downstream tasks, using the representation produced by the last layer of

the feature extractor can be sub-optimal. The Head2toe [35] transfer methods use the Group

Lasso [220] to select intermediate representations and aggregate them to perform the classifi-

cation on an augmented representation. This leads to better accuracy without modifying the

weights of the feature extractor. However, this is still limited as the choice of features is specific

22



to each downstream dataset and requires access to the intermediate representation. Similarly, for

transformers, VQT [193] leverages the intermediate representations by introducing a new token.

More nuanced methods try to find a tradeoff between fine-tuning and linear probing. For

instance, BitFit [222] only updates the bias terms in each layer, which account for about 0.1%

of the model weights. Such methods that change only a small part of the model’s parameters

are called Parameter Efficient Fine Tuning (PEFT). We will describe in more detail the State of

the art of those methods in Subsection 2.4.

Bias in pretrained models

Another challenge that needs to be mitigated is the presence of bias in the pretrained models.

Bias are inherent to pre-trained models and often originate from the upstream datasets, which

are known to be biased [190]. Therefore this is partially a dataset-related issue. We will explore

in delve deeper into dataset-bias and solutions involving the construction of a dataset in the

Subsection 2.5.

Despite significant efforts to improve the diversity of datasets, most available pre-trained

models are developed using widely used datasets. This often introduces inherent biases. In

the domain of computer vision, a particularly common dataset is the ILSVRC [27], on which

many pre-trained models are based. However, these models exhibit a bias towards texture

recognition, often failing to sufficiently account for shapes and other critical features within

the image [43]. Similarly, pre-trained language models often suffer from stereotypical bias, and

datasets as been produced to measure it [126]. Several advanced transfer learning techniques have

been proposed and developed to mitigate this issue. In the paper [43], the proposed solution relies

on constructing an ImageNet dataset variant that is added at the pretraining stage. And is not

applicable after pretraining, especially if the upstream dataset is not provided with the model.

But in [200], the researchers analysed bias as spurious correlations and underrepresentation.

They offered a solution to mitigate them at the fine-tuning stage by artificially modifying the

downstream dataset. However, that conclusion was made only for spurious correlations and

underrepresentation and, more importantly, did not consider that the pre-trained model can be

frozen. Finally, recent transfer methods assume that pretrained models are inherently biased
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and shift away from removing the bias. Rather than focusing on eliminating this bias, they

select different representations produced by models and aggregate them to solve the downstream

task [47, 203]. The more the pretraining datasets and strategies are diverse, the more the

ensemble will be performant on downstream tasks [47]. However, these approaches are limited

by the multiple inferences required and call for the creation of more datasets and pre-training

methods.

Pretraining dataset selection

As we just saw, using an ensemble of feature extractors pre-trained on diverse upstream datasets

can improve downstream performance. But when only one feature extractor is considered, the

choice of the models and it upstream dataset becomes essential. Indeed, the upstream dataset

has a strong influence on downstream performance [219]. For instance, research in the field of

medical imaging points out the benefits of using an upstream dataset composed of medical images

when transferring to medical tasks [205]. This aligns with early observation, suggesting that the

specificity of an extractor of a feature in a domain different from the one used downstream leads

to the worst performance due to negative co-adaptation [219].

To avoid the issue of being specialized in tasks related to the datasets, the ensemble ap-

proach [203] can be reused. Some approaches have been found to fuse the ensemble of models

into a single model [45]. Unlike the entire ensemble, this single model can be exported to em-

bedded targets like the one described in Subsection 2.3. However, this still requires the costly

development of multiple pre-trained models, and merging those can be considered part of the

pretraining. When considering only a single pre-trained model, a solution is to use intermediate

datasets to train different modules on top of the unique pre-trained model [38]. Similarly to the

ensemble, it makes it possible to transfer to diverse tasks further from the source while removing

the necessity of fully training multiple foundation models. However, it still requires the creation

of multiple datasets.
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Security concern with pretrained models

Finally, other challenges arise when the pretraining and the final user on the downstream task

are different actors.

The actor who realizes the pretraining may refuse to share the pretraining data. Sharing the

pre-trained model for transfer might also be considered a leak of this private property. Indeed,

once shared, pre-trained data might be extracted and the model could be reused for undesired

purposes. Therefore some methods have been developed to remove the pretraining knowledge

after transfer, making it impossible to share the transferred model without risk [89, 11]. However,

this supposes that the actor, realizing the pretraining, can realise the transfer himself and that

the final user can share data from the downstream tasks with the upstream user.

Another issue when using a pretrained model from another actor is the lack of confidence

the user can have in the model. Indeed, the model can contain a backdoor that will lead to

malicious behavior [104, 206]. This backdoor can be activated by some trigger placed in the

input sample. The issue is that some backdoor techniques aim to keep their capabilities after

transfer learning even if the extractor of feature is updated [103, 217, 202]. Hopefully, some

transfer learning techniques have been invented to allow prevent this [173, 3]. But they might

not be enough as some triggers aren’t activated at transfer time but even after the moment of

the quantization [111].

Those security issues may limit the range of pre-train models available for transfer.

Our usage.

In this document, we primarily focus on two of these challenges. The first challenge is bias in

pretrained models, specifically time bias. Indeed, in Chapter 4, we propose a new dataset that

allows for the evaluation of transfer capabilities to images from different time periods. Analysing,

in the same time, the robustness of models to time shift. The Chapter 5, on the other hand, is

closely related to the challenge of finding a trade-off between linear probing and fine-tuning as

we propose new PEFT method which represent a new alternative.
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2.2.4 Evaluate Transferability

A thorough evaluation of a pre-trained model’s transferability or the transfer learning technique’s

effectiveness can be challenging. Indeed, as [1] pointed out, evaluation requires multiple and

diversified downstream datasets. As explained previously, bias and similarity between upstream

and downstream datasets can have a significant impact on downstream performance. This jus-

tifies the multiplicity and diversity of downstream datasets used for evaluation.

Results also vary depending on the transfer method (e.g., linear probing vs. full fine-tuning).

Different techniques may highlight different aspects of transferability performance. Typically,

the common linear probing method is tested alongside the opposite fine-tuning approach [91].

We will follow these methods in Chapter 3. Some key settings, such as the number of samples

in the downstream tasks or the model architecuture, are also important and can influence the

perceived performance of various pretraining or transfer methods. The variation in the number

of samples per class often comes with the different datasets selected for evaluation.

This high number of settings, such as number of classes, number of samples or type of tasks,

makes the evaluation challenging. But many downstream vision datasets can be used. Some

datasets have been created to provide representations of the same classes, but a domain shift

like a different styles, [65, 140]. It allows testing transfer to the same task but in a different

domain. Multiple other datasets are commonly used to test for transfer. Some contain natural

images of diverse objects like CIFAR-100 [93], others more specialized like GTSRB with the

traffic signs [168] or SVHN with street number [127]. Other have specificly structured images

like texture [21] or generated images [101, 84]. Some are contain diverse. or have been concived

to be run in a few shot settings like Flower.

All this diversity of downstream dataset is necessary to evaluate transfer learning performance

but have a major drawback. They make the results from different research harder to compare, as

the set of chosen datasets is not always the same. Therefore, some standard groups of datasets

has been proposed and can serve as a benchmark. For instance, the Meta-Dataset [192], Visual

Decathlon [147], both of which regroups 10 datasets, or the common benchmark is the Visual

Task Adaptation Benchmark [224].
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Some advantages of VTAB over visual decathlon and Meta-Dataset are: (1) It contains

multiple types of classification tasks, such as orientation detection with SmallNorb [101], depth

prediction and counting [42, 84] whereas visual decathlon only contains object recognition. (2)

Contain more tasks with 19 tasks for VTAB and 10 for Visual Adaptation Benchmark (3) Contain

a variant with only 1000 training samples, called VTAB-1K, which is harder to solve and can

help evaluate low-shot transfer capabilities [224]. (4) regroup different kinds of images: Natural

images with datasets like CIFAR [93] or Oxford-III pets [138], specialized images like retina

scan [24] and generated images with datasets like dSprite [117], SmallNorb [101] or CLEVR [84].

This benchmark is not always adopted when tackling questions like dataset scaling but is

commonly used for testing parameter-efficient fine-tuning in computer vision [82, 61].

Usage. Based on those works, we evaluate the transfer performance of the models on diverse

downstream datasets in Chapter 3 and 5. In Chapter 3, we also follow the recommendations

of [33] when fine-tuning on downscaled versions of the datasets. Additionally, in Chapter 4,

we also propose a new dataset specifically designed to evaluate the temporal robustness of the

pre-trained models, which had not been given much attention until now.

2.3 Frozen Backbone for efficient hardware design

2.3.1 Motivation

Deep neural networks (DNNs) continue to scale in complexity and size [211], necessitating break-

throughs in computational efficiency, energy consumption, and cost. This challenge has driven

the development of domain-specific hardware like Google’s TPU, which accelerates the execu-

tion of neural networks by specializing in tensor operations [85]. Specialized hardware is not

only about performance but also focuses on optimizing energy and resource efficiency, crucial for

real-time applications and power-constrained environments, such as Mobile devices [18].

A significant portion of energy and latency costs in DNN execution arises from memory

access, especially when relying on external memory, such as DRAM [175]. Memory operations

contribute more to power consumption than the actual computations [71], making the design of
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memory-efficient architectures a key priority for both large-scale cloud systems and low-power

edge devices.

Emerging hardware architectures, such as the Eyeriss accelerator, aim to tackle these chal-

lenges by reducing memory access and optimizing dataflow, leading to more energy-efficient

implementations [19].

2.3.2 Related Works

To reduce memory access and, consequently, improve performance, some hardware architectures

have been designed with the neural network weights hard-coded into the circuitry itself. One of

the earliest examples of this is FixyNN [204]. In this work, the researchers proposed a hardware

architecture designed to run inference with a MobileNetV1 model. In this architecture, the first

part of the model is frozen, with the weights hard-coded into the circuit. This allows the first

part of the inference to run without relying on DRAM. The results presented in the paper show

that as the number of fixed layers increased, the die size also increased, but the number of

operations per second and energy efficiency improved significantly. By freezing 11 out of the 13

layers of the MobileNetV1, FixyNN managed to stay below the 4 mm2 and provide an increase

of approximately five times in the operations per watt compared to the same model on Nvidia’s

NVDLA with the same area.

Some improvements have been made to enhance this approach in SemiFreddoNet [78]. In

this architecture, the weights are not simply frozen in the first part, but all layers are partially

frozen. The results showed that having some trainable weights helps improve performance for

both classification tasks tested: facial recognition and object recognition.

A circuit of the same type as FixyNN has been fabricated and tested in real-world conditions.

The results, which will be presented in November 2024 at the Asia Pacific Conference on Circuits

and Systems, confirm the findings [79]. In this implementation, the process node used is larger

than the one used in FixyNN simulations. Furthermore, the entire MobileNet feature extractor

[74] is frozen, but it does not contain residual connections. These elements, combined with the

fact that the results presented in the FixyNN paper were obtained solely through simulation,
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make this work an important new contribution to the field.

2.3.3 Limitations

While promising, this specific hardware suffers from some limitations. First, these architectures

were designed for CNNs, but limited studies have been conducted on the applicability of this

approach to more recent architectures, such as Transformers. Secondly, as discussed in subsec-

tion 2.2.3, the frozen feature extractor offers limited generalization capabilities.

In this document, we will present results on the generalization capabilities of small networks

within the context of frozen feature extractors (Linear Probing) 3. More importantly, in Chap-

ter 4, we will examine the temporal robustness of feature extractors, specifically the degradation

in performance of pre-trained models over time. This aspect is crucial for such hardware, as

temporal shifts could cause this frozen architecture to become obsolete. Finally, in Chapter 5,

we analyze sensitivity approximation and propose a modification to a state-of-the-art PEFT

method to improve transferability while maintaining a very low number of trainable parameters.

Although this method may not be directly applicable to fixed hardware like FixyNN [204], it

is a step toward maximizing the ratio of fixed parameters and, consequently, enabling better

hardware performance.

2.4 Parameter-Efficient Fine-Tuning

2.4.1 Definition and Motivation

As we discussed in the subsection 2.2.3, fine-tuning usually leads to better performance but can

harm the generalization capabilities [96] or negative transfer [219]. On the other hand, using the

feature produced by the pre-trained model (Linear Probing) while keeping the extractor of fea-

tures constant is a very efficient solution as the number of trainable parameters is low and can lead

to better hardware design [204] but usually underperform compared to a regular fine-tuning [91].

Parameter-Efficient Fine-Tuning (PEFT) methods aim to maximize transfer performance while

training only a small subset of the model parameters. These methods, therefore, represent a
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tradeoff between these two extremes.

Those methods are increasingly popular, partially because of the very important cost of

training a full network, but also because it allows fine-tuning on consumer-level hardware. It

also represents a great solution for few-shot learning [107]. And can even be used on very limited

computational resources [222].

2.4.2 Categories of methods

There are numerous methods to fine-tune a network by only modifying a small set of parameters.

We will therefore categorize these methods into several groups and present the most common

methods within each one. Three categories presented are based on the 2024 surveys [57] and

[210].

The first category, called Additive PEFT in [57] and Addition-based Tuning in [210]. The

common point between these methods is that they add additional parameters or modules to the

architecture. The Visual Prompt Tuning (VPT) method [82] involves adding a small number

of new tokens (additional parameters) to the model, which, consequently, slightly increases the

computational load. Therefore, it is an additive PEFT method. Similary, Side Tuning [225]

consist in training a second (smaller) network and aggregate the results of extractor with a

sum. The most common additive PEFT are the Adapters [72]. Adapters were initially proposed

for natural language processing (NLP) models and consisted of adding two small modules in

the transformers blocks. Each of them is placed right before the addition and normalization of

the residual connection that surrounds the Multi-Head Attention and Feed-Forward layers. The

modules contain a downward projection W1 ∈ Rr×d, r ≪ d and an upward projection W2 ∈ Rd×r

separated by activation function (non-linear). After a bias is added to each projection. The

module is also surrounded by a simple residual connection. In total the adapter module adds

2 · d · r+ d+m trainable parameters which is far less than training a linear layer from the MLP.

Several variants of Adapters have also been proposed, for example, Adapter-Fusion [143], or more

simply, Adapters placed in parallel [62].

The second category of PEFT is "Reparametrization PEFT [57] which is included in Partial-
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Based Tuning in the second survey [210]. In this method the fine-tuning includes new weights

during the training but they can be merged for inference. Therefore this method can be used to

make inference with a fine-tuned model without any overhead, or if not merged, the number of

extra parameters will be the same as in the Additive PEFT. This second category looks more

promising for fixed-weights hardware design such as [78, 204]. Most of reparametrization PEFT

are rely on a Low-Rank modification of the weights called LoRA [76]. LoRA modules are placed

in parallel to fully connected layer (matrix W ∈ Rdout×din) and consist in a downward projection

W1 ∈ Rr×din , r ≪ min(din, dout), an upward projection W2 ∈ Rdout×r, and a scaling by a factor

α
r ∈ R. The output of the LoRA module is then added to the one of the fully connected layer that

is modified. Unlike the Adapter module, LoRA does not contain any non-linearity, which allows

it to be merged into the weights of the adapted layer. To do this, the matrix ∆W = a
r ·W1 ·W2

is added to the pre-trained weights matrix. Several variants of this methods have been proposed,

for example, adapted learning rates [58] or a Bayesian approach [212].

Finaly the last category of PEFT methods is called Selective PEFT [57] is also included in

Partial-Based Tuning [210]. Those methods directly update a small set of weights inside the

network. This set can be the lasts layers, target specific types of layers like attention layers [44]

or bias [222]. The set of modified weights can also be unstructured, that is select specific weights

inside a tensor [105, 172]. However unstructured modification can make it hard to take advantage

of the frozen weights, even if unlike LoRA, the number of impacted weights in a layer is smaller.

However all those methods have limits. Some, like VPT, are very specific to the transformer

architecture. Adapters create a permanent overhead and have lower performance compared to

LoRA. LoRA modules can count to trainable parameters. Finally unstructured methods can be

hard to take advantage in specific hardware like the one described in Section 2.3. To improve

performance, in terms of accuracy, recent works attempted to combine multiple categories of

PEFT in a single method [229, 61], but have also developed methods to select more efficiently

the weights or layer on which the PEFT methods are applied.
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2.4.3 Layer selection in PEFT methods

To reduce the number of trainable parameters even futher while maintaining high transfer per-

formance, researchers propose methods to select the layers on which to apply PEFT techniques.

A basic selection was already proposed in the original Adapters paper. However, this selection

of affected layers was empirical and limited to a single contiguous group of layers [72]. Finding

the best set of parameters is also a concern in the design of frozen-network-based hardware, as it

is important for their efficiency [78, 204]. However, SemiFreddoNet only considers a few freezing

schemes, and FixyNN focuses solely on freezing the first layers. Therefore in the next subsection

we will look at methods used to select the layers affected by the PEFT techniques, especially the

promising use of the sensitivity metric.

Several approaches have been proposed to determine an efficient allocation of trainable pa-

rameters. Among these approaches are those based on Neural Architecture Search (NAS). For

example, a variant of BitFit, which originally optimizes all the biases, has been optimized using a

NAS approach. Similarly, the Neural prOmpt seArcH (NOAH) method [229] uses this approach

to simultaneously place different PEFT modules previously described : LoRA, Adapters, and

VPT. It was observed on this occasion, as well as in other analyses [51, 54], that the effectiveness

of a method and the choice of adapted parameters depended heavily on the target task. This

research is therefore often conducted for a given target dataset [229, 51, 54]. To effectively de-

termine the importance of fine-tuning a weight, some methods have started using a metric called

Sensitivity.

2.4.4 Sensitivity based PEFT

Sensitivity is a metric used to determine the importance of modifying a given parameter. Before

being applied to PEFT, this metric was also used for pruning [123] and mixed quantization [207].

For a given parameter, it is defined as the improvement in the loss after modifying that weight.

Formally, this notion of sensitivity is expressed as follows:

32



Si = L(Dt, w)− L(Dt, w
∗) (2.2)

w∗
n =


n = i wn +∆wn

n ̸= i wn

(2.3)

Where L the loss function, wi is the ith parameter and ∆wi the variation of wi after modifi-

cation. That is, after fine-tuning or prunning depending on the application.

However, whether it is for pruning, mixed quantization, or selecting weights to fine-tune

for PEFT, this notation is not directly usable in practice. The second term would need to be

evaluated for each parameter in the network. Therefore, a Taylor expansion is performed.

Two PEFT methods based on sensitivity to determine the allocation of trainable parameters

have been proposed. The first, called AdaLoRA [227], progressively reduces the size of LoRA

using pruning based on sensitivity values. Since the pruned weights are discarded, the value of

∆wi is known: ∆wi = −wi. This method primarily target the field of natural language processing

but can also be used in vision tasks thanks to the ViT architecture. The main limitation is the

reliance on LoRA pruning, which implies that the fine-tuning architecture is not fixed, cannot be

determined before training, and does not satisfy the budget in terms of the number of trainable

parameters from the start.

The second method, Sensitivity-Aware Visual Parameter Efficient Tuning (SPT) [61], on the

other hand, directly evaluates the sensitivity of the network weights. This is highly advantageous

because the fine-tuning architecture can be known before starting to update the weights, meaning

the budget in terms of the number of parameters is set and respected from the beginning.

However, since weight modification does not simply involve their removal, the value of ∆wn is no

longer known. A new approximation is therefore performed in the form of a One-Step Gradient

Descent. In this method, sensitivity values are used to place LoRA modules when sensitivity is

high for many parameters but also to rely on unstructured PEFT when appropriate.
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2.4.5 Limitations

As explained previously, AdaLoRA represents a great way of distributing the trainable parameter,

but relies on pruning LoRA, which implies that the fine-tuning architecture is not fixed and does

not satisfy the budget in terms of the number of trainable parameters from the start. The second

sensitivity-based PEFT method, SPT, provides a great solution to those issues by evaluating the

sensitivity directly on the pre-trained model weights. However, the unstructured aspect of the

methods can limit the efficiency of the methods. Moreover the lack of analysis on the additional

One-Step-Gradient-Descent approximation can also refrain from using it. Other approximations,

such as using mini-batch, were on the other analysed [228]. Finally, the fact that these methods

specifically adapt to a given target dataset can be limiting, particularly when we aim to use them

for hardware design, as stated in [222]. It would therefore be interesting to measure sensitivity

across a set of datasets in order to determine a less dataset-specific set of trainable parameters.

Our usage and contribution. This new use of sensitivity for PEFT without pruning is

promising. To push back the limits associated with this approach, in Chapter 5, we provide a new

analysis of the second approximation, which makes it possible to use sensitivity outside of the

pruning context. We identify and address a bias it causes, which can be particularly important

when quantization is involved. Finally, this also allows us to eliminate the limitation of relying

on unstructured PEFT by using resized LoRA modules instead of fixed-size ones.

2.5 Pretraining Dataset

2.5.1 Importance of the pretraining dataset

Deep Learning models are known to be data hungry [115]. The use of increasingly large datasets

allows for the training of ever more efficient and potentially larger models [68, 86]. This obser-

vation explains the creation of many large-scale datasets, such as YFCC100M [184] with 100

Million images or LAION-5B [159] with more that 5 billions text-images pairs. Fields specific

pretraining dataset, similar to the target task, also allow for increased performances [25, 205]
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increasing even more the necessity of pretraining dataset.

The importance of these datasets has pushed the community to study various aspects, such

as biases or the possibility of reducing their size, thereby limiting the significant costs associated

with data collection and training on such large datasets. In this section, we will explore several

research directions, along with their limitations, that have influenced the work presented in this

document.

2.5.2 Bias in pretraining dataset

Bias are inherent to pretraining datasets and can have a strong impact on trained model even

after transfer [200]. In the field of computer vision, dataset biases have been grouped into three

categories [36].

The first category, called Selection Bias, refers to the non-representativity of the data and

the resulting incorrect correlations caused by the method used to collect the data. This bias can

be concerning, as it can lead to undesired behavior in the final models [174] Some datasets have

been collected in a way that removes one of the selection biases. For example, DollarStreet [151]

was collected to eliminate geographical bias, which causes datasets to predominantly represent

more developed, higher-income countries. Similarly, FairFace [87] was collected to ensure parity

across ethnicities, ages, and genders. Those dataset also allow researsher to study the biais

impact and mitigation methods

The second category, called framing bias, refers to the association caused by the way the

element are represented in the images. For example, the ILSVRC dataset [27] only contains

natural images of objects. This allows convolutional neural networks (CNNs) to solely focus

on textures [13]. Including images that represent the same objects in different styles, such as

drawings, allows the models to learn patterns that are more representative of these objects [65,

140].

The last category, called label bias, includes defects or errors in the labels assigned to dataset

samples or in the way the labels are defined. An example of a dataset affected by this bias

is ImageNet-21k [27]. This dataset consists of 21,841 classes and, thus, the same number of
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possible labels for each sample. However, these labels are organized according to the WordNet

dictionary [121], where some names are hyponyms or hypernyms. That is, one label semantically

contains others. This is the case with Animal and Dog, for instance. An image labeled ’Dog’

can fall under both categories. These biases are often mitigated during training. For example,

[150] proposes a new loss function for pre-training on the ImageNet-21k dataset. Labeling errors

have also led to the development of several techniques to reduce their impact [208].

Limits and usage. Research on biases in datasets and on the production of unbiased

datasets still has certain limitations. Datasets specifically produced to avoid bias are generally

too small to train large models, and are thus often merged with others [40]. Nevertheless, they

remain useful for the analysis and consideration of new biases. Some biases are also underexplored

in the literature, such as the temporal bias, which will be explore in Chapter 4. Since no dataset

can be entirely free of bias, the datasets presented are not sufficient to fully replace the post-hoc

mitigation methods described in Section 2.2.3.

2.5.3 Effect of dataset scaling

The size of the dataset is also a widely researched topic. Dataset size is important for two main

reasons. First, there is a strong relationship between dataset size and the performance achieved

on target tasks after transfer learning [170]. Second, datasets are expensive to collect, and pre-

training is often computationally costly, so it may be beneficial to avoid using an unnecessarily

large or complex pre-training dataset [33].

Past examination of pre-training tend to show that increasing the size of the upstream dataset

has a positive effect on downstream accuracy [113, 170, 223]. These observations align with

two related findings when considered together. Increasing the number of training samples in a

dataset leads to improved performance, measured by test loss, on that dataset [68]. Meanwhile,

as accuracy on the pre-training dataset increases, the accuracy on the target dataset, once the

model has been transferred, also improves [91].

However, there appear to be limits to the gains that can be achieved by increasing the number

of images in pre-training datasets. For example, [33] shows that, if the number of iterations in
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gradient descent is kept constant, using 10% of ILSVRC can yield similar transfer performance

to training on the full version of the dataset. This is consistent with the findings of [1], which

show that the performance gains from improving accuracy on the source dataset tend to plateau

toward an upper bound.

Limits and usage. While very interesting, these works present certain limitations. First,

they do not consider compact deep learning architectures. Additionally, they do not always

consider the case where the feature extractor is frozen, which is important when the chosen

transfer learning method is linear probing. Finally, these studies do not account for a possible

change in the number of classes when the pre-training dataset is expanded. This is important

because it is unclear whether the saturation is due to over-representation of the classes or because

the network’s capacity to store information has been maximized. In Chapter 3, we will study,

among other things, the influence of the pre-training dataset in order to reduce these limitations.

2.5.4 Alternative data collection

Collecting and annotating datasets can be relatively costly, even when considering the case of

unsupervised pre-training, which does not require annotation. Consequently, several other data

sources have been explored.

Diffusion models, such as Stable Diffusion [152], are capable of generating high-resolution

images. The images generated by these neural networks can therefore serve as a data source for

training. [158] used Stable Diffusion to create a synthetic version of ILSVRC, training on this

alternative version resulted in a model with generalization capabilities similar to those trained

on the original ILSVRC. Without going as far as creating a purely synthetic dataset, diffusion

models represent an effective method of data augmentation[37].

Textual data is another modality that can often be collected alongside visual data, as is the

case with Wikipedia images [166]. When paired with corresponding visual data, these additional

textual datasets, combined with Contrastive pre-training, have allowed for the development of

highly effective feature extractors [144]. However, textual data can also be used even if samples

are not directly paired with visual data. For example, they allow training vision models on tasks
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without the any domain-specific data [50].

Limits and usage. While synthetic datasets created using Stable Diffusion are more acces-

sible, they require more data to achieve comparable results to the original versions [158]. The

trade-off for the low production cost and easy access to these datasets is the increased computa-

tional cost due to the need for pre-training on larger datasets. Additionally, although multimodal

models can benefit from textual data, they still require a certain amount of images to train the

visual component. In this document, we will not train or fine-tune models on textual data. How-

ever, given the popularity and strong performance of multimodal models, we will also evaluate

their capabilities when evaluating the temporal robustness of vision models in Chapter 4.

2.6 Neural Network Architectures

This last section of the chapter will give a short description of the architectures used in this

document.

2.6.1 Convolutional Neural Networks (CNN)

Convolution operation. Convolutional Neural Network (CNN) architectures are types of

neural networks that learn features, which are transformed through a succession of convolutions.

One of the first convolutional neural networks is LeNet, developed by Yann LeCun [100].

The discrete convolution operation applied to a feature I ∈ Rwidth×height and a kernel K ∈

RNw×Nh , (Nw, Nh) ∈ N2 can be written as:

(Input ∗K)w,h =

Nw∑
i=1

Nh∑
j=1

Ki,j · Iw+i,h+j

In practice, the input feature map often contains multiple channels, typically corresponding

to different color channels in an image. As the network deepens, the number of channels usually

increases, a pattern commonly observed in many architectures such as LeNet and ResNet [100,

64]. This operation applied to multiple channels can be written as :
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∀c ∈ [1, Cout], (Input ∗K)c,w,h =

Cin∑
l=1

Nw∑
i=1

Nh∑
j=1

Kl,i,j · Il,w+i,h+j

With Cin the number of channels in the input and Cout the number of channels in the

outputs. I now have a new dimension for the channel and therefore belong to RCin×height×width,

meanwhile the kernel has a dimension for the input channel and a dimension for the output

channel K ∈ RCout×Cin×Nw×Nh . Additionally, a bias b ∈ RCout can be added, and the kth value

of this vector is added to all output of the channel k.

Activation functions

In feed-forward neural networks, non-linearities are essential and allow the model to ap-

proximate complex functions [70]. Those non-linear functions are often placed between each

layer of the network and are called the activation functions. Those functions are often applied

element-wise. One of the most common activation function is ReLU, and is defined as:

∀x ∈ R, ReLU(x) = max(0, x)

This activation function is used in most CNNs discussed in this document. However, in the

ViT architecture, which will be described later in the document, the ReLU is usually replaced

by the Gaussian Error Linear Unit (GELU) function, defined as:

∀x ∈ R, GELU(x) = x · Φ(x)

Where Φ is the Cumulative Distribution Function for Gaussian Distribution.

2.6.2 ResNet

One of the major issues with the feed-forward architectures was the vanishing gradient problem.

This problem is that the magnitude of the gradient tends to decrease when the number of

layers, also called depths, of an architecture increases. Therefore, the training of deeper neural

networks was difficult, preventing the use of such architecture to solve complex tasks. The ResNet

architecture was introduced in 2015 by He et al [64]. In the paper "Deep Residual Learning for
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Image Recognition", the authors introduced the deep residual learning technique to mitigate the

vanishing gradient problem. The idea is to avoid learning the directly the mapping of a layer

H(x) but learn the difference between the input and output F (x) = H(x)− x. In practice, this

desired output H(x) = F (x) + x is produced with shortcut connections in feedforward neural

networks.If the dimension does not match a linear projection is made to match the dimensions.

With this method, the authors successfully train very deep CNN networks with up to 152

layers. The version of the architecture with 50 or more the shortcut connections are placed around

a stack of three layers. The first is a 1 × 1 convolutions responsible of reducing the number of

channels, the second one is the actual 3×3 convolution that is performed on the reduced number

of channels and the last 1 × 1 convolutions restore the number of channels before summing the

output with the shortcut connection. This block, called a "bottleneck", helps reduce the training

time and is also used in other architecture proposed in latter research.

2.6.3 MobileNet

The MobileNetV2 [157] is designed to work in resource-constrained environments and mobile

devices. Indeed, while the previous architectures, such as ResNet, performed accurate prediction,

they require high computational resources. According to [7], MobileNetV2 requires more than

four times less floating point operations than the smallest ResNet architecture while having better

performances. It also have three times less trainable parameters. To increase its efficiency, this

architecture relies on multiple key components.

First, MobilenetV2 reuses the depthwise separable convolutions introduced in MobileNetV1 [74].

Which replace convolutions by two operation. A depth-wise convolution which combine a convo-

lution with only one filter per output channel, and a 1×1 standard convolution called point-wise

convolution.

As discussed in Subsection 2.6.1, the standard convolution takes as input a tensor of dimen-

sions width×height×channelin and use a kernel of size channelin×channelout×Nw×Nh. Hence,

This computational complexity is width×height× channelin× channelout×Nw×Nh. Meanwhile

with the depthwise separable convolutions the cost is reduced to width × height × channelin ×
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(channelout + Nw × Nh).

They also use inverted bottleneck blocks instead of the "bottleneck" of the ResNet architec-

ture.

That optimization makes it suitable for a constrained environment and explains its use in

many embedded applications. This is also the architecture selected for the design of several

accelerators described in Section 2.3 [204, 79].

2.6.4 Transformers

Transformer [196] are a recent architecture initially developed for Natural Language Processing

(NLP) tasks. The core structure of a transformer is based on a repeated stack of blocks, each

composed of a multi-head self-attention layer followed by a series of fully connected layers (linear

transformations). These layers involve matrix multiplications, in contrast to the convolution used

in CNNs. These operations allows transformers to analyze relationships across the entire input,

however it also increases computational costs significantly. The computation of the attention

mechanism causes the complexity to scale quadratically relative to the number of tokens in the

input.

Transformers have been adapted to computer vision with the Vision Transformers (ViT) [29],

in which the image is segmented into 16x16 patches, each one being interpreted as a token in NLP.

The ViT model then processes these tokens with the transformer architecture to capture spatial

relationships across the image. ViT has demonstrated superior performance over traditional

CNNs on various vision benchmarks [29], highlighting the architecture’s potential for complex

visual tasks and in transfer learning [133, 144]. However, this improved performance comes at

high computational cost, as transformers generally require a substantial number of parameters

and operations. For instance, the results from the original ViT paper show that the base version

of this architecture requires approximately the same number of floating-point operations to train

as a ResNet-50, which is significantly more than MobileNetV2, as discussed previously. This

architecture also has 86 million parameters, which is more than twenty times the 3.4 million

parameters of a MobileNetV2 [157].
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Chapter 3

Pretraining Dataset for Compact Mod-

els

3.1 Introduction

Deep neural networks are known to be data hungry [115], particularly when they include a large

number of parameters. Transfer learning alleviates this problem by pre-training an upstream

dataset to improve performance in downstream task, or accelerate the training process [161, 35].

Pre-training is also useful when the target domain data are not sufficient to learn an effective

model from scratch, and the gain obtained from the upstream model is larger than the loss of

representativeness due to domain shift [134]. The importance of pre-training grew with the advent

of deep neural networks, whose learned representations are transferable [161]. Recent studies of

transfer learning [29, 32, 49, 90, 224] focused on pre-training models with increasingly large

number of parameters and amounts of data. They conclude that increasing the size of models

and of data improves the performance in target tasks, at least until saturation is reached [1].

While interesting, these studies disregard the fact that transfer learning is often useful when

training and inference capacity are limited [77]. In this work, we investigate transferability

under constraints by analyzing the effects of core factors which drive this process. During pre-

training, we notably test the influence of: (1) pre-training for compact deep architectures, which
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are likely to be used in transfer learning for constrained environments [211]; (2) deep neural

network architectures since they are known to influence both the upstream and downstream

performance [83]; (3) the amount of available training data, as well the ratio between number

of classes and samples per class for a fixed-size upstream dataset, since downstream accuracy

saturation was already analyzed for large deep architectures [1, 33, 91], but not for compact ones.

During inference, we analyze the influence of: (1) the type of downstream training strategy, with

the deployment of linear probing and full fine tuning, since the depth of the fine tuning process

leads determines the degree to which features are adapted to the downstream task or preserved

from the upstream model [224]; (2) the number of images per class in the target datasets to assess

transferability in four few-shot settings [32] and full dataset availability scenario since they are

all important in practice.

We run experiments using different subsets of ImageNet [27] as upstream dataset, four deep

architectures, and with six downstream datasets designed for diverse visual tasks. The empirical

study reported here concludes that:

• Downstream performance saturation is reached much faster with the compact deep archi-

tectures compared to the large architectures analyzed in previous studies [1, 91]. Increasing

the number of classes as the amount of upstream data grows does not delay saturation.

This finding indicates that very large pre-training datasets are not needed to obtain good

downstream performance with compact deep architectures.

• The structure of the upstream dataset (number of classes, samples per class) has a small

influence on downstream accuracy once there are enough data in it.

• The type of architecture makes a difference, particularly when linear probing is used for

downstream training. In this setting, architectures with higher-dimensional output features

are clearly a better choice.

• The performance of the full fine tuning and of linear probing depends on the downstream

configuration. The latter strategy is competitive when the domain shift between upstream

and downstream tasks is small and/or in case of low-shot settings. Since linear probing

training is much simpler, it should be considered for deployment in these cases.
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As a whole, the reported results give a comprehensive view of transfer learning under constraints.

They provide a sound baseline for future work performed by both researchers and engineers.

3.2 Related Work

Transfer learning is important for practical applications of deep learning, and is the subject of a

large number of existing studies. We discuss the most relevant studies for transfer learning under

constraints, which is in focus here. Prior works are further put into perspective when analyzing

the results of the different experiments.

Past examination of pre-training tend to show that increasing the size of the upstream dataset

has a positive effect on downstream accuracy [113, 170, 223]. However, recent studies, such

as [1, 33], find that the improvement tends to saturate, and this phenomenon occurs faster for

self-supervised pre-training. The works cited above focus on the total size of the dataset in terms

of samples, and they give less importance to the structure of the dataset in terms of the number

of classes and of samples per class. The importance of the dataset structure was highlighted for

domain adaptive transfer learning [128]. The authors of this study conclude that adding more

data, including more classes, can have a deleterious effect on downstream performance. In this

study, the pre-training has the prior knowledge about the target task. In contrast, we pre-train

models without any assumption regarding the content of downstream tasks in order to avoid

meta-overfitting [224].

The strategy used for downstream training has a strong influence on performance. Past

studies [91, 224] tested pre-training for full downstream datasets, but also in few-shot learning

settings. They showed that full fine tuning of downstream models is better than linear probing,

which consists in retraining only the final fully-connected layer of the model. This finding seems

intuitive since fine tuning adapts the features of downstream models to the characteristics of

the downstream tasks. A nuance was brought by [96], a study which shows that linear probing

is actually better than fine tuning when testing with out-of-distribution data for downstream

tasks. However, past results were reported for the pre-training with large deep models. It is

interesting to study whether they hold for smaller models, which are in focus here. Importantly,
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we run a more systematic study of few-shot settings compared to [91, 224] in order to have a

fine-grained analysis of the merits and limitations of the two strategies. We note that there

exist more refined transfer strategies. Image-level adaptation of the strategy is proposed in [54],

adaptive fine tuning is explored in [53], while a combination of features from different layers is

used in [35]. While interesting, they are out of the immediate scope of this work, which focuses

on two opposite strategies.

Previous works focused on transfer learning for computationally-constrained devices showed

the benefits of freezing part of the networks [204, 209]. However, they focused on hardware

optimization [204] in order to reduce the overall energetic footprint of the implemented deep

models, or architecture quantization [209] to reduce their parametric footprint. Here, we take

a complementary approach and pay more attention to the upstream and downstream data, and

use network scaling to preserve the precision of downstream representations.

3.3 Study Setup

3.3.1 Datasets

Pre-training datasets. Following the common practice [35, 91, 224], we transfer data from a

single upstream dataset to all downstream tasks in order to assess the generalization capacity of

the upstream model. The authors of [224] underline the importance of mitigating meta-overfitting

when transferring knowledge. They advise to create the upstream model independently of any

knowledge about downstream data. Therefore, we generate different versions of pre-training

datasets by sampling ImageNet21k [27]. The classes included in these datasets are selected

randomly from the set of leaves classes that have enough samples per classes. A first series of

tests use a variable number of classes from 100 to 6000 and fixes the number of 500 samples

per class. These subsets are used to assess if downstream performance continues to increase or

saturates when adding new classes. A second series of tests simultaneously vary the number of

classes and samples to keep the total number of samples in the dataset constant. The size of

the dataset is 1M images and the number of classes varies from 1000 to 6000. This experiment
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could not be carried out with fewer classes since ImageNet does not contain enough richly-

represented leaf classes to reach the target dataset size. This setting corresponds to an upstream

training on a fixed budget. These subsets are used to assess whether class diversity or individual

class representations are more important. Note that there is no assumption made regarding the

similarity between the upstream dataset and the downstream ones. This is important in order to

simulate a situation in which pre-training is done without knowledge of the downstream tasks,

and thus ensure the generalization of the proposed transfer scheme.

Dataset Oxford-IIIT Pet [138] DTD [21] GTSRB [168] SVHN [127] FGVC [114] Cifar100 [93]
# classes 37 47 43 10 100 100

# training/class 99.432 39.979 619.512 7325.7 33.34 500
stdev training/class 1.534 0.144 457.377 2800.661 0.474 0

# test/class 99.135 39.979 293.721 2603.2 33.33 100

Table 3.1: Downstream datasets statistics.

Downstream datasets. A thorough evaluation of the usefulness of pre-training requires the

use of multiple and diversified downstream datasets [1]. We follow this observation and transfer

upstream models toward six downstream tasks: Oxford-IIIT Pet [138] is designed for pet race

recognition, Describable Textures Dataset (DTD) [21] provides different types of textures as

perceived by humans, GTSRB [168], Street View House Numbers (SVHN) [127] includes house

number images, FGVC-Aircraft (FGVC) [114] is designed for aircraft model recognition and

Cifar100 [93] includes commonsense-level classes [153]. These datasets cover a wide range of

visual tasks, and the conclusions drawn from a study of pre-training involving all of them are

robust. Their main statistics are presented in Table 3.1. Images are resized to match the input

size used during pre-training which is 224x224. Standard data augmentation [93, 64] which

includes random cropping and random horizontal flipping is applied for four datasets out of six.

Horizontal flipping is deactivated for GTSRB and SVHN because they mainly represent classes

that depends on the orientation.

3.3.2 Downstream data availability

It is important to study the influence of the amount of data available for downstream tasks since

pre-training is most needed when downstream data are scarce. We first run experiments with the
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full datasets, and then test with four few-shot learning regimes. For this we limit the number of

samples per class in the downstream task to 1, 5, 10 and 25. This is a finer-grained investigation

of the influence of data availability compared to [224], where a single few-shot learning setting

were used. To mitigate data selection bias, we follow a standard procedure in few-shot learning

and sample training images five times for each regime.

3.3.3 Downstream training strategies.

Following [224, 96], we run experiments with fine tuning and linear probing, two opposite strate-

gies. Fine tuning retrains all the layers of downstream models, while linear probing only retrains

the final layer. Fine tuning is usually preferred [91, 96, 224] since the full retraining of the

downstream model adapts it to the domain of the downstream task. Linear probing [161] is less

adaptive since it exploits pre-trained features as such. The latter can be interesting if the com-

putational capacity of the device is limited [204] and/or when the amount of available training

data is insufficient to learn a full model in an efficient manner. We note the existence of the

other downstream training strategies [53, 54, 35], but their usage is out of the immediate scope

here.

3.3.4 Training details

Training parametrization is done using a procedure which is inspired by the lightweight sweep

mode proposed in [224]. Fixed values are used for most hyperparameters across network archi-

tectures and tasks. While not fully optimized for each task, this mode allows a fair comparison

in a constrained environment.

The resolution of the input images used for training was classically set to 224x224 [64].

Upstream training. To make the results comparable we used the same hyper-parameters

for each training. All of them were trained during 110 epochs using the "1cycle" learning rate

scheduler [164]. We chose this scheduler because it allows fast training [164], which was important

in order to reduce the time needed to pre-train all the networks on all the different subsets of

ImageNet21K. The batch-size is set to 128, and the maximum learning rate for the OneCycleLR is
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set to 0.005. Also even if recent works demonstrate that increasing the weight-decay on the head

of the network lead to better downstream performances [223], we use a constant weight-decay of

5e-4 for all the layers to avoid any side effects.

Downstream training for full dataset. Two common training strategies for transfer are

considered here. Linear probing is deployed because it is well adapted for constrained environ-

ments [204]. We use a fully-connected layer for classification, which receives the features provided

by the upstream model. This final layer is trained for 100 epochs, with a ReduceLrOnPlateau1

learning rate scheduler based on the loss metrics with a patience of 5. This allow us to stop the

training if the learning rate reaches 10−8. The initial learning rate is set to 0.01. The weight

decay is set to a constant 5e-4 over the whole network for the same reason as the upstream

training.

Full fine tuning adapts all the layers of the architecture during downstream training, and past

studies indicate that it outperforms linear probing, even in few-shot learning scenarios [91, 224].

While it requires more computational power than linear probing, it can be implemented on edge

devices after optimization [204]. During this training we used the same parameters as for linear

probing except for the initial learning rate which is set to 0.001 to avoid damaging the pre-trained

features in the first steps.

Downstream training in a few-shot setting. A recent work pointed out that training

for a large number of epochs can be beneficial if downstream datasets are small [33]. However,

overfitting sometimes occurs if this process is run until its end. To accommodate these two

observations, we fine-tune for a large number of epochs (2500 for single shot), but stop the

process if the learning rate value is too low (10−7). Following [33], when increasing the number

of samples per class we divide the number of epochs by the number of samples per class to keep

the same number of updates during the different training. The learning rate is again reduced on

plateau.

1 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html
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Figure 3.1: Mean accuracy on the downstream tasks as a function of the number of classes, and
using 500 images per class for all tested deep architectures.

3.3.5 Deep Network Architectures

We choose MobileNetv2 [157], ShuffleNetv2 [112], Resnet18 [64] architectures for our experiments.

To make the results obtained with these architectures comparable they are all downscaled to reach

a size of 1M parameters. When scaling strategies are presented in the original papers, as it is

the case for MobileNetv2 [157] and ShuffleNetv2 [112], we follow them here. We use a similar

strategy for ResNet18, and also create a second version of MobileNetv2 to study the effect of

embedding sizes.

MobileNetv2. We selected MobileNetv2 [157] because it was designed for computation-

ally constrained environments. We test two version of the model scaling. The first version,

MobileNet868, is scaled using the scaling method from the original paper [157, 74] with a width

multiplier of 0.678. The number of channels in the output of the inverted residual blocks are

11, 16, 22, 43, 65, 108 and 217 and the size of the vector in output of the feature extractor

is 868. The second version, MobileNet151, is downscaled by fixing the embedding size of the

extractor to 151 and before using the strategy from [157] to adapt the rest of the network. We

created MobileNet151 to match the embedding size of ResNet151, and also test the influence of

the embedding size against MobileNet868.

ShuffleNetv2. We used the scaling method proposed in the original paper [112], to downsize

this architecture to 1M parameters. The output channels of each stage are multiplied by a subunit

factor (0.866), while leaving the first and the last convolution unchanged. Since the output of
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the extractor is 1024, we will refer to the downsized architecture as ShuffleNet1024.

ResNet18. ResNet18 [64] is a generic architecture which is often used in literature. It has

over 11M parameters in its full version and we downscale it to reach 1M parameters. The number

of channels in each residual block is reduced uniformly, using a 0.295 width multiplication factor.

Figure 3.2: Detailed accuracy for each downstream task with MobileNet868.

3.4 Experiments

3.4.1 Effect of a larger pre-training dataset

Past studies of pre-training [1, 49, 113] showed that larger upstream datasets translated into

higher downstream performance. However, it was noted that saturation occurs beyond a certain

point, and adding supplementary data is not useful anymore [1]. Given that past studies were

focused on large deep neural networks, it is interesting to analyze the behavior of smaller models

with respect to the number of upstream classes. We keep the number of images per class constant

at 500, regardless of the total number of classes included in the pre-training dataset.

We present the results obtained with different architectures in Figures 3.1a and 3.1b with a

linear probing and full fine tuning of downstream tasks, respectively. Performance increases a lot

when the total number of classes used for pre-training is small. An important gain is observed

between 100 and 500 classes, particularly for linear probing. The relative gain starts to decline

between 500 and 1000 classes, and even more between 1000 and 2000 classes. Then, performance

starts to saturate beyond 2000 classes. Some performance variability is observed in the 1000 to
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6000 classes range for all tested architectures and both training strategies when increasing the

number of classes, but they do not exceed 3 accuracy points between the lowest and highest

points. This finding is important insofar it indicates that increasing the number of classes is

not useful for deep architectures designed for constrained environments. Performance saturation

occurs for much smaller volumes of data compared to previous studies [1, 49, 113], which focused

on larger deep architectures and tested much larger upstream datasets. The conclusion is that

pre-training of compact deep architectures is effective with an upstream dataset which includes

approximately 1M diversified images.

An interesting observation is that fine-tuning-based training is clearly better than a direct use

of features learned upstream via linear probing. The accuracy gain when using the first strategy

is over 15 points for all tested numbers of classes of the upstream dataset, and all backbone

architectures. A similar finding was already reported in literature [91, 96] for larger deep archi-

tectures, and is confirmed here for compact architectures, which are adapted for computationally-

constrained environments. We also note that the gain offered by fine tuning over linear probing

is larger when upstream training is done with a low number of classes (up to 1000). This is

explained by the stronger sensitivity of linear probing to the quality of the upstream features,

due to the direct use of features versus an adaptation of them for downstream tasks during fine

tuning.

Figure 3.3: Mean accuracy on the downstream tasks when the total size of the dataset is constant
(1M images) and the number of images per class decreases when the number of classes increases.
The minimum number of classes is 1000 because ImageNet does not contain enough leaf classes
with enough images to run experiments with 100 and 500 classes.
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The performance obtained with the four tested architectures varies for both downstream

training strategies (linear probing in Figure 3.1a, fine tuning in Figure 3.1b). Globally, Mo-

bileNetv2 and ShuffleNetv2 behave better than ResNet after scaling to 1M parameters. This

is somewhat expected since the first two types of architectures were designed purposely for

computationally-constrained environments. Interestingly, the difference between MobileNet868 and

MobileNet151 is much smaller when the upstream models are fine tuned (Figure 3.1b) compared

to linear probing (Figure 3.1a). This indicates that models which have a wider output are more

adequate for linear probing if the overall number of parameters is equivalent. An explanation

resides in the higher dimensionality of the frozen features produced by MobileNet868, which fa-

vors the separability of classes downstream. This finding is in line with the well-known result

reported for wide residual networks [221].

We propose a per-dataset view of results obtained with linear probing and with fine tuning

in Figure 3.2. These results are reported with a MobileNet868, which provides the best overall

results in Figures 3.1a and 3.1b. Fine tuning is better than linear probing for five datasets out of

six and number of classes included in the upstream datasets. The differences are much stronger

for downstream tasks whose domain shift compared to the upstream task is larger. This is the

case of FGVC, SVHN and GTSRB, three datasets focused on aircrafts, house number plates

and street signs. The domains are not well represented in ImageNet and the retraining of all

weights during fine tuning is clearly needed. Linear probing is better than fine tuning only

for DTD . This result might be explained by the low total size of this dataset, which includes

only 1600 training images, combined with the large domain shift between ImageNet and this

texture-focused dataset.

We also report performance with downstream tasks without pre-training on average and per

dataset to assess the overall effect of pre-training. The difference between the best and worst of

the four tested architectures is 4 points in Figure 3.1c, but there are strong differences between

individual datasets (Figure 3.2c). The global comparison shows that the use of pre-training for

fine tuning brings a significant improvement compared to training from scratch. The dataset-level

analysis (Figure 3.2) gives more insight into the merits and limitations of pre-training with the

two downstream training strategies. Linear probing is effective for small domain shifts between
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upstream and downstream tasks (Oxford-IIIT Pet) or when the dataset size is small (DTD), but

provides lower performance in the other cases. This is expected since the features are not adapted

to each task. Fine tuning provides similar performance to that of training from scratch for easy

tasks, such as GTSRB and SVHN, and brings important improvements for FGVC, Oxford-IIIT

Pet and DTD.

3.4.2 Effect of pre-training with a constant-size dataset

We complement the analysis from Subsection 3.4.1 with experiments run with a dataset which

total size is kept fixed at 1M images. Here, the number of images per class decreases when

the number of selected classes increases. The dataset is balanced, meaning the samples are

distributed evenly between classes. This corresponds to an upstream training with a fixed sample

budget.

The figures 3.3a and 3.3b show the mean accuracy on the six downstream task with linear

probing and full fine-tuning. The global trends are similar to those observed in Figure 3.1, as is

the accuracy obtained with linear probing and fine tuning in different configurations.

Figure 3.4: Mean accuracy on the downstream tasks in low-shots four settings. The number of
image per class is constant (500) in the upstream dataset. It includes 1000, 2000, 4000, 6000
classes, from left to right.

Figure 3.5: Mean accuracy on the downstream tasks in low-shots four settings. The total size
of the upstream dataset stays constant (1M images). It includes 1000, 2000, 4000, 6000 classes,
from left to right.
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We observe a performance gain of up to two points when the number of classes in the dataset

changes from 1000 to 2000. Beyond 2000 classes, performance seems to oscillate, and is even

slightly decreasing for linear probing (Figure 3.3a). For this strategy, the obtained accuracy

decreases in all tested configurations except one when the number of classes increases from 4000

to 6000. This result can be explained by 2 opposite phenomena. While a more diversified pre-

training dataset is likely to lead to a better representation, a larger number of classes also makes

the upstream task more difficult. Our finding is consistent with the saturation of downstream

performance beyond a certain point, even when upstream performance is improved [1]. Here,

the improvement of the representation brought by the addition of new classes is degraded by the

growth of the complexity of the task, and by the scarcer representation of each class when the

total number of classes increases.

The comparison of the results for 4000 and 6000 classes from Figures 3.1 and 3.3 is interesting

because the total size of the upstream dataset is smaller in the latter configuration. There are 2M

and 3M images for 4000 and 6000 classes in Figure 3.1, but only 1M in Figure 3.3. This finding

shows that a representation of upstream classes with fewer images does not have a significant

impact on downstream performance.

Figure 3.6: Downstream accuracy for each downstream task with 6000 classes and 500 images
per classes for the pre-training.
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Figure 3.7: Downstream accuracy for each downstream task with 1000 classes and 500 images
per classes for the pre-training.

3.4.3 Effect of pre-training in few-shot scenarios

Pre-training is particularly useful when only few samples are available per class since deep neural

networks are data hungry [32]. Performance is reported for pre-training with MobileNet868 for 1M

parameters, the configuration which works best for downstream training with all data. We plot

accuracy for pre-training with 1000 and 6000 classes for each model to also assess the influence

of this parameter. We investigate the performance on downstream tasks for different few-shot

learning regimes. We again report results with two upstream pre-training strategies: the number

of images per class is constant in Figure 3.4 and the total size of the dataset is constant 3.5.

The observation that performance is very similar in the two upstream dataset configurations

remains valid for all tested few-shot settings. Interestingly, the obtained results indicate that

linear probing is significantly better than full fine tuning up to 10 samples per class. The full

training of the downstream models is difficult with very few samples due to the occurrence

of overfitting [215]. The gap between the two training strategies narrows when the number of

samples increases. Fine tuning becomes better than linear probing when 25 samples are available.

Naturally, this tendency is even clearer when all samples are available for downstream tasks, as

we discussed in Subsection 3.4.1. Our results are at odds with those reported previously [224],

regarding the superiority of fine tuning over linear probing even in a few-shot setting. The main

difference comes from the scale of the networks, with much larger architectures being tested
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in [224]. The observations made here show that the downstream training strategy should be

adapted depending on the quantity of data available for target datasets.

Performance of few-shot learning is similar for upstream dataset variants with a constant

number of images per class (Figure 3.4) and with a constant size dataset (Figure 3.5). This

echoes the results obtained when using the full downstream datasets. The difference between

pre-training with 1000 and 6000 datasets is larger for linear probing compared to fine tuning.

The accuracy gain between these two variants of the upstream dataset reaches approximately 2,

2 and 1.5 accuracy points for 1-shot, 5-shots and 25-shots settings, respectively. This is expected

since linear probing makes direct usage of upstream features, and thus benefits more from strong

pre-trained representations.

The global comparison of linear probing and fine tuning in few shot scenarios, presented

in Figures 3.4 and 3.5, is refined with a presentation of the accuracy per dataset. Figures 3.6

and 3.7 illustrate results for MobileNet868 pre-trained with 6000 and 1000 classes, respectively.

Linear probing is clearly better than fine tuning for datasets which are semantically related to the

content on the pre-trained models, such as Oxford-IIIT Pet and CIFAR-100. ImageNet [27], the

dataset used for pre-training, includes a large number of classes which describe the natural world,

which are also well represented in the three downstream datasets for which probing has good

results in few-shot scenarios. Linear probing accuracy is also better for DTD, a texture dataset

which does not benefit from fine tuning even when all its images are available (Figure 3.2). Fine

tuning is the better option for FGVC, SVHN, and GTSRB, the three datasets with a larger

domain shift compared to ImageNet.

3.5 Conclusion

We investigate transfer learning in image recognition under constraints through a comprehensive

empirical study, which analyzes the roles of the dataset used for upstream training, the perfor-

mance of different deep architectures, the results obtained with two opposite training strategies.

Our experiments confirm findings reported in previous studies regarding performance saturation

for large deep architectures [1, 49, 113]. It shows that the phenomenon appears faster in terms
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of scale of the upstream dataset, due to the compactness of tested architectures. As a result, the

conclusion to use increasingly larger pre-training datasets to improve performance [1, 49, 113]

does not seem justified for compact deep architectures. In contrast to past studies [91, 224]

which assert that full fine tuning is preferable to linear probing, our result shows which strategy

is better depending on number of images available. Linear probing is a good strategy when the

domain shift is small and/or when the available number of samples per class in the downstream

task is low. It is also interesting due to its lower computational complexity, which is important

in constrained environments [204].

We used variants of a fully-supervised dataset for pre-training. It would be useful to extend

it by testing weakly-supervised and unsupervised pre-training. It would be equally interesting

to explore ways to predict an adapted downstream training strategy based on an analysis of the

domain shift between the upstream and downstream tasks.
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Chapter 4

Impact of Time on Classification Accu-

racy

4.1 Introduction

Models trained on large-scale datasets provide robust representations [133, 145, 150]. Certain

hardware implementations leverage these robust representations to create highly efficient sys-

tems [204, 78, 79] using models with fixed weights. However, as discussed in the previous chapter,

fine-tuning only the linear classifier on a new task does not achieve the same transfer performance

as fully fine-tuning the entire network. Therefore, freezing the entire feature extractor to create

a more efficient implementation would limit performance on tasks that differ from the original

training task, resulting in limited reusability of the hardware.

However, even if the task remains the same, some other limitations are worth exploring.

Since networks are trained on data collected at a particular point in time, understanding how

robust pre-trained models are to temporal data shifts is critical. This analysis is crucial as such

shifts could make hardware relying on frozen weights obsolete over time.

In this chapter, we will explore several key questions. First, are recent deep learning models

robust to temporal shifts in data? What factors contribute to this phenomenon, and how can the

problem of temporal shifts be mitigated? Are all object types equally affected by temporal shifts?
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Finally, are there any metrics applicable to unlabeled data that could help predict whether a

class and/or a dataset is prone to temporal shifts that could negatively impact the pre-trained

model?

To tackle the challenge of temporal shift and address these research questions, we introduced

a new dataset called VCT-107. This dataset, consisting of 107 classes and 951,176 images sourced

from Flickr, was necessary because the majority of existing datasets lack temporal information.

One of the few exceptions, YFCC100M [184], also includes upload timestamps, but over too

short a period and distributed across too many classes, which limits the range of experiments

that can be performed.

In this chapter, we outline the steps taken to construct the VCT-107 dataset. We describe

the clustering method employed to reduce the annotation workload, as well as preprocessing

techniques, such as deduplication, used to eliminate highly similar images. This dataset allows

us to observe performance degradation when the test period does not correspond to the training

period. This performance loss increases as the gap between these two periods widens.

Next, using these new data, we present comparisons between different models. This allows

us to examine the influence of various architectures but, more importantly, different pre-training

strategies on robustness to temporal shifts. In this analysis, we also include CLIP models[145] to

determine whether models trained with textual data are more resilient. We further test factors

such as the number of samples from the original period used during training.

We experimented with several methods for adapting the network to mitigate the impact

of temporal shifts. These include updating the linear classifier using some or all of the data

retained from earlier periods. We also tested several domain adaptation methods [116, 118, 48],

as these offer solutions that require less storage, which can be an important consideration in

some embedded applications.

Finally, we analyze temporal shifts to determine which classes are the most affected. We

analyze embeddings using high-dimensional distribution distance to determine whether certain

distances can be used to determine classes impacted by temporal shifts. In practice this can

be useful in assessing if the model’s performance has degraded and need adaptation for some

classes.
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Dataset Yearbook [46] FMoW [20] AgeDB [125] AmsterTime [218] Core50 [109] VCT-107
Input Yearbook photos Satellite images Faces in the wild Landmarks Video frames Web images

Prediction Gender Land use Face identification,
Age, Gender

Visual place
recognition

Object
recognition

Object
recognition

Time range 1930-2013 2002-2017 ∼1890-2017 ∼1850-2020 / 2007-2020
#domains - - - 2 8 train + 3 test 5 periods
#classes 2 63 568 1,231 50 107
#samples 37,189 118,886 16,488 2,462 164,866 951,176

Table 4.1: Comparison of visual datasets containing temporal information.

Through this chapter’s experiments, we show that all models are sensitive to temporal shifts

to different degrees. Although strong pre-training helps mitigate the effects, temporal shifts

remain a significant challenge. Fortunately, updating the classifier alone is sufficient to prevent

substantial performance degradation, avoiding the need to adjust all network weights. In sce-

narios with limited storage capacity, domain adaptation algorithms provide an efficient way to

address the problem with minimal overhead.

Additionally, our experiments reveal that certain classes and class groups are more vulnerable

to temporal shifts. However, some high-dimensional distribution distances can help identify these

classes and indicate if the network needs to be adapted.

4.2 Related work

Visual classification datasets. Recent advances in visual classification learning have been

fostered by the publication of visual datasets [190]. Classification models are commonly evaluated

on CIFAR-100 [93], ImageNet-1000 [156] or on domain-specific, fine-grained datasets such as

Food-101[10], Stanford Cars [92] or Oxford Flower-102 [131]. However, these datasets are not

designed to challenge the robustness of models against distribution shifts.

Specific visual datasets have been proposed for the task of domain adaptation, including

MNIST with diverse backgrounds [41], Office-Home [197], Citiscapes[22] and DomainNet [140].

Datasets like ImageNet-R [65] or ImageNet-D [154] are designed to benchmark the robustness

of ImageNet-trained models against domain shifts. The CORE50 dataset [109] comprises 50 ob-

jects filmed in 11 settings and is built specifically for continual domain adaptation. In addition

to disparate backgrounds and image styles, distribution shifts may arise from different geogra-
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phies [5, 14, 151], weather conditions [73, 122], or ethnicities [106, 69]. Another line of work

proposes to use synthetic images. For example, Visda [141] focuses on the simulation-to-reality

shift, and SHIFT [171] uses a generative model to control shifts in scene elements for autonomous

driving.

Works on temporal shifts. One of the rare vision datasets with a distribution shift

directly caused by time is AmsterTime [218], a collection of 2,500 images matching a street

view in Amsterdam (using Mapillary navigation platform) to a historical archival image from

the same scene. AgeDB [125] is a dataset for face verification in the wild and contains temporal

information about a person’s age in each image. The Wild-Time benchmark [216] focuses on

temporal shift and covers two visual tasks: gender prediction with the Yearbook dataset [46] and

prediction of land use with satellite images from FMoW [20]. We compare our proposed VCT-

107 with these datasets in Table 4.1. Natural language processing works study temporal changes

in lexical semantics and propose methods to detect such changes, e.g., [95, 8]. The authors of [56]

distinguish between semantic shifts that are more cultural or more linguistic. We refer to the

survey of [97] for more details on semantic shifts in word embeddings. In our experiments, we

use models trained on visual data only and vision-language models.

Biases and generalization. Datasets partially represent the visual world and are in-

herently biased [190]. The authors of [36] identify three main types of biases, arising from (1)

selecting a subset of items that differ from the general population, (2) framing the object to

convey a specific message via the image composition, or (3) assigning different labels or wrong

semantic categories. Biases lead to distributional shifts between the data used to train a model

and the data encountered during its operational phase, challenging the model on unseen data.

Several lines of work aim to increase a model’s ability to generalize to new domains or tasks.

Generalization is favored by the quantity, quality, and diversity of its training data [90, 130, 133].

Pre-training with large corpora [191] and multiple data augmentation techniques [169, 137] is

now common practice. Multimodal language vision models such as CLIP [144] and DALL-E [146]

show strong transferability without per-sample labels. Their self-supervised training uses up to

billions of image-text pairs. Diversifying representations using features from intermediate layers

of a pre-trained model [35] or combining multiple encoders [178] can also improve transferability.
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Finally, transfer learning and domain adaptation focus on reusing knowledge gained for solving

a source task in a different but related problem [12]. We refer to the surveys of [188, 163] for a

detailed review of transfer learning and domain adaptation algorithms.

Continual learning. Continual Learning (CL) builds models that can adapt to their en-

vironment and incrementally develop more complex skills and knowledge [187, 6]. Domain-

Incremental Learning (DIL) [194] is a CL scenario that learns a classification model sequentially,

with each step in the sequence introducing data from a new domain. The set of target classes

remains the same throughout the process, but class distributions change. Thus, the challenge

is to recognize classes in an increasing number of domains without storing all previous data, a

challenge addressed in different ways. The approach of [98] does not require task boundaries

but relies on a costly clustering step. The work of [186] leverages self-supervised learning. An

adapter method [142] is applied in [135] to adapt a pre-trained model on the initial subset ef-

ficiently and then incrementally train a classifier based on a linear discriminant analysis layer.

Similarly, RanPAC [118] combines a Parameter-Efficient Transfer Learning (PETL) procedure

with a random layer that projects samples in a higher dimensional space to improve discrimina-

tion. FeCAM [48] also uses a fixed feature extractor and focuses on incrementally updating a

classifier based on the Mahalanobis distance.

4.3 Constitution of VCT-107

We describe the VCT-107 collection, processing, and labeling process. Then, we analyze the

resulting dataset.

Data collection. We downloaded images from the Flickr platform because its content covers

diverse visual concepts over a long interval, and its API facilitates the collection of images using

predefined temporal intervals. We collected images for five distinct periods: 2007-2008, 2010-

2011, 2013-2014, 2016-2017, and 2019-2020, denoted as 07/08, ... 19/20. Grouping images in

two-year intervals ensures enough training and test images for all classes. The one-year gap

between intervals facilitates the analysis by better separating the data subsets. We initially

collected data for the 22/23 period but dropped it because the number of images was insufficient
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for most classes.

To ensure diversity in the dataset, we prompt ChatGPT-4o to provide class names and

definitions from the following nine topics: plants, animals, food, buildings, vehicles, household

objects, electronic devices, sporting equipment, and apparel: Please provide a list of 50 popular

[TOPIC_NAME] types using a JSON format for the output. Since the LLM answers sometimes

include less than 50 items, the initial class count is 439. We verify the correctness of the proposed

class names and descriptions to filter out hallucinations. We then collect up to 3000 Flickr images

and associated metadata for each target year using Flickr’s internal search engine ranking. This

initial uncurated dataset includes nearly 11 million images.

Image rights and safety. Following [184], we collected only freely redistributable images,

but this approach did not provide enough samples per period for most classes. Therefore, we

broadened the search and collected Flickr images with all licenses. This change has practical

implications for the distribution of copyrighted content. We follow recent practice in sharing

visual datasets [160] and provide the URLs rather than the image files themselves.

Concerned about image safety issues [183], we instructed the annotators to remove any

image that could be considered “not safe for work” and to flag any image that might have

been taken without the subject’s consent. We provided them with clear textual safety guidelines

and interacted with them when in doubt. If an image from a cluster was flagged, we removed

the entire cluster.

Dataset preprocessing. We preprocess the dataset to minimize the labeling effort. We

compute the embeddings of all the collected images using a ViT-B/14 pre-trained using Di-

noV2 [133]. We remove near-duplicates using a 0.9 cosine similarity threshold between each pair

of images uploaded in the same year. We cluster images using K-means [139] with 50 clusters

per year. We keep only clusters involving at least two Flickr users to ensure a minimal social

consensus on the class’s visual representation. We use these clusters to accelerate the annotation

process.

Content annotation. We implement a dedicated labeling interface (illustrated in the ap-

pendix). Each row of images represents the visual summary of a cluster and contains at most ten

images. These images are sampled uniformly based on their L2 distance to the cluster centroid

64



and shown in increasing order of distances from left to right in the interface. This sampling

relies on the hypothesis that there is a correlation between the distance to the centroid and the

representativeness of an image for a given class. We provide annotators with textual instructions

illustrated by examples. The instructions require them to annotate the rightmost image of each

row, including a depiction of the visual class according to the LLM’s definition. They state that

the object may be located in any image region and that other objects can be visible. Three

participants contributed to the annotation task, and one participant annotated each cluster. To

reduce the annotation effort, the participants first label the image subset from 2020 because it

contained the fewest images. Then, we rank the classes according to the number of relevant

images labeled for 2020 and keep the 125 most populated classes. Finally, we ask participants to

label the images from the remaining nine collection years for these 125 classes. This step provides

a fast labeling of the images, but some noise might subsist. Next, we check the annotations of

the test subset to ensure a reliable evaluation.

Candidate images for the test set are sampled uniformly from the selected clusters and labeled

by the other annotators. They are included in the final test subset if the three annotators agree

on their relevance. The specific annotation of test images also validates the clustering-based

annotation. We find that the three participants agree on the relevance of over 98% of the images

sampled from the clustering-based annotations. We keep a class only if it has at least 40 valid

test images and 100 training images per year.

VCT-107 summary and illustration. The dataset includes 107 classes from 9 topics,

ranging from 31 animal classes to 2 types of electronic devices. The dataset includes between

2881 and 21237 samples per class, with at least 483 images per period. The class names and

sample distribution are detailed in the appendix. The images were uploaded by over 248772 Flickr

users, who each contributed an average of 4.4 images. The minimum, mean, and maximum user

counts per class are 1106, 4289, and 11593, respectively. These numbers ensure that VCT-

107 class representations benefit from social consensus. Nevertheless, a selection bias occurs, as

with any visual dataset [36].

Figure 4.1 illustrates the impact of time on visual classes. Due to space restrictions, we

sample three images of four classes taken during the earliest and most recent VCT-107 peri-
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Figure 4.1: Samples representing four VCT-107 classes during the 2007-2008 and 2019-2020
periods. The car, laptop, and skyscraper classes illustrate the appearance changes of human-
made objects whose design changes over time, shifting the representations learned for these
classes. Lion has a stable appearance, and the representation shift is much smaller in this case.

ods. Changes over time in the representations of human-made objects are mainly determined

by the lifespan of these objects [162], itself determined by technological advancements, visual

design trends, regulation, and brand strategies [198]. Vehicles illustrate the complex interaction

between these factors with a continually evolving technological and visual design. For instance,

the shift toward electric batteries changes the appearance of cars to match technical require-

ments [4] but also to highlight their difference from fossil-fuel-based vehicles and increase their

appeal [124]. Similar considerations apply to mass-consumption electronic devices, such as lap-

tops and smartphones [2]. Their usage and representations depend on technical advancement and

their functions for users of different ages, incomes, and world regions. Interestingly, the visual

representations of human-made objects mix the old and the new, highlighting users’ fascination

for the past [149]. Figure 4.1 shows that users upload vintage cars during both periods. Visual

representation changes are also observed in architecture, with increasing stylistic diversity and

the availability of new building materials and techniques [55].

The impact of time is reduced for natural classes such as lions because their appearance does

not significantly change. However, trends also appear, particularly for classes closely associated

with humans, such as pets. For instance, the popularity of dog breeds evolves [67], influencing
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the class’ visual representation. Equally important, framing biases [36] might still affect their

depictions regarding how they are photographed and in which contexts.

While we focus on the impact of time, multiple factors influence visual class depictions.

VCT-107 classes are subject to a selection bias [36, 190]. This bias is amplified in operational

conditions due to the long-tailed nature of visual datasets [214]. Another important bias comes

from the demographic characteristics of the users of Flickr, with variations of social status,

ethnicity, gender, and location across time [132]. In particular, some regions of the world tend to

be more represented than others in visual datasets [151]. This leads to an imbalanced depiction

of visual concepts, particularly for classes such as buildings. The cameras used to take the

photos influence image quality and can affect the representations learned. Finally, disparities

due to lighting conditions or image colorimetry also occur [180]. Together, these factors create

temporal shifts in visual classes. We quantify their effect on image classification in Section 4.4

and provide an embedding-based analysis in Section 4.5.

4.4 Experiments

4.4.1 Experimental setup

We split VCT-107 into five temporal periods, as described in Section 4.3. We run experiments

with the entire training set and in low-shot scenarios by sampling 200, 100, 50, or 20 images per

period. To assess the models’ generalization ability, we train them on each period and measure

their test accuracy on the other periods. In some experiments, we also accumulate training

samples over time to evaluate the effect of retraining from scratch. The test set of each period

is fixed across experiments and contains 80 images per class.

We use SGD with a momentum set to 0.9, a weight decay set to 4 ·10−5, and a cosine learning

rate scheduler initialized at 0.1. We train for 100 epochs for full training and 20 epochs for

linear probing (LP). This transfer learning method freezes all parameters except the classification

layer [91]. Unless otherwise stated, data preprocessing is the same and consists of rescaling

the images to 256 · 256 pixels, then randomly cropping to 224 · 224 pixels and normalizing
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using ILSVRC [156] statistics. We will justify this choice of data augmentation with empirical

experiments in the next subsection.

4.4.2 Data Augmentation Selection

Throughout the rest of Section 4.5, we employ standard data augmentation techniques. Below,

we present the results of preliminary tests that guided our choice of these specific augmentations.

To do so, we used ResNet18, as it is the easiest model to train from scratch with a “small”

dataset such as VCT-107. We selected three sets of data augmentations. (i) The first does not

include any data augmentation. (ii) The second uses the most common data augmentation oper-

ation, which consists of randomly cropping the images and then flipping them horizontally with

a probability of 0.5. (iii) Finally, the third set of data augmentations includes additional trans-

formations, such as random adjustments to luminosity, saturation, contrast, and hue, randomly

rotating the images, random cropping, and finally randomly flipping the images horizontally.

The factors for luminosity, saturation, and contrast are picked from the range [0.6, 1.4], the hue

factor is chosen from the range [-0.4, 0.4], and the rotation is uniformly selected from the range

[-20°, +20°].

In Figure 4.2, we can see that the model is affected by the change in the data collection

period, regardless of the data augmentations chosen. However, we note that not performing any

data augmentation generally reduces the model’s accuracy.

In Figure 4.3, we observe that in the case of linear probing with a pre-trained model, applying

either more data augmentation (option (iii)) or no data augmentation at all (option (i)) leads to

worse performance. This can be explained by the fact that the feature extractor was pre-trained

using only the data augmentations corresponding to the intermediate data augmentation set

(option (ii)).

In conclusion of these experiments, we decided to only use the standard data augmentations

that correspond to those used in the pre-training of the backbones. We also maintain these

values for tests with non-pre-trained networks because the results from Figure 1 show that we

do not gain any improvement by using additional data augmentations.
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Figure 4.2: Accuracy when training a ResNet18 from scratch on one period and testing on the
others. The experiment was done with three sets of data augmentation.

Figure 4.3: Accuracy when training a linear probes on a ResNet18 on one period and testing on
the others. The pretraining was done with ILSVRC. The experiment was done with three sets
of data augmentation.

69



4.4.3 Impact of the training strategies

Figure 4.4: Accuracy across temporal periods when training with the entire VCT-107 dataset
using three different backbone models. To facilitate comparison, the range of values is displayed
from 80% of the maximum accuracy value of each backbone.

We evaluate the capacity of pre-trained and fully-trained models to mitigate the temporal

shift. Full training involves the entire VCT-107 dataset because it requires more samples. We

use a smaller ResNet18 instead of a ViT as it requires less sample to train. Therefore in Figure

4.4 we experiment with: (1) a ResNet-18 [64] trained from scratch, (2) a ResNet-18 pre-trained

on ILSVRC [156] (3) a DinoV2 ViT-B/14 pre-trained on the LVD for easier comparison with

subsequent experiments. The primary objective of these experiments is to assess the accuracy

stability over time, not to compare the accuracies obtained with each backbone. Figure 4.4

shows that the backbone trained from scratch exhibits the largest performance variation. This

highlights the importance of pre-training for mitigating temporal shifts. The pre-trained ResNet-

18 comes second, with the ViT-B/14 network pre-trained using DinoV2 achieving the highest

stability across time. The results from Figure 4.4 confirm that combining strong pre-training

and linear probing constitutes a good baseline for mitigating temporal shift.

However, due to significant architectural differences, the model trained using DinoV2 is not

directly comparable to the ResNet-18 model. A comparison with more similar architectures is

necessary to assess whether all pre-training methods yield the same robustness to temporal shifts.

To isolate the effect of DinoV2’s unsupervised pre-training, we compare its generalization perfor-

mance against a ViT-B/16 model pre-trained in a supervised manner on ILSVRC. Additionally,
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we include a ViT-B/16 variant pre-trained on the full ImageNet-21k to evaluate the impact of

pre-training dataset size. We evaluate those by training linear probes with 200 samples per class

and period. This removes the issue of having an imbalance in the training data, which may

slightly alter our results. We provide the results for all combinations of training and testing

periods in Figure 4.5.

With 200 samples per period, DinoV2 achieves a higher average accuracy and improves

generalization over time. DinoV2 experiences a maximum accuracy drop of 7.2%, whereas the

ViT-B model pre-trained on ILSVRC sees a loss of up to 9.0%. Although the ViT model pre-

trained on ImageNet-21k performs slightly worse than DinoV2, it also exhibits a maximum

accuracy loss of 6.7%. These results suggest that the primary limitation of the ILSVRC pre-

training method lies in the quantity of data rather than its supervised nature.

Finally, we also consider the increasingly popular Contrastive Language-Image Pre-training

(CLIP)[145], as its multimodal approach could offer greater robustness. To maintain consistency

with our previous experiments, we experimented with two models: the standard ViT-L/14 and

a ViT-B/16. For linear probing, we attach the linear classifier after the projection to the shared

latent space, retaining only the vision component of the model. This method follows the original

approach described by Radford et al.[145]. Figure 4.5 indicates that temporal shifts also affect

multimodal models. However, the ViT-B/16-based CLIP experiences a maximum accuracy loss

of only 5.5%, which is lower than that of the other ViT-B models, suggesting that CLIP training

provides increased robustness.

The next subsection provides zero-shot classification scores for each period to illustrate their

relative classification difficulty.

Figure 4.5: Accuracy across time for cross-period training and testing. All models use linear
probing with 200 samples per class and period.
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2007-08 2010-11 2013-14 2016-17 2019-20
86.6% 87.4% 86.7% 85.3% 84.0%

Table 4.2: Zero-shot accuracy of ViT-B/16 CLIP model on each period

4.4.4 Zero-shot classification with CLIP

In the previous experiment of Section 4.4, we noticed that the accuracy on the last period is

lower than the others. The temporal shift does not seem to be the only reason for these results.

Indeed, even when the training and testing periods remain identical, the accuracy in the 2019-

2020 period is slightly lower. This leads us to hypothesize that the relative difficulty of each

period varies to some extent.

To investigate this, we measure the zero-shot accuracy achieved with CLIP models, which

provide a baseline accuracy for each period without any VCT-107 training data. This approach

offers an unbiased assessment unaffected by the training period. Additionally, this experiment

helps confirm that, despite the overfitting observed when training on a specific period, training

a linear classifier remains more effective than relying on CLIP’s zero-shot capability.

To realize this experiment, we used the same ViT-B/16 CLIP as we used in Subsection 4.4.3.

To measure the zero-shot accuracy, we follow the original approach described by Radford et

al [145]. For the classification, we used the CLIP scores. Those are computed using the cosine

similarity between the two modalities in the common embedding space. We used the names of

the classes used to create the dataset as input for the textual part of the model.

The results, presented in Table 4.2, indicate that the final period (2019-2020) is indeed slightly

more challenging than the others. Nevertheless, the zero-shot accuracy is consistently lower than

the accuracy obtained by training a linear classifier, as shown in the previous subsections. This

confirms the advantage of using a trained linear classifier.

4.4.5 Impact of the training set size

The size of the training set strongly influences the generalization ability in static datasets [190,

130]. Following the findings from Subsection 4.4.3, we use DinoV2 with linear probing. We ex-

72



Figure 4.6: Accuracy over time for DinoV2 ViT-B/14 and linear probing for n = {200, 100, 50, 20}
samples per class and period.

periment with n ∈ {200, 100, 50, 20} training samples per class and period to assess the influence

of time in low-shot settings. We repeat each experiment 4 times for each low-shot scenario using

four random seeds for sampling and report average results in Figure 4.6.

Reducing the number of images per class harms the overall performance since individual class

representations progressively weaken. Figure 4.6 highlights that when n decreases, the accuracy

on periods other than the training period decreases slower than on the same training period.

The average accuracy obtained when testing on the same period as training drops by 5.2% when

n goes from 200 to 20. Meanwhile, the average accuracy for the other periods only drops by

3.3%. We also observe that when testing on periods other than the training period, the relative

accuracy loss decreases slowly as n decreases. In this case, the average accuracy loss is 3.8% and

2.0% for 200 and 20 training images per period, respectively. This result highlights the ability

of strong pre-training to handle temporal shifts. This is important in practice, as many real-life

datasets include limited training data per class [165].
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Algorithm DinoV2 ViT-B14
LVD-142m [133]

ViT-B16 Aug-
Reg IN21k [191]

#Stored
params

NCM 92.6 90.7 82 · 103
FeCAM-1 92.7 92.6 672 · 103
FeCAM-n 94.3 92.9 63 · 106
RanPAC 94.8 94.6 108 · 106
Replay20 93.4 92.5 1.6 · 109
Accumulate 94.1 93.0 16 · 109

Table 4.3: Average accuracy for six algorithms and two pre-trained backbones. The
algorithms are ordered by the number of parameters added to the backbone. The storage
requirements are computed for images of size 3×224×224. The best results are shown in
bold, and the second-best are underlined.

4.4.6 Domain-incremental learning

Figure 4.7: Accuracy comparison when accumulating samples (“Accumulate” and “Replay_20”)
and using linear probing vs. updating the model using incremental learning (“FeCAM-1”,
“FeCAM-n” “NCM”). Experiments with a pre-trained DinoV2 ViT-B/14 network.

The experiments in Subsections 4.4.3 and 4.4.5 do not include any mitigation strategy other

than using a strongly pre-trained backbone. Here, we test the effectiveness of continual learning

(CL) [136] algorithms against temporal shifts. Domain-incremental learning (DIL) [194] is a

sequential learning process where each step corresponds to a new domain. Here, a domain is a

data collection period, e.g., 2007-2008, 2010-2011, etc. The set of classes to recognize remains

the same, but their distribution changes. Each step of the process aims to obtain a model that

can recognize all classes, regardless of the data collection period. We follow the DIL protocol

from [118] and include all T = 5 periods in the test set. The average accuracy is computed as

the mean value of the test accuracy across the T training steps: A = 1
T

∑T
t=1Acc(Mt,

⋃T
i=1Di),

where Mt is the model trained at step st on data collected at time t and Di is the test dataset
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corresponding to period i.

We experiment with several competitive CL algorithms using a fixed encoder. The Nearest

Class Mean classifier (NCM)[81] updates a running mean embedding vector for each class and

predicts the class using the cosine similarity to class prototypes. FeCAM [48] also stores a mean

vector for each class and computes a shared feature covariance matrix (“FeCAM-1”) or one feature

covariance matrix per class (“FeCAM-n”), used to compute the Mahalanobis distance between

the embedding of a test sample and the mean class vectors. RanPAC [118] combines a PETL step

with a random projection from dimension 768 to 10,000 to better separate classes. At inference,

distances to class means are computed using the Gram matrix. These algorithms do not store

past images, which is useful when storage or privacy issues must be considered. Still with a

fixed encoder, we also consider linear probing with a cumulative replay buffer of 20 images per

period (“Replay-20”) and a cumulative replay buffer containing all the training images seen so

far (“Accumulate”).

We report the average DIL accuracy in Table 4.3. The results show that DIL algorithms

match or outperform naive replay and accumulation strategies while requiring at least 250 times

less additional memory. RanPAC and FeCAM-n, the two algorithms that perform the most

refined modeling of past knowledge, obtain the best accuracy. Figure 4.7 indicates the DIL

algorithms reduce the accuracy losses for test data from past periods but are ineffective for

future data. The results confirm the effectiveness of CL algorithms in mitigating the effects of

domain shifts when combined with a pre-trained model. However, higher accuracies tend to be

obtained with higher memory requirements.

4.5 Temporal shifts analysis

We investigate the importance of temporal shift in VCT-107 by analyzing the embedding space

and the performance variations per general topics over time.
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Figure 4.8: Accuracy across temporal periods for the general topics included in VCT-107. The
results are obtained using a DinoV2 backbone with linear probing and 200 training images per
class. We exclude Electronic Devices because this topic has only two classes.

4.5.1 Topic-based analysis of temporal shifts

We discuss the effect of temporal shifts for eight VCT-107 general topics by refining the analysis

of results from Subsection 4.4.5 obtained with 200 images per class and period. Figure 4.8 shows

that the intra-period accuracy varies significantly depending on the topic. Household Objects

and Apparel are the most challenging topics, while Animals and Plants are the easiest ones. The

effect of temporal shifts is also more significant for human-made classes than natural ones. The

fact that time has variable effects for different topics is important in practice since it indicates

that temporal adaptation could be tailored at the class level.

4.5.2 Embedding-based analysis of temporal shifts

After observing the effect of the time shift on VCT classes, we aim to find a measure of the shift

that can be used to predict its impact. Measuring the impact would otherwise require training on

new data, which implies continuous labeling of incoming data. This is important, as the metric

could indicate when and on which classes the model should be adapted.

We compare the following distances: (1) the L2 distance between the centroids of two dis-

tributions, (2) the Fréchet Inception Distance [30] (FID) used by [120] to measure the gap
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between two distributions when studying generalization, (3) the energy distance [52, 177] that

tests for equal distribution in high dimensions without distributional assumption [177] and (4)

the Sinkhorn distance for optimal transport, a popular approximation of the Wasserstein dis-

tance [26, 119, 201].

We measure the distance of each class’s mean DinoV2 embedding distributions for each pair

of temporal periods in which the training and test periods are distinct. We compare these

distances to the loss of accuracy for the same pairs of periods. Let Ac,origin and Ac,target be the

test accuracy on the class c for training and the target periods. The relative loss in accuracy is

given by: (Ac,target −Ac,origin)/Ac,origin. For readability, in Figure 4.9, we average the distances

and the accuracy losses by general topic for every pair of a train and a test period. In this figure,

the values are displayed for each distance D, topic T , and the pair of periods porigin and peval.

c ∈ T represents the classes of the topic T . The values displayed are :

D(T, porigin, peval) =
1

card(T )

∑
c∈T

D(Sc,porigin , Sc,peval)

Accuracyloss(T, porigin, peval) =
1

card(T )

∑
c∈T

Ac,peval −Ac,porigin

Ac,porigin

With Sc,p the sample of the class c and the period p.

Figure 4.9: Relative accuracy loss over time for the classes of the general VCT-107 topics as
a function of distribution shift measured with four metrics. Results aggregate distances and
accuracies for individual classes for the assessed training-test period pairs.

We observe that for each considered metric, the average distances generally grow with the

accuracy loss. FID and Sinkhorn’s algorithms successfully assigned higher values to the two

most affected topics. They could be used in practice to decide whether to update the visual

representation of a topic (or even an individual class).
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Figure 4.10: Relative accuracy loss over time for the classes of the general VCT-107 topics as a
function of distribution shift measured with four metrics. In this figure, all the samples belonging
to the topic are considered as samples from a single distribution. This differs from the results
given in Figure 4.9 for which the distances were computed between class distributions instead of
entire topics.

However, while this measure provides a good indication of the distances that can be used to

predict performance losses due to temporal shifts and identify the affected classes, these measures

are not always practical. Indeed, we consider a class at a given period as a distribution, but

the data may not necessarily be separated by class. Therefore, we also test the case where the

distributions between which we measure the distances contain multiple classes. In this case,

we group them by topics. Intuitively, the distributions will have a greater chance of being

multimodal.

The distance represented on the x-axis thus becomes:

D(T, porigin, peval) = D(S⋃
c∈T c,porigin , S

⋃
c∈T c,peval)

Intuitively, the distribution will have a greater chance of being multimodal. This can be

important for FID as it supposes multivariate normality [30]. However, this dataset doesn’t

count enough samples to realize a reliable multivariate normality test. Therefore, we could not

test this hypothesis. In Figure 4.10, we can see that in this case, FID fails to assign smaller values

to Sporting Equipment than Household Objects. This would have been the expected result as the

topic Sporting equipment suffers from less loss in accuracy when generalizing to other periods.

Meanwhile, the results for Sinkhorn stay very similar to those observed in Figure 4.9. We

would, therefore, consider Sinkhorn as a better alternative when measuring the temporal shift

for multiple classes at once.
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Figure 4.11: VCT-107 topic distributions shift measured with the FID distance as a function of
the temporal interval between training and test periods. We use the same colors for topics as
Figure 4.9.

Finally, we check if the magnitude of the shift increases with the time difference between the

two distributions by the FID metric. We average the distances corresponding to each topic based

on the temporal interval between the target period and the others. Figure 4.11 confirms that the

average distance grows for all topics as the interval increases. This confirms the temporal aspect

of the domain shift, which differs from other types of domain shifts that can be evaluated using

specific datasets like ImageNet-D [154].

4.6 Discussion and conclusion

We introduce VCT-107 to analyze the impact of time on visual classification models. We ex-

periment in several settings and observed an accuracy drop when training and testing during

different periods. The performance loss generally grows with the temporal distance between the

training and testing periods. We also observe that the classification accuracy loss depends on

the type of classes.

Practical guidelines. Based on these results, we propose the following recommendations

79



for improving classification performance under temporal shifts:

• Use self-supervised pre-training with linear probing to reduce the performance variability over

time. The results confirm the improved generalization ability of pre-trained models [133]

in a temporal context. The relative pre-training performance depends on the implemented

type of learning, the dataset size, and the dataset diversity, but the relation is not always

straightforward. In particular, our experiments indicate that self-supervised visual learning

outperforms multimodal training in an image classification task despite visual models having

a smaller parametric footprint and using a smaller training set.

• Implement continual learning algorithms to further mitigate performance loss on past data

if retraining with all historical data is not an option. CL algorithms require the storage of

samples or statistical information but make the training process much more efficient. They

benefit costly learning processes, such as training foundation models with huge datasets [23].

• Consider the type of visual classes when learning over time. Our experiments confirm the

intuition that human-made objects are more impacted by temporal shifts. However, there

are important differences between the different types of human-made objects. The analysis of

class embeddings indicates that using an appropriate distance can predict the need to update

the training set. Adapting the update rate for different classes is particularly interesting when

training foundation models, whose updates are needed to keep pace with novelty but are also

costly.

Limitations and future work. We discuss limitations and suggest future work directions

to mitigate them.

• The dataset is sourced from Flickr. Adding supplementary sources would increase the gener-

ality of the findings, but access to photos with temporal metadata over such a long period is

not straightforward. We can only hope that social platforms will facilitate researchers’ access

to data, but we observe an inverse trend in practice.

• The reliance on third-party data when building large datasets is needed, which induces re-

distribution limitations. Acknowledging the potential reproducibility limitations, we follow

recent practices [160] and provide the image URLs to respect image rights.

• We tested pre-training and continual learning to mitigate temporal shifts. Other techniques can
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be considered to counter this shift, including (1) PETL methods [72] with adapters designed

for temporal shifts, (2) domain adaptation methods [163] to better preserve past knowledge

through time, and (3) imbalanced learning methods [60, 148] to rebalance performance when

the number of samples per class varies within a period or between them.

• VCT-107 covers several general topics, enabling their analysis over time. However, the dataset

would benefit from including additional topics and enriching existing ones to broaden the

analysis. It would also be interesting to analyze the effects of time for finer-grained visual

classes. These developments are left for future work, building on the proposed dataset creation

pipeline.

• The images included in VCT-107 are labeled for a single class, following a protocol commonly

used in image classification [27, 93, 195]. It would be interesting to add multi-label annotations

to all dataset images to test the effect of class co-occurrences during classification.

• We fixed classes over time to facilitate comparisons across periods. An enriched version of the

dataset could include classes that appear over time. This enrichment would be beneficial for

fine-grained datasets.

• The dataset measures the effect of time at the year scale. Refining the temporal scale to enable

stream learning would be interesting, as proposed in [17].

We hope this work will stimulate the community’s interest in considering the temporal di-

mension of image classification. This research topic can increase the robustness of deep models,

especially for classes whose visual representations change frequently over time.
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Chapter 5

Parameter-Efficient Fine-Tuning

5.1 Introduction

Deep models pretrained with large amounts of data [133, 145, 150] provide reusable visual rep-

resentations in downstream tasks via transfer learning. As we have seen in Chapter 2 freezing

the model’s topology and parameters allow the creation of very efficient hardware [204, 78].

However, in Chapter 3, we also observed that when transferring to a new task, only training

the final classifier (linear probing) often underperforms compared to the full fine-tuning. This

limited ability to adapt to new tasks, also observed in other works [35, 224], would reduce the

reusability of the created hardware in the case of the network topology and its weights fixed into

the integrated circuit. The second most common method, full fine-tuning, adapts the model’s

representations by updating all parameters. However, this approach does not allow for hardware

optimization. It also requires costly retraining [224] and proves suboptimal in few-shot learning

scenarios due to insufficient training data, as discussed in Chapter 3. Therefore, a balance must

be found between modifying a larger portion of the network (compared to linear probing) to

enhance adaptability and freezing a greater part (compared to full fine-tuning) to reduce data

requirements and training costs and at the same time to allow for hardware optimization[204, 78].

These reasons motivate us to explore other fine-tuning methods in which most of the parameters

are fixed.
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Parameter-efficient fine-tuning (PEFT) methods are developed to update only a small subset

of the network parameters and balance adaptability and efficiency well. PEFT is particularly

relevant in computation- and memory-constrained environments, allowing only a fixed parametric

budget. For resource-constrained on-device learning one must implement fine-tuning directly

on the hardware [199]. PEFT is implemented with semi-structured [61] or structured [75, 72]

modifications of the pretrained models. Semi-structured also adjusts individual parameters, such

as specific weights or biases, rather than larger components, allowing for more granular updates

to the model.

Recent methods [61, 227] estimate weight importance to select updatable parameters. They

use sensitivity [102], a measure encoding the loss variation for each parameter, to drive the PEFT

process. The exact sensitivity formulation provides a robust estimation of weight importance.

However, its computation is impossible in practice since it would require recomputing the metric

on the training set for each new possible parameter value. Instead, a Taylor-based approximation

was first introduced for pruning [102] to enable computational tractability. A further approx-

imation uses a one-step gradient descent computation for PEFT [61]. In this chapter, we will

study those methods.

Analyzing the impact of the second approximation leads us to two findings. Firstly, the

approximation leads to inconsistent behavior that favors fine-tuning layers with a small weight

standard deviation. We highlighted this inconsistency and undesirability by constructing coun-

terexamples through a specifically designed adversarial attack. We propose an alternative metrics

that improves the robustness of the approximated sensitivity. Secondly, we observed that the

second approximation is highly noisy. This led us to question the relevance of using this ap-

proximation for an unstructured selection of weights [61]. Therefore, we proposed an alternative

method that only relies on structured modification. In this approach, we used the sensitivity

to resize the LoRA layers instead of using fixed sizes. This way, layers with fewer sensitive

weights are assigned smaller LoRA layers, avoiding the need for unstructured fine-tuning. This

change also brings the methods closer to being adaptable for AI accelerators that leverage frozen

weights, as these specific hardware systems only utilize structured fine-tuning [204, 78, 79]. Our

method also respects the parametric budget throughout the fine-tuning process, unlike existing
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methods [227] that start with a larger LoRA and progressively prune them.

5.2 Related Works

Transfer learning [232] enables the reuse of pretrained representations on different target tasks.

The availability of models pretrained on massive datasets can significantly improve the down-

stream performance [133, 1, 145]. Finding a good balance between effectiveness and efficiency

is challenging when transferring representations. Linear probing [91, 161] represents an extreme

case of transfer learning. It freezes the pretrained model and only trains a linear classification

layer. This approach maximizes efficiency at the expense of effectiveness when the gap between

the pretraining and the target datasets is large [129]. At the other end of the spectrum, full

fine-tuning updates the entire network and facilitates the bridging of larger domain gaps [224].

However, it also entails a significant computational cost that might be prohibitive, especially for

hardware implementations of transfer learning [78, 204]. Equally important, full fine-tuning is

inefficient in few-shot settings [189] often encountered in real-life applications.

Parameter-efficient fine-tuning aims to maximize transfer performance with few trainable

parameters. PEFT methods belong to two main categories. Addition-based approaches ac-

commodate the target task by adding parameters and operations to the initial network. For

instance, adapters insert, in series, two linear layers and a non-linearity into transformer mod-

els [72]. Another approach requires supplementary operations in parallel without the possibility

of merging them [181]. Addition-based approaches are not adapted in constrained contexts be-

cause they entail a supplementary computational cost during inference. The second category,

parametrization-based PEFT, seeks to avoid this overhead by working under a predefined tuning

budget constraint. A first stream of works adjusts network weights [219] or biases [222]. Another

work direction adds operations during training and merges with the base model during deploy-

ment. LoRA modules [75] insert two fully-connected layers with a small intermediate dimension

alongside the existing fully-connected layers. These parallel modules are merged in the network

before inference. LoRAs constitute the basis of numerous subsequent methods [59, 108, 226]. We

build on this approach and seek a way to adapt the size of LoRAs while respecting a predefined
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parametric budget during the PEFT process.

Sensitivity aims to select the most relevant parameters for modification during fine-tuning.

Different tasks rely on adapted variants of this metric. Sensitivity predicts the influence of

changing a given weight on model performance in pruning methods [102, 213]. It selects the

number of bits allocated to different network parts in mixed quantization task [207]. Sensitivity

is used for structured PEFT to determine which layers should be modified [99, 227, 61]. The

AdaLoRA method [227] uses it in NLP to reduce the size of LoRA modules as training progresses.

This functioning is problematic in PEFT on a budget because it only respects the predefined

parametric budget at the end of the process but not during fine-tuning. The authors of [61]

recently employed sensitivity for semi-structured PEFT in the visual domain [61]. First, the

structured part of the method attributes parameters to LoRAs with a predefined size to layers

whose estimated sensitivity is sufficiently large to accommodate a LoRA module. Given that

the module size is predefined, only a part of the budget is usable. Then, the unstructured part

assigns the remaining parameters to the most sensitive individual weights from other layers. This

semi-structured approach is appealing for tuning under constraints since it enables a fine-grained

allocation of trainable parameters at the start of the training process. Therefore, our work will be

based on the latter approach and only mention the methods that apply sensitivity to prune LoRA

modules to explain the different approximations. However, our sensitivity analysis indicates that

the approximations reduce the metric’s usefulness.

5.3 Analyzing bias in sensitivity approximation

PEFT [75, 72] aims to fine-tune a small number of parameters whose update is relevant for down-

stream tasks. Recent semi-structured [61] and structured [227] PEFT methods use sensitivity to

allocate the parametric budget. Sensitivity encodes the loss variation once the parameters are

fine-tuned in PEFT or removed in network pruning. It is defined as:
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Si = L(Dt, w)− L(Dt, w
∗) (5.1)

w∗
n =


n = i wi +∆wi

n ̸= i wn

(5.2)

Where wi is the ith parameter and ∆wi the variation of wi after modification. That is, after

fine-tuning or prunning depending on the application.

The exact computation of this metric would require training network weights individually to

determine which ones are most impactful during PEFT. This computation is unfeasible, and a

Taylor approximation was introduced in pruning tasks [102] to define sensitivity as:

Sp
i = −δL(Dt)

δwi
∆wi (5.3)

This formulation is usable for pruning weights or prunning LoRA because ∆wi is known and

equal to the opposite of the weight value[227]. This information is unknown if the sensitivity is

computed on the model weights before fine-tuning them. In such a case, it cannot be considered

as pruning and training the weights would be necessary to know their final values. Therefore, a

further approximation is needed. Its implementation uses a one-step gradient descent[61], with

∆wi ≈ −lr · δL(Dt)
∆wi

. The sensitivity definition becomes:

St
i = lr ·

(
δL(Dt)

δwi

)2

(5.4)

Semi-structured PEFT [61] uses the sensitivity approximation from Equation 5.4 at two gran-

ularity levels. Sensitivity is aggregated at the layer level to place LoRA modules of a predefined

size in the structured part. It is used at the individual weight level when a LoRA module cannot

be associated with a layer [61]. The approximation is assumed to preserve the properties of the

exact definition from Equation 5.1. In particular, any change in the layer that does not impact a

weight’s ability to improve empirical risk (loss) should not alter its measure of importance. This
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Figure 5.1: Illustration of the lack of robustness of the current definition of sensitivity. We
perform a simple adversarial attack on a layer that only changes standard deviation locally
without affecting the global fine-tuning process. This attack should not change the sensitivity
estimation, but it does. We modify the definition of sensitivity to counter the attacks and improve
robustness. See Section 5.3 for details.

assumption is valid for Equation 5.1, as it measures this very capacity, but the approximate sen-

sitivity (Equation 5.4) does not satisfy this property. The approximation leads to inconsistency,

as a weight can take very different sensitivity values despite generating the same improvement

in the empirical risk.

We highlight this lack of robustness by introducing a simple adversarial attack. We focus this

attack on two successive layers, allowing the modification of the activation amplitude. Note that

these layers should not be separated by any activation other than a ReLU. Given a pretrained

ViT-Base [29], we modify the trainable weights of the first fully connected layer of the MLP in

the sixth encoder and those of the linear normalization layer that precedes it. We exemplify

the attack with a single layer, but it applies to any similar architecture part. We multiply the

activations of the fully connected layer by a positive value α and those of the normalization

layer by the inverse value 1
α . The induced perturbation has a local effect but theoretically does

not modify the network as a whole. However, it might impact the optimization of the network

hyperparameters and thus change the obtained solution in practice. In particular, a variation

of α modifies the standard deviation of the attacked fully connected layer without affecting the
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Figure 5.2: Illustration of relation between mean sensitivity value of the layers of a ViT-Base
model computed using Equation 5.4 and the standard deviation of layer weights.

sensitivity of the layer weights following Equation 5.1. Changing α induces a modification of the

approximate sensitivity computed with Equation 5.4. This variation is highlighted in Figure 5.1

and underlines the lack of robustness of the measure. We propose a modified version of the

sensitivity formula (Equation 5.5) to address this issue and maintain a constant sensitivity value

during the proposed attack. This adjustment follows directly from the chain rule of derivatives.

The approximate sensitivity definition becomes:

S∗
i = lr · σ2

i ·
(
δL(Dt)

δwi

)2

(5.5)

Where σi is the standard deviation of the layer containing the weight i. The approximation

introduced in Equation 5.5 is not affected by the attack, as illustrated in Figure 5.1. This is

the expected behavior as modifing α does not change the behavior of the network, only the

amplitude of the activatation between the two layers. It enables a more robust estimation of the

importance of weight.

We complement the analysis of sensitivity robustness with a second experiment that measures

the relation between each layer’s average sensitivity and standard deviation. The analysis uses a

pretrained ViT-Base [29] without modification. We present the results obtained for all network
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layers in Figure 5.2. These results show high sensitivity values for layers with a low standard

deviation. This trend is similar to the one obtained after an attack (Figure 5.1).

The above analyses indicate that the sensitivity approximation based on one-step gradient

descent lacks robustness. Its use induces a biased estimation of weight importance. The experi-

mental results reported in Section 5.5 further support this finding.

5.4 Toward Adaptive Structured PEFT on a Budget

The authors of SPT [61] use sensitivity to select the individual weights fine-tuned in the un-

structured part of their method. We argue that the approximation given in Equation 5.4 is only

partially suited for selecting specific weights for fine-tuning. We support this with an experiment

assessing the relation between the empirical value ∆wi measured after fine-tuning and the esti-

mated value of ∆wi found with the one-step gradient descent. The experiment applies SPT to a

pretrained ViT-Base [29] for the CIFAR100 dataset [93]. A good sensitivity estimation would re-

sult in a strong linear correlation between the two measures. The weights that have significantly

changed during fine-tuning should have a high gradient value before training in Figure 5.3, but

this is not systematically the case. Added to the bias analyzed in Section 5.3, this finding further

questions the suitability of semi-structured PEFT based on sensitivity estimation.

We observe a weak correlation, with more weights placed in the bottom-left and top-right

quarters of Figure 5.3. Consequently, we hypothesize that the layer-level sensitivity estimation

can support fully structured PEFT under constraints. Here, the challenge is to respect a prede-

fined parametric budget throughout the fine-tuning process, unlike the AdaLoRA approach that

starts with larger modules and reduces them progressively [227]. The module size for a given

layer, reflected in the LoRA rank, depends on the share of sensitive weights of that layer and

the size of the layer. Assuming that the PEFT budget is n, we select the n weights having the

highest sensitivities in the network, as estimated by Equations 5.4 or 5.5. We define the LoRA

rank for the jth layer as:
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Figure 5.3: The actual weights shift when fine-tuning 100.000 random weights in a network
compared with the one-step gradient used to approximate sensitivity in Equation 5.4. Results
for a ViT-Base architecture fine-tuned on a few-shot variant of CIFAR100 dataset [93].

rj =
kj

(dinj + doutj )
(5.6)

With: kj - the number of sensitive weights on the jth layer; dinj and doutj - the size of the input

and output vectors for the jth layer.

Equation 5.6 attaches LoRAs to all layers with rj ≥ 1. It correlates LoRA size and sensitivity

and optimizes the parametric budget allocation from the start of the PEFT process.

5.5 Experiments

We adapt the methodology proposed in [61] for the evaluation. We report results using the top-1

accuracy (%) globally and per dataset. The main modifications come from a different choice of

PEFT budgets to make the evaluation more realistic and from the exclusive use of the pretrained

model with the best performance in [61].

5.5.1 Methodology

Datasets. We evaluate the proposed contribution using the VTAB-1k benchmark [224], designed

for few-shot transfer learning. It includes 19 visual classification tasks belonging to three groups:
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(i) Natural tasks with natural images, (ii) Specialized tasks including images collected with

specialized devices, such as medical equipment, and (iii) Structured tasks comprising images

sampled from synthetic environments. Datasets contain 800 train and 200 validation images and

a variable number of test samples. Unlike [61], we do not use the validation images because their

usage reduces the comparability, as explained below.

PEFT parametric budgets. We experiment with budgets representing only a tiny proportion

of the total ViT-Base/16 size. We report results with 1 · 105, 2 · 105, 4 · 105 and 6 · 105 trainable

parameters. Predefined budgets make the evaluation more realistic and reproducible than the

procedure introduced in [61]. The authors use the validation sets to select the best budget

per target dataset for each method and then average results. This choice reduces comparability

since the parametric budget is method-specific. Equally, scores are artificially boosted by running

multiple training sessions per configuration and reporting only the best outcome.

Pre-trained backbone. We use a standard ViT-Base/16 vision transformer pretrained in a

supervised manner on ImageNet21k [27]. This model has 12 encoder blocks and approximately

86 million parameters.

Compared methods. We compare our method to the recently introduced SPT method [61] and

ablated versions of it. We use the SPT-LORA version because it performs best in the original

evaluation from [61] and does not add parameters to the final architecture. In particular, SPT

works better than the original LoRA [75], complete fine-tuning and linear probing, and we do

not reuse these baselines here. We test three ablated versions of SPT to assess the method

components’ contributions thoroughly. We compute sensitivity using the existing definition from

Equations 5.4 to ensure comparability with the full version of the method. SPTuns
layer is a fully

unstructured method that assigns parameters to layers based on the aggregated layer sensitivity

and distributes tunable parameters randomly within the layer. This version uses sensitivity but

ablates the structured part of SPT. SPTsemi
rand is a semi-structured method that preserves the SPT

distribution of the parametric budget between LoRAs and individual weights and the LoRA

ranks. Both components are placed randomly in suitable parts of the backbone. SPTsemi
layer is

semi-structured and uses layer sensitivity to place LoRAs and individual weights. However, it

assigns weights randomly within each layer, thus ablating the individual weight assignment from
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SPT. These baselines are non-deterministic, and we present results averaged over five runs. We

run experiments with a single parametric budget for the ablated versions of SPT.

We name the proposed adaptation of LoRA for a restricted parametric budget LoRAar and

test two versions based on the existing and proposed approximate sensitivity definition from

Equations 5.4 and 5.5. These variants are named LoRAt
ar and LoRA∗

ar, following the notations

from the corresponding equations.

Robustness to attack. We complete the evaluation with a robustness-oriented experiment.

We deploy the attack described in Section 5.3 on the first fully connected MLP layers of each

ViT/Base/16 architecture to compare the robustness of sensitivity estimations defined in Equa-

tions 5.4 and 5.5. We report results for α = 0.01, a value that alters the amplitude of the weights

in the attacked layers.

parameters SPTuns
layer SPTsemi

rand SPTsemi
layer SPT [61] LoRAt

ar LoRA∗
ar

1 · 105 - - - 70.62 71.21 70.78
2 · 105 69.81 70.28 70.74 70.99 72.06 71.91
4 · 105 - - - 72.40 72.79 72.84
6 · 105 - - - 72.25 72.57 72.92

Table 5.1: Average accuracy of the different PEFT methods tested with four prede-
fined parametric budgets for the 19 VTAB-1k tasks. SPTuns

layer and SPTsemi
rand are non-

deterministic, and we average results for five runs corresponding to different random se-
lections of tunable weights. These runs have similar accuracies, with differences between
the best and worst runs being lower than 0.05 points.

5.5.2 Results

Aggregated results. We present the accuracy obtained with the compared methods in Ta-

ble 5.1. The proposed LoRAt
ar and LoRA∗

ar outperform SPT for all parametric budgets, with

maximum gains for 2 · 105. The obtained result confirms the hypothesis that the parametric

budget is better spent in a structured way than a semi-structured one. Structured PEFT is

better suited for implementation under constraints, which is the scenario of interest here. This

observation adds a further advantage to the proposed contribution. We provide results with the

versions of the proposed method using the two approximations of sensitivity defined in Equa-
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SPT 72.7 91.2 70.0 99.2 91.3 84.2 54.1 83.0 94.6 83.2 68.9 79.6 66.2 47.5 79.6 76.1 45.3 26.0 36.0 80.4 82.4 57.0
LoRAt

ar 71.8 91.1 71.4 99.1 91.4 85.9 54.6 84.5 95.3 82.9 70.6 82.2 66.8 49.3 81.0 78.6 46.5 28.0 38.1 80.8 83.3 58.8
LoRA∗

ar 72.5 91.8 71.9 99.1 91.1 84.7 55.4 85.2 95.8 84.2 70.7 80.2 62.9 48.9 79.8 78.9 48.2 28.7 36.3 80.9 84.0 58.0

Table 5.2: Results for individual datasets and categories of datasets when fine-tuning
2 · 105 parameters for each method.

tion 5.4 and Equation 5.5. The LoRAt
ar variant that uses the existing sensitivity measure works

better for 1 · 105 parameters. The two methods provide similar results for the intermediate bud-

gets. LoRA∗
ar optimized with the proposed sensitivity estimation from Equation 5.5 becomes

better for 1 · 105. We remind the reader that this sensitivity formulation mainly aims to improve

robustness. However, it also provides performance that is similar to the existing definition. Fi-

nally, performance saturates for all methods when increasing the parametric budget. However,

LoRA∗
ar saturates later compared with SPT and LoRAt

ar. This behavior enables performance

improvement for larger available budgets.

SPT ablation. We hypothesize that the unstructured parameter allocation is suboptimal to

motivate the move from semi-structured to structured PEFT. We ablate SPT to gain insight into

the roles of its components. SPT and SPTsemi
layer results are close, indicating only a minor role of

the sensitivity-driven individual weight selection within a layer. The gain is in the majority due

to assigning more weights to more sensitive layers, as proven by the accuracy drop observed for

SPTsemi
rand, which allocates LoRAs and individual weights randomly, compared with the sensitivity-

based allocation in SPT. Finally, the fully unsupervised sensitivity-based allocation of individual

weights (SPTuns
rand)gives the lowest performance. These findings support the proposed shift toward

fully structured PEFT.

Detailed results. We present results per dataset and category in Table 5.2. They confirm

the global tendency presented in Table 5.1 and highlight interesting differences between datasets

and categories of datasets. The proposed variants of structured PEFT outperform SPT for 17

datasets out of 19. CIFAR and Flowers are the two exceptions. CIFAR is well-represented in

the pretraining dataset, and transfer is easier. Flowers accuracy is nearly equivalent and also
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St 17.5 38.8 44.5 75.5 38.5 52.8 5.0 78.9 92.2 59.5 73.6 77.6 59.1 40.4 69.5 68.3 28.3 5.4 29.8 50.3
S∗ 44.1 89.9 66.4 98.7 88.0 79.0 51.5 83.7 93.1 78.0 70.2 78.0 61.3 49.1 80.0 77.5 47.1 33.2 35.8 68.7

Table 5.3: Accuracy of SPT when using Equation 5.4 and 5.5 (our) on a pretrained ViT-
Base with standard deviation imbalance created with the protocol described in section
5.3.

saturated. While the methods based on resized LoRA obtain better scores on all Specialized

and Structured datasets, the results are closer for the Natural category. These findings indicate

that adapting LoRA position and size improves transfer when the domain shifts between the

pretraining dataset and downstream tasks.

Results under attack. To test the robustness of the two sensitivity approximations, we attack

the first fully connected MLP layers of the ViT-Base [29]. The attack with α = 0.01 is sufficiently

strong to change the distribution of LoRA modules in the network if the sensitivity estimation

lacks robustness. In Table 5.3, we observe a 20.7 points accuracy gap when attacking the existing

definition of sensitivity (Equation 5.4). The corresponding performance drop is only 2.2 points

for the corrected version from Equation 5.5. Moreover, the difference comes from one dataset,

while the attack affects S∗ only marginally for the other datasets. We explain the performance

variation for the modified version by the interplay between the local changes brought by the

attack and the optimization of the network hyperparameters. Even if the equivalent network

could be obtainable theoretically, convergence cannot be guaranteed.

5.6 Conclusion

We analyze the existing sensitivity approximation and question its suitability for the unstructured

part of semi-structured PEFT approaches. We highlight its inconsistency via a simple attack and

propose an alternative definition of the metric that mitigates the effect of the attack. We also

show that using sensitivity to select individual weight is suboptimal. Based on these findings, we

95



propose a shift toward fully structured PEFT. The proposed approach adapts the size of LoRAs

based on the aggregate sensitivity of each network layer. This contribution is a step toward

adapting PEFT methods to constrained environments [199, 204, 78].

5.7 Limitations and future directions

In this section, we discuss the main limitations of our contribution and the future research direc-

tions aimed at addressing them. First, while the proposed approach improves PEFT accuracy,

it remains dataset-dependent. The long-term objective is to propose methods adapted for fixed

fine-tuning for multiple tasks with layer-level sensitivity estimation. Having a fixed transfer ar-

chitecture for all datasets would facilitate the design of hardware that leverages fixed weights

more effectively. In our case, the choice of tunable and fixed weights is different depending on

the datasets. This may not be an issue when the task remain constant (as in the case studied

in Chapter 4), but it could limit the reusability of the hardware for other tasks, as the optimal

choice of tunable and fixed weights would differ across tasks.

Another limitation is using standard LoRA, which targets models with mainly fully connected

layers such as ViT [29]. While these architectures are becoming increasingly popular, CNNs are

still commonly used in constrained environments [204, 78]. Therefore, it could be useful to explore

how this methods performs in the context of the recent adaptation of LoRA for convolution

layers [231].

Finally, we observed that under our proposed attack, the new sensitivity metric also loses

accuracy in a few datasets. Further work could be done to analyze the fine-tuning process in

more detail and improve robustness even more without compromising accuracy.

96



Chapter 6

Conclusion

This final chapter presents a synthesis of the findings and contributions of this PhD work. It is

also an opportunity to take a step back and discuss the main limitations of this work, as well

as its potential impact. We then address future work and research directions that would be

interesting to explore.

6.1 Summary of key findings

Throughout this thesis, we have obtained results that contribute to answering the general ques-

tions raised in the introduction section. motivated by the emergence of hardware designs specif-

ically tailored to leverage fixed deep neural networks, we raised the following questions:

• How can we effectively pre-train a feature extractor for transfer learning?

• What are the limitations of a frozen network?

• How can we transfer a pre-trained network while minimizing the number of parameters to

be fine-tuned?

First, in chapter 3, we found that when their size is on the order of millions of parameters,

feature extractors can be pre-trained on a reduced subset of data, confirming previous assump-

tions. The emphasis, therefore, should be placed on the choice of this data. Moreover, we also
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demonstrated that increasing diversity by increasing the number of classes does not prevent sat-

uration. Interestingly, the number of classes has little impact on downstream performance, even

if the model accuracy on the upstream task drops due to a large number of classes. We also con-

firmed that freezing the network leads to a significant loss of performance, except in cases where

the amount of data on the target task is very small. In the context of this thesis, these initial

results show that a network embedded in a fully frozen architecture will be difficult to transfer.

Moreover, training it with even more data is not a viable solution, contrary to what is sometimes

observed with very large networks. This significantly limits the reusability of the circuit, leading

us to conclude that frozen hardware should support more advanced transfer methods than simple

linear probing.

Second, we analyzed the effect of time on image classification performance. Unlike in the

previous chapter, we do not impose constraints on model size in Chapter 4, and we consider

large models trained in a self-supervised manner as well as with multimodal data (e.g., CLIP).

Although we empirically demonstrated the sensitivity of pre-trained models to temporal shifts,

we also showed that adapting the classification head is sufficient to mitigate the problem. Fur-

thermore, methods from incremental learning can also be used when resources are limited. These

potential adaptations suggest that hardware based on permanently frozen models will not be-

come obsolete. Our results also highlight that the shift is not as significant for all classes and that

distance measures between high-dimensional embeddings can be used to estimate which ones are

most likely to experience a drop in performance and therefore need to be updated. The dataset

we provided will allow future research to improve adaptation methods or test the robustness of

future architectures.

Finally, as we showed in Chapter 3, more significant adaptation than a simple update of

the classification head is necessary when switching tasks. Advances in the field of parameter-

efficient transfer learning, therefore, seem essential for hardware architectures relying on frozen

networks. In Chapter 5, we analyzed the importance metric used to determine which parame-

ters to fine-tune in recent PEFT methods. This analysis revealed a bias in the metric, which

favors the selection of weights in layers with a high standard deviation in weight values. This

leads to inconsistencies that can be amplified in the presence of scaling factors, such as those
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found in quantization processes. Consequently, we proposed an adjustment to the sensitivity

approximation to mitigate this bias. Moreover, current methods leverage importance metric for

both structured and unstructured PEFT, but our analyses reveal that both existing and new

approximations are too noisy to effectively select individual weights for fine-tuning. This finding

questions the usefulness of it for unstructured fine-tuning. Hence, we propose an alternative based

on low-rank adaptation, whose ranks are determined before transfer based on the sensitivity of

network parameters. This approach is particularly interesting because previous hardware with

frozen models [204, 78] does not leverage unstructured freezing. Therefore, our new method and

the updated, more robust importance metrics represent a step toward adapting state-of-the-art

parameter-efficient fine-tuning for frozen-network-based hardware.

Overall, these results have broadened the understanding of transfer learning and even pro-

posed a new method. While hardware accelerator design was one of the motivations for this

work, the vast majority of the results presented here will be more generally useful for engineers

and researchers seeking to pre-train networks or transfer them to new tasks.

6.2 Limitations

The findings, methods, and resources proposed in this thesis contribute toward adapting transfer

learning to constrained environments. Below, we discuss the main limitations of each contribu-

tion.

A first series of limitations arises from the rapid development of deep learning models observed

the moment when the work was carried and today. This development impacts the proposed

results at different levels. In chapter 3, we focus on supervised learning to analyze the impact

of the pre-training dataset size and number of classes, setting aside the self-supervised methods.

Although self-supervision does not use image labels, varying the number of classes would allow

us to observe the impact of a form of diversity on transfer performance. In Chapter 4, we extend

our analysis to recent self-supervised [133] and multimodal models such as the CLIP model [144].

However, large vision models (LVMs) are becoming increasingly prevalent [9]. Therefore, it would

be interesting to extend the work on temporal shift robustness to these models. On the other
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hand, the opposite phenomenon can also be observed. Chapter 5 contributes to the improvement

of recent parameter-efficient fine-tuning methods, which are mainly tested on transformers. For

ease of comparison and reproducibility we did the same with our work on bias in the sensitivity

metrics and the new PEFT method. But research described in section 2.3 focuses on older,

more compact models. It would be interesting to extend the implementations in Chapter 5 to

older CNN-type models using the version of LoRA proposed in [231].

Although it represents a new analytical tool in a domain that lacks such resources, the new

VCT-107 dataset also has limitations. As with any dataset, it has biases that mainly come from

the single data source, Flickr, that induces a selection bias and the limited number of classes.

Moreover, the study does not describe the influence of certain phenomena, such as variations in

class imbalance, which could be caused by trends or fads, for example. We hope our work will

inspire further development of this under-researched topic and help overcome this limitation. A

second limitation is that the classes used are generic and we do not study the effect of time for

fine-grained visual classes. The restriction of its use for research purposes due to the copyright

of the images; producing a commercially usable dataset would, unfortunately, be very expensive.

The newly proposed sensitivity-based parameter-efficient fine-tuning (PEFT) method re-

mains highly dependent on the dataset. The method should be adapted to generalize better

across datasets, as for some applications, such as those mentioned in the subsection 2.3, a dataset-

dependent method is not practical. However, we believe that future work can mitigate this issue,

as we will discuss in the next subsection.

6.3 Future research directions

We discuss below future research directions that stem from our work and might mitigate current

limitations.

First, as explained in the limitations, the analyses given in Chapter 3 can be extended to

cover self-supervised pretraining, in which the number of classes is still important as it brings

more diversity, in this case without the negative aspect of making the pretraining task harder.

Moreover, we saw that all the CNNs tested, once downscaled to one million parameters, saturate
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at the same point. Therefore, it would be interesting to see if the number of samples in the up-

stream dataset before saturation of the transfer performance can be estimated using the number

of parameters in the model.

Following the Chapter 4 results, an exciting research direction would be to try making the

models more robust to future temporal shifts based on already observed temporal shifts. Also,

as stated in the limitations, it would be interesting to extend the analysis to VLM, especially

to see if the temporal shift can be mitigated using only textual data. This seems possible as

current research shows that vision models can recognize objects and characters using only textual

descriptions [50].

It would also be useful to improve the VCT dataset by using other data sources to reduce

various selection biases in it and add finer-grain classes. The use of distance metrics to detect

temporal shifts could also benefit from this as, for example, the number of samples is currently

insufficient to test the normality of the distribution of a class or the dataset in the embedding

space.

Improving PEFT methods and addressing their dataset-specific nature, which we described

as a limitation to their application in hardware discussed in section 2.3, seems to be a logical

continuation of the current work. An exciting approach to explore would be a PEFT-aware pre-

training. In this scenario, we would aim to force certain weights to concentrate the adaptability

capacity, making them the ones to modify regardless of the target task. For instance, by including

an importance metric for transfer, such as the one we propose in Chapter 5, into the loss function

during pre-training.

At the hardware level, it would be interesting to explore the implementation of parameter-

efficient fine-tuning methods and measure their impact on the latency and energy requirements

of ASICs, such as [79]. This would help improve reusability and guide future improvements in

PEFT methods.
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Appendix A

Résumé en français

Cette thèse explore des techniques d’apprentissage par transfert efficientes pour des environ-

nements contraints, où la réduction du nombre de paramètres ajustables devient centrale.

Dans un premier temps, nous examinons l’impact de la quantité de données de pré-entraînement

ainsi que du nombre de classes associées. Lors du transfert, nous étudions également la méthode

de transfert employée ainsi que le nombre d’exemples par classe dans la tâche cible. Nos résultats

montrent que, durant le pré-entraînement, les performances saturent après une certaine quantité

de données, et qu’une fois ce seuil atteint, le nombre de classes a peu d’influence, même s’il est

élevé et que la précision du modèle sur la tâche de pré-entraînement diminue. Nous observons

également que l’ajout de nouvelles classes, bien qu’il augmente la diversité des données, n’améliore

pas significativement les performances en aval après saturation. Nous avons également observé

que, bien que l’apprentissage d’une couche de classification linéaire soit généralement moins per-

formant qu’un fine-tuning complet, il peut être plus efficace lorsque la quantité de données est

faible et que la tâche cible est similaire à la tâche source.

Nous étudions ensuite l’impact du temps sur les extracteurs de caractéristiques basés sur des

modèles neuronaux profonds. Pour cela, nous introduisons un nouveau jeu de données qui met

en évidence le manque de robustesse des modèles préentraînés face aux décalages temporels. Ce

dernier rassemble des images tirées de Flickr représentant 107 classes et réparties en 5 périodes,

basées sur leurs dates de mise en ligne. Nous évaluons la capacité de plusieurs stratégies de
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préentraînement et méthodes d’adaptation à mitiger ce problème. Cela inclut des préentraîne-

ments multimodaux, supervisés ou non, ainsi que des méthodes d’apprentissage incrémental.

Nos résultats soulignent l’importance de mettre régulièrement à jour les modèles pour s’adapter

aux changements dans le temps des distributions des classes visuelles, même lorsque le modèle

est fortement préentraîné. De plus, la vitesse de ce changement varie selon les classes, et nous

testons les capacités de plusieurs métriques de distances entre distributions à prédire les classes

subissant une perte de performance.

Enfin, nous proposons une nouvelle méthode d’apprentissage par transfert optimisée en ter-

mes de paramètres ajustables. Cette méthode se base sur notre découverte d’un biais dans

l’approximation de la métrique de sensibilité, permettant de déterminer les paramètres impor-

tants à ajuster. Ce biais, favorisant les couches ayant une grande variance dans les valeurs des

poids, a été éliminé grâce à une nouvelle approximation de la sensibilité. Nous réalisons une

attaque adverse pour mettre en évidence ce biais et tester la robustesse de l’ancienne et de la

nouvelle formulation de la sensibilité face à des variations de l’écart-type entre les différentes

couches. Les analyses effectuées montrent également que les approximations faites pour déter-

miner les poids à fine-tuner à partir de la sensibilité initiale sont fortement bruitées. Cela remet

en cause l’utilisation de cette métrique pour guider un fine-tuning non structuré. La méthode

fournit donc également une alternative au fine-tuning non structuré grâce à des adaptations dont

le rang est déterminé avant le transfert, en fonction de la sensibilité des paramètres du réseau.

Les gains apportés par cette méthode ont été mis en évidence sur un ensemble de 19 datasets.

Ainsi, nos travaux contribuent à l’amélioration de l’apprentissage par transfert dans des envi-

ronnements contraints en optimisant l’utilisation des données de pré-entraînement, en renforçant

la robustesse des modèles face aux décalages temporels, et en proposant une nouvelle méthode

de fine-tuning efficiente en termes de paramètres. Ces contributions ouvrent de nouvelles per-

spectives pour répondre aux défis d’efficacité et de généralisation dans des contextes variés où

les paramètres des modèles peuvent être figés.
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