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Chapitre 1

Introduction (version francaise)

1.1 Organisation du manuscrit de theése

Cette these est articulée autour de trois chapitres. Le premier expose le travail issu de 1'article
"Scales" [Hel24], en francais "Echelles". Ce chapitre s’inscrit dans la théorie de la dimension avec des
applications en probabilité, en systémes dynamiques et en analyse fonctionnelle. Les échelles sont
des familles d’invariants de plusieurs natures : Hausdorff, paquet, recouvrement, quantisation ... et
de différents taux de croissances, contenant ainsi la dimension ou l'ordre et permettant en particulier
I’étude d’espaces de dimension infinie. Dans ce chapitre, les théoréemes établis de comparaison entre
les différentes versions de dimensions sont étendus au cadre plus général des échelles. Ces résultats
de comparaisons sont ensuite appliqués pour décrire la géométrie des espaces fonctionnels, de la
mesure de Wiener et de la décomposition ergodique d’un systéme dynamique conservatif.

Le second chapitre présente une collaboration avec P. Berger et N. Gourmelon qui a mené a
I'article intitulé "Every Diffeomorphism is a total renormalization of an arbitrarily close to identity
map" [BGH24]], en francais : "Tout difféomorphisme est la renormalisation totale d’une application
arbitrairement proche de I'identité". Nous améliorons un résultat fondateur de D. Turaev [Turl15b].
Précisément, nous démontrons que pour tout 1 < r < oo, tout difféomorphisme a support compact
dans la composante connexe de I'identité, sur une variété de la forme R/Z x M peut étre obtenu
comme renormalisation totale d’'une application C"-proche de I'identité. Autrement dit, il existe une
application g arbitrairement proche de I'identité telle que 'application de premier retour de g dans
un certain domaine soit conjuguée a f, et de plus, I'orbite du domaine recouvre toute la variété.
Notre preuve utilise de nouveaux outils qui bénéficient de propriétés de la théorie des groupes et
des algebres de Lie.

Enfin, le dernier chapitre s’inscrit dans la théorie de la bifurcation. Dans cette partie sont dis-
cutées les premiéres étapes établissant le lien entre la typicité au sens de Kolmogorov et la généri-
cité localisable en dimension 3. En particulier, une preuve alternative et géométrique d'un résultat
de Gochenko-Meiss-Ovsyannikov [GMOO06] est proposée. Leur résultat décrit I’apparition de points
périodiques totalement paraboliques par perturbation lisse de difféomorphismes présentant des tan-

gences homoclines. Cette nouvelle preuve permet d’obtenir une version paramétrique de ce résultat.

Mots clés : Systemes dynamiques, théorie de la mesure, dimensions, espaces de dimension infinie,

systemes dynamiques différentiables, renormalisation, tangence homocline, bifurcation.



1.2 Motivations

Plongeons d’abord dans le cadre général de I’étude des systemes dynamiques et de leur propen-
sion au chaos. Nous considérons ici des dynamiques discrétes qui décrivent I’évolution d’un systéeme
en temps discret. Dans ce contexte, un systeme dynamique est donné par un espace de phases X
doté d’une certaine structure : topologique, différentielle, mesurable. Les états possibles du systeme
étudié correspondent a des points de cet espace X. Dans le cadre déterministe, ’évolution d’un
point est donnée par un endomorphisme f : X — X compatible avec la structure dont X est muni.
Par exemple : continu, différentiable, mesurable. L’information sur I’évolution temporelle d’un état

initial x € X est donnée par son orbite :

Orb(z) :={z, f(z), fo f(x), fo foflz). ..}

L’orbite est simplement le chemin que le systéme suit en temps discret dans ’espace des états, étant
donné une condition initiale z € X.

Des objets naturels dans I’étude des systémes dynamiques sont les attracteurs. Ce sont des en-
sembles d’états invariants par la dynamique et qui capturent dans le futur les trajectoires voisines.
Les attracteurs peuvent prendre diverses formes, comme des points fixes, des orbites périodiques,
ou encore d’autres ensembles présentant des géométries plus complexes et affichant des comporte-
ments étranges, voire chaotiques. L’étude de leurs géométries a contribué a la popularisation de la
géométrie fractale et au développement de la théorie de la dimension. Plus généralement, la théo-
rie de la dimension cherche a quantifier la "taille" de certains objets mathématiques et fournit un
moyen de mesurer la complexité, la structure et les propriétés géométriques des espaces métriques
et de leurs mesures. Différentes versions des dimensions existent, dévoilant ainsi divers aspects de
la géométrie des objets étudiés.

Berger et Bochi, dans [BB21]], ont montré un lien entre la dimension des ensembles invariants
hyperboliques basiques d’un difféomorphisme conservatif lisse d’une surface et la taille de 'espace
des mesures ergodiques invariantes par ce difféomorphisme. La quantité introduite pour décrire la
taille de cet espace par Berger est I’émergence [Ber16]. Pour des systémes complexes, cet espace
est de dimension infinie, correspondant a une haute émergence, et peut avoir une géométrie a priori
difficile a appréhender. Par ailleurs, nombreux sont les objets naturels de dimensions infinies tels que
certains processus aléatoires ou les espaces fonctionnels, qui ont conduit a de nombreuses études de
leurs propriétés géométriques ( voir par exemple [Kol30], [KT93], [Ber17]], [Ber20], [DL05], [Klo15]).
Toutes ces considérations ont motivé I'introduction de la notion d’échelles dans [Hel24]]. Les échelles
sont des invariants qui vérifient les mémes inégalités entre leurs différentes versions (Hausdorff,
paquet, recouvrement, quantisation, locales) que dans le cadre de la dimension et permettent en

particulier d’étudier la géométrie des espaces de dimension infinie mentionnés ci-dessus.

Une autre approche importante des dynamiques pour étudier la complexité d’un systéme est
la théorie de la bifurcation. Elle méne a la naissance de nouveaux attracteurs, a leur destruction
ou a des changements dans leur comportement dynamique et leur géométrie. Pour simplifier, une
bifurcation correspond a une discontinuité dans le comportement du systéme lorsque 'un de ses
parameétres varie. Cela conduit a la naissance de nouveaux types de comportement qui n’apparais-

saient pas auparavant dans le systéme. Les exemples classiques incluent les applications de Hénon



ou le systéme de Lorenz. Ces applications exhibent un riche éventail de comportements, y compris
la formation d’attracteurs étranges et une dépendance sensible aux conditions initiales.

Un type de bifurcation parmi les plus célébres est le déploiement des tangences homoclines. Etant
donnée une régularité » > 1, possiblement 7 = oo ou r = w, et une variété lisse M, la stabilité
d’un difféomorphisme f € Diff" (M) prés d’un point fixe est liée aux espaces invariants de sa dif-
férentielle Dp f. Dans le cas ou cette différentielle est diagonalisable, rappelons que le point fixe P
est hyperbolique si toutes les valeurs propres de la différentielle ont un module différent de 1. De
plus, c’est un puits si tous les modules des valeurs propres sont inférieurs a 1, une source s’ils sont
supérieurs a 1, et une selle sinon. Lorsque 1’on considere un point selle, 'ensemble des points dont
lorbite converge dans le futur vers la selle est non vide et forme un ensemble appelé variété stable.
Le théoréme de la variété stable affirme que c’est une variété lisse de dimension égale au nombre de
ses valeurs propres - comptées avec multiplicité - ayant un module strictement inférieur a 1. Cette
variété est tangente a I'espace tangent stable de la différentielle. Inversement, la variété instable
d’un point selle correspond aux préorbites qui convergent vers le point fixe. Dans le cas des difféo-
morphismes, c’est également une variété lisse bien définie de dimension égale au nombre de valeurs
propres ayant un module strictement supérieur a 1 et est tangente a I’espace instable de la selle. Bien
que le point fixe corresponde a une intersection transverse de ces variétés, elles peuvent éventuelle-
ment se croiser encore une infinité de fois. Une configuration particulierement intéressante est celle
des tangences homoclines. Les tangences homoclines sont des intersections non transverses entre
les variétés stable et instable. Elles sont cruciales dans les systéemes dynamiques car elles marquent
souvent la transition d’un régime simple vers un régime complexe. Tout particulierement, Palis a

formulé la conjecture suivante :

Conjecture 1.2.1 (Palis [Pal00](Conjecture II)). En toute dimension, les difféomorphismes ayant une
tangence homocline ou un cycle heterodimensionel sont C"-denses dans le complémentaire de la ferme-

ture des difféomorphismes hyperboliques pour tout r > 1.

Méme a proximité de dynamiques tres bien comprises, il peut y avoir des bifurcations menant a
la complexité ou au chaos. Un travail majeur, qui est 'une des principales motivations de cette theése,

est le résultat suivant de D. Turaev :

Théoréme 1.2.2 (Turaev [Turl5bl]). Pour tout 1 < r < oo, dans lespace des difféomorphismes pré-
servant orientation de classe C" de la boule unité B™ de dimension n dans R"™ pourn > 2,il existe un
ensemble résiduel S, tel que pour toute application I’ € S,., pour tout & > 0 et pour toute boule D de

dimension n, il existe une application g : R" — R", qui coincide avec 'identité en dehors de D, telle

que ||g — id||cr < § et que F soit une renormalisation de g, c’est-a-dire qu’il existe un changement de

coordonnées local tel qu’une itération de g coincide avec F'.

Dans sa preuve, Turaev associe les "lévres d'Iljashenko" a des renormalisations d’application de
premier retour pres de tangences homoclines permettant d’obtenir toute fonction de type Hénon.
Cela permit a Turaev d’exhiber des phénomeénes dynamiques chaotiques a proximité de I'identité
en régularité C'*°. Dans [BGH24]], nous améliorons son théoréme en obtenant aprés renormalisa-
tion n’importe quel difféomorphisme au lieu d’'un sous-ensemble résiduel. Outre la boule unité n-

dimensionnelle nous considérons aussi les variétés de la forme M x T, ou T est le cercle et M une



variété a bords de dimension au moins 1. Pour ces variétés nous obtenons une renormalisation totale :
l'orbite par g du domaine ou l'itération de g est conjuguée a F' recouvre toute la variété. Pour obtenir
ces différentes améliorations, nous proposons une méthode différente de celle de Turaev [Tur15b]
qui utilise des outils de théorie des groupes et d’algebre de Lie. Cette derniére amélioration conduit
a de nouvelles applications telles que I'existence de difféomorphismes de Bernoulli arbitrairement
proches de I'identité préservant une forme volume lisse.

Maintenant que nous savons que des perturbations de I'identité permettent d’atteindre toute
dynamique par renormalisation, la question inverse et complémentaire reste ouverte : Quelles sont
les dynamiques lisses qui se renormalisent en l'identité apres une perturbation arbitrairement pe-
tite ? Encore une fois, I’étude des tangences homoclines joue un rdle clé. Mentionnons deux autres
travaux qui motivent le dernier chapitre de cette thése. Tout d’abord, le travail de Gonchenko-Meiss-
Ovsyannikov dans [GST08]. Dans cet article sont étudiées les bifurcations de difféomorphismes
tridimensionnels ayant une tangence homocline pour un point selle périodique ayant une valeur
propre complexe non réelle. En considérant une déformation non-dégénérée a trois parametres du
difféomorphisme initial, ils ont montré qu’il existe une infinité de régions ouvertes de parameétres
s’accumulant autour de 0, pour lesquelles la forme normale de I’application de premier retour dans
un voisinage d’un point de tangence homocline est un difféomorphisme de type Hénon tridimen-
sionnel. En conséquence, si le déterminant du jacobien du point selle est égal a 1, ils obtiennent
par petite perturbation un point neutre périodique, c’est-a-dire ayant des valeurs propres égales a
1. Par ailleurs,Gochenko-Shilnikov-Turaev [[GST08]] ont réalisé un travail similaire pour les difféo-
morphismes tridimensionnels ayant des cycles hétérocliniques équidimensionnels non transverses.
Sile volume est dilaté sur une orbite périodique du cycle et contracté sur une autre, alors 'applica-
tion de premier retour est un difféomorphisme de type Hénon tridimensionnel. De plus, les points
fixes de cette application peuvent avoir n’importe quelle combinaison de valeurs propres lorsque les
parameétres du systéme varient.

Dans le dernier chapitre, une preuve alternative et géométrique d’'un théoréme de Gonchenko-
Meiss-Ovsyannikov [[GST08] est fournie. Leur théoréme montre en particulier qu’il existe un point
fixe totalement parabolique, i.e. dont les valeurs propres sont toutes sur le cercle unité, par petite
perturbation lisse d’un difféomorphisme tri-dimensionnel ayant une selle avec une tangence homo-
cline. Dans ce dernier chapitre, la construction géométrique est étendue aux familles prouvant ainsi
une version paramétrique de ce résultat. Cette preuve est en partie inspirée de la construction en

dimension 2 réalisée par Berger dans [Ber17]].

1.3 Echelles

La théorie de la dimension a gagné en popularité grace a I’article fondateur de Mandelbrot, "How
Long Is the Coast of Britain ?" [Man67]], qui a mis en lumiére la question générale de la taille d’objets
mathématiques naturels. La catégorie d’objets considérée comprend les espaces métriques possible-
ment munis d’'une mesure. La théorie de la dimension englobe non seulement 1'étude des espaces
lisses tels que les variétés, mais aussi celle d’espaces a géométries plus complexes comme les frac-
tales. Ainsi, la dimension peut étre n’'importe quel nombre réel positif. I existe plusieurs notions

de dimension : par exemple, la dimension de Hausdorff [Haul8], de paquet [Tri82] ou de recouvre-



ment (ou boite). De plus, lorsque 'espace est muni d’'une mesure, s’ajoutent la dimension locale et
celle de quantisation. Ces différentes versions de la dimension sont des invariants métriques qui ne
sont généralement pas égaux. Ainsi, ils révelent différents aspects de 'espace étudié. Les travaux
de Hausdorff [Haul8|], Frostman [Fro35]], Tricot [Tri82]], Fan [Fan94| [FLR02l], Tamashiro [Tam95],
Potzelberger [P6t99], Graf-Luschgy [GLO07] ont permis de décrire la relation entre ces différentes
notions et ont donné certaines des conditions sous lesquelles elles coincident.

Evidemment, ces invariants ne fournissent pas beaucoup d’informations sur les espaces de di-
mension infinie. Cependant, de tels espaces font 'objet de nombreuses études. Plus particuliere-
ment, Kolmogorov-Tikhomirov dans [KT93] ont donné des équivalents asymptotiques du nombre
de recouvrement des espaces fonctionnels. Dereich-Lifshits dans [DL05] ont donné le comporte-
ment asymptotique de la masse des petites boules pour la mesure de Wiener et I'ont comparé avec
le probleme de quantisation. Voir aussi [DFMS03] [CM44] (Chu47, BR92, KL93]. De plus, Berger et
Bochi [BB21]] ont donné I'ordre de recouvrement et de quantisation de la décomposition ergodique
de certains systémes dynamiques conservatifs lisses. Voir également [BR92, Klo15, BB21]]. Ces consi-

dérations conduisent a la question naturelle suivante :

Question. Y a-t-il des analogues en dimension infinie des différentes versions de dimension qui révelent
les mémes différentes propriétés géométriques des objets étudiés et vérifiant les mémes inégalités qui les

comparent ?

Pour répondre a cette question, nous introduisons la notion d’échelle. L’idée est de considérer
un échelonnage, c’est une famille a un parametre de fonctions de "jauge" vérifiant certaines hypo-
theses, qui prescrit I’étalonnage que I’on doit effectuer pour que la taille de 'espace soit correctement
étudiée. Par exemple, les familles associées a la dimension ou a I’ordre données dans Exemple
Page [12| sont des échelonnages. Etant donné un échelonnage, différentes versions d’échelles sont
définies. En particulier, la dimension de Hausdorff, la dimension de paquet ou la dimension de re-
couvrement sont des exemples d’échelles.

Nous généraliserons les théoréemes de comparaison entre les différentes versions de dimensions
aux différentes versions d’échelles dans les Théorémes [A] [B] et [C| La définition de I’échelonnage
est choisie de sorte que les preuves des résultats des Théoremes [A] et [B| soient des généralisations
presque directes du cas établi de la dimension.

La principale difficulté sera alors de prouver le Théoréme[( qui permet de comparer les échelles de
quantisation avec les échelles locales et de recouvrement. Méme dans le cadre de la dimension finie, de
nouvelles inégalités entre la dimension de quantisation d’'une mesure et la dimension de recouvrement

des ensembles de mesure positive sont énoncées (inégalités (f) et (h)) dans le Théoréme|Q ).

1.3.1 De la dimension a I’échelle

Commencons par rappeler quelques définitions classiques de la théorie de la dimension et voyons
comment elles sont naturellement étendues pour définir des invariants finis pour des espaces de di-
mension infinie. Les dimensions de Hausdorff, de paquet et de recouvrement d’un espace métrique
totalement borné (X, d) sont définies en examinant des familles de sous-ensembles de X. Pour les
dimensions de recouvrement, étant donnée une erreur € > 0, rappelons que le nombre de recouvre-

ment N, (X) est le cardinal minimal d’un recouvrement de X par des boules de rayon e.
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Les dimensions inférieure et supérieure de recouvrement de (X, d) sont données par :
dimpX = sup{a > 0: ¢o(€) - N(X) = +o0} et dimpX :=inf{a > 0: @(c) - N(X) — 0},

ol (Pq)a>o est la famille de fonctions sur (0, 1) donnée pour o > 0 par ¢, : € — €.

En général, les dimensions supérieure et inférieure de recouvrement ne coincident pas (voir par
exemple [FF97, Fal04]). Cependant, lorsque X est une variété lisse munie d’une métrique eucli-
dienne, ces définitions coincident avec la définition usuelle de la dimension. Les propriétés de base
des dimensions de recouvrement se révelent lorsque 'on regarde des sous-espaces d’un espace am-
biant munis de la métrique induite. Notamment, ces dimensions ne sont pas invariantes par union
dénombrable d’espaces metriques de méme dimensions et sont invariantes par fermeture topolo-
gique. La version la plus populaire de la dimension qui jouit de la propriété d’étre stable par union
dénombrable est la dimension de Hausdorff. Rappelons sa définition. Etant donnée une erreur ¢ > 0,

considérons :

HA(X) = _inf > $a(0),

CECr(®) gy grec
ou Cy(€) est 'ensemble des recouvrements dénombrables de X par des boules de rayon au plus .

La dimension de Hausdorff de (X, d) est alors donnée par :

e—0

dimy X = sup {a > 0:HH(X) — +oo} :inf{a >0:HI(X) —>O} .

Enfin, une autre dimension intéressante est la dimension de paquet. Elle est elle aussi stable par
unions dénombrables. Sa construction est analogue a celle de la dimension de Hausdorff et a été
introduite par Tricot dans sa these [Tri82]. Elle est en fait liée a la dimension supérieure de recou-
vrement par la caractérisation suivante que nous utiliserons ici comme définition :

dimpX := inf supdimgpFE,, ,
n>1
ou I'infimum est pris sur les recouvrements dénombrables (E,,),>1 par des sous-ensembles de X.

Ces quatre versions de la dimension sont des invariants bi-Lipschitz. Elles quantifient différents

aspects de la géométrie de 'espace métrique étudié, car elles ne coincident pas a priori. Cependant,

les inégalités suivantes sont toujours vérifiées par le théoréme classique suivant :

Théoréme 1.3.1. Soit (X, d) un espace métrique. Les inégalités suivantes sont vérifiées :

Les preuves détaillées de ces résultats sont par exemple dans les livres de Falconer [FF97] et
[Fal04]. Cependant, nous démontrons a toutes ces inégalités dans le premier chapitre. Ces inégalités
sont optimales : il existe des espaces ou toutes ces inégalités sont des égalités et d’autres ou les
inégalités sont toutes strictes.

Introduisons alors la notion d’échelle. Une observation simple est que, dans toutes les définitions
ci-dessus des différentes versions de la dimension, la famille paramétrée (¢4)a>0 = (€ — €¥)a=0
joue un role particulier. Il s’agit d’une famille de fonctions de jauge avec un comportement polyno-

mial. Rappelons que, classiquement, une fonction de jauge est une fonction qui remplace la simple
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mesure des rayons des boules utilisée dans la définition de la mesure de Hausdorff afin de donner
une précision plus fine sur la dimension de I’espace et potentiellement obtenir une mesure finie non
triviale.

L’idée de la construction des échelles prend une direction transverse. Au lieu de chercher un
affinement de la notion de dimension, nous prendrons des fonctions dont le comportement est po-
tentiellement loin d’étre polynomial car nous voulons décrire des espaces de dimension infinie. Nous
veillerons tout de méme a ce que les échelles englobent les différentes définitions de dimension.

Précisons. Siun espace (X, d) est de dimension infinie, alors son nombre de recouvrement NV (X)
croit plus rapidement que tout polynoéme en ¢! lorsque € décroit vers 0. Ainsi, pour espérer définir
des invariants finis pour les espaces de dimension infinie, nous devons autoriser I'utilisation d’autres
fonctions de jauge qui décroissent plus rapidement que tout polyndme lorsque le rayon des boules
impliquées décroit vers 0.

En conséquence, nous proposons ici de remplacer dans toutes les définitions des dimensions ci-
dessus, la famille (¢4 )as0 = (€ € (0,1) — €¥)ar > 0 par une autre famille de fonctions. Parmi ces

familles de fonctions nous voulons inclure les exemples suivants :

Exemple 1.3.2. 1. La familledim = (¢ € (0,1) — €*),>0 qui est utilisée dans les définitions de

dimensions,

2. la famille ord = (e € (0,1) — exp(—€~%))as0 appelée ordre. Elle correspond a la croissance
du nombre de recouvrement d’espaces de fonctions de régularité finie étudiés par Kolmogorov-

Tikhomirov [KT93], ou a celle de I’espace des mesures ergodiques par Berger-Bochi [BB21],

3. la famille (e € (0,1) — exp(—(loge™")*)),~o qui correspond a la croissance du nombre de re-

couvrement de fonctions holomorphes estimée par Kolmogorov-Tikhomirov [KT93].

Cependant, pour étendre correctement les définitions et les théorémes de comparaison entre
les échelles, c’est-a-dire la généralisation des dimensions de recouvrement, de Hausdorff et de pa-
quet, la famille (¢, ) > 0 doit satisfaire certaines hypotheéses, ce qui conduit a introduire la notion

d’échelonnage :

Définition 1.3.3 (Echelonnage). Une famille scl = (scl,)a>0 de fonctions positives et croissantes sur
(0,1) est un échelonnage lorsque pour tout @ > [ > 0 et tout A > 1 suffisamment proche de 1, les

estimations suivantes sont vérifiées :
sclo(€) =0 (sclg(e)‘)> et scly(e) =0 (SCIB(E)’\> , lorsque e — 0;. (%)
Remarque 1.3.4. Il existe des échelles qui permettent d’étudier les espaces de dimension 0, par exemple :
(e€(0,1) = log(e ™) ™) a0 -

Nous montrons que les familles mentionnées dans 'exemple ci-dessus sont effectivement des
échelonnages. Regardons maintenant comment les échelonnages permettent de définir les échelles.
Etant donné un espace métrique (X, d), et nous remplacons la famille spécifique dim dans la défini-

tion des dimensions de recouvrement par un échelonnage quelconque scl = (scly ) a0
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Nous obtenons alors la définition suivante :

Définition 1.3.5 (Echelles de recouvrement). Les échelles de boite inférieure et supérieure d’un

espace métrique (X, d) sont définies par :
sclp X = sup {a > 0: N(X) - scly(e) — —i—oo}
e—

et

scpX — inf {a > 0: N(X) -sela(e) — o} |

Similairement, les notions de dimensions de Hausdorff et de paquet sont généralisées a celles
d’échelle de Hausdorﬁ notée scly X et d’échelle de paquet notée sclp X en remplacant la famille dim
de I’ Exemple [1.3.2| par I’échelonnage correspondant. Ces notions dépendent bien évidemment du
choix de I’ echelonnage. Les constructions sont entiérement détaillées dans le premier chapitre. Pas-
sons maintenant a I’énoncé des principaux résultats sur la comparaison des échelles des espaces

métriques.

1.3.2 Resultats de comparaison d’échelles

sclp X

Théoreme i‘/ \

sclp X sclp X
scly X / S_C#?“ Théoreme C

sclj B I sclop
sleu / scpr\ [sclpp = sup ess sclioe/d

/ \ [sclpp = inf ess scljoept |

Théoreme B

[sclj; ;. = sup ess scllnmu sclpp

Y

| sclyp = inf ess scly A

FIGURE 1.1 - Diagramme présentant les résultats des théoremes sur les échelles d’espaces métriques.
Chaque fléche représente une inégalité, I’échelle au point de départ de la fléche est plus grande que

celle a son arrivée : 7 — 7 =" > 7,

Tout d’abord, nous présentons la généralisation suivante des inégalités bien établies comparant

les dimensions des espaces métriques :

Théoréeme A ([Hel24]]). Soit (X, d) un espace métrique et scl un échelonnage. Les inégalités suivantes
sont vérifiées :
sclyX <sclpX <sclgX et sclpX <sclgX <sclpX .
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L’essentiel de la preuve consiste a montrer que les échelles de Hausdorff et les échelles de paquet
sont des quantités bien définies. Il est alors ensuite aisé d’adapter les preuves rédigées par Falconer
dans [FF97] et [Fal04] pour démontrer le Théoréme [A]

Il est possible de montrer que pour chacune des inégalités dans la Figure[1.3.2]il existe un espace
probabilisé tel que I'inégalité est stricte. Par ailleurs il existe des espaces ou toutes les inégalités sont

des égalités. Ce résultat est bien connu dans le cadre de la dimension, voir par exemple [FF97, Fal04].
Lorsque I’espace métrique (X, d) est équipé d’une mesure 11, nous introduisons les échelles locales
qui étendent les notions de dimensions locales d’'une mesure :

Définition 1.3.6 (Echelles locales). Soit ;1 une mesure borélienne sur un espace métrique (X, d) et scl

un échelonnage. Les échelles inférieure et supérieure de p sont les fonctions qui a un point x € X

p(B(z,¢))
scly(e) 0 O}

associent :

Ldloc“(x) = sup {04 >0:

et

— : 1 (B(z,€))
sclipept(z) = inf {oz >0: sclu(c) o0 +oo} )

Comme dans la théorie de la dimension, nous devons comparer les échelles locales avec les
échelles des sous-ensembles de X ayant une masse positive. Cela conduit a considérer les quantités

suivantes :

Définition 1.3.7 (Echelles de Hausdorff, de paquet et de recouvrement d’'une mesure). Soit scl un
échelonnage et ;1 une mesure borélienne non nulle sur un espace métrique (X, d). Pour tout scly €

{SC|H, sclp, sclp, QB}, nous définissons les échelles inférieure et supérieure de la mesure j1 par :
sclept = érgg {scleE': u(E) >0} et sclyu= érel% {scle £ : u(X\FE) =0} ,
ou B est 'ensemble des sous-ensembles boréliens de X .

Dans le cadre de la dimension, Frostman [Fro35l], Tricot [Tri82], Fan [Fan94] et [FLR02] avec Lau
et Rao, et Tamashiro [[Tam95]] ont mis en évidence la relation entre les dimensions de Hausdorff et

de paquet des mesures et leurs dimensions locales que nous généralisons comme suit :

Théoréme B ( [Hel24]]). Soit ;@ une mesure borélienne sur un espace métrique (X, d), alors pour tout

échelonnage scl, les échelles de Hausdorff et de paquet de | sont caractérisées par :
sclgpp = ess inf scljpit,  sclp = ess sup scljpo,

sclpp = ess inf sclipeft,  Sclip = ess sup sclieft

ot ess sup et ess inf désignent le suprémum essentiel et 'infimum essentiel d’une fonction.

La preuve de ce résultat est inspirée de celles des théorémes de Fan-Lau-Rao [Fan94, FLR02].
Introduisons un dernier type d’échelle, I'échelle de quantisation. Elle généralise la dimension de
quantisation qui a suscité de nombreux travaux [GL07, P6t99, DFMS03| D105, Ber17, BB21, Ber20].
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Définition 1.3.8 (Echelles de quantisation). Soit (X, d) un espace métrique et ;. une mesure borelienne
sur X. Le nombre de quantisation Q,, de i est la fonction qui a une erreur € > 0 associe le cardinal

minimal d’un ensemble de points qui est en moyenne e-proche de tout point de X :

Qu() =it {N = 0:3 (e}, oy y € X, [ dl{ehcicy) dule) < e}

Alors les échelles de quantisation inférieure et supérieure de o pour un échelonnage scl donné sont
définies par :

sclop = sup {a > 0:Q,(e) - scly(e) — +oo}
et

sclop = inf {a > 0:Q,(e) - scly(e) — 0} .
e—
Les différentes échelles de mesure sont comparées dans le résultat suivant :

Théoréme C ([Hel24]]). Soit (X, d) un espace métrique. Soit ;1 une mesure borélienne sur X . Pour tout

échelonnage scl, les inégalités suivantes sur les échelles de j sont vérifiées :

ess inf scl < scl < scl . essinfsclu < scl < scl
SClpet > SClpit > SClgi lock BH > SClgt
(a) (b) () (d)
et
ess supsclpt < sclopu < sclpp 5 esssupscliepn < sclou < sclpp .

(e) (f) (9) (h
Méme dans le cas spécifique de la dimension, ces inégalités (b) et (d) sont nouvelles. Aussi,

v

les inégalités (e) et (g) ont été démontrées par Potzelberger dans [P6t99] pour la dimension mais

seulement dans le cas out X = [0, 1]¢ avec d un entier.

1.3.3 Application des théorémes de comparaisons d’échelles

Pour conclure cette présentation du premier chapitre, regardons quelques applications des théo-

rémes de comparaisons des échelles pour I'ordre. Rappelons que 'ordre est le second échelonnage

ord donné dans 'Exemple

Espaces fonctionnels Une premiére application du Théoréme [A|couplé aux estimations par Kol-
mogorov et Tikhomirov[KT93][Thm XV] du nombre de recouvrement des espaces de fonctions de
régularité finie, ainsi qu'une nouvelle estimée, permet d’obtenir des informations géométriques sur
ces espaces.

Soit d un entier positif. Pour tout entier £ > 0 et pour tout a € [0, 1], introduisons :

Faka . — {f c C*([0,1]%, [=1,1]) : ||fllex < 1, D*f est a-Holder de constante 1} :

Cet espace est muni de la norme C°. En plongeant un groupe dont I'ordre de Hausdorff est borné
inférieurement dans F*%%, via une application dilatante; et comme application directe du Théo-
réme |Al et du théoréeme de Kolmogorov-Tikhomirov [KT93][Thm XV] sur l'estimation du nombre

de recouvrement de F%*¢ on obtient :

Théoréme D ([Hel24]). Soit d un entier positif. Pour tout entier k et pour touta € [0,1], ona:

d

ordy FFe = ord p F4*4 = ord g F*¢ = ord g Féke = T a
a
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Mesure de Wiener Le second exemple concerne les ordres de la mesure de Wiener W qui décrit
un mouvement brownien standard unidimensionnel sur [0, 1]. A partir de I’estimation de la masse
des boules aléatoires pour les normes L? pour p € [1, o] par Dereich-Lifshits [DL05][3.2, 5.1, 6.1,
6.3] et par application directe du Théoreme |C| on obtient :

Corollaire A ([Hel24])). La mesure de Wiener sur C°([0, 1], R) munie de la norme L?, pourp € [1, 00,
vérifie pour presque tout w € C°([0,1]) :

2 = ord;, W (w) = ordgW = ord};,W = ord;, W (w) = ordpW
=ordpW = ordgW = ordp W = ordgW = MQW )

Par exemple, soit A un sous-ensemble de C°([0, 1]) ayant une masse de Wiener positive. Alors

son nombre de recouvrement croit asymptotiquement plus vite que exp(e‘2+5 )

0 pour tout & > 0 fixé.

lorsque € tend vers

Lien entre émergence locale et globale Le cadre des échelles permet également de répondre a
un probleme posé par Berger dans [Ber20]] sur I'’émergence de systémes dynamiques conservatifs.
La réponse a cette question est une application directe du Théoréme C| Rappelons d’abord quelques
définitions. Soit (X, d) un espace métrique compact, f : X — X une application mesurable et
une mesure f-invariante sur X. En vertu du théoreme de Birkhoff, pour p-presque tout z € X, la
limite des mesures empiriques e(z) est bien définie :

1nl

el (z) := lim —Zéfk

n—oo n,

L’espace M des mesures de probabilité sur X est muni de la distance de Wasserstein 11/} définie
par :

Wi(vy,v9) = sup od(vy — 1) ,
#€Lip 1 (X)

pour deux mesures v;, v, € M et ou Lip'(X) désigne 'ensemble des fonctions 1-Lipschitziennes
sur X a valeurs réelles. Elle induit la topologie faible-étoile pour laquelle M est compact. Une ma-
niére de quantifier la complexité de la décomposition ergodique est d’examiner le comportement

asymptotique de I’émergence £, de la mesure i :
Eule) =min{N e N : Jiy,...,vy e M(X / Wi(e! (), {vihi<i<n)du(z) < €},
lorsque ¢ — 0. Par application directe de I'inégalité (¢) du Théoréme [C| on obtient :

Théoreme E ([Hel24]]). Pour yi-presque toutx € X ,ona:

lim sup log(—log 1(Bc(x))) < limsup loglog &,(€)
=0 —loge 0 —loge

ouBB.(x):={y e X : Wile(y),e(x)) < €}

Observons alors que ;(B.(x)) est la masse de la boule By (e (z),¢) pour la decomposition
ergodique e/ 1. Le théoréme ci-dessus met alors en lien le comportement asymptotique de la masse

des petites boules pour la décomposition ergodique avec 'ordre d’émergence de la mesure.
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1.4 Tout difféomorphisme est la renormalisation totale d’une

application proche de I’identité

L’article intitulé "Every diffeomorphism is a total renormalization of a close to identity map"
est un travail commun avec Pierre Berger et Nicolaz Gourmelon. Le travail de cet article occupe le
second chapitre de cette these.

Soit 1 < r < oo et Vune variété de la forme R/Z x M ou M est une variété a bords de
dimension au moins 1. Nous montrons que tout difféomorphisme sur V' qui est isotope a I'identité
par un chemin a support compact dans 1\ OV, est une renormalisation totale d’un difféomorphisme
C"-proche de I'identité. En d’autres termes, pour un tel difféomorphisme f, il existe une application
g arbitrairement proche de I'identité telle que I’application de premier retour de g dans un certain
domaine soit conjuguée a f et de plus I'orbite de ce domaine est égale a R /Z x M. Cela nous permet
de localiser pres de l'identité I'existence de propriétés dynamiques comme le fait d’étre Bernoulli
pour une forme volume lisse. Rappelons d’abord la définition de renormalisation. Soit B" la boule

fermée unitaire de R".

Définition 1.4.1 (Renormalisation primitive). Une renormalisation G' d’un difféomorphisme g €
Diff (B™) est une conjuguaison d’une itération de g. En d’autres termes, il existe N > 2, un plongement
Y B" — B tel que g'(1(B™)) N (B™) = O pour tout 0 < i < N et gV (v(B")) = (B"), et la
renormalisation est donnée par :
G=1ytogNou.
Un probléme de longue date en systéemes dynamiques est le suivant :

Probléme 1.4.2. Quelles dynamiques peuvent étre atteintes par renormalisation d’applications proches
de l'identité ?

Ce probléme a été étudié pour la premiére fois par Ruelle et Takens dans [RT71]]. Motivés par
I'étude de la turbulence, ils ont montré que pour tout entier n > 2, toute dynamique sur le tore
de dimension n > 2 est la renormalisation d’une application C"-proche de l'identité. Il en suit
I'existence arbitrairement proche de I'identité de difféomorphismes ayant un "attracteur étrange".
IIs ont alors émis I’hypothese que ce phénomene apparait naturellement en dynamique des fluides
et pourrait étre utilisé comme définition mathématique de la notion de turbulence. Voir aussi [Lor63]].

Le principal inconvénient mathématique de ce résultat est que la régularité est limitée par la
dimension du tore. Cependant, en considérant des flots, ce probléeme a été résolu par Newhouse,
Ruelle et Takens dans [NRT78] : étant donné un champ vectoriel X dont le flot est une rotation sur
le tore T", n > 3, et une application Fy € Diff>(T""!) homotope a I'identité, ils ont perturbé X de
sorte que 'application de premier retour d’une section transverse soit /(. Cependant, en faisant cela,
ils rajoutent une dimension. Et comme en effet Diff>(T") est "bien plus grand" que Diff>*(T" 1), le
Probléeme reste non résolu.

Une percée majeure a ensuite été réalisée par Turaev [Turl5b], qui a prouvé qu'un ensemble resi-
duel de plongements de B" dans R" préservant 'orientation peut étre obtenu apres renormalisation
d’une application arbitrairement proche de l'identité, en toute régularité C" pour tout 0 < r < oo.

Dans [BGH24]], nous améliorons le théoréme de Turaev pour obtenir n’importe quelle application

préservant orientation et C" de B" (au lieu des applications parmi un sous-ensemble résiduel) :

17



Théoreme F ([BGH24]). Pour tout 1 < r < oo, tout n > 2 et toute application G préservant l’orien-
tation de Dift" (B™), dans n’importe quel voisinage N de Uidentité, il existe g € N tel qu’une renorma-

lisation de g soit égal a G. De plus, la conjuguaison de cette renormalisation peut étre choisie affine.

Il reste alors naturellement a savoir si g peut étre pris conservatif ou symplectique lorsque G l'est
lui-méme. Dans cette direction, mentionnons le travail de Gonchenko-Shilnikov-Turaev [GST07]]
qui ont montré que, pour tout 0 < r < oo, un sous-ensemble dense de difféomorphismes C"-
conservatifs sur le disque B? peut étre obtenu aprés renormalisation "quasi-périodique” (i.e. le do-
maine de renormalisation ne revient pas exactement sur lui-méme apreés itération) d’une application
conservative arbitrairement proche de I'identité. Par ailleurs, Fayad et Saprykina [FS22]] ont montré
que toute application conservative de la boule n-dimensionnelle peut étre obtenue par renormalisa-
tion d’une perturbation conservative C"'-proche de 'identité. Dans leur construction, contrairement
a celle de Gonchenko-Shilnikov-Turaev [[GST07], Fayad et Saprykina ont pu obtenir un domaine de
renormalisation exactement périodique.

Si tous ces théoremes indiquent la richesse des comportements dynamiques possibles pres de
I'identité, I'objection suivante peut étre faite. Dans le cadre de cette définition de la renormalisation,
lorbite de Up 4 1 (B") du domaine de renormalisation peut étre extrémement petite et donc expé-
rimentalement non observable. Cette objection n’a plus lieu d’étre lorsque 'orbite du domaine de
renormalisation recouvre toute la variété. Cela nous amene a renforcer la notion de renormalisation

par ce qui suit :

Définition 1.4.3. Soitr € {1,... , 0c0}U{w} et soit V une variété (possiblement a bords). Une applica-
tion g € Diff"(V') est renormalisable s’il existe une sous-variété stricte ( possiblement d coins) A C 'V
telle que :
— il existe un difféomorphisme local bijectif H : A — V, appelé le redimensionnement du do-
maine de renormalisation A,
— le temps de premier retour 7 : A — N* dans A par g est borné et la renormalisation définie
par:
G=Hog oH'
appartient a Diff" (V).
L’application g est totalement renormalisable si I'orbite en avant de A recouvre V. C’est-a-dire que V'

est égal aU,>o g"(A). L’application G est alors une renormalisation totale de g.

Précisons les espaces considérés. Soit V' une variété compacte (éventuellement a bords) et 1 <
r < 00. On rappelle que le support supp f de f € Diff" (V) est la fermeture de ’ensemble des points
x € V tels que f(z) # x. Notons Diff (V') la composante connexe de I'identité dans Diff" (V). On
considére alors Diff’, (V') le sous-ensemble de Diff{ (V') formé par les applications isotopes a I'identité
par des isotopies (f;):c[o,1] dont le support U;e(o,1 Supp f; est un sous-ensemble compact de V' \ OV
Observons alors que lorsque V' est sans bord, on a Diff; (V') = Diff. (V).

Une question naturelle est la suivante :

Question 1.4.4. Pour quelles variétés V, toute application F' € Dift’ (V') est-elle une renormalisation
totale d’une application proche de l’identité ?
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Jusqu’a présent, aucun exemple d’une telle variété V' n’était connu. Dans ce travail avec Berger

et Gourmelon nous avons donné une classe compléte d’exemples.

Théoreme G ([BGH24])). Soit 0 < r < oo et soit M une variété compacte de dimension au moins 1.
Posons V := T x M. Soit N' C Diff" (V') un voisinage de 'identité. Alors tout G € Diff(V') est une

renormalisation totale d’une application g € N

Si Théoréme [F implique que les phénomeénes dynamiques locaux peuvent étre trouvés a proxi-
mité de I'identité, Théoreme [Gnous permet d’y obtenir des phénomenes dynamiques globaux. Cette
nouvelle amélioration apportée par ce dernier résultat vient du fait que le domaine de renormalisa-
tion est plus grand que dans toutes les extensions précédentes des théorémes de Ruelle-Takens : son
orbite coincide avec I’ensemble de la variété ou vit la dynamique. Cela a permis de nouvelles appli-
cations telles que la preuve de I'existence de difféomorphismes préservant des mesures SRB lisses a
proximité de 'identité ou des applications universelles dont I'union des domaines de renormalisation

est arbitrairement grande dans la variété.

Le cadre de la preuve des théorémes principaux repose sur un nouvel objet appelé plugin. Un plu-
gin est une application renormalisable ayant une forme particuliére qui possede une renormalisation
canonique appelée output. Nous étudions le groupe des difféomorphismes qui sont des outputs de
plugins arbitrairement proches de I'identité. Les propriétés topologiques de '’ensemble des plugins
et I’étude de I’algebre de Lie des champs de vecteurs ayant des flots dans ce groupe sont les ingré-
dients clés de la preuve de nos résultats. En fait, nous démontrons un résultat sur les plugins qui
implique directement Théoréme

Nous donnons également des théorémes analogues pour les familles a parametres de tous nos

résultats. Cela méne a I’étude suivante.

1.5 Points totalement paraboliques prés des tangences homo-

clines

Le dernier chapitre contient une étude des perturbations des tangences homoclines en dimension
3 pour les familles a parametres.

Kolmogorov a introduit la notion de typicité lors des ICM en 1954 pour décrire les phénomenes
qui se produisent pour presque tous les parametres de familles génériques de dynamiques différen-

tiables pour les espaces de dimension finie. Pour étre plus précis :

Définition 1.5.1 (Arnold-Kolmogorov typicality). Pour tout k,r > 0, une propriété (P) sur une
variété M est dite (k,r)-Kolmogorov typique s’il existe un ensemble Baire générique de familles C"

(fa)acrr d’applications C™ telles que (P) soit vérifiée par f, pour presque tous les paramétres a € RF.

Ainsi, la typicité au sens de Kolmogorov contient une dimension probabiliste. Elle est donc a
priori indépendante de la généricité de Baire. Par exemple, il existe un sous-ensemble Baire générique
GG du cercle ayant une mesure de Lebesgue nulle. Ainsi, le fait d’avoir tous les points elliptiques
périodiques avec des valeurs propres dans GG est une propriété Baire générique mais pas typique au

sens de Kolmogorov pour les difféomorphismes de surface conservatifs. Un mécanisme permettant
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de montrer la typicité de Kolmogorov de certains phénomenes dynamiques Baire génériques a été
introduit par Berger dans [Ber16, Ber17], appelé para-mélangeurs qui généralise les mélangeurs de
Bonatti-Diaz [BD96]] aux familles & paramétres. En particulier, cela a permis de montrer dans [Ber16]]
que le céléebre phénomene de Newhouse est C"-typique en dimension au moins 3 pour tout 1 < r <
oo. Rappelons que le phénoméne de Newhouse [New74, New79] correspond a 'existence d’ensembles
localement génériques de dynamiques présentant un nombre infini de puits qui s’accumulent sur un
fer a cheval de Smale. De plus, les para-mélangeurs ont permis a Berger dans [Ber21]] de montrer la
typicité au sens de Kolmogorov de la croissance sur-exponentielle du nombre de points périodiques
en dimension au moins 2, pour les applications C" avec 2 < r < oo. Voir aussi [BR21]]. Berger dans
[Ber20] a considéré la classe suivante de phénomeénes génériques au sens de Baire et a conjecturé

que cette classe devrait étre typique au sens de Kolmogorov :

Définition 1.5.2 (Génériquement localisable). Une propriété (P) sur une variété M est dite C"-
localisable si pour tout ensemble ouvert U C M et pour tout f € Dift" (M) tel que fﬁ = idy pour un
entier N > 1, il existe une perturbation arbitrairement petite dans Diff" (M) de f qui vérifie (P). De
plus, cette propriété est ouvertement localisable s’il existe un ensemble ouvert de perturbations qui réalise
la propriété. Enfin, la propriété est génériquement localisable si elle est impliquée par une conjonction
dénombrable de propriétés ouvertement localisables, c’est-a-dire qu’il existe un ensemble dénombrable
{(P;) : i € N} de propriétés ouvertement localisables tel que :

N (P:) = (P).
ieN
La définition ci-dessus introduite par Berger dans [Ber20] a été inspirée par le résultat suivant

de Turaev :

Théoreme 1.5.3 (Turaev [Turl5bl])). Pour toute surface M et r > 2, il existe un ouvert non vide
N, C Diftf" (M) tel que pour un ensemble dense D C N,., pour tout f € D, il existe un ouvert U C M
et un entier N > 1 tels que fﬁg = idy.

Enoncons maintenant la conjecture reliant les propriétés génériquement localisables a la typicité

de Kolmogorov :

Conjecture 1.5.4 (1.5 (Berger [Ber20]])). Soit M une variété lisse de dimension suffisamment grande

et 2 < r < oo. Alors toute propriété génériquement localisable est (k,r)-Kolmogorov typique dans
Dift" (M), pour tout k > 0.

Rappelons que nous montrons dans [BGH24] que toute famille lisse de difféomorphismes sur
la boule unité de dimension n > 2 est une renormalisation d’une famille proche de I'identité de
difféomorphismes en toute régularité 2 < r < oco. De plus, Turaev a annoncé que si un difféomor-
phisme présente un point périodique avec une différentielle égale a I'identité, alors une perturbation
arbitrairement petite permet de créer un ilot périodique, c’est-a-dire un ouvert ou une itération de la
fonction coincide avec I'identité. Ainsi, pour prouver Conjecture il suffit de trouver des méca-

nismes pour créer des points périodiques pour certains ensembles ouverts de familles de parametres.

Conjecture 1.5.5 (Berger). Soit M une variété de dimension au moins 3 et 1 < r < co. Alors il existe

un ensemble localement dense D de C"-familles a parameétres de difféomorphismes de M, tel que pour
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chaque famille (f,), € D, chaque f, a un point périodique neutre, c’est-d-dire qu’il existe P, € M tel
que ffj(Pa) =P, et Dpaf}; = id pour un certain entier p.

La premiére étape — le Théoréme [H]énoncée ci-dessous — vers une preuve de la Conjecture[1.5.5]

pour en dimension 3 est la version paramétrique du résultat suivant :

Théoréme 1.5.6 (Gochenko-Meiss-Ovsyannikov). Soit f un difféomorphisme lisse d’une variété M
de dimension 3. Supposons qu’il existe une selle périodique () ayant une valeur propre complexe et un
déterminant égal a 1. On suppose de plus que () présente une tangence homocline en un point H. Alors
il existe une perturbation C™®-petite f de f et un point périodique Q proche de H ayant pour valeurs
propres {1, e¥7/3 e=2im/31

Dans le dernier chapitre de cette theése nous apportons la version paramétrique du précédent

théoréme :

Théoréme H. Soit (f,).ca une famille C* de difféomorphismes lisses d’une variété M de dimension
3 et paramétrée par une variété connexe et compacte A. Supposons qu’il existe des familles lisses de

points (Hy)aen €t (4)aca et un angle non nul 0 € R/277 tels que pour tout a € A on ait :
1. Q, est une selle de f, avec une valeur propre complexe d’argument 0 et un jacobien égal a 1,
2. (), est la continuation hyperbolique d’un certain €),, pour un parameétre ay € A,
3. H, est un point de tangence homocline de €}, pour f,.
Alors il existe une C*°-perturbation arbitrairement petite (fa)aeA de (fu)aca et une famille lisse de

points (Qg)aca tel que Q, est périodique pour f, et a pour valeurs propres {1, e27/3 e=2i7/3}

Plus exactement, Gochenko-Meiss-Ovsyannikov ont donné la forme normale (une application
Hénon tridimensionnelle) pour la renormalisation de I’application de premier retour a proximité de
cette tangence homocline. A partir de ce résultat, le Théoréme[1.5.6|peut étre déduit. Nous proposons
une preuve alternative de ce résultat basée sur une construction géométrique. Cette construction
géométrique s’étend facilement aux familles a parameétres afin de montrer Théoréme [H|sans calculs

supplémentaires.
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Chapter 2

Introduction (English version)

2.1 Organization of the thesis manuscript

This thesis is organized into three chapters. The first chapter presents the work from the article
"Scales" [Hel24]]. This chapter is embedded in dimension theory with applications in probability,
dynamical systems, and functional analysis. Scales are families of invariants of various types: Haus-
dorff, packing, covering, quantization, etc., and with different growth rates encompassing dimension
or order, thus allowing the study of infinite-dimensional spaces. In this chapter, well-established
comparison theorems between different versions of dimensions are extended to the more general
framework of scales. These comparison results are then applied to describe the geometry of func-
tional spaces, the Wiener measure, and the ergodic decomposition of a measurable dynamical sys-
tem.

The second chapter presents the article titled "Every Diffeomorphism is a Total Renormalization of
an Arbitrarily Close to Identity Map" [BGH24] which is a joint work with P. Berger and N. Gourmelon.
We improve a seminal result of D. Turaev [Turl5b] using a new proof based on tools from group
theory and Lie algebras. More precisely, we show that for any 1 < r < oo, every diffeomorphism,
in the connected component of the identity and isotopic to identity by a compactly supported path,
of a manifold of the form R/Z x M where dimM > 1, can be obtained as a total renormalization
of a C"-close to identity map. In other words, there exists a map ¢ arbitrarily close to the identity
such that the first return map of ¢ in a certain domain is conjugate to f, and moreover, the orbit of
the domain covers the entire manifold.

Finally, the last chapter contains a study of the perturbation of smooth diffeomorphisms pre-
senting homoclinic tangencies. The initial steps of establishing the link between typicality in the
sense of Kolmogorov and localizable genericity in dimension 3 are discussed. An alternative and
geometric proof of a result of Gonchenko-Meiss-Ovsyannikov in [[GST08] is brought. This states in
particular that there exist totally parabolic periodic points, i.e. with eigenvalues on the unit circle,
by arbitrarily small perturbation of a 3-dimensional diffeomorphism with a saddle with determi-
nant 1 and displaying a homoclinic tangency. In this last chapter, the geometric construction is
brought to a new parametric counterpart of this result. The construction takes some ideas from the

2-dimensional case shown by Berger in [Ber17].
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2.2 Motivations

Let us delve into the study of dynamics and their propensity for chaotic behavior. We consider
discrete dynamics that describe the evolution of a system over discrete time steps. A dynamical sys-
tem is given by a state space X endowed with some structure: topological, differential, measurable.
Possible states of the studied systems correspond to points in X. For discrete deterministic dynam-
ics, the evolution of a point is given by an endomorphism f : X — X that must be compatible
with the structure on X, e.g., continuous, differentiable, measurable. The information of the time

evolution of an initial state z € X is given by its orbit:

Orb(z) := {z, f(z), fo f(x), f o fo f(x),...}.

The orbit is simply the path that the system follows in the phase space given the initial condition
r e X.

Natural objects of study for dynamical systems are attractors. They are sets of states that are
invariant under the dynamics and capture nearby trajectories. Attractors can take various forms,
including fixed points, periodic orbits, and more complex geometries allowing for strange or chaotic
behaviors. The study of their geometries has contributed to the popularization of fractal geometry
and the development of dimension theory. Dimension theory seeks to quantify the "size" of mathe-
matical objects and provides a way to measure the complexity, structure, and geometric properties
of metric spaces and their measures. Different versions of dimensions exist to encompass various
aspects of the involved spaces. For instance Berger and Bochi in [BB21]] the dimension of basic
hyperbolic sets for a smooth conservative diffeomorphism of surface is related to the size of the
space of ergodic measures on this set. The latter space is infinite dimensional and can display some
special geometric properties. Moreover, many natural infinite dimensional objects of dynamical sys-
tems such as random processes or functional spaces gave birth to many studies of their geometric
properties. For instance, one way to observe the complexity of a dynamical system is to see how big
its set of ergodic measures is, leading to the notion of emergence [Ber16]]. In the sense of emergence,
complex dynamical systems correspond to dynamics where the space of ergodic measures is infinite
dimensional. Following that path, the notion of scales is introduced in [Hel24]] to study the geome-

try of infinite dimensional spaces by generalizing different classical notions of dimension. Another

much-celebrated view point to study the complexity of a dynamical system is the theory of bifurca-
tion. It leads to the birth of new attractors, the destruction of existing attractors, or changes in their
dynamical behavior and geometry. Roughly speaking, bifurcations correspond to discontinuity in
the behavior of the dynamical system as a parameter of the system varies. This leads to the birth of
new types of behavior that did not appear in the system previously. Examples include the Hénon
map or the Lorenz system. These maps exhibit a rich array of behaviors, including the formation of
strange attractors and sensitive dependence on initial conditions. One rich type of bifurcation is the

unfolding of homoclinic tangencies. Given a regularity r > 1 possibly r = oo or r = w, and a smooth
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Figure 2.1 - Illustration of a Homoclinic Tangency

manifold M, the stability of a diffeomorphism f € Diff" (M) nearby a fixed point is related to the
eigenspaces of its differential Dp f. Recall that, when Dpf is diagonalizable, the fixed point P is
hyperbolic if all the eigenvalues of the derivative have no eigenvalues of the complex unit circle. It
is moreover a sink if all the moduli of the eigenvalues are smaller than 1, a source if they are greater
than 1, and a saddle otherwise.

When considering a saddle point, the stable manifold theorem states that the set of points whose
orbits converge to the saddle form a smooth embedded manifold with dimension equal to the number
of eigenvalues with modulus smaller than 1. It is called the stable manifold of the saddle. This
manifold is tangent to the stable tangent space of the differential at the saddle. Conversely, the
unstable manifold of a saddle fixed point consists of points that converge to the saddle by backward
iterations of the dynamic. In the case of diffeomorphisms, it is also a well-defined smooth manifold
with dimension equal to the number of eigenvalues greater than 1 and it is tangent to the unstable
space of the saddle. While these manifolds intersect transversely at the saddle, they could possibly
intersect again infinitely many times. A specific configuration is the so called homoclinic tangency.
Homoclinic tangencies are non-transverse intersections between the stable and unstable manifolds.
They are crucial in dynamical systems because they often mark the onset of transitions from simple

to complex dynamics. Let us state the following famous conjecture of Palis:

Conjecture 2.2.1 (Palis [Pal00](Conjecture II)). In any dimension, diffeomorphisms displaying a ho-
moclinic tangency or heterodimensional cycles are C"-dense in the complement of the closure of hyper-

bolic dynamics for every r > 1.

Consequently, even near simple maps with well-understood dynamics, there could be bifurcation
leading to complexity and chaos. A major work that is one of the main motivations of this thesis is

the following result from Turaev:

Theorem 2.2.2 (Turaev [Turl5bl]). For1 < r < oo, in the space of C"-smooth orientation-preserving
diffeomorphisms of the unit n-dimensional ball B™ into R™ forn > 2, there exists a residual set S, such

that for every map F' € S,, for every § > 0 and for every n-dimensional ball D there exists a map
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g : R" — R", equal to identity outside D, such that ||g — id||cr < § and F' is a renormalization of g,

i.e. there exists a local change of coordinates such that an iteration of g coincides with F'.

His proof combines "Iljashenko lips” together with renormalizations of first return maps nearby
homoclinic tangencies that allow us to obtain any Hénon-like map. It allowed Turaev to capture
chaotic dynamical phenomena nearby the identity. In [BGH24], we improve the latter theorem by
capturing any diffeomorphism instead of a dense subset. Moreover, we replace the n-dimensional
ball by a manifold of the form M x T where T is the circle and M a manifold possibly with bound-
aries. We propose a new approach for the proof that allows moreover the orbit of the renormalization
domain, i.e. the orbit by g of the domain where the iteration of g is conjugated to F, to cover the
whole manifold. This leads to new applications such as the existence of arbitrarily close to identity
Bernoulli maps preserving a smooth volume form.

As we now know that perturbations of the identity allow us to reach any dynamic by renormal-
ization, the reverse and complementary question remains open: Which dynamics renormalize into
the identity after arbitrarily small perturbations ?

Again, the study of homoclinic tangencies seems to play a key role there. Let us mention the work
of Gonchenko-Meiss-Ovsyannikov in [GST08]]. They studied bifurcations of a three-dimensional dif-
feomorphism with a saddle-focus displaying a homoclinic tangency and having non-real eigenvalues
and a determinant equal to 1. They have shown that in a three-parameter family deforming the ini-
tial map, there are infinitely many open regions of parameters accumulating to 0, for which the
normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional
Hénon-like map. As a consequence of their result, we can obtain by small perturbation a periodic
neutral point. Also for three-dimensional diffeomorphisms with non-transversal equi-dimensional
heteroclinic cycles, a similar work was done by Gochenko-Shilnikov-Turaev [GST08]]. If volume is
expanded at one periodic orbit of the cycle and contracted at another orbit, then the first-return map
is a three-dimensional Hénon map, whose fixed points may have any combination of eigenvalues.
In the last chapter, we provide an alternative and geometric proof of the Theorem of Gonchenko-
Meiss-Ovsyannikov in [GST08]] that extends to the parametric counterpart.

Let us now present the main results of the three chapters.

2.3 Scales

The first article is titled "Scales." Berger posed a question about the complexity of the ergodic
decomposition of conservative dynamical systems. Specifically, for the ergodic decomposition of a
conservative dynamical system, what is the link between the growth rate of the quantization of the
ergodic decomposition and the asymptotic behavior of the mass of small balls ? The answer to this
question falls within a broader framework that includes various applications describing geometric
aspects of infinite-dimensional spaces.

A first application lies in the study of the geometry of the Wiener measure and complements
an estimation by Dereich and Lifshits (2005). Another application refines a theorem by Kolmogorov
and Tikhomirov (1958) on the study of functional spaces.

What are "scales"? By prescribing an arbitrarily growth given by a family of gauge functions,
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called a scaling, we define different versions of scales such as Hausdorff, packing, box, local, and
quantization scales that generalize their corresponding dimensions. These different versions of
scales do not generally coincide. General theorems comparing them are proved, which extend estab-
lished results from dimension theory. Thus, scales unify known comparison theorems for dimension
with new comparison theorems between different versions of scales for infinite-dimensional objects.
For instance, orders are different versions of scales providing geometric aspects of spaces of measures

of compact metric spaces, classes of differentiable maps, or Brownian motion.

2.3.1 From Dimension to Scaling

The Hausdorff, packing, and box dimensions of a totally bounded metric space (X, d) are defined
by looking at families of subsets of X. For the box dimension, given ¢ > 0, consider the e-covering
number N.(X) of (X, d), which is the minimal cardinality of a covering by e-balls of X. Then the
lower and upper box dimensions are usually defined by:

dimBX:sup{a>O:/\/'E-e°‘(X) —>+oo}

e—0

and
dimBX:inf{oz>O:./\/;-e°‘(X)—>O}.

e—0

For the Hausdorff dimension, given ¢ > 0 and a > 0, denote:

HE(X):= inf > diam(E,)®,
(E"l)neN neN
where the infimum is taken over countable coverings (E,),en of X such that diam(E,) < e for
every n € N. Then the Hausdorff dimension is given by:
dimpy X = sup {a >0:HIX) — —|—oo} = inf{a >0:HI(X) — O}.
€E—

e—0
Hausdorff and box dimensions enjoy different properties. While the Hausdorff dimension is count-
ably stable (the dimension of a countable union is the supremum of the dimensions of the elements
of the union), the box dimensions are stable under topological closure. One way to define packing
dimension is to modify the upper box dimension to make it countably stable:

dimpX = infsupdimgpFE,,,

n>1

where the infimum is taken over countable coverings (F,,),>; of X. These four versions of dimen-
sion are bi-Lipschitz invariants; they quantify different aspects of the geometry of the studied metric
space.

Now we can ask the following questions: What can we say when the studied spaces have infinite
dimensions? What kind of invariants can we introduce to generalize the latter versions of dimensions
that allow us to study some kind of homogeneity and size of the spaces? I replaced the specific family
(Pa)as0 = (€ € (0,1) — €*)4>0 with families of gauge functions, called scalings, defining compa-

rable versions of scales, which encompass the following examples of growth:

Example 2.3.1. 1. The family dim = (e € (0,1) — €*)a>0, Which is used in the definitions of

dimensions.

26



2. The familyord = (e € (0,1) — exp(—€e~*))a>0, which is used in the definition of order and fits
for instance with spaces of finitely regular functions studied by Kolmogorov-Tikhomirov [KT93]
or with the one of the space of ergodic measures in chaotic dynamics by Berger-Bochi [Ber20].

3. The family (¢ € (0,1) — exp(—(loge™")*)) -0
ber of holomorphic functions estimated by Kolmogorov-Tikhomirov [KT93].

which fits with the growth of the covering num-

To keep a comparison between the generalizations of box, Hausdorff, and packing dimensions,

the family (¢, )a>0 must satisfy some mild assumptions, which leads to the notion of scaling:

Definition 2.3.2 (Scaling). A family scl = (scly)a>0 of positive non-decreasing functions on (0,1) is
a scaling when for any o > 8 > 0 and any A\ > 1 close enough to 1, it holds:

scla(€) = o (sclg(e)‘)) and scly(e) =0 <sclg(e)’\) ase — 0.

2.3.2 Scales of metric spaces

Scalings allow us to define scales that generalize packing dimension, Hausdorff dimension, box
dimensions, quantization dimensions and local dimensions. For each scaling, the different kinds of
scales do not a priori coincide on any space. Examples of metric spaces and measures where all those
definitions coincide are presented. In those examples, those equalities coincide with some intuitive
idea of homogeneity we might assume in those spaces. Now for a metric space (X, d), replacing
the specific family dim in the definition of box dimensions by any scaling scl = (scl,)a>0 gives the

following:

Definition 2.3.3 (Box scales). Lower and upper box scales of a metric space (X, d) are defined by:
sclp X = sup {a > 0: N (X) - scly(e) — —i—oo}

and

sclp X = inf {a > 0: NA(X) - scly(e) —> 0} :

e—0

Moreover, Hausdorff and packing dimensions are generalized to the Hausdorff scale denoted
scly X and packing scale denoted sclp X by replacing the family dim by the corresponding scaling
scl.

In the specific case of dimension, inequalities between the different versions of dimensions were
shown, for instance, by Tricot [Tri82]] or Falconer [FF97,[Fal04]]. The following contains their results

and extends to the description of infinite dimensional spaces:

Theorem A ([Hel24]). Let (X, d) be a metric space and scl a scaling, the following inequalities hold:

sclgpX <sclpX <sclpX and sclgX <sclpX <sclpX .

An important consequence of the latter theorem is the following that refines an estimation of
Kolmogorov and Tikhomirov [KT93][Thm XV].
Let d be a positive integer. For any integer £ > 0 and for any a € [0, 1], let us denote:

Fiko . — {f c C*([0,1)4, [=1,1]) : || fller <1, D*f is a-Holder with constant 1 } :
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This space is endowed with the C° norm. By embedding a group whose Hausdorff order is bounded
from below into F*%¢, via an expanding map; and as a direct application of Theorem we obtain
the following geometric interpretation of Kolmogorov-Tikhomirov [KT93][Thm XV] estimates of

the covering number of FF-:
Theorem B ([Hel24]]). Let d be a positive integer. For any integer k and for any a € [0, 1], it holds:

_d
k+a

This result gives hope to finding some - in a sense that should be precised - nicely distributed

ordy FM = ordpF™** = ord g F*** = ord g F¥* =

measure on the space F%,

2.3.3 Scales of measures

When we consider a Borel measure p on the metric space (X, d), local scales are introduced and
extend the notion of local dimensions:

Definition 2.3.4 (Local scales). Let i be a Borel measure on a metric space (X, d) and scl a scaling.

The lower and upper scales of i are the functions that map a point v € X to:

p(Bx,e)
scly(e) =0 O}

Ldloc:“’('r) = sup {OJ >0:

and

— . 1 (Bl(z,€))
sClipept(z) = inf {a >0: sclo(c) 0 —i—oo} )

As in dimension theory, local scales should be compared with the scales of subsets of X with
positive mass. In the case of dimension, Frostman [Fro35]], Tricot [Tri82], Fan [Fan94] , Fan-Lau-
Rao [FLR02] and Tamashiro [Tam95]] exhibited the relationship between the Hausdorff and packing
dimensions of sets of positive and total mass with the essential extrema of local dimensions of a
measure. Those results are generalized to the framework of scales. A last kind of scales that are
considered are the quantization scales. They generalize the quantization dimensions which dragged
much research interest, for instance in [[GL07, P6t99, DFMS03, [DL05].

Definition 2.3.5 (Quantization scales). Let (X, d) be a metric space and ;1 a Borel measure on X . The
quantization number Q,, of u is the function that maps € > 0 to the minimal cardinality of a set of

points that is on average e-close to any point in X :

Qu(e) = inf {N >0:3{ei}iny v CX, /Xd(x, {cih<icn)du(z) < 6} :

Then lower and upper quantization scales of i for a given scaling scl are defined by:
sclop = sup {oz > 0:9,(e) - scly(e) — +oo}

and
sclop = inf {a >0:Q,(e) - scly(€) — 0} .

e—0

I proved the following inequalities between scales of measures:
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Theorem C ([Hel24]). Let (X, d) be a metric space. Let i be a non-zero measure on X . For any scaling
scl, the following inequalities on the scales of 11 hold:

ess inf scl,.pu < sclpp <sclou ;3  ess inf scljept < sclgp < QQM

and

ess supsclot < sclop < sclpp ; ess supscliep < sclop < sclpp

where:
sclpp :=inf{sclgE : u(E) > 0} and sclpp = inf{sclgE : u(X\E) = 0}

forsclp € {sclp,sclz}.

To end this first part, let us present two other applications that motivated the introduction of

scales of measures.

Wiener measure The first example concerns the orders of the Wiener measure 11 that describes
uni-dimensional standard Brownian motion on [0, 1]. From an estimation of the mass random ball
for LP-norms by Dereich-Lifshits [DL05][3.2, 5.1, 6.1, 6.3], we directly deduce that ord,,.(w) = 2 =
ordgW. From this, I deduced together with Theorem |C| that the following other invariants also

coincide:

Theorem D ([Hel24]). For the Wiener measure on C°([0, 1], R) endowed with the LP-norm, for p €
[1, oo], verifies for W almost every w € C°([0,1]):

2 = ord;, W (w) = ordgW = ord};,W = ord;,. W (w) = ordpW
— ordsW = ord ;W = ordyW = ordsW = ord WV .

For instance, any subset A of C°(]0, 1]) with positive Wiener mass verifies that its covering

number grows asymptotically faster than exp(e~219)

when e decreases to 0 for any 6 > 0 fixed.

Local and global emergence The framework of scales moreover allows us to answer to a prob-
lem set by Berger in [Ber20] on the emergence of measurable dynamical systems. As a direct appli-
cation of Theorem |C| I answered to this question by the following: Let (X, d) be a compact metric
space, f : X — X a measurable map and ;. a Borel f-invariant measure on X. Recall by Birkhoff
theorem that for p-almost every = € X, the limit of empirical measures e(z) is well defined. Let us
denote M the space of measure on X that we endow with the Wassertein distance ;. One way
to quantify the complexity of ergodic decomposition is to look at the asymptotic behavior of the

emergence of the measure y:
Eu(e) ==min{N e N : Juy,...,vy € M(X), /X Wi(e(x),{vi}1<i<n)du(x) < €},

when € — 0. Note that the emergence is the quantization number of the ergodic decomposition of

L.
A last important application of Theorem [C]is the following:
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Theorem E ([Hel24])). For p-almost every x € X, it holds:

log(—1 log1
s B 108 (B2) _ o dog log £, (¢
e—0 —loge e—0 —loge

where B.(z) :== {y € X : Wi(e(y),e(x)) < €}.

Observe that (B, (z)) is the mass of the ball By 1 (e/ (), €) for the ergodic decomposition e/ ju.
Thus the latter theorem compares the asymptotic behaviour of the small balls for the ergodic de-

composition with the emergence order of the measure.

2.4 Everydiffeomorphism is a total renormalization of a close
to identity map

The article titled "Every diffeomorphism is a total renormalization of a close to identity map" is a

common work with Pierre Berger and Nicolaz Gourmelon. For any 1 < r < 0o, we show that every

diffeomorphism of a manifold of the form R /Z x M is a total renormalization of a C"-close to identity
map. In other words, for every diffeomorphism f of R/Z x M, there exists a map g arbitrarily close
to identity such that the first return map of ¢ to a domain is conjugate to f and moreover the orbit
of this domain is equal to R/Z x M. This enables us to localize nearby the identity the existence of
many properties in dynamical systems, such as being Bernoulli for a smooth volume form. Let B"
be the unit closed ball of R™.

Definition 2.4.1. Arenormalization G of a diffeomorphism g € Diff (B") is a rescaling of an iteration
of g. In other words, there exists N > 2 and an embedding 1) : B" — B" such that:

G=4¢"ogV oy
A long standing open problem of dynamical systems theory is:

Problem 2.4.2 (1971). Which dynamics can be reached by renormalization of close to identity maps?

This problem was first studied by Ruelle and Takens in [RT71]]. Motivated by the study of tur-
bulence, they proved that for any integer n > 2, any dynamic on the n-dimensional torus is the
renormalization of a C™-close to identity map. This enabled them to construct perturbations of the
identity map of the torus with a strange attractor. Based on this, they conjectured that this appears
as well in fluid dynamics and could be used as a mathematical definition of the notion of turbulence.
The main mathematical issue with this result is that the regularity is limited by the dimension of
the torus. However, when considering flows, this problem was solved by Newhouse, Ruelle and
Takens in [NRT78]]: given any vector field X equal to a rotation on the torus T", n > 3 and any map
Fy € Diff*°(T"!) homotopic to the identity, they perturbed X to X so that its first return map to
a global transverse section is Fj. Yet they added one dimension so the mathematical Problem [2.4.2]
remains unsolved.

A breakthrough was then performed in the seminal work of Turaev who proved that a C"-
residual subset of C"-orientation preserving embeddings of B" could be obtained after renormaliza-

tion of an arbitrarily close to identity map, for every 0 < r < oo.
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A first main result is a solution to Problem [2.4.2) where we improve Turaev’s theorem to obtain,
via a self-contained and new proof, any C"-orientation preserving map of B” (instead of maps among

a dense or residual subset):

Theorem F ([BGH24]]). For any 1 < r < oo, any integer n > 2 and any orientation preserving
G € Diff"(B"), in any neighborhood N C Dift" (B™) of the identity, there exists g € N such that a

renormalization of g is equal to G. Moreover, the rescaling map of this renormalization can be chosen

affine.

A natural open problem is whether ¢ can be obtained conservative or symplectic when G is
conservative or symplectic. In this direction let us mention the work of Gonchenko-Shilnikov-
Turaev [GST07] who proved that, for every 0 < r < oo, a C"- dense subset of volume preserving
embeddings of B? could be obtained after renormalization of an arbitrarily close to identity volume
preserving map. Also, Fayad and Saprykina in [FS22] showed that any conservative map of the n-
dimensional ball can be realized by renormalized iteration of a conservative C"-perturbation of the
identity.

If all these theorems tell us about the richness of dynamical behaviors nearby the identity, in
the setting of Definition the orbit of - (B") of the renormalization domain might be
extremely small when the renormalizable map is close to identity. This leads to physically non
observable dynamical properties. To lift this objection we brought a different version of the notion
of renormalization, allowing us to introduce the notion of total renormalization. We then obtain a

renormalization domain intersecting every orbit of the map.

Definition 2.4.3. Let r € {1,...,00} U {w} and let V be a manifold (with boundary). A map
g € Diff"(V) is renormalizable if there exists a strict submanifold with corners A C V' such that:
— there exists a bijective, local diffeomorphism H : A — V, called the rescaling map of the
renormalization domain A,
— the first return time T : A — N* into A by g is bounded and the renormalization G = Ho g o
H~! belongs to Diff" (V).
The map g is totally renormalizable if the forward orbit of A coversV, i.e. U, > 9" (A) = V. The map

G is then a total renormalization of g.

Let V be a compact manifold (possibly with corners) and 1 < r < co. We recall that the support
supp f of f € Diff"(V) is the closure of the set of points such that f(z) # x.

Definition 2.4.4. Let Diff((V') be the component of the identity in Diff" (V). Let Dift, (V') be the subset
of Diff§(V') formed by maps isotopic to id through isotopies ( f;):c[0,1) whose support U,co.1) supp fi is
a compact subset of V' \ V.

Observe that when V' is boundaryless, it holds Diff (V') = Diff] (V). A natural question is:

Question 2.4.5. For which manifold V', any map F' € Diff’(V') is a total renormalization of a close
to identity map?

So far, no example of such a manifold V' was known. In this work we gave a full class of examples:
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Theorem G ([BGH24]). Let 0 < r < o0, let M be a compact manifold of dimension > 1 and put
V=T x M. Let N C Diff" (V') be a neighborhood of the identity. Then any G € Diff_(V) is a total

renormalization of some g € N.

If Theorem [F]implies that every local dynamical phenomenon can be found nearby the identity,
Theorem |G| implies that every global dynamical phenomenon can be found nearby the identity. A
new improvement brought by the latter result is that the renormalization domain is larger than in
all of the previous extensions of Ruelle-Takens theorems: its orbit coincides with the whole domain
of the dynamic. This enabled new applications such as the proof of existence of maps preserv-
ing smooth SRB nearby the identity or universal maps whose renormalization domains decrease as

slowly as we want.

The framework of the proof of the main theorems relies on a new object called plugin. A plugin
is a renormalizable map of special form that has a canonical renormalization called output. We study
the group of maps that are outputs of plugins arbitrarily close to identity. Topological properties of
the set of such maps and the study of the Lie algebra of vector fields having flows in this group are
the key ingredients of the proof of our main theorems. We also provide parametric counterparts of

our results which lead to the following study.

2.5 Totally parabolic points nearby homoclinic tangencies

Kolmogorov introduced the notion of typicality at the ICM in 1954. to encompass phenomena
that occur for almost every parameter of generic parameter families of differentiable dynamics for

finite dimensional spaces. To be precise:

Definition 2.5.1 (Arnold-Kolmogorov typicality). For every k,r > 0, a property (P) on a manifold
M is said to be (k,r)-Kolmogorov typical if there exists a Baire generic set of C"-families (fy)qcrr Of
C"-maps so that (P) is satisfied by f, for Lebesgue almost every parameter a € RF,

Thus, typicality in the sense of Kolmogorov encompasses some probabilistic aspect. It is a priori
independent from typicality in the sense of Baire genericity. For instance there are Baire generic
subsets G of the circle with null Lebesgue measure. Thus having all periodic elliptic points with
eigenvalues in G is Baire generic but not Kolmogorov typical among conservative surface diffeo-
morphisms. On the other side, any Kolmogorov typical property is Baire generic. This leads to won-
dering how big is the class of Kolmogorov typical properties. Yet, a mechanism to show Kolmogorov
typicality of some Baire generic dynamical phenomena was introduced by Berger in [Ber16| Ber17],
called para-blenders that generalizes Bonatti-Diaz blenders to parameter families. In particular it
enabled to show in [Ber16] that the so-called Newhouse phenomenon is C"-typical in dimension at
least 3 for 1 < r < +o00. Recall that Newhouse phenomenon [New74, New79] corresponds to the
existence of locally generic sets of dynamics displaying infinitely many sinks that accumulate onto
Smale’s horseshoes. Moreover, parablenders allowed Berger in [Ber21]] to show the Kolmogorov-
typicality of the fast growth of the number of periodic points in dimension at least 2 for C"-self
mappings with 2 < r < oo. See also [BR21]. Berger in [Ber20] considered the following class of

Baire generic phenomena and conjectured that it should be Kolmogorov typical:
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Definition 2.5.2 (Generically localizable). A property (P) on a manifold M is said to be C"- local-
izable if for every open set U C M and for any f € Diff" (M) such that fljl\]’ = idy for some integer
N > 1, then there exists an arbitrarily small perturbation in Diff" (M) of f that verifies (P). It is more-
over openly localizable if there exists an open set of perturbations that realizes the property. Finally,
the property is generically localizable if it is implied by a countable conjunction of openly localizable
{(P;) :i € N}:

N\ (P:) = (P).

ieN

The above definition introduced by Berger in [Ber20] was inspired by the following result of

Turaev:

Theorem 2.5.3 ((Turaev [Turl5bl])). For every surface M and r > 2, there is a non-empty open set
N, C Diff"(M) such that for a dense set D C N,, for every f € D, there exists U C M and an integer
N > 1 such that fﬁg = idy.

Let us state the conjecture linking generically localizable properties to Kolmogorov typicality:

Conjecture 2.5.4 (Berger [Ber20](Conjecture 1.5)). If M is a smooth manifold with sufficiently large

dimension and 2 < r < co. Then any generically localizable property is (k,r) -Kolmogorov typical in

Dift" (M), for any k > 0.

Recall that it is shown in [BGH24]] that every smooth family of diffeomorphisms on the n-
dimensional ball is a renormalization of a close to identity family of diffeomorphisms for any reg-
ularity 2 < r < oofor every n > 2. This improved and generalized the seminal work of Turaev in
[Tur15b].

Also, Turaev has announced that if a diffeomorphism displays a periodic point with Jacobian
equal to the identity, then an arbitrarily small perturbation allows us to create a periodic spot, that
is an open set on which the first return map is equal to the identity. Thus, to prove Conjecture[2.5.4]

we need to find mechanisms to create periodic points for some open set of parameter families.

Conjecture 2.5.5 (Berger). Let M be a manifold of dimension at least 3 and 1 < r < oo. Then
there exists a locally dense set D of C"-parameter families of diffeomorphisms of M, such that for
every family (f,). € D, each f, displays a neutral periodic point, i.e. there exists P, € M such that
fP(P,) = P, and Dp, f? = id for some integer p.

Here I present a first step —~Theorem [H|-towards a proof of Conjecture for the three dimen-
sional case. The next step will be completed soon.
The non-parametric version of Theorem [H|can be deduced from [GMO06]].

Theorem 2.5.6 (Gochenko-Meiss-Ovsyannikov [GMOO06]). Let f be a smooth diffeomorphism of
3-manifold M. Assume that there exists a hyperbolic saddle periodic point () with one complex eigen-
value and Jacobian determinant equal to 1 that displays a homoclinic tangency at some point H.

Then there exists a small C™®-perturbation f of f and a periodic point Q close to H with multipli-
ers {1, €2i7r/37 €—2i7r/3}'

Here is the parametric version of this result:
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Theorem H. Let (f,)a.cn be a C®-family of smooth diffeomorphisms of a 3-manifold M parameter-
ized by a compact connected smooth manifold A. Assume that there exists an angle € R/27Z\{0}
and smooth families of points (H,)acn and (2g)aca such that for every a € A it holds:

1. Q, is a saddle periodic point of f, with one complex eigenvalue with argument 6 and determinant

equal to 1,
2. Q, is the hyperbolic continuation of 2,, for some ag € A,
3. H, is a point of homoclinic tangency for (1,,.

Then there exists an arbitrarily small C*®-perturbation ( f,)aca of (f2)aca and a smooth family of points

(Qa)acs such that for every a € A the point Q, is periodic for f, close to H, and with eigenvalues
{1, e2i7/3 =2in/3),

Actually Gochenko-Meiss-Ovsyannikov gave the normal form (3-dimensional Hénon-like map)
for the renormalization nearby this homoclinic tangency; from this Theorem can be deduced.
It seems possible to extend their bounds on derivatives to parameter families in order to obtain
Theorem[H] Instead we preferred providing a geometric proof of Theorem|2.5.6] which passes easily
to the parametric case (without any extra computation). As a preparation for the next step toward
Conjecture we show that the hypotheses of Theorem are locally dense in the space of

diffeomorphisms. This provides the following corollary:

Corollary A. Foreveryl < r < oo, there exists a locally dense set of C" -diffeomorphism of M formed

2im/3 —2im/3

by maps displaying a periodic point with eigenvalues equal to 1, e and e

For r = 1, this corollary is the principal result of Bonatti-Diaz [BDP03]. For » = oo, this result

is also a consequence of a Theorem of Gonchenko-Shilnikov-Turaev [GST09].
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Abstract

The notion of scale is introduced to obtain geometric information on metric spaces and measures
by generalizing part of dimension theory. Several versions of scales are introduced such as Haus-
dorff, packing, box, local and quantization. They are defined for different growth, allowing a refined
study of infinite dimensional spaces. We prove general theorems comparing the different versions
of scales. They are applied to describe geometries of ergodic decompositions, of the Wiener mea-
sure and of functional spaces. The first application solves a problem of Berger on the notions of
emergence (2020); the second lies in the geometry of the Wiener measure and extends the work of
Dereich-Lifshits (2005); the last refines Kolmogorov-Tikhomirov (1958) study on finitely differen-

tiable functions.



3.1 Introduction and results

Dimension theory was popularized by Mandelbrot in the article How long is the coast of Britain
? [Man67] and shed light on the general problem of measuring how large a natural object is. The
category of objects considered are metric spaces possibly endowed with a measure. Dimension
theory encompasses not only smooth spaces such as manifolds, but also wild spaces such as fractals,
so that the dimension may be any non-negative real number. There are several notions of dimension:
for instance Hausdorff [Haul8]], packing [Tri82] or box dimensions [Bou28|]. Also, when the space
is endowed with a measure, there are moreover the local and the quantization dimensions. These
different versions of dimension are bi-Lipschitz invariants. They are in general not equal, so that
they reveal different aspects of the underlying space. Seminal works by Hausdorff, Frostman, Tricot,
Fan, Tamashiro, Potzelberger, Graf-Luschgy, and Dereich-Lifshits have described the relationships
between these notions and provided conditions under which they coincide.

Obviously, these invariants do not give much information on infinite dimensional spaces. How-
ever, such spaces are the subject of many studies. As motivations, Kolmogorov-Tikhomirov in
[KT93] gave asymptotics of the covering numbers of some functional spaces. Dereich-Lifshits gave
asymptotics of the mass of the small balls for the Wiener measure and exhibited their relationship
with the quantization problem, see [DFMS03| DL05, [CM44] (Chu47, BR92| KL93|]. Also, Berger and
Bochi [Ber20] gave estimates on the covering number and quantization number of the ergodic de-
composition of some smooth dynamical systems. See also [BR92, Klo15, BB21]].

These results lead to the following:

Question. Are there infinite-dimensional counterparts of the various versions of dimension that main-

tain similar relationships ?

To address this question, we introduce the notion of scale. The key idea involves considering a
scaling, which is a one-parameter family of gauge functions that satisfies mild assumptions, dictating
at which ’scale’ the size of the space is examined. For instance the families for the dim for the
dimension and ord for the order given in Example[3.1.1]are scalings. Given a scaling, different versions
of scales are defined. In particular, Hausdorff dimension, packing dimension or box dimension are
scales.

Given a scaling, we will generalize comparison theorems between the different kinds of dimen-
sions to all the different kinds of scales in Theorem [A] [B|and [C] The definition of scaling is crafted
so that the proofs for Theorem[A]and Theorem B]are nearly direct extensions of established results
from dimension theory (see Section [3.1.2).

The main difficulty will be then to prove Theorem[C| which enables us to compare the quantization
scales with both the local and the box scales. Also even for the specific case of dimension, new inequalities
between the quantization dimension of a measure and box dimension of the set of positive mass are
proven and generalized for any scaling in Theorem [( (inequalities (f) and (h)). Main novelties from
Theorem|[C are reformulated in Theorems(3.3.10 and|[3.3.11]

In the next Section [3.1.1] we recall usual definitions of dimension and introduce the notions of
scaling and scales. The theorems comparing the different versions of scales are stated in Section(3.1.2]
Precise definitions of the involved scales are given in Section [3.2] and in Section [3.3] for measures.
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Then, Section [3.1.3]is devoted to applications of the main results. In Section [3.1.3] a first application
of Theorem |C| together with Dereich-Lifshits estimate in [[DL05] implies the coincidence of local,
Hausdorff, packing, quantization and box orders of the Wiener measure for the LP-norm, for any
p € [1, 00]. Then in Section[3.1.3] we apply Theorem[A]to show the coincidence of the box, Hausdorff
and packing orders for finitely regular functional spaces; refining the Kolmogorov-Tikhomirov study
in [KT93| Thm XV]. Lastly in Section a consequence of Theorem (C|is that the local order of
the ergodic decomposition is at most its quantization order. This solves a problem set by Berger in
[Ber20]).

3.1.1 From dimension to scale

Let us first recall some classical definitions of dimension theory and see how they could be
naturally extended to define finite invariants for infinite dimensional spaces. The Hausdorff, packing
and box dimensions of a totally bounded metric space (X, d) are defined by looking at families of
subsets of X. First consider the box dimension. Recall that, given an error ¢ > 0, the covering
number N, (X) is the minimal cardinality of a covering of X by balls of radius €. Then the lower and

upper box dimensions of (X, d) are given by:
dimpX :=sup{a > 0: N (X)-@a(c) = +o0} and dimpX := inf{a > 0: N (X) @u(c) — 0},

where (¢,)a>0 is the family of functions on (0, 1) given for & > 0 by ¢, : € — €.

Box dimensions, also called box counting dimensions or Minkovski-Bouligand dimensions were
introduced by Bouligand in [Bou28|]. In general, upper and lower box dimensions do not coincide
(see e.g. [FF97,[Fal04]). However, when X is a smooth manifold endowed with the Euclidean metric,
these two dimensions coincide with the usual definition of dimension. Basic properties of box di-
mensions are revealed when looking at subsets of a metric space with the induced metric. Notably,
box dimensions are non decreasing for the inclusion and are invariant by topological closure.

In general they are not o-stable, i.e. the box dimensions of a countable union of subsets of a
metric space are a priori not equal to the suprema of the corresponding dimensions of the subsets.
The most popular version of dimension that enjoys the property of o-stability is Hausdorff dimension.

Let us recall its definition. Given an error € > 0, consider:

HINX) = inf o(0),
(00 =t 3 6
where Cp(€) is the set of countable coverings of X by balls of radius at most €. Then, the Hausdorff
dimension of (X, d) is given by:
dimy X = sup {a >0:HIX) — —l—oo} = inf{a >0:HHX) — O} :

e—0

Lastly, another interesting dimension that enjoys o-stability is the packing dimension. Its construc-
tion is analogous to that of Hausdorff dimension and was introduced by Tricot in his thesis [Tri82]].
It is actually linked to upper box dimension by the following characterization that we will use for
the moment as a definition:

dimpX := infsupdimgFE, ,

n>1
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where the infimum is taken over countable coverings (E,),>1 by subsets of X. These four ver-
sions of dimension are bi-Lipschitz invariants; they quantify different aspects of the geometry of

the studied metric space since they a priori do not coincide. However, it always holds:
dImHX S MBX S MBX and dImHX S dime S MBX .

See e.g. [FF97], [Fal04] for detailed proofs.

Let us now introduce scales. A simple observation is that all of the above versions of dimension
involve a specific parameterized family (¢4 )a>0 = (€ — €*)a>0 of gauge functions with polynomial
behavior. In dimension theory, gauge functions generalize the measurement of ball diameters, en-
abling more control over the definition of the Hausdorff measure in the finite dimensional case. For
scales, the objective is different. Roughly speaking, we will allow gauge functions to exhibit behav-
iors that are far from being polynomial. Let us precise the discussion. If a space (X, d) is infinite
dimensional then its covering number N, (X)) grows faster than any polynomial in ¢! as ¢ decreases
to 0. In order to define finite invariants for infinite dimensional spaces we must allow other gauge
functions that decrease faster than any polynomial when the radius of the involved balls decreases
to 0. Consequently, we propose to replace the family (¢, )as0 = (€ € (0,1) — €*)ao in all the
above definitions of dimensions, by other families of gauge functions that encompass the following

examples of growth:

Example 3.1.1. 1. The family dim = (¢ € (0,1) — €%)4~0 which is used in the definitions of

dimensions,

2. the family ord = (¢ € (0,1) — exp(—€~%))a>0 Which is called order. It fits with the growth
of the covering number of spaces of finitely regular functions studied by Kolmogorov-Tikhomirov
[KT93], see Theorem or with the one of the space of ergodic measures spaces by Berger-
Bochi [Ber20], as we will see in Theorem|R,

3. the family (e € (0,1) — exp(—(log e~ ')*)),~, which fits with the growth of the covering num-
ber of holomorphic functions estimated by Kolmogorov-Tikhomirov [KT93], as we will see in

Theorem

To properly extend definitions and comparison theorems among different scales, i.e. the gener-
alized box, Hausdorff, and packing dimensions; the family of functions (¢, ).~ must satisfy certain

mild assumptions. This requirement leads us to introduce the notion of scaling:

Definition 3.1.2 (Scaling). A family scl = (scl,)a>0 of positive non-decreasing functions on (0, 1) is
a scaling when for every a > 3 > 0 and any X\ > 1 close enough to 1, it holds:

sclo(€) =0 (sclg(e)‘)) and scly(€) =0 (SClg(E))\> ase — 0. (%)

Remark 3.1.3. The left hand side condition is used in all the proofs of the theorems represented on
Fig. The right hand side condition is only used to prove the equalities between packing and upper
local scales in Theorem |B and to compare upper local scales with upper box and upper quantization
scales in Theorem|(] inequalities (¢)&(g). It also allows us to characterize packing scale with packing

measure.
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Remark 3.1.4. There are scalings that allow us to study 0-dimensional spaces, for instance the family:

—

(6 = log(e_l) )a>0 .
We will show in Proposition that the families in Example are scalings. Scalings al-

low us to define scales that generalize packing dimension, Hausdorff dimension, box dimensions,
quantization dimensions and local dimensions. For each scaling, the different kinds of scales do not
a priori coincide on a generic space. Nevertheless, in Section as a direct application of our
comparison theorems, we bring examples of metric spaces and measures where all those definitions
coincide. In these examples, equalities between the different scales are linked to some underlying
"homogeneity" of the space that is provided by the existence of an equilibrium state.

Now for a metric space (X, d), replacing the specific family dim in the definition of box dimen-

sions by a given scaling scl = (scly, )0 gives the following:

Definition 3.1.5 (Box scales). Lower and upper box scales of a metric space (X, d) are defined by:

e—0

sclp X = sup {a > 0: N(X) - scly(e) — —I—oo}

and

scpX — inf {a > 0: N(X) -sela(e) — o} |

Moreover, we will generalize the notion of Hausdorff and packing dimensions to the Hausdorff
scale denoted scly X (see Definition [3.2.13) and packing scale denoted sclp X (see Definition [3.2.14).
The constructions are fully detailed in the next section. Let us now state the main results on com-

parison of scales of metric spaces.

3.1.2 Results on comparisons of scales

In this section, we introduce other kinds of scales and Theorems [A] [B and [C] that state the in-
equalities between them as illustrated in Fig.
First, we bring the following generalization of classical inequalities comparing dimensions of

metric spaces to the frame of scales:

Theorem A. Let (X, d) be a metric space and scl a scaling, the following inequalities hold:

sclyX <sclpX <sclgX and sclgX <sclgX <sclpX .

In the specific case of dimension, these inequalities are well known and presented for instance
by Tricot [Tri82] or Falconer [[FF97, [Fal04]. The proof of this theorem will be done in Section
The key part is to show that Hausdorff scales and packing scales are well defined quantities. Then

we will follow the lines of Falconer’s proof to show Theorem [A]

The relationship between the dimensions of (X, d) and its measures was first studied by Frost-
man [Fro35]], who used equilibrium states to describe the Hausdorft dimension of the underlying
space. Conversely, the dimensions of sets can characterize the asymptotic behavior of the mass of
small balls of a measure. This concept was introduced by Fan as local dimension [Fan94]], leading to
seminal studies by Fan, Lau, and Rao [FLR02], P6tzelberger [P6t99], and Tamashiro [Tam95].

Similarly we introduce local scales that extend the notion of local dimensions of a measure:
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sclp X

Theorem AA/ \

sclp X
l sclpp

— Y Theorem C
sclpp sclopu

S_CYQ/J / S_CYB:U\‘
heorem B

sclipp = sup ess scljpept

sclyy = sup ess scly,.p sclpp | sclpp = inf ess scliocp |

e

sclgp = inf ess scly . p ‘

Figure 3.1 - Diagram presenting results of Theorems[A] [B|and
Each arrow is an inequality, the scale at the starting point of the arrow is at least the one at its

ending point: 7 — 7 =" > ",

Definition 3.1.6 (Local scales). Let i be a Borel measure on a metric space (X, d) and scl a scaling.

The lower and upper scales of i are the functions that map a point v € X to:

p(B(z,¢))
scly(€) €m0 0}

S7C|loc:u(l‘) = Sup {OZ >0:

and

— . 1 (B(z,€))
sClipept(z) = inf {a >0: scla(c) o0 +oo} )

As in dimension theory, we should not compare the local scales with the scales of X but with

those of its subsets with positive mass. This observation leads to considering the following:

Definition 3.1.7 (Hausdorff, packing and box scales of a measure). Let scl be a scaling and . a non-
null Borel measure on a metric space (X, d). For anyscl, € {sclH, sclp, sclp, QB} we define lower and

upper scales of the measure (1 by:
sclept = érelg {scleE : u(E) >0} and sclju= }132% {scleE: u(X\E) =0} ,
where B is the set of Borel subsets of X.

In the case of dimension Fan [Fan94, FLR02] and Tamashiro exhibited the relationships
between the Hausdorff and packing dimensions of measures and their local dimensions that we

generalize as:
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Theorem B. Let i be a Borel measure on a metric space (X, d), then for any scaling scl, Hausdorff

and packing scales of |1 are characterized by:
sclpp = essinfscly i,  scliu = ess supscly i, sclpp = essinfsclieps, sclibp = ess sup sclieft

where ess sup and ess inf denote the essential suprema and infima of a function.

The proof of Theorem [Bis provided in Section It is inspired by the proofs of Fan [Fan94]
and Tamashiro [[Tam95]] in the dimensional case.

Let us introduce a last kind of scale, the quantization scale. It generalizes the quantization di-
mension. This definition is motivated by the following works [[GL07, P6t99, DFMS03| [DL05, Ber17,
BB21, Ber20].

Definition 3.1.8 (Quantization scales). Let (X, d) be a metric space and i a Borel measure on X.
Given an error € > 0, the quantization number Q,,(¢) of i is the minimal cardinality of a finite set of

points that is e-close on average to any point in X :

Qu(e) =inf {N > 0:3 (e} Ly © X, [ dla{eihycicn)di(e) <

Then lower and upper quantization scales of 1 for a given scaling scl are defined by:

sclgp = sup {a > 0:scly(e) - Qule) — —i—oo}

e—0

and

e—0

sclop = inf {a > 0:scly(e) - Qule) — 0} .
The following gives relationships between the different kinds of scales of measures:

Theorem C (Main). Let (X, d) be a metric space. Let 11 be a Borel measure on X . For any scaling scl,
the following inequalities on the scales of 11 hold:

ess inf scl;, sclop ; ess inf sl

and

ess sup scly, sclop 5 ess sup scli

Inequalities (b) and (d) are part of Theorem and relies mainly on the use of the Borel-
Cantelli lemma. Even in the specific case of dimension, these inequalities are new, as far as we
know. Inequalities (¢) and (g) were shown by Pétzelberger in [P6t99] for dimension and in [0, 1]%.
A new approach for the general case is brought in Theorem We deduce the inequality (a)
from (e) and (f) and the inequality (c) from (g) and (h). The proof of inequalities (f) and (h) is
straightforward, see Lemma [3.3.8]

As a direct application, inequality (e) allows us to answer a problem set by Berger in [Ber20]]
(see Section[3.1.3). We will give in Section examples of spaces for which the different versions

of orders do not coincide.
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3.1.3 Applications

Let us see how our main theorems easily imply the equality between the different scales of some

natural infinite dimensional spaces.

Wiener measure

The first example is the computation of the orders of the Wiener measure W that describes uni-
dimensional standard Brownian motion on [0, 1]. Recall that W is the law of a continuous process
(Bt)tejo,1) with independent increments. It is such that for any ¢ > s the law of the random variable
By — Bs is N(0,t — s). Computation of the local scales of the Wiener measure relies on small ball
estimates, which received much interest [CM44|Chu47, BR92| KL93]]. These results gave asymptotics
on the measure of small balls centered at 0 for L? norms and Holder norms. Moreover, for a random

ball, Dereich-Lifshits made the following estimate for LP-norms:

Theorem 3.1.9 (Dereich-Lifshits [DL05]|[3.2, 5.1, 6.1, 6.3]). For the Wiener measure on C°([0, 1], R)
endowed with the LP-norm, for p € [1, 00|, there exists[| a constant k > 0 such that for W -almost any
w e CO([O, 1],R):

—e® - logW(B(w,€)) — K, whene — 0 ,

and moreover the quantization number of W verifies:

¢ -log Qw(€) — K, whene — 0 .

As a direct consequence of Theorem Bland Theorem [C|we get that the new invariants we intro-

duced for a measure with growth given by ord all coincide:

Theorem D (Orders of the Wiener measure). For the Wiener measure on C°([0, 1], R) endowed with

the LP-norm, for p € [1, 00|, verifies for W almost everyw € C°([0,1]) :

2 = ordj, (w) = ordgW = ordy; W = ordyW = ord W
= ordjo.(w) = ordpW = ordp,W = ordgW = ordg WV .

In particular, the framework of scales allows us to define Hausdorff, packing and box orders of a
measure that are equal to 2 for the Wiener measure. This indicates some kind of constant geometric

property of subsets of maps with positive Wiener measure.
Proof. By Theorem for W-almost w and for any p € [1, o], in the LP-norm it holds:
ordy, W (w) = ordiec W (w) = 2 = ordoW = ordg W .
Now by Theorem [B} it holds:
ordgW = ord,,. W (w) = ordj;;W and ordpW = ordjo.W (w) = ordp W .
Finally, since by Theorem [C|we have:
ordgW > ordgW > ordgW > ordy W,

the desired result comes by combining the three above lines of equalities and inequalities. [

2. Note that for p < o0, the constant x does not depend on the value of p.
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Remark 3.1.10. Since (C°([0, 1], R), L) is not (totally) bounded, as well as any of its subsets with
total mass, it holds ordj, = +o0.
Functional spaces endowed with the C’-norm

Let d be a positive integer. For any integer k£ > 0 and for any « € (0, 1] denote:
FO = {f € O*((0.1% [-1,1]) < If llor < 1f
and
Fdka . — {f c C*([0,1)%,[=1,1]) : || fllcx < 1 and D*f is a-Holder with constant 1 } :

We endow these spaces with the C° uniform norm (see Section for details).

Kolmogorov and Tikhomirov gave the following asymptotics:

Theorem 3.1.11 (Kolmogorov-Tikhomirov, [KT93]|[Thm XV]). Let d be a positive integer. For any

integer k and for any o € |0, 1], there exist two constants C; > Cy > 0 such that for every ¢ > 0, the
covering number N(F®%<) of the space (F®%< | - ||o) verifies:

- ¢ Fia > log No(Fr) > ¢y - e Fia

In Section [3.4.2, we will embed an infinite-dimensional Kantor set into %% via an expanding
map. This embedding will enable us to prove:
Lemma 3.1.12. Let d be a positive integer. For any integer k and for any o € [0, 1], it holds:

d
d d,k,a > .
ordyF Z i ta

The above lemma together with Theorem [Al gives the following consequence of the theorem of

Kolmogorov-Tikhomirov:
Theorem E. Let d be a positive integer. For any integer k and for any o € [0, 1], it holds:

d

ordy FRe = ord p FoFe = ordB}"d’k’o‘ = ordg Fdhe = ra
Q

Proof. First, by Theorem @ it holds:
ordy F** < ordp F** < ordp F** and  ordg F** < ordp F** < ordg FHM .

From there, by Theorem|3.1.11|and Lemma [3.1.12] it holds:

d S d
—— <ordyg FP < ord g F4M* < ordp F#F = —— |
k+a =~ 1 i =P k+a
and
L < ordy FER < ord p FR < ord g Foke = L
k+a — - - kE+a
From there, all of the above inequalities are indeed equalities, which gives the desired result. O]
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Local and global emergence

The framework of scales moreover allows us to answer a problem set by Berger in [Ber20]] on the
largeness of ergodic decomposition for wild dynamical systems. We now consider a compact metric
space (X, d) and a measurable map f : X — X. We denote M the set of probability Borel measures
on X and M the subset of M containing f-invariant measures. The space M is endowed with the

Wasserstein distance W, defined by:
Wi(vy,ve) = sup od(vy — 1)
$€Lipt(X)

inducing the weak *- topology for which M is compact. A way to measure the wildness of a dynam-
ical system is to measure how far from being ergodic an invariant measure p is. Then by Birkhoff’s

theorem, given a measure ;1 € M, for pi-almost every o € X the following measure is well defined:

1 n—1
f() = lim ~
el(z) = lim — I§J5fk(x) :

and also this limit measure is ergodic. The notion of emergence, introduced by Berger, describes the
size of the subset of ergodic measures that can be obtained by limits of empirical measures, given

an f-invariant probability measure on X.

Definition 3.1.13 (Emergence, [Ber17, BB21]]). The emergence of a measure p € My ate > 0 is
defined by:

Eule) =min{N e N : FJvy,...,uxn € My, /X Wi(el (x), {vi}i<ien)dp(z) < €} .

Note that the emergence is the quantization number of the ergodic decomposition of p. The
case of high emergence corresponds to dynamics where the considered measure is far from being
ergodic. The following result shows us that the order is an adapted scaling in the study of the ergodic

decomposition.

Theorem 3.1.14 ( [BGV07, Klo15, BB21] ). Let (X, d) be a metric compact space of finite dimension,
then:

Given measure ;1 € M we define its emergence order by:

ord€, := limsup w = inf{

n st “ogc a>0:&,(e) -exp(—€ ) —> 0} :

e—0

We denote ji.; := e/, p1 the ergodic decomposition of y; i.e. the push forward by e/ of y1. A local
analogous local quantity to the emergence order is the local order of the ergodic decomposition of
, for v € My it is defined by:

_ loo — 1 B
ordE2 (1) = lim sup —2 0g(ttes (B(v,€))
: e—0 — log €
Berger asked if the following comparison between the asymptotic behavior of the mass of the balls

of the ergodic decomposition of 1 and the asymptotic behavior of its quantization holds.
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Problem 3.1.15 (Berger, [Ber20, Pbm 4.22] ). Let (X, d) be a compact metric space, f : X — X a

measurable map and . an f-invariant probability measure on X . Does the following hold ?
A cloc )
/Mf ordé’u dpter < ordg, .

We propose here a stronger result that answers the latter problem as a direct application of
Theorem [C

Theorem F. Let (X, d) be a compact metric space, f : X — X a measurable map and y an f-

invariant probability measure on X . For ji.s-almost every v € M, it holds:
ord€*(v) < ordé,, .

Proof. Note that ord€*® = ordjecftes and ord€,, = ordg .. Now by Theorem it holds ji.s-almost
surely that ordjt.r < MQ tter Which is the desired result. O

3.2 Metric scales

Metric scales will be bi-Lipschitz invariants generalizing Hausdorff, packing and box dimensions
of metric spaces. Before defining and comparing metric scales we show a handful of basic properties

of scalings and present some relevant examples.

3.2.1 Scalings

We first recall that a family scl = (scl,)a>0 of positive non-decreasing functions on (0, 1) is a
scaling when for any o > 8 > 0 and any A > 1 close enough to 1, it holds:

sclo(€) =0 (SCl/g(E)\)) and scl,(€) = o (SCIg(E)/\) whene — 0 . (%)
An immediate consequence of the latter definition is the following:

Fact 3.2.1. Let scl be a scaling, then for any o > 3 > 0 and for any constant C' > 0, for e > 0 small
enough, it holds:
scly(€) <sclg(C -¢) .

A consequence of the latter fact is the following which will allow us to compare the different

versions of scales:

Lemma 3.2.2. Let f, g : R} — R be two functions such that f < g near 0. For any constant C' > 0,
it holds:

inf {a >0: f(C-e)-scly(e) — 0} < inf {oz > 0: g(e) - scly(€) — 0}

and

sup {a >0: f(C-€)-scly(e) — +oo} < sup {a >0 g(e) - scla(e) — +oo} '
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Proof. It suffices to observe that, by Fact[3.2.1] for any o > 3 > 0, and € > 0 small, it holds:
F(6) - sclale) < g(e) - sels(C™ - €) = g(C - &) - el (@)
withé =C - e [
The following will provide a sequential characterization of scales:

Lemma 3.2.3 (Sequential characterization of scales). Let scl be a scaling and f : R} — R’ be a non
increasing function. Let (r,,),>1 be a sequence of positive real numbers decreasing to 0 and such that

log 7,41 ~ logr, asn — 400, then it holds:

inf {a > 0: f(e) - scly(e) — 0} = inf {a >0: f(ry) - scly(ry,) —— 0}

n—-+o00

and
sup {Oé > 0: f(e) - scly(e) — +oo} = sup {a > 0: f(ry) - scly(rn) — +oo} :

Proof. Fix a > 0 and € > 0. If € is sufficiently small, there exists an integer n > 0 such that

Tni1 < € < 1p. Since f is non-increasing and scl,, is increasing, we have the inequalities:

f(rn) - scla(rnia) < f(e) - scla(€) < f(rnia) - scla(rn)- (32.1)

Now, let 3 and vy be positive real numbers such that 0 < 8 < a < ~. For A sufficiently close to 1
and for sufficiently small €, by Eq. () it holds:

scly(ry) < sclo(r)) and  scly(r,) < sclg(rﬁ) . (3.2.2)

As \ > 10%;7:“ for large n, it holds:

T?L S Tnt1 -
This together with Eq. implies:
scly(ry) <sclo(rps1) and  scly(r,) < sclg(rpy). (3.2.3)

By combining Eqs. (3.2.1) and (3.2.3), we obtain:

f(rn) - scly(r,) < f(e) -sclo(€) and  f(e) - sclo(€) < f(rnt1) - sclg(rng1)-

Thus, it follows that:

limsup f(ry) - scl,(ry) < limsup f(e) - scly(€) < limsup f(r,,) - sclg(ry),

n—-+o00 e—0 n—-+o0o

and similarly:

lim inf f(r,) - scly(r,) < lirri)iglff(e) -scly(€) < lir_r}lnff(?“n) -sclg(ry) -

n—-+o0o

Since this holds for every positive o, and since  and 7y can be taken arbitrarily close to «, we obtain
the desired result. [
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The following provides a whole class of scalings. It shows in particular that the families brought
in Example are indeed scalings.

Proposition 3.2.4. For any integers p,q > 1, the family sc/”! = (scl2?),~¢ defined for any o > 0

by:
1

exp®P(a - log?¥(e71))

is a scaling; wherelog, : t € R+ log(t) - 1,51 is the positive part of the logarithm.

scl2? e e (0,1) —

We prove this proposition below. Note in particular that:
sl =dim = (e € (0,1) = €)ps0 and sc/*' =ord = (e € (0,1) — exp(—€ *))as0

are both scalings. Let us give an example of a space that has finite box scales for the scaling scI** as

defined in Proposition[3.2.4] Consider the space A of holomorphic functions on the disk D(R) C C
of radius R > 1 that are bounded by 1:

A= {¢ => a,z" € CY(D(R),C) : sup |¢| < 1} endowed with the norm||¢||, := sup |¢(2)] .

n>0 D(R) z€D(1)
Kolmogorov and Tikhomirov gave the following estimate of its covering number:

Theorem 3.2.5 (Kolmogorov, Tikhomirov [KT93][Equality (129)] ). The following estimate on the
covering number of (A, || - ||) holds:

log NV.(A) = (log R)™* - |loge|* + O(log e - loglog e ™), when ¢ tends to 0. .
In the framework of scales, the above translates as:
scl??A =scl A=2.
Let us now show:

Proof of Proposition[3.2.4 The proof is based on the following two facts:

Fact 3.2.6. For everyv > 1, for everyd > 1 and fory > 0 large enough, it holds:
log™(y") < v-log*(y) .
Fact 3.2.7. For any~y > 0 andv > 1 close to 1, it holds for e > 0 small:
scl? () <sclb(e”) and sclpl(e) <sclb(e)” .
Actually Fact[3.2.7] will be proved using Fact First let us show recursively:

Proof of Fact[3.2.6. 'We prove this fact by induction on d > 1. For d = 1 note that the inequality is

obvious as the equality holds. Then we conclude by induction on d based on the following:
log™ "V (y") = log(log™ (")) < log(vlog™'y) = log v + log™** Dy,
where the inequality is given by the induction hypothesis. [
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We are now ready to show:

Proof of Fact[3.2.7 We apply Fact with d = g and y = ¢! for sufficiently small values of ¢ to
obtain for every v > 1:
log®(e™) < v-log®(e™!) .
Multiplying by v and composing by ¢ — 1/exp°?(t) which is decreasing, yields the first inequality
in Fact
To show the second inequality, we apply again Fact[3.2.6|with d = pand y =

) which is

_ 1
scly 9 (e

large for small values of € > 0 to obtain:
log* (y”) < v -log™(y) -

As y = exp®(~y - log®¥(e7!)), the above inequality translates as log*”(y*) < v - v - log®(e7!). Tt

follows that: .

scld (e)

In other words, it holds scl}? (€) < y~” which is exactly the second inequality of Fact [

y’ < exp®(v-v-log®(e")) =

We are now ready to prove the two estimates of Eq. (%) in the definition of scaling for the family
scl™. Let us fix @ > 3 > 0 and A > 1 such that a > \? - 3. As scl?? is decreasing with q, it holds:

scliy?(€) < sclfyl 5(e) (3.2.4)

On the other hand, by Fact we have:

2

sclff(€) < sel(e) < (sely!()” and selif (o) < (sely’(0) . G29)

The above Egs. (3.2.4) and (3.2.5) imply:

scl?4(e) 4/ a1 scl?(e) ’ (A1)
BT = (seli?(h)” " and SN = (set*(e) 7
which both converge to 0 as € goes to 0, providing the desired result. O]

3.2.2 Box scales

As introduced in Definition [3.1.5] lower and upper box scales of a metric space (X, d) are defined
by:
sclp X = sup {a > 0: N (X) - scly(e) — —I—oo}

and

sclp X = inf {a > 0: N(X) - scly(e) — 0} ,

where the covering number NV, (X) is the minimal cardinality of a covering of X by balls with radius
e > 0.

In general, the upper and lower box scales must not coincide. We will give such examples for
the order in Example Now we list a few properties of box scales that are well known in the

specific case of dimension.
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Fact 3.2.8. Let (X, d) be a metric space. The following properties hold true:
1 ifsclg(X) < 400, then (X, d) is totally bounded,
2. for every subset E C X it holdssclg ! < sclp X andsclgFE < sclgX,
3. for every subset E C X it holds sclz E = sclgcl(E) and sclg E = sclgcl(E).
Observe that 1. and 2. are direct consequences of the definitions.
To see 3. it is enough to observe that N (E) < N(cl(E)) < N, /2(E) for every e > 0.

As for box dimensions, box scales can also be defined by replacing covering number with packing

number:

Definition 3.2.9 (Packing number). Fore > 0 let N.(X) be the packing number of the metric space
(X, d). It is the maximum cardinality of an e-separated set of points in X for the distance d:

M(X) =sup{N >0:3zy,...2y € X,d(z;,2;) > eforeveryl <i<j<N}.
A well known comparison between packing and covering numbers is the following:
Lemma 3.2.10. Let (X, d) be a metric space. For every ¢ > 0, it holds:
Noe(X) < Ne(X) S N(X) -

In virtue of the basic properties of scalings, the covering number can be replaced by the packing

number in the definitions of box scales:

Lemma 3.2.11. Let (X, d) be a metric space and scl a scaling, then box scales of X can be written as:
sclp X = sup {a >0 : No(X) - scly(e) — —I—oo}
E—

and

sclp X = inf {a >0 N(X) -scly(€) — 0} :

e—0

The proof is provided by direct application of Lemmas|3.2.2]and [3.2.10}]

Remark 3.2.12. Another property for the scaling scl”? from Proposition with p,q > 1, is that

the upper and lower box scales for a metric space (X, d) can be written as:

, . log”(NV(X)
SCI%q (X) = hl;ri)l[]nf W
and
_ log® (N (X))
P €
sclp (X) = lim sup g )

In particular, for dimension and order:

0 —loge e—0 —loge
and log log(N.(X log log(N-(X
ordp(X) = lim inf 0g log(Ne(X)) . ordp(X) = limsup oglog(Ne(X)) .

e—0 — 10g € e—0 - 108; €

The above equalities coincide with the most usual definitions of box dimensions and orders.

52



3.2.3 Hausdorff scales

The definition of Hausdorff scales, generalizing Hausdorff dimension, is introduced here using
the definition of Hausdorff outer measure as given for instance by Tricot in [[Tri82]. We still consider
a metric space (X, d). Given a non-decreasing function ¢ € C(R*,R"), such that ¢(¢) — 0 when

€ — 0, we recall:

J countable set

JjeJ jeJ

HO(X):= inf {Z¢(|Bjy):X:UBj, vj'eJ:|Bj\ge},

where | B| is the radius of aball B C X. A countable family (B;),c, of balls with radius at most € > 0
such that X = {J;c; B; will be called an e-cover of X E| Since the set of e-cover is non-decreasing

for inclusion as € decreases to 0, the following limit does exist:

HO(X) = lim HO(X) .

e—0

Now replacing (X, d) in the previous definitions by any subset £ of X endowed with the same
metric d, we observe that H? defines an outer measure on X. It is usually called the ¢-Hausdorft

measure on X. We now introduce the following:
Definition 3.2.13 ( Hausdorff scale). The Hausdorff scale of a metric space (X, d) is defined by:
scly X = sup {a >0 H(X) = +oo} = inf {a >0 H(X) = O} .

Note that the above definition gives us two quantities that are a priori not equal. However, the
mild assumptions in the definition of scaling allow us to verify that they indeed coincide and allow us
to use the machinery of Hausdorff outer measure to define metric invariants generalizing Hausdorft
dimension. Thus scalings allow us to have some consistent extension of the definition of Hausdorff

dimension.

Proof of the equality in Definition It is clear from its definition that o +— #H(X) is non-
increasing. It is then enough to check that if there exists & > 0 such that 0 < H*l«(X) < 400
then, for any positive § < «, it holds:

H(X) =0 and H*(X) = +o0.
Let us fixn > 0, by Deﬁnition, for e > 0 small it holds:
sclois(€) < m-scly(e) and  scly(e) < n-scly_s(e) .
Since € is small, it holds:
0< ;Hl (X) < HE (X)) < H(X) < 400
Given (Bj) ;e an e-cover of X, the following holds:

1
5z;’_[scla()() < HECIO‘(X) < ZSCIQ(|BJ|) )

JjeJ

3. Note that the historical construction of the Hausdorff measures uses subsets of X with diameter at most ¢ instead

of the balls with radius at most e. However, both these constructions lead to the same definitions of HausdorfT scales.
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and then:
Hsola Zscl (1B;]) < ZSCIQ*(SOB]'D

jEJ JjeJ

Since this holds for every e-cover, the latter inequality leads to:
L s 1
—gyscla ¥y <« gyscla—s (X

and so: )
%’H“la (X) < Hslas (X)) . (3.2.6)

On the other side, there exists an e-cover (B;) ;e of E such that:

S scla(|By) < 20 (X)
jeJ
Now since H: (X)) < He (X), this leads to:
> selass(1Bs]) <m- > sclo(|By]) < 21 H (X)) .
jeJ J
From there:

H§C1a+6 (X) S 277 . HSCla (X) , (3.2.7)

and this holds for every small e.

Taking the limit as ¢ — 0 in Eqs. (3.2.6) and (3.2.7) gives:

L (X) < W5 (X) and HE(X) < 2 HT(X)

2n
To conclude, note that as the latter holds for 7 arbitrarily small, it follows that Hsla—s (X) =4
and H>le+5 (X)) = 0, O

As box scales, Hausdorff scales are non-decreasing for inclusion. We will see a stronger property
of Hausdorff scales in Lemma|[3.2.21

3.2.4 Packing scales
Packing scales through modified box scales

The original construction of packing dimension relies on the packing measure introduced by
Tricot in [Tri82]]. We first define packing scales by modifying upper box scales and we show later

how they are related to packing measures.
Definition 3.2.14 (Packing scale). Let (X, d) be a metric space and scl a scaling. The packing scale
of X is defined by:

sclp X = inf {supscIBEn S (Bp)ps1 € XV st U E, = X} )

nzl1 n>1
The following comes directly from the definition of packing scale:

Proposition 3.2.15. Let (X, d) be a metric space and let scl be a scaling. It holds:

SC|pX S QBX .
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Packing measures

In this paragraph we show the relationship between packing measures and packing scales. Let
us first recall a few definitions.

Given € > 0, an e-pack of a metric space (X, d) is a countable collection of disjoint balls of X
with radii at most €. As for Hausdorff outer measure, consider ¢ : R}, — R’ a non-decreasing
function such that ¢(¢) — 0 as € — 0. For € > 0, put:

P?(X) := sup {Z o(|Bi]) : (Bi)ier is an e-pack ofX} .

iel
Since P?¢(X) is non-increasing when ¢ decreases to 0, the following quantity is well defined:
¢ . ¢
PS(X) = ll_r%ﬂ (X).
The idea of Tricot is to build an outer measure from this quantity:

Definition 3.2.16 (Packing measure). For every subset I/ of X endowed with the same metric d, the
packing ¢-measure of E is defined by:

P¢(E) :inf{ZP[f(En) E={J En} :

Note that P? is an outer measure on X and can eventually be infinite or null. The following
shows the equivalence of Tricot’s counterpart definition of the packing scale; this will be useful
to show the equality between the upper local scale and the packing scale of a measure given by
Theorem|[CJeq. (c&g).

Proposition 3.2.17. The packing scale of a metric space (X, d) verifies:
sup {oz >0 P (X)) = +oo} = sclpX = inf {a >0 Pe(X) = O} .

scla

Proof. Let (E,),>1 be a family of subsets of X. Since each map a — P;"*(E,) is non-increasing

and non negative, we have:

inf {a >0: > P(E,) = 0} = sup inf {a >0: P (E,) = 0} : (3.2.8)

We decompose the proof into two intermediary steps given by the following lemmas:

Lemma 3.2.18. Given a > 0, if Py (E) is finite, then for every § € (0, «v), it holds:
Pyt (E) =0 and Py~ (E) = +co.
Lemma 3.2.19. For every EE C X, it holds:

sup {a >0: Pl (E) = +oo} = sclgE = inf {oz > 0: Py (E) = 0} .
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Lemma [3.2.18| will allow proving Lemma [3.2.19] Before proving these lemmas let us see how
they allow us to conclude the proof of Proposition [3.2.17| First note that the second equality of

Lemma [3.2.18| implies:

sup{a>0 > Pl ):+oo}:supsup{a>0 Pl (B ):—l—oo}.

n>1 n2>1

Consequently by Lemma it holds:

n>1 n21 n>1

Sup{a>0 S Py (E,) = —|—oo}—supsc|BE —1nf{a>0 > SC]“E):()}.

Taking the infimum over families (E),),>; that cover X we obtain the desired result. O

It remains to show Lemmas(3.2.18/and [3.2.19]

Proof of Lemma(3.2.18 Given 1) > 0, by Definition [3.1.2] of scaling, for ¢ > 0 small enough, it holds:
sclois(€) < m-scly(e) and  scly(e) < n-scly_s(e) . (3.2.9)
Let (B;);>1 be an e-pack of E. Then, by the above Eq. (3.2.9) it holds:

n= Y sclass(1Bi]) < D scla(|Bi]) <m0 Y sclas(1Bj)) -

Jz1 j=1 j=1

As this holds for every § - pack of E, it follows:

I P (B) < P (B) < P (B)

Taking the limit as € goes to 0 and 7 arbitrary small allows us to conclude. ]
Proof of Lemma(3.2.19 By Lemma|3.2.18] it suffices to show that:
sup {a > 0: Py (E) = +oo} < sclgFE < inf {a >0: Py (E) = 0} . (3.2.10)

We start with the second inequality. If P (E) > 0 for every a > 0, there is nothing to prove.
Thus consider a > 0 such that P;%*(E) = 0. Then for every ¢ > 0 sufficiently small it holds
Pl (F) < 1. In particular, the packing number (see def. [3.2.9) satisfies N,(E) - scl(¢) < 1. By
Lemmawe obtain sclzpF < o which gives the second inequality by taking the infima of such
a > 0.

To prove the first inequality, assume that there exists & > 0 such that P (E) = 400, otherwise
there is nothing to prove. For such an « and for every ¢ > 0 there exists an e-pack (B;),>1 such
that:

> sclo(|By]) > 1. (3.2.11)
i>1
For an integer £ > 1, denote:
ny := Card {j > 1:27%D < sel, (|By]) < 2"“} : (3.2.12)
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Since scl,, is non-decreasing, it holds:

> ng 275 > scla(1By]) -
k>1 j>1
Thus, by Eq. (3.2.11), it holds:
Z ng - 2~k >1.

k>1

(3.2.13)

Note that, as |B;| < § for every j > 1, it holds ny = 0 for every k < —log,scl,(d). Then for §

small it holds:

Fact 3.2.20. There exists an integer 7 > 2 such that:
n; > j_2 . 2j .

Proof. Otherwise we would have:

as ng = ny = 0 for small 4, and this contradicts Eq. (3.2.13).

]

This latter fact translates as: there exist at least n; disjoint balls with radii at least scl,' (270 +1).

This implies:
/\N[SCI(;I(Q—(J'+1))(E) >ny; > 5
and moreover:

j > —log,scly(9) .

Since these inequalities hold true for ¢ arbitrarily small, there exists an increasing sequence of inte-

gers (jn)n>1 such that:

N, (E) > j 227" where ¢, := SCI;I(Q_(jn+1)) ‘

Given a positive 5 < «, by Definition [3.1.2] of scaling, for A > 1 close to 1, it holds:

sclg(€) - (scla(€)) ™ — +o00.

On the other hand, given such A > 1, for n large enough, it holds:
g 220 > oAUt

It follows by Eq. (3.2.14):

Ny (B) = (270m0) ™ = (sel ()™

—1

This together with Eq. gives:

sclg(en) - No, (E) > sclg(e) - (scla(€) ™ — 400 .

e—0

By Lemmawe deduce sclg £ > 3. Taking 3 close to o ends the proof.
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3.2.5 Properties and comparison of scales of metric spaces

We first give a few basic properties of scales that would allow us to compare them. Since both
packing and Hausdorff scales are defined via measures, they are both o-stable as shown in the fol-

lowing:

Lemma 3.2.21. Let (X, d) be a metric space. Let I be a countable set and (E;);c; a covering of X,

then for any scaling scl:

scly X =supsclyE; and sclpX = supsclpFE; .
iel il

Proof. The equality on packing scales is clear by definition. Let us prove the equality on Hausdorft

scales. By monotonicity of the Hausdorff measure, it holds sclz X > sup;; sclg E;. For the reverse

inequality, consider o > sup;,; scly F;, then for any i € I it holds H** (E;) = 0. Thus, it holds:

HSCla < Z %scla —
iel
and then sclz X < a. Since this is true for any o > sup,; scly £;, the desired result comes. ]
Note that o-stability is not a property of box scales. To see that, it suffices to consider a countable
dense subset of a metric space (X, d) with positive box scales. This is actually a basic known fact

for the specific case of dimension that naturally still holds there.

The following lemma shows in particular that the above scales are bi-Lipschitz invariants.

Lemma 3.2.22. Let (X, d) and (Y, d) be two metric spaces such that there exists a Lipschitz map
f:(X,d) = (Y,d). Then for any scaling scl, the scales of f(X) are at most the ones of X :

SCIHf(X) S SCIHX; SCIpf(X) S SC|pX; LdBf<X) S 57C|BAX'7 an(X) S GBX .

Proof. Let us fix € > 0. Let K > 0 be a Lipschitz constant for f. We first show the inequalities on
box and packing scales.

Consider a minimal covering (B(z;,€))1<j<n of e-balls centered in X. it holds:

f(X):f(UB(xj’GJ)CUB ), K -¢) .

Then (B(f(x;), K - €))1<j<n is a covering by K - e-balls of f(X). Then Nx..(f(X)) < N(X) and
all the inequalities on the box and packing scales are immediately deduced from Eq. (3.2.2). Now for

Hausdorff scales, consider a countable set J and (B(z;, €;));es an e-cover of X. Then it holds:

X)c U B(f(z)), K - ¢) .

jeJ

For any a > # > 0 and § > 0 small enough, by Fact it holds:
scly(8) < sclg(K™1-6) .
Hence for e small, it holds:

Hbcla(f(X)) < ZSCIQ(K . Ej) < ZSCI@(CJ')

jeJ jeJ
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As 3 > scly X, the e-cover (B(z;, €;));es can be chosen such that 3~ ; sclz(e;) is arbitrarily small.
Consequently, it holds H5& (f(X)) = 0, and so scly f(X) < a. As « is arbitrarily close to scly X,
it holds:

sclyf(X) <sclyX .

As a direct application, we obtain the following:

Corollary 3.2.23. Let (X, d) and (Y, d) be two metric spaces. Assume that there exists an embedding
g: (Y,8) — (X,d) such that g—! is Lipschitz on g(X). Then for every scaling scl, the scales of Y are
at most the ones of X :

sclpY <sclyX; sclpY <sclpX; sclgl <sclgX; sclgy <sclgX .

Proof. By Lemma|3.2.22| we have scl,Y < scl,g(Y) for any scl, € {scly,sclpsclg,sclz}. As g(Y) C
X, we have also sclyg(Y") < scls X. O

Remark that Lemma [3.2.22]and Corollary [3.2.23|hold even for scalings that have sub-polynomial
behaviors.

The end of this section consists of comparing the different scales introduced and proving The-
orem [A] We start by comparing the Hausdorff with lower box scales. The following proposition

generalizes well known facts on dimension. See e.g. [Falo4]][(3.17)].

Proposition 3.2.24. Let (X, d) be a metric space and scl a scaling, its Hausdorff scale is at most its
lower box scale:
scly X <sclpX .

Proof. We can assume without any loss that (X, d) is totally bounded. If scly X = 0 the inequality
obviously holds, thus consider a positive number o < scly X. For § > 0 small enough, #;™* (X) > 1.

Also, there exists a d-cover (B;)1<;j<n;(x). It verifies:

1< > sca(|Bj]) = N3(X) - scla(0) .

1<j<N5(F)
From there, it holds that sclz X > a. We conclude by taking « arbitrarily close to scly X. O]

We have compared Hausdorff and packing scales with their corresponding box scales. It remains

to compare each other with the following:

Proposition 3.2.25. Let (X, d) be a metric space and scl a scaling. It holds:
sclgp X <sclpX .
Proof. By Lemma 3.2.21} Hausdorff scale is o-stable:

scly X = inf  supsclgFE, ,

n>1 En:X nZl
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where the infimum is taken over countable coverings of X. Moreover, by Proposition [3.2.24] we
have:
sclyE < sclgE <sclgE ,

for any subset E of X. It follows then:

sclyX < inf  supsclgE, =sclpX .
En:X ’I’LZ].

n>1
For the sake of completeness we will resume:

Proof of Theorem[Al Let (X, d) be a metric space and scl a scaling. By Proposition [3.2.24] Proposi-
tion and Proposition it holds respectively:

sclp X <sclgX, sclgX <sclpX and sclgX <sclgX .
Now since sclz X < sclpX obviously holds, we deduce the desired result:

sclyX <sclpX <sclgX and sclgX <sclpX <sclgX .

3.3 Scales of measures

In this section we recall the different versions of scales of measures we introduced and show
the inequalities and equalities comparing them. In particular, we provide proofs of Theorem |B|and
Theorem [C| They generalize known results from dimension theory to any scaling and moreover
bring new comparisons (see Theorem between quantization and box scales that were not

shown yet for even the case of dimension.

3.3.1 Hausdorff, packing and local scales of measures

Let us recall the definition of local scales. Let 1 be a Borel measure on a metric space (X, d) and

scl a scaling. The lower and upper scales of i are the functions that map a point x € X to:

p(Ba,o) 0}

Ldlocu(x) = sup {a >0: SCla(E)

and

aloc/i(l") = inf {a >0: a (sflsz’e;)) 6_)()\ —i—oo} )

We shall compare local scales with the followings:

Definition 3.3.1 (Hausdorff scales of a measure). Let scl be a scaling and (1 a non-null Borel measure

on a metric space (X, d). We define the Hausdorff and *-Hausdorff scales of the measure 11 by:
sclpp = ggg {sclgE : w(E) >0} and sclypu= ggg {sclgE : n(X\E) =0} ,
where 3 is the set of Borel subsets of X.
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Definition 3.3.2 (Packing scales of a measure). Let scl be a scaling and (1 a non-null Borel measure

on a metric space (X, d). We define the packing and *-packing scales of 11 by:
sclpp = ]géfg {sclpE : u(E) >0} and sclppu = érelg {sclpE : n(X\E) =0} .
Remark 3.3.3. In order to avoid excluding the null measure 0, we set as a convention:
scly0 = scl};0 = sclp0 = sclp0 = 0.
The lemma below will allow us to compare local scales with the other scales of measures.

Lemma 3.3.4. Let ;1 be a Borel measure on X. Then for any Borel subset F' of X such that pi(F') > 0,

the restriction o of |1 to F' wverifies:
ess inf sclppt < ess infsclj .0 and ess inf scl;, o < ess inf scl,,.0.
Moreover, if there exists o > 0 such that F' C {x € X : sclipepi() > a}, it holds then:
ess inf sclj.0 > o,
and similarly if F C {x € X : scl,.u(x) > a}, it holds:
ess infscl,,.0 > a .

Proof. Consider a point x € X, then for any € > 0, one has o(B(z,¢)) < u(B(x,¢)), thus by

definition of local scales:
aloc/*l’ S QIOCO- and Ldlocﬂ S Ldloca .

Now if there exists a > 0 such that F' C {x € X : schoep(z) > a}, as sclept(x) > a for y-almost
every x in F, it comes by the above inequality that scl,.o(z) > « for y-almost every z in F, and
thus for o-almost every x € X. It follows ess inf scli,.0 > . And the same holds for lower local

scales. 0

The following lemma corresponds to part of the results of Theorem [B] We will prove this lemma
later in Section First, we will use it to prove Theorem |C|in Section This lemma states
that the lower and upper local scales of a measure are, respectively, not greater than the Hausdorff

and packing scales of the underlying space:

Lemma 3.3.5. Let (X, d) be a metric space and |1 a Borel measure on X. Let scl be a scaling. Then it
holds:

esssupscl i < sclyX and esssupsclp < sclpX .

Note that in the above we can replace X by any of its subsets with total mass. This observation

directly implies:

Corollary 3.3.6. Let (X, d) be a metric space and . a Borel measure on X. Let scl be a scaling. It
holds:

ess sup scly it < sclip and  ess sup sclpt < sclpp .

To prove Theorem|[C] we need to study quantization scales of measures.

61



3.3.2 Quantization and box scales of measures

Let us first recall the definition of quantization scales. Let (X, d) be a metric space and p a Borel
measure on X. Given € > 0, the e-quantization number Q#(e) of  is the minimal cardinality of a

set of points that is on average e-close to any point in X:

Qu(e) =inf {N 2 0:3{ei} sy © X, [l e} cian)dl@) < e}

Then lower and upper quantization scales of 1 for a given scaling scl are defined by:

sclou = sup {a >0:9Q,(€) -scly(e) —> —1—00}

e—0

and
sclop = inf {a > 0: 9,(e€) - scly(e) — O} .

Quantization scales of a measure are compared in Theorem [C] with box scales of measures:

Definition 3.3.7 (Box scales of a measure). Let scl be a scaling and 11 a positive Borel measure on a

metric space (X, d). We define the lower box scale and the x-lower box scale of i by:
sclpp = inf {sclp B2 p(E) > 0} and  sclpp = inf {sclpl: p(X\E) =0},

where B is the set of Borel subsets of X . Similarly, we define the upper box scale and the *-upper box
scale of i by:

sclpu = éré% {scIBE cu(E) > O} and sclgu = éréig {scIBE c u(X\F) = 0} .

As for Hausdorff scales of measures, we chose that all box scales of the null measure are equal

to 0 as a convention. The following is straightforward:

Lemma 3.3.8. Let (X, d) be a metric space and ;1 a Borel measure on X. Given scl a scaling, it holds:
sclop < sclpp and  sclou < sclgp .

Proof. We can assume without loss of generality that sclu and scll are finite. Let E be a Borel
set with total mass such that sclz £ is finite, then E is totally bounded by Fact Now for € > 0,
consider a minimal covering by e-balls centered at some points z1, ..., zx in E. Since u(X\E) = 0,

it comes:
[ de b cen)dn@) = [ dl, {odcon)du(e) < e < 2.
It follows that Q,,(2¢) < N.(E), and thus by Lemma[3.2.2] we obtain:

sclop < sclpE and  sclgu < sclgE .

Since this holds true for any Borel set £/ with total mass, the desired result comes. O]

The following lemma will allow us to compare quantization scales with box scales.
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Lemma 3.3.9. Let /1 be a Borel measure on (X, d) such that Q,,(¢) < +oo for any e > 0. Let us fix
€ > 0 and an integer N > Q,,(€). Thus consider x1, ..., xy € X such that:

/X d(z, {zi}ycion)dp(z) <e.
For anyr > 0, with E, := U, B(ay,r), it holds:
€

Proof. Since X\ E,, the complement of F, in X is the set of points with distance at most r from the
set {x1,...,z,}, it holds:

roX\E) < [ dle frhgen)dnte) <,

which gives the desired result by dividing both sides by 7. O]

The following result exhibits the relationship between quantization scales and box scales. As far
as we know, this result has not yet been proved, even for the specific case of dimension. It is a key
element in the answer to Problem[3.1.15

Theorem 3.3.10. Let ;1 be a non null Borel measure on a metric space (X, d). For any scaling scl, there

exists a Borel set F' with positive mass arbitrarily close to j1(X) such that:
sclpF <sclou and sclpF < sclou .

Consequently, it holds:
sclpp < sclou and  sclpp < sclou .

Proof. If Q,,(e) is not finite for any € > 0 we have sclou = +0o = sclou and nothing to prove. So
we can assume that Q,,(¢) < +oo for every e > 0. We consider two sequences of positive numbers

2

€n := exp(—n) and r,, := n? - exp(—n) = n? - ¢, for n > 1. Then for each n > 1, consider a finite

set (', C X with minimal cardinality such that:
/ d(z, C)du(z) < en |
X
By Lemma it holds:

n 1
w(X\E,) < n —  with B, .= |J Blz,m).
T'n n zeChp

By the Borell-Cantelli lemma, it holds:

u(liminfEn):u(U N En) =pu(X)>0.

m>1n>m

Hence, for sufficiently large m, we have p(F') > 0, where F' := () E,. Moreover if y is finite by

n>m
taking m even larger we can have p(X\ /') arbitrarily small; and if 4 is infinite, we can take p(F')
arbitrarily large. We now fix such a value of m. Observe that ' C £}, for every n > m. As I, isa

union of balls of radius r,,, we have trivially:
Vn>m: N, (F) < CardC, = Q,(e,) .

63



Finally by Lemma [3.2.3] and the fact that log 7, ~ log €, ~ logr, 1, we obtain:
sclgF' = sup{a > 0: N, (F) - scly(r,) e +oo}
<sup{a > 0: Q,(e,) - scly(en) — +oo}
— sclop .

Similarly, we can prove sclgF < sclou. Then the last two inequalities stated in Theorem
follow directly from the definitions of sclz/ and sclppu. 0

3.3.3 Comparison between local and global scales of measures and proof
of Theorem C

To prove Theorem |C| we will need:

Theorem 3.3.11. Let (X, d) be a separable metric space and p a finite Borel measure on X. Let scl be
a scaling. It holds:

ess sup sclypu < sclop  and  ess sup sclpept < sclgp .

Proof. If the lower (respectively upper) local scale of 1 is zero at almost every point then obviously
it is not greater than the lower (respectively upper) quantization scale of u. Otherwise, consider
a, 3 > 0 such that:

a < esssupsclopt and 3 < ess supsclye/ . (3.3.1)

Note that £ := {3: € X :schop(z) >a and  schou(z) > 5} has positive mass. Applying Theo-
rem [3.3.10]to the restriction of 4« to F provides a Borel subset /' C E with u(F) > 0 such that:

sclpF <sclop and sclpF < sclopu .
Yet by Proposition and Proposition it holds respectively:
sclyF <sclgF and sclpF <sclgF . (3.3.2)
Now, by setting o the restriction of /1 to F', we obtain by Lemma [3.3.4/and Eq. (3.3.1):
a < essinfscl,.0c and [ < essinfscl.o . (3.3.3)

By Lemma [3.3.5] it holds:

ess inf scl,.0c < sclyF and ess infscl,.o < sclpF . (3.3.4)
Finally, combining Eqgs. (3.3.2) to (3.3.4) gives:
a < essinfscl,.o < sclgF < sclgF <sclgu

and
B < essinfscl,.o < sclpF < sclgF < QQ/L )
Since this holds true for any « and 3 arbitrarily close to ess sup scl,,.xt and ess sup scli,ct we obtain

the desired result. O]
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We are now able to show:

Proof of Theorem|[( By Theorem and Lemma [3.3.8] it holds:

sclpp < sclop < scljpu and  sclpp < sclop < sclpu .

By Theorem it holds:

ess sup scl,. 0 < sclop  and  ess sup schoept < sclgp -
Thus it remains only to show:
ess inf scl, o0 < sclgp and  ess inf schoep < sclpp . (3.3.5)

To prove this, consider a subset £ C X with positive mass. Set o the restriction of 1 to E. By
Lemma|(3.3.4] it holds:

ess inf scl,.pt < essinfscl,.0c and ess inf sclo.p < ess inf scli.o . (3.3.6)

By Theorem it holds:

ess sup scl,.0 <sclpo  and esssup sclioept < QQU ) (3.3.7)
Moreover, by Lemma we have:
scloo <sclpE and sclgo <sclgE . (3.3.8)

Combining Egs. (3.3.6) to (3.3.8) provides:

ess inf schy pt < sclgE and  ess inf scloep < sclgF .

Taking the infima over such subsets £ C X with positive mass gives Eq. (3.3.5). ]

3.3.4 Proof of Theorem

This subsection contains the proof of Theorem [B| we recall its statement below. We will use
Vitali covering lemma to compare local scales with Hausdorft and packing scales. This lemma was

first used for the dimensional case by Tamashiro [Tam95]].

Lemma 3.3.12 (Vitali covering lemma). Let (X, d) be a separable metric space. Given § > 0, B a
family of open balls in X with radii at most ) and F' the union of these balls. There exists a countable
set J and a 0-pack (B(z;,7;))jes C B of F such that:

FC UB($j,57’j) .
J

For a proof of this version of the Vitali covering lemma, see [EG15][1.5.1, p. 35]. Despite they
stated it for the Euclidean case, their proof adapts straightforwardly for separable metric spaces. We

are now ready to prove:
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Proof of Lemma(3.3.5. PROOF OF THE FIRST INEQUALITY: If ess supscl,.pt = 0 or sclg X = +o0, it
obviously holds that ess sup scl,.pt < sclyX. Otherwise, X is separable and consider a positive

a < ess sup scl,.p. There exists vy > 0 such that the set:
A:={zx e X : u(B(z,r)) <scly(r), Vr € (0,79)}
has positive measure. Consider § < r and a §-cover (B;);es of A. It holds:

0 < p(A) < Y u(By) < Yo scla(|By))

j€J jeJ
Taking the infimum over d-covers provides:
0 < p(A) < H;"(A) .
Now as d goes to 0 we obtain:
0 < p(A) < H<(A) .

It follows:
sclyX > sclgA > o,

which allows us to conclude the proof of that first inequality.
PROOF OF THE SECOND INEQUALITY: If ess sup schypt = 0 or sclpX = +o0, it obviously holds

ess sup schocpt < sclpX. Otherwise, X is separable and consider a positive o < ess sup sClioept. Put:
F = {x € X : schoeu(z) > a}.

Let (Fiv)n>1 be a covering of X by Borel subsets. Given 0 < 8 < «, by Fact[3.2.1] there exists dy > 0
such that for any r < 4y, it holds:
scly (br) < sclg(r) . (3.3.9)

Fix § € (0,6y) and an integer N > 1. For each z in Fly, by Lemma there exists a minimal
integer n(z) such that:
p(B(x,5r(x))) <scly(br(x)) wherer(x) :=exp(—n(z)) <6 . (3.3.10)
We now set:
F={B(z,r(x)):x € Fn} .

Thus by Vitali covering Lemma(3.3.12]there exists a countable subset .J C Fy such that (B(z,7(x))),¢,

is a d-pack of Iy and (B(z,57())),c, is a covering of Fly. From there, by Egs. and
it holds:

p(Fy) < 3 Bz, 5r(x))) < 3 sela(5r(x)) < ) selg(r(z)) -
zeJ xeJ zeJ
Since this holds true for any J-pack, we have:
Py () 2 p(Fy)
and then taking ¢ arbitrarily close to 0 leads to:

PSCIB(FN) > pu(Fy) .
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Summing over N > 1 provides:

S P (Ey) > Y ul(Fy) > u(F) > 0.
N>1

N>1

Recall that (Fy)n>1 is an arbitrary covering by Borel sets of F, thus by definition of the packing

measure and the latter equation, it holds:
P (F) > u(F) > 0.
It holds then sclp F” > 3 for any 5 < a < ess sup scli, /1, which allows us to conclude the proof. [
We deduce then:

Proposition 3.3.13. Let (X, d) be a metric space and . a Borel measure on X, then:
ess inf scly, i < sclyp  and  ess inf sclipeu < sclpp

and

ess sup scly it < sclip and  ess sup sclpp < sclpp .

Proof. The second line of inequalities is given by Corollary It remains to show the first line of
inequalities. Let F be a Borel subset of X with p-positive mass. With o the restriction of x to F, it
holds by Lemma [3.3.5}

ess supscl,.0c < sclyE and esssupsclyo < sclpF .
Then, by Lemma [3.3.4]it follows:
ess inf scl, o < sclyE  and ess infsclyp < sclpF .

Taking the infima over £ with positive mass ends the proof. O

Explicit links between packing scales, Hausdorff scales and local scales of measures can now be
established by proving Theorem B] Let us first recall its statement: Let (X, d) be a metric space and

1t a Borel measure on X, then it holds:
sclgp = ess inf scly, it < sclpp = ess inf sclip

and

sclt; = ess sup sclopt < sclppt = ess sup sclieft -

Proof of Theorem[B By Proposition [3.3.13]it remains only to show four inequalities:

essinfscl, .t ; sclpu ess inf scliy.pt

scl <
HU =

(@) (i

{in

and
esssupsclhy.pt 5 sclpp < ess supsclipet -
~—

(di3) (iv)
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Note that for each of the above inequalities, if the right-hand side quantity is infinite, there is noth-

ing to prove. In each of the following proofs, we will assume that this quantity is finite.

Proor oF (7): Fix a > ess inf scl,,. and 5 > «a. By definition of scaling, there exists § > 0 such
that for any r € (0, 0) it holds
sclg(5r) < scly(r) - (3.3.11)

Denote:
F:={re X :sclulx) <a}.

Then it holds that x(F) > 0 and by Lemma 3.2.3|for any = in F there exists a minimal integer n(z)
such that:
w(B(z,r(x))) > scly(r(x))  where r(x) := exp(—n(z)) < 4. (3.3.12)

Now set:
F:={B(x,r(x)):x € F}.

By Vitali covering Lemma there exists a countable subset J C F' such that (B(z,7(x)))
is a 0-pack of F' and F' C U,c; B(x,5r(z)). Then, by Egs. (3.3.11) and (3.3.12) it holds:

> sclg(5r(z)) < Y scla( <> w(B 7)) < p(F) .

zeJ xzeJ zeJ

zeJ

It follows that HSC (F) < p(F) and thus H>% (F) < u(F) as § goes to 0. It follows that sclyu <
scly F' < (. Taking /5 > « close to ess inf scly ./, we obtain inequality (7).

PrROOF OF (ii): Consider a@ > esssupsclycpu. Set B = {x € X :sclep(z) < a}. Observe that
u(X\E) = 0 and:
E=|JE; whereE;:= {x €E:Vr <27 u(B(z,r)) > scla(r)} .
i>1

By o-stability of packing scales provided by Lemma 3.2.21} it holds sclp £ = sup;», sclp E;. It is then
enough to show that for any ¢« > 1, we have sclpF; < a. Indeed, then taking « arbitrarily close to
ess sup sclyc allows us to conclude. In that way, let us fix i > 1. Fix also § € (0,27%) and consider
a countable set .J and (B;);c; a 6-pack of E;. It follows:

> scla(IBj]) < > u(B;) <1

jeJ JjeJ

Since this holds true for any J-pack, we have:
zPscla ( z) S 1.

As d goes to 0 we obtain:
pele(E) <1.

It follows that we indeed have sclpF; < a.

ProoF oF (7ii): Fix o > ess sup scly,.. For 5 > «, consider § > 0 such that for any r € (0,0) it
holds:
sclg(5r) < scla(r) . (3.3.13)
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Denote:
F:={rxe X :scl.u(r) <a}l .

Note that F" has total mass and by Lemma [3.2.3|for every x € F there exists a minimal integer n(z)
such that:
w(B(x,r(z))) > scly(r(x)) where r(x) :=exp(—n(z)) <46 . (3.3.14)

Now put:
F :={B(z,r(x)):x € F} .
By Vitali’s Lemma([3.3.12} there exists a countable subset J C F' such that (B(z,7(z))),, is a 0-pack
and F' = U,c; B(x,5r(z)). Thus, by Egs. and it holds:

> sclp(br(z) <Y scla(r(z) <0 (B ) < u(F) .

zeJ xzeJ zeJ

It follows that HSCIB( F) < pu(F) and thus H*% (F) < u(F) as § goes to 0. It follows that sclju <
scly F' < . Taking 3 > « close to ess sup scly,.jt, we obtain inequality (i77).

PrOOF OF (iv): Fix a > ess inf sclioeft. Consider the set F := {x € X :schoept < a}. Then observe
that ©(X'\ E) = 0 and that we can write:

E=JE where F; = {x € E:Vr <27 wuB(x,r)) > SCla(T)} :

i>1

By Lemma [3.2.21} we have sclp E' = sup; -, sclp £, it is then enough to show that for any i > 1, we
have sclpE; < a. We indeed can take « arbitrarily close to ess inf scly.z.. We then fix i > 1. Fix
§ € (0,27"). We consider .J a countable set and (B;);c. a d-pack of E;. Then it holds:

Y sela(|By]) < Yo p(By) <1

jeJ jed
Since this holds true for any J-pack, it follows:
P (E;) < 1.
When ¢ tends to 0, the latter inequality leads to:

PSCla( )< Pscl ( 7,) S 1.

From there, we deduce sclpF; < «, which concludes the proof of sclp < ess sup sclioe/t and thus
the one of Theorem [Bl O

3.4 Examples and applications of theorems of comparison of

scales

3.4.1 Scales of infinite products of finite sets

Natural toy models in the study of scales are given by products Z = [[,,>; Z; of finite sets. To

define the metric ¢ on this set, we fix a sequence (¢€,),>; decreasing to 0 and verifying log €, 1 ~
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log €, as n — +00. We then define the distance between z = (2,,),>1 € Z and 2’ = (2}),>1 € Z

by:

where m = v(z,2’) ;= inf{n > 1: z,, # 2/} is the minimal index such that the sequences z and
2’ differ. We endow each Z,, with the discrete topology, thus ¢ provides the product topology on Z.

A natural measure on Z is the following product measure:

o= Qp>1n

where 1, is the equidistributed measure on Z,, for n > 1. Note that the metric is highly depen-
dent on the choice of the sequence (¢,),>;. We will tune both values of the sequences (¢,),>; and
(Card Z,,),>1 to reach different values of scales for Z and p. First, box scales of Z coincide with

local scales of i according to the following:

Proposition 3.4.1. For any scaling scl, it holds for everyx € Z:

sclipett(x) = sclgZ = sup {a >0 :scly(e,) - [] Card Zk — —i—oo} (3.4.1)
k;:l n o
and .
scliept(z) = sclpZ = inf {a > 0 : scly(€n) - kl;[l Card Z; — O} . (3.4.2)

Proof. To prove this, first note that for x € X and n > 1, it holds:
B(z,e,) ={2d' € Z: 2\ =xy,...,2), =x,} .

Such a ball is usually called a n-cylinder. By definition of p it holds:

n n 1
B(z,¢e,)) = k\Tk) = '
p(Blaen)) =TT o) = 11 G

Moreover as two balls with the same radius are either equal or disjoint, there are exactly [[;_, Card Zj
different balls of radius €,, and in particular N, (Z) = [[}_, Card Zj.
We just proved:

No(2) = T Card Ze = n(B(z,e))". (3.43)

k=1
Since log €,,+1 ~ log €, as n — +00, by Lemma and Eq. (3.4.3), we obtain:

sclpZ = sup {a > 0: [] Card Zy, - scla(e,) —— 0} = sChocp() | (3.4.4)

k1 n—-+0o

which is actually Eq. (3.4.1). We obtain similarly Eq. (3.4.2).

Proposition together with Theorem[A]and [C|directly implies:

Corollary 3.4.2. We have moreover:
SC|HZ = LdQM = LdBZ and SC|pZ = QQ,U/ = QBZ .

70



—logen,

Also, for scl = ord and if is moreover converging to some positive finite constant, we

have:

log €n

Corollary 3.4.3. Suppose further that — converges to C' > 0 when n — +o0 ( a typical choice is

€, = exp(C' - n)). Then for any scaling scI, it holds:

ordy Z = ordpZ = lrllrgigof

log (Z (Card Zy,) )

and

ordpZ = ordgZ = limsup

n—-4o00

log (Z (Card Zy,) ) :

Proof. Recall that the scaling defining order is given for & > 0 and € € (0, 1) by scl>! = exp(—e ™).
The first equality in Eq. reads as:

ordB(X):sup{a>O: +ZlogCarde—>+oo} :
k=1

Ase @ = e~logen and —log €, ~ C'n, we obtain the first announced formula. The second formula

is deduced similarly.

]

Such examples of products of finite sets allow us to exhibit compact metric spaces with arbitrarily
high orders :

Example 3.4.4. For any o > [ > 0, there exists a compact metric probability space (Z,0, i) such
that for any z € Z:
B = ordpu(z) = ordy Z = ordgu = ordpZ

and

a = ordju(z) = ordpZ = ordgu = ordpZ .

In particular, with @ > /3 we obtain examples of metric spaces with finite order such that the
Hausdorff and packing orders do not coincide. Moreover, for a countable dense subset F' of X, it
holds:

ordgF =ordpF =0 and ordgF =3 < a = ordgF .

It follows that none of the inequalities of Theorem [A] for the case of order in an equality in the

general case.

Construction of Example[3.4.4 Let (uy)i>o be the sequence defined by:

[exp(exp(f - k)] if ¥ <k<c¥H!
u = : :
g lexp(exp(a - k)] if &t <k < c¥t?

where ¢ = || 4+ 1. We denote Z := [][,,>; Z/uxZ endowed with the metric ¢ defined by:

=IQ

5(z,w) == exp(—inf {n > 1: 2, # w,})
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for z = (2p)n>1 and w = (wy)p>1 in Z. Let us denote \,, = %log > p_y loguy. Thus by Corol-

lary it follows:

ordyZ = ordpZ = liminf \, and ordpZ = ordgZ = limsup )\, .
n—+00 n——+oo

It remains to show that A\~ := liminf,,,; A\, = fand A" := limsup,, ,, ., A, = a in order to show

that (Z, 9) satisfies the desired properties. First notice that exp(exp(5-n)) < u, < exp(exp(a-n))

for every integer n. It follows that A~ > § and A* < a. Denote n; = c?*1 and observe that:

1
> — ) — .
An; > - log 1og(unj) P~ «

Thus we have A* > «. Moreover, denote m; = ¢**! — 1. We have the following:
Lemma 3.4.5. Forany j > 1 and for any 1 < k < m, it holds:

U < U -

Proof. If ¢* < k < my, then uy, = [exp(exp(f - k)| < [exp(exp(B - m;))] = ty,,. Otherwise, we
have k < ¢*, and then u;, < [exp(exp(a - ¢¥))| < [exp(exp(B - ¢¥T1))] = up,,, since @ < 3 - c.

0
From the above lemma, we have:
1
< — ; .
Am; < " log m; log(tm,, ) p—— B,
and so A~ < /3 which ends the construction of Example O

3.4.2 Functional spaces

This last sub-section consists in showing Lemma [3.1.12[that allows us to show Theorem

Denote by || - ||+ the C*-uniform norm on C*([0, 1]¢, R):
Ifllex = sup 1D
Definition 3.4.6. For integersd > 1 and k > 0, let us denote:
FIRO = {f € CHO0, [-11]) ¢ [ fllew < 1)
the C*-unit ball; and for o € (0, 1] let us define:
Fko = {f c C*([0,1]%, [=1,1]) : || fllex < 1 and D* f is a-Hélder with constant 1 } :
Recall that for o > 0, the map D* f is a-Hélder with constant 1 if for any x,y € [0, 1]¢ it holds:

ID" f(z) = DEf (y)lloo < flz = yll* -
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Let us recall the asymptotic given by Kolmogorov-Tikhomirov [KT93][Thm XV] on the covering
number of (F%*< || -||.) stated in Theorem[3.1.11}

Cy- e 75 > log N (FH2) > Oy e o

where C; > C5 > 0 are two constants depending on d, k and «. In order to prove Theorem[E| which

states that box, packing and HausdorfF scales of 7% are all equal to -2, by Theorem it remains

k+a’
to prove Lemma [3.1.12] The latter states:
d
ordy FHhe > ——
H T kta
Proof of Lemma We first assume a > (. The case o = 0 will be deduced at the end of the

proof. We consider the following product of finite sets:
A= T {0,1}7* .
n>1

where:

R :{(;;) :il,...,ide{o,...,R”—l}} with R := [3%% | + 1. (3.4.5)

Observe that R,, is a meshgrid of step R™" of [0, 1]¢ with cardinal R"?. We endow A with the

ultrametric distance 0 defined by:
SN) =€m

with m the minimal index such that the sequences A and )’ differ and (¢,,),,>1 a decreasing sequence

of positive real numbers. The following will enable us to conclude the proof of Lemma

Lemma 3.4.7. We can chose the sequence (€,),>1 such that:
—loge, ~n-log R¥ asn — 400 . (3.4.6)

and such that there exists an expanding embedding I : (A,5) — (F¥*2 || - ||o). More precisely, for
every A\, \' € A it holds:

170~ T0V) e > S50 X) (3.4.7)

The choice of (¢,,),,>1 will be given in Eq. (3.4.9). Lemma is proven below. Let us see how it
allows us to finish the proof of Lemma([3.1.12] Since log €,,+1 ~ log €, by Corollary it holds:

n—+oc nlog RE+ et

1 - .
ordgA = liminf ——————log (Z log Card ({0, 1}RJ))

_ . . 1 L d] . d
—%@i&fm()gwl()g@f? '10%2)—k+a-

Now Lemma together with Corollary [3.2.23|implies:

d
k+ o

ordy FR > ordy A =

)

which is the desired result.

It remains to show:
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Proof of Lemma(3.4.7 Let us denote ¢ := k+ a so that R = [3§J + 1. For f € F4*e let || ]|, be the
a-Hélder constant of D f, i.e the minimal constant C' > 0 such that for any x,y € [0, 1]? it holds:

ID*f(z) = D" f(y)lloe < C -l —ylI* .
Note that || - ||, is a semi-norm on F%** and moreover we have:
Fihe = {f e F*OIfll, < 1} .
We consider the following function defined on R:
BE) = 4717 (1= )7 Tgcper .

It is clear that supp ¢ = [0, 1], ¢(0) = 0 = ¢(1),
0 = DFg(1).
Let us denote:

b|lso = ¢(1/2) = 1. Observe also that D*¢(0) =

d:xeRY— o(2|2]) -

Note that ® is of class C* with support (||z|| < 1/2) and ||®]|, = 1. Also D*® equals 0 outside
(lz]] < 1/2) and is a-Hdlder with constant:

0 < [|®|, < +oo. (3.4.8)

We now proceed to the construction of the embedding. We first fix n and denote R := R,,. To each
A= (A\)rer €10, 1}R we associate the following map:

Hrzel0, 1] = e Y A\ ®(R"(z—71)),

reR

with:
5 (3.4.9)
€ 1= . 4.
T2 -n?- R - |||,

First note that (¢,),>1 obviously verifies Eq. (3.4.6).
We have the following result:

Lemma 3.4.8. Forevery A # X in {0, 1}, it holds:

6
/s — fulloe =€ and ||fr — fylly < R

.n2

Proof. For any z € [0,1]¢, there exists at most one point r € R such that ||z — 7| < R™"/2.
Consequently, the maps = +— ®(R"(x — r)) for r € R have supports with disjoint interiors. It

comes then:

[fx = fxlloe = €n

S0 =) B =) = s = X (B = .
R . reR

This provides the equality of Lemma [3.4.8|
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Now note similarly that the maps z +— D*®(R"™ - (z — 7)) for r € R also have supports with
disjoint interiors and moreover they are equal to 0 on the boundary of their support. Thus for every
z € [0, 1] there exists at most one value of r € R such that D¥*®(R"(x — r)) is not null. It follows:

1fx = fxlla = en || D2 (A = X)) - R(R"(- — 1))

reER

q

|\ = M) REDRR(R™ (2 — 1)) = (A = X)) RE"DEO (R (y — 5))|
<€, sup sup o0
rsER :):;éyE]Rd ||x - y||0t

| = X)) - DPFR(X = Rr) — (A — X)) - DFB(Y — R"s)|

[0.°]

=€, - R" - sup sup
" r,s€R XAY €Rd [ X — Y|

where the last equality is obtained using the change of variable X = R"x and Y = R"y. Using

triangular inequality of || - ||,, it follows:

51~ il < 260 R sup |0 = R")lly = 260 B[]

This allows us to conclude as the latter term is equal to # by Eq. 1i

O
Note in particular, in Lemma that if \’ = 0 then fy = 0, thus for A # 0, it holds:
6
[falle = €n and [ fally < PSR (3.4.10)

To embed A into F%*“ we use the following:

Lemma 3.4.9. Forevery A = (\,)n>1 € A the function series Y., > f», convergesin C°([0,1],[—1,1])

and moreover its limit lies in F%*,

Proof. By the equality in Eq. (3.4.10) the normal convergence of the series 3 f), holds for the C°-
norm as . €, < +o00. Thus its limit ¢ is continuous. Let us show that ¢ indeed lies in F%*. First
note that for any n > 1 and for any 1 < [ < k it holds D'fy (0) = 0, thus by Taylor integral

formula, it holds:
1D i, lloo < [ID* frulloo - (3.4.11)

Still by Eq. (3.4.10), it holds:
6

=1.
m2n2

o lfalle < >0

n>1 n>1

Note moreover that as D* £, (0) = 0, it holds || D* £\, [|c < || fr. |l thus by Lemma [3.4.9it follows:

o I falles < 37 11,

n>1 n>1

<1

Consequently, the partial sums of the series lie in F¢** and so does g as F%* is closed for the

C%-norm. OJ
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By the above Lemma [3.4.9] the following map is well defined:

I:A=(A)az1 € (A,8) = lim ZA € (FY | lloo) -

To conclude the proof, it remains to show Eq. (3.4.7). Consider A = (\,))n>1 and X = (X,),,>1 € A.
Denote k := v()\, \) the first index such that the sequences A and ) differ. Then it holds:

1) = Il = || 22 fon = Fxl| 2 Ifae = P lloe = 22 10 = Fxilloe - (3.4.12)
n>k 00 n>k
Now Lemma [3.4.8| provides:
e — fA;CHoo = ¢ and Z [ fa, — f>\’n||oo < Z €n - (3.4.13)
n>k n>k
Note that Eq. implies:
1
. < Ra(n=k) — 3.4.14
nzgke nz;kek =k pr (3.4.14)
qufl < % and consequently combining Eqs. 43.4.12[) to 43.4.14[) leads to:

11(A) = T(X) oo = 5€0000) -
Since €, \) = 5(\, ) by definition of §, the desired result comes. ]

It remains to deduce the case & = 0 from that previous one. For any [ > 0, it holds:
FhkB — Fdk0

From there, since Hausdorff scales are non decreasing for inclusion, it holds then:

d
d fd k,0 > d .Fd k,B >_
ordy or =l
Since we can take 3 > 0 arbitrarily small, it indeed holds ord ;; F¢*0 > %. ]
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Abstract

For any 1 < r < oo, we show that every diffeomorphism of a manifold of the form R/Z x M
is a total renormalization of a C"-close to identity map. In other words, for every diffeomorphism
f of R/Z x M, there exists a map g arbitrarily close to identity such that the first return map of
g to a domain is conjugate to f and moreover the orbit of this domain is equal to R/Z x M. This
enables us to localize near the identity the existence of many properties in dynamical systems, such

as being Bernoulli for a smooth volume form.



Introduction

4.0.1 Statements of the main theorems

Let B"™ be the unit closed ball of R™.

Definition 4.0.1 (Primitive renormalization). A primitive renormalization G of a diffeomorphism
g € Diff(B") is a rescaling of an iteration of g. In other words, there exists N > 2 and an embedding
¥ : B" < B" such that g'(¢(B")) N ¢(B") = 0 for every 0 < i < N and:

G=vtogVou.
A long standing open problem of dynamical systems theory is:

Problem 4.0.2 (1971). Which dynamics can be reached by renormalization of close to identity maps?

This problem was first studied by Ruelle and Takens in [RT71]. Motivated by the study of tur-
bulence, they proved that for any integer n > 2, any dynamics on the n-dimensional torus is the
renormalization of a C"-close to identity map. This enabled them to construct perturbations of the
identity map of the torus with a strange attractor. Based on this, they conjectured that this appears
as well in fluid dynamics and could be used as a mathematical definition of the notion of turbulence
[Lor63].

The main mathematical issue with this result is that the regularity is limited by the dimension
of the torus. However when considering flows, this problem was solved by Newhouse, Ruelle and
Takens in [NRT78]]: given any vector field X equal to a rotation on the torus T", n > 3 and any
map Fy € Diff>(T""!) homotopic to the identity, they perturbed X to X so that its first return
map to a global transverse section is Fy. Yet Diff>(T") is “much larger” than Diff>*(T"~!) and so
the mathematical Problem remains unsolved.

A breakthrough was then performed in the seminal work of Turaev [Tur15b] who proved that a
C"-dense subset of C"-orientation preserving embeddings of B" could be obtained after renormal-
ization of an arbitrarily close to identity map, for every 0 < r < oo.

A first main result is a solution to Problem where we improve Turaev’s theorem to obtain,
via a self-contained and new proof, any C"-orientation preserving map of B"” (instead of maps among

a dense subset):

Theorem G. Forany1 < r < oo and any orientation preserving G € Dift" (B"), in any neighborhood
N C Dift"(B") of the identity, there exists g € N such that a primitive renormalization of g is equal

to G. Moreover the rescaling map of this renormalization can be chosen affine.

A natural open problem is whether g can be obtained as conservative or symplectic when G
is conservative or symplectic. In this direction let us mention the work of Gonchenko-Shilnikov-
Turaev [[GST07] who proved that, for every 0 < r < 0o, a C"-dense subset of volume preserving
embeddings of B? could be obtained after renormalization of an arbitrarily close to identity volume
preserving map. While in their construction they obtained quasi-periodic renormalization, Fayad
and Saprykina in [FS22]] showed that any conservative map of the n-dimensional ball can be realized

by periodic renormalized iteration of a conservative C"-perturbation of the identity.
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If all these theorems indicate the richness of the possible dynamical behaviors near the identity,
one can object to the following. In the setting of Definition the orbit of Up_; 1(B") of the
renormalization domain might be extremely small and so experimentally not observable. This ob-
jection is lifted completely when the renormalization domain intersects every orbit. This leads us

to generalize the notion of renormalization by the following:

Definition 4.0.3 (Renormalization). Letr € {1,...,00}U{w} and letV be a manifold (with bound-
ary). A map g € Dift" (V) is renormalizable if there exists a strict submanifold with corners A C V
such that:
— there exists a bijective, local C"-diffeomorphism H : A — V, called the rescaling map of the
renormalization domain A,
— the first return time T : A — N* into A by g is bounded and the renormalization G = Hog" o
H~! belongs to Diff" (V).
The map g is totally renormalizable if the forward orbit of A covers V, i.e. U,>0 9" (A) = V. The map
G is then a total renormalization of g.

Remark 4.0.4. Note that if g € Dift"(B") displays a primitive renormalization with embedding 1) :
B" < B" and time N, then A := )(B") is the renormalization domain of g with constant return time
7 = N and rescaling map H = +)~1. Hence Deﬁnitiongeneralizes Deﬁnition Note that the
latter renormalization is never total.

Moreover Definition allows us to consider a larger class of manifolds V' as we do not ask H =
1! to be continuous on the boundary of the renormalization domain. The next example is about a total

renormalization on the circle; a renormalization which is not primitive.

Example 4.0.5. When V is the circle T, a diffeomorphism g is totally renormalizable iff it does not fix
a point. Indeed in this case, take any point 0 € T and consider the interval A = [0, g(0)). Then we
glue the two endpoints of A using g to obtain a circle and we uniformize it to obtain T. This defines a
map H. For this setting one easily shows that the mapping g is renormalizable. This construction was

intensively used by Yoccoz [Yoc95b].

Let V be a compact manifold (possibly with corners) and 1 < r < oco. We recall that the support
supp f of f € Diff" (V') is the closure of the set of points such that f(z) # .

Definition 4.0.6. Let Diff((V') be the component of the identity in Diff" (V). Let Diff]. (V') be the subset
of Dift§(V') formed by maps isotopic to id through isotopies ( f;):c[0,1) Whose support U,co.1) Supp fi is
a compact subset of V'\ OV.

Observe that when V' is boundaryless, it holds Diff( (V') = Diff’ (V). A natural question is:

Question 4.0.7. For which manifold V', any map F' € Diff. (V') is a total renormalization of a close
to identity map?

So far no example of such a manifold V' was known. In this work we give a full class of examples:

Theorem H. Let 0 < r < oo, let M be a compact manifold of dimension > 1 and putV := T x M.
Let N' C Dift" (V') be a neighborhood of the identity. Then any G € Diff. (V') is a total renormalization
of some g € N.
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Theorem [Hallows us to find new dynamical phenomena near the identity. A new improvement
brought by the latter result is that the renormalization domain is larger than in all of the previous
extensions of Ruelle-Takens theorems: its orbit coincides with the whole domain of the dynamics.
In Theorem[l] we will give a precise formula defining the renormalization domain and rescaling map
involved in Theorem [H| This will enable new applications such as the proof of existence of maps
preserving smooth SRB near the identity (see Corollary[4.0.11) or universal maps whose renormal-
ization domains decrease as slowly as we want (see Corollary [4.0.12).

In Proposition we show that Theorem [H| is wrong when T x M ~ T, hence the set of
dimensions of the manifold is optimal. On the other hand, a natural open problem communicated

to us by Turaev is:

Problem 4.0.8. Show that a dense subset of Diff* (B") is equal to the renormalization of a close to
identity map in Diff* (B")?

Another natural question is:

Question 4.0.9. Is Theorem@ correct in the area preserving or symplectic categories?

An extension of Theorem [H| concerns the C"-families fo = (f,)pce of maps f, € Diff"(V)
indexed by a manifold %. A family (f,),cq is of class C" if the following is in Diff" (V' x 9P):

fo = (2,p) = (fo(2),p) . (4.0.1)

We denote by Diff"(V')g the space of such families and this space is endowed with the topology
induced by Diff" (V' x &). Let Diff_ (V') be the connected component of the identity in Diff" (V')g
via homotopies of the form (fp.¢) p.t)eo x(0,1] € D" (V))g (0,11 whose support Uy p)fo,11x SUPPfp,t X
{p} is a compact subset of the interior of V' x %. Observe that fg € Diff,(V x P).

Theorem 1. Let 0 < r < oo, let M and P be compact manifolds of dim > 1 and set V := T x M.
Let N C Dift"(V')g be a neighborhood of (id)cg.
Then for any (G,)pce € Diff.(V)g, there exist (g,)per € N and a rescaling map (independent of

p € P) of a total renormalization domain that renormalizes each g, to G,,.

This theorem implies that any bifurcation in Diftf’ (V") occurs at small unfolding of the identity.
In Section [4.1.1] we will state the main general Theorem [[| which implies Theorems [G| and [H and
also its parametric counterpart Theorem [2| which implies Theorem |1} In Section we will give

several applications of them. Now let us discuss the optimality of Theorem [H]

Proposition 4.0.10. When r > 2, Theorem [H is wrong if V' ~ T, i.e. when it is isomorphic to the

circle as a smooth manifold (and so dimM = 0).

Proof. Indeed if F' is a renormalization of a close to identity map f for a renormalization domain
A, then we have necessarily |7(0) — 7(0")| < 1 for any 0,0 € A. Let N := min{7(0),7(¢')}. We
compute the derivative of the N — 1 first iterates (6;); and (¢;); of 6 and '

DQF‘ g | s
DeffN

+o(1) when f —id
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-1

= Zlog

1=0

D9¢f = /
Dot o(1) < |[log [Dflllcr - Y 16: = 6;] 4 o(1) = o(1),

=0
where the latter inequality uses that || log|Df|||c: is small while the segments [0;, 0!] are disjoint
and so the union of their length is at most 1. Hence this proves that the derivative of /' is constant

and so that 7' must be a rotation. O]

Also we cannot change Diff},(T x M) by Diffy(T x M) in Theorem[H]| Indeed the latter propo-
sition applied to the boundary of [0, 1] implies immediately:

Corollary A. There are G € Diff°(T x [0, 1]) which are not total renormalizations of C*-close to
identity map.

Yet in view of Question [4.0.7, Theorem [H| seems to be generalizable for a manifold V' on which

T acts properly discontinuously without any fixed point.

4.0.2 Applications and open problems

Smooth SRB near the identity In Section[4.1.1]we will state Theorem[[]which will imply together

with Katok’s theorem [Kat79], an answer to an open question of Thouvenot:

Corollary 4.0.11. In any neighborhood N of id € Diff>*(T?) there is a map g € N which leaves
invariant an ergodic smooth volume form and displays positive Lyapunov exponent at Lebesgue a.e.

point.

This corollary will be proved in Section from Proposition and generalized to higher
dimension using [DP02]].

Universal mappings A map f € Diff"(V) is said to be universal if there exists a dense subset
of Diff(V') such that each of its elements is a renormalization of f. Bonatti and Diaz in [BDO03]]
have shown that universal maps are locally C'-generic on B3. Turaev in [Turi5al] has shown that
universal maps are locally C'°°-generic on B?. Yet mathematicians wondered whether we can “see"
the universality of such mapping. While there are infinitely many renormalization domains, the

above proofs lead to a very small volume for the union of their orbits.

Corollary 4.0.12. Let 1 < r < oo andn > 2. For any sequence (F;);>o of maps F; € Diff(T x [0, 1])
and any sequence of positive numbers ({;);>o s.t. > {; < 1, there exists a C"-arbitrarily close to identity
map f € Diff((T x [0, 1]) which displays a family of renormalization domains (A;);>o such that:

1. a renormalization of [ associated to A; is F; for everyi > 0,

2. the orbit A; := Unso f"(A;) has volume equal to (;,

3. the sets A; and Aj are disjoint fori # j.

This corollary will be proved in Section[4.1.2]

The proof of the main theorem is constructive and it seems to us that, in the case where M is

boundaryless, the map g of Theorem [H] depends smoothly on G in a neighborhood of the identity.

This leads us to propose:
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Conjecture 4.0.13. For every compact boundaryless manifold M of dimension > 1, there exists a
neighborhood Ny of id € Diff (T x M) such that for every neighborhood N of id € Diftf>(T x M),
there is a smooth injective map T : G € Ny — g € N such that G is a total renormalization of
g =Z(G) for every G € Nj.

Roughly speaking, this conjecture asserts that modulo total renormalization, a fixed neighbor-
hood Nj of id € Diff>*(T x M) can be smoothly embedded into any smaller neighborhood. This
defines infinitely many inverse branches of the renormalization operator with image converging to
the identity.

4.0.3 Sketch of proof

Plugins and pluggable dynamics: The framework of the proof of the main theorem relies on
a new object called plugin and the notion of pluggable map. A plugin is a renormalizable map of a
special form, so that it has a canonical total renormalization called its output. See Def. and[4.1.3]
below and Figs.[4.1]and[4.2] We will say that a map is pluggable if it is the output of an arbitrarily close
to identity plugin and likewise for its inverse. In particular a pluggable map is a total renormalization

of a close to identity map. Most of this work will be dedicated to showing Theorem [J| stating that:
any map of Diff>°(T x M) is pluggable.

The finite regularity counterpart of Theorem [J]is stated as Theorem [I|in Section and will be
deduced from Theorem [J]in Section We will deduce Theorems|G|and [H and Corollaries
and [4.0.12 from Theorem[[ in Section [4.1.2]

In Section [4.1.3|we will specify the topologies of the involved spaces. Also we will show that the
following group is formed by pluggable maps, see Proposition [4.1.16}

Gy ={ly) eTxM— O+v(y),y) e TxM:veCM,T)}.

Topological group structure on Plug. It is easier to work with pluggable maps rather than
directly with the set of total renormalizations of close to identity maps. Indeed, we will show in
Proposition[4.2.4|that the set Plug of pluggable maps endowed with the composition rule o is a group.
To prove this, we will define in Section a binary operation x on compatible plugins g;, g2 such
that the output of g;  g» is the composition of the outputs of g; and g». See Fig. In Section [4.2.2]
we will show that the following group is formed by pluggable maps, see Proposition

Gy :={(6,y) € Tx M+ (8, F(y)) € T x M : F € Diff*(M)} .

Then in Section we will show that Plug is closed in Diff2°(T x M), see Proposition [4.2.9]
To prove this, we will construct plugins whose dynamics enlarge an iterate of the renormalization
domain and will perform a perturbation therein. Note that the elements of Diff;° (T x M) generated

by compositions of elements of G; and G, have constant derivatives w.r.t. §. Consequently we will
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need to construct other diffeomorphisms in Plug to prove Theorem ] To do so we will consider the
space:
0iffo°(T x M) of compactly supported vector fields on T x M |

and study the space plug of vector fields whose flow is pluggable:
plug == {X € 2ff>°(T x M) : Fly, € Plug, Vtc R},

where F1% denotes the flow of X at time .
Using that Plug is a closed subgroup, we will deduce in Section[4.2.4that plug is a closed sub-Lie

algebra of diff;°(T x M), see Proposition [4.2.16]
Note that the following Lie algebras are formed by fields whose flows are in G; or G:

0 ={X1:0,y) e Tx M (v(y),0) e RxTM : veC°MR)}Cplug,

g ={Xo:(0,y) e TxMw— (0,f(y) e RxTM : fediffe’(M)} C plug .

Construction of pluggable flows. In Section using the connectedness of Diffo° (T x M)

and that Plug is a closed group, we will show that, to prove Theorem ] it suffices to show:
plug = diffe” (T x M) .

This equality will be stated in Proposition Its proof relies on two phenomena. The first one is
stated in Proposition as:

{Y € 0iffe°(T x M) : 3X € plug such that Y = [X, Y]} C plug ,

where [-, ] denotes the Lie brackets. This will be proved in Section by noting that for any
Y = [X,Y],it holds Fl{, = FI5 o FI{* ~ o F1*. Then by using the same technique as for the proof
of the closedness of Plug, we will show that arbitrarily close to identity there exists a plugin with
output FI' . for any s large enough. We will conclude the proof by doing two * products of the
latter with plugins with outputs F1% and F1,°.

The second phenomenon, stated in Proposition[4.3.10} is that for any vector field T' € diffe° (M),
there exist finite families (X;);, (Y;);, (Z;); of vector fields in diff;" (M) such that:

From this we will deduce the same statement for vector fields in go. To show Proposition
we will remark that when M = R, for the vector fields X : y € R +— —yand Y = 1, it holds
Y = [X,Y] and for any T" € 0iff>°(R), with Z = [Y__T'(t)dt, it also holds 7" = [Y, Z]. Then we
will deduce a compactly supported and parametric version of this property which will enable us to
prove Proposition in the case M = R". Finally, we will use a partition of unity to deduce the
proposition for any manifold.

These phenomena will enable us to prove Proposition stating that for any 7" € g, and
¢ € CX(T x M) depending only on 6, the field ¢ - T' is in plug. Indeed, by the second phenomenon,
there are X, Y;, Z; € gs s.t.:

6-T=3¢-V; 2] = [¢-V;,Z] and Vi=[X;Y].

(]
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Also a simple computation shows that [¢ - Y, X;] = ¢ - Y;. As X, isin g C plug, we deduce by the
first phenomenon that ¢ - Y; is in plug. This gives that ¢ - 7" € plug as stated in Proposition [4.3.1]
In Section we will use Fourier decomposition Theorem and the closedness of plug to deduce
Proposition stating that any vector field of the form (0,Y (0, y)) is in plug. Finally using this
with a Lie bracket with an element of g; will enable us to obtain that any vector field has a pluggable
flow (plug = diffe°(T x M)) as stated by Proposition[4.3.3]

Parametric counterparts. At the end of each subsection, we will prove a parametric general-
ization of the aforementioned statements. This will enable us to show the parametric counterpart
Theorem [3 of Theorem []| It will imply the parametric counterparts Theorem [2] of Theorem [[ and
Theorem [1] of Theorem

4.1 Plugins and Pluggable dynamics
4.1.1 Plugins
For the rest of this chapter, we fix 1 < r < oo and compact connected manifolds M and P of dim > 1.
For o > 0, define the rotation:
R, :(0,y) e TxM— (0+o0,y) €T xM.
We are now ready to introduce:

Definition 4.1.1. A plugin withstep o € {27% : k > 1} is a map g € Diff"(T x M) satisfying the
following assertions:

(i) g restricted to A, :=[0,0) x M is equal to R,,
(i) the first return time in A, of g is a well-defined and bounded function T : A, — N*,

(iii) the union of the iterates Uy>q 9" (A,) equals T x M.

Remark 4.1.2. One can show by compactness of M that, under condition (i), condition (ii) is equiv-

alent to (iii) and that in (ii) the return time is necessarily bounded.
\ >
;"\ RN
T x M: ‘ ‘\

Figure 4.1 — Plugin g of step o.
Let H, :== (0,y) € A, — (0/0,y) € T x M. It is a bijective local diffeomorphism.
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Figure 4.2 — Rescaling map H,: A, — T x M.

Definition 4.1.3. The output of a plugin g of step o is the following rescaling of the first return map
g A, = Ay
G:=Hy,og o H;': Tx M —T x M.

Example 4.1.4. For every k > 0, the map gi. = (0,y) — (0 + 27% y) is a plugin of step 27, return
time 2% and outputs the identity.

Actually, we can show that the output of a plugin is always smooth:

Proposition 4.1.5. Let 1 < r < oo. The output of a plugin g € Dift"(T x M) is in Diff" (T x M)

and depends continuously on g. In particular, the output is a total renormalization of the plugin.

This proposition is a consequence of a classical, yet beautiful, argument that will be recalled in

Section [4.4 We are now ready to state the general result:

Theorem I (Main). Let 1 < r < oo and a compact manifold M of dimension > 1, and let N' C
Diff"(T x M) be a neighborhood of the identity. Then any G € Diff.(T x M) is the output of some
plugin go € N.

And here is its parametric counterpart:

Theorem 2. Let 1 < r < 0o and a compact manifold M of dimension > 1, fix a compact manifold
P and a compactly supported family (G,)pee in Diff (T x M)g. Let N C Diff"(T x M)g be a
neighborhood of (id),ce. Then there exists a C"-family of plugins (g,)pee € N such that G, is the
output of g, for everyp € P.

4.1.2 Proof of the corollaries of the main Theorem [I

Observe that Theorem [Ilimplies immediately Theorem [H| and that Theorem |2 implies immedi-
ately Theorem (1] In this subsection we show that Theorem [I| implies furthermore Theorem |G and
Corollaries[4.0.11|and [4.0.12] To this end, the following will be useful:

Fact 4.1.6. If the output of a plugin restricted to {0} x M is the identity, then the return time T of the

plugin is constant on the renormalization domain A.

Proof. As f preserves the orientation it suffices to show that 7 is constant on the interior of A. As 7
is integer valued and M is connected, it suffices to show that 7 is continuous on int A to conclude
the proof. We start by showing that 7 is lower semi-continuous on A. Suppose that it is not the
case. Then there exist N > 2, a point € A and a point 2/ € A arbitrarily close to x such that
N = 7(2') < 7(z). By continuity of g, it holds ¢"V () € cl(A). By assumption, we have ¢" () ¢ A.
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Thus ¢"(z) € {¢} x M and since g is the translation by ¢ on A it holds then that ¢V ~!(z) € A
and consequently 7(x) < N, which contradicts the assumption.

We now show that 7 is upper semi-continuous on int A. Consider z € int A. As g is a bijection
of A which leaves invariant {0} x M, it comes that ¢"(x) is in the interior of A. Then for every '
close to =, the iterate g7 (2') belongs to A and so 7(2') < 7(x). O

Proof that Theorem[] implies Theorem[G. Let G be in Diff”(B") = Diffj(B"). We observe[] that G
is the restriction to B,, of a diffeomorphism G in Diff’(2 - B"). As 2 - id conjugates G to a map in
Diff] (B"™), without any loss of generality we can assume that G belongs to Diff (B").

Let M := B"! and embed i : B” < T x M so that the embedded ball i(B") does not meet
{0} x M nor the boundary of T x M. Extend then G by id to a diffeomorphism G € Diff§(T x M).
By Theorem G is the output of a plugin § € Diff" (T x M) arbitrarily close to id. Since G leaves
{0} x M invariant it holds by Fact that the first return time 7 of the plugin g is a constant V.

In particular, the restriction ™ |i(B") is conjugate to G.

G: is the output of g:
@ g close to id

T x M T x M
Figure 4.3 — Proof of Theorem |G}

Extend to
g € Diff(B)

To conclude it suffices to embed T x M into the interior of B” and extend § then the diffeomor-

phism ¢ to a diffeomorphism g of B" that is close to id. [
The following enables us to localize near the identity the existence of some ergodic properties:

Proposition 4.1.7. Let g be a plugin of step 0 and G its output. Then there is a canonical bijection

g — e between G-invariant probability measures and g-invariant probability measures:

A
MQ‘A and pig v pig = Y g Hypgl{r > N} .
fg(A) N>0

Hg = Pa = Hg.

Moreover:
1. g is ergodic iff jic is ergodic,
2. g is hyperbolic iff i is hyperbolic.
3. pg is a smooth volume form iff jic is a smooth volume form,

Proof. We recall that H,, conjugates GG with the first return time ¢” of g in A. Then it is sufficient to

prove the analogous properties for the following classical bijection between g™ -invariant probability

4. By connectedness, there exists an isotopy (h¢)¢c[o,1] between G|OB™ and idgp- that can be chosen C”-smooth,

made of diffeomorphisms and and flat at the endpoints. Note that we can extend G on 2 - B™ \ B" by A,_1 (H%H) to
construct an element of Diff((2 - B™).

88



measures and g-invariant probability measures:

fgr = g = D g g {7 > N} and  pg > pgr 1= yl2
N>0 1g(A)
Indeed it is well known that p,- is ergodic iff ;14 is ergodic (see for instance [EW13, Lemma 2.43]),
which implies 1. Also it well known that the Lyapunov exponent of 1 is equal to the mean of 7
times the Lyapunov exponent of 1, from which we deduce 2.

Let us prove 3. If pg is smooth, then pi4|A = pg- is smooth on A. Hence, the measure
pgl AU g(A) = pgr + g* gy is smooth on A U g(A). Now observe that for every x € T x M
there exists a neighborhood U and N > 0 such that ¢~V (U) C A U g(A). Then by invariance, the
density of i, on U is as smooth as p1,| AU g(A). Conversely, if 11, is smooth, then jiy- := lﬁt} g(lﬁ)
be smooth. Since g is a plugin, the density /i, at the left hand side of A is equal to the translation
by (o, 0) of the density of y, at the right hand side of c/(A). Thus y,- is pushed forward by H, to

a smooth volume form pg on T x M. O]

must

Proof of Corollary[4.0.11] Katok in [Kat79][Thm B] showed the existence of Bernoulli diffeomor-
phisms homotopic to the identity and preserving a given smooth measure on any surface. Hence
there exists G € Diff°(T?) preserving a smooth Bernouilli volume form y . Equivalently by the
Pesin Theorem the measure i is a volume form which is ergodic and hyperbolic. By Theorem
arbitrarily close to the identity, there exists ¢ whose output is G. Then by Proposition the

volume form i induces an ergodic and hyperbolic volume form 4, for g. O
We now proceed to:

Proof of Corollary[4.0.1] We will construct a sequence (A;);>1 of domains with disjoint closures and
of the form A; := [0,0;) X (s;,8; + ;) C T x [0,1] with0 < 0; < 1and 0 < s; < 1 — ;. Then we
will be able to construct a map f that renormalizes to F; on each A; and such that the orbit of the
renormalization domain A; is exactly T x (s;, s; + ;). Moreover we will be able to take f arbitrarily
close to identity.

To do so, consider a sequence (I});>o such that ;! < 1 and [, > [; forany i > 0. Fori > 0
denote s; := 3_;; I; and B; := T x[s;, s;+1;]. Note that B; has volume [; and that cl( B;)Ncl(B;) = 0
forany i # j > 0. Let us define the map v; : (0,y) € T x[0,1] — (0, s; +1;-y) that sends T x [0, 1]
to cl(B;). Now by Theorem for any i > 0, there exists a plugin f; : T x [0,1] — T x [0, 1]
arbitrarily close to identity with renormalization domain with output F;. Let step o; be its step.
Observe then that the map f; := 1); o f;o ;! . B; — B is close to identity. Also a renormalization
of f; associated to the domain A; := [0, 0;) X [s;, s;+1;] is F;. Since the supports supp f; = cl(B;) are
disjoint and each f; is close to identity, there exists a close to identity map f : T x [0, 1] — T x [0, 1]
that coincides with f; on B;. Such a map verifies the conditions of the Corollary [4.0.12] O

4.1.3 Pluggable dynamics

We will first work in the C'*°-topology. Indeed, the proof relies on the fact that Diff*(V) is a
Fréchet Lie group, which is not the case of Diff" (V') for < oo. The C" case will be deduced from
the C'™ case in Section [4.2.3]
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Topologies on spaces of smooth maps and parameter families

We endow V' with a Riemannian metric. Let iff*°(1") be the space of smooth vector fields on
V that are tangent to the boundary (if any). We endow Diff** (V') and the space 2iff*(V') with the

following distances:
_ —k ke Pk
dee(f,9) = max > 27 min(L, || Dy f — Dygll)

E>1
and

dee(X,Y) =max > 2 %min(1, |DFX — D*Y)) .
c=(X,Y) xevg (L[| Dy oY)

For these distances Diff> (V") and 0iff**(V') are complete. Actually Diff>(V') is a Lie group with
algebra the Fréchet space 0iff*°(V'). We endow the connected component Diff;°(V) of the identity
with the topology induced by Diff (V).

On the other hand, we endow the space Diff>° (1) and the space of compactly supported smooth
vector fields 0iff>° (V') with the finer Whitney topology. A basis of open sets of these respective
topologies is:

Upgam = {g € DIfiZ°(V) : d(D3f, Dyg) < n(x), ¥k < m}
and
Unxom = A{Y € 0fi°(V) : | DIX = DIY|| < n(x),Vk < m},

among m € N, f € Diff°(V), X € 2iffo°(V), and continuous functions 7 : V' \ 9V — (0,00). A
well known theorem asserts that f,, — f in Diff°(V) if and only if there exists a compact subset
K C V' '\ 0V such that the supports of f and f,, are included in K for n and for every r > 1, we
have f, — f in the uniform C"-topology when n — oo. The analogous property holds true for

oiffe" (V).
We endow Diff" (V)% and Diff (V') with the topologies induced by Diff" (V' x &) and Diff” (V' x

P) with the inclusions:
Diff" (V) <5 Diff" (V x P) and  Diff’(V)g < Diff’(V x P)
via fo = (fp)per — fo where:

fo = (v,p) €V XP = (f(v),p).

The spaces Diff"(V')g and Diff(V')s endowed with the composition law fg o g := (f, © gp)pen
are groups.
Note that we have:

Fact 4.1.8. The following inclusion is a morphism of topological groups:
fo = (fp)peo € DIffF(V)g — fo € DIl (V x P) .

The latter fact will be used among some proofs of the parametric counterparts.

From now on we will work withV =T x M.
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The space Plug of Pluggable maps

Every time, but when explicitly stated, we will focus on the case r = oo: plugins will be of class C'*°
and their outputs as well. Recall that we endow T = R/Z with the Euclidean Riemannian metric,
M and % with their Riemannian metric. The product spaces T x M, T x M x P and M x &P are

endowed with their product Riemannian metric.

Definition 4.1.9. A map G € Diff°(T x M) is semi-pluggable if there is a sequence (gi)i>1 of
plugins g, € Diff (T x M) with step 27, so that for every large integer k the output of gy, is G and
gr — id for the C*°-topology when k — oo. The map G is pluggable if G and G~! are semi-pluggable.
Let:

Plug := {G € Diff°(T x M) : G is pluggable} .

Example 4.1.10. The identity id of T x M is pluggable since it is the output of every plugin of the
sequence ((Q,y) €T x M (0+27F, y))

as in Example|4.1.4

k>1

We give in Section more sophisticated examples of pluggable dynamics. Note that in Defi-
nition we are only interested by plugins whose output is compactly supported (outside of the
boundary). This is because not every mapping of Diffg°(T x M) is pluggable by Corollary [A] while
we will show that every map in Diff°(T x M) is pluggable:

Theorem J. We have Plug = Diff.°(T x M).

Observe that the first assertion of Theorem [in the case r = oo is an immediate consequence of
Theorem[]|

Parametric counterpart. The proof of Theorem([J]is basically constructive and depends smoothly
on the output. For the sake of completeness, we will verify this by giving the parametric counterpart
of each statement. Some of the proofs will be designed to be verbatim the same. For a first reading
of the proofs, we advise the reader to skip the all parametric counterpart of the arguments. Here is

the parametric counterpart of the notion of plugin:

Definition 4.1.11. A family g3 = (g,)pep € Diff™(T x M)y defines a P-plugin if the diffeomor-
phism:

gz : (2,p) € M X P+ (g,(z),p)
in Diff>(T x M x 9P) is a plugin.

Similarly we have the parametric counterpart of the output of a P-plugin:

Definition 4.1.12. The output of a P-plugin gg € Diff (T x M)g of step o is the family Gg such
that for eachp € P, the map G, is the rescaling of the return map g;7: Ay — A,

Gp=H,ogroH': TxM—Tx M.
By Propositionthe output Gg of the plugin g on T x M x & is smooth and so:
Fact 4.1.13. The output of a P-plugin of T x M lies in Diff((T x V)g.
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In the parametric setting, Definition becomes:

Definition 4.1.14. A family Gg € Diff>°(T x M)g is P-semi-pluggable if there is a sequence
(Grer) >, of P-plugins with step 2%, so that for every large k, the output of grg is Go and grg con-
verges to idrxprxg for the C°-topology. The family of maps G is P-semi-pluggable if both G and
Gg' = (G, ") peg are P-semi-pluggable. Let:

Plugg := {Gg € DIff>°(T x M)g : Gy is P-pluggable} .
To obtain Theoremin the case r = o0, it suffices to prove:

Theorem 3. We have Plugg = Diff>°(T x M)g.

Examples of pluggable dynamics

Consider the following subgroup of Diff>°(T x M):

Gr={0,y) eTxMw— (0+v(y),y) :veC(MR)}.

This gives a first example of a subgroup of pluggable maps:

Gl C Phlg .

Proposition 4.1.15. The group G, is included in Plug.

The subgroup G; was first studied in [BT24] into a set of generators of symplectomorphisms.
A TiA
1

A\
\\

’\
L3 hd \ .L
Doon o T e T
Yy T . A FEE I
o
|

27 u(y)

Figure 4.4 — Dynamics of an element of G;.

Proof. Let p € C*°(T,R") be a function with support contained in [3, 2] C T and integral 1. Given
€ € [-27%72 27%72] 'we define the smooth vector field:

X 0T —27"/(1—¢€-p)). (4.1.1)

Let ¢! be the flow of X. The time taken to go all around the circle equals to:

o= [ Xj(e)de = [2F (1 plo)an=2* - (1-0). 41.2)
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If we stop at time 2", then the lacking or exceeding time for a complete lap is 2¥¢ € [—1, 1]. As near

0 the vector field X, equals 27%, this implies that the image of 0 by ¢§’“ is equal to €. So for every
v € CX(M,R), for every k large, the map:

13
11
plugin with step 27%. Furthermore, by the above discussion, its output equals to:

coincides with Ry« on a set which contains the complement of S = [, 2] X supp v. Thus gy is a

G:(0,y)— (0 +v(y),y) withv e C°(M,R) . (4.1.4)

Finally observe that g;, is C*°-close to identity. Thus G is semi-pluggable. Hence G; is formed by
semi-pluggable maps, and as G is a group, it is formed by pluggable maps. O]

Parametric counterpart. Let G be the subset of Diff>”(T x M)y formed by families (G}),eco
such that G, € G, for every p € P.

We have similarly:
Proposition 4.1.16. The group G4 is included in Plugg,.

Proof. An element (G,),ce € G1g is formed by mapping of the form G, : (0,y) — (6 + v,(y),y)
with (1,)pco smooth. Thus the vector field Z, : (6,y) + (X5-x,,(y),0) depends smoothly on p.
Hence the time one maps g, form a family of plugins (g,),es (With output G, and step 27*) which
depends smoothly on p € %P. ]

4.2 Topological group structure on Plug

4.2.1 Group structure on Plug

In this section we show that Plug endowed with the composition rule is a group. To this end,
let7:T x M :=R/2Z x M — T x M =R/Z x M be the canonical 2-sheeted covering map and
denote by ¢ : (A,y) € T x M + (0/2,y) € T x M the canonical diffeomorphism. The following

defines a binary operation x on the space of plugins:

Definition 4.2.1. Let g; and gy be two plugins with same step o = 27%. Let gy, go € Diff>(T x M)
be the lifts of g1 and go such that g1(0,y) = go(0,y) = (0,y) for everyy € M. Let g1 * g be equal to
the lift go on the first half of T x M and be equal to the lift of §, on the second half of T x M:

go(0,y) iff€l0,1)+27Z,

00,y), if0e[,2) 42z, TPHIFI=VOGEROY

gl*gO:(Q,y)ETxMH{

Fact 4.2.2. Given a neighborhood V' ofid in Diff((T x M), there exists a neighborhood W of id such
that for any pair of plugins f,g € W of same steps, we have f xg € V.
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R/oz x M Rfaz x M

Tx M Tx M
2-sheeted cut &
lift paste 0/2
_ —_ -
plugins g; g1 * go
of step 2% Ji of step 27F~1

Figure 4.5 — Concatenation of two plugins.

The x-product associates to a pair of plugins of the same step a plugin of half that step and whose

output is the composition of the outputs:

Proposition 4.2.3. If gy and g, are plugins with the same step o and outputs G and G'1 then g, * go
is a plugin with step 0 /2 and output G o G.

Proof. The set A = ([0,0) + Z) x M lifts into the union of the two sets:
Ao = ([0,0)+2Z)x M and A, = ([1,1+0)+27Z) x M.

Let 7; be the restriction of 7 to each A;.
Note that g, and g; coincide with the translation by (o, 0) on Ay U A;. Hence the map go * g1

is a smooth diffeomorphism that also coincides with the translation by (c,0) on Ag U A;. Let

T=1y0om+ 1 omogy. Then g% g’ sends A onto A; by gi*°™ and then sends A; onto Ay by
91'°". Thus we have:
9| =m0 HytoGoo Hyomy and g7 | Ay =75 o H, ' 0 Gro He oy .
Therefore the return time of g; * gy into A is defined on A, and the first return map is:

W()_lngloGloGongom).

This implies that g; x gy is a plugin with output G; o G and step /2. O

Proposition 4.2.4. The set Plug is a subgroup of Diff>°(T x M) endowed with the composition rule.

Proof. By Example Plug contains the identity and by definition it is stable by inversion. Thus
it remains to show that semi-pluggability is stable by composition. Let GG1, G be semi-pluggable.
Then for every k large, C™-close to identity, there are plugins g; and g, with step 27* and with
outputs G and G| respectively. Then by Fact[4.2.2], the map g x gy is close to identity when k is
large. By Proposition the output of g; * gg is G; o Gy and its step is 27%71. Thus G; o Gy is

semi-pluggable. The second assertion is proved similarly. O]

Parametric counterpart. The proofs of the two latter propositions imply immediately:

Proposition 4.2.5. If f3, g are two P-plugins with same step o and output Fip and G, then the
family (f, * 9p)pea is a P-plugin with step o /2 and output (F, 0 G))peg.

Thus we deduce:

Proposition 4.2.6. The set Plugg, is a subgroup of Diff>°(T x M)g endowed with the operation:

(Fp)p€g° o (Gp>p€9“ = (Fp o Gp)pG@ .
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4.2.2 Another subgroup included in Plug

Consider the following sub-group of Diff>° (T x M):

Ge:={(0,y) eTx M~ (0,F(y)) : F € Diff°(M)}

Proposition 4.2.7. The group G, is included in Plug.
A JAYAN

Figure 4.6 — Dynamics of a plugin with output in G,.

Proof. As G, is connected and Plug is a group by Proposition [4.2.4 it suffices to show that a neigh-
borhood W of id in G is included in Plug. Indeed by [Wil84, Prop 3.18], any such neighborhood
W generates G,. Up to replacing W by W N W1, it suffices to show that any element of W is
semi-pluggable.

In order to do so, we develop an idea which appears in [NRT78|]. Take W sufficiently small so
that for every G : (0,y) — (0, F(y)) € W, the map F is sufficiently close to id to be isotopic to
it via a smooth path. In other words, there exists a C'*°-family (F});c[0,1) of maps F; € Diff2°(M)
such that Fy = id and F} = F. Such a family can be obtained using the exponential map exp of the

Riemannian metric, via the formula F} := y — exp, (¢ - exp, ' F(y)). Define:
Y(t,y) == 0,F, 0 F \(y), (4.2.1)

and observe that F' is the time one map of the (compactly supported) non-autonomous vector field
Y. Let7 : T — [0, 1] be a map which is smooth on T \ {0} and such that near 0" it equals 0 and

near 0~ is equal 1. For £ large, let:
Xp:(0,y) €T x M (277275 9p7(0) - Y(7(0),9)) . (4.2.2)

Let gi be the time one map of this vector field. Observe that for %k large enough, gy, is a plugin
with step 0 = 2-% and return time o~'. Furthermore, its output is (G. Indeed the second coordinate
of the output is the time o =" map of the flow of 9y7(6) - Y (7(6), y) which is the time one map F of
the flow of Y. Thus we have:

9" o Hy(z) = Hy 0 G(z), Yz €A, . (4.2.3)

Furthermore, when £ is large, the plugin gy is close to identity. Thus G is semi-pluggable. ]

Parametric counterpart. Let Gag be the subset of Diff>°(T x M)g formed by families (G}),co
such that G, € G, for every p € P. The following is a counterpart of Proposition [4.2.7}

Proposition 4.2.8. The group Gog is included in Plugg,.
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Proof. Let W be as defined in the proof of Proposition We then define Wg as the subset of
Diff2°(T x M)y formed by families (G)),co such that G, € W for every p € &P. For the same
reasons it suffices to show that any element of Wg is 9P-semi-pluggable. Similarly, for any family
(Gp)pepr =: (idy X F,)pep € Wa , the family (F,),co is isotopic to the identity via a smooth path
((Fpt)pe® )iepo.1) Where Fpp :=y = exp, (T - exp, ' F(y)). We define:

Vylt,y) = O o F'(y) (2.4
Note that the family of vector fields (Y},),c is smooth. Define then the family of vector fields:
Xip: (0,y) €T x M (275 277 9p7(0) - Y, (7(0), ) , (4.2.5)

where 7 is the function defined in Proposition For k large enough, the family of time one
maps (grp)peo is a P-plugin with output the family (G,),ece. Moreover, when k£ — oo, the P-
plugin (gk,)peo tends to the identity id € Diff;°(M)g. O

4.2.3 Closedness of the group Plug

In this section we prove that Plug is closed in Diffo°(T x M).
Proposition 4.2.9. The subgroup Plug C Diff2°(T x M) is closed.
This proposition uses the following lemma proved below:

Lemma 4.2.10. For any 1 < r < oo, for any neighborhood N of id € Diff"(T x M), there exist
N > 1 and a neighborhood N. of id € Diff’(T x M) such that for all G € N, and k > N, there is a
C"-plugin g € N with output G and step 27

Note that the latter lemma is stated for any regularity 1 < r < oo. It will allow us to deduce
Theorem [ from Theorem/]|

Proof of Proposition[4.2.9 Tt suffices to show that the set of semi-pluggable maps is closed. Indeed,
the continuity of the involution G +— G~! implies that the set of maps with semi-pluggable inverse
is closed; and so it comes that the intersection Plug of these two sets is closed.

Let (G,),>0 be a sequence of semi-pluggable maps converging in the C*°-topology to a diffeo-
morphism G € Diff2°(T x M). Let us show that G is semi-pluggable. In other words, let us show
that for every neighborhood V of id € Dift* (T x M), for every k large enough, there exists a plugin
g € V with output G and step 27

To this end, let us fix a small neighborhood A of id € Diff>*(T x M) and j large so that G; ' o G
belongs to the open set V. given by Lemma[4.2.10] Hence for every k& > 0 large enough, there exists
a plugin g; € N with output G;l o G and step 27%. As G} is pluggable, for every k large enough,
there exists a plugin gy € N with output G; and step 2. Now we merge the plugins g; and gy to
obtain a plugin g = g; x go of G of step 27*~1. By Fact when N is small, the map g is close to
identity and so in V. O
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The idea of the proof of Lemma is to find, for each fixed small > 0, a sequence of close to
identity plugins g; with step 2% and output the identity such that some iterates of each g, stretch
the 2"-thin fundamental domain A, « onto a wider fundamental domain, isometric to [0, 25 x M.
The iteration by g;, will produce a horizontal zooming effect on A,-x. Then we will be able to perturb
the plugin on this stretched fundamental domain, to obtain an open set of outputs independent of k.

The following produces the sequence (g ):

Sublemma 4.2.11. For every neighborhood N of id € Diff (T x M), for every 6 > 0 small, there
exists N > 1 and a sequence (gi)x>n of plugins in N with step 27, output id such that:

— forally € M and 0 € [}, 2]; we have gi(0,y) = (0 + 4, y),

— gi isof the form gi. : (0,y) € T x M — (¢x(0),y) where the map ¢y is a flow.

Proof. Let A = [}, 2] and B = [, 3]. Let ¢4, g € C(T,[0,1]) be two non-negative functions

with disjoint supports, vanishing at a neighborhood of 0 and such that:
YalA=1 and ¢Yp|B=1. (4.2.6)
For 3 > 0 we define the following vector field on the circle T:

Xpp:=0-Ya+ B -tp+ (1 —1ha—tp) 27" (4.2.7)

Let 75 ;, be the time needed to make one turn around the circle along the flow of X . This number is
large since J is small. Note that 73, depends smoothly on 3 > 0. Also 75 — oo when 3 — 0 and
O0s7ar, < 0. Let N > 1 be so that 6 > 27N Let k > N. We have § > 2% If 8 = 2%, then the time
75 is smaller than 2*. Thus by the mean value theorem, there exists a unique 3 = 3(k, ) close to
27" such that T5,8(k0) k = 2k,

Then the time 1 map g;, of the flow of (X, 0) satisfies the desired properties. O

We now have the tools to prove the following restricted version of Lemma [4.2.10

Sublemma 4.2.12. For any 1 < r < oo, for any neighborhood V of id € Dift"(T x M), there exist
N > 1 and a neighborhood N, of id € Dift(T x M) such that for any k > N and every G € N.
whose restriction to a neighborhood of {0} x M or a neighborhood of {1} x M is the identity, there is
a C"-plugin g € V with output G and step 27",

Proof of Sublemmal[4.2.13. Let N be a neighborhood of id € Diff"(T x M) such thatf| V' € V.
We apply Sublemma [4.2.11] which provides § > 0, N > 1 and a sequence (gi)x>n of plugins gy, :
(0,y) = (¢1(0),y) with output id and step 27%. By Sublemma [4.2.11] there exists 7, > 0 minimal
such that 0, := ¢*(0) € [3, 1]. Taking A small, we have that 0, is smaller than 3 — 24, and so g
equals the translation by & on (6, 6y + 36). Let NV, be a small neighborhood of id € Diff[,(T x M).
Let G € N, be equal to the identity near {0} x M or {3} x M. We would like to C"-perturb gj, so
that its output is G.

Case 1: If G € N, coincides with the identity near {0} x M, then we perform a perturbation of
g supported by (0, 0 + 0) x M and therein equals to:

Gr [0k, 0 + 0] X M — [0+ 0,0, +20] x M

~ 4.2.8
(O +2,y) — (O +6,0)+0-G(6'z,y) (428)

5. in the sense that the distance between N and the complement of V is positive.
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where G : R x M — R x M is a lifting of G which fixes {0} x M. Note that j; is a C"-plugin with
output G and step 27%. Furthermore, if \V, is small enough (at ¢ fixed), then for every & > N, the
map §y, is uniformly close to g; € N in the C"-topology and so gy, belongs to V.

Case 2: If G € N, coincides with the identity near {%} x M, then we perform a perturbation of
g supported by (6), + 2,6), + 25) x M and therein equals to:

§k2[9k+%,¢9k+%(ﬂ XM — [9k+%5,9k+g5]XM

5 4.2.9
Ok +5+x,y) = (O+5+00)+8-G0 'z,y). e

Similarly, this is a C"-plugin of output G' and step 2%, which is in V for every k provided that N,

is small enough. O

Proof that Sublemmal(4.2.12 implies Lemmal[4.2.1. First let us ‘fragment’ any C"-close to identity
map G € N, into the composition of two C"-maps G o Gy such that G, coincides with the identity
near {0} x M and G coincides with the identity near {1} x M.

To this end, we use the exponential map exp associated to the geodesic flow of T x M and a
function p € C*°(T x M, [0, 1]) such that p|{0} x M = 1and p|{1} x M = 0. Let \/, be a sufficiently
small neighborhood of id € Diff>°(T x M) such that for every G € N, the following is a smooth
diffeomorphism:

Go =z — exp(p(x) - exp, 'G(7)) . (4.2.10)
Let Gy ;=G o Gal and note that G = G o G,
Sublemma states that there are C"-plugins g; and gy close to identity with step 27* and

outputs G; and G| for every k large enough. Then by Fact[4.2.2/and Proposition[4.2.3] the C"-plugin
g1 * go of step 271 is close to identity and has output G o Gy = G. O

Proof that Theorem[] implies Theorem[]. When r = oo, the result of Theorem [[| corresponds to the
one of Theorem ]| Consider now r < co. Let G € Diff,,(T x M), and N C V be two neighborhoods
of id € Diff’(T x M). We smooth the map G into a map G € Diff>®(T x M) such that the map
G~'oG belongs to the neighborhood N, given by Lemma Then for every k£ > 0 large enough,
there exists a plugin go € N with output G~' o G and step 2%. By Theoremm for k large enough,
there exists a plugin g; € N with output G. We merge go and g; to get a plugin g = ¢1 * go with
output G. By Fact when N is small, the map ¢ is in V. O

Parametric counterpart. Here is the parametric counterpart of Proposition [4.2.9
Proposition 4.2.13. The set Plugg is closed.
To show this proposition we will use the following counterpart of Lemma [4.2.10| proved below:

Lemma 4.2.14. For any 1 < r < oo, for any neighborhood N of id € Diff" (T x M), there exists
N > 1 and a neighborhood N of id € Diff_(T x M)g such that for all (G,)pc € N. and k > N,
there is a P-C"-plugin (g,)per € N with output (G)pee and step 27F.
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Proof of Proposition We proceed literally as in the proof Proposition up to some minor
changes : we apply Lemma [4.2.14] instead of Lemma [4.2.10| and consider families instead of single
maps. Note that the continuity of x given by Fact is also valid for families since the embedding:

(fp)p € DIff™(T x M)g — fo € Diff"(T x M x P)
commutes with the x-product. ]

Proof of Lemma(4.2.14 The explicit construction of Sublemma gives directly a parametric
counterpart of this lemma. Indeed note that the maps g, defined in its proof depend smoothly
on (G. Moreover the maps GGy and (G; obtained in the proof of Lemma [4.2.10| by the fragmentation

formula depends smoothly on the involved diffeomorphism. [
Similarly, we show:

Proof that Theorem|3 implies Theorem[3 This goes exactly the same as for the proof that Theorem /]
implies Theorem|2] It suffices to replace maps in Diff’,(T x M) by families of maps in Diff,(T X M )g,

plugins by P-plugins and Lemma by Lemma O

4.2.4 Vector fields whose flow is pluggable

In this section V' denotes a manifold. We recall that Diff>°(V') endowed with the composition
rule o is a Lie group. The space diff>" (V') of C'*°-vector fields X on V' whose support is a compact
subset of V' \ OV is a Lie algebra endowed with the Lie bracket:

[X,Y]:=DY(X)—DX(Y), VX,Y €0iff(V).

For more detail on properties of infinite dimensional Lie algebra, see for instance [KN63]].We will
work with the Lie algebra counterpart of the considered subgroups. We recall that a subset of
0iff>°(V') is a Lie subalgebra if it is a vector space stable by Lie Bracket. To define the counterpart,
we will use the flow (F1%); of vector fields X € 0iff>°(V).

Definition 4.2.15. We denote plug the set of vector fields whose flow is pluggable. In short:
plug == {X € 2ff>°(T x M) : Fly, € Plug, Vt € R} .

Using that Plug is a closed subgroup, the following is an immediate consequence of Proposi-

tion of Section [4.5] below:
Proposition 4.2.16. The space plug is a closed Lie subalgebra of 0iffo" (T x M).

In the latter proposition, the closure of the group Plug implies directly that plug is a closed Lie
subalgebra. Note however that if Plug was not closed the set plug might not even be a Lie subalgebra.
The following are closed Lie algebras of 9iff.° (T x M):

g1 = g1(M) ;== {X €0iff>(TxM) : Fl € Gy, Vt € R} = {X : (0, ) — (v(y),0) : v € C°(M,R)} .
go = go(M) := {X € 0iff°(TxM) : Fl € Gy, Vt € R} = {X : (0,y) — (0, f(y)) : f € 0iff>° (M)} .
The subgroups G; and G- are in Plug, so:

g1 C plug and go C plug . (4.2.11)
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Parametric counterpart. We denote 0iff>" (V) the subspace of families Xg = (X,),co in
0iff>°(V') such that:
Xg: (z,p) — (Xp(2),0) (4.2.12)

is smooth and compactly supported, that is, such that Xo € 0iff° (V' x P). By Fact the space
0iff>°(V)g is a Lie algebra endowed with the Lie bracket [Xg, Ya| := ([X), Y,])pea-

Definition 4.2.17. The 9P -families of vector fields whose flow is P -pluggable is denoted:
plug == {(X,)peo € (T x M)g : (FI e € Plugg, ¥Vt € R} .

Using that Plugg is a closed subgroup, the following is an immediate consequence of Corollary[D|
of Section

Proposition 4.2.18. The space plugg is a closed Lie subalgebra of 0iffo" (T x M )g.

Also note that the space plugg contains:
g1z = {(Xp)peo € i (T x M)y : X, € g1, Vp € P}
and
g2 = {(X}p)per € 0o (T X M)g : X, € g2, Vp € P} .
We define also:
Gi9 = {Xo : Xg € gip} and oz = {Xg : Xop € gog} -

Observe that:
gi9 = {(0,y,p) = (v(y,p),0,0) : v € CZ(M x P, R)}
and
29 = {(0,y,p) = (0, f(y,p),0) : (f,0) € 0iff(M x P)} .
Thus we have g1 = g1(M X P) and gagp < go2(M x P).

4.3 Construction of Pluggable flows

In this section we show Theorem[J|by proving that any vector field has a pluggable flow. In order
to do so we will show that the following subspace of diffo°(T x M) is in plug:

g3 := g3(M) = {X €:0iff>°(T x M) : X has null T-coordinate} .
The non-trivial remaining part of the proof is to show the following:

Proposition 4.3.1. Any vector field of g3 has pluggable flows:

g3 C plug .
The proof of this proposition will occupy Sections and In the next section we show

that it implies main Theorem[J] The proof of several propositions will involve the following notation.
If g and b are two sub-Lie algebras, we denote [g, h] the vector space spanned by Lie brackets of
elements of g and h:

g, b] :z{Z[Xi%]:Xieg, Yieh} :

ifinite
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Parametric counterpart. Similarly we set:
sz = {(Xp)per € 0iff°(T x M)g : X, € g3, Vp € P}

and
O3 = {Xo : Xg € g3} C gs(M x P) .

We will prove the following parametric counterpart of Proposition in Sections and

Proposition 4.3.2. Every smooth family of vector fields in g5 has a P -pluggable flow:

g3 C plugg .

4.3.1 Proof of main Theorem [Jland Theorem

The first step of the proof is the following:

Proposition 4.3.3. Any vector field has a pluggable flow:
plug = 0iffo°(T x M) .

Proof. Asplugis aLie algebra by Proposition[4.2.16/and since g; and g3 are in plug by Eq. and
Proposition[4.3.1] it suffices to show that the Lie algebra generated by g; and g3 equals diff;° (T x M).

We first prove the latter for M/ = R™. Let X € diffo°(T x M) and f € C°(T x R™,R) be its T-
coordinate. Let W € gs be:
W := (0, f,0,...,0) . (4.3.1)

Let p € C*°(T x M,R) be a compactly supported function which is equal to 1 near the support of
f and that is independent of the T coordinate. Let Y € g; be:

Y(O,v1,...,yn) = (p(y,0) - 1,0,...,0) . (4.3.2)

A computation gives a Lie bracket of the form:

[VVa Y]<07 y) = (f('ga y)? _80f<97 y) "Y1, 07 MR 0) . (4'3'3)

Thus X — [W,Y] is in g3 which gives the desired result for M = R™.
When M is another manifold, we fix a locally finite covering (U;); by balls U;. Using a partition
of the unity, every X € 0iffo°(T x M) can be written as a sum:

X=>X;. (4.3.4)

where each X is supported by U;. As X is compactly supported, the X; are almost all null and thus
the above sum is finite. As each Uj is diffeomorphic to R", we can apply the case M = R" which
gives Y;, Z; € g3 and W; € g; all supported by T x U; such that [W;,Y;] + Z; = X;. We conclude

by summing over <. [

Remark 4.3.4. We proved that [gs, g1] + g3 = 0iffo" (T x M).
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We now have the tools to show:

Proof of Theorem[}} Let G € Diff°(T x M) and let (Gy)¢efo,1] be a compactly supported smooth path
from Gy = id to G; = G in Diff°(T x M). Derivatives X, := 9,G, o G; ! define a smooth family
X = (X;); of vector fields all supported in a compact subset X' C V' \ dV. In particular, the time
1/N-map F; of the vector field X;/y is supported by K, and likewise for F' = Fyy_; o --- o Fy. By
definition of the Whitney topology, it suffices to show that for every » > 1, when N is large, the
map F is C"-close to G to obtain that ' is close to G in Diff>°(T x M).

Note that indeed each F; is O¢r(1/N?)-close to F := G(ij1)/n © Gz_/}\/ and so it holds:

G=Fy_j0---0Fy=Fy_, o-+0Fy+Oc(1/N)=F+ Oc(1/N) . (4.3.5)

As each F} belongs to Plug, and since Plug is a closed group by Proposition [4.2.13] it comes that F'
belongs to Plug and its limit G when N — oo as well. O

Parametric counterpart. To prove Theorem 3| we will use the following parametric counterpart
of Proposition [4.3.3}

Proposition 4.3.5. The flow of every P -family of vector fields is P -pluggable:
plugg = 0iffo° (T x M)g . (4.3.6)

Proof. As in the proof of Proposition[4.3.3] it suffices to show that the Lie algebra generated by g5
and g3z equals plugg,. We start with the case M = R™ and P = R% Let Xg = (X,)pco be a
P-family in 0iff.° (T x M)y and f, € diff.(T x M) be the T-coordinate of X, for each p € P. Let
Wa € gag be:

Wa = ((0, f»,0,...,0))pes -

With Y as defined in Eq. (4.3.2), it holds by Eq. (4.3.3):
[va Y](ev y) = (fp(07 y)7 _aefp(97 y) * Y1, 07 cee ao))pEQ} .

We set Y := (Y),c2g19. The latter computation gives:

[WEJ]% Yg&](e, y) = ((fp(97 y)a _89fp(‘97 y) *Yt, Oa v 70))p69° . (4'3-7)

Thus Xg — [Wg, Yg] is in gzg. Now for the general case we conclude by using a partition of unity
as before. ]

It allows us to conclude:

Proof of Theorem[3, Consider Gg € 0iffe°(T x M)g. As a corollary of Theorem ]} for any r > 0,
the map Gy € Diff (T x M x 9P) can be approximated by a composition of flows of vector
fields with a zero 9P-coordinate. Thus the family Gg can be approximated arbitrarily close by a
composition of compactly supported families of flows of vector fields in the C"-norm for any r > 0.
By Proposition each of the families of flows belongs to Plugg. Since Plugg is a group by
Proposition the above composition belongs to Plugg as well and it comes that (G))yeo is in
Plugg by closedness of Plugg. ]
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4.3.2 Eigenvectors of the adjoint representation

Observe that the Lie algebra generated by g, = {(0,y) — (v(y),0)}and g, = {(0,y) — (0, f(y))}
contains the vector fields that do not depend on the T-coordinate. To obtain more elements in plug

we study the eigenvectors of operators of the form:
ady : Y € 0iff’(T x M) — [X,Y] € 2iff° (T x M) ,

for X € 0iffo°(T x M).
In this subsection, we show that if Y is an eigenvector of adx for X € plug then Y is in plug
(see Proposition[4.3.7). This will enable us to prove Proposition[4.3.1]in Section

Definition 4.3.6. Let V' be a manifold and let g be a subspace of 0iffo" (V). We denote:
Cig(ady) :={Y € 0iffo°(V) : 3X € g such thatY = [X,Y]}.
The following is the key proposition enabling us to construct new examples of pluggable flows:
Proposition 4.3.7. IfY € 0iffo°(T x M) satisfiesadxY =Y for X € plug thenY is in plug:
Cig(adyng) C plug .

Proof. Given amap f € Diff?°(M) and a vector field W € diffo° (M) we denote the pushforward of
W by f as:
AW = fW :=DfoWo fh.

This notation is consistent with the usual composition rules given by the following commuting

diagram:
W
M — TM
[l L Df .
M — TM
AdyW

The following contains a key idea for the proof of the main theorem:

Lemma 4.3.8. IfY satisfies [X,Y| =Y, then for every s,t € R it holds:
Fl!, = FI* o FIL " o FI5 . (4.3.8)

Proof. We recall the following well known result on adjunction of vector fields by flows, see e.g.
[KN63, Prop 1.9]:

Fact 4.3.9. Let U, W € diff.° (M) be two vector fields, then it holds:
&gAdFleV‘t:o - —[U, W] .

First observe that by the latter fact it holds X = Adps (X) for every s € R. Let then Y, :=
Adpy (V) = DFI% oY o FI°. Observe that since Y = [X, Y], it holds:

[X, Y] = [Adp (X), Adpg, (Y)] = Adpg, ([X, Y]) = Adpg (V) = Y5 (4.3.9)
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Also for every s € R, we have:
05Ys = 0y(Ystt) =0 = OrAdpye (Y5) =0 - (4.3.10)
Thus by the latter fact it follows:
0.Ys = —[X, Y] = -Y; . (4.3.11)

Consequently 0,Y; = —Y;and thuse™ - Y =Y, = Ang{ (Y'). After integration between 0 and ¢,
we obtain:
FlI'_.y = F1% o FI}, o FI° . (4.3.12)

AsFl'_,, = FIL*" we obtain the desired result by composing the latter equation on the right by
F1% and on the left by F1,°. ]

We can now prove Proposition Fix a neighborhood A of id € Diff*(T x M) and let us
show the existence of a plugin in N whose output is FI}.. Let A, be the neighborhood of id €
Diff>°(T x M) given by Lemma Let s € R be sufficiently large such that FI$, " belongs to
the neighborhood A, of the identity. Then for any k& > 1 large enough FI$ " is the output of a
plugin g € N of step 27*. Since X € plug, it holds FI% € Plug so for any k& > 1 large enough
F1% and F1° are the outputs of plugins i and f in \ of respective steps 27* and 27%~1. So for any
large k the map F1} is the output of the plugin (h * g) » f with step 27%72. Since this holds for
any neighborhood N\ of the identity the plugin (h * g) x f can be taken arbitrarily close to identity.
Therefore for every ¢, there exists a plugin with output FI}, arbitrarily close to identity for any small

enough step. Hence Y is in plug. ]

A second main ingredient of the proof of the main theorem is the following of independent

interest:

Proposition 4.3.10. For every T' € diffo"(V'), there exist finite families (X;);, (Y:)i, (Z;); of vector
fields in 0iff>° (V') such that:

T=>1,2] and Y;=[X;Y].

7

The proof of this proposition and its parametric counterpart will occupy the full Section [4.3.3]

Now note that the following is an isomorphism of Lie algebras:
h: X € lefgo(M) — (O,X) € g .

Thus, by applying this isomorphism to the image of sets involved in the statement of Proposi-
tion for every T' € go, there exist finite families (X;);, (Y;);, (Z;); of vector fields in g, such
that:

T=S[V,Z] and Y;=[X, Y.

2

In other words, we proved:

Corollary B. Any element of go can be written as a sum of Lie brackets of elements of g, with elements

in Eig(adg,) N go.
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This corollary allows us to deduce:

Proof of Proposition Let pg : T x M — T be the projection on the T-coordinate.
First note that by Fourier decomposition theorem, the space g3 is the closure of the vector space

spanned by elements of the form:
popg-Y forpe C*(T,R) and Y €g,.

Since plug is a closed vector space by Proposition [4.2.16] it suffices to show any such ¢ o py - Y is in
plug. To do so, we first start with the case where there exists X € gy such that Y = [X,Y], i.e. we
assume that Y € €ig(ady, ). Since the T-coordinate py o X of X is zero, it follows:

[(X,popy-Y]=¢opy- DY(X)—DX(pops-Y)=¢ops [X.Y]=¢op,-Y. (43.13)

Thus by Proposition [4.3.7|we have ¢ o py - Y € plug since X € g, C plug. Now in the general case,
for every Y € g,, by Corollary there exist an integer N > 1, Z; € g, and Y; € €Eig(ady,) N go for
any 1 <1 < N, such that:

Y=Y [V,2]. (4.3.14)

1<N
By the first case for any 1 < ¢ < N we have ¢ o pg - Y; € plug. Since plug is a Lie-algebra and each
Z;isin go C plug, it immediately follows:

popy-Y = Y dopy-[Vi,Z]= > [popy-Yi, Z] € plug . (4.3.15)

1<i<N 1<i<N

]

Parametric counterpart. The following is the parametric counterpart of Proposition

Proposition 4.3.11. IfYs € 0iffo°(T x M)y satisfies [Xg, Ya| = Yo for Xo € plugg, then Yo €
plugg.

Proof. Let Xg =: (X,)pe9 and Yo =: (V,),c. By Lemma[4.3.8] it holds:
FIj, = FI3® o FIy "o FI% | (4.3.16)

forany ¢, s € R. For any neighborhood AV of id € Diff (T x M)g, we denote N, the neighborhood
of id € Diff°(T x M) given by Lemma For all ¢ € R and for s large enough it holds
(Flty'sis)pega C N, and thus it is the output of a P-plugin in A of any small step. We now regard
the x product of the latter plugins with &-plugins of (FI% ),ee and (F1y) e to obtain a &-plugin
with output (Fl@p)pegs of any small step. Moreover, by construction, this &-plugin can be taken

arbitrarily close to identity family, which ends the proof. ]

For go C 0iffo°(V)%, we denote:
ing(adw) = {Yga € Dlﬁgo(V)ga dXg € 119 such that Y = [Xga,Yga]} .
The following parametric counterpart of Proposition holds:
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Proposition 4.3.12. For every Ty € 0iffo”(V)g, there exist finite families (Xo):i, (Yier )i, (Zigr)i of
vector fields in 9iff.° (V' )g such that:

Ty => Yip, Zig] and Yig = X9, Yig) .

7

Using the isomorphism:
Xg € leﬁo(M)@ = (0, Xp)p€9 € goop
leads as before to:

Corollary C. Any element of gog can be written as a sum of Lie brackets of elements of gog with

elements in €ig(ady,, ) N gag.
The latter allows us to deduce:

Proof of Proposition[4.3.2 By the Fourier decomposition theorem, the space gs» is the closure in
0iffo°(T x M) of the vector space spanned by vector fields of the form (¢ o py - Y,),e with ¢ €
C>(T,R) and (Y,)pea € gap. Since plugg is a closed vector space by Proposition [4.2.18] it suffices

then to show that (¢ opy-Y,),eco is in plugg. To do so, we first start with the case where there exists

Xg € goo such that Y = [Xg, Yy]. By Egs. and of the proof of Proposition
for each p € P, itholds popy-Y, = [X,, popy-Y,]. And thus the family (¢ o pg - Y} )peo is in plugg

by Proposition 4.3.11

Now in the general case, by the latter Corollary [C|we can decompose:
Yo => Yo, Zin) , (4.3.17)
with Y € €ig(gag) N gog and Z;s» € goy. Thus Eq. applied for each p € &P leads to:

(Cb O Do - Y;o)pegﬁ = Z[(Cb OPo- Y%p)pe@% Zz’?]*] ) (4.3.18)

where (Y;,),co = Yigp. Since Z;p € gagp C plugg and (¢ o pp - Yip)per € plugg by the first case, it
follows that (¢ o pg - Y}, )peo lies in the sub Lie algebra plugg, as well. [

4.3.3 Decomposition of vector fields

To prove the Theorem [J] it remains only to show Proposition [4.3.10] We first prove this propo-
sition in the case M = R", which we will deduce from the case M/ = R and a parametric version

thereof. This whole section is dedicated to this proof. For a manifold M, let us denote:
Cig(M) :={Y €0iffo°(M) : 3X € 0iffe°(M) such thatadxY = [X, Y] =Y} .
We can rephrase Proposition as:

Proposition 4.3.13. Every vector field in T' € 0iffo" (V') is a finite sum of vector fields of the form
Y;, Z;] withY; € Eig(M). In other words:

[€ig(M), 0iff° (M)] = 0iffc°(M).
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Two key ingredients of the proof of this proposition are the following observations:
Fact 4.3.14. The vector fieldY : y +— 1 on R satisfies [ X, Y] =Y with X : y € R — —y.

Fact 4.3.15. For any diffeomorphism ¢): W — V between manifolds and any pair of vector fields
X, Y €0iffo°(V) satisfying [X, Y] =Y, it holds [¢* X, *Y | = ¢*Y.

An important consequence of the latter fact is:

Fact4.3.16. Forany diffeomorphism: W — V from a manifold W intoV, if X € [€ig(V), diffo"(V)],
then v* X € [Eig(W), 0i§f (W)].

Let Q be a manifold. We define:
Cig(R)g = {YQ € 0iff>°(R)g : there exists a family X¢g € 0iff>°(R)g such that [Xg, Yo| = YQ}.
We can prove Proposition [4.3.13]in the case M = R:
Lemma 4.3.17. We have:
[€ig(R), 0iff° (R)] = 0iff.°(R) .
Moreover for any manifold Q, every T € iffo’ (R)g satisfies Tg = [Yo, Zg] for some Yo € €ig(R)g
and Zg € 0iff°(R) .

Proof. We first give an intuitive idea of the proof using Fact First note that for every 7' €
0iff°(R), there exist X, Y, Z € 0iff°(R) such that Y = [X,Y] and T' = [Y, Z|]. Indeed it suffices
totake X:y+— —y, Y:y+— land Z: y — [Y _T(t)dt. This almost proves the first assertion of
the lemma. To have exactly the desired result we shall modify X, Y and Z to make them compactly
supported. Let T € 2iff>°(R). Take intervals [~A, A] C (—a,a) containing its support. Consider

2 2.-1
—y“)

the map ¢: y — y - €= from (—a, a) to R. We compute its derivative at y € (—a, a) by:

Diy(y) = é(y) - e ., where ¢(y) == 1+ 2% (a® — y?) 2@ v (4.3.19)
Thus the map % is a diffeomorphism. This allows us to consider the push-forward:
T=y,T=DipoTorp". (4.3.20)

Now we define as above:

y
X:y—~—-y, Y:y—1 and Z:yr—>/ T(t)dt. (4.3.21)

Note that 7' = ¢*T and put X = V*X,Y =¢*Y and Y = ¢*Y . Then by Fact it holds:
Y =[X,Y] and [YV,Z]=T. (4.3.22)

Let us show that these pulled-back vector fields on (—a, a) extend smoothly by 0 to R. For any

vector field S € ?iff>°(R), we have )*S = (Dy)) "' o So1) = ];;f’ It follows:

X(y) =v"X(y) = 5o = oy and Y(y) =vY(y) = i, (43.23)
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Observe that ¢(y) grows exponentially fast to +0o when |y| — a. Thus X and Y have all their
derivatives tending to 0 as y tends to +a. So they extend smoothly by 0 to vector fields in diffo" (R).
Also note that Z(y) = 0 for y < ¢(—A) and Z(y) = [z T(t) dt for y > 1)(A). Thus:

1
Di(y)

Likewise Z extends smoothly by 0 to form a vector field in 9iff°(R). AsY = [X,Y]and [Y, Z] = T,

this proves the first assertion of the lemma.

Z(y)=¢*Z(y)=O for —a<y<-—-A and Z(y):

-/T(t)-dt for A<y <a.
R

For the parametric assertion, observe that v, X and Y depend only on the segment [—a, a).
Hence given Tg = (T,),co € 0iff>°(R)q, we set [—A, A] C (—a, a) containing the supports of all
T, ; and define 9, X and Y as above. Then we observe that Zq = 9 [T, depends smoothly on ¢
and define a family Zo € 0iff>°(R)o which satisfies the desired equalities with T and the constant

families (X ),c0 and (V) co. O
We are going to use the parametric assertion of the latter lemma to obtain:
Lemma 4.3.18. We have [€ig(R"™), diffo”(R™)] = diffo”(R™).

Proof. Lemma[4.3.17) corresponds to the case n = 1. For n > 2, given T' € 0iff2°(R"), we write its
components as 7' = (71, ...,T,). By linearity of the condition, it suffices to show that each vector
field (0,...,0,7;,0,...,0) is in [€ig(R"), 2iffo°(R™)]. Using an adjunction by a permutation of the
coordinates and Fact its suffices to show that each (7},0,...,0) is in [Eig(R"), diffo° (R")].
In other words, it suffices to prove that the following subalgebra h(R") of diffo°(R") is included in
[€ig(R™), 0iffc° (R™)] :

H(R") :={y € R" — (h(y),0,...,0) : h € C*(R",R)} .

To this end, note that Xgn—1 € 0iffo’ (R)gn-1 — N € h(R™) is an isomorphism of Lie algebras.
By Lemmawith O = R" ! we have:

—

h(R") = [€ig(R)o, h(R™)] .

Finally we note that G@Q is formed by vector fields of the form Yg such that Yo = [Xo, Yo for
Xo € 0iff°(R)o. Thus Yo = [Xo, Yol, this proves that h(R™) C [€ig(R™), h(R™)].
O

We can now treat the general case:

Proof of Proposition[4.3.13 Let T' € diff.°(M). Then it decomposes in a finite sum 7" = Y, T; where
each 7} is compactly supported in an open set U; which is diffeomorphic to R" via a map v;: U; —
R". Consider the push forward ;. T; € 0iff>°(R"). By Lemma the field ;. T;|U; belongs to
[€ig(R™), 0iffo°(R™)]. Thus by Lemma[4.3.17] it holds T;|U; € [€ig(U;), 0iff:°(U;)]. This means that
T = Ypinitel Y5, Z;] with Y; = [ X, Y]] for some X, Y}, Z; € 0iffo”(R"). Extending all these vector
fields by 0, we obtain that T; belongs to [€ig(M), diffo°(M)]. So does T' = Y, T;. O
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Parametric counterpart. We set:
We shall prove Proposition that we rephrase as:

Proposition 4.3.19. It holds:
[€ig(M)g, 0iff (M)g] = 0iff (M)z.

Similarly to the proof of Proposition [4.3.13 Proposition [4.3.19| is an easy consequence of the

following:
Lemma 4.3.20. We have [€ig(R")g, 0iff>°(R™) 5] = iffo” (R™)g.
Proof. As in the proof of Proposition[4.3.13] we only need to prove that the following Lie subalgebra
H(R™)g of Diffe°(R™)g is included in [Eig(R™)g, diffe” (R™)g) :
HR") = {((hp,0,...,0))pea : hg = (hp)pear € CZ(R", R)g} .
To this end we proceed as in Lemma [4.3.18] by using the isomorphism of Lie algebra:

Xan-1xg € 0ffX(R)gn1x — Yo € H(R")g such that Xgu 1,9 = Yo ,

and using Lemma [4.3.17 ]

4.4 Smoothness of outputs

The proof of Proposition[4.1.5|stating that the output of a plugin is necessarily smooth is similar
to the classical renormalization performed by Douady-Ghys [Dou87, Ghy84],Yoccoz [Yoc95a] and
Shilnikov-Turaev [ST00].

Proof of Proposition[£.1.3, Let g be a plugin with step 0. Let 7 : T x M := R x M — T x M be the
canonical cover. Let g be a lift of ¢ such that §(0,y) = (o, y) for every y € M.

Fact 4.4.1. The action ¢ : (k,2) € Z x T x M + §*(z) € T x M is free, proper and discontinuous.

Proof. The action is free since no point of A + Z is fixed by § nor in its complement (every point
must come back to A + Z). It is discontinuous since any x € R x M has its orbit which equals the
one of a certain z € [k, k + o) x M for some k € Z by Definition [4.1.1](iii), and the orbit of z is
discrete by Definition [4.1.1(i). Finally the action is proper since 7 is bounded by some N > 1 by
Definition (ii), and so any 32V (6, y) has its R-coordinate greater than # + 1. [

Thus the quotient C' := T x M/¢ is a manifold. As j sends the left hand side of A to its right
hand side, the image of A by the group action is both open and closed, hence equal to the connected
set C. Therefore, A, = [0,0) x M is a fundamental domain of this group action. Also the rescaling

map H, : A, — T x M induces a diffeomorphism between C' and T x M.
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A

14

Now observe that T : (6,y) — (6 + 1,y) and § commutes: T o § = § o T. Thus T defines
a smooth diffeomorphism 7" on C. To determine 7', we (abusively) identify A, to a subset of both
T x M and T x M. Given = € A, the point T'(z) € [1,1+0) x M is equivalent to the point y € A,
such that there exists k& > 0 satisfying §*(y) = T(z). Note that k = 7(y) and so T'(z) = §7(y).
Composing by 7, we obtain that x = ¢"(y). Hence T is equal to the inverse of the action of " on C'.
Therefore G is a diffeomorphism. Observe that this construction depends continuously on g and so
the output depends continuously on the plugin. As the space of plugins is connected, it comes that
the space of outputs is connected to id by Example
O

4.5 Lie algebras associated to closed subgroups

This section is dedicated to show Proposition 4.2.16|which states that plug is a closed Lie algebra.

We prove this using general arguments on closed subgroups of Diff>° (V') where V' is a manifold.

Proposition 4.5.1. For every closed subgroup G C Diff.°(V'), the following is a closed Lie subalgebra

of diff(V):
g :={X €0iff*(V) : FI§ € G, Vt € R}.

We immediately deduce the result of Proposition by applying the latter proposition with
V =T x M and G = Plug.

Proof of Proposition[4.5.1] g is a vector space. First note that if X € Gand A € R, itholds A\ - X € g.
Now for X, Y € g, for any large integer N and r > 1, observe that:

FIY, = FIYY o FIY/N + O(N72)
for the C"-norm. Thus, F1%, , is uniformly C"-bounded for ¢ € [0, 1], it follows:
Fly .y = (FIY o FY) Y 4 0cr (N7,

1/N 1/N\ N . . . 1
and the supports of (F Ix" oFly ) are included in the union of those of X and Y. Thus F'l}
N
is the limit of (F l;/N o Fl;/ N) when N — o0 in the topology of Diff>° (V). As G is a group, the
map (Fli(/N o Fli//N)N belongs to G, and since G is closed, the map F'l§_, also belongs to G. Also

for every ¢ € R, by replacing X, Y by (t.X,tY"), we obtain that F'ly,,, = Fljx,,, belongs to G.
g is a Lie algebra. For X, Y € gand r > 1, we have for the C"-norm:

7-2 T T
Fllxy = [FIx, FI] + O(7°) .
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Thus by taking 72 = 1/N small we have:
N -1
Fliyy) = (FIYY, FYM) + O(VN ).

So FI[IX’Y] is in G. Similarly, we have for any ¢ that Fl[lth] € G, and so FleVY] = Fl[ltX,Y} e G.

g is closed. As for every t > 0, the map FI' : X € Diff>°(V) + FlY is continuous and G is
closed, the set {X € 2iff>°(V) : Fl%y € G} is closed. Thus the intersection g of the latter sets for all
t is closed. ]

To state the parameteric counterpart of the latter proposition, given a manifold %, we define:
FI': Xg = (X,)pew € 0iff°(V)g — (Flfxp)peg» € Diff>*(V)g .

Note that the following diagram commutes:

inc
AFX(V)g > WV x P)
FI* + + FI*
Diff°(V)e < Diff2°(V x P)
mnc

where inc(Xg) := X and inc(fg) == fo.

Corollary D. For every closed subgroup Gg C Diff>°(V')g, the following is a closed Lie subalgebra of
0iffe"(V)g:
g9 = {Xg € j°(V)g : Fly € G, Vt € R}.

Proof. First note that inc(Gg) is a closed Lie sub-group of Diffo°(V x &P). Hence it defines via
Proposition a closed Lie algebra gg. By commutativity of the diagram, we have:

inc(gg) .= (99) -

Hence gg is a closed Lie subalgebra of diffo" (V) g. N
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Chapter 5

Birth of families of totally parabolic points
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5.1 Introduction and statements of the results

The background and motivation linking typicality in the sense of Komogorov with Baire gener-
icity are fully explained in Section Page Turaev has announced that if a diffeomorphism
displays a periodic point with Jacobian equal to the identity then an arbitrarily small perturbation
allows us to create a periodic spot in C'*°-regularity. This together with theorems from the previous
chapter [BGH24]] shows that small perturbations creating totally periodic points lead to complex
dynamical behaviors. In that direction we show a parametric counterpart Theorem [B| of a result of
[GMOO06]].

Theorem A (Gochenko-Meiss-Ovsyannikov). Let f be a smooth diffeomorphism of 3-manifold M.
Assume that there exists a hyperbolic saddle periodic point {2 with one complex eigenvalue and Jacobian
determinant equal to 1 that displays a homoclinic tangency at some point H. Then for every e > 0,
there exists an e-small C™°-perturbation f of f that coincides with f outside B(H, ¢) U B(, €) and a
periodic point ) € B(H, ¢) with multipliers {1, j, j2} where j = e%™/3,

Here is the parametric version of this result:

Theorem B (Main). Let (f,)qca be a C*°-family of smooth diffeomorphisms of a 3-manifold M pa-

rameterized by a compact connected smooth manifold A. Assume that there exist an angle § € R/
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21Z\{0}, a smooth family of hyperbolically continued periodic points['| (4 )aca and a smooth family
of points (H,).ca such that for every a € A it holds:

1. Q) is a saddle periodic point of f, with one complex multiplier with argument 6 and Jacobian

equal to 1,
2. H, is a point of homoclinic tangency for (1,,.

Then, for every € > 0, there exists an e-small C*-perturbation (fa)aeA of (fa)aca and a smooth
family of points (Q,)aca such that for every a € A it holds:

1. Q, lies in the e-neighborhood of H,,
2. Q, is periodic for f, with multipliers {1, j, %},
3. fa coincides with f, outside B(H,,€) U B(Qq, €).

Actually Gochenko-Meiss-Ovsyannikov gave the normal form (3-dimensional Hénon-like map)
for the renormalization nearby this homoclinic tangency; from this Theorem [A] can be deduced.
It seems possible to extend their bounds on derivatives to parameter families in order to obtain
Theorem [B] Instead we preferred providing a geometric proof of Theorem [A] which passes easily to
the parametric case (without any extra computation).

As a preparation for the next step toward Conjecture 2.5.5|Page 33| we show in Section [5.6| that
the hypotheses of Theorem[A]are locally dense in the space of diffeomorphisms using Bonatti-Diaz’s

Horseshoe. This provides the following corollary:

Corollary A. For every 1l < r < oo, there exists a locally dense set of C"-diffeomorphisms of M
formed by maps displaying a periodic point with multiplier equal to 1, j and j°.

For r = 1, this corollary is the main result of Bonatti-Diaz [BDP03]]. For » = oo, this result is

also a consequence of a theorem of Gonchenko-Shilnikov-Turaev [GST09].

5.2 Preliminaries and notations

Involved spaces and their topology Let M be a three dimensional smooth manifold and denote

Diff** (M) the set of C*°-diffeomorphisms on M. The space Diff ™ (M) is endowed with the Whitney
C*>-topology. We denote by T'M the tangent bundle and by T" M the unit tangent bundle. For a

real vector space E and a non trivial vector v € £ we will denote [v] = R-v the line in E containing
vand [v) = RT - v the half line directed by v in F.

Dynamical setting Consider a diffeomorphism f € Diff**(M). A fixed point Q2 of f is said to be
hyperbolic if there exists a D f-invariant splitting £* @& E" = T M such that:

| Do fies

<1 and ||(Defip) Y <1.

It is a sink if E* = {0}, a source if E* = {0} and a saddle otherwise. Then the index of (2 is the

dimension of E*.

1. see Deﬁnition
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The stable and unstable manifolds of the hyperbolic fixed point €2 are defined by:

WHQif)={Q M : f'(Q) —— 0} and W Qi f):={QeM: f™Q) —— 9}

n—-+o00

We recall that the stable and unstable manifolds are sub-manifolds of the same class of regularity
as the diffeomorphism f, and that moreover the stable space E*® (resp. the unstable space E") is
tangent to W*(2; f) (resp. W*(2; f) ) at 2. Moreover, given a neighborhood V' C M of (, if the
connected components of W*/*(€); f) NV containing {2 are embedded manifolds. They are called
local stable and unstable manifolds and denoted W]
per(P) its period. We say that P is hyperbolic for f if it is for fP*("). Thus we can define the (local)

stable and unstable manifolds of P for f to be the one for fP**("). Moreover, let us denote:

s/u
oc

(€2; f; V). For a periodic point P, let us denote

Jac (P) := Jac (P; f) := Df*"P)(P) and |Jac (P)| := |Jac (P; f)| := |det(D PP (P))] .

Then, the eigenvalues of Jac (P; f) will be called the multipliers of P. A hyperbolic periodic point

P displays a homoclinic tangency if its stable and unstable manifolds have a tangent intersection.

A key tool in the construction of the proof of Theorem/[A|is the following:

Lemma 5.2.1 (Inclination lemma). Let V' C M be an open neighborhood of §) such that W}%.(S2; f; V)
is a well-defined local unstable manifold. Let I" be a small disk of dimension dimE" transverse to
W*(; f) at a point H. Denote I',, the connected component of f™(I') NV containing f™(H ). Then the
disk T, is C*°-close to W}.(Q2; f; V') when n is large.

Topologies on the spaces of smooth maps and their parameter families

We endow the three dimensional manifold M with a Riemannian metric g. For a compact subset
K of M, let us consider the distance:

die=(f.£) = sup g(F(P), F(P)) + X 2™ min(L, | Dy = Db}

k>1

for f, f' € C*°(M, M). Then the following sets form a basis of the Whitney topology on C*>° (M, M):
B(f,K,e):={f € C®°(M,M) : dgc(f, ") <€},

for every f € C°(M, M) , for every compact subset K of M and for every ¢ > 0. The space
Diff**(M) of smooth diffeomorphisms is endowed with the induced Whitney topology.

Parametric setting We now consider a compact manifold of parameters A. Let us denote the

space of C"*°-families of smooth endomorphisms on M parameterized by A by:
C®(M)p :={(fa)aen : (a, P) € A x M — (a, fo(P)) € C°(A x M,A x M)} .

Similarly we denote Diff > (M), the space of smooth parameter families of smooth diffeomorphisms.
These spaces are endowed with the topology induced by C*°(A x M, A x M). For such a parameter

family we will denote fi := (fs)aca. Also a family of sub-manifolds (N, )aea is C*°-smooth if it is

114



the image by a C'°°-family of smooth embeddings. The topology on the space of smooth families of
embeddings induces the one on smooth families of sub-manifolds.
Recall that for every diffeomorphism f € Diff>* (M) displaying a periodic point {2 with period

w, there exists a neighborhood V¢ of fsuch that there exists a continuous operator:
geE Vi Qg e M,

where (), is a periodic point of g with period w. The point €, is called the hyperbolic continuation
of ( at g. Thus to lighten the statement of the parametric counterpart Theorem [B] of Theorem [A]
we introduce the following definition:

Definition 5.2.2 (Smooth family of hyperbolically continued points). Let fo = (fa)aca € Diff>(M)a
be a C*-family of smooth diffeomorphisms. A family (1 of points is said to be a smooth family of

hyperbolically continued points if for every a € A, the point §2, is hyperbolic for f, and for every

ap € A, it is the hyperbolic continuation of €1, .

And here is the parametric counterpart of Lemma to prove Theorem [B}

Lemma 5.2.3 (Para-inclination lemma [Ber16l]). Let (€2,).ca be a smooth family of hyperbolic fixed
points of f, foreverya € A. Let (V,),ea be a continuous family of open neighborhoods of (2, )aca such
that (W (Qa; fa; Va))aea is a well-defined smooth family of local unstable manifolds. Let (I',)aea
be a C*°-family of smooth embedded disks of dimension dimE" such that each I', is transverse to
W*(Qy; fa) at some point H, depending smoothly on a € A. Denote I'" the connected component of
fMT,)NV, containing f*(H,). Then the family of disks (I'") ,ea is smooth and C*°-close to the family
(Wi (Qa; fa; Va))aca when n is large.

5.3 Protectively totally parabolic points nearby homoclinic

tangency: non parametric version

As a warm-up we propose a geometric proof of the following:

Proposition 5.3.1. Let f € Dift>(M) be a diffeomorphism having a hyperbolic periodic point
displaying a homoclinic tangency at some point H. Assume that Spec(Dqf) = {0, X - e} with
0<|o] <1< Aandf € (R\Q)/27Z. For every neighborhood V C Diff>*(M) of f, for every
neighborhood U C M of H and for every neighborhood U of the closure of the orbit of H, there exist
f €V that coincides with f outside of U and a periodic point Q € U of f whose orbit is in U and with

multipliers:
Spec(Dq f") = det(Dof") - {1,7, 5%} ,
where n is the period of ().

Observe that it sufficient to prove the latter proposition for U and U small.

Proof. The proof of this proposition is deduced from the three following Lemmas to shown

below.
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Figure 5.1 — A three dimensional homoclinic tangency of index 2

Lemma 5.3.2. There exists a neighborhood Uy of H such that for every large integer n, there exists
a point ) close to H such that f™(Q) is close to H and for any 0 < k < n it holds f*(Q) ¢ Uy but

Q) el
Without any loss of generality we can assume that U C Uj. Then for every large n, this lemma

defines a point ) so that Q := f™((Q) is close to Q. In Lemma we will state a stronger version
of Lemma 5.3.2|that allows us to choose () such that the following holds:

Lemma 5.3.3. There exists « € R/277Z such that () satisfies moreover the following property.
For every n large such that nf is close to «, there exists a linear map ( : To M — Ty M close to
identity such that:
Spec(f o Do f") = det(£ o Do f™) -{1,7,7} . (*)

The following lemma allows us to realize the map ¢ : ToM — TyM as the differential of a
diffeomorphism close to identity supported by U.

Lemma 5.3.4. For every Q,Q € M close to H and for any linear map ( : ToM — ToM close to
identity, there exists a C*°- small perturbation & € Dift> (M) of the identity supported by U such that:

§Q)=Q and Dyt =1.

Let us show how these lemmas allow us to conclude the proof of the proposition. Let « € R /277
be given by Lemma [5.3.3] Let n be a large integer such that n - 6 is close to a. Thus Lemma
provides Q and Q = f*(Q) close to H. Then Lemmaprovides alinear map £ : Ty M — ToM

2. This means that it is close to the inclusion TQM — TM.
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close to identity that verifies Eq. (). Now Lemma provides a diffeomorphism ¢ € Diff> (M)
close to identity and supported by U such that f = ¢ o f satisfies:

@) =¢€0f"(Q)=€Q) =Q

and
Spec(Dq f") = Spec(l o Dof") = det(l o Do f") - {1,4,j} = det(Dof") - {1,],5} -
This concludes the proof of Proposition|[5.3.1} O

A geometric approach to the proof of Proposition[5.3.1]

Figure 5.2 — Construction of :°

We first deduce the proofs of Lemmas and[5.3.3|by a common geometric construction.

By the classical result of Fact[5.8.1] up to replacing f by some iterate, we can assume without any
loss of generality that €2 is a fixed point. Indeed, it is shown in Fact that any small perturbation
of fP'(Q2) nearby (2 can be realized by a small perturbation of f nearby (.

Let V' be an open neighborhood of €2 such that I/Vls/ “(Q; f, V) are embedded manifolds contain-

ing H. We now denote W*/* := W*/%((Q); f) and VVIZU = 1fx/:u(Q; f;V) . Let X° be a small disk
contained in U and intersecting W%, transversely at H. Taking 3° small ensures that W, and :°
intersect only once. By the inclination lemma there exists a sequence (X"),,>1 of disks in M

such that the following properties hold true:
1. X"t C f(X") for any n > 0,
2. f7™(X™) is close to { H} as n goes to +00,
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3. X" is C*°-close to W as n goes to +00.

4. f~!is contracting on X" for n > 0.

Figure 5.3 — Construction of »."

For a € 27IR/Z, let us denote R, the rotation of angle o of R Since Dqf has spectrum
{o, \-eFi?}, its restriction to the unstable tangent space is then conjugate to the linear map L := \-Ry
on R% Moreover, the disk 3° can be chosen such that the following holds:

Lemma 5.3.5. For anyn > 0 there exists a C*°-smooth map ©" : X" — R? such that:
1 "o fr=L"o¢’on f~(X") foranyn > 0,
2. " is C*™-converging to some map o> : W}, — R2.

To be more precise on 2. in the latter lemma, recall that the sequence ¥" is C'* -converging to
W*. So ¢" to be C*°-converging means that the map ¢ defined on U,,>¢X" by xn = " extends
smoothly to W* and ¢y« is the limit ¢>°. This lemma is proved in Section [5.7| using Shilnikov
coordinates [[GSTO08]].

Since Y° intersects WS, transversely at H then T W "N Ty X" is a line. Hence, see Fig.|5.4, there
exists & € R/27Z such that:

D™ (TuW*) := R (Due”(TaW" N Ty%0)) . (5.3.1)
Let A° € XN U be a small curve containing H and such that it holds:
D™ (TuW" N TyY’) = Ry - D (T A°) . (5.3.2)
Recall that Ty X0 N Ty W* # TyW* since X0 is transverse to WW* at H. Thus by Eq. , it holds:
Ry - Dp®(TyA®) = Dy (TyW* N TrX°) # D™ (TyW*) .
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RZ

Dye™ Dyp™(TgW?)
ﬂ /* . R
H
7
0 D™ (TgW" N Ty3)
// S a
Dy° D" (TA®)

Figure 5.4 — Construction of A? and «

Now by Eq. the latter term is equal to R,, - Dg¢®(TgW* N TX?). Thus we have:
TyA® # Ty N Ty W™ .
Consequently we have just shown the following:

Fact 5.3.6. A intersects W} transversely at H.

oc

Figure 5.5 — Construction of A™"

By the above fact and still by the inclination lemma there exists a sequence (A™"),>; of
embedded curves in M such that the following properties hold true:

1. f(A~)) ¢ A= for any n > 0,
2. f"(A™™) is close to { H} as n goes to +0o,

3. A™"is C"*°-close to W} as n goes to +00,
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4. f is contracting on A™" for every n > 0.

Using this setting, we can prove the following stronger version of Lemma

Lemma 5.3.7. For n sufficiently large, there exists a unique point Q € X° N A" It is close to H
and so is Q := f"(Q) € A°. Moreover, for every ¢ > 0, there exists an integer m such that for any n
sufficiently large, it holds:

1. fYQ) ise-close to f'(H) for0 <1 <m,
2. Q) ise-close to f{(H) for0 <1 <n—m.

In particular when € is small, the n first iterates of (Q by f lie in U

Proof. Since (A™"),en converges to WS, > H as n goes to infinity, then for n large, A~" intersects
Y0 uniquely at a point Q € X% N A™™. Since A" is close to ;5 and X° N W, = {H} it follows
that @ is close to H as n goes to infinity. Observe then that Q := f™(Q) lies in A° since Q € A~
Now remark that, by continuity of f, for any fixed integer m and for any n sufficiently large, it
holds that f!(Q) is e-close to f!(H) for 0 < [ < m. Furthermore, since f is contracting on W5 with
fixed point © and A~ is close to W, when k is large, there exists an integer m such that for any
n — [ > m, the map:
|"A__ln AT s AT

is contracting with a ratio smaller than € - diam(M)~!. Thus for n — [ > m, the point f"~!(Q) is
e-close to f*(f™(H))) = f~'(H) for any 0 < | < n — m. In particular, with [ = 0 we indeed
have that Q is close to H. [

For the proof of Proposition to be complete, it remains to show:

Proof of Lemmal(5.3.3 Let (u, v, w) be a basis of vectors of T M as shown in Fig. [5.5/such that:

weTyA®, veTyW NTrX? and we TyWse.

Figure 5.6 — The basis (u, v, w) at H
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It is clear that such a basis exists as Ty A is transverse to Ty W* and TyX? is transverse to
Ty W4, Recall that:
DHQOOO(THWS) = RQ(DH(,O()(THWH N THEO))

and
D™ (TgW* N TrX?) = Ro(Dpy’ (T A))

thus up to multiplying u, v and w by scalars we can assume that Dy o™ (w) is a unit vector and

moreover that v and v verify:
D™ (w) = Ry(Dp®(v)) and Dye™(v) = Ro(Dpy®(u)) . (5.3.3)
We moreover impose that det(Dyp™>(u), Dgp™>(v), Dge™(w)) > 0.
We also consider the following basis of Ty M shown on Fig.
L u":= (Dg¢’) ™t - R_o - Dpyp™(v),
2. v" = (Dgy®) ™t R_o - D™ (w),
3. w" € To A" such that || Dge" (w™)|| = 1 and (Doe™(w™), Dge™>(w)) > 0.
Note that we have:

Fact 5.3.8. Whenn is large, the basis (u™,v", w™) of Ty M is uniquely well defined and close to (u, v, w)
inTM.

Figure 5.7 — The basis (u", v"™, w") of To M

Proof. Since () is close to H as n is large it holds that u™ and v"™ are close to Dy ¢°(v)-R_o- D™ (v)
and D% R_,- Dyp™(w); which are equal to u and v by Eq. (5.3.3). Now as (A™"),,>( converges to
Wi, as n goes to infinity, it holds that 7o A~ is close to Ty W* when n is large and thus w™ € A™"
is well defined and close to w € Ty W*. ]

Recall that for a vector v the half line and the line directed by v are denoted by [¢') and [v]. We

now prove:

Sublemma 5.3.9. For every large value of n such thatn - 0 is close to «, it holds:

Dqof" - [w"] isclose to[u], Dgf"-[u") iscloseto[v) and Dgf™-[v") is close to [w) . (5.3.4)
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Proof. Obviously, by construction, it holds that Dq f* - [w"] = Dqf"(ToA™") = T5A® which is
close to T A” = [u] as Q and H are close to each other. Now since u™ € ToX." and since L = \- Ry
with A > 0, it holds:

Dg@" - Do f" - [u™) = L"- Dngo[u”) =R, DQgpo ) .
Then it follows:
D™ - Dof" - [u") = Ryg-a - Dop™ - [v) ,
which is close to D™ - [v) as n is large and n - 6 is close to «v. Since Q is close to H as well, it
follows that D¢ f'[u™) is close to [v).
Similarly, v" also lies in Tp X0 and thus D5¢™ - Do f" - [v") = L™ - Dg@®[v") = Ry.9- Doe®v™).
Thus it holds:
DQSOn Do f" - [v") = Rup—a DQ‘POO[U)) )
which is close to D™ -[w) and consequently Dg, f -[v") is close to [w), which allows us to conclude
the proof of the sub-lemma. [
By the above discussion and results, there exists a basis:
(w", 0", w") C Do f" - [w") x Dof™-[u") x Dof™ - [v")
of Ty M close to (u, v, w). Let then £ : Ty M — Ty M be the linear map such that:
u")=u", (") =" and ((w")=w".
By construction, ¢ is close to identity and moreover it holds:
Do f™ - Lu") =[v"), Dgf" (") =[w") and Dgf"-([w"]=[u"].

Note then that Dy f™ - ¢ - [w™) = [u") if f is orientation preserving and [—u") otherwise. It follows
then that:

Spec(l- Dof") = Spec(Dof" - £) = det(Dof" - £) - {1,5,j} = det(l o Do f") - {1,4,j} .

5.4 Parametric counterpart

We now provide the parametric counterpart of Proposition [5.3.1}

Proposition 5.4.1. Let fy = (fy)aea € Diff™ (M), be a C®-family of smooth diffeomorphisms. Let
us assume that there exist a smooth family of hyperbolic points (), and a smooth family of points H
in M such that for every parameter a € A, the point ), is a hyperbolic periodic saddle displaying a
homoclinic tangency at H,. Assume moreover that there exists 0 € R /277 such that for every a € A
it holds Spec(Jac (Q; fa) = {04, Aa - €9} with0 < |0, <1 < A,.

Then for every € > 0, there exist an arbitrarily large integer n, an e-small C*°-perturbation f, of
fa, and a family of points Qa of M such that for every parameter a € A, it holds that Q, € B(H,, €)
is n-periodic and Q, has multipliers det Do, f7 - {1, j, 5%}

Moreover, we have the following properties:
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1. the point Q, is periodic for f, and det(Dgq, fP*(%)) = det(Dg, frer()),

2. there exists an integer N independent of n and the perturbation such that for every integer k such
that N < k <n — N, it holds f*(Q,) € B(Qq,e).

Proof. Similarly as for the non parametric case, since the period of €2, is bounded with a, we can
assume by Fact that €2, is a fixed point of f,. The proof follows the same lines as the proof of
Proposition Let V}, be a C°- family of open neighborhoods of 2, such that for every a € A we
have that VVlf,éu( fasQ4q, V') are embedded manifolds containing H,. Up to some smooth change of
coordinates depending smoothly on the parameter, we can assume that {2, = ) € M and also H, =
H € M for every a € A. Moreover, we can assume that the local unstable manifolds do not depend
ona € A and denote W, := W“.(Q; fu; V,). Moreover we can assume that W} _(Q; f,; V,) contains
some smooth curve W}’ containing 0 in its interior. We will also denote W, := W} (€; fa; Va).

Consequently we can write ToM = E" @& E* with:
DQfa‘E‘s = 0q4 idEs and Dﬂfa‘Eu = )\a . Rg y

where E" is identified to R?. Note that in the non parametric case we introduced an angle « € R/
277 in Lemma Here with parameter families, this angle will still be defined but may vary
according to the parameter. The solution brought to freeze its value is to add an additional parameter
3 to the family that slightly changes the angle of the unstable multipliers at {2. Let us denote T :=
R/27Z. Let £ > 0 be a small fixed positive number. Let {1 := (£5)ger be a C*°-family of C'*°
diffeomorphisms of M such that {, = id,,; and for every 5 € T, it holds:

1. £(02) = Q,

2. DQSmEs = idgs and DQ&ﬁ‘Eu = Rﬁ,

3. &z coincides with the identity outside B(£2, k),

4. {3 leaves invariant I/Vlzéu

Consider then the smooth family fayxr = ({3 © fa)(4,8)caxt. Note that for every (a,3) € A x T it
holds:

. fzz,O - fas
. fa,,B(Q) - Q,
. Do fapips = 04 - idgs and Dq fo gjpe = Ao - Rogs,

W N =

4. fap coincides with f, outside B(€2, k),
. m/lzc<Q7 fa,ﬁ; ‘/;1) = I/I/vl’l(;lc and VI/I(S)C(Q7 faﬁ; ‘/a) = W;

1921

In particular, since ~ is small we can ensure g leaves invariant W for every @ € A. Thus H is a
point of homoclinic tangency for every f, g. Moreover, f, 3 coincides with f, nearby H.

For (a,3) € A x T let us denote L, 5 := A - Rgyg. Let X3 1 := (Z4,3)(a,9)caxT be a smooth
family of embedded disks of M such that each X ; intersects W5, transversally at H. Then, as a
direct application of the para-inclination lemma|5.2.3] we have the following:

Lemma 5.4.2. There exists a sequence of C'*°-families of smooth embedded disks (X%, 1)n>1 such
that it holds:
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1. fo 535 5) is close to { H} asn goes to +00,
2. Xy g is C>-close to Wy, as n goes to +00,
3. fas(Zas') C 2 s

4. fa_é is contracting on X 5.

Then the family 2.9, can be chosen such that the following parametric counterpart of Lemma
holds:

Lemma 5.4.3. There exists a sequence of C*°-families of smooth maps ©}\  such that for every
(a,p) € AxT:

1. ¢ 5 X4 5 — R? is a smooth embedding,
2. apo fas=1Ligoasonfos(Xs),
3. the family @} , 1 is C*°-converging to a smooth family o3 1 such that each o5 - Wip, — R? is

a smooth embedding,
Since X ; intersects W transversely at [ then Ty Wy, N Ty Y, 4 is a line. It follows that there
exists a smooth function « € C*°(A x T, T) that verifies Eq. (5.3.1) for anyy parameters, i.e.:
DH(;OZ?IB(THW;) = Ra(a,ﬂ) (DHQOgB(THI/VlgC N THzgﬁ)) . (541)

Let us now define:

A5 = (905) ™" (Ragw,s - Dus(TuWise N TSl 5))

As Ty Wi, N TyX) 4 is a line, A) 5 is an embedded curve in X ;. Moreover, by construction the
family AY 1 := (A 3)(a,8)eaxt is C*°-smooth.
Note that it holds:

Dues(TygWis, N THzgﬁ) = Raap) - Dnggﬂ(THAgﬁ) . (5.4.2)

Then by Fact applied to every parameter, it holds:
Fact 5.4.4. For every (a,3) € A x T, the curve A ; intersects W, transversely at H.

Still by the para-inclination Lemma there exists a sequence of families (A} 'r),>1, such that
for every a, f € A x R/27Z it holds:

1. fa”g(A;(BnH)) C A, for every n > 0,

2. the family (f7'5(A,5))(a,8)eaxT is close to { H } as n goes to infinity,
3. the family A} is close to Wi, as n goes to infinity,

4. fap is contracting on A for every n > 0.

It follows that for every sufficiently large integer n and for any parameters a, 3 there exists a unique
point Qq 5 € XY ;NA, close to H that verifies properties given by Lemma for f, 5. Since A,
and X ; depend smoothly on the parameter, so does (. As in Eq. (5.3.3), there exists a smooth
family of bases ((ta,3, Va8, Wa,8))(a,8)caxT Of Ty M such that their direction are given by:

Uap € TG 5, Vap € TuWie NTyS, ; and wepg € TyW; .
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And the norm and orientation are given by:

Dupes(vas) = Raas)(Duge s(tap)), Dupss = (Wap) = Ragas) (Dl 5(va,s))

and
HDH‘PZ?B(wa,B)H =1, det(DHSDZ?ﬂ(uaﬁ)v DHSDZ,O/B(Uaﬁ)a DH(PE?B(waﬁ)) >0.

Then for large values of n, there exists a smooth family (ug, 5, v} 5, w5 5)(a,8)caxT Of bases such
that:

Louy 5= (Dq, %05 " Roa(ap) - Duvis(vas),

2. vy 5= (Dq, ,005) " " Roatap) - Dueis(Wap),

3. wy 5 € T, ;8,5 such that [| Do, .o s(wy 5)|| = 1and (Dq, ;05 5(w"), Drpsss(wa,s)) > 0.

The idea is now to have a parametric version of Sublemma First, by the implicit function

theorem, for n sufficiently large, there exists a smooth map 5™ : A — T C*°-close to 0 and such
that:
n-0+4n-6"(a)=ala, " (a)) (5.4.3)

for every a € A. Let us now go back to a family parametrized by A only, and to simplify notations

let us denote:
1' fa = fa7ﬁé”)s
2. Q, = Qaﬂ(n)(a) and Q, := Qaﬂ(n)(a),
3. g 1= 902,5(71)(@) and ¢g° = @Z?g(n)(a)’
4. (Ua, Vas Wa) = (Uq g0 (a) Va, 80 (a)) Wa,50n) (a))>
5. (ug, vy, wy) = (Uig(n)(a)?UZQ(n)(a)?wZ,g(n)(a))’
As 3™ is C*-small for large value of n, it follows that the family fA is C"*°-close to the initial family

fa. Moreover, the families Q4 , Qa, ua, va, wa, u}, v} and w} are C-smooth.
Then similarly as in Sublemma we have:

Lemma 5.4.5. For every sufficiently large n, it holds:

(Do, [ - [w"])aea is C~close to ([ta])aca , (5.4.4)

(Dqg, f;‘ - [ul])aea is C-close to ([va])aca (5.4.5)
and

(Do, £ - [0 aen is C-close to ([wa))aca (5.4.6)

The proof is a straightforward adaptation of the one of Sublemma Before that, let us just

add some further notations for n large and a € A:
1. ag == ala, ™ (a)),
2. 0, =0+ 8" (a),
3. Ly, = A Ry,.

Then we have a, = n - 0§, for every a € A and the above quantities all induce C'*°-parameter

families.
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Proof. By construction, it holds (Dg, f7 - [w])aca = (Do, f* (T, A0"))acs = (T, AY)aca which

a

is close to (T A)uca = ([ta])aca as the family Q4 is C*°-close to the constant family equal to H.
Now since for every a € A it holds u? € T, X0, then by Lemma we have:

Dg,#% - Do, fa - [uy) = Ly - Do, ¢aluy) = Rug, - Do,y - ) -
Now as n - 0, = «, and by definition of v, we have:

Da,¢a - Dauta - [uz) = Da.ps” - [va) -
Similarly, as v”" lies in Tpy, X0, it holds by Lemma and definition of v{:

Dg, % - Do, [+ [v2) = L - Do,¢0[vi)
= Ra(a) - Da.volvy)
= DQa(pgo [wa) *

Recall that the families (Dg, ¢f )acaand (Dq, 5" )aca are both C*-close to the family (D ¢°)aca
when n is large. It follows that the families (Dg, f7 - [u?))aca and (Dg, f - [07))aea are indeed
C*-close to ([v4))aca and ([wg))aea- O

By the latter lemma, it follows that there exists a smooth family of bases ((u?, V", w?))sen of
(T, M )aca that is C*°-close to the family (u, s ()1 Va,80 (@) Wq 3 (a)))aeA and such thatfora € A
it holds:

(i, 03, wy) C Do, fit - [wh) x Do, i - [u) x Do, fi - [vy) -
Let then consider:
by : T, M — T, M ,

the linear map such that /,(ul) = u?, £,(v") = v and ¢(w?) = w?. By the above discussion, ¢,
depends smoothly on the parameter a € A and the family ¢4 := (¢,),en is C*°-close to the family

(idTQaM)aEA. Thus we have:

A A

Da, fi o tali) = [03),  Dq,f' o laloy) = [w}) and Do, fi o taliwy] = [a] .

a a a

As in the non-parametric case, it follows:

Spec(Dq, fu 0 £a) = det(Do, f2) - {1, 4, 5%} -

Now we infer the following parametric version of Lemma5.3.4}

Lemma 5.4.6. For every Qu, Qs € C®(A, M) close to the constant family equal to H and for any

close to identity family (,, of linear maps {, : Ty, M — Ty, M, there exists a C*°- small perturbation
& € DIff™ (M), of the identity family such that:

é.a(Qa) - Qa and DQaga = Ea .

This latter lemma is shown in Section It provides a family £, € Diff (M), C'*-close to
identity such that fA = (& 0 fa)ae A satisfies the conclusion of the proposition. O

126



5.5 Proofs of Theorems /Al and

Using Proposition we are now ready to prove Theorem [A]and its parametric counterpart
Theorem

Proof of Theorem[A] Up to replacing f by f~! we assume without any loss of generality that 2 has
index 2. Moreover, by Fact we can assume without any loss of generality that (2 is fixed by
f. The idea is to unfold f into a one parameter family such that the determinant of the Jacobian of
f at Q varies with the parameter. Then we will use Proposition to show that there exists an
arbitrarily small value of the parameter such that the eigenvalues of the provided periodic points all
lie on the unit circle. Fix € > 0. We then define a C*°-family of smooth ( f;),c[s+s) for some small
9 > 0 such that each map of the family is C'"*°-close to the initial map f and for every n € [—4, +]
it holds:

L fo=/,
2. f,(2) =Qand Dqf, = exp(n/3) - Daf,
3. H is a point of homoclinic tangency of €2 for f,,.

This can be done similarly as in the proof of Proposition 5.4.1 by composing f by a one parameter
family supported on a neighborhood of 2 with an adapted derivative at 2 and leaving invariant the
local stable and unstable manifolds of f. Since log |[det(Dq f)| = 0, for every parametern € [—4, +6],
it holds:

log [det(Dafy)| =7 -

Fix a chart ¢ : U < R3 on U a small neighborhood of 2 in M. Then for every parameter n €
[0, 46] and every small C*>-perturbation f, of f, it holds:

|log |detDyp~ o Df, 0o DY| —n| <6/2, onU. (5.5.1)

By Proposition there exist an arbitrarily large integer n, a C*°-small perturbation ( fn)ne[,57+5]
of (fy)ne[-s+5) and a family of points (Q,),c[-s,+4 such that @, is n-periodic with multipliers
\Jac (9, f,)| - {1,4,5%}. Moreover by Proposition the number of points of the orbits of ),
that lie outside U does not depend neither on n nor on 7. Consequently, by Eq. (5.5.1), there exist

real constants C'~ and C'* such that when n is large it holds:
C™+n-n—n-6/2<log|lac(Qy; f)]| <CT+n-n+n-5/2.
Now observe that when 7 is sufficiently large it holds:

log|Jac (Q—s; f-5)| < 0 < log [Jac (Q+s: f+5)] -

Consequently, by the mean value theorem, there exists a parameter 1 € [—4, §] such that |Jac (Q,,, f,)|

is equal to 1. Moreover, the map fn is C*°-close to f as n is small. [

We will use the latter proof to show:
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Proof of Theorem|[B Similarly as in the latter proof we can assume that {2 has index 2 for every
parameter and, by Fact[5.8.2)that (2, is fixed by f, for every a € A. Moreover, for simplicity, up to a
smooth family of change of coordinates we can assume that €2, = (2 and H, = H for every a € A
where () and H are some point in M.

Fix € > 0 and 0 > 0 and a C*-family (f,;)aca ne[—s+s of smooth diffeomorphisms such that
for every parameters a € A and 1) € [—6, +0]:

1. fa,O = faa
2. fan(Q) = Qand Do foy = exp(n/3) - Dafa,
3. H is a point of homoclinic tangency of €2 for the map f, .

When taking 6 > 0 small, each f,, ,, is C*°-close to f,. Fix a smooth family of charts (1), ).ca such that
each 1, : U — R3 is defined on a neighborhood U of €. Since A is compact, for every parameters
a € A and ) € [—4, +0] and every small C*°-perturbation f,, of f,, it holds:

|log |det Dy, o Dfy, 0 Dby — 1| <6/2, onU. (5.5.2)

By Proposition|5.4.1} there exist an arbitrarily large integer n, an arbitrarily small C'*°-perturbation

(fa,n)aGA, ne[—4,+9) of (fa,n)aé&, ne[—4,+4] and a famlly ofpoints (Qa,n)aé&, ne[—4,+9] such that Qa,r] is n-
periodic with multipliers det(Dq f;',)) - {1, j, j°}. Moreover, there exists an integer N independent
of n such that when n is large enough and for every N < k£ < n — N, it holds ff,n(Qam) cU. As
well as in the non parametric case, by Eq. (5.5.1) and since A is compact, there exist real constants

C~ and C" such that when n is large and for every parameters a, ) it holds:
C™+n-n—n-6/2<log|Jac(Qya; fra) <CT+n-n+n-5§/2,
and

Oy log|Jac (Qpa; fra)| > 0. (5.5.3)

Moreover, the latter quantity is large as n goes to infinity. Thus for n large, by the two above
equations and by the implicit function theorem, there exists a C°-small smooth map n* : A — R
such that |Jac (Qan(a), fa,n(a))’ is constantly equal to 1 on A. To conclude, it suffices to show that n*
is C*°-small. Denote {7, Ao - €07} the eigenvalues of D f, , for a € A and ) € [—6, +4].

Up to taking U smaller, we have the following:

Lemma 5.5.1. We can write:

det(Jac (Qa,m fa,n)) =exp(n-n) - ISP

where (Zq.) (a,n)eax[—s,+4] IS a smooth family of positive real numbers whose log is C*°-bounded as n

is large.

Proof. Up to taking U smaller, by Lemmal5.7.4 with k = n — 2N sufficiently large, we have that for
every parameters a, 7 and since ﬁt,N(Qan) € Uforevery0 <[ < kand (ff;N(Qam))(a,n)eAX[_5#5]
which is equal to (f;éV(Qm))(am)eM[,57+5] is C*°-close to (2 as n is large, it holds that:

(a,n) € A x [=6,+0] — det(Dyq,, me) -det(Dq fo,)f = U,
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is C*°-close to 1 in some appropriate system of coordinates independent of k. Recall that by Propo-
sitionwe have that det(Dq f,,,) = exp(n). Thus it follows:

Aet(J0 (s fun) = exP(k - 1) Wy - det(Dyvg ) F23)
Thus =, ,, := exp(—2N-n) -\Ifam-det(Df_N(QM)ffg) satisfies the sought properties as N is fixed. [J
Then for every a € A, the map n* verifies :
(@) =n"" - 10g(Zan: (@) -

Thus by the implicit function theorem, n* is C"°°-small when n is large. Consequently the fam-
ily ( fa,n*(a))aEA is C*°-close to (f,)eca and each map of this family displays a periodic point with
multipliers {1, j, 72} O]

5.6 Local density of totally parabolic points

A compact f-invariant subset K of M is uniformly hyperbolic if the restriction to K of the
tangent bundle 7'M splits into two continuous D f-invariant sub-bundles T'M|x = E* @ E° that

are uniformly expanded and contracted:

| Dp fes

<1 and ||(DPf\E“)_1|| <1l VPeK.

An f-invariant compact set K is said to be transitive if it admits a dense orbit. A basic set K is a
compact, f-invariant, transitive, uniformly hyperbolic set K which is locally maximal. It means that
there exists a neighborhood U of K such that K = ",z f™(U)

Let K C M be a uniformly hyperbolic invariant set. For P € K we will denote its stable and

unstable manifolds by:
WH(P; f) :={P" € M :d(f"(P"), f"(P)) —— 0}

and

WH(P; f) :=A{P" € M :d(f"(P'),f"(P)) —— 0} .

Moreover, given a neighborhood V' C M of K, if the connected components of W*/*(P; f) NV
containing P are embedded manifolds, then they are called local stable and unstable manifolds and
denoted W;/"(P; f; V). Note that if P is periodic, then the above definitions coincide with the
previous ones.

The set K displays a homoclinic tangency if there is a pair of points z, y € K such that the stable
manifold W#(z) of z and the unstable manifold W*(y) of y have some non-transverse intersection.
Given a hyperbolic set K of a diffeomorphism f, for f close to f, we denote by K 7 the hyperbolic set
of f which is the continuation of K (i.e., K is close to K and the dynamics of f on K is conjugated to
the dynamics of f on K'y. Moreover, the hyperbolic set K" will be said to display C"-robust homoclinic
tangency, for r > 1, if the map f is of class C" and there exists a C"- neighborhood N of f such
that for any f € \V, the hyperbolic continuation K 7 of K displays a homoclinic tangency.

The following theorem provides examples for the set of maps involved in Theorem [A]is not

empty.
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Theorem 5.6.1 (Bonatti-Diaz [BD96]]). There exists a diffeomorphism f, € Diff*(M) and a mixing
hyperbolic basic set Ky C M such that:

1. Ky admits robustly a C*-robust homoclinic tangency,

2. there exist periodic points Py and Py in K such that |Jac (By)| < 1 < |Jac (Bp)

3

3. Py and P, have complex multipliers.

Note that 1 — 3 are C''-open conditions. Consequently there exists an open set V' of diffeomor-
phisms verifying 1 — 3. Moreover, we can assume that the hyperbolic continuations K, P and P of

Ko, Py and P, are well defined for f € V and verify the properties of the above lemma for f.

Proposition 5.6.2. Let f € Dift>(M) such that f admits a mixing basic hyperbolic set K that
displays robustly a homoclinic tangency and such that there exist hyperbolic periodic points P and P
in K such that:

L. |Jac (P; f)| <1 < |Jac(P; f)

2. P and P have a non real multiplier.

}

Then there exists a C°°-small perturbation f of f and a periodic hyperbolic point P in the hyperbolic

continuation of K displaying a homoclinic tangency with a non real multiplier and |Jac (P; f)| = 1.
The proof of the latter proposition is directly deduced from the following:

Lemma 5.6.3. Let f € Dift (M) such that f admits a mixing hyperbolic basic set K such that there
exist hyperbolic periodic points Pand P in K verifying:
1. |Jac (P; f)] < 1 < |Jac (P; f)

2. P and P have a non real multiplier.

>

Then there exists a C™-perturbation f of f and a periodic hyperbolic point P in the hyperbolic contin-
uation of K with a non real multiplier and |Jac (P; f)| = 1.

Proof that Lemmal5.6.3 implies Proposition By Lemma there exists a C'°-perturbation f of
f and a periodic hyperbolic point P in the hyperbolic continuation of K with a non real multiplier

and |Jac (P; f )| = 1. Now since K displays robustly a homoclinic tangency, so does its hyperbolic
continuation. Consequently, since K is mixing, up to an arbitrarily small perturbation, we can

ensure that P moreover displays a homoclinic tangency. O]
We now prove:

Proof of Lemmal[5.6.3 First, up to replacing f by f~' we can assume without any loss of generality
that K has index 2. By Fact up to replacing f by some iterate of an arbitrarily small C'**°-
perturbation, we can assume without any loss of generality that P and P are fixed by f. Since K
is uniformly hyperbolic with index 2, there exists a continuous D f-invariant splitting £ & E* of
T M, such that D f is uniformly contracting on £* and uniformly expanding on E*.

Note that a periodic point in K has a complex non real multiplier if and only if the restriction of
its differential to the unstable space is elliptic. This leads to introducing the following notations. For
a periodic point P € K of f, let Jac"(P; f) be the restriction of Jac (P; f) to E}%. Then we define:

1

Jac"|(P) := [Jac"|(P; f) := -Jac"(P; f) € SL(Ep) .
[Jac*](P) := [Jac“](P; f) Tac P ) (P; f) € SL(Ep)
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Using the identification of £ and E7 with R?, there exists angles 0,0 € T such that [Jac|(P) = Ry
and [Jac"|(P) = Ry.

Let us denote /i = log |Jac (P)| < 0 and i = log|Jac (P)| > 0. Fix € > 0 and let U and U be
small neighborhoods of P and P. Let ¢ be a chart on U U U such that for every it holds:

llog [detDp(v- f - )| =l <e ifPeUnfHU) (5.6.1)
and
llog [detDp(- f-o D —pl<e ifPeUnf ). (5.6.2)
Let V be a small neighborhood of the closure of 7UU. Then we consider a smooth family ( fn.8)ner, et
of diffeomorphisms of M such that fyo = f and for every (7, 5) € R x T, it holds:
1. f,p fixes P and P,
2. j(P; fr.5) = Ry and j(P: fy5) = Ry
3. fyp coincides with f outside V.
4. log|D(W - frp- )| =log| D@ - f -~ +non (UN fHU) U@ n f10)).
We will consider periodic points provided by the following:

Lemma 5.6.4. There existst = (f,1) € N? such that for every (1, 3) € R x T close to 0 and for every
pair of integers i := (np,np), there exists a periodic point P = P(n,n, ) € K of f, 3 with period
given by p := p(n) := n| =1t +14n+n, such that for every 0 < k < p:

L fiy(P)eUifo<k<n,

2. fryP)eUifa+i<k<n+i+n

The proof relies only on the fact that the involved fixed points are homoclinically related.

Proof. Since K is a hyperbolic invariant transitive, it supports a Markov partition (see [Bow75])
with arbitrarily small rectangles. We can assume then that the rectangles containing the hyperbolic
fixed points P and P are included in U and U. Moreover, for small values of (7, /3), the continuation
of this Markov partition verifies the same property. Let us consider such rectangles 7%,77 3 and 7@,7, 3.
The transition times f and  are the number of iterations to go from 7v20 to 7@0 and from 7@0 to 7V20.
Then by continuity of the family, for small values of (7, 3), they are also the transition times to go
from R 0,3 to R .5 and from R 3 to R 13- Consequently, for every n = (1, 1) there exists a periodic
point P € R77 s for f, 3 - thus depending on 7, 3 - whose 7n-first iterates stay in R77 g C U, then
transitions to Rn s after  iterations, then stay in 725 C U for 1 iterations then goes back to P after

{ iterations. O]

Then for every (7, 3) small enough, the latter lemma provides a family (P(n, 7, ) )nen2 of pe-
riodic points for which we have control on their itinerary. We exhibit a sub-family of these points

with determinant equal to 1 by the following:

Lemma 5.6.5. There exists a neighborhood B C T of O such that there exists i arbitrarily large and a
Cl-function n* : B — R arbitrarily close to the null function such that for every 3 € B, in the chart ¢
it holds:

[Jac (P(n,n"(8), 8))] = 1.
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Proof. Up to shrinking B, we can ensure that for every large n and for every 8 € B, it holds:
dylog|detDf, 5| >1/2 on (UN fHU)) U (U N D)) . (5.6.3)

Using the itinerary prescribed by Lemma [5.6.4 with n = 0 and 3 € B, we deduce that there exists
a constant C° > 0 such that it holds:

|log[Jac (fos, P(R, 0, B))I| < |- fi 7 i + € - [n[ + C.

Now there exists a constant C' > 0 such that there exists arbitrarily large 7 such that |7-fi+n-p| < C.

For such values of n we have and [ € B:

[og Jac (fos, P(,0, )| < 21| - . (5.6.4)
Now, inferring Eq. together with the itinerary of Lemma|5.6.4 it holds for . large enough:

|0, log |Jac (f,.5, P(1,m, B))|| > ;|7 . (5.6.5)

Combining the two above inequalities provides for every (3 a value of 7 such that:

log ]Jac (fﬁﬁvp(ﬁanvﬂ))‘ =0.

Moreover, by the implicit function theorem, the corresponding map 7* : B — R is C''-small. O]

For k& € N let us denote jj := Q € K — [D|E5f7]7“*(5)7/3(@)] € PGL(Eg, Eji ). To simplify a
bit the notations, let us put P := P(n,n*(/), ). To conclude, it suffices now to show that we can
pick 3 arbitrarily small such that P has a non real multiplier, or equivalently that j5(P) is elliptic.

For that purpose, we provide the following estimate:

Lemma 5.6.6. For every sufficiently large i and for every 3 € B, ji(P) is conjugated to Ag - Ry
where (Ag)pes is a C'-family of elements in SL(EY) such that (05Az(n))ses is C°- bounded as n
goes to infinity.

Proof. By Gochenko-Shilnikov-Turaev Lemmathere exist local coordinates (u,v) € R? X R on

U such that for every parameter 7, 8 close to 0, when writing:
PG, 8) = @O, o) and £25(P@, 0, 8) = (ul®,0),

it holds:

(5.6.6)

u® = A7 R g AT () ()

where o and \ - e=% are the multipliers of P, 0 < 1 < pis a constant, and (&3.,) 8. and (Vf )3, are
C*°-bounded uniformly with 7. Now as 7* is C'-smooth relatively to 3 and as the iterates of P lie
in the hyperbolic continuation of K it follows by the C''-structural stability of K ( see [Mos69]) that
the iterates of PP have uniformly bounded derivatives relatively to 3 independently of n. It follows

by the above Eq. (5.6.6) and Lemma |5.7.4|with » = 1, that the action on TlMlEu of Df;L+g
B,n*(8)

(P)fgﬂ?*(ﬁ)

writes in this system of coordinates as:
R ;- (id+&5(P))
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where (fg(P)) sep is a C'-small family as 72 goes to infinity. By the same argumentation, we have
a similar result for P: there exists local system of coordinates such that the action on 7" Mp. of
Dpfg’n*(ﬁ) is equal to:

R 15 - (1d+E5(P))

V\{he{e (ég(P)) sep is a C'-small family as 72 goes to inﬁnit}f. Thven observe that jf;( f;ﬁg)ﬁﬁ(P)) and
jé(f:;*( 3), 5(P)) o R, 4 corresponds to the transitions from P to P’ and reversely. They have bounded
derivatives relatively to S and independently of n. Finally, by the above discussions, it holds that
the family (Ag)gep defined by:

Ag = (id + E5(P)) 0 5 (fEEL(P)) o Ry g o (id + 5V (P)) 0 j5(fi sy 5(P)) © Ry, (5.6.7)
satisfies the sought properties. O]

Note that we have:

Fact 5.6.7. Either A, is elliptic or the image of [0, 7] C T by the map o — Tr(Ay o R,) contains 0 in

its interior.

Proof. Assume that A is not elliptic. Then a simple computation gives:
Tr(Ag o Ry) = cos(a) - Tr(Ap) + sin(a) - Tr(Ag o Rrj2) -

Since A is not elliptic, it is either parabolic or hyperbolic. In both cases it holds Tr(Ag) # 0. Thus
at « = 0 and @ = 7 the values of Tr(A, - R,) have opposite signs and so vanish at a certain

a € (0,m). O

To conclude, if A is elliptic we take the parameters (0,7*(0)). Otherwise, by the above fact
and since JgAg is bounded independently of n, then when 7 is sufficiently large, there exists a small
parameter 5 € [0, /7] such that Tr(Ag- Ry 5) is equal to 0. To conclude the proof of the proposition,
recall that in both cases the map f,-(g) s is close to f and displays a periodic point with determinant

equal to 1 and a complex non real multiplier. [

5.7 Shilnikov coordinates

Recall that A is a smooth compact connected smooth manifold and M a smooth manifold of
dimension 3. An important tool to almost linearize the dynamic nearby hyperbolic fixed point is the
following result form Gochenko-Shilnikov-Turaev[[GST08].

Lemma 5.7.1 (Gochenko-Shilnikov-Turaev, Lemma 6. and 7. [[GST08]]). Let fy be a C*°-parameter
family of smooth diffeomorphisms such that there exists a point €} fixed by every f,. Assume moreover
that Q, has index 2 for every a € A with expanding multipliers \, - % where \, > 1 andf, € T
and with contracting multiplier o, € (—1,1).

Then there exists a neighborhood U of Q2 and coordinates u,v € R? x R on U such that:

Wlf)c(Q; fa; U) = (u = O) and lec(Q; fa§ U) = (U = O) .
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Moreover, for every point (u(?),v®)) € U and for every parameter a € A such that (u),v®) =
fLu® v ) € U for every | < k, for some sufficiently large integer k, it holds:

0) — N~k (B) 1 ko =k L (R) (q,(B) 4, (0)
u’ = A" R_pg, -u +p" - A" (w0
{ k-6 P Mo ( ) (5.7.1)

o ®) = gk O gk gk 0,8 0

where ) < p < lisa constant and (€¥)aen, (M*))aeca are C>-families uniformly bounded with
ke N.

Using coordinates provided by the above lemma, we prove Lemma Let us first give a precise

statement:

Lemma 5.7.2. In the setting of Proposition[5.3.1, and when ) is a fixed point, there exists a sequence of

smooth embedded disks (X"),,>¢ and a sequence of smooth coordinates (" : X" — R?),,>q such that:
1. X0 intersects W, transversely at H,

f7™(3") is close to { H} asn goes to 400,

X" is C*-close to Wi, as n goes to 400,

fEm) cxn

f~t is contracting on X",

" : X" — R? is a smooth embedding,
(,On o fn =L"o 900 on f_n(2n>,

O N & R LD

@™ is C™°-converging to some map > : W, — R2.
Recall that . = X\ - Ry is conjugate to the restriction to the unstable space of Dq, f.

Proof. Let C C W} be a small curve containing (2. Let N be a positive fixed large integer such
that fN(H) € C. Let U be a small neighborhood of C U W}%. Then, as a direct application of
Lemma there exist local coordinates u,v € R? X R on a small neighborhood U of C U W},
such that C = (u = 0) and W%, = (v = 0). Moreover, for every point (u(?),v(®)) € U such that
(u®, 0D := fi(u® v®) € U for every | < k, for some sufficiently large integer k, then it holds:
{U(O) = LR u® o XF B (R (0

5.7.2
v ®) = g O L gk B, ®) 0 (5.7.2)

where &, \ are positive constants such that 0 < 6 < |o| and A < ; and € 5®) are C*°-bounded
maps uniformly with k.

Since fV(H) € C it has coordinates (0, v") for some v* € R. Let X" be a small disk contained
in {P € U : P has v-coordinate equal to v* }. Then for every integer n # N, let us define X" to
be the connected component containing f"(H) in f"~(Z%) N U. Note that " is not empty and
intersects W% (Q2) transversely at fV(H), thus 3° is a small disk intersecting WS, transversely at

H. Thus by the inclination lemma we have the following:

3. See remark 1 under lemma 6 and the proof of lemma 6 in [[GST08] for justification of the smoothness according
to the parameter of the coordinates change. Also, since A is connected and compact, the constant p does not depend on

the parameter.
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. ¥t C f(3") for any n > 0,

[\

. f7™(X™) is close to { H} as n goes to +00,

3. X" is C"*°-close to Wi as n goes to +00.

4. f~!is contracting on X" for n > 0.
Observe that the function (u®), v®)) € LN*# 1 (0 is constantly equal to v*. For k > 0 let then:

(,Ok+N . ZN+k N R2
(u(k)7 U(k)) —> Lk . u(o) s
ie oMY = LFo f~% 0 oV on U*N and " sends fV(u,v) to u for fV(u,v) € V. Moreover, for
0< k<N —1, we define:
LR VLRSS R?
u,v = LN oMo fN7(u,v) .

Observe that for every n € N it holds :
gOnOfn:LnOQOO.

Moreover, for n > N, we have:

N—n
('pn(u7 U) =u+ (5\) ) R(n—N)‘9 ) n(n_N) (U7 U+) :
Then the map ¢" is C*°-converging to the map:

> s W — R
(u,v) — u.

Following the same lines of the above lemma, we now prove:

Lemma 5.7.3. Let f5 be a parameter family such that there exist points ) and H such that for every
a € A the point ) is a saddle fixed point of f,, displaying a homoclinic tangency at H. Assume moreover
that Q) has index 2 with expanding multipliers )\, - e*% with \, > 1 and 0, € T for everya € A.
Then, for everyn > 0 there exists a smooth family of embedded disks >} and a smooth family of maps
@i such that for every a € A, it holds:

1. XU intersects the local stable manifold of §) transversely at H,
2. f7™(37) is close to { H} asn goes to +00,
3. X0 is C*°-close to W, as n goes to +00,
4 (2 C B,

5. f.b is contracting on X7,

6. " : X" — R? is a smooth embedding,

7

- Pa o fa = Aally, 0 g on f(X7),
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8. " is C*°-converging to some map p>° : Wi, — R?,
9. the family ©3° = (Ya)aca is C°°-smooth.

Moreover, 2. and 3. are verified uniformly with the parameters.

Note that Lemma is a direct application of the above by considering A xR /277 as parameter

space.

Proof. For a € A let us denote o, the contracting multiplier of Dq, f, and recall that the restriction
Dq, f, to its unstable manifold is conjugate to L, := A\, - Ry,. Let W} be a local unstable manifold
containing {2 and let W}?_ be a small stable manifold. By compactness of A, there exists a positive
integer N such that fN(H) lies in W; for every a € A. Let H, = fN(H). Then by Lemma
there exists a neighborhood U of Wi U WS such that there exists a system of local coordinates
(u,v) € R? x R such that for every parameter a € A, the point [, has coordinates (0, v;}) and the
family (v} )qea is C*-smooth. Moreover, for every (u(?), v(®)) € U and for every parameter a € A
for which there exists some large integer k that verifies (u),v®) := f(u® ) € U for every
[ < k, it holds:

©) — 1=k . ") k=K ) ®) (k) ) (0)
u =L u'" 4 Ay omg g(ut v
{ g e ) (5.7.3)

where 0 < p < 1 is a positive constant and (7*)) e, (£09)),c4 are C*®-bounded maps uniformly
with k£ € N.

Let us denote X% := {P € U™ : P has v-coordinate equal to v }.

Observe that the map (u®,v®) € fF(ZN) N U~ — v(? is constantly equal to v;". Then the
family (X2),ca is a C*°-smooth family of embedded disks. Then for every integer n # N, let us

a

define 7 to be the family of connected components containing f™(H,) in f*(XY)NU for every
a € A. For a € A, note that each X% is not empty and intersects W (f2) transversely at fV(H,),
thus 30 is a small disk intersecting W}, transversely at H,. Thus by the para-inclination lemma
and for every parameter a € A we have

1. ¥+t f(X2) for any n > 0,

2. the family (f,"(X"))4ea is close to { H} as n goes to +o0,

3. the family (37),ca is C*°-close to the constant family equal to W}, as n goes to +oc.

4. f-1is contracting on X" for n > 0.
As in the non parametric case, for £ > 0 and a € A let:

g0’;+N . Efl\/+k SN R2
(u(k)’ ’U(k)) — L]; . U,(O) R
Moreover, for 0 < k < N — 1, we define:
AR VSR R?
wv = LN o o f (u,v) .

Then for every n € N the family (¢7),>0 is C*-smooth. By the proof of Lemma [5.7.2] it follows
that ¢ verifies 5. — 8. in the statement of Lemma And by the above construction, the family

of limit maps (¢5°)aea = (limy, 00 ¢ )aea is indeed C*°-smooth. O
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Another useful application of these systems of coordinates is the following lemma that is used
in the proof of Theorem [B|and Proposition [5.6.2]

Lemma 5.7.4. Let f) be a C*-parameter family of smooth diffeomorphisms. Assume that there exists
a point 2 € M such that for every a € A it is a fixed saddle for f,. Then there exists a neighborhood
U of Q such that for every large integer k, for every P € U such that f.(P) € U forevery0 <1<k
and every a € A, the map:

a € A det(DpfF) - (detDgof,) ™",

is C"*°-close to the map constantly equal to 1 on A.
Moreover, for any 1 < r < oo and for any C"-family of points (P,).ca such that each f\(P,) € U
forl < k and the family (f*(P,))aca is C"-close to 2, then it holds moreover that the map:

a € A — det(Dp, f*) - (detDof.) ™" ,

is C"-close to the map constantly equal to 1 on A.

Proof. We can assume, up to replacing each f, by f. !, that {2 has index 2. Let us denote its expanding
multipliers )\, - et where \, > 1 and 6, € T. As well, let us denote o, € (—1,1) its contracting
multiplier. By Lemma there exists a neighborhood U of €} such that there exists a system of
local coordinates (u,v) € R? x R such that for every parameter a € A and for every (u(?,v")) € U
for which there exists some large integer k that verifies (u(),v®) := fL(u® v®) € U for every
0 <1 < k,itholds:

©) — =k . " koo\=k ) ®) (k) ) (0)
u =L u'" 4 Ao omy g(ut v
{ g e ) (5.7.4)

where 0 < p < 1 is a positive constant and (7n*)) e, (£09)),c4 are C*®-bounded maps uniformly

with £ € N. Let us fix such a large value of £ and for a € A denote:
Ay (u® ) 5 u® and B, : (u®,0®) s o®)

This translates as:
fa(Aa(u®, o), ) = (®, By(u®,v1)) .

Then with P = (u(®,v®), it follows that in these local coordinates we have:

Oy B, (u® )
k\ v-a )
det(Dpf;) = det (9 Ag (u®, v @)~

Using Eq. (5.7.4), it follows:

k —k \—2k 1+ p" - 9,60 (uk), ()
det(Dp f5) - o7F A2 = . o .
det (id + p* - Ryg, - 0umt” (u®,v)))

To conclude for the first statement in the lemma it is enough to observe that the map:

1L+ p" - 9,6 (™), 00)
det (id + pb - Reg, - 0l (u®,0©))

a€ A~
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is C*°-close to 1 as k goes to infinity since 0 < p < 1 and and (") ,ea, (£7)4ca are C*®-bounded
maps uniformly with & € N. Then for the second statement let us denote (u(”),v(”)) = P, and

(ul® vF) = f&(P,) which are C"-close to §2. Then the following map is C"-close to identity:

Lt - 0,80 ), o)

a < A —> )
det (id + pF - Ry, - 3u77((zk) (uf(zk), v(o)))

which allows us to conclude. O]

5.8 Classical tools for perturbation of diffeomorphisms

This section is dedicated to the proof of technical lemmas that are used along the proofs of this
chapter. They rely on classical techniques from perturbation of of smooth diffeomorphisms using
bump functions.

The following fact and its parametric counterpart stated below allow us to replace periodic points

by fixed point to simplify most of the proofs.

Fact 5.8.1. Let f € Diff**(M). Let Q € M be a point and let N > 1 be an integer. Let NV be a
neighborhood of f~ in Diff® (M ). Assume that there exists e > 0 small such that it holds f*(B(Q, €))N
B(Q,€) = 0 for every 1 < k < N. Then there exists a neighborhood N of f such that for every
g € NN such that g coincides with f~ outside B(Q, ¢), there exists a map f € N such that fN = g
on B(Q,€/2) and f coincides with f outside B(Q, ¢).

Proof. Up to taking ¢ smaller, there exists a smooth embedding ¢ : B(Q, ¢) — B3 such that ¢(Q) =
0. Let then introduce a non decreasing function p : Rt — R equal to 0 on [0, 1/2] and equal to 1
on [1,+00). Then, on B(Q, ¢) we define:

F=o7 (ol 1-=QI) - f+ (L =p(e - |- =QI))-go f V) . (58.1)

Note that f extends smoothly to f on M. Moreover, since ¢ is fixed, fis C™-close to f as g is close
to fV. Since the N-first iterates of B(Q,¢) do not meet B(Q, €) it holds that fV coincides with
fN=1o f on B(Q, ¢/2) which is 9IB(Q.e/2)- L

As a corollary of the above proof we deduce:

Fact 5.8.2. Let fy € Diff™(M ) be a C*°-family of smooth diffeomorphisms. Let Q, € C" (A, M) be
a smooth family of points and let N > 1 be an integer. Let V be a neighborhood of Y := (fN),en in
Diff*(M),. Assume that there exists ¢ > 0 small such that for every a € A, it holds f*(B(Q,,€)) N
B(Qa,€) = 0 for every 1 < k < N. Then there exists a neighborhood N of fx such that for every
ga € V with g, coinciding with f outside B(Q,, €) foreverya € A, then there exists a family fy € N
such that fév = g on B(Q,,¢/2) and f, coincides with f, outside B(Q,, €).

Proof. Up to reduce € > 0, consider a smooth family of charts (¢),)4ca such that for each a € A, the
map v, : B(Qq,€) — B verifies 1,(Q,) = 0. For a € A, let us define f, as in Eq. by:

Fom i (e - =Qul) - fut (L= ple™ - |- =Qull)) - a0 7). (552)
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where p : R™ — R is the map from the proof of Fact Then the family (f,)eca extends
smoothly to a C*°-family of smooth diffeomorphisms on M. Moreover, it is close to the initial
family f4 as g, is close to fu. Finally, as in the non parametric case it verifies that for every a € A
the map f coincides with g, on B(Q,, €). ]

5.9 Perturbation of the 1-Jet

We shall now prove Lemma and its parametric counterpart Lemma [5.4.6]

Proof of Lemmal(5.3.4 There exists a local C'*-smooth chart ¢ defined on U of f(H) such that
©(f(H)) = 0 and ¢(U) = B. Since U is small we can moreover assume that it iterates f(U)
and U have empty intersection. For n sufficiently large we have ||¢(Q)|| < 1/2 and p(Q) < 1/2.
We will first construct a perturbation ¢ of the identity supported on U. Let v : R* — R3 be the
affine map given by:

T:peR = (@) +T - (p—¢(Q)), (5.9.1)

where I' € GL3(R) is the matrix given by:
I':= Dopolo(Dgp) . (5.9.2)
Note that v is close to identity affine map when n is large. Let
p:RT — R (5.9.3)

be a C*°-function such that equals to 1 on [0, 1/2] and equals 0 on [1, +00). Then we define the map
&:U — M for p € B by:

pocop(p)=p(IIpll3) - v(w) + (1= p (IIPl3)) - p (5.9.4)

coincides with the identity on a neighborhood of OU and then extends smoothly to the identity on
M. Note that this extension is close to identity on M. To conclude, it indeed holds:

§Q)=Q and Dyt =1(.

We are now ready to prove its parametric-counterpart:

Proof of Lemma(5.4.6 The proof is a corollary of the proof of Lemma Fora € A, let Ty, 7,

and &, be the maps given respectively by Eq. (5.9.2), Eq. and Eq. where p is given by
Eq. and the chart ¢ is chosen independently of the parameter. Then I', obviously depends

smoothly on the parameter a € A and so does 7, and then &,. O]
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