
HAL Id: tel-04906263
https://theses.hal.science/tel-04906263v1

Submitted on 22 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zero-knowledge arguments from secure multiparty
computation

Jules Maire

To cite this version:
Jules Maire. Zero-knowledge arguments from secure multiparty computation. Cryptography and
Security [cs.CR]. Sorbonne Université, 2024. English. �NNT : 2024SORUS403�. �tel-04906263�

https://theses.hal.science/tel-04906263v1
https://hal.archives-ouvertes.fr

Zero-Knowledge Arguments from
Secure Multiparty Computation

PhD THESIS IN COMPUTER SCIENCE

Presented by

Jules Maire

To obtain the degree of

DOCTOR of SORBONNE UNIVERSITÉ

Supervised by

Damien Vergnaud

Publicly defended on October 11, 2024

Jury:

Carsten Baum Associate Professor, Technical University of Denmark (reviewer)

Geo�roy Couteau CNRS Researcher, Institut de Recherche en Informatique Fondamentale

Jean-Marc Couveignes Professor, Université de Bordeaux (president)

Philippe Gaborit Professor, Université de Limoges

Emmanuela Orsini Assistant Professor, Bocconi University

David Pointcheval Senior CNRS Researcher, Ecole Normale Supérieure (reviewer)

Adeline Roux-Langlois CNRS Researcher, Université de Caen

Damien Vergnaud Professor, Sorbonne Université

2

ABSTRACT

�is thesis aims to study zero-knowledge arguments, a cryptographic primitive that allows to prove a statement while

yielding nothing beyond its truth (we may call it proof instead of argument depending on the security model). Speci�-

cally, we focus on a family of arguments whose construction is based on secure multiparty computation. It is well-known

that, given any functionality, there exists a secure multiparty protocol computing it. Let us take a generic one-way func-

tion f , and a secure multiparty protocol computing f , then it has been shown seventeen years ago that we can build

a zero-knowledge argument for the NP-problem of �nding a pre-image of f . �is construction was considered only

theoretical until a few years ago, and this thesis contributes to the emergence of new techniques as well as e�cient

applications.

As an appetizer, we develop simple zero-knowledge protocols that signi�cantly improve the state-of-the-art com-

munication complexity for some well-known problems. Our �rst substantial contribution, with a desire to share small

elements over large �elds, is the introduction of a sharing over the integers that is securely embedded in our proto-

cols with some arti�cial abortion. Applications are manifold, eventually in the post-quantum regime. In the line with

our sharing over the integers, we propose a cryptographic string commitment scheme based on subset sum problems.

In particular, it enables e�cient arguments for circuit satis�ability. �en, we present a proof construction employing

conversion between additive and multiplicative secret sharings, leading to e�cient proofs of linear and multiplicative

relations. �e applications are again manifold when designing arguments and digital signatures. Finally, leaving aside

protocols conception, we explore cryptography foundations with multi-prover zero-knowledge proofs, a framework for

distributing the prover’s computation of interactive zero-knowledge proofs. To capture the full interest of this dispatch-

ing, we add to the literature a fundamental result for threshold zero-knowledge proofs for generic NP-statement.

ACKNOWLEDGEMENTS

In the 4th-5th century AD, in Book XI of his Confessions, Saint Augustin wrote the following: “What then is time? If no

one asks me, I know; if I want to answer this question, I don’t know”. Although far removed from Augustine’s re�ections

on the theme of time, I draw an analogy with what I experienced during my thesis. �ese three years of research have

made me aware of one primordial thing: scienti�c research is a perpetual questioning of one’s knowledge, and certainty

without re�ection and questioning is only illusion. In this respect for having challenged me and made me conscious of

this adage, I would like to thank the researchers I came across during my studies at EPFL: Philippe Michel, Clément

Hongler, at CISPA: Antoine Joux, and during my thesis: Damien Vergnaud.

�ese last years have been a journey I’m grateful to have shared with all the Almasty team as well as friends asso-

ciated to the team, with all the cryptographers I have ever met from near or far, and with all my friends and family. A

special mention to Damien Vergnaud for his kindness and always sound advice. Discussions with you were always very

rewarding, and your many innovative ideas and wide-ranging knowledge have been enriching in many ways.

CONTENTS

1. Cryptography . 8

1.1 Zero-Knowledge Proofs . 8

1.2 P versus NP Problem . 8

1.3 Provable Security . 9

1.4 Secure Multiparty Computation . 9

1.5 Organization of this �esis . 10

1.6 Our Results . 10

1.7 Our Other Contribution . 11

2. Preliminaries . 13

2.1 Notations . 13

2.2 Cryptographic Primitives . 13

2.2.1 Cryptographic hash functions . 13

2.2.2 Pseudo-random generator . 13

2.2.3 Commitment schemes . 14

2.3 Zero-Knowledge Proofs . 15

2.3.1 Spli�ing lemma . 16

2.3.2 Non-interactive proofs . 16

2.4 Secure Multiparty Computation . 16

2.4.1 Secret sharing schemes . 17

2.4.2 Secure multiparty computation . 18

3. �e MPC-in-the-Head Paradigm . 20

3.1 �e Framework . 20

3.1.1 Construction of the interactive proof . 20

3.1.2 Security and complexity analysis . 21

3.2 Symmetric Optimizations . 22

3.2.1 GGM trees . 22

3.2.2 Parallel optimization of GGM trees . 22

3.3 MPC Modeling Optimizations . 23

3.3.1 Hypercube optimization . 23

3.3.2 Batch product veri�cation . 24

3.3.3 Cut-and-choose strategy . 24

3.4 Examples and First Contributions . 25

3.4.1 RSA-in-the-Head [MV23b] . 25

3.4.2 DDLP-in-the-Head [MV23b] . 26

4. Zero-Knowledge Protocols with Sharing over the Integers . 28

4.1 Introduction . 28

4.1.1 Prior works . 28

4.1.2 Contributions . 29

4.2 General Idea . 29

4.2.1 �e naive approach . 29

4.2.2 Sharing on the integers and opening with abort . 30

4.2.3 Binarity proof from batch product veri�cation . 31

4.2.4 Binarity proof from masking and cut-and-choose strategy . 32

4.2.5 Asymptotic Analysis . 33

4.3 Protocols and Security Proofs . 33

4.3.1 Protocol with batch product veri�cation . 33

4.3.2 Security proofs for Protocol 5 . 35

4.3.3 Protocol with cut-and-choose strategy . 39

Contents 6

4.3.4 Security proofs for Protocol 6 . 40

4.3.5 Decreasing the rejection rate . 43

4.4 Instantiations and Performances . 44

4.4.1 Subset Sum instances . 44

4.4.2 Zero knowledge protocols . 44

4.4.3 Comparison with generic techniques . 45

4.5 Further Applications . 45

4.5.1 Short Integer Solution Problem . 46

4.5.2 Fully Homomorphic Encryption . 46

4.5.3 Digital signatures from Boneh-Halevi-Howgrave-Graham PRF . 48

4.6 Commitments with E�cient Zero-Knowledge Arguments . 51

4.6.1 Contributions . 51

4.6.2 Subset sum problems . 51

4.6.3 String commitments from subset sum problems . 52

4.6.4 Formal description and security analysis . 52

4.6.5 Zero-knowledge arguments of opening . 53

4.6.6 Zero-knowledge arguments for Boolean relations . 55

4.6.7 XOR gates . 57

4.6.8 Instantiation and performances . 58

4.6.9 Arguments for circuit satis�ability . 58

5. Zero-Knowledge Arguments via Sharing Conversion . 60

5.1 Related Works and Contributions . 60

5.2 Sharing Conversion and Design Principle . 61

5.2.1 Sharing conversion technique . 61

5.2.2 General protocol . 61

5.2.3 Legendre PRF . 63

5.3 Proving Knowledge of a Double Discrete Logarithm . 63

5.3.1 Performances . 64

5.3.2 Security proofs . 64

5.4 Proving Knowledge of a PKP Solution . 66

5.4.1 A �rst approach for proving the knowledge of a permutation . 66

5.4.2 Security proofs . 67

5.4.3 Other analysis and approach . 68

5.5 Proving Knowledge of a Fewnomial Pre-Image . 68

5.5.1 Protocol and performances . 69

5.5.2 Security proofs . 69

5.5.3 Digital signature based on the FIP . 69

6. �reshold Proofs from Secure Multiparty Computation . 71

6.1 Introduction . 71

6.2 �reshold Zero-Knowledge Proof System . 74

6.2.1 TZKP proof system . 74

6.3 A Black-Box Construction for TZKP . 76

6.3.1 First layer: MPC protocol between the provers . 76

6.3.2 Second layer: MPC protocols in the head of provers . 76

6.3.3 A TZKP protocol . 77

6.4 A Construction Based on VSS-BGW . 79

6.4.1 BGW protocol and its robustness . 80

6.4.2 Veri�able secret sharing scheme . 80

6.4.3 Multiplicative gate protocol . 81

6.5 Low-Depth Arithmetic Circuits and Applications . 81

6.5.1 Achieved complexity . 82

6.5.2 Turning TZKP into a non-interactive proofs system . 83

6.5.3 Applications . 83

Appendix 94

A. �e 3-round Variant of Protocol 6 . 95

Contents 7

B. Signature Schemes with Subset Sum Problem . 96

C. Zero-Knowledge Argument for Boneh-Halevi-Howgrave-Graham PRF . 98

D. Description of Protocols 16, 17, and 18 . 99

E. Description of the Access Structure for our TZKP . 102

F. Veri�able Secret Sharing Scheme . 103

1. CRYPTOGRAPHY

�e Dictionnaire de l’Académie française de�nes cryptography as l’art d’écrire en langage codé, secret, chi�ré, or in en-

glish, the art of writing in coded, secret or encrypted language. Although this de�nition was satisfactory for a long time,

it does not re�ect the core of modern cryptography. Since the end of the 20th century, cryptography has become a

more rigorous science relying on a richer theory, encompassing many other aspects than this de�nition. Especially,

researchers started to establish mathematical de�nitions of security for cryptographic schemes, then to design schemes

hoping that they will meet the security models previous de�ned, and �nally to ask whether the designs meet the secu-

rity de�nitions. While designing algorithm performing speci�c tasks in a context where users running the algorithm

trustworthy could be relatively easy, security models may require the design of schemes in an untrusted adversarial

environment. �is brings us to the necessity of the notion of proofs lying at the heart of cryptography: if we do not

trust an adversary (and so her statement), it is natural to ask for a proof that the statement is true. However, proofs in

mathematics are inherently reproducible in the sense that once one has veri�ed a proof, one gets the ability to present

the same proof to others and convince them to the statement. In other words, one learns more than just the validity of

the proof and of the truthiness of the statement. Hence, we should look at a major conceptual expansion of the notion

of proof.

1.1 Zero-Knowledge Proofs

Many cryptographic applications need to handle with a class of proofs that do reveal nothing else than the validity

of the statement being proven. �is stronger notion may seem counterintuitive at �rst glance, and many people were

skeptical when Goldwasser, Micali, and Racko� in [GMR89] o�ered an innovative idea by introducing randomization

and interaction to achieve this goal. �ey viewed a proof as an interactive protocol between two parties, a prover and a

veri�er, who communicate with each other. In this context, proofs can be probabilistic (i.e., both parties can �ip coins)

and interactive (i.e., the veri�er may ask questions to the prover). More precisely, the questions from the veri�er are

random challenges, and in order to convince the veri�er of the truthfulness of the statement, the prover sends respective

responses. At the end, the veri�er should be convinced (with high probability) that the statement is true. Amazingly, it

is possible to guarantee that the veri�er learns essentially nothing else from the interaction. �is leads to a major class

of proofs and a powerful tool in the construction of cryptographic protocols: zero-knowledge proof systems (ZKP). On

the way to a formal de�nition, a zero-knowledge proof should satisfy:

(i) correctness: if the statement is true, and the prover knows a proof of it, they will succeed in convincing the

veri�er;

(ii) soundness: if the statement is false, no prover can convince the veri�er of the truth of the statement, except with

small probability;

(iii) zero-knowledge: the interaction yields nothing beyond the fact that the statement is true.

From a security perspective, the zero-knowledge property aims to protect the prover against the veri�er: their private

input should not leak in any way. While the soundness protects the veri�er against a malicious prover who does not

know a valid proof.

ZKP have found numerous applications in cryptography, notably for privacy-preserving schemes or to enforce hon-

est behaviour of users during protocols. Moreover, we may use the term of zero-knowledge argument (ZKA) when the

security model assumes that the (potentially malicious) prover is computationally bounded, leading to a weaker notion

of ZKP.

A central primitive in cryptography are commitment schemes [Blu82]. It is a cryptographic protocol that enables

one party to commit to a value without revealing it, while ensuring that this value cannot be modi�ed. In constructing

sophisticated cryptographic protocols, it can be necessary to prove properties of a commi�ed message without revealing

anything else than the validity of these properties. �is is usually achieved through the use of ZKP.

1.2 P versus NP Problem

In theoretical computer science, the complexity classNP refers to the problems for which solutions can be veri�ed ef-

�ciently. In other words,NP can be seen as the set of all statements that can be proven e�ciently (without considering

1. Cryptography 9

how hard it might be to �nd the proof). �is makesNP an object of deep philosophical interest, as the famous and fun-

damental question of whetherNP is contained in P essentially amounts to asking whether proofs are computationally

harder to �nd than they are to verify.

�us, the class of problemsNP is of utmost importance for this thesis, since ZKP/ZKA should be built on top of these

problems. Moreover, an answer to the question “P vs. NP” would have a tremendous impact, because ifNP collapsed

to P , then this would prove that one-way functions do not exist (a function that is easy to compute on every input,

but hard to invert given the image of a random input). �at in turn would imply that almost no secure cryptographic

primitives could then be proven secure (according to the chosen de�nitions of security), although it does not mean that

all these schemes would be broken in practice.

Furthermore, Goldreich, Micali and Wigderson [GMW91] proved that every NP problem has a ZKP (assuming

secure bit commitment).

1.3 Provable Security

Although a cryptographic scheme may have some security properties (e.g. privacy, authenticity, etc.), we have not yet

discussed how to prove that such a scheme achieves them. Traditionally, the most common method to gain con�dence

in the security of a scheme was to look for a�acks and conjecture it is secure if no a�acks were found that undermined

its security. However, this approach has a signi�cant limitation: we can never be sure that an a�ack does not exist.

Consequently, the security can only be considered heuristic at best, as the possibility of an undiscovered a�ack cannot

be ruled out.

Another method for proving the security of a cryptographic scheme, known as provable security, consists of linking

the scheme’s security with the security of its underlying primitives or computational problems. To accomplish this, one

must �rst de�ne the adversary’s capabilities and the security goals that the scheme must achieve. E.g., in a ZKA, the

malicious prover (who plays the role of the adversary here) is assumed to be computationally bounded by the security

model. �en, a reduction must be provided, demonstrating how an adversary that compromises the security goals of the

scheme can be transformed into an adversary against the security goals of the underlying primitives or computational

problems on which the scheme relies. Hence, one direct bene�t of provable security is that it eliminates the need

to search for speci�c a�acks against a scheme (as long as we trust that the underlying primitives are secure or the

computational problems are di�cult)

Post-quantum cryptography. In 1994, Shor [Sho94] introduced a quantum algorithm that could break some computa-

tional problems on which the security of most of the schemes of the time were based (via security reduction). More

precisely, his new a�acks could break cryptosystems based on the hardness of factoring large integers or solving dis-

crete logarithm problems. �is has emphasized the need for new cryptographic systems, leading to the emergence of a

new �eld, known as post-quantum cryptography, which focuses on creating cryptographic algorithms that are proven

secure against quantum (and classical) computers.

1.4 Secure Multiparty Computation

For many cryptographic applications as well as for theoretical aspects, we may consider a set of parties who want to

perform a collaborative computation using their private inputs. As security guarantees, it seems natural to require the

computation to satisfy correctness of the output and privacy of the inputs. �is conjoint computation is termed secure

multiparty computation (MPC). If they could all agree on a trusted third party, parties could delegate the computation to

this party: everyone would send their inputs to the trusted party and then receive back the result. However, the existence

of such a third party is o�en unrealistic. MPC aims to provide a protocol that the parties can execute themselves without

needing a trusted intermediary, and a �rst approach was introduced by Yao [Yao86] with garbled circuits.

A plethora of security models can be considered in which we want to prove the security of our MPC protocols, i.e.,

in which we wish our protocols to be correct and private. Let us focus on a security model tolerating the presence

of an internal adversary (not necessarily computationally bounded) who can corrupt a subset of the parties, and learn

their private inputs and outputs. �is adversary may either be passive (it has only access to their view of the protocol

execution), or active (it can make them deviate from the protocol). �erefore, the security notion we aim to achieve

is against an adversary, who corrupts a subset of the parties, gains access to their view, and may control them (in the

active se�ing). �is adversary should learn nothing about the other parties’ inputs (i.e. honest parties) beyond what can

be inferred from the corrupted parties’ inputs and outputs.

MPC-in-the-Head. In 2007, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07] demonstrated that MPC secure in the

passive se�ing is su�cient for constructing zero-knowledge protocols. �is theoretical paradigm, deemed MPC-in-the-

Head (MPCitH), has received considerable practical a�ention recently since it o�ers an elegant approach to constructing

e�cient and succinct ZKP with good security properties. In particular, it has been used to propose a series of innovative

signature schemes with alleged post-quantum security.

1. Cryptography 10

We previously mentioned that every NP problem has a ZKP. Essentially, MPCitH o�ers a framework for building

such a ZKP, by leveraging MPC techniques. In a nutshell, let us consider some one-way function f (it de�nes an NP-

language). �en the MPCitH paradigm can be summary as follows:

(i) �e prover mentally shares its secret witness (for the corresponding NP-statement) and emulates a passively

secure MPC protocol that computes f . �en the prover independently commits each party’s view and sends these

commitments to the veri�er.

(ii) �e veri�er challenges the prover to reveal the views of a strict subset of parties.

(iii) Once the veri�er receives these parties’ views, they can check that the partial execution of the MPC protocol for

the revealed parties is consistent (as well as the consistency of the commitments), and thus can accept or reject

the proof accordingly.

�e zero-knowledge property of the obtained ZKP relies on the privacy of the MPC protocol. �e completeness and

the soundness of the ZKP are based on the correctness of the MPC protocol. In particular for the soundness, a malicious

prover (that does not know a valid witness) would need to deceive at least one party to cheat, which the veri�er is likely

to detect if the MPC is correct.

�erefore, the security of the obtained ZKP only relies on the hardness of theNP-problem (assuming a secure com-

mitment scheme and pseudo-random generator). Hence, a post-quantum secure NP-problem implies a post-quantum

secure ZKP.

1.5 Organization of this �esis

In Chapter 2, we introduce the technical background with all the cryptographic building blocks met along this thesis. In

Chapter 3, we put forward the state-of-the-art of the MPC-in-the-Head paradigm with recent optimizations and �our-

ished variants. Especially, we bring to the fore two simple contributions [MV23b] as appetizer and by way of educative

example. �e following chapters contain the heart of the ma�er. Chapter 4 deals with sharing over the integers for the

MPCitH se�ing with many applications [FMRV22, MV23a]. Chapter 5 addresses a conversion sharing technique for the

MPCitH paradigm, again with e�cient protocols for di�erent hard problems [MV23b]. Finally, Chapter 6 proposes a

new paradigm for building generic threshold proofs.

1.6 Our Results

Zero-Knowledge Protocols with Sharing over the Integers [FMRV22]

In Chapter 4, we propose zero-knowledge arguments for the modular subset sum problem. Given a set of integers, this

problem asks whether a subset adds up to a target integer t modulo a given integer q. �is NP-complete problem is

considered since the 1980s as an interesting alternative in cryptography to hardness assumptions based on number

theory and it is in particular believed to provide post-quantum security. Previous combinatorial approaches, notably

one due to Shamir, yield arguments with cubic communication complexity (in the security parameter). More recent

methods, based on the MPC-in-the-Head technique, also produce arguments with cubic communication complexity.

We improve this approach by using a secret-sharing over small integers (rather than modulo q) to reduce the size

of the arguments and remove the prime modulus restriction. Since this sharing may reveal information on the secret

subset, we introduce the idea of rejection to the MPC-in-the-head paradigm. Special care has to be taken to balance

completeness and soundness and preserve zero-knowledge of our arguments. We combine this idea with two techniques

to prove that the secret vector (which selects the subset) is well-formed of binary coordinates. Our new techniques have

the signi�cant advantage to result in arguments of size independent of the modulus q.

Our new protocols for the subset sum problem achieve an asymptotic improvement by producing arguments of

quadratic size (against cubic size for previous proposals). �is improvement is also practical: for a 256-bit modulus q,

the best variant of our protocols yields 13KB arguments while previous proposals gave 1180KB arguments, for the best

general protocol, and 122KB, for the best protocol restricted to prime modulus. Our techniques can also be applied to

vectorial variants of the subset sum problem and in particular the inhomogeneous short integer solution (ISIS) problem

for which they provide an e�cient alternative to state-of-the-art protocols when the underlying ring is not small and

NTT-friendly. We also show the application of our protocol to build e�cient zero-knowledge arguments of plaintext

and/or key knowledge in the context of fully-homomorphic encryption. When applied to the TFHE scheme, the obtained

arguments are more than 20 times smaller than those obtained with previous protocols. Eventually, we use our technique

to construct an e�cient digital signature scheme based on a pseudo-random function due to Boneh-Halevi-Howgrave-

Graham.

1. Cryptography 11

Commitments with E�cient ZK Arguments [MV23a]

A second part of the Chapter 4 presents a cryptographic string commitment scheme that is computationally hiding

and binding based on (modular) subset sum problems (hence that is believed to provide post-quantum security). Using

techniques developed along Chapter 4, this simple commitment scheme enables an e�cient zero-knowledge proof of

knowledge for commi�ed values as well as proofs showing Boolean relations amongst the commi�ed bits. In particular,

one can prove that commi�ed bits m0,m1, . . . ,m` satisfy m0 = C(m1, . . . ,m`) for any Boolean circuit C (without

revealing any information on those bits). �e proof system achieves good communication and computational complexity

since for a security parameter λ, the protocol’s communication complexity is Õ(|C|λ+ λ2) (compared to Õ(|C|λ2) for

the best code-based protocol due to Jain, Krenn, Pietrzak and Tentes).

Zero-Knowledge Arguments via Sharing Conversion [MV23b]

Chapter 5 deals with a novel technique within the MPC-in-the-Head framework, aiming to design e�cient zero-knowledge

protocols and digital signature schemes. �e technique allows for the simultaneous use of additive and multiplica-

tive sharings of secret information, enabling e�cient proofs of linear and multiplicative relations. �e applications of

our technique are manifold. It is �rst applied to construct zero-knowledge arguments for Double Discrete Logarithms

(DDLP) (which turns out to be less e�cient than our other ZKP for the DDLP presented in Chapter 3). �e resulting

protocol achieves improved communication complexity without compromising e�ciency compared to the state-of-the-

art. We also propose a new zero-knowledge argument of knowledge for the Permuted Kernel Problem. Eventually, we

suggest a short (candidate) post-quantum digital signature scheme constructed from a new one-way function based on

simple polynomials known as fewnomials. �is scheme o�ers simplicity and ease of implementation.

�reshold Zero-Knowledge Proofs

In Chapter 6, we explore multi-prover zero-knowledge proofs that distribute the prover’s computation in interactive

zero-knowledge protocols. To capture the full interest of this dispatching, we focus on threshold proofs, where any

large enough subset of provers is able to conjointly convince the veri�er. Our work falls within the scope of auditable

MPC but stands out compared to previous works by being robust, adaptable to threshold se�ings, post-quantum secure,

and generic. Hence, it helps bridge the gap in threshold cryptography by providing an additional tool for veri�able

computation with shared inputs. Concretely, our approach is based on MPC and allows any su�ciently large subset of

provers to produce a valid proof, ensuring robust security in the active se�ing. We then propose a black-box construction

that emulates MPC protocols within the provers’ minds to verify computations. To address practical concerns, we

develop a non-signaling variant for low-depth arithmetic circuits. Its versatility and simplicity o�ers a new approach

for e�ective, post-quantum threshold protocols, leveraging recent advancements in the MPC-in-the-Head world.

1.7 Our Other Contribution

Secure Multi-Party Linear Algebra with Perfect Correctness [MV24]

�is works presents new secure multi-party computation protocols for linear algebra over a �nite �eld, which im-

prove the state-of-the-art in terms of security. We look at the case of unconditional security with perfect correctness,

i.e., information-theoretic security without errors. We notably propose an expected constant-round protocol for solv-

ing systems of m linear equations in n variables over Fq with expected complexity O(k(n2.5 +m2.5 +n2m0.5)) where

k > m(m+n)+1 (complexity is measured in terms of the number of secure multiplications required). �e previous pro-

posals were not error-free: known protocols can indeed fail and thus reveal information with probability Ω(poly(m)/q).

Our protocols are simple and rely on existing computer-algebra techniques, notably the Preparata-Sarwate algorithm,

a simple but poorly known “baby-step giant-step” method for computing the characteristic polynomial of a matrix, and

techniques due to Mulmuley for error-free linear algebra in positive characteristic.

PERSONAL PUBLICATIONS

[FMRV22] T. Feneuil, J. Maire, M. Rivain, and D. Vergnaud. Zero-knowledge protocols for the subset sum problem from

mpc-in-the-head with rejection. In S. Agrawal and D. Lin, eds, Advances in Cryptology - ASIACRYPT 2022

- 28th International Conference on the �eory and Application of Cryptology and Information Security, Taipei,

Taiwan, December 5-9, 2022, Proceedings, Part II, vol. 13792 of Lecture Notes in Computer Science, p. 371–402.

Springer, 2022.

[MV23a] J. Maire and D. Vergnaud. Commitments with e�cient zero-knowledge arguments from subset sum prob-

lems. In G. Tsudik, M. Conti, K. Liang, and G. Smaragdakis, eds, Computer Security - ESORICS 2023 - 28th

European Symposium on Research in Computer Security, �e Hague, �e Netherlands, September 25-29, 2023,

Proceedings, Part I, vol. 14344 of Lecture Notes in Computer Science, p. 189–208. Springer, 2023.

[MV23b] J. Maire and D. Vergnaud. E�cient zero-knowledge arguments and digital signatures via sharing conversion

in the head. In G. Tsudik, M. Conti, K. Liang, and G. Smaragdakis, eds, Computer Security - ESORICS 2023

- 28th European Symposium on Research in Computer Security, �e Hague, �e Netherlands, September 25-29,

2023, Proceedings, Part I, vol. 14344 of Lecture Notes in Computer Science, p. 435–454. Springer, 2023.

[MV24] J. Maire and D. Vergnaud. Secure multi-party linear algebra with perfect correctness. IACR Commun. Cryptol.,

1(1):29, 2024.

2. PRELIMINARIES

2.1 Notations

Let Fq be the �nite �eld with q elements for a prime power q, and let F denotes any �nite �eld. For the sake of simplicity,

we denote the set of integers {m, . . . , n} by [m,n] with m < n. �e transpose operator is wri�en as ·T . All logarithms

are in base 2. Given m,n ∈ N, we may write m = poly(n) when there exists some c ∈ N such that m = O(nc). Pr
denotes a probability function.

For computationally secure algorithms encountered in this thesis, λ denotes the security parameter and is given to

them as input in the unary form 1λ. Algorithms may be wri�en with a special fontA, andARO
refers to an algorithm with

black-box access to a random oracle RO, and is called a random-oracle algorithm. Unless otherwise stated, algorithms

are randomized, and PPT stands for “probabilistic polynomial-time” in the security parameter. Random sampling from

a �nite set X according to the uniform distribution is denoted by x
$←− X . �e symbol

$←− is also used for assignments

from randomized algorithms, and the symbol← is used for assignments from deterministic algorithms and calculations.

We might denote integer vectors in bold print. Given two vectors x and y, x‖y denotes their concatenation, and if

they have the same length, 〈x,y〉 denotes their inner-product, and x ◦ y denotes the component-wise product.

2.2 Cryptographic Primitives

Security criteria. A cryptographic scheme is said to be information-theoretic secure, if it is secure against a computa-

tionally unbounded adversary (in terms of time and storage resources). While a scheme whose security depends on the

computational capabilities of the adversary, and that can be broken by a computationally unbounded adversary, is called

computationally secure.

De�nition 1 (Negligible function). A function ν(·) is negligible if it is asymptotically smaller than the inverse of any

polynomial: for every constant c ∈ R>0 and all su�ciently large n ∈ N, we have ν(n) ≤ 1/nc.

2.2.1 Cryptographic hash functions

Cryptographic hash functions are a major building block for primitives like zero-knowledge proofs, digital signatures,

message authentication code, etc.

A hash algorithm is any function that maps a message of arbitrary length to a �xed-length message digest. A

cryptographic hash function H is a hash algorithm that should be collision resistance: It is computationally infeasible to

�nd two di�erent inputs x 6= x′ such thatH(x) = H(x′).

De�nition 2 (Collision-resistant hash functions). Let m, `, µ : N → N be some functions. A family of functions {Hk :
{0, 1}m(k) → {0, 1}`(k)}k∈{0,1}µ(λ) for a security parameter λ, is a family of collision-resistant hash functions if |m(k)| >
|`(k)|, everyHk can be computed within polynomial time given k, but there exists a negligible function ν such that, for any

PPT algorithm A, we have

Pr[x1 6= x2,Hk(x1) = Hk(x2) | (x1, x2)← A(k, 1λ), k ← {0, 1}`(λ)] < ν(λ).

2.2.2 Pseudo-random generator

A pseudo-random generator (PRG) is an algorithm that takes as input a seed, which generates a bitstring containing

more bits than the seed, and whose distribution is indistinguishable from the distribution of a random string. �is

indistinguishable condition amounts to showing that there exists no e�cient algorithm which can distinguish the PRG
output from true randomness, as soon as the seed is randomly selected.

De�nition 3 (Indistinguishable distributions). Let t : N → N and ε : N → [0, 1] be two functions, with ε a negligible

function. Two distributions {Dλ}λ and {D̃λ}λ are deemed (t, ε)-indistinguishable if, for any algorithm A running in time

at most t(λ), we have

|Pr[A(1λ, x) = 1 | x $←− Dλ]− Pr[A(1λ, x) = 1 | x $←− D̃λ]| ≤ ε(λ).

2. Preliminaries 14

De�nition 4 (Pseudo-random generator). Given an additional function ` : N→ N, a (`, t, ε)-pseudo-random generator

is a deterministic algorithm G that, for all λ ∈ N, on input a bit-string x ∈ {0, 1}λ outputs G(x) ∈ {0, 1}`(λ)
such that

(i) `(λ) > λ (expansion);

(ii) the distributions {G(x) | x $←− {0, 1}λ} and {r | r $←− {0, 1}`(λ)} are (t, ε)-indistinguishable (pseudorandomness).

Randomness in cryptography is fundamental because it aims to hide secrets that have no reason to be random.

Moreover, it ensures, for example, that cryptographic keys are truly random. Without true randomness, cryptographic

systems may become vulnerable in an adversarial environment. However, surprising as it may seem, producing true

randomness is very expensive. Indeed, it is impossible to generate truly random numbers from deterministic machine

like computers, except if we rely on physical phenomena, hence producing such a large quantity of randomness is costly.

A solution would be to rely on PRG to generate such a large quantity of random numbers using a computer, since it is

well-known for a long time that PRG is equivalent to one-way functions [HILL99], and once we have produced a seed

using true randomness, we can call to the PRG with this seed.

2.2.3 Commitment schemes

A commitment scheme [Blu82] is a fundamental primitive in cryptography, since it enables a commi�er party to lock a

value inside a metaphorical sealed le�er, ensuring that no one can distinguish the actual value (hiding property), while

simultaneously preventing this commi�er from opening the commitment in more than one way (binding property).

De�nition 5 (Commitment scheme). A commitment scheme is a triple of algorithms (Setup,Com,Ver) such that:

• Setup(1λ)→ pp. On input λ, the setup PPT algorithm outputs the public parameters pp containing a description of

the message spaceM.

• Com(pp,m)→ (c, aux). On input pp and m ∈M, the commit PPT algorithm outputs a commitment-opening pair

(c, aux).

• Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp, m ∈ M and (c, aux), the verifying (or opening) deterministic

polynomial-time algorithm outputs a bit b ∈ {0, 1}.

Moreover, it satis�es the following correctness property: for all λ ∈ N,

Pr[Ver(pp,m, c, aux) = 1 | pp $←− Setup(1λ),m
$←−M, (c, aux)

$←− Com(pp,m)] = 1.

Eventually, the public parameter input pp will be made implicit in the calls to Com, and Ver. �ere are two security

notions underlying a commitment scheme.

De�nition 6. Let t : N → N and ε : N → [0, 1] be two functions, with ε a negligible function. A commitment scheme

(Setup,Com,Ver) is said:

• (t, ε)-computationally hiding if, for any two messages m1,m2, the distributions {c | c $←− Com(m1)} and {c | c $←−
Com(m2)} are (t, ε)-indistinguishable, i.e., if for all two-phases algorithm A = (A1,A2), we have for all λ ∈ N:

Pr

[
b = b′

∣∣∣∣∣ pp $←− Setup(1λ), (m0,m1, s)
$←− A1(pp), b

$←− {0, 1}
(c, aux)

$←− Com(pp,mb), b
′ $←− A2(c, s)

]
≤ 1

2
+ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

• (t, ε)-computationally binding if for all PPT algorithm A, we have for all λ ∈ N:

Pr

 m1 6= m2

Ver(pp,m1, c, aux1) = 1
Ver(pp,m2, c, aux2) = 1

∣∣∣∣∣ pp $←− Setup(1λ),

(m1,m2, aux1, aux2, c)
$←− A(1λ, pp)}

 ≤ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

In constructing sophisticated cryptographic protocols, it can be necessary to prove some property of a commi�ed

message without revealing anything more than the property itself. �is is usually achieved through the use of zero-

knowledge proofs of knowledge [GMR89]. �is commit-and-prove paradigm [Kil89, CLOS02] is used in many areas of

applied cryptography (anonymous credentials, electronic voting, etc.).

2. Preliminaries 15

2.3 Zero-Knowledge Proofs

Previous cryptographic primitives met in this thesis were non-interactive algorithms, but can be used as building blocks

for more complex interactive protocols. Informally, the goal of an interactive proof is to convince someone that a

certain statement is true. �e ability to prove such statements is very useful in many cryptographic applications. �ese

proofs were introduced in a series of papers in the 1980s, culminating in the seminal work of Goldwasser, Micali and

Racko� [GMR89] that also de�ned the notion of zero-knowledge proofs, proofs where the veri�er entity essentially learns

nothing else than the validity of the proof.

Languages. A language L for a binary relationR is a set of words in {0, 1}∗ de�ned as:

L = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗,R(x,w) = 1}.

Given x ∈ {0, 1}∗, “x ∈ L” is called a statement, and ifR(x,w) = 1 (we may equivalently write (x,w) ∈ R), then w is

said to be a witness for this statement.

Complexity class NP . �e class NP is de�ned by all the statements for the truth of which a short proof exists, and

can be veri�ed in reasonable time. In more speci�c terms, the proof size and the veri�cation running time have to be

bounded by a polynomial in the size of the statement.

We could de�ne the notion of interactive proofs for languages not in NP , but then the result from [GMW91]

−demonstrating that every NP-problem has a zero-knowledge proof− does not hold anymore.

De�nition 7 (Interactive proofs of knowledge). Let L be any NP-language with binary relation R. Let us consider

two algorithms, a prover P and a veri�er V, such that P is probabilistic but not computationally bounded, while V is a PPT

algorithm. Both algorithms are given a common input statement x, and P is given an additional witness w for “x ∈ L”. �e

two algorithms exchange poly(|x|) messages until V outputs a bit b (b = 1 to accept P’s claim and b = 0 to reject). �is

sequence of messages and the answer b is referred to as a transcript and is denoted as 〈P(x,w),V(x)〉.
Let us consider two functions ε, α : N→ [0, 1], then 〈P(x,w),V(x)〉 is an interactive proof of knowledge (PoK) for the

statement “x ∈ L” with soundness error ε and α-completeness if:

• α-completeness: given (x,w) ∈ R, then for all λ ∈ N,

Pr[〈P(x,w),V(x)〉 = 1] ≥ 1− α(λ) .

In other words, for a true statement, P succeeds in convincing V except with probability α. When α = 1, the proof

achieves perfect completeness.

• ε-(special) soundness: for all computationally unbounded algorithm P̃ such that for all λ ∈ N and all x ∈ {0, 1}∗,

ε̃(λ) := Pr[〈P̃(x),V(x)〉 = 1] > ε(λ) ,

there exists a PPT algorithm E (called extractor) which, given rewindable black-box access to P̃ outputs a witness w
such that (x,w) ∈ R in time poly(λ, (ε̃− ε)−1

) with probability at least 1/2.

Remark 1. 1. �e soundness property ensures that the algorithm P̃ without knowledge of a valid witness, cannot con-

vince V with probability greater than ε (this includes cases where the statement is false). Otherwise, the existence of

E implies that P̃ can use it to compute a valid witness w for x ∈ L. In particular, the extractor E is assumed to be PPT

in the formalism where a request to an oracle (here to P̃) takes a constant time.

2. We could provide a de�nition without extractor for the soundness, resulting in a proof of membership, where at

the end of the interactions, V is only convinced of the existence of witness for the statement “x ∈ L”. Whereas the

formalism of the soundness with an e�cient extractor capable of recovering the witness yields to a stronger notion of

soundness known as either special-soundness or knowledge-soundness, and additionally demonstrates that P knows

the witness (it can be necessary for applications where authentication is required).

3. If P was assumed computationally bounded (therefore PPT), it would result in the weaker notion of interactive argu-

ment of knowledge.

4. �e number of exchange messages is in poly(|x|) to get an e�cient proof.

5. In the soundness property, we assume that E has a rewindable oracle access to P̃, and this may lead to proofs that are

not straight-line extractable and not tight.

�ese PoK can have the additional property of zero-knowledge, captured by requiring the existence of a simulator

algorithm that does not take the secret witness for the statement as input and that can produce a transcript for the

interactive protocol that is closely distributed to a real transcript, by having a black-box access to the veri�er.

2. Preliminaries 16

De�nition 8 (Zero-knowledge proof of knowledge). Let L be anyNP-language with binary relationR, and let t : N→
N, ζ : N→ [0, 1] be two functions. Consider a PoK between P and V for the statement “x ∈ L”, with the same notations and

assumptions as in De�nition 7. �en, 〈P(x,w),V(x)〉 is a zero-knowledge proof of knowledge (ZKPoK) for the statement

“x ∈ L” with (t, ζ)-zero-knowledge if:

• (t, ζ)-zero-knowledge: for every PPT algorithm Ṽ, there exists a PPT algorithm Sim (called simulator) which, given

the input statement x and rewindable black-box access to Ṽ, outputs a simulated transcript whose distribution is

(t, ζ)-indistinguishable from 〈P(x,w), Ṽ(x)〉.

Remark 2. 1. To achieve a targeted soundness error, we will perform parallel executions of the protocol. Such parallel

repetitions do not preserve (general) zero-knowledge and the resulting scheme only achieves zero-knowledge property

for a genuine veri�er. �e protocol is then deemed special honest-veri�er zero-knowledge. In that case, Sim is given

random challenges instead of a rewindable black-box access to the veri�er (since a genuine veri�er is supposed to

choose their challenges randomly in the corresponding set of challenges). Hence, for the time being, one only considers

special honest-veri�er zero-knowledge proofs.

2. We may denote by ZKP any zero-knowledge proof of membership (not necessarily a proof of knowledge), and by ZKA

any zero-knowledge argument of membership.

2.3.1 Spli�ing lemma

In our security proofs for the soundness, we shall make use of the following lemma from [PS00]:

Lemma 1 (Spli�ing lemma). Let X and Y be two �nite sets, and let A ⊆ X × Y such that

Pr
[
(x, y) ∈ A | (x, y)

$←− X × Y
]
≥ ε .

For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ $←− Y

]
≥ (1− α)ε

}
.

�en one has:

(i) Pr
[
(x, y) ∈ B | (x, y)

$←− X × Y
]
≥ αε

(ii) Pr
[
(x, y) ∈ B | (x, y)

$←− A
]
≥ α .

2.3.2 Non-interactive proofs

So far, we have encountered only interactive proofs, but there are several methods to convert an interactive proof into

a non-interactive one. One widely used technique is the Fiat-Shamir heuristic [FS87], which transforms Σ-protocols (a

class of zero-knowledge protocols with public-coin properties) into non-interactive zero-knowledge proofs (NIZK). �is

transformation is particularly useful for creating digital signatures in the random oracle model.

�e key idea behind the Fiat-Shamir heuristic is to replace the interactive veri�er’s random challenges with a de-

terministic process: instead of the veri�er issuing random challenges, the prover generates these challenges by hashing

certain public values from the protocol. �is hash function serves as a “random oracle”, simulating the randomness

needed for the challenge. �e prover computes the hash using public information from the interaction, which replaces

the need for a back-and-forth exchange with the veri�er. By doing so, the proof becomes non-interactive, as the veri�er

no longer needs to actively participate in generating the challenge. �is technique has wide applications, particularly

in constructing digital signatures, as it allows proofs and veri�cations to be conducted in a single, non-interactive step,

reducing complexity and making the process more e�cient for real-world use.

2.4 Secure Multiparty Computation

Multiparty computation considers the scenario where a set of parties wish to perform a collaborative computation of

some function. �e aim of secure multiparty computation (MPC) is to allow parties to execute such distributed computing

with some security guarantees. Applications range from privacy-preserving schemes to threshold cryptography, and

more. Consequently, MPC has been a highly researched topic since its introduction in 1986 by Yao for the two-party

case [Yao82], and by Goldreich, Micali and Wigderson for the multiparty case [GMW87]. Several paradigms have been

developed through the years for designing MPC protocols. Garbled circuits allow the parties to build an encrypted

version of the circuit that can be computed only once, thus requiring few communication rounds but typically demanding

high bandwidth. Homomorphic encryption techniques, which are especially suitable for highly distributed computations,

although they can impose a substantial computational burden. Finally, a very popular method—and the technique that

we will focus on in this thesis—is linear secret-sharing schemes. �is approach allows parties to maintain distributed

computation throughout the process until the �nal output is achieved.

2. Preliminaries 17

2.4.1 Secret sharing schemes

A central building block in distributed computation are secret sharing schemes. It allows a dealer to distribute a secret to

n users in such a way that any large enough set of users can jointly reconstruct the secret from their shares, whereas any

small subset of users can’t derive any information on the secret. We call this scheme linear if any linear combination of

valid shares results in a valid share of the linear combination of the respective secrets. We focus on information-theoretic

secure schemes.

De�nition 9 (Linear secret sharing schemes). A linear secret-sharing scheme (t, n)-LSSS consists of three polynomial-time

algorithms:

• LSSS.Setup outputs the system parameters pp including descriptions of: a �nite �eld F, two vector spaces V1 (secret

space) and V2 (share space) over F, the number of users n, and the privacy/reconstruction threshold t.

• LSSS.Share : V1×R→ Vn2 . On input the secret s ∈ V1 and some randomness from a randomness spaceR ⊂ {0, 1}∗,
outputs n shares (JsKi)i∈[1,n] := JsK ∈ Vn2 . We may informally write LSSS.Share(s) by keeping silent on the

randomness.

• LSSS.Reconstruct : V|I|2 → V1. On input a set of shares (JsKi)i∈I ∈ V|I|2 (with a set of users I ⊆ [1, n]) and a

description of the set I , outputs a secret s ∈ V1 or ⊥ denoting failure.

Moreover, an LSSS should satisfy the following properties:

(i) t-reconstructability: For any pp ← LSSS.Setup, any secret s ∈ V1, any sharing (JsKi)i∈[1,n] ← LSSS.Share(s), and

any subset I ⊆ [1, n] with |I| ≥ t+ 1, LSSS.Reconstruct((JsKi)i∈I) = s.

(ii) t-privacy: For any pp ← LSSS.Setup, any secret s ∈ V1, any (JsKi)i∈[1,n] ← LSSS.Share(s), and any subset

I ⊂ [1, n] with |I| ≤ t, there exists a simulator Sim such that the distributions of the output of Sim(I) and (JsKi)i∈I
generated by a real execution of LSSS.Share(s) are identical.

(iii) F-linearity: For every s1, s2 ∈ V1, α ∈ F, the two random variables de�ned by

LSSS.Share(s1 + αs2) and LSSS.Share(s1) + αLSSS.Share(s2)

are equal in distribution over the randomness space R.

�e previous de�nition is the tight version of a more general class of schemes called secret sharing ramp schemes,

when there is a non-trivial gap between the privacy and the reconstruction threshold.

We present two common LSSS that this thesis simultaneously brings into play.

A modular additive (resp. multiplicative) (n − 1, n)-LSSS of a �eld element s ∈ F (resp. s ∈ F×) is a vector JsK =
(JsK1, . . . , JsKN) ∈ Fn (resp. 〈s〉 = (〈s〉1, . . . , 〈s〉n) ∈ F×n) such that

LSSS.Reconstruct({JsKi}ni=1) =

n∑
i=1

JsKi = s

(resp. LSSS.Reconstruct({JsKi}ni=1) =
∏n
i=1〈s〉i = s).

A Shamir secret sharing of s ∈ F of degree t < n is a (t, n)-LSSS such that JsK = (JsKi := P (αi))i∈[1,n], where

{αi}i∈[1,n] ⊂ Fn are public distinct non-zero points, and P (x) ∈ F[x] is a degree t polynomial with constant term

P (0) = s. Without loss of generality, we can take {αi}i∈[1,n] = [1, n] for the rest of this thesis. Note that we get a

constraint on the �eld size |F| > n.

LSSS and error correcting codes. A linear code of length n+1 and dimension t+1 is a linear vector subspace C ⊆ Fn+1

of dimension t + 1. Each vector in C is called a code word of C. �e distance between two codewords is the Hamming

distance dH between them, and the distance d of a linear code C is de�nes as d = mina,b∈C,a 6=b dH(a, b). A linear code

of length n+ 1, dimension t+ 1, and distance d is called a [n+ 1, t+ 1, d]-code.

�e BCH codes [BR60] is a class of linear codes with a lower bound on the error detection ratio. Among those codes,

the MDS codes (for maximum distance separable) are optimal in the number of redundancies required for a �xed error

detection ratio. In other words, they achieve the singleton bound d = n− t+ 1. McEliece and Sarwate [MS81] were the

�rst to observe a connection between Shamir’s secret-sharing scheme and a class of codes named Reed-Solomon code.

It is well known that generalization holds: (t, n)-LSSS are equivalent to [n+ 1, t+ 1, n− t+ 1] MDS codes.

�eorem 1 ([MS81]). Let us consider some (t, n)-LSSS and let (JsK1, . . . , JsKn) ← LSSS.Share(s) be some sharing of

s ∈ F. �en, for any subset of at least t + 1 + 2e shares with at most e of these values being incorrect, the secret s can be

recovered correctly.

2. Preliminaries 18

2.4.2 Secure multiparty computation

Secure multiparty computation enables a group of said n potentially distrustful users P1, . . . ,Pn, to jointly compute an

n-ary functionality f of their public and private inputs. All this while preserving (1) the privacy ensuring that a user

learns nothing about the other user’s private input, and (2) the correctness of the computation, i.e., every user computes

an output that is distributed according to f . Users may communicate with each other, and any constraints on these

communications are captured within these three models:

• General model: Users can communicate with each other via synchronous communication over secure point-to-

point channels, and over an authenticated broadcast channel;

• Broadcasting model: Users can only synchronously communicate via an authenticated broadcast channel;

• Isolated model: Users are not allowed to communicate with each other.

When communication takes place in the protocol, computation occurs in di�erent rounds, during which each user

can send one �ow of values to each other user (it seizes the broadcast). Subsequently, the de�nition of an MPC protocol

can be formulated, relying on its next-message function.

De�nition 10 (MPC protocol). Let (n, r) ∈ N2
with r = poly(λ), and let f be a n-ary functionality. A r-round n-party

MPC protocol Πf that computes f in the general model is a tuple of PPT algorithms Πf = (Π1
f , . . . ,Π

r
f ,Outputf), such

that for each i ∈ [1, n]:

• Π1
f (1λ, i, x, wi, ρi) returns the messages broadcast/sent by the i-th user to other users during the �rst round, on public

input x, private input wi, and random tape ρi.

• For each j ∈ [2, r], Πj
f (1λ, i, x, wi, ρi, (m

1
i , . . . ,m

j−1
i)) returns the messages broadcast/sent by the i-th user to other

users during the round j, on public input x, private inputwi, random tape ρi, and received messages (m1
i , . . . ,m

j−1
i)

from the previous rounds.

• Outputf (1λ, i, x, wi, ρi, (m
1
i , . . . ,m

r
i)) returns the output of the i-th user.

Moreover, we de�ne the view of the i-th user by V iewi := {x,wi, ρi, (m1
i , . . . ,m

r
i)} (the sent messages can be re-computed

via these informations).

Remark 3. De�nition 10 has been presented in the general model, but it can be directly converted in the broadcasting

model (where the exchanged messages are only broadcasts). Protocols in the isolated model have no round, thus Πf =
Outputf (1λ, i, x, wi, ρi) straightly returns the output of the i-th user.

Security model. We examine these protocols within two security models, contingent upon the context. We tolerate

the presence of adversarial behavior (that may be throughout an adversary algorithm Adv) that may compromise the

computation as well as the privacy of the inputs. Hence, once the model accepts some adversarial behavior, the security

properties should hold: the computation must remain correct and the users’ input must remain uncover. �e passive

model refers to a scenario where the users are assumed to follow the protocol (and therefore cannot obstruct the com-

putation), but might a�empt to gather information about other users’ inputs by observing the computation. On the

contrary, the active model tolerates the presence of a malicious adversary who may corrupt a subset of the users (called

corrupted users as opposed to honest users). Corrupted users may behave arbitrarily by deviating from the protocol,

sending incorrect information, or colluding with other corrupted users to execute their a�acks. For the sake of simplic-

ity, the adversary is assumed to be static, the set of corrupted users is determined before the protocol execution begins.

�is is in contrast to the adaptive/dynamic scenario, where the adversary can choose to corrupt throughout the protocol

execution. Moreover, we stress that the adversary is rushing, i.e., during each round of communication it can see the

messages sent by the honest users before it determines the messages sent by the corrupted users.

Security de�nitions in the passive model.

In the passive model, the security is split between correctness and privacy, as de�ned below.

De�nition 11 (Perfect/statistic correctness). We say that an n-party MPC protocol Πf computes an n-ary functionality

f with statistical correctness if, for all tuple of (public and private) inputs, the probability that the output of some user is

di�erent from the output of f is negligible in λ, where the probability is over the independent choices of the random tapes

of the users. If the probability is 0, the correctness is said perfect.

De�nition 12 (Perfect/statistic/computational t-privacy). Let us �x (t, n) ∈ N2
with t < n, let f be an n-ary func-

tionality, and let Π be an n-party MPC protocol. We say that Π is t-private for f if there exists a PPT algorithm Sim such

that for every index subset of corrupted users I ⊂ [1, n] of cardinality at most t, every public input x, and private inputs

(w1, . . . , wn), the joint view V iewI(x,w1, . . . , wn) of users in I has a distribution that is perfectly/statistically/compu-

tationally close to the distribution of Sim(x, I, {wi}i∈I , fI(x,w1, . . . , wn)), where fI is the joint computation of users in

I .

2. Preliminaries 19

Security de�nitions in the active model.

�e active se�ing comes in two variants, with abort or with robust security. We focus on the second variant. �is

informally means that corrupted users should not be able to prevent honest users from realizing the protocol and ge�ing

valid outputs, whatever the behavior of the corrupted users. �is is captured with the robustness property, a stronger

notion of correctness.

De�nition 13 (Perfect/statistic t-robustness). Let us �x (t, n) ∈ N2
with t < n. An n-party MPC protocol Πf computes

an n-ary functionality f with perfect (resp. statistic) t-robustness if:

(i) Πf is perfectly (resp. statistically) correct in the passive model according to De�nition 11;

(ii) For any computationally unbounded adversary corrupting a set of at most t users, for any public input x and private

inputs w1, . . . , wn, the probability that the output of Πf for an honest user in the active model is inconsistent with

their output of Πf over inputs x,w1, . . . , wn in the passive model is 0 (resp. negligible in λ), where the probability is

over the random tapes of the users.

�e privacy property is formalized with the real world-ideal world paradigm by comparing a real protocol execution

to an ideal model, i.e., a protocol is said to be private if a real execution can be simulated in the ideal model where

the users just send their inputs to some trusted party computing the function and receive back outputs. �at is, for

every real model adversary algorithm Adv, there exists an ideal model adversary algorithm Sim that has oracle access

to Adv and externally interacts with the trusted party, such that the distribution of a real execution of the protocol

with Adv is close to the distribution of an ideal execution with Sim. For the next de�nition, we need to introduce two

random variables. Let Π be a n-party MPC protocol, Adv an arbitrary algorithm with auxiliary input z ∈ {0, 1}∗, and

I ⊂ [1, n] the set of corrupted users controlled by Adv. We denote by realΠ,Adv(z),I(x1, . . . , xn) the random variable

consisting of the view of Adv and the outputs of the honest users following a real execution of Π, where xi is the input

of Pi for i ∈ [1, n]. We denote by idealF,Sim(z),I(x1, . . . , xn) the random variable consisting of the outputs of the ideal

adversary Sim (controlling the corrupted users in I) and of the honest users a�er an ideal execution with a trusted party

computing the functionality F (i.e. users send inputs to the trusted party computing F and receive back outputs) upon

inputs x1, . . . , xn for the users and auxiliary input z for Sim. We stress that the communication between the trusted

party and users is over an ideal private channel. �e next security de�nition bears the same name as in passive security,

however the context will clarify which de�nition should be used throughout the remainder of the thesis.

De�nition 14 (Perfect/statistic/computational t-privacy). Let (t, n) ∈ N2
with t < n ∈ N, let F be an n-ary function-

ality, and let Π be an n-party protocol. We say that Π is t-private for F if, for every probabilistic adversary Adv in the real

model, there exists a probabilistic ideal adversary Sim having oracle access to Adv, and running in polynomial time in the

running time of Adv, such that for every I ⊂ [1, n] of cardinality at most t, public input x, private inputs (w1, . . . , wn),

and auxiliary input z, the distribution of idealF,Sim(z),I(x,w1, . . . , wn) is perfectly/statistically/computationally close to

the distribution of realΠ,Adv(z),I(x,w1, . . . , wn), where the probability is over the random tapes of the users, Sim, and Adv.

�e condition on the running time of the ideal adversary Sim is set to guarantee that information-theoretic security

implies computational security.

Reactive functionalities.

Many protocols in this thesis call for modular subprotocols, making the analysis of the overall security complex, as

standard security de�nitions typically apply to functionalities with a single stage of computation. To formalize these

security requirements for modular composition (i.e. functionalities that invoke subfunctionalities), our MPC protocols

must ensure that an adversary corrupting a subset of users cannot achieve more than they could by a�acking an idealized

protocol where subfunctionalities are computed by an external trusted party. In this ideal model, users send their inputs

to an incorruptible trusted party, who computes the subfunctionality’s output for them. More formally, let Πf be a

protocol for securely computing a functionality f that calls a subprotocol Πg for computing a functionality g. We rely

on the composition theorem [Gol04] which expedites a modular security analysis: we start by proving the security

of Πg , and then proving the security of Πf in a model allowing a trusted party to ideally compute g (instead of the

users running the real subprotocol Πg). �is model is called the g-hybrid model (because it involves both a real protocol

execution and an ideal trusted party computing g). As an example, it is fairly common to prove the security of a protocol

involving commitments in a commitment-hybrid model.

3. THE MPC-IN-THE-HEAD PARADIGM

�is chapter introduces the original MPC-in-the-Head (MPCitH) paradigm, its developments, optimizations and vari-

ants. It is illustrated with our �rst contributions.

In 2007, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07] demonstrated that passive secure multiparty computation

is su�cient for constructing zero-knowledge protocols. �is theoretical paradigm, deemed MPC-in-the-Head, was at �rst

stood in the realm of theoretical cryptography (with a focus on the asymptotic performance for any problem in NP),

but it was subsequently demonstrated to be also of practical relevance [GMO16, KKW18], and has found numerous

applications (e.g. [BN20a, GHM
+

22]).

An MPCitH proof is built on an MPC protocol which relies on some secret-sharing scheme. In the seminal pa-

per [IKOS07], the modular additive secret sharing was considered, and it remained so until very recently. �en a series

of works brought diversity, [FJR23] shared the secret permutation as a composition of permutations over the symmet-

ric group, [FMRV22] used an additive secret sharing over the integers, and [MV23b] the modular multiplicative secret

sharing. Finally, the use of threshold linear secret sharing schemes has been proposed in such a way that it can be

considered as a reuni�cation e�ort, and is named �reshold Computation-in-the-Head (TCitH) [FR23a]. A concurrent

work introduced a rather di�erent paradigm based on Veri�able Oblivious Linear Evaluation named VOLE-in-the-Head

(VOLEitH) [BBdSG
+

23], and which turns out to be a special case of TCitH.

3.1 �e Framework

Let x ∈ L(R) be an NP statement with witness w, and let f be a binary functionality such that

f(x,w) =

{
1 if (x,w) ∈ R
0 otherwise.

(3.1)

�eorem 2 (MPCitH [IKOS07]). Let f be the functionality de�ned by equation (3.1), and let Πf be an N -party MPC pro-

tocol realizing f in the passive se�ing (with N ≥ 3), with perfect/statistic correctness and perfect/statistic/computational

(N−1)-privacy. �en we can build a zero-knowledge proof of knowledge for the statement “x ∈ L”, achieving perfect/statis-

tic completeness, perfect/statistic/computational zero-knowledge, and (1/N + δ(λ))-soundness in the commitment-hybrid

model, where δ(·) is some negligible function.

Originally introduced for the modular additive secret sharing, the MPCitH framework can be generalized to any

(T,N)-LSSS, yielding to the next theorem, whose result collapses to �eorem 2 when T = N − 1.

�eorem 3 (TCitH [FR23a]). Let f be the functionality de�ned by equation (3.1), and let Πf be an T + 1-party MPC

protocol realizing f in the passive se�ing (withN ≥ 3), with perfect/statistic correctness and perfect/statistic/computational

T -privacy for some T < N . �en we can build a zero-knowledge proof of knowledge for “x ∈ L”, achieving perfect/statistic

completeness, perfect/statistic/computational zero-knowledge, and

(
1/
(
N
T

)
+ δ(λ)

)
-soundness in the commitment-hybrid

model, where δ(·) is some negligible function.

3.1.1 Construction of the interactive proof

We consider a prover P and a veri�er V engaging a 2-party interactive protocol with the goal of convincing V that P
knows a valid witness w for x ∈ L.

1. P �rst generates a random (T,N)-LSSS of w. Assume that Πf , realizing the functionality f de�ned by equa-

tion (3.1), is a (T + 1)-party MPC protocol. �en P chooses a subset A ⊂ [1, N] of size |A| = T + 1, and mentally

simulates the computation of Πf in the broadcasting model 3 for parties in A. P sends commitments of each

party’s view in the protocol (including input share, secret random tape, and broadcast values).

2. V randomly selects a subset B ⊂ [1, N] of the parties of size |B| = T and requests P to reveal their views.

3. P, on top of revealing these views, also sends the broadcacts of some party in A \B.

Upon receiving them, V checks that these views are consistent with the MPC process as well as valid openings of the

commitments. At �rst sight, presented as such, this interactive protocol seems to have 3-rounds. However, in most of

3. �e MPC-in-the-Head Paradigm 21

the cases, additional rounds will take place with extra challenges from V to be convinced. �ese challenges are given to

the emulated parties, and for this purpose, let us detail the computation of Πf in the broadcasting model, assuming it

has r rounds. At each round j ∈ [1, r] in Πf = (Π1
f , . . . ,Π

r
f , outputf), parties take as input: the public NP-statement

x, the private sharing of w, the random tape, broadcasts from the �rst (j− 1)-th rounds, and the challenges received so

far by P. �en, parties perform three types of actions during each round (on the inputs that we have mentioned):

(i) Receiving randomness: �e parties may receive the same random value(s). �is simulates additional challenges

sent from V to P.

(ii) Receiving hint: �e parties may receive some sharing generated by P (required for the MPC emulation, usually

for proving multiplicative relations).

(iii) Computation in the broadcasting model: �e parties may locally compute a linear function with some sharings as

input, where the function depends on challenges and previous broadcast values. �en they may broadcast their

shares and recover the function evaluation.

Pi(x, JwKi, ·, α, JuKi)

P V

α, JuKi

α

JvKi

Fig. 3.1: Informal overview of party Pi computation during one round: the challenge α corresponds to type (i) action,

the new sharing JuK to (ii), and JvKi = g(·, α, JuKi) to (iii), where g is a linear function. �e · may be substituted by

previous broadcasts, and challenges.

Once all the parties have broadcasted their computation (i.e. JvK), they can recover the broadcast value v. At this

stage, on top of JwK, JuK must be added to the content to be commi�ed by P. If P wants to reveal all the parties’ view

except for Pi∗ (when T = N−1), they should send, on top of {JwK, JuK}i 6=i∗ , the broadcast value JvKi∗ from Pi∗ . Hence,

V is able to partially execute the MPC for all the parties {Pi}i 6=i∗ , and V can get the output v.

3.1.2 Security and complexity analysis

Security analysis. �e completeness of the ZKP holds thanks to the correctness of Πf : if P knows a valid witness w
for x ∈ L and honestly simulates Πf , then by the perfect (resp. statistic) correctness of Πf , V accepts the proof (resp.

except with negligible probability). �e zero-knowledge holds thanks to the privacy of Πf : since the views of only T
parties are disclosed, this does not reveal any information about the secret w, as long as Πf is T -private and w is shared

with some (T,N)-LSSS. �e soundness also holds thanks to the correctness of Πf : a malicious prover P̃ who does not

know a valid witness and who simulates Πf , may still convince V in two di�erent ways:

(i) Either P̃ cheats during the computation such that the outputs of Πf is now a sharing of 1 (recall that f outputs a

bit). In that case, the best strategy of such an adversary is to cheat for exactly N −T parties. Indeed, they have to

cheat for at least N − T parties, and if they cheat on more than N − T parties, V shall always identify the cheat

(since V asks for the opening of T parties). Hence, a malicious prover must undoubtedly cheat on exactly N − T
parties, and the only way for V to be convinced is to ask for the opening of the exact T parties which have been

honestly emulated. �e probability of this event to happen is 1/
(
N
T

)
.

(ii) Or the outputs of the MPC protocol is always a sharing of 0 except with small probability which is the false

positive probability of Πf , i.e. p := Pr[Πf = 1 | (x,w) 6∈ R].

�e overall probability that a malicious prover manages to convince a veri�er, i.e. the soundness error, is then

εserr =
1(
N
T

) +

(
1− 1(

N
T

)) p .
When T = N − 1, the soundness error collapses to εserr = 1

N +
(
1− 1

N

)
p.

3. �e MPC-in-the-Head Paradigm 22

Complexity analysis. �e soundness error ε of one repetition of the protocol may not be su�cient to reach the target

soundness of 2−λ. Hence, one can perform τ parallel executions of the protocol such that ετ ≤ 2−λ. �e computational

complexity of P corresponds to the emulation of τ(T+1) parties and the complexity of V to τT parties. �e communica-

tion complexity is the size of the proof transcript which is composed of all the commitments, and the opening of views.

Essentially, an MPCitH-like proof can be decomposed into a symmetric part (randomness derivation, commitment com-

putation), and an MPC modeling part that depends on theNP-problem considered and on how one arithmetizes it. We

discuss below optimizations for both parts.

3.2 Symmetric Optimizations

Let us focus on additive or multiplicative secret sharing schemes (thus T = N − 1), although there have been some

optimizations for threshold LSSS (see [FR23a]).

3.2.1 GGM trees

To produce randomness for each party, P could generate one seed by party and then use some PRG (see Subsection 2.2.2).

A typical way to additively share a value w ∈ F is, given a seed seedi for each party Pi, to derive JwKi
$←− PRG(seedi)

in F, and then to �x the sharing with some auxiliary value ∆w ∈ F such that w =
∑N
i=1JwKi + ∆w. By doing

so, for opening all-but-one parties, P has to send N − 1 seeds. �is can be optimized by using some tree-structure

when generating seeds [KKW18], this last work relying on a standard construction [GGM84], usually named the GGM

construction. �e idea is to use a tree PRG algorithm (named TreePRG) in which one uses a PRG with `(λ) = 2λ (see

De�nition 4) to expand a λ-bit root seed (usually labeled mseed for master seed) into N λ-bit subseeds in a structured

fashion as follows (in practice we takeN to be a power-of-two, let us sayN = 2t). Let us consider a complete binary tree

of depth t, with root labeled mseed, in which the right/le� child of each node is labeled with the λmost/least signi�cant

bits of the output of the PRG applied to the root label. �e subseeds (seedi)i∈[1,N] are de�ned as the labels of the N
leaves of the tree. To revealN −1 subseeds (seedi)i∈[1,N]\{i∗}, one reveals the siblings of all the nodes in the path from

the punctured seed (seedi∗) to the tree root as illustrated in Figure 3.2. �ese siblings are also called the co-path of the

punctured seed. �is co-path allows reconstructing (seedi)i 6=i∗ while still hiding seedi∗ . �us, the communication cost

scales with log2N . �is can be easily generalized if we wish to reveal all the subseeds but a small subset A ⊂ [1, N].

P1 P2 P3 P4 P5 P6 P7 P8

JwK1 JwK2 JwK3 JwK4 JwK5 JwK6 JwK7 JwK8

se
ed

1
→

se
ed

2
→

se
ed

3
→

se
ed

4
→

se
ed

5
→

se
ed

6
→

se
ed

7
→

se
ed

8
→

Fig. 3.2: Blue co-path of the punctured seed3 with (N = 8, i∗ = 3).

3.2.2 Parallel optimization of GGM trees

We have seen that to shorten the communication, shares and random coins used in the protocol are generated using a

TreePRG: P randomly and uniformly chooses a master seed mseed and constructs a tree of depth logN by expanding

mseed into N subseeds as explained in the previous subsection.

For the interactive protocol to achieve the target soundness error, we repeat the protocol τ times such that (εserr)
τ <

2−λ. Following the previous GGM tree construction, P generates one GGM tree for each repetition, yielding to τ trees,

each with N leaves. Instead of generating these τ independent GGM trees (in parallel), which cost at most τλ log2(N)
bits in the proof size when revealing the τ co-path of the τ punctured seeds, Baum et al. [BBM

+
24] derive a large GGM

tree with τN leaves, which reduces with high probability the number of nodes that need to be sent. Let us consider that

3. �e MPC-in-the-Head Paradigm 23

the �rst τ leaves of the tree correspond to the seeds of each �rst emulated party of the τ repetitions, the next leaves

correspond to the seeds of each second emulated party, and so on, hence following an interleaved fashion. Precisely,

the i-th seed of the e-th repetition is associated to the (eN + i)-th leaf of the large GGM tree. �en, as explained

in [BBM
+

24], “opening all but τ leaves of the big tree is more e�cient than opening all but one leaf in each of the τ
smaller trees, because with high probability some of the active paths (i.e. co-path) in the tree will merge relatively close

to the leaves, which reduces the number of internal nodes that need to be revealed.” However, the number of nodes to

send depends on the distribution of the challenges for the opening views, thus it causes variability in the proof size. To

get around the problem, the authors consider some threshold for the maximal number of nodes to send above which

they abort the protocol. �is optimization aims to save a few hundreds bits.

Merging the commitments A simple but saving optimization consists of merging some commitments before sending

them. Indeed, to commit to each party input, instead of sending N commitments Com1, . . . ,ComN of 2λ bits each,

we can merge them by hashing all these commitments and then send H1(Com1, . . . ,ComN). �is implies to send the

commitment Comi∗ to the unopened party with index i∗ so that the hash value can be recomputed and checked by V.

Let hj be the hash value sent during the j-th iteration with j ∈ [1, τ], where τ is the number of parallel repetitions

of the protocol. Instead of sending τ hash values h1, . . . , hτ , P can merge them together to send a single hash h =
H2(h1, . . . , hτ). �is yields to a total of (2 + τ2)λ bits (2λ bits for h and τ2λ bits for the commitments Comi∗ to the

unopened party), instead of naively τN2λ bits.

3.3 MPC Modeling Optimizations

3.3.1 Hypercube optimization

In [MGH
+

23], Aguilar-Melchor, Gama, Howe, Hülsing, Joseh, and Yue developed a geometrical approach for the MPC

emulation phase. �is optimization relies on the commutativity of the laws in �nite �elds. In the traditional approach

of MPCitH, P simulates N parties (for each of the τ repetitions of the protocol). By this hypercubing approach, this

number of parties can be reduced to 1 + log2N , with the same soundness error. Essentially, instead of simulating one

MPC protocol with N parties, the prover emulates log2N MPC protocols with 2 parties.

JxK1

JxK2 JxK3

JxK4

JxK5

JxK6 JxK7

JxK8

Fig. 3.3: Hypercube overview for x =
∑8
j=1JxKj

In a nutshell, given N = kd parties, one can represent the N shares into a hypercube of dimension d and length k
as in Figure 3.3. By �xing one dimension, one can regroup the N shares into a disjoint union of k subsets. By applying

the chosen group law on the shares from the same subset, one gets k new hyper-shares such that the group law applied

on these k hyper-shares equals the group law applied on the N original shares (thanks to commutativity). Hence, we

can compute the MPC protocol Πf realizing Equation (3.1) with these k hyper-shares as input. �is reasoning can be

extended to each other dimension (and it has to be extended to reach a soundness of 1/N). It leads to d MPC protocols

with k parties, thus to a reduction from N to kd parties to simulate. It can even be reduced to k + (d− 1)(log2N − 1)
parties (since each MPC protocol shall output the same result, once one protocol is computed, all but one parties is

enough to determine the evaluation of the last party in the other protocols). By taking (k = 2, d = log2N), we get a

reduction to log2N + 1 parties.

Concretely, given JxK ∈ FN , P derives the two hyper-shares for the `-th MPC protocol (with ` ∈ [1, log2N]) as

follows:

JxK`,0 :=
∑

1≤i≤N,(i2)`=0

JxKi, JxK`,1 :=
∑

1≤i≤N,(i2)`=1

JxKi;

where (i2)` denotes the `-th bit of the 2-basis representation of the element i.
Most of the time, this optimization makes the MPC protocols emulation less costly in computation and thus allows

us to take a larger number of parties (and get smaller proof sizes). Although the computational gain is a�enuated by

the number of repetitions since the total number of parties to emulate is τ(1 + log2N) ≈ λ(1 + 1/ log2N), where τ is

the number of repetitions of the protocol to get a negligible soundness, it is tempting to increase the number of parties

3. �e MPC-in-the-Head Paradigm 24

N to get an improvement in terms of proof size while keeping the computational cost of the proof reasonable. �is

strategy works, but has its limitations: the GGM tree to generate at the beginning of the protocol, as well as the shares

preparation may become very costly (this cost is independent of the hypercubing optimization).

�e MPCitH framework used in conjunction with a linear secret sharing scheme makes all linear operations free to

prove in terms of elements to send to V. Multiplicative relationships, on the other hand, are the most cumbersome part.

Hence we’re focusing on it, detailing two techniques in the next two subsections.

3.3.2 Batch product veri�cation

Let us consider the following context: given a triple of sharings (JxK, JyK, JzK) with x, y, z ∈ F, we would like to check

that xy = z. To this aim, we can use a solution suggested in [LN17, BN20a] by “sacri�cing” another triple (JaK, JbK, JcK)
that satis�es ab = c. �e second triple can be used a single time (to preserve the zero-knowledge property), hence

the “sacri�ce”. Recently Kales and Zaverucha [KZ22] have adapted and optimized this method to build an e�cient

MPC protocol which check simultaneously many products by sacri�cing a dot-product. Speci�cally, given n triples

(JxjK, JyjK, JzjK) and a tuple ((JajK)j∈[1,n], JcK), their protocol veri�es that 〈a, y〉 = c and zj = xjyj for all j ∈ [1, n],

without revealing any information on (x, y, z). �e protocol runs as follows:

1. �e parties get a random ε ∈ Fn from the veri�er;

2. �e parties locally sets JαjK = εjJxjK + JajK for all j ∈ [1, n];

3. �e parties open α by broadcasting their shares;

4. �e parties locally sets JvK = 〈α, JyK〉 − JcK− 〈ε, JzK〉;

5. �e parties open v by broadcasting their shares;

6. �e parties accept i� v = 0.

Protocol 1: Batch product veri�cation

If (JxjK, JyjK, JzjK)j∈[1,n] contains an incorrect multiplication triple (i.e. there exists a j0 such that xj0yj0 6= zj0) or if

((JajK)j∈[1,n], JcK) does not satisfy the relation 〈a, y〉 = c, then [KZ22] shows the parties accept with a probability at

most |F|−1
.

Complexity analysis. Concretely, the prover can randomly sample the shares JajK
$←− FN for each j ∈ [1, n], and then

de�ne aj =
∑N
i=1JajKi for each j ∈ [1, n]. Since a can be chosen randomly, we do not need of an auxiliary value to

�x the sharing. By generating a random sharing of c, the sole auxilliary value is ∆c such that 〈a, y〉 −
∑N
i=1JcKi = ∆c.

During the Protocol 1, two values are brodcasted, α ∈ Fn and v ∈ F. We stress that the prover does not need to send

JvKi∗ because the veri�er knows that v must be zero and will deduce JvKi∗ = −∆v −
∑
i 6=i∗JvKi. However, the prover

has to send JαKi∗ . �erefore, this technique requires to send n+ 1 �eld elements.

3.3.3 Cut-and-choose strategy

Beullens introduced the well-known cut-and-choose technique from zero-knowledge proofs into the MPCitH paradigm.

�is new proof-style was called MPCitH with helper [BdSG20]. �is approach adds a trusted third party (called the

helper) to the MPC protocol which runs a preprocessing phase. To then remove the helper, one uses a cut-and-choose

strategy. Let us assume that the prover wishes to prove that a generated sharing indeed encodes a binary vector. At

the beginning of the protocol, the prover generates M sharings {Jr[`]K}`∈[1,M] for M binary vectors {r[`]}`∈[1,M] (in

practice these values are pseudo-randomly derived from some seeds). �en the prover commits to these values. �e

veri�er asks to open all the sharings {Jr[`]K}`∈[1,M] except one and checks that they correspond to binary vectors. Hence,

the veri�er will trust that the unopened sharing also encodes a binary vector with a soundness error of 1/M . Combined

with the MPCitH approach, the obtained zero-knowledge protocol when revealing all-but-one parties (assuming for the

moment that the false positive probability of the MPC protocol is 0) has then a soundness error of

max

{
1

M
,

1

N

}
.

Let ε be the soundness of one repetition of the protocol. To achieve a targeted soundness error of 2−λ, we can perform

τ parallel executions of the protocol such that ετ ≤ 2−λ. Like in [KKW18], instead of performing τ independent cut-

and-choose phases each resulting in trusting one binary sharing JrK amongM , we can perform a global cut-and-choose

3. �e MPC-in-the-Head Paradigm 25

phase resulting in τ trusted sharings among a larger M . �e idea is that V asks to reveal M − τ out of M master

seeds. �e remaining τ executions of the pre-processing phase are used to emulate τ independent instances of the MPC

protocol. When opening all but one seed, a wrong sharing (i.e. a sharing of a non-binary vector) will not be detected

with probability

1

N
+

(
1− 1

N

)
p, (3.2)

where p is the false positive probability of the MPC protocol. If a cheating prover produces M − k ≤ τ wrong sharings,

they will not be detected during the �rst phase (when revealing M − τ master seeds) with probability(
k

M − τ

)(
M

M − τ

)−1

.

�is leads to the soundness error

ε = max
M−τ≤k≤M

{(
k

M−τ
)(

1
N + (1− 1

N)p
)k−M+τ(

M
M−τ

) }
.

�is optimization reduces the communication cost of the cut-and-choose from τλ log2M bits to τλ log2
M
τ bits.

3.4 Examples and First Contributions

As an appetizer and to illustrate this chapter, we present two simple results with alternative approaches.

3.4.1 RSA-in-the-Head [MV23b]

�e goal of this subsection is to build our �rst zero-knowledge argument, especially a ZKA of knowledge of an RSA

plaintext for a small public exponent that signi�cantly improves the state-of-the-art communication complexity. �e

scheme is very simple but seems to have been overlooked. Assume P wants to prove the knowledge of an RSA plaintext

for a public exponent e, i.e. xe = y mod n where n is some RSA modulus. �en we could imagine that P shares x

multiplicatively as x =
∏N
j=1〈x〉j∆x mod n and runs the following MPC protocol:

1. �e parties locally compute 〈x〉e;

2. �e parties broadcast 〈x〉e and recomputes xe;

3. �e parties output 1 if xe = y, and 0 otherwise.

Protocol 2: MPC protocol for RSA

Now, we can describe the zero-knowledge argument of knowledge protocol for the RSA plaintext where Protocol 2

is plugged into the red part of the following Protocol 3. A cryptographic hash functionH1, a PRG and a TreePRG are

used in this protocol.

3. �e MPC-in-the-Head Paradigm 26

Prover P Veri�er V
(x, e, y, n) s.t. xe = y mod n (e, y, n)

mseed $←− {0, 1}λ
(seedi, ρi)i∈[1,N] ← TreePRG(mseed)

For each i ∈ [1, N]:
〈x〉i ← PRG(seedi)
comi = Com(seedi; ρi)

∆x = x/
∏
i〈x〉i

�e parties compute Π(〈x〉,∆x)
h = H1(com1, . . . , comN ,∆x, {〈x〉ei}i∈[1,N])

h−−−−−−−−−−−−−−−−−−→
ch = i∗

$←− [1, N]
i∗←−−−−−−−−−−−−−−−−−−

co-path to seedi∗ , ∆x, comi∗

−−−−−−−−−−−−−−−−−−→
For all i 6= i∗

〈x〉i ← PRG(seedi)
comi = Com(seedi; ρi)

Compute 〈x〉ei∗ = y/
(∏

i 6=i∗〈x〉ei (∆x)
e
)

Check h
Return 1

Protocol 3: Identi�cation scheme of an RSA plaintext

�e soundness of Protocol 3 is 1/N since the MPC Protocol 2 is perfectly correct. When repeating the protocol τ
times (in parallel) to reach a soundness error ετ ≤ 2−λ, we can use a second hash functionH2 to merge the hash value h
of each repetition, leading to one hash value for the τ repetitions. �en, the communication cost of the overall protocol

is (in bits):

2λ︸︷︷︸
H2

+τ(2 log2 n︸ ︷︷ ︸
∆x

+λ log2N︸ ︷︷ ︸
co-path

+ 2λ︸︷︷︸
comi∗

).

�is simple construction improves the communication complexity of the seminal protocol from Guillou and �isquater [GQ90]

for the public exponent e = 3 from around 20.4KB to 6.6KB for a 2048-bit modulus n and has similar e�ciency. �e

communication complexity could be made even smaller by increasing N (but at the cost of an increased computational

complexity).

Remark 4. Interestingly, the hypercube optimization [MGH
+

23] may be computationally more costly for some particular

cases. For our ZKA for RSA with public exponent e, once 〈x〉 has been derived, they are around N log2 e multiplications to

perform to compute each share exponentiation (plusN−1 multiplications at the end for recomputing xe). Whereas with the

hypercubing technique with (d, k) = (log2N, 2), there are approximately N log2N multiplications for building 2 hyper-

shares for each of the log2N MPC protocols, and approximately 2 log2 e log2N multiplications for the overall number

of exponentiation (plus log2N multiplications for recomputing xe in each MPC protocols). Although the hypercubing

technique is assymptotically be�er, for a typical case of N = 28
parties, as long as e ≤ 28

, the hypercubing approach is

computationally more costly, and for bigger values of e, the Guillou-�isquater protocol is then more e�cient than our.

3.4.2 DDLP-in-the-Head [MV23b]

We present a second ZKA, now for the Double Discrete Logarithm Problem (DDLP), a problem which has found numer-

ous applications in cryptography [CS97, ASM10, CG07, CGM16, BTV20].

Double Discrete Logarithm Problem (DDLP).
Let G be a cyclic group of prime order q with some generator g ∈ G, and let h ∈ F∗q of prime order p with

p|(q − 1). Given (y, g, h) ∈ G \ {1G} ×G× F∗q , the DDLP asks to �nd some x ∈ F×p such that y = gh
x

.

Given the public statement {y, g, h}, P wants to prove the knowledge of x such that y = gh
x

.

In Chapter 5, we will present another ZKA for this problem, but it turns out to be less e�cient than this forward-

backward construction (since a cut-and-choose has to be produced). Our ZKA is based on a recent idea of Joux [Jou23],

a forward-backward technique achieving arguments about 6KB long. �is improves the communication complexity of

Stadler’s protocol [Sta96] by about 75% (for the same security guarantees and overall e�ciency). We start by sharing x
additively. �en the prover P commits to the values

yi :=

((ghJxK1
)hJxK2

). . .
hJxKi

for i ∈ [1, N].

3. �e MPC-in-the-Head Paradigm 27

�e correctness of this approach relies on the fact that yN = y. �e veri�er V sends a challenge i∗
$←− [1, N]. �e prover

P answers by sending the seeds {seedi}i6=i∗ (i.e. opens all the shares of x except the i∗th) to V. �is last can recompute

all the commi�ed values by a forward-backward technique: they iteratively compute yi as

yi = yh
JxKi

i−1 if 1 ≤ i ≤ i∗ − 1 and yi = y−h
JxKi+1

i+1 if i∗ ≤ i ≤ N − 1,

with y0 = g and yN = y.

In particular, V can recompute every yi (to check the commitments) and they can check the consistency of the

subsequences {y1, . . . , yi∗−1} and {yi∗ , . . . , yN = y} thanks to the revealed seeds. But V can not check the whole

sequence {y1, . . . , yN} since JxKi∗ is missing. Hence, a malicious prover has to cheat on JxKi∗ to manage convincing V.

�erefore, the soundness error is again 1/N . �is yields the following MPC protocol 4, where a party Pi uses the output

of Pi−1 to compute their output (for i ∈ [2, N]). We notice that the following MPC model is not a classical broadcasting

protocol because it has asynchronous broadcasts.

Input: y 6= 1G in a cyclic group G of prime order q, h ∈ F∗q of prime order p with p|(q − 1), and an additive

sharing of x ∈ F×p .

1. Party P1 computes y1 = gh
JxK1

and broadcasts it;

2. For each i ∈ [2, N]: Party Pi computes yi = yh
JxKi
i−1 and broadcasts it;

3. If yN = y parties output 1, otherwise 0.

Protocol 4: MPC protocol with the forward-backward technique for the DDLP

We could plug Protocol 4 into the red part of Protocol 3 (with some slight modi�cations, essentially substituting the

multiplicative secret sharing by the additive one).

4. ZERO-KNOWLEDGE PROTOCOLS FOR THE SUBSET SUM PROBLEM FROM MPCITH WITH

REJECTION

4.1 Introduction

�e (modular) subset sum problem is to �nd, given integersw1, . . . , wn, t and q, a subset of thewi’s that sum to tmodulo

q, i.e. to �nd bits x1, . . . , xn ∈ {0, 1} such that

n∑
i=1

xiwi = t mod q. (4.1)

It was shown to be NP-complete (in its natural decision variant) in 1972 by Karp [Kar72] and was considered in cryp-

tography as an interesting alternative to hardness assumptions based on number theory. Due to its simplicity, it was

notably used in the 1980s, following [MH78], for the construction of several public-key encryption schemes. Most of

these proposals (if not all) were swi�ly broken using la�ice-based techniques (see [Odl90]), but the problem itself re-

mains intractable for appropriate parameters and is even believed to be so for quantum computers. For instance, when

the so-called density d = n/ log2(q) of the subset sum instance is close to 1 (i.e. q ' 2n), the fastest known (classical and

quantum) algorithms have complexity 2O(n)
(see [BBSS20] and references therein) and one can reach an alleged secu-

rity level of λ bits with n = Θ(λ). A plethora of cryptographic constructions have been proposed whose security relies

on the hardness of the subset sum problem: a celebrated pseudo-random generators [IN96], bit commitments [IN96],

public-key encryption [AD97, LPS10], etc.

4.1.1 Prior works

Given integers w1, . . . , wn, t and q, an elegant zero-knowledge proof system due to Shamir [Sha86] (see also [BGKW90,

Sim91, Blo09][BGKW90]) allows a prover to convince a veri�er that they knows x1, . . . , xn ∈ {0, 1} such that the

relation (4.1) holds. �e proof system is combinatorial in nature and it requires Θ(λ) rounds of communication to achieve

soundness error 2−λ where each round requires Θ(n2) bits of communication. For an alleged security level of λ bits,

the overall communication complexity of Shamir’s proof system is thus of Θ(λ3). In [LNSW13], Ling, Nguyen, Stehlé,

and Wang proposed a proof of knowledge of a solution for the in�nity norm inhomogeneous small integer solution (ISIS)

problem which is a vectorial variant of the subset sum problem. It is based on Stern’s zero-knowledge proof of knowledge

for the syndrome decoding problem [Ste94b] and is also combinatorial. It thus requires a large number of rounds of

communication and when specialized to the subset sum problem it also yields proofs with Θ(λ3)-bit communication

complexity for an alleged security level of λ bits.

In [BD10], Bendlin and Damgård were the �rst to use the MPCitH paradigm in la�ice-based cryptography. �ey

proposed a zero-knowledge proof of knowledge of the plaintext contained in a given ciphertext from Regev’s cryptosys-

tem [Reg05] (and a variant they proposed). More recently, Baum and Nof [BN20a] proposed an e�cient zero-knowledge

argument of knowledge of the short integer solution (SIS) problem (incorporating the sacri�cing principle in the MPCitH

paradigm). Beullens also recently proposed such arguments obtained from sigma protocols with helper [Beu20]. When

applied to the subset sum problem itself, all (variants of) these protocols yield proofs with Θ(λ3)-bit communication

complexity for an alleged security level of λ bits.

�ere exist numerous other protocols for (vectorial variants of) the subset sum problem from la�ice-based cryptog-

raphy. Until recently, they all introduce some slack in the proof, i.e. there is a di�erence between the language used for

completeness and the language that the soundness guarantees (see, e.g. [BDLN16] for a generic argument of knowledge

of a pre-image for homomorphic one-way functions over integer vectors). In particular, the witness that can be extracted

from a proof is larger than the one that an honest prover uses (and in the subset sum problem, the extractor will not

output a binary vector). �is slack forces to use larger parameters for the underlying cryptosystem and induces some

loss in e�ciency. Conversely, we shall only consider exact arguments for the subset-sum problem in the present pa-

per. Finally, new exact arguments were proposed recently [BLS19, ENS20, LNS21] but they require to use a modulus q
of a special form (namely a prime number as in [BN20a, Beu20] but with additional arithmetic constraints to make it

“NTT-friendly”).

4. Zero-Knowledge Protocols with Sharing over the Integers 29

4.1.2 Contributions

�e MPCitH paradigm introduced in Chapter 3 involves a prover who wants to convince a veri�er that they know a

secret witness for some public statement. For the subset sum problem, the statement is (w, q) ∈ Znq ×Zq and a witness

is a binary string x = (x1, . . . , xn) ∈ {0, 1}n satisfying (4.1). �us, it is thus natural to perform some secret-sharing of

x in Zq in such a way that the shares of any unauthorized set of parties should reveal no information about the secret.

�is approach has the major disadvantage that sharing a single bit requires several elements of Zq each of size Θ(λ)
bits.

We adapt this paradigm using a secret sharing scheme formed directly over the integers. �is approach was already

used in cryptography (e.g. for multi-party computation modulo a shared secret modulus [CGH00]). To additively share a

secret t in a given interval [−T, T] for T ∈ N, among n ≥ 2 parties, a dealer may pick uniformly at random t1, . . . , tn ∈
[−T2ρ, T2ρ] under the constraint that t = t1+· · ·+tn (over the integers), for some parameter ρ. However, given (n−1)
shares, t2, . . . , tn for instance, the value t1 = t− (t2 + · · · tn) is not randomly distributed in [−T2ρ, T2ρ] and this may

reveal information on the secret t. It is thus necessary to sample the shares in an interval su�ciently large in such a

way that their distributions for distinct secrets are statistically indistinguishable. For a security level λ, this requires

ρ = Ω(λ) and thus the additive sharing of bits involves shares of size Ω(λ). To overcome this limitation and use additive

secret sharing over small integers, we will rely on rejection. �e computation being actually simulated by the prover,

they can abort the protocol whenever the sharing leaks information on the secret vector x = (x1, . . . , xn) ∈ {0, 1}n.

In some cases, the prover cannot respond to the challenge from the veri�er and must abort the protocol. A similar idea

was used for la�ice-based signatures by Lyubashevsky [Lyu08, Lyu09] but using di�erent methods.

Our technique also allows overcoming the second disadvantage of the previous tentatives to use the MPCitH paradigm

for la�ice-based problems. Indeed, using our additive secret sharing over the integers, we can prove the knowledge of

some integer vector x = (x1, . . . , xn) satisfying relation (4.1) (for any q) and further prove that xi ∈ {0, 1} for i ∈ [1, n].
�is is achieved by simulating a (single) non-linear operation modulo some arbitrary prime number q′ (independent from

q and much smaller than q). We also introduce another technique to prove that the solution x = (x1, . . . , xn) indeed

lies in {0, 1}n using some masking and a cut-and-choose strategy. Both methods yield zero-knowledge proofs with

Θ(λ2)-bit communication complexity for an alleged security level of λ bits. �is improvement is not only of theoretical

interest since for q ' 2256
, our protocol can produce proof of size 13KB where Shamir’s protocol [Sha86] (updated with

modern tips) produces proof of size 1186KB and [LNSW13] produces proofs of size 2350KB.

Our protocols are particularly e�cient for the subset sum problem where the modulus q is large. However, we show

that our method has applications in other contexts in cryptography. We show that it can be used for the (binary) ISIS

problem in la�ice-based cryptography and that the resulting protocols are competitive with state-of-the-art protocols

for this problem. We also present applications of our techniques to the context of fully-homomorphic encryption (FHE).

Speci�cally, adaptations of our protocols provide e�cient zero-knowledge arguments of plaintext and/or key knowl-

edge for the so-called Torus Fully Homomorphic Encryption (TFHE) scheme from [CGGI20]. Eventually, we use our

technique to construct an e�cient digital signature scheme based on a pseudo-random function due to Boneh, Halevi,

and Howgrave-Graham [BHH01].

4.2 General Idea

We consider an instance (w, t) ∈ Znq × Zq of the subset sum problem (SSP) and denote x one solution. We have

x ∈ {0, 1}n and

∑n
j=1 xjwj = t mod q.

We want to use the MPCitH paradigm to build a zero-knowledge protocol that proves the knowledge of a solution

for the instance (w, t). To proceed, we need to build an MPC protocol with passive security whose parties take as inputs

shares of the secret x, and possibly shares of other data, and which computation can only succeed if x is a valid solution

of the SSP instance. As a �rst ingredient, we need a method to share the secret x between the di�erent parties.

4.2.1 �e naive approach

�e SSP instance is de�ned on Zq , so a natural sharing of x would be de�ned as:{
JxKi

$←− (Zq)n for all i ∈ [1, N],

∆x← x−
∑N
i=1JxKi mod q

.

In the MPCitH paradigm, the communication cost of a sharing is the cost to send the auxiliary values, i.e. the vector

∆x. Here, the natural sharing of x costs

n log2(q) bits.

If we take n = 256 and q = 2256
, the cost is about 216

bits = 8 KB. To achieve a soundness error of 2−128
with

N = 256 parties, we need to repeat the protocol at least 16 times, so the communication cost of the protocol would

be already more than 128 KB for the sole sharing of x. Asymptotically, the parameters for the subset sum problem are

chosen such that n = Θ(λ) and log2 q = Θ(λ), the communication cost of this sharing is thus about Θ(λ2) bytes per

4. Zero-Knowledge Protocols with Sharing over the Integers 30

protocol repetition. Since we need to repeat the protocol about Θ(λ) times to achieve a 2−λ soundness error the global

communication cost is then of at least Θ(λ3) (for the sharing only).

We present herea�er an alternative strategy for the sharing of x, which achieves be�er practical and asymptotic

communication costs.

4.2.2 Sharing on the integers and opening with abort

We propose another way to share the secret x to achieve lower communication. We know that x is a binary vector (i.e.

x ∈ {0, 1}n), so instead of the natural sharing, we suggest to use a sharing de�ned on the integers, that is{
JxKi

$←− [0, A− 1]
n

for all i ∈ [1, N],

∆x← x−
∑N
i=1JxKi.

However, this sharing leaks information about the secret x. �e distribution ∆xj is not the same depending on

whether xj = 0 or xj = 1 as illustrated on Figure 4.1. To solve this issue, the prover must abort the protocol in some

cases.

Fig. 4.1: Probability mass function of ∆xj when xj = 0 and when xj = 1 (on the le�) and of ∆xj with abort (on the

right), for N = 3 and A = 9.

To see how this leakage can be e�ectively exploited to (partly) recover x, let us recall that at the end of the protocol,

the veri�er shall ask the prover to open the views of all parties except one. Let us denote i∗ the index of the unopened

party. It means the veri�er will have access to

{JxKi}i6=i∗ and ∆x .

For the sake of simplicity, let us �rst consider the case n = 1, i.e. x ∈ {0, 1} and JxK is the sharing of a single integer.

With the opened values, the veri�er can compute

x− JxKi∗ as ∆x+
∑
i 6=i∗

JxKi .

Now let us denote Y = x− JxKi∗ the underlying random variable over the uniform random sampling of JxKi∗ . We have

Pr(Y = −A+ 1) =

{
1
A if x = 0

0 if x = 1
and Pr(Y = 1) =

{
0 if x = 0
1
A if x = 1

while

Pr(Y = y) =
1

A
for every y ∈ [−A+ 2, 0] .

So by observing x − JxKi∗ = −A + 1 one learns (x, JxKi∗) = (0,−A + 1). Similarly, by observing x − JxKi∗ = 1
one learns (x, JxKi∗) = (1, 0). To avoid this �aw, the prover must abort the protocol before revealing {JxKi}i 6=i∗ and

∆x whenever one of these two cases occurs. �is notably implies that ∆x must not be revealed before receiving the

challenge i∗, but it should still be commi�ed beforehand in order to ensure the soundness of the protocol. Doing so,

we modify the distribution of the revealed auxiliary value which does not leak any information about x anymore as

illustrated in Figure 4.1, and the probability to abort does not leak information about x since it is 1/A in the both cases

(x = 0 and x = 1).

Let us now come back to the general case of n ≥ 1. �e prover applies the above abortion strategy for all the

coordinates of x, namely

4. Zero-Knowledge Protocols with Sharing over the Integers 31

• if there exists j ∈ [1, n] such that xj = 0 and JxjKi∗ = A− 1, the prover aborts;

• if there exists j ∈ [1, n] such that xj = 1 and JxjKi∗ = 0, the prover aborts;

• otherwise the prover proceeds.

�e probability to abort, which we call rejection rate, is

1−
(

1− 1

A

)n
≤ n

A
.

We note that the rejection rate can be tightly approximated by the n/A upper bound when A is su�ciently large. In

order to achieve a small (constant) rejection rate, we should hence choose A greater than n. Asymptotically, we then

have A = Θ(n) = Θ(λ), which represents an exponential improvement compared to q = 2Θ(λ)
.

Let us now analyze the computation cost of our strategy for sharing x. In the absence of rejection, ∆xj belongs to

[−N(A− 1) + 1, 0], therefore sending the auxiliary value ∆x would cost n log2(N(A− 1)) bits. However, the prover

can save communication by sending x− JxKi∗ instead, which is strictly equivalent in terms of revealed information by

the relation x− JxKi∗ = ∆x+
∑
i6=i∗JxKi. Since each coordinate of x− JxKi∗ is uniformly distributed over [−A+ 2, 0],

sending it only costs

n log2(A− 1) bits.

With x − JxKi∗ , the veri�er can recover ∆x by computing ∆x = (x − JxKi∗) −
∑
i 6=i∗JxKi. �e cost of this sharing

has the advantage of being independent of the modulus q on which the SSP instance is de�ned. �e value of A will be

chosen according to the desired trade-o� between communication cost and rejection rate. If n = 256 and A = 216
, we

have a cost of 0.5 KB for a rejection rate of 0.0038, which is much be�er than the 8 KB of the naive approach.

Let us remark that adding an abort event does not impact the soundness of the protocol. A malicious prover can abort

as many times she wants claiming that it would leak information, but an abortion does not help to convince the veri�er.

�e soundness theorem will state that someone who does not know the secret can only answer with a probability smaller

than the constant value called soundness error, and adding an abort event cannot increase this probability. �e prover

could sample a random party i′ and give to i′ a wrong share and she may indeed decide to abort if the veri�er challenge

is not i′, but this does not change the fact that the probability for the prover to convince the veri�er is the probability

that the prover guesses the veri�er challenge a priori.

Now that we have de�ned the sharing of x, we need to demonstrate two properties of the shared SSP instance

through multi-party computation. �e �rst one is the SSP relation which in the shared se�ing translates to

n∑
j=1

JxjKwj = JtK mod q

for a sharing JtK of t. �e linearity of this relation makes it easy to deal with: the share JtKi can simply be computed

as JtKi :=
∑n
j=1JxjKiwj mod q and commi�ed to the veri�er by each party. �e veri�er can then check that the open

parties have correctly computed their shares JtKi and that the relation

∑N
i=1JtKi = t mod q well holds. �e second

property which must be demonstrated through multiparty computation is that the solution x corresponding to the

sharing JxK is a binary vector. �is is not a priori guaranteed to the veri�er since the shares of the coordinate of x are

de�ned over [0, A− 1] and the correctness of the linear relation does not imply that x is indeed binary. We present two

di�erent solutions to this issue in the following.

4.2.3 Binarity proof from batch product veri�cation

Our �rst solution relies on standard MPCitH techniques to prove the relation

x ◦ (x− 1) = 0

where ◦ denotes the coordinate-wise product, 0 and 1 are to be interpreted as the all-0 and all-1 vectors. To this aim,

we can use the MPCitH batch product veri�cation suggested in [LN17, BN20a] and recently improved in [KZ22] (see

Subsection 3.3.2). However, we can do be�er than a straight application of those techniques.

�e relation x ◦ (x− 1) = 0 is de�ned in Zq and the above techniques imply to send at least one �eld element per

product, that is n elements from Zq . To save communication and since the sharing JxK is de�ned on the integers, we

can work on a smaller �eld. We previously explained that the veri�er receives {JxKi}i 6=i∗ and ∆x from the prover, so

they can check that, for all j ∈ [1, n],
−A+ 2 ≤ xj − JxjKi∗ ≤ 0 .

�ey further trusts JxjKi∗ ∈ [0, A− 1] (which is veri�ed for the open parties). �us the veri�er can deduce that, for all

j ∈ [1, n],
−A+ 2 ≤ xj ≤ A− 1 . (4.2)

4. Zero-Knowledge Protocols with Sharing over the Integers 32

Let q′ be a prime such that q′ ≥ A. If the prover convinces the veri�er that xj(xj − 1) = 0 mod q′, then the la�er

deduces that xj ∈ {0, 1} because

q′|xj(xj − 1) ⇒ (q′|xj) or (q′|xj − 1)

⇒ (xj = 0) or (xj = 1) by (4.2)

�e prover hence just needs to prove x ◦ (x − 1) = 0 mod q′ for some prime q′ such that q′ ≥ A. To this purpose,

we apply the batch product veri�cation of [KZ22] as presented in Subsection 3.3.2. Given the protocol notations from

Subsection 3.3.2, we identify F = Zq′ (i.e. the computation is over Zq′), y = 1 − x, and z = 0. �e prover holds a

sharing of x and of a (a uniformly random element in (Zq′)n), c = 〈a, y〉. �ey also give a random challenge ε ∈ (Zq′)n
from the veri�er as inputs to the parties and runs the following MPC protocol:

1. the parties locally set JαK = ε ◦ JxK + JaK;

2. the parties open JαK to get α;

3. the parties locally set JvK = 〈α, 1− JxK〉 − JcK;

4. the parties open JvK to get v and accept i� v = 0.

As described in Section 3.3.2, the batch product MPC veri�cation produces false positives with probability 1/q′. �us

the soundness error of the obtained zero-knowledge protocol is

1

N
+
(

1− 1

N

) 1

q′
.

Finally, the prover-to-veri�er communication cost (in bits) for one repetition is

2(2λ) + n log2(A− 1)︸ ︷︷ ︸
x−JxKi∗

+n log2(q′)︸ ︷︷ ︸
∆α

+ log2(q′)︸ ︷︷ ︸
∆c

+λ log2N + 2λ ,

and the protocol has a rejection rate of 1− (1− 1
A)

n
.

4.2.4 Binarity proof from masking and cut-and-choose strategy

Our second solution to prove that JxK encodes a binary vector relies on a masking of x and a cut-and-choose strategy.

�e idea is to generate a random vector r from {0, 1}n and to apply the sharing described in Subsection 4.2.2 to r. In

addition, the prover computes (and commits) x̃ := x ⊕ r ∈ {0, 1}n where ⊕ represents the XOR operation. Instead of

giving the shares JxK of x as inputs of the MPC protocol, the idea is now to send the shares JrK of r. �en using x̃, the

parties can locally deduce a sharing of x as

JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK)

which is a linear relation in JrK, and the veri�er can further deduce the auxiliary value ∆x from ∆r as

∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r) .

By replacing JxK with JrK the parties’ input is made independent of the secret. �e interest of doing so is to enable

a cut-and-choose strategy to prove that JrK encodes a binary vector, which in turns implies that x = x̃ ⊕ r is a binary

vector. More precisely, at the beginning of the zero-knowledge protocol, the prover produces M binary vectors r[`]
and

their corresponding shares Jr[`]K (in practice these vectors and their sharings are pseudo-randomly derived from some

seeds). �en the prover commits those sharings Jr[`]K as well as the corresponding masked vectors x̃[`] := x⊕r[`]
. �en

the veri�er asks to open all the sharings r[`]
except one and checks that they correspond to binary vectors. �e veri�er

will hence trust that the unopened sharing encodes also a binary vector with a soundness error of 1/M . We stress that

all the values x̃[`]
for which r[`]

is opened must remain hidden (otherwise x could be readily recovered). �e obtained

zero-knowledge protocol (for one repetition) has a soundness error of

max

{
1

M
,

1

N

}
,

a rejection rate of 1− (1− 1
A)

n
and a prover-to-veri�er communication cost (in bits) of

2(2λ) + λ log2M︸ ︷︷ ︸
Cost of C&C

+n log2(A− 1)︸ ︷︷ ︸
r−JrKi∗

+ n︸︷︷︸
x̃

+λ log2N + 2λ .

4. Zero-Knowledge Protocols with Sharing over the Integers 33

4.2.5 Asymptotic Analysis

We analyze herea�er the asymptotic complexity of the two variants of our protocol. We show that for a security param-

eter λ both variants have an asymptotic communication cost of Θ(λ2) and an asymptotic computation time of Θ(λ4).

For the binarity proof based on masking and cut-and-choose, we assume M = N (which is optimal for the commu-

nication cost given the soundness error). For the other parameters, let us recall that

• for a security parameter λ, one must take n ≈ log2 q = Θ(λ),

• the prime q′ can be chosen as the smallest prime greater than A, which implies q′ ≈ A.

For both variants, the asymptotic communication cost for one repetition of the protocol is then of

Θ(λ log2A+ λ log2N) .

Since each repetition has a soundness error of Θ(1/N), the protocol must be repeated τ = Θ(λ/log2N) times to reach

a global soundness error of 2−λ. �e probability that any of these τ repetitions aborts is given by

1−
(

1− 1

A

)nτ
≈ nτ

A

where the approximation is tight when A is su�ciently large. �us for a small constant rejection probability, one must

take A = Θ(nτ) = Θ(λ2/ log2N). We have a communication cost for the τ iterations in

Θ

(
λ2 log2A

log2N
+ λ2

)
= Θ

(
λ2

log2N
log2

(λ2

log2N

)
+ λ2

)
and we hence obtain a minimal asymptotic communication cost of Θ(λ2) by taking N = Θ(λ).

�e asymptotic computation time for one repetition of the protocol is of Θ(Nn log2 q log2A), where the term

log2 q log2A arises from the complexity of the multiplication between an element of Zq and a value smaller thanA. We

hence get a computation time of Θ(λ3 log2 λ) per repetition which makes Θ(λ4) for τ repetitions.

4.3 Protocols and Security Proofs

In this section, we formally describe our two protocols and state their security. We further introduce a method to

decrease the rejection rate.

4.3.1 Protocol with batch product veri�cation

In Subsection 4.2.3, we proposed an MPC protocol proving that the sharing JxK encodes a binary vector. We then add

the checking of the linear relation as described in Subsection 4.2.2 and we transform the MPC into a zero-knowledge

protocol which proves the knowledge of a solution of an SSP instance. We give the formal description of our protocol

in Protocol 5. �e protocol makes use of a pseudo-random generator PRG, a tree-based pseudo-random generator

TreePRG, two collision-resistant hash functions Hashi for i ∈ {1, 2} and a commitment scheme (Com,Verif). In this

description, the procedure Check returns 0 if the evaluated condition is false (i.e. the equality does not hold) and the

execution continues otherwise.

To achieve a targeted soundness error 2−λ, we can perform τ parallel executions of the protocol such that ετ ≤ 2−λ.

As mentioned in Chapter 2, such parallel repetition does not preserve (general) zero-knowledge and the resulting scheme

achieves honest-veri�er zero-knowledge. Following the optimizations developed Chapter 3, instead of sending τ values

for h and h′, the prover can merge them together to send a single h and a single h′. Moreover, instead to sending the

N − 1 seeds and commitment randomness of (seedi, ρi)i 6=i∗ for each execution, we can instead send the co-path from

(seedi∗ , ρi∗) to the tree root, it costs at most λ log2(N) bits (we need to reveal log2(N) nodes of the tree) by execution

(this could be optimized with [BBM
+

24]). �e communication cost (in bits) of the protocol with τ repetitions is then

Size = 4λ+ τ [n(log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ]

while the soundness error and rejection rate scale as(
1

N
+

(
1− 1

N

)
1

q′

)τ
and 1−

(
1− 1

A

)τn
respectively. Let us stress that the obtained size is independent of the modulus q (and of the size of the integers {wj}, t).

4. Zero-Knowledge Protocols with Sharing over the Integers 34

Prover P Veri�er V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN)
with TreePRG(mseed)

For each party i ∈ [1, N]:
JaKi, JxKi, JcKi ← PRG(seedi) . a ∈ Znq′ , c ∈ Zq′ , JxKi ∈ [0, A− 1]

n

comi = Com(seedi; ρi)
∆x = x−

∑
iJxKi

∆c = 〈a, x〉 −
∑
iJcKi

h = H1(∆x,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Znq′

ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- JtK = 〈w, JxK〉 . t ∈ Zq
- JαK = ε ◦ (1− JxK) + JaK . α ∈ Znq′ (computation in Zq′)

�e parties open JαK to get α.

�e parties locally set

JvK = 〈α, JxK〉 − JcK . v ∈ Zq′ (computation in Zq′)

h′ = H2(JtK, JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− [1, N]

i∗←−−−−−−−−−−−−−−−−−−
If there exists j ∈ [1, n] such that:

- either JxjKi∗ = 0 with xj = 1
- or JxjKi∗ = A− 1 with xj = 0,

then abort.

y = x− JxKi∗
(seedi, ρi)i6=i∗ , comi∗ ,

y, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JxKi, JcKi ← PRG(seedi)

∆x = y −
∑
i 6=i∗JxKi

∆α = ε ◦ (1−∆x)
For all i 6= i∗,

Rerun the party i as the prover

and compute the commitment comi.

∆t = 〈w,∆x〉
∆v = 〈α,∆x〉 −∆c
JtKi∗ = t−∆t−

∑
i 6=i∗JtKi

JvKi∗ = −∆v −
∑
i 6=i∗JvKi

Check h = H1(∆x,∆c, com1, . . . , comN)
Check h′ = H2(JtK, JαK, JvK)
Return 1

Protocol 5: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-Head with rejection, using batch product

veri�cation to prove binarity.

4. Zero-Knowledge Protocols with Sharing over the Integers 35

4.3.2 Security proofs for Protocol 5

�e following theorems state the completeness, zero-knowledge and soundness of Protocol 5.

�eorem 4 (Completeness). A prover P who knows a solution x to the subset sum instance (w, t) ∈ Znq × Zq and who

follows the steps of Protocol 5 convinces the veri�er V with probability(
1− 1

A

)n
.

�eorem 5 (Zero-Knowledge). Let the PRG used in Protocol 5 be (t, εPRG)-secure and the commitment scheme Com be

(t, εCom)-hiding. �en there exists an e�cient simulator Sim that outputs a transcript which is (t, εPRG+εCom)-indistinguishable

from a real transcript of Protocol 5.

�eorem 6 (Soundness). Suppose that there is an e�cient prover P̃ that, on input (w, t), convinces the honest veri�er V on

input (w, t) to accept with probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

1

N
+
(

1− 1

N

) 1

q′
.

�en, there exists an e�cient probabilistic extraction algorithm E that, given rewindable black-box access to P̃, produces

either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a commitment collision, by making an average number of calls

to P̃ which is upper bounded by

4

ε̃− ε

(
1 + ε̃

2 ln(2)

ε̃− ε

)
.

As a preliminary note before entering into these proofs, we make an aside on abort events. In what follows, the

complementary of an event E is denoted ¬E . For all the proofs in this section, we introduce the following events: for

all j ∈ [1, n],

• A0
j := {xj = 0, JxjKi∗ = A− 1} which is the �rst case of abortion,

• A1
j := {xj = 1, JxjKi∗ = 0} which is the second case of abortion,

• Aj := A0
j ∪ A1

j .

Now let us denote abort the event when Protocol 5 aborts. By construction of the protocol, we have

Pr[abort] := Pr[

n⋃
j=1

Aj].

Let X be a random variable modeling the secret vector x. For any x ∈ {0, 1}n, we have

Pr[abort | X = x] = Pr[

n⋃
j=1

Aj | X = x]

= 1− Pr[

n⋂
j=1

(¬A0
j ∩ ¬A1

j) | X = x]

= 1− Pr[

n⋂
j=1

¬Axjj | X = x] (4.3)

= 1− Pr[

n⋂
j=1

JxjKi∗ 6= (1− xj) · (A− 1)]

= 1−
n∏
j=1

Pr[JxjKi∗ 6= (1− xj) · (A− 1)] (4.4)

= 1−
(

1− 1

A

)n
.

�e equality (4.3) comes from the fact that ¬A1−xj
j is true when Xj = xj , and the equality (4.4) comes from the

independency between the coordinates of the share JxKi∗ . We get that the probability of the event abort is independent

of X and satis�es:

Pr[abort] = 1−
(

1− 1

A

)n
. (4.5)

4. Zero-Knowledge Protocols with Sharing over the Integers 36

Proof. (�eorem 4) For any sampling of the random coins of P and V, if the computation described in the protocol is

honestly performed and if there is no abort, all the checks of V pass. �e completeness probability is hence of 1 −
Pr[abort], which from (4.5) implies the theorem statement.

Proof. (�eorem 5) Before building the desired simulator (i.e. an algorithm that outputs transcripts that are indistin-

guishable from real transcripts without knowing the secret), let us �rst show the independence between the secret x
and some events and values that can be observed from the transcript.

• �e abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. �is independence has been demonstrated just

below.

• When there is no abort, the transcript includes some values computed from the secret. While one can directly

remark that the values of some elements are independent of the secret since they are masked by the uniform

values of JcKi∗ and JaKi∗ , it is less clear for y := x− JxKi∗ . So let us explicit the probability distribution of y given

that the protocol did not abort and given the shares {JxKi}i 6=i∗ . Let X and Y be random variables respectively

modeling x and y = x− JxKi∗ . For any y ∈ [−A+ 2, 0]n and x ∈ {0, 1}n, we have

Pr[Y = y |X = x, {JxKi}i6=i∗ ,¬abort]

= Pr[JxKi∗ = y + x |
n⋂
j=1

(¬Axjj)]

= Pr
[
JxKi∗ = y + x

∣∣ n⋂
j=1

(JxjKi∗ 6= (1− xj)(A− 1))
]

=

n∏
j=1

Pr
[
JxjKi∗ = yj + xj

∣∣ JxjKi∗ 6= (1− xj)(A− 1)
]

=

(
1

A− 1

)n
We deduce that the coordinates of x− JxKi∗ follow the uniform distribution in [−A+ 2, 0] and that y = x− JxKi∗
(together with the occurrence of ¬abort and the shares {JxKi}i6=i∗) does not leak any information about the secret

x.

Let us now describe the simulator Sim who has oracle access to some probabilistic-polynomial time Ṽ, and works as

follows (we keep the notation from Protocol 5):

Simulator Sim:

1. Sample a challenge i∗
$←− [1, N].

2. Sample mseed $←− {0, 1}λ.

3. Compute parties’ seeds (seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed).

4. For each party i ∈ [1, N]\{i∗}: JaKi, JxKi, JcKi ← PRG(seedi) and comi = Com(seedi; ρi)

5. Sample y
$←− [−A+ 2, 0]n, ∆x = y −

∑
i 6=i∗JxKi, and ∆c

$←− Zq′ .

6. Sample a random commitment comi∗ .

7. Call Ṽ with the hash digest h of ∆x,∆c (and of the commitments of the seed and associated randomness

of each party) and gets a challenge ε.

8. Sample α
$←− Znq′ .

9. Simulate the computation of all the parties i 6= i∗ to get {JtKi, JαKi, JvKi}i 6=i∗ and (∆t,∆α,∆v).

4. Zero-Knowledge Protocols with Sharing over the Integers 37

10. Adapt the messages from and the outputs of the party i∗: JαKi∗ = α−∆α−
∑
i 6=i∗JαKi mod q′, JtKi∗ =

t−∆t−
∑
i 6=i∗JtKi mod q, and JvKi∗ = 0−∆v −

∑
i 6=i∗JvKi mod q′

11. Call Ṽ with the hash digest h′ of JtK, JαK, JvK and gets a challenge ĩ∗. If ĩ∗ 6= i∗, then Sim restarts the

simulation from scratch.

12. Abort with probability

1−
(

1− 1

A

)n
.

13. Outputs the transcript (
h, h′, (seedi, ρi)i6=i∗ , comi∗ , y,∆c, JαKi∗

)
.

When no abortion occurs, the output transcript is identically distributed to the genuine transcript except for the

commitment of the party i∗. Distinguishing them means breaking the commitment hiding property or the PRG security.

�e above simulator Sim is a probabilistic polynomial-time algorithm since the challenge set [1, N] (from which i∗ is

sampled) has a size that is polynomial in the security level.

Proof. (�eorem 6) For the sake of simplicity, we assume that the commitment scheme is perfectly binding. (If the

commitment scheme was computationally binding we would have to deal with additional cases where the extractor

would produce a commitment collision.)

For any set of successful transcripts corresponding to the same commitment, with at least two challenges for un-

opened party (i∗),

• either the revealed shares of JxK are not consistent, and then we �nd a hash collision (if the commi�ed values are

not the same, then the commitments cannot be the same since the commitment scheme is perfectly binding),

• or the openings are unique and hence the underlying witness JxK is uniquely de�ned.

�is witness can be recovered from any two successful transcripts T1 and T2 corresponding to the same commitment

and for which i∗T1
6= i∗T2

. Let us call a witness JxK a good witness whenever

〈w, x〉 = t and x ◦ (x− 1) = 0

where x :=
∑
iJxKi. Such a witness enables us to build a solution for the subset sum instance.

In what follows, we consider that the extractor only gets transcripts with consistent shares since otherwise, the

extractor would �nd a hash collision.

We shall further denote by Rh the randomness of P̃ which is used to generate the initial commitment Com = h, and

we denote rh a possible realization of Rh. Let us now describe the extractor procedure:

Extractor E:

1. Repeat +∞ times:

2. Run P̃ with honest Vto get transcript T1

3. If T1 is not a successful transcript, go to the next iteration

4. Do N1 times:

5. Run P̃ with honest Vand same rh as T1 to get transcript T2

6. If T2 is a successful transcript, i∗T1
6= i∗T2

and (T1, T2) reveals a good witness,

7. Return (T1, T2)

In what follows, we estimate the extraction complexity, i.e. how many time in average the extractor calls P̃. �rough-

out the proof, we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we have Pr[succP̃] = ε̃.
Let us �x an arbitrary value α ∈ (0, 1) such that (1− α)ε̃ > ε, it exists since ε̃ > ε. Let rh be a possible realization

of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− α)ε̃ . (4.6)

By the Spli�ing Lemma 1 (see Appendix 2.3.1) we have

Pr[Rh good | succP̃] ≥ α . (4.7)

4. Zero-Knowledge Protocols with Sharing over the Integers 38

Let assume we sample a successful transcript T1 as in the step 2 of the extractor E and let rh be the underlying

realization of Rh. Assume rh is good. By de�nition, we have

Pr[succP̃ | Rh = rh] ≥ (1− α)ε̃ > ε >
1

N

implying that there must exist a successful transcript T2 with i∗T2
6= i∗T1

. As explained above, this implies that there

exists a unique and well-de�ned witness JxK corresponding to these transcripts (and to all the transcripts with same rh).

We will show that if this witness is a bad witness (i.e. is not a good witness) then we have Pr[succP̃ | Rh = rh] ≤ ε
meaning that rh is not good. By contraposition, we get that if rh is good, then the witness JxK is a good witness. So let

us assume that the witness JxK in T1 is a bad witness. �is means that

〈w, x〉 6= t or x ◦ (x− 1) 6= 0

where x =
∑
iJxKi. Let us denote FP the event that a geniune execution of the batch product checking outputs a false

positive, i.e. outputs a zero vector v. We have

Pr[FP] ≤ 1

q′

according to Section 3.3.2.

Let us upper bound the probability that the inner loop �nds a successful transcript:

Pr[succP̃ | Rh = rh] = Pr[succP̃, FP | Rh = rh] + Pr[succP̃,¬FP | Rh = rh]

≤ 1

q′
+ (1− 1

q′
) Pr[succP̃ | Rh = rh,¬FP]

Having a successful transcript means that the sharings JvK and JtK in the �rst response of the prover must encode

respectively a zero vector and t. But the event ¬FP when we have x · (x − 1) 6= 0 implies that a geniune execution

outputs a non-zero vector v, and if x◦(x−1) = 0, it implies that JtK does not correspond to the vector t (since the witness

is bad). So to have a successful transcript, the prover must cheat for the simulation of at least one party. If the prover

cheats for several parties, there is no way it can produce a successful transcript, while if the prover cheats for exactly one

party (among the N parties), the probability to be successful is at most 1/N . �us, Pr[succP̃ | Rh = rh,¬FP] ≤ 1/N
and we have

Pr[succP̃ | Rh = rh] ≤ p+ (1− p) 1

N
= ε,

meaning that rh is not good. By contraposition, we get that if rh is good, then JxK is a good witness.

Now, let us lower bound the probability that the ith iteration of the inner loop �nds a successful transcript T2 such

that i∗T1
6= i∗T2

in the presence of a good Rh. We have

Pr[succT2

P̃
∩ (i∗T1

6= i∗T2
) | Rh good]

= Pr[succT2

P̃
| Rh good]− Pr[succT2

P̃
∩ (i∗T1

= i∗T2
) | Rh good]

≥ (1− α)ε̃− Pr[i∗T1
= i∗T2

| Rh good]

= (1− α)ε̃− Pr[i∗T1
= i∗T2

]

= (1− α)ε̃− 1/N

≥ (1− α)ε̃− ε

Let de�ne p0 := (1− α)ε̃− ε. By running P̃ with the same rh as for the good transcript N1 times, we hence obtain

a second non-colliding transcript T2 with probability at least 1/2 when

N1 ≈
ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (4.8)

Let C denotes the number of calls to P̃ made by the extractor before �nishing. While entering a new iteration:

• the extractor makes one call to P̃ to obtain T1,

• if T1 is not successful, which occurs with probability (1− Pr[succP̃]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,

• if T1 is successful, which occurs with probability Pr[succP̃],

4. Zero-Knowledge Protocols with Sharing over the Integers 39

◦ if rh is good which occurs with probability α, the extractor makes at most N1 calls to P̃ in the inner loop of

E and output a pair (T1, T2) with probability 1/2,

◦ otherwise the extractor makesN1 calls to P̃ in the inner loop of E without stopping, with probability at most

(1− α
2).

�e mean number of calls to P̃ hence satis�es the following inequality:

E[C] ≤ 1 + (1− Pr[succP̃])E[C]︸ ︷︷ ︸
T1 unsuccessful

+ Pr[succP̃]
(
N1 +

(
1− α

2

)
E[C]︸ ︷︷ ︸

T1 successful

)

which gives

E[C] ≤ 1 + (1− ε̃)E[C] + ε̃
(
N1 +

(
1− α

2

)
E[C]

)
≤ 1 + ε̃N1 + E[C]

(
1− ε̃α

2

)
≤ 2

αε̃
(1 + ε̃N1)

≤ 2

αε̃

(
1 + ε̃

ln(2)

(1− α)ε̃− ε

)
.

To obtain an α-free formula, let us take α such that (1− α)ε̃ = 1
2 (ε̃+ ε). We have α = 1

2

(
1− ε

ε̃

)
and the average

number of calls to P̃ is upper bounded by

4

ε̃− ε

(
1 + ε̃

2 ln(2)

ε̃− ε

)
which concludes the proof.

4.3.3 Protocol with cut-and-choose strategy

As described in Subsection 4.2.4, we can also use a cut-and-choose strategy to prove that the vector JxK is binary. It is

possible since we can remplace the input JxK of the MPC by a sharing JrK independent of the secret, where r is a mask

uniformly sampled in {0, 1}n. To achieve a targeted soundness error 2−λ, we can perform τ parallel executions of the

protocol such that ετ ≤ 2−λ. Like in [KKW18] and as developed in Chapter 3, instead of performing τ independent cut-

and-choose phases each resulting in trusting one sharing JrK among M , we can perform a global cut-and-choose phase

resulting in τ trusted sharings JrK among a larger M . We give the formal description of this zero-knowledge protocol

in Protocol 6. �e protocol makes use of a pseudo-random generator PRG, a tree-based pseudo-random generator

TreePRG, four collision-resistant hash functions Hashi for i ∈ {1, 2, 3, 4} and a commitment scheme (Com,Verif). In

this description, the procedure Check returns 0 if the evaluated condition is false (i.e. the equality does not hold) and

the execution continues otherwise.

4. Zero-Knowledge Protocols with Sharing over the Integers 40

Prover P Veri�er V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed[0] $←− {0, 1}λ

(mseed[e])e∈[1,M] ← TreePRG(mseed[0])

For each e ∈ [1,M]:

r[e] ← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed[e]
i , ρ

[e]
i)i∈[1,N] ← TreePRG(mseed[e])

For each i ∈ [1, N]:

Jr[e]Ki ← PRG(seed[e]
i) . Jr[e]Ki ∈ [0, A− 1]

n

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

∆r[e] = r[e] −
∑
iJr

[e]Ki
he = H1(∆r[e], com[e]

1 , . . . , com[e]
n)

h = H2(h1, . . . , hM)
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [1,M] ; |J | = τ}

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
�e parties locally set

JxK[e] = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set JtK[e] = 〈w, JxK[e]〉.
h′e = H3(x̃[e], JtK[e])

h′ = H4((h′e)e∈J)
h′, (mseed[e])e∈[1,M]\J−−−−−−−−−−−−−−−−−−→

L = {`e}e∈J
$←− [1, N]

τ

L←−−−−−−−−−−−−−−−−−−
If there exists (e, j) ∈ J × [1, n] such that:

- either Jr[e]
j K`e = 0 with r

[e]
j = 1

- or Jr[e]
j K`e = A− 1 with r

[e]
j = 0,

then abort.

y = r[e] − Jr[e]K`e  (seed[e]
i , ρ

[e]
i)i 6=`e

y, x̃[e], com[e]
`e


e∈J−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :

For all i 6= `e

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

Rerun the party i
as the prover to get Jt[e]Ki

∆r[e] = y −
∑
i 6=`eJr

[e]Ki
he = H1(∆r[e], com[e]

1 , . . . , com[e]
n)

From ∆r[e]
, deduce ∆t[e].

JtK[e] = t−∆t[e] −
∑
i 6=`eJtK

[e]
i

h′e = H3(x̃[e], JtK[e])
Check h = H2(h1, . . . , hM)
Check h′ = H4((h′e)e∈J)
Return 1

Protocol 6: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-Head with rejection, using cut-and-

choose strategy to prove binarity.

Let us recall that the couples (seedi, ρi) are sampled using a TreePRG, sending (seed[e]
i , ρ

[e]
i)i 6=`e costs at most

λ log2(N) bits by iteration. �e communication cost (in bits) of the protocol is then

Size = 4λ+ λτ log2

M

τ
+ τ [n log2(A− 1) + n+ λ log2N + 2λ] .

Here again, the obtained size is independent of the modulus q (and of the size of the integers {wj}, t).

4.3.4 Security proofs for Protocol 6

�e following theorems state the completeness, zero-knowledge and soundness of Protocol 6.

4. Zero-Knowledge Protocols with Sharing over the Integers 41

�eorem 7 (Completeness). A prover P who knows a solution x to the subset sum instance (w, t) ∈ Znq × Zq and who

follows the steps of Protocol 6 convinces the veri�er V with probability(
1− 1

A

)τn
.

�eorem 8 (Honest-Veri�er Zero-Knowledge). Let the PRG used in Protocol 6 be (t, εPRG)-secure and the commitment

scheme Com be (t, εCom)-hiding. �en, there exists an e�cient simulator Sim which, given random challenges J and L
outputs a transcript which is (t, τεPRG + τεCom)-indistinguishable from a real transcript of Protocol 6.

�eorem 9 (Soundness). Suppose that there is an e�cient prover P̃ that, on input (w, t), convinces the honest veri�er V on

input (w, t)) to accept with probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
Nk−M+τ

}
.

�en, there exists an e�cient probabilistic extraction algorithm E that, given rewindable black-box access to P̃, produces

either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a commitment collision, by making an average number of calls

to P̃ which is upper bounded by

4

ε̃− ε

(
1 + ε̃

8M

ε̃− ε

)
.

Let us denote abort the event when Protocol 6 aborts. By exactly the same reasoning as in Subsection 4.3.2 (but here

the protocol aborts if any of the τ iterations aborts), we have

Pr[abort | X = x] = 1−
(

1− 1

A

)nτ
and

Pr[abort] = 1−
(

1− 1

A

)nτ
. (4.9)

Proof. (�eorem 7) For any sampling of the random coins of P and V, if the computation described in the protocol is

honestly performed and if there is no abort, all the checks of V pass. �e completeness probability is hence of 1 −
Pr[abort], which from (4.9) implies the theorem statement.

Proof. (�eorem 8) Before building the desired simulator (i.e. an algorithm that outputs transcripts that are indistin-

guishable from real transcripts without knowing the secret), let us �rst show the independence between the secret x
and some events and values that can be observed from the transcript.

• �e abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. It has been demonstrated with equation (4.9).

• When there is no abort, the transcript includes some values computed from the secret. By the same reasoning

than in the proof of �eorem 5, we get that the coordinates of r[e] − Jr[e]Ki∗ follow the uniform distribution in

[−A + 2, 0] and that y[e] = r[e] − Jr[e]Ki∗ (together with the occurrence of ¬abort and the shares {Jr[e]Ki}i 6=i∗)
does not leak any information about the vector r[e]

. �us since r[e]
is uniformly sampled in {0, 1}n, the value of

x̃[e]
is independent of the secret x.

Let us now describe the simulator Sim who has oracle access to some probabilistic-polynomial time Ṽ, and works as

follows (we keep the notation from Protocol 6):

Simulator Sim:

1. Sample J
$←− {J ⊂ [1,M]; |J | = τ} and L = {`e}e∈J

$←− [1, N]
τ

uniformly at random (as an honest

veri�er).

2. Sample mseed[0] $←− {0, 1}λ

4. Zero-Knowledge Protocols with Sharing over the Integers 42

3. (mseed[e])e∈[1,M] ← TreePRG(mseed[0])

4. For e ∈ [1,M]\J , follow honestly the protocol since it does not need to know the secret and deduce he.

5. For e ∈ J ,

• Compute (seed[e]
1 , ρ

[e]
1), . . . , (seed[e]

N , ρ
[e]
N) with TreePRG(mseed[e]).

• For each party i ∈ [1, N]\{`e}: Jr[e]Ki ← PRG(seed[e]
i), com[e]

i = Com(seed[e]
i ; ρ

[e]
i)

• Sample x̃[e] $←− {0, 1}n, y[e] $←− [−A+ 2, 0]
n

, and ∆r[e] = y[e] −
∑
i 6=`eJr

[e]Ki.

• Sample a random commitment com[e]
`e

.

• Simulate the computation of all the parties i 6= `e to get {JtK[e]
i }i 6=`e and ∆t[e].

• Adapt the outputs of the party `e: JtK[e]
`e

= t[e] −∆t[e] −
∑
i 6=`eJtK

[e]
i mod q

• Compute he = H1(∆r[e], com[e]
1 , . . . , com[e]

n), h′e = H3(x̃[e], JtK[e])

6. Compute h = H2(h1, . . . , hM), h′ = H4((h′e)e∈J)

7. Abort with probability

1−
(

1− 1

A

)nτ
.

8. Outputs the transcript(
h, h′, (mseed[e])e∈[1,M]\J , ((seed

[e]
i , ρ

[e]
i)i6=`e , com

[e]
`e
, y[e], x̃[e])

e∈J

)
.

When no abortion occurs, the output transcript is identically distributed to the genuine transcript except for com-

mitment of the party `e in each execution e ∈ J . Distinguishing them means breaking the commitment hiding property

or the PRG security.

Proof. (�eorem 9) Let us �rst how to extract the subset sum solution x from a few transcripts satisfying speci�c condi-

tions. We will then show how to get such transcripts from rewindable black-box access to P̃.

Transcripts used for extraction. We assume that we can extract three transcripts

Ti = (Com(i),Ch
(i)
1 ,Rsp

(i)
1 ,Ch

(i)
2 ,Rsp

(i)
2) for i ∈ {1, 2, 3} , (4.10)

from P̃, with Ch
(i)
1 := J (i)

, Ch
(i)
2 := {`(i)j }j∈J(i)

, which satisfy:

1. Com
(1) = Com

(2) = Com
(3) = h,

2. there exists j0 ∈ (J (1) ∩ J (2)) \ J (3)
s.t. `

(1)
j0
6= `

(2)
j0

3. T1 and T2 are success transcripts (i.e. which pass all the tests of V),

4. seed[j0]
from Rsp

(3)
1 is consistent with the (σ

[j0]
i , s

[j0]
i) from T1 and T2.

Using these three transcripts, we next show that it is possible to extract a solution of the subset sum instance de�ned

by w and t. We can assume that all the revealed shares are mutually consistent between the three transcripts because

else we �nd a hash collision. So, we know all the shares for the iteration j0 from T1 and T2.

Extraction of x from T1, T2 and T3. For this part, we will only consider the variables of the form (∗)[j0]
, so we will omit

the superscript for the sake of clarity. In the following, we will denote VTi the set of checked equations at the end of

the transcript with Ti for i ∈ {1, 2, 3}.
Let us de�ne x′ := ∆x +

∑N
i=1JxKi. We simply return x′ as a candidate solution for x. �anks to the multi-party

computation, we know

• �e sharing JtK encodes t: t = ∆t+
∑N
i=1JtKi.

4. Zero-Knowledge Protocols with Sharing over the Integers 43

• We have JtK =
∑n
j=1 wjJxjK, i.e. {

∀i ∈ [1, N], JtKi =
∑n
j=1 wjJxjKi,

∆t =
∑n
j=1 wj∆xj .

• We have JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK):{
∀i ∈ [N], JxKi = (1− x̃) ◦ JrKi + x̃ ◦ (−JrKi),
∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r).

So we deduce that

n∑
j=1

wjx
′
j =

n∑
j=1

wj(∆xj +

N∑
i=1

JxjKi)

=

n∑
j=1

wj∆xj +

N∑
i=1

n∑
j=1

wjJxjKi

= ∆t+

N∑
i=1

JtKi = t

and

x′ = ∆x+

N∑
i=1

JxKi

= ((1− x̃) ◦∆r + x̃ ◦ (1−∆r)) +

N∑
i=1

((1− x̃) ◦ JrKi + x̃ ◦ (−JrKi))

= (1− x̃) ◦ (∆r +

N∑
i=1

JrKi) + x̃ ◦ (1−∆r −
N∑
i=1

JrKi)

= (1− x̃) ◦ r + x̃ ◦ (1− r)

where r := ∆r +
∑N
i=1.

From VT3 , we get that r is a binary vector. Since x̃ is binary by de�nition, thanks to the above relation, we deduce

that the vector x′ is a binary vector.

Since x′ veri�es t =
∑n
j=1 wjx

′
j and is a binary vector, it is a solution of the subset sum instance (w, t).

Extraction of T1, T2 and T3 from P̃. We can use exactly the same extractor E as de�ned in the Appendix E of [FJR23].

It de�nes an extractor which produces the wanted transcripts by making in average at most

4

ε̃− ε

(
1 + ε̃

8 ·M
ε̃− ε

)
calls to P̃, which concludes the proof.

4.3.5 Decreasing the rejection rate

�e two above protocols have a rejection rate around τn/A which implies that we must take A = Θ(τn) to obtain

a constant (small) rejection rate. In practice, this results in a signi�cant increase in the communication cost. Let us

for instance consider Protocol 5 with (τ,N,A) = (16, 280, 213). For this se�ing, the proof size is about 15.6 KB for a

rejection rate of 0.394. If we increased A to get a rejection rate below 0.003, we should take A = 221
and the proof size

would be 23.6 KB.

A be�er strategy consists in allowing the prover to abort a few of the τ iterations. Let us assume that the veri�er

accepts the proof if the prover can answer to τ − η challenges among the τ iterations. �is slightly increases the

soundness error, but it can also signi�cantly decrease the global rejection rate. If we denote prej the probability that an

iteration aborts, then the global rejection rate of this strategy is given by

1−
η∑
i=0

(
τ

i

)
(1− prej)

τ−i
pi

rej
. (4.11)

4. Zero-Knowledge Protocols with Sharing over the Integers 44

At the same time, the soundness error for Protocol 5 becomes

η∑
i=0

(
τ

i

)
(1− ε)iετ−i

where ε = 1
N +

(
1− 1

N

)
1
q′ is the soundness error of a single iteration. Using this strategy with τ = 20 and η = 3, the

proof size is of 16.7 KB for a rejection rate of 0.003 (instead of 23.6 KB with the naive strategy).

�e same strategy also applies to Protocol 6. �e rejection rate is also given by Equation (4.11) while the soundness

error becomes

max
M−τ≤k≤M

{(
k

M−τ
)(

M
M−τ

) η∑
i=0

[(
k −M + τ

i

)(
1− 1

N

)i(
1

N

)k−M+τ−i
]}

.

In any case, the prover always answers to at most τ − η challenges of the veri�er (even if the prover aborts less

than η among the τ iterations) so that the communication cost is roughly that of τ − η iterations. Additionally, for each

unanswered challenge, the prover must further send two hash digests to enable the veri�er to recompute and check h
and h′. �us the new proof size (in bits) for Protocol 5 is

Sizeη = 4λ+ η4λ+ (τ − η) [n(log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] ,

while the new proof size (in bits) for Protocol 6 is

Sizeη = 4λ+ η4λ+ λτ log2

M

τ
+ (τ − η) [n log2(A− 1) + n+ λ log2N + 2λ] .

We note that in practice, given a target security level and a target rejection probability, one needs to use a slightly

increased τ (or N) to compensate for the loss in terms of soundness. While this shall slightly increase the proof size,

the above approach (with η > 0) still provides be�er trade-o�s than the original approach (η = 0).

4.4 Instantiations and Performances

4.4.1 Subset Sum instances

We recall in this section known techniques to solve the modular subset sum problem (SSP) de�ned by (4.1). It is well-

known that the hardness of an SSP instance depends greatly on its density de�ned as d = n/ log2 q. If the SSP instance

is too sparse (e.g. d < 1/n) or too dense (e.g. d > n/ log2 n) then the problem can be solved in polynomial time (see

e.g. [CJL
+

92] and references therein). We shall therefore only consider SSP instances with density d ' 1 (i.e. q ' 2n)

which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at O(2n) time and constant space, or time-

space tradeo� [HS74] with O(2n/2) time and space complexities. �e �rst non-trivial algorithm was published by

Schroeppel and Shamir [SS81] with time complexity O(2n/2) and space complexity O(2n/4). Later, faster algorithms

were proposed with similar time and space complexities, e.g. Õ(20.337n) by Howgrave-Graham and Joux [HJ10]and

Õ(20.283n) by Bonnetain, Bricout, Schro�enloher and Shen [BBSS20]. �e la�er algorithms neglect the cost to access an

exponential memory but even with this optimistic assumption, for n = 256, all known algorithms require at least a time

complexity lower-bounded by 2128
operations or memory of size at least 272

bits. �ere also exists a vast literature on

quantum algorithms for solving the SSP (see [BBSS20] and references therein). �e best (heuristic) quantum complexity

from [BBSS20] has time complexity Õ(20.216n) and thus requires about 264
quantum operations and quantum memory

for n = 256. In the following, we, therefore, consider the e�ciency of our protocols for n = 256.

4.4.2 Zero knowledge protocols

Let us consider the subset sum problem with n = 256. We propose in Table 4.1 several sets of parameters for our

two protocols which target a security of 128 bits. We provide two kinds of instantiations to give the reader an idea

of the obtained performance while changing the number of parties. �e �rst ones correspond to instantiations with

fast computation. �e second ones correspond to instantiations that achieve smaller communication costs but slower

computation. For each se�ing, we suggest two parameter sets: one achieving a rejection rate around 0.4 and the other

one achieving a rejection rate between 0.001 and 0.004.

We provide in Table 4.1 the performance of the other zero-knowledge protocols proving the knowledge of an SSP

solution. �e only other protocol designed for the subset sum problem is Shamir’s one [Sha86]. We can also compare

these protocols with [LNSW13] which is an adaptation of Stern’s protocol to the ISIS (inhomogeneous short integer

solution) problem. �e remaining articles in the literature about proofs for the ISIS problem are restricted to the case

where the modulus q is prime. We add Beullens’ protocol [Beu20] for ISIS with prime q to the comparison.

We provide in Appendix B the performances of the obtained signatures when applying the Fiat-Shamir trans-

form [FS87] to our protocols.

4. Zero-Knowledge Protocols with Sharing over the Integers 45

Protocol

Parameters

Proof size Rej. rate Soundness err.

τ η N A M

Shamir [Sha86] 219 - - - - 1186 KB - 128 bits

[LNSW13] 219 - - - - 2350 KB - 128 bits

Beullens [Beu20] 14 - 1024 - 4040 122 KB - 128 bits

Protocol 5 (batching) 26 0 32 214
- 25.7 KB 0.334 130 bits

Protocol 5 (batching) 31 3 32 214
- 27.9 KB 0.001 128 bits

Protocol 6 (C&C) 27 0 32 214
462 17.4 KB 0.344 128 bits

Protocol 6 (C&C) 33 3 32 214
470 19.6 KB 0.002 128 bits

Protocol 5 (batching) 17 0 256 213
- 16.6 KB 0.412 135 bits

Protocol 5 (batching) 21 3 256 213
- 17.7 KB 0.004 133 bits

Protocol 6 (C&C) 19 0 256 213
954 13.0 KB 0.448 128 bits

Protocol 6 (C&C) 24 3 256 214
952 15.4 KB 0.001 128 bits

Tab. 4.1: Comparison of state-of-the-art zero-knowledge protocols for proving the knowledge of an SSP instance (with

n = 256 and q ≈ 2256
).

4.4.3 Comparison with generic techniques

We compare our scheme with e�cient generic techniques to prove the knowledge of an SSP solution. Among those

techniques, we consider SNARKs (e.g. [Gro16a]), “compressed” proof systems such as Bulletproofs [BBB
+

18] and STARKs

(e.g. [BBHR18]). For the sake of accuracy, we split the notation for the security level of the subset sum instance, denoted

κ, and of the zero-knowledge argument, denoted λ. Adapting the analysis of Subsection 4.2.5 to this se�ing, we get a

communication cost of Θ(λ2 + λκ) for our protocols.

�e asymptotic size of [Gro16a] arguments is roughly
1 Ω(λ3) which is asymptotically larger than ours, but for κ =

λ = 128, these arguments will be shorter than ours (within the range of 700–800 bytes). Using Bulletproofs [BBB
+

18],

one can obtain an asymptotic communication cost of Ω(log(κ)(λ+κ)), and about 600 bytes for κ = λ = 128. Although

SNARKs and “compressed” proof systems give shorter arguments than ours for κ = λ = 128, they both require stronger

and non post-quantum computational assumptions. In particular, [Gro16a] requires a trusted setup and a non-falsi�able

assumption, while Bulletproofs rely on the algebraic group model in their non-interactive version [GOP
+

22]. In com-

parison, the security of our arguments only relies on weak post-quantum assumptions (PRG, collision-resistant hash

functions).

Regarding STARKs [BBHR18], their security assumptions are similar to ours. When applying STARKs to the subset

sum problem, one gets arguments of size Ω(λ2 log2 κ), which is larger than ours.
2

4.5 Further Applications

As illustrated on the subset sum problem, our technique of sharing over the integers with rejection is –more generally–

instrumental to a context of a secret vector s ∈ Znq with small coe�cients. Since the communication cost of our protocols

is independent of the size q of the ring Zq , the gain in communication is higher when the modulus q is high. But it does

not need to have a modulus as high as in the subset sum problem to be interesting. In the three subsections, we present

the performance of our schemes with the sharing over the integers on three other applications with moderate-size

modulus:

• to prove the knowledge of a solution of an ISIS problem instance,

• to prove the knowledge of a secret key and plaintexts matching a set of FHE ciphertexts,

• to construct an e�cient digital signature based on Boneh-Halevi-Howgrave-Graham pseudo-random function.

Another advantage of the sharing on the integers is that we can perform any operation on it with any modulus. We

used this property in one of our protocols to check multiplication triples in a smaller �eld. �is property can be also

useful when we want to prove that the same secret vector veri�es many relations using distinct modulus.

1
�is is due to sub-exponential a�acks on the discrete logarithm in the target group which also impacts the size of elements of the second group

of the bilinear structure.

2
�e λ2 factor is obtained by λ for the hash digest size times λ for the number of evaluation points in the FRI protocol (which scales with the

soundness error). �e log2 κ factor comes from the size κ of the program verifying the SSP instance.

4. Zero-Knowledge Protocols with Sharing over the Integers 46

4.5.1 Short Integer Solution Problem

Given a matrix A ∈ Zm×n and a vector u ∈ Zm, the inhomogenous short integer solution (ISIS) problem consists in

�nding a vector s ∈ Zn with small coe�cients such that

As = u mod q.

�e Ling-Nguyen-Stehlé-Wang protocol [LNSW13], which is an adaptation of Stern’s protocol, has been for a long

time the only zero-knowledge exact protocol which proves the knowledge of a solution of an ISIS instance. Other

protocols existed but they were only relaxed proofs, i.e. they prove the knowledge of an s′ and c satisfying As′ =
cu mod q. �ese protocols can be useful in some contexts, but they are not suited to prove the exact statement.

Recently, new exact proofs [BLS19, ENS20, LNS21, BN20a, Beu20] have been published. However, all these new

protocols require an assumption on the modulus q to work: some of them only require that q is a prime number when

the others require that q is an NTT-friendly prime number. In the state of the art, the only protocol which works for

any q (even when q is not a prime) is [LNSW13].

We can adapt our protocols of Section 4.3 to the case of the ISIS problem. �e linear constraint “As = u” is free

in communication as it was the case for “t = 〈w, x〉” for the subset sum problem (see Section 4.2.2). �e hard part is

to prove that the secret s satis�es ‖s‖∞ ≤ β for some bound β. To proceed, we decompose s as k := dlog2(2β + 1)e
vectors (s0, . . . , sk−1) of {0, 1}n such that

s =

k−2∑
i=0

2isi + (2β − 2k−1 + 1)sk−1 − β . (4.12)

If all vectors si belong to {0, 1}, the above relation gives that ‖s‖∞ ≤ β. So we just need to give the sharing

{JsiK}i∈[0,k−1] to the MPC protocol instead of JsK. �e la�er can then check that {JsiK}i∈[0,k−1] are binary vectors

and that AJsK corresponds to u modulo q where JsK is recovered by linearity of Equation (4.12). �e proof sizes of the

resulting protocols are given by the formulae as before, we just need to consider that the length of the secret is nk
(instead of n).

We compare our protocols with the state of the art in Table 4.2 on the two following ISIS problems:

1. ‖s‖∞ ≤ 1, m = 1024, n = 2048, q ≈ 232

2. Binary s, m = 512, n = 4096, q ≈ 261

For both instances, we have kn = 4096. For our protocols, we choose the following parameters:

• Protocol 1 (batch product veri�cation):

A = 216, N = 128, q′ ≈ A, τ = 23, η = 3.

• Protocol 2 (cut-and-choose strategy):

A = 216, N = 256, q′ ≈ A, M = 952, τ = 24, η = 3.

We can remark that our protocols have the same communication cost for both instances. It comes from the fact that

their proof size is independent of the modulus q. Even when q is prime (and larger than 232
), our Protocol 6 (with the

cut-and-choose phase) has smaller communication cost than Beullens’ protocol and this while taking less aggressive

parameters towards size against speed (the parameters used in [Beu20] are (τ,M,N) = (14, 4040, 210)). We also

observe that our protocols achieve proof sizes which are more than 10 times smaller than those of [LNSW13], the only

previous protocol supporting any modulus q.

4.5.2 Fully Homomorphic Encryption

Our zero-knowledge protocols also �nd application to fully homomorphic encryption (FHE). We can indeed adapt our

protocols to prove the knowledge of a secret key matching a set of FHE-encrypted plaintexts. We elaborate on this

application herea�er for the particular case of TFHE (Torus FHE) [CGGI20] which is currently one of the FHE schemes

with the best performances in practice.

For some q ∈ N, let Tq = q−1Z/Z be the discretized torus with q elements, i.e. the submodule of the real torus with

representative {i/q ; i ∈ Zq} [Joy21]. In practice, q is o�en chosen to be 232
or 264

in order to match the word-size

and arithmetic operations of common CPUs. For this reason, we shall consider that q is a power of 2 in the following

(although the described application can be easily generalized to any q). TFHE relies on so called TLWE (Torus Learning

With Error) encryption. Let p | q and δ = q/p. �e plaintext space is de�ned as Zp while the key space is de�ned as

4. Zero-Knowledge Protocols with Sharing over the Integers 47

Protocol Year Any q
Instance 1 Instance 2

Proof Size Rej. Rate Proof Size Rej. Rate

[LNSW13] 2013 3 3600 KB - 8988 KB -

[BN20a] 2020 q prime - - 4077 KB -

[Beu20] 2020 q prime 233 KB - 444 KB -

Our Protocol 1 2022 3 291 KB 0.04 291 KB 0.04
Our Protocol 2 2022 3 184 KB 0.05 184 KB 0.05

[BLS19] 2019 q prime + NTT 384 KB 0.92
[ENS20] 2020 q prime + NTT 47 KB 0.95
[LNS21] 2021 q prime + NTT 33.3 KB 0.85

Aurora [BCR
+

19] 2019 q prime + NTT 71 KB -

Ligero [AHIV17] 2017 q prime + NTT 157 KB -

Tab. 4.2: Comparison with the existing exact protocols which prove the knowledge of the solution of an ISIS instance.

{0, 1}n ⊂ Zn. Let s = (s1, . . . , sn) ∈ {0, 1}n be a secret key. �e TLWE encryption of a plaintext µ ∈ Zp under the

secret key s and with error e ∈ Z is de�ned as

c = (a1, . . . , an, b) ∈ Tn+1
q where

{
µ∗ = δµ+e mod q

q ∈ Tq
b =

∑n
j=1 sjaj + µ∗

�e ai’s are random elements of Tq which are sampled at encryption time or which arise from the homomorphic

operations between other ciphertexts. �e value e ∈ Z is the error which must satis�es |e| < δ/2 to ensure the

correctness of the decryption.

Proving the knowledge of a key s and plaintext µ for which c = (a1, . . . , an, b) is a correct TLWE encryption of µ
under s can be achieved by proving the knowledge of a binary vector

x = (s1, . . . , sn) | (µ1, . . . , µ`p) | (e1, . . . , e`e)

where `p = log2 p and `e is such that e ∈ [−2`e−1, 2`e−1 − 1], and which satis�es

n∑
i=1

āisi +

`p∑
i=1

(2i−1δ)µi +

`e∑
i=1

(2i−1)ei = b̄+ 2`e−1 (mod q)

where āi ∈ Z (resp. b̄ ∈ Z) is the integer such that ai = āi/q ∈ Tq (resp. b = b̄/q ∈ Tq) and where the error is

e := −2`e−1 +
∑`e
i=1(2i−1)ei. �e application of our protocols to this context is immediate. We note that the secret

binary vector is of size n′ = n+ `p+ `e when the underlying plaintext must remain secret while it is of size n′ = n+ `e
if the plaintext is public. In the la�er case, the value of the sum is t = b̄+ 2`e−1 − µ. We can also use our protocols to

prove the knowledge of a secret key and a set of plaintexts matching a set of ciphertexts. For m ciphertexts, we obtain

m linear relations with a binary vector of size n′ = n+m(`p + `e) (or n′ = n+m`e in the public plaintext se�ing).

Remark 5. Proving the knowledge of a single key-plaintext pair matching a given ciphertext might not be relevant on its

own. Indeed, for the typical parameters given above, the obtained SSP instance might not be hard (i.e. �nding a solution

is not hard while �nding the original key-plaintext pair is still hard). However, such proof is still useful whenever proving

additional properties involving the underlying secret key and/or plaintext. In such contexts, �nding a solution to the SSP

instance which does not match the original key-plaintext pair is useless.

According to [Joy21], typical parameters for a TLWE encryption are q = 232
or q = 264

and n = 630. Depending

on the exact message space and error space, we have n′ ∈ [n, n+ log2 q]. Table 4.3 gives the obtained communication

cost for proving the knowledge of the key (and plaintexts) corresponding to 1, 64 and 1024 TLWE ciphertexts using

our protocols (assuming q = 264
and `e + `p = 64). For the sake of comparison, we also give the communication

obtained with Shamir’s protocol [Sha86]. We note that the la�er and the LNSW protocol [LNSW13] are the only previous

protocols which can work with such values of q and the LNSW protocol is always heavier than Shamir’s in this context.

We observe that our protocols always gain more than a factor 10 (for Protocol 5) and 20 (for Protocol 6) for the obtained

communication cost compared to Shamir’s protocol.

Besides TFHE, our proof techniques are also well suited to prove the correctness of a ciphertext produced by a public-

key FHE encryption using the Rothblum transform [Rot11]. �e la�er can transform any secret-key FHE scheme into

a public-key FHE scheme. �e public key is built as a set of ciphertexts c1, . . . , cn each encrypting 0. �en to encrypt a

plaintext µ, one draws a random secret vector (x1, . . . , xn) ∈ {0, 1}n and computes the encryption of µ as µ+
∑n
i=1 ci.

(Here we implicitly assume that the ciphertexts are malleable as Enc(0) + µ = Enc(µ) but the Rothblum transform

4. Zero-Knowledge Protocols with Sharing over the Integers 48

Protocol

Parameters

Proof size Rej. rate Soundness err.

τ η N A M

1 ciphertext

Shamir [Sha86] 219 - - - - 845 KB - 128 bits

Protocol 5 (batching) 19 2 256 215
- 46.1 KB 0.007 128 bits

Protocol 6 (C&C) 24 3 256 215
952 34.0 KB 0.002 128 bits

64 ciphertexts

Shamir [Sha86] 219 - - - - 8.48 MB - 128 bits

Protocol 5 (batching) 19 2 256 218
- 356 KB 0.005 129 bits

Protocol 6 (C&C) 24 3 256 218
952 236 KB 0.001 128 bits

1024 ciphertexts

Shamir [Sha86] 219 - - - - 77.9 MB - 128 bits

Protocol 5 (batching) 19 2 256 222
- 5.90 MB 0.003 129 bits

Protocol 6 (C&C) 24 3 256 221
952 3.65 MB 0.006 128 bits

Tab. 4.3: Comparison of ZK protocols for TFHE decryption.

can also work more generally without this property.) In other words, this generic public-key FHE encryption process

consists in building an SSP instance and our proof techniques directly apply to this context.

We stress that the performances reported in Table 4.3 are in the context of a relatively small q (64 bits). Although

the results are already promising compared to the previous schemes, we expect this comparison to be much more in

favor of our protocols in contexts where q is larger since the size of our proofs is independent of q. In particular, it

may be interesting to apply our techniques to the SPDZ framework [DPSZ12] which is the state-of-the-art protocol for

dishonest-majority MPC (with computational security). In the o�ine phase of SPDZ, parties have to jointly produce

a zero-knowledge argument of plaintext knowledge for the Brakerski, Gentry, and Vaikuntanathan [BGV14] or the

Brakerski/Fan-Vercauteren [Bra12, FV12] homomorphic encryption schemes. Recent works [KPR18, CKR
+

20] were

devoted to providing communication-e�cient such arguments (with slack) and since the modulus bit-lengths are within

the range [250, 700], our techniques look promising to provide short exact arguments in these contexts.

4.5.3 Digital signatures from Boneh-Halevi-Howgrave-Graham PRF

As another application, we present a short and e�cient candidate post-quantum signature scheme based on an elegant

pseudo-random function (PRF) proposed by Boneh, Halevi, and Howgrave-Graham in 2001 [BHH01].

Let p be a publicm-bit prime number that de�nes the PRF message space asZp. A secret key for the PRF is an element

x ∈ Zp picked uniformly at random. We denote MSBδ(t) the δmmost signi�cant bits of anm-bit element t ∈ Zp 3
. �e

value of the PRF on the message m ∈ Zp for the secret-key x ∈ Zp is Fx(m) = MSBδ((x+m)
−1

mod p).

Our signature scheme follows the blueprint of most signatures based on the MPCitH paradigm since the proposal

of Picnic [CDG
+

17]: the public key is made of the outputs of Boneh et al.’s PRF on t public messages in [1, t], i.e. the

δm-bit elements y1, . . . , yt such that

yi := MSBδ((x+ i)
−1

mod p) for i ∈ [1, t]

and the signature consists of a non-interactive proof of knowledge of x, z1, . . . , zt (parametrized by the signed message

using the Fiat-Shamir heuristic) such that

(x+ 1)(2(1−δ)my1 + z1) ≡ · · · ≡ (x+ t)(2(1−δ)myt + zt) ≡ 1 mod p (4.13)

and z1, . . . , zt ∈ [0, 2(1−δ)m − 1] (4.14)

where z1, . . . , zt are the (1− δ)m least signi�cant bits of (x+ 1)
−1

mod p, . . . , (x+ t)
−1

mod p. Note that the condi-

tion (4.14) on the size of the zi’s is fundamental since otherwise, it is easy for an a�acker to �nd a witness.

In our applications, the values of t and δ are chosen to prevent all known classical a�acks and target a 128-bit

security level.

Let’s �x t, the number of outputs of the PRF. �en, to ensure that the equations (4.13) and (4.14) have a unique

witness, we add the constraint δ ≥ 1/t so that the t PRF outputs de�ne (heuristically) the secret x uniquely. To avoid

brute-force a�acks from a single output of the PRF, at least 128 bits should remain hidden for each output, thus m :=
log p ≥ 128

1−δ . Otherwise, an a�acker could reconstruct a possible PRF key matching with the �rst output and then test

it by evaluating the other outputs with this candidate.

3
We assume herea�er that δm ∈ Z. Otherwise, one should take the nearest integer bδme instead.

4. Zero-Knowledge Protocols with Sharing over the Integers 49

It is possible to apply generically the MPCitH paradigm to prove (4.13) and (4.14), but proving (4.14) seems ine�cient

(e.g. by using a binary decomposition and proving consistency). Instead, we can use our secret sharing over the integers

for proving the knowledge of small zi’s by sharing them as a sum of “small” integers which directly proves that the zi’s
are indeed small.

Proving Equation (4.13). Instead of proving the t products of (4.13) separately, the prover can batch them into a linear

combination where coe�cients γ1, . . . , γt are provided by the veri�er, i.e. the prover proves the equation

t∑
i=1

γi

(
(x+ i)(2(1−δ)myi + zi)− 1

)
= 0 mod p,

or equivalently,

x

(
t∑
i=1

γizi

)
= −

t∑
i=1

γi

(
x2(1−δ)myi + i2(1−δ)myi + izi − 1

)
mod p. (4.15)

If one of the products is not equal to 1 in (4.13), then (4.15) is satis�ed only with a probability of
1
p . And to prove (4.15),

one can use the protocol of [BN20a] with a single multiplication on Zp (for the le�-hand side of (4.15), the right-hand

side being a linear combination of the witness). �e resulting MPC protocol produces false positives with probability

1/p+ (1− 1/p)1/p := 2/p− 1/p2
, and thus the obtained zero-knowledge argument has a soundness error of

ε =
1

N
+

(
1− 1

N

)(
2

p
− 1

p2

)
.

Proving Equation (4.14). It remains to prove that zi is in [0, B − 1] with B = 2(1−δ)m
in (4.14) for i ∈ [1, t]. To share

zi, we use our secret sharing over the integers of Section 4.2.2. Since the zi are not binary but in a larger range, we need

to adapt the rejection rules. Following exactly the same reasoning as in Section 4.2.2, we get that the prover must abort

if there exists an index j ∈ [1, t] for which zj − JzjKi∗ ≥ 1 or zj − JzjKi∗ ≤ −A+B − 1. �e resulting rejection rate

is given by

prej = 1−
(

1− B − 1

A

)tτ
≈ tτ B − 1

A
.

Even without proving anything on the range of zj , the veri�er knows that

∀j ∈ [1, t],−A+B ≤ zj ≤ A− 1

thanks to (4.2) (generalized). In practice, we se�le this range, implying that there is a slack between the underlying hard

problem and the proven statement. A malicious prover can use bigger values for zi, and this is equivalent to ignoring

some bits of yi. A malicious prover can ignore up to log2
A
B ≈ log2

tτ
prej

bits for each PRF output, and thus it reduces the

security of t log2
tτ
prej

bits. A way to �x this security loss without increasing the size of p (and of the key) is to reveal a

few more PRF outputs to guarantee that the key is still heuristically unique. In theory, this decreases the security but

for state-of-the-art algorithms, this stays beyond the capacity of the best-known algorithms for small t. In fact, we need

to reveal t̃ ≥ t outputs of the PRF such that

t̃δm− t̃ log

(
t̃τ

prej

)
> m.

In other words, since δ ≥ 1
t , we adapt this constraint as

δ ≥ 1

t̃
+

1

m
log2

(
t̃τ

prej

)
.

�is leads to the scheme described as Protocol 15 (in Appendix C) with the communication cost (in bits):

4λ+ τ(log2 p︸ ︷︷ ︸
∆x

+ t̃ log2A︸ ︷︷ ︸
∆ai

+ log2 p︸ ︷︷ ︸
∆c

+ log2 p︸ ︷︷ ︸
∆α

+λ log2N + 2λ),

with soundness error (if interactive)

ε =
1

N
+

(
1− 1

N

)(
2

p
− 1

p2

)
,

4. Zero-Knowledge Protocols with Sharing over the Integers 50

and with forgery security (if non-interactive)

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
p′i(1− p′)τ−i

+Nτ2

}
,

with p′ := 2/p− 1/p2
.

We propose in Table 4.4 some parameters which target 128-bit security (based on the hardness of the so-called

modular inverse hidden number problem) according to the current cryptanalysis state-of-the-art for Boneh et al.’s PRF. We

can remark that the achieved signature sizes were at that time the �rst below 5 KB (for signatures based on MPC-in-the-

Head paradigm), outperforming all the other signatures of this type (Picnic4 [KZ22], PorcRoast [Bd20], SDitH [FJR22],

. . .).

Parameters

Size prej

p ≈ 2m t̃ δ B A N τ

≈ 2229 3 88/229 2141 2141+12
256 16 4 916 B 0.012

≈ 2186 4 58/186 2128 2128+12
256 16 4 860 B 0.016

≈ 2175 5 47/175 2128 2128+12
256 16 5 074 B 0.019

Tab. 4.4: Parameter sets and achieved performances of the signature based on Boneh et al.’s PRF, for a 128-bit security.

Regarding the cryptanalysis, the security of Boneh et al.’s PRF has been extensively analyzed since 20 years [BHH01,

LSSW12, BVZ12, XSH
+

19] and relies strongly on δ and the number of known PRF outputs. �e �rst natural a�ack is

the brute-force search on one output of the PRF as explained previously. We choose our parameter sets such that

(1− δ)m > 128 (4.16)

to prevent this a�ack.

�e �rst described a�ack [BHH01] is with [BVZ12] the best known la�ice-based a�ack with a small number of PRF

outputs and require larger δ’s than the ones we use. In order to mount them, an adversary has to perform an exhaustive

search on the missing bits on several outputs. Let us focus on the a�ack of [BHH01]. �e a�acker �rst chooses n > 1
arbitrary ouputs among the t̃ ones. To run the a�ack, they need to have at least

2n+1
3n+1m bits for each output, thus they can

exhaustively search the n
(

2n+1
3n+1 − δ

)
m missing bits. For each candidate, the a�acker applies the a�acks of [BHH01]

which consists in reducing a la�ice of dimension O(n). To prevent this a�ack against our parameter sets, we select m,

t̃ and δ such that

∀1 < n ≤ t̃, n
(

2n+ 1

3n+ 1
− δ
)
m ≥ 128. (4.17)

Similarly, we can build an a�ack based on [BVZ12] with an exhaustive search to get the missing bits. To prevent this

a�ack, we select m, t̃ and δ such that

∀1 < n ≤ t̃, n
(

2n−1

2n − 1
− δ
)
m ≥ 128. (4.18)

Following this discussion, we choose our parameters as follows: by consideringN = 256 and τ = 16, we �rst �x t̃, then

we takemminimal such that there exists δ satisfying the constraints (4.16), (4.17) and (4.18) together with the constraint

ensuring the uniqueness of the secret

t̃δm− t̃ log

(
t̃τ

prej

)
> m.

For all parameters provided in Table 4.4 an exhaustive search on (at least) 128 bits has to be performed by the

adversary in order to run the a�acks from [BHH01, BVZ12].

We should care about another kind of a�ack based on Coppersmith’s method. Indeed, [XSH
+

19] presented a heuris-

tic a�ack that breaks Boneh et al.’s PRF (for a su�ciently large modulus p) if the number of outputs of the PRF is large

enough (depending on δ). However, this polynomial-time a�ack is not practical and hides galactic constant factors. For

instance, for δ = 2/3, this a�ack requires 45 outputs of the PRF and uses a la�ice of dimension 209899 in Coppersmith’s

method. We have checked that for 3 outputs, the a�ack requires δ > 5/6, for 4 outputs δ > 7/10, and for 5 outputs

δ > 5/8. We can observe that our sets of parameters are secure against these values. More generally, for a small number

of outputs, the other Coppersmith’s style a�acks are ine�ective if 1− δ ≥ 1/2. Indeed, [LSSW12] need δ to be at least

2/3 and [BHH01] proposed a second a�ack (not described) which needs a large number of outputs to get a δ close to

1/2.

To the best of our knowledge, the quantum security of Boneh et al.’s PRF has not been analyzed yet. Our signature

protocol is thus a post-quantum candidate and requires further analysis of its security by quantum algorithm specialists.

4. Zero-Knowledge Protocols with Sharing over the Integers 51

4.6 Commitments with E�cient Zero-Knowledge Arguments from Subset Sum Problems

4.6.1 Contributions

Commitment scheme. In a celebrated paper, Impagliazzo and Naor [IN96] presented in particular a pseudo-random

generator and an elegant bit commitment scheme. We extend the la�er to a simple string commitment scheme and

provide e�cient zero-knowledge proofs for any relation amongst commi�ed values using the recent zero-knowledge

proof system proposed by Feneuil, Maire, Rivain, and Vergnaud and based on the MPC-in-the-head paradigm. We

�rst present a modi�ed version of the bit-commitment based on the subset sum problem proposed in [IN96]. �is

new scheme enables commitments to bit-strings and is related to the one from [IN96] in a similar manner to how the

well-known Pedersen commitment scheme [Ped92] is related to preliminary discrete-logarithm based bit-commitments

from [BCC88, BKK90].

�e design principle is simple but seems to have been overlooked for more than 30 years (even if similar ideas have

been used in la�ice-based cryptography). For a security level λ ∈ N (i.e. against an adversary making 2λ bit-operations

using a 2λ/2-bits memory), it enables to commit to bit-strings of length ` ≤ 2λ using a 2λ-bits modulus q and (`+ 2λ)
integers smaller than q. �e setup thus requiresO(λ2) random or pseudo-random bits that can be generated easily using

a so-called extendable-output function (XOF). A commitment is a sum of a (randomized) subset of these integers modulo

q; therefore, it is of optimal bit-length 2λ and can be computed in O(λ2) binary operations. �e hiding property (i.e.

one cannot learn anything about the commi�ed message from the commitment) relies on the hardness of the subset-

sum problem, while its binding property (i.e. one cannot open a commitment to two di�erent messages) relies on the

hardness of the related weighted knapsack problem. With the proposed parameters, both problems are believed to be

resistant to a quantum adversary that makes at most 2λ/2 qubits operations.

Zero-Knowledge Protocols. �e zero-knowledge arguments for the subset sum problem presented in Section 4.3 of this

chapter readily o�er an e�cient way to prove knowledge of a commi�ed bit-string (with the commitment scheme

introduced in this section) without revealing anything about it.

We extend this work to prove that a commi�ed triple (b1, b2, b3) ∈ {0, 1}3 satisfy a Boolean relation (e.g. b1 ∧
b2 = b3 or b1 ⊕ b2 = b3) without revealing any additional information about them. �e bits can be in arbitrary

positions in the same or in di�erent commitments and the proof of the Boolean relation does not add any overhead

compared to the basic opening proof. �is �exibility allows proving that commi�ed bits m0,m1, . . . ,m` satisfy m0 =
C(m1, . . . ,m`) for any Boolean circuitC with good communication and computational complexity. Indeed, by packing

the commitments of bits on the circuit wires, we obtain a protocol with communication complexity Õ(|C|λ+λ2) where

|C| denotes the number of AND/XOR gates of C . �is has to be compared with the code-based protocol due to Jain,

Krenn, Pietrzak, and Tentes [JKPT12]. �ey provide a commitment scheme with zero-knowledge proofs from the LPN-

assumption (or hardness of decoding a random linear code). �is scheme has Õ(|C|λ2) communication complexity and

allows only proving Boolean relations bit-wise on binary strings (which may result in a large overhead depending on the

circuit considered). �ere also exist la�ice-based constructions of commitment schemes with zero-knowledge proofs

[BKLP15, BDL
+

18, ALS20] but the messages commi�ed are small integers. �ey can be used to prove the satis�ability of

arithmetic circuits but proving the satis�ability of a Boolean circuit with these schemes results in an important overhead

in communication and computation.

4.6.2 Subset sum problems

We de�ne herea�er two variants of the subset sum problem on which the security of our commitment scheme relies.

�e �rst one is the standard subset sum problem previously introduced, while the second one is a slightly stronger

assumption that has already been used in cryptography (see, e.g. [BM97, SPW06]).

De�nition 15. Let t : N → N and ε : N → [0, 1]. Let `,m : N → N and modulus be an algorithm which given λ ∈ N
outputs an integer q of bit-length m(λ). We consider the two following assumptions:

• (t, ε)-(decision) subset-sum assumption for (`,m,modulus): for every algorithm A, we have for all λ ∈ N:

Pr

 b = b′

∣∣∣∣∣∣∣
q

$←− modulus(1λ),γ
$←− [0, q − 1]`(λ),x

$←− {0, 1}`(λ),

t0 = 〈γ,x〉 mod q, t1
$←− [0, q − 1], b

$←− {0, 1},
b′

$←− A(1λ, q,γ, tb)

 ≤ 1

2
+ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

• (t, ε)-weighted knapsack assumption for (`,m,modulus): for every algorithm A, we have for all λ ∈ N:

Pr

[
〈γ,y〉 = 0 mod q

y 6= 0 ∈ {−1, 0, 1}`(λ)

∣∣∣∣∣ q $←− modulus(1λ),γ
$←− [0, q − 1]`(λ),

y
$←− A(1λ, q,γ)

]
≤ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

4. Zero-Knowledge Protocols with Sharing over the Integers 52

m ∈ {0, 1}, r $←− Zq m ∈ {0, 1}, r $←− {0, 1}n

m ∈ Zq , r
$←− Zq m ∈ {0, 1}n, r

$←− {0, 1}n

(c = arm, aux = r) (c = 〈am, r〉, aux = r)

(c = am0 · ar1, aux = r) (c = 〈a0,m〉+ 〈a1, r〉, aux = r)

Commit Verify Commit Verify

Commit Verify Commit Verify

(a) bit commitment [BCC88, BKK90] (b) bit commitment [IN96]

(c) integer commitment [Ped92] (d) new string commitment

Discrete logarithm
G = 〈a0〉 = 〈a1〉 group of prime order q

Subset Sum
q ∈ N, a0,a1 ∈ Znq

Fig. 4.2: Illustration of the Similarities between Commitment Schemes

�e search version of the subset sum assumption is polynomial-time equivalent to the decision version stated above.

�e hardness of these problems depends greatly on the density de�ned as d(λ) = `(λ)/m(λ). If the density is too

small (e.g. d(λ) < 1/`(λ)) or too large (e.g. d(λ) > `(λ)) then both problems can be solved in polynomial time (see

e.g. [CJL
+

92] and references therein). Coster, Joux, LaMacchia, Odlyzko, Schnorr, and Stern [CJL
+

92] proved that the

subset sum problem can be solved in polynomial-time with a single call to an oracle that can �nd the shortest vector in

a special la�ice of dimension `(λ)+1 if d(λ) < 0.9408 and Li and Ma proved a similar result for the weighted knapsack

problem if d(λ) < 0.488. It is worth mentioning that these results do not break the assumptions in polynomial time

since the best algorithm for �nding the shortest vector in these la�ices has computational complexity 2Θ(`(λ))
(and

cryptographic protocols relying on these problems with much smaller densities have been proposed, e.g. [LPS10]).

In our construction, we will consider instances of these problems with density d(λ) ' 1 (i.e. q ' 2`(λ)
) for the

subset sum problem since they are arguably the hardest ones [IN96]. �is will result in instances for the weighted

knapsack problem with density d(λ) > 1 and for conservative security, we will restrict ourselves to d(λ) ≤ 2. In this

case, la�ice-based algorithms do not work and the best-known algorithms use very clever time-memory tradeo�s with

the best algorithm due to Bonnetain, Bricout, Schro�enloher, and Shen [BBSS20] having time and memory complexities

Õ(20.283`(λ)). �ese algorithms neglect the cost to access an exponential memory but even with this optimistic assump-

tion, for `(λ) = 256, all known algorithms require at least a time complexity lower-bounded by 2128
operations or a

memory of size at least 264
bits. �ere also exists a vast literature on quantum algorithms for solving these problems

(see [BBSS20] and references therein) and for `(λ) = 256, the best quantum algorithm requires about 264
quantum

operations and quantum memory.

4.6.3 String commitments from subset sum problems

We present our modi�ed version of the bit-commitment based on the subset sum problem proposed in [IN96]. �is new

scheme enables commitments to bit-strings.

In [BCC88], Brassard, Chaum, and Crépeau introduced the notion of blob, which is very similar to bit commitment,

and presented an elegant construction based on the discrete-logarithm problem in groups of known prime order q (see

also [BKK90]). �e commitment of a single bit consists of a group element (see Figure 4.2 (a) for an equivalent form

of their commitment). Shortly a�erward, Pedersen [Ped92] introduced his celebrated commitment scheme that enables

commi�ing to an integer in Zq with a single group element (see Figure 4.2 (c)). Impagliazzo and Naor [IN96] proposed a

bit-commitment whose hiding and binding security properties rely on the subset sum problem. It has many similarities

with the discrete-logarithm-based blob from [BCC88, BKK90] (see Figure 4.2 (b)).

To build our string commitment scheme, we push this analogy and propose a variant of Pedersen’s protocol based

on the subset sum (see Figure 4.2 (d)). �e design principle is simple and maybe folklore but does not seem to have been

published in this form (even if similar ideas have been used in la�ice-based cryptography).

4.6.4 Formal description and security analysis

Let `, n,m : N → N and let modulus be an algorithm which given λ ∈ N outputs an integer q of bit-length m(λ).

Typically, modulus outputs a random m(λ)-bit prime number or the unique integer q = 2m(λ)−1
. �e function `

de�nes the message length while the function n de�nes the randomness length.

4. Zero-Knowledge Protocols with Sharing over the Integers 53

• Setup(1λ)→ pp. On input λ, the algorithm generates a modulus q by running modulus(1λ) and picks uniformly

at random w ∈ Z`(λ)
q and s ∈ Zn(λ)

q . It outputs the public parameters pp = (q,w, s) and the message space is

M = {0, 1}`(λ)
.

• Com(pp,m)→ (c, aux). On input pp andm ∈M, the commit algorithm picks aux = r ∈ {0, 1}n(λ)
uniformly

at random, computes c=〈w,m〉+〈s, r〉modq and outputs (c, aux).

• Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp = (q,w, s), m ∈ M and (c, aux), the veri�er outputs 1 if

c = 〈w,m〉+ 〈s, r〉 mod q where r = aux ∈ {0, 1}n(λ)
, and 0 otherwise.

We prove that our commitment scheme is hiding and binding assuming the hardness of the subset sum and the

weighted knapsack problems (respectively) for di�erent lengths in the subset sum problems.

�eorem 10. Let `, n,m : N → N and let modulus be an algorithm which given λ ∈ N outputs an integer of bit-length

m(λ). �is commitment scheme above is:

1. (t, ε)-computationally hiding if the (t+O(`(λ)m(λ)), ε)-decision subset-sum assumption holds for (`,m,modulus);

2. (t, ε)-computationally binding if the (t+O(`(λ)+n(λ)), ε)-weighted knapsack assumption holds for (`+n,m,modulus).

Proof. Both security reductions are simple, where adversaries against the commitment scheme properties are as in

De�nition 6.

1. Let A = (A1,A2) be a (t, ε)-adversary (a two-phase algorithm) against the hiding property of the commitment

scheme. We build a (t+O(`(λ)m(λ)), ε)-adversaryB breaking the decision subset sum assumption as follows. �e

algorithm B is given as inputs (q,γ, α) where γ ∈ Zn(λ)
q . �e algorithm B picks uniformly at randomw ∈ Z`(λ)

q ,

and runs A1 on input pp = (q,w,γ). When A1 outputs two messages m0,m1 ∈ {0, 1}`(λ)
and some state

information s, the algorithm B picks uniformly at random a bit b ∈ {0, 1} and runs A2 on c = 〈w,mb〉+α mod q
and s. Eventually, when A2 outputs some bit b′, B outputs 0 if b′ = b and 1 otherwise. A routine argument shows

that the advantage of B for the decision subset sum problem is identical to the one of A for breaking the hiding

property.

2. Let A be a (t, ε)-adversary against the binding property of the commitment scheme. We build a (t + O(`(λ) +
n(λ)), ε)-adversary B breaking the weighted knapsack assumption as follows. �e algorithm B is given as inputs

(q,γ) where γ ∈ Z`(λ)+n(λ)
q . It sets w = (γ1, . . . , γ`(λ)) ∈ Z`(λ)

q and s = (γ`(λ)+1, . . . , γ`(λ)+n(λ)) ∈ Zn(λ)
q

and runs A on input pp = (q,w, s). When A outputs (m1,m2, aux1, aux2, c), we have Ver(pp,m1, c, aux1) =

Ver(pp,m2, c, aux2) = 1 andm1 6= m2 with probability ε(λ). �en, since (m1, aux1), (m2, aux2) ∈ {0, 1}`(λ)+n(λ)

andm1 6= m2, if B outputs the vector y = (m1, aux1)− (m2, aux2) (where the substraction is done coordinate-

wise), it belongs to {−1, 0, 1}`(λ)+n(λ)
, is non-zero and satis�es 〈γ,y〉 = 0 mod q (and is thus a solution to the

weighted knapsack problem (q,γ)).

�erefore, the hiding property relies on the hardness of the subset sum problem with density n(λ)/m(λ) while its

binding property on the hardness of the weighted knapsack problem with density (`(λ)+n(λ))/m(λ). In the following,

to simplify the protocols, we consider the case where n(λ) = m(λ) (i.e. density 1 subset sum) and `(λ) = n(λ) (i.e.

density 2 weighted knapsack). To lighten the notations, we henceforth denote n = n(λ) = `(λ).

4.6.5 Zero-knowledge arguments of opening

We present in Protocol 7 a zero-knowledge argument of knowledge of opening for our string commitment as an imme-

diate application of the protocol proposed in Section 4.3 for the subset sum problem, hence based on our MPCitH with

rejection framework. We refer to Section 4.3 for further details and a precise security analysis.

Concretely, let us consider the binary relation

R = {((q,w, s, t); (m, r)) | 〈w,m〉+ 〈s, r〉 = t mod q} (4.19)

where q ∈ N,w, s ∈ Znq , t ∈ Zq , andm, r ∈ {0, 1}n. Both the prover P and the veri�er V know (q,w, s, t) and P holds

(m, r). P wants to convince V that they hold a valid message m and associated randomness r for the commitment

t. �e relation R de�nes an NP language and the membership of (q,w, s, t) can be proved thanks to the witnesses

(m, r) by verifying the relations (1) 〈w,m〉+ 〈s, r〉 = t mod q and (2)m, r ∈ {0, 1}n.

Following the sharing on the integers technique developed at the beginning of this chapter, we choose A ≤ q for

de�ning the interval on which the shares are going to be randomly picked, and q′ the next prime a�er A. P starts by

sharing on the integers the witnesses (m, r) among theN parties, and then emulates an (N −1)-private MPC protocol

4. Zero-Knowledge Protocols with Sharing over the Integers 54

Prover P Veri�er V
w, s ∈ Znq
m, r ∈ {0, 1}n, t = 〈w,m〉+ 〈s, r〉 mod q w, s, t

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN)
with TreePRG(mseed)

For each party i ∈ [1, N]:
JaKi, JmKi, JrKi, JcKi ← PRG(seedi) . a ∈ Z2n

q′ , c ∈ Zq′ , JmKi, JrKi ∈ [0, A− 1]
n

comi = Com(seedi; ρi)
∆m = m−

∑
iJmKi

∆r = r −
∑
iJrKi

∆c = 〈a,m||r〉 −
∑
iJcKi

h = H1(∆m,∆r,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z2n

q′
ε←−−−−−−−−−−−−−−−−−−

�e parties locally set

- JtK = 〈w, JmK〉+ 〈s, JrK〉
- JαK = ε · (1− (JmK||JrK)) + JaK . α ∈ Z2n

q′

�e parties open JαK to get α.

�e parties locally set

JvK = 〈α, JmK||JrK〉 − JcK . v ∈ Zq′
h′ = H2(JtK, JαK, JvK)

h′−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N]
i∗←−−−−−−−−−−−−−−−−−−

If there exists j ∈ [1, n] such that:

- either JmjKi∗ = 0 with mj = 1
- or JmjKi∗ = A− 1 with mj = 0,

- or JrjKi∗ = 0 with rj = 1
- or JrjKi∗ = A− 1 with rj = 0,

then abort.

ym = m− JmKi∗
yr = r − JrKi∗

(seedi, ρi)i 6=i∗ , comi∗ ,

ym,yr, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JmKi, JrKi, JcKi ← PRG(seedi)

∆m = ym −
∑
i6=i∗JmKi

∆r = yr −
∑
i 6=i∗JrKi

For all i 6= i∗,
Rerun the party i as the prover (i.e. compute JtKi, JαKi, JvKi)
and compute comi.

Check h = H1(∆m,∆r,∆c, com1, . . . , comN)
∆t = 〈w,∆m〉+ 〈s,∆r〉
∆v = 〈α,∆m||∆r〉 −∆c
JtKi∗ = t−∆t−

∑
i 6=i∗JtKi

JvKi∗ = −∆v −
∑
i 6=i∗JvKi

Check h′ = H2(JtK, JαK, JvK)
Return 1

Protocol 7: Zero-knowledge argument for string-commitment using batch product veri�cation to prove binarity.

4. Zero-Knowledge Protocols with Sharing over the Integers 55

with N parties for verifying the relations (1) and (2). �e veri�cation of (1) is linear modulo q′ and is therefore free in

terms of communication withV but proving (2) requires performing some multiplications in the MPC protocol (using the

simple fact that x ∈ {0, 1} if and only if x(1−x) = 0 mod q′). �e veri�cation of these multiplications can be realized

following [BN20a] (see Chapter 3). �is implies a communication cost of 2 log(q′) bits to prove one multiplication.

Using a previously introduced batched version of this veri�cation protocol [KZ22], one gets a communication cost

of (n + 1) log2 q
′

for n multiplications, and the soundness error of this protocol follows from the Schwartz-Zippel

Lemma [Zip79, Sch80]. It yields to a communication cost for the Protocol 7 with τ repetitions and λ bits of security of

4λ+ τ [2n(log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] bits.

As mentioned previously, since the rejection rate a�er τ repetitions (i.e. that any of the τ repetition aborts) is given by

1− (1− 1/A)
2nτ ' 2nτ/A where the approximation is tight when A is su�ciently large. �us by taking A = Θ(nτ),

we get a (small) constant rejection probability.

�eorem 11 (Security proofs of Protocol 7). Let the PRG used in Protocol 7 be (t, εPRG)-secure and the commitment

scheme Com be (t, εCom)-hiding. �en Protocol 7 is a zero-knowledge argument of knowledge for the relation R 4.19 with

(1− 1/A)
2n

-completeness, (1/q′ + 1/N − 1/Nq′)-soundness, and (t, εPRG + εCom)-zero-knowledge.

Proof. Proofs are identical to those of �eorems 4, 5, and 6.

Remark 6. In Subsection 4.2.4, we proposed a second approach to prove (2) using “cut-and-choose”. It can be used to

prove the knowledge of a commitment opening, but it is not well adapted for the next applications, notably proving Boolean

relations of commi�ed values as our next application. Moreover, it is worth mentioning that our argument of knowledge of

opening can be easily generalized to an argument of partial opening by revealing bits of the commi�ed message, modifying

the value of the commitment accordingly and proving the knowledge of the remaining hidden bits. �is enables to provide

a range proof of the commi�ed message at no additional cost.

4.6.6 Zero-knowledge arguments for Boolean relations

Coordinate-wise AND gates. Let us consider the case when three n-bits binary vectorsm1,m2,m3
are commi�ed and

P wants to prove in zero-knowledge thatm1 ◦m2 = m3
. Note that provingm1,m2

are binary andm1 ◦m2 = m3

mod q′ implies that m3
is binary and m1 ◦m2 = m3

. In addition, P has to prove that the three random vectors

r1, r2, r3 used in the commitment are all binary (no relation is proved between them). Using this approach, P has to

prove 6n multiplications and therefore the argument requires sending 6n + 1 elements of Zq′ via the batched version

of the veri�cation protocol [BN20a, KZ22] detailed in Chapter 3. Indeed, let us recall that for proving n coordinate-wise

multiplications over Zq′ of the form x ◦ y = z, where x, y, z ∈ Znq′ have been shared, we use the sacri�zing strategy.

For this purpose, P shares a random a ∈ Znq′ and the value c = 〈a, x〉 to realize the batching proof. Hence, P has to send

(1) JαKi∗ = εJxKi∗ + JaKi∗ ∈ Znq′ where ε is a challenge from V and (2) ∆c = 〈a, x〉−
∑
iJcKi, yielding to (n+ 1) log2 q

′

bits to communicate (on top of the sharing cost of x, y, z). In the following, we may deal with multiplications x ◦ y = z
such that z is a linear combination (with public coe�cients) between n-bits shared vectors, and the communication cost

remains (n+ 1) log2 q
′

bits.

Essentially, it is possible to batch some veri�cation equations and reduce this number from 6n+1 to 5n+1. Indeed,

checking m1 ◦ m2 = m3 mod q′ and (for instance) the binarity of m2
is equivalent (with a false-positive error

probability coming from the Schwartz-Zippel Lemma) to verify that

λ1m
2 ◦ (1−m2) + λ2m

1 ◦m2 = λ2m
3 mod q′ (4.20)

where λ1, λ2 ∈ Zq′ are random elements chosen by V. �en, the next batching equation aims to proof all these

component-wise multiplications

(m1||r1||r2||r3||m2) ◦ ((1− (m1||r1||r2||r3))||(λ1(1−m2) + λ2m
1)) = (0||λ2m

3),

leading to the Protocol 8.

Arbitrary AND gates. Fundamentally, Protocol 8 is similar to the protocols from [JKPT12, BKLP15, BDL
+

18, ALS20]

in the sense that it can only prove coordinate-wise multiplication relations. We generalize it to obtain a more �exible

protocol able to prove relations of the form m1
i ∧m2

j = m3
k for any coordinates i, j, k ∈ [1, n] (where ∧ denotes the

AND gate).

Assume P has to prove the satis�ability of a set of AND gates whose inputs/output belong to a set ofL ∈ N commi�ed

vectors {m`}1≤`≤L ∈ {0, 1}
n

. Given some commi�ed vectorm`
(with ` ∈ [1, L]), let us consider a set ofM ∈ N AND

gates such that

m`
xk
∧m`k

yk
= m

`′k
zk

4. Zero-Knowledge Protocols with Sharing over the Integers 56

Prover P Veri�er V
w, s ∈ Znq ,mk, rk ∈ {0, 1}n for 1 ≤ k ≤ 3
m1 ◦m2 = m3, tk = 〈w,mk〉+ 〈s, rk〉 w, s, tk

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN)
with TreePRG(mseed)

For each party i ∈ [1, N]:
JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi) . a ∈ Z5n
q′ , c ∈ Zq′ , JmkKi, JrkKi ∈ [0, A− 1]

n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

∆mk = mk −
∑
iJm

kKi
∆rk = rk −

∑
iJr

kKi
∆c = −〈a,m1||r1||r2||r3||m2〉 −

∑
iJcKi

h = H1({∆mk,∆rk}1≤k≤3,∆c,

com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z5n

q′ , λ1, λ2
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- JtkK = 〈w, JmkK〉+ 〈s, JrkK〉 for 1 ≤ k ≤ 3
- JαK = ε ◦ ((1− Jm1||r1||r2||r3K)||

(λ1(1− Jm2K) + λ2Jm1K)) + JaK . α ∈ Z5n
q′ (computation in Zq′)

�e parties open JαK to get α.

�e parties locally set

JvK = 〈α, Jm1||r1||r2||r3||m2K〉 − JcK−
〈ε,0||λ2Jm3K〉 . v ∈ Zq′ (computation in Zq′)

h′ = H2({JtkK}1≤k≤3, JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− [1, N]

i∗←−−−−−−−−−−−−−−−−−−
If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either Jmk
j Ki∗ = 0 with mk

j = 1
- or Jmk

j Ki∗ = A− 1 with mk
j = 0,

- or Jrkj Ki∗ = 0 with rkj = 1
- or Jrkj Ki∗ = A− 1 with rkj = 0,

then abort.

ymk = mk − JmkKi∗ and

yrk = rk − JrkKi∗ for k ∈ [1, 3]

(seedi, ρi)i6=i∗ , comi∗ ,

{ymk ,yrk}1≤k≤3, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi)
For all i 6= i∗,

Rerun the party i as the prover

and compute comi.

For 1 ≤ k ≤ 3,

∆mk = ymk −
∑
i 6=i∗Jm

kKi
∆rk = yrk −

∑
i 6=i∗Jr

kKi
∆tk = 〈w,∆mk〉+ 〈s,∆rk〉
JtkKi∗ = tk −∆tk −

∑
i 6=i∗Jt

kKi
∆v = 〈α,∆m1||∆r1||∆r2||∆r3||∆m2〉
−∆c− 〈ε,0||λ2∆m3〉

JvKi∗ = −∆v −
∑
i 6=i∗JvKi

Check h = H1({∆mk,∆rk}1≤k≤3,∆c,

com1, . . . , comN)
Check h′ = H2({JtkK}1≤k≤3, JαK, JvK)
Return 1

Protocol 8: Zero-knowledge argument for proving coordinate-wise AND relations between commi�ed vectors.

4. Zero-Knowledge Protocols with Sharing over the Integers 57

for k ∈ [1,M], `k, `
′
k ∈ [1, L], xk, yk, zk ∈ [1, n]. Moreover, as seen previously to check thatm`

is binary, V can verify

m` ◦ (1−m`) = 0 mod q′. �en we can batch these proofs as

λ0m
` ◦ (1−m`) +

M∑
k=1

λkm
`
xk
m`k
yk
exk =

M∑
k=1

λkm
`′k
zkexk mod q′

i.e.

m` ◦ [−λ0m
` +

M∑
k=1

λkm
`k
yk
exk] = −λ0m

` +

M∑
k=1

λkm
`′k
zkexk mod q′ (4.21)

where ei is the i-th vector of the canonical basis of Znq′ and {λk}0≤k≤M ∈ Zq′ are random elements chosen by V.

To summary, P can batch the proofs for the satis�ability of a set of gates that involve as input a component from the

same commi�ed vector. �is batching can include the binary veri�cation of this speci�c vector.

Importantly, the number of equations does not depend anymore on the number of gates to prove. We obtain the

generalized Protocol 17 as a direct extension of Protocol 8 (essentially the batching part is slightly di�erent) which can

be found in Appendix D.

Security analysis. �e following theorems state the completeness, soundness, and zero-knowledge of Protocols 8

and 17. �e proofs are similar to those of �eorems 4,5, and 6. For the sake of simplicity, we consider the worst

case by assuming that all the coordinates of the commi�ed vectors are involved in the gates’ evaluation.

�eorem12 (Protocol 8). Let the PRG used in Protocol 8 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-

hiding. �en, Protocol 8 is a (honest-veri�er) zero-knowledge argument of knowledge for the coordinate-wise AND gates

satis�ability (from n-length vectors) with (1− 1/A)
6n

-completeness, (1/N + (1 − 1/N)1/q′)- soundness and (t, εPRG +
εCom)-zero-knowledge.

�eorem 13 (Protocol 17). Let the PRG used in Protocol 17 be (t, εPRG)-secure and the commitment scheme Com be

(t, εCom)-hiding. �en, Protocol 17 is a (honest-veri�er) zero-knowledge argument of knowledge for arbitrary AND gates

satis�ability (from L commi�ed vectors of length n) with (1− 1/A)
2Ln

-completeness, (1/N + (1− 1/N)1/q′)-soundness

and (t, εPRG + εCom)-zero-knowledge.

Note that Protocol 8 and 17 (in Appendix D) have the same soundness as Protocol 7. �is follows from the Schwartz-

Zippel Lemma, since the false-positive error probability of the MPC protocols a�er batching techniques still corre-

sponds to the probability that some multinomial of degree one vanishes at some random �eld element. For exam-

ple, the linear combination in Equation (4.21) equals 0 with probability at most 1/q′ when evaluating the multinomial

P (X0, X1, . . . , XM) = −X0m
` +

∑M
k=1Xkm

`k
yk
exk at random points (λ0, λ1, . . . , λM) from the Schwartz Zippel

lemma. �e rejection rates are bigger than in Protocol 7 since respectively 6n and 2Ln sharing on the integers are

emulated. �is requires a slight increase of A (as shown in Table 4.1).

�e communication cost (in bits) of Protocol 8 with τ repetitions is at most:

4λ+ τ [n(6 log2(A− 1) + 5 log2(q′)) + log2(q′) + λ log2N + 2λ] ,

and for the generalized Protocol 17:

4λ+ τ [2Ln(log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] .

We notice that it does not depend on the number M of AND gates to prove.

4.6.7 XOR gates

Coordinate-wise XOR gates. We �rst consider three n-bits commi�ed vectorsm1,m2,m3
such that P wants to prove

m1 ⊕m2 = m3
(where ⊕ denotes the XOR gate).

Let f be the polynomial f(x) = 2x − x2
over Zq′ with q′ ≥ 3 a prime number. One can easily check that if m1

and m2
are binary vectors, then f(m1 + m2) mod q′ = m1 ⊕m2 ∈ {0, 1}. �us, proving that f(m1 + m2) =

m3 mod q′ in conjunction with the argument of knowledge for opening of the corresponding commitments, implies

m1 ⊕m2 = m3
.

With the same techniques as in Protocol 8 for the ∧ gate, we obtain Protocol 16 for bit-wise ⊕ gates which can be

found in Appendix D.

4. Zero-Knowledge Protocols with Sharing over the Integers 58

Arbitrary XOR Gates. Again, the previous protocol is not enough �exible and can not be used to prove relations such

as m1
i ⊕m2

j = m3
k for arbitrary i, j, k ∈ [1, n], but we outline how to generalize it.

Assume P has to prove the satis�ability of a set of XOR gates whose inputs/output belong to a set ofL ∈ N commi�ed

vectors {m`}1≤`≤L ∈ {0, 1}
n

. Given some commi�ed vectorm`
(with ` ∈ [1, L]), let us consider a set of M ∈ N XOR

gates such that

m`
xk
⊕m`k

yk
= m

`′k
zk

for k ∈ [1,M], `k, `
′
k ∈ [1, L], xk, yk, zk ∈ [1, n]. If we assume that the binarity of each commi�ed vector is checked

during the protocol, then

f(m`
xk

+m`k
yk

) = 2(m`
xk

+m`k
yk

)− (m`
xk

+m`k
yk

)
2

= m`
xk
⊕m`k

yk
= m

`′k
zk mod q′.

Moreover, we can prove thatm`
is binary viam` ◦ (1−m`) = 0 mod q′, and then batch all these equations as

λ0m
` ◦ (1−m`) +

K∑
k=1

λk

(
2(m`

xk
+m`k

yk
)− (m`

xk
+m`k

yk
)
2
)
exk =

K∑
k=1

λkm
`′k
zkexk mod q′.

If the binarity of m`k
and m`

is proven elsewhere, V is convinced that m`k
yk
m`k
yk

= m`k
yk

mod q′ and m`
xk
m`
xk

=

m`
xk

mod q′. Hence, the batching equation becomes

m` ◦ [−λ0m
` − 2

M∑
k=1

λkm
`k
yk
exk] = −λ0m

` +

M∑
k=1

λk

(
m
`′k
zk −m`k

yk
−m`

xk

)
exk mod q′, (4.22)

where ei is the i-th vector of the canonical basis of Znq′ and {λk}0≤k≤M ∈ Zq′ are random elements chosen by V.

Security analysis. �e theorems stating the completeness, soundness and zero-knowledge of the protocol for the bit-

wise XOR (Protocol 16) and for its generalization can be directly derived drawing inspiration from �eorems 12 and 13

(respectively).

�e communication complexity (in bits) of the protocol for arbitrary XOR gates with τ repetitions is:

4λ+ τ [2Ln(log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] ,

while the one for the bit-wise XOR is the subcase whenL = 3. We notice that the proof size is the same as for Protocol 17

and is independent of M .

4.6.8 Instantiation and performances

We present some sets of parameters for an instantiation of our commitment scheme with m(λ) = `(λ) = n(λ) = 256
(i.e. with security based on density 1 for the subset-sum and density 2 for the weighted knapsack). We look at the

performances of the protocols for component-wise AND and XOR gates. To decrease the rejection rate, we use a strategy

introduced in Subsection 4.3.5 that consists in allowing P to abort in 0 ≤ η < τ out of the τ iterations. V accepts the

proof if P can answer to τ − η challenges among the τ iterations. �is relaxed proof has a signi�cantly lower rejection

rate (at the cost of a small increase of the soundness error).

Protocol

Parameters

Proof size Rej. rate Soundness err.

τ η N A

Protocol 7 (Opening) 21 3 256 213
35.4 KB 0.035 133 bits

Protocol 7 (Opening) 19 2 256 213
33.3 KB 0.104 128 bits

Protocol 8 (AND) 21 3 256 215
98.9 KB 0.014 133 bits

Protocol 8 (AND) 19 2 256 215
93.4 KB 0.054 128 bits

Protocol 16 (XOR) 21 3 256 215
107.4 KB 0.014 133 bits

Protocol 16 (XOR) 19 2 256 215
101.3 KB 0.054 128 bits

Tab. 4.5: Comparison of performances with n = 256 and q ≈ 2256
.

4.6.9 Arguments for circuit satis�ability

Let C be a Boolean circuit with |C| gates (AND or XOR) and T input bits. Letm ∈ {0, 1}T and v1, . . . , v|C| ∈ {0, 1} be

commi�ed elements such thatm is an input that satisfyC and the v’s are the outputs of each gates ofC when evaluated

on m, i.e., C(m1, . . . ,mT) = v|C| = 1. �e prover P wants to prove in zero-knowledge that m indeed satis�es the

4. Zero-Knowledge Protocols with Sharing over the Integers 59

public circuit C . For this purpose, we use the commitment scheme introduced in Subsection 4.6.3 along with protocols

for proving Boolean relations from Subsection 4.6.6. For simplicity, we assume without loss of generality that T ≤ n.

Since n bits can be commi�ed via the same commitment (n is the size of the subset-sum instance), we need |C|/n+ 1
string commitments. We introduce the following notation to simplify the batching equation: for k ∈ [0, |C|/n],

v0 = (m||v1|| . . . ||vn−T), . . . ,v|C|/n = (v|C|−T+1|| . . . ||v|C|||0),

where these vectors are n-bits long. Following the batching from Equation (4.21) and Equation (4.22), we can set x,y, z
as follows so that the circuit satis�ability veri�cation consists in checking that x ◦ y = z:

y = (v0|| . . . ||v|C|/n||r0|| . . . ||r|C|/n),

x =

−λ0v
0 +

n∑
i=1

|C|/n∑
j=0

n∑
k=1

λvjk

(
δ0,i,j,kv

j
k − 2ζ0,i,j,kv

j
k

)
ei|| . . .

|| − λ|C|/nv|C|/n +

n∑
i=1

|C|/n∑
j=0

n∑
k=1

λvjk

(
δ|C|/n,i,j,kv

j
k − 2ζ|C|/n,i,j,kv

j
k

)
ei

||1− r1|| . . . ||1− r|C|/n
)

where r0, . . . , r|C|/n
is the randomness used in the commitments and the vector z can be computed as a linear com-

bination of v0, . . . ,v|C|/n
. As above, ei is the i-th vector of the canonical basis of Znq′ , λ’s are random public values

chosen by the veri�er V, and the binary elements ζ and δ depend on the circuit structure, i.e. δ`,i,j,k = 1 if and only if

v`i ∧ v
j
k = vup for some u ∈ [0, |C|/n] and v ∈ [1, n] (and ζ`,i,j,k = 1 if and only if v`i ⊕ v

j
k = vup). Hence, V has to check

x ◦ y = z to be convinced of the binarity of the vectors, and of the satis�ability of the circuit. �e full protocol is given

as Protocol 18 in Appendix D.

�eorem 14 (Protocol 18). Let the PRG used in Protocol 18 be (t, εPRG)-secure and the commitment scheme Combe

(t, εCom)-hiding. �e protocol 18 is a zero-knowledge proof of knowledge for the relationR with (1− 1/A)
2(|C|+n)

-comple-

teness, (1/N + (1− 1/N)1/q′)-soundness and (t, εPRG + εCom)-zero-knowledge.

�e communication cost (in bits) of Protocol 18 with τ repetitions is:

4λ+ τ [2(|C|+ n) log(q′) + 2|C| log(A− 1) + log(q′) + λ logN + 2λ] .

With n = 2λ and A = Θ((|C| + n)τ) (for a small constant rejection probability), its asymptotic complexity is

Θ
(
λ(|C|+λ)

logN log
(
λ(|C|+λ)

logN

)
+ λ2

)
. With N = Θ(λ) to minimize, we get asymptotic complexity Θ̃(λ|C| + λ2) to

be compared with Θ̃(|C|λ2) in [JKPT12] (which can only prove Boolean relations bit-wise on binary strings and may

result in a large overhead depending on the circuit considered).

5. ZERO-KNOWLEDGE ARGUMENTS VIA SHARING CONVERSION

�e goal of this chapter is to add another string to the MPCitH’s bow by integrating secret sharing conversion, a tech-

nique that has already been used in general MPC [GPS12], or for protecting against auxiliary channel a�acks [Gou01].

5.1 Related Works and Contributions

We present a new technique to expand the MPCitH toolbox further by allowing a prover to use simultaneously in the

MPC protocol additive sharings and multiplicative sharings of its secret information. �e former are used for linear

relations, while the la�er are used to prove e�ciently multiplicative relations. To ensure consistency, we propose a

simple technique to transform a multiplicative share into an additive share of the same value. Converting shares from

one type of secret sharing scheme into another is ubiquitous in MPC [GPS12] and the idea has already been used in

the MPCitH realm [DGH
+

21] (but for di�erent sharings). Our technique �nds several applications in (post-quantum)

zero-knowledge arguments and digital signature schemes.

Double Discrete Logarithm Problem (DDLP): A double discrete logarithm of an element y 6= 1G in a cyclic groupG of prime

order q with respect to bases g ∈ G and h ∈ F∗q (generators of G and F∗q respectively) is an integer x ∈ [0, q − 1] such

that y = gh
x

. Initially introduced by Stadler [Sta96] for veri�able secret-sharing, this computational problem has found

applications in various cryptographic protocols, including group signatures [CS97], blind signatures [ASM10], e-cash

systems [CG07], credential systems [CGM16], and veri�able randomness generation [BTV20]. Stadler proposed a zero-

knowledge protocol, which has a computational and communication complexity of Ω(log q) (in terms of group elements).

However, in the recent work [BTV20], Blazy, Towa, and Vergnaud presented a new protocol that outputs arguments with

only O(log log q) group elements. It relies on the “Bulletproofs” technique proposed by Bünz, Bootle, Boneh, Poelstra,

Wuille and Maxwell in 2018 [BBB
+

18]. �is reduced communication complexity comes at a security price since the

security analysis should rely on stronger idealized assumptions [GOP
+

22] or achieve only non-meaningful concrete

security [DG23]. For a use-case considered in [BTV20], the length of Stadler arguments are 24.6 Kilobytes (KB) and

those of Blazy et al. are 10.2KB long. As a �rst simple application of our conversion in the head technique, we present

(for similar prover and veri�er e�ciency) arguments of size about 16.6KB (depending on the parameters). Even if this

is longer than the previous approach, this still improves the communication complexity of Stadler’s protocol by about

30%. By increasing the prover and veri�er computational complexity, it is possible to decrease the communication

complexity to 7.2KB (with be�er security guarantees than [BTV20]). It is worth mentioning that even by increasing the

prover/veri�er running times, the arguments of [Sta96, BTV20] cannot be shortened.

Permuted Kernel Problem (PKP): �e PKP is a classical NP-hard computational problem, where, given a matrix and

a vector (of matching dimensions) de�ned over a �nite �eld, one has to �nd a permutation of the vector coordinates

that belongs to the matrix kernel. �is problem was introduced in cryptography by Shamir [Sha90], who designed a

zero-knowledge argument of knowledge of a solution of a PKP problem (and used it for a cryptographic post-quantum

identi�cation scheme). �is protocol was improved subsequently in a long series of work [Ste94a, BFK
+

19, Beu20,

FJR23, Fen24, BG22]. We apply our technique to this problem and obtain a zero-knowledge argument of knowledge

protocol which does not involve permutations that are not easy to implement securely, in particular in the presence of

side-channel a�acks.

One-way functions from “Fewnomials”: A cryptographic one-way function f : S → S is a function that is computation-

ally easy to compute but computationally di�cult to invert. If S is a �nite �eld (e.g. S = Fp for some prime number

p), then it is well-known that f can be represented as a polynomial in Fp[X] (with degree upper-bounded by (p− 1)).

Ad hoc examples of such functions are cryptographic hash functions or functions derived from block ciphers (using for

instance the Davies-Meyer construction [Win84]). Still, the polynomial representations of such functions are usually

of very high complexity (which makes them not convenient for the MPCitH paradigm). Several works were devoted

to designing e�cient symmetric cryptographic primitives suitable for e�cient implementation using MPCitH (e.g. the

Picnic [CDG
+

20, KZ22] and the Rainier [DKR
+

22] signature schemes). As a third application of our technique, we

propose a reverse approach to design a cryptographic system with simplicity and minimal complexity. �e motivation

is to remove potential points of failure and to obtain schemes easier to implement correctly. To do so, we consider the

simplest polynomials de�ned over a �nite �eld Fp that are good one-way function candidates. �e simplest polyno-

mials are certainly the monomials f1 : Fp → Fp, x 7→ f1(x) = xn mod p but they are trivially not one-way. If n
is coprime with (p − 1), this is a permutation on which one can apply the Davies-Meyer construction to obtain the

binomials f2 : Fp → Fp, x 7→ f2(x) = xn + x mod p which seem di�cult to invert (the best-known algorithm

5. Zero-Knowledge Arguments via Sharing Conversion 61

for n = Ω(p) has arithmetic complexity O(p1/2) [BCR13]). More generally, a fewnomial is a term used in algebraic

geometry and computational algebra, to describe a polynomial with a few terms (i.e. with a relatively low number of

monomials compared to its degree). If one considers a fewnomial of high degree with t ≥ 2 monomials over Fp, the

best known algorithm has arithmetic complexityO(p(t−1)/t) [BCR13]. �ese candidate one-way functions are not suit-

able for symmetric cryptography (since evaluating them is much more costly than popular hash functions and block

ciphers) but they are particularly interesting for our new conversion technique. In particular, we propose (candidate)

post-quantum signatures with lengths of about 10.5KB. �e produced signatures are thus not the shortest ones, but our

goal with this application is to propose a new simpler, and cleaner one-way function suitable for the MPCitH paradigm

with competitive performances and to motivate future research in this area.

5.2 Sharing Conversion and Design Principle

In the MPCitH paradigm, when the secret is shared additively, multiplicative relations are costly to prove, and vice versa.

Whence converting secret sharing in the Head naturally comes to mind.

5.2.1 Sharing conversion technique

Let us denote J·K as an additive sharing and 〈·〉 as a multiplicative sharing. For the sharing conversion considered in the

following, we need a uniformly random pre-computed couple of sharing (JrK, 〈s〉) such that r = s ∈ F×. �e N -party

MPC protocol is the following:

Input: �e parties have 〈x〉.
Output: �e parties get JxK.

Preprocessing phase: A trusted dealer generates two random sharings r =
∑N
i=1JrKi and

s =
∏N
i=1〈s〉i such that r = s. �ey give (JrKi, 〈s〉i) to party Pi for i ∈ [1, N].

Online phase:
1. �e parties compute 〈α〉 = 〈x〉/〈s〉 and broadcast it.

2. �e parties locally compute αJrK := JxK.

Protocol 9: Sharing conversion protocol Πconv

In practice, during the preprocessing phase, one starts by generating

{JrKi}1≤i≤N
$←− Fq and {〈s〉i}1≤i≤N

$←− F×q .

�en a�er de�ning r =
∑N
i=1JrKi, one computes ∆s such that r = ∆s

∏N
i=1〈s〉i := s. If r = s = 0, i.e. ∆s = 0, one

starts again. Correctness of Πconv relies on the fact that if r = s, then it outputs an additive sharing of x. It provides

security in the passive se�ing and α does not reveal any information on the parties’ share thanks to the random choice

of s.

5.2.2 General protocol

To remove the preprocessing phase from Protocol 9 and thus to be able to incorporate this technique in a prover-veri�er

interactive argument, we rely on the MPCitH with helper framework presented in Chapter 3 by following a cut-and-

choose approach. We develop a 5-round protocol, presented in a general manner, and that can be adapted to each of the

problems considered in the rest of this chapter.

Let us consider a public statement from the following NP-language:

Lf = {y | ∃x s.t. f(x) = y}

for some �xed one-way function f , and let Πf be a passively secure N -party MPC protocol realizing the functionality

as in Equation (3.1). More precisely, given a secret sharing input of x (either JxK, 〈x〉, or a sharing on the integers from

Chapter 4) and the public input y, the output of Πf is 1 if f(x) = y and 0 otherwise. Essentially, Πf also takes as

input a couple (or many couples) of secret sharing (JrK, 〈s〉) with r = s ∈ F×q . For the PKP application, Πf takes as

additional input, some prime number q′ greater than q. �e resulting interactive argument is presented with Protocol 10.

�e protocol makes use of a pseudo-random generator PRG , a tree-based pseudo-random generator TreePRG , four

collision-resistant hash functionsHi for i ∈ [1, 4] and a commitment scheme (Com, Verif). �e red part of the protocol

has to be adapted depending on the problem considered. We choose to use J·K in the protocol for the sharing of x and

f(x), but it can be substituted by 〈·〉.

5. Zero-Knowledge Arguments via Sharing Conversion 62

Soundness error. Let ε be the soundness of one repetition of the protocol. We perform τ parallel repetitions of the

protocol to get a soundness error ετ < (1/2)
λ

. As explained previously, each of these repetitions uses a cut-and-chose

phase to prove the correctness of the helper. Instead of performing τ parallel cut-and-chose phases each resulting

in trusting one couple of sharing (Jr[`]K, 〈s[`]〉) among M , we follow the more e�cient approach from [KKW18] and

perform a global cut-and-choose phase resulting in τ trusted sharing among a larger M . As detailed in Chapter 3,the

soundness error is then

ε = max
M−τ≤k≤M

{(
k

M−τ
)(

1
N + (1− 1

N)β
)k−M+τ(

M
M−τ

) }
.

Prover P Veri�er V
x ∈ Fq y = f(x)

mseed[0] $←− {0, 1}λ

(mseed[e])e∈[1,M] ← TreePRG(mseed[0])

For each e ∈ [1,M]:

(seed[e]
i , ρ

[e]
i)i∈[1,N] ← TreePRG(mseed[e])

For each i ∈ [1, N]:

(JxK[e]
i , JrK

[e]
i , 〈s〉

[e]
i)← PRG(seed[e]

i) . JxK[e]
i , JrK

[e]
i ∈ Fq , 〈s〉[e]i ∈ F×q

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

∆x[e] = x−
∑
iJxK

[e]
i

r[e] =
∑
iJrK

[e]
i

∆s[e] = r[e]/
∏
i〈s〉

[e]
i

s[e] = ∆s[e]
∏
i〈s〉

[e]
i

he = H1(∆s[e], com[e]
1 , . . . , com[e]

N)
h = H2(h1, . . . , hM)

h−−−−−−−−−−−−−−−−−−→
J

$←− {J ⊂ [1,M] ; |J | = τ}
J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

�e parties compute

JyK[e] = Πf (JxK[e], JrK[e], 〈s〉[e])
h′e = H3(∆x[e], JyK[e], α[e]) . α[e]

is the broadcasted value in

Πconv called in Πf

h′ = H4((h′e)e∈J)
h′, (mseed[e])e∈[1,M]\J−−−−−−−−−−−−−−−−−−→

L = {`e}e∈J
$←− [1, N]

τ

L←−−−−−−−−−−−−−−−−−− (seed[e]
i , ρ

[e]
i)i 6=`e

∆x[e],∆s[e], α[e], com[e]
`e


e∈J−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :

For all i 6= `e

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

Rerun the party i

as the prover to get JyK[e]
i

JyK[e]
`e

= y −
∑
i6=`eJyK

[e]
i

he = H1(∆s[e]

com[e]
1 , . . . , com[e]

N)
h′e = H3(∆x[e], JyK[e], α[e])

Check 1 h = H2(h1, . . . , hM)
Check h′ = H4((h′e)e∈J)
Return 1

Protocol 10: Zero-knowledge argument for a pre-image of f .

For each conversion, when incorporating Πconv into Protocol 10, there is one broadcast value α and one auxiliary

value ∆s to communicate, hence the sharing conversion protocol needs 2 �eld elements to communicate for each single

conversion (we can not reuse the couple of sharing for another conversion).

Parameters selection. Recall that we are dealing with a preprocessing phase, that is proved with a cut-and-choose

strategy. �e total number of parties to set up is MN , which impacts the prover’s computational complexity, therefore

we choose sets of parameters that keep a reasonable running time. We start by �xing a number of partiesN to be either

25
or 28

. �en we look for the best trade-o� between τ,M while keeping a soundness error below 2−λ. Decreasing τ

5. Zero-Knowledge Arguments via Sharing Conversion 63

leads to be�er sizes but to higher M and so slower proofs. �e MPC emulation does not impact a lot the running time,

since the hypercube optimization is consistent with our scheme (see Chapter 3).

5.2.3 Legendre PRF

To begin with, we present a pseudo-random function (PRF) that we looked at because it was tempting to apply our

sharing technique to it. Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is congruent to

a square number modulo p and is a quadratic nonresidue modulo p otherwise. �e Legendre symbol is a function of a
and p de�ned as (

a

p

)
=


1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

−1 if a is a quadratic nonresidue modulo p,

0 if a ≡ 0 (mod p).

�e Legendre pseudo-random function is a one-bit PRF Fp → {0, 1} de�ned using the Legendre symbol:

Lp,K(x) =

(
K + x

p

)
.

Legendre PRF Problem
Given p be an odd prime, and consider γ outputs Lp,K(1), . . . , Lp,K(γ), then the Legendre PRF Problem is to

recover the secret key K .

For large γ, with overwhelming probability this K is uniquely de�ned. Let us share the secret K with an additive

sharing, then an additive sharing of K + 1,K + 2, . . . ,K + γ can be straightly derived. By applying our conversion

technique to these γ additive sharings, we get the following multiplicative sharings 〈K + 1〉, . . . , 〈K + γ〉. By recalling

the well-known multiplicativity of the Legendre symbol, i.e.

(
x
p

)(
y
p

)
=
(
xy
p

)
, we are able to distributively compute

each symbol (this de�nes our MPC protocol). However, a priori one needs of γ conversions and this γ is large for security

purposes (even by considering some relaxed PRF relation as in [BdSG20]). �is makes our construction ine�ective until

we manage to introduce e.g. some batching into the conversions.

5.3 Proving Knowledge of a Double Discrete Logarithm

We start by proposing a direct application of our sharing conversion technique based on the Double Discrete Loga-

rithm Problem (DDLP), which has found numerous applications in cryptography [CS97, ASM10, CG07, CGM16, BTV20].

However, even if the following zero-knowledge argument improves the state-of-the-art in terms of communication com-

plexity (compared to schemes with the same assumptions), we present this protocol primarily for pedagogical purposes.

Indeed, our zero-knowledge argument for the DDLP based on a forward-backward technique developed as an appetizer

in Chapter 3 is more e�cient than this proposal.

Double Discrete Logarithm Problem (DDLP)
Let G be a cyclic group of prime order q with some generator g ∈ G, and let h ∈ F∗q of prime order p with

p|(q − 1). Given (y, g, h) ∈ G \ {1G} ×G× F∗q , the DDLP asks to �nd some x ∈ F×p such that y = gh
x

.

Consider the function f : F×p → G, x 7→ f(x) = gh
x

realizing the “double discrete exponentiation”. We present

an N -party MPC protocol ΠDDLP to securely compute the corresponding binary relation (via the computation of a

multiplicative sharing of f(x)).

Input: y 6= 1G in a cyclic group G of prime order q, h ∈ F∗q of prime order p with p|(q − 1), and an additive

sharing of x ∈ F×p .

Output: 1 if y = gh
x

, 0 otherwise.

1. Parties locally compute a multiplicative sharing 〈hx〉 via hx =
∏N
j=1 h

JxKj mod q.

2. Parties convert it into an additive sharing JhxK over Fq using Πconv 9.

3. Parties locally compute 〈ghx〉 via gh
x

=
∏N
j=1 g

JhxKj
.

4. Parties broadcast 〈ghx〉 and output 1 if gh
x

= y and 0 otherwise.

Protocol 11: MPC protocol ΠDDLP

5. Zero-Knowledge Arguments via Sharing Conversion 64

protocol

Parameters

Argument size (KB)

log2 q τ N M

Protocol 11 2048 16 28
4096 16.6

Protocol 11 2048 17 28
1744 17.2

Protocol 4 3072 16 28
4096 5.6

Protocol 4 3072 17 28
1744 5.9

Tab. 5.1: Achieved performances of our zero-knowledge protocol for proving the knowledge of a solution of a DDLP

instance.

�e correctness of ΠDDLP comes from the fact that hx = h
∑N
j=1JxKj mod p =

∏N
j=1 h

JxKj
since h has order p. �e same

reasoning holds for step 3 because g has order q. Plugging ΠDDLP into the red part of Protocol 10 with α[e] := h[e]/s[e]
,

we readily get a zero-knowledge argument of knowledge of a solution to the given DDLP instance. Note that we must

slightly adapt Protocol 10 since x ∈ Fp, and the output y is shared multiplicatively, but this is straightforward.

5.3.1 Performances

To estimate the communication complexity, we remark that for each iteration of the protocol, three values have to be

communicated: the auxiliary value ∆x ∈ Fp to �x the secret, and (∆s, α) ∈ F2
q from the sharing conversion protocol 9

(there is a sole conversion). �is leads to a total communication cost of at most:

4λ+ λτ log2

M

τ
+ τ [2 log2(q) + log2 p+ λ log2N + 2λ] bits,

where M the number of parallel phases in the cut-and-choose, and τ the number of unrevealed phases (see Chapter 3).

In [BTV20], the authors considered the case of a group G of prime order q = (4p+ 18)p+ 1 where p is the Sophie

Germain prime p = 21535 + 554415 that divides q − 1. �eir arguments involve 2dlog2(2dlog2(`)e+ 1)e+ 8 elements

in G and 5 elements in Fq . Taking G as the subgroup of order q in F∗` for ` = 1572q + 1, one obtains an argument

of size 10.2KB for [BTV20] and of size 24.6KB for [Sta96] (for a soundness error of 2−128
). We propose another set of

parameters, more adapted to our scheme, by considering p, q as∼2048-bit prime. Table 5.1 presents the communication

complexity of our arguments. Note that they are always shorter than those from [Sta96] and provide be�er security

guarantees than [BTV20]. Contrary to [BTV20], we could compress our argument size and construct parameter sets

with argument size below 10KB (but at the cost of an increase in the computational complexity of the prover and the

veri�er). Moreover, the protocol 4 developed in Chapter 3 leads to an argument proof whose size is reduced by 77%
compared to [Sta96], and beats the bulletproof approach of [BTV20].

5.3.2 Security proofs

�eorem 15. Considered an instance (y, g, h) ∈ G\{1G}×G×F∗q of the DDLP. �en, the interactive protocol 10 combined

with MPC protocol 11 is an honest-veri�er zero-knowledge argument of knowledge for the relation {(x; g, h, y) | ghx = y},
with perfect completeness, and special soundness ε equals to

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
Nk−M+τ

}
.

Proof. Completeness. For any sampling of the random coins of P and V, if the computation described in the protocol 10

combined with protocol 11 is honestly performed, all the checks of V pass. �e completeness is hence perfect.

Soundness. To prove the special soundness, one builds an e�cient knowledge extractor that returns 3 speci�c tran-

scripts, from which we can extract a solution of the DDLP instance. �is extractor has rewindable black-box access

to P̃. Assume that we can get three transcripts Ti = (h, J (i),Rsp
(i)
1 , {`(i)j }j∈J(i)

,Rsp
(i)
2) for i ∈ {1, 2, 3} from P̃ with

the same �rst commitment. We additionally require that there exists j0 ∈ (J (1) ∩ J (2)) \ J (3)
such that `

(1)
j0
6= `

(2)
j0

.

Moreover, T1 and T2 are supposed to be successful transcripts (i.e. which pass all the tests of V). Finally, we assume that

seed[j0]
from Rsp

(3)
1 is consistent with the (x[j0], r[j0], s[j0]) from T1 and T2.

We show how to extract a solution of the DDLP instance (y, g, h) from the three transcripts. First, we can assume that

all the revealed shares are mutually consistent between the three transcripts. Otherwise, we �nd a hash collision (since

they have the same �rst commitment). �us, we know all the shares for the iteration j0 from T1 and T2. For the sake

of clarity, we only consider the variables of the j0-th iteration, and this notation is omi�ed in the following. Consider

x′ :=
∑N
j=1JxKj mod p as a natural candidate solution for x. �en, following the MPC protocol 11 we compute:

5. Zero-Knowledge Arguments via Sharing Conversion 65

• hx′ = h
∑N
j=1JxKj =

∏N
j=1 h

JxKj =
∏N
j=1〈hx〉j mod q

• the broadcasting of 〈α〉 = 〈hx〉
〈s〉 i.e. α = hx

s mod q

• an additive sharing of hx via αJrK = hx

s JrK = JhxK, since from the checked equations at the end of T3 we get

that r = s.

• y =
∏N
j=1〈y〉j mod q with 〈y〉j = gJhxKj mod q.

Hence, gh
x′

= g
∏N
j=1〈h

x〉j = g
∑N
j=1JhxKj =

∏N
j=1 g

JhxKj =
∏N
j=1〈y〉j = y mod q. �erefore, x′ is a solution of the

considered DDLP.

Our protocol 10 has the same structure as the protocol 5 in [FJR23], with the same �rst challenge for revealingM−τ
out of M cut-and-choose phases, and the second challenge for opening N − 1 views. Hence, we can use the extractor

described in appendix E of [FJR23] for producing the above three transcripts T1, T2, T3 by calling in average at most

4

ε̃− ε

(
1 + ε̃

8M

ε̃− ε

)
times P̃ (the analysis of the average number of calls to P̃ is also identical).

Honest-veri�er zero-knowledge. We build a PPT simulator Sim (i.e. an algorithm that outputs transcripts that are

indistinguishable from real transcripts without knowing a valid witness) given random challenges J and L (because we

assume an honest veri�er), and works as follows:

Simulator Sim:

1. Sample J
$←− {J ⊂ [1,M]; |J | = τ} and L = {`e}e∈J

$←− [1, N]
τ

2. Sample mseed[0] $←− {0, 1}λ

3. (mseed[e])e∈[1,M] ← TreePRG(mseed[0])

4. For e ∈ [1,M]\J , follow honestly the protocol and deduce he.

5. For e ∈ J :

• Compute (seed[e]
1 , ρ

[e]
1), . . . , (seed[e]

N , ρ
[e]
N) with TreePRG(mseed[e]).

• For each party j ∈ [1, N]\{`e}: (JxK[e]
j , JrK

[e]
j , 〈s〉

[e]
j)← PRG(seed[e]

j), com[e]
j = Com(seed[e]

j ; ρ
[e]
j)

• Sample ∆x[e] $←− Fp, JxK[e]
`e

$←− Fp, JrK[e]
`e

$←− Fq, 〈s〉[e]`e
$←− F×q

• ∆s[e] =
∑N
j=1JrK

[e]
j /
∏
j〈s〉

[e]
j mod q

• α[e] = h
∑N
j=1JxK[e]j +∆x[e]

/(∆s[e]
∏N
j=1〈s〉

[e]
j) mod q

• 〈ghx〉[e]j = gα
[e]JrK[e]j mod q

• Adapt the output of the party `e: 〈gh
x〉[e]`e = y/

∏
j 6=`e〈g

hx〉[e]j mod q

• Sample a random commitment com[e]
`e

• Compute he = H1(∆s[e], com[e]
1 , . . . , com[e]

n), h′e = H3(∆x[e], 〈ghx〉[e], α[e])

6. Compute h = H2(h1, . . . , hM), h′ = H4((h′e)e∈J)

7. Outputs the transcript(
h, h′, (mseed[e])e∈[1,M]\J , ((seed

[e]
i , ρ

[e]
i)i 6=`e , com

[e]
`e
,∆x[e],∆s[e], α[e])e∈J

)
.

�e distribution of the output transcript is identical to a real one, except for the commitment of the party `e in each

execution e ∈ J . Distinguishing them means breaking the commitment hiding property or the PRG security.

5. Zero-Knowledge Arguments via Sharing Conversion 66

5.4 Proving Knowledge of a PKP Solution

We denote by Sn the symmetric group of degree n. For a permutation π ∈ Sn and a vector v ∈ Fnq , π(v) is the action

of the permutation on the coordinates of v.

Permuted Kernel Problem (PKP/IPKP)

Let (q,m, n) be positive integers, H ∈ Fm×nq a random matrix, and a vector v ∈ Fnq . �e PKP is to �nd a

permutation π ∈ Sn, such that Hπ(v) = 0. �e inhomogeneous version of the problem (IPKP) is, given a target

vector y ∈ Fmq , to �nd a permutation π ∈ Sn, such that Hπ(v) = y.

We consider the PKP variant, but this work can be straightly extended for the IPKP (without loss of performances

since y is public). We want to prove the knowledge of a solution to a PKP instance, i.e., the knowledge of some x ∈ Fnq
and π ∈ Sn such that Hx = 0 and π(v) = x.

For this purpose, we adapt the protocol 10 as follows:

• the input x ∈ Fnq is a vector, so we should consider one conversion by coordinate;

• the sharing of x is over the integers, so JxKj ∈ [0, A− 1]
n

for some A > q. �us, we should add a rejection rule

as explained in Chapter 4;

• V sends an additional challenge g
$←− F×q′ (as an evaluation point) at the same time as the challenge J , where q′ is

a prime greater than q whose choice is explained a�erward.

5.4.1 A �rst approach for proving the knowledge of a permutation

Consider the polynomial fx,v(X) =
∑n
i=1X

xi −
∑n
i=1X

vi
of degree at most q − 1 (xi, vi denotes the components of

the vectors x, v), and some uniformly random element g ∈ Fq′ . If x = π(v) for some π ∈ Sn, then fx,v is identically

zero. If there is no permutation π ∈ Sn such that π(v) = x, then via the Schwartz-Zippel Lemma [Zip79, Sch80], the

probability that fx,v(g) = 0 mod q′ is bounded by (q− 1)/q′. Indeed, the probability that a random element in Fq′ is a

root of a polynomial in Fq′ [X] of degree at most q − 1 is bounded by (q − 1)/q′.
Initially, the sharing over the integers was introduced to share small values. In this work, when computing fx,v(g)

over Fq′ in a distributed way, the random challenge g
$←− F×q′ may not satisfy gq = 1 mod q′ and then employing a

modular additive sharing would lead to a wrong computation. �is is the motivation for using a sharing on the integers

for x.

Recall that the veri�er knows that JxiKj ∈ [0, A − 1] (this is veri�ed for open parties) and checks that −A + q ≤
xi−JxiKj∗ ≤ 0. �is implies that V is convinced by the fact that−A+q ≤ xi ≤ A−1. In particular, V is not guaranteed

that P chooses xi ≤ q− 1, and then the degree of fx,v is a priori bounded by A− 1, whence a slack. Indeed, a malicious

prover may choose some x whose coordinates are upper bounded by A− 1 instead of q − 1. By taking the modulus q′

large enough compared toA, with the Schwartz-Zippel Lemma, we can achieve a small probability of picking a random

element in Fq′ as a root of fx,v whose degree is bounded by A− 1 (when fx,v is not identically zero).

MPC protocol. We describe the MPC protocol to plug in the red part of protocol 10. As input, x is shared among the

parties via a secret sharing on the integers, i.e., JxKj
$←− [0, A− 1]

n
for j ∈ [1, N]. �e rejection rate of the sharing is

1 −
(
1− q−1

A

)n
(see Chapter 4 with application to the Boneh’s PRF 4.5.3) since we are sharing elements of Fq instead

of binary elements. Parties also get some g ∈ F×q′ with q′ a prime number greater than β(A − 1), where 1/β is the

false positive probability of the MPC protocol (i.e. the probability to randomly pick a root of a non-zero polynomial is

bounded by 1/β). We present the following MPC protocol ΠPKP to securely compute the corresponding binary relation

via the computation of a sharing of {Hx, fx,v(g)}.

5. Zero-Knowledge Arguments via Sharing Conversion 67

Input: x ∈ Fnq shared on the integers as x =
∑N
j=1JxKj , H ∈ Fm×nq , g

$←− F×q′ with q′ the next prime a�er

β(A− 1).

Output: 1 if Hx = 0 mod q and π(x) = v for some π ∈ Sn, 0 otherwise.

1. From the sharing over the integers of each xi, parties locally compute 〈gxi〉, a multiplicative sharing of gxi =∏N
j=1 g

JxiKj mod q′, for each i ∈ [1, n].
2. Parties convert it into an additive sharing JgxiK using Πconv 9, for each i ∈ [1, n].
3. Parties locally compute their share of Jfx,v(g)K =

∑n
i=1Jg

xiK−
∑n
i=1 g

vi mod q′.
4. Parties locally compute their share of JHxK = HJxK mod q.

5. Parties broadcast JHxK and Jfx,v(g)K. If Hx = 0 and fx,v(g) = 0, output 1, otherwise 0.

Protocol 12: MPC protocol ΠPKP

Notice that the correctness of gxi = g
∑N
j=1JxiK mod q′ follows from the sharing on the integers. For each coordinate

one conversion is required, thus two values over Fq′ has to be communicated to V in addition to one auxiliary value for

the secret coordinate (over [0, A− 1]). Hence, the obtained argument size is

4λ+ λτ log2

M

τ
+ τ [n(2 log2 q

′ + log2(A− 1)) + λ log2N + 2λ] bits,

where M is the number of parallel phases in the cut-and-choose, and τ the number of unrevealed phases.

�e security of the PKP/IPKP has been well-studied for many years. We consider the parameter sets proposed

in [BFK
+

19] to achieve 128 bits of security, i.e. n = 61, m = 28, q = 997. �e choice of the remaining parameters τ
and M are chosen as a trade-o� between argument size and signing speed. Let 1/β be the false positive probability of

the MPC protocol 12 (i.e. when checking the existence of a permutation). We �x β = 28
, thus q′ can be chosen as the

next prime a�er 28(A− 1).

Parameters

Argument size (KB) Rej. rate

τ N A M

19 28 214q 1289 13.3 0.068
27 25 214q 541 16.9 0.096

Tab. 5.2: Obtained performances for proving the knowledge of a witness of a PKP instance.

5.4.2 Security proofs

�eorem 16 (Security Proofs). Considered an instance (H, v) ∈ Fm×nq × Fnq of the PKP. �en, the identi�cation scheme

protocol 10 combined with MPC protocol 12 is an honest-veri�er zero-knowledge argument of knowledge of (x, σ) ∈ Fnq ×Sn
such that Hx = 0 and σ(x) = v, with

(
1− q−1

A

)τ n
-completeness and special soundness ε equals to

max
M−τ≤k≤M


(

k
M−τ

)(
1
N + (1− 1

N) 1
β

)k−M+τ

(
M

M−τ
)

 .

Proof. Completeness. For any sampling of the random coins of P and V, if the computation described in the protocol 10

(with the slight adaptation described in section 5.4 for the �rst challenge and the rejection rule) combined with MPC

protocol 12 is honestly performed and if there is no abort, all the checks of V pass. Since the probability of abortion is

1−
(
1− q−1

A

)τ n
(see Chapter 4), the completeness probability is hence equals to

(
1− q−1

A

)τ n
.

Special soundness. Compared to the DDLP identi�cation scheme, the ongoing scheme has a larger �rst challenge

J ∪ {g $←− Fq′} where J is the cut-and-choose challenge, but the second challenge is the same. Consider the same

extractor E as for �eorem 15 which outputs some speci�c three transcripts T1, T2, T3. De�ne J (i) ∪ {g(i) $←− Fq′} the

�rst challenge in transcript Ti for i ∈ [1, 3]. �us, J (1), J (2)
and J (3)

satisfy the conditions enumerated in proof of �e-

orem 15, but g(1), g(2)
and g(3)

are random. As detailed in proof of �eorem 15, T1 and T2 aims to recover some natural

candidate solution x′. T3 provides a valid couple of sharing (JrK, 〈r〉). All together, we can reconstruct the polynomial

fx′,v(X). Since T1 is successful, fx′,v(g
(1)) = 0 mod q′.

5. Zero-Knowledge Arguments via Sharing Conversion 68

Honest-veri�er zero-knowledge. We detail the change to carry out in the simulator Sim from �eorem 15. First, we

shall sample g
$←− Fq′ during step 1. We adapt step 5 accordingly to MPC protocol 12. Finally, we add an additional step

“Abort with probability 1−
(
1− q−1

A

)nτ
” before step 7. �e �nal analysis still holds.

5.4.3 Other analysis and approach

Conjecture of [Kel16]. We analyze the protocol from Subsetion 5.4.1 by replacing the Schwartz-Zippel lemma use with

a �ner probability of randomly drawing a root.

Let F be the set of polynomials over Fq′ of degree less than q′ − 1, with t terms, and which does not vanish on any

entire coset of any nontrivial subgroup of F∗q′ . Let R(f) be the number of distinct non-zero roots of a polynomial f in

Fq′ . �en the conjecture of [Kel16] states that

R := max{R(f) : f ∈ F} = O(t ln q′),

where ln is the natural logarithm. More precisely, they conjecture that there exists some constant γ > 0 such that

R ≤ 2t/γ ln q′,

and this γ has been shown heuristically that it is greater than or equal to 1/2.

In our case, t = 2n (n has typically 6 bits), and we want to have a probability of picking a root of fx,v(X) ∈ Fq′ [X]
less than 1/β with β = 28

, ie R/q′ ≤ 1/28
(to obtain the same false positive probability of the MPC protocol than in

Subsection 5.4.1). �e conjecture tells us to use primes of at least 21 bits, and since A is around 24 bits, we can consider

q′ ' A (fx,v has degree less than A, thus we shall have q′ > A). Compared to the �rst approach, this conjecture ables

us to work over a smaller �eld (we save around log β = 8 bits on the size of the �eld Fq′) leading to be�er performances.

�e modulus as a challenge. A di�erent approach could be to consider the modulus q′ as a challenge, i.e., the �eld point

g is now �xed (such that g is not a root of fx,v on Z for fx,v 6≡ 0), and the question is to control the probability that

some uniformly random prime divides fx,v(g). For this purpose, we can �x a some subset of primes S ⊂ P such that

Pr[fx,v(g) = 0 mod q | q $←− S, fx,v(g) 6= 0] ≤ 28.

Although this approach seems to be advantageous in terms of proof size, it does not �t well with the cut-and-choose

strategy since we should change the prime q′ for each iteration of the MPCitH, and so derive τ di�erent cut-and-choose

instead of one (the last optimization from Chapter 3) can not be applied anymore.

5.5 Proving Knowledge of a Fewnomial Pre-Image

We propose a new (candidate) post-quantum one-way function and a digital signature scheme constructed as an argu-

ment of knowledge of a pre-image of this function. Our goal is to design a simple and somewhat minimalistic scheme.

We consider a prime number p and the simplest one-way polynomials de�ned over the �nite �eld Fp. �ose polyno-

mials are called fewnomials and are simply polynomials with a relatively low number of monomials compared to their

degree. If one considers a fewnomial with t ≥ 2 monomials of large degrees over Fp, the best known classical algorithm

has arithmetic complexityO(p(t−1)/t) [BCR13]. Essentially, this is the running time of their algorithm for detecting the

existence of a root in Fp for univariate t-nomials. Combining this algorithm with Grover’s algorithm [Gro96], leads to

the best-known quantum algorithm with complexity O(p(t−1)/2t).

A prime number q is called Sophie Germain prime is 2q + 1 := p is also a prime number. �ese prime numbers of

the form 2q+ 1 are called safe prime numbers since the multiplicative group of integers modulo 2q+ 1 has a subgroup

of large prime order.

Fewnomial Inversion Problem (FIP).
Let q be a Sophie Germain prime number where p = 2q+ 1 is also a prime number. Let t ≥ 2 be an integer and

f : Fp → Fp be a fewnomial with t monomials de�ned as f(X) =
∑
i∈S X

i
where S is a set of t integers in

[dq/2e, q − 1]. �e Fewnomial Inversion Problem is given y = f(x) ∈ Fp to �nd x′ ∈ Fp such that y = f(x′).

We construct a digital signature scheme based on the hardness of the FIP. Note that we consider the case of unitary

monomials but adding non-zero (public) coe�cients does not change the following analysis and performances. �e

choice of t and p will be discussed later on. It is worth mentioning that the monomial Xn mod p would be easy to

invert except if we replace the prime p by a modulus with unknown factorization, and this would be essentially an RSA

instance with a larger modulus.

5. Zero-Knowledge Arguments via Sharing Conversion 69

5.5.1 Protocol and performances

We �rst present the MPC protocol ΠFIP to plug in protocol 10, in which parties securely compute the corresponding

binary relation via the computation of a sharing of f(x). �e prover/signer starts by sharing the secret/signing key x
multiplicatively.

Input: A multiplicative sharing of x ∈ F×p , i.e. x =
∏N
j=1〈x〉j mod p. A fewnomial f : X →

∑
i∈S X

i
, with a

�nite subset S of t integers in [dq/2e, q − 1], and some public value y ∈ Fp.

Output: 1 if f(x) = y, and 0 otherwise.

1. Parties locally compute 〈xi〉 via xi =
∏N
j=1〈x〉ij mod p for i ∈ S.

2. For each i ∈ S, parties convert 〈xi〉 into an additive sharing JxiK using Πconv 9.

3. Parties locally compute Jf(x)K =
∑
i∈SJxiK.

4. Parties broadcast Jf(x)K, and output 1 if f(x) = y and 0 otherwise.

Protocol 13: MPC protocol ΠFIP

In the MPC protocol 13, parties apply the conversion protocol for each i ∈ S and each conversion requests to

communicate 2 �eld elements as explained in Section 5.2. �e rest of the communication is standard. Hence, the

communication cost of the protocol is

4λ+ λτ log2

M

τ
+ τ [(1 + 2t) log2 p+ λ log2N + 2λ] bits,

where t is the size of S, M the number of parallel phases in the cut-and-choose, and τ the number of unrevealed phases

(see Section 5.2).

5.5.2 Security proofs

�eorem 17 (Security Proofs). Considered an instance (f, y) ∈ Fp[X] × Fp of the FIP. �en, the interactive pro-

tocol 10 combined with MPC protocol 13 is an honest-veri�er zero-knowledge argument of knowledge for the relation

{(x; f, y) | f(x) = y}, with perfect completeness, and special soundness ε equals to

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
Nk−M+τ

}
.

Proof. Proofs of completeness, special soundness, and honest-veri�er zero-knowledge are identical to those of �eo-

rem 15 (they are both based on the same protocol 10), but require a slight but natural adaptation. In the soundness, we

adapt to the FIP the proof that the natural solution x′ extracted from the �rst two transcripts satis�es f(x′) = y mod p.

In the simulator Sim, step 5 has to be adapted according to the FIP.

5.5.3 Digital signature based on the FIP

We apply the Fiat-Shamir transform [FS87] to get a non-interactive protocol, and so a signature scheme. Since our

protocol has 5 rounds, we have to take into consideration the a�ack of Kales and Zaverucha [KZ20] for the security

of the signature. More precisely, the a�ack can be set up as long as the number of rounds is greater than 3, and its

complexity is in�uenced only by the size of the challenge spaces. �e forgery cost of the signature scheme is then given

by

min
M−τ≤k≤M

{(
M

M−τ
)(

k
M−τ

) +Nk−M+τ

}
.

To build a signature, we choose x ∈ F×p as the private key and y = f(x) mod p as the public key. To achieve a

forgery cost of 1/ε, we could increase τ , but this would not lead to an e�cient scheme. Instead, we transform our 5-round

protocol into a 3-round before applying the Fiat-Shamir transform, hence [KZ20] a�ack does not apply anymore. �e

5-to-3-round convert’s idea is to emulate M MPC protocols before the �rst round of communication, i.e., before ge�ing

the challenge for the cut-and-choose. A�er values are commi�ed, V sends both challenges during the same round, and

a�er receiving the P’s response, V can realize the veri�cation as before. �e reduction of the number of rounds comes

at the cost of emulating M − τ additional MPC protocols since P does not know yet the challenge subset τ when it has

to emulate MPC protocols. It leads to an overhead in terms of signing speed, i.e., there are M(1 + log2(N)) parties to

5. Zero-Knowledge Arguments via Sharing Conversion 70

emulate instead of τ(1 + log2N), but the hypercube optimization a�enuates it. Moreover, the communication cost is

slightly greater for the 3-round version, the size of the signature scheme is then

4λ+ 3λτ log2

M

τ
+ τ [(1 + 2s) log2 p+ λ log2N + 2λ] bits,

with s the size of S×, M the number of parallel phases in the cut-and-choose, and τ the number of unrevealed phases.

�e resulting 3-round protocol is also an honest-veri�er zero-knowledge proof with the same soundness. It can be

checked that the round reduction described here does not impact the proofs of �eorem 17 (i.e. the proofs of �eorem 15).

Performances. As mentioned above, considering a fewnomial with t ≥ 2 monomials over Fp, the best (classical) known

algorithm has arithmetic complexity O(p(t−1)/t) [BCR13]. Hence, there is a trade-o� between the size of the modulus

p and the number of monomials t to consider achieving (classical) 128 bits of security. �e optimal one to minimize the

signature size is a trinomial over a prime of 170 bits.

Parameters

Signature size (KB)

τ N M

28 25
389 12.2

18 28
1251 10.6

Tab. 5.3: Achieved signature size based on the FIP.

6. THRESHOLD PROOFS FROM SECURE MULTIPARTY COMPUTATION

6.1 Introduction

In the mosaic of modern cryptography, distributed computation and interactive zero-knowledge proofs both serve as

the backbone of many cryptographic systems. Bringing these two concepts together leads to customary use cases for in-

teractive proofs in a distributing se�ing, where a set of users must conjointly prove computational tasks to some veri�er

in an adversarial environment. �is proof distribution among multiple users has been studied for a while [BOGKW88]

with the idea of sharing the trust in mind. Most of the works up to now studied the situation where all the users in the

model have to be part of the proof to succeed (either in passive or active security). However, the non-trivial threshold

case — where only a subset of the users is enough to realize a valid proof — is particularly interesting in terms of secu-

rity for removing points of failure while guaranteeing that a su�cient large subset of users has validated the statement.

Hence, a natural question comes to mind:

Given a generic NP-statement, how to conceive a threshold zero-knowledge proof (of knowledge) of a shared witness?

�erefore, provers should own a shared secret input, and this restricts the number of available references in the lit-

erature. As an additional security requirement, we would like that even if a bounded subset of provers deviates from

the protocol, a valid proof can still be produced. However, satisfying solutions to the previous challenge when dealing

with threshold proof (unlike with multi-prover proof) stand as an open-ended question. Speci�cally, a generic building

system for zero-knowledge proofs of a solution to the distributed analog of anyNP-problem, in active security, without

adding computational hypothesis than the hardness of the considered NP-problem. As an example, the IACR website

speci�es additional considerations for the E-Voting Systems for the IACR. One of them is “minimizing the level of trust

that is required of any entity in the system. (For example, servers’ secrets could be shared with a 3-out-of-5 threshold,

corresponding to the three people required for ballot-counting by the current version of the IACR bylaws)”. �is is a

typical use-case for a threshold zero-knowledge proof.

From one-prover to multi-prover zero-knowledge proof systems. A zero-knowledge proof system is a family of interactive

proof system [Bab85, GMR89], consisting of an all-powerful prover who a�empts to convince a probabilistic polynomial-

time veri�er of the truth of a statement. �e prover and veri�er receive a common input and can exchange up to a

polynomial number of messages (in the security parameter), at the end of which the veri�er either accepts or rejects the

statement. In the literature, the extension of the notion of an interactive proof system to multi-prover exists and leads

to the usually named multi-prover zero-knowledge proof system [BOGKW88]. It was �rst more of a theoretical notion.

Multiple provers are allowed to communicate with each other before the beginning of the interaction with the veri�er,

but once the interaction starts, they are assumed to be isolated. �is strong condition gives the model additional power.

Indeed, intuitively, the veri�er will be much more con�dent if provers answer their question without signaling with

each other. Hence, the soundness property protecting the veri�er assumes that the provers can not communicate with

each other during the proof process, leading to a physical separation between the provers. �is also aims to build perfect

zero-knowledge proofs independently of any complexity-theoretic assumptions. However, Crépeau and Yang [CY19]

noticed that special a�ention must be paid to soundness proofs in this paradigm, since for instance, provers may be able

to indirectly exchange information via the veri�er. �is has been an additional motivation for us to consider a model

tolerating (corrupted) provers to signal even if the protocol does not require communication.

�reshold motivation. Given a multi-prover proof system, its thresholdization is a natural approach to mitigate the

risks associated with single points of failure and ensures that a certain number of users must collaborate to produce a

valid proof. A �rst example is threshold digital signatures [Des87, Des94], where the signing authority is delegated to

a set of users such that any large enough subset of them are able to conjointly succeed in producing a valid signature.

Another example is threshold veri�able decryption, a cryptographic primitive that distributes the decryption authority

among multiple users. On top of decrypting a ciphertext, many applications require proving that the decryption has

been correctly handled without revealing the secret key. �is is termed veri�able decryption, and examples include

anonymous communication, decryption of ballots in electronic voting, and various uses of veri�able fully homomorphic

encryption.

To a larger extent, with the advent of quantum computers, post-quantum schemes gained importance, but many of the

prominent known threshold schemes are not post-quantum. Hence, a generic construction for threshold zero-knowledge

6. �reshold Proofs from Secure Multiparty Computation 72

proofs, where its security can be reduced to the chosen hard-problem, is of high interest. �is work also meets the recent

call of the NIST for post-quantum threshold schemes.

Prior work. �e objective of this chapter being natural, several papers have proposed solutions in that direction and

looked at relatively close questions.

�reshold proofs for homomorphism preimage. A somewhat olden work [KMR12] proposes techniques for constructing

threshold protocols, including Schnorr’s protocol for discrete logarithms, and Guillou-�isquater’s protocol for modular

roots, via a proof of knowledge of a preimage of a homomorphism. However, this construction only stands for group

homomorphisms. Indeed, they built a naive-distributed version of the single-prover proof: let φ : G → H be a group

homomorphism between two groups G and H , assume that the secret input belongs to G and is shared over G. �en

each prover’s computation is basically the homomorphsim evaluation of their share, leading to a sharing of the output

over H . Hence, considering a threshold linear secret sharing over G, we directly get a threshold proof. To match with

their objective of e�ciency, their protocol requires an additional user named a combiner, combining the messages of

the provers and communicating with the veri�er.

Negative results in the all-but-one corruption se�ing. Recently, [DKR23] provides negative results when considering

the non-interactive se�ing of our multi-prover context. In particular, proofs with security against all-but-one corruption

can not achieve sizes sublinear in the number of provers in the random oracle model. �erefore, authors consider the

relaxed corruption condition of a constant fraction of provers and work by example by focusing their a�ention on a

speci�c language for the discrete logarithm problem.

�e next papers are a series of recent works that are closer to ours, both in the approach and in the results. Note that

works that have been done in this area, aiming to outsource computation or designed for applications where provers do

not hold private inputs, do not compete with ours.

Publicly-Auditable-MPC (PA-MPC). It is natural to compare our work with the paper [BDO14], which introduced PA-

MPC by extending MPC with a publicly veri�able proof, ensuring that the computation was performed correctly with

respect to the commitments to the inputs. It is achieved by publishing a transcript of the protocol that anyone can

read and be convinced. �is approach di�ers from previous works in two ways: (1) they look at the regime where all

the servers are corrupted; (2) anyone with access to the transcript can be the auditor and does not need to be online

while the protocol is executed. [BDO14] developed a PA-MPC with a high-speed online phase by relying on SPDZ

techniques, hence on a trusted setup se�ing. But this o�ine should be publicly veri�able as well, thus they consider

Pedersen commitment in order to make SPDZ auditable, and use a common reference string (CRS) for generating these

commitments. If this setup is compromised, the security of the entire protocol can be at risk.

Collaborative zk-SNARKs. Classic PA-MPC constructions [BDO14] have linear size proofs. Boneh and Ozdemir [OB22]

introduced collaborative zk-SNARKs, which turns out to be an e�cient way of building PA-MPC protocols with constant

size proofs. �eir security model is quite similar to ours, except that they focus on e�cient veri�er. �eir construction

starts from a single-prover zk-SNARK, to then run its proof generation algorithm as an MPC among the provers. Since

running it naively through a general purpose MPC protocol would lead to poorly performances, they focus on some

MPC-friendly zk-SNARKs in the sense that proof generation lends itself to a very e�cient MPC protocol. �e main

di�erence with our work is (1) they rely on additional computational hypothesis (they instantiate it with SNARKs such

as Groth16 [Gro16b], vanilla PLONK [GWC19], Marlin [CHM
+

20] that are vulnerable to quantum computers); (2) it

requires communication between provers with a conditional Ω(n) lower bound on the communication where n is the

number of provers; (3) a collaborative zk-SNARK only makes sense in a se�ing where all provers want to jointly generate

a proof leading to the multi-prover proof se�ing, and not achieving a strict threshold. �erefore, collaborative zk-SNARK

is particularly e�ective in se�ings where all provers are commi�ed to jointly generating a proof, as opposed to a strict

threshold se�ing where only a subset of provers is involved. Moreover, their systems all require the same trusted setup

as the zk-SNARK they build on (hence, a Fractal-based collaborative zk-SNARK would not require a trusted setup).

One key di�erence with our approach is that we focus on building a generic system that achieves broad security

properties with minimal assumptions, whereas they concentrate more on e�ciency, providing an in-depth analysis of

it.

PA-MPC-as-a-Service. �e work of [KZGM21] emphasizes MPC-as-a-Service by developing a PA-MPC protocol using

Marlin [CHM
+

20], positioning itself as a concurrent work to [OB22]. �e three points that di�erentiate our work

from [OB22] are also applicable to [KZGM21]. Although they rely on a trusted setup, only a single trusted ceremony is

required for the system’s entire lifetime, even when programs are updated dynamically. Moreover, their construction

for auditable MPC necessitates a stronger variant of commitment schemes known as extractable trapdoor commitment.

6. �reshold Proofs from Secure Multiparty Computation 73

Publicly Accountable Robust MPC. Finally [RRRK22] explicitly focuses on a form of threshold collaboration with robust

security. �e authors improve upon traditional SPDZ-like protocols by integrating threshold secret-sharing and ensur-

ing compatibility with a suitable homomorphic commitment scheme. �ey replace the Pedersen commitment with a

la�ice-based commitment scheme to achieve be�er integration with the la�ice-based BGV encryption used in SPDZ.

Consequently, they believe their protocol, with small modi�cations, could provide post-quantum security. Additionally,

they utilize a preprocessing phase for a common reference string.

Our contributions. We consider the active se�ing in a security model tolerating an adversary corrupting at most t
provers. In this context, an MPC protocol is said to satisfy the properties of integrity if the computation has been

correctly performed (i.e., the correct function has been evaluated in the correct inputs), and of availability if the compu-

tation has been completed. Our threshold proof involves k provers and a veri�er and can be viewed as a (k + 1)-party

MPC protocol. To ensure the correctness property of our proof, the MPC protocol must achieve availability when the

number of corrupted parties is less than t + 1. For the soundness, even if the number of corrupted provers exceeds

this threshold t, the veri�er should not be convinced when the statement is false, in other words, the MPC protocol

must have integrity. �is meets the PA-MPC protocol [BDO14] that achieves public veri�cation even if all the servers

involved in the computation are corrupted. Here is a summary:

corrupted provers ≤ t # corrupted provers > t
with-abort integrity

with-abort auditable integrity integrity

robust integrity, availability

robust auditable integrity, availability integrity

Tab. 6.1: Achieved properties of di�erent classes of MPC protocols in our security model depending on the number of

corrupted provers.

�erefore, we have to target a notion relative to robust auditable.

A straightforward solution to build such a robust auditable proof is to require each prover to commit to all their

secret inputs and provide a zero-knowledge proof for every message sent, demonstrating that the message was computed

according to the protocol. If a common reference string is available, non-interactive zero-knowledge proofs can be used,

allowing anyone to verify the proofs at any later time. However, this method introduces substantial computational

overhead, resulting in a highly ine�cient protocol. We could follow two approaches to get more e�cient protocols, both

involving robust MPC among provers and making the results publicly veri�able. One option treats the provers network

as an k-server setup where servers conjointly perform computations and create a public �le for audit purposes, like in

PA-MPC. Alternatively, in an k + 1-server model, k servers conjointly realize a computation and produce individual

proofs for veri�ability with the last server acting as the veri�er. Eventually, we can turn them into non-interactive

proofs. E.g., these proofs could be based on zk-SNARKs or MPCitH. Although it remains unclear how to e�ectively

handle SNARKs for proving the k-party computation, as opposed to MPCitH-style proofs.

Previous introduced works follow the �rst approach. Even [OB22] since they choose a zk-SNARK, use its generation

function, and build an n-party MPC to compute this function, ultimately outpu�ing 0/1. We follow the second approach,

and we achieve the properties detailed in Table 6.2.

robust threshold preprocessing post-quantum

[BDO14] no no yes no

[OB22] no no yes (?) no (??)
[KZGM21] no no yes (?) no (??)
[RRRK22] yes yes yes conjecture

our proof system yes yes no yes

Tab. 6.2: Comparison of exisiting works

(?): While most zk-SNARK systems rely on a trusted setup to generate speci�c parameters (o�en referred to as the

structured reference string), some of these systems are transparent and could be use by these works.

(??): �ese works could use post-quantum zk-SNARKs, but they were focusing on e�ciency with SNARKs having

an MPC-friendly generation function.

Regarding the preprocessing, most existing works rely on setup components that are assumed to be pre-distributed

at the start of the protocol. While we relax this strict assumption—since they are not required in our approach—we do

assume that the private keys/witnesses are distributed in advance. Note that among existing auditable MPC protocols,

we focus more on comparing the achieved properties and required assumptions than on studying e�ciency.

6. �reshold Proofs from Secure Multiparty Computation 74

Road map. Sections 6.2 and 6.3 contain the main theoretical novelty.

In particular, Section 6.2 involves the security de�nitions for a threshold zero-knowledge proofs (TZKP). �is system

is generic in the sense that, given anyNP statement, we can produce a TZKP for it. Proofs in that system achieve robust

security in the active se�ing, since it seems to be a must for future applications. Indeed, it tolerates the presence of a

malicious adversary that may corrupt a constant subset of provers, while ensuring any large enough subset of provers

to produce a valid proof.

Section 6.3 proposes a black-box construction for building a TZKP, employing the MPC-in-the-Head machinery. �is

is based on two layers of MPC. �e �rst one corresponds to computation among provers. Even if the security model

does not assume it, in practice communications among provers cease before the �rst interaction with the veri�er. �e

second layer is composed of protocols emulated in the head of provers in order to make the �rst layer of MPC veri�able.

In Section 6.4, we instantiate our black-box construction with the popular BGW [BGW88] protocol with some veri-

�able secret sharing.

Finally, Section 6.5 discusses e�ective variants of TZKP, as well as their potential applications, in particular when the

NP-problem holds a low-depth arithmetic circuit. �is leads to proofs without communication among provers (even if

the security model tolerates signaling). Since our proof system is particularly valuable when a secret key is shared among

the provers, application to threshold digital signatures and threshold veri�able decryption are examined. Its versatility

and simplicity o�ers a new approach for e�ective, post-quantum threshold protocols, leveraging recent advancements

in the MPCitH world. As an additional motivation for this work, the security of the resulting proofs does not reduce to

other computational hypothesis than the hardness of the chosen NP-problem (assuming secure commitment scheme

and pseudo-random generator).

6.2 �reshold Zero-Knowledge Proof System

We introduce the threshold zero-knowledge proof system TZKP as a (k+1)-party interactive proofs, featuring k provers

and one veri�er. As a �rst step, we generalize the notion of a binary relation to accommodate multiple witnesses in a

distributed se�ing.

De�nition 16 (Distributed analog of NP-language). Let x ∈ L(R) be a word of an NP-language with binary relation

R, i.e. there exists some witness w such that (x,w) ∈ R. Let us choose any LSSS from De�nition 9 with V2 the share space

and t the threshold. We de�ne the corresponding (|I|+ 1)-ary threshold relationRLSSS
as

RLSSS(x, {wi}i∈I) := R(x, LSSS.Reconstruct({wi}i∈I)),

given any set {wi}i∈I ⊂ V|I|2 such that the set of indexes I satis�es |I| ≥ t+ 1.

�e corresponding threshold NP-language follows

L(RLSSS) = {x : ∃{wi}i∈I,|I|≥t+1 s.t. (x, {wi}i∈I) ∈ RLSSS}.

Note that LSSS.Reconstruct is running in polynomial time (in the size of the entries), hence RLSSS
is veri�able in

polynomial time by a deterministic algorithm.

Given some witnessw forx ∈ L(R), we can construct a set of witnesses forx ∈ L(RLSSS) by calling to LSSS.Share(w)
and taking any subset of at least t+ 1 shares. More generally, L(R) = L(RLSSS) as an equality of sets. In the remainder

of this chapter, we may use the notation w := {wi}i∈I ⊂ V|I|2 when I is a set of |I| ≥ t+ 1 indexes.

6.2.1 TZKP proof system

�e purpose of this subsection is to introduce our threshold zero-knowledge proof system for threshold relation.

Communication between provers. Our proof system does not impose restrictions on communication among provers,

and security holds as long as it occurs via secure channels/authenticated broadcast channels. We tolerate communi-

cation for two primary reasons: for general construction purposes, and to achieve a practical protocol that does not

rely on physical constraints (i.e., on the isolation of provers). Although the model allows corrupted provers to com-

municate throughout the proof, our black-box construction in Section 6.3 only involves communication among provers

before the �rst interaction with the veri�er V. Finally, Section 6.5 discusses variants of our system that do not require

communication.

Communication with the veri�er. We de�ne a pass between the set of provers and the veri�er V as a round of com-

munication such that either V sends a message called a challenge to each prover (the challenge may be di�erent for

each prover), or each prover sends a message to V (either some commitments or a response to a previous challenge). We

consider the synchronous model, and if a corrupted prover did not send a value a�er a clock time, it can be discarded

6. �reshold Proofs from Secure Multiparty Computation 75

so that the pass between provers and V can be completely realized.

At this juncture, we shall provide additional details on the threshold lower bound achievable by our system. First, it

is reasonable to assume that honest provers receive valid witnesses (i.e. shares from the same sharing of a valid witness

for the corresponding binary relation). To hope for achieving robustness in the active se�ing, �eorem 1 establishes

a lower bound on the required number of provers in the process to correct errors from corrupted provers. Indeed, the

number of provers, k, must be at least t+ 1 + 2e to correct up to e errors. By aligning this with the maximum number

of corrupted provers tolerated by our security model, we derive that k must satisfy ≥ 3t+ 1.

A threshold interactive proof system is an interactive protocol between a set of provers and a veri�er, described

through a set of passes, and formalized as follows.

De�nition 17 (�reshold interactive proof). Let us consider some (t, n)-LSSS with parameters (t, n) ∈ N2
satisfying

t < n, a set of n computationally unbounded algorithms P1, . . . , Pn (called provers), and a PPT algorithm V (called veri�er).

Let us consider the statement x ∈ L(RLSSS) such that V holds x and each prover Pi gets (x,wi), where wi is called the

witness of Pi for the statement. �en, any subset P := {P1, . . . , Pk} of k ≥ 3t + 1 provers interacts with V in a threshold

interactive proof via some (k + 1)-party MPC protocol ΠL if:

• Ignoring communication with V in ΠL, provers realize between themselves a k-party MPC subprotocol taking place

in the general model 10, in active security tolerating the presence of an algorithm Adv (called adversary) who may

corrupt up to t provers;

• V interacts with P via a set of passes in ΠL;

• At the end of the passes, V either outputs accept or reject and the proof is denoted as

〈(Pi(wi))i∈[1,k];V〉(x).

Let α, δ : N → [0, 1] (which exceptionally denotes a set of real numbers). �en, a threshold interactive proof shall satisfy

the following security requirements:

• α-robustness: If at most t provers are corrupted by Adv, k ≥ 3t + 1, and V is honest, then V accepts the proof with

probability at least 1− α(λ), i.e.,

Pr
[
〈(Pi(wi))i∈[1,k];V〉(x)→ accept | k ≥ 3t+ 1

]
≥ 1− α(λ).

If α = 0, then the proof has perfect robustness.

• δ-soundness: If there is no subset I ⊆ P of size at least t + 1 such that RLSSS(x,w) = 1 for all |I|-tuple w (i.e.

x 6∈ L(RLSSS
)), and possibly more than t provers are corrupted by Adv, then the interaction of these k provers with V

on input x makes V reject except with probability at most δ(λ) for some negligible function δ(·), i.e.,

Pr
[
〈(Pi(wi))i∈[1,k];V〉(x)→ accept | x /∈ L(RLSSS)

]
≤ δ(λ).

�e resulting proof is termed a proof of membership, where at the end of the interactions, V is convinced of the

existence of shared witnesses for the statement x ∈ L(RLSSS). Depending on the objective, a stronger notion of proof,

namely proof of knowledge, may be required, where provers additionally demonstrate knowledge of these witnesses (to

authenticate them). As a second remark, if P1, . . . ,Pn were assumed computationally bounded, it would result in the

weaker notion of interactive argument.

Our threshold interactive proof can achieve an additional property called zero-knowledge. It captures the idea that the

views of a malicious veri�er and corrupted provers, all together, should not reveal any honest provers’ secret information

(and more generally no information on the witness that has been shared among the provers).

De�nition 18 (�reshold zero-knowledge proof (TZKP)). With notation according to De�nition 17, a threshold interactive

proof 〈(Pi(wi))i∈[1,k];V〉(x) for an NP-statement x ∈ L(RLSSS) is a threshold zero-knowledge proof if it satis�es the

additional property:

• zero-knowledge: For any adversary Adv controlling the veri�er V and at most t provers {Pi}i∈I in the real model,

there exists in the ideal model a simulator SimAdv
with oracle access to Adv, and a trusted party computing some

functionality FTZKP, such that for every auxiliary input z, the distribution of idealFTZKP,SimAdv(z),I(x,w1, . . . , wk) is

perfectly/statistically/computationally close to the distribution of realΠL,Adv(z),I(x,w1, . . . , wk).

FTZKP is a reactive functionality for the ideal model (see subsection 2.4.2), where the trusted party obtains inputs and sends

outputs in phases, aiming to simulate the malicious behavior of an adversary that may produce arbitrary computation as

well as communication.

If the zero-knowledge property only holds for the genuine veri�er V, then the protocol is deemed honest-veri�er

zero-knowledge. In that case, SimAdv
is given random challenges instead of a rewindable black-box access to V.

6. �reshold Proofs from Secure Multiparty Computation 76

6.3 A Black-Box Construction for TZKP

We propose a framework for constructing a TZKP applicable to any threshold NP-language. Consider a subset of

provers P1, . . . ,Pk , and let w = (w1, . . . , wk) be the corresponding string of witnesses for the public NP-statement

x ∈ L(RLSSS). Let f be a functionality with binary output de�ned as:

f(x,w) = RLSSS(x,w) . (6.1)

�e core objective is to design an interactive protocol between the k provers and the veri�er, ensuring it constitutes

a TZKP for x ∈ L. Let us denote such a protocol by ΠL.

To achieve this, we introduce a two-layer MPC structure, which is described in the following subsections. �e �rst

layer is a robust MPC protocol Πf executed among the provers, which models the functionality f . �e second layer

consists of MPC protocols simulated within the provers’ heads, guaranteeing veri�able computation.

6.3.1 First layer: MPC protocol between the provers

Let Πf denote a k-party MPC protocol that securely implements the functionality f where the inputs are given as

(x,w), with w representing the shares derived from a (t, k)-LSSS. �e purpose of Πf is to compute a sharing of all

the intermediate gates of the computation, ultimately leading to a shared result of f(x,w). Note that the degree of the

polynomial used in sharing intermediate and �nal values may exceed t. If the degree is refreshed at each multiplicative

gate, the shares maintain their (t, k)-LSSS form. We consider Πf as a general MPC protocol (see De�nition 10), which

must satisfy speci�c security properties: it must ensure perfect, statistical, or computational t-privacy along with perfect

or statistical t-robustness in the malicious se�ing with the presence of an adversary Adv capable of corrupting up to t
provers.

Remark 7. We can not deal with computational t-robustness, unless we computationally bound malicious provers in the

soundness property. But it would lead to zero-knowledge arguments. However, since the veri�er is assumed to be PPT, it

makes sense to consider computational t-privacy.

Assume that Πf consists of r rounds, denoted Πf = (Π1
f , . . . ,Π

r
f , outputf). By the conclusion of these r rounds,

the arithmetic circuit representing f is conjointly computed. During the �nal stage outputf , each prover Pi broadcasts

the result of their last local computation, denoted yi. �e provers then execute LSSS.Reconstruct associated with the

(t′, k)-LSSS of yi where t′ ≥ t (it may include a public decoding algorithm for the underlying codeword). According to

�eorem 1, the total number of provers k must satisfy k ≥ t′+ 1 + 2t for the reconstruction algorithm to tolerate up to

t errors among (y1, . . . , yk). If the reconstructed value LSSS.Reconstruct(y1, . . . , yk) matches the public value f(x,w),

the protocol Πf outputs 1; otherwise, it outputs 0.

It is important to note that revealing yi during outputf might expose some private information from Pi’s input, a

concern which will be addressed in the following subsection.

6.3.2 Second layer: MPC protocols in the head of provers

�e second MPC layer is designed to ensure the veri�ability of the computation carried out by Πf . Recall that we denote

by ΠL the interactive protocol between a subset of k provers P1, . . . ,Pk and a veri�er V. Consider a LSSS that produces

N ≥ 3 shares, and for simplicity, let us use the modular additive secret sharing scheme, denoted as L·M. Each prover in

the protocol simulates N virtual parties, leading to a total of Nk virtual parties participating in the execution of ΠL.

Although the modular additive scheme is chosen here for simplicity, other LSSS constructions, such as Shamir’s secret

sharing scheme, are also viable and can be applied in this context by leveraging techniques from [FR23b, FR23a].

Communication between provers. Once we have speci�ed the type of sharing emulated among the provers, we can be

more precise about how they communicate. For the sake of consistency and veri�ability, the system assumes that the

provers send messages to each other in the form of such sharing L·M, so that the share of the i-th party in the head of

the sender is addressed to the i-th party in the head of receivers.

Computation in the head. �e inputs of Pi in Πr
f are: the public NP-statement x, the private input wi, the random

tape, the sharing sent/received/broadcast during the previous rounds. During outputf , it additionally takes as input

challenges received from V in ΠL. Given those inputs, each prover emulates MPC protocols with N parties in “their

head” in the passive se�ing and the broadcasting model.

For a prover Pi, the parties in their head perform three types of actions during each round (on the inputs that we

have mentioned):

• Receiving randomness: �e parties receive the same random value(s). �is simulates the challenges sent by V to

Pi in ΠL.

6. �reshold Proofs from Secure Multiparty Computation 77

• Receiving hint: �e parties get sharing or public values. �is simulates both new sharing generated by Pi (e.g.,

for multiplication checking techniques such as [BN20b]) and sharing/broadcast received by Pi in Πf .

• Computation in the broadcasting model: �e parties locally compute a linear function with some sharings as

input (these sharings are assumed to be linear), where the function depends on challenges and previous broadcast

values. �en they may broadcast their resulting shares and recover the shared evaluated function.

Let us denote by πj the N -party MPC protocol simultaneously emulated in the head of each prover during Πj
f (to

prove the computation of the j-th round), and πf the N -party MPC protocol emulated during outputf . Essentially, πf
realizes the traditional MPCitH part by receiving V’s challenges (for proving multiplicative relations and opening par-

ties’ view). From the security point of view, these simulated protocols have to achieve perfect/statistic/computational

(N − 1)-privacy and perfect/statistic correctness in the passive se�ing.

Recall that yi is the last reconstructed value in the head of Pi, and this value is broadcast during outputf as mentioned

in the previous subsection. �is may break the prover’s privacy. For this purpose, we add a local refreshing step (in

outputf), where each prover Pi does:

1. Generates a random ri and a random sharing of this ri;
2. Generates a random public sharing of 0;

3. Parties in the head compute and set LyiM← LyiM + LriML0M.

Views and consistency. We de�ne a notion of consistency for views, taking into account the communication among

provers and capturing the broadcasting between parties. For a party Pi,` (i ∈ [1, k], ` ∈ [1, N]), one writes Vi,` to

denote its view.

De�nition 19 (Consistent views). Let Πf be a k-party MPC as de�ned in subsection 6.3.1, with corresponding N -party

protocols π1, . . . , πf from subsection 6.3.2. Let x be the public input,A ⊆ {P1, . . . , Pk} be a subset of users, and I ⊂ [N] be

a subset of indexes. �en we say that views {Vi,j}i:Pi∈A,j∈I are consistent if the following consistency checks are ful�lled:

• For every prover Pi ∈ A and every index ` ∈ I , the broadcasts sent by Vi,` have to be consistent (with respect to x and

π1, . . . , πf), i.e. the outgoing values implicit in Vi,` are identical to the incoming values reported in {Vi,`′}`′∈I\{`}.

• For every prover Pi ∈ A and every index ` ∈ I , the shares/broadcasts sent by Vi,` have to be consistent (with respect to

x and Πf), i.e. the outgoing shares/broadcasts implicit in Vi,` are identical to the incoming shares/broadcasts reported

in {Vj,`}j:Pj∈A\{Pi}.

�erefore, the views {Vi,j}i:Pi∈A,j∈I are consistent with respect to protocols Πf , π1, . . . , πf and to x if and only if

there exists an honest execution of ΠL by {Pi}i:Pi∈A with public input x. �e access structure of our construction is

detailed in Appendix E.

6.3.3 A TZKP protocol

We present our TZKP protocol (Protocol 6.2) in a �ve-round framework, although it can be generalized to a 2γ+ 1-pass

interaction between P1, . . . ,Pk and V. �is generalized version includes γ−1 iterations of round 2 and 3, each involving

additional challenge-response phases, where γ represents the number of challenge phases from V. In this se�ing, the

�nal challenge corresponds to the decision on which views to reveal, while the preceding γ−1 challenges are necessary

to prove the multiplicative relations. Additionally, although not explicitly stated, Protocol 6.2 is presented within the

commitment-hybrid model framework (see subsection 2.4.2).

We detail the reactive functionality FTZKP for the ideal model in Figure 6.1, where the trusted party obtains inputs

and sends outputs in phases. It aims to simulate the malicious behavior of an adversary that may produce arbitrary

computation as well as communication (see subsection 2.4.2).

�eorem 18 (Security proofs). Let x be an NP-statement for some relation R, let (t, n) ∈ N2
be such that t < n,

and let us �x some (t, n)-LSSS. De�ne the k-ary functionality f computing the threshold relation RLSSS
as in Equation 6.1

with k ≥ 3t + 1, and the corresponding k-party MPC protocol Πf computing f in active security with the presence of an

adversaryAdv corrupting up to t users. If Πf realizes f with perfect/statistic t-robustness, and perfect/statistic/computational

t-privacy for the FTZKP functionality 6.1 in the commitment-hybrid model. �en Protocol 6.2 is a TZKP for x ∈ L(RLSSS),

with soundness error ε ≤ 1/N where N is the number of parties emulated in the head of each prover.

Proof. We prove Protocol 6.2, whcih we call ΠL, meets De�nitions 17 and 18 of a TZKP.

Robustness: Let us begin by assuming that Πf is perfectly t-robust (according to De�nition 13), we show ΠL achieves

perfect robustness (according to De�nition 17). Let x ∈ L(RLSSS) with witnesses w1, . . . , wk , and assume that at most t
provers are controlled by Adv. Each honest prover Pi generates a valid sharing of wi in their head. Since Πf is perfectly

t-robust, Adv can not prevent honest provers from producing an honest execution of the protocol Πf and ge�ing valid

6. �reshold Proofs from Secure Multiparty Computation 78

Functionality FTZKP
Input: A set of indices I ⊂ [1, k] denoting corrupted provers.

1. For each round v ∈ [1, r]:

(i) FTZKP receives inputs of each honest prover and computes their output of πv .

(ii) FTZKP computes and sends to the ideal adversary the communication in Πv
f from honest

provers to corrupted ones. FTZKP also computes the communication in Πv
f between honest provers.

(iii) FTZKP receives communication from the ideal adversary as the communication from cor-

rupted provers to honest ones in Πv
f . If a sharing is not received or un�t (not of the right format),

then FTZKP replaces it with a sharing of 0.

2. FTZKP computes outputf for each honest prover and sends these values to the ideal adversary.

3. FTZKP receives the outputs of corrupted provers from the ideal adversary.

Fig. 6.1: Functionality FTZKP

outputs. Hence, there exists a subset of t+ 1 honest provers for whom all the parties’ views inside this subset are con-

sistent following the De�nition 19. Moreover, there are at most t errors in the broadcast output codeword (y1, . . . , yk),

hence a public decoding algorithm can correct them. �erefore, an honest veri�er will always accept the proof. If Πf is

statistically t-robust, then the veri�er accepts the proof except with probability the error probability of Πf , hence ΠL
achieves statistical robustness.

Soundness: First assume that Πf is perfectly t-robust, and thatRLSSS(x,w1, . . . , wk) = 0 for all k-tuple (w1, . . . , wk).

By the perfect t-robustness of Πf , and for all choices of sharing {LwiM}i∈[1,k], and all choices of randomness, the output

of an honest execution of Πf must be 0. Either all the provers inside A (the subset chosen by V during the veri�cation

step of Protocol 6.2) honestly perform the protocol, and their output are consistent with their input. But then the broad-

cast outputs form a tuple (y1, . . . , yk) such that V cannot decode it into a word that would result in the proof being

accepted. Or at least one prover cheats inside A, and there exists at least one inconsistent view that is detected by V
with probability 1− 1/N .

Zero-knowledge: Let us begin by assuming that Πf is perfectly t-private in active security (according to De�nition 14),

and that π1, . . . , πr, πf are perfectly (N − 1)-private in passive security (according to De�nition 12). Let Adv be an

adversary in the real world controllingV and {Pi}i∈I where I ⊂ [1, k] is a subset of size at most t. We begin by describing

the simulator SimAdv
, the adversary in the ideal model. It interacts externally with the trusted party computing the

functionality FTZKP 6.1, and internally invokes the adversary Adv (via an oracle access), hence simulating an execution

of Protocol 6.2 for Adv. SimAdv
takes as inputs: auxiliary input z ∈ {0, 1}∗, x, and {wi}i∈I . SimAdv

works as follows:

1. SimAdv
internally invokes Adv with the auxiliary input z.

2. For each round j ∈ [1, r]:

(i) External interaction with Functionality FTZKP (Step (i)): A�er the honest provers send their inputs to the

trusted party, the simulator SimAdv
receives communication.

(ii) SimAdv
simulates Step (ii) of FTZKP and hands the adversary Adv the communication from the honest

provers.

(iii) SimAdv
simulates Step (iii) of FTZKP and receives from Adv the communication from corrupted provers.

3. SimAdv
internally calls V for challenges.

4. External interaction with Functionality FTZKP (Step 2): �e simulator SimAdv
receives the outputs of the honest

provers.

5. SimAdv
internally invokes Adv with the honest provers’ outputs and receives the outputs of corrupted provers

(Step 3 of FTZKP).

�e output of the MPC protocol Πf usually follows a probability distribution with some negligible non-zero false

positive probability (i.e. Πf usually realizes the functionality f with statistical robustness typically when ΠL has more

than 3-pass). Hence, we discuss on �eorem 18 when Πf is statistically t-robust. �e soundness of the Protocol 6.2 holds

6. �reshold Proofs from Secure Multiparty Computation 79

TZKP protocol ΠL for x ∈ L
k + 1 users: k provers P1, . . . ,Pk and one veri�er V
A public threshold NP-statement x ∈ L(RLSSS) with some LSSS from De�nition 9, and a functionality f
from Equation 6.1.

Input: Each prover Pi holds some witness wi for x ∈ L(RLSSS).

Round 1: (i) Each prover Pi generates a random sharing LwiM among N virtual parties

{Pi,j}j∈[1,N].

(ii) Provers conjointly compute Πf , i.e. for each round j ∈ [1, r], Pi simulates the com-

putation of πj by the N parties, and then provers send sharing/broadcast to each other.

(iii) Each prover computes their own commitment to the views of their N parties and

sends it to V (i.e. one commitment per prover).

Round 2: V sends a random challenge chi1 to each Pi for proving multiplications (typically via a batch-

ing equation of all the multiplications to prove).

Round 3: Each prover Pi simulates the computation of πf by the N parties, and commits to each of

these views (one commitment per prover).

Round 4: V picks an opening views challenge ch2 = `∗
$←− [1, N] and sends it to each prover.

Round 5: Each Pi opens the commitments corresponding to all the parties except to Pi,`∗ , and sends

broadcasts of Pi,`∗ .

Veri�cation: V accepts if and only if there exists a subset A of at least t+ 1 provers such that:

(i) the provers in A successfully opened the requested views;

(ii) the reconstructed output of Πf is 1: given (y1, . . . , yk) ← outputf ,

LSSS.Reconstruct({yi}i∈[1,k]) = 1;

(iii) the opened views in A are consistent according to De�nition 19.

Fig. 6.2: TZKP protocol

only if Πf is perfectly t-robust. Indeed, when the protocol Πf is only statistically robust, an adversary may leverage

the false positive probability by ge�ing some “good” random coins on which the protocol accepts a wrong statement

by incorrectly outpu�ing 1, making V accept whatever the last challenge of V. To deal with statistical robustness, we

follow [IKOS09] by generating a coin tossing. Each prover commits to the randomness of every party. V then sends

some randomness for each party. Each prover proceeds to execute the protocol Πf using the sum of both randomness

as the randomness of the parties. In the decommitment phase, each prover opens its commitment to the randomness

of parties whose views have to be opened. �e veri�er �nally checks if the randomness used by those parties has been

correctly computed. �e soundness error is now bounded by ε ≤ 1/N + δ(λ) for some negligible function δ(·).

6.4 A Construction Based on VSS-BGW

�is section does not introduce any new concepts but instead applies established protocols to our speci�c context. For

the remainder of this section, consider the Shamir secret sharing of degree t, referred to as J·K, with t < k ≤ n, for

computation among the provers. �e secret sharing scheme in the head of the provers is assumed to be the additive

modular one (denoted as L·M), ensuring uniformity across all provers. Let L be a threshold NP-language with the

corresponding k-ary functionality f such that

f(x,w) = RLSSS(x,w).

�e heart of the ma�er consists of deriving a k-party MPC protocol Πf that securely realizes f and which is made veri-

�able, leading to a TZKP for the statement. Consider the ΠL Protocol 6.2, where provers start by conjointly computing

an (t, n)-LSSS of each gate’s output of the arithmetic circuit of f . �erefore, the essence lies in showing how to deal

with arithmetic gates.

Additive gates. Any linear operation within Πf is e�ortlessly handled due to the linearity of sharing. When the provers

possess any two sharing JaK and JbK, they can locally compute a sharing Ja + bK of a + b following ΠL. Indeed,

parties in the head of Pi conjointly hold LJaKiM and LJbKiM, and proceed as follows: they locally compute a sharing

LJaKiM + LJbKiM = LJaKi + JbKiM = LJa+ bKiM of Ja+ bKi.

6. �reshold Proofs from Secure Multiparty Computation 80

Multiplicative gates. For each multiplicative gate in the circuit, additional steps are necessary. Given JaK and JbK, the

provers aim to securely compute JabK following ΠL. Multiplying two Shamir secret shares of degree t yields a Shamir

secret share of degree 2t, imposing additional constraints on both the number of provers and the size of the base �eld. A

common strategy to handle this threshold increment is to use the BGW degree refreshment protocol [BGW88] (which

also includes its veri�able secret sharing variant for active se�ing).

6.4.1 BGW protocol and its robustness

We recall the well-known BGW protocol. For any couple of sharing (JaK, JbK) held by the provers, the la�er can locally

compute a sharing JabK2t
(to denote the 2t-degree) via JabK2t

i = JaKiJbKi for each prover Pi. �e goal is to conjointly

compute JabK (i.e. a sharing of degree t). �is refreshing step consists in re-sharing each share of JabK2t
with a new

random polynomial of degree t. Concretely, provers hold (JaK, JbK) such that each Pi owns the shares (A(i), B(i)) with

(A(x), B(x)) polynomials of degree t with (A(0), B(0)) = (a, b), and does the following:

1. Each Pi locally computes the product A(i)B(i);

2. Each Pi randomly generates a degree t polynomial Hi(X) such that Hi(0) = A(i)B(i), and shares it by sending

Hi(j) to Pj for every j 6= i;

3. Given some public Vandermonde linear system, the �rst row of its inverse matrix is usually named the recombi-

nation vector ; one names it µ. �en each Pi locally computes H(i), where H(x) :=
∑k
i=j µjHj(x) is of degree t

and satis�es H(0) = ab.

�is protocol can be readily adapted to ΠL with simulated parties in the head of each prover. �e communication

during step 2 can be managed as detailed in Section 6.3. However, this method su�ers from a signi�cant drawback: if

a single corrupted prover provides incorrect shares to honest provers during step 2, the computation of H(x) may be

compromised, rendering none of the shares H(1), . . . ,H(k) valid (thus, there is no possibility of error correction). A

solution to this issue arises from a stronger notion of secret sharing schemes, namely veri�able secret sharing scheme.

6.4.2 Veri�able secret sharing scheme

In active se�ing, we must pay particular a�ention to communications during which a potentially corrupted user D ∈ P
(called the dealer) may share inconsistent values with the other users. Hence, the la�er may wish to proceed to some

veri�cation on the sharing, particularly whether the shares have been generated from the same polynomial of degree t.
�is sake of robustness imposes a stronger notion of secret sharing schemes, namely the veri�able secret sharing scheme

(VSS). We only focus on perfectly-secure VSS.

Like any secret sharing scheme, a VSS comprises both a sharing phase and a reconstruction phase. However, during

the sharing phase, D distributes its secret in a veri�able manner. Over the past few decades, numerous veri�able secret

sharing schemes have been proposed. Asharov and Lindell [AL17] proved that, when the number of users k satis�es

k ≥ 3t+1, the protocol from [GIKR01] is perfectly t-private and perfectly t-robust in active security. �is VSS constructs

shares for a value s ∈ F as follows:

1. D randomly chooses a bivariate polynomial of degree t in both variables S(x, y) ∈ F[x, y] with S(x, 0) = F (x)
such that F (0) = s. �en D sends {F (αi), Gi(y) := S(αi, y), Fi(x) := S(x, αi)} to Pi for each i.

2. Each Pi checks that Fi(0) = F (αi), and conjointly with each Pj , checks that Fi(αj) = Gj(αi) and Fj(αi) =
Gi(αj).

�e security proof of this sharing relies on the following lemma. See [AL17] for further details.

Lemma 2. Let I ⊆ [1, k] be a set of indices with |I| ≥ t + 1. Consider a set of pairs {F`(y), G`(x)}`∈I of degree-t
polynomials over F, and let {α`}`∈I be distinct non-zero elements in F. If for every (i, j) ∈ I2

, it holds that Fi(αj) =
Gj(αi), then there exists a unique bivariate polynomial S(x, y) ∈ F[x, y] of degree t in both variables such that F`(y) =
S(α`, y) and G`(x) = S(x, α`) for every ` ∈ I .

A complaint broadcast by Pi is a set (i, j, Fi(αj), Gi(αj)) sent by Pi for some j ∈ [1, k], claiming that eitherFi(αj) 6=
Gj(αi) or Gi(αj) 6= Fj(αi). In other words, Pi asserts that Pj does not send a valid value or that their common shares

are not consistent. We say that a complaint is conjoint if both Pi and Pj broadcast a complaint for the shares of the other

one. In a nutshell, the consistency checking procedure is based on conjoint complaints. If an honest prover receives

a non-consistent share, by Lemma 2, they raise a joint complaint with at least one other honest prover. �en, D has

to manage this joint complaint with some public broadcast value. Otherwise, if the joint complaint was not solved, all

the honest provers would reject the sharing. When t + 1 provers reject the sharing, the dealer is �red. Note that an

honest dealer can not be �red, since this dealer will always solve a joint complaint, and there are at most t corrupted

provers. �e original protocol is more involved than this discussion since it shall capture all the di�erent situations. We

6. �reshold Proofs from Secure Multiparty Computation 81

refer to [CCP22, AL17] for further details. But as a result, if a corrupted dealer a�empts to cheat during the sharing

process, D can only cheat on the constant term of the polynomial, i.e., the secret. Naturally, we rely on the Reed-

Solomon decoding algorithm for correcting those potential cheats, and whose adaption to our black-box construction 6.2

is relatively straightforward at this stage.

6.4.3 Multiplicative gate protocol

Given a pair of t-degree polynomials (A(x), B(x)), the polynomial A(x)B(x) de�nes a code of dimension 2t+ 1, and

�eorem 1 provides the lower bound k ≥ 4t+ 1 on the length of the code to correct up to t errors. When k = 3t+ 1,

the underlying MDS code has parameters [3t+ 1, 2t+ 1], and thus can only correct up to t/2 errors, which is a barrier

for t-robustness. However, there exists a set of polynomials {D1, . . . , Dt} of degree at most t such that

C(x) = A(x)B(x)−
t∑
l=1

xlDl(x)

is a polynomial of degree t that falls toA(0)B(0) in 0. Hence, if k ≥ 3t+1, sharing the degree t polynomialsD1, . . . , Dt

with some VSS can be done with t-robust security in our model, and so is the computation ofC(x). See [AL17] for further

details. To introduce a simpler protocol, we focus on the k ≥ 4t+ 1 case.

Recall that in BGW protocol, each user Pi shares A(i)B(i) with a VSS. At the end of this sub-sharing phase,

each Pi holds the set of shares {F1(i), . . . , Fk(i)} such that Fj(x) is a degree t polynomial for each j ∈ [k]. More-

over, in the presence of an adversary corrupting up to t users, (F1(0), . . . , Fk(0)) is a word at distance at most t from

(A(1)B(1), . . . , A(k)B(k)). Hence, we have to clarify how users can conjointly compute the syndrome of (F1(0), . . . , Fk(0)).

�is is detailed in Protocol 6.3. At the end of this protocol, they get in the clear (F1(0), . . . , Fk(0))HT = eHT
whereH

is the parity-check matrix of the code, and e the error vector for the word (F1(0), . . . , Fk(0)). Assuming that we have

access to a Reed-Solomon decoding algorithm in the clear, users can locally deduce e and correct the potential wrong

shares.

Input: Let k ≥ 4t + 1. For each Pi ∈ {P1, . . . ,Pk}, parties hold L(F1(i), . . . , Fk(i))M, with F1, . . . , Fk
t-degree polynomials, and L·M the LSSS used by virtual parties.

Output: (F1(0), . . . , Fk(0))HT
in the clear.

1. For each Pi, parties compute L(F1(i), . . . , Fk(i))MHT := L(Z1(i), . . . , Zk(i))MT and broadcast it;

2. For each set {Zj(1), . . . , Zj(k)} (for j ∈ [1, k]), at most t values are wrong, and this can be corrected

by applying the Reed-Solomon decoding algorithm locally.

Fig. 6.3: Conjoint syndrome computation with our black-box construction 6.3

When k ≥ 4t + 1, [AL17] proved that the original version of Protocol 6.3 (i.e. without virtual parties) is perfectly

t-private and perfectly t-robust for some functionality in some VSS-hybrid model, in the active se�ing. Moreover, they

also proved that the original version of Protocol 6.4 is perfectly t-private and perfectly t-robust.

�eorem 19. Let x ∈ L be a thresholdNP-statement, and k ≥ 4t+ 1. De�ne the k-ary functionality f computingR as

in Equation 6.1, and consider a k-party MPC protocol Πf computing f in the active se�ing with the presence of an adversary

Adv corrupting up to t provers. If Πf is realized with the above additive and multiplicative Protocol 6.4, then the Protocol 6.2

is a TZKP for x ∈ L, with soundness error ε ≤ 1/N , where N is the number of parties emulated in the head of each prover.

Proof. We prove that our construction is a TZKP in the BGW− VSS-hybrid model. As mentioned previously, Asharov

and Lindell [AL17] proved the perfect t-privacy and perfect t-robustness of the BGW − VSS multiplicative protocol

(Protocol 6.4). �en our construction for Πf is immediately a modular composition of these subprotocols. We conclude

with �eorem 18.

6.5 Low-Depth Arithmetic Circuits and Applications

Establishing communication in an insecure environment would require secure/authenticated channels. �is could

become a barrier in a post-quantum regime, all the more so if we add the desire for security assumptions relying

on the hardness of the chosen NP-problem. While e�cient post-quantum la�ice-based key exchange protocols ex-

ist [BCD
+

16, ADPS16, BDK
+

18], they signi�cantly di�er from the traditional Di�e-Hellman key exchange in that they

require additional rounds of interaction. For many applications, the non-interactive property is essential, making their

transition to post-quantum signi�cantly more complex. All of this is pushing our motivation for removing communica-

tion among provers and developing an isolated variant of our TZKP Protocol 6.2. �e �rst a�empt is as follows.

6. �reshold Proofs from Secure Multiparty Computation 82

Protocol for multiplicative gates with our TZKP black-box construction
Fix an LSSS for computation in the head of provers, denoted as L·M. �e (t, k)-LSSS for computation between

provers is denoted as J·K.

Input: For each Pi, parties hold LA(i)M = LJaKiM, LB(i)M = LJbKiM with A(x), B(x) degree-t polynomials

such that A(0) = a,B(0) = b.
Output: For each Pi, parties get LJabKiM.

1. Each prover Pi emulates in their head a sharing LA(i)B(i)M, where A(i)B(i) = JabK2t
.

2. Each prover Pi plays the dealer and calls the VSS functionality with input LA(i)B(i)M. When all

provers have played the dealer, parties in Pi hold {LF̃j(i)M}j∈[1,k], where F̃j(x) is a degree-t polyno-

mial. However, no guarantee is given on F̃j(0)
?
= A(j)B(j) (for j ∈ [1, k]).

3. Provers conjointly compute the syndrome (F̃1(0), . . . , F̃k(0))HT
via Protocol 6.3 and locally call in

their head to the decoding algorithm. �ey get the error vector e ∈ Fk such that (F̃1(0), . . . , F̃k(0))−
eT is a codeword.

4. Each Pi uniformly at random generates a sharing LeM so that parties can compute

L(F̃1(i), . . . , F̃k(i))M− LeT M = L(F1(i), . . . , Fk(i))M.

5. For each Pi, parties compute

∑
j λiLFj(i)M where

∑
j λiFj(X) is a degree-t polynomial with constant

term ab, and λ is a public recombination vector.

Fig. 6.4: Protocol for multiplicative gates with our black-box construction

Pre-computation techniques. It’s tempting to pre-compute the circuit realizing the function underlying the chosen

NP-problem, and enlarge the secret input information of each prover by providing them the set of sharing of each

gate’s output of the circuit. �is common technique has already been considered for high-degree arithmetic circuit

in the MPCitH paradigm, e.g. for building e�cient signatures based on the hardness of computing a preimage of the

AES [BdSGK
+

21, BBM
+

24]. Imagine a scenario where each prover holds, at the beginning of the proof, a (t, n)-LSSS

share for the output of each gate in the circuit. �ese shares would have been pre-computed, raising the possibility of

a protocol that operates without the need for communication. However, in addition to proving that a gate has been

correctly evaluated, provers must ensure that the degree-refreshing computation is veri�able, necessitating a conjoint

e�ort. Hence, a pre-computation method has no chance to succeed without communication among provers, and thus

loses all its interest.

Low-depth circuits. As we have just seen, a priori there is no general technique for ge�ing rid of communications given

a generic NP-problem. Instead, we should focus on a subset of these problems. De�ne the multiplicative depth of a

circuit as the maximum number of multiplications along any path through the circuit. We focus our e�orts on circuits

with a low multiplicative depth to obtain an isolated variant of the TZKP Protocol 6.2. At the cost of degrading the

threshold, one could opt not to refresh any gate’s ouptut sharing. For a circuit C with multiplicative depth α ∈ N,

public input x, and secret input w shared with a (t, n)-LSSS, a�er locally computing the circuit (i.e. C(x, JwKi)), each

prover Pi gets a share JC(x,w)Ki from some (αt, n)-LSSS. Consequently, the new lower bound on the number of provers

realizing the proof has to be k ≥ αt+ 1 + 2t (from �eorem 1) to align with our security model. Finally, it’s reasonable

to consider that this degradation is manageable for small values of α. We take this opportunity to remind that even if

one gets rid of communication, the security model of our TZKP still assumes that malicious provers may signal with

each other (one does not introduce any provers’ isolation assumption). We also note that the obtained protocol is still

t-private.

6.5.1 Achieved complexity

Let x ∈ L(RLSSS) be a thresholdNP-statement, α the multiplicative depth of the underlying arithmetic circuit comput-

ing the relation, and k ≥ (α+ 2)t+ 1 the number of provers realizing the proof. Additionally, choose any MPCitH-like

proof system for x ∈ L(R). Let σi be such a proof realizing by Pi in ΠL. �en the overall TZKP ΠL Protocol 6.2 has

the following complexities:

• Communication complexity to V (i.e. the size of the proof) is linear in the number of provers: |ΠL| =
∑k
i=1 |σi|.

• Computation complexity of Pi in ΠL is the computation complexity of the prover in σi.

• Computation complexity of V in ΠL is k times the computation complexity of the veri�er in any σi.

6. �reshold Proofs from Secure Multiparty Computation 83

6.5.2 Turning TZKP into a non-interactive proofs system

Consider a TZKP with public coin, i.e. all of V’s random choices are made public. Additionally, assume that the under-

lying circuit (for the relationR) has a low multiplicative depth, so that we use the isolated variant of Protocol 6.2.

�e 3-pass version of Protocol 6.2, where the sole challenge of V is for the opening views, can be directly transformed

into a non-interactive scheme via the Fiat-Shamir heuristic [FS87]. Note that, since we consider the isolated variant, the

challenge for the opening views does not need to be the same for each prover. Consider the random oracle RO called

by the provers in the non-interactive se�ing. Assume the codomain of RO to be super-polynomial in the security pa-

rameter λ, and the number of provers to be poly(λ). �en, a strategy for the adversary in the non-interactive se�ing is

to simulate additional random oracle outputs, until �nding a collision with V’s challenge space. If this space is poly(λ),

then even a�er poly(λ) trials, none of the provers corrupted by the adversary would have found a collision, except with

negligible probability.

6.5.3 Applications

Although this work is primarily theoretical, some applications are worth mentioning.

�reshold signatures.

Several de�nitions of threshold signatures exist in the literature, and it is important to distinguish between two types

based on the private inputs of the signers. In a threshold multi-signature, each signer possesses their own independent

secret key, similar to a multi-signature scheme, but a threshold number of signers is required to generate the signature.

In contrast, the typical de�nition of a threshold signature assumes that the signing key is distributed among the signers.

�erefore, the la�er aligns precisely with our model. On top of that, achieving robustness in active security is a must

for this kind of application.

Pu�ing aside constructions based on symmetric primitives, most of the so-called post-quantum digital signature

schemes based on MPCitH rely on problems with very low-depth arithmetic circuits. �erefore, it is tempting to apply

our construction to these problems to directly obtain threshold signatures.

We have seen that the proof size of ΠL equals k times the proof size of the chosen MPCitH-like proof (where

k is the number of provers required for producing a robust proof). Given the recent advancements in the MPCitH

framework, which aim to achieve appealing performance when building proofs based on this paradigm, and despite the

linearity boundary for the proof size in terms of the number of provers, for reasonable values of k, it provides additional

motivations for our TZKP proof system. To get an idea of the sizes we could achieve, let us look at the performances

in MPCitH. Some of the most e�cient post-quantum digital signatures based on MPCitH are relying on the di�culty of

the rank syndrome decoding, MinRank problems, and (non-structured) instances of MQ problems (solving multivariate

systems of quadratic equations). Indeed, [FR23a, BFG
+

24] built signatures with sizes below 3.5-4 kB for 128 bits of

security (depending on the number of parties emulated by the provers) based on the hardness of these three problems.

Recently, Baum et al. [BBM
+

24] optimized the cost of GGM trees [GGM84] bringing these signature sizes around 3 kB

(for 128 bits of security). Moreover, computational complexity of the prover and the veri�er have also been improved

recently [MGH
+

23, FR23a].

�reshold veri�able decryption

An unforgeable threshold veri�able decryption scheme with robust security requires that any su�ciently large subset

of provers holding shares of the decryption key can e�ciently generate their part of the decryption algorithm (and thus

their share of the plaintext) in an adversarial environment. Additionally, each user with access to the public key must

be able to e�ciently verify the decryption, and no group of provers without the full decryption key should be able to

collectively produce a valid plaintext.

Since TZKP inherently assumes that the secret input is shared among the provers, our black-box construction from

Section 6.3 can be the foundation for building a threshold veri�able decryption scheme. Obviously, given any decryp-

tion circuit, hoping its multiplicative depth is low, we can get a threshold veri�able decryption scheme by plugging this

circuit as Πf into Protocol 6.2.

As an application, we take a look at the CKKS homomorphic encryption scheme [CKKS17] based on the Ring-

LWE problem [LPR10]. Let us give a bird’s-eye view of the original scheme. Let N be a power of two, and let R =
Z[x]/〈xN + 1〉 be a cyclotomic polynomial ring. We denote M = 2N and by Z∗M = {x ∈ ZM : gcd(x,M) = 1} the

6. �reshold Proofs from Secure Multiparty Computation 84

unity multiplicative group in ZM . �en, one can de�ne the canonical embedding

σ : R 7→ CN

m(x) 7→ (m(ζj))j∈Z∗M

where ζ = e2πi/M
. At this point, we can brie�y introduce the decryption and decoding algorithm of a CKKS scheme,

given some ciphertext ct = (ct0, ct1) ∈ (R/qR)
2

(for some modulus q) and some secret decryption key sk = (1, s):

• Decryption: m̃← Decsk(ct) outputs the plaintext m̃ = 〈ct, sk〉 mod q = ct0 + ct1s mod q.

• Decoding: Decode(m̃,∆). For a plaintext m̃ and its scale factor ∆, the decoding process returnsm = Decode(m̃,∆) =
σ(m̃/∆).

Hence, we shall build an arithmetic circuit for:

ct
Decsk(·)
−−−−−−−→ m̃

σ(·/∆)

−−−−−−−→ m .

Consider a LSSS JskK of the secret key, then Jm̃K = 〈ct, JskK〉 mod q is a linear operation, and evaluating a shared

polynomial in public points has also no multiplicative depth. �erefore, it directly results in a TZKP based on the

black-box construction from Section 6.3, without communication required among provers.

Unfortunately, the secret key being a small polynomial inR, assuming that sharing small elements over large ring is

e�cient (see techniques from Chapter 4), the resulting shares are not compact since polynomials inR have large degree

(around 212 − 213
) and thus we have to pay the number of monomials of a polynomial in R in the proof.

BIBLIOGRAPHY

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In 29th

ACM STOC, p. 284–293, El Paso, TX, USA, 1997. ACM Press.

[ADPS16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new hope. In T. Holz

and S. Savage, eds, USENIX Security 2016, p. 327–343, Austin, TX, USA, 2016. USENIX Association.

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments with-

out a trusted setup. In B. M. �uraisingham, D. Evans, T. Malkin, and D. Xu, eds, ACM CCS 2017, p.

2087–2104, Dallas, TX, USA, 2017. ACM Press.

[AKP20] B. Applebaum, E. Kachlon, and A. Patra. �e round complexity of perfect MPC with active security and

optimal resiliency. In S. Irani, ed., 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS

2020, Durham, NC, USA, November 16-19, 2020, p. 1277–1284. IEEE, 2020.

[AL17] G. Asharov and Y. Lindell. A full proof of the BGW protocol for perfectly secure multiparty computation.

J. Cryptol., 30(1):58–151, 2017.

[ALS20] T. A�ema, V. Lyubashevsky, and G. Seiler. Practical product proofs for la�ice commitments. In D. Mic-

ciancio and T. Ristenpart, eds, CRYPTO 2020, Part II, vol. 12171 of LNCS, p. 470–499, Santa Barbara, CA,

USA, 2020. Springer, Heidelberg, Germany.

[ASM10] M. H. Au, W. Susilo, and Y. Mu. Proof-of-knowledge of representation of commi�ed value and its applica-

tions. In R. Steinfeld and P. Hawkes, eds, ACISP 10, vol. 6168 of LNCS, p. 352–369, Sydney, NSW, Australia,

2010. Springer, Heidelberg, Germany.

[Bab85] L. Babai. Trading group theory for randomness. In R. Sedgewick, ed., Proceedings of the 17th Annual ACM

Symposium on �eory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, p. 421–429. ACM, 1985.

[BBB
+

18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for con�-

dential transactions and more. In 2018 IEEE Symposium on Security and Privacy, p. 315–334, San Francisco,

CA, USA, 2018. IEEE Computer Society Press.

[BBdSG
+

23] C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, E. Orsini, L. Roy, and P. Scholl. Publicly veri�able

zero-knowledge and post-quantum signatures from vole-in-the-head. In H. Handschuh and A. Lysyan-

skaya, eds, Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,

CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V, vol. 14085 of Lecture Notes

in Computer Science, p. 581–615. Springer, 2023.

[BBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure

computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018.

[BBM
+

24] C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger, L. Roy, and P. Scholl. One tree

to rule them all: Optimizing GGM trees and owfs for post-quantum signatures. IACR Cryptol. ePrint Arch.,

pp. 490, 2024.

[BBSS20] X. Bonnetain, R. Bricout, A. Schro�enloher, and Y. Shen. Improved classical and quantum algorithms

for subset-sum. In S. Moriai and H. Wang, eds, ASIACRYPT 2020, Part II, vol. 12492 of LNCS, p. 633–666,

Daejeon, South Korea, 2020. Springer, Heidelberg, Germany.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci.,

37(2):156–189, 1988.

[BCD
+

16] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Stebila.

Frodo: Take o� the ring! Practical, quantum-secure key exchange from LWE. In E. R. Weippl, S. Katzen-

beisser, C. Kruegel, A. C. Myers, and S. Halevi, eds, ACM CCS 2016, p. 1006–1018, Vienna, Austria, 2016.

ACM Press.

Bibliography 86

[BCR13] J. Bi, Q. Cheng, and J. M. Rojas. Sub-linear root detection, and new hardness results, for sparse polynomials

over �nite �elds. In M. Kauers, ed., International Symposium on Symbolic and Algebraic Computation,

ISSAC’13, Boston, MA, USA, June 26-29, 2013, p. 61–68. ACM, 2013.

[BCR
+

19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct

arguments for R1CS. In Y. Ishai and V. Rijmen, eds, EUROCRYPT 2019, Part I, vol. 11476 of LNCS, p. 103–128,

Darmstadt, Germany, 2019. Springer, Heidelberg, Germany.

[BD10] R. Bendlin and I. Damgård. �reshold decryption and zero-knowledge proofs for la�ice-based cryptosys-

tems. In D. Micciancio, ed., TCC 2010, vol. 5978 of LNCS, p. 201–218, Zurich, Switzerland, 2010. Springer,

Heidelberg, Germany.

[Bd20] W. Beullens and C. de Saint Guilhem. LegRoast: E�cient post-quantum signatures from the Legendre PRF.

In J. Ding and J.-P. Tillich, eds, Post-�antum Cryptography - 11th International Conference, PQCrypto 2020,

p. 130–150, Paris, France, 2020. Springer, Heidelberg, Germany.

[BDK
+

18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé.

CRYSTALS - kyber: A cca-secure module-la�ice-based KEM. In 2018 IEEE European Symposium on Security

and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018, p. 353–367. IEEE, 2018.

[BDL
+

18] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More e�cient commitments from

structured la�ice assumptions. In D. Catalano and R. De Prisco, eds, SCN 18, vol. 11035 of LNCS, p. 368–

385, Amal�, Italy, 2018. Springer, Heidelberg, Germany.

[BDLN16] C. Baum, I. Damgård, K. G. Larsen, and M. Nielsen. How to prove knowledge of small secrets. In M. Rob-

shaw and J. Katz, eds, CRYPTO 2016, Part III, vol. 9816 of LNCS, p. 478–498, Santa Barbara, CA, USA, 2016.

Springer, Heidelberg, Germany.

[BDO14] C. Baum, I. Damgård, and C. Orlandi. Publicly auditable secure multi-party computation. In M. Abdalla

and R. D. Prisco, eds, Security and Cryptography for Networks - 9th International Conference, SCN 2014,

Amal�, Italy, September 3-5, 2014. Proceedings, vol. 8642 of Lecture Notes in Computer Science, p. 175–196.

Springer, 2014.

[BdSG20] W. Beullens and C. D. de Saint Guilhem. Legroast: E�cient post-quantum signatures from the legendre

PRF. In J. Ding and J. Tillich, eds, Post-�antum Cryptography - 11th International Conference, PQCrypto

2020, Paris, France, April 15-17, 2020, Proceedings, vol. 12100 of Lecture Notes in Computer Science, p. 130–

150. Springer, 2020.

[BdSGK
+

21] C. Baum, C. D. de Saint Guilhem, D. Kales, E. Orsini, P. Scholl, and G. Zaverucha. Banquet: Short and fast

signatures from AES. In J. A. Garay, ed., Public-Key Cryptography - PKC 2021 - 24th IACR International

Conference on Practice and �eory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings,

Part I, vol. 12710 of Lecture Notes in Computer Science, p. 266–297. Springer, 2021.

[Beu20] W. Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. In A. Canteaut and

Y. Ishai, eds, EUROCRYPT 2020, Part III, vol. 12107 of LNCS, p. 183–211, Zagreb, Croatia, 2020. Springer,

Heidelberg, Germany.

[BFG
+

24] L. Bidoux, T. Feneuil, P. Gaborit, R. Neveu, and M. Rivain. Dual support decomposition in the head: Shorter

signatures from rank SD and minrank. IACR Cryptol. ePrint Arch., pp. 541, 2024.

[BFK
+

19] W. Beullens, J.-C. Faugère, E. Koussa, G. Macario-Rat, J. Patarin, and L. Perret. PKP-based signature

scheme. In F. Hao, S. Ruj, and S. Sen Gupta, eds, INDOCRYPT 2019, vol. 11898 of LNCS, p. 3–22, Hyderabad,

India, 2019. Springer, Heidelberg, Germany.

[BG22] L. Bidoux and P. Gaborit. Compact post-quantum signatures from proofs of knowledge leveraging struc-

ture for the pkp, sd and rsd problems. CoRR, abs/2204.02915, 2022.

[BGKW90] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. E�cient identi�cation schemes using two prover

interactive proofs. In G. Brassard, ed., CRYPTO’89, vol. 435 of LNCS, p. 498–506, Santa Barbara, CA, USA,

1990. Springer, Heidelberg, Germany.

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without boot-

strapping. ACM Trans. Comput. �eory, 6(3):13:1–13:36, 2014.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-

tolerant distributed computation (extended abstract). In J. Simon, ed., Proceedings of the 20th Annual

ACM Symposium on �eory of Computing, May 2-4, 1988, Chicago, Illinois, USA, p. 1–10. ACM, 1988.

Bibliography 87

[BHH01] D. Boneh, S. Halevi, and N. Howgrave-Graham. �e modular inversion hidden number problem. In

C. Boyd, ed., ASIACRYPT 2001, vol. 2248 of LNCS, p. 36–51, Gold Coast, Australia, 2001. Springer, Heidel-

berg, Germany.

[BKK90] J. Boyar, S. A. Kurtz, and M. W. Krentel. A discrete logarithm implementation of perfect zero-knowledge

blobs. Journal of Cryptology, 2(2):63–76, 1990.

[BKLP15] F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. E�cient zero-knowledge proofs for commit-

ments from learning with errors over rings. In G. Pernul, P. Y. A. Ryan, and E. R. Weippl, eds, ESORICS 2015,

Part I, vol. 9326 of LNCS, p. 305–325, Vienna, Austria, 2015. Springer, Heidelberg, Germany.

[Blo09] J. Blocki. Direct zero-knowledge proofs. Senior Research �esis, B.S. in Computer Science, Carnegie

Mellon University, 2009.

[BLS19] J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er) exact la�ice-based zero-

knowledge proofs. In A. Boldyreva and D. Micciancio, eds, CRYPTO 2019, Part I, vol. 11692 of LNCS, p.

176–202, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[Blu82] M. Blum. Coin �ipping by telephone - A protocol for solving impossible problems. In COMPCON’82,

Digest of Papers, Twenty-Fourth IEEE Computer Society International Conference, San Francisco, California,

USA, February 22-25, 1982, p. 133–137. IEEE Computer Society, 1982.

[BM97] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced

cost. In W. Fumy, ed., EUROCRYPT’97, vol. 1233 of LNCS, p. 163–192, Konstanz, Germany, 1997. Springer,

Heidelberg, Germany.

[BN20a] C. Baum and A. Nof. Concretely-e�cient zero-knowledge arguments for arithmetic circuits and their

application to la�ice-based cryptography. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, eds,

PKC 2020, Part I, vol. 12110 of LNCS, p. 495–526, Edinburgh, UK, 2020. Springer, Heidelberg, Germany.

[BN20b] C. Baum and A. Nof. Concretely-e�cient zero-knowledge arguments for arithmetic circuits and their

application to la�ice-based cryptography. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, eds,

Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on Practice and �eory of Public-

Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I, vol. 12110 of Lecture Notes in Computer

Science, p. 495–526. Springer, 2020.

[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to remove in-

tractability assumptions. In Proceedings of the Twentieth Annual ACM Symposium on �eory of Computing,

STOC ’88, pp. 113–131, New York, NY, USA, 1988. Association for Computing Machinery.

[BR60] R. C. Bose and D. K. Ray-Chaudhuri. On A class of error correcting binary group codes. Inf. Control.,

3(1):68–79, 1960.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In

R. Safavi-Naini and R. Cane�i, eds, CRYPTO 2012, vol. 7417 of LNCS, p. 868–886, Santa Barbara, CA, USA,

2012. Springer, Heidelberg, Germany.

[BTV20] O. Blazy, P. Towa, and D. Vergnaud. Public-key generation with veri�able randomness. In S. Moriai and

H. Wang, eds, ASIACRYPT 2020, Part I, vol. 12491 of LNCS, p. 97–127, Daejeon, South Korea, 2020. Springer,

Heidelberg, Germany.

[BVZ12] A. Bauer, D. Vergnaud, and J.-C. Zapalowicz. Inferring sequences produced by nonlinear pseudorandom

number generators using Coppersmith’s methods. In M. Fischlin, J. Buchmann, and M. Manulis, eds,

PKC 2012, vol. 7293 of LNCS, p. 609–626, Darmstadt, Germany, 2012. Springer, Heidelberg, Germany.

[CCP22] A. Chandramouli, A. Choudhury, and A. Patra. A survey on perfectly secure veri�able secret-sharing.

ACM Comput. Surv., 54(11s):232:1–232:36, 2022.

[CDG
+

17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Slamanig, and G. Zaverucha.

Post-quantum zero-knowledge and signatures from symmetric-key primitives. In B. M. �uraisingham,

D. Evans, T. Malkin, and D. Xu, eds, ACM CCS 2017, p. 1825–1842, Dallas, TX, USA, 2017. ACM Press.

[CDG
+

20] M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-

manig, X. Wang, and G. Zaverucha. �e Picnic Signature Scheme – Design Document. Version 2.2 – 14

April 2020, 2020.

Bibliography 88

[CG07] S. Canard and A. Gouget. Divisible e-cash systems can be truly anonymous. In M. Naor, ed., EURO-

CRYPT 2007, vol. 4515 of LNCS, p. 482–497, Barcelona, Spain, 2007. Springer, Heidelberg, Germany.

[CGGI20] I. Chillo�i, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homomorphic encryption over

the torus. Journal of Cryptology, 33(1):34–91, 2020.

[CGH00] D. Catalano, R. Gennaro, and S. Halevi. Computing inverses over a shared secret modulus. In B. Pre-

neel, ed., EUROCRYPT 2000, vol. 1807 of LNCS, p. 190–206, Bruges, Belgium, 2000. Springer, Heidelberg,

Germany.

[CGM16] M. Chase, C. Ganesh, and P. Mohassel. E�cient zero-knowledge proof of algebraic and non-algebraic state-

ments with applications to privacy preserving credentials. In M. Robshaw and J. Katz, eds, CRYPTO 2016,

Part III, vol. 9816 of LNCS, p. 499–530, Santa Barbara, CA, USA, 2016. Springer, Heidelberg, Germany.

[CHM
+

20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Preprocessing zksnarks with

universal and updatable SRS. In A. Canteaut and Y. Ishai, eds, Advances in Cryptology - EUROCRYPT 2020

- 39th Annual International Conference on the �eory and Applications of Cryptographic Techniques, Zagreb,

Croatia, May 10-14, 2020, Proceedings, Part I, vol. 12105 of Lecture Notes in Computer Science, p. 738–768.

Springer, 2020.

[CJL
+

92] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. Schnorr, and J. Stern. Improved low-density

subset sum algorithms. Comput. Complex., 2:111–128, 1992.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic of approximate

numbers. In T. Takagi and T. Peyrin, eds, Advances in Cryptology - ASIACRYPT 2017 - 23rd International

Conference on the �eory and Applications of Cryptology and Information Security, Hong Kong, China, De-

cember 3-7, 2017, Proceedings, Part I, vol. 10624 of Lecture Notes in Computer Science, p. 409–437. Springer,

2017.

[CKR
+

20] H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh. Maliciously secure matrix multipli-

cation with applications to private deep learning. In S. Moriai and H. Wang, eds, ASIACRYPT 2020, Part III,

vol. 12493 of LNCS, p. 31–59, Daejeon, South Korea, 2020. Springer, Heidelberg, Germany.

[CLOS02] R. Cane�i, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party

secure computation. In 34th ACM STOC, p. 494–503, Montréal, �ébec, Canada, 2002. ACM Press.

[CS97] J. Camenisch and M. Stadler. E�cient group signature schemes for large groups (extended abstract). In

B. S. Kaliski Jr., ed., CRYPTO’97, vol. 1294 of LNCS, p. 410–424, Santa Barbara, CA, USA, 1997. Springer,

Heidelberg, Germany.

[CY19] C. Crépeau and N. Yang. Non-locality in interactive proofs. Electron. Colloquium Comput. Complex., TR19-

030, 2019.

[Des87] Y. Desmedt. Society and group oriented cryptography: A new concept. In C. Pomerance, ed., Advances in

Cryptology - CRYPTO ’87, A Conference on the �eory and Applications of Cryptographic Techniques, Santa

Barbara, California, USA, August 16-20, 1987, Proceedings, vol. 293 of Lecture Notes in Computer Science, p.

120–127. Springer, 1987.

[Des94] Y. Desmedt. �reshold cryptography. Eur. Trans. Telecommun., 5(4):449–458, 1994.

[DG23] Q. Dao and P. Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In C. Hazay and

M. Stam, eds, EUROCRYPT 2023, Part II, vol. 14005 of Lecture Notes in Computer Science, p. 531–562.

Springer, 2023.

[DGH
+

21] I. Dinur, S. Goldfeder, T. Halevi, Y. Ishai, M. Kelkar, V. Sharma, and G. Zaverucha. MPC-friendly symmetric

cryptography from alternating moduli: Candidates, protocols, and applications. In T. Malkin and C. Peik-

ert, eds, CRYPTO 2021, Part IV, vol. 12828 of LNCS, p. 517–547, Virtual Event, 2021. Springer, Heidelberg,

Germany.

[DKR
+

22] C. Dobraunig, D. Kales, C. Rechberger, M. Schofnegger, and G. Zaverucha. Shorter signatures based on

tailor-made minimalist symmetric-key crypto. In H. Yin, A. Stavrou, C. Cremers, and E. Shi, eds, ACM

CCS 2022, p. 843–857, Los Angeles, CA, USA, 2022. ACM Press.

[DKR23] J. Doerner, Y. Kondi, and L. N. Rosenbloom. Sometimes you can’t distribute random-oracle-based proofs.

IACR Cryptol. ePrint Arch., pp. 1381, 2023.

Bibliography 89

[DPSZ12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic

encryption. In R. Safavi-Naini and R. Cane�i, eds, CRYPTO 2012, vol. 7417 of LNCS, p. 643–662, Santa

Barbara, CA, USA, 2012. Springer, Heidelberg, Germany.

[ENS20] M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from la�ices: New techniques to exploit

fully-spli�ing rings. In S. Moriai and H. Wang, eds, ASIACRYPT 2020, Part II, vol. 12492 of LNCS, p. 259–288,

Daejeon, South Korea, 2020. Springer, Heidelberg, Germany.

[Fen24] T. Feneuil. Building mpcith-based signatures from mq, minrank, and rank SD. In C. Pöpper and L. Batina,

eds, Applied Cryptography and Network Security - 22nd International Conference, ACNS 2024, Abu Dhabi,

United Arab Emirates, March 5-8, 2024, Proceedings, Part I, vol. 14583 of Lecture Notes in Computer Science,

p. 403–431. Springer, 2024.

[FJR22] T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter signatures from zero-

knowledge proofs. In Y. Dodis and T. Shrimpton, eds, Advances in Cryptology - CRYPTO 2022 - 42nd

Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,

Proceedings, Part II, vol. 13508 of Lecture Notes in Computer Science, p. 541–572. Springer, 2022.

[FJR23] T. Feneuil, A. Joux, and M. Rivain. Shared permutation for syndrome decoding: new zero-knowledge

protocol and code-based signature. Des. Codes Cryptogr., 91(2):563–608, 2023.

[FMRV22] T. Feneuil, J. Maire, M. Rivain, and D. Vergnaud. Zero-knowledge protocols for the subset sum problem

from mpc-in-the-head with rejection. In S. Agrawal and D. Lin, eds, Advances in Cryptology - ASIACRYPT

2022 - 28th International Conference on the �eory and Application of Cryptology and Information Security,

Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, vol. 13792 of Lecture Notes in Computer Science, p.

371–402. Springer, 2022.

[FR23a] T. Feneuil and M. Rivain. �reshold computation in the head: Improved framework for post-quantum

signatures and zero-knowledge arguments. IACR Cryptol. ePrint Arch., pp. 1573, 2023.

[FR23b] T. Feneuil and M. Rivain. �reshold linear secret sharing to the rescue of mpc-in-the-head. In J. Guo and

R. Steinfeld, eds, Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the �eory

and Application of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings,

Part I, vol. 14438 of Lecture Notes in Computer Science, p. 441–473. Springer, 2023.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi�cation and signature problems.

In A. M. Odlyzko, ed., CRYPTO’86, vol. 263 of LNCS, p. 186–194, Santa Barbara, CA, USA, 1987. Springer,

Heidelberg, Germany.

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive,

Report 2012/144, 2012.

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions (extended abstract). In

25th Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida, USA, 24-26 October

1984, p. 464–479. IEEE Computer Society, 1984.

[GHM
+

22] K. Gjøsteen, T. Haines, J. Müller, P. B. Rønne, and T. Silde. Veri�able decryption in the head. In K. Nguyen,

G. Yang, F. Guo, and W. Susilo, eds, Information Security and Privacy - 27th Australasian Conference, ACISP

2022, Wollongong, NSW, Australia, November 28-30, 2022, Proceedings, vol. 13494 of Lecture Notes in Com-

puter Science, p. 355–374. Springer, 2022.

[GIKR01] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. �e round complexity of veri�able secret sharing and

secure multicast. In J. S. Vi�er, P. G. Spirakis, and M. Yannakakis, eds, Proceedings on 33rd Annual ACM

Symposium on �eory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, p. 580–589. ACM, 2001.

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge for boolean circuits. In T. Holz

and S. Savage, eds, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,

2016, p. 1069–1083. USENIX Association, 2016.

[GMR89] S. Goldwasser, S. Micali, and C. Racko�. �e knowledge complexity of interactive proof systems. SIAM J.

Comput., 18(1):186–208, 1989.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem

for protocols with honest majority. In A. V. Aho, ed., Proceedings of the 19th Annual ACM Symposium on

�eory of Computing, 1987, New York, New York, USA, p. 218–229. ACM, 1987.

Bibliography 90

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for all languages in

NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[Gol04] O. Goldreich. �e Foundations of Cryptography - Volume 2: Basic Applications. Cambridge University Press,

2004.

[GOP
+

22] C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir bulletproofs are non-

malleable (in the algebraic group model). In O. Dunkelman and S. Dziembowski, eds, EUROCRYPT 2022,

Part II, vol. 13276 of LNCS, p. 397–426, Trondheim, Norway, 2022. Springer, Heidelberg, Germany.

[Gou01] L. Goubin. A sound method for switching between Boolean and arithmetic masking. In Çetin Kaya. Koç,

D. Naccache, and C. Paar, eds, CHES 2001, vol. 2162 of LNCS, p. 3–15, Paris, France, 2001. Springer, Hei-

delberg, Germany.

[GPS12] H. Ghodosi, J. Pieprzyk, and R. Steinfeld. Multi-party computation with conversion of secret sharing. Des.

Codes Cryptogr., 62(3):259–272, 2012.

[GQ90] L. C. Guillou and J.-J. �isquater. A “paradoxical” indentity-based signature scheme resulting from zero-

knowledge. In S. Goldwasser, ed., CRYPTO’88, vol. 403 of LNCS, p. 216–231, Santa Barbara, CA, USA, 1990.

Springer, Heidelberg, Germany.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC, p. 212–219,

Philadephia, PA, USA, 1996. ACM Press.

[Gro16a] J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin and J.-S. Coron, eds,

EUROCRYPT 2016, Part II, vol. 9666 of LNCS, p. 305–326, Vienna, Austria, 2016. Springer, Heidelberg,

Germany.

[Gro16b] J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin and J. Coron, eds, Advances

in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the �eory and Applications of

Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, vol. 9666 of Lecture Notes

in Computer Science, p. 305–326. Springer, 2016.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over lagrange-bases for oecumeni-

cal noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., pp. 953, 2019.

[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way func-

tion. SIAM J. Comput., 28(4):1364–1396, 1999.

[HJ10] N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks. In H. Gilbert, ed., EURO-

CRYPT 2010, vol. 6110 of LNCS, p. 235–256, French Riviera, 2010. Springer, Heidelberg, Germany.

[HS74] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem. J. ACM,

21(2):277–292, 1974.

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation.

In D. S. Johnson and U. Feige, eds, 39th ACM STOC, p. 21–30, San Diego, CA, USA, 2007. ACM Press.

[IKOS09] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from secure multiparty com-

putation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IN96] R. Impagliazzo and M. Naor. E�cient cryptographic schemes provably as secure as subset sum. Journal

of Cryptology, 9(4):199–216, 1996.

[JKPT12] A. Jain, S. Krenn, K. Pietrzak, and A. Tentes. Commitments and e�cient zero-knowledge proofs from

learning parity with noise. In X. Wang and K. Sako, eds, ASIACRYPT 2012, vol. 7658 of LNCS, p. 663–680,

Beijing, China, 2012. Springer, Heidelberg, Germany.

[Jou23] A. Joux. MPC in the head for isomorphisms and group actions. IACR Cryptol. ePrint Arch., pp. 664, 2023.

[Joy21] M. Joye. Guide to fully homomorphic encryption over the [discretized] torus. Cryptology ePrint Archive,

Report 2021/1402, 2021.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. �atcher, eds, Proceedings

of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM �omas J.

Watson Research Center, Yorktown Heights, New York, USA, �e IBM Research Symposia Series, p. 85–103.

Plenum Press, New York, 1972.

Bibliography 91

[Kel16] Z. Kelley. Roots of sparse polynomials over a �nite �eld. LMS Journal of Computation and Mathematics,

19(A):196–204, 2016.

[Kil89] J. Kilian. Uses of randomness in algorithms and protocols. PhD thesis, Massachuse�s Institute of Technology,

1989.

[KKK09] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in point-to-point networks.

Inf. Comput., 207(8):889–899, 2009.

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications to post-

quantum signatures. In D. Lie, M. Mannan, M. Backes, and X. Wang, eds, ACM CCS 2018, p. 525–537,

Toronto, ON, Canada, 2018. ACM Press.

[KMR12] M. Keller, G. L. Mikkelsen, and A. Rupp. E�cient threshold zero-knowledge with applications to user-

centric protocols. In A. D. Smith, ed., Information �eoretic Security - 6th International Conference, ICITS

2012, Montreal, QC, Canada, August 15-17, 2012. Proceedings, vol. 7412 of Lecture Notes in Computer Science,

p. 147–166. Springer, 2012.

[KPR18] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In J. B. Nielsen and V. Rijmen,

eds, EUROCRYPT 2018, Part III, vol. 10822 of LNCS, p. 158–189, Tel Aviv, Israel, 2018. Springer, Heidelberg,

Germany.

[KZ20] D. Kales and G. Zaverucha. An a�ack on some signature schemes constructed from �ve-pass identi�cation

schemes. In S. Krenn, H. Shulman, and S. Vaudenay, eds, CANS 20, vol. 12579 of LNCS, p. 3–22, Vienna,

Austria, 2020. Springer, Heidelberg, Germany.

[KZ22] D. Kales and G. Zaverucha. E�cient li�ing for shorter zero-knowledge proofs and post-quantum signa-

tures. Cryptology ePrint Archive, Paper 2022/588, 2022.

[KZGM21] S. Kanjalkar, Y. Zhang, S. Gandlur, and A. Miller. Publicly auditable mpc-as-a-service with succinct ver-

i�cation and universal setup. In IEEE European Symposium on Security and Privacy Workshops, EuroS&P

2021, Vienna, Austria, September 6-10, 2021, p. 386–411. IEEE, 2021.

[LN17] Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic circuits with malicious

adversaries and an honest-majority. In B. M. �uraisingham, D. Evans, T. Malkin, and D. Xu, eds, ACM

CCS 2017, p. 259–276, Dallas, TX, USA, 2017. ACM Press.

[LNS21] V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Shorter la�ice-based zero-knowledge proofs via one-time

commitments. In J. Garay, ed., PKC 2021, Part I, vol. 12710 of LNCS, p. 215–241, Virtual Event, 2021.

Springer, Heidelberg, Germany.

[LNSW13] S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS

problem, and applications. In K. Kurosawa and G. Hanaoka, eds, PKC 2013, vol. 7778 of LNCS, p. 107–124,

Nara, Japan, 2013. Springer, Heidelberg, Germany.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal la�ices and learning with errors over rings. In

H. Gilbert, ed., EUROCRYPT 2010, vol. 6110 of LNCS, p. 1–23, French Riviera, 2010. Springer, Heidelberg,

Germany.

[LPS10] V. Lyubashevsky, A. Palacio, and G. Segev. Public-key cryptographic primitives provably as secure as

subset sum. In D. Micciancio, ed., TCC 2010, vol. 5978 of LNCS, p. 382–400, Zurich, Switzerland, 2010.

Springer, Heidelberg, Germany.

[LSSW12] S. Ling, I. E. Shparlinski, R. Steinfeld, and H. Wang. On the modular inversion hidden number problem.

J. Symb. Comput., 47(4):358–367, 2012.

[Lyu08] V. Lyubashevsky. La�ice-based identi�cation schemes secure under active a�acks. In R. Cramer, ed.,

PKC 2008, vol. 4939 of LNCS, p. 162–179, Barcelona, Spain, 2008. Springer, Heidelberg, Germany.

[Lyu09] V. Lyubashevsky. Fiat-Shamir with aborts: Applications to la�ice and factoring-based signatures. In

M. Matsui, ed., ASIACRYPT 2009, vol. 5912 of LNCS, p. 598–616, Tokyo, Japan, 2009. Springer, Heidelberg,

Germany.

[MGH
+

23] C. A. Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. �e return of the sdith. In C. Hazay

and M. Stam, eds, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on

the �eory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part

V, vol. 14008 of Lecture Notes in Computer Science, p. 564–596. Springer, 2023.

Bibliography 92

[MH78] R. C. Merkle and M. E. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Trans.

Inf. �eory, 24(5):525–530, 1978.

[MS81] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes. Commun. ACM, 24(9):583–

584, 1981.

[MV23a] J. Maire and D. Vergnaud. Commitments with e�cient zero-knowledge arguments from subset sum prob-

lems. In G. Tsudik, M. Conti, K. Liang, and G. Smaragdakis, eds, Computer Security - ESORICS 2023 - 28th

European Symposium on Research in Computer Security, �e Hague, �e Netherlands, September 25-29, 2023,

Proceedings, Part I, vol. 14344 of Lecture Notes in Computer Science, p. 189–208. Springer, 2023.

[MV23b] J. Maire and D. Vergnaud. E�cient zero-knowledge arguments and digital signatures via sharing conver-

sion in the head. In G. Tsudik, M. Conti, K. Liang, and G. Smaragdakis, eds, Computer Security - ESORICS

2023 - 28th European Symposium on Research in Computer Security, �e Hague, �e Netherlands, September

25-29, 2023, Proceedings, Part I, vol. 14344 of Lecture Notes in Computer Science, p. 435–454. Springer, 2023.

[MV24] J. Maire and D. Vergnaud. Secure multi-party linear algebra with perfect correctness. IACR Commun.

Cryptol., 1(1):29, 2024.

[OB22] A. Ozdemir and D. Boneh. Experimenting with collaborative zk-snarks: Zero-knowledge proofs for dis-

tributed secrets. In K. R. B. Butler and K. �omas, eds, 31st USENIX Security Symposium, USENIX Security

2022, Boston, MA, USA, August 10-12, 2022, p. 4291–4308. USENIX Association, 2022.

[Odl90] A. M. Odlyzko. �e rise and fall of knapsack cryptosystems. Cryptology and computational number

theory, Lect. Notes AMS Short Course, Boulder/CO (USA) 1989, Proc. Symp. Appl. Math. 42, 75-88 (1990).,

1990.

[Ped92] T. P. Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing. In J. Feigen-

baum, ed., CRYPTO’91, vol. 576 of LNCS, p. 129–140, Santa Barbara, CA, USA, 1992. Springer, Heidelberg,

Germany.

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of

Cryptology, 13(3):361–396, 2000.

[PS04] C. Padró and G. Sáez. Correction to ”secret sharing schemes with bipartite access structure”. IEEE Trans.

Inf. �eory, 50(6):1373, 2004.

[Reg05] O. Regev. On la�ices, learning with errors, random linear codes, and cryptography. In H. N. Gabow and

R. Fagin, eds, 37th ACM STOC, p. 84–93, Baltimore, MA, USA, 2005. ACM Press.

[Rot11] R. Rothblum. Homomorphic encryption: From private-key to public-key. In Y. Ishai, ed., TCC 2011, vol.

6597 of LNCS, p. 219–234, Providence, RI, USA, 2011. Springer, Heidelberg, Germany.

[RRRK22] M. Rivinius, P. Reisert, D. Rausch, and R. Küsters. Publicly accountable robust multi-party computation.

In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, p.

2430–2449. IEEE, 2022.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial identities. J. ACM, 27(4):701–

717, 1980.

[Sha86] A. Shamir. A zero-knowledge proof for knapsacks. presented at a workshop on Probabilistic Algorithms,

Marseille, 1986.

[Sha90] A. Shamir. An e�cient identi�cation scheme based on permuted kernels (extended abstract) (rump ses-

sion). In G. Brassard, ed., CRYPTO’89, vol. 435 of LNCS, p. 606–609, Santa Barbara, CA, USA, 1990. Springer,

Heidelberg, Germany.

[Sho94] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS, p.

124–134, Santa Fe, NM, USA, 1994. IEEE Computer Society Press.

[Sim91] G. Simmons. Identi�cation of data, devices, documents and individuals. In Proceedings. 25th Annual 1991

IEEE International Carnahan Conference on Security Technology, p. 197–218, 1991.

[SPW06] R. Steinfeld, J. Pieprzyk, and H. Wang. On the provable security of an e�cient RSA-based pseudorandom

generator. In X. Lai and K. Chen, eds, ASIACRYPT 2006, vol. 4284 of LNCS, p. 194–209, Shanghai, China,

2006. Springer, Heidelberg, Germany.

Bibliography 93

[SS81] R. Schroeppel and A. Shamir. A T=O(2
n/2

), S=O(2
n/4

) algorithm for certain NP-complete problems. SIAM

J. Comput., 10(3):456–464, 1981.

[Sta96] M. Stadler. Publicly veri�able secret sharing. In U. M. Maurer, ed., EUROCRYPT’96, vol. 1070 of LNCS, p.

190–199, Saragossa, Spain, 1996. Springer, Heidelberg, Germany.

[Ste94a] J. Stern. Designing identi�cation schemes with keys of short size. In Y. Desmedt, ed., CRYPTO’94, vol. 839

of LNCS, p. 164–173, Santa Barbara, CA, USA, 1994. Springer, Heidelberg, Germany.

[Ste94b] J. Stern. A new identi�cation scheme based on syndrome decoding. In D. R. Stinson, ed., CRYPTO’93, vol.

773 of LNCS, p. 13–21, Santa Barbara, CA, USA, 1994. Springer, Heidelberg, Germany.

[TD09] T. Tassa and N. Dyn. Multipartite secret sharing by bivariate interpolation. J. Cryptol., 22(2):227–258,

2009.

[Win84] R. S. Winternitz. A secure one-way hash function built from DES. In Proceedings of the 1984 IEEE Sympo-

sium on Security and Privacy, Oakland, California, USA, April 29 - May 2, 1984, p. 88–90. IEEE Computer

Society, 1984.

[XSH
+

19] J. Xu, S. Sarkar, L. Hu, H. Wang, and Y. Pan. New results on modular inversion hidden number problem

and inversive congruential generator. In A. Boldyreva and D. Micciancio, eds, CRYPTO 2019, Part I, vol.

11692 of LNCS, p. 297–321, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[Yao82] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium on Founda-

tions of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, p. 160–164. IEEE Computer Society,

1982.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, p. 162–167, Toronto,

Ontario, Canada, 1986. IEEE Computer Society Press.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, ed., Symbolic and Algebraic Com-

putation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic Computation, Marseille,

France, June 1979, Proceedings, vol. 72 of Lecture Notes in Computer Science, p. 216–226. Springer, 1979.

APPENDIX

A. THE 3-ROUND VARIANT OF PROTOCOL 6

Prover P Veri�er V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed[0] $←− {0, 1}λ

(mseed[e])j∈[1,M] ← PRG(mseed[0])

For each e ∈ [1,M]:

r[e],← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed[e]
i , ρ

[e]
i)i∈[1,N] ← PRG(mseed[e])

For each i ∈ [1, N]:

Jr[e]Ki ← PRG(seed[e]
i) . Jr[e]Ki ∈ [0, A− 1]

n

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

∆r[e] = r[e] −
∑
iJr

[e]Ki
hj = H1(∆r[e], com[e]

1 , . . . , com[e]
n)

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
�e parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = H3(x̃[e], Jt[e]K)

h′ = Merkle(h′1, . . . , h
′
M)

h = H2(h1, . . . , hM , h
′)

h−−−−−−−−−−−−−−−−−−→ J
$←− {J ⊂ [1,M] ; |J | = τ}

L←−−−−−−−−−−−−−−−−−− L = {`e}e∈J
$←− [1, N]

τ

If there exists (e, j) ∈ J × [1, n] such that:

- either Jr[e]
j K`e = 0 with rj = 1

- or Jr[e]
j K`e = A− 1 with rj = 0,

then abort.

authMerkle := auth((h′1, . . . , h
′
M), J)

σ = authMerkle | (mseed[e])j∈[1,M]\J

σ = σ |

 (seed[e]
i , ρ

[e]
i)i 6=`e

r[e] − Jr[e]K`e
x̃[e], com`e


e∈J

σ−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :

For all i 6= `e

com[e]
i = Com(seed[e]

i ; ρ
[e]
i)

Rerun the party i
as the prover to get Jt[e]Ki

∆r[e] = (r[e] − Jr[e]K`e)−
∑
i6=`j Jr

[e]K
he = H1(∆r[e], com[e]

1 , . . . , com[e]
n)

Jt[e]K = t−∆t[e] −
∑
i 6=`j Jt

[e]Ki
h′e = H3(x̃[e], Jt[e]K)

Using authMerkle

, check that {h′e}e∈J
are consistent and deduce the

Merkle root h′.
Check h = H2(h1, . . . , hM , h

′)
Return 1

Protocol 14: Zero-knowledge argument (3-round variant) for Subset Sum Problem via MPC-in-the-Head paradigm with

rejection, using cut-and-choose strategy to prove binarity.

B. SIGNATURE SCHEMES WITH SUBSET SUM PROBLEM

�e Fiat-Shamir heuristic [FS87] is a method to convert Σ-protocols (a speci�c class of ZK proofs) into non-interactive

ZK proofs and hence can be used to build signature. Using this heuristic we can transform our two protocols into

signature schemes. For each of them, we explain how to apply the Fiat-Shamir transform and how to evaluate the

obtained security.

Signature from Protocol 5. We compute the challenges {ε[e]}e∈[1,τ] and {i∗[e]}e∈[1,τ] for τ executions as:

{ε[e]}e∈[1,τ] := H′1(m,h)

and

{i∗[e]}e∈[1,τ] := H′2(m,h, h′)

where m is the input message,H′1 andH′2 are some hash functions, and h (resp. h′) is the hash value corresponding to

the merged inputs ofH1 (resp. H2) from the τ executions.

Since the protocol has 5 rounds, we must take into account the forgery a�ack described in [KZ20] to estimate the

security of the resulting signature. When we adapt the a�ack for Protocol 5, its cost is given by

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
PMF(i, τ, 1

q′)
+

1∑η
i=0 PMF(i, τ2, 1− 1

N)

}
,

with PMF(i, τ, p) :=
(
τ
i

)
pi(1− p)τ−i. When selecting the signature parameters, we must choose τ such that costforge ≥

2λ.

Signature from Protocol 6. �e challenges J and L are computed as

J := H′1(m,h)

and

L := H′2(m,h, h′, (mseed[j])j∈[1,M]\J)

where m is the input message and whereH′1 andH′2 are some hash functions.

Since the protocol has 5 rounds, the security of the resulting signature scheme is given by the a�ack of [KZ20] which

has, in the context of the Protocol 6, a forgery cost of

costforge = min
M−τ≤k≤M

{(
M

M−τ
)(

k
M−τ

) +
1∑η

i=0 PMF(i, k −M + τ, 1− 1
N)

}
.

Another approach consists in turning the 5-round protocol into a 3-round protocol (before applying the Fiat-Shamir).

We refer to [KKW18, FJR23] for the details of such an approach. We provide a formal description of the 3-round variant

of the protocol in Appendix A. �e soundness error of this variant is the same as for the original protocol (see �eorem 9).

When we apply the Fiat-Shamir to this variant, the security of the obtained signature scheme is equal to the soundness

error of the protocol (since the protocol has now only 3 rounds) and its size (in bits) is

Sizeη = 4λ+ η4λ+ 3λτ log2

M

τ
+ (τ − η) [n log2(A− 1) + n+ λ log2N + 2λ] .

Performances. We selected some parameter sets to instantiate the resulting signature schemes while targeting a security

of 128 bits and a rejection rate of 0.01. We obtained the performances of Table B.1.

B. Signature Schemes with Subset Sum Problem 97

Signature

Parameters

Proof size Rej. rate Security

τ η N A M

Protocol 5 (batching) 29 2 256 214
- 28.1 KB 0.010 129 bits

Protocol 5 (batching) 42 3 32 214
- 38.7 KB 0.004 128 bits

Protocol 6 (C&C), 5 rounds 46 3 256 214
993 30.3 KB 0.006 128 bits

Protocol 6 (C&C), 5 rounds 71 3 32 214
452 42.5 KB 0.025 128 bits

Protocol 6 (C&C), 3 rounds 28 2 64 214
514 21.1 KB 0.009 128 bits

Protocol 6 (C&C), 3 rounds 53 3 8 214
253 33.2 KB 0.009 128 bits

Tab. B.1: Performance of the obtained signatures

C. ZERO-KNOWLEDGE ARGUMENT FOR BONEH-HALEVI-HOWGRAVE-GRAHAM PRF

Prover P Veri�er V
x ∈ {0, 1}n
(z1, y1), . . . , (zt, yt) y1, . . . , yt

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed)
For each party i ∈ [1, N]:

JxKi, JaKi, JcKi, JzKi ← PRG(seedi) . JxK, JaKi, JcKi ∈ Zp, JzKi ∈ [0, A− 1]
t

comi = Com(seedi; ρi)
∆x = x−

∑
iJxKi

∆c = ax−
∑
iJcKi

∆z = z −
∑
iJzKi

h = H1(∆x,∆c,∆z, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

γ1, . . . , γt, ε
$←− Zp

γ,ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- JαK = ε〈γ, JzK〉+ JaK mod p
- JrK = “right part of Equation 4.15”

�e parties open JαK to get α.

�e parties locally set

JvK = εJrK− αJxK + JcK mod p
h′ = H2(JαK, JvK)

h′−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N]
i∗←−−−−−−−−−−−−−−−−−−

µ = z − JzKi∗
If there exists j ∈ [t] such that:

- either µj ≥ 1
- or µj ≤ −A+B − 1,

then abort.

(seedi, ρi)i 6=i∗ , comi∗ ,

µ, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JxKi, JaKi, JcKi ← PRG(seedi)
JzKi ← PRG(seedi)

∆z = µ−
∑
i 6=i∗JzKi

∆α = ε · 〈γ,∆z〉
For all i 6= i∗,

Rerun the party i as the prover

and compute the commitment comi.

∆r = deduced from the right part of Eq. 4.15

∆v = ε∆r − α∆x−∆c
JvKi∗ = −∆v −

∑
i 6=i∗JvKi

Check h = H1(∆x,∆c,∆z, com1, . . . , comN)
Check h′ = H2(JαK, JvK)
Return 1

Protocol 15: Relaxed zero-knowledge argument for Boneh et al’s PRF.

D. DESCRIPTION OF PROTOCOLS 16, 17, AND 18

Prover P Veri�er V
w, s ∈ Znq ,mk, rk ∈ {0, 1}n for 1 ≤ k ≤ 3
m1 ⊕m2 = m3, tk = 〈w,mk〉+ 〈s, rk〉 w, s, tk for 1 ≤ k ≤ 3

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed)
For each party i ∈ [1, N]:

JaKi, JcKi, {JmkKi, Jrki}K1≤k≤3 ← PRG(seedi) . a ∈ Z6n
q′ , c ∈ Zq′ , JmkKi, JrkKi ∈ [0, A− 1]

n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

∆mk = mk −
∑
iJm

kKi
∆rk = rk −

∑
iJr

kKi
∆c = −〈a,m1||m2||r1||r2||r3||m1 +m2〉 −

∑
iJcKi

h = H1({∆mk,∆rk}1≤k≤3,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z6n

q′ , λ1, λ2
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- JtkK = 〈w, JmkK〉+ 〈s, JrkK〉, 1 ≤ k ≤ 3
- JαK = ε ◦ ((1− Jm1||m2||r1||r2||r3K)||
m1 +m2) + JaK . α ∈ Z6n

q′ (computation in Zq′)
�e parties open JαK to get α.

�e parties locally set

JvK = 〈α, Jm1||m2||r1||r2||r3||m1 +m2K〉−
JcK− 〈ε,0||J2(m1 +m2)−m3K〉 . v ∈ Zq′ (computation in Zq′)

h′ = H2({JtkK}1≤k≤3, JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− [1, N]

i∗←−−−−−−−−−−−−−−−−−−
If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either Jmk
j Ki∗ = 0 with mk

j = 1
- or Jmk

j Ki∗ = A− 1 with mk
j = 0,

- or Jrkj Ki∗ = 0 with rkj = 1
- or Jrkj Ki∗ = A− 1 with rkj = 0,

then abort.

ymk = mk − JmkKi∗ and

yrk = rk − JrkKi∗ for k ∈ [1, 3]

(seedi, ρi)i 6=i∗ , comi∗ ,
{ymk ,yrk}1≤k≤3, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3 ← PRG(seedi)

For all i 6= i∗,
Rerun the party i as the prover

and compute the commitment comi.

For 1 ≤ k ≤ 3,

∆mk = ymk −
∑
i 6=i∗Jm

kKi
∆rk = yrk −

∑
i 6=i∗Jr

kKi
∆tk = 〈w,∆mk〉+ 〈s,∆rk〉
JtkKi∗ = tk −∆tk −

∑
i6=i∗Jt

kKi
∆v = 〈α,∆m1||∆m2||∆r1||∆r2||∆r3||
∆m1 + ∆m2〉 −∆c− 〈ε,0||2(∆m1 + ∆m2)−∆m3〉
JvKi∗ = −∆v −

∑
i6=i∗JvKi

Check h = H1({∆mk,∆rk}1≤k≤3,∆c, com1, . . . , comN)

Check h′ = H2({JtkK}1≤k≤3, JαK, JvK)
Return 1

Protocol 16: Zero-knowledge argument for XOR gate

In order to describe the circuit during Protocol 17, we set S ← ∅. �en construct S as follows: if m`
xk
∧m`k

yk
= m

`′k
zk

for k ∈ [1,M], {`, `k, `′k} ∈ [1, L]3, {xk, yk, zk} ∈ [1, n]3, then S = S ∪ {(`, xk; `k, yk; `′k, zk)}.

D. Description of Protocols 16, 17, and 18 100

Prover P Veri�er V
w, s ∈ Znq , S
For 1 ≤ ` ≤ L,
m`, r` ∈ {0, 1}n

t` = 〈w,m`〉+ 〈s, r`〉 ∈ Zq t` for 1 ≤ ` ≤ L
x ◦ y = z as described in Subsection 4.6.6 S,w, s

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed)

For each party i ∈ [1, N]:
JaKi, JcKi, {Jm`Ki, Jr`Ki}1≤`≤L ← PRG(seedi) . a ∈ Z2Ln

q′ , c ∈ Zq′ , Jm`Ki, Jr`Ki ∈ [0, A− 1]
n

comi = Com(seedi; ρi)
For 1 ≤ ` ≤ L:

∆m` = m` −
∑
iJm

`Ki
∆r` = r` −

∑
iJr

`Ki
∆c = −〈a,y〉 −

∑
iJcKi

h = H1({∆m`,∆r`}1≤`≤L,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z2Ln

q′ , {λi}1≤i≤L+K
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- Jt`K = 〈w, Jm`K〉+ 〈s, Jr`K〉 for ` ∈ [1, L]
- JαK = ε ◦ JxK + JaK . α ∈ Z2Ln

q′

�e parties open JαK to get α.

�e parties locally set

JvK = 〈α, JyK〉 − JcK− 〈ε, z〉 . v ∈ Zq′
h′ = H2({Jt`K}1≤`≤L, JαK, JvK)

h′−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ ` ∈ [1, L] and j ∈ [1, n] such that:

- either Jm`
jKi∗ = 0 with m`

j = 1
- or Jm`

jKi∗ = A− 1 with m`
j = 0,

- or Jr`jKi∗ = 0 with r`j = 1
- or Jr`jKi∗ = A− 1 with r`j = 0,

then abort.

ym` = m` − Jm`Ki∗ and yr` = r` − Jr`Ki∗ for ` ∈ [1, L]

(seedi, ρi)i 6=i∗ , comi∗ ,
{ym` ,yr`}1≤`≤L, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗:
JaKi, JcKi, {Jm`Ki, Jr`Ki}1≤`≤L ← PRG(seedi)
Rerun the party i as the prover and compute comi.

For ` ∈ [1, L]:
∆m` = ym` −

∑
i6=i∗Jm

`Ki
∆r` = yr` −

∑
i 6=i∗Jr

`Ki
∆tk = 〈w,∆m`〉+ 〈s,∆r`〉
Jt`Ki∗ = t` −∆t` −

∑
i 6=i∗Jt

`Ki
∆v = 〈α,∆x〉 −∆c− 〈ε,∆z〉
JvKi∗ = −∆v −

∑
i6=i∗JvKi

Check h = H1({∆m`,∆r`}1≤`≤L,∆c, com1, . . . , comN)
Check h′ = H2({Jt`K}1≤`≤L, JαK, JvK)
Return 1

Protocol 17: Zero-knowledge argument for arbitrary AND gates

D. Description of Protocols 16, 17, and 18 101

Prover P Veri�er V
C , w, s ∈ Znq′
For 0 ≤ ` ≤ |C|/n
v`, r` ∈ {0, 1}n

t` = 〈w,v`〉+ 〈s, r`〉
x ◦ y = z as described in Subsection 4.6.9 C,w, s, t` for 0 ≤ ` ≤ |C|/n
mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed)

For each party i ∈ [1, N]:

JaKi, JcKi, {Jv`Ki, Jr`Ki}0≤`≤|C|/n ← PRG(seedi) . a ∈ Z2(|C|+n)
q′ , c ∈ Zq′ , Jr`Ki, Jv`Ki ∈ [0, A− 1]

n

comi = Com(seedi; ρi)
For 0 ≤ ` ≤ |C|/n:

∆r` = r` −
∑
iJr

`Ki
∆v` = v` −

∑
iJv

`Ki
∆c = −〈a,y〉 −

∑
iJcKi

h = H1({∆r`,∆v`}0≤`≤|C|/n,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z2(|C|+n)

q′

{λi}0≤i≤|C|(1+1/n)
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
�e parties locally set

- Jt`K = 〈w, Jv`K〉+ 〈s, Jr`K〉 for ` ∈ [0, |C|/n]

- JαK = ε ◦ JxK + JaK . α ∈ Z2(|C|+n)
q′

�e parties open JαK to get α.

�e parties locally set JvK = 〈α, JyK〉 − JcK− 〈ε, JzK〉 . v ∈ Zq′
h′ = H2({Jt`K}0≤`≤|C|/n, JαK, JvK)

h′−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ ` ∈ [0, |C|/n], j ∈ [1, n] such that:

- either Jv`jKi∗ = 0 with v`j = 1
- or Jv`jKi∗ = A− 1 with v`j = 0,

- or Jr`jKi∗ = 0 with r`j = 1
- or Jr`jKi∗ = A− 1 with r`j = 0,

then abort.

yv` = v` − Jv`Ki∗ and yr` = r` − Jr`Ki∗
(seedi, ρi)i 6=i∗ , comi∗ ,

{yv` ,yr`}0≤`≤|C|/n, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JcKi, {Jv`Ki, Jr`Ki}0≤`≤|C|/n ← PRG(seedi)
Rerun the party i as the prover and compute comi.

For 0 ≤ ` ≤ |C|/n,

∆v` = yv` −
∑
i 6=i∗Jv

`Ki, ∆r` = yr` −
∑
i 6=i∗Jr

`Ki
∆t` = 〈w,∆v`〉+ 〈s,∆r`〉
Jt`Ki∗ = t` −∆t` −

∑
i6=i∗Jt

`Ki
∆v = 〈α,∆x〉 −∆c− 〈ε,∆z〉, JvKi∗ = −∆v −

∑
i 6=i∗JvKi

Check h = H1({∆v`,∆r`}0≤`≤|C|/n,∆c, com1, . . . , comN)

Check h′ = H2({Jt`K}`, JvK)
Return 1

Protocol 18: Zero-knowledge argument for circuit satis�ability.

E. DESCRIPTION OF THE ACCESS STRUCTURE FOR OUR TZKP

Essentially, secret sharing schemes can be classi�ed according to their hierarchical access structure. Obviously, any

user with a secret share from an additive/multiplicative/Shamir LSSS is at the same hierarchy level as any other user.

However, we could consider LSSS with a more involved access structure, and this notion of hierarchical access structure

aims to embrace scenarios with a hierarchy in the set of users.

An access structure on a �nite set U of users is a monotone increasing family Γ ⊆ 2U (which denotes all the possible

subsets of U), meaning that if A ⊆ B ⊆ U and A ∈ Γ, then B ∈ Γ.

De�nition 20 (Hierarchical access structures). Let Γ be an access structure on U . We say that the user u ∈ U is hierar-

chically superior to the user v ∈ U , and we write v � u, if for every subset A ⊆ U \ {u, v} with A ∪ {v} ∈ Γ, we have

A ∪ {u} ∈ Γ. An access structure is said to be hierarchical if all users are hierarchically comparable (i.e., for every couple

of users {u, v} ∈ U , either v � u or u � v).

In the literature, these kinds of schemes are o�en based on multivariate Lagrange interpolation or Birko� interpo-

lation [PS04, TD09], to achieve weighted threshold access structures or multilevel access structures.

Hierarchical access structure for our black-box construction of Section 6.3. To provide a clearer picture of the construction,

we give its access structure. �e two layers of MPC naturally de�ne two levels of hierarchy. Any prover is hierarchically

superior to any party, and we adapt the general de�nitions of hierarchical threshold access structures to our context. In

particular, it is captured with the following hierarchical access structure:

Γ = {A ⊂ U : |{1|A∩Hi|>N−1}i∈[1,k]| > t} (E.1)

where U denotes the set of theNk parties (N parties emulated by each of the k users) with the rating abuse Pi ∈ U ⇐⇒
{Pi,`}`∈[1,N] ⊂ U , and {H1, . . . ,Hk} denotes the k sets of parties (one for each user). �en, given this access structure,

for any subset A of the Nk parties,

A ⊂ Γ ⇐⇒ the parties in A can recover the secret.

We have chosen the threshold (N − 1, N) for the parties in the head of provers, but the previous access structure can

be generalized to other thresholds (e.g. those for Shamir secret sharing).

F. VERIFIABLE SECRET SHARING SCHEME

We consider the optimized 5-round version [GIKR01], the original 7 rounds version have been introduced with the

BGW protocol [BGW88]. It has communication complexityO(n2 log |F|(1+ bc)), where bc denotes the communication

complexity over the broadcast channel. �en, several other schemes have been proposed based on Shamir’s secret

sharing scheme achieving be�er round complexity [GIKR01, KKK09, AKP20]. But none of them achieves strictly be�er

asymptotic communication complexity.

We present the next VSS protocol in the context of Section 6.4. Eventually, we can adapt this protocol (with heavy

notations) so that the output of each user Pi is LJsKiM, where L·M denotes the sharing scheme in the head of provers.

F. Veri�able Secret Sharing Scheme 104

Veri�able secret sharing protocol
Input: �e dealer D holds s ∈ F
Output: Each user Pi ∈ {P1, . . . ,Pk} gets JsKi, where J·K denotes the Shamir secret sharing of degree t.

· Round I:
�e dealer D generates a random bivariate polynomial S(x, y) ∈ F[x, y] of degree t in both variables

such that S(0, 0) = s. For every i ∈ [1, k], D sends to each user Pi S(0, i), Fi(x) := S(x, i) and

Gi(x) := S(i, y).

· Round II:
For every j ∈ [1, k], Pi sends {Fi(j), Gi(j)} to Pj .

· Round III:
For every j ∈ [1, k], let {uj,i, vj,i} denote the values received by Pi from Pj in Round II. Prover Pi
computes ui = (Gi(1) − u1,i, . . . , Gi(k) − uk,i), and vi = (Fi(1) − v1,i, . . . , Fi(k) − vk,i), and

broadcasts it. For each j ∈ [1, k], if the j-th component of ui or of vi is not equal to 0, then Pi
broadcasts a complaint complaint(i, j, Fi(j), Gi(j)). If no user broadcasts a complaint, then every

user Pi outputs Fi(0) and halts.

· Round IV:
For every complaint(i, j, u, v) broadcast by Pi, either u = S(j, i) and v = S(i, j), or D reveals

(i, Fi(x), Gi(y)).

· Round V:
For every j 6= k, user Pi marks (j, k) as a joint complaint if it viewed complaint(k, j, u1, v1)

and complaint(j, k, u2, v2) broadcast by Pk and Pj , such that u1 6= v2 or v1 6= u2. If there exists a

joint complaint (j, k) for which the dealer did not broadcast (j, Fj(x), Gj(y)) nor (k, Fk(x), Gk(y)),

then go to output decision step (and do not broadcast consistent). Otherwise:

Consider the set of revealed (j, Fj(x), Gj(y)) messages sent byD. If there exists a message in the

set with j = i then reset the polynomials Fi(x) andGi(y) to the new polynomials that were received,

and go to the output decision step (without broadcasting consistent). If there exists a message in

the set with j 6= i and for which Fi(j) 6= Gj(i) or Gi(j) 6= Fj(i), then go to output decision step

(without broadcasting consistent). If the set of reveal messages does not contain a message that

ful�lls either one of the above conditions, then proceed to the next step.

Broadcast the message consistent.

· Output decision: If at least k−t users broadcast consistent, Pi outputsFi(0). Otherwise, Pi outputs

⊥.

Fig. F.1: Veri�able secret sharing protocol

ABSTRACT

Abstract

�is thesis aims to study zero-knowledge arguments, a cryptographic primitive that allows to prove a statement

while yielding nothing beyond its truth (we may call it proof instead of argument depending on the security model).

Speci�cally, we focus on a family of arguments whose construction is based on secure multiparty computation. It is

well-known that, given any functionality, there exists a secure multiparty protocol computing it. Let us take a generic

one-way function f , and a secure multiparty protocol computing f , then it has been shown seventeen years ago that we

can build a zero-knowledge argument for theNP-problem of �nding a pre-image of f . �is construction was considered

only theoretical until a few years ago, and this thesis contributes to the emergence of new techniques as well as e�cient

applications.

As an appetizer, we develop simple zero-knowledge protocols that signi�cantly improve the state-of-the-art communica-

tion complexity for some well-known problems. Our �rst substantial contribution, with a desire to share small elements

over large �elds, is the introduction of a sharing over the integers that is securely embedded in our protocols with some

arti�cial abortion. Applications are manifold, eventually in the post-quantum regime. In the line with our sharing over

the integers, we propose a cryptographic string commitment scheme based on subset sum problems. In particular, it

enables e�cient arguments for circuit satis�ability. �en, we present a proof construction employing conversion be-

tween additive and multiplicative secret sharings, leading to e�cient proofs of linear and multiplicative relations. �e

applications are again manifold when designing arguments and digital signatures. Finally, leaving aside protocols con-

ception, we explore cryptography foundations with multi-prover zero-knowledge proofs, a framework for distributing

the prover’s computation of interactive zero-knowledge proofs. To capture the full interest of this dispatching, we add

to the literature a fundamental result for threshold zero-knowledge proofs for generic NP-statement.

	Cryptography
	Zero-Knowledge Proofs
	P versus NP Problem
	Provable Security
	Secure Multiparty Computation
	Organization of this Thesis
	Our Results
	Our Other Contribution

	Preliminaries
	Notations
	Cryptographic Primitives
	Cryptographic hash functions
	Pseudo-random generator
	Commitment schemes

	Zero-Knowledge Proofs
	Splitting lemma
	Non-interactive proofs

	Secure Multiparty Computation
	Secret sharing schemes
	Secure multiparty computation

	The MPC-in-the-Head Paradigm
	The Framework
	Construction of the interactive proof
	Security and complexity analysis

	Symmetric Optimizations
	GGM trees
	Parallel optimization of GGM trees

	MPC Modeling Optimizations
	Hypercube optimization
	Batch product verification
	Cut-and-choose strategy

	Examples and First Contributions
	RSA-in-the-Head DBLP:conf/esorics/MaireV23a
	DDLP-in-the-Head DBLP:conf/esorics/MaireV23a

	Zero-Knowledge Protocols with Sharing over the Integers
	Introduction
	Prior works
	Contributions

	General Idea
	The naive approach
	Sharing on the integers and opening with abort
	Binarity proof from batch product verification
	Binarity proof from masking and cut-and-choose strategy
	Asymptotic Analysis

	Protocols and Security Proofs
	Protocol with batch product verification
	Security proofs for Protocol 5
	Protocol with cut-and-choose strategy
	Security proofs for Protocol 6
	Decreasing the rejection rate

	Instantiations and Performances
	Subset Sum instances
	Zero knowledge protocols
	Comparison with generic techniques

	Further Applications
	Short Integer Solution Problem
	Fully Homomorphic Encryption
	Digital signatures from Boneh-Halevi-Howgrave-Graham PRF

	Commitments with Efficient Zero-Knowledge Arguments
	Contributions
	Subset sum problems
	String commitments from subset sum problems
	Formal description and security analysis
	Zero-knowledge arguments of opening
	Zero-knowledge arguments for Boolean relations
	XOR gates
	Instantiation and performances
	Arguments for circuit satisfiability

	Zero-Knowledge Arguments via Sharing Conversion
	Related Works and Contributions
	Sharing Conversion and Design Principle
	Sharing conversion technique
	General protocol
	Legendre PRF

	Proving Knowledge of a Double Discrete Logarithm
	Performances
	Security proofs

	Proving Knowledge of a PKP Solution
	A first approach for proving the knowledge of a permutation
	Security proofs
	Other analysis and approach

	Proving Knowledge of a Fewnomial Pre-Image
	Protocol and performances
	Security proofs
	Digital signature based on the FIP

	Threshold Proofs from Secure Multiparty Computation
	Introduction
	Threshold Zero-Knowledge Proof System
	TZKP proof system

	A Black-Box Construction for TZKP
	First layer: MPC protocol between the provers
	Second layer: MPC protocols in the head of provers
	A TZKP protocol

	A Construction Based on VSS-BGW
	BGW protocol and its robustness
	Verifiable secret sharing scheme
	Multiplicative gate protocol

	Low-Depth Arithmetic Circuits and Applications
	Achieved complexity
	Turning TZKP into a non-interactive proofs system
	Applications

	Appendix
	The 3-round Variant of Protocol 6
	Signature Schemes with Subset Sum Problem
	Zero-Knowledge Argument for Boneh-Halevi-Howgrave-Graham PRF
	Description of Protocols 16, 17, and 18
	Description of the Access Structure for our TZKP
	Verifiable Secret Sharing Scheme

