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Résumé (moins de 1000 caractéres)

Limagerie non-invasive nous informe sur l'organisation fonctionnelle du cor-
tex, mais les différences individuelles compliquent I'étude de larges popula-
tions et les comparaisons entre espéces. Nous introduisons Fused Unbalanced
Gromov-Wasserstein, un nouveau modeéle de Transport Optimal pour comparer
les structures corticales entre individus et espéces, qui aligne I'activité fonc-
tionnelle tout en préservant I'anatomie du cortex. Nous évaluons la pertinence
des alignements calculés avec une tache de décodage visuel. A cette fin, nous
entrainons des algorithmes prédisant les perceptions visuelles sémantiques a
partir de I'activité cérébrale, et montrons que I'alignement fonctionnel permet
de transférer ces décodeurs a de nouveaux participants. En particulier, un dé-
codeur entrainé chez des participants humains décode avec succes les percep-
tions de primates non-humains, ouvrant ainsi la voie a des comparaisons inter-
espéces nouvelles que des jeux de données plus larges pourront prolonger.

Abstract (less than 1000 characters)

Therise of non-invasive neuro-imaging allows insights into brain function, yet in-
dividual differences complicate population-level conclusions and inter-species
comparisons. We introduce a new method called Fused Unbalanced Gromov-
Wasserstein (FUGW) that leverages Optimal Transport to compare cortical
structures across individuals and species. FUGW aligns functional activity while
preserving the anatomy of the cortex. We assess the relevance of computed
alignments with a visual decoding task. To this end, we train algorithms pre-
dicting semantic visual perceptions from brain activity and show that functional
alignment allows the transfer of these decoders to unseen participants. In par-
ticular, we show that a decoder trained in human participants can successfully
decode brain activity in non-human primates. This method promises enhanced
inter-species functional mapping, suggesting avenues for future research in ex-
panding datasets and stimulus diversity.



Résumé (moins de 4000 caractéres)

Limagerie cérébrale non-invasive a permis d’acquérir des connaissances pré-
cieuses sur le fonctionnement du cerveau. En particulier, de larges groupes
d’individus ont été scannés a l'aide de I'imagerie par résonance magnétique
fonctionnelle (IRMf) pendant qu'ils effectuaient diverses taches, dans l'espoir
que ces données aideraient a cartographier quelles régions du cortex sont
impliquées dans le traitement de stimuli ou I'exécution de taches spéci-
figues. Cependant, cette entreprise est limitée par le fait que I'anatomie et
I'organisation fonctionnelle du cortex différent entre les individus, ce qui rend
difficile I'étude de larges populations. Par ailleurs, des différences et similitudes
existent également entre les primates humains et non humains, ce qui nous
aide a comprendre la singularité du cerveau humain tout en complexifiant les
comparaisons entre les espéces.

Nous utilisons le Transport Optimal pour modéliser ces similitudes et dif-
férences corticales entre les individus. A cette fin, nous introduisons Fused
Unbalanced Gromov-Wasserstein (FUGW), un nouveau probléme d’optimisation
calculant des alignements entre les surfaces corticales d'individus différents en
maximisant la similarité fonctionnelle entre les zones corticales appariées, tout
en pénalisant les grandes déformations anatomiques du cortex. Nous mon-
trons que, entre participants humains, les alignements calculés peuvent prédire
avec succes les activations corticales liées a des stimuli n'ayant pas été util-
isés pour calculer I'alignement. Cela suggere que les alignements fonctionnels
obtenus sont cohérents. Nous publions un package Python open-source pour
calculer ces alignements efficacement sur GPU.

Ensuite, nous étendons le package FUGW pour les données de haute résolu-
tion et fournissons une série de nouveaux solveurs. De plus, nous étudions
un large spectre de configurations pour entrainer et tester ces alignements
fonctionnels, en nous appuyant par exemple sur des données de visionnage
de films pour calculer des alignements humains a humains, ou des données
multimodales — impliquant des stimuli visuels, auditifs et tactiles — pour cal-
culer des alignements entre humains et macaques. Cependant, ces expéri-
ences montrent I'importance d’évaluer quantitativement les alignements cal-
culés au travers d'une nouvelle tache pertinente pour les deux espéces.

Pour cela, nous avons recours a une tache de décodage visuel. Ce probleme
complexe consiste a entrainer des modéles a prédire, a partir de leur activ-
ité corticale, quels stimuli sont actuellement vus par les participants. Nous
adoptons d’abord cette approche sur des participants humains, et montrons
gu’un décodeur sémantique visuel entrainé chez un individu humain peut étre
utilisé avec succes chez d'autres participants si leurs données sont alignées
avec FUGW. Nous mesurons également que les alignements anatomiques clas-
siques ne parviennent pas a atteindre la méme performance de décodage. De
plus, nous montrons que l'alignement de plusieurs participants humains per-



met de former des décodeurs plus performants grace a un ensemble de don-
nées d'entrainement plus important. Enfin, dans un contexte inter-espéces,
nous montrons qu’un décodeur cérébral entrainé chez des participants hu-
mains uniqguement peut décoder avec succeés la perception visuelle de primates
non humains. Cela suggeére que les alignements fonctionnels calculés entre les
espéces contiennent des informations pertinentes concernant les similarités et
les différences fonctionnelles entre les deux espéces.

Ces recherches ouvrent la voie a une cartographie fonctionnelle inter-espéces
plus précise. De futurs travaux pourraient tirer parti de I'acquisition de jeux de
données plus importants, nécessaires pour entrainer des décodeurs précis, et
d’'une formulation du probleme d’alignement fonctionnel d'une maniére qui ne
nécessite pas que les individus alignés regardent le méme ensemble de stimuli.



Abstract (less than 4000 characters)

The advent of non-invasive neuro-imaging devices has made it possible to ac-
quire invaluable insights into how the brain works. In particular, large cohorts
of patients and healthy individuals have been scanned using functional Mag-
netic Resonance Imaging (fMRI) while performing various tasks, hoping that
this data would help map which cortical areas are involved in processing spe-
cific stimuli or performing particular tasks. However, this endeavour is limited
by the fact that the anatomy and functional organisation of the cortex differ
between individuals, thus making it hard to draw conclusions at the population
level. Moreover, differences and similarities also exist between human and non-
human primates, which, on the one hand, helps to understand the uniqueness
of the human brain, and, on the other hand, makes it challenging to compare
cortices across species.

We propose to tackle this issue using Optimal Transport (OT) to model corti-
cal similarities and differences between individuals, even across species. To
this end, we introduce a new OT loss, denoted as Fused Unbalanced Gromov-
Wasserstein (FUGW). The underlying optimisation problem seeks to derive
alignments between cortical surfaces of different individuals by maximising
functional similarity between matched cortical areas, while penalising large
anatomical deformations of the cortical sheet between subjects. We show that,
between human participants, alignments computed with this loss can success-
fully predict cortical activation maps that were not used to derive the align-
ment, suggesting that derived functional alignments are meaningful. We re-
lease an open-source Python package implementing efficient GPU routines to
derive these alignments.

In follow-up work, we extend the FUGW package to work data acquired at a
high spatial resolution, and provide a series of new solvers to derive solutions
to the underlying optimisation problem. Subsequently, we study a variety of dif-
ferent setups to train and test these functional alignments, for instance, relying
on naturalistic movie-watching data to compute human-to-human alignments,
or multi-modal data - involving visual, auditory, and tactile stimuli — to derive
human-to-macaque alignments. However, these experiments stress the need
for a way to evaluate the relevance of computed alignments using an evalua-
tion task relevant to both species.

To this end, we design a visual decoding task that consists of training mod-
els to predict what stimuli are currently seen by participants from their brain
activity. It is a complex problem, thus making it a good evaluation task to as-
sess the relevance of computed functional alignments. Consequently, we first
test this approach on human participants and show that a visual semantic de-
coder trained in one human subject can be used successfully in other partic-
ipants if their data are functionally aligned with FUGW. Classical anatomical
alignments fail to reach the same decoding performance. Moreover, we show



that aligning multiple human participants together allows one to train better-
performing decoders using a larger training dataset collected from several indi-
viduals. Finally, we apply this framework in an inter-species setup and show that
a brain decoder trained in human participants only can successfully decode the
visual perception of non-human primates whose functional activity has been
aligned to that of humans, hence suggesting that functional alignments com-
puted across species contain relevant information regarding the functional sim-
ilarities and differences between the two species.

This work paves the way towards more precise inter-species functional map-
ping. Future directions could involve acquiring larger datasets needed to train
accurate brain decoders, and framing the functional alignment problem in a way
that does not require aligned individuals to watch the same set of stimuli.
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Overview

The first part gives a historical and conceptual overview of the context of this
thesis. Chapter 1 introduces the crucial ideas of functional Magnetic Reaso-
nance Imaging (fMRI) and how this non-invasive imaging technique can help
study the cortices of human and non-human primates. It also shows how the
shape and organisation of the cortex differ between individuals, even in the
same species, and reviews historical alignment methods developed to address
this issue. Chapter 2 illustrates how naive mathematical approaches to the
alignment problem fail, and introduces a class of methods based on Optimal
Transport (OT) to solve it.

The second part presents the main methodological contributions of this the-
sis. First, Chapter 3 introduces the Fused Unbalanced Gromov-Wasserstein
(FUGW)' problem, a novel OT method to align the cortices of different individ-
uals based on anatomical and functional data. It shows that this method suc-
cessfully predicts activated cortical areas from unseen stimuli.

Secondly, Chapter 4 extends the Python package implementing FUGW to handle
high-resolution data, and enriches the list of available optimisation problems
and solvers. Chapter 5 builds on these extensions to present preliminary work
on aligning human and non-human primate cortices. This attempt illustrates
the need for an evaluation task relevant to both species to assess the quality of
computed alignments.

To this end, Chapter 6 evaluates the relevance of the functional alignments be-
tween human participants on a visual decoding task. It shows that it is possible
to train an algorithm to decode visual perceptions in one participant and apply
it to another. Finally, Chapter 7 leverages all the previous work: it shows that
one can train a decoder on human participants and successfully transfer it to
non-human primates through functional alignment.

Lastly, Chapter 8 touches upon other contributions made during this the-
sis regarding deep-phenotyping, the development of visualisation tools for
neuroimaging data through open-source projects like brain-cockpit? and
nilearn®, and their deployment within the Human Brain Project®. Finally, it dis-
cusses the current work’s limitations and future research directions.

Thttps://github.com/alexisthual/fugw
2https://github.com/alexisthual/brain-cockpit
3https://nilearn.github.io
“4https://brain-cockpit.tc.humanbrainproject.eu
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equality by definition, for instance \|x||§ 2 (r,2)

0, (0, ..., 0) the vector of zeros in R™

1, (1, ..., 1) the vector of ones in R"

I, the identity matrix in R™"

Py, (Zj P, ;); € R™ the first marginal of P € R™”

Py (3>, P.;); € RP the second marginal of P € R™»
(X,Y) >_:.; Xi,;Yi j the generalised scalar product between

X,Y € R™P. We extend its definition to tensors of any
matching shape

XoY (XiyjYiyj)‘ € R™P? the Hadamard - i.e. element-wise -

J
product between X, Y € R™?. We extend its definition to
tensors of any matching shape

XoY (Xi’j/Yi,j) - € R™P the Hadamard - i.e. element-wise —
2,7

division between X, Y € R™?. We extend its definition to
tensors of any matching shape

X®Y (Xi’ij,l) € R™P%" the Kronecker — or tensor — product

1,5kl

between X € R™?, Y € R%". We extend its definition to
tensors of any shape

XY (Xm‘ + Yk,l) € R™P4" the Kronecker — or tensor —
1,5,k,1
addition between X € R™?,Y € R?". We extend its definition

to tensors of any shape

KL(X|Y) >, Xlog f, the Kullback-Leibler divergence between

X,Y € R™P, where the log and division are computed
element-wise
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ABCD Adolescent Brain Cognitive Development
BOLD Blood Oxygenation Level Dependent
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fMRI functional Magnetic Reasonance Imaging
FUGW Fused Unbalanced Gromov-Wasserstein
GE-EPI Gradient Echo Echo Planar Imaging
GLM General Linear Model

HCP Human Connectome Project

HRF Hemodynamic Response Function

IBC Individual Brain Charting
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IT Inferior Temporal

MION Monocrystalline Iron Oxide Nanoparticle
MRI Magnetic Reasonance Imaging

MSM Multimodal Surface Matching

MT Middle Temporal

NMR Nuclear Magnetic Reasonance

OT Optimal Transport

PEG Phase Encoding Gradient

ROI Region of Interest

SRM Shared Response Model

SSG Slice Selection Gradient



Contents

STS Superior Temporal Sulcus
VFWA Visual Word Form Area
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Chapter 1

Acquisition and analysis of
functional MRI data

Functional MRI

Principles of functional MRI

Introduction to the physics of MRI

Magnetic Reasonance Imaging (MRI) provides a non-invasive way of imaging
scanned objects. To do so, it leverages Nuclear Magnetic Reasonance (NMR),
a physical phenomenon describing the fact that, when placed in a magnetic
field, nuclei of certain atoms will absorb and re-emit radio-frequency energy. By
measuring this re-emitted energy, one can gain information about the composi-
tion and behaviour of living tissues like those in the brain and reconstruct their
images. One can find many introductions to the physics of MRI online. In par-
ticular, | highly recommend content from the Youtube channels thePIRL' and
Radiology Tutorials?, which published a series of videos covering a large
proportion of concepts of interest in MRI physics. The following paragraphs
offer a dense memo for readers already familiar with the physics of MRI.

Larmor precession Scanned objects are placed in a magnetic field B, — typi-
cally on the order of a few Teslas (T) — emitted by a powerful magnet. Specific
atomic nuclei, like that of Hydrogen, align with this magnetic field. When aligned
with the magnetic field, these nuclei are in an unstable, high-energy state. Be-
cause this state is unstable, they can be tipped from the alignment axis by re-
ceiving a radio-frequency pulse - denoted as the RF pulse - on the order of tens
of micro-teslas. Once tipped off the main axis, they will precess about it and
emit a radio-frequency transverse to it. For a given nucleus, the frequency w at

Thttps://www.youtube.com/@thepirl903
2https://www.youtube.com/@radiologytutorials
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which it oscillates depends on its nature: w is proportional to its gyromagnetic
ratio v and the magnetic field strength, according to the Larmor law w = ~vB.
This oscillating transverse magnetic field induces a voltage difference in coils
placed around the object in the scanner. This is the signal used to reconstruct
images of the object.

This signal only lasts for a limited amount of time depending on the nature of the
emitting tissue: typically a few milliseconds for bones, about 100 milliseconds
for white and gray matter, and up to several hundreds of milliseconds for water.
Moreover, the measured signal S is the sum of all signals from each emitting
particle. Thus, the total measured signal is null if the respective phases of par-
ticles are not synchronised. The theoretical duration of synchronicity between
emitting particles is referred to as the spin-spin or transverse relaxation time and
noted Ts. It typically lasts a few dozen milliseconds. In practice, synchronicity
decays much faster due to inhomogeneities in the magnetic field. The actual
decay rate is noted T (of the order of a few milliseconds). The phenomenon
in which the synchronicity between emitting particles diminishes in time is re-
ferred to as the free induction decay (FID).

Finally, nuclei will eventually realign with the Bj field, and thus go back to their
initial unstable, high-energy state. The duration of this phenomenon also de-
pends on the nature of the tissue, and typically lasts a second. It is referred to
as the spin-lattice or longitudinal relaxation time and noted T7. The tipping and
realignment steps are repeated many times to produce images of the object
scanned.

Magnetic field gradients As explained in the previous paragraph, the fre-
quency w at which particles oscillate is proportional to the magnetic field. If
the magnetic field were uniform in space, there would be no way to determine
where the emitting particles were located. To alleviate this problem, three types
of gradient coils are used to modify the properties of the precessing nuclei de-
pending on their location. First, Slice Selection Gradient (SSG) coils add spatial
variations of the B, field, usually along the z-axis (bottom to top). Variations
are typically on the order of a few milliteslas per meter. When the gradient is
active, particles located at different heights will react to different frequencies
w of the RF pulse. Therefore, if a single frequency w is emitted, only particles
of a given slice will emit a coherent signal that can be measured. SSG coils are
usually switched on simultaneously with the RF pulse.

Then, the same principle is employed in the selected slice to modify the fre-
quency of precession of particles along the x-axis (left to right), using Frequency
Encoding Gradient (FEG) coils. Finally, Phase Encoding Gradient (PEG) coils will
produce a gradient along the y-axis (front to back) so that some nuclei will pre-
cess faster and some slower. Frequency-encoding and phase-encoding coils
are typically switched on during a few milliseconds, and only after the RF pulse
was sent.

It is important to note that changes in magnetic gradients are not instanta-
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neous: the speed of change is measured by the slew rate, which is usually on
the order of magnitude of 10-200 mT / m/ ms.

Image reconstruction with inverse Fourier transform The slice selection coil
ensures that only particles in a given slice are excited by the RF pulse. The
frequency-encoding and phase-encoding coils will make particles in the slice
oscillate at different frequencies and phases depending on their (x,y) loca-
tion. One can show that the magnetisation M (x,y) emitted by particles in
the slice is now multiplied by a complex sinusoidal function (%), The key
idea behind modern MRI is to measure the overall signal S for different, cho-
sen values of ¢(z,y), as they form the discrete Fourier transform M of the
signal of interest M (xz,y). Therefore, one does not observe M (z,y) directly,
but rather its Fourier transform M (k,, k,), where k, and k, are coordinates in
the so-called k-space. Note that with our notations, ¢(z,y) £ k.x + k,y and
S(t) = S(ky,ky) = [ [ M(z,y)e?®¥) dzdy. Importantly, the value of &, and
k, is controlled by the encoding coils - it is proportional to the integral of the
frequency-and phase-encoding coils in time. One can thus navigate the k-space
and measure the complex value M (k,, k,) at different coordinates (k,, k, ). Fi-
nally, M can be reconstructed by applying the inverse Fourier transform to M,
which yields an image of the slice scanned. Repeating this process for many
different slices will allow one to reconstruct the 3D image of the object scanned.
As a note, it can be helpful to think of images being built up from a combination
of spatial frequencies, with low frequencies corresponding to large structures
and high frequencies corresponding to fine details. The center of k-space - i.e
values of k, and k, close to zero — corresponds to low frequencies, and the
edges of k-space correspond to high frequencies. We encourage the interested
reader to look at the FSL course on MRI physics® for more information.

MRI sequences Navigating the k-space - i.e. choosing the dynamics of gradi-
ent coils — can be done in many different ways. Different setups are referred to
as MRI sequences. A naive MRl imaging approach would send a single RF pulse,
turn on the frequency- and phase-encoding coils for a brief moment, measure
the signal emitted by the object scanned for the underlying (%,, k,)) coordinate,
and wait for particles to realign with the Bj field before repeating the process
for different values of (k,, k, ). However, as T; durations are typically on the or-
der of a second, this would lead to very slow imaging. Instead, researchers have
developed MRI sequences making complex use of gradient coils so as to ac-
quire many different phases ¢ without having to wait for longitudinal relaxation.
Moreover, the RF pulse does not need to align particles orthogonally to the B,
field: it can tip them by any given flip angle «. Smaller values of o will result
in shorter longitudinal relaxation times. The best value of « is that which gives
maximal transverse signal while yielding short acquisition times. Consequently,
different sequences have been developed. For dynamical images of the brain,

3https://open.win.ox.ac.uk/pages/fslcourse/lectures/additional/2019/fs|_introMRI.pdf
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Figure 1.1: Schematic view of the GE-EPI MRI sequence

A. Coils of the MRI measure the amplitude of the signal emitted by the object
scanned. This signal is the sum of all signals emitted by particles in the ob-
ject. Its amplitude decays at the rate of Ti. Its shape is affected by gradient
coils. B. The RF pulse tips particles off the B, field by an angle a. The slice
selection gradient coil ensures that only particles in a given slice are affected.
The frequency-encoding and phase-encoding gradients encode the (z, y) coor-
dinates of particles in the slice. C. The overall signal is measured many times
when the signal’s amplitude increases due to gradient echo. An inverse Fourier
transform run on all samples will indicate what frequencies and phases have
yielded the observed signal. The k-space (right) is travelled in a so-called carte-
sian trajectory indicated by green arrows.

Adapted from the MRI Physics Course #21 from Radiology Tutorials.
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like those studied in this thesis, the most commonly used sequence is that of
Gradient Echo Echo Planar Imaging (GE-EPI) displayed in Figure 1.1. Finally, ac-
quiring signal rom multiple slices simultaneously using multi-band sequences
is possible, significantly reducing the time needed to acquire images.

Acquiring MRI images of the brain

T1- and T2-weighted images Researchers can rely on either the 77 and T3
relaxation times to gain information about the composition of tissues in the
scanned object. At a given time t, the signal a tissue emits depends on the
relaxation times T3 and Ty of this tissue. T3, typically longer than T3, is used
to contrast between tissues and reconstruct anatomical images of the brain.
These are called T;-weighted images. On the other hand, 75 is much shorter
and is typically used to study the dynamics of the brain. These are called T;-
weighted images, or sometimes abusively T,>-weighted images.

BOLD In particular, MRI can measure changes in blood flow in the brain, which
correlate with neural activity. More precisely, neurons consume energy from
glucose and oxygen. When active, they consume more energy and need an
additional supply of oxygen provided by the blood. Depending on the activity
of neurons, surrounding blood vessels will exhibit different levels of oxy- and
deoxyhemoglobin. Ogawa et al., 1990 showed that oxy- and deoxyhemoglobin
have different magnetic properties, allowing one to distinguish them using MRI.
It is the principle of Blood Oxygenation Level Dependent (BOLD) imaging, and
blood oxygenation is a proxy for neural activity.

It is important to note that modifications of oxy- and deoxyhemoglobin con-
centration are not instantaneous. After neurons have been activated, it takes a
few seconds for the oxygen level in the blood to peak before it decreases back
to normal. The concentration’s evolution due to neuronal activity is called the
Hemodynamic Response Function (HRF). Interestingly, the shape of the HRF
varies across areas of the cortex of a given individual, with aging, and across
participants in general.

Contrast agents BOLD imaging is routinely used to image the dynamics of
the human brain. However, it may not be sensitive enough to probe the dynam-
ics of smaller systems, like those of monkeys. Consequently, researchers have
resorted to using contrast agents. These agents are injected into the blood-
stream and modify the blood’s magnetic properties for a limited time, allowing
one to measure the dynamics of smaller systems. In particular, the authors
of Leite et al.,, 2002 show that injecting macaques with Monocrystalline Iron
Oxide Nanoparticle (MION) can lead to a 3-fold increase in signal changes of
functional images compared to BOLD. Note that the response function associ-
ated with contrast agents can differ greatly from that of BOLD, as illustrated in
Figure 1.2.
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Figure 1.2: Examples of Hemodynamic and MION Response Functions De-
pending on the participant, on the area of the cortex, and on other factors, the
shape of the HRF can vary greatly. We show two canonical examples of HRF
coming from SPM and Glover, 1999. We also show the response function for
MION.

Adapted from the Nilearn documentation.

Functional MRI stimuli

Functional MRI seeks to study the dynamics of the brain, and significant ef-
forts have investigated how these change when participants are involved in
controlled activities.

Task-based protocols

A large proportion of fMRI studies involve participants performing specific
tasks. These tasks can be as simple as watching images and indicating if they
were presented before [Haxby et al., 2001], or as complex as solving mathe-
matical problems [Amalric and Dehaene, 2016]. Stimuli are often organised in
a so-called block design, which alternates between short periods of rest and
task performance. Many difficulties arise when designing tasks for fMRI stud-
ies. In particular, researchers must design control tasks to isolate the brain’s
response to the task of interest. For instance, showing images of faces and
non-face objects helps isolate areas of the brain that are more involved in face-
than object-perception. In this case, viewing images of faces is the main task,
and viewing images of non-face objects is the control task.

Task-free protocols

As task-based protocols may introduce biases in how researchers probe the
brain’s dynamics, more natural, task-free protocols have gained popularity.

Naturalistic stimuli In particular, so-called naturalistic stimuli are extensively
used to study the brain’s dynamics. These stimuli are designed to mimic the
complexity of the real world and are thought to elicit more natural responses
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from participants. Nastase et al., 2020 compiles a series of arguments in favour
of using naturalistic stimuli in fMRI studies if one wants to build generalisable
and robust models of the brain. Naturalistic tasks range from passive tasks like
watching short video clips [Wen et al., 2017] or listening to stories [LeBel et al.,
2023], to more interactive tasks like playing video games [Zhang et al., 2020].

Resting-state Extensive research has been conducted on data collected from
participants not involved in particular instructed tasks. In particular, the resting-
state protocol scans immobile participants in the hope of capturing the brain’s
intrinsic dynamics. Interestingly, the authors of Horikawa et al., 2013 have also
acquired images in sleeping participants, seeking to reconstruct their visual per-
ceptions while dreaming.

Analysing functional MRI data

Images collected with fMRI are noisy. Moreover, changes in blood oxygenation
measured by BOLD imaging are of the order of a few percents and cannot be
precisely detected by the naked eye. Therefore, researchers have consistently
been developing statistical methods to analyse fMRI data, extract meaningful
information from it, and link it with the properties of stimuli presented during
the acquisition. We divide these methods into two categories: encoding and
decoding models.

Encoding

Encoding models seek to predict the brain’s response to stimuli based on the
properties of these stimuli. While many approaches are possible, most encod-
ing models are framed as linear optimisation problems in which the brain re-
sponses are modelled as a linear combination of the properties of the stimuli.

GLM The most commonly used encoding approach is the General Linear
Model (GLM). It first derives a design matrix X € R%" which compiles infor-
mation regarding the stimulus presented to the participant at each time point
t, which we seek to correlate with the brain’s activity. On top of these stimulus-
related regressors, the design matrix also includes confounding regressors that
could explain parts of the signal without being related to brain activity. Figure
1.3 shows an example of a design matrix for a block-design experiment. These
confounding factors mainly include the participant’s head motion, or drifting
effects in the scanner. In a block-design experiment, the design matrix would
typically contain a column for each type of task block, with a 1 when the block
is active and a 0 otherwise. These rows need to be convolved with an HRF to
account for the delay between the presentation of the stimulus and the brain’s
response. Finally, we seek to derive 3 € R™", the matrix of beta coefficients,
which quantifies the relationship between each of the r types of stimuli and the
activity Y € R%™ of each of the n voxels in the brain:
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Y=XB+e¢

where £ models noise. If noise is assumed to be independently identically dis-
tributed (i.i.d.), the equation can be solved using ordinary least squares. How-
ever, it is known that the noise in fMRI data is not i.i.d. and exhibits temporal
and spatial correlations. Therefore, it is common practice to use autoregressive
models instead [Woolrich et al., 2001].

201

401

60 1

Scan number

80 1

100 1

120 1

Regressors

Figure 1.3: Example design matrix for a block-design fMRI experiment One
seeks to determine areas of the cortex that are more active when the participant
is presented with one type of stimulus — denoted as a condition — compared
to another. Movements — translations and rotations — of the participant’s head
are recorded during the acquisition and regressed out of the signal. Finally, a
constant term and various drifts are added to the design matrix to account for
the scanner’s drift.

Adapted from the Nilearn documentation.

Fixed-effect contrasts At this stage, the matrix of beta coefficients contains
information linking areas of the brain with the stimuli presented to the partici-
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pant. Still, it will not provide significant differences between stimuli in the gen-
eral case. To do so, it is common practice to derive contrasts from the beta co-
efficients. These statistical tests seek to determine whether beta coefficients
associated with a given voxel are significantly different when the participant is
presented with one type of stimulus compared to another. Fitting a GLM and
computing contrast maps completes the first-level analysis of fMRI data.

Second-level analysis The first-level analysis is typically conducted on each
participant’s data separately. In order to gain insights into the general popu-
lation and statistical power, researchers often conduct a second-level analysis
that aggregates results from all participants and subsequently runs a statistical
test on these aggregated results.

Decoding

Conversely, decoding models seek to predict the properties of stimuli based on
the brain’s response to these stimuli. The seminal work of Haxby et al., 2001
showed that it was possible to predict the category of objects presented to a
participant based on fMRI data. They separated even and odd runs, and for each
brain volume of the odd run, output the label of the most similar brain volume
of the even run. Figure 1.4 illustrates this nearest neighbour approach. It paved
the way to multi-voxel pattern analysis. One caveat of this approach is that it
requires researchers to identify the categories of objects they want to decode,
which may introduce biases in the analysis. More recent work usually relies on
pre-trained deep-learning models to get latent representations of shown stim-
uli, which partially alleviates this problem. These pieces of work usually fit a
linear [Ozcelik and VanRullen, 2023] or non-linear [Scotti et al., 2023] decoding
model to predict these latent representations from fMRI data. Predicted latent
representations can then be used to infer the properties of stimuli presented to
the participant or as inputs to pre-trained generative models to reconstruct the
stimuli themselves [Cheng et al., 2023].

Functional brain mapping in human and non-human
primates

Thanks to BOLD imaging and encoding models, researchers have studied the
cortex’s functional organization for the past 30 years. In particular, they have
sought to identify areas of the cortex whose activity correlates with specific
stimuli or tasks. Studying the functional organisation of the cortex is some-
times referred to as functional brain mapping. It tackles many fundamental
guestions in neuroscience, such as the existence of specialised areas, and the
existence of similarities and differences in functional organisation between in-
dividuals as well as across species. This section presents some of the most
critical findings in this field.
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Figure 1.4: Decoding perceived stimuli by analysing distributed activations in
the visual cortex Comparisons between the patterns of response to faces and
houses in one subject. The within-category correlations for faces (r = 0.81) and
houses (r = 0.87) are both markedly larger than the between-category correla-
tions, yielding correct identifications of the category being viewed. Figure and
caption from Haxby et al., 2001.

Functional organisation of the cortex in humans

It is now common knowledge that the location of cortical areas involved in par-
ticular functions is not random, but follows general principles of spatial organ-
isation, both in human and non-human subjects. There are strong pieces of
evidence that particular bits of information are processed in specific parts of
the cortex and that healthy individuals share a common global cortical organ-
isation. In particular, primary areas — involved in motor, auditory, and visual
capabilities — have been known to follow general principles of organisation for
a long time. Indeed, the study of humans and animals who had survived dif-
ferent brain lesions showed that, in some cases, only certain aspects of their
behaviour would be impaired by such lesions.

Historical landmarks Specifically, Marie-Jean-Pierre Flourens published a
treatise in 1824 showing that the removal of specific parts of the cortex in pi-
geons and rabbits led to specific deficits in their behaviour [Flourens, 1824].
Similarly, in 1825, Jean-Baptiste Bouillaud compiled pieces of evidence show-
ing that lesions in the frontal lobe in humans led to deficits in speech production
[Bouillaud, 1825]. This research led Paul Broca to map the frontal cortex even
more precisely and to discover the well-known Broca’s area, which is involved
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in speech production and linked to aphasic syndromes [Broca, 1865]. Moreover,
armed conflicts caused neurologists to examine a large number of patients
with brain lesions, which has allowed them to study the functional organisation
of the occipital cortex in more detail. In particular, the study of soldiers who
had suffered from gunshot wounds to the head during Russo-Japanese War by
Tatsuji Inouye, and the First World War by Gordon Morgan Holmes, led to the
discovery of the retinotopic organisation of the occipital cortex [Glickstein and
Fahle, 2000; Holmes, 1917]. Retinotopy is the principle that the visual field is
mapped onto the visual cortex in a systematic, diffeomorphic way, with neigh-
bouring parts of the visual field being represented by neighbouring parts of the
cortex.

Functional brain mapping with MRl Non-invasive imaging, and in particular
fMRI, has allowed researchers to study the functional organisation of the cor-
tex without the need to focus exclusively on individuals with brain lesions. At
the end of the 20th and beginning of the 21st centuries, scientists started to
use fMRI to study the functional organisation of the cortex in healthy individ-
uals. For instance, Sereno et al., 1995 could push forward the work of Tatsuji
and Holmes by establishing eccentricity and polar angle retinotopic maps of
the visual cortex using MR, as illustrated in Figure 1.5. In the following years,
many research teams have used comparable imaging techniques to map the
functional organisation of the visual cortex in humans, and discovered the ex-
istence of areas specialised in particular categories of stimuli.

It is the case of the Fusiform Face Area (FFA), which activates whenever a par-
ticipant is shown an image of a face, with remarkable consistency across indi-
viduals [Kanwisher et al., 1997] ; the Parahippocampal Place Area (PPA), which
seems to specialise in visual stimuli showing places [Epstein et al., 1999] ; the
Extrastriate Body Area (EBA), which shows stronger activity for visual stimuli
showing body parts [Downing et al., 2001] ; the Visual Word Form Area (VWFA)
which is anatomically close to the FFA and activates when participants are
shown words [Cohen et al., 2000]. More recently, higher magnetic fields have
allowed researchers to discover even more fine-grained mappings of these ar-
eas: for instance, the VWFA can be divided into sub-modules when readers are
bilingual [Zhan et al., 2023]. Moreover, many more areas outside the occipital
lobe have been shown to be significantly activated when performing specific,
complex tasks. For instance, the Temporal Parietal Junction (TPJ) is involved
in theory of mind tasks [Saxe and Kanwisher, 2013] ; a fronto-parietal network
was shown to be sensitive to the (un)predictability of stimuli and how much a
participant is confident in their judgement [Bounmy et al., 2023].

Recent publications have aggregated a large number of publicly available fMRI
datasets to provide a comprehensive view of the functional organisation of the
human cortex [Mensch et al., 2021], as illustrated in Figure 1.6.
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Figure 1.5: Isoeccentricity and isopolar angle maps of human visual ar-
eas. The top row shows isoeccentricity coded by color [red (fovea) —
blue — green (parafoveal) — vyellow — red (periphery)] displayed
on the original cortical surface (A), the unfolded cortical surface (B), and
the cut and flattened cortical surface (C). The bottom row shows po-
lar angle [red (lower vertical meridian) — blue (horizontal meridian) —
green (upper vertical meridian) ] plotted on the same three surfaces (D), (E), and
(F), respectively. Local eccentricity and polar angle were determined by consid-
ering the phase of the response to a slowly dilating ring or a slowly rotating
hemifield at the dilation or rotation frequency. The unfolded representations in
(B) and (E) were made by relaxing the curvature while approximately preserving
local area and local angles (the sulcal cortex is dark gray and the gyral cortex
light gray). The flattened representations in (C) and (F) were made with the
same algorithm after the occipital lobe was cut off and an additional cut in the
fundus of the calcarine sulcus was made.

Figure and caption from Sereno et al., 1995.

Debates and questions Many questions arose from these discoveries. Firstly,
some argued that not all cortical areas have a specialised function, and that
some areas are involved in multiple tasks, like the multiple demand areas [Dun-
can and Owen, 2000] or the Default Mode Network (DMN). Nonetheless, these
areas could still have a consistent location in the cortex across individuals.

Secondly, Haxby et al., 2001 advocate that specific categories of visual stimuli
can elicit activations in large parts of the cortex, which suggests that the speci-
ficity to certain categories of stimuli of cortical areas might not be all there is to
understand about functional mapping. Moreover, they argue that some visual
areas being more responsive to certain categories of objects does not imply
that they are exclusively involved in processing these objects. In the particu-
lar case of language, authors of Huth et al., 2016 show that listening to stories
has been proven to activate a very large part of the cortex which can also be
recruited for other tasks. It suggests that language processing is not limited to
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Figure 1.6: A cortical map of task-optimised networks The approach of Men-
sch et al., 2021 learns networks that are important for decoding across studies.
These networks are individually focal and collectively well spread across the
cortex. They are readily associated with the cognitive tasks that they contribute
to predict. We display a selection of these networks on the cortical surface (A)
and in 2D transparency (B), named with the salient anatomical brain region they
recruit, along with a word-cloud (C) representation of the stimuli whose likeli-
hood increases with the network activation. The words in this word cloud are
the terms used in the contrast names by the investigators; they are best inter-
preted in the context of the corresponding studies.

Figure and caption from Mensch et al., 2021.

a number of task-specific areas. Strikingly, the same study illustrates that these
areas seemed to by selective of certain semantic categories, like places, time,
or social interactions®.

Lastly, it is unclear whether these areas can also cause perception: if seeing a
face triggers activity in the FFA, is it also true that activity in the FFA triggers
the perception of a face? While the general question of causality is still open,
Schalk et al., 2017 showed that stimulating the FFA of one human participant
with electrodes would cause them to report seeing faces — even though they
were shown non-face objects — which suggests that the FFA could be causally
involved in face perception.

“4https://gallantlab.org/viewer-huth-2016/
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1.2.2 Studying the functional organisation of other species to better
understand the human brain

In the particular case of Schalk et al., 2017, participants could only be implanted
with electrodes because they were undergoing brain surgery as part of their
treatment for epilepsy. This is not a common procedure, and it is generally not
possible to stimulate the brain of healthy participants with electrodes. This is
why researchers have been studying the functional organisation of the cortex
in non-human primates — as well as other species — hoping that more invasive
techniques would bring more insights. This approach is particularly relevant
because the cortex of non-human primates shares similarities with that of hu-
mans.

The case of face-sensitive areas is of particular interest. While it was known
from lesion as well as fMRI studies [Tsao et al., 2003] that the macaque’s tem-
poral lobe was involved in object recognition-and in particular face recognition -
it was not clear whether the macaque’s cortex had areas exclusively dedicated
to face processing. In Tsao et al,, 2006, the authors used fMRI to find face-
selective cortical regions in two macaques. Subsequently, they could probe the
activity of single neurons in these areas using electrodes, and found that more
than 90% of cells were very face-selective® in the middle face patch — one of
three identified face patches located in the temporal lobe.

In Tsao et al., 2008, the authors could show that faces activate a network of
areas in the macaque’s cortex. Strikingly, they identified patches in the pre-
frontal cortex, one of which — termed as the Prefrontal Orbital (PO) - they show
responds significantly more strongly to expressive macaque faces than to in-
expressive faces. Other patches - including the Prefrontal Lateral (PL) and
Prefrontal Arcuate (PA) — also showed increased activity when the macaques
were shown expressive faces, but to a lesser extent. However, their location in
the cortex made the authors hypothesise that they could be homologs of well-
known areas in the human brain involved in language processing:

"The most posterior prefrontal face patch, PA, lies at the border be-
tween areas 44 and 45B. Area 44 is involved in fine control of facial
musculature and may be the macaque homolog of Broca'’s area 13.
The location of PA near area 44 may facilitate interaction between
face perception and control of facial musculature, e.g., in mimicking
behavior. [...] The strong right lateralization of PL raises the possibil-
ity that it may constitute the macaque homolog of the region in hu-
man right prefrontal cortex activated during remembrance of faces.
It is then tempting to ask what is being coded by the corresponding
left hemisphere region in the macaque — the answer may reveal a
precursor of language." — excerpt from page 5 of Tsao et al.,, 2008.

5In this study, the face-selectivity criterion implies that these cells show at least a 10:1 ratio of
response to faces compared to other categories of objects
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Interestingly, research in non-human primates is a stepping stone to building
neuroprosthetics that could be used in impaired humans in the future. Much
effortis put into decoding motor activity and intentions from the cortex. In their
work, Hamed et al., 2007 could decode the activity of the primary motor cor-
tex of macaques implanted with electrodes reading from a few dozen neurons
only. Their decoding accuracy was still very high for a given set of movements.
Similarly, in Astrand et al., 2014, the authors benchmarked a series of decoding
algorithms on neural activity recorded from the prefrontal areas of macaques.

While it is yet unclear whether these pieces of information acquired in
macaques are also valid to humans, it illustrates very well how knowledge ac-
quired in one species can fuel research in another.

Comparison of functional organisation in visual areas Consequently, many
research studies sought to directly describe the similarities and differences in
the functional organisation of the cortex between human and non-human pri-
mates. Once again, a large proportion of them focused on the visual cortex. In
particular, the review of Orban et al., 2004 lists pairings of homologous areas
in the lower and higher visual cortices of humans and macaques using fMRI.
By definition, areas are considered homologous across species if they derive
from the same area in a common ancestor. However, since one cannot study
these now-extinct ancestors, researchers rely on similarities in anatomy, con-
nectivity, cyto- and myelo-architecture, and function to infer homology. In this
review, the authors list evidence showing that the retinotopic organisation of
the early visual cortex — areas V1, V2, and V3 - is similar across humans and
macaques. While area V3A seems to exist in both species, there is evidence that
it is motion- and 2D-shape sensitive in humans but not in macaques. Similarly,
the Middle Temporal (MT)+ complex in humans, involved in motion perception,
seems homologous to the MT area in macaques. The authors also mention the
similarities between the Inferior Temporal (IT) cortex of both species. However,
a precise parcellation of this area is still lacking and might not be fully homolo-
gous across species.

Later, Kriegeskorte et al., 2008 used fMRI to compare properties of the IT cortex,
which is involved in categorising visual stimuli, in humans and macaques. They
showed a series of objects to subjects of both species and computed, in each
species, a matrix of dissimilarity between the responses of each pair of objects.
They found that the dissimilarity matrices of both species were very similar,
which suggests that the IT cortex encodes similar information across species.
This study was one of the first to compare not only similarities in functional-
specialisation but also how different species perform this function.

Strikingly, the authors of Kolster et al., 2009 showed that the middle temporal
area —i.e., MT/V5 — and its neighbours are organised in clusters with acommon
foveal representation. This discovery was made possible by acquiring high-
resolution fMRI data in macaques. In follow-up work, the authors of Kolster et
al., 2010 extended these results by showing that the potential counterpart func-
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tional areas MT/V5+ in humans also exhibit a retinotopic organisation.

Finally, the authors of Mantini et al., 2012 argue that inter-species compar-
isons using prior knowledge of functional homologies can be detrimental to
the discovery of better homologies. They propose to derive homologies be-
tween species using a data-driven approach based on the similarity of brain
activity to rich stimuli. To this end, they compare the cortical activity of humans
and macaques during a movie-watching task. They reveal that some function-
ally comparable areas now occupy very different locations in the cortex across
species and that this reorganisation is not simply due to cortical expansion.
Figure 1.7 illustrates this point.

The visual cortex has been extensively studied across both human and non-
human primates for a series of pragmatic reasons: relative to the rest of the
cortey, its volume is relatively large, making it easier to study with fMRI. Also, it
is relatively easy to stimulate in highly controlled setups. However, other func-
tional areas have been studied across species, with the striking example of
Sliwa and Freiwald, 2017. In this study, the authors show the existence of a
ventrolateral prefrontal cortex area exclusively engaged in the analysis of so-
cial interactions, whose location could correspond to that of the Default Mode
Network and Theory of Mind areas in humans.

Previously, the authors of Joly et al., 2012 had studied the processing of vocal-
isations in humans and macaque, showing that the Superior Temporal Sulcus
(STS) is activated in both species, with a preference for conspecific vocalisa-
tions.

Comparing network organisations The direct comparison of functional areas
across species may not be all there is to understand about the functional organ-
isation of the cortex. Consequently, many researchers have sought to compare
networks of functional areas. In their seminal paper, the authors of Neubert
et al., 2014 use a combination of anatomical MRI and Diffusion Weighted (DW)
MRI to derive a network of areas in the ventrolateral Frontal Cortex (vIFC), and
resting-state fMRI to derive the functional connectivity profile of each of these
areas. Finally, they compare the functional connectivity profiles of areas in the
vIFC across the two species. The authors could identify 11 similar components
in the vIFC of humans and macaques, and one component that was unique to
humans.

Extensions to their work [Mars et al., 2016, 2018] prolong this comparison to the
whole cortex, and use this data-driven approach to study the areal expansion
of the human brain compared to that of macaques.

Interestingly, the authors of Xu et al., 2020 adopt a comparable approach in
which they seek to study whole-brain similarities and differences in cortical ar-
eas by relying on similarities in functional connectivity across a set of previ-
ously identified homologous cortical landmarks. They show that cross-species
associations derived from these matchings can (1) predict other properties of
the cortex, like patterns of myelin, or (2) be used to define a Functional Homol-
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Figure 1.7: Intra- and inter-species activity correlation from monkey areas
PITd and CITd Intra- and inter-species activity correlation maps (False Discov-
ery Rate of g < 0.001) from both left and right monkey (a) PITd and (b) CITd.
The correlation maps are shown only for the same hemisphere in which the
seed area is positioned. The borders of monkey areas MT, PITd, CITd are drawn
over the monkey flat map. The same borders after monkey-to-human cortical
surface expansion are drawn over the human flat map. aTOS: anterior trans-
verse occipital sulcus; PCu: precuneus; pMTG: posterior middle temporal gyrus;
pPITd: human posterior area PITd. Figure and caption from Mantini et al., 2012.

ogy Index quantifying the similarity of functional connectivity profiles across
species in each area of the cortex, or also (3) provide insights about human
cortical areal expansion.

Finally, the authors of Eichert et al., 2020 use similar methods to study what
differences between the cortical organisation of the human and macaque brain
can be explained by areal expansion or tract extension only. In particular, they
show that, contrary to other nearby cortical areas, the terminations of the arcu-
ate fasciculus cannot be explained solely by these two factors, and thus con-
clude that it must have undergone additional evolutionary changes.

Inter-individual variability and related problems

The previous section showed that the functional organisation of the cortex and
its comparison across species is a very active field of research. One could be
tempted to think this problem could be solved by studying an arbitrarily large
number of subjects in all species and by aggregating these results. This should
in theory yield an arbitrarily precise map of the functional organisation of the
cortex. However, this simple approach is not possible for one main reason: the
anatomy and functional organisation of the cortex differ between individuals.
Consequently, it is impossible to properly aggregate results from different sub-
jects without the use of additional processing steps, referred to as alignment
methods.
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1.3.1

Anatomical alignment

The most commonly used method consists in registering each subject’s brain
images to a shared anatomy, referred to as a template. This way, each subject’s
brain is represented in the same space, and it is possible to compare the activ-
ity of a given cortical area across different individuals. This method is referred
to as co-registration or anatomical alignment.

Many successful open-source pieces of software like FreeSurfer® [Fischl, 2012],
FSL’ [Jenkinson and Smith, 2001], ANTs® [Avants et al., 2008], AFNI° [Cox, 1996),
or SPM'Y [Friston et al., 1994] provide tools to compute these transformations.
The registration process is usually one of many steps of a preprocessing
pipeline. fMRIprep'" [Esteban et al., 2019] is a popular package that automates
this pipeline and uses some of the tools mentioned above to compute the reg-
istration of fMRI data to a shared anatomy.

Let us distinguish between two types of alignment methods: those that align
volumetric — or 3D — images, and those that align surfaces — or 2D — images.
Volumetric alignment was the first to be developed and is still the most widely
used. Initial alignment methods tried to maximise mutual information [Maes et
al., 1997] or to implement variations of Demons algorithm [J.-P. Thirion, 1998].
Concurrently, the development of surface-based analysis methods in neuro-
science — which can make visualisation and analysis simpler — led to the de-
velopment of surface-based alignment methods. Notably, [Yeo et al., 2010] pro-
posed a diffeomorphic method based on the spherical Demons algorithm. They
use a spherical representation of the cortex and compute a deformation field
that aligns the data of each individual to a template individual.

On top of an algorithm to compute the transformation, these methods also need
a template anatomy. Consequently, a handful of such prototypical anatomies
have been proposed. The Montreal Neurological Institute template MNI152
[Mazziotta et al., 1995], based on the brains of 152 participants, is the most
widely used volumetric template in neuroimaging. The surface template asso-
ciated with MNI152 is the fsaverage template [fischl_cortical_1999]. It is also
widely used in surface-based analysis methods.

However, anatomical alignment makes two questionable assumptions: first,
that anatomical information is sufficient to align individuals, and second, that
the functional organisation of the cortex of aligned individuals is the same.

Shttps://surfer.nmr.mgh.harvard.edu
https://fsl.fmrib.ox.ac.uk
8http://stnava.github.io/ANTs
9https://afni.nimh.nih.gov/
Ohttps:/www.fil.ion.ucl.ac.uk/spm
Mhttps://fmriprep.org
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Variability in functional images

In the last decade, a growing body of research projects has resorted to scanning
large numbers of participants. In particular, the Human Connectome Project
(HCP) [Van Essen, Smith, Barch, Behrens, Yacoub and Ugurbil, 2013], the Ado-
lescent Brain Cognitive Development (ABCD) [Casey et al., 2018], and the UK
biobank [Sudlow et al., 2015] projects have scanned thousands of participants
with mainly two goals: (1) to study the brain’s functional organisation in more
detail and (2) to link this imaging data with other phenotypical data, hoping that
bio-markers involving brain imaging data could help the diagnosis of diseases.
The initial intuition was that individual images are noisy, but the aggregation of
many images would yield a more precise map of the brain’s functional organi-
sation.

Although initially modelled as noise, inter-individual variability in the functional
organisation of the cortex is now recognised as a fundamental aspect of the
brain, which the previously mentioned projects have both described and en-
dured. In particular, it is a major impediment to defining atlases at the pop-
ulation level [Glasser et al., 2016]. Indeed, the authors of Glasser et al., 2016
show that the functional organisation of the cortex is highly variable across in-
dividuals, and that the functional areas of the cortex of one individual do not
necessarily match those of another individual.

In fact, even areas considered to have a simpler topology and location across
individuals may not be well characterised at the group level using standard tech-
nigues. For instance, the authors of Zhan et al., 2023 scanned about 20 partic-
ipants with high-field fMRI. In particular, they acquire functional localisers to
identify the exact position of the Fusiform Face Area (FFA) in each individual,
and compare the location of the Visual Word Form Area (VFWA) and its sub-
modules. Strikingly, they show that, without spatial smoothing, the FFA is not
visible in group analysis at high spatial resoltion, although it can clearly be iden-
tified in each participant. Applying spatial smoothing to the data allows them
to identify the FFA at the group level, but this practice obviously blurs the exact
location and specificity of cortical areas.

More generally, it is also not well understood what proportion of the signal ac-
quired with fMRI is actually due to the task performed by the participant. In
particular, the authors of Gratton et al., 2018 show that co-activity in functional
networks seems to be driven by group- and individual-specific factors, and that
the task performed by the participant only explains a small part of the signal.

Interestingly, within-subject variation should not always be modeled as noise,
as neuroplasticity can lead to changes in the functional organisation of the cor-
tex. For instance, Binda et al., 2018 use fMRI to study the effect of short-term
deprivation visual cortex in adults. They show that even short periods of depri-
vation lead to significant differences in the BOLD signal; notably, it boosts V1
responses to the deprived eye. Castaldi et al., 2020 gives a more systematic
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review of this type of studies.

Deep phenotyping Due to inter-individual variability and its effect on group
statistics, many research teams have resorted to acquiring large amounts of
data in a limited number of participants [Fedorenko, 2021]. Contrary to the pre-
viously mentioned large-scale projects that typically scan thousands of partic-
ipants for approximately one hour each, these deep phenotyping projects typi-
cally scan a dozen of participants for tens of hours each. Many such datasets
are openly available, like the Natural Scenes Dataset [Allen et al., 2022], the
Courtois Neuromod Dataset ' or the Individual Brain Charting (IBC) dataset
[Pinho et al., 2018]. The first two have acquired a very large number of samples
of naturalistic stimuli, while the last one has reproduced many existing fMRI pro-
tocols hoping to map the functional organisation of the underlying participants
precisely at the individual and group level. Figure 1.8 illustrates the concepts of
inter-subject anatomical and functional variability, while giving a sense of the
extent to which the brains of individual participants were mapped.
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Figure 1.8: Inter-subject variability illustrated in the IBC dataset (Left) Partic-
ipants of the IBC dataset have been extensively scanned with a wide range of
tasks. Most of the cortex was significantly involved in at least twenty tasks
in each subject. (Right) However, the anatomical and functional organisation
of the cortex is highly variable across participants. Consequently, group-level
statistics (bottom) do not always reflect the results observed at the individual
level.

2https://www.cneuromod.ca
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Towards functional alignment

In their seminal paper, [Sabuncu et al., 2010] propose to align cortices using
functional data instead of relying solely on anatomical data. They use fMRI
data acquired during a movie-watching task to compute alignments from each
individual to a template individual. They show that this approach yields greater
group statistics and generalises to other tasks. This approach is referred to as
functional alignment. It is worth noting the authors introduce a surface-based
alignment method, but that the concept of functional alignment can also be ap-
plied to volumetric data. In this study, the authors use a regularized mesh de-
formation model to change the position of vertices on the cortical sheet to (1)
maximise the functional correlation between vertices while penalising (2) the
appearance of folds in the warped mesh and (3) high differences in internode
distances. They implement an iterative algorithm that updates the positions
of vertices so that they can verify these three constraints. Moreover, they use
a coarse-to-fine approach to prevent the algorithm from getting stuck in local
minima.

Following this work, many other methods have been proposed to align the func-
tional organisation of the cortex of different individuals. We divide them into
two categories: diffeomorphic methods, which rely on a smooth transforma-
tion of the cortical mesh, and non-diffeomorphic methods, which do not make
this assumption.

Existing voxel-to-voxel functional alignment methods

All methods presented in this section seek to derive voxel-to-voxel (or vertex-to-
vertex) transformations. These transformations should match voxels (or ver-
tices) from two different brains based on a similarity between their features.

Diffeomorphic methods

Multimodal Surface Matching (MSM) Among other methods relying on de-
formations of meshes, Multimodal Surface Matching (MSM) [Robinson et al.,
2014] is a popular choice. It has been used in many studies to align the func-
tional organisation of the cortex of different individuals, both in intra-species
[Glasser et al., 2016] and inter-species setups [Eichert et al., 2020; Xu et al.,
2020].

MSM implements a coarse-to-fine strategy to compute a deformation field that
aligns the functional data of two individuals. At each step, each vertex v of the
source mesh is associated with a label — which can be understood as a target
vertex. This label is chosen from a discrete number of possible labels nearby
such that this choice minimises a cost function that (1) estimates the overlap
of cortical areal features (or shape) from the correlation of overlapping patches
of features in source and target meshes (at the location corresponding to that
proposed move) while (2) penalising choices of labels that would drag v away
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from its neighbours. In their seminal work, the authors of Robinson et al., 2014
formulated this regularisation term by penalising the geodesic distance on the
mesh between each pair of moved vertices forming an edge of the mesh. This
term was later reformulated to penalise areal changes of faces (rather than
edges) in order to obtain smoother, more accurate solutions [Robinson et al.,
2018].

In both cases, the optimisation problem is framed as a first order Markov Ran-
dom Field problem. Many solvers exist for this framework, and the authors of
Robinson et al., 2014 use a pre-existing implementation of the FastPD algorithm,
itself being based on the graph-cut algorithm [Komodakis and Tziritas, 2007].

Non-diffeomorphic methods

Other functional alignment methods that do not rely on a smooth transforma-
tion of the cortical mesh exist. Let us denote F* € R™* and F* € RP* the
functional data of the source and target individuals, respectively. n and p are
the number of vertices in the cortical mesh of the source and target individuals,
respectively, and k is the number of features extracted from the fMRI data. The
goal of these methods is to find an alignment P € R™? that aligns F® to Ft.

Ridge regression Ridge regression gives a straightforward way to find a linear
transformation P that aligns F* to Ft:

P £ agmin |PTF® - F|[, + \|P|?
P

where ||-||, denotes the L2 norm, and X is a hyperparameter that controls the
trade-off between the alignment of the data and the regularisation of P. This
simple method can serve as the go-to approach for functional alignment be-
cause it requires minimal tuning and is computationally efficient, although it
can be used to tackle non-trivial tasks [Ferrante, Boccato and Toschi, 2023].
The work of Bazeille, 2021 compares it to other methods extensively.

Hyperalignment In their seminal paper, Haxby et al., 2011 propose a method
called hyperalignment to align the functional data of different individuals. The
transformation P is constrained to be orthogonal, which ensures that the solu-
tion is unique and offers an interpretation of the transformation as a rotation in
the space of voxels:

P £ agmin |PTF°-F'|;
P

st. PTP=J,

Initially, the authors designed this problem to find a rotation in the space of
voxels that aligns two cloud points F'* and F'* between two individuals. These
cloud points represent timeseries of brain activity in the space of voxels. Many
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variations of hyperalignment have been proposed since then, as well as differ-
ent evaluations of the method, and can be found in the review of [Haxby et al.,
2020].

Optimal transport Comparably, Bazeille et al., 2019 proposes to derive linear
transformations from an optimal transport formulation

A . . 2
P £ argmin (C,P) = argmin |F? — FY||, Pi;
K2 J 2 El

P>0 Px0 %
pP20, pl20 L 1gi<n
#1=W #1=W 1<5<p
Pyo—wt Pys=wt
#2=W H2 =W

where C £ ( |Fs — Fsz )ij € R} is the feature cost matrix, w® = 11, and
wt = %11, are the distribution weights over the source and target meshes, and
Py = (32, Pij)i and Pys = (3, P ;); denote the marginals of P.

We leave the details around the formulation of this problem to Chapter 2. How-
ever, let us already note that this method relaxes the orthogonality constraint of

hyperalignment and allows for more expressive transformations.

Aligning multiple individuals with functional templates

Computing voxel-to-voxel transformations from two individuals does not allow
one to leverage data collected in a large number of participants. Therefore,
many adaptations to the methods presented previously have been developed to
align the functional data of multiple individuals to a common space. Similarly
to anatomical co-registration, functional alignment has sought to derive pop-
ulation templates that contain functional information derived from a group of
individuals and that are hopefully more expressive than anatomical templates.

Shared Response Model In P-H. Chen et al.,, 2015, the authors introduce the
Shared Response Model (SRM). Given functional data from m individuals, the
authors propose to derive a shared response S that explains the functional data
of multiple individuals, and a set of transformations P, ..., P,, that project the
functional data of each individual to S. We see it as a follow-up work from
Haxby et al., 2011. As such, it implements the same constraint that estimated
transformations should be rotations:

- ) 2
n8 g 2 NIF - PiS],
st. PTp=1 =1

The authors implement a two-step algorithm to solve this problem: at each step,
they alternate between computing the shared response S and the transforma-
tions P,..., P,,. Note that the following optimisation problem arises naturally,
and is more similar to the ones presented in the previous paragraphs:
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However, in the original paper, the authors empirically find that the solutions
computed for S are more meaningful with the first formulation than with the
second. Many other methods have been proposed to build functional templates
from multiple individuals. They usually formulate optimisation problems close
to that of the SRM but with different constraints or regularisations. In partic-
ular, Richard, Gresele, Hyvarinen et al., 2020 focuses on solving an Indepen-
dent Component Analysis (ICA) problem, which replaces the orthogonality con-
straint with an invertibility constrainton Py, ..., P,,. They show that this allows
them to derive more accurate transformations and templates on fMRI movie-
watching data.

Projecting individual data onto a common latent space with deep learning
Because of inter-subject variability, recent deep learning approaches tackling
the problem of training models that decode brain activity have often resorted
to training a different model for each individual. However, some recent works
have shown that it is possible to train a single model on data from multiple
individuals and achieve good performance. In particular, Défossez et al., 2023
adopt this approach on M/EEG data of participants listening to various auditory
stimuli, and Scotti et al., 2024 on fMRI data of participants watching images.
These works have in common that the first layers of their model differ from par-
ticipant to participant, but the last layers are shared across participants. These
first individual layers can be understood as mappings of individual data to a
shared latent space. While these approaches do not provide interpretable voxel-
to-voxel transformations, nor stem from an explicit optimisation problem, they
empirically lead to the construction of valuable shared functional spaces.

A critical perspective on current functional alignment methods

Alignment methods presented in the previous sections come with advantages
and drawbacks. Let us focus on one crucial aspect that limits their use in prac-
tice: anatomical consistency. Indeed, users of functional alignment techniques
usually expect that voxels / vertices that are matched together across individ-
uals are located in comparable areas of the cortex. However, this constraint is
hard to implement and potentially limits the expressiveness of the transforma-
tions that can be derived.

In that sense, diffeomorphic methods like MSM are the most conservative ones.
They ensure that the cortical mesh of each individual is not deformed too much,
which guarantees that the matched voxels are located in comparable areas
of the cortex. Subsequently, computed alignments are interpretable and dis-
play solid anatomical consistency. However, they restrict alignments to a set
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of transformations that cannot express all the variability in the functional data
of different individuals. Indeed, the assumption that there exists a continuous
mapping between the cortical surfaces of humans and macaques seems too
strong [Eichert et al., 2020]. Moreover, this assumption is also questionable in
the case of humans, as Glasser et al., 2016 shows that areas of the prefrontal
cortex can vary widely in both location and topology across non-pathological
human participants.

On the other hand, non-diffeomorphic methods like hyper-alignment can match
voxels located in arbitrary areas of the cortex. For instance, nothing prevents
these techniques from matching vertices in the visual cortex to the frontal lobe
due to long range functional correlations — however this does not make sense
based on what is known about cortical cyto-architecture in these cortical re-
gions. In practice, they such matchings do happen and question the reliability
of the underlying methods. In order to limit this drawback, non-diffeomorphic
alignment methods usually restrict the set of possible solutions so that they
are more anatomically consistent. In practice, this can be done by using a pre-
computed atlas and computing a specific alignment for each underlying Re-
gion of Interest (ROI). However, this approach somewhat defeats the purpose of
using whole-brain alignment methods as they rely on prior alignment assump-
tions. Moreover, this framework will generally exhibit artifacts at the borders of
these regions.

In order to address these artifacts, researchers often resort to using a search-
light approach [Guntupalli et al., 2016] in which the brain is divided is a series
of overlapping spheres. One alignment is computed for each sphere, and the
results are then aggregated. The main limitations of this approach is that it
once again relies on prior anatomical alignment assumptions, and that the ag-
gregated alignments are no longer guaranteed to respect initial optimisation
constraints like orthogonality or invertibility.

In conclusion, there is room for an alignment method which would provide
anatomical consistency similar to that of MSM while relaxing the diffeomor-
phic constraint to enhance expressivity. Moreover, non-diffeomorphic methods
also rely on searchlight or ROIl-based approaches for computational reasons -
because voxel-to-voxel transformations in high resolution volumes or meshes
have a very large memory footprint — and it would be interesting to see if they
can be extended in whole-brain setups while being freed from these constraints.

The need for open datasets, implementations and benchmarks

To this day, it is unclear which of these methods works best [Bazeille et al., 20271,
Ho et al., 2023]. Indeed, while there is genuine interest from the neuroscience
community to develop these techniques, comparing them is still very challeng-
ing. Consequently, choosing the most adapted method for a given task is not
straightforward. Thus, these methods have seldom been used in research stud-
ies and are still very far from being used routinely.
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We advocate that there are many important reasons for this situation. First,
this field generally lacks identified tasks that could be used to compare these
methods. As exposed in the previous sections, deriving voxel-to-voxel trans-
formations in an inter-subject setup is not the only task of interest; alignment
between tasks in an intra-subject setup is also an active topic of research, as
well as the construction of templates.

Secondly, public datasets associated with these tasks do not always exist or
are not clearly identified. Moreover, standard baselines and evaluation metrics
are still scarce.

Lastly, finding simple, open-source implementations allowing one to use these
methods, access these datasets, and run these benchmarks is still challenging.
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A naive approach to functional alignment

It is natural to think that the problem of functional alignment can be solved by
simply matching the vertices of the source and target meshes that are func-
tionally closest to each other. However, this naive approach is not sufficient to
ensure a meaningful alignment. In this section, we will briefly illustrate why.

We will consider a simple experiment. We take two individuals from the IBC
dataset and take 370 z-scored contrast maps computed using task-based ex-
periments that both participants performed. Let us denote the first participant
as the source subject and the second as the target subject. For each vertex of
the source, we will find the closest vertex of the target in terms of Euclidean
distance in the 370-dimensional functional space.

Figure 2.1 shows that this method does not yield a meaningful alignment. In-
deed, the number of target vertices matched to at least one source vertex is
very low, with a few vertices always being chosen. However, we have seen in
the previous Chapter that IBC participants have been extensively scanned, and
that meaningful functional data should be available for a majority of cortical
areas, so we would expect most vertices in the target subject to have a mean-
ingful counterpart in the source subject.

Moreover, we show that this negative result holds when one normalises or stan-
dardises the functional data of the source and target subjects along the vertices
or features dimension.

Figure 2.2 shows the first two principal components of the functional data of the
concatenated source and target subjects. Although the source and target dis-
tributions overlap in some areas of the vector space, one can see that vertices
of the target brain that accumulate the highest number of matched source ver-
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Figure 2.1: Count of vertices matched in the target brain For each vertex of the
target brain, we show log(c + 1) where ¢ is the number of vertices of the source
brain that are matched to it. No matter the normalisation or standardisation
applied to the functional data, the number of vertices in the target brain that
obtain at least one match is low. In contrast, a small number of target vertices
are matched up to e” ~ 1000 times.
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Figure 2.2: Principal components of the functional data across subjects Given
370 z-scored contrast maps computed using task-based experiments in two
participants (pink and green) of the IBC dataset, we show the first two principal
components in 20k (out of 150k) vertices in five previously mentioned setups.
The top 1k (out of 150k) vertices of the target subject with the highest count are
displayed in bold pink. They accumulate more than 50% of the source vertices.
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tices do not necessarily span across the entire cloud points of the source and
target individuals.

This simple experiment shows that it is not trivial to ensure that a large number
of source and target vertices are matched. In the following sections, we will
introduce the theory of optimal transport and show how it naturally introduces
such incentives in the form of marginal constraints.

Principles of Optimal Transport for Machine Learning

Historical perspective

The Mines and Factories problem

The Mines and Factories problem was introduced by Leonid Kantorovichin 1942
[Kantorovich, 1942]. At the time, the Soviet Union was actively involved in World
War Il, and the government was looking for ways to optimize the allocation of
resources to the front lines. However, the problem of finding the optimal way
to transport resources from many mines to many factories is not easily solved,
and sub-optimal solutions can be very costly. Kantorovich, who was working on
optimally allocating resources for the Soviet army, formulated the optimisation
problem presented below.

Leta £ (ay,...,a,) be the vector representing the quantity of supply at each
of the n mines,and b £ (b, ..., b,) be the vector of demands at each of the p
the factories. We assume that a and b are normalised, i.e. 3~ a; = >, b; = 1.
Let C' € R™? be the matrix of costs, where C, ; is the cost of transporting one
unit of supply from mine i to factory ;.

The so-called Monge-Kantorovich problem is to find P € R™?, where p, ; is the
quantity of supply transported from mine ¢ to factory 5, such that all goods are
transported and the total cost of transportation is minimal:

. A .
min  (C,P) £ min E C; ;P ; (2.1)
PeR"P PeR}P - ’ ’
+ + 0<i<n
= = 0<j<p
st Pri=a st Pri=a
Pyo=b Pyo=b

We denote Py; = P -1, and Py, £ PT . 1, the first and second marginal of
P. Here, the condition P4; = a ensures that, for each mine, the total quantity
of supply transported is equal to the quantity of supply available in this mine.
Respectively, Py, = b ensures that, for each factory, the total quantity of supply
received is equal to the quantity of supply demanded by this factory.

Historical landmarks and recent developments

Kantorovich's optimisation problem is a generalisation of the assignment prob-
lem introduced by Gaspard Monge at the end of the 18th century — and thus also
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known as the Monge problem [Monge, 1781]. At the time, Monge only considered
the case where n = p and P is a permutation matrix, thus forcing the supply
from each mine to be transported to a single factory. Kantorovich’'s generalisa-
tion, known as the Kantorovich relaxation, allows for a more flexible allocation
of resources, where the supply from each mine can be split and transported to
multiple factories.

Tolstoi and Hitchcock independently formulated the Mines and Factories prob-
lem, and the latter proposed a method to solve it in 1941 [Hitchcock, 1941; Tol-
stoi, 1930]. George Dantzig applied the simplex method to solve the Monge-
Kantorovich problem in 1951 [Dantzig, 1951], opening the door to the use of lin-
ear programming for solving transportation problems. Kantorovich shared the
1975 Nobel Prize in Economics with Tjalling Koopmans for their work on the
theory of optimal allocation of resources.

Later theoretical works from Brenier and Villani have further rooted the theory
of optimal transport in the field of mathematics [Brenier, 1991; Villani, 2003].
More recently, Cuturi showed that the optimal transport problem can be solved
efficiently using the Sinkhorn-Knopp algorithm [Cuturi, 2013], paving the way
for GPU-accelerated optimal transport solvers. Since then, the field has seen a
surge of interest in the machine learning community, where optimal transport is
used for tasks such as generative modelling and domain adaptation [Arjovsky
et al., 2017; Courty et al., 2016).

Framing brain functional alignment as an Optimal Transport
problem

As seen in Section 2.1, naive approaches to functional alignment lead to prob-
lematic alignments. In particular, we showed that not all brain regions of a tar-
get brain are reached by these naive alignments. Consequently, it is natural to
formulate an optimisation problem that includes constraints similar to that of
the Mines and Factories problem.

Given a source mesh of size n, we associate each vertex of the mesh with a
weight — or mass - % and denote as a € R™ the vector of weights. Respec-
tively, we associate each vertex of the target mesh with a weight % and denote
as b € R? the vector of weights. We want to transport the mass from each ver-
tex of the source mesh to one or multiple vertices of the target mesh, based
on the similarity between the signals associated with the vertices. Therefore,
we define a cost matrix C € R™?, where C; ; denotes the similarity between
the signals associated with the i-th vertex of the source mesh and the j-th ver-
tex of the target mesh. Finally, we frame our brain alignment problem as the
optimisation problem presented in Equation 2.1.

Note that not all vertices need to have the same mass, but without additional
information on the respective sizes of the brain regions in the source and tar-
get brains, we assign the same mass to all vertices. Besides, in the following
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chapters, we will denote as w?® and w? the vectors of weights associated with
the vertices of the source and target meshes, respectively.

2.2.3 Different classes of optimal transport problems

OT is rich with a lot of theory related to general measures — as opposed to dis-
crete measures. However, in this thesis, we are only interested in applications
of OT to machine learning. In this context, we only focus on representations of
information that machines can process, i.e., vectors, matrices or more gener-
ally tensors. These are often sampled from analogous signals. Therefore, we
will only consider formulations of OT problems on discrete measures.

We refer the interested reader to Peyré and Cuturi, 2020 for a more in-depth
introduction of the theory of OT, both from a theoretical and applied point of
view.

In the following paragraphs, we will introduce different classes of OT problems,
which will be used throughout this thesis. We will do so by using discrete for-
mulations.

2.2.3.1 Balanced and unbalanced problems

A
A
A 2N

AA
A

Balanced OT Unbalanced OT

Idd4a

A .

A A

A A
A LA
A A

Figure 2.3: Balanced vs unbalanced optimal transport problems (Left) In the
balanced case, if one tries to transport the blue and red distributions, some
mass from the left mode of the blue distribution will have to be transported to
the right mode of the red distribution. (Right) In the unbalanced case, with the
proper hyper-parameter values, none of the left blue mode will be transported
to the right red mode. Figure adapted from [Peyré and Cuturi, 2020], section
10.2.

Equation 2.1 is an example of balanced OT problem: it forces the total quantity
of supply transported from the mines to be equal to the total quantity of supply
demanded by the factories. Relaxing this constraint leads to unbalanced OT
problems, with the following formulation:
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min = (C,P) + p1d(Py1 | a) + p2d(Pyz | b) (2.2)
PeRY?

where p1, ps € Ry are the unbalancing factors and d is a distance between two
vectors (in the general case, d should be a divergence between two measures,
but, since we only consider discrete measures, we will use the term distance
for simplicity).

In this setup, higher values of p; and p, will force the marginals of P to be close
to a and b, respectively. Lower values will allow for more flexibility. The two new
terms are referred to as marginal constraints.

They come with an intuitive interpretation in the context of brain functional
alignment. Let us consider the following situation: it can very well be that a
given functional area is bigger — in the sense that it covers more vertices — in
the source brain than in the target brain. In this case, the ideal transport plan
should shrink the source area to match the target area. It would result in the
target area receiving more mass than it should accept, violating the initial bal-
anced constraint. Figure 2.3 illustrates this situation.

Relaxing this hard constraint allows to model changes in the size of functional
areas between the source and target brains, and to formulate it as a trade-off
between being matched to functionally different areas and being more / less
transported. An extreme case may arise when comparing cortical surfaces
from different species, where some functional areas may exist in one species
and not in the other.

In that sense, the unbalancing factor p; can be seen as weighting the impor-
tance of transporting brain regions of the source brain even though they cannot
be functionally matched with areas of the target brain. Therefore, the value of
p1 should be chosen so that the functional cost of aligning two functionally dif-
ferent regions is higher than the cost of not aligning them. However, this sweet
spot is not easy to find.

An analogous interpretation can be made for p,. In practice, we will usually
set p; = po, since the source and target meshes have approximately the same
amount of vertices.

Wasserstein and Gromov-Wasserstein problems

Equation 2.1 is an example of a Wasserstein OT problem: it assumes that the
source and target functional data belong to the same vector space and can
therefore be compared directly.

In other words, given F* € R™% and F* ¢ R™4, the d-dimensional vectors rep-
resenting the functional signals associated with the vertices of the source and
target subjects respectively, we assume that the quantity || F* — F}||, is mean-

ingful for all  and j, and thus define the cost matrix C £ ( ||Fs — F}| |§ ) .
2

However, it may be the case that the functional data of the source and target
subjects belong to different vector spaces and, therefore, cannot be compared



Chapter 2 Introduction to Optimal Transport

directly across individuals. OT can still be used in this case by defining a cost
matrix G that takes into account the differences between the source and target
functional data, as exemplified in Figure 2.4.
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Figure 2.4: Gromov-Wasserstein problems Gromov-Wasserstein formulations
aim to preserve the inner structure of the source and target measures, although
they may belong to different spaces. Figure adapted from [Peyré and Cuturi,
2020], section 10.6.3.

This leads to the Gromov-Wasserstein problem [Mémoli, 2011], which is defined
as follows:

. A .
Suin, (G,PoP) = Puin, > GijkiPjPry (2.3)
+ + 0<i,k<m
_ _ 0<7,l<n
st Pr1=a st Pri=a
Puo=b Pys=b

where
2
G é (‘D,_s _Dt ‘ ) eRn,m,n,m
Rl AR N
2
D 2 (|F-Fl), eRM
t A t t||2 ,
Dt £ (||F-F;) ermm

Here, G is the cost matrix, D and D? are the distance matrices within the
source and target functional data, respectively. The Gromov-Wasserstein prob-
lem seeks to match vertices together such that, if < and & are far apart in the
source brain, they should be matched respectively to j and I, which are also far
apart in the target brain.

Contrary to the Wasserstein problem, the Gromov-Wasserstein problem in-
volves matching individual points while considering couplings between entire
metric spaces. Moreover, it is a non-convex problem. Thus, itis generally harder
to solve than the Wasserstein problem.

Let us mention two types of brain data that cannot be compared using a
Wasserstein loss, but that fit the Gromov-Wasserstein framework.

First, resting-state fMRI data typically falls in this category. Indeed, let us con-
sider F* € R™! and F* € R™" two individual timeseries of resting-state ac-
quired in two participants. Nothing guarantees that the timeseries from the
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two participants have the same length, and therefore they cannot be compared
directly. Even in the case where ¢ = u, nothing guarantees that the cogni-
tive experience in one participant is synchronised with that of the other par-
ticipant. However, comparisons of timeseries within the same participant are
meaningful. In fact, researchers have heavily relied on this assumption to de-
fine within-subject functional connectivity matrices, which they would subse-
quently compare across participants [Finn et al., 2015]. However, this requires
defining a shared set of comparable ROl across individuals, which we advocate
defeats the purpose of using these inherently idiosyncratic datasets. However,
the Gromov-Wasserstein loss yields a natural framework to compare this data
without relying on those priors.

Secondly, un-registered anatomical data also falls in this category. Indeed, one
cannot properly define the anatomical distance between vertices of two differ-
ent brains. However, the geodesic distance from a vertex to all other vertices
within the same brain is meaningful. The Gromov-Wasserstein loss allows one
to rely on these well-defined distances to derive alignments.

Fused Gromov-Wasserstein problem Interestingly, it is possible to design op-
timisation problems using both the Wasserstein loss and Gromov-Wasserstein
loss. These are hence called Fused Gromov-Wasserstein problems.

Prélpielilm a(C,P) + (1-—a) (G,P® P) (2.4)

P#] =a,
Pys =b

s.t.

where a € [0,1] is a hyperparameter that balances the relative importance of
the Wasserstein loss and the Gromov-Wasserstein loss.

Unregularised and regularised problems

In the general case, solving for Equation 2.1 is computationally expensive, and
has a minimal complexity of O(n? log(n)) where n is the dimension of compared
discrete measures [Pele and Werman, 2009]. A natural idea is to add a regular-
isation term to the problem, making the optimisation problem easier to solve
[Wilson, 1969]. The entropy function H(P) = — 3, . P; ;log(P, ;) is often used
as a regularisation term, leading to the following formulation:

min  « (C,P)—cH(P) (2.5)
PR

P#l =a,
Pyo=b

s.t.

The intuition behind this addition is that solutions to the unregularised problem
of Equation 2.1 are located on vertices of the simplex. Classical Linear Program-
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ming approaches will explore all vertices of the simplex, which can be compu-
tationally expensive. Adding a regularisation term will push the solution away
from the simplex’s boundaries and towards its interior, making them easier to
track. Moreover, this regularisation turns a convex problem into a strongly con-
vex problem, which guarantees the uniqueness of the solution. Note that the
transport plan computed with this regularised problem will be more dense than
the one computed with the unregularised problem, as illustrated in Figure 2.5.
Indeed, a transport plan P that matches all source and target vertices together
with equal probability will be very dense, while the entropy H(P) will be null.
Moving away from a transport plan which matches vertices with equal, uniform
probability will add information and make the quantity —H(P) increase, at arate
proportional to e.
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Figure 2.5: Effect of entropic regularisation on computed plan The hyper-
parameter ¢ controls the amount of regularisation applied to the optimal trans-
port problem. When ¢ is small, the optimal transport plan matching red and blue
nodes is more sparse, and when ¢ is large, the optimal transport plan is more
dense. Figure adapted from [Peyré and Cuturi, 2020], section 4.1.

Finally, a great advantage of using entropic regularisation is that its solutions
approximate unregularised solutions, with a complexity of O(n?) [Cuturi, 2013].
This stems from the fact that solutions to Equation 2.5 can be shown to be
of the particular form P = U KV, where K £ exp(—C/¢), U £ diag(u),
V £ diag(v), and w and v must verify UKV 1, = aand VKTU1, = b.
The classical proof consists in deriving the problem'’s Lagrangian: at optimality,
the first-order derivative of the Lagrangian with regard to P is null, yielding the
previous equality for P. The constraints on u and v emerge from the marginal
constraints.

The problem of finding (u,v) in the previous setup is well-known, and the
Sinkhorn theorem states that, for a given matrix K of positive elements, there
exists a unique (u,v) — up to a multiplicative constant — such that UKV is
doubly stochastic - i.e. the rows and columns sum to 11, and %lp, respec-
tively.

The Sinkhorn-Knopp algorithm provides an efficient way to compute w and v: it
iteratively updates u and v such that the rows and columns of UKV sumto 1,,
and 1,, respectively. We can very easily adapt this to the case where the rows
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and columns should sum to a and b, respectively, which is the case in our OT
problem. Algorithm 2.1 gives an explicit implementation of the Sinkhorn-Knopp
algorithm for solving the Wasserstein problem with entropic regularisation.

Algorithm 2.1 Sinkhorn-Knopp algorithm for the entropic Wasserstein problem

Input: C,a,b,c
Output: Optimal coupling P
1 K+ exp(—CJe)
u <+ 0,
v+ 0,
: while (u, v) has not converged do
U+—aQ (Kv)
v+—bo (KTu)
: end while
: P<exp(udv—Cle)

® N areN

Combinations of Optimal Transport problems

Interestingly, it is possible to combine the different classes of OT problems
presented above. For instance, regularised unbalanced Wasserstein problems
can be solved efficiently using an slight adaptation of the Sinkhorn-Knopp al-
gorithm. Moreover, it is possible to provide many matrices G4, ...,G} and
weights a1, . .., o to Gromov-Wasserstein problems. Finally, in the case of cor-
tical functional alignment, one could be interested solving a combination of all
previously mentioned constraints.
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Chapter 3

FUGW: an optimal transport
method to align cortical
surfaces using anatomical and
functional data

Introduction

The availability of millimeter or sub-millimeter anatomical or functional brain
images has opened new horizons to neuroscience, namely that of mapping
cognition in the human brain and detecting markers of diseases. Yet this en-
deavour has stumbled on the roadblock of inter-individual variability: while the
overall organization of the human brain is largely invariant, two different brains
(even from monozygotic twins [Pizzagalli et al., 2020]) may differ at the scale of
centimeters in shape, folding pattern, and functional responses. The problem is
further complicated by the fact that functional images are noisy, due to imaging
limitations and behavioural differences across individuals that cannot be easily
overcome. The status quo of the field is thus to rely on anatomy-based inter-
individual alignment that approximately matches the outline of the brain [Avants
et al., 2008] as well as its large-scale cortical folding patterns [Dale et al., 1999;
Fischl, 2012]. Existing algorithms thus coarsely match anatomical features with
diffeomorphic transformations, by warping individual data to a simplified tem-
plate brain. Such methods lose much of the original individual detail and blur
the functional information that can be measured in brain regions (see Figure
3.1).

In order to improve upon the current situation, a number of challenges have
to be addressed: (i) Commonly used cortical alignment methods are gener-
ally blind to functional information, and there are no functional equivalent to
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Figure 3.1: High variability in human anatomies and functional MRI responses
across subjects In this experiment contrasting areas of the brain which respond
to mathematical tasks against other that don’t, we observe great variability in lo-
cations and strength of brain activations across subjects (row 1). The classical
approach consists in warping this data to a common surface template (row 2),
where they can be averaged, often resulting in loss of individual details and de-
tection power. These images were generated using Nilearn software [Abraham
etal., 2014].

anatomical templates. This is unfortunate, since functional information is ar-
guably the most accessible marker to identify cortical regions and their bound-
aries [Glasser et al., 2016]. (i) When comparing two brains — coming from in-
dividuals or from a template - it is unclear what regularity should be imposed
on the matching [Van Essen et al., 2012]. While it is traditional in medical imag-
ing to impose diffeomorphicity [Avants et al., 2008; Robinson et al., 2014], such
a constraint does not match the frequent observation that brain regions vary
across individuals in their fine-grained functional organization [Glasser et al.,
2016; Schneider et al., 2019]. (iii) Beyond the problem of aligning human brains,
it is an even greater challenge to systematically compare functional brain or-
ganization in two different species, such as humans and macaques [Eichert et
al., 2020; Mars et al.,, 2018; Neubert et al., 2014; Xu et al.,, 2020]. Such inter-
species comparisons introduce a more extreme form of variability in the corre-
spondence model.

Related work Several attempts have been made to constrain the brain align-
ment process by using functional information. The first one consists in intro-
ducing functional maps into the diffeomorphic framework and search for a
smooth transformation that matches functional information [Robinson et al.,
2014; Sabuncu et al., 2010; Yeo et al., 2010], the most popular framework being
arguably Multimodal Surface Matching (MSM) [Glasser et al., 2016; Robinson
etal., 2014].

A second family of less constrained functional alignment approaches have
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been proposed, based on heuristics, by matching information in small, possi-
bly overlapping, cortical patches [Bazeille et al., 2021; Haxby et al., 2011; Tavor
et al,, 2016]. This popular framework has been called hyperalignment [Guntu-
palli et al., 2016; Haxby et al., 2011], or shared response models [P-H. Chen et al.,
2015]. Yet these approaches lack a principled framework and cannot be consid-
ered to solve the matching problem at scale. Neither do they allow to estimate
a group-level template properly [Al-Wasity et al., 2020].

An alternative functional alignment framework has followed another path
[Gramfort et al., 2015], considering functional signal as a three-dimensional
distribution, and minimizing the transport cost. However, this framework im-
poses unnatural constraints of non-negativity of the signal and only works for
one-dimensional contrasts, so that it cannot be used to learn multi-dimensional
anatomo-functional structures. An important limitation of the latter two fami-
lies of methods is that they operate on a fixed spatial context (mesh or voxel
grid), and thus cannot be used on heterogeneous meshes such as between two
individual human anatomies or, worse, between a monkey brain and a human
brain.

Contributions Following Bazeille et al., 2019, we use the Wasserstein distance
between source and target functional signals — consisting of contrast maps
acquired with fMRI - to compute brain alignments. We contribute two notable
extensions of this framework: (i) a Gromov-Wasserstein (GW) term to preserve
global anatomical structure — this term introduces an anatomical penalization
against improbably distant anatomical matches, yet without imposing diffeo-
morphic regularity — as well as (ii) an unbalanced correspondence that allows
mappings from one brain to another to be incomplete, for instance because
some functional areas are larger in some individuals than in others, or may sim-
ply be absent. We show that this approach successfully addresses the chal-
lenging case of different cortical meshes, and that derived brain activity tem-
plates are sharper than those obtained with standard anatomical alignment ap-
proaches.

Methods

Optimal Transport yields a natural framework to address the alignment prob-
lem, as it seeks to derive a plan — a coupling — that can be seen as a soft as-
signment matrix between cortical areas of a source and target individual. As
discussed previously, there is a need for a functional alignment method that
respects the rich geometric structure of the anatomical features, hence the
Wasserstein distance alone is not sufficient. By construction, the GW distance
[Memoli, 2007; Mémoli, 2011] can help preserve the global geometry underlying
the signal. The more recent fused GW distance [Vayer et al., 2020] goes one
step further by making it possible to integrate functional data simultaneously
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with anatomical information.

3.2.1 Fused Unbalanced Gromov-Wasserstein

We leverage Vayer et al., 2020 and Séjourné et al., 2021 to present a new objec-
tive function which interpolates between a loss preserving the global geometry
of the underlying mesh structure and a loss aligning source and target features,
while simultaneously allowing not to transport some parts of the source and tar-
get distributions. We provide an open-source solver that minimizes this loss’.

Formulation We denote F* € R™¢ the matrix of features per vertex for the
source subject. In the proposed application, they correspond to ¢ functional
activation maps, sampled on a mesh with n vertices representing the source
subject’s cortical surface. Let D® € R’} be the matrix of pairwise geodesic
distances? between vertices of the source mesh. Moreover, we assign the dis-
tribution w* € R’ on the source vertices. Comparably, we define F* ¢ RP:,
D' € REP and w? € RE for the target subject, whose individual anatomy is
represented by a mesh comprising p vertices. Eventually, w® and w? set the
transportable mass per vertex, which, without prior knowledge, we choose to

be uniform for the source and target vertices respectively: w® £ (1, .. 1),

E, ceey E
wt2 (1.1,

Given a tuple of hyper-parameters § £ (p,a,¢), where p,e € R, and a €
[0,1], for any coupling P € R™P, we define the fused unbalanced Gromov-
Wasserstein loss as

Gromov-Wasserstein loss Loy (P)
Wasserstein loss Ly (P) l

)
Lo(P) £ (1—a) > ||F?-F}|3P; +o > |D,— D} [P P,
0<i<n 0<i,k<n
0<j<p 0<j,I<p (3.7
+p ( KL(P#1 ® P#l | w® ® ’UJS) == KL(P#2 X P#Q | w? ®wt) ) + e E(P)
i) i)

Marginal constraints Ly (P)

where Ly (P) matches vertices with similar features, Lgw (P) penalizes changes
in geometry and Ly(P) fosters matching all parts of the source and target dis-
tributions. Throughout this paper, we refer to relaxing the hard marginal con-
straints of the underlying OT problem into soft ones as unbalancing. Here,
Py £ (3, Pij)o<i<n denotes the first marginal distribution of P, and Py, £
(3=, Pij)o<j<p the second marginal distribution of P. The notation ® repre-
sents the Kronecker product between two vectors or two tensors. KL(:|-) de-

Thttps://github.com/alexisthual/fugw provides a PyTorch [Paszke et al., 2019] solver with a
scikit-learn [Pedregosa et al., 2011] compatible API
2We compute geodesic distances using https://github.com/the-virtual-brain/tvb-gdist
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notes the Kullback Leibler divergence, which is a typical choice to measure the
discrepancy between two measures in the context of unbalanced optimal trans-
port[Lieroetal, 2018]. Thelastterm E(P) £ KL(P®P | (w*@w") @ (w*@w?))
is mainly introduced for computational purposes, as it helps accelerate the ap-
proximation scheme of the optimisation problem. Typically, it is used in combi-
nation with a small value of ¢, so that the impact of other terms is not diluted.
On the other hand, the parameters « and p offer control over two other aspects
of the problem: while « realizes a trade-off between the impact of different fea-
tures and different geometries in the resulting alignment, p controls the amount
of mass transported by penalizing configurations such that the marginal distri-
butions of the transportation plan P are far from the prior weights w?® and w?.
This potentially helps adapt the size of areas where either the signal or the ge-
ometry differs too much between source and target.

Eventually, we define X* £ (F*, D%, w®) and X* £ (F* Dt w?), and seek to
derive an optimal coupling P € R™? minimizing

s ty A
FUGW(X*® X*) = IlangLe(P) (3.2)

This can be seen as a natural combination of the fused GW [Vayer et al., 2020]
and the unbalanced GW [Séjourné et al.,, 2021] distances. To the best of our
knowledge, it has never been considered in the literature.

Toy example illustrating the unbalancing property As exemplified in Figure
3.1, brain responses elicited by the same stimulus vary greatly between indi-
viduals. Figure 3.2 illustrates a similar yet simplified version of this problem,
where the goal is to align two different signals supported on the same spher-
ical meshes. In this example, for each of the n = p = 3200 vertices, the fea-
ture is simply a scalar. On the source mesh, the signal is constituted of two
von Mises density functions that differ by their concentration (large and small),
while on the target mesh, only the large one is present, but at a different loca-
tion. We use the optimal coupling matrix P obtained from Eq. 3.2 to transport
the source signal on the target mesh. As shown in Figure 3.2.B, the parameter
p allows to control the mass transferred from source to target. When p = 100,
we approach the solution of the fused GW problem. Consequently, we observe
the second mode on the target when transporting the source signal. When the
mass control is weaker (p = 1), the smaller blob is partly removed because it
has no counterpart in the target configuration, making the transport ill-posed.

Barycenters Barycenters represent common patterns across samples. Their
role is instrumental in identifying a unique target for aligning a given group of
individuals. As seen in Fig. 3.1, the vertex-wise group average does not usu-
ally provide well-contrasted maps. Inspired by the success of the GW distance
when estimating the barycenter of structured objects [Peyré et al., 2016; Vayer
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Figure 3.2: Unbalancing helps accounting for idiosyncrasies of the source and
target signals When trying to align the source and target signals (Panel A), the
classical balanced setup (Panel B, top row) transports all parts of the source
signal even if they have no counterpart in the target signal. In the unbalanced
setup (Panel B, bottom row), less source-only signal is transported: in particular,
less mass is transported from the source’s small blob onto the target (Panel B,
middle column).

et al,, 2020], we use FUGW to find the barycenter (FB DB) ¢ RF¢ x R** of all
subjects s € S, as well as the corresponding couplings P* 2 from each subject
to the barycenter. More precisely, we solve

XB = (FB DB wPB) ¢ argminz FUGW(X?, X), (3.3)
seS

where we set the weights wp to be the uniform distribution. By construction,
the resulting barycenter benefits from the advantages of FUGW, i.e. equilib-
rium between geometry-preserving and feature-matching properties, while not
forcing hard marginal constraints. The FUGW barycenter is estimated using a
Block-Coordinate Descent (BCD) algorithm that consists in alternatively (i) min-
imizing the OT plans P*B for each FUGW computation in equation 3.3 with
fixed X® and (ii) updating the barycenter X® through a closed form with fixed
P*B_See Algorithm 3.4 for more details.

Approximating solutions to the FUGW problem by minimizing a
lower bound

This section provides extensive information as to how we derive solutions to the
FUGW problem. It can be skipped at first, but is needed to understand some of
the extensions presented in Chapter 4.

Estimating the unbalanced Gromov Wasserstein (UGW) loss is numerically sen-
sitive to initialisation, due to the non-convexity of the problem. Therefore FUGW
is a priori non-convex as well, and comparably difficult to estimate. Conse-
quently, following Séjourné et al., 2021, we instead compute a lower bound
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which we formulate as a bi-convex problem that relies on the joint estimation of
two couplings. It involves solving a minimization problem with respect to two
independent couplings: using a Block-Coordinate Descent (BCD) scheme, we
fix a coupling and minimize with respect to the other. This allows us to always
deal with linear problems instead of a quadratic one. Eventually, each BCD it-
eration consists in alternatively solving two entropic unbalanced OT problems,
whose solutions can be approximated using the scaling algorithm [Chizat et al.,
2019]. We provide next a detailed derivation of this estimation procedure, using
notations introduced in section 3.2.1.

First of all, let us rewrite Ly, the loss function introduced in Equation 3.1, to elim-
inate quadratic terms involving P. Let P, Q € R™? be two couplings. We turn
each of the terms Lw, Lgw, Ly and E of the loss function into a function of P and
Q. The updated loss function reads:

L(P.Q) 2 (1-a) Lw(P.Q) +o Lew(P.Q) +p Ly(P.Q) +¢ E(P,Q) (3.4)

where

A P
w(P,Q) 2 (C,259) = L( ¥ CiyP,+ 3 Ci,Qi)
0<i<n 0<i<n
0<j<p 0<j<p
Lew(P.Q) = (G.P2Q) = 3 GijriPi;Q,
0<i,k<n
0<5.1<p

L(P.Q) 2 KL(Pu@Qu |w @w') + KL(Pp @ Qu | w @ w')

EP,Q) 2 KL(P@Q | (w* @ wt) ® (w* ®wt)>

and
c= (HFiS - Ff||§) € R is the feature cost matrix,
2,7
G 2 (lDis,k - D;?’l'?)i,j,k,l € RP™7 s the geometry cost tensor.

It is important to note that, when P = Q, the objective functions of Equation 3.4
and Equation 3.1 are equal: Lgi(P, P) = Ly(P). Therefore, solving for the new
loss under the constraint P = Q is the same problem as solving for the original
FUGW loss. We relax this equality constraint between the two couplings and
only require that the mass of P and @Q be equal, where the mass of a vector
is defined as the sum of its coefficients: m(P) £ >i; Pij. Consequently, we
define the following lower bound for the FUGW problem:
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s t . bi . bi A s t
= > = -
FUGW(X? X7) P.,lgfzo Ly (P, Q) > P’lgfzo Ly (P,Q) LB-FUGW(X?®, X*) (3.5)
P=Q m(P)=m(Q)
The tightness of this lower bound is studied in Séjourné et al., 2021 for the un-
balanced Gromov-Wasserstein problem but is out of the scope of our work here.

Solver We provide a Python GPU-based solver for LB-FUGW, using an ap-
proach similar to that of Séjourné et al., 2021, which we recall in Algorithm 3.1.
More precisely, we alternatively optimize one coupling while keeping the other
fixed. It is possible because Séjourné et al., 2021 showed that when Q is fixed,
minimizing a regularised unbalanced Gromov-Wasserstein loss with respect to
P reads as a regularised unbalanced Wasserstein problem, where the associ-
ated cost matrix K is a function of Q and the other terms of the loss function —
this derives from calculations made in the proofs of Propositions 9 and 10 from
the appendix of Séjourné et al., 2021. Fortunately, plenty of solvers exist for this
optimisation problem. Respectively, this result holds when P is fixed and one
optimises for Q.

We extend this result by showing that when Q is fixed, the minimization of Ly
with respect to P also reads as a regularised unbalanced Wasserstein problem,
where the associated cost matrix K is a new function of QQ and the other terms
of the loss function. In the interest of brevity, we do not report these calcula-
tions here, but the interested reader will find similar ones in Section 4.7.
Besides, in Algorithm 3.2, we detail the computation of the local cost K used
in the previous algorithm. It explicitly shows actual computations we make on
CPUs and GPUs to compute the local cost matrix, which exploits the underlying
structure of G to maximise computational efficiency. Note that we do not store
the full cost tensor G, which lowers the memory footprint of this approach.
Finally, this results in two entropic unbalanced OT problems in each iteration,
which can be solved using the scaling algorithm from Chizat et al., 2019 detailed
in Algorithm 3.3.

Algorithm 3.1 Approximation scheme for LB-FUGW

Input: X% X' a,p,e
Output: Pair of optimal couplings (P, Q)
1: initialise: P = Q = w?® ® wt//m(w*) m(w?)

2: while (P, Q) has not converged do

3 Kp + Cost(P,G,C,w®, wt, a, p,e) > fixed P
4 Q « Scaling(Kp,w*,w*,pm(P),em(P))
PR =

Kg + Cost(Q,G,C,w*, wt,a,p,e) > fixed Q

6

7 P + Scaling(Kq, w*, w?,pm(Q),=m(Q))
. Q

8: P+ %P

9: end while
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Algorithm 3.2 Compute local bi-convex cost matrix from LB-FUGW

Input: P,G,C,w*,wt, a,p,e
Output: Local cost K
1
K + ; C
[( (D*© D*)Py) & ((Dt © Df)P#Q)) — 2D*P(DYH)"
|: logi P#1> <10g P#2>] 1n®lp

P)]l ®1,

Algorithm 3.3 Scaling algorithm from Chizat et al., 2019

Input: K, w?, w?, p,e

Output: Optimal coupling P
1: initialise dual vectors: u = 0,,,v =0,
2: while (u, v) has not converged do

3: ; €Xp ((vj +logw?)1, — KE"J ))
4: v = log(Ziexp ((u; +logws)l, — KE))
5. end while

=)}

P+ (w@wt) oexp (udv— K)

Here, the ® denotes the Hadamard, i.e., the element-wise product of two matri-
ces. Similarly, the exponential, division, and logarithm operations are computed
element-wise. The scalar product is denoted by (-, -).

In practice, we observe that the two couplings of LB-FUGW are numerically
equal. Therefore, we only use P — and not Q.

Detailed description of FUGW barycenter estimation

FUGW-barycenter algorithm, described in Algorithm 3.4, alternates between
computing mappings from subjects to the barycenter, and updating the
barycenter. This corresponds to a block coordinate descent on the barycen-
ter estimation. The first step simply uses the previously introduced solver. The
second one takes advantage of the fact that the objective function introduced
in Equation 3.5 is differentiable in FB and D?Z, and the two couplings of LB-
FUGW are numerically equal. This yields a closed form for FB and DB, as a
function of P5B and X*. We note that, during the barycenter estimation, the
weight w® is always fixed as uniform distribution. Finally, it might be costly to
iterate over all subjects at each step. Therefore, we suggest randomly drawing
a subset of subjects at each iteration, which we denote by S.
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Algorithm 3.4 LB-FUGW barycenter

InPUt: (Xs)SGSa a, p, €
Output: Individual couplings (P*5),cs, barycenter X Z
1: initialise: FB = I; DB = 0,
2. while X2 = (FB, DB w?) has not converged do
3 Draw S subset of S
fors ¢ S do > fixed X B
Align: P*B « LB-FUGW(X*, X B p, a,¢)
end for
Update FB and DB: > fixed P B

1 H 1 s s
FB < EZ(ﬂag (_133’B> (P aB)TF
ses #2

1 (PS,B)TDsPs,B

o s,B s,B

81 = PRP(PyP)T

N o a R

Dp «+

8: end while

Numerical experiments

We design three experiments to assess the performance of FUGW. In Exper-
iments 1 and 2, we are interested in assessing if aligning pairs of individuals
with FUGW increases correlation between subjects compared to a baseline cor-
relation. We also compare the ensuing gains with those obtained when using
the competing method MSM [Robinson et al., 2014, 2018] to align subjects. In
Experiment 3, we derive a barycenter of individuals and assess its ability to cap-
ture fine-grained details compared to classical methods.

Dataset We leverage data from the Individual Brain Charting dataset [Pinho
et al., 2018] in all three experiments. It is a longitudinal study on 12 human
subjects, comprising 400 fMRI maps per subject collected on a wide variety of
stimuli (motor, visual, auditory, theory of mind, language, mathematics, emo-
tions, and more), movie-watching data, T1-weighted maps, as well as other fea-
tures such as retinotopy which we don’t use in this work. We leverage these 400
fMRI maps. The training, validation and test sets respectively comprise 326, 43
and 30 contrast maps acquired for each individual of the dataset. Tasks and
MRI sessions differ between each of the sets. More details, including prepro-
cessing, are provided in Supplementary Materials.

Baseline alignment correlation For each pair of individuals (s, t) under study,
and for each fMRI contrast c in the test set, we compute the Pearson correlation
corr(F#,, F*,) after these maps have been projected onto a common surface
anatomy (in this case, fsaverage5 mesh). Throughout this work, such compu-
tations are made for each hemisphere separately.

66
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Experiment 1 - Aligning pairs of humans with the same anatomy For each pair
(s,t) under study, we derive an alignment P#* € R"*? using FUGW on a set of
training features. In this experiment, source and target data lie on the same
anatomical mesh (fsaverage5), and n = p = 10 240 for each hemisphere. Since
each hemisphere’s mesh is connected, we align one hemisphere at a time.

Computed couplings are used to align contrast maps of a the validation set
from the source subject onto the target subject. Indeed, one can define

bsst: X € RV s (P*YTX) 0 Py € RPX (3.6)

where ¢ represents the element-wise division. ¢,_,; transports any matrix of
features from the source mesh to the target mesh. We measure the Pearson
correlation corr(¢s_>t(Fs), Ft) between each aligned source and target maps.

We run a similar experiment for MSM and compute the correlation gain in-
duced on a test set by FUGW and MSM, respectively. We selected the hyper-
parameters maximizing correlation gain for both models on a validation set. In
the case of FUGW, in addition to gains in correlation, hyper-parameter selec-
tion was influenced by three other metrics that help us assess the relevance of
computed couplings:

Transported mass For each vertex i of the source subject, we compute

> Pfj’.t the coefficient of the marginal associated with vertex ¢
0<j<p

Vertex displacement Taking advantage of the fact that the source and target
anatomies are the same, we define D = D® = D* and compute for each
vertex i of the source subject the quantity . P2 - D; ;/ . P", which
measures the average geodesic distance on the cortical sheet between
vertex ¢ and the vertices of the target it has been matched with

Vertex spread Large values of ¢ increase the entropy of derived couplings. To
quantify this effect, and because we don't want the matching to be too
blurry, we assess how much a vertex was spread. Considering P, =
Pf’t/ > Pff € RP as a probability measure on target vertices, we esti-
mate the anatomical variance of this measure by sampling ¢ pairs (j,, k4)

of P, and computing their average geodesic distance % Zk Dj, ,
.7(11 q

Experiment 2 - Aligning pairs of humans with individual anatomies We per-
form a second alignment experiment, this time using individual meshes instead
of an anatomical template.

However, individual meshes are significantly larger than the common anatomi-
cal template used in Experiment 1 (n ~ m = 160k vs. 10k previously), resulting
in couplings too large to fit on GPUs - for reference, a coupling of size 10k x
10k already weights 400Mo on disk. We thus reduce the size of the source and
target data by clustering them into 10k small connected clusters using Ward’s
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algorithm [B. Thirion et al., 2014]. More details are given in supplementary sec-
tion A.4.

Experiment 3 - Comparing FUGW barycenters with usual group analysis
Since it is very difficult to estimate the barycentric mesh, we force it to be equal
to the fsaverage5 template. Empirically, this we force the distance matrix DB
to be equal to that of fsaverage5, and only estimate the functional barycenter
FB. We initialise it with the mean of (F?®),cs and derive F2 and (P*B) .5
from problem 3.3.

Then, for a given stimulus ¢, we compute its projection onto the barycenter for
each subject. We use these projections to compute two maps of interest: (i)
Mg, the mean of projected contrast maps across subjects and (ii) Tg,. the
t-statistic (for each vertex) of projected maps. We compare these two maps
with their unaligned counterparts My . and T; . respectively.

A 1

MB,C = E Z QSS—H‘, (Fsc) TB,C é t'StaUSth((d)s—}t (FfC))SES>
sES
A 1 s A .
My, 2 & Z F?, To,c & t-statlstIC((Ff‘c)ses)
seS

The first map helps us to qualitatively evaluate the precision of FUGW align-
ments and barycenter. The second one is classically used to infer the existence
of areas of the brain that respond to specific stimuli. We assess whether FUGW
helps find the same clusters of vertices. Eventually, we quantify the number
of vertices significantly activated or deactivated with and without alignment re-
spectively.

Results

Experiment 1 - Template anatomy

Aligning subjects on a fixed mesh We seta = 0.5, p = 1and e = 1073.
Pearson correlation between source and target contrast maps is systematically
and significantly increased when aligned using FUGW, as illustrated in Figure 3.3
where correlation grows by almost 40% from 0.258 to 0.356.

We also varied training sets by selecting subsets of training contrasts and find
that similar performance on the test set can be achieved regardless of the train-
ing data (see Supplementary section 9.3 and in particular Supplementary Table
9.1).

Hyper-parameters selection Hyper-parameters used to obtain these results
were chosen after running a grid search on ¢, € and p and evaluating it on the val-
idation dataset. Computation took about 100 hours using 4 Tesla V100-DGXS-
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Figure 3.3: Comparison of gains in correlation after inter-subject alignment
For each pair of source and target subjects of the dataset, we compute the av-
erage Pearson correlation between 30 test contrasts, leading to the (baseline)
correspondence score, and compare it with that of the same contrast maps
aligned with either MSM (left) or FUGW (right). Correlation gains are much bet-
ter for FUGW.

32GB GPUs. More precisely, it takes about 4 minutes to compute one coupling
between a source and target 10k-vertex hemisphere on a single GPU, when the
solver was set to run 10 BCD and 400 Sinkhorn iterations. In comparison, MSM
takes about the same time on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
CPUs. Results are reported in Figure 3.4 and provide multiple insights concern-
ing FUGW.

Firstly, without anatomical constraint (o« = 0), source vertices can be matched
with target vertices that are arbitrarily far on the cortical sheet. Even though this
can significantly increase correlation, it also results in very high vertex displace-
ment values (up to 100mm). Such couplings are not anatomically plausible.
Secondly, without functional information (o« = 1), couplings recover a nearly
flawless matching between source and target meshes, so that, when ¢ = 10~°
(ie when we force couplings to find single-vertex-to-single-vertex matches), ver-
tex displacement and spread are close to 0 and correlation is unchanged. Fus-
ing both constraints (0 < a < 1) yields the largest gains in correlation while
allowing to compute anatomically plausible reorganizations the cortical sheet
between subjects.

The impact of p (controlling marginal penalizations) on correlation seems mod-
est, with a slight tendency of increased correlation in unbalanced problems (low

p)-

Finally, it is worth noting that a relatively wide range of « and p yield comparable
gains. The fact that FUGW performance is weakly sensitive to hyper-parameters
makes it a good off-the-shelf tool for neuroscientists who wish to derive inter-
individual alignments. However, ¢ is of dramatic importance in computed re-
sults and should be chosen carefully. Vertex spread is a useful metric to choose
sensible values of ¢; for human data one might consider that it should not ex-
ceed 20mm.

s
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Figure 3.4: Exploring hyper-parameter space to find relevant couplings Given
a transport plan aligning a source and target subject, we evaluate how much
this coupling (left) improves correlation between unseen contrast maps of the
two subjects, (center left) actually transports data, (center right) moves vertices
far from their original location on the cortical surface and (right) spreads ver-
tices on the cortical sheet. We seek plans that maximize correlation gain, while
keeping spread and displacement low enough.
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Mass redistribution in unbalanced couplings Unbalanced couplings provide
additional information about how functional areas might differ in size between
pairs of individuals. This is illustrated in Figure 3.5, where we observe variation
in size of the auditory area between a given pair of individuals. This feature
is indeed captured by the difference of mass between subjects (although the
displayed contrast was not part of the training set).

e g z-score B >
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4

Figure 3.5: Transported mass indicates areas which have to be resized be-
tween subjects (Panel A) We show a contrast map from the test set which dis-
plays areas showing stronger activation during auditory tasks versus equiva-
lent visual tasks. It shows much more anterior activations on the target subject
compared to the source subject. This is consistent with the observation that
more mass is present in anterior auditory areas of the source subject than in
the target subject (Panel B).

Experiment 2 - Individual anatomies
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Figure 3.6: Correlation between pairs of subjects is significantly better after
alignment on individual anatomies than after projecting subjects onto a com-
mon anatomical template

As shown in Figure 3.6, we obtain correlation gains which are comparable to
that of Experiment 1 (about 35% gain) while working on individual meshes. This
tends to show that FUGW can compute meaningful alignments between pairs
of individuals without the use of an anatomical template, which helps bridge
most conceptual impediments listed in Section 3.1.

Moreover, this opens the way for computation of simple statistics in cohorts
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3.4.3

aligned to barycenter aligned to barycenter

Figure 3.7: FUGW barycenter yields much finer-grained maps than group aver-
ages We study the same statistical map as in Figure 3.1, which contrasts areas
of the brain involved in mathematical reasoning. A. These complex maps pro-
jected onto the barycenter and averaged show more specific activation patterns
than simple group averages — average functional response in each vertex of the
anatomical template — especially in cortical areas exhibiting more variability,
such as the prefrontal cortex. B. Deriving a t-test on aligned maps captures the
same clusters as the classical approach (plain green circles), but also new clus-
ters in areas where inter-subject variability is high (dotted black circles). Peak
t-statistics are also higher with FUGW. C. Ratio of number of activated vertices
(|t-statistic| > 4) with versus without alignment for each map of the test set.
Our method finds significantly more of such vertices (p-value = 3 - 107%).

of individuals in the absence of a template. Indeed, one can pick an individual
of the cohort and use it as a reference subject on which to transport all other
individuals. We give an example in Figure 9.4, showing that FUGW correctly pre-
served idiosyncrasies of each subject while transporting their functional signal
in an anatomically sound way.

Experiment 3 - Barycenter

In the absence of a proper metric to quantify the correctness of a barycenter, we
first qualitatively compare the functional templates obtained with and without
alignment. In Figure 3.7.A, we do so using brain maps taken from the test set.
We can see that the barycenter obtained with FUGW yields sharper contrasts
and more fine-grained details than the barycenter obtained by per-vertex averag-
ing. We also display in Figure 3.7.B the result of a one-sample test for the same
contrast, which can readily be used for inference. The one-sample test map ob-
tained after alignment to the FUGW template exhibits the same supra-threshold
clusters as the original approach, but also some additional spots which were
likely lost due to inter-subject variability in the fsaverage5 space. This approach
is thus very useful to increase power in group inference. We quantify this result
by counting the number of supra-threshold vertices with and without alignment
for each contrast map of the test set. Our alignment method recovers a much
higher number of significantly activated vertices in group analysis, as shown in
Figure 3.7.C.
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3.5

Discussion

FUGW can derive meaningful couplings between pairs of subjects without the
need of a pre-existing anatomical template. It is well-suited to computing
barycenters of individuals, even for small cohorts.

In addition, we have shown clear evidence that FUGW yields gains that cannot
be achieved by traditional diffeomorphic registration methods. These meth-
ods impose very strong constraints to the displacement field, that may pre-
vent reaching optimal configurations. More deeply, this finding suggests that
brain comparison ultimately requires lifting hard regularity constraints on the
alignment models, and that two human brains differ by more than a simple
continuous surface deformation. However, current results have not shown a
strong correlation gain of unbalanced OT compared to balanced OT, likely be-
cause the cohort under study is too small. Leveraging datasets such as HCP
[Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil et al., 2013] with a larger
number of subjects will help lower the standard error on correlation gain esti-
mates. In this work, we decided to rely on a predefined anatomical template
(fsaverage5) to derive functional barycenters. It would be interesting to investi-
gate whether more representative anatomical templates can be learned during
the process. This would in particular help to customize templates to differ-
ent populations or species. Additionally, using an entropic solver introduces a
new hyper-parameter ¢ that has a strong effect, but is hard to interpret. Future
work may replace the scaling algorithm [Chizat et al., 2019] used here by the
majorization-minimization one [Chapel et al., 2021], which does not require en-
tropic smoothing. This solution can yield sparse couplings while being orders
of magnitude faster, which will prove useful when computing barycenters on
large cohorts.

Finally, we plan to make use of FUGW to derive alignments between human
and non-human primates without anatomical priors. Indeed, the understanding
of given brain mechanisms will benefit from more detailed invasive measure-
ments made on other species only if brains can be matched across species;
moreover, this raises the question of features that make the human brain
unique, by identifying patterns that have no counterpart in other species. By
maximizing the functional alignment between areas, but also allowing for some
regions to be massively shrunk or downright absent in one species relative to
the other, the present tool could shed an objective light on the important issue of
whether and how the language-related areas of the human cortical sheet map
onto the architecture of non-human primate brains.
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FUGW extensions

In the previous chapter, we introduced a solver based on Sinkhorn’s algorithm
to compute solutions to an optimal transport problem optimising for the FUGW
loss. However, many theoretical and computational challenges still remain at
this stage. In this Chapter, we present extensions to FUGW which tackle these
problems.

First of all, we show that FUGW can be used with training data of limited size,
and in particular with naturalistic stimuli. This is important since it is unlikely
that a large amount of data will systematically be available for each individual
to be aligned. To this end, we train FUGW alignments on the same individuals
as in Chapter 3, and use the same test data.

Secondly, we investigate the dependence of FUGW on the initialisation of the
solver. We empirically show that not every initialisation strategy is suitable for
FUGW, but that the one used in the previous chapter is robust.

Thidly, on top of a stabilised Sinkhorn solver, we introduce two additional
solvers, hoping they would be empirically faster. Computational speed is im-
portant since we strive to be able to align a lot of pairs of individuals.

Then, since the size of transport plans grows quadratically with the number of
vertices of the source and target brains, the previous method cannot be ap-
plied as is to high-resolution data. We show that it is possible to scale FUGW to
high-resolution datasets, by adapting the two solvers introduced in the previous
section.

Finally, we derive a new solver capable of solving FUGW problems in which the
Kullback-Leibler divergence is replaced by the squared L2-norm. This is impor-
tant since the Kullback-Leibler divergence is not always suitable for the problem
at hand: it yields transport plans whose absolute transported mass does not
vary much between individuals. Empirically, we find that the squared L2-norm
allows for higher absolute differences in transported mass between vertices.

Most of the work presented in this chapter was published in the form of posters
at CCN 2022, OHBM 2023 and CCN 2023. All code updates were pushed to the
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FUGW GitHub repository’.

Aligning human subjects with short acquisition-time
fMRI training data

The work presented in this section was published in the form of a short article
and poster at CCN 2022. It is a follow-up on the work presented in Chapter 3 in
which different types of data are used to train cortical alignments. In particular,
we show that a much lower amount of fMRI contrast maps can be used to train
FUGW. Besides, we show that naturalistic stimuli, which are potentially easier
to acquire than elaborate tasks, can be used as well.

Introduction

Cortical folding, as well as functional patterns of activity observed using fMRI
vary a lot between individuals. In order to derive statistics at the population
level, neuroscientists commonly rely on coarse anatomical information so as
to co-register individuals [Avants et al., 2008; Dale et al., 1999; Fischl, 2012].

Several methods have been developed to integrate functional data when deriv-
ing inter-subject alignments. Most prominently, Multimodal Surface Matching
(MSM) [Glasser et al., 2016; Robinson et al., 2014] computes a diffeomorphic
transformation between cortical surfaces of pairs of individuals to match ver-
tices with similar functional activity. However, diffeomorphisms computed with
MSM can't capture the fact that cortical areas vary in size and organization
between subjects. Other methods like hyperalignment [Haxby et al., 2011] or
shared response models [P-H. Chen et al., 2015] rely solely on functional data
to compute alignments. Nevertheless, the two latter methods don’t prevent
matching vertices which are arbitrarily distant on the cortex and may therefore
lead to anatomically implausible pairings.

Following the work of Bazeille et al., 2019, we leveraged optimal transport to
derive a new alignment method denoted as FUGW and detailed in Thual et al.,
2022. It derives inter-subject alignments that take advantage of functional data
while trying to preserve the global anatomical geometry of the cortex. We show
in Thual et al., 2022 that these alignments greatly increase between-subject cor-
relation of new fMRI data — acquired on tasks and sessions which differ from
the training set. However, training datasets used in these experiments are mas-
sive (50+ hours of fMRI data resulting in 350+ contrast maps were recorded per
subject). We replicate these experiments with training datasets consisting of
movie-watching data or fMRI contrasts. They take a maximum of 120 minutes
to acquire per subject. We show that these affordable datasets can already

Thttps://github.com/alexisthual/fugw
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help derive anatomically convincing alignments that greatly increase between-
subject correlation.

Methods

Using a set of training features, we derive alignments between a source and a
target individual. We use them to align new features and finally measure how
much between-subject correlation increases after alignment.

Unbalanced optimal transport alignments

FUGW stands for Fused Unbalanced Gromov Wasserstein [Thual et al., 2022].
It leverages optimal transport solvers from Séjourné et al., 2021 and Vayer et
al., 2020, and minimizes a loss function designed to match points between two
graphs based on feature similarity while preserving the underlying geometry of
these graphs. In our case, features represent fMRI activity throughout a series
of experiments, but they could as well integrate anatomical data such as myelin
concentration, cortical depth, etc. The underlying graph geometry is that of the
cortical sheet.

We assume that all individuals have an n-vertex mesh. For a subject s, we de-
note F'* € R™™ the matrix of m features per vertex, D* € R™" the matrix of
distances between vertices on the cortical sheet 2.

Given a pair of individuals (s, t), we seek to derive a coupling P € R™™ minimiz-
ing

L(P) & (1—a) Lw(P)+a Lew(P) +p Ly(P)+¢ H(P) (4.7

where

Lw(P) £ 3", . ||F?. — F} | 3P, 1 is the Wasserstein loss between features,
Lew(P) = i Dy — Dgl\?H,kPj,l is the Gromov-Wasserstein loss be-
tween cortical geometries,

Ly(P) £ KL(Py1 ® Pyi|is @ 1o) + KL(Pys ® Pyo|is ® o) is the marginal
constraint allowing to only partly transport some areas of the cortex,

H(P) £ KL(P ® P|(i* ® 12) ® (3= ® =) is the entropic regularisation term,
KL(,-) is the Kullback-Leibler divergence, Py; = (Zj P, j)o<i<n is the first
marginal of P, Pys = (3, Pi j)o<j<n is the second marginal of P,and « € [0, 1],
p,€ € Ry are the hyper-parameters of the problem.

Experiment

Baseline Since all individual data have been projected onto a common
anatomical template, given a pair of individuals, one can derive the Pearson

2We compute geodesic distances between vertices using https://github.com/the-virtual-
brain/tvb-gdist
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correlation between feature maps of the test set without functional alignment.
The average correlation b, ; between feature maps serves as a baseline corre-
lation for this pair of subjects.

Metric Given a pair of subjects (s, ¢) and a coupling P#* minimizing Eq. 4.1,
wedefine ¢, : X € R*? — ((P**)TX) o P*%* € R"? where ¢ is the element-
size division. ¢_,; projects any feature map X from s onto ¢t. We use it to project
new features acquired on the source subject onto the target subject’s anatomy,
and compute the correlation between projected features and the same features
on the target subject. We finally compare the average correlation ¢, ; to the
baseline correlation b, ;.

Dataset In this work, we exclusively rely on the Individual Brain Charting
dataset [Pinho et al., 2018]. This longitudinal study on 12 human subjects con-
sists of a large collection of fMRI contrasts acquired for a wide variety of tasks.
It also comes with movie-watching data, and other features we don’t use in this
work such as retinotopic and T1-weighted maps. We derive couplings from two
types of training data:

- task-based fMRI features (m = 60), which can be simple conditions — re-
sults of a one-sample t-test on condition maps - or contrasts — results of
a t-test run on a linear combination of conditions

+ movie-watching Shared Response Model (SRM) components (m = 20)
that have been computed on the whole cohort. Naturalistic stimuli include
Raiders of the Lost Ark, short video clips and auditory stimuli from The Lit-
tle Prince respectively adapted from Bhattasali et al., 2019; Haxby et al.,
2011; Nishimoto et al., 2011

Validation data, which we use to select a good set of hyper-parameters for Eq.
4.1, consist of a collection of 45 fMRI contrast maps acquired for a wide variety
of tasks (motor, language, emotional). Test data consist of a collection of 30
fMRI contrast maps acquired for tasks related to mathematics and language.

SRM Share response models seek to find a common dictionary D of activa-
tion patterns across subjects s € S and to derive a mapping W that projects
each individual's features onto this common space:

min Y |[F*—P.D|;
(Ps)5657D S
st PTp,=1 °€

We leverage work from Richard, Gresele, Hyvarinen et al., 2020 to compute the
first m components of this representation.
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Results

In Fig. 4.1, we show that alignments computed with SRM components using
movie-watching data from Raiders of the Lost Ark allow to increase correlation
between fMRI contrast maps for any pair of individuals of the dataset under
study (panel A) and that gains happen mostly in the prefrontal and parietal lobes
(panel B).
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Figure 4.1: A. Correlation gain on the test set for the left hemisphere for each
pair of individuals of the IBC dataset aligned using Raiders of the Lost Ark SRM
components B. Average correlation gain per vertex for the same train and test
data

In Table 4.1, we report acquisition time per individual (presence in the scan-
ner) as well as correlation gain on the test set for a series of affordable align-
ment data. We recall correlation gains from Thual et al., 2022 induced by align-
ments derived using a training dataset consisting of all IBC fMRI contrasts ex-
cept those of the validation and test sets. It seems that naturalistic stimuli are
not as efficient as task fMRI contrast maps to align subjects, but that a limited
number of contrast maps are enough to derive close-to-SOTA couplings.

Table 4.1: Acquisition time (AT) and correlation gain on the left hemisphere
(CG) per training set (baseline correlation = 0.258)

Acquisition  Correlation

Training set m Type . . .
time (min)  gain
All IBC (SOTA) 399 tasks 2000 0.098
Archi protocol 60  tasks 60 0.072
Bang 20 movie 8 -0.009
Clips 10 movie 100 0.009
Good Bad Evil 20 movie 180 0.039
Raiders 20 movie 115 0.045
The Little Prince 20 audio 100 0.004
All combined 90 movie + audio 503 0.050
Discussion

Given a cohort of individuals, aligning their respective signals is a necessity
in order to detect significant activity patterns occurring in areas of the cortex
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which show high inter-subject variability [Fedorenko, 2021]. However, individu-
als cannot be aligned using data on which one wants to infer population-level
effects, hence the need for affordable data protocols that can be acquired along
with protocols of interest and used for alignment.

In this work, we used multiple short-acquisition-time training datasets available
in IBC. Two of them (Raiders and Archi) can bring significant correlation gains
between subjects on new fMRI data. The Archi protocol stands out as a very
efficient and affordable candidate so as to collect alignment data on large co-
horts of human subjects.

In our future work, we will replicate these experiments using resting-state data.
One could also select a minimalist sub-sample of tasks from IBC in order to
design an even shorter protocol maximizing correlation gain.

Dependence to initialisation

The underlying optimization problem of FUGW is not convex, therefore it is not
guaranteed that the solver will converge to the same solution given different
initialisations. In this section, we investigate the dependence of FUGW on the
initialisation of the solver.

To this end, we first introduce a way to quickly visualise how the cortex is reor-
ganised by the computed transport plan: given a transport plan P, one can use
the associated projector ¢ defined in Equation 3.6 to project each RGB channel
of the coloring of an atlas of the source participant onto the target participant.
In particular, at the end of each BCD iteration, we can visualise the reorganisa-
tion of the cortex at this stage.

We test three different initialisation methods:

1. entropic: we initialise the transport plan as w® ® w?, where w?® and w® are
the weights of the source and target individuals

2. permutation: we initialise the transport plan with random values

3. identity: in the case where the data of the source and target participants
lies on the same mesh (fsaverage 5 for instance), we initialise the trans-
port plan with the identity matrix

Results are reported in Figure 4.2. Figure 4.2a shows a coloring of the MMP
1.0 atlas [Glasser et al., 2016] displayed on the left hemisphere of fsaverage 5.
Figure 4.2b shows the convergence of FUGW with the three different initialisa-
tion strategies. Empirically, we find that the entropic initialisation is very robust,
and that the permutation initialisation is not robust. In particular, we observe
that the permutation initialisation can lead to anatomically implausible trans-
port plans, as shown in Figure 4.2b. On the contrary, the identity initialisation
leads to minimal changes in the transport plan: in practice, the entropic regu-
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(a) MMP 1.0 Atlas [Glasser et al., 2016] displayed on left hemisphere of fsaverage 5

Sinkhorn solver (init=entropic)
Time (s

0.00

6.92

13.83 20.73 27.63 34.55

wasserstein
gromov_wasserstein
marginal_constraint_dim1
marginal_constraint_dim2
regularization

—Seese

BCD step init 0

Sinkhorn solver (init=permutation)
Time (s

0.00

6.93

13.84 20.75 27.64 3455

0.00

Sinkhorn solver (init=identity)

6.90

4 6 8 10
BCD step

Time (s
13.81 20.72 27.62 3453

4 6 8 10
BCD step

init

(b) Visualisation of the convergence of the FUGW loss (left column) and transported
MMP 1.0 atlas from source to target at different BCD steps (right columns) for the en-
tropic, permutation and identity initialisation strategies (rows 1, 2 and 3 respectively).

Figure 4.2: Effect of three different initialisation strategies on the convergence
of FUGW. (a) Coloring of the MMP 1.0 atlas on the source individual ; we trans-
port it to the target individual using FUGW at different stages of the training pro-
cedure. (b) We observe that the permutation initialisation can lead to anatom-
ically implausible transport plans. The other two initialisation strategies are
robust and compute similar transport maps.
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larisation blurs the transport plan a little, and mild anatomical displacements
are made. Note that the identity initialisation is not possible in the general case
where the source and target individuals lie on different meshes.

New solvers for FUGW

In Chapter 3, we introduced a solver implementing a Block Coordinate Descent
(BCD) approach to minimise a lower bound of the FUGW loss. The BCD algo-
rithm is written in Algorithm 3.1. During each of the BCD steps, it runs many
iterations of Chizat et al., 2019's scaling algorithm - detailed in Algorithm 3.3 -
approximating the solution to an unbalanced Wasserstein problem. However,
optimal transport research is rich with many solvers for such optimal transport
problem. Therefore, we enrich our BCD approach so that it can use different
solvers than that of Chizat et al.,, 2019. Namely, we add two solvers coming
from existing alternatives: the first one is based on a majorisation-minimisation
(MM) algorithm described in [Chapel et al., 2021], the second one on an exten-
sion to the unbalanced setting of the inexact-bregman-proximal-point (IBPP)
algorithm described in [Xie et al., 2020]. These additions were made in collab-
oration with Huy Tran.

This effort is motivated by two intuitions:

1. these two solvers have been shown to be faster than Sinkhorn’s algorithm
in certain cases, and we thought they might be faster than the scaling
algorithm as well

2. contrary to Sinkhorn and the scaling algorithms, the MM and IBPP algo-
rithms allow to benefit from the sparsity of the transport plan throughout
the iterations of the BCD algorithm ; we will show that this is important to
scale FUGW to high-resolution data in section 4.4

Algorithm 4.1 MM algorithm from Chapel et al., 2021

Input: K, ws,wy, ps, pt, €
Output: Optimal coupling P
TA=ps+prte
2. L= (w§p3+8)/)‘ ® 'wip‘ﬁ)/k) ®exp(—K/\)
3: while has not converged do
4 P+ (Petr) Ao L) o (P @ PLY™)
5. end while

Scaling FUGW for high spatial resolutions

The work presented in this section was published in the form of a poster at
OHBM 2023. It aims at showing that it is possible to solve FUGW problems
even when the number of vertices of the source and target brains is high. This
would prove useful to align high-resolution data (collected at 7T for instance)
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Algorithm 4.2 IBPP algorithm from Xie et al., 2020

Input: K, w®, wt, p, e, k
Output: Optimal coupling P
1. L =exp(—K/p)
2 P=w®®uwt
3: while has not converged do
R+~ POL
foriec {1,...,k}do

4
5
6: u + (R(v ® wt)) wre
7
8

v (RT(u ® 'ws)) e
end for
9: P+ (u®v)®R
10: end while

as well as volumetric images, whose number of voxels typically exceeds 10242
(the number of vertices of fsaverage 5).

The main issue stems from the fact that the size of transport plans grows
quadratically with the number of vertices of the source and target brains. Let
us denote n and p the number of vertices of the source and target cortices re-
spectively, and P a transport plan mapping them. P is a matrix of size n x p.

In all previous experiments, we worked on the fsaverage 5 mesh, which has
10242 vertices per hemisphere. Consequently, P was a matrix of size 10 242 x
10 242 ~ 104 M coefficients. Empirically, a matrix of such size storing float32
coefficients takes approximately 400MB in memory.

Consequently, computing a transport plan between two fsaverage 7 meshes
would result in a matrix of size 163 842 x 163 842 ~ 26 G coefficients, taking ap-
proximately 102GB in memory. It is not possible to fit such a matrix in memory
on a single GPU, and computations would be very slow on a CPU. Moreover, in
the framework developed in Chapter 3, many such matrices need to be stored
in memory to optimise for the FUGW loss.

A coarse-to-fine approach to scale FUGW

We propose to use a coarse-to-fine approach to scale FUGW to high-resolution
data. The idea is to first compute a dense transport plan between two low-
resolution samplings from the high-resolution meshes, and then use it to com-
pute a sparse transport plan between the two high-resolution meshes.

Below are the detailed steps to compute P a sparse transport plan between
two high-resolution meshes, which we also report formally in Algorithm 4.3:

1. Randomly select a subset of vertices of the source and target meshes
2. Fit a dense transport plan P between these subsets

3. Define the sparse matrix P, by computing the following sparsity mask:
For any pair of vertices (i, k) from the source and target subsets respec-
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tively maximally matched in P, allow all vertices within » = 5mm of i to
be mapped to vertices within r = 5mm of k

4. Fit P using the same procedure as described in Chapter 3, starting from
Py

Algorithm 4.3 Coarse-to-fine LB-FUGW for high-resolution data

Input: X% Xt r a,p,e
Output: Optimal coupling P
1 X* Xt + LMDS(D*),LMDS(D?)
2. 5%, St « SampleUniformly(X #), SampleUniformly(X?)
3: P« LB-FUGW(X%., X%, a,p,e)
4: Py + SparseTransportPIan(f?, X Xt r)
5. P« LB-FUGWsparse ((F*, X *,w?), (F!, X, w?), Py, p,¢)

Figure 4.3 illustrates the difference between dense and sparse mappings, as
well as the steps described above. Besides, we typically use a radius of 5-10 mil-
limeters to build the aforementioned neighbourhoods. Empirically, this results
in sparse transport plans comprising 100 M non-null coefficients and taking ap-
proximately 1GB in memory. We could fit the whole procedure on a single Tesla
V100-DGXS-32GB GPU, and it would take approximately 10 minutes to compute
P.

Note that other approaches to scale FUGW to high-resolution data could be
considered. In particular, it is possible to compute low-rank approximations of
the transport plan. Indeed, if the computed transport plan is low-rank, it can be
stored in a much more memory-efficient way. Forrow et al., 2018 introduces a
natural way to compute low-rank solutions to the Wasserstein problem by com-
puting two plans: one transporting the source space to a low-dimensional inter-
mediate space, and the other transporting the intermediate space to the target
space. Recent papers have extended this approach to unbalanced and fused
settings [Scetbon, Cuturi and Peyré, 2021; Scetbon, Peyré and Cuturi, 2027;
Scetbon et al., 2023]. These approaches add factorisation constraints forcing
computed solutions to be low-rank. One nice property of these approaches is
that, when applied to brain data, dimensions of the intermediate space can be
interpreted as clusters of vertices/voxels, which can be useful to interpret the
computed transport plan as well as to build atlases of the brain.

However, we advocate that our coarse-to-fine approach allows computing high-
rank solutions, which may prove useful to align high-resolution brain data. As an
example, mixing together functional and anatomical connectivity data acquired
at high resolution might result in data whose real rank is high.

Adapting FUGW to use sparse matrices

At first, it is unclear whether imposing a sparsity mask on P will allow one to
fit the entire FUGW procedure on a single GPU. Indeed, other matrices of the
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Figure 4.3: Storing sparse matrices allows scaling FUGW to higher brain res-
olutions This figure illustrates the difference between dense and sparse map-
pings. A. All coefficients (light and dark green) of P are stored, but only a hand-
ful of them are not null (dark green). B. For high-resolution meshes, instead of
storing all coefficients, we only store a selection of them (light and dark green)
in a sparse matrix. Non-selected coefficients are set to 0. The selection is de-
termined by mapping random subsets of vertices of the source and target in-
dividuals. These subsets are represented as blue (resp. orange) points for the
source (resp. target) participant. Vertices i and k from the source and target
random subsets respectively were maximally matched, and thus neighbouring
vertices of ¢ are allowed to be mapped to neighbouring vertices of k. We typi-
cally choose a radius of 5-10 millimeters to build these neighbourhoods.
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algorithm might end up being too large to fitin memory as n and p increase. Let
us list them and design strategies to fit them in memory.

In particular, the lower-bound approximation algorithm detailed in Algorithm 3.1
requires to compute cost matrices K € R™P. Let us notice an important dif-
ference between Sinkhorn and the scaling algorithm on one hand, and the MM
and IBPP algorithms on the other hand: the former use all coefficients of K
to update the dual variables u and v, whereas the latter only use coefficients
within the sparsity mask of P. From a computational perspective, it stems from
the fact that the MM and IBPP algorithms compute updates of P that consist
in element-wise products of P and K (actually, a point-wise function of K).
Therefore, one only needs to store coefficients of K that are within the sparsity
mask of P.

Consequently, each part of the equation defining K reported in Algorithm 3.2,
namely C the matrix of pairwise distances between functional signatures, G
the geometry cost tensor, and the unbalancing and regularisation terms, can
be stored using sparse matrices with the sparsity mask of P.

Finally, @ the other transport plan fitted jointly with P in Algorithm 3.7 is also of
size n x p. We propose using the same sparsity mask for P to fit Q.

Adapting the LB-FUGW algorithm

In theory, the previous section shows that the cost matrix K need only be eval-
uated on the support of the sparse transport plan P. In practice, our efficient
function for computing the cost matrix detailed in Algorithm 3.2 needs to be
adapted. In particular, it uses the matrices of geodesic distances between the
source and target meshes vertices, D* and D? respectively. These matrices
are of size n x n and p x p, respectively, which will not fit in memory on a single
GPU when n and p are high.

In the following paragraphs, we (1) propose to compute low-rank approxima-
tions of these matrices which can be stored in a memory-efficient way, and (2)
show that the approximated matrix of geodesic distances can be factorised,
which allows us to adapt Algorithm 3.2 to remain computationally efficient.

Low-rank approximation of the matrix of geodesic distances We propose to

use a low-rank approximation D of the matrices of geodesic distances, i.e. to

find X* € R"** where k is small and such that Ds £ (||Xf - X;H%)_ “and
3

Ds ~ D¢ (respectively X* € RP*k such that Dt £ (||Xf - X;H%) ~and
2]

Dt ~ D%). Finding such vectors, often referred to as embeddings, is the goal of
Multidimenisonal Scaling (MDS). Many algorithms have been proposed to solve
this problem, and we choose to use the Landmark Multidimensional Scaling
(LMDS) algorithm described in Platt, 2005 to compute X * and X*. Like other
algorithms performing this task, it is based on the NystrAim approximation of
the eigenvectors and eigenvalues of the distance matrices. Subsequently, we
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contribute a Python implementation of the LMDS algorithm, which we add to
the fugw package.

Factorization of the low-rank matrix of geodesic distances Let us denote
D2 (||X7; - Xj||§) € R"*™. We seek to derive D; and D, such that

_ 0<i,j<n
D = D, DZ. Let us remark that

D, = (norm(X, nr 1z —\/§X) c Rk+2
D, = (lz;,norm(X, nT, \/§X) c RMkH2

are solutions to this problem, where norm(X,1) € R™ is the vector containing
the squared L2-norms of each row of X and 1,, € R™ is the vector of ones.

Adapting the computation of the cost matrix and couplings With the previ-
ously described low-rank embeddings and factorisation, we can adapt the LB-
FUGW algorithm to use sparse, high-resolution matrices.

First, we need to update the computation of the cost matrix K in Algorithm
3.2. Let us denote D3, D3 the factorisation of D* obtained from the previous
section, and D}, D§ the factorisation of Dt. The term D*P(D*!)T can be ef-
ficiently derived by computing matrix multiplications a proper order. Indeed,
the following association runs without memory issues using the sparse matrix
multiplication method torch.sparse.mm() from PyTorch:

D; [ (og)" [Ppy | <D§>T]

The other terms can be adapted in a similar way.

Secondly, we need to update the algorithms deriving the transport plan P. The
MM algorithm detailed in Algorithm 4.1 can easily be adapted to use sparse
matrices.

Sampling high-resolution meshes uniformly

Leveraging the low-rank embeddings introduced in the previous section, we de-
rive a method to sample points on a high-resolution mesh such that they are
uniformly distributed on the surface. Let X € R"** be the matrix of vertices
of the high-resolution mesh. We simply run the Ward algorithm on X to de-
rive m approximately equal-sized clusters of vertices, and then sample points
uniformly within each cluster.
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Precision mapping of human extrastriate visual cortex
with high-resolution fMRI inter-subject alignment

The work presented in this section was published in the form of a short article
and poster at CCN 2023. It directly uses the coarse-to-fine approach to scale
FUGW to high-resolution data developed in the previous section, and aims at
showing that it is possible to align high-resolution fMRI data using FUGW.

Introduction

First introduced in the early 1990s, functional Magnetic Resonance Imaging
(fMRI) has since become a major tool to non-invasively study human cognition
[Bandettini et al., 1992; Ogawa et al., 1992]. While initial spatial resolution was
around 3mm - see for example Vinckier et al., 2007 for a study on the ventral
visual pathway - increasingly high magnetic-field strengths [De Martino et al.,
2018; Dumoulin et al., 2018] as well as denoising techniques [Vizioli et al., 2021]
have recently made it possible to acquire images at sub-millimeter resolution.

Increase in spatial resolution in fMRI commands for fine-grained analysis
tools Such increase in spatial resolution offers new exciting possibilities of
in-vivo mesoscale imaging, for example the unraveling of columnar-like organi-
zations of the human cortex [Schneider et al., 2019]. However, it also requires
new methods for the joined statistical inference of functional data across dif-
ferent individuals.

Indeed, at common spatial resolutions, a conventional way of conducting
group-level analysis is to project each individual on a common anatomical tem-
plate and spatially smoothing BOLD data to increase sensitivity, which results in
a considerable loss of spatial details. At increasingly high (e.g., sub-millimeter)
resolutions, because individual variability in anatomy becomes prominent, such
group-level analysis can no longer be conducted, as illustrated in Zhan et al.,
2023. Instead, careful inspection of individual-level data is required, with many
manual steps in a time-consuming task at risk of insufficient reproducibility be-
tween researchers.

Methods

Dataset We rely on data published in Zhan et al., 2023, in which authors ac-
quire 7T fMRI on 21 French-English bilingual subjects to look for word-specific
sub-regions of the VWFA. We restricted our analysis to the 7 early-bilingual sub-
jects who did not have bias in either languages. Anatomical data were acquired
using a 0.65mm isotropic MP2RAGE sequence, resampled to 0.6mm isotropic
and transformed into MNI space. Individual surfaces were subsequently ob-
tained using FreeSurfer v6 [Fischl, 2012]. Functional data were acquired with
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a 2D gradient-echo echo-planar imaging (EPI) sequence with a voxel size of
1.2mm isotropic. After standard and minimal preprocessing, data were trans-
formed into MNI space and kept at 1.2mm istropic. No smoothing of functional
data occurred at this stage. Functional data consisted of one functional local-
izer run (276 volumes) containing object categories, and three main fMRI runs
(399 volumes each) containing letter strings increasingly similar to real words.
See Zhan et al., 2023 for more detailed description of the experiment and pre-
processing steps.

In this study, we use maps of t-statistics on volumetric data and project them
on individual meshes using the python package Nilearn®.

Baseline conventional alignment Using Freesurfer, we can map individual
maps from individual surfaces onto a common anatomical template (fsaver-
age 7). At this step, we can smooth individual data on the surface. Finally, we
run a t-test in each vertex to evaluate which vertices are significantly activated
at the group level. Empirically, we increased the smoothing value millimeter by
millimeter until we reached a value returning significant activations at the group
level (3mm smoothing was needed).

Aligning individuals using anatomical and functional data We use FUGW
v0.14, an alignment technique developed in Thual et al., 2022 which now scales
to high mesh resolutions. For a given pair of individuals, this method derives a
mapping which maximizes functional correlation while minimizing anatomical
displacement. This framework is equipped with a distance, which enables one
to evaluate similarity between two individuals with regard to these two objec-
tives.

Using ten contrasts in the functional localizer data (including single-category
contrasts like faces, body, tools, houses), we derive an alignment for each of
the 7 subjects on a reference subject. Computed mappings are then used to
align each main experimental condition. The reference subject on whom all
others were aligned was chosen to minimize the FUGW distance to all other
subjects. Hyper-parameter values were left to the package’s defaults.

After FUGW alignment, we run a group analysis similar to that of the baseline.

Results

In figure 4.4, we show that, compared to conventional group-level analysis, our
method successfully recovers meaningful activation clusters at the group level.
In particular, we highlight cortical regions significantly activated (p < 0.001,
uncorrected) in the main experimental conditions. These regions correspond
to word-sensitive areas identified in the functional localizer. While baseline

3https://nilearn.github.io
4https://alexisthual.github.io/fugw
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Figure 4.4: Group analysis comparison shows that FUGW recovers precise ac-
tivation clusters at population level. In these ventral views of t-score maps
plotted with Nilearn, subjects are shown letter strings (letters, bigrams, quadri-
grams, real words) increasingly similar to real words. Conventional group anal-
ysis on un-smoothed data (left) fails to recover meaningful activation clusters
at the group level. Conventional analysis on 3mm smoothed data (middle) re-
covers some activation patches as well as hard-to-interpret "negative blobs".
Data aligned with FUGW on functional localizers with multiple object categories
(right) exhibit multiple cortical patches in the VWFA. These patches are increas-
ingly anterior as stimuli get more similar to real words.

-
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approaches involving Freesurfer and fsaverage fail to align individual signal,
our approach recovers interpretable and fine-grained clusters, showing left-
predominant activation in the ventral occipito-temporal cortex (VOTC) consis-
tent with previous findings and theoretical predictions [Dehaene et al., 2005].

Similarly to Zhan et al., 2023, we see that the VWFA comprises multiple patches
of cortex rather than a single continuous occipito-temporal area as was initially
described in Vinckier et al., 2007. Additionally, we provide evidence supporting
the idea that the ventral visual stream is organized along a posterior-to-anterior
gradient, with increased sensitivity to stimuli similar to real words in the most
anterior cortical patches.

Discussion

Recent advances in fMRI tools providing highly resolved sub-millimeter func-
tional data has opened exciting new perspectives for the precise mesoscopic
study of brain function. Yet, current analysis techniques do not offer the proper
framework for meaningful group-level analysis that keep the fine-grained de-
tails. We here show that FUGW can successfully help tackle these difficulties. In
particular, we illustrate how using a data-driven study-specific precise anatom-
ical template (in our case, a reference subject within our cohort), can help re-
cover meaningful activation clusters at the group level.

Limitations of this work include projecting volumetric t-maps on surfaces: a
more precise approach would require recomputing these statistics on surfaces
directly.

Following steps will include analysis of the entire dataset of the aforementioned
study, including 14 additional French-English bilingual subjects (7 English-
dominant and 7 French-dominant) and 10 English-Chinese bilingual subjects.
We plan to precisely map - at the group level - the cortical patches of the ventral
visual cortex specialised for each language. We also plan to provide additional
evidence for the posterior-to-anterior gradient of the ventral stream with more
anterior regions showing higher sensitivity to real words than more posterior
ones.

Comparing the convergence speed of three solvers for
the FUGW problem

Speed is an important aspect of FUGW, since users may want to align a large
number of pairs of individuals in parallel. We therefore test all three algorithms
with different numbers of iterations during each BCD step, and compare their
convergence speed in Figure 4.5. We find that both MM and IBPP - introduced
in Section 4.3 — can run a much higher number of iterations than Scaling during
each BCD step, but that their convergence is slower. Eventually, we find that,

90
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problem
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Figure 4.5: Convergence speed comparison of three solvers for the FUGW
problem when fitting using 23 IBC contrast maps of the Archi Standard proto-
col. BCD steps are shown on the bottom x-axis, and computation time is on the
top x-axis. We track the value of the FUGW loss during training on the y-axis.
Iterations of the MM and IBPP algorithms (second and third rows respectively)
are faster than those of the Scaling algorithm (first row). However, their con-
vergence is slower. With our data of interest, we see that 100 iterations of the
Scaling algorithm ran 5 to 6 times (one time for each BCD iteration) are enough
to reach convergence in about 20 seconds on a single Tesla V100-DGXS-32GB.
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with our implementations and data, Scaling is the fastest and MM is the slow-
est, and that 6 BCD iterations of 100 Scaling iterations each are enough to reach
convergence in about 20 seconds on a single Tesla V100-DGXS-32GB.

Note that, for this experiment, features used to fit the transport plan are fMRI
contrast maps of the left hemisphere taken from two participants of the IBC
dataset (sub-04 and sub-07). Namely, we take all 23 contrast maps from the
Archi Standard protocol®. However, we evaluate the speed of convergence on
different contrast maps in the same participants. Namely, we take all 119 con-
trast maps from the MVIS, MVEB, Lec1, Lec2, Audi, MSCE, Visu, and Moto pro-
tocols®. All contrast maps are represented on fsaverage 5 (10242 vertices per
hemisphere).

Lastly, in order to check that our conclusion holds when the number of contrast
maps used to fit the transport plan is higher, we run the same experiment with
100 and 220 contrast maps by first adding the Archi and HCP protocols and
then the RSVPLanguage, Preference, MathLanguage, FaceBody and Emotion
protocols. We report all results for these two setups in Figures 10.1 and 10.2.
However, changing the mesh resolution - i.e. the number of vertices - would
probably require tuning the number of BCD and Scaling iterations again.

Replacing the Kullback-Leibler divergence with the
squared L2-norm in the FUGW problem

Empirically, we observed that solutions computed by the LB-FUGW algorithm
introduced in Chapter 3 showed very little absolute difference in transported
mass between vertices. We hypothesised that this was due to using the
Kullback-Leibler divergence in the marginal constraints and regularisation term.
Therefore, we decided to implement a new series of solvers for the FUGW prob-
lem using the squared L2-norm instead of the Kullback-Leibler divergence, as
the former may allow less smooth distributions of mass than the latter.

In the following paragraphs, we denote as LSi(P, Q) the loss function of the
FUGW problem when using the squared L2-norm instead of the Kullback-Leibler
divergence. We show in Theorem 4.7.2 that, similarly to the case of the KL di-
vergence, minimising LBi (P, Q) with respect to P while fixing Q is equivalent to
solving a regularised unbalanced Wasserstein optimal transport problem. Be-
fore that, we prove Lemma 4.7.1, which is used extensively in the proof of The-
orem 4.7.2. In the following paragraphs, we write ||-||, as ||-|| for simplicity.
Lemma 4.7.1. Let a,b,c,d € R™. There exist u € R™ and 7, x € R, which can
be expressed as functions of b, c and d only, such that

la®b-cad|® = rlla-pl’ + r

5All IBC protocols are described in https://individual-brain-charting.github.io/docs/tasks.html
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and the following values for 7, u, x are solutions:

<b’d>c ; 5:||c\|2(||d||2—<b’d>2)

7—:Hb”z ) M= D) 5
||b] 1]

Proof.
||a®bfc®d\|§é<a®bfc®d, a®b-—c®d)
={(a®b,a®b) — 2(a®b,c®d) + (c®d,c®d)
= [lall* |[B]|* — 2(a, c)(b,d) + [|c]||* ||d||*
(b,d)
lblf®

= I1elf* (llal” = 2(a, =5 ¢)) + llell* lalf

2 2
b.d bd
|b||2(Ha <|b|2>c|| | <IbI|2>CH ) + llell 1
2
<bad> 2 2 <bad>2
— bl - + el (11 -
Ik (a1~ )

Moreover, Lemma 4.7.1 can be generalised to the case of tensors of order d by
noticing that the proof only uses scalar products, and that the scalar product of
two tensors of order d can be written as the scalar product of their vectorised
forms. Let us now state and prove Theorem 4.7.2.

Theorem 4.7.2. For a fixed Q, there exist K,I' € R"?, u € R",v € RP and

71,72, A € Ry such that the optimal P € arg min L% (P, Q) is the solution of
P>0

min (K, P) + 7 [|[Py1 — pll* + 72||Pgo —v|* + AP -T|"

Proof. Let us recall that
Lgi(P,Q) 2 (1-a) lwP,Q) + a Lew(P,Q) + p Ly(P,Q) + ¢ E(P,Q)
where

2
Lu(P,Q) 2 ||Py1 @ Qyu1 — w* @ w®||* + |[Py2 ® Qpz — w' @ wt||

E(P,Q) 2 ||P2Q— (w2 w) @ (w @ wt)||’

Let us fix the value of Q. We are going to identify K, u,v, T, 71, 72, A succes-
sively, by rewriting the terms of Ly (P, Q) in elements which depend on P, and
elements which do not. The latter can be discarded because, as we optimise
with respect to P, they do not affect the solution.
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First, let us derive K:

(1—-a) Lw(P,Q) +a Lew(P,Q) = (1 —a)(C, ) +al(G,P®Q)

- <(1;“)c+aG®Q,P>+<1;

<K7P>+Hl

P+Q
2

2c.Q)

where K £ @C + aG ® Q and x, does not depend on P.

Secondly, let us use Lemma 4.7.1 three times to rewrite all elements of Ly (P, Q)
and E(P, Q):
|Py1 ® Q1 — w® ® w?||? =71 [|Pg1 — pll” + ry
2
|| Py2 ® Quz — wt @ wt|| =72 ||Pya — v||* + 3

[PeQ— (w2 w) e (w @w)||” =A[P-TI° +

where
n2Qul’ w2 7<ﬁ25;’:ﬁ2>w5
n2(Qull,  ve ey
A2l I 2 (Qurent e @ w!

and ks, k3, k4 do not depend on P.

Eventually, we have showed that LBI(P, Q) can be rewritten as
L§(P.Q) = (K,P) + 7i||[Py1 — p|” + 72||Pyo — || + A[|[P =TI + &s

where k5 does not depend on P. Therefore minimising LB‘(P, Q) with respectto
P while fixing Q is equivalent to solving an L2-regularised unbalanced Wasser-
stein optimal transport problem. O

The optimisation problem arising from Theorem 4.7.2 is already known and can
be solved using the MM algorithm from Chapel et al., 2021 recalled in Algorithm
4.1.
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Preliminary work on
inter-species comparisons

In Chapter 3, we introduced FUGW, a method to compute whole-brain mappings
between individuals with minimal anatomical priors. We showed that it could
successfully align fMRI data acquired in different human participants. In Chap-
ter 4, we showed that it could be extended to work on high-resolution data and
that it was possible to change the loss such that it better models the expan-
sion/shrinkage of cortical areas.

In this Chapter, we leverage previously developed extensions of FUGW to align
cortical data coming from different species. We aim to push forward recent
efforts made in cross-species comparisons [Eichert et al., 2020; Mantini et al.,
2012; Xu et al., 2020]. In the present study, we collect and analyse a functional
MRI dataset comprising human participants and macaques stimulated with the
same visual, auditory, and tactile stimuli. In particular, we compute alignments
between all possible pairs of human participants and macaques. These align-
ments try to map vertices from the two cortical surfaces to maximize functional
similarity while limiting anatomical displacements. Our mappings also model
how easy it is for a voxel to map from one subject to another under the previ-
ously mentioned constraints.

We qualitatively show that our method correctly maps functional areas known
to be common across the two species (visual, motor, auditory). Our quantitative
analyses are coherent with the existing literature, showing that primary areas
are proportionally bigger in macaque subjects than in human subjects. More
importantly, our data-driven study also reveals that parietal and pre-frontal ar-
eas involved in language processing are proportionally much bigger in human
subjects than in macaque ones, thus beginning to pinpoint the better-developed
circuits in human subjects and their functional roles. This work lays new foun-
dations for comparing cortices between species but should still be considered
preliminary. In particular, this approach should dramatically benefit from richer
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comparative fMRI data sets, which could also help assess the relevance of op-
timal transport approaches to such comparisons.

Methodology and data collection

Dataset

We thank Wim Vanduffel, and especially Marcelo Armendariz, for collecting the
data and providing the following paragraphs explaining how the multi-modal
dataset was acquired in human participants and macaques.

Subjects

Three rhesus monkeys (Macaca mulatta, two female, 4-6 years old, 5-8 kg) and
twenty healthy human volunteers (12 female, 19-35 years old) participated in the
study. Human volunteers were informed about the experimental procedures
and signed a written informed consent form. Animal care and experimental
procedures met the Belgian and European guidelines and were approved by the
ethical committee of the KU Leuven Medical School. Animals were born in cap-
tivity and were pair- or group-housed (two to five animals per group; cage size
at least 16-32 m?) with cage enrichment (toys, foraging devices), outside views
and natural day-night cycles (throughout the year supplemented with an artifi-
cial 12/12hr light/dark cycle) at the primate facility of the KU Leuven Medical
School.

They were daily fed with standard primate chow supplemented with bread, nuts,
raisins, prunes and fruits. The animals received their water supply either during
the experiments, or in the cages before and after the experiments. Monkeys had
previous experience performing behavioural tasks and were prepared for fMRI
sessions. Prior to scanning, monkeys were trained daily (2-5 weeks) to perform
a passive fixation task while in a sphinx position with their head rigidly fixed
in a plastic primate chair. Details concerning head-post surgery and training
procedures have been previously described [Vanduffel et al., 2001]. During the
experimental period, access to water was restricted but animals were allowed
to drink until fully satiated during the daily training and scanning sessions.

Stimuli

The stimulus set comprised three modalities: visual, auditory and tactile. Visual
stimuli consisted of ten classes of achromatic images - monkey and human
faces, monkey and human bodies (excluding the head), four-legged mammals,
birds, man-made objects (matched either to the monkey or to the human bod-
ies), fruits/vegetables, and body-like sculptures. With a total of 100 pictures,
each class consisted of 10 images which were previously used in the fMRI study
of [Popivanov et al., 2012]. The vertical and horizontal extent of the images
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Figure 5.1: Monkey and human subjects are shown images belonging to dif-
ferent categories From top to bottom, left to right, are images taken from the
animal, fruit, human body, human face, human object, monkey body, monkey
face, monkey object, sculpture categories respectively.

ranged from 5° to 10° of visual angle. The images were embedded into a pink
noise background having the same mean luminance as the images and which
filled the entire display (30° x 40° of visual angle). Auditory stimuli consisted
of recordings of various natural sounds that included six categories - human
speech, human non-speech sounds (e.g., baby cry, laughter, coughing), mon-
key calls, other animal sounds (e.g., lion, horse), tool sounds and musical in-
struments (e.g., keys, scissors, piano, flute), and scenes from nature (e.g., rain,
wind, thunder). Each category included 10 different sounds which were previ-
ously used in [Moerel et al., 2012], with the exception of the monkey calls that
were added for this study. Tactile stimulation consisted of air puffs delivered
to three different locations on the lower left and right sides of the face of the
subjects: beneath the lower lip, above the upper lip and the cheek area. Air
puffs were delivered with an intensity of 0.5 bars at a distance of 5 mm from
the face. To control for any potential sound produced by the puffs, two extra air
puffs were located adjacent to the face, but pointing in the opposite direction.

Experimental setup and design

Human volunteers laid in a supine position and watched the screen through a
mirror tilted 45° towards a translucent screen onto which the visual stimuli were
projected at a frame rate of 60 Hz. Participants had to fixate passively on a red
dot (0.25°) presented in the centre of the screen. Eye position was monitored at
120 Hz using a pupil-corneal reflection tracking system (Iscan). Monkeys were
placed within the bore of the magnet in sphinx position inside a plastic primate
chair using a physical head restraint.
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Images were projected (Barco 6300 LCD projector) on a translucent screen lo-
cated at a distance of 57 cm from the monkey. As in humans, subjects had to
passively fixate while eye position was monitored. To encourage monkeys to
maintain fixation and remain quiet, liquid reward was delivered through a plastic
tube located just inside their mouths. MR-compatible headphones with ear-cup
pad were used in both species to deliver the acoustic stimuli at approximately
75 dB SPL, and to shield the ears from environmental noise [Joly et al., 2012].

For tactile stimulation we built a computer-controlled MR-compatible pneu-
matic system with articulated plastic arms that we used to automatically and
systematically deliver air puffs to different locations of the face surface of hu-
mans and monkeys inside the scanner bore [Huang and Sereno, 2007]. Im-
portantly, we also introduced a control air puff, which was not directed to
the face or body of the subjects. Before each scanning session, a contrast
agent, monocrystalline iron oxide nanoparticle (MION), was injected into the
femoral/saphenous vein (6-11 mg/kg) to improve the contrast-to-noise ratio
[Leite et al., 2002; Popivanov et al., 2012]. As we aimed to compare evoked
responses to the same sensory stimulation, we followed identical experimen-
tal protocols for every subject and species, particularly with regard to the or-
der and timing of the events. We generated eight different sequences of stim-
uli where the three modalities were randomly and separately presented in an
event-related manner to the awake and fixating subjects. A red dot located in
the center of the screen and superimposed on an achromatic pink noise back-
ground was permanently present on the screen and served as control. To en-
sure a balanced presentation of the three modalities along the eight sequences,
stimuli were repeated accordingly: three times for images (3 x 100); five times
for sounds (5 x 60); and one hundred times for tactile stimuli (100 x 3). In
addition, controls for images and sounds (same control for both: background
and silence, 150 repetitions) and for tactile stimuli (background and control air
puffs, 150 repetitions) were randomly presented. As a result, each sequence
contained a random selection of 150 stimuli or controls. Our design was con-
ditioned by the fact that sounds needed to be presented during silent periods
(no scanner noise) to be clearly audible [Erb et al., 2019]. Thus, to preserve uni-
formity across modalities, all the stimuli were presented during 1000 ms in the
center of a silent gap (1200 ms) between scan acquisitions.

fMRI data acquisition

Monkey data were acquired with a 3T MR Siemens Trio scanner with an AC88-
insert head gradient. Functional images were collected using a gradient-echo
T2*-weighted echo-planar imaging sequence (repetition time (TR) = 2600 ms,
acquisition time (TA) = 1400 ms, echo time (TE) = 15 ms, 37 slices, voxel size
=1 mm isotropic, flip angle (FA) = 75°) and MION contrast agent. Before every
TA, a stimulus was presented in a silent gap of 1200 ms. As a result, each trial
(2600-ms, TR) consisted of: 1400-ms (TA) + 100-ms silence + 1000-ms condi-
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tion (visual, audio, tactile or control) + 100-ms silence. Four dummy scans were
added at the beginning and the end of each sequence during which the fixation
dot and the visual background were presented. Each monkey participated in 5-7
scanning sessions where the eight stimuli sequences were repeated until the
animal stopped fixating.

Monkeys were scanned with a custom-built, 8-channel, implanted phased-array
receive coil (Janssens et al., 2012) and a saddle-shaped radial transmit-only
surface coil. To provide an anatomical reference for the functional scans, high-
resolution T1-weighted images were acquired for each monkey during a sepa-
rate session under ketamine-xylazine anesthesia using a single radial transmit-
receive surface coil and a MPRAGE sequence (TR = 2200 ms, TE = 4.05 ms,
FA =13°, 208 slices, voxel size = 0.4 mm isotropic). During the session, 12-15
whole-brain volumes were obtained and averaged to improve signal-to-noise ra-
tio. In humans, fMRI acquisition was performed with a 3T MR Philips Achieva
scanner using a 32-channel head coil. Functional images were obtained us-
ing T2*-weighted echo-planar images (TR = 2600 ms, TA = 1400 ms, TE = 30
ms, 44 slices, voxel size = 2.3 x 2.3 x 2.5 mm, FA = 75°) with blood oxygen
level-dependent contrast (BOLD). Participants underwent one scanning session
where the eight different sequences were presented. For each subject, a high-
resolution T1-weighted image was acquired using an MPRAGE sequence (TR =
8.1 ms, TE = 3.7 ms, voxel size = 0.9 x 0.9 x Tmm).

Image preprocessing

We preprocessed the fMRI data using Matlab (MathWorks), SPM12 software
package (Wellcome Trust Centre for Neuroimaging') and JIP?.

We only analyzed runs where subjects performed more than 95% of fixation
withina 1.5° x 1.5°fixation window (160 runs for humans and 224 runs for mon-
keys). Temporal preprocessing was applied to correct for slice-dependent time
shifts, head motion and linear trends. Then, we spatially warped the monkey
and human functional data to F99 and MNI atlas spaces, respectively. Next, we
high-pass filtered the data and removed non-neuronal signal fluctuations by re-
gressing out the mean signal from a ventricular region of interest and a region
centered in the white matter. Data were spatially smoothed with a Gaussian ker-
nel at 3 and 6 mm FWHM for monkeys and humans, respectively. To allow inter-
species comparison, we accounted for differences in hemodynamic response
functions (HRFs) by convolving the monkey and human fMRI timecourses with
a canonical HRF (BOLD from SPM and MION [Erb et al., 2019; Popivanov et al.,
2012]) from the other species [Mantini et al., 2012]. Finally, for each subject, runs
(150 volumes each) were concatenated in ascending sequence order (from 1to
8) and z-scored, yielding 20 individual human datasets. In the case of monkeys,
for which several repetitions for each sequence were acquired per subject, we

Thttps://www.fil.ion.ucl.ac.uk/spm
2https://www.nitrc.org/projects/jip
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split the data and generated 20 separated monkey concatenations. As a re-
sult, we obtained 20 human and 20 monkey individual datasets, in which voxel
timecourses were composed of 1200 volumes (150 x 8 sequences). Finally, we
also generated a group dataset for each species by averaging the timecourses
in corresponding voxels across the 20 individual datasets. This procedure al-
lowed us to maximize the relative contribution of stimulus-evoked responses
exceeding spontaneous activity in our analysis.

Moreover, all macaque subjects are anatomically aligned to the MEBRAINS tem-
plate. We project their volumetric data to a mesh extracted from MEBRAINS
using Freesurfer. Analogously, we use Freesurfer to compute the individual
anatomical mesh of each human subject, and project their data to their respec-
tive individual anatomies. We chose to use a common anatomical template for
macaque subjects because their anatomy is less variable across individuals
then it is for humans, while using a template can ease group analyses.

General Linear Model

For each subject and each run, we fit a general linear model that regresses task-
related activations of the brain, as well as potential confounding factors (like
movement). In particular, we regress activations for each of the conditions pre-
sented in the Stimuli subsection. We then fit a fixed-effect model using all these
fitted GLMs.

Initial conditions are detailed in the Stimuli subsection. We build compound
conditions called contrasts from these initial conditions to gain statistical
power, and compute statistical maps for these contrast maps. They are de-
tailed in Table 5.1. Figure 5.2 illustrates what such contrast maps look like for a
subset of subjects. Interestingly, Figure 5.2 shows that monkey subjects react
to monkey-made sounds but not to human-made sounds, and vice-versa. Con-
sequently, we introduce two conditions which depend on the subject’s species:
same-species-speech vs other, which for a human (resp. macaque) subject will
human speech and voice sounds (resp. macaque speech sounds) as positive
conditions, and all other audio conditions as negative ones in our model.

Alignments setup and computation

We make use of this unique inter-species multi-modal dataset to test exten-
sions made to FUGW in Chapter 4.

Using L2 penalization instead of Kullback-Leibler divergence for marginal con-
straints

The role of marginal constraints is to model the fact that some cortical areas
exist in a given subject and not in the other, or that they have expanded / shrunk
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Positive conditions

Negative conditions

face vs other

human faces, monkey
faces

animals, birds, fruits,
human bodies, human
objects, monkey bod-
ies, monkey objects,
sculptures

bodies vs other

human bodies, monkey
bodies

all other visual condi-
tions

bodies vs other non
faces

human bodies, monkey
bodies

all other visual condi-

tions except human
faces and monkey
faces

animate vs inanimate

human faces, hu-
man bodies, monkey
faces, monkey bodies,
animals, birds

all other visual condi-
tions

monkey speech vs | monkey sounds animal, nature, human

other speech, human voice,
tools sounds

(speech+voice) vs | human speech and | all other sounds

other voice sounds

audio vs control

all audio conditions

control condition

tactile vs audio

all tactile conditions

all audio conditions

tactile vs control

all tactile conditions

control condition

visual vs audio

all visual conditions

all audio conditions

visual vs control

all visual conditions

control condition

visual vs tactile

all visual conditions

all tactile conditions

Table 5.1: Explicit description of contrast maps from regressed conditions
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Figure 5.2: Two contrast maps for five subjects of the inter-species dataset
This figure shows t-statistics derived from z-score maps fitted in each fMRI
run. These z-score maps are obtained by contrasting clear and unclear human
speech conditions against all other auditory conditions (column 1), the clear
"monkey speech’ condition against all other auditory conditions (column 2) and
all visual conditions against a control condition (column 3). We show these
maps for 3 human subjects (first 3 rows) and 2 macaque subjects (last two
rows).
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5.1.2.2

from one subject to the other. We draw such conclusions from how much mass
was transported from / to a vertex relative to other vertices.

It is common practice in Optimal Transport to formulate the marginal con-
straints and regularization term using the Kullback-Liebler divergence. Empir-
ically, we noticed that using the Kullback-Leibler divergence flattens a lot the
distribution of transported masses. In short, in the data regime underlying this
study, it is hard to interpret masses differences when using the KL divergence.

We reasoned that an L2 penalization would allow for more salient and mean-
ingful transported mass discrepancies between vertices, which motivated our
additions in section 4.7.

Using sparse mappings to transport high-resolution meshes

As explained in section 4.4, one major impediment of FUGW is that computed
matrices scale quadratically with the anatomical resolution of the data consid-
ered. In particular, the number of vertices in a macaque cortical mesh is typi-
cally 100k, while the number of vertices of fsaverage 7 for human participants in
160k. Consequently, computing a dense mapping between these two subjects
would require storing a 100k x 160k matrix, which would take approximately 100
GB of disk space. We opt to use the coarse-to-fine approach designed in section
4.4 to compute sparse mappings between human and macaque subjects.

In order to compute this sparse mapping, we first generate two random subsets
of points from the source and target subjects respectively. We size these sub-
sets so that a dense mapping between them will fit on memory, and such that
the number of vertices in each subject is close to that of experiments made in
Thual et al., 2022. By doing so, we can use our knowledge of the best hyper-
parameters to use in this case.

The second step consists in building a sparsity mask for mapping which will be
fit during the next step. For this, we leverage information contained in the map-
ping computed at the previous step: for each vertex i of the source subject, we
find the maximally matched vertex k in the target subject, and enable all com-
binations of neighbours of : and neighbours of k to be stored in the mapping.
Neighbours of i are defined as vertices that are within radius distance r of : on
the cortical sheet, for which we take the mid-thickness surface, defined as the
surface between the white and pial surfaces.

Finally, we solve a new FUGW problem on a sparse mapping matrix whose spar-
sity mask was pre-computed at the previous step. Typically, taking subsets of
10k points from meshes of 160k points and setting our radius to 7 millimeters
yields mappings which use approximately 1.5 GB of disk storage.
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Computing alignments

Using the coarse-to-fine approach described in section 4.4, for each possible
pair of human and monkey subjects, we compute two optimal transport align-
ments (one for left hemispheres, one for right hemispheres) using contrast
maps described in section 5.1.1. This results in 20 x 3 x 2 =120 mappings in to-
tal, each of which takes approximately 10 minutes to compute on a Tesla V100-
DGXS-32GB and takes approximately 1 GB of disk space. These mappings were
derived in parallel on a Slurm cluster.

Results: Functional Homologies and Differences

We explore computed mappings from a qualitative and quantitative perspec-
tive. Our qualitative analyses mostly consist in visually exploring computed
mappings in order to make sure that computed alignments make sense. Quan-
titative results aim at show that the location of cortical areas with more or less
transported mass is coherent with existing literature.

Qualitative results

In order to explore our mappings precisely, we designed and developed brain-
cockpit, a web application which we give more details about in section 8.1.2. In
particular, brain-cockpit can allow exploring computed mappings the following
way: users can click on a specific vertex of a subject who was previously aligned
to another subject, and see the probability map of associated vertices in the
second subject. Figure 5.3 illustrates this approach. These qualitative checks
allow us to verify that computed mappings make sense: in particular, they allow
us to control that primary areas are correctly mapped across individuals.

However, while brain-cockpit allows one to precisely check what our mappings
have computed, a more comprehensive view of derived alignments can be ob-
tained by using them to transport an atlas from the source subject to the target
subject (or vice-versa).

More precisely, we colour each parcel of a given atlas using a swatch containing
colours with equivalent energy (ie, considering each colour is a 3-dimensional
vector, all these vectors have the same norm). We then transport each of the
3 colour channels from source to target, allowing us to generate a transported
version of the source atlas on the target anatomy. Figure 5.4 illustrates this
method, and shows that primary areas are correctly mapped across human and
macaque individuals.

Quantitative results

On top of associating vertices of the source and target subjects, computed
mappings also model "how much" a given vertex can be mapped between sub-
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Voxel 1264
(68.0,183,23.3)

Figure 5.3: Brain-cockpit, a web-application to explore computed human /
macaque mappings A vertex is selected in the occipital lobe of a human subject
(left) for which we computed a mapping to a macaque subject. The probability
map of associated vertices in this macaque subject is displayed (right). Brain-
cockpit allows selecting any vertex from the source / target subject.
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Figure 5.4: Transporting the Glasser atlas from human subjects to monkey
subjects This figure shows the Glasser atlas [Glasser et al., 2016] for 3 hu-
man subjects of the dataset (top row), and projections of these atlas to each
of the 3 macaque subjects of our dataset (following rows). In particular, we ob-
serve that anatomy is generally well preserved when mapping human subjects
to macaque subjects.

mac-3
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A hum-5 mac-1 B average

mac-2

Figure 5.5: Transported mass averaged across macaque subjects on the ME-
BRAINS template Representation of the relative transported mass in each ver-
tex of the cortical sheet. Red voxels gained mass, blue ones lost mass. It can
be interpreted the following way: blue areas are relatively smaller (i.e. occupy
a smaller proportion of the cortical sheet) in one subject than in the other. On
the other hand, red parts are relatively larger. In all images, one can observe
out-of-distribution voxels: these are artefacts from approximating the anatomi-
cal geodesic distance with low-rank methods. A. Mass transported from hum-1
(left column) onto each of the 3 macaque subjects (right column). B. Trans-
ported mass in each macaque vertex, averaged across macaque subjects.
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jects. This value is denoted as the mass, and corresponds to the norm of a
given row (or column) of the mapping. One can compute and plot the mass
in each vertex of the source and target subjects. Figure 5.5 shows this mass
distribution on the cortical surface.

In particular, relative mass gives us insights about which cortical areas ex-
panded or shrunk across subjects. Figure 5.5.B shows that the visual cortex
occupies a relatively larger place in the macaque cortex than its counterpart in
the human brain. Conversely, the temporal lobe and prefrontal areas occupy a
relatively smaller proportion of the macaque cortex.

Conclusion

Our software tool works quite efficiently, thus allowing us to compute tens of
whole-brain human-macaques cortical alignments of functional brain activity
in a short time. In this respect, the present work sets a new standard for inter-
species alignments, which have been primarily based on anatomy alone [Eichert
etal., 2020], or on regions of interest [Neubert et al., 2014; Xu et al., 2020], or on
local patches of cortex rather than the whole brain [Mantini et al., 2012].

However, this is a work in progress, and the present inter-species alignments
should be taken with a grain of salt because they are only as good as the fMRI
paradigm that led to the activation data. The present dataset is unique in that it
comprises stimuli from three different modalities (visual, auditory, and tactile).
It thus anchors the computed alignments into appropriate sensory regions, as
well as comprising representative stimuli that make the human and macaque
brain unique (language and communication signals). However, it is still lack-
ing in fMRI signatures that would be unique to specific brain regions, such as
motion (area MT) or social stimuli [Sliwa and Freiwald, 2017].
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Evaluating inter-subject
alignment with visual
decoding tasks

Introduction

Decoding brain activity The generative capabilities of deep learning have re-
cently unlocked decoding mental representations from brain activity. Originally
restricted to linear models [Harrison and Tong, 2009; Haynes and Rees, 2006;
Mitchell et al., 2004], the decoding of brain activity can now be carried out with
deep learning techniques. In particular, using functional Magnetic Resonance
Imaging (fMRI) signals, significant progress has been made in the decoding of
images [Z. Chen, Qing, Xiang et al., 2023; Ferrante, Ozcelik et al., 2023; Gu et al.,
2023; Mai and Zhang, 2023; Ozcelik and VanRullen, 2023; Scotti et al., 2023;
Takagi and Nishimoto, 2023], speech [Tang et al., 2023], and videos [Z. Chen,
Qing and Zhou, 2023; Kupershmidt et al., 2022; Lahner et al., 2023; Phillips et
al., 2022; Wang et al., 2022; Wen et al., 2018].

The bottleneck of inter-subject variability A core issue is that brain organiza-
tion is highly variable across participants, which makes it challenging to train
a single model on multiple participants using fMRI data. Therefore, with few
noteworthy exceptions [Haxby et al., 2020; Ho et al., 2023], studies typically
train a brain decoder on a single participant at a time. With this constraint in
mind, major effort has been put towards building fMRI datasets collecting a lot
of data in a limited number of participants [Allen et al., 2022; LeBel et al., 2023;
Pinho et al., 2018; Wen et al., 2017]. Nonetheless, the necessity to train and test
models on a single participant constitutes a major impediment to using notori-
ously data-hungry deep learning approaches. In addition, generalization to new
individuals is essential to the validation of discoveries.
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Functional alignment Several methods can align the functional organization -
on top of the anatomy — of multiple brains, and thus offer a potential solution to
inter-individual variability: differentiable warps of the cortical surface [Robinson
etal., 2014], rotations between brain voxels in the functional space [Haxby et al.,
2011], shared response models [P-H. Chen et al., 2015; Richard, Gresele, Hyvari-
nen et al., 2020], permutations of voxels minimizing an optimal transport cost
[Bazeille et al., 2019; Thual et al., 2022], or combinations of these approaches
[Feilong et al., 2022]. More recently, several studies rely on deep learning mod-
els trained in a self-supervised fashion to build an embedding of brain activity,
in the hope that it could be meaningful across participants [Z. Chen, Qing, Xi-
ang et al., 2023; Thomas et al., 2022]. However, to this day, it is not clear which
of these methods offers the best performance and generalization capabilities
[Bazeille et al., 2021].

Approach It is currently unknown whether any of the aforementioned meth-
ods improve the decoding of naturalistic stimuli such as videos, and how such
hypothetical gain would vary with the amount of fMRI recording available in a
given a participant. To address this issue, we leverage fMRI recordings of train-
ing participants to boost the decoding of videos and static images in a single
left-out participant, as illustrated in Figure 6.1. This requires fitting two models:
an alignment model and a brain decoder. The alignment aims at making brain
responses of a left-out participant most similar to those of a reference partic-
ipant. Here, we leverage optimal transport to compute this transformation us-
ing functional and anatomical data from both participants. The brain decoder
- which we will refer to as the decoder - consists of a linear regression trained
to predict the latent representations of movie frames or static images from the
corresponding BOLD signals or beta coefficients. We evaluate video and im-
age decoding in different setups. In particular, we assess (1) whether decoders
generalize to participants on which they were not trained, (2) whether training a
decoder on data from multiple participants improves performance and (3) the
extent to which functional alignment improves the aforementioned setups.

Contributions We first confirm the feasibility of decoding, from 3 Tesla (3T)
fMRI, the semantics of videos watched by the participants [Wen et al., 2017].
We verify that this approach also performs well for the decoding of static im-
ages from 7T fMRI data [Allen et al., 2022]. Our study makes three main novel
contributions:

1. Compared to the baseline, functional alignment across participants
boosts visual semantics decoding performance in left-out participants,
especially when the latter have a limited amount of data

2. Training a decoder on multiple functionally aligned participants yields a
model with improved performance compared to training one model per
participant, but anatomical alignment does not
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Figure 6.1: General outline of video decoding from BOLD fMRI signal in left-
out participants

A. For each frame associated with a brain volume, one computes its low- and
high-level latent representations using pre-trained encoders. Then, brain de-
coders (green) can then be fitted to map brain features onto each of these latent
representations. B. The BOLD signal acquired from two participants watching
the same movie can be used to derive an alignment model (purple) that maps
voxels from the two participants based on functional similarity. C. Then, this
alignment model can be used to transform brain features of the left-out partic-
ipant into the brain features that match those of the reference participant. In
particular, this allows one to use decoders that have been trained on a lot of
data coming from a reference participant, and apply them on a left-out partici-
pant for whom less data was collected.
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3. The resulting alignments, computed from movie-watching data, are
anatomically coherent

Methods

Our goal is to decode visual stimuli seen by individuals from their brain activity.
To this end, we train a linear model to predict latent representations — short-
ened as latents — of these visual stimuli from BOLD fMRI signals recorded in
participants watching naturalistic videos.

In the data under study, brains are typically imaged at a rate of one scan every 2
seconds. During this period, a participant sees 60 video frames on average, or
a static image for the case of Allen et al., 2022. For simplicity, we consider the
restricted problem of decoding only the first video frame seen by participants
at each brain scan. Formally, regardless of the dataset, for a given participant,
let X € R™? be the BOLD response collected in v voxels over n brain scans
and Y € R™™ the m-dimensional latent representation of each selected video
frame.

Brain alignment

Anatomical alignment As a baseline, we consider the alignment method im-
plemented in Freesurfer [Fischl, 2012], which relies on anatomical information
to project each participant onto a surface template of the cortex (in our case
fsaverage5). Consequently, brain data from all participants lie on a mesh of size
v = 10242 vertices per hemisphere.

Functional alignment On top of the aforementioned anatomical alignment, we
apply a recent method from Thual et al., 2022 denoted as Fused Unbalanced
Gromov-Wasserstein (FUGW) '. As illustrated in Figure 6.1.B, this method con-
sists in using functional data to train an alignment that transforms brain re-
sponses of a given left-out participant into the brain responses of a reference
participant. This approach can be seen as a soft permutation of voxels ? of the
left-out participant which maximizes the functional similarity to voxels of the
reference participant.

Formally, for a left-out participant, let D°'! € R¥* be the matrix of anatomical
distances between vertices on the cortex, and w°" € RY. a probability distribu-
tion on vertices. w°“ can be interpreted as the relative importance of vertices;
without prior knowledge, we use the uniform distribution. Reciprocally, we de-
fine D"f and w"f for a reference participant. Note that, in the general case, v
can be different from one participant to the other, although we simplify nota-
tions here.

Thttps://alexisthual.github.io/fugw
2We use the words voxel (volumetric pixel) or vertex (point on a mesh) indifferently.
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We derive atransport plan P € R”"* to match the vertices of the two participants
based on functional similarity, while preserving anatomical organisation. For
this, we simultaneously optimize multiple constraints, formulated in the loss
function Lo (P) described in Equation 6.1:

Gromov Wasserstein loss

Wasserstein loss l
Lo(P) & (1—-a) Lw(P) +a Lew(P) 1)
+p Ly(P) +¢ H(P) '
? 1
Marginal constraints Regularization

Each component of the loss is expressed as follows:

“Lw(P)E Y XM - X Py

0<i,j<v

* Low(P)E Y DM - D¥? P,; Py
0<i,k,j,l<v

Ly(P) 2 KL(Py1 ® Py [wo @ w) + KL(Pyy ® Pyo|w™  w'e)
- H(P) S KL(P QP | (wout ® ,wref) ® (,wout ® ,wref))

Here, KL(-,-) denotes the Kullback-Leibler divergence, Py, = (X2 Pijo<i<n
is the first marginal of P, Pyy £ (3, P, j)o<j<n is the second marginal of P,
a € [0,1], p € Ry are the hyper-parameters setting the relative importance of
each constraint, and © £ (X°Ut, xref pout_ pref o p ¢).

Following Thual et al., 2022, we minimize Lo (P) with 10 iterations of a block co-
ordinate descent algorithm [Séjourné et al., 2021], each running 1 000 Sinkhorn
iterations [Cuturi, 2013]. Subsequently, we define ¢outsref: X — (PTXT) @
Py, € R™” where @ is the element-wise division, a function that transports
any matrix of brain features from the left-out participant to the reference par-
ticipant. To simplify notations, for any X defined on the left-out participant, we
define Xout=ref & o o ret(X).

Hyper-parameters selection for functional alignment We use default param-
eters shipped with version 0.1.0 of FUGW. Namely, «, which controls the bal-
ance between Wasserstein and Gromov-Wasserstein losses — i.e. how impor-
tant functional data is compared to anatomical data - is set to 0.5. Empirically,
we see that o = 0.5 yields values for the Wasserstein loss which are larger than
that of the Gromov-Wasserstein loss, meaning that functional data drives these
alignments. Secondly, p, which sets the importance of marginal constraints —
i.e. to what extent more or less mass can be transported to / from each voxel -
is setto 1. Empirically, this value leads to all voxels being transported / matched
with equal importance. Finally, ¢, which controls for entropic regularization -
i.e. how blurry computed alignments will be — is set to 10~4. Empirically, this
value yields alignments which are anatomically very sharp, i.e source voxels are
matched with a handful of target voxels only (and vice-versa).
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Decoding

Brain input There is a time /ag between the moment a stimulus is played and
the moment it elicits a maximal BOLD response in the brain [Glover, 1999]. More-
over, the effect induced by this stimulus might span over multiple consecutive
brain volumes. To account for these effects, we use a standard Finite Impulse
Response (FIR) approach. It fits the decoder on a time-shifted, multi-volume
version of the BOLD response. The time shift we implement on the BOLD re-
sponse is equivalent to adding a time lag to the stimuli. In particular, we refer to
the number of brain volumes to aggregate together in the FIR approach as the
window size. Different aggregation functions can be used, such as stacking or
averaging. Figure 11.2 describes these concepts visually.

Video output The matrix of latent features Y is obtained by using a pre-trained
image encoder on each video frame and concatenating all obtained vectors in
Y. Similarly to Ozcelik and VanRullen, 2023, and as illustrated in Figure 6.1.A,
we seek to predict CLIP 257 x 768 (high-level) and VD-VAE (low-level) latent
representations . We use visual — as opposed to textual — CLIP representations
[Radford et al., 2021]. For comparison, we reproduce our approach on latent rep-
resentations from CLIP CLS (high-level) and AutoKL (low-level), which happen
to be much smaller ® and are computationally easier to fit.

Model Fitting the decoder consists in deriving W € R*"™, b € R™ the solution
of a Ridge regression problem - i.e. a linear regression with L2 regularization
- predicting Y from X.

Evaluation We evaluate the performance of the decoder with retrieval metrics.
Let us denote Xiain and Yinain the brain and latent features used to train the
decoder, Xiest and Yiest those to test the decoder, and Y 2 W Xiest + b the
predicted latents. We ensure that the train and test data are disjoint.

We randomly draw a retrieval set K of 499 frames without replacement from
the test data. In other words, negative frames come from the stimuli that were
shown to the participant for fMRI sessions used at test time. For each pair
(9,vy) of predicted and ground truth latents, one derives their cosine similar-
ity score s(y,y), as well as similarity scores to all latents yneq Of the retrieval
set s(¥,yneg). Let us denote rx(y,y) the rank of y, which we define as the
number of elements of K whose similarity score to g is larger than s(g, y). In
order for the rank to not depend on the size of K, we define the relative rank as
r(9,y)/|K|. Finally, one derives the median relative rank MR(Y', K):

TK('!:A/»?J) £ Hyneg cK | S(Z’Qayneg) > 5(@72’”}‘

MR(Y,K) 2 median({TK(Q7y)/\K| v (z),y>})

3Dimensions for CLIP CLS: 768 ; CLIP 257 x 768 : 257 x 768 = 197 376 ; AutoKL: 4 x 32 x 32 =
4096 ; VD-VAE: 2 x 2% + 4 x 28 4+ 8 x 210 416 x 212 4+ 214 =91 168

114



115 Section 6.2 Methods

6.2.3

6.2.4

Decoding and alignment setups

Within- vs out-of-subject Let us consider a decoder trained on data (X,

Ytri;n) from a given participant. The within-subject setup consists in testing it on

left-out data (X2, Y;5k) acquired in the same participant. The out-of-subject

setup consists in testing it on data (X 22, Y;2) acquired in a left-out participant.

Note that in this setup, test stimuli can be different from training stimuli, or not.

Single- vs multi-subject The single-subject setup consists in training a de-
coder using data from one participant only. The multi-subject setup consists
in training a decoder using data from multiple participants. In this study, data
from several participants are stacked, resulting in a matrix X, € R™ - +7»:?
and Yy € R™ 17 'where p is the number of participants.

Aligned vs un-aligned Let S; be the reference participant. In the out-of-subject
and multi-subject setups, data coming from different participants can be func-
tionally aligned - or not - to that of the reference participant. It modifies these
respective setups as follows: (1) in the out-of-subject case, it corresponds to
aligning Ss onto S1, such that a decoder trained on S; will be tested on thgt_’sl,

Y,52, (2) in the multi-subject case, all participants are aligned to S; and the de-
coder is trained on a concatenation of X 51, X %275 X 5»—51 (see notations

introduced at the end of section 6.2.1) and Y51, ..., Y.

Setups of interest are visually described in Figure 6.3.A.

Evaluation under different data regimes Note that the alignment and decod-
ing models do not need to be fitted using the same amount of data. In particular,
we are interested in evaluating out-of-subject performance in setups where a lot
of data is available for the reference participant, and little data is available for
the left-out participant: this would typically be the case in clinical setups where,
usually, little data is available in patients. In this case, we evaluate whether
it is possible to use this small amount of data to align the left-out participant
onto the reference participant, and have the left-out participant benefit from a
decoder previously trained on a lot of data.

Datasets

We analyze two fMRI datasets. The first dataset [Wen et al., 2017] comprises 3
human participants who watched 688 minutes of video. The videos consists of
18 train segments of 8 minutes each and 5 test segments of 8 minutes each.
Each training segment was presented twice. Each test segment was presented
10 times. Each segment consists of a sequence of roughly 10-second video
clips. The fMRI data was acquired at 3T, 3.5mm isotropic spatial resolution and
2-second temporal resolution. It was minimally pre-processed with the same
pre-processing pipeline as that of the Human Connectome Project [Glasser et
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al., 2013]. In particular, data from each participant are projected onto a common
volumetric anatomical template. Similarly to prior work on this dataset [Kuper-
shmidt et al., 2022; Wang et al., 2022; Wen et al., 2018], we use runs related to
the first 18 video segments - 288 minutes - as training data, and runs related to
the last 5 video segments as test data.

The second dataset [Allen et al., 2022] — denoted as the Natural Scenes Dataset
(NSD) — comprises 8 participants who are shown 10 000 static images three
times. They were scanned over 40 sessions of 60 minutes, amounting to 2 400
minutes of data. Instead of raw BOLD signal, we leverage precomputed per-trial
regression coefficients accessible online. See supplementary section 11.6 for
more details.

Preprocessing

For the Wen et al., 2017 dataset, we implement minimal additional preprocess-
ing steps for each participant separately. For this, we (1) project all volumetric
data onto the FreeSurfer average surface template fsaverage5 [Fischl, 2012],
then (2) regress out cosine drifts in each vertex and each run and finally (3)
center and scale each vertex time-course in each run. Figure 11.1 gives a visual
explanation as to why the last two steps are needed. The first two steps are
implemented with Nilearn [Abraham et al., 2014] # and the last one with Scikit-
Learn [Pedregosa et al., 2011].

Additionally, for a given participant, we try out two different setups: a first one
where runs showing the same video are averaged, and a second one where they
are stacked.

The Allen et al., 2022 dataset is already preprocessed by the original authors,
and maps of beta coefficients from a General Linear Model are accessible on-
line.

Hyper-parameters selection for decoders

To train decoders, we use the same regularization coefficient ayjqge across la-
tent types and choose it by running a cross-validated grid search on folds of the
training data. We find that results are robust to using different values and there-
fore set asigge = 50000. Similarly, values for lag, window size and aggregation
function are determined through a cross-validated grid search.
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6.3

6.3.1

D | S1 | S2 | S3
500 | 94| 68| 7.8 | MRJ
1.0 | 13.8 | 16.4 | 13.6 | Acct

50.0 | 29.9 | 30.2 | 28.5 | MR

CLIP 257 x 768

VDVAE | “10 ] 30| 35| 31 Acc t

50.0 | 15.1 | 10.6 | 11.0 | MR |

CLPCLS | "o | 84| 105/| 99| Acct
Autokl | 50-0 | 24.9 | 21.8 | 26.0 | MR

1.0 3.9 3.8 3.3 | Acct

Table 6.1: Within-subject metrics for all participants and all latent types on
the test set Reported metrics are relative median rank | (MR) of retrieval on
a set of 500 samples, top-5 accuracy % 1 (Acc) of retrieval on a set of 500
samples. Chance level is at 50.0 and 1.0 for these two metrics respectively.
These results were averaged across 50 retrieval sets, hence results are reported
with a standard error of the mean (SEM) smaller than 0.01. The Dummy (D)
model systematically predicts the mean latent representation of the training
set and achieves chance level.

Ret. 1 Ret.2 Ret.3 Ret. 4 Ret. 5

ﬁ Gl i
- Hﬁsﬂﬁ
e e
ﬂ AAAAA
. o

A e ] s

Figure 6.2: Image retrievals using predicted latent representations of CLIP 257
x 768 latents

We use a model fitted on Subject 2 (S2) and predict the latent representation of
unseen videos (test set). Ground truth (GT) images featured within the first 5
retrieved (Ret.) images are indicated with a bold purple border. In a given row,
images which appear similar across columns are actually different frames of
the same video clip. Images featuring human faces were blurred. More cases
are available in supplementary Figure 11.4.

Results

Within-subject prediction of visual representations from BOLD
signal and retrieval of visual inputs

We report video decoding results on the retrieval task in Table 6.1. For all three
participants of the Wen 2017 dataset, and for all four types of latent representa-

4https://nilearn.github.io
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tions considered, a Ridge regression fitted within-subject achieves significantly
above-chance performance. Besides, performance varies across participants,
although well-performing participants reach good performance on all types of
latents.

Results reported in Table 6.1 were obtained for a lag of 2 brain volumes (i.e. 4
seconds since TR = 2 seconds) and a window size of 2 brain volumes that were
averaged together (see definitions in section 6.2.2). These parameters were
chosen after running a k-fold cross-validated grid search for lag values ranging
from 1to 5, a window size ranging from 1to 3, and 2 possible aggregation func-
tions for brain volumes belonging to the same window (namely averaging and
stacking). Figure 11.3 shows results using the averaging aggregation function
for different values of lag and window size, averaged across participants. These
results were obtained by stacking all runs of the training dataset, as opposed to
averaging repetitions of the same video clip. The two approaches yielded very
similar metrics. We give more details in section 6.3.3.

Figure 6.2 shows retrieved images for Subject 2. Qualitatively, we observe that
retrieved images often fit the theme of images shown to participants (with cat-
egories like indoor sports, human faces, animals, etc.), yet with occasional fail-
ures.

Out-of-subject decoding and multi-subject training

Asiillustrated in Figure 6.3, models trained on one participant do not generalise
well to other participants: using CLIP 257 x 768, the within-subject and out-of-
subject median rank (MR) are respectively 8.0 and 17.2 on average. However,
functional alignment allows to reduce the median rank back to 11.1 on average.
In particular, we show that left-out participants do not need to have the same
amount of available data as training participants to benefit from their decoder:
with only 30 minutes of data, left-out participants can reach performance which
would have required roughly 100 minutes of data in a within-subject setting.

In addition, we show that a single decoder trained on all functionally aligned
participants can reach better results than a decoder trained on all un-aligned
participants (MR is 7.7 against 8.6 averaged across subjects), and performs on
par with each corresponding single-subject decoders.

Framework generality Note that, in Figure 6.3, we chose the best performing
participant (S2) as the reference participant. We report all other combinations
of reference and left-out participants in Supplementary Figures 11.6 and 11.7
and find that all effects persist for all combinations. In addition, supplemen-
tary Figures 11.8 and 11.9 show that these results hold for all types of latents.
Furthermore, we replicate this experiment on four participants from the Natu-
ral Scenes Dataset: decoding performance, reported in Tables 11.1 and 11.2, is
higher than for the Wen 2017 dataset, probably due to using much more train-
ing data. Importantly, functional alignment allows the median rank to drop from
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Figure 6.3: Effects of functional alignment on multi-subject and out-of-subject

setups

We report relative median rank | in all setups described in section 6.2.3 for
CLIP 257 x 768. In all aligned cases, S1 and S3 were aligned onto S2. In all
out-of-subject cases, we test ST and S3 onto a decoder trained on S2. In all
multi-subject cases, the decoder was trained on all data from all 3 participants.
A. In this panel, all models (alignment and decoding) were trained on all avail-
able training data. Results for other latent types are available in Figure 11.8. B.
In left-out S1 and S3, decoding performance is much better when using func-
tional alignment to S2 (solid dark purple) than when using anatomical align-
ment only (solid pale purple). Performance increases slightly as the amount of
data used to align participants grows, but does not always reach levels which
can be achieved with a single-subject model fitted in left-out participants (solid
pale gray dots) when a lot of training data is available. Training a model on multi-
ple participants yields good performance in all 3 participants (dashed pale teal)
which can be further improved by using functional alignment (dashed dark teal).
Results for other latent types are available in Figure 11.9.
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22.5 (baseline) to 11.5 on average in the out-of-subject setup for CLIP 257 x 768.
In particular, it drops to 8.3 on average across left-out participants when S7 is
used as reference. Finally, Figures 11.11and 11.12 present all other setups we ran
for this study. In particular, they show that a multi-subject aligned model (e.g.
trained on S1 and S2) has better performance on aligned left-out participants
(e.g. S3) than a single-subject model (e.g. trained on S2 only).

Exploring computed inter-subject alignments To better understand how brain
features are transformed by functional alignment, we show in Figure 6.4 how
vertices from participant S1 are warped to fit those of participant S2. To this
end, we colorise vertices in S1 using the MMP 1.0 atlas [Glasser et al., 2016]
and use ¢g1_,so to transport each of the three RGB channels of this coloring to
S2. Note that both partzicipants’ data lie on fsaverage5.

We see that, in low data regimes, FUGW does not recover a smooth inter-subject
mapping of the cortical surface, but still manages to recover the cortical orga-
nization of the occipital lobe. A greater amount of data allows FUGW to recon-
struct inter-subject mappings that are anatomically consistent in a much higher
number of cortical areas such as the temporal and parietal lobes, and, unexpect-
edly, in the primary motor cortex as well. The prefrontal cortex and temporo-
parietal junction (TPJ) seem challenging to map, perhaps due to greater inter-
subject functional variability or lesser responsivity in those regions.

Influence of training set size and test set repetitions

Recent publications [Ozcelik and VanRullen, 2023; Scotti et al., 2023; Tang et al.,
2023] in brain decoding using fMRI have shown impressive results, but these re-
sults are obtained using unusually large datasets and signal-to-noise ratios (e.g.
tens of hours of 7T fMRI per participant). To evaluate the importance of these
two factors, we report in Figure 6.5 performance metrics for models trained
with various amounts of data and tested with various amounts of noise.
Firstly, using a fixed test set, our results allow to systematically estimate the
quantity of training data needed to achieve a given decoding performance. In-
terestingly, our results show that stacking two runs displaying the same stimuli
yields better results than averaging them. Besides, for a given acquisition bud-
get, showing different stimuli (as opposed to repeating stimuli) yields small but
systematic performance improvements.

Secondly, reported performance metrics only hold in favorable signal-to-noise
setups. Indeed, the test set associated with the Wen 2017 dataset comes with
10 runs for each video segment, which, when averaged together, greatly reduce
the noise level. However, as reported in Figure 6.5, when tested in real-life
signal-to-noise conditions (i.e. only one run per test video clip), our models’
performance degrades: when using CLIP latents, for each participant, it is ap-
proximately twice as bad as when averaging all 10 runs.
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MMP 1.0 atlas Lateral Posterior
displayed on view view

ST

Anatomical only
alignment

S1-S2
10% data
(28 min.)

S1-S2
50% data
(144 min.)

Anatomical + functional
alignment

S1-S2
100% data
(288 min.)

Figure 6.4: Visualizing functional alignments in the left hemisphere Vertices
of the left-out participant (top row) are warped by FUGW. The result of this trans-
port is visualized on the reference participant (rows 2, 3, and 4). Fitting FUGW
with increasing amounts of data gradually leads the inter-subject mapping to
better respect the cortical organisation of multiple areas, including non-visual
ones. Note that all 3 models were fitted using the same number of iterations.
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Figure 6.5: Influence of training set size and test set noise Relative median
rank | on a fixed test set gets better as more training data is used to fit the
model (top). Interestingly, averaging brain volumes of 2 similar runs does not
bring improvements compared to using just 1 run. Instead, stacking runs yields
significant improvements. Note that training sets using 2 runs have twice as
much data as those using 1run. Finally, these metrics are highly affected by the
noise level of the test set (bottom): averaging more runs in the test set yields
better metrics despite using the same decoder.

Discussion

Impact The present work confirms the feasibility of using fMRI signals in re-
sponse to natural images and videos to decode high level visual features [Nishi-
moto et al., 2011]. It further demonstrates that it is possible to leverage these
fMRI signals to estimate meaningful functional alignments between partici-
pants, and use them to transfer semantic decoders to novel participants.

In particular, our study shows that decoding brain data from a left-out partici-
pant can be substantially improved by aligning this left-out participant to a large
reference dataset on which a decoder was trained. Our method thus paves the
way to using models trained on large amounts of individual data to decode sig-
nals acquired in smaller neuroimaging studies, which typically record an hour
or two of fMRI data for each participant [Madan, 2022].

122



123 Section 6.4 Discussion

In addition, this study reports decoding accuracy in setups where participants
are shown test stimuli for the first time, thus providing insight into how these
models would perform in real-time decoding. While performance improves with
the number of repetitions at test time, reasonable decoding performance of se-
mantics can be achieved with only one repetition in two out of three partici-
pants.

Lastly, by systematically quantifying decoding accuracy as a function of the
amount of training data, the present work brings insightful recommendations
as to what stimuli should be played in future fMRI datasets collecting large
amounts of data in a limited number of participants. In the current setup (nat-
uralistic movie clips acquired at 3T), training with diverse semantic content is
more valuable than training with repeated content for fitting decoding models.

Limitations This work is a first step towards training accurate semantic de-
coders which generalize across individuals, but subsequent work remains nec-
essary to ensure the generality of our findings.

Firstly, although the reported gains in out-of-subject setups are significant, the
small number of participants present in the dataset under study requires repli-
cations on larger cohorts. However, to our knowledge, no other dataset has
presented similar features to Wen et al., 2017, namely a large amount of data
per participant and a large variety of video stimuli.

Secondly, our approach currently requires left-out participants to watch the
same stimuli as reference participants. It is yet unclear whether functional
alignment could bring improvements without this constraint. However, multi-
subject decoding can probably help partially address this issue: since it is pos-
sible to train a decoder on multiple participants and because not all of them
have to watch the same movies, it is possible that a lot of different movies -
each seen by a different participant used in the training set - could be used as
“anchors” for left-out individuals.

Finally, while restricting this study to linear models makes sense to establish
baselines and ensure replicability, non-linear models have proved to perform as
well [Scotti et al., 2023], and constitute a natural improvement of this work.

Ethical implications Out-of-subject generalization is an important test for de-
coding models, but it raises legitimate concerns. In this regard, this study high-
lights that signal-to-noise ratio still currently makes it challenging to very accu-
rately decode semantics in a real-time setup, and that a non-trivial amount of
data is needed per individual for these models to work. In particular, it would be
interesting to see if recent work in perception decoding in MEG [Benchetrit et
al., 2023; Défossez et al., 2023] could be applied to out-of-subject setups with
a method similar to ours. Moreover, we stress that, while great progress has
been made in decoding perceived stimuli, imagined stimuli are still very chal-
lenging to decode [Horikawa and Kamitani, 2017]. Nonetheless, it is important
for advances in this domain to be publicly documented. We thus advocate that
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open and peer-reviewed research is the best way forward to safely explore the
implications of inter-individual modeling, and more generally brain decoding.
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7.1

7.1.1

Chapter 7

An application of FUGW to
whole-brain inter-species
functional alignment

In this chapter, we leverage all contributions from previous chapters to compute
functional alignment transport plans between human and non-human primates,
and test their relevance through a transfer learning task. Namely, we train a
brain decoder on human participants and test it on macaque data aligned to
human data. Figure 7.1 illustrates the general pipeline of this study.

We show that the brain decoder can successfully predict the latent features
of images seen by the macaque and that the predicted latents can be used to
generate captions describing the images seen by the macaque.

Methods

The methods used for this study are very similar to that of Chapter 6. The key
differences are that (1) the brain decoders now consist of lightweight deep-
learning models instead of linear regressions and (2) the lag for macaque data
is two seconds — instead of four for humans — to account for the differences in
hemodynamic and MION response functions.

Nonetheless, in the following paragraphs, we provide a detailed description of
the methods used in this study.

MRI data

Stimuli  Two types of stimuli are used in this study. First, the Monkey Kingdom
movie is shown to all subjects. It is an eighty-minute documentary showing
macagques interacting freely while a narrator describes their actions in English.
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Figure 7.1: Inter-species semantics decoding A. fMRI responses, denoted as
brain features, are recorded while a subject is watching movies or movie-clips. A
semantically-rich representation of seen frames is obtained using a pre-trained
image encoder. These frame features are denoted as latents. A brain decoder
is trained to predict these latents from brain responses. B. fMRI responses col-
lected in different individuals watching the same movies can be used to align
their cortical activation patterns. C. By successively using a brain aligner and a
brain decoder, it is possible to decode brain-activity across species. Moreover,
predicted latents can be used as inputs of other pre-trained generative models.
In particular, text-generative models can be used to generate short captions de-
scribing the movie frames seen by the monkey.
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The movie was divided into five consecutive sixteen-minute parts shown dur-
ing different fMRI runs. Secondly, movie clips from Nishimoto et al., 2011 were
shown to human participants. These clips consist of short (10-20 seconds)
excepts from movies, presented in a random order, and organised in runs of
eleven minutes. Runs are divided into two groups: 12 training runs — denoted
as Clips-Train — containing different movie clips without repetitions, and 9 val-
idation runs — denoted as Clips-Valid — whose movie clips are similar to the
training runs, repeated about 3 to 4 times.

Monkey data Two macaques (1 female) were injected with MION [Leite et al.,
2002] and scanned at 3T while performing a fixation task. Over a few days,
they were shown the five runs of Monkey Kingdom multiple times (4 to 5) in a
random order.

Humandata We use a subset of individuals from the Individual Brain Charting
dataset [Pinho et al., 2018]. It comprises MRI acquisitions for a large variety
of stimuli - including movie watching - in a limited number of participants. We
sub-select all 8 humans of the dataset who have seen all previously mentioned
stimuli. They were scanned at 3T while performing a fixation task for the movie
clips stimuli, and gazing freely for Monkey Kingdom. The five runs of Monkey
Kingdom were shown only once.

Data preprocessing Regarding humans, we refer the interested reader to the
original paper of IBC [Pinho et al., 2018] for a detailed description of the data
preprocessing. Regarding macaques, the fMRI images were slice-time cor-
rected, motion corrected and co-registered to an anatomical template (MNI for
humans, MEBRAINS for macaques). Individual meshes were created for each
subject using the Freesurfer pipeline, and individual fMRI data were projected
on these meshes.

Brain decoder

Input brain features Let us denote as X € R™>Y the matrix of brain features
used as inputs, where T is the number of acquired brain volumes, and V is the
number of brain vertices. We strive to minimally process the brain features to
keep the model as simple as possible. Namely, for each run of each subject in
both species, we (1) regressed out cosine drifts and (2) standardized each ver-
tex’s time series to have zero mean and unit variance. Additionally, in macaques,
we averaged runs showing the same movie part to increase the signal-to-noise
ratio. Besides, to predict movie frames seen when brain volume ¢ was acquired,
we aggregate p consecutive brain volumes starting at brain volume ¢ + . We
refer to p,! € N as the window size and lag respectively. Based on the work pre-
sented in Chapter 6 [Thual et al., 2023], when using signal acquired in human
participants, we aggregate brain volumes by taking their mean, set a window
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size of two brain volumes and a lag of four seconds. We used the same hyper-
parameters for the macaques, except for the lag, which was set to two seconds
to account for the differences in hemodynamic and MION response functions.
Moreover, when using signal acquired in macaques as input of a brain decoder
trained in human participants, we use the opposite of the signal to account for
the fact that the peak of the HRF in humans in inverted compared to the MION
response function.

Output latent features Let us denote as Y € R™*M the matrix of latent fea-
tures to be predicted by the model, where T' the number of brain volumes and
M is the dimension of the latent space. For a given brain volume z;, the as-
sociated latent vector y, is the average of (v x)i1<r<k, the respective latent
representations of K evenly-spaced frames seen when the brain volume was
acquired. Each y, ; is the output of the frame through a pre-trained image en-
coder. We rely on the ViT-L/14 architecture and checkpoints distributed with the
original CLIP paper [Radford et al., 2021]. This visual encoder was trained on a
large set of images from the web and encodes high-level features of images.
Note that, in this study, CLIP refers to the encoding model used to generate the
ground truth latents, while Clips-Train/Valid refers to a set of movie clips shown
to human participants.

Model Similarly to previous work [Scotti et al., 2023], we train a deep learning
model to predict latent features from brain features. However, we use a much
lighter architecture for simplicity and because our training dataset is smaller.
Namely, our architecture consists of a few residual blocks constituting the back-
bone. The output of the backbone is then fed into a retrieval head that miminises
a contrastive loss (MixCo). An architecture more similar to that of Scotti et al.,
2023 would also feed the backbone’s output to a retrieval head that minimises
a reconstruction loss (Mean Squared Error for instance), which we do not at-
tempt here. Our contrastive head is a simple projector made of multiple linear
layers with GELU activations. We strive to keep the number of parameters low
to avoid overfitting. In particular, we use a backbone with 2 residual blocks,
each containing 512 hidden units. The head consists of 2 linear layers with 512
hidden units.

Augmentations Contrastive models are known to benefit from data augmen-
tations [T. Chen et al., 2020]. To augment the predicted latent representations,
we compute augmentations on the ground truth images and use these aug-
mented images as inputs of the encoder. We use the following augmentations:
random crop and resize, random colour jiggle, and random gaussian blur. We
pre-compute 20 augmentations, from which we randomly sample during train-

ing.



129 Section7.1 Methods

7.1.3

Training The modelis trained using the AdamW optimiser with a learning rate
of 1074, a batch size of 128, a weight decay of 0, and a dropout rate of 0.8. We
train the model for 20 epochs and keep the model with the best validation loss.

Evaluation We evaluate the performance of the decoder on a retrieval task.
First, let Xiest, Yiest be the brain features and latent features of held-out runs,
respectively. We define a set K of n random samples drawn from Yiest without
replacement. Then, we predict the latent features using our pre-trained model
on test brain features Y £ f(Xiest). Each predicted sample g € Y is compared
to each sample yneqg € K using a similarity function s — we use the cosine
similarity. Eventually, as defined in Equation 7.1, we also compute the similarity
between the predicted and ground truth latent (3, y), and the rank of y is defined
as the number of samples in K whose similarity is greater. Finally, we report the
median of the relative ranks across all predicted samples.

rk(9,y) £ Hyneg €K | 5(Q7yneg) > S(Q»y)}’

) (7.1)
MR(Y, K) median({rx(y,y)/lKl v (?Ly)})

(1>

Hyper-parameters tuning Given the large number of hyper-parameters, we did
not perform an exhaustive search. Instead, we tuned hyper-parameters sequen-
tially, each time keeping the best values found so far. We used the validation
runs of the movie clips (Clips-Valid) of the human participants to tune the hyper-
parameters on decoders fitted on the training runs of the movie clips (Clips-
Train).

Text generation Predicted latents can be used as inputs for other pre-trained
generative models. In particular, text-generative models can be used to gener-
ate short captions describing the movie frames seen by the monkey. We rely on
ClipCAP [Mokady et al., 2021], a lightweight model based on GPT-2 that gener-
ates captions from image latent representations obtained with CLIP ViT mod-
els. We train from scratch the model on CLIP ViT/14 latent representations from
images of the COCO dataset by relying on the implementation of ClipCAP avail-
able on Github'.

Similarly to Ozcelik and VanRullen, 2023, we standardise predicted latents to
have zero mean and unit variance, before scaling them to the mean and vari-
ance of the latents seen during training, and finally use them as inputs for the
text-generative model.

Brain alignment

Input brain features Given left-out and a reference subject who might be from
different species, we seek to derive a mapping P € RY:" between the N and
P vertices of the left-out and reference brains, respectively. To this end, we rely

Thttps://github.com/rmokady/CLIP_prefix_caption
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on the work from [Thual et al., 2022, 2023]. This work uses optimal transport to
compute a soft permutation of the vertices of the left-out individual that max-
imises the similarity between functional features of the reference individual,
while preserving the anatomical organisation of the cortex.

Formally, let X°U* € R™>" be the matrix of brain functional features of the left-
out subject, where T is the number of acquired brain volumes, and N is the
number of brain vertices. Let Dt ¢ RY:V be the matrix of geodesic distances
between vertices of the left-out subject. Finally, let w°" € RV be the vector of
vertex-wise weights, which are used to balance the contribution of each vertex
to the alignment. Reciprocally, we define X' ¢ RT-P, D' ¢ RP>P, and w'f
R” for the reference subject.

P is such that it minimises the loss function Lg (P) described in Equation 7.2:

Gromov Wasserstein loss

Wasserstein loss l
Lo(P) = (1—-a) Lw(P) +a Lew(P) 7.2)
+p Ly(P) +¢ H(P) .
i) .
Marginal constraints Regularization

where:

cLw(P) £ Y |IXM - X3 Py
0<i<N
0<j<P

. N t 12
Low(P) = > |Df% — D3P Pij Py
0<i k<N
0<j,1<P

. Eu(P) A (D(P#l ® 13#1 |,wout ® wout) 4 @(P#g ® P#2 ‘ ,wref ® ,wref)
. H(P) L @(P QP ‘ (wout ® wref) ® (wout ® wref))

Here, ®(- | -) denotes a divergence - either the Kullback-Leibler divergence
when aligning humans to humans, or the L2-norm when aligning macaques
to humans - Py, = (3, P, j)o<i<n is the first marginal of P, Py, =
(32 Pij)o<j<n is the second marginal of P, a € [0,1], p € Ry are the
hyper-parameters setting the relative importance of each constraint, and © £
(Xout’Xref, Dout’ Dref’ a,p, 5)_

Hyper-parameters selection We compute human-to-human alignments using
the same hyper-parameters asin Thual et al., 2022,2023, namely a = 0.5, p = 1,
e = 1074, and @ is the Kullback-Leibler divergence. We compute macaque-to-
human alignments setting ® to the L2-norm and study the impact of «, p, and ¢
on the performance of the brain decoder.

Feature projector Subsequently, we define ¢: X — (PTXT) @ Py, € RV
where ¢ is the element-wise division, a function that transports any matrix of
brain features from the left-out participant to the reference participant.
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7.2

7.2.1

7.2.2

Results

Training a semantic decoder on multiple human participants

Although the stimuli used to train the decoders are not as rich as that of other
decoding studies — the present work features about two hours per participant,
when Scotti et al., 2023 were using more than 30 hours, Thual et al., 2023 more
than 5 — we successfully trained a brain decoder on multiple human participants
from the IBC dataset.

We present the retrieval performance of our brain decoder on one human par-
ticipant in Figure 7.2. The decoder was trained on all IBC subjects aligned onto
sub-04 using the Clips-Train data (both for functional alignment and fitting the
brain decoder) and tested on the Clips-Valid data of the same participant. We
fitted the brain decoder hyper-parameters using this setup.

Predictions for random samples - i.e., not selected amongst the best predic-
tions — of the test set can be found in supplementary Figure 12.1.

Results on the validation set show that, for our retrieval task, the latent features
predicted by our brain decoder are more similar to that of the image currently
seen by the participant than they are to other images. Moreover, retrieved im-
ages show semantic consistency, with pictures of landscapes, animals, or wa-
ter being retrieved in groups.

For this particular decoder, the median relative retrieval rank of the ground truth
image is 13 when testing on a human participant — chance level is 50. We run
a chi-squared test on the distribution of ranks of ground-truth images, which
would be uniform at chance level. The test is very significant (xy? = 5 - 102,
p-value < 10764).

Brain decoders with functional alignment transfer from humans
to macaques

We freeze the set of hyper-parameters found in the previous section and train a
series of brain decoders on more data. Namely, we train eight brain decoders.
Each decoder is trained on all IBC subjects. All participants are aligned onto
a reference participant using the Clips-Train, Clips-Valid, and the first two seg-
ments of Monkey Kingdom data. The same stimuli (Clips-Train, Clips-Valid, and
the first two segments of Monkey Kingdom data) are used to train the decoder.

We then test each decoder on the fourth and fifth segments of Monkey King-
dom in left-out aligned macaques and humans. Macaques were aligned to the
reference human subject using the first two segments of Monkey Kingdom. We
leave the third segment out to ensure no continuity between the third and fourth
segments. Figure 7.3 shows that we can successfully transfer each of the eight
brain decoders to each of the two macaques. Figure 7.4 shows examples of
the best predictions of the brain decoder for one of the macaques. One can see
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Figure 7.2: Retrieval performance on the validation set of a brain decoder
trained on all IBC subjects (A.) Distribution of the relative rank of the ground
truth image for a brain decoder trained on Clips-Train using all IBC subjects
aligned onto sub-04, and tested on Clips-Valid in sub-04. The bold vertical line
indicates the median rank of our decoder. The dotted line indicates the median
rank at chance level. (B.) Examples for the best predictions of the brain decoder
A. (Left) The ground truth image and caption generated using the ground truth
latents. (Right) The first five retrieved images - i.e., the five images with the
highest similarity to the predicted latents — and the caption generated using

the predicted latents.
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Figure 7.3: Brain decoders trained in human participants transfer to non-
human participants A. Median relative rank for all 8 participants of IBC and
2 macaques (x-axis) when tested on a brain decoder trained on all IBC partici-
pants aligned onto a reference individual (y-axis). B. Distribution of the relative
rank of the ground truth image in a human participant. C. Distribution of the rel-
ative rank of the ground truth image in a non-human primate. D. Distribution of
the relative rank of the ground truth image when predictions for the non-human
primate are randomly shuffled.
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from predicted latents
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A view of a tree and
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of clouds.
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of a blue chair next
to a plant.
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Figure 7.4: Examples for the best predictions in macaques (Left) The ground
truth image and caption generated using the ground truth latents. (Right) The
first five retrieved images - i.e., the five images with the highest similarity to the
predicted latents — and the caption generated using the predicted latents.
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that the best predictions yield latent representations encompassing coherent
semantic information because retrieved images are semantically consistent.
Predictions for random samples - i.e., not selected amongst the best predic-
tions — of the test set can be found in supplementary Figure 12.2.

For a fair comparison to monkeys, results for human participants were obtained
by computing functional alignments to the human reference subject using the
first two segments of Monkey Kingdom only. We find that using Clips-Train
data to align human data yields better decoding performance, as is reported
in supplementary Figure 12.4. It could stem from the fact that, compared to
Monkey Kingdom, Clips-Train contains a larger number of samples and that the
images shown are more diverse.

Similarly to the previous section, we ran a chi-squared test on each distribu-
tion of the ranks of the ground-truth images, which would be uniform at chance
level. All tests are very significant, except for sub-14. We also show that the me-
dian rank goes up to 50 when the predictions of the brain decoder are randomly
shuffled. This control experiment demonstrates that, even across species, the
decoder predicts features that correlate with that of the image seen by the par-
ticipant. Similarly, predicting the average latent features seen during training
yields chance level performance.

7.2.3 Evaluating inter-species functional alignments

Luce Jack
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Figure 7.5: Average decoding performance across human-trained decoders
for each of the two macaques For each macaque and each pair of (a, p), we
aligned the macaque to the human reference subject and evaluated the per-
formance of the brain decoder. We report the average rank across all human
reference subjects.

We study the impact of the hyper-parameters « and p on the performance of the
brain decoder when transferring from humans to macaques and report results
in Figure 7.5.

First, we fix e = 100. We find that for o = 1 (i.e., using only anatomical con-
straints and no functional information), the performance of the brain decoder
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(a) MMP 1.0 atlas [Glasser et al., 2016] in both hemispheres of the human brain displayed
on a flattened fsaverage surface.
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(b) MMP 1.0 atlas transported from a human participant to a macaque using the feature
projector ¢ associated with the transport plan P, for each («, p)

Figure 7.6: Transported atlas for alignments computed between Luce and sub-
04 of the IBC dataset For each («, p) reported in Figure 7.5, we display the trans-
ported atlas on the macaque brain.
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(b) Transported mass for each vertex of the human brain for each (o, p)

Figure 7.7: Transported mass in each vertex for alignments computed be-
tween Luce and sub-04 of the IBC dataset For each («, p) reported in Figure
7.5, we display the transported mass for each vertex of the macaque and hu-
man brains. Scales are reported in Figure 7.8.
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Figure 7.8: Transported mass distributions for alignments computed between

Luce and sub-04 of the IBC dataset We display the distribution of transported
mass for the macaque and human brains for each (a, p) reported in Figure 7.5.



Chapter 7 An application of FUGW to whole-brain inter-species functional 138
alignment

is at chance level. Whenever a < 1, the performance of the brain decoder
increases to better-than-chance levels. The best performance is obtained for
a = 0.5and p = 3-10° Not all combinations of («, p) could be reported, as
some combinations led to numerical instabilities during the optimisation of the
transport plan: for a given «, the value of p needs to be high enough to ensure
the convergence of the optimisation algorithm when using the L2-norm as a
divergence.

To better understand the transformation induced by the functional alignment,
we visualise in Figure 7.6 how it transports a parcellation from a human partici-
pant to a macaque. To this end, we use the MMP 1.0 human atlas [Glasser et al.,
2016] and transport each RGB channel using the feature projector ¢ defined in
the previous section. For each («, p), we display the transported atlas on the
macaque brain in Figure 7.6b.

Empirically, we notice that higher values of p lead to smoother transport plans.

Moreover, we visualise in Figure 7.7 the transported mass for each vertex of the
human and macaque brains, and the associated mass distributions in Figure
7.8. We find that, in humans, the transported mass is more concentrated in
motor areas, and less in visual and prefrontal areas. The opposite is observed in
macaques. However, for values of « close to 1, these effects seem to be driven
by the Gromow-Wasserstein term — i.e., the anatomical constraint — rather than
the Wasserstein term - i.e., the functional constraint — as the same pattern is
present for a = 1. Values of a close to 0 still exhibit a difference in transported
mass in the visual areas, with less mass being transported in the macaque brain
and more in the human brain: this could stem from the fact that the visual areas
occupy a larger portion of the macaque cortex relative to the total area of the
cortex compared to the human cortex.

7.2.4 Choosing the best reference participant for functional alignment

In the previous section, we trained a brain decoder on multiple human partic-
ipants who were all functionally aligned to a reference participant. First, we
find that decoders trained on multiple participants significantly outperform that
trained in a single participant. The gain is much larger than that observed in
Thual et al., 2023 and could come from using contrastive models instead of
linear regressions. However, it is not clear how one should choose the refer-
ence participant for functional alignment. We run a series of experiments to
investigate this question.

First, we compute brain decoders in a single participant, test them on left-out
individuals, and report results in Figure 7.10a. We compute the Pearson correla-
tions between the performance in left-out individuals and (1) the FUGW distance
between the left-out and the training participants, and (2) the within-subject
performance of the brain decoder (i.e., the performance of the brain decoder
trained and tested on the same participant), respectively. In the first case, we
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Figure 7.9: FUGW distances between all pairs of IBC subjects on the Clips-
Train data For each pair of participants, we fit a transport plan using parame-
ters from [Thual et al., 2022]. We plot the FUGW distance after convergence of
the transport plan for each pair of participants. Some individuals have a lower
FUGW distance to others in general (see sub-04, sub-06, sub-11), while others
have a higher FUGW distance (see sub-09, sub-14).

find a significant positive correlation (correlation = 0.56, p-value = 6 - 1079). In
the second case, we find a non-significant positive correlation (correlation = 0.2,
p-value = 0.1). However, if we remove sub-14 — whose decoding performance
is significantly lower than the others for reasons we could not elucidate — both
correlations become non-significant.

On the contrary, within-subject decoding performance in a given participant very
significantly correlates with how well this same subject can be decoded when
aligned to other participants (correlation = 0.8, p-value = 5 - 10~'7) even when
sub-14 is removed (correlation = 0.6, p-value = 4 - 10~%). Given the data in this
study, we conclude that neither the FUGW distance nor the within-subject per-
formance can predict accurately how a left-out participant can be decoded.

Secondly, we compute brain decoders trained on multiple participants aligned
to areference participant, test them on the left-out individual, and report results
in Figure 7.10b. We find the same conclusion as with the previous experiment.

Finally, we compute brain decoders trained on all IBC participants aligned to a
reference participant, test them on each training participant, and report results
in Figure 7.10c. We find the same conclusion as with the previous experiment.
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(c) Decoders are trained on all IBC participants aligned to a single reference participant
and tested on each IBC participant.

Figure 7.10: Performance of brain decoders and correlation to FUGW distance
and within-subject performance Results for decoders trained in one participant
(a), and multiple participants tested in a left-out (b) or within (c) participant.
(Left) Median rank. (Right) Median rank as a function of the FUGW distance be-
tween the tested participant and the training/reference participant. Colour in-
dicates the within-subject performance of a brain decoder trained on that train-
ing/reference participant alone.
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7.3

7.3.1

7.3.2

Discussion

This study shows that a decoder of semantic visual perception trained exclu-
sively on human fMRI data can be transferred to non-human primates through
functional alignment. These results suggest that the computed inter-species
functional alignments contain meaningful information about the similarities
and differences in the functional organisation of the cortex between human
and non-human primates. Moreover, we advocate that brain decoders should
generally be tested in a setup similar to that of this study, i.e., on individuals
whose data does not overlap with that of the training set. In our case, the brain
decoder was not trained on non-human primate data or the Monkey Kingdom
movie segments used for testing.

Limitations

We advocate that the current study is limited by (1) the small number of sam-
ples per participant and (2) the nature of the stimuli used. First, we know from
other studies [Scotti et al., 2023; Thual et al., 2023] that a greater number of
samples per participant should significantly improve the performance of the
brain decoder. Moreover, the nature of the stimuli used for training and testing
is probably suboptimal. Indeed, brain decoders trained in a single human us-
ing Clips-Train seem to exhibit good out-of-subject performance when tested
on Clips-Valid on humans who have been functionally aligned using Clips-Train.
However, the same brain decoder tested in the same left-out participants, this
time using segments of Monkey Kingdom, exhibits a much lower performance.
This could stem from the fact that Monkey Kingdom is not as diverse as Clips-
Train and Clips-Valid, and that the images shown are not as easy to distinguish.
We believe that using richer stimuli could significantly improve the performance
of the brain decoder and the relevance of computed inter-species alignments.
Lastly, it is not clear whether a fixation task should be imposed on participants.

Moreover, the method presented in this study contains an overwhelming num-
ber of hyper-parameters, which can be difficult to tune for users. For the same
reason, our current work does not study all combinations of hyper-parameters,
which could lead to suboptimal results. However, it proves that at least one
combination of hyper-parameters can transfer human-fitted brain decoders to
non-human primates using naturalistic stimuli.

Future work

Despite the high number of hyper-parameters, we claim these results can likely
be reproduced and improved. Indeed, given the consistency of these results
across individuals, we advocate that acquiring a lot of naturalistic stimuli in
a very limited number of human and non-human subjects should help derive
much more accurate inter-species functional alignments and brain decoders.
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alignment

Moreover, this work provides baseline hyper-parameters that can be used to fit
both the subsequent decoders and alignments.
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8.1.1

8.1.2

Chapter 8

Conclusions and opinions

In this last chapter, | wish to adopt a more personal tone to touch upon addi-
tional contributions made during this doctorate, discuss the limitations of the
methods and results presented in this manuscript, and express personal opin-
ions on the future directions of this research.

Additional contributions

Contributions to the analysis of the deep-phenotyping data IBC

During this doctorate, | was very influenced by the work of the IBC project, which
collected a large amount of data from a small number of individuals. | was
fortunate to be part of the third release of the dataset [Pinho et al., 2023] and to
work from the start of my doctorate with a significant proportion of the collected
data that had already been preprocessed. | participated in studies leveraging
this data to introduce concepts like that of the functional fingerprint of cortical
areas [B. Thirion et al., 2021] — namely, the idea that, with enough data in a single
participant, one could derive a functional signature that uniquely identifies each
part of the cortex — and eventually study how these data can be used to derive
individual atlases, and finally how these compare to classical atlases [B. Thirion
etal., 2023].

Software contributions to visualisation tools of neuro-imaging
data

These early studies in my doctorate have led me to develop visualisation tools
to better understand the data at hand. Interactively visualising this data was cru-
cial for building intuitions regarding functional variability and functional align-
ment. | believe that many of the computational errors | have encountered dur-
ing this doctorate could have been solved quicker by visualising the data under
study.
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(a) Display how a given vertex in a given IBC participant was significantly acti-
vated/deactivated throughout the tasks of the IBC dataset.
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(b) Display the same cortical map on the individual cortical surfaces of two participants
of the IBC dataset.

SOURCE SUBJECT TARGET SUBJECT

# | Agment 0 %

(c) Display voxels in the macaque cortex that were matched to a single voxel in the hu-
man cortex.

Figure 8.1: Main features of brain-cockpit. The application was designed to
ease the following tasks: (a) interactively check the functional fingerprint of a
given voxel, (b) quickly visualise cortical maps of different participants side by
side and (c) interactively explore pre-computed functional alignments.
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8.2

8.2.1

Brain-cockpit In this context, | first focused on developing' and documenting?®
brain-cockpit, an open-source web-based application designed to browse the
IBC dataset and fugw alignments. It relies on the three. js library to render 3D
meshes in the browser using WebGL, and on the react. js library to manage
the state of the application. This setup makes it accessible to any modern web
browser without requiring installation. The project also features a f1ask Python
back-end that caches and serves pre-computed MRI maps or functional align-
ments. brain-cockpit was designed to ease the following tasks, illustrated
in Figure 8.1: (a) interactively check the functional fingerprint of a given voxel,
(b) quickly visualise cortical maps of different participants side by side and (c)
interactively explore pre-computed functional alignments.

Moreover, the application makes it possible to send a specific view of the data
to a collaborator simply by sharing the current URL.

Human Brain Project deployment brain-cockpit also comes with ansible
scripts to automate deployment on a Linux server. These scripts were used
to deploy the application on the Human Brain Project’s servers, where it is still
accessible to the community and allows users to quickly explore the IBC dataset
online®.

Nilearn As a member of the Nilearn core developers team, | had the oppor-
tunity to contribute to the development of the library. | mainly focused on en-
hancing features for the plotting module, which is used by a large number of
users. My contributions include allowing the plotting of flat cortical maps for
fsaverage in any existing resolution, custom cortical background maps — mak-
ing it possible to plot the sign of the curvature of the cortex, commonly used
in other visualisation tools — and custom view angles. | also contributed to the
documentation. Finally, | initiated a collaboration with the niivue* team to test
the feasibility of integrating their javascript 3D renderer in Nilearn, in place of
the ones we currently maintain.

Limitations of the current work

Limitations of the FUGW alignment method

The optimisation problem underlying the FUGW alignment method is well-
motivated: functional alignment arises naturally from the Wasserstein loss,
anatomical constraints can still be fostered with the Gromov-Wasserstein loss,
and marginal constraints enforce a generally well-distributed mass — as was ini-
tially showed to be important in Section 2.1. However, FUGW comes with many
limitations.

Thttps://github.com/alexisthual/brain-cockpit
2https://alexisthual.github.io/brain-cockpit
3https://brain-cockpit.tc.humanbrainproject.eu
4https://github.com/niivue/niivue
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Chapter 8 Conclusions and opinions

First, the high number of parameters in the FUGW distance makes it unlikely
that external users will want to use it if good default values are not provided
beforehand. This stresses the importance of running large hyper-parameter
searches to find the best values for the parameters a, p, and ¢ in pre-identified
setups.

However, hyper-parameters of the FUGW distance are not independent, thus
making this search more difficult. Indeed, changing « can also affect the total
amount of mass transported, and changing p can also affect the relative impor-
tance of the entropic regularisation term.

Similarly, the number of vertices/voxels in the source and target spaces can
also affect the optimal values of the hyper-parameters.

This difficulty may come from the fact that the Wasserstein and Gromov-
Wasserstein terms are inherently not homogeneous: the former is a sum
weighted by individual coefficients of the transport plan P, but the latter is a
sum weighted by the product of all pairs of coefficients the transport plans P.

Limitations of the data used in the experiments

In this doctorate, we only used the geodesic distance between vertices on the
cortical sheet to inform the Gromov-Wasserstein loss. However, white-matter
connections between cortical regions may be more informative and shed new
light on cortical homologies between human and non-human primates.

More generally, collecting a higher number of samples for functional alignment
could yield more insightful conclusions. Moreover, the movie/clips-watching
task used in Chapters 6 and 7 may not be as efficient as the static-image viewing
task featured in other studies.

Opinions and future research directions

Advocating for web-based visualisation tools for neuro-imaging
data

First, developing open-source software tools is crucial for the scientific com-
munity. It has proven to be a powerful way to share knowledge and foster col-
laborations in the past decades, with some projects gaining major momentum
in the neuroscientific community.

Data visualisation, together with data sharing, preprocessing, and analysis, is a
critical component of neuroscience. The latter have progressed significantly in
the past years, with the development and adoption of shared data standards —
such as BIDS - and easy-to-deploy, opinionated processing and analysis tools
that come with robust defaults and can be scripted to enable parallelisation.
However, | believe that the former has not seen the same level of progress. Most
visualisation tools still require compilation or installation and are challenging
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8.3.2

for novice and intermediate developers to contribute to. Moreover, recent mas-
sive MRI datasets cannot be downloaded or cached on simple machines, which
these pieces of software often require. Web-based solutions constitute a popu-
lar and modern alternative to these issues, as they are not as hard to install and
distribute to individual machines and allow the use of server-side resources to
store and process large amounts of data.

Besides, some have argued that, as a community, we should report whole-brain
volumetric unthresholded maps in our publications, in order to limit artefactual
effects coming from surface projection and hacking threshold values. | find this
idea very interesting, and | believe these maps could come in the form of files
stored online and displayed with a generic web-based viewer.

More generally, | think our community needs to switch to server-oriented
paradigms for storing, sharing and visualisation purposes, as is the case with
the OpenNeuro® and NeuroVault® initiatives. The amount of data can be over-
whelming, especially if we are to store fMRI timeseries or raw datasets. | hope
that niivue will become the go-to 3D renderer for neuro-imaging data in the
coming years. It would naturally lead to the blooming of web-based visualisa-
tion tools with different use cases and levels of complexity, either for use on
individual computers or through widely distributed web platforms.

Advocating for larger deep-phenotyping fMRI datasets

Collecting large amounts of data from a limited number of individuals is, in my
opinion, a low-risk yet high-gain strategy for the neuro-imaging community. It
will not bring new knowledge at the population level but constitutes an easy
way to gain invaluable insights into how the brain is organised. Subsequent
hypotheses can later be tested at the population level.

| believe these deep-phenotyping datasets should include high-resolution
anatomical images of participants, comprising diffusion-weighted images to
derive white-matter tracts. Acquiring whole-brain fMRI images, even at the cost
of a lower signal-to-noise ratio, is a strategy | would be interested in implement-
ing as it allows prior-free data analyses. Including sub-cortical areas in the ac-
quisition could also prove to be very important.

Besides, ideal functional data should allow one to uniquely identify areas of the
cortex without the need for prior anatomical knowledge. Anatomical informa-
tion would be used afterward to build higher insights into the organisation of
the brain across individuals and species.

Finally, | believe that these individuals should be imaged while performing per-
ception tasks over a high number of samples. Moreover, among other criteria,
| think that one should choose the type of stimuli based on whether we already
have meaningful latent representations for them. For instance, images or gen-

Shttps://openneuro.org
Shttps://neurovault.org
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eral text are stimuli that make it easy to obtain good latent representations using
pre-trained decoders. These rich latent representations allow one to rely less
on prior knowledge to probe the brain: running a GLM to contrast a specific cat-
egory of stimuli against others implies defining these categories in advance,
which potentially limits the kind of discoveries one can make. Using latent rep-
resentations can generally alleviate these biases. Moreover, these stimuli can
be shown to participants in the form of short samples (i.e., stimuli that last a
few seconds at most), and deep-learning models should benefit from this high
number of samples. On the contrary, long-context stimuli and mathematical
problems, although fascinating, are still challenging to model with existing la-
tent representations.

Advocating for decoding-first approaches

One could argue that the Natural Scenes Dataset [Allen et al., 2022] already con-
stitutes a significant step in giving the community access to a large number of
samples collected from a small number of individuals. | strongly support this
initiative but also want to express some concern about the way this data has
recently been used in widely distributed brain-decoding papers. Indeed, in most
of these studies, the data used to test the models consists of beta coefficients
derived from a GLM on the entire fMRI session. However, for a given session,
some samples acquired during the same runs are used for training and others
for testing. In my opinion, it is unclear at this stage how much this artificially
boosts the decoding performance of underlying brain decoders.

| think the following questions could help drive the strategy to acquire such
datasets: given a brain decoder, how does it perform on data acquired in new
fMRI sessions in the same participants? On data sampled from a different dis-
tribution than that of the training samples? On data acquired from different
individuals? On data acquired with a different fMRI scanner?

In particular, these questions help put in perspective the importance of acquir-
ing data specifically for testing purposes.

More generally, | think it makes sense that our community allocates resources
to projects with decoding-first approaches. Indeed, we have rightfully focused
on encoding-first approaches in the past decades, which predict brain activity
from stimuli properties. However, recent advances in brain-decoding showed
that fMRI data might have much more signal than we initially thought. Nonethe-
less, decoding methods often rely on hard-to-interpret deep-learning models,
leading to a tension between encoding approaches that provide grounded re-
sults and decoding approaches that seem to indicate there is much more to
learn from fMRI data but struggle to draw neuro-scientific conclusions from
their results.

However, | want to advocate that decoding-first approaches present real advan-
tages. First, it is an inherently challenging machine-learning task, with much
room for improving metrics. As such, it allows for the definition and sharing
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of well-posed benchmarks, which | think is trickier to do with encoding ap-
proaches. Indeed, predicted measured brain activity highly depends on how the
acquisition was performed, as we might not be setting our imaging machines
with parameters that are optimal for probing the brain’s activity. In other words,
the values we are trying to predict do not necessarily contain the information
we are looking for. On the contrary, decoding tasks yield better-defined target
features, as these are derived directly from the stimuli.

Functional alignment could also be framed as a sub-task of the decoding prob-
lem. Indeed, well-performing brain decoders trained on multiple individuals map
individual brain activity to a common latent space. With adapted architectures,
one could try to invert this mapping using, for instance, normalising flows. It
yields a natural way to build individual-to-individual alignments without requir-
ing that these participants see the same stimuli.

Finally, | think it is very unlikely that the current MRI sequences we currently
use to acquire data are optimal for decoding purposes. Researching new
MRI sequences on their ability to provide features that allow one to train high-
performance brain decoders could lead to significant improvements in the field.
However, this might require using artificial models of the brain’s dynamics to
find optimal sequences or, if such models do not exist, to run the subsequent
gradient descent in the real world. Cheaper, low-field MRl machines might pro-
vide a way to explore this space of hyper-parameters’.

7https://www.chipiron.co
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9.1

9.2

Chapter 9

Supplementary material for
Chapter 3 (FUGW)

In the following sections, we provide some additional material to ease the un-
derstanding of the underlying alignment problem as well as computational de-
tails of solutions of FUGW and FUGW barycenters.

We also show some control experiments during which we used different train-
ing data to compute pair-wise alignments and evaluated the proportion of cor-
relation gains that comes from mere signal smoothing.

Eventually, we give details about the IBC dataset (acquisition, preprocessing,
fMRI protocols and data splitting).

lllustration of the alignment problem

We provide in Fig. 9.1 a conceptual illustration of the alignment framework for
a pair of subjects.

Implementation details

MSM configuration We use the default configuration of MSM ' and vary pa-
rameter lambda so as to obtain the best gains in correlation on the test set. We
use the same value of lambda at each step of MSM and eventually set it to 0.1
after a cross validated grid search.

Correlation gain variability when aligning pairs of subjects Figures 9.2 and
9.3 show correlation gains on the validation and test sets respectively when
aligning pairs of subjects from the IBC dataset. Subjects’ data was previously

TMSM default configuration https://github.com/ecr05/MSM_HOCR/blob/master/config/basic_
configs/config_standard_MSMpair
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Source
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Figure 9.1: Alignment of two brains using functional signatures Using multiple
maps of comparable features (left column) for the source and target subjects,
we seek to derive an alignment (also referred to as a coupling) P that matches
parts of the brain with similar features while preserving the global geometry of
the cortex.
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correlation with that of the baseline (top row) where subjects were simply pro-
jected on fsaverage5. Models for the left hemisphere and right hemisphere are
shown respectively on the left and right side.
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Figure 9.3: Detailed correlation gains on the test set (Mathlang tasks) in the
balanced case Similarly to Figure 9.2, each line represents a FUGW model
trained with different hyper-parameters. Each dot represents the mean corre-
lation between contrast maps of the Mathlang protocol for a given pair of IBC
subjects. We compare the average correlation with that of the baseline (top
row) where subjects were simply projected on fsaverage5. Models for the left
hemisphere and right hemisphere are shown respectively on the left and right

side.
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sub-07

ial

projected onto fsaverage5. These figures provide us with a better understand-
ing of the standard error and consistency of these gains. Moreover, they show
that selection of the best set of hyper-parameters is robust to changing the val-
idation data.

Mesh resolution reduction As mentioned in the core of this paper, aligning
meshes with high resolutions can lead to dealing with matrices which won't fit
on GPUs. This is typically the case when trying to align two fsaverage7 hemi-
spheres (160k vertices each) instead of fsaverage5 hemispheres (10k vertices
each).

In order to reduce the number n of aligned vertices, we first group them into
small clusters using Ward’s algorithm using a method described in B. Thirion et
al., 2014. In essence, this method iteratively groups adjacent vertices of a given
individual based on feature similarity until I clusters have been formed. Then,
for a given cluster u; of the source subject s, we define its functional signal ﬁ‘ji
as the mean functional signal of vertices which belong to this cluster. Moreover,
for two given clusters u; and u; of subject s, we define the anatomical distance
D{Z,uj between u; and u; as the mean geodesic distance between all pairs of
vertices between the two clusters (akin to an Energy distance). Eventually, we
derive analogous objects F'* and D* for the target subject ¢, and end up in a
configuration comparable to that of Experiment 1.
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Alignment to individual anatomy We qualitatively control that alignments de-
rived between individuals on their individual anatomies make sense in Figure
9.4,
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Figure 9.4: Transporting individual maps onto a reference subject FUGW can
help bridge the absence of template anatomies and derive pairs of alignments
such that all individuals of the cohort are comparable. We display a map taken
from the test set contrasting areas activated during mathematical reasoning
against areas activated for other stimuli of the protocol.
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Figure 9.5: Comparison of gains in correlation after Gaussian blurring We com-
pare correlation between subjects after the source subject’s functional data has
been smoothed with a Gaussian kernel of standard deviation 5mm (top left),
10mm (top right), 15mm (bottom left) and 20mm (bottom right)

Control experiments

Controlling for smoothing effect increasing correlation Alignments com-
puted with FUGW are not always vertex-to-vertex alignments. Indeed, a single
vertex from the source subject s can be associated with many vertices in the
target subject ¢. In fact, Pf’t represents the relative importance of each match.
The hyper-parameter ¢ controls the entropy of P*:*, which is in direct link with
the spread of vertices that we use as a measure for how many target vertices
are matched with source vertices.

Since smoothing signal on the source subject can reduce noise and increase
correlation to target data, we measure the correlation gain induced by applying
a gaussian kernel to the source signal. This allows us to show that only a minor
proportion of correlation gains induced by FUGW can come from this smooth-
ing effect. Figure 9.5 shows this for kernels of 5mm, 10mm, 15mm and 20mm of
standard deviation respectively. We see that correlation increases significantly
less than when using FUGW (0.03 vs 0.12 correlation gain respectively). More-
over, one notices that even though correlation increases for pairs of subjects
with a low initial correlation, it decreases for pairs with a high initial correlation.
On the contrary, FUGW increases correlation for all pairs of subjects.

Different training sets yield comparable correlation gains While we leverage
all IBC maps to derive our couplings, we show that the presented results hold
when using a much smaller training dataset. In particular, we observe similar

0.35

0.35
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correlation gains when using only the 57 maps of the Archi protocol for train-
ing (see Table 9.3). It takes about one hour per subject to acquire these maps,
which we advocate is a reasonable amount of time to build a training set ded-
icated to align subjects within a given cohort (and possibly across cohorts).
Finally, we train both FUGW and MSM with lower-dimensional versions of the
previous datasets. To do so, given a pair of subjects (s,t) to be aligned, we
fit a PCA on the left out subjects, project the data of subjects to be aligned on
these components, and keep the first 20 components only. For both models,
correlation gains remained unchanged.

More explicitly, we test the 4 following training sets:

+ ALL-MATH: all contrast maps of IBC except contrasts from the Mathlang
protocol (369 features per subject)

« ALL-MATH PCA: principal components fitted on ALL-MATH for all IBC sub-
jects except s and ¢ (20 features)

+ ARCHI: all contrast maps from the Archi protocol of IBC (57 features)

+ ARCHI PCA: principal components fitted on ARCHI for all subjects except
s and ¢t (20 features)

Training set | FUGW  MSM
ALL-MATH 0.12 0.01
ALL-MATH PCA | 0.1 0.02
ARCHI 0.10 0.02
ARCHI PCA 0.1 0.01

Table 9.1: Gain in Pearson correlation of aligned contrast maps from the Math-
lang protocol compared to the baseline The original correlation (baseline) is
0.258

Using naturalistic stimuli to derive alignments with FUGW This experiment'’s
setup is similar to that of Experiment 1: Using training features to first derive OT
couplings, we then use the latter to assess correlation gains between subjects’s
feature maps before and after subjects have been aligned. Naturalistic stimuli
datasets include Raiders of the Lost Ark, short video clips and auditory stimuli
from The Little Prince respectively adapted from Bhattasali et al., 2019; Haxby et
al., 2011; Nishimoto et al., 2011. Here, for each naturalistic dataset, we leverage
work from Richard, Gresele, Hyvarinen et al., 2020 to derive the first m = 20
components of a fitted shared response model. Share response models seek
to find a common dictionary K of activation patterns across subjects s € S
and to derive a mapping W* with m orthogonal components that projects each
individual's data onto this common space:

arg min ||F* - WK||?
rgmin )| |

sSES
st (W)T.we=I,,
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These W* are then used for alignment.

Results are reported in Table 9.2 and show that using datasets which are 20
times less time-consuming than that of Experiment 1 can already yield signifi-
cant correlation gain on unseen task data.

Table 9.2: Acquisition time (AT) and correlation gain on the left hemisphere
(CG) per training set (baseline correlation = 0.258)

Training set | Type AT (min)  CG (Pearson)
All-MATH tasks 2000 0.118
Clips movie 100 0.017
Raiders movie 115 0.046
The Little Prince | movie 100 0.009

Transporting myelin maps shows mild effect Leveraging transport plans
computed using fMRI data from Experiment 1, we transport myelin maps — ap-
proximated through T1/ T2 ratio maps — from the source subject to the target
subject. We compare the correlation of the unaligned source and target maps
with the correlation of the transported and target maps. As illustrated in Figure
9.6, correlation gain is barely significant.
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Figure 9.6: Comparison of gains in correlation after inter-subject alignment
for myelin maps For each pair of source and target subjects of the IBC dataset,
we compute the average Pearson correlation between myelin maps — approxi-
mated using T1/T2 ratios — for the left (left panel) and right (right panel) hemi-
spheres. Correlation gains are not significant.

Before computing correlation between aforementioned maps, we discarded
vertices located in the cortical wall, as they mostly contain spurious values.
To do so, we they their value to the median of values of vertices which do not
belong to the cortical wall. In order to determine which vertices belong to the
wall, we used the Destrieux atlas Destrieux et al., 2010.

Eventually, we advocate that little gain can be obtained when better aligning
myelin maps, since they are already very stable across human subjects as
shown in Figure 9.7.

Dataset description

The presented experiments rely on the Individual Brain Charting (IBC) dataset.
A detailed description of the preprocessing pipeline of the IBC data is provided
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Figure 9.7: Myelin maps (approximated using T1/T2 ratio maps) are very con-
sistent across IBC participants

in Pinho et al., 2021. Raw data were preprocessed using PyPreprocess °.

All fMRIimages, i.e. GE-EPI volumes, were collected twice with reversed phase-
encoding directions, resulting in pairs of images with distortions going in oppo-
site directions. Susceptibility-induced off-resonance field was estimated from
the two Spin-Echo EPI volumes in reversed phase-encoding directions. The im-
ages were corrected based on the estimated deformation model. Details about
the method can be found in Andersson et al., 2003.

Further, the GE-EPI volumes were aligned to each other within every participant.
A rigid-body transformation was employed, in which the average volume of all
images was used as reference Friston et al., 1995. The anatomical and motion-
corrected fMRI images were given as input to FreeSurfer v6.0.0, in order to ex-
tract meshes of the tissue interfaces and the sampling of functional activation
on these meshes, as described in Van Essen et al., 2012. The corresponding
maps were then resampled to the fsaverage7 (high resolution, 163k nodes per
hemisphere) and fsaverage5 (low resolution, 10k nodes per hemisphere) tem-
plates of FreeSurfer Fischl et al., 1999.

FMRI data were analyzed using the General Linear Model. Regressors of the
model were designed to capture variations in BOLD response strictly follow-
ing stimulus timing specifications. They were estimated through the convo-
lution of boxcar functions, that represent per-condition stimulus occurrences,
with the canonical Hemodynamic Response Function (HRF). To build such mod-
els, paradigm descriptors grouped in triplets (i.e. onset time, duration and trial
type) according to BIDS Specification were determined from the log files’ reg-
istries generated by the stimulus-delivery software. To account for small fluc-
tuations in the latency of the HRF peak response, additional regressors were
computed based on the convolution of the same task-conditions profile with the
time derivative of the HRF. Nuisance regressors were also added to the design
matrix in order to minimize the final residual error. To remove signal variance

2https://github.com/neurospin/pypreprocess

sub-08
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associated with spurious effects arising from movements, six temporal regres-
sors were defined for the motion parameters. Further, the first five principal
components of the signal, extracted from voxels showing the 5% highest vari-
ance, were also regressed to capture physiological noise Behzadi et al., 2007.

In addition, a discrete-cosine basis was included for high-pass filtering (cut-
off=13zHz). Model specification was implemented using Nilearn v0.8.1 Abra-
ham et al., 2014, a Python library for statistical learning on neuroimaging data
(https://nilearn.github.io).

Intables 9.3,9.4 and 9.5, we give the explicit list of contrast and condition maps
used for training, validation and testing, respectively.
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Table 9.3: Training data This dataset comprises a wide variety of tasks: motor,
visual, auditory, relational, linguistic, etc.

Training data

Task Condition / Contrast

ArchiEmotional expression_control
ArchiEmotional expression_gender
ArchiEmotional expression_gender-control
ArchiEmotional expression_intention
ArchiEmotional expression_intention-control
ArchiEmotional expression_intention-gender
ArchiEmotional face_control

ArchiEmotional face_gender

ArchiEmotional face_gender-control
ArchiEmotional face_trusty

ArchiEmotional face_trusty-control
ArchiEmotional face_trusty-gender
ArchiEmotional trusty_and_intention-control
ArchiEmotional trusty_and_intention-gender

ArchiSocial false_belief-mechanistic
ArchiSocial false_belief-mechanistic_audio
ArchiSocial false_belief-mechanistic_video
ArchiSocial false_belief_audio

ArchiSocial false_belief_video

ArchiSocial mechanistic_audio

ArchiSocial mechanistic_video

ArchiSocial non_speech_sound
ArchiSocial speech-non_speech
ArchiSocial speech_sound

ArchiSocial triangle_mental

ArchiSocial triangle_mental-random
ArchiSocial triangle_random

ArchiSpatial grasp-orientation

ArchiSpatial hand-side

ArchiSpatial object_grasp

ArchiSpatial object_orientation

ArchiSpatial rotation_hand

ArchiSpatial rotation_side

ArchiSpatial saccades

ArchiStandard  audio_computation
ArchiStandard  audio_left_button_press
ArchiStandard  audio_right_button_press
ArchiStandard  audio_sentence
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Training data (next)

Task Condition / Contrast
ArchiStandard cognitive-motor
ArchiStandard computation
ArchiStandard computation-sentences
ArchiStandard horizontal-vertical
ArchiStandard horizontal_checkerboard
ArchiStandard left-right_button_press
ArchiStandard listening-reading
ArchiStandard motor-cognitive
ArchiStandard reading-checkerboard
ArchiStandard reading-listening
ArchiStandard right-left_button_press
ArchiStandard sentences
ArchiStandard sentences-computation
ArchiStandard vertical-horizontal
ArchiStandard vertical_checkerboard
ArchiStandard video_computation
ArchiStandard video_left_button_press
ArchiStandard video_right_button_press
ArchiStandard video_sentence
Attention double_congruent
Attention double_cue

Attention double_incongruent
Attention double_incongruent-double_congruent
Attention incongruent-congruent
Attention spatial_congruent
Attention spatial_cue

Attention spatial_cue-double_cue
Attention spatial_incongruent
Attention spatial_incongruent-spatial_congruent
Audi alphabet

Audi alphabet-silence

Audi animals

Audi animals-silence

Audi cough

Audi cough-silence

Audi environment

Audi environment-silence
Audi human

Audi human-silence

Audi laugh
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Training data (next)

Task Condition / Contrast
Audi laugh-silence
Audi music

Audi music-silence
Audi reverse

Audi reverse-silence
Audi silence

Audi speech

Audi speech-silence
Audi suomi

Audi suomi-silence
Audi tear

Audi tear-silence
Audi yawn

Audi yawn-silence
Audio animal

Audio animal-others
Audio animal-silence
Audio mean-silence
Audio music

Audio music-others
Audio music-silence
Audio nature

Audio nature-others
Audio nature-silence
Audio speech

Audio speech-others
Audio speech-silence
Audio tool

Audio tool-others
Audio tool-silence
Audio voice

Audio voice-others
Audio voice-silence
Bang no_talk

Bang talk

Bang talk-no_talk
ColumbiaCards gain
ColumbiaCards loss

ColumbiaCards
Discount

num_loss_cards
amount



Chapter 9  Supplementary material for Chapter 3 (FUGW) 164

Training data (next)

Task Condition / Contrast

Discount delay

DotPatterns correct_cue-incorrect_cue

DotPatterns correct_cue_correct_probe

DotPatterns correct_cue_incorrect_probe

DotPatterns correct_cue_incorrect_probe-correct_cue_correct_probe
DotPatterns correct_cue_incorrect_probe-incorrect_cue_correct_probe
DotPatterns cue

DotPatterns incorrect_cue_correct_probe

DotPatterns incorrect_cue_incorrect_probe

DotPatterns incorrect_cue_incorrect_probe-correct_cue_incorrect_probe
DotPatterns incorrect_cue_incorrect_probe-incorrect_cue_correct_probe
DotPatterns incorrect_probe-correct_probe

EmotionalPain
EmotionalPain
EmotionalPain

emotional-physical_pain
emotional_pain
physical_pain

Enumeration
Enumeration
Enumeration

enumeration_constant
enumeration_linear
enumeration_quadratic

LecT pseudoword

LecT pseudoword-random_string
Lecl random_string

Lec1 word

LecT word-pseudoword
LecT word-random_string
Lec2 attend

Lec2 attend-unattend

Lec2 unattend

MCSE high-low_salience
MCSE high_salience_left
MCSE high_salience_right
MCSE low+high_salience
MCSE low-high_salience
MCSE low_salience_left
MCSE low_salience_right
MCSE salience_left-right
MCSE salience_right-left
MTTNS northside-southside_event
MTTNS sn_after-before_event
MTTNS sn_after_event
MTTNS sn_all_event_response
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Training data (next)

Task Condition / Contrast

MTTNS  sn_all_space-time_cue
MTTNS sn_all_space_cue
MTTNS sn_all_time-space_cue
MTTNS  sn_all_time_cue

MTTNS sn_average_event
MTTNS sn_average_reference
MTTNS  sn_before-after_event
MTTNS  sn_before_event
MTTNS  sn_northside_event
MTTNS sn_southside_event
MTTNS sn_space-time_event
MTTNS sn_space_event

MTTNS  sn_time-space_event
MTTNS  sn_time_event

MTTNS  southside-northside_event
MTTWE eastside-westside_event
MTTWE we_after-before_event
MTTWE we_after_event

MTTWE we_all_event_response
MTTWE we_all_space-time_cue
MTTWE we_all_space_cue
MTTWE we_all_time-space_cue
MTTWE we_all_time_cue
MTTWE we_average_event
MTTWE we_average_reference
MTTWE we_before-after_event
MTTWE we_before_event
MTTWE we_eastside_event
MTTWE we_space-time_event
MTTWE we_space_event
MTTWE we_time-space_event
MTTWE we_time_event

MTTWE we_westside_event
MTTWE westside-eastside_event
MVEB 2_letters_different
MVEB 2_letters_different-same
MVEB 2_letters_same

MVEB 4_|etters_different
MVEB 4_|etters_different-same
MVEB 4_letters_same
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Training data (next)

Task Condition / Contrast
MVEB 6_letters_different
MVEB 6_letters_different-2_letters_different
MVEB 6_letters_different-same
MVEB 6_letters_same

MVEB letter_occurrence_response
MVIS 2_dots-2_dots_control
MVIS 4_dots-4_dots_control
MVIS 6_dots-2_dots

MVIS 6_dots-6_dots_control
MVIS dot_displacement_response
MVIS dots-control

Moto finger_left-fixation

Moto finger_right-fixation
Moto foot_left-fixation

Moto foot_right-fixation

Moto hand_left-fixation

Moto hand_right-fixation

Moto instructions

Moto saccade-fixation

Moto tongue-fixation
PainMovie movie_mental
PainMovie movie_mental-pain
PainMovie movie_pain

Preference face-others

Preference food-others

Preference house-others
Preference painting-others
Preference preference_constant
Preference preference_linear
Preference preference_quadratic
PreferenceFaces face_constant
PreferenceFaces face_linear
PreferenceFaces face_quadratic
PreferenceFood food_constant
PreferenceFood food_linear
PreferenceFood food_quadratic

PreferenceHouses house_constant
PreferenceHouses house_linear
PreferenceHouses house_quadratic
PreferencePaintings painting_constant
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Training data (next)

Task

Condition / Contrast

PreferencePaintings
PreferencePaintings
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
RSVPLanguage
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
SelectiveStopSignal
Self

Self

Self

Self

Self

Self

Self

Self

Self

Self

Self

painting_linear
painting_quadratic
complex
complex-consonant_string
complex-simple
consonant_string
jabberwocky
jabberwocky-consonant_string
jabberwocky-pseudo
probe
pseudo-consonant_string
pseudoword_list
sentence-consonant_string
sentence-jabberwocky
sentence-pseudo
sentence-word

simple
simple-consonant_string
word-consonant_string
word-pseudo

word_list

go_critical

go_critical-stop
go_noncritical
go_noncritical-ignore
ignore

ignore-stop

stop

stop-ignore
correct_rejection
encode_other

encode_self
encode_self-other
false_alarm

instructions
recognition_hit
recognition_hit-correct_rejection
recognition_other_hit
recognition_self-other
recognition_self_hit
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Training data (next)

Task Condition / Contrast
StopSignal go

StopSignal stop

StopSignal stop-go

Stroop congruent

Stroop incongruent

Stroop incongruent-congruent
TheoryOfMind belief

TheoryOfMind belief-photo
TheoryOfMind photo

TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
TwoByTwo
VSTM
VSTM
VSTM

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu

Visu
WardAndAllport
WardAndAllport

cue_switch-stay
cue_taskstay_cuestay
cue_taskstay_cueswitch
cue_taskswitch_cuestay
cue_taskswitch_cueswitch
stim_taskstay_cuestay
stim_taskstay_cueswitch
stim_taskswitch_cuestay
stim_taskswitch_cueswitch
task_switch-stay
vstm_constant
vstm_linear
vstm_quadratic

animal

animal-scrambled
characters
characters-scrambled
face

face-scrambled

house

house-scrambled
pseudoword
pseudoword-scrambled
scene

scene-scrambled
scrambled

target_fruit

tool

tool-scrambled
ambiguous-unambiguous
intermediate-direct
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Training data (next)

Task Condition / Contrast

WardAndAllport move_ambiguous_direct
WardAndAllport move_ambiguous_intermediate
WardAndAllport move_unambiguous_direct
WardAndAllport move_unambiguous_intermediate
WardAndAllport  planning_ambiguous_direct
WardAndAllport  planning_ambiguous_intermediate
WardAndAllport  planning_unambiguous_direct
WardAndAllport  planning_unambiguous_intermediate
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Table 9.4: Validation data

Validation data

Task Condition / Contrast
HcpEmotion face
HcpEmotion face-shape
HcpEmotion shape
HcpEmotion  shape-face
HcpGambling  punishment
HcpGambling  punishment-reward
HcpGambling  reward
HcpGambling  reward-punishment
HcpLanguage math
HcpLanguage math-story
HcplLanguage story
HcpLanguage story-math
HcpMotor cue

HcpMotor left_foot
HcpMotor left_foot-avg
HcpMotor left_hand
HcpMotor left_hand-avg
HcpMotor right_foot
HcpMotor right_foot-avg
HcpMotor right_hand
HcpMotor right_hand-avg
HcpMotor tongue
HcpMotor tongue-avg
HcpRelational match
HcpRelational relational
HcpRelational relational-match
HcpSocial mental
HcpSocial mental-random
HcpSocial random
HcpWm Oback-2back
HcpWm Oback_body
HcpWm Oback_face
HcpWm Oback_place
HcpWm Oback_tools
HcpWm 2back-Oback
HepWm 2back_body
HcpWm 2back_face
HcpWm 2back_place
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Validation data (next)

Task Condition / Contrast
HcpWm  2back_tools
HcpWm  body-avg

HcpWm  face-avg

HcpWm  place-avg

HcpWm  tools-avg
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Table 9.5: Test data

Test data
Task Condition / Contrast
MathLanguage arithmetic_fact-othermath
MathLanguage arithmetic_fact_auditory
MathLanguage arithmetic_fact_visual
MathLanguage arithmetic_principle-othermath
MathLanguage arithmetic_principle_auditory
MathLanguage arithmetic_principle_visual
MathLanguage auditory-visual
MathLanguage colorlessg-wordlist
MathLanguage colorlessg_auditory
MathLanguage colorlessg_visual
MathLanguage context-general
MathLanguage context-theory_of_mind
MathLanguage context_auditory
MathLanguage context_visual
MathLanguage general-colorlessg
MathLanguage general_auditory
MathLanguage general_visual
MathLanguage geometry-othermath
MathLanguage geometry_fact_auditory
MathLanguage geometry_fact_visual
MathLanguage math-nonmath
MathLanguage nonmath-math
MathLanguage theory_of_mind-context
MathLanguage theory_of_mind-general
MathLanguage theory_of_mind_and_context-general
MathLanguage theory_of_mind_auditory
MathLanguage theory_of_mind_visual
MathLanguage visual-auditory
MathLanguage wordlist_auditory

MathLanguage

wordlist_visual
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10.1

Chapter 10

Supplementary material for
Chapter 4 (FUGW extensions)

Optimizing convergence speed

Figures 10.1 and 10.2 show the convergence speed of the three solvers for the
FUGW problem when fitting using 100 and 220 IBC contrast maps of the Archi
and HCP protocols respectively.
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Sinkhorn solver (nits_uot=50)

Sinkhorn solver (nits_uot=100)
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Sinkhorn solver (nits_uot=200)
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Figure 10.1: Convergence speed comparison of three solvers for the FUGW
problem when fitting using 100 IBC contrast maps of the Archi and HCP pro-
tocols. lterations of the MM and IBPP algorithms (second and third rows re-
spectively) are faster than those of the Sinkhorn algorithm (first row). However,
their convergence is slower. With our data of interest, we see that 100 itera-
tions of Sinkhorn's algorithm ran 5 to 6 times (one time for each BCD iteration)
are enough to reach convergence in about 20 seconds on a single Tesla V100-

DGXS-32GB.
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Figure 10.2: Convergence speed comparison of three solvers for the FUGW
problem when fitting using 220 IBC contrast maps of the Archi, HCP, RSV-
PLanguage, Preference, MathLanguage, FaceBody and Emotion protocols. It-
erations of the MM and IBPP algorithms (second and third rows respectively)
are faster than those of the Sinkhorn algorithm (first row). However, their con-
vergence is slower. With our data of interest, we see that 100 iterations of
Sinkhorn’s algorithm ran 5 to 6 times (one time for each BCD iteration) are
enough to reach convergence in about 20 seconds on a single Tesla V100-
DGXS-32GB.
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11.1 Data pre-processing

We strive to minimally preprocess acquired BOLD signal. To this end, we de-
trend acquired BOLD signal (i.e. we remove cosine drifts) and finally standard-
ise voxels’ timecourses for each run, as shown in Figure 11.1.

Moreover, when decoding the latent representation of a given image, we use
brain volumes which have been acquired after the image’s onset. Figure 11.2 il-
lustrates this idea, and introduces the concepts of window size (i.e. the number
of brain volumes we use) and /ag (i.e. the time difference between the onset
of the image to be decoded and the first brain volume used to decode it). Val-
ues for both of these hyper-parameters were obtained through a 5-fold cross-
validated grid search over samples of the training set. We report these results
in Figure 11.3.
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Figure 11.1: Pre-processing of the Wen 2017 dataset For each participant and
each run, in each vertex, we regress out parts of the signal which can be linearly
explained by the design matrix represented on the left, which models cosine
drifts of the BOLD signal. The two graphs to the right show time-courses in 5
vertices across 2 different runs before (left) and after (right) they have been
pre-processed.

lag window size

prediction

Figure 11.2: Lag and window size In order to decode a movie frame which was
seen at time ¢, one can use brain volumes which were acquired further in time.
This delay is referred to as the lag. Moreover, one can use several brain volumes
to decode a given movie frame. The number of brain volumes used is called the
window size. Images featuring human faces were blurred.
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Figure 11.3: Relative median rank | of predicted latents averaged across par-
ticipants for various time lags and window sizes
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11.2 Retrieving images using predicted latent representa-
tions

Predicted latent representations can be compared to that of images in a re-
trieval set. In Figure 11.4, for each image shown to the participant during the
test phase, we print the five images from the retrieval set whose latent repre-
sentation is the closest to predicted latents. We see that semantics are often
preserved.

GT Ret. 1 Ret.2 Ret. 3 Ret 4 Ret. 5 Ret. 1 Ret. 2 Ret. 3 Ret. 4 Ret. 5

Figure 11.4: Image retrievals using predicted latent representations of CLIP
257 x 768 latents

We use a model fitted on Subject 2 (52) from the Wen 2017 dataset and predict
the latent representation of unseen videos (test set). Ground truth (GT) images
featured within the first 5 retrieved (Ret.) images are indicated with a bold purple
border. In a given row, images which appear similar across columns are actually
different frames of the same video clip. Images featuring human faces were
blurred.
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11.3

out participant

Results for every combination of reference participant
and left-out participant

Figure 11.5 is a copy of Figure 6.3 from the main pages of this paper. It illus-
trates the main effects reported in our study, namely that (1) functional align-
ment yields better performance than anatomical alignment when transferring a
semantic decoder to left-out individuals, (2) it is possible to train such decoders
on multiple participants and (3) this last setup works best when participants are
aligned.

Figure 11.5 only shows these results when participant 2 of the Wen 2017 dataset
is used as the reference participant. Therefore, we add Figures 11.6 and 11.7,
which illustrate that all results hold regardless of what participant of the cohort
is used as reference or left-out participant.
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Figure 11.5: Effects of functional alignment on multi-subject and out-of-
subject setups using participant 2 as the reference participant We report rela-
tive median rank | in all setups described in section 6.2.3 for CLIP 257 x 768. In
all aligned cases, S1and S3 were aligned onto S2. In all out-of-subject cases, we
test ST and S3 onto a decoder trained on S2. In all multi-subject cases, the de-
coder was trained on all data from all 3 participants. A. In this panel, all models
(alignment and decoding) were trained on all available training data. Results for
other latent types are available in Figure 11.8. B. In left-out S1and S3, decoding
performance is much better when using functional alignment to S2 (solid dark
purple) than when using anatomical alignment only (solid pale purple). Per-
formance increases slightly as the amount of data used to align participants
grows, but does not always reach levels that can be achieved with a single-
participant model fitted in left-out participants (solid pale gray dots) when a lot
of training data is available. Training a model on multiple participants yields
good performance in all 3 participants (dashed pale teal) which can be further
improved by using functional alignment (dashed dark teal). Results for other
latent types are available in Figure 11.9.
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Figure 11.6: Effects of functional alignment on multi-subject and out-of-
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Figure 11.7: Effects of functional alignment on multi-subject and out-of-
subject setups using participant 3 as the reference participant
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11.4 Results for every type of latent representation

In this section, we extend the claims made in Figures 6.3.A, 6.3.B and 6.5 by
showing that these results hold for other latent representations, namely VD-
VAE, CLIP CLS and AutoKL. Figures 11.8, 11.9 and 11.10 extend Figures 6.3.A,
6.3.B and 6.5 respectively, showing that observed effects are present regardless
of the chosen latent representation. All of these figures were obtained using the
Wen 2017 dataset.

Clip 257 x 768 VD-VAE Clip CLS AutoKL
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Figure 11.8: Effects of alignment For any type of latent representation, out-
of-subject decoding performance, measured through relative median rank |,
greatly improves when participants are functionally aligned. Training decoders
on multiple participants also works better when participants are aligned. These
results were averaged across 50 retrieval sets ; all these metrics are reported
with a standard error of the mean (SEM) smaller than 0.01.
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Figure 11.9: Performance increases slightly with more alignment data For
any type of latent representation, out-of-subject decoding performance greatly
increases with functional alignment even in low data regimes. In high data
regimes, out-of-subject decoding does not work as well as fitting single-subject

or multi-subject models.
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Figure 11.10: Scaling studies for all latents For any type of latent representa-
tion, decoding performance increases linearly with exponentially more data. It
also seems that, when acquiring data at 3T or more, not repeating stimuli yields
the best results. At test time, although repeating stimuli allows to get better
metrics, retrieval performance with only one repetition is already reasonable in
2 out of 3 participants of the Wen 2017 dataset.
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11.5

Decoding results for all setups

On top of experiments reported in the main pages of this paper, we have tested
a lot of different training and tests sets. In this section, we report the Rela-
tive Median Rank | for all 97 training sets and all 63 test sets, and CLIP la-
tent representations. Training sets include all possible single-subject, multi-
subject unaligned and multi-subject aligned cases. Test sets include all pos-
sible with-subject, left-out unaligned and left-out aligned cases. Every time, all
available training sessions are used for training the decoder. However, we vary
the amount of data used to train the alignments, for both training and test sets.

We report detailed results for CLIP 257 x 768 and CLIP CLS in Figures 11.11 and
11.12 respectively.

In particular, these figures report combinations our setups of interest which
were not mentioned in the main text. We find of particular interest the multi-
subject out-of-subject setup, in which the decoder has been trained on two
(un)aligned participants and tested on a third (un)aligned one.
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Figure 11.11: Relative median rank | for CLIP 257 x 768 latents in single- and
multi-subject training sets, with and without alignment, tested on within- and
across-participants setups with and without alignment. These results were av-
eraged across 50 retrieval sets ; all these metrics are reported with a standard
error of the mean (SEM) smaller than 0.01.
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Figure 11.12: Relative median rank | for CLIP CLS latents in single- and multi-
subject training sets, with and without alignment, tested on within- and across-
participants setups with and without alignment. These results were averaged
across 50 retrieval sets ; all these metrics are reported with a standard error of
the mean (SEM) smaller than 0.01.
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11.6 Replication on the Natural Scenes Dataset

We replicate our main experiment using data from the Natural Scenes Dataset
[Allen et al., 2022]. This dataset comprises 8 participants who each see 10 000
images 3 times, thus leading to a total of 30 000 trials per participant. For each
participant, this data is acquired in 40 sessions of 60 minutes each. For each
participant, there is a total of 1 000 images which are shared with other individ-
uals - i.e. other individuals will see them too - and 9 000 which are exclusive -
i.e. other individuals will not see them. We sub-selected all participants who
had completed all 30 000 trials, namely participants 1, 2, 5, and 7. For each se-
lected participant, we split their 30 000 trials in two sets: all exclusive images are
grouped in the decoding set and all shared images are grouped in the alignment
set. We further split the decoding set into disjoint sets of images for training and
testing individual decoders, whose performance is reported in Table 11.1. Align-
ments sets are used to compute functional alignments between individuals.
Besides, we used pre-computed beta coefficients computed with GLM denoise
on fsaverage7 [Fischl, 2012] and openly available online. We down-sampled this
data to fsaverage5 - which simply amounts to keeping only the first 10 242 array
elements in each hemisphere.

Eventually, we show that decoders tested on left-out individuals work consis-
tently and significantly better when left-out participants are functionally aligned
rather than simply anatomically aligned to the reference participant, as reported

in Table 11.2.
CLIP 257 x 768 VD-VAE CLIP CLS AutoKL
MR Acc | MR Acc | MR Acc | MR Acc
S11 3.6 266 | 230 46|46 191|305 18
S2 | 6.0 176 | 221 44|69 138|336 15
S5 | 4.6 199|260 37|43 19.7 | 31.5 25
S7 | 4.0 244 | 234 54|55 185|245 43

Table 11.1: Within-subject metrics for all NSD participants and all latent types
on the test set Reported metrics are relative median rank | (MR) of retrieval
on a set of 500 samples, top-5 accuracy % 1 (Acc) of retrieval on a set of 500
samples. Chance level is at 50.0 and 1.0 for these metrics respectively. These
results were averaged across 50 retrieval sets, hence results are reported with
a standard error of the mean (SEM) smaller than 0.01.
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Reference  Left-out CLIP 257 x 768 VD-VAE CLIP CLS AutoKL

A A+F A A+F A A+F A A+F

S2 | 20.9 10.7 | 352 245|283 134 | 425 371

S1 S5 | 322 13.6 | 431 32.0 | 33.4 125 | 439 37.7
S7 | 33.5 14.7 | 40.8 30.7 | 361 17.1 | 450 37.0

S1| 18.3 10.4 | 370 30.4 | 244 14.4 | 359 371

S2 S5 | 29.3 12.0 | 40.3 34.1 | 30.8 11.2 | 424 39.6
S7 | 279 14.6 | 40.2 328 | 321 17.9 | 41.8 38.9

S1]29.2 13.0 | 434 34.4 | 338 14.4 | 37.8 33.8

S5 S2 | 26.2 9.8 | 401 30.1| 314 11.2 | 36.0 36.2
S7 | 29.8 141 | 417 320 | 344 17.3 | 40.0 34.9

S1| 277 7.7 | 431 301|323 11.5| 40.6 26.5

S7 S2 | 234 8.6 | 389 26.4 | 286 13.2| 37.8 29.1
S5 | 275 88| 416 312|304 9.8| 434 30.9

Table 11.2: Across-subject metrics for all NSD participants and all latent types
on the test set We report the decoding performance of decoders trained on a
reference participant and tested on a left-out participant who was anatomically
aligned (A) or functionally aligned (A+F). The reported metric is the relative me-
dian rank | (MR) of retrieval on a set of 500 samples. These results were aver-
aged across 50 retrieval sets, hence results are reported with a standard error
of the mean (SEM) smaller than 0.01. One sees that functionally aligned data
is always better decoded than anatomically aligned data. In particular, when S7
as the reference subject, functional alignment helps divide the median rank by

3 for CLIP latents.
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Supplementary material for
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12.1 Additional examples of predictions

We report random examples of predictions for both human and non-human sub-
jects in Figures 12.1 and 12.2.

In Figure 12.1, the brain decoder was trained on all IBC participants. All par-
ticipants were aligned on a reference participant using Clips-Train data. The
decoder was trained on the Clips-Train data of all aligned participants. It was
tested on the Clips-Valid data of the reference participant, here sub-04.

In Figure 12.1, the brain decoder was trained on all IBC participants. All partici-
pants were aligned on a reference participant using Clips-Train, Clips-Valid, and
the first two segments of Monkey Kingdom data. The decoder was trained on
the Clips-Train, Clips-Valid, and the first two segments of Monkey Kingdom data
for all aligned participants. It was tested on the last two segments of Monkey
Kingdom in non-human primates, here Luce. Luce was previously aligned to
the reference participant, here sub-04, using the first two segments of Monkey
Kingdom data.
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Caption generated

from ground truth latents

A sea slug with a
long beak and a long
beak sitting in the
water.

A red and white fire
hydrant on a snowy
surface.

A clock that is on
the side of a
building

Two young boys in a
field with balloons.

A man is laying on a
bed with a tie.

A beach with a large
blue surfboard on
it.

A blurry image of a
person in the dark.

A polar bear is
sitting in the
middie of a body of
water.

A man with a ring on
his finger in a
black and white

photo.

A zebra is standing
on a rail in a black
and white photo.

A dog looking at a
woman in a kitchen.

A group of fish
swimming in a body
of water.

A close up of a
glass of wine

A dog is looking at
a figurine of a
person,
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Caption generated
from predicted latents

A large group of
people walking
around a parking
lot.

A small island with
a few animals on it.

A large, dark,
yellow, and white
clock tower.

A man is walking on
a cement walkway.

A man with a pair of
fake eyes on his
head.

A large body of
water with a lot of
trees.

A man is standing on
a ledge with a toy.

A large body of
water with a lot of
trees.

A man in a white
shirt and a black
and white striped
tie,

A group of people
walking around a
pile of rocks.

A young man in a
black shirt and tie.

A large white bird
sitting in the
middle of a field.

A view of a city
with a lot of trees

A man wearing a
white dress holding
a small animal,

Figure 12.1: Random examples of predictions for a brain decoder trained and
tested on human participants (Left) The ground truth image and caption gen-
erated using the ground truth latents. (Right) The first five retrieved images and
the caption generated using the predicted latents.
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Caption generated

from ground truth latents

A flock of birds
flying over a
forest.

A large stone
structure with a
clock on it.

A small animal
sleeping in a tree
filled with leaves.

A large tree with a
large sun on top.

A baby monkey is
wrapped in a tree
branch.

A couple of animals
that are standing in
the grass.

A group of monkeys
and a baby monkey in
a forest.

A mother and baby
monkey are wrapped
in a tree.

A group of monkeys
and a baby monkey
hanging out
together.

Two monkeys are
touching each other
on a ledge.

A monkey with a
blonde hair on his
head.

A sky filled with
clouds and a
mountain.

A black bear
climbing a tree with
a branch.

A group of three
monkeys walking
through a forest.

A small brown animal
with a green head.
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Caption generated

from predicted latents

A bunch of photos of
a park with trees
and bushes.

A man with a large
face sitting on a
stage.

A small bird is
standing in the
dark.

A man walking down a
walkway next to a
river.

A black and white
photo of a plant in
the distance.

Two colorful kites
flying in the air.

A man is bending
over to grab a
dalmatian.

A blurry photograph
of a tree in the
dark.

A view of a forest
with a lot of trees.

A man is on a table
with a bunch of

people.

A man climbing a
ladder to a large
blue and white
plane.

A group of animals
standing on top of a
lush green field.

A view of a bunch of
trees and a
building.

A man sitting on a
chair with a large
brown elephant.

A blurry photo of a
tree in the dark.

Figure 12.2: Examples for predictions for a brain decoder trained on human
participants and tested on a non-human primate (Left) The ground truth im-
age and caption generated using the ground truth latents. (Right) The first five

retrieved images and the caption generated using the predicted latents.
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In Figure 12.3, we recall the decoding experiment for the Monkey Kingdom
dataset. Namely, we train eight brain decoders. Each decoder is trained on
all IBC subjects. All participants are aligned onto a reference participant us-
ing the Clips-Train, Clips-Valid, and the first two segments of Monkey Kingdom
data. The same stimuli (Clips-Train, Clips-Valid, and the first two segments of
Monkey Kingdom data) are used to train the decoder. We then test each de-
coder on the fourth and fifth segments of Monkey Kingdom in a left-out aligned
macaque. Macaques were aligned to humans using the first two segments of
Monkey Kingdom. We leave the third segment out to ensure no continuity be-
tween the third and fourth segments.

In Figure 12.4, we present the results for human participants in the same setup,
except that Clips-Train was used to compute the functional alignments used at
testtime. We see that performance improves, suggesting that the Monkey King-
dom data does not provide enough information to compute functional align-
ments as accurate as those obtained with the Clips-Train data.
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Figure 12.3: Brain decoders trained in human participants transfer to non-
human participants A. Median relative rank for all 8 participants of IBC and
2 macaques (x-axis) when tested on a brain decoder trained on all IBC partici-
pants aligned onto a reference individual (y-axis). B. Distribution of the relative
rank of the ground truth image in a human participant. C. Distribution of the rel-
ative rank of the ground truth image in a non-human primate. D. Distribution of
the relative rank of the ground truth image when predictions for the non-human
primate are randomly shuffled.
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Figure 12.4: Control experiment for the Monkey Kingdom dataset Median rela-
tive rank for all 8 participants of the IBC dataset tested on 8 brain decoders. The
difference with results reported in Figure 12.3 is that the functional alignments
used at test time were computed using the Clips-Train data instead of the first
two segments of Monkey Kingdom.
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