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INTRODUCTION

Context

The perspective of exponentially faster computers, new ways to transmit and store infor-

mation, and vastly improved sensing capabilities, led quantum science to become an ex-

tremely active area of research. These promises rely on physical realizations of large and

well-controlled quantum systems. Along this front, the quantum science community has

provided many platforms, each with its particular strength. For example, photons have

already made quantum cryptography possible [1, 2, 3], superconducting qubits [4, 5] and

trapped atoms/ions [6, 7, 8, 9, 10] are commercially pursued for universal digital comput-

ing, NV centers promise sensing with unprecedented spatial resolution [11, 12, 13]. With

quantum gases of ultracold atoms, experiments have had tremendous success in tackling

quantum many-body problems [14], which are notoriously complex owing to the large

number of interacting particles, strong interactions, disorder, or nonlinear dynamics.

The contribution of quantum gas experiments in this quest is their ability to place a

large number of particles in a well-characterized, tunable and isolated environment. For

example, the energy landscape where particles evolve can be programmed at will to be uni-

form, harmonic, periodic, disordered, or even tightly-confining in one or more directions

to simulate a 1D or 2D environment [15]. Inter-particle interactions can be short range or

long-range, repulsive or attractive, vanishingly small or as large as allowed by quantum

mechanics [16]. The ensembles can be prepared in thermal equilibrium, and dynamically

driven Hamiltonians can be explored. The quantum gas toolbox goes beyond these exam-

ples and offers many capabilities to create quantum systems with incremental complexity,

which was underlined by major breakthroughs over the last two decades in our understand-

ing of quantum matter.

Among the various many-body quantum problems within reach of atom-based quan-

tum simulators, strongly-interacting Fermi systems play a special role. Strongly-correlated

fermions are indeed ubiquitous in nature, from the quark-gluon plasma of the early universe

to neutron stars, and also lie at the heart of many modern materials such as high-temperature

superconductors [17] and giant magneto-resistance devices [18]. The understanding of

strongly-correlated fermions thus represents a pressing issue covering a wide fundamen-

tal and technological scope. For these systems, the large number of interacting particles

involved indeed constitutes a serious challenge. But with the advent of ultracold atom plat-
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forms – and concomitantly, the ability to place fermionic atoms in a well-characterized

environmen, a whole new set of opportunities has opened to tackle this endeavor, as micro-

scopic and macroscopic parameters can be tuned dynamically [14]. Due to this high level

of control over the trapped fermions these quantum gas experiments are often referred to

as quantum simulators and provide a unique approach to investigate correlated fermionic

matter [19].

The BEC-BCS crossover

In recent decades there has seen a surge of experimental and theoretical efforts that aimed

at probing the states of matter attainable in Fermi gases at ultralow temperatures. More

precisely the system of interest here is a two-component Fermi gas, where the interaction

between the two spin components is characterized by a single quantity — the scattering

length a. Despite being a very simple description, this picture reflects the cold Fermi

gas system quite accurately. Thanks to the low kinetic energy of these cold Fermi gases,

their de Broglie wavelengths are much larger than the range of the interpartical Van der

Walls interactions, which can be seen as short-range contact potentials. Therefore the cold

fermions’ collisional dynamics are not sensitive to the exact form of the interaction po-

tential. In other words the Fermi gases are said to be in the s-wave scattering regime.

As the interaction parameter 1{kFa is changed from ´8 to `8, this degenerate Fermi

system evolves smoothly from the Bardeen-Cooper-Schrieffer superfluid [20, 21] (BCS)

state to the molecular Bose-Einstein Condensate (BEC) state. The former consists of a

fraction of losely bound, attractive Cooper pairs existing on the surface of the Fermi sea.

The size of these Cooper pairs can be exponentially larger than the interparticle distance

k´1
F , and correspondingly the condensation temperature is reduced compared to the Fermi

temperature by this exponent expp´π{2kFaq. The molecular BEC is a condensate of the

diatomic molecules that in general behave like bosons. At the limit
1
kFa

Ñ 0, the inter-

action is as strong as allowed by quantum mechanics while the Fermi cloud bears many

universal properties [22, 23], in the sense that the only remaining relevant length scale is

k´1
F . In consequence the thermodynamics of this strongly-interacting system resembles a

non-interacting ideal Fermi gas. In particular, the ground state energy of a unitary gas is

proportional to the Fermi energy by a constant called the Bertsch factor at zero temperature

EUnitary “ ξEF . For finite temperature, this relation is only modified by a universal func-

tion f
´

T
TF

¯

. An implication of the universality of the unitary Fermi gas is that a cold cloud

in the lab can be used to understand systems at drastically different length or temperature

scales, such as neutron stars (figure 0.1).
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Figure 0.1: False color image of Pulsar PSR
B1509-58 [24]. The inner crust consists of
electrons, neutrons and remnant amount of
nuclei. The neutrons are essentially a unitary
Fermi gas with temperature on the order of
T “ 109 K and density n “ 1038 at/cm3. This
corresponds to T {TF „ 0.01 and is very sim-
ilar to our lab condition despite of the com-
pletely different environment, thanks to the
universal properties at unitarity.

Experimental tuning of the interactiong strength through Feshbach resonance [25, 26]

was first demonstrated using Boson gases [27, 28]. Following the achievement of degen-

erate Fermi gas firstly in 1999 [29], and soon in six other groups [30, 31, 32, 33, 34], Fes-

hbach resonances had been quickly explored in optically-confined two-component Fermi

mixtures [35, 36, 37, 38] in 2002, and thence became a powerful tool to study the BEC-BCS

crossover.

After the first observations of condensation on the BEC side [39, 40, 41] and on the BCS

side [42], more and more groups have dedicated their work to measuring the properties of

degenerate Fermi gas at or around the unitarity point. The research interests include ther-

modynamic measurements [43, 44], collective excitations [45, 46], RF spectroscopy [47],

optical molecular spectroscopy [48], and direct observation of superfluid vortices [49].

In recent years, more quantitative results have been obtained from trapped fermions

in inhomogeneous potentials, by precise measurements on the thermodynamic observables

within local density approximation [50, 51, 52]. Through these measurements, the ground

state equation of state has been determined in certain regions on the phase diagram (shown

by figure 0.2) for the two-component Fermi gas. Specifically, for a spin-balanced gas at

unitarity across the superfluid transition [50], and at the zero temperature limit throughout

the crossover for a wide range of spin population imbalance [53]. Up to now, correla-

tions in strongly interacting Fermi gases have not been systematically studied. Progress

has been revolving around the short-range limit of the density-density correlation, which

can be determined from the contact C [23, 54, 55]. The measuring techniques include RF

spectroscopy [56, 57, 58], Bragg spectroscopy [59, 60] and three-body losses [61]. How-

ever, with the advent of quantum gas microscopy, more direct detection of correlations has

become possible.
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Quantum gas microscopy

High-resolution fluorescence imaging on cold atoms was initially applied in optical lattices

to study the Mott insulator transition in Bose-Hubbard model [62, 63]. The deep lattices

pin the atoms in position during the long interrogation time required by the fluorescence

imaging. This technique can create images with a large signal-to-noise ratio, leading to a

very high fidelity in reconstructing the cloud distribution to single atom level. Quantum

gas microscopy immediately brought out enormous progress in many topics, including

quantum magnetism [64], correlation [65], transport [66, 67, 68], spin-interactions [69],

spin-entanglement [70, 71], and long-range interactions using Rydberg atoms [72, 73, 74].

Given the success of bosonic microscopes, many groups soon extended the tool to

fermions [75, 76, 77, 78, 79]. Abundant results have also been obtained on probing Fermi-

Hubbard systems, such as Mott insulator [80, 81], and long-range antiferromagnets [82,

83, 84]. However, quantum gas microscopes have been devoted only to the study of lattice

physics and spin chains so far, and we plan to apply it to probe the physics in continuous

systems.

Objective of our experiment

There have been extensive studies on the BEC-BCS crossover in the past decades, which

have pushed our understanding on strongly correlated Fermi gases. However, the nature of

the correlations and how they build up through the superfluid transition remain elusive.

When one considers the phase diagram of Fermi gases as depicted in figure 0.2, the vast

majority of the parameter space remains uncharted. Past experiments have been conducted

mostly in the deep superfluid regime, while the rich physics near the superfluid critical

temperature Tc remains relatively unprobed. With our new generation setup, we aim at

filling up measurements for phenomena happening near the superfluid transition, finding

experimental support with highly quantitative perspective to the debates on many-body

correlations. This will be done by incorporating cutting edge techniques such as quantum

gas microscopy and tailored optical potentials [85, 86, 87].

As introduced above, most experiments on Fermi gases until today work with inho-

mogeneous potentials, which has the advantage of encompassing a full range of thermo-

dynamic states over the size of the trap, that provides convenient thermometry. However,

this also poses problem when one wishes to access a particular observable under particu-

lar thermodynamic conditions, because any probe addressing the whole cloud will detect

responses that have been averaged and biased by the trap inhomogeneity. In our experi-
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Figure 0.2: Phase diagram of a two-component Fermi gas, characterized by three axes:
temperature as measured by T {TF , interaction strength as measured by kFa, and spin im-
balance. The EoS has been measured experimentally at unitarity for spin-balanced gas [50]
(blue solid line), and at low temperature limit [53] (blue-shaded plane). The large parts of
the diagram remains uncharted.

ment design, instead, a tailored box potential will be used to create a spatial boundary to

contain a homogeneous Fermi cloud inside. Combining with a microscope plus pinning

latticea to directly extract the density and spin correlations of the bulk gas cloud, our setup

will be a useful tool to study the phase diagram near superfluid transition and in various

interaction regimes. One interesting perspective is to look for the exotic FFLO phase [88,

89], which could only exist within a very narrow set of thermodynamic conditions near the

"Clogston-Chandrasekhar limit" [90].

Thesis outline

The thesis introduces our experiment in two main parts. Part I looks at the preparation of a

unitary Fermi gas and the cooling process that brings it to quantum degeneracy, where:

• Chapter 1 describes the hardware of the experiment, including the vacuum setup, the

671 nm laser system for cooling and imaging, and the coils for magnetic field control.

• Chapter 2 focuses on the laser cooling performance in the Magneto-optical trap

(MOT) and in theD1 molasses, as well as the preparation before evaporative cooling.

aThe pinning lattice is only turned on during the acquisition of fluorescence photons, while the dynamics
of the cloud is that of a 3D free fermions in space.
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In particular, the optical transport and the spin balancing method using a RF sweep

are discussed. The crossed dipole trap for evaporation is also characterized.

• Chapter 3 focuses on the evaporative cooling performance. The cooling result is

a degenerate Fermi gas with relatively low density, that is suitable for single-atom

imaging. Thermometry based on the equation of state (EoS) of the unitary Fermi

gas inside the harmonic trap is described in detail and a superfluid plateau is demon-

strated on a spin-imbalanced cloud.

Part II revolves on the setups and the preparations for the single atom quantum gas

microscope, where:

• Chapter 4 describes the 2D + 1D pinning lattice that is used to pin the atoms during

the exposure of a fluorescence imaging. The laser setups are shown and the lattices

are characterized through parametric heating. The occupancy in the lattice bands is

estimated by numerical calculations and also experimentally through band mapping.

• Chapter 5 focuses on the Raman sideband cooling process that is essential for the

fluorescence imaging. The laser setup and some preliminary measurements are pre-

sented.

• Chapter 6 shows the high resolution objective setup. Some simulations on the fluo-

rescence images are performed to help estimate the fluorescence image quality and

to determine a proper choice of magnification in the imaging system.
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CHAPTER 1
EXPERIMENT OVERVIEW

In this chapter we describe the overall structure of the experiment setup, the vacuum sys-

tem, and the laser table. Details on the laser cooling taking place at each part of the setup

will be discussed in the following chapters.

1.1 Experiment hardware

The overall structure of our vacuum system is shown in figure 1.1. It consists of four main

sections: the oven, the differential pumping sections, the MOT chamber and the science

cell.

Oven

The oven is a T-shaped vacuum part containing lithium. Natural lithium consists of isotopes
6Li (7.5% abundance) and 7Li (92.5% abundance) [92]. Although our experiment now only

works with 6Li, the oven was initially loaded with 1 gram of natural Lithium and 1 gram

of enriched 6Li, hence containing roughly equal amount of 6Li and 7Li. The oven is heated

around the narrow tube. The heater temperature is altered daily between 530˝C while

running the machine and 400˝C when the machine is idle. This operation routine ensures

that we have stable atomic flux within 15 minutes of heating, without clogging the thin tube

when idle.

The oven is isolated from the later part of the experiment by differential pumping tubes

to maintain a low pressure in the main experiment. Two ion pumps are installed next to the

isolation valves, one on the oven side and one on the Zeeman window side. Four additional

getter pumpsa provide higher pumping capacities by absorbing residual gases into the getter

material. Two of these getter pumps are before the Zeeman slower and two are next to the

MOT chamber. With these pumping power, we obtain a good vacuum on the order of

1 ˆ 10´11 Torr in the MOT chamber.
amodel No. NexTorr D 200-5, NexTorr D 500-5
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Figure 1.1: 3D drawings of the vacuum setup: (1) lithium oven, (2) oven shutter, (3) dif-
ferential pumping section, (4) Zeeman slower, (5) MOT chamber, (6) MOT coils, (7) ion
pumps, (8) SAES getter pumps, (9) science cell section with Feshbach & curvature coils.
(A) MOT beams. (B) gray molasses beams. Adapted from [91].
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Figure 1.2: CAD drawings of main vacuum parts: (a) Lithium oven, (b) MOT chamber, the
view is facing one of the CF40 viewport, (c) The science cell.

MOT chamber

The MOT chamber is a spherical cubeb structure with multiple CF viewports for optical

access. As seen in figure 1.1, on the face positions of the spherical cube, the 6 largest CF63

viewports are reserved for MOT molasses beams. Among the three pairs of orthogonal

MOT beams, two are prepared by retro-reflection and one by counter-propagating beams.

On the outer rim of these viewports three pairs of compensation coils are mounted to cancel

the magnetic field precisely during the D1 molasses cooling. The MOT coils are larger in

size and are installed further back with the coil axis aligned along one molasses pair that

is parallel to the table. On the corner positions of the spherical cube, there are 8 CF40

viewports, among which 6 have been occupied: One pair is along the Zeeman slower axis,

one pair is along the optical transport axis, and one pair is used for MOT chamber ab-

sorption imaging. The remaining 12 edge positions have CF16 viewports, most of which

remains available. Two of the CF16 viewports let through counter propagating gray mo-

lasses beams. The last axis of the gray molasses shares the same viewport as one of the

MOT molasses, and therefore is not exactly orthogonal to the first two axes.

Science cell

To study the physics near unitarity, the cloud will be transported optically (in an optical

tweezer, see 1.2.3) about 30 cm away to a Borofloat glass cell with special AR coating.

When incident angle is smaller than 30˝, the reflection is measured to be below 0.3% for

1064 nm light and below 0.2% for 671 nm light. The science cell therefore provides a wide

optical access for the pinning lattice (chapter 5.1) and for the microscope (chapter 4). This

bKimball Physics MCF450-SphCube-E6C8A12
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science cell has inner dimension 20 ˆ 20 ˆ 60 mm3 and a thickness of 3 mm. The cell is

connected to the main vacuum structure by a rotatable CF flange. The orientation of the cell

was checked during assembly with a self-made Michelson interferometer to make sure that

the top and bottom surfaces are parallel to the horizontal plane. The front surface comes

with a 1˝ tilt in the design to avoid creating an optical cavity with mirrors in earlier optical

paths.

1.2 Laser system

1.2.1 6Li atomic structure

Lithium is the lightest alkali metal with atomic number Z “ 3. There are two natural

occurring isotopes — 6Li, a fermion, and 7Li, a boson. In this experiment we work with
6Li. The ground state of Lithium has electron configuration [He]2s1, where the first shell

is completely filled and shell 2 contains one single electron. Like other alkali metals, the

simple atomic structure due to the transition of this free electron allows all kinds of manip-

ulation through atom-light interactions. We perform laser cooling, trapping and imaging

on 6Li all through its 671 nm D-lines. The UV transition to higher excited state is not used

in our experiment, but can also be exploited in a MOT [93]. Figure 1.3 shows the wave-

lengths of the D-lines, the hyperfine structures in 2P , and the transitions that are used in

our experiment.

The D-line has natural linewidth Γ “ 2π ˆ 5.87 MHz. Whereas the hyperfine constant

ahf for 2P1{2 and 2P3{2 are 17.39 MHz and -1.16 MHz respectively [94]. Therefore the D2

hyperfine levels are not resolved. Both the D2 and D1 molasses beams are detuned from

resonance by several Γ to provide the dissipative force in the molasses and keep the atoms

trapped. Before taking images of the atoms, they are not guaranteed to be in the same

hyperfine manifold in the ground state. Therefore a repumper light is shined on shortly

to bring all atoms in the F “ 3{2 state, and the subsequent absorption imaging light has

frequency targeting transition from F “ 3{2 to the 2P3{2 excited state.

Under external magnetic field, the degeneracy of the Zeeman states in the hyperfine

structure is lifted. As the Zeeman shifts become larger compared to the hyperfine splitting,

the good magnetic quantum numbers changes from mF to mI and mJ , where subscripts I

and J denote the nuclear spin angular momentum and the fine structure angular momen-

tum. The energy eigenvalues in the new basis at various magnetic field strength B can be
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Figure 1.3: D-line of 6Li atom. D1 and D2 lines are 671 nm red and are 10.06 GHz apart in
frequency. The natural linewidth is 5.87 MHz. The hyperfine levels of 2P1{2 are resolved
but those of 2P3{2 are not. The imaging light uses the D2 transition targeting F “ 3{2
ground hyperfine state, whereas the repumper light targets F “ 1{2 ground state.
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Figure 1.4: Zeeman energy shift of the ground state 2S1{2

calculated via the Breit-Rabi formula [95]

EpmF q˘ “ ´
ahfh

4
` gImFµBBz ˘

ahfhpI `
1
2

q

2

g

f

f

e

1 `
2mF ξ

I `
1
2

` ξ2, (1.1)

With ξ “
pgI ´ gJqµBB

ahfhpI `
1
2

q

. ahf is the hyperfine constant and gI , gJ are the nuclear and

electronic g-factors.

Figure 1.4 shows the energy shift with respect to the fine structure level for the six

Zeeman states in 2S1{2. They are labeled |1y to |6y from lowest to highest energies. Among

these, the two lowest Zeeman states are usually taken as the spin up and down states in

quantum simulations using 6Li. The Feshbach resonance between these two states will be

discussed later in section 2.3.1.

1.2.2 Laser table

On a separate laser table we prepare all the laser beams required for the cooling and imaging

on the main setup, where they are sent through optical fibers. Two lasers of the model

"Toptica TA-pro" serve as the sources for D1 and D2 beams. The former includes the three

retro-reflected gray molasses beams; The latter includes the Zeeman beam, molasses beams
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for the MOT, absorption imaging beams and optical pumping beams. The Toptica TA-pro

is a pre-aligned setup that consists of an external-cavity diode laser (ECDL) seed laser and

a tapered amplifier (TA) chip. The frequency of each master is stabilized by locking them

on 6Li D1 and D2 spectral line respectively.

To prolong the lifetime of the TA-pro lasers, we drive them below their nominated

maximum current, and typically obtain 210 mW power. After passing through AOMs,

the remaining power is not enough to distribute over all required beams. In particular,

Zeeman beam and MOT molasses beams are telescoped to large waists to capture enough

atoms from the oven, while their intensities need to be maintained at several times the D2

saturation intensity IsatpD2q “ 2.54 mW/cm2. Therefore we add in additional self-mounted

TA chips from Eagleyard to gain in power. Eventually, we are able to obtain 80 mW on the

Zeeman beam with 10 mm waist on the main setup, equivalent to 20 Isat; MOT molasses

beams each has 10 mW over 7 mm beam waist, equivalent to 5 Isat;D1 molasses beams each

has intensityc 30 Isat. Their detunings are optimized based on the cooling performance and

are mentioned in the next chapter 2.1. The remainging beams for imaging and repumping

typically have powers below 1 mW.

Lithium laser spectroscopy

To stabilize the master diode of D2 and D1 TA-pro frequency, we perform a frequency

lock on the spectral line using a spectroscopy cell, as shown in figure 1.6. The laser beam

to be locked is split into a probe beam below saturation intensity and an over-saturated

pump beam. By overlapping the two beams in counter-propagating manner, one can obtain

a Dopper-free absorption spectrum from the probe beam. In order to lock on a dip on the

absorption feature, modulation transfer spectroscopy technique [96] is applied by adding an

EOM on the pump beam. A Pound-Drever-Hall module then demodulates the absorption

spectrum and converts an absorption dip into a zero-crossing in the error-signal.

The D2 laser is locked on F “ 3{2 Ñ F 1 transition peak, whereas D1 laser is locked

on the crossover between F “ 1{2 Ñ F 1 and F “ 3{2 Ñ F 1 transitions.

High field imaging

From the D2 TA-pro, one set of imaging and repumper beams are responsible for the ab-

sorption imaging at zero magnetic field. In addition to this, we would like to be able to

also see the atoms at a non-zero field, especially at 832 Gauss, which is the unitarity point

cTo avoid confusion, the D1 molasses intensity is still given in units of the D2 line saturation intensity
Isat(D2) = 2.54 mW/cm2. Notice the saturation intensity 7.59 mW/cm2 for D1 line is three times higher.
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Figure 1.6: Spectroscopy cell for frequency lock on a Doppler-free absorption spectrum.

for 6Li Feshbach resonance between the lowest two hyperfine states (see figure 1.4). At

this magnetic field, the energy levels of the two lowest hyperfine ground states are shifted

by more than -1 GHz. Using σ´ imaging light, the transition is cycling and therefore no

repumper light is needed. The corresponding excited state in 2P3{2 has Zeeman shift of

roughly -2.3 GHz. In the end, the imaging frequency at unitarity is about 1GHz red-detuned

with respect to the imaging frequency at zero field. Also, the two spin states are no longer

degenerate. Their imaging frequencies are separated by 76.8 MHz.

We use another Toptica DL-pro laser head as the source for high field imaging light.

Its frequency is offset-locked on the D2 laser using a side of filter technique [97]. In this

technique, the reference laser and the high field imaging laser are first mixed, and their

beatnote picked up by a fast photodioded with 30 ps rise time. The beatnote is then mixed

down once more with a local radio frequency (RF) oscillator to produce a signal on the

MHz scale. Using a RF splitter, a filter and a set of rectifiers, the fast change in the RF filter

gain near its cutting frequency is converted to a zero crossing in the error signal. The slave

laser frequency is hereby locked on the edge of the RF filter, and the offset frequency can

be changed using the local oscillator. In our experiment we use DS instrument SG4400L as

the local oscillator, which allows our high field imaging light to be locked anywhere within

4.4 GHz offset from the D2 line.

One AOM double pass on the high field imaging laser allows the exact control of the

dHamamatsu G4176-03
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imaging frequency. In combination with a solid state switch ZASWA-2-50DRA+, one can

switch fast between two driving frequencies for consecutive imaging of the two spin states.

1.2.3 High power infrared lasers

Apart from 671 nm red lasers, our experiment also uses high power infrared lasers that

are far red-detuned from lithium lines. These IR lasers are important in creating trapping

potentials for transport, evaporation and creating the pinning lattice.

Transport laser beam

The laser source for the optical tweezer is a high power 1070 nm continuous wave Ytter-

bium laser from IPG photonicse. The maximum power out of the fiber is 200 W but we

operate it at 160 W on a daily basis. The IPG laser is focused on the atom cloud with

a 85µm beam waist. The transport is done by moving the focus position mechanically

through the displacement of two mirrors on a translation stage from Newportf . The optical

setup is shown in figure 1.7. The traveling range of the stage is 16 cm. By folding the op-

tical path upon reflections on two rectangular mirrorsg installed on the stage, we can move

the IPG focus by 32 cm, which is enough to cover the 31.5 cm distance from MOT chamber

center to the cell center. The motion of the stage can be remotely controlled via a analog

position-setting signal. The maximum traveling speed it can follow is 0.3 m/s. The actual

transport control is explained in section 2.2.2.

The IPG power can be reduced by three orders of magnitude during evaporation (see

section 3.1). This is done with a high-extinction-ratio polarizing cube and a halfwaveplate

on a motorized rotational mounth.

Cross dipole beam

Apart from the transport beam, three other high power infrared lasers are used in our ex-

periment. These 1064 nm continuous wave lasersi from Azur Light System (ALS) pro-

vide maximum output 45 W. One ALS laser (later referred to as "the cross dipole beam")

is shone across the cell perpendicular to the transport beam, in order to create a crossed

dipole trap to accelerate the evaporation process. The other two ALS lasers are used to

eIPG YLR-200-LP
f Newport XMS160-S
gLaseroptik L-15116 HR1064-1070 nm/45˝ 75ˆ50ˆ5 mm
hOWIS DRTM 40
iAzur Light System ALS-IR-50-SF
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Figure 1.7: Transport IPG laser and the translation stage. A halfwaveplate on rotational
motor is used to control the transmitted power over three orders of magnitude. The transport
range is 32 cm.

Figure 1.8: Lasers around the science cell: A 45 W ALS laser shines along the transverse
axis of the cell and provides additional trapping during evaporation. It is overlapped with
a cell transverse imaging beam. Two types of dichroics are used to overlap and separate
lasers of different wavelengths. A green laser for gravity compensation is contemplated to
be installed in the future (see section 6.4).

form pinning lattices in the horizontal plane and along the vertical direction. They will be

introduced later in section 5.1.

The cross dipole beam is brought around the science cell by a high power fiber. 15.5 W

power out of the fiber is focused to 60µm waist at the atoms position. The laser power is

regulated by an AOM. The power after the fiber is detected by a photodiode and used in a

servo-loop to feed back onto the AOM driving RF power. This power regulation allows the

beam power to be ramped down reliably to 30 mW at the end of evaporation.
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1.3 Around the science cell

1.3.1 Imaging axes

Four imaging axes along different directions have been setup to see the atom clouds through-

out the experiment sequence. One axis goes diagonally up through the MOT chamber and

is used for imaging the atoms from MOT loading stage to the D1 gray molasses stage. One

axis is along the optical transportation. The 671 nm imaging light is overlapped with the

transport beam before the MOT chamber viewport with the help of a dichroic with reflec-

tive coatingj for 1064 nm. They are separated after the cell by a dichroic mirror of a second

type of coatingk. On this imaging axis we can switch the object plane from MOT chamber

to science cell by replacing one lens on the imaging path.

Two imaging axes are available for the science cell. One is the vertical imaging through

the high-resolution objective, as will be introduced in chapter 4. The other is looking from

the side of the cell perpendicular to the transportation axis, which we call the cell transverse

imaging. On this axis the imaging light is overlapped with the 1064 nm cross dipole beam.

An illustration on the optical paths is given in figure 1.8.

1.3.2 Feshbach and curvature coils

Above and below the science cell, one pair of Feshbach coils and one pair of curvature coils

are mounted. Two winded Feshbach coils with inner radius 43 mm and outer radius 73 mm

are in Helmholtz configuration to provide a uniform magnetic field near the atoms position

in the vertical direction. In the experiment we typically send 246 A current through 22

turns in each Feshbach coil to produce 832 Gauss magnetic field. Due to limited precision

on the winding and the geometry, the Feshbach coils also create a small but non-negligible

magnetic curvature. To provide additional magnetic trapping in the plane when optical traps

are turned off, a pair of curvature coils are mounted further apart with the same central axis.

They each have 14 winded coils with inner radius 26 mm and outer radius 46.5 mm. They

also run parallel current and produce a magnetic field in the vertical direction with smaller

amplitude but larger curvature.

Figure 1.9 shows the geometry and the simulated magnetic field from both coils. Ta-

ble 1.1 summarizes the estimated field and curvature at the geometric center of the coils.

For Feshbach coils we have also performed calibrations on the field strength based on RF

spectroscopy, as well as calibrations on the field curvature based on free-fall of the atoms.

jHR1064-1070 nm/45˝ Rą 99.9%; HT671 nm Ră 0.8%; HT532 nm Ră 3%
kHT1064-1070 nm/45˝ Ră 0.7%; HR671 nm Rą 99.9%; HT532 nm Ră 1.5%
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Bzpz “ 0q (G/A) B2
z pz “ 0q (G/cm2/A)

Feshbach coils 3.34 0.0188
Feshbach (measured) 3.37 0.033

Curvature coils 0.66 0.104

Table 1.1: Summary of the simulated magnetic field strength and curvature at the geometric
center of the coils, and the measured value for Feshbach coils. The measured field strength
by Feshbach coils is in good agreement with the simulation. The curvature shows a larger
discrepancy, probably originated from the geometric size of the coils and the imperfect
positioning of the atoms with respect to the coils geometric center.

The measured field strength and curvature are also recorded in the table.
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(a)

science
cell

Figure 1.9: Feshbach (blue grids) and curvature (red grids) coils: (a) The coil mount around
science cell. (b,c) simulated magnetic field vertical component based on the out-of-factory
geometry of Feshbach and curvature coils. (d) a cross-section view showing the geometry
of the coils.
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CHAPTER 2
FROM LASER COOLING TO EVAPORATIVE COOLING

This chapter deals with the Doppler and molasses cooling, as well as the transfer of the

atoms from the oven to the MOT chamber, then to the crossed dipole trap in science cell.

Further evaporative cooling and single atom imaging will take place in the science cell.

2.1 Laser cooling

2.1.1 Zeeman slower

The Zeeman slower performs the initial cooling from the oven, so that at the end of the

slower, the cloud is cold enough to be captured by the MOT. The deceleration of the atomic

gas comes from the radiation pressure of the "Zeeman" light. For atoms with velocity v
experiencing Doppler effect, the head-on collisions with photons with wave vector k impart

a radiation force [98]

Fabs “ ~kΓ
2

s

1 ` s

ˆ

1 `
2k ¨ v∆

p1 ` sqp∆2 ` Γ2{4q

˙

“ F0 ´ βv. (2.1)

Here s “
I{Isat

1 ` 4∆2{Γ2 “
2Ω2

Γ2 ` 4∆2 is the saturation parameter. Detuning ∆ “

ωlaser ´ ωatom depends on the local magnetic field strength through the Zeeman shifts. With

carefully designed magnetic field that decreases with the atom velocity, effective cooling

will happen over the whole length of the Zeeman slower.

Our slower design has total length 60 cm. The maximal magnetic field created is about

650 G at the oven end. A spin flip point where magnetic field changes sign occurs 10 cm

before the MOT end. Figure 2.1 shows the estimated and measured magnetic field, as

well as the velocity curves of various velocity groups. Lithium atoms with initial velocity

below 830 m/s can be captured by this slower and cooled down to less than 50 m/s before

the MOT chamber. The cooling light has 80 mW power and roughly 1cm beam diameter,

giving a saturation parameter s0 « 20. The laser detuning is -300 MHz with respect to D2

transition. A 228 MHz sideband is created from an EOM to serve as the repumper when

spin flip happens.
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Figure 2.1: Change of Lithium gas velocity along the distance in the Zeeman slower.
Dashed blue line and blue squares show the calculated and measured magnetic field re-
spectively. Red lines denotes different velocity groups. The highest capturable velocity is
830 m/s.

2.1.2 MOT and D2 molasses

The cooling in the MOT chamber is performed in several steps to prepare for an efficient

optical transport in the later sequence. The MOT coils are turned on at 10 G/cm during the

initial MOT loading time. For a 1.5 s loading sequence, we are able to capture 1ˆ109 atoms

in a MOT cloud of roughly 3 mm size, slightly more squeezed along the MOT coil axis.

The cloud diameter is compressed to « 2 mm in the following 50 ms magnetic gradient

ramp. The cloud temperature of the compressed MOT is about 1.2 mK. Afterwards, there

is an additional 3 ms D2 molasses stage during which the magnetic field is turned off.

The molasses beam intensities and detunings are changed at the same time. The intensity

of each molasses arm is reduced to 25% of its initial value, and the molasses frequency

approaches resonance from ´3.4Γ to ´Γ. By the end of this ramp, the cloud temperature

goes down slightly to 900µK without significant atom loss. This D2 molasses stage allows

the eddy current induced by the magnetic shut-off to settle down, which ensures a good field

cancellation for the following D1 cooling. Figure 2.2 describes the control sequence from

MOT to D2 molasses. In figure 2.3 two scans on the initial and final molasses detuning are

shown, from which it can be understood how the values of the detunings are chosen.
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Figure 2.2: The control sequence from MOT until D2 molasses. The compressed MOT
stage contains a field gradient ramp from 10 G/cm to 25 G/cm; The D2 molasses stage
contains a detuning ramp from ´3.4Γ to ´Γ and an intensity ramp to a quarter the initial
intensity. Adapted from [91].

(a) (b)

Figure 2.3: Scans on the molasses detunings. (a): Atom number in the MOT cloud versus
the initial molasses beam detuning. At detuning ∆ “ ´3.4Γ the most atoms are captured.
(b): Atom number by the end of D2 molasses step in the experiment sequence. As fi-
nal molasses frequency goes toward resonance, the cloud peak density has a rising trend.
Reprinted from [91]
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2.1.3 D1 gray molasses cooling

Due to the small hyperfine splitting of 6Li D2 line, the D2 molasses does not provide po-

larization gradient cooling and the cloud temperature remains above the Doppler cooling

limit TD “ ~Γ{2kB “ 140µK. In fact, our cloud after D2 molasses typically has temper-

ature 800µK and phase space density (PSD) 5.8 ˆ 10´7. At this PSD the cloud cannot be

effectively loaded into the dipole trap. Therefore an additional cooling step using D1 gray

molasses is necessary.

Working principle

In the past decade, D1 gray molasses cooling has gained popularity among cold atom ex-

periments using light alkali atoms like K and Li [99, 100, 101, 102]. The cooling is based

on polarization gradient and velocity-selective coherent population trapping (VSCPT). Fig-

ure 2.4 briefly describes the level diagram and the cooling process — Two counter propa-

gating coherent beams Ω1 and Ω2 create a Λ-type coupling among the atomic levels. The

two ground states can be projected to new basis |ΨBy and |ΨDy, where the "dark state" |ΨDy

is unaffected by the light field, but the "bright state" |ΨBy depends on the polarization gra-

dient. There is a coupling between the bright and dark state, whose transition probability

increases with atom’s speed and decreases with the light shift of the bright state. Therefore

hot atoms in dark state preferably transfer to the bright state at its potential valleys. After

climbing the potential hill, atoms are most likely to be optically pumped at the top of the

bright state potential, then decay into the dark state, and the cycle repeats. The equilibrium

temperature after cooling is comparable to the depth of the bright state optical potential. A

more thorough treatment of the cooling principle can be found in other sources [103, 104].

Cooling efficiency

Figure 2.5 shows the control sequence during D1 molasses cooling. The D1 molasses

beams are first turned on and held at maximal intensity 20 Isat for 3 ms while waiting for the

magnetic field to be fully compensated. Then beam intensities are decreased gradually in 2

ms, and held at half of their initial intensity for another 1 ms for thermalization. The cooling

is very efficient. Figure 2.6 shows how the cloud temperature decreases during the first

3 ms capture time and how it depends on the intensity ramp. By the end of thermalization,

a temperature of 50µK is reached.

The D1 repumping light is switched off 10µs before the cooling light in order to

depump most atoms to the two Zeeman levels within the F “ 1{2 manifold, which will

participate in the subsequent evaporative cooling. The detuning of the cooling light is also
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position

Energy

Figure 2.4: Left: level diagram of gray molasses cooling on lithium D1 line. Two beams
create a Λ-type coupling between the two ground state and the excited state. Right: In
the dressed basis of the coupling hamiltonian, Sisyphus cooling happens as the atoms re-
peatedly climb up the potential hill in the bright state and be transferred back to the dark
state.

brought to zero during this depumping time. After the entire gray molasses cooling, we

reduce the cloud temperature to 70µK, while retaining as much as 80% of the atoms from

the D2 cloud, with the peak spatial density exceeding 1012/cm3.

2.2 Optical transport

The dipole potential experienced by a two-level atom of transition ω0 from a far-detuned

laser of frequency ω and intensity Iprq is given by [105]

Udipprq “
3πc2

2ω3
0

ˆ

Γ
ω ´ ω0

´
Γ

ω ` ω0

˙

Iprq. (2.2)

This form did not use the rotating wave approximation as the detuning can be very large.

A simple derivation of the dipole force is given in the appendix A, where rotating wave

approximation has been used to arrive at a formula in consistency with the first term here

containing ∆ “ ω ´ ω0. The conservative dipole force scales as
I

∆
while the photon

scattering scales as
I

∆2 . Hence a dipole trap usually combines high intensity with large

detuning to reduce heating on the trapped atoms.

When the laser is red-detuned (∆ ă 0), atoms will be attracted to the most negative
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Figure 2.5: Control sequence for the D1 molasses cooling is separated into three steps:
3 ms capture, 2 ms intensity ramp and 1 ms thermalization. The atoms are depumped to
F “ 1{2 state by switching off the sideband first and zeroing the D1 molasses detuning.
Adapted from [91].

(a) (b)

Figure 2.6: Atom number and temperature during D1 cooling. (a): cloud temperature
decreases from 800µK to 70µK during the first 3 ms D1 capture. Reprinted from [91] (b):
atom number and temperature dependence on the intensity ramp.
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potential where the laser intensity is highest. Hence the beam can serve as an optical

tweezer [106] to transport the atom cloud along with its focus position. For a focused

Gaussian beam, the spatial variation of its intensity follows

Ipr, zq “
2P

πw2
0p1 ` z2{z2

Rq
exp

„

´
2r2

w2
0p1 ` z2{z2

Rq

ȷ

, (2.3)

where P is the total power and w0 is the waist. The Rayleigh length zR “
πw2

0
λ

corresponds

to the distance along the axial direction where the beam cross-section double in value. The

trap depth is

U0 ” Upr “ 0, z “ 0q “
6c2ΓP

ω2
0pω2 ´ ω2

0qw2
0
. (2.4)

Treating the trap as harmonic near its bottom, the trapping frequency along radial and

axial directions are respectively

ωr ”

c

1
m

B

Br2Upr “ 0, z “ 0q “

d

4U0

mw2
0

ωz ”

c

1
m

B

Bz2Upr “ 0, z “ 0q “

d

2U0

mz2
R

. (2.5)

Practically it is more convenient to find the scaling of these trap parameters in terms of

laser power and waist. They follow U09P {w2
0, ωr9

?
P {w2

0 and ωz9
?
P {w3

0.

2.2.1 Loading performance

The dipole trap from the 160 W transport beam is turned on during the D2 molasses stage

and remains on throughout the D1 gray molasses cooling. With 85µm IPG waist, the trap

depth estimated using equation 2.4 is kB ¨600µK, about 12 times the temperature of theD1

cloud. By holding the IPG with its focus well overlapped with the D1 cloud, we are able

to load up to 8 ˆ 106 atoms into the dipole trap, and 5 „ 7 ˆ 106 atoms on a daily basis.

Picture 2.7 shows the atoms in the dipole trap shortly after the gray molasses.

Continuously holding the IPG withoutD1 cooling induces some heating in the cloud, at

an initial heating rate of 16 ˘ 3µK/s. This heating effect is not a challenge as the transport

can be performed within 1.2 s.
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Figure 2.7: atoms loaded into the IPG sin-
gle beam trap. Pictures show the cloud after
turning off the D1 molasses for 5 ms (top),
15 ms (middle), and 30 ms (bottom).

Figure 2.8: Atom number and temperature
change while holding in the IPG dipole trap.
Within the first few seconds the temperature
rise is exponential with a heating rate of 16˘

3µK/s.

2.2.2 Transport performance

After 100 ms hold in the IPG trap for thermalization, we perform an optical transport by

translating the focus position of the IPG laser. The analog control for the stage displacement

is programmed as a quartic spline between the initial and final position. This produces a

smooth movement with zero final speed, acceleration, or change of acceleration as shown

in figure 2.9, and ensures minimal sloshing of the cloud along the axial direction of the trap

after transportation. The instantaneous velocity is also kept below the speed limit of the

stage.

Since the magnification of the imaging in the science cell and in the MOT chamber

are different, the atom numbers from absorption images before and after transport are not

directly comparable. Instead, we estimated the efficiency of the transport by doing an forth

and back movement, and taking the efficiency as the square root of the remaining atom

number over the initial atom number. The efficiency remains above 97% for all transport

distances up to 32 cm.

2.3 Preparation for evaporative cooling

To further cool down the atomic gas toward quantum degeneracy, the evaporative cooling

technique [107] is used. Evaporative cooling happens when the hottest atoms escape from

the trap while the remaining atoms re-thermalize. A continuous cooling to ultra low tem-

perature can be achieved usually in two ways. For optical traps like in our experiment, the

29



Figure 2.9: From top to bottom, the position, velocity, acceleration and the jerk (derivative
of acceleration) of the translation stage.

laser power is ramped down to gradually reduce the trap depth; Alternatively in magnetic

traps, RF signals can be used to flip the atom Zeeman state from a trapped one to an anti-

trapped one [108, 109]. The cooling is more effective when there is a high elastic collision

rate that leads to faster thermalization of the cloud.

Unfortunately, due to the anti-symmetry of two identical fermions’ wavefunction, col-

lision between them only allows odd partial waves [110]. Therefore a spin-polarized Fermi

cloud in s-wave scattering regime does not thermalize. In order to perform evaporative

cooling, the cloud is usually prepared near a Feshbach resonance with equal populations

in two different Zeeman states, i.e., spin-balanced. With the strong interaction between the

two spin components, evaporative cooling has been proven very effective.

The elastic collision rate inside a harmonic trap for spin-balanced two-species fermions

at unitarity can be calculated as [111]

Γcoll “
2N~2ω̄3

πpkBT q2 , (2.6)

where N is the atom number for each spin state and ω̄ “ pωxωyωzq1{3 is the mean

trapping frequency.
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2.3.1 Feshbach resonance of 6Li

Feshbach resonance is a useful tool to tune inter-particle interactions on a very broad range

in cold atom experiments. In the collision process between two free atoms of different

spin states, they can temporarily form closed channel potential containing molecular bound

states, whose energy levels can be shifted by applying magnetic fields. A Feshbach reso-

nance occurs when a bound state energy matches the scattering state in the open chan-

nel [16], which is near zero for ultra cold atoms. As a weakly bound state disappears, the

scattering length diverges and changes its sign from positive to negative. Specifically, the

scattering length follows [112]

apBq “ abg

ˆ

1 ´
∆FB

B ´ B0

˙

, (2.7)

where abg is the background scattering length, B0 is the resonance pole of magnetic field

B, and ∆FB is the resonance width.

For 6Li, the Zeeman states in 22S1{2 were shown earlier in figure 1.4, and labeled |1y to

|6y from lowest to highest energy. A typical choice of the two spin states are the two lowest

states |1y and |2y. In figure 2.10 we have plotted pairwise the scattering length between

|1y, |2y and |3y against the magnetic field. The curves are based on an RF spectroscopy

measurement done by G Zürn et al. [113].

2.3.2 Spin population control

By the end of D1 gray molasses cooling, atoms were depumped to the F “ 1{2 manifold

under a well-cancelled magnetic field. However, after optical transport and the turning

on of the Feshbach coils, atoms do not distribute themselves equally to the two Zeeman

levels within F “ 1{2. Instead, the ratio of the atom population ending up in |1y to that

ending up in |2y is roughly 6:4. This ratio has also seen drifts on a monthly basis. Without

any population control, the spin imbalance becomes worse as we evaporate more, and the

minor spin population runs out before we could evaporate to the lowest optical power.

Therefore we perform non-adiabatic sweeps using RF pulses between |1y and |2y after

optical transport to balance the spin population. The hardware we used include a high

precision waveform generatora, a 5 W RF amplifierb, and a home-made antenna put close

to the science cell with a rough distance 2.5 cm from the antenna loop center to the atoms

position.

aRigol DG5252
bZHL-5W-1
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Figure 2.10: Scattering lengths between the lowest three 6Li ground states. The Feshbach
resonance for a12, a13 and a23 are at 832 G, 689 G and 809 G respectively.

Landau-Zener sweep

Suppose the atoms start with a spin polarized population in |1y. An adiabatic sweep of a RF

signal across the resonance frequency will transfer all the atoms into |2y. As the sweeping

speed increases, the process is no longer adiabatic and transferred population decreases

exponentially according to the Landau-Zener formula [114, 115]

P|1yÑ|2y “ 1 ´ exp
ˆ

´
Ω2

4 9∆

˙

, (2.8)

where Ω is the RF Rabi frequency on resonance (in unit of s´1), and 9∆ “ pνf ´ νiq{t is the

sweep speed, given that it is done within t second over the initial and final RF frequency

νi and νf (in unit of Hz). The time constant for this exponential decay, or the sweeping

duration at which the exponential becomes -1, can be related to the Rabi frequency by

Ω2 “ 4pνf ´ νiq{τ .

In order to characterize the sweep speed for best spin balancing, we performed several

measurements shown in figure 2.11. Firstly we perform a 20 ms slow sweep with narrow

span 40 kHz, and scan the central frequency of this sweep around the RF resonance. This

helps locate the resonance frequency to fc = 76.263 MHz, which is in good agreement

with the energy splitting under 832 Gauss from the Breit-Rabi formula 1.1. To estimate the
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Figure 2.11: (a) A scan on the RF central frequency locates the resonance at 76.263 MHz;
(b) Landau-Zener sweep with 100 kHz range for various durations. From population in
|1y and |2y, the time constants is estimated to be around 2.4 ms; (c) On resonance Rabi
oscillation shows Rabi frequency Ω « 2π ˆ p2.155 ˘ 0.009q kHz, corresponding to a time
constant τ “ 2.2 ˘ 0.02 ms.
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Figure 2.12: After optical transport, the
atoms in the IPG transport beam are trans-
ferred into the crossed dipole trap. The
power of the transport beam is reducing
from the top to the bottom pictures. At final
IPG power, the wings are no longer visible
from the ALS axial direction (a.k.a. the cell
transverse imaging direction). Reprinted
from [91].

Rabi frequency of the RF transition, we sit on this center frequency and perform a wider

sweep from fc ´ 50 kHz to fc ` 50 kHz within various durations. The final population in

both |1y and |2y are fitted with the Landau-Zener formula. The fitted time constants are

τ1 “ 2.42 ˘ 0.3 ms and τ2 “ 2.35 ˘ 0.3 ms. And at around 1300µs sweep duration, the

two spin population become balanced. Finally a consistency check is done with an on-

resonance Rabi oscillation. The measured Rabi frequency is Ω “ 2π ˆ p2.15 ˘ 0.03q kHz,

consistent with the aforementioned time constant.

In the actual experimental sequence, we perform a group of triangular waves, with each

rising/falling sweep at the correct speed to balance the spin. We turn on this waveform

for around 100 ms or around 40 repetitive non-adiabatic sweeps to achieve an accurate

spin balancing. Although it is arguable whether there is enough decoherence time between

each single sweep, we have seen this method giving more robust spin balancing result

against long term drift of the Rabi frequency, which might come from unstable RF power

or mechanical deformation of the antenna.

2.3.3 Loading of the crossed dipole trap

To further increase the collision rate during evaporation, the cross dipole beam (ALS) is

sent from the side of the cell to cross with the transport beam (IPG). The transport beam

has higher initial power 160 W during the optical transport, and creates a deeper trapping

potential than the 15.5 W cross beam. By reducing the transport beam power slowly to

28.5 W, the hotter atoms gradually escape the IPG trap while the coldest fraction gather

in the crossed dipole trap (CDT). The final cloud is roughly isotropic in shape. From the

cell transverse imaging view, the evolution of the cloud during this process is shown in

figure 2.12.

On the final cloud in CDT, we performed a calibration on the trapping frequencies of

the transport beam and the cross dipole beam. This helps benchmark the harmonic trap at

34



0 100 200 300 400 500 600 700 800 900 1000
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

Figure 2.13: Left: Breathing mode induced by the temporary release of one laser beam.
Right: Measured radial trapping frequencies of the two beams as functions of their beam
power. Beam waists of the two lasers are confirmed from the fitted curve. Adapted
from [91]

later evaporation stages through the scaling of the laser power.

Trapping frequency measurement

The measurement is done by releasing one of the dipole beam for a short period of 50µs

and turn it back on. This induces an oscillation on the cloud width in the crossed dipole trap

(CDT). We can extract the radial an axial trapping frequencies from each beam through the

breathing mode of these oscillations. The result is shown in figure 2.13. The beam waist

of each laser is confirmedc from the ω9
?
P relation. A summary of parameters of the

transport beam and the cross beam are listed in table 2.1. By loading the elongated cloud

in the transport beam into the crossed dipole trap, we gain two orders of magnitude on the

trapping frequency along the transport direction and gain a similar factor on the collision

rate, from 520 s´1 to 3.8ˆ104 s´1.

We also performed a measurement on the magnetic trapping frequency within the hor-

izontal plane. This is done inside a single laser dipole trap using the cross beam, with

its power reduced to 300 mW. The beam focus is translated axially away from the mag-

netic center, and the Feshbach coil current is ramped down and back up within 200 ms.

This creates an oscillation in the center of mass position of the cloud along the axial di-

rection of the laser beam. The oscillation frequency is the addition between laser axial

cA more recent measurement shows slightly lower radial trapping in the transport beam and higher radial
trapping in the cross beam comparing to figure 2.13, which was done in 2019. The reported waists and
trapping frequencies in table 2.1 follows the latest measurement, therefore contains a small discrepancy to
the figure.
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trap depth U0 radial freq ωr axial freq ωz

transport beam (IPG)
P “ 28.5 W, w0 =85µm

170µK 1710 Hz 11.4 Hz

cross dipole beam (ALS)
P “ 15.5 W, w0=60µm

130 µK 2030 Hz 7.3 Hz

Table 2.1: Trapping parameters for IPG and ALS before evaporation.

frequency and magnetic trapping ω2
CM “ ω2

z,ALS ` ω2
mag. Subtracting the known laser axial

trapping frequency, we measured a magnetic trapping frequency of 2π ˆ 10.3 Hz at 240 A

Feshbach current, corresponding to 0.0164 G/cm2/A magnetic curvature in the horizontal

plane. Therefore the anti-trapping in the vertical direction is twice this value, as reported

in table 1.1

Summary on the cooling until CDT

Phase space density (PSD) is defined as D “ nλ3
dB and is a good indication on how signif-

icant the quantum effects are as its value approaches 1. For atom cloud in a harmonic trap,

the atom density over the whole trap can be integrated to obtain an alternative expression

for the PSD:

D “ N

ˆ

~ω̄
kBT

˙3

(2.9)

Table 2.2 summarizes the atom number, temperature and PSD during all cooling steps

until loading into the crossed dipole trap.

Cooling stage Atom number Temperature PSD collision rate
cMOT „ 1 ˆ 109 1.2 mK 5.5 ˆ 10´7 —
D2 molasses „ 1 ˆ 109 800µK 5.8 ˆ 10´7 —
D1 molasses „ 7 ˆ 108 50µK 5.2 ˆ 10´5 —
dipole trap
before transport „ 5 ˆ 106 90µK 3.4 ˆ 10´4 —

transported DT
after RF scan 2 ˆ 106 per spin 125µK 5.0 ˆ 10´5 520 s´1

crossed dipole trap 3.4 ˆ 105 per spin 23µK 2.0 ˆ 10´2 3.8 ˆ 104 s´1

Table 2.2: Atom number, temperature and phase space density of the atom cloud at each
previous cooling step.
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CHAPTER 3
REACHING SUPERFLUIDITY

In this chapter we report the cooling performance and the evidence for reaching superflu-

idity of the fermionic cloud. The prepared cloud in our setup is more dilute compared to

other experiments studying lattice physics [116, 117, 118], yet our setup has been able to

cool them to a lowest temperature of 15 nK, which is sufficient to study interesting phe-

nomena across the superfluid transition. The relatively low atom density makes sure that

the pinning lattice (chapter 5) can preserve the spatial distribution of the cloud well, with

less escaping events. This is essential for the quality of the microscopic image (chapter 4).

3.1 Evaporation sequence

3.1.1 Power ramp

Our evaporative cooling is carried out in several steps, where the dipole trap depth is re-

duced at different rates. The choice of the duration and power ramp at each step is purely

empirical. Figure 3.1 shows the power ramp curves. The timeline in the figure starts at the

end of the optical transport. The atom cloud starts being elongated in the deeper trap of

the transport IPG beam. In evaporation step 1, as mentioned before in section 2.3.3, the

transport beam power is reduced to gradually gather the atoms into the crossed dipole trap

(CDT). In the next two steps, the power of both beams are reduced simultaneously until a

trap depth of around 15µK, before the transport beam switches off. The following steps of

the evaporation happen in the cross beam alone, with the axial trapping mainly provided

by the magnetic curvature. The reason that we do not keep both beams until the end is the

lack of regulation on the transport beam power at lower values. Nevertheless, this practi-

cal limitation does not hinder us since low spatial densities are actually favorable for the

pinning and the fluorescence imaging. More explanations will be given in chapter 4.

3.1.2 Evaporation efficiency in the crossed dipole trap

The evaporation efficiency can be reflected from the change in the atom number, trap char-

acteristics and the cloud temperature throughout the evaporation process. Based on the

typical performance of our evaporation, during evaporation step 2 and step 3, the temper-

ature has been cooled down to one third while there is only around 20% loss in the atom
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step
duration

cumulative
duration 2.8 s 3.1 s 5.9 s 7.7 s ~13 s

Figure 3.1: The power ramp during evaporative cooling: In evaporation step 0), the cloud is
held in IPG dipole trap for 200 ms of magnetic field turn-on and 100 ms of spin-balancing
RF sweep. In step 1), the IPG power is reduced exponentially from 160 W to 28.5 W and
the cloud is transferred fully into the crossed dipole trap. In step 2) and 3), both beam
powers are ramped down linearly to 40% and then to 12% of its starting value. Finally, the
IPG is switched off in 0.5 s and the ALS power ramped down to tens of mW during step 4).
The evaporation and imaging is done at 832 Gauss magnetic field. The total sequence time
starting from the MOT loading to reaching superfluidity is within 13 s.
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number. Between step 3 and step 4 when the IPG laser is switched off, the evaporation

continues and cools the cloud temperature down by a half without significant loss in atom

number. Although we lose a factor of 30 in phase space density due to the cloud spreading

out along the ALS axial direction, subsequent cooling in the cross beam alone is very ef-

ficient, and the PSD quickly approaches back toward 1. To give a quantitative measure on

the performance in this final step of evaporation, the evaporation efficiency defined as

γ “

ˇ

ˇ

ˇ

ˇ

lnpDfin{Diniq

lnpNfin{Niniq

ˇ

ˇ

ˇ

ˇ

(3.1)

remains above 4.5 between the start of evap 4 to the endpoints of various trap depths.

3.2 Thermometry in axial-symmetric harmonic trap

Local density approximation (LDA)

In the literature on trapped ultracold Fermions, there are two frequently used conventions

to report the reduced temperature T {TF , depending on whether it refers to a trap average or

to the local value at the center of the trap. Under the local density approximation (LDA),

the Fermi energy is related to the local density according to equation B.2:

εF prq “
~2

2m
p6π2nprqq

2
3 , (3.2)

where nprq depends on the local chemical potential µprq “ µ0´V prq, with µ0 the chemical

potential at the trap center and V prq the trap potential. To access the difference between

these two definitions, it is instructive to look at the non-interacting case where analytical

results exist.

Using the equation of state (EoS) for atom number density for a non-interacting Fermi

gas (see appendix B), we can define a local T {TF

T

TF

ˇ

ˇ

ˇ

ˇ

LDA
“

4
`

´6
?
πLi3{2p´eβµq

˘2{3 . (3.3)

On another hand, integrating over the whole cloud, the total atom number is

N “
1
6

ˆ

EF

~ω̄

˙3

, (3.4)

where EF is the Fermi energy at the trap center. Under the Thomas-Fermi approxima-
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tion, where the thermal energy of the cloud is assumed to be larger than the energy level

spacings in the trap, one also has [119] N “ ´

ˆ

kBT

~ω̄

˙3

Li3p´eβµq. Combining both

relations, one can define a T {TF averaged over the whole harmonic trap

T

TF

ˇ

ˇ

ˇ

ˇ

HO
“

“

´6Li3p´eβµq
‰1{3

. (3.5)

The polylogarithm function Linpzq follows the definition in appendix B.

Mixing the trap-averaged value or the local value of T {TF could give very misleading

estimates on the degree of degeneracy of the cloud, as their values deviate very fast with

increasing temperature, as shown in figure 3.2. In our experiment, it is meaningful to keep

track on the local thermodynamic properties of the cloud, hence we will stick to the local

T {TF in this thesis unless otherwise specified.

3.2.1 Thermometry using the Equation of State

As we further reduce the ALS beam power and cool toward quantum degeneracy, the time-

of-flight (TOF) method for temperature measurement loses validity. On one hand, this is

because the expansion of the cloud changes from ballistic to hydrodynamic [120]. On the

other hand, what TOF measures is the internal energy of the cloud, which includes strong

interactions apart from the kinetic energy, which is what we want to measure to access the

temperature. Instead, we adopt a thermometry based on doubly-integrated density profile

of the cloud in a axial-symmetric harmonic trap [50]. From such 1D density profiles one

can directly extract the equation of state (EoS) on the local pressure [121].

This extraction can be performed by considering the chemical potential, which varies

with the position inside a harmonic trap as:

µpr, zq “ µ0 ´
1
2
mω2

rr
2 ´

1
2
mω2

zz
2. (3.6)

From the Gibbs-Duhem relation, the 3D density can be expressed as nprq “

ˆ

BP prq

Bµprq

˙

T

.

Subsequently, the 1D doubly-integrated profile along the trap axial direction is

n1Dpzq “ 2π
ż 8

0
nprqrdr “ ´

2π
mω2

r

ż ´8

µpr“0,zq

ˆ

BP

Bµ

˙

T

dµ

“
2π
mω2

r

P pT, µpzqq. (3.7)

This result shows that one density profile in the harmonic trap bears the information
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Figure 3.2: Comparing the local reduced temperature
T

TF

ˇ

ˇ

ˇ

ˇ

LDA
to the trap-averaged value

T

TF

ˇ

ˇ

ˇ

ˇ

HO
. The blue curve shows that the trap-averaged value becomes much smaller than the

local T {TF at trap center as temperature goes up. The asysmptotic behaviors are shown by
the red dotted lines. For very low temperature, the two definitions become equal, whereas

for high temperature,
T

TF

ˇ

ˇ

ˇ

ˇ

LDA
«

4
π

1
3

ˆ

T

TF

ˇ

ˇ

ˇ

ˇ

HO

˙2

.
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Figure 3.3: Mapping between βµ and (a) the correction function ψ “ P {P0 as well as
(b) local T {TF . In both pictures, green points are from Virial expansion until third order
under high temperature limit, red points are experiment data from MIT, blue points are
from excitation spectrum under low temperature limit.

of the pressure EoS at all different µ. From known asymptotic forms and previous experi-

mental measurements [50, 51] on the EoS, as well as a precise characterization of the trap

frequencies, one can fit for the two thermodynamic variables T and βµ. Here the product

βµ is used as a variable over µ to simplify expressions, since the EoS for pressure (per

spin) of a spin-balanced unitary Fermi gas is

n1Dpzq “
1
λdB

2πkBT

mωxωy

“

´Li5{2
`

´eβµpzq
˘‰

ˆ ψrβµpzqs, (3.8)

which is the pressure for ideal Fermi gas multiplied by a "correction function" only de-

pending on βµ. In addition, knowing a relation between T {TF and βµ (equation B.7), the

Fermi energy εF can easily be deduced from the fit result also.

Figure 3.3 shows ψ “ P {P0 and T {TF as functions of βµ. These curves are obtained

by concatenating segments in different temperature ranges. In the high temperature limit,

Virial expansion up to the third Virial coefficient is used; When T ! TF limit, excitation

energy of the Bogoliubov-Anderson phonons and quasi-particles is used to obtain the re-

quired thermodynamic relations; For intermediate temperature, we take the data from the

experimentally measured EoS at MIT [51]. Some more details on the asymptotic expres-

sions are described in appendix B.

3.2.2 Temperature fit results

Using the above mentioned fitting method based on the EoS, we analyze the evaporation

results after extending our evaporation step 4 to lower trapping depths. As mentioned in
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(a)

(c)

(b)

(d)

(e)

(f)

Figure 3.4: Cloud of one spin in the dipole trap of the ALS beam for various beam powers:
(a) P = 300 mW; (b) P = 200 mW; (c) P = 125 mW; (d) P = 75 mW; (e) P = 30 mW;
(f) P = 20 mW. The column on the right shows the corresponding 1D doubly integrated
density profile (blue dots) and the fitting curve (light blue curve). The fitted temperatures
are T “ t0.66p2q, 0.48p2q, 0.29p1q, 0.21p1q, 0.099p7q, 0.08p1quTF .

the earlier section 3.1, the last stage of evaporation is finished in the single cross dipole

beam. The trapping frequency is the composite between the laser trapping, which follows

the calibration in section 2.3.3, and a 10.3 Hz magnetic trapping in the horizontal plane.

After evaporating to various optical trap depths, the local T {TF at the trap center are ex-

tracted from the density profile of the cloud. The result is shown in figure 3.4. With lowest

regulated power 17 mW of the dipole trap laser, our evaporation reaches a final temperature

of 17 nK and T {TF “ 0.076 ˘ 0.013, with about 5 ˆ 104 atoms per spin state. This is well

below the known superfluid transition temperature Tc{TF “ 0.176 [51]. An independent

evidence of the presence of superfluid will be shown in the following section 3.3. Fig-

ure 3.5(a) and (b) summarizes the temperature, atom number and phase space density over

the final evaporation process.

Total internal energy vs. kinetic energy

As mentioned earlier, the temperature measured from expansion of the cloud deviates from

the real temperature as it is cooled down. However, based on the TOF measurement, one
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Figure 3.5: (a) Atom number against trap depth in the course of the evaporation. (b) Tem-
perature and phase space density (PSD) as a function of atom number. Red dashed line
follows lnpT q » 4 lnpNq ` b. (c) Temperature change throughout the evaporation process.
Thermometry using the EoS fit gives a measurement on temperature T (red squares); Hy-
drodynamic expansions from TOF measurements gives an estimate on the internal energy
TTOF “ Tint (blue circles). A naïve fit of TOF measurements with a ballistic expansion
is also shown (green squares). (d) Comparing Tint{TF to T {TF , which is expected to fol-
low the numeric solution for a unitary gas in 3D harmonic trap (solid blue line). Adapted
from [122]
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can still obtain meaningful information. In fact, according to the Virial theorem, for both

non-interacting and unitary Fermi gas in harmonic trap, the internal energy equals to the

trapping potential energy [123]. Therefore, knowing the trapping frequency ωK and the

fitted in-trap cloud size σ0, the TOF temperature directly reflects the internal energy, which

includes both the kinetic energy and the interactions:

TTOF “ Tint “
mω2

Kσ
2
0

kB

“
Eint

3
2NkB

. (3.9)

In figure 3.5(c), the real temperature from EoS fit (red squares) is compared to the TOF

temperature or the "internal temperature" (blue circles). The deviation becomes obvious

below 100 nK. For the unitary Fermi gas in our experiment, the expected behaviour of

Tint

TF

“
Eint

3
2NEF

“
P

nEF

is solved numerically after averaging over the 3D harmonic trap. It shows a reasonable

agreement with our TOF measurement in subfigure (d). A noticeable feature of this curve

is that at very low T {TF , the internal energy is dominated by Fermi pressure, and will tend

to a constant instead of zero.

Notice that the in-trap cloud size σ0 in equation 3.2.2 is determined by fitting the cloud

size against TOF based on a hydrodynamic expansion. If naive ballistic expansion is used,

another set of "temperature" data T 1 is obtained (green diamonds). For thermal cloud at

high T {TF , the naive ballistic fit of the temperature agrees with the EoS fit, and is larger

than the internal temperature Tint, due to the negative contribution of interaction in the

unitary gas.

3.3 A unitary Fermi superfluid

In 1938, bosonic superfluidity was first seen by two groups [124, 125] simultaneously on

liquid 4He. A phase transition is recorded at „2.17 K below which "type I helium" with

zero viscosity appears. This behaviour was soon related to the Bose-Einstein condensation

of bosonic 4He [126, 127, 128]. For fermionic systems, the transition happens at much

lower temperatures compared to the degeneracy temperature. Even though lab observation

of Mercury superconductivity has been done as early as in 1911 by Dutch physicist Heike

Kamerlingh Onnes, the understanding of superfluidity/superconductivity came much later

with the BCS theory [20], which explains the pairing of fermionic atoms. Subsequently,
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Leggett showed that the superfluid of losely bond Cooper pairs and BEC made by tightly

bound molecules can be viewed in a unified way through the "BCS-BEC crossover" —

They can smoothly evolve into each other as the pair size changes with respect to the inter-

particle distance [129].

In the crossover regime, the strongly-interacting Fermi gas system resembles high-Tc

materials in the sense that the correlation length or the "pair size" is comparable to the

interparticle distance. The superfluid transition temperature here in units of Fermi temper-

ature is also higher than any other conventional fermionic system. Thermometry described

above suggests that we have cooled the Fermi cloud below its superfluid critical tempera-

ture 0.176TF , therefore have obtained a superfluid of 6Li. Direct observation of fermionic

superfluidity is not trivial as the phase transition is not directly reflected on the cloud den-

sity profile [130], unlike in the Bose-Einstein condensation. Nonetheless, there are various

experimental techniques that have been used as good indicators.

Excited vortices

Observation of vortex arrays is the most direct evidence for superfluidity. Through stirring,

a non-zero curl is introduced in the velocity field of the fermionic cloud. For fermions in

superfluid phase, this curl can only be carried by evenly distributed, quantized vortices. In

MIT, clear observation of vortices has been shown on 6Li [49]. However, since the stirring

requires extra laser beams and subtle control over the motion of their foci, we did not apply

this method to check whether we are creating superfluid samples.

Rapid ramp and double structure

The rapid ramp technique provides another possible indication for superfluidity. It was first

developed in the JILA group [131] on 40K and adapted on 6Li by the MIT group [132]. By

performing a magnetic field ramp from BCS to BEC side that is fast enough to preserve the

momentum distribution, Cooper pairs are mapped to condensates in the molecular BEC,

and can show up as a double structure in the density profile. However, the connection

between superfluidity and the double structure is not trivial as it depends on the ramp pa-

rameters and for typical conditions, the condensate fraction is not conserved during the

field ramp.

Superfluid plateau

Observation of a superfluid plateau for a spin-imbalanced Fermi gas is yet another way

to confirm superfluidity, and can be readily tried out using our setup with a weakly spin-
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polarized cloud. The superfluid plateau is a flat region in the 1D double integrated profile

of the density difference between the majority and the minority Fermion species. It reflects

the phase transition from pure superfluid to normal liquid when the chemical potential

difference between the two spins increases to the Clogston Chandrasekhar limit [90], and a

sudden jump on the local density of the minority spin |Óy is seen. At unitarity,
nÓ

nÒ

“ 0.44

at the phase separation [133]. If the cloud is trapped in a harmonic potential, it is more

convenient to quantify the spin imbalance by the polarization P “
NÒ ´ NÓ

NÒ ` NÓ

. There is a

critical polarization above which superfluid pairing does not happen throughout the whole

trap, and it is reported [133, 134] to be Pc “ 77%. For 0 ă P ă Pc, superfluid will exist

and the cloud will consists of three concentric shells of different phases:

• A fully paired superfluid core with nÒ “ nÓ, where vortices can be generated [135].

• A partially polarized non-superfluid phase with nÒ ą nÓ. The densities (especially

for the minority spin) are discontinuous at the separation with the inner core.

• A fully polarized phase where only the majority spin exist and obeys the ideal Fermi

gas laws. The densities changes continuously from the middle shell to the outermost

shell.

Assuming that the length of the superfluid core is l along the major axis z, by equa-

tion 3.7, the 1D doubly integrated profile difference remains constant over l:

Bpn1D
Ò ´ n1D

Ó q

Bz

ˇ

ˇ

ˇ

ˇ

|z|ă l
2

“ ´
ω2

z

ω2
r

¨ 2πz BpPÒ ´ PÓq

Bµ

ˇ

ˇ

ˇ

ˇ

r“0,|z|ă l
2

“ 0. (3.10)

Figure 3.6 shows the absorption images of the two spins, and the subtracted profiles.

A plateau can be clearly seen over the 200µm range in the middle of the cloud. The two

absorption images are taken at high field using double-exposure mode on the camera and

a fast switch on the imaging beam frequency. Each exposure is 7µs long, and the two

exposures are separated by 3µs. This small delay between the two exposures guarantee

that the density profile of the later-imaged spin component will not be modified by the

photon kicks on the firstly-imaged spin. As a simple estimate, the collision rate between

opposite spins is (by equation 2.6 and 3.4)

Γcoll “
1

3π

ˆ

TF

T

˙2
EF

~
.
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Figure 3.6: (a) Absorption images of the majority (blue OD) and the minority (red OD) spin
components. (b)1D integrated profile of the majority spin (blue dots), the minority spin
(red dots) and their OD difference (green dots). Savitzky-Golay filter of order 3 and frame
length 29 has been applied to both density profiles to smoothen out the fringes originated
from the imaging light. The vertical dotted lines mark the different phases. SF: superfluid,
PP: partially polarized, FP: fully polarized.
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For the series of final cloud temperature shown in figure 3.4, the inverse of the collision

rate ranges from 80µs to 2µs. Therefore the double-exposure would already be completed

before thermalization.

The combination of thermometry and the observation of the plateau in the density dif-

ference nÒ ´ nÓ for a spin-imbalanced Fermi gas show that we are indeed able to produce

unitary superfluid sample with a high degree of diluteness, which is a key step to perform

single atom imaging.
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CHAPTER 4
HIGH RESOLUTION IMAGING SYSTEM

The first crucial component in building a quantum gas microscope is the high-resolution

imaging system. In this chapter we report the performance of the high-NA objective and

the camera in this imaging system. The magnification of the setup is carefully chosen to

ensure a good signal-to-noise ratio (SNR) as well as reliable lattice reconstruction during

imaging processing.

4.1 Microscope objective

The microscope objective collects the fluorescence photons during Raman sideband cooling

(see chapter 6) from below the science cell. It contains a customized lens groupa designed

to provide high resolution images at λ “ 671 nm wavelength, through a 3 mm thick glass

cell wall. The objective has an effective focal length of f “ 27 mm and a entrance pupil

diameter of D “ 30 mm. The corresponding numerical aperture (NA) is 0.55. The me-

chanical part of the lens holder is made of polyetherimide, with an outer thread for easy

mounting on controllable stages.

Resolution

The image of a spot object through the objective is described by a point spread function

(PSF), whose intensity is given by an Airy disk

Iprq “ I0

„

2J1pr̃q

r̃

ȷ2

, (4.1)

where r̃ “
πrD

λf
is a reduced quantity obtained from the radial displacement r of the

image point from the principal axis. J1 is the order 1 Bessel function of the first kind.

The resolution on the focal plane can be taken as the first intensity zero of the image spot,

which corresponds to r̃ « 3.8317 or δ “
1.22λ
2NA

. Based on the design parameters of this

objective, the resolution is δ “ 740 nm for 671 nm imaging light. This is comparable to

the triangular pinning lattice spacing
2
3
λlatt = 710 nm (see chapter 5). Therefore it will be

adesigned and manufactured by Special Optics
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possible to reconstruct the lattice position and to determine the occupancy on each lattice

site from the images.

=27 mm

L1

L2

CMOS

671 nm

borofloat
glass

objective

resolution
test target:

linear
stage

mm

Figure 4.1: Test setup for the objective. Collimated red light is shone from the top onto
the resolution target, which is positioned roughly at the working distance of the objective.
The distance can be finely adjusted by a linear stage. The inset shows the patterns on the
resolution test target. A 3.3 mm thick borofloat glass is put above the objective path to
mimic the science cell wall.

In order to test the performance of our objective, we built a side optical setup that

mimics the final imaging condition, like shown in figure 4.1. A resolution test targetb is

placed at the focus plane of the objective. Its distance from the objective can be finely

controlled by a linear translation stage. The diffracted light from the target is collected

and focused on a CMOS camerac. Between the target and the objective, a borofloat glass

plate with 3.3 ˘ 0.2 mm thickness is inserted to mimic the wall of the science cell, which is

made of the same material, but has a slightly thinner thickness of 3 mm. The glass plate is

mounted on a mirror mount, so that its tilt can be adjusted to keep the normal of the plate

surface in parallel with the imaging light. Using the high frequency line gratings, we are

first able to determine precisely the magnification of the test setup to be M “ 45.1 ˘ 0.5.

The resolution of the objective is tested from the PSF of a 0.5µm pinhole on the target.

Since the objective is designed to produce the best resolution through a 3 mm glass, in

order to directly compare the designed performance with our measurement, we asked the

manufacturer for a set of simulations under the modified glass thickness of 3.3 mm. Both

our measured intensity profiles and the simulation are shown in figure 4.2. They are in

bEdmund Optics #37-539
cThorlabs DCC1545M-GL
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very good agreement for various pinhole target positions. When the target is at the focal

point (designed for 3 mm glass), the PSF contains more power on the side peaks, deviating

from an Airy function, but the first intensity minima is roughly at 750 nm, similar to the

designed resolution. Moving the target about 4µm away from the expected focal point,

the PSF follows an Airy disk better, but with a worse resolution of 990 nm. Through this

comparison, we are assured that when operating under the actual condition, the resolution

can reach the manufacturer-specified value of 750 nm.
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Figure 4.2: Objective point spread functions for the image of a 0.5µm pinhole after 3.3 mm
glass plate, at various distances from the focal plane. The focal plane distance is referenced
based on the actual working condition when the glass thickness is 3 mm instead. This dis-
tance can be controlled with a precision of 2.5µm on our test setup, limited by a manual
translation stage. (a-c) The images of the pinhole at 4µm, 2µm, 0µm from the focus, to-
wards the objective. (d-f) Radial cuts from the pinhole images on the camera. The intensity
profiles are renormalized. By fitting these profiles naively with an Airy function, the po-
sitions of the first intensity minima are found at 990 nm, 890 nm and 750 nm at respective
distances. (g-i) Simulated PSF by the manufacturer at 4µm, 2µm, 0µm from the focus.
The measured PSFs and the simulated PSFs resembles each other at all the tested off-focus
distances.
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vertical motorized stage

home-made mount
elliptical dichroic

objective holder

6-axis stage

Figure 4.3: The objective mount assembly, which consists of the objective holder, a home-
made mount, a 6-axis stage to control the tranlsations and tilt, and a high-precision vertical
stage to focus on the atoms. The imaging light from above is reflected by the elliptical
mirror.

Positioning

Since the depth of focus of the objective is only „ 2µm, the focal distance must be con-

trolled with enough precision to maintain the best resolution on the single-atom images.

Also, it is necessary for the objective mount to have motorized control over its displace-

ments and tilts. This will help re-optimizing the image quality once the objective has drifted

relatively from the atoms. Figure 4.3 shows the mounting of the objective holder. The ob-

jective holder is directly screwed onto a cylindrical customized mount, with an opening on

the side to fit a 45˝ mirror to reflect the imaging light. The mount itself sits on two motion
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control units — a motorized 6-axis aligning staged and a motorized vertical stagee. The

former can control the translation along all three axes within 3 mm and the tilt in all three

directions within 4˝. The latter can change the objective height within 4.8 mm range by a

step size of 0.06µm.

The total height of the mounting system is about 280 mm, which brings the objective

entrance pupil to the proper working distance from the cell bottom. Most length of the

objective holder fits into the center hole of the bottom curvature coil. While moving closer

to the cell, the top part of the objective holder enters the beam path of the Z-lattice (as

suggested in figure 5.1(b)). To allow optical access for the z-lattice beams, we made two

vertical cuts along the opposite walls of the holder. These cuts allow the high-power Z-

lattice beams to pass through while not exposing the inner area of the objective lens system

to the air. They are shown in the figure 4.3 inset.

4.2 Choice of magnification

To retrieve spatial distributions from single-atom images efficiently, the position and the

orientation of the underlying lattice sites inside the camera frame is usually calibrated based

on the periodic pattern of the fluorescence, in a process called lattice reconstruction. This

requires there to be enough well-separated image points that can be well-fitted by the PSF.

Once the lattice is reconstructed, its position should remain the same from picture to picture

given a good stability of the experiment. The atoms can be then identified simply based on

the fluorescence intensity on each lattice site. In the final fluorescence image, for a given

number of photons that can be collected, there exists a trade-off between a higher signal-

to-noise ratio (SNR) and a better resolution for the lattice sites on the camera pixels. In

other words, if a higher magnification is used for the imaging system, less photons will be

collected on each pixel, producing a noisier picture; Whereas if a lower magnification is

used, each single-atom PSF will span over fewer pixels, making the lattice reconstruction

less accurate. The stray photons or false firing on a CCD pixel is also more likely to be

mistaken as an atom.

4.2.1 Simulations of fluorescence images

To determine a proper magnification for the imaging system, we performed simulations

of the single-atom imaging using realistic values. The programme was written by Joris

Verstraten and its procedure can be described as the following:

dNewport 8095-M
eNewport M-VP-5ZA
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• Starting with an atom density n achievable in the experiment, the number of atoms

is generated over a selected camera area A, or correspondingly over a real-space

volume
Aλ

2M2 , where M is the magnification and λ{2 the Z-lattice spacing.

• These number of atoms are randomly placed over this area with a uniform probability

(assuming no interactions). Then each atom is snapped to the nearest XY-lattice site.

• For each atom, a PSF centered on its lattice site is generated and normalized to

various photon emissions per atom (50, 150 or 500). The average photons Npix that

end up in each pixel is calculated by integrating the PSF over the pixel area. The

actual number of photons on this pixel is generated from a Poisson distribution with

variance Npix.

• Photon count contributions from each atom are added up. A Gaussian noise with a

mean of 2 photons and a standard deviation of 2 photons is added on top for every

pixel to simulate electronic and other (homogeneous) sources of noise.

Occupancies in the lattice

The first step of the simulation is to estimate the atom density, or the "diluteness" of the

cloud. This not only determines the number of atoms within the picture frame, but also

affects the probability of two atoms getting pinned very close to each other, either in the

same lattice site or in adjacent ones. Such occurrences are not desirable for single-atom

imaging, because when a double occupancy (two atoms in a single lattice site) happens,

light-assisted collisions let them quickly escape from the trap. So they will not be seen on

the image and the distribution of the atoms will be altered. Additionally, when two atoms

occupy adjacent sites, their PSFs overlap. Lattice reconstruction will become more tedious

if this happens too often.

The atom density is related to the Fermi energy via equation B.2. Our experiment

typically reach 20 nK cloud temperature and T {TF “ 0.076 in the end of evaporative

cooling. This Fermi temperature corresponds to a both-spin peak atom density of n “

nÒ ` nÓ “
1

3π2

ˆ

2mεF

~2

˙
3
2

“ 0.56µm´3, which in turn corresponds to an inter-particle

distance d “ 1.2µm. Additionally, the average cell volume Vcell “ λ3{3
?

3 is obtained by

multiplying the Wigner-Seitz cell area 2λ2{3
?

3 of the triangular lattice with the vertical

spacing λ{2 between lattice planes. Therefore we expect an average site occupancy of

nVcell “ 13%. The number of atoms that end up in a particular lattice site can be modeled

by a Poissonian distribution with mean atom count κ “ 0.13. This leads to an expected
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single-occupancy probability P p1q “ 11.4% and double-occupancy probability P p2q “

0.74%. Even higher occupancy numbers are negligible. In other words, among all occupied

lattice sites, the percentage of doubly-occupied sites is about 0.74{p11.4 ` 0.74q « 6.1%.

There is some margin to lower this occupancy further if we evaporate away more atoms at

the expense of a slightly higher T {TF . For TF “ 100 nK instead, the double-occupancy

occurrence is lowered to 2%. We consider this acceptable for extracting the atoms spatial

distribution.

In order to gain more insight on the atom distribution statistics, we perform over 500

iterations of the simulations described above, and look at the typical distance (in terms

of lattice sites) between the nearest neighboring atoms. From the position of each atom,

other lattice sites are labeled according to the straight-line distance from the central one.

Sites with equal distance share the same label, as shown in figure 4.4(a). The statistics

at TF “ 100 nK is shown in subfigure (b). There is no simple pattern on the probability

against lattice label as each labeled group has a degeneracy. However, one can see that the

probability for adjacent-occupancy to occur is slightly above 15%, while most of the atoms

are spaced by over four lattice hoppings (labeled group 6 and above). This leaves enough

well-separated PSFs for lattice reconstruction.
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Figure 4.4: (a) Illustration on the triangular lattice sites and how they are labeled according
to the distance from the central site. The red hexagon denotes a Wigner-Seitz cell. (b)
Occurence frequencies of nearest-atom falling in each labeled site group. The statistics is
taken with 500 simulated distributions.
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Photon counts per pixel

The camera used for photon collection is a 1024 ˆ 1024 pixels EMCCD cameraf , whose

quantum efficiency over most of the visible light range is 95%. Each pixel is 13µm by

13µm in size.

In a rough estimate, we assume conservatively that 200 photons are collected from each

atomg, the peak intensity of an Airy disk is related to the total power by I0 « 1.17P0{δ2,

where δ is the resolution as defined earlier in equation 4.1. The spread of the PSF can be

roughly taken as the area beyond which intensity drops to 0.37 I0. For an Airy disk this

occurs at a radius r “ δ{2. The photon count in the central pixel of a PSF and the spread

of a PSF are listed for several magnifications in table 4.1. At M “ 50, the central pixel

photon number is 29 on average. The Poissonian standard deviation is
a

Npix “ 5.4, which

is below 20% the mean photon count. This is an acceptable level of fluctuation.

Magnification Photon # in the central pixel PSF spread area (# pixels)
30 80 2.3
50 29 6.4
75 13 14.3

Table 4.1: Rough estimates on the peak photon counts and the PSF spread at three different
magnifications. M “ 50 seems to be a good compromise.

Simulated image at two magnifications

Figure 4.5 displays the simulated fluorescence images over a 128 ˆ 128 pixels area of

interest. The simulations compare two magnifications with photon number per atom set at

500, 150 and 50. When the photon number is low, magnifications larger than 60 will not

be able to provide clear images as the fluorescence is flooded over by the noise. However,

for photon number 150 and higher, magnification 40„60 give reasonable signal levels. In

our actual setup, we have chosen M “ 55.6 based on the focal lengths of our available lens

sets.
f Andor iXon Ultra 888
gIf we take the initial photon collection rate as measured in section 6.4, 200 photons can be collected

within 300 ms.
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Figure 4.5: Simulated fluoresence images at two magnifications M “40 and 60, and at
three different exposure conditions, where photon number per atom are 500, 150 and 50.
Reprinted from [136]
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4.2.2 Imaging setup

With the ideal magnification known, we implement the optics into the setup. This is done

along the vertical imaging axis. The beam height of the reflected imaging light from the

objective mount is about 150 mm above the table. We prepared two different 2-inch lens

sets to have the option of switching between two magnifications. This is very helpful when

we want to have a larger field of view when pre-aligning the objective or when the cloud

position has been moved. The first configuration consists of only one converging lens with

1.5 m focal length (figure 4.6(b)). In combination with the f “ 27 mm objective, this yields

a high magnification M “ 55.6. This is the configuration we will be using for the single-

atom imaging as planned ealier. The CCD active region of 1024 by 1024 pixels will include

roughly 330ˆ330 lattice sites in the field of view, with each lattice site spanning over „ 8

pixels. In an alternative configuration for pre-alignment and for absorption imaging, three

converging lenses with focal lengths f “300 mm, f “500 mm and f “250 mm respec-

tively are used. They work as two consecutive telescopes and give an overall magnification

of 5.6. In figure 4.6(a), two different geometric beam paths are traced out. The orange rays

show the atoms fluorescence, hence starts from a point-like source from the center of the

cell; The purple rays shows the absorption imaging light, which comes from the top of the

cell and is collimated. These lenses are mounted on magnetic bases so that they can be

easily switched from the low magnification to the high magnification configuration. With

the high-resolution imaging path being setup under the low magnification configuration

now, we are ready to perform some preliminary measurements in the presence of a pinning

lattice.
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Figure 4.6: (a) Lens set for preliminary alignment on the atom cloud (orange rays) and for
absorption imaging (purple rays). The magnification is 5.6. The absorption imaging beam
is shone vertcially down from above the cell, and is partially clipped by the second lens
L2 due to strong divergence. (b) Lens set for high magnification single-atom fluorescence
images. The magnification is 55.6.
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CHAPTER 5
OPTICAL PINNING LATTICES

This chapter describes the pinning lattices used to obtain single-atom imaging. We show

several measurements to characterize the lattice, and to analyze the pinning process nu-

merically to evaluate how efficiently the atoms will end up localized in lattice sites during

pinning.

5.1 Laser sources and control

5.1.1 Lattice beam configuration

Two 1064 nm 45 W ALS lasers are used to create confinement for the 3D cold atomic

cloud before taking in-situ microscopic images. In the XY (horizontal) plane, one ALS

laser comes with vertical linear polarization and is reflected to cross with itself twice in

a butterfly pattern, as shown in figure 5.1(a). This interference creates a triangular 2D

lattice. In the Z (vertical) direction, a 1D lattice is created by the interference of a single

beam with its reflection in the vertical plane, with a relative angle of „ 90˝, as shown in

figure 5.1(b). The choice of this angle is restricted by the optical access through coil mounts

above and below the cell. An alternative scheme would be to shine the Z-lattice beam

through the microscope objective vertically and do a retro-reflection. Our current scheme

leads to a lower trapping frequency for the same laser power, but has two advantages over

the alternative scheme: Firstly we avoid the risk to damage the objective or to induce

thermal lensing. Secondly the region on top of the cell is kept clear and can be used for

other purposes. For example a second imaging setup with less magnification but larger field

of view can be added from the top.

The lattices are each controlled by an AOM double pass before going to the science cell.

They can be either pulsed on within a microsecond or ramped up gradually by controlling

the AOM driving power. We have also observed that comparing to a single pass, the double

pass in an cat eye’s configuration [137] effectively suppresses the pointing orientation drift

shortly after the AOM’s turning on. Both XY and Z-lattices are focused to a waist of around

90µm at the atoms positiona.

abased on beam caustic measurement before the science cell.
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Figure 5.1: (a) Laser setup for the XY triangular lattice. The laser is reflected twice to
cross at the atom position in a butterfly pattern with angle θ « 60˝. (b) Laser setup for
the Z-lattice. The laser is passed between the Feshbach and curvature coils diagonally and
reflected back in a symmetric manner with φ « 45˝.
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Lattice laser security lock

Since the last arm of the XY lattice shines along the transport axis in opposite direction

of the transport beam, extra precautions must be taken to avoid simultaneously switching

on the two high-power beams. We have chosen to add two motorized flip mirrors along

the optical path to dump each beam. The choice of flip mirrors over polarizing cubes is to

avoid additional thermal lensing effects and to maintain the best laser spatial modes. The

flip mirror mountsb can provide status signals indicating the current position of the mirror,

which are picked up by a home-made security interlock circuit to disable the switch-on

of the wrong laser. As shown in figure 5.2, flip mirror 1 positioned before the optical

transport entrance viewport is used to dump the XY lattice, and must be flipped down

during the optical transport; Flip mirror 2 positioned after the science cell is used to dump

the transport beam, and must be flipped down before turning on the pinning lattice. The

two allowed laser configurations are described in the drawings.

5.1.2 Turn-on sequence

A series of measurements were performed to characterize the lattice. For this set of mea-

surements, instead of studying the quantum gas in free space, we load the cloud directly

from the harmonic trap into the pinning lattice. The experimental sequence is depicted in

figure 5.3. After evaporation step 4 (see section 3.1), we obtain a cold cloud of roughly

600 nK. The Z-lattice is first ramped on to a low power of 1 W, giving a trap depth already

much larger than the cloud temperature, and the cloud tends to be adiabatically loaded into

the lowest lattice band by the end of this initial ramp. Atoms are held in the Z-lattice for

1.5 s, in which period the transport beam is switched off and the flip mirror positions in-

verted. Next, the XY-lattice is also ramped on to 1 W power before the magnetic field is

quickly turned off and atoms are held until the field stabilizes. We can maintain as much

as 80% of the atoms during this field switch-off with no sign of heating. Finally, either

or both of the pinning lattices power is ramped up to the target lattice power that is being

calibrated. During this power ramp, the cloud heats up in proportion to the lattice depth

increase.
bStanda 8MFM-1
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flip mirror 1
down

flip mirror 2
up flip mirror 2

down

flip mirror 1
up

dumped
lattice beam

dumped transport beam

a) b)

Figure 5.2: Security interlock for safely switching between the transport beam and the
lattice beam. (a) During optical transport, flip mirror 1 is down and mirror 2 is upright. The
transport beam is dumped after cell and lattice beam is disabled. (b) Later in the sequence,
flip mirror 1 is upright and mirror 2 is flipped down. XY lattice beam is dumped before the
transport viewport and the tranport beam is disabled.
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30

mirror flip

mirror flip

0.6 s 0.7 s 0.5 s 1.5 s1.5 s 80+100 ms30 ms

Figure 5.3: Sequence to load into the pinning lattices. After evaporation to step 4, Z-lattice
is first turned on at 1 W power. It holds the cloud through a 1.5 s period of mirror flip. Then
the XY lattice is turned on as well at 1 W, and the magnetic field is quickly ramped to 0. At
zero field, each pinning lattice is increased to its target depth.
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5.2 Characterizing the pinning lattice

5.2.1 Estimated trapping frequency

The dipole potential in the optical lattice follows Uprq “ αpωqIprq as in equation2.2. In

particular the polarizability for our 1064 nm lattices evaluates to

αpω “ 2π ˆ 252THzq “
3πc2

2ω3
0

ˆ

Γ
ω ´ ω0

´
Γ

ω ` ω0

˙

“ 8.36 ˆ 10´37 JW´1cm´2.

The periodicity of the lattice is known by considering the interfering electric field be-

tween lattice arms. Following the convention in appendix A, the dipole coupling strength

can be directly written as Ω “
´eE
~

xe| r̂ |gy, where

E “ E0,1e
ik1¨r ` E0,2e

ik2¨r,

For simplicity, we assume the interfering electric fields to have the same polarization

and amplitude. Then in the case of Z-lattice, two interfering arms each with intensity I0

intersecting at an angle 2φ (as in figure 5.1(b)) results in the standing wave intensity:

Ipzq “ I0t2 ` 2 cosp2kz sinφqu. (5.1)

The corresponding trapping frequency is

ω2
z “ 8k

2αI0

m
sin2 φ. (5.2)

Similarly, for three interfering arms having angle 2θ between arms 1& 3 and between

arms 2& 3 (as in figure 5.1(a)):

Ipx,yq “ I0t3 ` 2 cosrpk2 ´ k1 ¨ rs ` 2 cosrpk3 ´ k2 ¨ rs ` 2 cosrpk1 ´ k3 ¨ rsu

“ I0t3 ` 2 cosp4kx sin θ cos θq ` 4 cosp2kx sin θ cos θq cosp2ky sin2 θqqu. (5.3)

Here ki is the wavevector of the ith arm, and the y-axis is defined to be along arm 3. The

trapping frequencies are

ω2
x “ 48k

2αI0

m
sin2 θ cos2 θ (5.4)

ω2
y “ 16k

2αI0

m
sin4 θ. (5.5)
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Figure 5.4: (a) A contour plot on the XY pinning lattice on a 3µm by 3µm area around
the beam intersection, assuming 30 W laser power. The lattice is triangular with a potential
minimum of -920Erec = -1.29 mK. (b) The trap potential along a cut line in the strong and
weak trapping direction. The weak trapping depth is 810Erec and the strong trapping depth
is 920Erec.

30 W, φ “ 45˝ 30 W, θ “ 60˝

Z-lattice
XY-lattice along X
(strong trapping)

XY-lattice along Y
(weak trapping)

trap depth 570µK = 408Er 1.29 mK = 920Er 1.14 mK = 810Er

trap frequency 0.83 MHz 1.26 MHz 1.26 MHz

Table 5.1: Trapping parameters for 30 W Z-lattice and XY triangular lattice with beam
waist 90µm.

For example, using a power of 30 W and a waist of 90µm on the XY-lattice intersecting

with θ “ 60˝, the trap depth in the interference region is drawn in a 2D contour plot in

figure 5.4(a), in units of recoil energy Er “
~2k2

2m
“ 1.4µK. The inhomogeneity due to

the Gaussian profile is ignored. The trap minimum is at ´1.29 mK = 920Er. The resulting

lattice is triangular and the trapping along Y is slightly weaker than the trapping along X,

as in figure 5.4(b). The trapping periodicity is
2λ
3

along Y, and
2λ
?

3
along X. Table 5.1

summarizes the relevant parameters for both the XY-lattice and the Z-lattice each with

30 W beam power. This laser power can readily be achieved on our setup after the AOM

double passes, although in the following characterizations, we usually use 1/2 „ 1/3 of this

value to have longer atom lifetime in the lattice.
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5.2.2 Modulation measurements

Parametric heating

Despite being a very rigid structure due to the strong coherence of lasers, optical lattices

are still subjected to vibrations and changing depth due to noise in the laser phase and in-

tensity. These modulations on the lattice can cause heating effects for the trapped atoms. In

particular, atoms are especially sensitive to noise of frequency exactly twice the lattice trap-

ping frequency, which causes the "parametric heating". The heating rate in one motional

direction x 9Exy “ Γx xExy is given by [138]

Γx “ π2ν2
xSkp2νxq, (5.6)

where Skp2νxq is the intensity noise spectrum at frequency 2νx.

Although the parametric heating is usually unwanted, and usually suppressed by PID

regulations on the laser intensity, it can also be used as an effective calibration tool.

Amplitude and phase modulation

We performed both amplitude modulation (AM) and frequency modulation (FM) measure-

ments on the XY pinning lattice laser at a final lattice power 10 W in the sequence ramp.

Amplitude modulation is done by adding a sinusoidal signal to a DC voltage controlling

the lattice AOM driving power; Frequency modulation is applied on the AOM driving fre-

quency using an auxiliary waveform generator. The atom cloud is first held in the lattice for

20 ms for thermalization before a modulation period of 10„20 ms. after which we probe

the cloud density profile where the heating can be seen as a broadening of the cloud size or

a loss in atom number.

For AM, a heating peak is present at 2νtr as expected, whereas in FM modulation, heat-

ing effect is observed both at νtr and 2νtr. This is because a FM of the form A cosr2πfct `

β sinp2πfmodtqs also contains a 2fmod amplitude modulating component:

r1 ´
β2

2
sin2p2πfmodtqsA cosp2πfctq.

In figure 5.5, we emphasize on the FM calibration results. Subfigures (a) and (b) shows

the cloud width and atom count after 200µs time-of-flight respectively. From the cloud

width, two heating peaks are seen at 532 ˘ 5.5 kHz and 1025 ˘ 12.5 kHz. From the atom

number, two heating peaks are seen at 538 ˘ 5.5 kHz and 969 ˘ 13 kHz. In either case, the

peak frequencies are not exactly a factor 2 different. This is probably due to anharmonicity
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Figure 5.5: Parametric heating induced by modulations on lattices. (a) Cloud width after
200µs TOF after 10 ms lattice frequency modulation at 10 W laser power. Strong heating
effect is observed at 532 and 1025 kHz, roughly corresponding to fmod and 2fmod. (b) Atom
number count under the same modulation condition. Strong heating effect is observed
at 538 and 969 kHz. (c) The first heating peak (blue dots) due to frequency modulation
is plotted against XY-lattice power. The peak frequency is proportional to

?
P (dashed

parabola).
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(a) (b)

Figure 5.6: Left: Power scaling curve for XY-lattice based on various trapping freuqency
measurements. Blue dots: heating peaks fitted from maximum cloud widths in FM, same
as in subfigure 5.5(a). Red dots: heating peaks fitted from minimum remaining atom count
in FM. Green dots: Raman sideband frequencies as measured in section 6.4. Right: Power
scaling curve for Z-lattice.

of the trapc.

Repeating such measurements for several XY-lattice and Z-lattice powers, and focusing

only on the first peak corresponding to νtr, we see the resonance of heating follows nicely

to the theoretical νtr9
?
P scaling law (figure 5.5 (c) and figure 5.6). The scaling constant

is 168 kHz¨W´ 1
2 for the XY-lattice and 109 kHz¨W´ 1

2 for the Z-lattice. Both values are

about 25% lower than our earlier estimate based on a beam waist of 90µm. We suspect

that the actual beam waist at the atom position deviates from the caustic measurement due

to the thermal lensing from glass cell walls. Since the parametric heating result is a more

direct measurement on the trapping frequencies, we determine the actual beam waist to be

around 120µm. Additional trapping frequency data from Raman sideband transitions also

(see section 6.4) agree pretty well with the lattice modulation result.

5.2.3 Kapitza-Dirac scattering

One way to check the periodic pattern of the lattice is through Kapitza-Dirac scattering,

first predicted by Paul Dirac and Pyotr Kapitza in 1933 [139]. This scattering effect can be

described by a stimulated Compton scattering of the cold atoms by the standing wave of

the lattice within a short period of time with respect to the kinetic energy of the atoms (i.e.

in the Raman-Nath regime). Thus the kinetic terms in the interaction Hamiltonian can be

cIn our calculation, only 6 bound states are present in a 9 W lattice. The assumption of deep trapping is
partially inaccurate even though the most atoms are expected to be in the lowest band.
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neglected.

Following the mathematical description by Gupta et al. [140], but keeping the nota-

tions in consistent with our convention in appendix A, the standing wave potential can be

expressed as

Upr, tq “ ´
~Ω2

4∆
f 2ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k
eik¨r

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Here Ω and ∆ are the coupling strength and detuning of each individual lattice beam as

defined in appendix A. The detuning is assumed to be large: ∆ " Γ2{4. fptq is the time-

varying part of the electric field. The last factor in modulus square contains the spatial

interference between all lattice arms, and can be identified with the expressions in equa-

tion 5.1 and 5.3.

Given an initial wavefunction |ψ0y “ |g, 0y in the ground internal state and carrying

zero momentum, the wavefunction after scattering is

|ψy “ |ψ0y exp
"

´
i

~

ż

dt1Upr, t1q
*

“ |ψ0y exp

$

&

%

iΩ2τ

4∆

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k
eik¨r

ˇ

ˇ

ˇ

ˇ

ˇ

2
,

.

-

, (5.7)

where τ “
ş

dt1f 2pt1q. For simplicity, we replace the quantity
Ω2τ

2∆
by the notation θKD,

which represents the pulse area of the Kapitza-Dirac scattering. Then the scattered wave

function by our triangular lattice can be written as:

|ψy “ ei 3
2 θKDeiθKDrcospb1¨rq`cospb2¨rq`cospb3¨rqs |ψ0y

“ ei 3
2 θKD

ÿ

n1,n2,n3

in1`n2`n3Jn1pθKDqJn2pθKDqJn3pθKDqeipn1b1`n2b2`n3b3q¨r |ψ0y

9
ÿ

n1,n2,n3

in1`n2`n3Jn1pθKDqJn2pθKDqJn3pθKDq |g, pn1 ´ n3q~b1 ` pn2 ´ n3q~b2y .

(5.8)

Here we have defined b1 “ k3 ´ k2, b2 “ k1 ´ k3 and b3 “ ´b1 ´ b2 in a cyclic way.

Jn is the order n Bessel function of the first kind, which follows the identity eiα cospβq “
ř8

n“´8 i
nJnpαqeinβ . The atom cloud has been scattered into states of discrete momenta,

quantized by ~b1 and ~b2.

We have performed Kapitza-Dirac diffraction on a molecular BEC cloud, which is ob-

tained by evaporating near 665 Gauss on the BEC side of the Feshbach resonanced. The

dThe actual sequence is more complicated as the evaporation and magnetic field ramp are interspersed.
This is to optimize the number and lifetime of the molecules. Details of the sequence is omitted.
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Figure 5.7: Kapitza-Dirac scattering result. Average of 60 absorption pictures after 2 ms
TOF is shown in the left column. For the given lattice power P and pulse time τ , sim-
ulations with the corresponding pulse area θKD are shown on the right column. The free
fitting parameters for the simulations are the "fudge factors" on the single beam electric
field amplitudes.
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XY-lattice is pulsed on for various duration and at various power. For each resulted pulse

area θKD, we took 60 absorption images with 2 ms TOF. Taking the average of these images,

we observed clear diffraction pattern in which the peaks are spaced by 50 pixels « 115µm

(figure 5.7). For molecules of mass twice that of a lithium atom, the expected diffraction

peak spacing is
~|b|

2mLi
tTOF “ 108µm, very close to what we saw. In addition, we made

simulations on the diffraction pattern with three tuning factors αt1,2,3u, to account for pos-

sible intensity imbalance on the three lattice arms. For example, the electric field strength

on the ith lattice arm is modified to Ω1
i “ αiΩi. Subsequently, the Bessel functions’ con-

tribution in equation 5.8 is modified to Jn1pα2α3θKDqJn2pα3α1θKDqJn3pα1α2θKDq. Using

fitted fudge factors αt1,2,3u “ t1.18, 0.92, 0.86u, the simulation reproduces most features

on the measurements at every pulse area, showing very good agreement on the weights of

the diffraction peaks.

5.2.4 Band mapping

In cold atom experiments, a commonly used method to directly visualize lattice band struc-

ture occupation is band mapping. It is done by adiabatically closing the band gap, so

that an atom in the nth band with quasi-momentum q will evolve into the momentum state

p “ q ˘ 2nkL after the band unfolds. In a time-of-flight image, a group of atoms starting

with momentum ~k expands freely and asymptotically to a distance r “
~k
m
tTOF. The final

cloud density in space therefore reveals the initial momentum distribution, which in turn

reveals the structure of the filled bands before ramp-off. Figure 5.8 shows the shape of the

first four Brillouin zones for a square lattice and a triangular lattice.

For adiabatic following to happen during lattice ramp, the probability of inter-band

transition must remain low when the lattice depth is reduced at a rate 9V0 [141, 142]

|xψn,q| 9V0|ψm,qy| !
pEm,q ´ En,qq2

~
. (5.9)

Assuming a linear ramp in lattice power, this requires the ramping time to be on the order

of tramp "
~V0

16E2
r

in a 1D lattice.

XY-lattice mapping result

We performed a band mapping with the cloud starting in 1.5 W XY-lattice, whose trapping

frequency is roughly 200 kHz. The lattice is ramped off in 600µs before a 1.5 ms TOF.

The cloud optical density after TOF is shown in figure 5.9, where a Gaussian filter has

been applied to emphasize the cloud from the background noise. The hexagonal shape of
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Figure 5.8: Top row: Filling up the square lattice Brillouin zones 1 to 4 from left to right.
Bottom row: Filling up the triangular lattice Brillouin zones 1 to 4 from left to right.

the first Brillouin zone can be clearly seen. From the XY-lattice spacing 2λ{3, the first

Brillouin zone is a hexagon with width 2π ¨
?

3{λ, whose corresponding size at 1.5 ms TOF

is marked by the red dotted line. The small discrepancy between it and the size of our cloud

could be a combined result of the uncertainty in exposure timing, the initial spread in the

atoms momentum, and the limited focus depth of the objective.

Figure 5.9: Band mapping for
XY-lattice at 1.5 W. The lattice
is ramped off in 600µs and the
cloud expanded for 1.5 ms. The
expanded cloud shows the hex-
ognal shape of the first Brillu-
oin zone. The expected size of
first Brillouin zone is indicated
by the red dashed hexagon.

5.3 Evaluating the pinning efficiency

Imaging the atoms in situ requires them to be well localized inside the lattice sites with low

probability of escaping or tunneling. We have investigated certain aspects of the pinning
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process numerically based on the band structure of our pinning lattices. In particular, we

estimated the occupation of energy bands as the lattice is initially ramped on, which reflects

how accurately can the atom distribution be preserved during pinning.

5.3.1 A quick reminder on lattice band theory

For simplicity we recapitulate on the general treatment for 1D lattice. Generalization to

a 3D Bravais lattice is straightforward by finding the primitive cell and the corresponding

reciprocal lattice.

Bloch’s theorem

Within a periodic potential V pxq with period a equal to the lattice parameter, the stationary

Schrödinger equation is given by

ˆ

p̂2

2m
` V̂ px̂q

˙

ψn,q “ En,qψn,q. (5.10)

The eigenstate ψn,q are called the Bloch waves with band index n and quasi-momentum q.

It has the form of

ψn,qpxq “ eiqxun,qpxq, (5.11)

where un,qpx` aq “ un,qpxq has the same periodicity as the lattice potential. Therefore the

Bloch wave gains only a phase factor after translation by a. Restricting this phase within

2π range, the quasi-momentum is limited to the first Brillouin zone, q P r´π
a
, π

a
q.

If the lattice has finite length L “ Nsa, the quasi-momentum will be discretized

by [143]

q “
2πn
L
, with ´

Ns

2
ă n ă

Ns

2
´ 1.

Therefore Ns is also the number of quasi-momenta within the first Brillouin zone.

Band structure calculation

Plugging the Bloch wave equation 5.11 back into the Schrödinger equation 5.10, one can

find numerical solutions for the band structure in the optical lattice potential of the form

Vlattpxq “ V0 sin2p
kLx

2
q. Both the lattice potential and the amplitude of the Bloch wave

have periodicity a “
2π
kL

. Expanding the equation in Fourier components with wavevectore

eHere we have introduced a "lattice wavevector" kL that differs from the single beam wavevector k. For
a 1D lattice created by two counter-propagating beams, kL “ 2k.
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Figure 5.10: Numerical calculation on the band structure of a toy 1D lattice at various trap
depths. V0 = 0.1, 2, 6 and 15Er from left to right.

at multiples of kL, the eigen equation can be rewritten as

Cn,q
j

„

~2pq ` jkLq2

2m
`
V0

2

ȷ

´
V0

4
`

Cn,q
j´1 ` Cn,q

j`1
˘

“ En,qC
n,q
j , (5.12)

where Cn,q
j is the coefficient for Bloch wave amplitudes un,q “

ř

jPZC
n,q
j eijkLx.

This eigen equation can be solved by diagonalizing a matrix with truncated terms of

Cj . For example in figure 5.10, the structure of the lowest band at several V0 ă 15Er

are calculated with |j| ă 5. For deeper lattice, the rank of the matrix must be increased

accordingly. A reasonable truncation for V0{Er “ 50 is |j| ă 20 [144].

Wannier functions

When studying systems with strong lattice potential, it is more natural to use eigenbasis

localized in space, such a basis is given by the Wannier functions, which can be obtained

from the delocalized Bloch waves through discrete Fourier transform [141]

wn,jpxq “ wnpx ´ xjq “
1

?
Ns

ÿ

qPBZ1

ψn,qpxqe´iqxj , (5.13)

and follows the orthogonality condition

ż

w˚
mpx ´ xiqwnpx ´ xjqdx “ δm,nδi,j.

In second quantization, the Hamiltonian can be rewritten as [144]

Ĥ “
ÿ

n,qPBZ1

En,q b̂
:
n,q b̂n,q “ ´

ÿ

n,i,j

Jnpxi ´ xjqâ:
n,iân,j (5.14)
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using the Bloch state creation operator b̂: or the Wannier state creation operator â:. From

the definition of Wannier states, it follows that

Jnpxi ´ xjq “ ´
1
Ns

ÿ

qPBZ1

En,qe
iqpxi´xjq, (5.15)

which represents the hopping amplitude from site xj to site xi within the nth band. Con-

versely, the dispersion relation in the nth band can be expressed as

En,q “ ´
ÿ

i´j

Jnpxi ´ xjqe´iqpxi´xjq “ ´

8
ÿ

j“1
2 cospjaqqJnpjaq. (5.16)

Tight binding limit

Under the tight-binding limit, where lattice depth is much larger than the recoil energy, hop-

ping beyond the nearest neighboring site is strongly suppressed. Consider only the average

energy in site Ēn “
1
Ns

ř

q En,q “ ´Jnp0q, and the neareat-neighbor hopping [144]

Jn “ Jnpaq «
4Er
?
π

ˆ

V0

Er

˙
3
4

exp
ˆ

´2
c

V0

Er

˙

,

the Hamiltonian can be simplified to

Ĥ «
ÿ

n,j

”

Ēnâ
:
n,j ân,j ´ Jnâ

:
n,j`1ân,j

ı

. (5.17)

5.3.2 Calculated structure for the pinning lattice

We numerically calculated the band structure for our Z-lattice and XY-lattice. Since these

calculations are done in prior to our experimental calibrations on the lattices, we have

assumed the trap depths optimistically based on a smaller beam waist. Still, the discussion

here is good for illustrative purpose, and future improvements on the lattice beam focusing

could make these trapping conditions practically achievable.

For the Z-lattice, we assumed a trap depth of V0 « 1.1 mK « 780Er. At this trap

depth, the Z-lattice holds 24 trapped bands. Even just below the top of the trap potential,

these trapped bands appear quite flat, although there is obvious anharmonicity from the

unequal band gaps. The cacluated band structure near the top of the trapping potential is

shown in figure 5.11 (a). Subfigure (b) shows the energy difference between successive

bands against the band index, taken at the center of the Bruillouin zone. The gap between
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n=21

Figure 5.11: Calculated band structures. (a) Zoom on the band structure near the top of
the trapping potential, which is denoted by the horizontal dashed line. (b) The energy
difference between adjacent bands measured at zero quasi-momentum. The fundamental
trapping freuquency is 1.14 MHz, and the highest bound state has index n “ 24. For
higher bands, the band gap at the center of the Brillouin zone is closing up as seen from the
zigzaging shape of the plot.

the lowest band and the next lowest is 1.14 MHz. The gap gets smaller for higher bands

as expected, and decreases to roughly 0.5 MHz just before a free state. For index 24 and

higher, the dispersion relation is very similar to that of a free particle.

Repeating similar calculation for the XY-lattice assuming 2.5 mK trap depth, we find

the first transition at 1.8 MHz. This transition frequency between non-degenerate levels

decreases to around 0.4 MHz just below the open levels. We observe a non-negligible

anharmonicity, which encourages us to add a controlled frequency sweep for Raman side-

band cooling at the initial turn-on of the lattice. More discussions on the Raman sideband

cooling will take place in chapter 6.

Pinning of atoms

Knowing the band structure of the lattices, we can now estimate how the wavefunction

of an atom is loaded into the energy bands during pinning. A program written by Bruno

Peaudecerf calculates the projection of a Gaussian wavepacket onto the Wannier functions

corresponding to the lowest bands. The width σ of the wave packet is taken as the cor-

relation length, which is typically also the inter-partical spacing σ « k´1
F « n´ 1

3 . This

gives σ{d « 2.6, using d “
λ

?
2

based on the Z-lattice spacing. The result in figure 5.12

shows that all the even-number trapped band are occupied. The occupation probability does

not decrease with the band number, although the lowest band being slightly more favored.

This distribution is insensitive to the off-centering of the wave packet from the trap center
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(subfigure (a)„(c)). If the wavepacket carries a momentum on the order of kF (subfigure

(d)„(f)), the overall occupation probability is not significantly modified, except that odd-

number bands are also filled now. For an even broader wave packet, the band occupation

remains similar.

Since plenty of higher bands will be populated, some atoms may in fact tunnel out

of their initial positions, unless we manage to cool them down efficiently and quickly.

However, because the way that atoms are projected in the bands does not very much depend

on their initial position, the loss of atoms from higher bands is unlikely to distort the overall

spatial distribution. By summing the projection on all the Wannier states within a lattice

site, the projection probability against site vicinity is calculated. The result in subfigure

(g) shows that the total weight on each site follows a Gaussian distribution. One-sigma

width of this distribution roughly corresponds to the central 5 sites around the atom. Given

this span and the diluteness of the cloud, the tunneling events mentioned above will be

tolerable. Finally, as we will show in the later chapter 4.1, the point spread function of

the atom fluorescence is on the same order of the lattice spacing, and will not limit the

precision of the reconstructed atom distribution. Therefore, our planned pinning protocol

seems promising to render the initial atom positions with good fidelity.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.12: Projection of a Gaussian wave packet onto the lattice Wannier states. (a-c)
Occupation number versus band index for a static wave packet, with various position offset
∆x from the trap center. (d-f) Occupation number for a moving wave packet carrying
momentum k „ kF . (g) Summing over the occupation number within each lattice site,
the wave packet is normally distributed over several lattice sites, with a width of roughly 5
sites.
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CHAPTER 6
TOWARD SINGLE ATOM IMAGING

Atoms in the pinning lattice are subjected to heating effects from lattice intensity noise

and from photon scattering. To keep atoms at lower vibrational levels in the lattice sites,

two-photon cooling techniques are used. The most common methods are EIT cooling [145,

146] and Raman sideband cooling [79, 78, 77]. In this chapter we describe the scheme and

setup for the Raman sideband cooling in our experiment. The Raman two photon transition

has been tested in the lattice. The obtained spectrum shows clearly resolved sidebands

and provides an additional confirmation on our previous lattice calibrations. We have also

observed promising images of atom fluorescence.

6.1 Cooling scheme

Figure 6.1 shows the level diagram for Raman sideband cooling: Two lasers are used to

couple two target ground states — |g1y in the F “ 1{2 manifold and |g2y in the F “

3{2 manifold, via a virtual excited state that is never populated during this two-photon

process. Both Raman beams are chosen to be 5.5 GHz red detuned from the D1 line.

Their frequency difference matches the Zeeman splitting between |g1y and |g2y, minus a

vibrational sideband frequency of the lattice. The decomposition of |g1y and |g2y into the

"good" basis of Zeeman states will depend on the magnetic field, as seen in the Breit-

Rabi formula 1.1, and on the polarizations of the two Raman beams, which determines the

allowed angular momentum addition during this two-photon process. We have chosen to

use π and σ´ polarizations on Raman beams 1 & 2 respectively, they will coherently drive

an oscillation between nth vibrational state of |g1y internal state and the n ´ 1th vibrational

state of |g2y, with a +1 change in the magnetic quantum number. A repumper in resonance

with D1 line brings back the atom in |g2y to the excited state |py, so that effectively the

Raman coupling preferably drives transitions from |g1y to |g2y. When the atom decays

from the excited state, its internal state goes back to |g1y or |g2y according to the braching

ratio, which is 4{9 and 5{9 at zero magnetic field. The vibrational state remains in n ´ 1
since single photon recoil energy is small compared to the lattice trapping frequency. When

the atom eventually goes back to |g1y, one Raman cycle is completed and the vibrational

level has gone down by one. Given the numerical aperture of the microscope objective, the

photons released in the spontaneous decay from |py have a 8.2% chance to be collected,
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Figure 6.1: Level diagram of Raman sideband cooling. Raman beams Ω1 and Ω2 (with π
and σ´ polarization respectively) induce two-photon transition from |g1, ny to |g2y , n ´ 1.
The repumper recycles the transition and spontaneous decay from |py back to either ground
state provides photons for fluorescence imaging.

thereby contribute to the fluorescence imaging of the atoms in-situ.

Although we currently perform Raman sideband cooling at zero field, the cooling

scheme described above is also valid under strong magnetic field with some adjustments.

6.2 Laser setup

6.2.1 Laser source preparation

Figure 6.2 shows the laser table for the two Raman beams. The two beams are generated

from a single ECDL source amplified by a TA. The output of the TA is split and passed

through two acoustic optical modulators (AOM) to keep the two Raman beams in coher-

ence. Currently the Raman 1 & 2 are shifted by +131.2 MHz and -97 MHz respectively
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Figure 6.2: Laser source for Raman sideband cooling.

from the master frequency, The relative laser detuning between them thus is controlled at

228.2 MHz with sub kHz precision, which is suitable for Raman transition under a well

cancelled magnetic field. The AOMs also allow an accurate and fast control over the de-

tuning to match the sideband frequency. In addition, frequency modulations can easily be

applied on the AOMs in case there is a need to compensate for anharmonicity of the trap. In

the future it will be possible to perform Raman sideband cooling also under high magnetic

field, by keeping the same optics and only substituting the AOMs to models giving larger

frequency shiftsa.

The overal detuning ∆ with respect to D1 line is less crucial for the performance of

the Raman cooling and we have chosen to park at -5.5 GHz offset from the D1 line. This

choice is to a large part arbitrary, but is in line with three considerations — Firstly the

detuning should be large enough from an atomic line to reduce off-resonance scattering

from each single Raman beam which heats up the cloud; Secondly the detuning cannot be

too large compare to the fine structure splitting, which must remain resolved for Raman

transitions to happen with a reasonable probability. Thirdly, we avoided shining light on

the D2 transition in order to reduce tensor Stark shifts. This frequency offset lock uses the

same side-of-filter method [97] as we have used for the high field imaging light earlier in

section 1.2.2. The offset frequency is controlled by a local RF sourceb. This offset lock is

afor example, AOM model BRI-GPF-650 under double pass can provide 2.5 GHz detuning between
Raman + and -, which is enough for Raman cooling under 832 Gauss.

bDS instrument SG6600L
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Figure 6.3: Orientations of the Raman beams and the repumper beam

able to stabilize ∆ below 5 MHz and prevents day-to-day drifts.

The master laser uses a 15 mW 671 nm laser diode installed on a homemade mount.

A tapered amplifier is added to get enough power on each of the Raman beams, typically

7 mW for Raman 1 and 3.5 mW for Raman 2 after fibers. Raman 1 has a beam waist

of 420µm on the atoms, which leads to a max intensity I1 « 2.52 W/cm2 “ 990 Isat(D2).

Raman 2 has a beam waist of 280µm on the atoms, giving I2 « 2.8 W/cm2 “ 1120 Isat(D2).

The repumper is on D1 line, and requires only hundreds of microwatt power. It is directly

taken from a branch on the D1 laser table.

6.2.2 Laser orientations

The geometry of the Raman lasers is depicted in figure 6.3. Raman 1 shines from the side

of the cell, and shares the same axis as the cell transverse imaging light (as in fig 1.8). Its

polarization is linear in the vertical direction, driving π transitions in the magnetic field of

the coils. Raman 2 is overlapped onto the upcoming arm of the Z-lattice using a dichroic

mirror, and intended to have an anti-clockwise circular polarization to drive σ´ transitions.

Nonetheless, the polarization is not as well controlled on Raman 2 because it is last reflected

at a 22.5˝ incident angle on a 45˝ mirror, which introduces ellipticity. Still, overlapping the

Raman 2 with the Z-lattice turned out to have some practical advantages. By collecting

the transmitted red Raman 2 light on a camera behind a Z-lattice mirror above the cell
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(see figure 5.1), we could regulate its orientation to prevent day-to-day drifts. On the same

camera, pre-alignment of the Raman 2 beam was done by creating an absorption image of

the atoms while sending a resonant light through the Raman 2 fiber.

The repumper is shined within the horizontal plane due to two main concerns — Firstly

our triangular lattice is deeper than the vertical 1D lattice, it is therefore favorable to keep

the repumper light wave vector also in the horizontal plane. Secondly this beam orientation

leaks less stray light into the microscope objective.

6.3 Estimated cooling rate

6.3.1 Raman coupling strength

The coupling created by two Raman beams can be modeled by a three level system in

Λ-type configuration, involving the two ground levels |g1y and |g2y, and an intermediate

excited level |ey. Since both the Raman beams are far detuned by ∆ from the excited level,

it does not get populated during the Raman transition. The hamiltonian for this three-level

system can be written as

Ĥ “
~
2

¨

˚

˚

˚

˚

˝

Ee
~Ω˚

2
2
e´iωL2 t ~Ω˚

1
2
e´iωL2 t

~Ω2

2
e´iωL2 t Eg2 0

~Ω1

2
e´iωL1 t 0 Eg1

˛

‹

‹

‹

‹

‚

.

The detuning of each Raman laser can be denoted as ∆1 “ ωL1 ´
1
~

pEe ´Eg1q, ∆2 “ ωL2 ´

1
~

pEe ´ Eg2q. But it is more convenient to work with the global detuning ∆ “
∆1 ` ∆2

2
and the two-photon detuning δ “ ∆2 ´∆1 “ ωL2 ´ωL1 `∆HF, where ∆HF is the hyperfine

splitting between the two ground levels, as shown in figure 6.1.

Under such notation, and assuming that population changes in the excited state |ey is

always slow compared to the dynamics in the ground states, also known as the adiabatic

elimination, the three level system can be simplified to a two level system. In the dressed

states basis which is to first order the basis |g1y and |g2y, its hamiltonian is [147]:

HI,Raman “
~
2

¨

˚

˝

´δ `
|Ω2|2

2∆
Ω˚

1Ω2

2∆
Ω˚

1Ω2

2∆
δ `

|Ω1|2

2∆

˛

‹

‚

“
~p|Ω1|2 ` |Ω2|2q

8∆
1 `

¨

˝

´∆R Ω˚
R

ΩR ∆R

˛

‚. (6.1)

Here 1 is the identity matrix, and we have defined the Raman coupling strength ΩR “
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Ω˚
2Ω1

2∆
, and the "effective Raman detuning" ∆R “ δ `

|Ω1|2 ´ |Ω2|2

4∆
. This effective de-

tuning can be seen as subtracting the light shift on |g1y caused by Ω1 and the light shift

on |g2y caused by Ω2, compensated by the two photon detuning δ. In the experiment, it

could be fully compensated by adjusting δ. Then the Raman Rabi frequency is maximized

to ΩRabi “ ΩR.

From the expression of ΩR, it is clear that the coupling strength scales as the geometric

mean intensity of the two Raman beams. On top of this, if we consider realistic situations,

the dipole matrix element products contain contributions from both the motional degrees of

freedom and the internal degrees of freedom. The former gives the lamb-Dicke parameter

and the latter is an angular momentum addition depending on the virtual excited state.

Considering a transition from vibrational number m to n, and multiple excited states |ey,

the Raman frequency may be written as:

ΩR9

?
I1I2

~2 xg2, n| e´ik2¨x̂ϵ̂2 ¨ µ̂

˜

ÿ

e,m1

|e,m1y xe,m1|

¸

eik1¨x̂ϵ̂1 ¨ µ̂ |g1,my (6.2)

9
a

I1I2 xn| ei∆k¨x̂ |my
ÿ

e

xg2| ϵ̂2 ¨ µ̂ |ey xe| ϵ̂1 ¨ µ̂ |g1y .

Lamb-Dicke parameter

The Lamb-Dicke parameter is defined as the square root of the ratio between the recoil

energy in the two photon process to the level spacing in the harmonic trap:

ηx “

c

Er

~ωtr
“

d

~p∆k ¨ x̂q2

2mωtr
“ |∆kx|x0, (6.3)

where x0 is the harmonic oscillator length. The Lamb-Dicke parameter (along one vibra-

tional axis) arises when expanding the spatial term in the dipole matrix element in terms of

ladder operators

xn| ei∆k¨x̂ |my « xn| 1 ` i∆kxx0pâ ` â:q |my

“ δn,m ` iηx

?
mδn,m´1 ` iηx

?
m ` 1δn,m`1. (6.4)

When ηx ! 1, transitions that changes the vibrational mode by more than one are strongly

suppressed.

Based on the previous lattice calibrations, the lattice frequency we will be able to ob-

tain with 35 W XY-lattice power is around 1 MHz. Considering the angle between the
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two Raman beams, the momentum kick in a two-photon process is |∆k| “
?

2k0 “

2
?

2π
λ

giving the Lamb-Dicke parameters along three directions respectively as ηtx,y,zu “

t0.27, 0.19, 0.19u, and their geometric mean is η̄ « 0.21. The width of the sideband for

about one quantum of vibration is ηΩ, which is small compared to the trapping frequency.

We can expect to obtain a well resolved Raman spectrum, which is displayed in the follow-

ing section 6.4.

Matrix element

To calculate the Raman coupling strength, contributions from all possible intermediate ex-

cited level are summed. Given the two ground states and the polarization of the Raman

beams, we see that in 6Li case there is one allowed two-photon coupling via 2P3{2 and one

via 2P1{2. Eventually the carrier Raman coupling strength can be written as

ΩR,carrier “ κ
Ω˚

1Ω2

2

ˆ

1
∆1{2

´
1

∆3{2

˙

“ κ
3πc2Γ
~ω3

a

Iσ´
Iπ

ˆ

1
∆1{2

´
1

∆3{2

˙

, (6.5)

where ∆1{2, ∆3{2 are respectively the global detuning with respect to 2P1{2 and 2P3{2 fine

structures, and differ by 10 GHz fine structure splitting. κ comes from the Clebsch-Gordan

coefficient in the dipole transitions. At high magnetic field (Paschen-Back regime), one

can directly work with mj basis c and find κ “ ´

?
2

3
. Whereas under zero magnetic field,

Raman transition |F “
1
2
,mF “ ´

1
2

y Ø |F “
3
2
,mF “

1
2

y occurs simultaneously with

transition |F “
1
2
,mF “

1
2

y Ø |F “
3
2
,mF “

3
2

y. The overall κ is
2 ` 2

?
3

9
« 0.61.

The actual Raman beam powers Iσ´
, Iπ projecting on the correct polarization under the

atom quantization axis is smaller than the full beam power I1, I2. At zero magnetic field

the basis is not well defined, for a rough estimate we assume vertical quantization axis,

which leads to a projection factor Iσ´
“ 75%I2 for the desired polarization.

6.3.2 Estimated photon count

In order to estimate the repumper intensity needed and the fluorescence photon number we

can get, we made a numerical simulation on the dynamics between three atomic levels —

ce.g. |g1y
π

ÝÑ |L “ 1, mL “ 0, S “
1
2

, ms “ ´
1
2

y “

c

2
3

|
3
2

, ´
1
2

y `

c

1
3

|
1
2

, ´
1
2

y

|g2y
σ´

ÝÝÑ |L “ 1, mL “ ´1, S “
1
2

, ms “
1
2

y “

c

1
3

|
3
2

, ´
1
2

y ´

c

2
3

|
1
2

, ´
1
2

y
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Figure 6.4: A numerical solution for the three level system consisting of Raman ground
states |g1y, |g2y and the excited level for optical pumping |py. The coupling between |g1y

and |g2y is simplified to a coherent driving with strength ΩR, the Raman Rabi frequency.
|g2y and |py are coupled by the repumper with strength Ωrp. The contour plot shows the
steady state occupation number in |py. From which we estimated the fluorescence photon
emission rate.

the two Raman ground states |g1y, |g2y and the excited level for optical pumping |py. The

effect of the Raman beams are further simplified to a single coherent driving with coupling

strength ΩR. The repumper couples state |g2y to |py with strength Ωrp. Assuming both

drivings to be on resonance by careful tuning the Raman and repumper frequencies, and

taking the branching ratio of spontaneous decay to |g1y, |g2y to be 4
9 , 5

9 respectively, we plot

the steady state solution of the excited state occupation number as a function of ΩR and Ωrp

in figure 6.4. For a rough estimated we take the Raman Rabi frequency to be ΩR “ 0.025 Γ.

There seems to be an optimal repumper power around Ωrp “ 0.2 Γ or Irp “ 0.08 Isat. And

the fluorescence photon emission rate can be expected to reach 0.01 Γ “ 3.7 ˆ 105 s´1 per

atom, which is quite abundant.

dThis estimate is based on the typical Raman power we have on each arm with the correct polarization
Ω1 “ Ω2 « 20 Γ, plugged in to equation 6.5, multiplied by

?
2η̄. The

?
2 here is assuming a red sideband

transition from vibrational state m=2 to n=1.
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Numerical aperture of the objective

The microscope objective has a numerical aperture 0.55, which corresponds to a half-angle

of θ “ 33˝ for light collected from the object. The subtended solid angle is

Ωobjective “

ż 2π

0
dϕ

ż θ

0
sin θ1dθ1 “ 2πp1 ´ cos θq “ 1.036. (6.6)

The fraction of photons collected is
1.036

4π
“ 8.2%. We have shown in chapter 4.2 that with

the planned 55ˆ magnification imaging scheme, a very good signal-to-noise ratio (>9 dB)

can be obtained if 500 photons are collected from each atom. Under the ideal scenario of

3.7 ˆ 105 s´1 photons per atom, this condition can be easily met within 20 ms exposure

time.

6.4 Raman sideband cooling result

Measured Rabi frequency

We calibrate the Raman carrier transition rate by detecting the Rabi oscillations on the atom

number in the ground state F “ 3{2 hyperfine manifold. The atoms are cooled and loaded

into the lattice according to the aforementioned sequence, and the XY pinning lattice is

ramped up to a final power 10 W for this measurement. During the magnetic field ramp-

down, both spin states adiabatically go to the F “ 1{2 manifold, which is seen as the

|g1y in the Raman scheme. We shine the two Raman lasers on simultaneously, with the

Raman 2 laser AOM driver triggered in a burst mode. The length of the burst corresponds

to the duration for which both Raman beams are present, and can be controlled at 100 ns

precision. The resonance for the Raman transition is found when the two beams have

228.255 MHz frequency difference, which slightly deviates from the ground state hyperfine

splitting 228.205 MHz. This discrepancy might comes from the Doppler effect due to the

recoil of the atoms in the weakly confined Z-direction. An absorption imaging is then

performed on the ground state F “ 3{2 manifold, namely |g2y in the Raman scheme.

Scanning the Raman pulse duration, we observe a Rabi oscillations in the |g2y population.

The measured Rabi carrier frequency is 2πˆ325 kHz for 6.5 mW and 3.3 mW power on

Raman 1 & 2, or equivalently for Ω1 “ Ω2 « 20 Γ. Our measured Raman Rabi frequency

is on the same order of magnitude as the estimated Rabi frequency of 490 kHz based on

equation 6.5.
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Figure 6.5: Spectrums of a scan on the Raman two-photon detuning δ on atoms trapped
in XY-lattice. Gray dots and black curves show the atom count in F “ 3{2 states and the
fitted Lorentzians; Black vertical line at 228.2 MHz is the expected position for the carrier
Raman frequency ignoring any light shift; Blue and red lines traces out the shift in sideband
frequencies versus lattice power. From top to bottom, the spectra are taken at XY-lattice
power 4 W, 6.5 W, 9.35 W, 11.7 W, and 15 W.
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We have also checked that the off-resonance scattering rate of each single Raman beam

is on the order of 2π ˆ 3 kHz, much smaller than the Raman Rabi frequency. This ensures

that the sideband cooling dominates and can keep the atoms in a low vibrational state during

the collection of fluorescence photons.

Resolved sidebands

Using the above measured π time of the Raman pulse, the Raman cooling sidebands are

observed in XY-lattice and in Z-lattice independently. In figure 6.5 we measure the atom

number transferred from F “ 1{2 to F “ 3{2 via the Raman two-photon coupling, when

the Raman two-photon detuning is scanned around the carrier frequency 228.2 MHz. The

pulse duration is 1.5µs, corresponding to a π-pulse on the carrier transition. A series of

Raman spectra at various XY-lattice power ranging from 4 W to 15 W are shown. We can

see clearly resolved red and blue sidebands. The sideband frequencies follows the
?
P

scaling law nicely for the selected XY-lattice power. This serves as a confirmation on the

previously calibrated lattice frequency based on lattice modulation in section 5.2.2. Similar

measurements are done for the Z-lattice at two lattice powers 12 W and 25.5 W.

First fluorescence signal

With the Raman beams well characterized, we have also tried to test the performance of

the Raman cooling and check the photon collection rate by turning on the repumper simul-

taneously. Firstly a measurement is done on the whole cloud using a low magnification

of 5.6 for the imaging system. The Raman two-photon detuning is fixed on the peak of

the red sideband, the fluorescence from the whole cloud is collected for various cooling

durations ranging from tens of milliseconds to several seconds. In addition, an absorption

image is also taken at the end of each cooling duration to count the atom number left. In

figure 6.6(a), the fluorescence photon collection rate against number of atoms left is plotted

in a scatter plot, from which we estimate 105 photons/atom/s emission rate from the Raman

sideband cooling process. This is on the same order of magnitude as our previous estimate

in section 6.3.2.

Another measurement on the atom lifetime inside the pinning lattices with or without

the presence of Raman cooling beams confirms the effectiveness of our Raman sideband

cooling. Figure 6.6(b) shows that Raman cooling is capable of extending the atoms lifetime

by more than a factor of 100, keeping the atoms in the lattice for more than 7 seconds.

Finally after switching to the higher magnification of 55 times on the imaging system,

we have obtained a raw image of single atoms in the center of the pinning lattice, as seen
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Figure 6.6: (a) Raman fluorescence photon rate after various cooling time, plotted against
the corresponding atom number at the end of the cooling process. The linear fit extracts the
photon emission rate per atom per second. (b) Lifetime of the atoms inside pinning lattices
is significantly extended from 50 ms to 7200 ms by applying Raman sideband cooling.
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in figure 6.7. Already from this preliminary result, traces of single-atom-like fluorescence

spots can be recognized. The quality of such a single-atom image can potentially be im-

proved significantly after reducing stray lights from the background or from atoms outside

the focal plane. This can be achieved by optically blowing away atoms in off-focused

lattice planes with the help of a magnetic gradient and RF pulses.

Figure 6.7: An example of the single-atom fluorescence image within 500 ms exposure
time. The cloud is first released to expand for 10 ms, and then recaptured by the pinning
lattice for fluorescence imaging.
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CONCLUSION

This thesis has presented the design and performance of our new quantum simulation setup

based on 6Li atoms, with which we are able to obtain degenerate Fermi gas under the

strongly-interacting regime, having a temperature well below the superfluid transition tem-

perature. The capability of obtaining single-atom resolved images through quantum gas

microscopy is ready to be demonstrated.

In chapter 1 and 2 we have explained the overall structure of our setup and quantitatively

assessed the performance of the laser cooling in the MOT chamber. The MOT loading and

gray molasses cooling are both fast and effective, giving us a cloud containing several

108 atoms at 50µK within the first 2 s of the experiment sequence. The optical setup for

two high power infrared lasers were illustrated, one of them can transport the atoms cloud

optically with an efficiency as high as 97%, and bring them to the science cell with a wide

optical access. The second IR laser provides extra confinement for the cloud there and

helps to increase the opposite-spin collision rate by 70 times. The imbalance in the spin

populations can be reliably controlled by a non-adiabatic RF sweep. The sweeping speed

has been well calibrated at a magnetic field of 832 G. Before further evaporation in the

crossed dipole trap, we can typically have 3 ˆ 105 atoms in each spin, with a collision rate

of 3.8 ˆ 104 s´1.

In chapter 3 the evaporative cooling sequence and result are presented. We adapted a

thermometry method based on the equation of states of a unitary Fermi gas in a harmonic

trap, which can be directly extracted from the cloud’s doubly integrated profile. Using

this thermometry, we report a final temperature of 17 nK and T {TF “ 0.076 at the end

of evaporation, much lower than the superfluid transition temperature Tc{TF “ 0.176 at

unitarity. An extra evidence of superfluidity was given by the direct observation of the

"superfluid plateau" in a spin imbalanced cloud.

In chapter 4, the high-resolution imaging setup is explained. The microscope objective

gives a resolution of 750 nm under actual working condition for 671 nm imaging wave-

length. Through simulations of the fluorescence picture, we chose to use 55.6ˆ magnifica-

tion for the single-atom imaging, which both save enough sampling points for each atom’s

PSF, and allows for a high signal-to-noise ratio. An alternative lower magnification of 5.6

is also setup, giving a suitable field of view for the preliminary measurements in the lattice.

In chapter 5 we have shown the geometry of the 2D triangular lattice in the horizontal

plane and the 1D vertical lattice. Both lattices have been carefully characterized using para-
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metric heating effects from controlled modulations on the lattice laser amplitude/frequency.

The lattice periodicity and its first Brillouin zone are revealed by Kapitza-Dirac scattering

and band mapping respectively. Using numerical calculations on the band structure, we

have evaluated that each atom can be reliably pinned on lattice sites at its vicinity.

Finally, in chapter 6 the Raman sideband cooling scheme is explained. Two-photon

transitions induced by a pair of Raman beams have been observed. While scanning the two-

photon detuning, we have obtained spectra showing transitions at the carrier frequency and

at numerous blue and red sidebands. The sideband frequencies measured this way agree

with the earlier lattice calibration very well. With the presence of a repumper light, a

cooling effect is clearly seen on the red sideband, where more photons are collected when

holding atoms in the lattice. The quantum gas microscope is now ready to start taking our

first fluorescence images.

Possible upgrades on the experiment

Although we have achieved on our setup a stable and fast operation that routinely produces

a degenerate Fermi gas, there are modifications that can be carried out to simplify the

sequence significantly or to bring further improvements on the stability.

dumped

Fesh & curv
coils

(a) (b)

dumped

s-pol.s-pol.

p-pol. s-pol.
transport
beam

Figure 7.1: A possible modification on the Z-lattice, where a half-wave plate is placed
between the two lattice arms, to control the depth of interference. (a) During evaporation,
the polarization of the reflected lattice arm is rotated 90˝ with respect to the incoming lattice
arm. There is no interference where the beams cross. (b) After evaporation, the Z-lattice is
ramped up by turning the waveplate, to align the polarizations of the lattice arms.

Evaporation sequence

The sequence can be greatly simplified if the final steps of the evaporation can be done

in the Z-lattice instead of in the cross dipole beam. This modification can be realized

96



by adding a similar intensity PID control circuit on the Z-lattice as we used for the cross

dipole beam, plus a half-wave plate on a rotational mount in between the two Z-lattice

arms. By motorizing the half-wave plate angle one can control the depth of interference for

the Z-lattice, keeping it non-interfering during the evaporation and fully interfering during

pinning. Such change will have two advantages — Firstly the cross dipole beam can be

taken out to give more optical access around the cell, and the control sequence for the

evaporation will be simplified; Secondly the collision rate in the later evaporation steps

will be higher and the evaporation duration can be shortened.

Gravity compensation

In the future implementations, our setup should be able to simulate fermions in free space

following a single equation of state. This relies on creating a homogeneous potential using

repulsive dipole force. We have prepared a 532 nm green light field with linear intensity

gradient along the vertical direction. This provides a constant upward force that can com-

pensate for gravity. The beam intensity is tailored by a digital micromirror device (DMD).

A real-time feedback program controls the micromirror positions to produce the tailored

linear potential. The performance of this servo system has been tested on a side setup by

Tim de Jongh. More details about this setup are shown in appendix D. To integrate this

setup on the main experiment, we can shine the green laser along the transverse imaging

axis with the help of dichroic mirrors as planned in figure 1.8.

Outlooks

Here we suggest several research subjects that can be studied on our machine in the near

future.

Spatial dependence of correlations

As discussed in the introduction, our understanding on the correlations in the BEC-BCS

crossover, especially near unitarity, is still insufficient. In overall, there is a lack of both

theoretical models and direct experimental measurements on the onset of strong correla-

tions as the temperature of the system is lowered. Some of the latest progress in charac-

terizing the correlations at unitarity relies on probing the contact C, and revealed a sudden

increase in C across the normal-to-superfluid transition [58, 60]. However the change is

only 30% from the high temperature (T „ TF ) normal phase to the deep superfluid regime,

not fully reflecting the building up of the correlations. After all, the contact C is only a par-
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tial measurement on the second order density-density correlation gp2qprq “ xnÒp0qnÓprqy

at its short-range limit.

Figure 7.2: Spin-resolved single-atom fluorescence images (Simulation). Distribution of
each spin component in a homogenous cloud will be detected non-destructively from the
fluorescence of Raman sideband cooling. Each bright spot in this simulation signals the
presence of an atom with a fidelity >99%. Reprinted from [136]

With a quantum gas microscope, however, we can aim to access density correlation

functions at any order, beyond the short range behavior. In addition, with carefully de-

signed Raman cooling scheme that works independently for each spin state (as suggested

in section 6.1), our machine has the potential to yield spin-resolved fluorescence images,

contemplated to look like figure 7.2. This will give us extra freedom in playing with the

spin-imbalance of the system, and extracting both the single-spin correlations gÒ, gÓ, and

the inter-spin correlations gÖ. This opens up many interesting directions, one of them being

the study of Fermi polarons.

A Fermi polaron can be created for example by flipping the spin of one atom within

a spin-polarized Fermi sea. This spin impurity dressed by the majority spins around it

forms a quasiparticle — a Fermi polaron. Earlier studies [148] have measured contact in

such highly spin-imbalanced clouds. Our quantum gas microscope image will be a good

complement to the existing results by providing more information on the spatial variation

of the correlation. The change in correlations as a function of the spin imbalance can also

be explored.

Critical temperature and dynamics

Another of our research interests is the critical temperature Tc for the normal to superfluid

transition. Previously, Tc has only been measured at unitarity [50, 51]. There is no concen-

sus about the exact trace of the Tc line elsewhere throughout the BEC-BCS crossover even

for spin-balanced Fermi gases.
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Figure 7.3: An illustration of a Fermi po-
laron, realized by making a spin |Óy im-
purity in a Fermi sea of |Òy. Reprinted
from [149].

Figure 7.4: 3D render of a box potential.
Reprinted from [91]

Finding the critical temperature of an atomic cloud at unitarity relied on its universality,

whereby the thermodynamic quantities of the cloud become functions of a single parameter

T {TF . The aforementioned works therefore conducted their measurements in an inhomo-

geneous potential and their methodology remained in the LDA framework. Moving away

from unitarity, as a new interaction parameter 1{pkFaq enters the equation of state. These

methods break down or are at least severely complicated.

To generalize the Tc measurement throughout the crossover, we propose to work with

a homogeneous potential enclosed by a light box, as illustrated by figure 7.4. At the super-

fluid transition, the onset of a long-range order coincides with a sharp zero-momentum peak

in the momentum distribution of fermion pairs nppkq. Our strategy to reveal the pair mo-

mentum distribution is through the rapid-ramp technique, which was invented in JILA [42]

and further developed at MIT [132, 150]. A rapid ramp in the magnetic field from the BCS

side to the BEC side creates diatomic molecules from two fermions of opposite spins that

were physically nearby. The molecules will have a momentum distribution nmpkq that is

related to nppkq before the ramp. The exact relation between nmpkq and nppkq has not been

demonstrated in any existing literatures. However, the recent progress from our colleague

Felix Werner [151] will help us make this link.
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APPENDIX A
ELECTRIC DIPOLE FORCE ON A TWO-LEVEL ATOM

A textbook semi-classical approach on atom-light interaction considers a driving electric

field of the form

Epr, tq “ E0prq cospϕprq ´ ωtq “
E0prq

2
“

eipϕprq´ωtq ` c.c.
‰

. (A.1)

Dipole approximation assumes that the optical wavelength is large compare to the size of

the atom and hence appear invariant to the spatial integral on the interaction Hamiltonian.

Under this assumption, the dipole interaction can be expressed as[152]

H “ Ĥ0 ` Ĥ1 “ Ĥ0 ´ er ¨ Epr, tq. (A.2)

The perturbation under dipole approximation has the form

Ĥ1 “

¨

˚

˝

~ω0
xe| µ̂ |gy ¨ E0prq

2
`

eipϕprq´ωtq ` c.c.
˘

xg| µ̂ |ey ¨ E0prq

2
`

eipϕprq´ωtq ` c.c.
˘

0

˛

‹

‚

.

ω is the frequency of the driving field and ~ω0 is the energy difference between the two

atomic levels. xe| µ̂ |gy “ ´e xe| r̂ |gy is the dipole matrix element.

Performing an unitary transformation

|ψ̃y “ U |ψSy “

¨

˝

eiωt

1

˛

‚|ψSy

to go into the "rotating frame", and use rotating wave approximation to drop out fast os-

cillating terms with frequency ω ` ω0, the interaction Hamiltonian transforms according

to

Ĥrot “ i~pBtUqU : ` UĤ1U
:

“
~
2

¨

˚

˝

´2pω ´ ω0q
eiϕprqE0prq

~
¨ xe| µ̂ |gy

e´iϕprqE0prq

~
¨ xg| µ̂ |ey 0

˛

‹

‚

“
~
2

¨

˝

´2∆ Ω

Ω˚ 0

˛

‚.
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Here we have defined the coupling strength Ω “
eiϕprqE0prq

~
¨ xe| µ̂ |gy and the detuning

∆ “ ω ´ ω0.

In order to take into account the spontaneous decay, the dynamics of this two level

system is described by its density matrix in the rotating frame

Btρ̃ “ ´
i

~
rĤrot, ρ̃s ` L̂tρ̃u,

where

ρ̃ “

¨

˝

ρ̃ee ρ̃eg

ρ̃ge ρ̃gg

˛

‚“

¨

˝

|c̃e|2 c̃ec̃
˚
g

c̃g c̃
˚
e |c̃g|2

˛

‚

and

L̂tρ̃u “ Γ

¨

˝

´ρ̃ee ´ρ̃eg{2

´ρ̃ge{2 ρ̃ee

˛

‚

is the Lindblad operator. Γ “
ω3| xe| µ̂ |gy |2

3πϵ0~c3 denotes the natural line width.

Writing out explicitly the equations for each density matrix elements, they are known

as the optical Bloch equations

9̃ρee “ ´Γρ̃ee `
i

2
pΩ˚ρ̃eg ´ Ωρ̃geq

9̃ρeg “

ˆ

´
Γ
2

` i∆
˙

ρ̃eg `
i

2
Ω pρ̃ee ´ ρ̃ggq

9̃ρge “ 9̃ρ˚
eg

9̃ρgg “ ´ 9̃ρee.

This set of equations has steady state solution

ρ̃ps.sq
ee “

|Ω|2

Γ2 ` 2|Ω|2 ` 4∆2 “
1
2

s

1 ` s

ρ̃ps.sq
eg “

p2∆ ´ iΓqΩ
Γ2 ` 2|Ω|2 ` 4∆2 “

2∆ ´ iΓ
Ω˚

s

1 ` s

ρ̃ps.sq
ge “

p2∆ ` iΓqΩ˚

Γ2 ` 2|Ω|2 ` 4∆2 “
2∆ ` iΓ

Ω
s

1 ` s

ρ̃ps.sq
gg “ 1 ´ ρ̃ps.sq

ee ,

where s “
I{Isat

1 ` 4∆2{Γ2 “
2Ω2

Γ2 ` 4∆2 .
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The force by this driving field can be calculated from the expectation value of its gra-

dient

F “ ´ x∇Ĥroty “ ´Trpρ̃∇Ĥrotq

“ ´
~
2

rρ̃egp∇Ω˚q ` ρ̃gep∇Ωqs

The Force experience by the atom can be separated into a dissipative part, which comes

from the phase gradient of the driving field, and a conservative part, which comes from its

amplitude gradient. Writing ∇Ω “ pqr ` iqiqΩ, it follows

F “ ´
~
2

rpqr ´ iqiqp2∆ ´ iΓq ` pqr ` iqiqp2∆ ` iΓqs

“
~s

1 ` s

„

´∆qr `
Γ
2
qi

ȷ

. (A.3)

The qi term corresponds to the radiation pressure from the laser momentum kick. For

a plane wave, ϕprq “ k ¨ r, and qi “ k. Intuitively the scattering force is the product of a

single momentum transfer by the scattering rate

Fabs “ ~kΓ
2

s

1 ` s
.

If Doppler effect is considered and an extra detuning ∆Doppler “ k ¨ v is included, one

recovers equation 2.1

Fabs “ ~kΓ
2

s

1 ` s

ˆ

1 `
2k ¨ v∆

p1 ` sqp∆2 ` Γ2{4q

˙

“ F0 ´ βv.

The qr term gives rise to the conservative dipole force, such as in the standing wave

created by two counter propagating laser beams.

qr “
∇E0 ¨ xe| µ̂ |gy ` E0 ¨ xe| ´ e∇r⃗ |gy

E0

~
¨ xe| µ̂ |gy

“
1
2

∇|E0|2

|E0|2
“

| xe| µ̂ |gy |2

ϵ0c~2|Ω|2
∇Iprq.
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The conservative dipole force therefore is

Fdip “ ´
~∆s
1 ` s

qr “ ´
3πc3Γ∆
ω3

0|Ω|2
s

1 ` s
∇Iprq.

The corresponding dipole potential is

Udipprq “
3πc3Γ∆
ω3

0|Ω|2
s

1 ` s
Iprq

large∆
« ´

3πc2

2ω3
0

Γ
∆
Iprq.

This has the same form as equation 2.2 but only contains the ω´ω0 term due to rotating

wave approximation in the earlier derivations.
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APPENDIX B
THERMODYNAMIC RELATIONS USED FOR EOS FIT

Ideal Fermi gas

A system of single component ideal fermi gas follow the grand partition function parametrized

by the chemical potential µ, volume V and temperature T

Ξpµ, V, T q “

8
ÿ

N“0
eβµNZN pN, V, T q

“
ź

α

«

ÿ

nα

eβpµ´εαqnα

ff

“
ź

α

“

1 ` eβpµ´εαq
‰

.

The grand canonical potential is

Ω “ ´kBT ln Ξ

“ ´kBT
ÿ

α

ln
“

1 ` eβpµ´εαq
‰

“ ´kBT

ż 8

0

4πV
h3 p2dp ln

ˆ

1 ` eβµe´
βp2
2m

˙

“
kBTV

λ3
dB

Li5{2p´zq.

In the last line we have used the notations z “ eβµ for fugacity, λdB “
h

?
2πmkBT

for

thermal de Broglie wavelength, and Linpzq “
ř8

k“1
zk

kn
for the polylogarithm function.

One can obtain the equation of states (EOS)

N “ ´

ˆ

BΩ
Bµ

˙

β,V

“ z

ˆ

B

Bz
ln Ξ

˙

β,V

n “
N

V
“ ´

1
λ3

dB
z

B

Bz
Li5{2p´zq

“ ´
1
λ3

dB
Li3{2p´zq (B.1)
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and

P0V “ ´Ω

P0 “ ´
kBT

λ3
dB

Li5{2p´zq.

Here we have added subscript on pressure P to distinguish from the interacting case.

There are useful expansions on the above EOS at high temperature and low temperature

limits. For large T , the polylogarithm functions are expanded in z. The expansion of P in

terms of fugacity is also known as the Virial expansion.

P0pµ, T q “
kBT

λ3
dB

ÿ

j

bideal
j

`

eβµ
˘j
.

Apparently bideal
j “

p´1qj´1

j5{2 based on the definition of polylogarithm function above.

At low temperature, the EOSs can be expanded in orders of pβµq´2 “

ˆ

kBT

µ

˙2

, with

the help of sommerfeld expansion:

ż 8

´8

Hpεq

1 ` eβpε´µq
dε “

ż µ

´8

Hpεqdε `
π2

6
pkBT q2H 1pµq ` OpkBT q4.

For example, atom number N “
ş8

0
ρpεqdε

1 ` eβpε´µq
, where

ρpεq “
V

4π2

ˆ

2m
~2

˙
3
2 ?

ε

is the state density. Ignoring the exponentially small contribution from the integral along

minus half of the real line, the atom number density can be expressed as

n “
1

4π2

ˆ

2m
~2

˙
3
2

„

2
3
µ

3
2 `

π2

12
pkBT q2µ´ 1

2 ` . . .

ȷ

. (B.2)

From which one can relate n to the Fermi energy εF “
~2

2m
p6π2nq2{3, and obtain an expan-

sion of finite temperature chemical potential µ in terms of T {TF :

µ “ εF

«

1 ´
π2

12

ˆ

T

TF

˙2

` Op
T

TF

q4

ff

.

106



A similar expansion for energy is

E “

ż 8

0

ρpεqεdε

1 ` eβpε´µq

“
3
5
NεF

«

1 `
5π2

12

ˆ

T

TF

˙2

` . . .

ff

.

The expression for pressure follows

P0 “
2
3
E

V
“

1
15π2

ˆ

2m
~2

˙
3
2

ε
5
2
F

«

1 `
5π2

12

ˆ

T

TF

˙2

` . . .

ff

“
1

15π2

ˆ

2m
~2

˙
3
2

µ
5
2

«

1 `
5
2

¨
5π2

12

ˆ

T

TF

˙2

` Op
T

TF

q4

ff «

1 `
5π2

12

ˆ

T

TF

˙2

` Op
T

TF

q4

ff

P0pµ, T q “ P0pµ, 0q

«

1 `
5π2

8

ˆ

T

TF

˙2

` . . .

ff

.

Spin-balanced interacting gas at unitarity

Finding the equation of states for interacting quantum gas is difficult. However, at unitarity

where scattering length diverges, the EOS takes the same form as in an non-interacting

ideal Fermi gas, with an extra correction function that only depends on βµ:

P pµ, T q “ P0pµ, T q ˆ ψpβµq.

Under high temperature limit, the pressure EOS can still be written in a Virial expansion

for each of the spin component, but the Virial coefficients are modified for the interactions.

The pressure per spin is

P pµ, T q “
kBT

λ3
dB

ÿ

j

bjpeβµqj, (B.3)

with b1 “ 1, b2 “
3
?

2
8

[153], and b3 “ ´0.29095295[154].

the EOS for number density follows as

n “
BP

Bµ

ˇ

ˇ

ˇ

ˇ

T

“
1
λ3

dB

ÿ

j

jbjpeβµqj. (B.4)

And subsequently
T

TF

“
4π

p6π2nλdBq2{3 is a function of βµ only.
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under low temperature limit, only two types of excitation exist — the Bogoliubov-

Anderson phonons and the gapped Bogoliubov quasi-particles. They contribute to the ex-

citation energy[155, 156].

Eph+qp “
3
5
NεF

«

ξ `

?
3π4

16ξ3{2

ˆ

T

TF

˙4

`
5
2

d

2π∆3T

k3
BT

4
F

exp
ˆ

´
∆
kBT

˙

ff

, (B.5)

where ξ = 0.376 is the Bertsch parameter, εF is the Fermi energy for the spin component

with density n “ N{V , and ∆ the paring gap.

∆ «

ˆ

2
e

˙7{3

εF exp
ˆ

π

2kFa

˙

aÑ8
“ CεF .

At Unitarity, the pairing gap is proportional to the Fermi energy by a constant factor

C “

ˆ

2
e

˙7{3

, and the relation E “
3
2
PV still holds[157]. Hence the pressure can be

written as a function of εF and T {TF only.

P “
2
3
E

V
“

1
15π2

ˆ

2m
~2

˙
3
2

ε
5
2
F Gp T

TF
q, (B.6)

where

Gpxq “ ξ `

?
3π4

16ξ3{2x
4 `

5
2

?
2πC3x exp

ˆ

´
C

x

˙

.

For the purpose of EOS temperature fitting mentioned in chapter 3.2, it is also conve-

nient to establish a relation between βµ and T {TF through the following thermodynamic

relations:

S “

ż T

0

dT 1

T 1

ˆ

BE

BT 1

˙

N,V

,

F “ E ´ T ¨ S,

βµ “
1

kBT

ˆ

BF

BN

˙

V,T

“
TF

T
Gp T

TF
q ´

3
5

ż T

0
dT 1

Gp T
TF

q

T 1
. (B.7)
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APPENDIX C
ABSORPTION IMAGING

Absorption imaging is a widely used method to estimate the atom number and temperature

of an atomic cloud. Shining a beam of resonant light on an atomic cloud, the reduction in

the beam intensity follows

I “ I0e
ODpx,yq “ I0e

´nσz, (C.1)

where n is the spatial density of the atom cloud, z is the thickness of the cloud along the

imaging axis, and σ is the cross section for the imaging light

σ “ κ
3λ2

2π
1

1 ` I0{Isat ` p2∆{Γq2 . (C.2)

κ accounts for the Clebsch-Gordan coefficients in the allowed electric dipole transitions

induced by the imaging light.

Due to the poissonian noise on the photon count from camera pixels, the best signal

to noise ratio is obtained for an intermediate value of OD around 2.55. Practically, the

OD is obtained from three imaging pictures to minimize the effect of stray light. In the

first picture the camera exposes with the presence of the atom cloud and receives intensity

Iatoms; In the second picture the imaging light is shined without atoms, and the camera

receives intensity Ilight; In the third picture the camera exposes a dark image while light is

turned off, the intensity is Idark. The measured optical density is:

OD “ ln Ilight ´ Idark

Iatoms ´ Idark

. (C.3)

From this measured OD, we can reconstruct the atom number

Natoms “
1
σ

ż inf

´ inf

ż inf

´ inf
OD dxdy. (C.4)

For thermal cloud, the temperature can be estimate from the ballistic expansion speed using

the time of flight (TOF) technique. By fitting the cloud size at various time of flight

σptq “
a

σ2
0 ` v̄2t2, (C.5)

The root mean square velocity is obtained and the cloud temperature is T “ mv̄2{kB.
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APPENDIX D
DMD SETUP

The DMD setup used to create homogeneous potential is shown in figure D.1(a). The green

light source of model "Verdi V-10" provides 10 W power. The Beam after fiber is expanded

to about 1 cm diameter after a telescope, so as to cover enough micromirrors on the DMD.

The DMD chipset "DLP9500" contains a 1920 by 1080 array of micromirrors. Each mirror

can be flipped to either the on (`12˝) or off (´12˝) angle. The incident light shines at

24˝ angle with respect to the DMD surface normal to have the maximum diffraction power

from the micromirrors in the "on" state. The diffracted beam is first cleaned up at its fourier

plane by a pinhole of 2.5 mm diameter, to avoid noisy intensity spikes from the dithering

algorithm. Then a portion of the intensity is shined on a camera. The intensity pattern on

the camera is compared to the programmed pattern for real-time feedback on the DMD.

The mirror positions are motorized by a controller module "Vialux VX4100" to converge

to the designed pattern based on Floyd-Steinberg dithering algorithm [158]. An example

picture for the intensity gradient is as shown in figure D.1(b). The rest of the power shines

into the science cell in two 4-f configurations, which demagnifies the image by 20 times

and gives a 5µm resolution on the atoms. The peak intensity at the atoms position is about

3.0ˆ107 W¨m´2, corresponding to a maximum dipole potential of around 2µK, three times

higher than what is needed for the gravity compensation over a 100µm height. This leaves

enough margin for the control program to model the intensity slope accurately.
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Figure D.1: a) Laser setup to prepare linear intensity gradient using the DMD. A camera
is put in 4f configuration to monitor the intensity pattern and feedback on the micromir-
rors. At science cell the image is demagnified by 20 times and the intensity gradient can
compensate gravity over a height of 100 µm. b) the intensity pattern seen by the monitor
camera. c) the intensity along a vertical cut. the linearity of intensity is well realized within
the region controlled by DMD diffraction.

111



REFERENCES

[1] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum
cryptography with entangled photons,” Physical review letters, vol. 84, no. 20,
p. 4729, 2000.

[2] D. Naik, C. Peterson, A. White, A. Berglund, and P. G. Kwiat, “Entangled state
quantum cryptography: Eavesdropping on the ekert protocol,” Physical Review Let-
ters, vol. 84, no. 20, p. 4733, 2000.

[3] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using en-
tangled photons in energy-time bell states,” Physical review letters, vol. 84, no. 20,
p. 4737, 2000.

[4] J. M. Chow et al., “Universal quantum gate set approaching fault-tolerant thresh-
olds with superconducting qubits,” Physical review letters, vol. 109, no. 6, p. 060 501,
2012.

[5] R. Barends et al., “Superconducting quantum circuits at the surface code threshold
for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, 2014.

[6] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quan-
tum computing with trapped ions,” Nature Physics, vol. 4, no. 6, pp. 463–466,
2008.

[7] T. Harty et al., “High-fidelity preparation, gates, memory, and readout of a trapped-
ion quantum bit,” Physical review letters, vol. 113, no. 22, p. 220 501, 2014.

[8] C. Figgatt et al., “Parallel entangling operations on a universal ion-trap quantum
computer,” Nature, vol. 572, no. 7769, pp. 368–372, 2019.

[9] K. Maller et al., “Rydberg-blockade controlled-not gate and entanglement in a
two-dimensional array of neutral-atom qubits,” Physical Review A, vol. 92, no. 2,
p. 022 336, 2015.

[10] Y.-Y. Jau, A. Hankin, T. Keating, I. H. Deutsch, and G. Biedermann, “Entangling
atomic spins with a rydberg-dressed spin-flip blockade,” Nature Physics, vol. 12,
no. 1, pp. 71–74, 2016.

[11] M. S. Grinolds et al., “Nanoscale magnetic imaging of a single electron spin under
ambient conditions,” Nature Physics, vol. 9, no. 4, pp. 215–219, 2013.

112



[12] M. Ledbetter, K. Jensen, R. Fischer, A. Jarmola, and D. Budker, “Gyroscopes
based on nitrogen-vacancy centers in diamond,” Physical Review A, vol. 86, no. 5,
p. 052 116, 2012.

[13] M. W. Doherty et al., “Electronic properties and metrology applications of the dia-
mond nv- center under pressure,” Physical review letters, vol. 112, no. 4, p. 047 601,
2014.

[14] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,”
Reviews of modern physics, vol. 80, no. 3, p. 885, 2008.

[15] M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trap-
ping by complex beam shaping,” Laser & Photonics Reviews, vol. 7, no. 6, pp. 839–
854, 2013.

[16] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold
gases,” Reviews of Modern Physics, vol. 82, no. 2, p. 1225, 2010.

[17] J. G. Bednorz and K. A. Müller, “Possible hight c superconductivity in the ba- la-
cu- o system,” Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–
193, 1986.

[18] M. N. Baibich et al., “Giant magnetoresistance of (001) fe/(001) cr magnetic su-
perlattices,” Physical review letters, vol. 61, no. 21, p. 2472, 1988.

[19] I. Bloch, J. Dalibard, and S. Nascimbene, “Quantum simulations with ultracold
quantum gases,” Nature Physics, vol. 8, no. 4, pp. 267–276, 2012.

[20] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys-
ical review, vol. 108, no. 5, p. 1175, 1957.

[21] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Physical Review,
vol. 104, no. 4, p. 1189, 1956.

[22] F. Werner and Y. Castin, “Unitary gas in an isotropic harmonic trap: Symmetry
properties and applications,” Physical Review A, vol. 74, no. 5, p. 053 604, 2006.

[23] S. Tan, “Energetics of a strongly correlated fermi gas,” Annals of Physics, vol. 323,
no. 12, pp. 2952–2970, 2008.

[24] NASA. “Chandra x-ray observatory, Multiwavelength images of psr b1509-58.”
(2009), (visited on 08/18/2022).

[25] H. Feshbach, “Unified theory of nuclear reactions,” Annals of Physics, vol. 5, no. 4,
pp. 357–390, 1958.

113



[26] H. Feshbach, “A unified theory of nuclear reactions. ii,” Annals of Physics, vol. 19,
no. 2, pp. 287–313, 1962.

[27] S Inouye, M. Andrews, J Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W Ket-
terle, “Observation of feshbach resonances in a bose–einstein condensate,” Nature,
vol. 392, no. 6672, pp. 151–154, 1998.

[28] P. Courteille, R. Freeland, D. J. Heinzen, F. Van Abeelen, and B. Verhaar, “Obser-
vation of a feshbach resonance in cold atom scattering,” Physical review letters,
vol. 81, no. 1, p. 69, 1998.

[29] B. DeMarco and D. S. Jin, “Onset of fermi degeneracy in a trapped atomic gas,”
science, vol. 285, no. 5434, pp. 1703–1706, 1999.

[30] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.
Hulet, “Observation of fermi pressure in a gas of trapped atoms,” Science, vol. 291,
no. 5513, pp. 2570–2572, 2001.

[31] F Schreck et al., “Quasipure bose-einstein condensate immersed in a fermi sea,”
Physical Review Letters, vol. 87, no. 8, p. 080 403, 2001.

[32] G Roati, F Riboli, G Modugno, and M Inguscio, “Fermi-bose quantum degenerate
k 40- r 87 b mixture with attractive interaction,” Physical Review Letters, vol. 89,
no. 15, p. 150 403, 2002.

[33] S. Granade, M. Gehm, K. O’Hara, and J. Thomas, “All-optical production of a
degenerate fermi gas,” Physical Review Letters, vol. 88, no. 12, p. 120 405, 2002.

[34] S. Jochim et al., “Bose-einstein condensation of molecules,” Science, vol. 302,
no. 5653, pp. 2101–2103, 2003.

[35] K Dieckmann, C. Stan, S Gupta, Z Hadzibabic, C. Schunck, and W Ketterle, “De-
cay of an ultracold fermionic lithium gas near a feshbach resonance,” Physical
review letters, vol. 89, no. 20, p. 203 201, 2002.

[36] T. Loftus, C. A. Regal, C Ticknor, J. L. Bohn, and D. S. Jin, “Resonant control
of elastic collisions in an optically trapped fermi gas of atoms,” Physical review
letters, vol. 88, no. 17, p. 173 201, 2002.

[37] K. OHara et al., “Measurement of the zero crossing in a feshbach resonance of
fermionic 6 li,” Physical Review A, vol. 66, no. 4, p. 041 401, 2002.

[38] S Jochim et al., “Magnetic field control of elastic scattering in a cold gas of fermionic
lithium atoms,” Physical review letters, vol. 89, no. 27, p. 273 202, 2002.

114



[39] M. Greiner, C. A. Regal, and D. S. Jin, “Emergence of a molecular bose–einstein
condensate from a fermi gas,” Nature, vol. 426, no. 6966, pp. 537–540, 2003.

[40] M Bartenstein et al., “Crossover from a molecular bose-einstein condensate to a
degenerate fermi gas,” Physical review letters, vol. 92, no. 12, p. 120 401, 2004.

[41] M. W. Zwierlein et al., “Observation of bose-einstein condensation of molecules,”
Physical review letters, vol. 91, no. 25, p. 250 401, 2003.

[42] C. Regal, M. Greiner, and D. S. Jin, “Observation of resonance condensation of
fermionic atom pairs,” Physical review letters, vol. 92, no. 4, p. 040 403, 2004.

[43] T. Bourdel et al., “Experimental study of the bec-bcs crossover region in lithium
6,” Physical Review Letters, vol. 93, no. 5, p. 050 401, 2004.

[44] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin, “Heat capac-
ity of a strongly interacting fermi gas,” Science, vol. 307, no. 5713, pp. 1296–1299,
2005.

[45] J. Kinast, S. Hemmer, M. Gehm, A Turlapov, and J. Thomas, “Evidence for su-
perfluidity in a resonantly interacting fermi gas,” Physical Review Letters, vol. 92,
no. 15, p. 150 402, 2004.

[46] M Bartenstein et al., “Collective excitations of a degenerate gas at the bec-bcs
crossover,” Physical review letters, vol. 92, no. 20, p. 203 201, 2004.

[47] C Chin et al., “Observation of the pairing gap in a strongly interacting fermi gas,”
Science, vol. 305, no. 5687, pp. 1128–1130, 2004.

[48] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, “Molec-
ular probe of pairing in the bec-bcs crossover,” Physical Review Letters, vol. 95,
no. 2, p. 020 404, 2005.

[49] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle,
“Vortices and superfluidity in a strongly interacting fermi gas,” Nature, vol. 435,
no. 7045, pp. 1047–1051, 2005.

[50] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, “Exploring the
thermodynamics of a universal fermi gas,” Nature, vol. 463, no. 7284, pp. 1057–
1060, 2010.

[51] M. J. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, “Revealing the su-
perfluid lambda transition in the universal thermodynamics of a unitary fermi gas,”
Science, vol. 335, no. 6068, pp. 563–567, 2012.

115



[52] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama, “Measurement of univer-
sal thermodynamic functions for a unitary fermi gas,” Science, vol. 327, no. 5964,
pp. 442–445, 2010.

[53] N. Navon, S. Nascimbene, F. Chevy, and C. Salomon, “The equation of state of a
low-temperature fermi gas with tunable interactions,” Science, vol. 328, no. 5979,
pp. 729–732, 2010.

[54] S. Tan, “Generalized virial theorem and pressure relation for a strongly correlated
fermi gas,” Annals of Physics, vol. 323, no. 12, pp. 2987–2990, 2008.

[55] S. Tan, “Large momentum part of a strongly correlated fermi gas,” Annals of Physics,
vol. 323, no. 12, pp. 2971–2986, 2008.

[56] J. Stewart, J. Gaebler, T. Drake, and D. Jin, “Verification of universal relations
in a strongly interacting fermi gas,” Physical Review Letters, vol. 104, no. 23,
p. 235 301, 2010.

[57] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, “Measurement of the homogeneous
contact of a unitary fermi gas,” Physical review letters, vol. 109, no. 22, p. 220 402,
2012.

[58] B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, and M. W. Zwierlein,
“Spectral response and contact of the unitary fermi gas,” Physical review letters,
vol. 122, no. 20, p. 203 402, 2019.

[59] E. Kuhnle, S Hoinka, P Dyke, H Hu, P Hannaford, and C. Vale, “Temperature
dependence of the universal contact parameter in a unitary fermi gas,” Physical
Review Letters, vol. 106, no. 17, p. 170 402, 2011.

[60] C Carcy et al., “Contact and sum rules in a near-uniform fermi gas at unitarity,”
Physical Review Letters, vol. 122, no. 20, p. 203 401, 2019.

[61] S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and C. Salomon, “Con-
necting few-body inelastic decay to quantum correlations in a many-body sys-
tem: A weakly coupled impurity in a resonant fermi gas,” Physical review letters,
vol. 118, no. 10, p. 103 403, 2017.

[62] W. S. Bakr et al., “Probing the superfluid–to–mott insulator transition at the single-
atom level,” Science, vol. 329, no. 5991, pp. 547–550, 2010.

[63] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr,
“Single-atom-resolved fluorescence imaging of an atomic mott insulator,” Nature,
vol. 467, no. 7311, pp. 68–72, 2010.

116



[64] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, “Quantum
simulation of antiferromagnetic spin chains in an optical lattice,” Nature, vol. 472,
no. 7343, pp. 307–312, 2011.

[65] M. Cheneau et al., “Light-cone-like spreading of correlations in a quantum many-
body system,” Nature, vol. 481, no. 7382, pp. 484–487, 2012.

[66] T. Fukuhara et al., “Quantum dynamics of a mobile spin impurity,” Nature Physics,
vol. 9, no. 4, pp. 235–241, 2013.

[67] S. Hild et al., “Far-from-equilibrium spin transport in heisenberg quantum mag-
nets,” Physical review letters, vol. 113, no. 14, p. 147 205, 2014.

[68] P. M. Preiss et al., “Strongly correlated quantum walks in optical lattices,” Science,
vol. 347, no. 6227, pp. 1229–1233, 2015.

[69] T. Fukuhara et al., “Microscopic observation of magnon bound states and their
dynamics,” Nature, vol. 502, no. 7469, pp. 76–79, 2013.

[70] T. Fukuhara et al., “Spatially resolved detection of a spin-entanglement wave in a
bose-hubbard chain,” Physical review letters, vol. 115, no. 3, p. 035 302, 2015.

[71] R. Islam et al., “Measuring entanglement entropy in a quantum many-body sys-
tem,” Nature, vol. 528, no. 7580, pp. 77–83, 2015.

[72] P. Schauß et al., “Observation of spatially ordered structures in a two-dimensional
rydberg gas,” Nature, vol. 491, no. 7422, pp. 87–91, 2012.

[73] P. Schauß et al., “Crystallization in ising quantum magnets,” Science, vol. 347,
no. 6229, pp. 1455–1458, 2015.

[74] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross, “Microscopic char-
acterization of scalable coherent rydberg superatoms,” Physical Review X, vol. 5,
no. 3, p. 031 015, 2015.

[75] E. Haller et al., “Single-atom imaging of fermions in a quantum-gas microscope,”
Nature Physics, vol. 11, no. 9, pp. 738–742, 2015.

[76] G. J. Edge et al., “Imaging and addressing of individual fermionic atoms in an
optical lattice,” Physical Review A, vol. 92, no. 6, p. 063 406, 2015.

[77] A. Omran et al., “Microscopic observation of pauli blocking in degenerate fermionic
lattice gases,” Physical review letters, vol. 115, no. 26, p. 263 001, 2015.

117



[78] M. F. Parsons et al., “Site-resolved imaging of fermionic li 6 in an optical lattice,”
Physical review letters, vol. 114, no. 21, p. 213 002, 2015.

[79] L. W. Cheuk et al., “Quantum-gas microscope for fermionic atoms,” Physical re-
view letters, vol. 114, no. 19, p. 193 001, 2015.

[80] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang, and M. W.
Zwierlein, “Observation of 2d fermionic mott insulators of k 40 with single-site
resolution,” Physical review letters, vol. 116, no. 23, p. 235 301, 2016.

[81] D. Greif et al., “Site-resolved imaging of a fermionic mott insulator,” Science,
vol. 351, no. 6276, pp. 953–957, 2016.

[82] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and M. Greiner, “Site-
resolved measurement of the spin-correlation function in the fermi-hubbard model,”
Science, vol. 353, no. 6305, pp. 1253–1256, 2016.

[83] L. W. Cheuk et al., “Observation of spatial charge and spin correlations in the 2d
fermi-hubbard model,” Science, vol. 353, no. 6305, pp. 1260–1264, 2016.

[84] M. Boll et al., “Spin-and density-resolved microscopy of antiferromagnetic cor-
relations in fermi-hubbard chains,” Science, vol. 353, no. 6305, pp. 1257–1260,
2016.

[85] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic,
“Bose-einstein condensation of atoms in a uniform potential,” Physical review let-
ters, vol. 110, no. 20, p. 200 406, 2013.

[86] L. Chomaz et al., “Emergence of coherence via transverse condensation in a uni-
form quasi-two-dimensional bose gas,” Nature communications, vol. 6, no. 1, pp. 1–
10, 2015.

[87] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, “Two-dimensional
homogeneous fermi gases,” Physical review letters, vol. 120, no. 6, p. 060 402,
2018.

[88] P. Fulde and R. A. Ferrell, “Superconductivity in a strong spin-exchange field,”
Physical Review, vol. 135, no. 3A, A550, 1964.

[89] A. Larkin and I. Ovchinnikov, “Inhomogeneous state of superconductors(production
of superconducting state in ferromagnet with fermi surfaces, examining green func-
tion),” Soviet Physics-JETP, vol. 20, pp. 762–769, 1965.

[90] A. M. Clogston, “Upper limit for the critical field in hard superconductors,” Physi-
cal Review Letters, vol. 9, no. 6, p. 266, 1962.

118



[91] S. Jin, “A new generation experiment for the study of strongly interacting fermi
gases,” Ph.D. dissertation, École Normale Supérieure, 2019.

[92] B. N. Laboratory. “Isotopes of lithium.” (2008), (visited on 04/27/2022).

[93] P. Duarte et al., “All-optical production of a lithium quantum gas using narrow-line
laser cooling,” Physical Review A, vol. 84, no. 6, p. 061 406, 2011.

[94] M. E. Ghem, Properties of 6li, 2003.

[95] G. Breit and I. Rabi, “Measurement of nuclear spin,” Physical Review, vol. 38,
no. 11, p. 2082, 1931.

[96] D. McCarron, S. King, and S. Cornish, “Modulation transfer spectroscopy in atomic
rubidium,” Measurement science and technology, vol. 19, no. 10, p. 105 601, 2008.

[97] G Ritt, G Cennini, C Geckeler, and M Weitz, “Laser frequency offset locking using
a side of filter technique,” Applied Physics B, vol. 79, no. 3, pp. 363–365, 2004.

[98] H. J. Metcalf and P. Van der Straten, “Laser cooling and trapping of neutral atoms,”
The Optics Encyclopedia: Basic Foundations and Practical Applications, 2007.

[99] G. Salomon, L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel, “Gray-
molasses cooling of 39k to a high phase-space density,” EPL (Europhysics Letters),
vol. 104, no. 6, p. 63 002, 2014.

[100] D. R. Fernandes, “Trapping and cooling of fermionic alkali atoms to quantum de-
generacy. sub-doppler cooling of potassium-40 and lithium-6 in gray molasses,”
Ph.D. dissertation, Université Pierre et Marie Curie, 2014.

[101] G. Valtolina, “superfluid and spin dynamics of strongly interacting atomic fermi
gases,” Ph.D. dissertation, proefschrift (Scuola Normale Superiore, Pisa, 2016),
2016.

[102] G. Colzi, “A new apparatus to simulate fundamental interactions with ultracold
atoms,” Ph.D. dissertation, University of Trento, 2018.

[103] C. Cohen-Tannoudji, “Physique atomique et moléculaire, 1973-2004,” Lannuaire
du Collège de France. Cours et travaux, no. 112, pp. 776–778, 2013.

[104] F Papoff, F Mauri, and E. Arimondo, “Transient velocity-selective coherent popu-
lation trapping in one dimension,” JOSA B, vol. 9, no. 3, pp. 321–331, 1992.

119



[105] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neu-
tral atoms,” in Advances in atomic, molecular, and optical physics, vol. 42, Elsevier,
2000, pp. 95–170.

[106] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical
review letters, vol. 24, no. 4, p. 156, 1970.

[107] W. Ketterle and N. Van Druten, “Evaporative cooling of trapped atoms,” in Ad-
vances in atomic, molecular, and optical physics, vol. 37, Elsevier, 1996, pp. 181–
236.

[108] H. F. Hess, “Evaporative cooling of magnetically trapped and compressed spin-
polarized hydrogen,” Physical Review B, vol. 34, no. 5, p. 3476, 1986.

[109] N. Masuhara et al., “Evaporative cooling of spin-polarized atomic hydrogen,” Phys-
ical Review Letters, vol. 61, no. 8, p. 935, 1988.

[110] J. Dalibard, “Collisional dynamics of ultra-cold atomic gases,” in Bose-Einstein
Condensation in Atomic Gases, IOS Press, 1999, pp. 321–349.

[111] M. Gehm, S. Hemmer, K. OHara, and J. Thomas, “Unitarity-limited elastic colli-
sion rate in a harmonically trapped fermi gas,” Physical Review A, vol. 68, no. 1,
p. 011 603, 2003.

[112] A. Moerdijk, B. Verhaar, and A Axelsson, “Resonances in ultracold collisions of li
6, li 7, and na 23,” Physical Review A, vol. 51, no. 6, p. 4852, 1995.

[113] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. Julienne, and J. Hutson, “Precise
characterization of li 6 feshbach resonances using trap-sideband-resolved rf spec-
troscopy of weakly bound molecules,” Physical review letters, vol. 110, no. 13,
p. 135 301, 2013.

[114] L. Landau, “Zur theorie der energie übertragung, ii. phys. z. sowjetunion 2 (1932)
46; c. zener, non-adiabatic crossing of energy levels,” Proc. R. Soc. London Ser. A,
vol. 137, p. 696, 1932.

[115] C. Zener, “Non-adiabatic crossing of energy levels,” Proceedings of the Royal Soci-
ety of London. Series A, Containing Papers of a Mathematical and Physical Char-
acter, vol. 137, no. 833, pp. 696–702, 1932.

[116] A. Omran, “A microscope for fermi gases,” Ph.D. dissertation, Ludwig Maximil-
ians Universität München, 2016.

[117] M. F. Parsons, “Probing the hubbard model with single-site resolution,” Ph.D. dis-
sertation, 2016.

120



[118] C. Gross and W. S. Bakr, “Quantum gas microscopy for single atom and spin de-
tection,” Nature Physics, vol. 17, no. 12, pp. 1316–1323, 2021.

[119] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding ultracold
fermi gases,” La Rivista del Nuovo Cimento, vol. 31, no. 5, pp. 247–422, 2008.

[120] Y. Castin, “Exact scaling transform for a unitary quantum gas in a time dependent
harmonic potential,” Comptes Rendus Physique, vol. 5, no. 3, pp. 407–410, 2004.

[121] T.-L. Ho and Q. Zhou, “Obtaining the phase diagram and thermodynamic quantities
of bulk systems from the densities of trapped gases,” Nature Physics, vol. 6, no. 2,
pp. 131–134, 2010.

[122] S. Jin et al., in preparation, 2022.

[123] F. Werner, “Virial theorems for trapped cold atoms,” Physical Review A, vol. 78,
no. 2, p. 025 601, 2008.

[124] P. L. Kapitza, “Viscosity of liquid helium below the λ-point,” Nature, vol. 141,
pp. 74–74, 1938.

[125] J. F. Allen and A. Misener, “Flow of liquid helium ii,” Nature, vol. 141, no. 3558,
pp. 75–75, 1938.

[126] F. London, “The λ-phenomenon of liquid helium and the bose-einstein degener-
acy,” Nature, vol. 141, no. 3571, pp. 643–644, 1938.

[127] L. Tisza, “Transport phenomena in helium ii,” Nature, vol. 141, no. 3577, pp. 913–
913, 1938.

[128] L. Landau, “Theory of the superfluidity of helium ii,” Physical Review, vol. 60,
no. 4, p. 356, 1941.

[129] A. J. Leggett, “A theoretical description of the new phases of liquid he 3,” Reviews
of Modern Physics, vol. 47, no. 2, p. 331, 1975.

[130] M Houbiers, R Ferwerda, H. Stoof, W. McAlexander, C. Sackett, and R. Hulet,
“Superfluid state of atomic 6 li in a magnetic trap,” Physical Review A, vol. 56,
no. 6, p. 4864, 1997.

[131] C. Regal, M. Greiner, and D. S. Jin, “Observation of resonance condensation of
fermionic atom pairs,” Physical review letters, vol. 92, no. 4, p. 040 403, 2004.

121



[132] M. Zwierlein, C. Stan, C. Schunck, S. Raupach, A. Kerman, and W Ketterle, “Con-
densation of pairs of fermionic atoms near a feshbach resonance,” Physical Review
Letters, vol. 92, no. 12, p. 120 403, 2004.

[133] C. Lobo, A Recati, S Giorgini, and S Stringari, “Normal state of a polarized fermi
gas at unitarity,” Physical Review Letters, vol. 97, no. 20, p. 200 403, 2006.

[134] A Recati, C Lobo, and S Stringari, “Role of interactions in spin-polarized atomic
fermi gases at unitarity,” Physical Review A, vol. 78, no. 2, p. 023 633, 2008.

[135] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, “Fermionic super-
fluidity with imbalanced spin populations,” Science, vol. 311, no. 5760, pp. 492–
496, 2006.

[136] J. Verstraten, Developing single-atom imaging of the unitary fermi gas in an optical
lattice, 2019.

[137] E. A. Donley, T. P. Heavner, F. Levi, M. Tataw, and S. R. Jefferts, “Double-pass
acousto-optic modulator system,” Review of Scientific Instruments, vol. 76, no. 6,
p. 063 112, 2005.

[138] M. Gehm, K. Ohara, T. Savard, and J. Thomas, “Dynamics of noise-induced heat-
ing in atom traps,” Physical Review A, vol. 58, no. 5, p. 3914, 1998.

[139] P. Kapitza and P. Dirac, “The reflection of electrons from standing light waves,”
in Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge
University Press, vol. 29, 1933, pp. 297–300.

[140] S. Gupta, A. E. Leanhardt, A. D. Cronin, and D. E. Pritchard, “Coherent manip-
ulation of atoms with standing light waves,” Comptes Rendus de l’Académie des
Sciences-Series IV-Physics, vol. 2, no. 3, pp. 479–495, 2001.

[141] F. Gerbier, Quantum gases in optical lattices, Lecture at Sorbonne Université Cam-
pus Pierre et Marie Curie, 2015.

[142] A. Messiah, Albert Messiah: Mécanique quantique. Tome 2. Walter de Gruyter
GmbH & Co KG, 2020.

[143] M. P. Marder, Condensed matter physics. John Wiley & Sons, 2010.

[144] J. Dalibard, “Des cages de lumière pour les atomes: La physique des pièges et des
réseaux optiques,” Cours du Collège de France, 2013.

[145] G. J. Edge et al., “Imaging and addressing of individual fermionic atoms in an
optical lattice,” Physical Review A, vol. 92, no. 6, p. 063 406, 2015.

122



[146] D. A. Cotta, “A single-site resolution fermionic quantum-gas microscope,” Ph.D.
dissertation, University of Strathclyde, 2018.

[147] R. Han, H. Khoon Ng, and B.-G. Englert, “Raman transitions without adiabatic
elimination: A simple and accurate treatment,” Journal of Modern Optics, vol. 60,
no. 4, pp. 255–265, 2013.

[148] Z. Yan, P. B. Patel, B. Mukherjee, R. J. Fletcher, J. Struck, and M. W. Zwier-
lein, “Boiling a unitary fermi liquid,” Physical Review Letters, vol. 122, no. 9,
p. 093 401, 2019.

[149] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein, “Observation of fermi
polarons in a tunable fermi liquid of ultracold atoms,” Physical review letters,
vol. 102, no. 23, p. 230 402, 2009.

[150] M. Zwierlein, C. Schunck, C. Stan, S. Raupach, and W Ketterle, “Formation dy-
namics of a fermion pair condensate,” Physical review letters, vol. 94, no. 18,
p. 180 401, 2005.

[151] F. Werner, private communication.

[152] M. O. Scully and M. S. Zubairy, Quantum optics, 1999.

[153] E. Beth and G. E. Uhlenbeck, “The quantum theory of the non-ideal gas. ii. be-
haviour at low temperatures,” Physica, vol. 4, no. 10, pp. 915–924, 1937.

[154] X.-J. Liu, H. Hu, and P. D. Drummond, “Virial expansion for a strongly correlated
fermi gas,” Physical review letters, vol. 102, no. 16, p. 160 401, 2009.

[155] A. Bulgac, J. E. Drut, and P. Magierski, “Spin 1/2 fermions in the unitary regime: A
superfluid of a new type,” Physical review letters, vol. 96, no. 9, p. 090 404, 2006.

[156] J Carlson, S.-Y. Chang, V. Pandharipande, and K. E. Schmidt, “Superfluid fermi
gases with large scattering length,” Physical review letters, vol. 91, no. 5, p. 050 401,
2003.

[157] T.-L. Ho, “Universal thermodynamics of degenerate quantum gases in the unitarity
limit,” Physical review letters, vol. 92, no. 9, p. 090 402, 2004.

[158] R. W. Floyd, “An adaptive algorithm for spatial gray-scale,” in Proc. Soc. Inf. Disp.,
vol. 17, 1976, pp. 75–77.

123



DEDICATION

This dedication goes to my supervisors, my colleagues and my family.

I would like to thank Tarik for the guidance throughout my thesis project, and for al-

ways being patient in teaching me the laboratory and writing skills. I would like to thank

Christophe and Antoine for the overall supervision. It is my great pleasure to have worked

on this large project together with Joris, Tim, Maxim, Shuwei and Bruno, from whom I

have learned the most and have received the most support. I thank Julian, Clement and

Gentle also for their support and accompany. I must express my gratitude to my parents,

who always hang on to me despite of the large physical distance. At last I would like to put

a place holder for my love, who has not come into my life yet but surely will deserve a line

in this dedication.



SUMMARY

Cette thèse sinscrit dans le cadre général de la simulation quantique avec pour sys-

tème détude un mélange de fermions en interaction forte. En particulier, l’équipe souhaite

étudier avec une haute résolution spatiale des nuages spatialement homogènes à l’aide d’un

microscope à gaz quantique. Le manuscrit est divisé en six chapitres:

• Le premier chapitre décrit le montage expérimental et les différents lasers utilisés

dans les expériences.

• Le deuxième chapitre développe les étapes pour aboutir à un nuage ultra-froid dans la

chambre de science : chargement dun piège magnéto-optique, refroidissement dans

une mélasse rouge puis bleue, transport par pince optique dans la chambre de science

puis chargement dans un piège dipolaire croisé.

• Le troisième chapitre décrit létape de refroidissement évaporatif avec la méthode

utilisée pour mesurer la température ainsi que lobservation du régime superfluide.

• Le quatrième sintéresse au système dimagerie. La mesure se faisant par fluorescence

avec une résolution spatiale espérée de lordre du micron, un objectif de grande ou-

verture numérique est nécessaire et a été caractérisé.

• Il faut rajouter un réseau optique de blocage (pinning lattice) afin que les atomes

ńne bougent pasż pendant la durée dimagerie qui prendra plusieurs dizaines voire

centaines de millisecondes. Cet réseau de blocage est caractérisé dans le cinquième

chapitre via méthodes de chauffage paramétrique. Le chapitre se poursuit par une

expérience de ńband mappingż et une étude de lefficacité du blocage par le réseau.

• Le sixième chapitre décrit létape indispensable pour observer des atomes uniques par

imagerie: le refroidissement Raman par bandes latérales dans le réseau de blocage.

L’effet de refroidissement est démontré par le spectre Raman clairement résolu et

l’extension de la durée de vie des atomes dans le réseau. Le chapitre se termine par

une première image de fluorescence des atomes individuels.



MOTS CLÉS

Gaz Ultrafroid --- Fermions en interaction forte --- Superfluidité --- Imagerie d'atomes individuels

RÉSUMÉ

Cette thèse présente une expérience de nouvelle génération dédiée à l'étude de gaz quantique 6Li, dotée de vastes capacités

et visant à étudier les propriétés microscopiques d'un gas de Fermi à fortes interactions au voisinage et sous le seuil de la

transition suerfluide. Sur ce dispositif, nous sommes parvenus à refroidir les atomes 6Li jusqu'à un état fortement dégénéré

grâce à une séquence de refroidissment d'une durée de 13 s. Avec un réseau optique correctement caractérisé et d'un

microscope à haute résolution, le montage a été préparé pour enregistrer des images de fluorescence à l'échelle de l'atome

individuel.

Cette expérience sera un puissant outil pour l'étude des corrélations dans les systèmes de Fermi en fortes interactions. En

combinaison avec des potentiels optiques correctement ajustés, nous pouvons étendre nos measures à des gas homogénes

et à la recherche de phases superfluides avec différentes populations de spins.

ABSTRACT

This thesis presents our new generation 6Li-based quantum gas experiment with wide-ranging capabilities, mainly aiming to

study the microscopic properties of strongly interacting Fermi gases near and below the superfluid transition. On this setup,

we have achieved efficient cooling of the 6Li atoms to deep quantum degeneracy within 13 s sequence duration. With a well

characterized pinning lattice and a high-resolution microscope objective, the machine has been prepared to take single-atom

fluorescence images of bulk ultracold Fermi gases.

This machine will serve as a powerful tool to study the correlations in strongly interacting Fermi systems. Combining with

tailored optical potentials, we can extend our measurements to homogeneous gases and search for exotic spin-imbalanced

superfluid phases.
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Ultracold Gases --- Strongly Interacting Fermions --- Superfluidity --- Single Atom Imaging
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