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Résumé:

Les études en neurosciences rencontrent
des dé�s dans la collecte de grandes bases
de données, limitant ainsi l'utilisation de
l'apprentissage statistique. L'intégration de
données publiques peut être une solution, mais
les données recueillies dans di�érents contextes
présentent souvent des di�érences systéma-
tiques, appelées décalages de données (dataset
shifts). Ces décalages, causés par des varia-
tions dans les sites d'enregistrement, le disposi-
tif d'enregistrement ou les protocoles expéri-
mentaux, compliquent l'application des méth-
odes d'apprentissage, qui exigent généralement
des données d'entraînement et de test similaires.
Cette thèse examine ces décalages dans les don-
nées M/EEG pour en comprendre les causes,
leurs e�ets sur les modèles d'apprentissage, et
propose des solutions adaptées au type de dé-
calage pour améliorer la généralisation des mod-
èles prédictifs.

Dans un premier temps, nous avons analysé
les décalages survenant dans les enregistrements
M/EEG en lien avec l'activité cérébrale,
l'anatomie ou la con�guration des capteurs.
Pour harmoniser la distribution des données,
nous avons utilisé une approche riemannienne
d'alignement des données et l'avons adaptée
à la régression non supervisée. Pour évaluer
l'e�cacité de l'alignement, nous avons réalisé
des expériences sur des données simulées et
réelles. Nous avons montré que la performance
des modèles d'apprentissage peut être a�ectée
par ces décalages et qu'elle peut être améliorée
en alignant les distributions de données.

Dans la deuxième partie, nous nous sommes
concentrés sur les décalages survenant à la fois
dans les données M/EEG et la distribution de
la variable à prédire y. Cette situation est
courante dans les études cliniques où les données
sont recueillies dans di�érents sites et auprès
de di�érentes populations. Dans ce contexte,

l'alignement proposé précédemment n'est pas
su�sant pour traiter les décalages. Nous avons
proposé une nouvelle méthode pour aborder
l'adaptation de domaine dans des situations où
les domaines sources ont des distributions de y
distinctes. Cette méthode exploite la structure
géométrique de la variété riemannienne pour ap-
prendre conjointement un opérateur de recen-
trage spéci�que au domaine et le modèle de ré-
gression. Nous avons réalisé des comparaisons
empiriques sur la généralisation inter-sites des
modèles de prédiction de l'âge avec des données
EEG provenant d'un grand ensemble de données
multinationales. L'approche proposée a signi-
�cativement amélioré la généralisation des mod-
èles à travers les sites par rapport aux méthodes
de référence.

Finalement, nous avons abordé le problème
des di�érents dispositifs d'enregistrement EEG.
Le nombre et les positions variables des cap-
teurs rendent di�cile la comparaison des don-
nées provenant de di�érents dispositifs, et ren-
dent même impossible l'utilisation directe des
méthodes d'apprentissage. Pour remédier à
cela, nous avons proposé une approche non
supervisée exploitant la physique des signaux
EEG : nous avons interpolé les canaux EEG
de diverses con�gurations sur des positions �xes
avec l'interpolation basée sur la physique de
la propagation électromagnétique. Une éval-
uation comparative avec d'autres méthodes a
été e�ectuée sur six bases de données publiques
pour la classi�cation d'imagerie motrice main
droite/gauche. L'interpolation s'est montrée
similaire ou meilleure que les autres méthodes.

Les contributions de cette thèse visent
à améliorer la généralisation des modèles
d'apprentissage appliqués aux données M/EEG
sous di�érents aspects et situations. Le but était
de mieux comprendre les décalages de données
M/EEG et de proposer des approches pour at-
ténuer leurs e�ets dans des scénarios réalistes.
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Abstract:

Neuroscience studies face challenges in gath-
ering large datasets, which limits the use of ma-
chine learning (ML) approaches. One possible
solution is to incorporate additional data from
large public datasets; however, data collected in
di�erent contexts often exhibit systematic di�er-
ences called dataset shifts. Various factors, such
as site, device type, or experimental protocol,
can lead to substantial divergence of M/EEG
signals that can hinder the success of ML across
datasets. This variability can induce distribu-
tion shifts in the data and in the biomedical
variables of interest. ML algorithms typically
require similar feature distributions at train and
test time. Thus, these shifts limit the appli-
cation of supervised ML algorithms. This the-
sis investigates dataset shifts in M/EEG data
to understand their causes, how they a�ect ML
models, and proposes methods adapted to the
context and shift type to improve the general-
ization of predictive models.

In the �rst part, we focused on dataset shifts
occurring in M/EEG recordings, not considering
shifts in the label distributions. We investigated
how changes in brain activity, anatomy, or de-
vice con�guration can lead to dataset shifts in
M/EEG data. To harmonize the data distri-
bution, we used a Riemannian data alignment
approach and adapted it to an unsupervised re-
gression context. To assess the e�ectiveness of
the alignment methods, we performed a series
of experiments on simulated and real data. We
showed that the performance of ML models can
be a�ected by dataset shifts and that it can be
improved by aligning the data distributions.

In the second part, we focused on dataset
shifts occurring jointly in M/EEG recordings
and in the y distribution, the variable to pre-
dict. Such situations are common in clinical
studies where data is collected from di�erent

sites and populations. In this context, the pre-
viously proposed alignment methods are not
enough to handle these shifts. We proposed a
novel method to address domain adaptation for
situations in which source domains have distinct
y distributions. This method exploits the geo-
metric structure of the Riemannian manifold to
jointly learn a domain-speci�c re-centering op-
erator and the regression model. We performed
empirical benchmarks on the cross-site gener-
alization of age-prediction models with resting-
state EEG data from a large multi-national
dataset. The proposed approach signi�cantly
improved the generalization of the models across
sites compared to state-of-the-art methods.

In the third part, we addressed the problem
of di�erent recording devices in EEG data. The
varying number and positions of sensors make it
di�cult to compare data from di�erent devices,
and even make it impossible to directly train a
ML model on data from one device and test it on
data from another. To tackle this, we proposed
an unsupervised approach leveraging EEG sig-
nal physics: we map EEG channels from various
con�gurations to a template of �xed positions
using �eld interpolation. Comparative analy-
sis against other methods was conducted with
leave-one-dataset-out validation on six public
BCI datasets for a right-hand/left-hand motor
imagery classi�cation task. It demonstrated
that �eld interpolation is similar or better than
the other methods.

The contributions presented in this the-
sis aimed at improving the generalization of
ML models across datasets in M/EEG data
from di�erent aspects and situations. The goal
was to provide a better understanding of the
dataset shifts in M/EEG data and to propose
approaches to mitigate their e�ects in realistic
scenarios.
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Chapter 1. General background

Accurately assessing and measuring brain health is a key goal in neuroscience,
especially in clinical contexts where early diagnosis and monitoring of neurolog-
ical conditions can signi�cantly improve patient outcomes. Techniques such as
magnetoencephalography (MEG) and electroencephalography (EEG) provide non-
invasive ways to capture the brain's electrical activity, making them invaluable
tools for both research and clinical applications. However, despite the widespread
use of M/EEG in brain health assessment, leveraging these signals for predictive
modeling remains challenging due to their inherent variability. This variability
arises from the complex nature of M/EEG signals and creates systematic di�er-
ences, or shifts, between datasets. These shifts can signi�cantly impair the per-
formance of machine learning models, limiting their ability to generalize across
di�erent datasets and clinical settings. As a result, the development of robust
methods capable of addressing these shifts is needed for the successful application
of machine learning to M/EEG data in real-world clinical environments. In this
thesis, we aim to investigate the problem of dataset shifts in M/EEG data and
propose solutions to mitigate their e�ects.

This �rst chapter aims to gather all the necessary background and concepts
important for to the rest of the manuscript. Even though the range of topics
covered in this chapter is broad, they are all essential to understand the context
of the work presented in the following chapters.

� In Section 1.1, we introduce how the brain is structured, how it operates,
and how we capture its activity with M/EEG to collect a measurable signal.
We brie�y describe the biological basis of M/EEG signals and the recording
techniques used to capture them. We conclude with the motivations and
applications of M/EEG in clinical and research settings.

� In Section 1.2, we summarize how statistical learning has been applied to an-
alyze M/EEG signals. We present the di�erent types of learning algorithms
used and the challenges associated with these methods. We also discuss the
importance of preprocessing steps in the analysis of M/EEG signals and the
di�erent techniques used to clean the data.

� In Section 1.3, we focus on the theoretical framework behind the covariance-
based approaches that will be the focus of the following chapters.

� Finally, in Section 1.4, we present the notion of domain adaptation and the
motivations behind the use of these techniques in the context of biomedical
data analysis. We give examples of existing types of domain adaptation
related to the methods investigated in this thesis.
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1.1. Capturing brain activity with M/EEG

1.1 Capturing brain activity with M/EEG

Understanding the complexities of brain function requires sophisticated tech-
niques to capture its dynamic activity. This section explores the origins and mech-
anisms of brain activity and introduce how magnetoencephalography (MEG) and
electroencephalography (EEG) e�ectively capture these signals. These recording
techniques revealed to be essential tools in the study of brain function and have a
wide range of applications in clinical and research settings.

1.1.1 Origin and mechanisms of brain activity

In the following, we introduce the fondamental concepts of the brain's compo-
sition and functionning. We will �rst describe the structure of the brain and the
neurons that compose it. Then, we will explain how neurons communicate with
each other.

Structure of the brain

The brain is the central organ of our nervous system [Bear et al., 2020]. It is
responsible for the control of most of the body's functions, from basic physiological
processes such as breathing and heart rate to higher cognitive functions such as
perception, memory, and decision-making [Kandel et al., 2000]. It is composed
of two primary types of tissue: grey matter and white matter (Figure 1.1) [Bear
et al., 2020]. Grey matter, which makes up the outer layers known as the cerebral
cortex as well as deep brain structures like the basal ganglia and thalamus, consists
mainly of neuronal cell bodies, dendrites, and unmyelinated axons. This tissue
is crucial for processing information, as it contains the synapses where neuronal
communication occurs (Figure 1.2). White matter, found beneath the grey matter
and making up structures such as the corpus callosum and the internal capsule,
consists predominantly of myelinated axons. These myelinated �bers facilitate the
rapid transmission of electrical signals between di�erent brain regions, allowing for
e�cient communication and integration of information.

Structure of neurons

The human brain is made up of billions of nerve cells called neurons that interact
with each other through electrical and chemical signals [Bear et al., 2020, Hari
and Puce, 2023]. Neurons are the basic units of the brain and are responsible for
receiving, processing and transmitting information. They are highly specialized
cells that can generate electrical impulses, known as action potentials, in response
to stimuli [Purves et al., 2019]. These action potentials are the primary means by
which neurons communicate with each other and are essential for the functioning
of the nervous system. Each neuron consists of three main parts: the cell body
(soma), dendrites, and an axon as shown in Figure 1.2. Dendrites are tree-like

21



Chapter 1. General background

White
matter

Grey
matter

Figure 1.1: First MRI images at 11.7T of the human brain [Boulant et al.,
2024]. On the left, axial slice of the brain. On the right, sagittal slice of the brain.
The images were acquired in the context of the Iseult project at the NeuroSpin
center in Saclay, France. Iseult is a 11.7T MRI scanner dedicated to human brain
imaging and is the strongest magnet with clearance for human participants.

extensions that receive signals from other neurons and convey this information
to the soma. The soma contains the nucleus and is the metabolic center of the
cell, which process the signal coming from the dendrites and can generate action
potential depending on the received signal. The axon, a long, slender projection,
transmits action potentials away from the soma to other neurons, muscles, or
glands. At the end of the axon are terminal buttons that release neurotransmitters,
chemical messengers that bridge the synaptic gap between neurons as represented
in Figure 1.2.

Neuronal communication

The brain is a highly interconnected network of neurons that communicate with
each other through synapses. This process of synaptic transmission is the basis of
neural communication and underlies all brain activity [Bear et al., 2020, Purves
et al., 2019]. The brain's electrical activity is generated by a �ow of ions across the
neuronal membrane. When a neuron generates an action potential, it travels down
the axon to the synapse. Once the action potential reaches the terminal buttons at
the end of the axon, the neuron releases neurotransmitters into the synaptic gap.
These neurotransmitters bind to receptors on the dendrites of the next neuron,
and a�ect the permeability of the receiving neuron's membrane to ions. Neurons
maintain a resting membrane potential, a di�erence in electrical charge between
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1.1. Capturing brain activity with M/EEG

Figure 1.2: Neuron and synapse structure. Image adapted from ��Nervous
System� by The Partnership in Education.

the inside and outside of the cell, by actively pumping ions in and out of the cell.
When a neuron receives a signal, ion channels in the membrane open, allowing
ions to �ow into or out of the cell. This generates a change in the membrane
potential, known as a post-synaptic potential, that can either depolarize (excite)
or hyperpolarize (inhibit) the neuron. The electrical signals from the dendrites of
a neuron are integrated by the soma and, if the sum of the post-synaptic potentials
is strong enough, an action potential is generated and transmitted along the axon
to other neurons. When generating an action potential, the neuron is said to �re.

1.1.2 Recording brain activity with M/EEG

Using the above knowledge of the brain's structure and function, we can now
explore how MEG and EEG, or M/EEG for short, are used to capture the brain's
electrical activity.

The neurophysiological basis of M/EEG signals

As mentionned previously, neurons communicate with each other through chem-
ical signals. Both action potentials and post-synaptic potentials cause ion �ows
and thus produce electrical currents. These electrical currents create small elec-
tromagnetic �eld around the neuron. The electromagnetic �eld generated by a
single neuron is so weak that it cannot be detected outside the brain. For mea-
surable signals to be captured, a large number of neurons must produce electrical
currents simultaneously. The temporal resolution of the post-synaptic potential
(∼ 10ms) is 10 times greater than the temporal resolution of the action potential
(∼ 1 ms) [Hämäläinen et al., 1993]. This makes post-synaptic potentials easier
to synchronize and generate measurable electromagnetic �elds. Additionally, the
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Chapter 1. General background

Figure 1.3: Electric and magnetic �eld produced by a current dipole in
the brain. Adapted from [Gramfort, 2009]

electrical currents produced by these neurons must be oriented in the same di-
rection to create a detectable �eld. In the cortex, pyramidal cells are the most
common type of neuron and are organized in columns. When these neurons create
post-synaptic potentials, they generate electrical currents that are oriented in the
same direction, and perpendicular to the cortical surface. A group of pyramidal
cells producing post-synaptic currents together acts as a current dipole in the cor-
tex (see Figure 1.3). The synchronized activity of around 40,000 pyramidal cells
creates an electromagnetic �eld strong enough to be detected on the scalp by tech-
niques such as electroencephalography and magnetoencephalography [Hämäläinen
et al., 1993, Buzsáki and Draguhn, 2004]. The signal measured by M/EEG is
mostly emitted by groups of pyramidal cell in the cortex, due to their unique
topology and placement relative to the scalp.

M/EEG recording techniques

The electrical activity of the brain can be recorded non-invasively using electroen-
cephalography or magnetoencephalography. Both MEG and EEG provide high
temporal resolution, on the order of milliseconds, with sampling rates between 250
and 2000Hz. The recording setups for MEG and EEG are illustrated in Figure 1.4.

EEG is a technique that record the electrical activity of the brain that was
�rst introduced by Hans Berger in 1924 during a surgical intervention [Berger,
1929]. Small electrodes are attached to the scalp using conductive gel. These
electrodes detect the di�erences in electric potential generated by neurons in the
brain and record them as voltage changes over time. The positions of the electrodes
on the scalp are usually de�ned according to international standards, such as
the 10-20 system, to ensure consistency across studies. Usually, a few dozen of
sensors are used but some devices can have up to 256 electrodes. The signal
recorded by EEG is typically of 50 to 100µV amplitude. Since the electrical signals
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1.1. Capturing brain activity with M/EEG

Figure 1.4: M/EEG recording setups. Top panel: schematic MEG setup with
a screen for visual stimulation. Bottom panel: schematic EEG setup with a cap
and electrodes, and a screen for visual stimulus presentation. Middle panel: MEG
(left) and EEG (right) sensor arrays. Source: [Hari and Puce, 2023].
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Chapter 1. General background

etected by the electrodes are weak, they are ampli�ed to make signals that can be
digitized and analyzed. The equipment necessary for EEG recording is generally
less expensive to purchase and maintain than other brain imaging techniques. EEG
is also more portable and �exible, allowing for a wider range of experimental setups
and environments, including bedside monitoring in clinical settings.

MEG measures the magnetic �elds generated by the electrical currents of the
brain, �rst demonstrated by David Cohen in 1968 [Cohen, 1968]. These magnetic
�elds are recorded using an array of sensors placed at a few centimeters around
the head. The typical number of sensors used in MEG is around 300. There
are two types of MEG sensors: the magnetometers and the gradiometers. The
magnetometers measure the strength and direction of magnetic �elds, in Tesla,
using one coil. The gradiometers are made up of two coils and are speci�cally
designed to measure the gradient of the magnetic �eld, in Telsa per distance unit.
Gradiometers are either positionned in a radial or tangential manner to record the
gradient in di�erent directions. Because the magnetic �elds generated by the brain
are weak, in the order of 10−13 T, MEG requires a specialized shielded room to
reduce interference from the Earth's magnetic�eld and other sources of noise. The
superconducting sensors and the magnetically shielded rooms make MEG a very
expensive brain imaging device because of the liquid helium requirements. Yet,
magnetic �elds are not distorted by the tissues of the head than electric �elds.
Thus, MEG has a better spatial resolution than EEG.

The resulting recorded M/EEG signals provide information about the brain's
electrical activity and can be used to study brain function, diagnose neurological
disorders, and monitor the e�ects of treatments. An example of M/EEG signals
from the MNE sample dataset [Gramfort et al., 2014] is displayed in Figure 1.5.

1.1.3 Motivations and applications

M/EEG techniques have the advantage to provide a direct measure of the
neuronal activity. Thanks to their high temporal resolution, these techniques have
been very useful for studying the temporal dynamics of the brain in clinical and
research setting, leading to a wide range of applications.

Clinical applications of M/EEG

In clinical settings, M/EEG are primarily used to diagnose, monitor, and study
the e�ect of treatments on brain disorders. MEG's ability to precisely localize the
source of abnormal activity makes it a valuable tool for pre-surgical evaluation,
guiding surgeons in planning the resection of epileptic foci. This feature of MEG
also allows to map normally functioning brain areas before surgery to remove a
tumor or treat epilepsy [Stu�ebeam et al., 2009, Bagi¢, 2016]. Despite its clinical
potential, MEG is not widely used in clinical settings due to the high cost of
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1.1. Capturing brain activity with M/EEG

the equipment. Consequently, MEG is predominantly used for research purposes.
One of their main clinical applications of EEG is the diagnosis and monitoring of
epilepsy. It is used to detect abnormal brain activity, such as spikes or seizures,
and to localize the source of epileptic activity [Chowdhury et al., 2015]. EEG
is also extensively used in sleep studies to diagnose sleep disorders such as sleep
apnea, narcolepsy, and insomnia. By recording brain activity over several hours
of sleep, EEG provides insights into the di�erent stages of sleep and helps identify
disruptions that may indicate a disorder [Moldofsky, 2001, Behzad and Behzad,
2021]. Furthermore, EEG is utilized to assess brain function in patients with
brain injuries, stroke, or coma [Rohaut et al., 2024]. It provides information about
the extent and location of brain damage, which is essential for prognosis and
rehabilitation planning. During surgery, EEG monitoring is used to track brain
activity and ensure the patient's state of anesthesia or unconsciousness, helping to
prevent awareness during surgery and optimize anesthesia administration [Gibbs
et al., 1937, Schneider et al., 2003].

M/EEG techniques are often combined with other neuroimaging methods, such
as functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), or transcranial magnetic stimulation (TMS), to provide complementary
spatial information about the brain. These multimodal approaches o�er a more
comprehensive understanding of brain function by integrating data from di�erent
perspectives.

M/EEG for research and development

In research settings, M/EEG techniques are employed to study the dynamics and
connectivity of brain activity [Gross, 2019, da Silva Lopes, 2013]. In cognitive
neuroscience, these methods are used during various cognitive tasks, including
attention, memory, language, perception, and decision-making. Studying M/EEG
oscillations along with functional and e�ective connectivity, helps elucidate the
neural mechanisms underlying cognitive processes and how they are a�ected by
di�erent conditions or interventions.

Brain-computer interfaces (BCIs) represent another signi�cant research appli-
cation of M/EEG. These interfaces allow individuals to control prosthetic limbs,
computer cursors, or other assistive technologies with their brain activity. The idea
is to interpret the user's intentions and translate them into actionable commands.
The signals recorded with M/EEG are interpreted to enable direct communication
link between the brain activity and external devices. M/EEG-based BCIs typi-
cally involve the detection of speci�c brain signals, such as event-related potentials
(ERPs), which are then processed and decoded using machine learning algorithms
to infer the user's desired action [Abiri et al., 2019, Lotte et al., 2018]. The high
temporal resolution of M/EEG allows for a nearly real-time feedback, allowing to
develop closed-loop BCI systems.

Biomarker development is another area of research where M/EEG is widely
used. Biomarkers are biological indicators that can be objectively measured and
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Figure 1.5: M/EEG signals from the MNE sample dataset [Gramfort
et al., 2014]. Raw signals from 5 EEG sensors and 5 MEG sensors during 5
seconds are shown. The EEG signals are in microvolts and the MEG signals are
in femtoteslas. The signals are �ltered between 0.1 and 40Hz.

evaluated as indicators of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention. In the context of brain
disorders, M/EEG biomarkers can help for identifying early signs of neurologi-
cal diseases such as Alzheimer's disease [Horvath et al., 2018], attention-de�cit
and hyperactivity disorder (ADHD) [Lenartowicz and Loo, 2014] or depression [de
Aguiar Neto and Rosa, 2019]. Furthermore, the International Conference on Bio-
magnetism (BIOMAG) has organized a data analysis competition in 2022 to de-
velop biomarkers for the detection of dementia and mild cognitive impairment
using MEG data. The solution my team proposed for this competition was based
on the Riemannian approach presented in Section 1.2.2 was selected as the winning
solution.

EEG is also increasingly employed in drug development, particularly to assess
the e�cacy and safety of new pharmacological compounds [Itil and Itil, 1995]. It
plays an important role in pharmacokinetic-pharmacodynamic (PK-PD) modeling,
which explores the relationship between the drug's concentration in the body and
its physiological e�ects on brain activity [Groenendaal et al., 2008, Ebert et al.,
2001].

1.2 Statistical learning with M/EEG

In this section, we provide an overview of the statistical learning methods
used in M/EEG data analysis. We discuss the importance of pre-processing in
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Figure 1.6: Pre-processed M/EEG signals from the MNE sample
dataset [Gramfort et al., 2014]. The signals, corresponding to the ones dis-
played in Figure 1.5, have been cleaned using Independent Component Analysis
(ICA) with 20 components. In the MEG signals cardiac artifacts were removed,
and in the EEG signals occular artifacts are attenuated.

removing noise and artifacts from the acquired signals and introduce the classical
pre-processing steps in M/EEG analysis. Then, we detail the statistical methods
commonly used in the litterature, including a-priori de�ned features extraction,
supervised spatial �ltering, and deep learning.

1.2.1 Pre-processing

The acquired M/EEG signals are often contaminated by noise and artifacts
rising from other sources than the neuronal activity in the brain in which we are
interested. These artifacts can be caused by the environment such as the frequency
of the AC power line or vibrations and electromagnetic �eld noise coming from
activities in the surrounding building. The instrumention used for the recording
also induce noise due to sensors malfunction or to the Analog-to-Digital Conver-
sion. Even biological phenomenon like heart beats and eye movements contaminate
M/EEG signals.

Pre-processing these data is thus a consequential step to access the signal of
interest, linked to the underlying brain activity. Several studies have shown that
the choice of pre-processing steps can have a signi�cant impact on the performance
of predictive models [Bomatter et al., 2024, Delorme, 2023]. While Delorme [2023]
demonstrated that simpler pre-processing steps are often su�cient in non-ML con-
texts, Bomatter et al. [2024] highlighted that minimal pre-processing in EEG data
can lead to suboptimal results in machine learning applications, where thorough
artifact cleaning is essential not only for performance but also for model inter-
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pretability.
Figure 1.6 shows the e�ect of pre-processing on the signals with only one

artefact removal method, compared to the signals displayed in Figure 1.5. In the
following we introduce the pre-processing steps in M/EEG analysis that were used
in this thesis.

Handling bad channels

Sensors, or channels, sometimes malfunction for a part or for the entire recording
session, leading to excessively noisy or �at signals. These channels are referred to
as bad channels. Detection of bad channels is often done manually, either during
data acquisition or by visually inspecting the signals afterward. Once identi�ed,
researchers can either ignore these channels during the downstream analysis or
attempt to repair them. Ignoring bad channels can be a straightforward solution;
however, in cross-subject analysis, it is important to maintain the same data di-
mension across all subjects. Therefore, repairing bad channels is often preferred.
Interpolation techniques are commonly used for this purpose, with Spherical Spline
Interpolation (SSI) being the standard for EEG data and Field Interpolation (FI)
for MEG data. These methods allow for the reconstruction of the missing or noisy
data by estimating the signal from the surrounding channels, thereby preserving
the data integrity and dimensionality for subsequent analyses. More details about
these interpolation techniques are presented in Chapter 4.

Spectral �ltering and resampling

Filtering is an essential step in the pre-processing pipeline of M/EEG data to
reduce noise, though it can have unwanted e�ects if not used carefully
[Widmann et al., 2015].

The M/EEG signals relevant for neuroscience are primarily in low frequencies,
typically between 1Hz to 50Hz. To isolate these frequencies, a bandpass �lter
is applied. The high-pass �lter removes low-frequency noise, such as that caused
by head movements, while the low-pass �lter eliminates high-frequency noise, like
muscle activity. However, this bandpass �ltering alone may not be su�cient to
remove noise that overlaps with the frequencies of interest. A notch �lter is often
applied to the raw data to remove power-line noise at 50 or 60Hz and its har-
monics. This zero-phase �lter targets narrow frequency bands around the selected
frequencies, but it must be used cautiously to avoid distorting the signal.

M/EEG data are typically recorded at high sampling rates, around 1000Hz
or more, providing high temporal precision essential for analyzing the timing of
events. However, this high sampling rate can be memory and computationally
expensive. In cases where high-frequency information is not necessary, such as
in the analyses performed in this thesis, downsampling the data can save time
and resources. The Nyquist-Shannon sampling theorem must be respected during
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resampling, ensuring that the sampling frequency is at least twice the highest
frequency present in the signal, to prevent aliasing.

Artifact detection and removal

Even though more advanced tools have been developed for artifact detection [Al-
lain et al., 2022] and removal, Independent Component Analysis (ICA) and Signal-
Space Projection (SSP) [Uusitalo and Ilmoniemi, 1997] remain the most commonly
used methods for cleaning M/EEG data.

ICA is a blind source separation technique that decomposes the recorded signal
into independent components. It allows for the separation of the brain signal of
interest from various noise artifacts. The noise components, often related to ocular
and muscle artifacts, are identi�ed manually and removed from the data. Thus,
ICA is primarily used to eliminate biological artifacts.

On the other hand, SSP projects the data into a lower-dimensional subspace
that is orthogonal to the artifact subspace. The artifact subspace is estimated ei-
ther from the covariance matrices computed over artifact segments or from empty-
room recordings where the subject is not present. SSP is mainly employed to
remove stationary environmental artifacts, such as power-line noise, but can also
be used to address biological artifacts.

Additionally, the autoreject method automatically detects and repairs bad data
segments [Jas et al., 2017], known as epochs, in M/EEG recordings. It identi-
�es these segments using peak-to-peak amplitude thresholding, optimized through
cross-validation. For repairing bad epochs, autoreject employs interpolation meth-
ods as mentioned previously in the handling bad channels paragraph.

Setting the EEG reference

EEG signals represent the di�erence in electric potential between the recording
electrodes and a reference electrode. This step is speci�c to EEG data. Because
the signals from the reference electrode will be subtracted from all other elec-
trodes, it is essential that the reference electrode captures only the common noise
across all electrodes and not the brain activity of interest. Typically, the reference
electrode is placed in a location close to the head but far from areas generating
signi�cant brain activity. Common locations include the earlobe, the nose, or the
mastoid. However, in setups where no dedicated reference electrode is present,
one of the recording electrodes may be chosen as the reference, or the Common
Average Reference (CAR) technique can be employed. It is also systematically
used to perform inverse modeling and source imaging. In CAR, the average of all
electrode signals is used as the reference, helping to minimize the in�uence of any
one electrode's speci�c activity on the overall recording.
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Signal-Space Separation

Signal-Space Separation (SSS) is a preprocessing step speci�c to MEG data. SSS
is a method that separates the MEG signals into components originating from
inside the head and components coming from external sources outside the head
[Taulu and Kajola, 2005]. This technique exploits the physics of electromagnetic
�elds behind the MEG signals. Similar to SSP, SSS projects the data into a lower-
dimensional subspace, but unlike SSP, which empirically estimates the subspace
from the data, SSS derives the subspace theoretically based on the physics of MEG
signals. A derived version of SSS, known as the Maxwell �lter, was developed for
Neuromag data. The Maxwell �lter is used on the MEG data in this thesis, e�ec-
tively improving the signal-to-noise ratio by removing external noise and ensuring
the focus remains on brain-generated signals.

Creating epochs

M/EEG signals are generally recording continuously during several minutes to
several hours. To analyze these data, they are divided into smaller segments called
epochs. The length of these epochs can vary depending on the type of analysis
performed. For example, in event-related analysis, epochs are usually centered
around the event of interest: for example 200ms before the event and 500ms after
the event for auditory stimuli. In resting-state analysis, epochs are usually de�ned
to be longer, around 10 seconds, to capture the spontaneous brain activity. To
have a good signal-to-noise ratio, it is often necessary to average many epochs
corresponding to a same type of event.

1.2.2 Common approaches to predict from M/EEG data

The goal is to predict an outcome variable y ∈ Y related to brain activity
recorded with M/EEG. We denote the M/EEG signal at time t as x(t) ∈ RP .
Examples of y include the age of the subject or the presence of a disease (further
applications are discussed in Section 1.1.3). Due to the complexity of the data
and the high dimensionality of the feature space, statistical learning, or machine
learning (ML), is employed to predict y from x(t). ML methods approximate the
relationship between x(t) and y by learning a function f : RP → Y that minimizes
a loss function L(y, f(x(t))) between the predicted outcome ŷ = f(x(t)) and the
true (known) outcome y. Predictions can be made at the event level, such as sleep
staging, or at the participant level, such as brain age prediction. If y is continuous,
regression models are used, whereas classi�cation models are used if y is categorical.
The aim is to train ML models on a dataset D = {(xi(t), yi)}Ni=1 and ensure they
generalize well to unseen data, including new recordings or participants. In the
following sections, we introduce popular machine learning approaches to predict
from M/EEG data [Engemann et al., 2022, Gemein et al., 2020].
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A-priori de�ned features

A-priori de�ned features were one of the �rst approaches developed to decode
M/EEG data and remain popular due to their interpretability. These features are
extracted from signals based on �ndings from neuroscience studies, using prior
knowledge of the brain and the outcome to predict. After pre-processing, features
are extracted from the clean epochs and then used in the machine learning (ML)
model of choice. It is also possible to extract many features and use an ML
model, such as a random forest [Breiman, 2001], which can handle non-informative
features e�ectively.

Commonly extracted features include common statistical features like mean,
variance, skewness, quantiles, peak-to-peak amplitude, kurtosis, spectral entropy
and power, . . . [Estrada et al., 2004, Hosseinifard et al., 2013, Engemann et al.,
2022]. Many studies have shown the importance and predictive capabilities of
the spectral content of M/EEG signal, i.e., how it oscillates. This signal can
indeed be decomposed in multiple simple waves or rhythms, characterized by their
frequencies and amplitude [Buzsáki and Llinás, 2017]. This includes metrics like
spectral entropy and power ratios in decibels among de�ned frequency bands,
which re�ect the di�erent bands and their importance in brain activity.

End-to-end approaches

End-to-end approaches, popular in the �elds of computer vision [Krizhevsky et al.,
2012] and natural language processing [Deng and Liu, 2018], are increasingly being
applied to M/EEG data analysis [Roy et al., 2019]. These methods use raw or
minimally pre-processed signals as input to the model, eliminating the need for
manual feature extraction. Instead, features are learned directly by the model
through joint optimization of the features and the prediction function. While
this approach o�ers signi�cant advantages, including the potential for improved
performance by learning highly relevant features, it is less interpretable due to the
complexity and the learned nature of the features.

End-to-end models are data and computation intensive, requiring large amounts
of data and signi�cant computational resources. This is feasible in �elds where
large datasets are readily available, but it poses a challenge for M/EEG ap-
plications where data are more scarce. Despite these challenges, various deep
learning architectures have been investigated for their applicability to M/EEG
data [Schirrmeister et al., 2017, Supratak et al., 2017]. These architectures can be
designed to incorporate prior knowledge about the data, aiding in the extraction
of relevant features [Banville et al., 2021].

Covariance-based approaches

Covariance-based approaches sit between feature-based approaches and end-to-
end approaches. They use spatial covariance matrices of pre-processed signals as
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representations and input data.
These methods include supervised spatial �ltering approaches like Source Power

Comodulation (SPoC) [Dähne et al., 2014], which extracts spatial �lters that max-
imize the correlation between the signal and the outcome variable, and Common
Spatial Filtering (CSP) [Koles et al., 1990], which extracts spatial �lters that max-
imize the variance of the signal for one class and minimize it for the other class.

Other covariance-based approaches bene�t from the invariant features to �eld
spread when utilizing Riemannian geometry. This has been popularized in BCI
applications and research [Barachant et al., 2012]. Instead of designing and opti-
mizing �lters based on covariance matrices, these methods use mathematical tools
from the Riemannian geometry of Symmetric Positive De�nite (SPD) matrices.
The covariance matrices are either used with minimum distance to mean (MDM)
algorithms on the manifold or transformed into Euclidean vectors that can be used
in any linear ML model. These approaches have been investigated and compared
in [Sabbagh et al., 2019, 2020] on both simulated and real M/EEG data. Co-
variance matrices can be computed from multiple frequency bands to capture the
spectral content of the data, enhancing the representation.

A comparison of di�erent ML approaches to predict from M/EEG data was
conducted on four datasets in a brain age benchmark study [Engemann et al.,
2022]. The results from this benchmark showed that the covaraince-based ap-
proach achieved comparable results to deep learning approaches. In addition, the
former approach is particularly bene�cial when working with smaller datasets:
deep learning models, which tend to have more parameters, are more likely to
over�t small datasets. A detailed presentation of the covariance-based approach
is provided in Section 1.3.

1.2.3 Evaluation metrics

To evaluate the performance of the predictive model on M/EEG data, a range
of metrics are commonly used in the literature. The Mean Absolute Error (MAE),
the R2 score and the Spearman correlation are used for regression tasks, while the
Accuracy and the Balanced Accuracy are used for classi�cation tasks.

Mean Absolute Error

Mean Absolute Error (MAE) is a metric used to measure the average magnitude
of errors in a set of predictions. It is calculated as the average of the absolute
di�erences between predicted values and actual values:

MAE =
1

N

N∑
i=1

|yi − ŷi| (1.1)

where yi is the true value, ŷi is the prediction, and N is the number of observations.
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MAE is easy to interpret as it provides a direct measure of the average error.
The lower the MAE, the better the model's performance in predicting the out-
come variable. Unlike Mean Squared Error (MSE), MAE is not overly sensitive
to outliers. However, it does not provide information on the direction of errors,
meaning it does not indicate whether predictions are generally overestimating or
underestimating the actual values.

R2 Score

The R2 score, also known as the coe�cient of determination, is a regression score
function that indicates how well the model �ts the data. It measures the proportion
of the variance in the dependent variable that is predictable from the independent
variables:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(1.2)

where ȳ is the mean of the true values.
The R2 score provides a measure of how well the model explains the variability

of the response data. The best possible score is 1, indicating that the model led to
perfect predictions. A score of 0 means the model always predicts the mean ȳ. The
R2 score can also be negative, meaning that the model is worse than predicting
the mean.

Spearman Correlation

Spearman correlation is a non-parametric measure that assesses how well the re-
lationship between two variables can be described using a monotonic function. It
is calculated as:

ρ =
cov(rky, rkŷ)
σrkyσrkŷ

(1.3)

where rky and rkŷ are respectively the rank variables of the true values and the
predicted values, σrky and σrkŷ are their standard deviation.

A positive sign indicates that the variables move in the same direction, while
a negative sign indicates that they move in opposite directions. Scores of 1 and -1
signify perfect monotonicity between the variables, either increasing or decreasing
respectively. A score of 0 means there is no correlation, indicating no clear direction
of ŷ when y increases.

Accuracy and Balanced Accuracy

Accuracy is a metric that measures the proportion of correct predictions among
the total number of cases examined:

Accuracy =
Number of correct predictions
Total number of predictions

(1.4)

35



Chapter 1. General background

Accuracy is simple to understand and compute. However, it can be misleading
in the presence of imbalanced data, as it does not account for the distribution of
classes.

Balanced Accuracy is used to address the limitations of accuracy in imbalanced
datasets. It is the average of the recall obtained on each class. For a binary
classi�cation problem it is de�ned as:

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
(1.5)

where TP represents true positives, TN represents true negatives, FP represents
false positives, and FN represents false negatives.

1.3 Predictive modeling with M/EEG covariance matrices

In this section, we describe the covariance-based approach for predictive re-
gression modeling that is used throughout this thesis. First, the concepts of Rie-
mannian geometry on covariance matrices are presented, as well as the related
predictive pipeline. Then, we introduce the covariance matrix representation of
M/EEG signals.

1.3.1 Riemannian geometry of SPD matrices

Covariance matrices belong to the set S++
P of P ×P symmetric positive de�nite

matrices [Skovgaard, 1984, Pennec et al., 2006]. S++
P is open in the set SP of P ×P

symmetric matrices, and thus S++
P is a smooth manifold [Boumal, 2023].

A manifold is a set equipped with a smooth structure that allows de�ning
Euclidean vector spaces at each point of the manifold, called tangent spaces, which
locally approximate the manifold [Boumal, 2023]. We denote the tangent space
at Σ ∈ S++

P as TΣS++
P , which is equal to the set SP . The tangent space and the

manifold have the same dimension.
When a smooth inner product is de�ned at every tangent space, the smooth

manifold becomes a Riemannian manifold. A common choice is the a�ne invariant
Riemannian metric [Skovgaard, 1984, Förstner and Moonen, 2003, Pennec et al.,
2006]. This metric adds useful theoretical properties to the S++

P manifold, such as
being geodesically complete and putting null eigenvalues at an in�nite distance.
Given Γ,Γ′ ∈ TΣS++

P , this metric is:

⟨Γ,Γ′⟩Σ = tr
(
Σ−1ΓΣ−1Γ′) (1.6)

The associated norm on the tangent space of Γ ∈ TΣS++
P is de�ned as:

∥Γ∥2Σ = ⟨Γ,Γ⟩Σ (1.7)

The norm at the tangent space at the identity TIS++
P is the Frobenius norm.
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1.3. Predictive modeling with M/EEG covariance matrices

Riemannian distance

The Riemannian distance, also called geodesic distance, between two points on the
manifold associated with the a�ne invariant metric de�ned in (1.6) is:

δR(Σ,Σ′) ≜
∥∥log (Σ−1/2Σ′Σ

−1/2
)∥∥

F
, (1.8)

where log : S++
P → SP is the matrix logarithm de�ned as:

log(Σ) = U diag(log(λ1), . . . , log(λP ))U
⊤, (1.9)

with Σ = U diag(λ1, . . . , λP )U
⊤ representing the singular value decomposition

(SVD) of Σ.
It should be noted that, since the Riemannian metric is a�ne invariant, δR is

also a�ne invariant, i.e., for every A ∈ RP×P invertible, we have:

δR(AΣA⊤,AΣ′A⊤) = δR(Σ,Σ′). (1.10)

A�ne invariance is an essential property for predictive modeling with M/EEG
data because it ensures that the distance between M/EEG signals associated with
the covariance matrices remains una�ected by linear transformations. This is
particularly powerful since many e�ects on M/EEG data can be approximated by
linear transformations. Examples of such e�ects include slightly moving the sensor
positions, having di�erent measurement scales or units, and encountering di�erent
mixtures of brain activities in a person's brain [Yger et al., 2017, Congedo et al.,
2017].

Riemannian mean

With the Riemannian distance de�ned, we can now identify the matrix that is
equidistant from a set of N matrices. This point of interest is known by various
names in the literature, such as the center of mass, Fréchet mean, and Karcher
mean. In this work, we refer to it as the Riemannian mean.

This Riemannian mean, denoted as Σ, is de�ned for a set {Σi}Ni=1 ⊂ S++
P as

Σ ≜ argmin
Σ∈S++

P

N∑
i=1

δ2R(Σ,Σi) (1.11)

There is no closed-form solution for (1.11) when N ≥ 3. However, a solution for
its optimization problem always exists [Karcher, 1977] In practive, the Riemannian
mean is computed with an iterative algorithm, such as the Riemannian gradient
descent [Pennec et al., 2006, Zhang and Sra, 2016].
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1.3.2 Learning on the Riemannian manifold

Some approaches exist to directly learn a model on the manifold, such as
the Minimum Distance to Mean (MDM) classi�er [Barachant et al., 2012] or the
geodesic regression [Fletcher, 2011]. Alternatively, the tangent space approaches
have the advantage of de�ning a linear vector space that can be operated using
simple algebra, thus allowing the use of classical machine learning models. In the
following we introduce the concept to perform the transformation of covariance
matrices into vectors using the Riemannian logarithmic mapping and the vector-
ization operator.

Riemannian logarithmic mapping

As introduced previously, an Euclidean space is de�ned at each point of the man-
ifold. A mapping that transforms a point of the manifold into a point of the
tangent space at this point while preserving the local properties of the manifold.
This mapping is called the logarithmic mapping. When using the Riemannian
metric, this logarithmic mapping of Σ′ at Σ is de�ned as

logΣ(Σ
′) ≜ Σ

1/2 log
(
Σ

−1/2Σ′Σ
−1/2
)
Σ

1/2 ∈ TΣS++
P . (1.12)

with the matrix power de�ned as:

Σα = U diag(λα
1 , . . . , λ

α
P )U

⊤. (1.13)

The logarithmic mapping (1.12) at the identity is simply the matrix logarithm.
The inverse mapping, to go from the tangent space to the manifold, is called

the exponential mapping, and is de�ned as

expΣ(Γ) ≜ Σ
1/2 exp

(
Σ

−1/2ΓΣ
−1/2
)
Σ

1/2 ∈ S++
P . (1.14)

Vectorization operator

After using the log mapping, we obtain an element of the tangent space. To convert
this matrix representation into a Euclidean vector suitable for machine learning
algorithms, we want to use a vectorization operator. Since the tangent space is
isomorphic to the set of symmetric matrices, we can use a vectorization operator
which �attens the upper triangle part of the matrix.

Following this procedure, we have a non-linear feature extraction method of
a dataset {Σi}Ni=1 by computing the Riemannian logarithmic mapping of each
covariance matrix at their Riemannian mean Σ and then vectorizing the resulting
matrices:

ϕ(Σi,Σ) ≜ uvec
(
log
(
Σ

−1/2
ΣΣ

−1/2
))
∈ RP (P+1)/2 (1.15)
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where uvec : SP → RP (P+1)/2 vectorizes the upper triangle part with o�-diagonal
elements multiplied by

√
2 to preserve the norm.

This method has been widely applied in M/EEG data for various applications,
such as Brain Computer Interfaces (BCI) [Barachant et al., 2012], or biomarker
exploration [Sabbagh et al., 2020].

1.3.3 Covariance matrix of M/EEG signals

The spatial covariance matrix serves as a useful representation of M/EEG sig-
nals, o�ering a framework for analyzing the statistical properties of multivariate
time series. Under certain statistical assumptions, it is possible to estimate a set of
parameters describing the statistical behavior of multivariate time series, including
the mean vector and the cross-spectral density matrices, as well as band-speci�c
covariance matrices. Predictive models can then be developed based on these
covariance matrices and the associated mathematical tools discussed previously.
However, M/EEG spatial covariance matrices often su�er from rank de�ciency,
which prevents them from being symmetric positive de�nite (SPD). This issue is
typically addressed through the application of regularization methods or dimen-
sionality reduction techniques.

Statistical assumptions

To analyze M/EEG signals, the classical approach is to consider the signal at time
t as a random vector x(t) ∈ RP . Assumptions of wide-sense (up to the second
order) stationarity and ergodicity enable the representation of M/EEG time series
using cross-spectral covariance matrices. Wide-sense stationarity implies that the
mean of the multivariate time serie is constant over time:

E[x(t)] = µ ∀t (1.16)

and the autocovariance matrix between times t and t + τ is only a function of τ ,
and not of t:

R(t, t+ τ) = R(τ) = E[(x(t+ τ)− µ)(x(t)− µ)⊤] (1.17)

Under this assumption and following the Wiener-Khinchin theorem, we de�ne
the cross-power spectral density of a multivariate time serie as the discrete-time
Fourier transform (DTFT) of the autocovariance matrices [Priestley, 1981]:

S(f) =
+∞∑

k=−∞

R(k)e−j2πfk, (1.18)

In practice, since we have only a �nite number samples, the sum has a �nite
number of terms and is convergent. The cross-spectral density matrices S(f) are
positive de�nite matrices.
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However, assuming wide-sense stationarity alone is often inadequate for M/EEG
signals. Instead, we assume that the mean and autocovariance of the multivariate
time series are constant over small time windows around t.

Wide-sense ergodicity implies that if a su�ciently large set of random samples
is taken from a process, it can represent the average statistical properties of the
entire process. Combining wide-sense ergodicity and stationarity, we can estimate:

µ̂ =
1

T

T−1∑
t=0

x(t) (1.19)

R̂(τ) =
1

T − |τ |

T−1−|τ |∑
t=0

(x(t+ |τ |)− µ̂)(x(t)− µ̂)⊤ (1.20)

Ŝ(f) = DTFT(R̂(τ)) (1.21)

These estimations provide a framework to capture the statistical properties of
M/EEG signals over time.

Covariance matrix

A F -bandpass �ltered M/EEG signal x(t) is zero-mean due to the highpass �ltering
part of the bandpass, thus µ = 0. Therefore the inverse DTFT of the cross-spectral
density matrix is the covariance matrix of x(t):∫

F
S(f)df = R(0) = E[x(t)x(t)⊤] = Σ (1.22)

The M/EEG signals, denoted as X ∈ RP×T , are multivariate time series
recorded from d sensors over T time points. We now consider the covariance
matrix of M/EEG signals, denoted Σ ∈ S++

P . This matrix is de�ned as:

Σ =
1

T
XX⊤ , (1.23)

where T is the number of samples and X ∈ RP×T the M/EEG data matrix. The
covariance of M/EEG signals holds the sensors' variance, or power, on its diagonal.
The o�-diagonal terms correspond to the covariance between sensors.

These covariance matrices are usually computed in several frequency bands by
bandpass �ltering the M/EEG signals. In this situation, one covariance matrix
is computed per frequency band. As each matrix is a symmetric positive de�nite
matrice, the concepts introduced in Section 1.3.1 and Section 1.3.2 can be applied
to them independently. By repeating this process for each observation, we obtain
a set of covariance matrices {Σi}Ni=1 per frequency bands.
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Rank de�ciency of M/EEG covariance matrices

M/EEG preprocessing steps often lead to rank de�ciency. For instance, re-referencing
EEG signals to a common average reference, applying ICA to remove artifacts,
using SSS to remove environmental noise, or applying SSP (Signal Subspace Pro-
jection) to remove EOG and ECG artifacts can result in rank de�ciency.

To address this rank de�ciency, one approach is to regularize the covariance
matrices using shrinkage methods to obtain a regularized full-rank matrix:

Σshrunk = (1− s)Σ+ sµIP , (1.24)

with µ = tr(Σ)/P and s the shrinkage coe�cient that can be estimated with
methods such as Ledoit-Wolf [Ledoit and Wolf, 2004] or the Oracle Approximating
Shrinkage (OAS) [Chen et al., 2010].

Another e�ective method to ensure full-rank matrices is to apply a Principal
Component Analysis (PCA) to reduce the dimensionality of the covariance ma-
trices, rendering them full rank [Sabbagh et al., 2019]. The �nal dimension of
the covariance matrices after PCA is denoted as R. We use as �lters the PCA
eigenvectors W ∈ RR×P corresponding to the R largest eigenvalues of the mean
covariance matrices Σ as de�ned in (1.11). The resulting �ltered matrices are:

Σ�ltered = WΣW⊤ ∈ RR×R . (1.25)

These methods ensure that the covariance matrices used for subsequent analysis
are full rank and suitable for the Riemannian geometry framework.

1.4 Domain adaptation for biological signals

In machine learning applied to biological signals, achieving the most accurate
predictive models often necessitates training on large datasets to embrace the vari-
ability of these data. However, gathering substantial data in neuroscience poses
signi�cant challenges due to the high cost and complexity of data collection. Re-
cently, several large databases for health applications have emerged [Andreu-Perez
et al., 2015], facilitating the development and training of machine learning mod-
els. Nevertheless, a critical issue arises: models trained on speci�c datasets often
fail to generalize to new datasets due to high variabilities between them [Dockès
et al., 2021, Quiñonero-Candela et al., 2022]. These variabilities in biological data
stem from statistical discrepancies across di�erent populations, recording devices,
experimental conditions, and more. Addressing this challenge requires the de-
velopment of models that can e�ectively generalize to new datasets, known as
domain adaptation. In the following sections, we introduce domain adaptation
and its mathematical framework. We discuss dataset shifts examples that can be
observed in biological signals and discuss existing methods aimed at reducing these
shifts.
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1.4.1 The challenge of domain adaptation

Machine learning aims at learning a model on training data to predict on new
unseen data. However, most models assume that the training and testing data
are drawn from the same distribution as well as the same feature space and the
same labels distribution. However, traditional models assume that the training
and testing data are drawn from the same distribution, feature space, and label
distribution. In practice, especially with biological signals, these assumptions are
often not met. Domain adaptation addresses this challenge [Ben-David et al., 2010,
Redko et al., 2019] and is is closely related to transfer learning. While transfer
learning generally refers to the process of applying knowledge gained from one task
or domain to another, domain adaptation speci�cally addresses the scenario where
the source and target domains exhibit di�erent distributions.

In computer vision, domain adaptation is applied for tasks such as object de-
tection and image classi�cation [Csurka et al., 2017]. For example, a model trained
to detect objects in daytime images may struggle with images taken at night or
in diverse weather conditions. Domain adaptation methods adjust the model to
perform well across varied conditions without extensive training on nighttime or
weather-speci�c datasets. Similarly, in speech recognition, models trained on one
accent or language may not generalize to others [Sun et al., 2018]. Domain adap-
tation techniques improve model performance across various accents and dialects,
improving the usability of speech recognition systems.

In biomedical signals like M/EEG data, various factors contribute to di�erent
data distributions between datasets. Di�erences in recording devices, experimental
conditions, subjects, and other variables can all impact the distribution of data.
Domain adaptation methods are essential in this context to align and adapt models
e�ectively, ensuring robust performance across di�erent datasets and improving the
reliability of biomedical signal analysis [Dockès et al., 2021].

1.4.2 Mathematical framework

We denote the input feature space X and the output label space Y . In classical
statistical learning we assume that the training and the testing data to be drawn
from the joint feature/label distribution P . We denote PX and PY respectively
the feature and the label marginals of P . In addition, the risk function of a model
h with respect to a distribution P is de�ned as the expected loss between the
prediction of the model and the true label:

R(h) = EP [L(y, h(x))] (1.26)

where L is the loss function.
However, in practical applications such as biological signals, training and test-

ing data are often drawn from di�erent marginal distributions PS ̸= PT leading to
what we call dataset shift. Here, PS is the training distribution, or source domain,
and PT is the testing distribution, or target domain. In this context, a ML models
trained on the source domain PS might fail to generalize to the target domain PT .
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Domain adaptation aims at learning a function h that performs well on PT
using the knowledge acquired on PS . Speci�cally, we want the model trained on
the source domain to minimize the expected risk of the source labeled data:

RS(h) = EPS [L(y, h(x))], (1.27)

while also minimizing the expected risk on unlabeled target data:

RT (h) = EPT [L(y, h(x))] (1.28)

Domain adaptation approaches can be categorized into unsupervised and super-
vised methods based on the availability of labeled data in the target domain. Here,
we focus on unsupervised domain adaptation.

The source dataset is denoted DS = {(xS,i, yS,i)}NS
i=1 with NS the number of

samples in the source dataset, and xS,i, yS,i ∼ PS , and the target dataset is denoted
DT = {(xT ,i)}NT

i=1 with NT the number of samples in the target dataset, and
xT ,i ∼ PX ,T . The shift between the source and target domains can occur in many
ways. In the following we discuss some common types of shifts: covariate shift,
target shift and concept shift, illustrated in Figure 1.7.

The covariate shift occurs when the conditionals probabilities PS(y|x) = PT (y|x)
are equal between the source and target domains, but the feature marginal prob-
abilities are di�erent, i.e., PX ,S(x) ̸= PX ,T (x).

The target shift also called prior shift or label shift, occurs when the conditional
probabilities PS(x|y) = PT (x|y) are equal between the source and target domains,
but the label marginal probabilities are di�erent, i.e., PY,S(y) ̸= PY,T (y).

The concept shift occurs when the conditional probabilities PS(y|x) ̸= PT (y|x)
or PS(x|y) ̸= PT (x|y) are di�erent between the source and target domains.

In some applications, like BCI or sleep staging, models are trained on several
source domains, referred to as multi-source domain adaptation. In this situation,
we denote the source datasets with the index k as Dk = {(xk,i, yk,i)}Nk

i=1, while we
still denote the target dataset as DT = {(xT ,i)}NT

i=1.

1.4.3 Common domain adapatation methods

Several strategies exist to tackle dataset shift in machine learning models. Do-
main adaptation methods compatible with classical ML models can be broadly
categorized into two main categories [Farahani et al., 2021]. Additionally, there
are deep domain adaptation techniques that leverage deep network properties;
however, these are not detailed here as they do not fall within our current scope.
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Figure 1.7: Illustration of three types of dataset shift. Adapted from the doc-
umentation of SKADA python library for domain adaptation [Gnassounou et al.,
2024]
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Instance-based or sample reweighting

The idea behind sample reweighting is to give more importance to source points
that are likely to ressemble the target distribution. This approach aims to make
the source distribution more similar to the target distribution by focusing on min-
imizing the target risk using the labeled source data.

Given that we typically do not have access to target labels, we need to assume
that only the marginal distributions are di�erent between the source and target
domains. Hence, in the case of covariate shift (1.28) becomes:

RT (h) = EPS

[
PT (x, y)

PS(x, y)
L(y, h(x))

]
= EPS

[
PX ,T (x)

PX ,S(x)
L(y, h(x))

]
(1.29)

Here, the density ratio w(x) = PX ,T (x)/PX ,S(x) represents the importance
weight for the source data. Several methods have been developped to estimate
this density ratio. For instance, Gaussian approximation [Shimodaira, 2000], kernel
mean matching [Gretton et al., 2008] or Kullback-Leibler Importance Estimation
Procedure (KLIEP) [Sugiyama et al., 2007] are commonly used approaches.

Feature based adaptation

Feature-based adaptation methods aim to extract invariant feature representations
across domains. Typically, they create new feature representations by transforming
original features to minimize the gap between the source and target features.

Subspace Approaches: These methods assume the existence of a common sub-
space where all domains are similar and preserve label information. They seek to
estimate a projection to a common low-dimensional representation that minimizes
the discrepancy between domains. Methods often involve projecting data from
each domain into domain-speci�c lower-dimensional subspaces and then reducing
the distance between these latent spaces to �nd a common representation. Tech-
niques like PCA are used for dimensionality reduction, as seen in methods such
as Transfer Component Analysis (TCA) [Pan et al., 2011], which aims to �nd a
kernel subspace mapping that minimizes the maximum mean discrepancy (MMD)
between source and target domains.

Mapping Approaches: These techniques directly transform original features
into new representations that minimize the shift between their distributions. They
operate under the assumption that there exists a mapping of source data such that
PS(m(x), y) = PT (x, y). Correlation Alignment (CORAL)[Sun et al., 2016] is a
notable method that minimizes the di�erence in second-order statistics between
source and target features. Optimal transport, a subset of mapping approaches,
assumes the existence of a transport mapping T in feature space that preserves joint
distributions, as demonstrated in methods like the optimal transport approach
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of Courty et al. [2017], which learns a transport plan while keeping source points
with similar labels close to each other during transport. Another example is the
method proposed in [Gnassounou et al., 2023], which adapts signal power spectrum
densities to a Wasserstein barycenter estimated from source data.

1.5 Objective of the thesis and contributions

1.5.1 Dataset shifts in M/EEG data

M/EEG data exhibit signi�cant variability, which origniate from many factors
including di�erences in recording devices, populations, and experimental tasks.
These variations create systematic di�erences across datasets, that we earlier intro-
duced as dataset shifts, which ultimately a�ect the robustness and generalizability
of models trained on M/EEG data.

One major source of variability in M/EEG data arises from the use of di�er-
ent recording devices. For instance, MEG systems from di�erent manufacturers,
such as CTF and MEGIN, use distinct types of sensors. For EEG, helmets often
have di�erent electrode con�gurations. These di�erences are not limited to the
types and positions of the sensors but extend to the number of electrodes used
and the speci�cations of the ampli�ers involved. Each of these factors introduces
variations in how the brain's electrical activity is captured, creating challenges
in integrating data from di�erent devices. The dimensionality of the recorded
data can also vary based on the number of sensors employed, further complicating
harmonization across datasets. Another layer of variability stems from the popula-
tions involved in M/EEG studies. The selection criteria for study participants can
di�er signi�cantly based on age, medical conditions, lifestyle . . . Furthermore, dif-
ferences in populations arise due to the study's geographical location, the country
in which data collection took place, the particular hospital involved, and vari-
ations in recording conditions (e.g., noise levels in the recording environment).
These population-based di�erences can lead to di�erent brain activity patterns
and create variability in the data that may not be easily accounted for by standard
analysis techniques. Experimental tasks used during M/EEG recordings represent
yet another source of variability. The nature of the task can in�uence the brain
areas activated, the cognitive processes involved, and the speci�c brain rhythms
elicited. Di�erent tasks can lead to the engagement of distinct neural networks,
resulting in varying patterns of brain activity that are di�cult to compare across
studies.

This inherent variability in M/EEG data can be illustrated by the HarM-
NqEEG dataset [Li et al., 2022], where di�erences in mean log powers across
frequency bands are observed between recording sites and age groups as shown
in Figure 1.8. These di�erences highlight the challenge of integrating data across
studies with varying recording sites and populations, demonstrating the need for
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Figure 1.8: Mean log powers per frequency of EEG recordings from the
HarMNqEEG dataset [Li et al., 2022]. The log power spectrum are organized
by recording sites in seperate panels, and by age groups (colors). The log powers
of each participant were computed from all channels and then averaged across a
same age group.
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harmonization to mitigate the impact of these variations.
Due to these systematic di�erences, dataset shifts frequently occur in M/EEG

research, making it di�cult to build models that generalize across studies. To ad-
dress this challenge, harmonization and domain adaptation techniques are required
to make datasets more comparable and ensure that models trained on speci�c data
can perform robustly across di�erent domains.

Despite the clear need for harmonization and domain adaptation in M/EEG
research, existing methods fall short in several key areas. First, many domain
adaptation methods are designed for classi�cation problems and are not applicable
to regression tasks, which are commonly used in M/EEG studies. Second, these
methods typically do not address joint shifts in both data and labels. In real-
world scenarios, the relationship between brain activity (data) and the cognitive
or behavioral outputs (labels) can vary across domains, and standard domain
adaptation techniques do not account for these shifts. Finally, current approaches
often fail to address the dimensionality variations introduced by di�erent recording
devices.

Overall, existing domain adaptation techniques are often tailored to speci�c
situations and lack the generalizability required to handle the complex, real-life
variability seen in M/EEG data. Therefore, more comprehensive approaches are
needed to address the multiple sources of variability that occur in M/EEG datasets,
allowing for the development of more robust and generalizable models.

1.5.2 Objectives

Dataset shift leads to poor generalization of models and is particularly preva-
lent in biological signals such as M/EEG data. This thesis addresses the issue
of dataset shift within the framework of covariance-based predictive approaches,
which have proven e�ective in predicting outcomes from M/EEG data, initially in
the context of brain-computer interfaces [Barachant, Bonnet, Congedo, and Jutten,
2012, Congedo, Barachant, and Andreev, 2013] and more recently for brain-age
prediction [Sabbagh et al., 2019, 2020, Engemann et al., 2022].

The primary objective of this thesis is to investigate dataset shift in M/EEG
data. This includes understanding when and why dataset shift occurs by iden-
tifying di�erent types of shifts and their causes. We examine how changes in
environment, population, and recording devices can lead to shifts in data distri-
bution. Speci�cally, we look both at covariate shifts, which involve changes in the
input data distribution, and label shifts, which involve changes in the distribution
of output labels, due to the above mentioned changes. The second part of this
investigation is understanding the impact of these shifts on the performance of
machine learning models. Through experimental studies based on simulated and
real data, we assess how the presence of shifts degrades the model performances. In
this part we demonstrate the necessity of mitigating these shifts to ensure robust
predictive modeling and generalizability. Finally, to address the challenges posed
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by dataset shifts in M/EEG data, we focus on implementing and evaluating various
domain adaptation methods. To begin with, we evaluate existing domain adap-
tation methods that have been used in classi�cation tasks but not in regression.
We then attempt to improve these methods by developing novel approaches. By
comparing model performance with and without domain adaptation techniques,
we aim to highlight the improvements in robustness and generalizability.

Interpretability is a key aspect of machine learning models, particularly in med-
ical applications where understanding the decision-making process of the model
helps to understand the underlying mechanisms. In this thesis, in addition to as-
sessing the impact of domain adaptation, we explore what was the impact of the
models on data to compensate for shifts.

1.5.3 Organization of the thesis

The remaining chapters of the manuscript are organized as follows:

Chapter 2: Shift in data distribution

We consider and investigate dataset shifts in M/EEG recordings in which the label
distributions are assumed to be the same across the di�erent domains considered.
We describe M/EEG data with a generative model and link possible causes of
shifts in the data distribution to the parameters of this model. We evaluate exist-
ing domain adaptation methods, previously applied in classi�cation contexts and
often in supervised settings, to an unsupervised regression task. We evaluated
these methods through controlled simulations by creating several shift scenarios.
We also applied these methods to real M/EEG data, by �rst evaluating their per-
formance when only the task performed by the subjects changes, and then when
the population changes.

Chapter 3: Joint shift in data and label distributions

We extend the work presented in the previous chapter by considering joint shifts
in M/EEG data and the labels we aim to predict. We investigate the impact
of these shifts on model performance and evaluate the limitations of the methods
proposed in Chapter 2. To address this issue, we develop a new method inspired by
mixed-e�ects models, which involves a domain-speci�c re-centering operator and
the joint learning of this operator alongside the regression model. We compare the
performance of this new method with other approaches on a multi-national EEG
dataset with recordings from di�erent hospitals and di�erent populations.

Chapter 4: Shift due to di�erent recording devices

We investigate the challenges related to dimensionality variations caused by dif-
ferent recording devices. Di�erent recording devices can mean di�erent number
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of electrodes with di�erent positions on the scalp. Few studies have addressed
this issue, and we propose to employ an interpolation method that leverages the
inherent physics of the data to match the EEG electrodes con�gurations across
datasets. We perform a comparative study with other methods on multiple BCI
datasets in the context of motor imagery classi�cation.

1.5.4 Publications and data analysis challenge

Publications linked to the manuscript

Apolline Mellot, Antoine Collas, Pedro L. C. Rodrigues, Denis Engemann,
Alexandre Gramfort. �Harmonizing and aligning M/EEG datasets with covariance-
based techniques to enhance predictive regression modeling.� Imaging Neuro-
science 2023; 1 1-23.
https://doi.org/10.1162/imag_a_00040.

Apolline Mellot, Antoine Collas, Sylvain Chevallier, Alexandre Gramfort, and
Denis A. Engemann. �Geodesic Optimization for Predictive Shift Adaptation on
EEG data.� under review,
https://doi.org/10.48550/arXiv.2407.03878.

Apolline Mellot, Antoine Collas, Sylvain Chevallier, Denis Engemann, and Alexan-
dre Gramfort. �Physics-informed and Unsupervised Riemannian Domain Adapta-
tion for Machine Learning on Heterogeneous EEG Datasets.� 32nd European
Signal Processing Conference (EUSIPCO), Lyon, France, 2024,
https://doi.org/10.48550/arXiv.2403.15415.

Other publications

Denis A. Engemann, Apolline Mellot, Richard Höchenberger, Hubert Banville,
David Sabbagh, Lukas Gemein, Tonio Ball, Alexandre Gramfort, �A reusable
benchmark of brain-age prediction from M/EEG resting-state signals�, NeuroIm-
age, Volume 262, 2022, 119521, ISSN 1053-8119,
https://doi.org/10.1016/j.neuroimage.2022.119521.

Maria Sayu Yamamoto, Apolline Mellot, Sylvain Chevallier and Fabien Lotte,
�Novel SPD Matrix Representations Considering Cross-Frequency Coupling for
EEG Classi�cation Using Riemannian Geometry�, 31st European Signal Process-
ing Conference (EUSIPCO), Helsinki, Finland, 2023, pp. 960-964,
10.23919/EUSIPCO58844.2023.10290043.
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Data analysis challenge

Dementia screening challenge, Biomag 2022, Birmingham, England, 2022, Win-
ning solution in MEG signal processing in order to screen dementia and mild
cognitive impairment. Team: Apolline Mellot, Benoit Malezieux and Cedric Al-
lain.
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Chapter 2. Shift in data distribution

As introduced in the �rst chapter, magneto- and electro- encephalography
(M/EEG) are brain recording methods with a high temporal resolution on the
order of milliseconds, o�ering a unique and non-invasive neuroscience method
enabling basic research and clinical applications [Hari and Puce, 2023]. While
quantitative approaches to analyzing M/EEG signals have historically focused on
detecting statistical e�ects, the �eld has progressively embraced machine learning
(ML) approaches whose success is evaluated through predictive modeling. In the
context of brain health, classi�cation models are widely used for various applica-
tions, e.g., for epileptic seizure detection [Tzallas et al., 2009], Brain Computer
Interface (BCI) [Lotte et al., 2018], or automatic sleep staging [Chambon et al.,
2018, Perslev et al., 2021]. Even though the regression context has been less ex-
plored in the literature, it has been shown to be successful for biomarker learning,
e.g., focusing on brain age as an application [Al Zoubi et al., 2018, Sun et al., 2019,
Engemann et al., 2020].

In this chapter, we focus on methods for regression modeling in the particular
case of statistical discrepancies between datasets, for example, due to di�erent
populations, acquisition devices, or tasks performed during the recording. In other
words, we aim to �t a regression model on one dataset and apply it on another. We
explore domain adaptation techniques that aim to align the statistical distributions
of the source and target datasets by leveraging the mathematical properties of the
space of covariance matrices. In addition, we adapted these techniques to an
unsupervised setting, where no labels are available in the target domain.

2.1 Covariance-based alignment applied to M/EEG re-

gression modeling

Di�erent approaches have been explored to predict cognitive-behavioral or
biomedical outcomes from M/EEG data. Methods like Common Spatial Filtering
(CSP) [Koles, 1991] or Source Power Comodulation (SPoC) [Dähne et al., 2014]
build on top of supervised spatial �ltering for dimensionality reduction and un-
mixing of overlapping, yet physiologically distinct, signal generators. Lately, deep
learning based techniques have been the focus of interest as they can learn good
feature representation directly from the raw signal, hence potentially simplifying
processing pipelines [Roy et al., 2019, Schirrmeister et al., 2017]. Independently, an
alternative approach has emerged from the BCI community which, like spatial �l-
ter methods, summarizes M/EEG data by covariance matrices. But instead of de-
composing covariance matrices into �lters, this approach uses mathematical tools
motivated by the Riemannian geometry of the space of symmetric positive de�nite
(SPD) matrices [Barachant et al., 2012, 2013] to de�ne non-linear feature trans-
formations that facilitate statistical learning with linear models. These techniques
perform remarkably well given their simplicity [Congedo et al., 2013, Nguyen et al.,
2017, Sabbagh et al., 2020] and are competitive with methods exploiting anatom-
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ical information or end-to-end deep learning approaches [Engemann et al., 2022].
As the �eld of Riemannian geometry applied to M/EEG expand and consolidate,
many opportunities remain unexplored. In this work, we focus on investigating
the utility of the Riemannian framework for de�ning dataset-harmonizing trans-
formations.

The recent emergence of large public databases and advances in ML have led
to promising prediction models. Yet, these models can be sensitive to shifts in the
data distribution and may perform poorly when applied to datasets from other
clinical or research contexts [Quiñonero-Candela et al., 2022, Dockès et al., 2021].
This issue has also been referred to as batch e�ects in Li et al. [2022]. In this
work, we focused on domain adaptation techniques that attempt to deal with
these shifts. We aim for a predictive model to not only perform well on the data
it has been trained on, the source domain, but also when applied to data from
a distinct statistical distribution, the target domain. Many domain adaptation
methods exist, ranging from simple approaches minimizing the di�erence between
the second-order statistics of source and target domains [Sun et al., 2017], to more
sophisticated models measuring the distance between deep representations of the
source and target domains based on optimal transport [Damodaran et al., 2018]. In
the context of brain data analysis, Canonical Correlation Analysis (CCA) and mul-
tiway CCA (MCCA) have been largely applied to �nd common brain activity and
combine data across subjects when the same stimulus is presented to them [Lank-
inen et al., 2014, 2018, Dmochowski et al., 2018, de Cheveigné et al., 2019]. The
experimental setups we are interested in do not meet these assumptions, for ex-
ample, we consider recordings at rest and from di�erent datasets with di�erent
subjects for which CCA or MCCA are not adapted. As we wish to work with
M/EEG covariance matrices as basic signal representations for machine learning,
we focus on techniques that explicitly use the geometry of SPD matrices to model
the statistical distributions of distinct source and target datasets. One �rst ap-
proach proposed in the BCI context is to re-center the distributions to a common
point of the SPD space [Zanini et al., 2018, Yair et al., 2019, Li et al., 2021]. To
get a better alignment of the distributions, [Rodrigues et al., 2019, Maman et al.,
2019, Bleuzé et al., 2021] propose to complement this re-centering step by adding
a re-scale and a rotation correction. These covariance-based methods were ini-
tially developed to solve classi�cation problems and are not necessarily applicable
to regression without modi�cation. In addition, most of them require labels in
the target domain [Rodrigues et al., 2019, Bleuzé et al., 2021] for alignment. We
focus on unsupervised alignment methods that can be readily used for regression
modeling.

In this work, we develop a model-based approach for tackling dataset shifts
in M/EEG data in which we consider re-centering, re-scaling, and rotation tech-
niques from previous research on classi�cation [Rodrigues et al., 2019, Maman
et al., 2019, Bleuzé et al., 2021] to regression contexts, while assuming that no
labeled data is available in the target domain. We build on top of the conceptual
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framework from [Sabbagh et al., 2020], linking M/EEG-based regression to neural
signal models, to investigate how dataset shifts can be expressed and handled with
an appropriate generative model linking brain activity to both M/EEG measure-
ments and biomedical outcomes. We elucidate how observed dataset shifts can
be conceptually decomposed into di�erences in brain activity and di�erences in
the relationship between the location and orientation of M/EEG signal generators
relative to the recording device that re�ects the device type, body posture, and in-
dividual brain anatomy. With this approach, we establish the connection between
particular alignment steps and the parameters of the generative model as well as
the physiological and physical shifts they are meant to compensate for. Using
statistical simulations, based on the generative model, we then explore di�erent
dataset-shift scenarios and investigate the e�ectiveness of data alignment tech-
niques � combined and in isolation. Through empirical benchmarks on the Cam-
CAN MEG dataset (N=646) and two EEG datasets (TUAB-normal, N=1385;
LEMON, N=213), we evaluate the practical impact of these alignment techniques
for boosting the generalization capacity of regression models across acquisition
protocols (resting state vs. audiovisual & motor tasks) and cohorts (clinical EEG
versus research & laboratory-grade EEG). We focus on brain age as it is a label
easy to collect and valuable as a surrogate biomarker.

The rest of the chapter is organized as follows. In Section 2.3, we extend the
generative model from [Sabbagh et al., 2020] to express and decompose dataset
shifts into distinct factors, which motivates the three steps we use to compensate
for dataset shifts: re-centering, re-scaling, and rotation correction. In Section 2.4
and Section 2.5, we assess the robustness of these alignment steps using simulations
and real-world M/EEG data.

2.2 Contribution

The content of this chapter is based on the work published in the following
article:

Apolline Mellot, Antoine Collas, Pedro L. C. Rodrigues, Denis Engemann,
Alexandre Gramfort. �Harmonizing and aligning M/EEG datasets with covariance-
based techniques to enhance predictive regression modeling.� Imaging Neuroscience
2023; 1 1-23.

In this work, our �rst contribution is to study and relate physiological and phys-
ical changes in the brain and the recording setup to the statistical shifts observed
in the M/EEG data. The harmonization procedure of Rodrigues et al. [2019] was
developed for supervised classi�cation tasks and required labeled data in the target
domain, but has not been evaluated on unsupervised regression tasks. Our second
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contribution was to adapt and benchmark this approach for unsupervised regres-
sion tasks and, in this way, measure the dataset shift when changing of recording
task or population.

The scripts and code for the alignment methods and the results presented in
this chapter are publicly available on GitHub:

https://github.com/apmellot/harmonizing_aligning_meeg.

2.3 Regression modeling M/EEG covariance matrices

To describe dataset shifts that can occur with M/EEG signals, we extend the
generative model of M/EEG regression tasks from Sabbagh et al. [2020] where the
prediction outcome is continuous. A canonical example that we will use in this
work is brain age prediction [Xifra-Porxas et al., 2021, Engemann et al., 2022].
This model has also been applied to event-level regression of muscular activity
with electromyogram and MEG recordings [Sabbagh et al., 2020]. We describe and
discuss the parameters of the generative model to understand which mechanisms
can explain dataset shifts. Finally, we present various alignment strategies aiming
to draw a geometrical analysis of the possible shifts and compensate for them.

2.3.1 Statistical generative model of M/EEG signals

Generative model M/EEG signals x(t) ∈ RP are multivariate time series
recorded with P sensors at (or above) the surface of the scalp, and that capture the
electrical or magnetic activity generated by large-scale neural synchrony. These
neurophysiological generators are not directly observable, and here we focus on the
situation in which we do not have access to information about the individual brain
anatomy, e.g., when MRI scans are not available. Thus, we use a statistical ap-
proach inspired by blind source separation to approximate the signal's generative
mechanism. We model the M/EEG signals as a linear combination of statistical
brain generators corrupted by some additive noise. In this work, we consider a
dataset with N observations X = {Xi, i = 1 . . . N} for which one observation
corresponds to one participant. One observation xi(t) ∈ RP is written as:

xi(t) = A′si(t) +A′′ni(t) , (2.1)

where si(t) ∈ RQ is the underlying activity generating this observation with Q ≤
P , and ni(t) ∈ R(P−Q) ∼ N (0, σ2

nIP−Q) causes a contamination due to noise. We
denoteA′ = [a1, . . . ,aQ] ∈ RP×Q the mixing matrix whose columns are the spatial
patterns of the neural generators, andA′′ = [aQ+1, . . . ,aP ] ∈ RP×(P−Q) the matrix
of the spatial noise patterns. Note that in this model, the noise is not considered
independent across sensors but spatially correlated, as is typically the case with
environmental or physiological artifacts present in M/EEG data.
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This model can be rewritten by combining the generator patterns and the noise
in a single invertible matrix A = [a1, . . . ,aQ,aQ+1, . . . ,aP ] ∈ RP×P which is the
concatenation of A′ and A′′. The model is thus given by

xi(t) = Aηi(t) , (2.2)

where ηi(t) ∈ RP denotes the concatenation of si(t) and ni(t). In this model, we
assume A to not depend on i nor t. It is also assumed that the statistical gener-
ators si(t) = {si,j(t), j = 1 . . . Q} are zero-mean, uncorrelated, and independent
from the noise. In other words, we assume that the noise generated by artifacts
is completely independent of brain activity. In the following, j will denote the
generator's index.

We now consider the covariances Σi of M/EEG signals Xi ∈ RP×T with T the
number of time samples as de�ned in (1.23):

Σi =
1

T
XiX

⊤
i ∈ RP×P . (2.3)

The covariance of M/EEG signals holds the sensors' variance on its diagonal. In
our statistical model and with the previous assumptions, the covariance of the
statistical generators is a diagonal matrix whose elements are the variances of
each generator Et

[
si(t)si(t)

⊤] = diag(pi) with pi ∈ RQ, also referred to below
as �powers�. Thus, we can conveniently summarize the M/EEG covariances as
follows:

Σi = AHiA
⊤ (2.4)

where Hi = Et

[
ηi(t)ηi(t)

⊤] ∈ RP×P is a block matrix of diag(pi) on the upper
Q × Q part, and the noise covariance is in the lower (P − Q) × (P − Q) block.
We here assume that Et

[
si(t)ni(t)

⊤] = 0, meaning that the matrix Hi is block
diagonal.

For regression modeling from M/EEG, it is natural to model the outcome yi as
a linear combination of a function of the generators' power pi,j = Et[s

2
i,j(t)] ∈ R:

yi = β0 +

Q∑
j=1

βjf(pi,j) + ϵi , (2.5)

where βj are regression coe�cients, f is a known function, and ϵi ∼ N (0, σ2
ϵ ) is

an additive random perturbation. For example, ageing (y) could impact brain
activity in distinct brain networks (s) to di�erent extents (β1, . . . , βQ). This could
lead for example to a log-decay or log-increase of brain activity per year, hence,
motivating a logarithmic function f = log, which is a wide-spread function de-
scribing the scaling of various facets of brain structure and function [Buzsáki and
Mizuseki, 2014] including neural �ring rates, axonal diameters, synaptic weights,
and, importantly power and frequency scaling. Replacing the generator power
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with the empirical average of the squared generators, the model is given by:

yi = β0 +

Q∑
j=1

βj log

(
1

T

T∑
t=1

s2i,j(t)

)
+ ϵi . (2.6)

Model violations The assumption that A does not depend on the observation
(subject) is not valid when working with actual M/EEG data. Each subject has
a di�erent head morphology, which results in slight variations in their respective
mixing matrices: Ai = A+Ei withEi ∈ RP×P . When subscript i is omitted below,
A represents the average head morphology of the subjects. In our simulations
below, we will assume that each element of Ei is drawn from N (0, σ2

A).

2.3.2 Regression model

The approach we focus on in this work involves learning linear models from co-
variance matrices [Barachant et al., 2012, 2013], which is introduced in Section 1.3.
Sabbagh et al. [2019, 2020] show that this Riemann-based model is robust to dif-
ferent preprocessing choices and to model violation. This model also stands out in
terms of performance when applied for regression tasks to M/EEG data in various
settings.

In this framework, we remind that the covariances Σi are used as input of
the model. In Section 1.3.2 we de�ned an operator to transform the covariance
matrices into feature vectors with (1.15). Thus, we follow this approach and the
covariance matrices are vectorized:

zi = ϕ(Σi,Σ) = uvec(log(Σ
− 1

2ΣiΣ
− 1

2 )) ∈ RP (P+1)/2 , (2.7)

We denote the variables ϕ(Σi,Σ) by zi in the following for simpler notations. zi

are called tangent vectors. Since these tangent vectors are elements of an Euclidean
space, we can use them as input on classical machine learning models.

2.4 Dataset shift in M/EEG data and how to deal with it

2.4.1 Possible data shifts

Each parameter of the model described in equations (2.2) and (2.6) can vary
for di�erent reasons. We are interested in �tting a regression algorithm to a source
dataset XS = {xS,i, i = 1, . . . , NS} to later predict outcomes on a distinct target
datasetXT = {xT ,i, i = 1, . . . , NT } both recorded with P sensors at the same loca-
tions. The datasets are not necessarily composed of the same number of subjects.
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Chapter 2. Shift in data distribution

Applying our previous notations, we can describe the source dataset as follows:
xS,i(t) = A′

S,i sS,i(t) +A′′
S,inS,i(t) = AS,iηS,i(t)

yS,i = β0 +

Q∑
j=1

βj log

(
1

T

T∑
t=1

(sS,i,j(t))
2

)
+ ϵS,i

(2.8)

where AS,i = AS + ES,i wtih entries of ES,i are i.i.d N
(
0, (σS,A)

2), nS,i ∼
N
(
0, (σS,n)

2 IP−Q

)
and ϵS,i ∼ N

(
0, (σS,ϵ)

2). We remind that the statistical gener-
ator powers are de�ned as diag(pS,i) = Et

[
sS,i(t)s

⊤
S,i(t)

]
. The same equations can

be written for the target dataset by replacing the exponent S by T . We now list
physical reasons that could induce di�erences between source and target datasets
and link them to parameter changes of the corresponding generative models (2.8).

1. If we consider two di�erent populations, the head morphology may vary, and
the subject-averaged mixing matrices AS and AT would di�er.

2. Having di�erent populations in both datasets would also imply that they
will not have the same mixing matrices distribution: σS,A ̸= σT ,A.

3. When data are recorded with di�erent devices, the recording conditions and
noise might not be the same, resulting in di�erent signal-to-noise ratio (SNR):
σS,n ̸= σT ,n.

4. Clinical outcomes e.g., neuropsychological testing scores can be noisy. This
noise could di�er from one dataset to another: σS,ϵ ̸= σT ,ϵ.

Because of all those possible causes of variability in the model parameters, ma-
chine learning approaches may fail to provide good predictions across datasets.
In this work, we focus on shifts that only a�ect the data, and we assume that
the regression coe�cients βj are the same for source and target. In particular,
we are interested in understanding changes related to the mixing matrix and the
variance of the statistical generators. The variability of these parameters across
subjects and datasets a�ects the observed signals and results in variability in the
data distribution. Below, we discuss which statistical methods could help reduce
these di�erent shifts between the data distributions of two di�erent datasets.

2.4.2 Alignment methods

We aim to learn a regression model from one dataset, the source domain, that
will perform well on another, the target domain. As we focus on shifts a�ect-
ing the data distribution, we investigate domain adaptation methods that align
the source and the target distributions using geometrical transformations. The
methods we chose for understanding and reducing dataset shifts are articulated in
three alignment steps: re-centering, equalizing dispersion, and rotation correction.
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Figure 2.1: Alignment steps illustrated on simulated data. The three align-
ment steps are applied to data simulated following the generative model, as detailed
in Section 2.5.1. We set the size of the matrices to P = 2 and generated N = 300
matrices in each domain. Each new step is applied on top of the previous one. The
plots correspond to the two �rst principal components of the tangent vectors. (A)
The simulated data are plotted on the tangent space before any alignment steps.
(B) The original simulated data are centered to a common point, (C), then their
distributions are equalized, and (D) �nally, a rotation correction is applied.

This choice was inspired by transfer learning methods used in Brain-Computer
Interfaces (BCI) application and, more speci�cally, by the Riemannian Procrustes
Analysis (RPA) of [Rodrigues et al., 2019]. These steps can be used indepen-
dently, usually by only re-centering the data, or combined. In the following, we
detail these alignment functions in a general manner.

Step 1: re-centering The most commonly used method of transfer learning
on symmetric positive de�nite (SPD) matrices is to re-center each dataset in a
common reference point on the Riemannian manifold [Zanini et al., 2018, Li et al.,
2021]. This reference can be chosen as one of the domains' geometric mean or an
arbitrary point on the manifold. Here we propose to re-center each domain to the
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Identity by whitening them with their respective geometric mean ΣS and ΣT :

h
(rct)

ΣS
(ΣS,i) = Σ

− 1
2

S ΣS,iΣ
− 1

2
S (2.9)

h
(rct)

ΣT
(ΣT ,i) = Σ

− 1
2

T ΣT ,iΣ
− 1

2
T . (2.10)

Di�erently put, re-centering applies separate whitening for source versus target
data. This helps avoid errors in the tangent space projection when the average
covariance is di�erent for the source and target, e.g., because the mixing matrices
are di�erent, as in Figure 2.1 (B). This is a Riemannian equivalent of the centering
step in classical z-scoring.

Step 2: equalizing the dispersion In this second step, the idea is to re-scale
the covariances distribution around their mean Σ as illustrated in Figure 2.1(C).
We �rst compute the mean dispersion d of the covariances as the sum of the
square distance between each matrix of the set and their geometric mean Σ over
the number of samples in the dataset:

dS =
1

N

N∑
i=1

δ2R
(
ΣS,i,ΣS

)
(2.11)

dT =
1

N

N∑
i=1

δ2R
(
ΣT ,i,ΣT

)
, (2.12)

with δR the Riemannian distance de�ned in (1.8). Then, we re-scale all covariances

with
√

1
d
so that the distribution has a dispersion of 1:

h
(str)
dS

(ΣS,i) = Σ

√
1/dS

S,i (2.13)

h
(str)
dT

(ΣT ,i) = Σ

√
1/dT

T ,i . (2.14)

This is a Riemannian equivalent of the re-scaling step in classical z-scoring. By
analogy, univariate rescaling of two groups modi�es the data so that, e.g. a t-
test would �nd its assumptions of equal variances met while not detecting any
di�erence of means between the two datasets.

Step 3: rotation correction Until now, we have applied correction measures
that process source and target data independently. This is not the case in this
third step which implies shared information between source and target datasets.
The rotation correction is the most delicate of the three steps. It requires esti-
mating many more parameters than the others, and the source and target feature
spaces must be the same size (PS = PT = P ). In the literature, several methods
for rotation estimation exist. In the following, we detail two of the methods we
selected:

62



2.4. Dataset shift in M/EEG data and how to deal with it

1. The �rst rotation correction we implemented is inspired by [Maman et al.,
2019]. The covariances are �rst vectorized by mapping them in the tan-
gent space (at identity after re-centering). Then we compute the Singu-
lar Value Decomposition (SVD) of these tangent vectors zi ∈ RP (P+1)/2,
ZS = {zS,i, i = 1 . . . NS} and ZT = {zT ,i, i = 1 . . . NT }:

ZS = U⊤
S SSVS (2.15)

ZT = U⊤
T ST VT . (2.16)

The columns of the U ∈ RP (P+1)/2×P (P+1)/2 matrices are the left singular
vectors ordered from largest to smallest singular values. The SVD is done
separately on source and target distributions so the resulting singular vectors
will unlikely have the same direction. As we desire for corresponding singular
vectors between source and target to have an acute angle, we reorient them
with a sign correction applied to the columns of UT :

uT ,j = sign (uS,juT ,j)uT ,j, ∀j (2.17)

Finally, the U matrices are used for rotation correction:

hrotUS
(ZS) = U⊤

S ZS (2.18)

hrotUT
(ZT ) = U⊤

T ZT . (2.19)

We will refer to this rotation correction method as unpaired.

2. The second way to estimate the rotation that we used is inspired by [Bleuzé
et al., 2021]. In this paper, they consider a classi�cation question and propose
to correct the rotation between source and target distributions by matching
their respective classes' mean. This is done by solving the Procrustes problem

argmin
R∈O(NT )

∥∥RZ̄T − Z̄S
∥∥
F

, (2.20)

where O(NT ) is the orthogonal group, Z̄S the concatenation of the classes'
mean tangent vector from the source domain, and similarly for Z̄T with the
available labeled data of the target domain. Then, to correct the rotation, the
target tangent vectors are transformed using the solution of the Procrustes
problem

hrotR

(
Z̄T
)
= RZ̄T . (2.21)

As we wish to be in a regression context without access to target labels, we
modi�ed this method by solving the Procrustes problem on all the tangent
vectors

argmin
R∈O(NT )

∥RZT −ZS∥F . (2.22)
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In practice, this solution is found by computing the SVD of the product of
the source and target tangent vectors

ZT Z
⊤
S = U⊤SV , (2.23)

and is R = V U⊤. In this step, we include the information on which source
point should be matched to which target point. It means the source and the
target dataset should have the same number of observations (NS = NT = N)
and be composed of �matching� observations (for example, the same set of
subjects but di�erent tasks/recording conditions/devices). We will refer to
this method as paired.

This step allows us to align source and target distributions in a shared space. The
rotation correction is helpful when the mixing matrices are di�erent between the
domains (Figure 2.1 (D)).

2.5 Numerical evaluation: simulated data

2.5.1 Data simulation

In the simulation study, we generated simulated data with the generative model
presented in Section 2.3.1. We set the dimension of the matrices to P = 20 to
have a matrix size coherent with real data, and the number of statistical generators
to Q = P , in other words, we considered signals without noise. Mixing matrices
A were generated as Gaussian random matrices in RP×P from N (0, 1). Instead
of generating signals s, we directly computed their powers p as random numbers
from a uniform distribution in [0, 1). The same powers were used for both the
source and the target sets. We then constructed the covariance matrices ΣS =
{ΣS,i, i = 1, . . . , N} and ΣT = {ΣT ,i, i = 1, . . . , N}, and the outcome to predict as
in equations (2.4) (with Hi = diag(pi) because P = Q) and (2.6) (with ϵi = 0, ∀i).
We designed several shift scenarios by altering either the mixing matrices or the
powers in order to evaluate the alignment methods. In practice, the shifts were
created by �rst generating the source data and then building the target data as
a modi�ed version of the source data. By doing so, one point of the source set
corresponds to one point of the target set. This way, it is possible to evaluate the
paired rotation correction. More details about the shift scenarios are presented in
the following paragraphs.

2.5.2 Simulation scenarios

We detail the changes we introduced for each scenario between source and
target distributions. As stated in Section 2.4.1, we focused on modeling shifts in-
volving changes in the mixing matrix or the variance of the statistical generators.
The parameters that are not mentioned were the same for source and target. For
the �rst three scenarios, we aimed to �nd transformations/shifts between source
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and target to which each alignment step is robust. Table 2.1 summarizes the sce-
narios and the associated parameter changes in source and target.

Translation In this scenario, we wish to assess how robust the alignment meth-
ods are when the source and target mixing matrices are di�erent. Speci�cally, we
built the target mixing matrix as AT = BαAS with B ∈ S++

P and α ∈ R+
∗ . Here,

one considered that the mixing matrix perturbation is done by an SPD matrix
to decompose the case of AT ̸= AS into translation and rotation e�ects. The
benchmark extends the previous simulations from [Sabbagh et al., 2020]. More
explanations are provided about this decomposition in the translation and ro-
tation paragraph. The parameter α controls the strength of the perturbation and
thus how AT is di�erent from AS (if α = 0, AT = AS).

Scale We wanted to create a scenario in which the source and target distributions
have di�erent dispersions. In this scenario, we constructed the target covariances
with an exponent on the powers: pT ,i = (pS,i)

σp with σp > 0. The parameter σp

controls how di�erent the dispersions are. This modi�cation was only applied to
the data, so the outcome values y were unchanged.

Translation and rotation For this scenario, we built the source and target data
from completely di�erent mixing matrices and thus generalized the translation
scenario. To evaluate how alignment methods performed for a growing di�erence
between the source and the target mixing matrices, we de�ned a parameter m such
as AT = mAt + (1 −m)AS . At was �xed and generated as a random matrix in

Source Target

Translation AS �xed
AT = (B)αAS
with α > 0

Scale pS,i �xed
pT ,i = (pS,i)

σp

with σp > 0

Translation
and
rotation

AS �xed,
At ̸= AS �xed

AT = mAt + (1−m)AS
with m ∈ [0, 1]

Noise on
mixing
matrix

AS,i = AS +ES,i
σS,A = 10−2 �xed

AT ,i = AT +ET ,i

σT ,A > 0

Table 2.1: Summary of the simulation scenarios.

65



Chapter 2. Shift in data distribution

RP×P from N (0, 1). In this manner, we created an interpolation between At and
AS to generate AT : if m = 0, AT = AS and if m = 1, AT = At.

In this scenario,AT ̸= AS but we constructed the source and target covariances
with the same Hi matrices following equation (2.4). Thus we can write:

Hi = [A⊤
S ]

−1CS,i[AS ]
−1 (2.24)

We can replace this Hi expression in the target covariances to get:

ΣT ,i = AT HiA
⊤
T (2.25)

= AT [A
⊤
S ]

−1ΣS,i[AS ]
−1A⊤

T (2.26)

= DΣS,iD
⊤ (2.27)

with D = AT [A
⊤
S ]

−1. The target covariance matrices correspond to the source
covariance matrices transformed with the square matrix D. A square matrix
can be interpreted as a linear transformation: such a matrix can be decomposed
into the product of an orthogonal matrix with a positive semi-de�nite Hermitian
matrix (polar decomposition, a.k.a. QR factorization). Thus, we can interpret this
scenario as the translation scenario (SPD matrix of the polar decomposition) with
an additional perturbation by an orthogonal matrix.

Noise on mixing matrix We �nally introduced individual noise in the mixing
matrix to get a more realistic scenario: AS,i = AS +ES,i assuming that entries of
ES,i are drawn from N

(
0, (σS,A)

2) (and similarly for the target mixing matrices).
The source data were generated with a �xed noise value σS,A = 10−2, and the
tested σT ,A values varied from 10−3 to 1. Here, the mean mixing matrices AS and
AT were the same. This scenario was inspired by the simulation study of [Sabbagh
et al., 2020] in which the same level of noise on the mixing matrix was added in
the train and the test sets. Here, we explored the situation in which the noise
levels in the train (source) and test (target) mixing matrices were di�erent.

2.5.3 Alignment, vectorization, and regression

Once the covariance matrices were generated according to a given scenario,
data of both domains were aligned with the methods detailed in Section 2.4.2.
Then, we vectorized the matrices in the tangent space as in (2.7) with ΣS as
a reference point for both domains. To avoid numerical issues, we removed low-
variance features (see Appendix A.1 for more details). The remaining features were
then standardized to get features with zero mean and unit variance. To predict
from the standardized vectors in these simulations, for simplicity, we used Ridge
regression with its regularization term set to 1. This model was trained on the
source data, and predictions were made on the target data. We evaluated these
predictions with R2 scores. Results are presented in Section 2.5.4 and discussed
in Section 2.7.
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2.5.4 Methods evaluation

We simulated data according to the four shift scenarios detailed in Section 2.5.1.
Figure 2.2 presents the results for each alignment method and each scenario.

The top left Panel (A) illustrates the scores for each alignment method on
data generated following the translation scenario. The value of α controls the
shift. As expected, the farther apart the source and target mixing matrices were
(higher α values), the worse the performance on the unaligned domains method
became (in blue). The z-score baseline (light orange) failed even earlier than using
Riemannian geometry without alignment. Methods including a re-centering step
(green, dark orange, pink, and brown) did not su�er from this shift. This suggests
that whitening the source and target distributions by their respective geometric
mean mostly compensated for the mixing matrix being perturbed by an SPD
matrix. It allowed the regression model to access the log of the powers with little
distortion, hence, allowing the linear model to infer the correct function.

Panel (B) presents the scale scenario in which the log of the target powers
were scaled by a parameter σp in the signals. When σp = 1, the source and target
distributions were exactly the same ΣS = ΣT . In this case, methods including the
re-scaling step adjusted for this shift and made accurate predictions, whereas the
performance of other methods deteriorated as σp increased. Re-centering helped
to achieve better predictions compared to no alignment. The z-score method
performed slightly better than not aligning the distribution but was still worse
than re-centering.

The third Panel (C) corresponds to the translation and rotation scenario.
Here, the target mixing matrix was modi�ed by interpolating between the source
mixing matrix AS and another randomly generated matrix At. The parameter
m controls where the target mixing matrix is located between these two other
matrices, thus how di�erent AS and AT were. The only method reaching perfect
predictions, irrespective of the value ofm, was Procrustes paired. However, the un-
paired Procrustes method failed where m > 0.5 and even fell behind re-centering.
When no rotation correction was applied, re-centering helped to compensate for
slight di�erences between the mixing matrices, but the performance dropped as
this di�erence increased. As expected, a re-centering step and a rotation correction
were needed to correct a shift consisting of translation and rotation.

In the last scenario noise on mixing matrix, displayed in Panel (D), we
introduced noise in both source and target mixing matrices to simulate individual
di�erences between subjects. σS,A was set at 10−2, and even when σT ,A = σS,A
we had AT ,i ̸= AS,i. Procrustes unpaired performed worst in this scenario. The
unpaired rotation correction was not robust to noise on the mixing matrix. All
the other methods performed similarly for low values of σT ,A. When σT ,A > 10−1,
all methods deteriorated. The z-score method again showed lower R2 scores than
all other methods. Results suggest that the best solution for this scenario is the
paired rotation correction.
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Figure 2.2: Alignment method comparison across simulated dataset shift
scenarios (R2 score). Alignment methods were evaluated on four di�erent sce-
narios with an increasing shift. We generated N = 300 matrices per domain to
have data sets of the magnitude of real EEG datasets that would be considered
as medium to large in terms of operational costs and curation e�ort. Error bars
show standard deviations of the metric obtained with 50 random repetitions. The
dashed vertical gray lines on (B) and (D) indicate the �xed parameter's value
of the source set. Panel (A) displays the performance achieved when the target
covariance matrices were created by multiplying the source mixing matrix with an
SPD matrix: AT = BαAS with B ∈ S++

P . All methods that included re-centering
the distributions on the same reference point performed well. (B) displays the
performance achieved when the dispersion of covariances di�ers between source
and distributions (σp ̸= 1). Here, the re-scaling step was essential to align the
distributions correctly. (C) In this scenario, AS ̸= AT , which led to a translation
and a rotation of the target set compared to the source set. Re-centering was not
insu�cient, and a rotation correction was needed to achieve good performance. In-
terestingly, while Procrustes paired performed well, the unpaired correction broke
as the di�erence between the mixing matrices increased. (D) In this scenario,
di�erent levels of individual noise were added to the mixing matrices of both do-
mains. For low σT ,A values, all methods except the unpaired rotation correction
performed similarly with R2 scores decreasing slowly. For higher values, the scores
dropped, and correcting the rotation with the paired method performed best.
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The paired rotation correction method performed best in all scenarios but re-
quires the source and target sets to be the same size and have corresponding/paired
points. When this is not the case (for datasets with di�erent subjects, for example),
re-centering and re-scaling should be the best solution for improving performance.
The unpaired rotation estimation seems particularly unstable when the induced
shift is too big or when there is noise.

2.6 Numerical evaluation: M/EEG data

In the following empirical benchmarks, we focused on one MEG and two EEG
datasets for evaluating our alignment methods with real-world data. We �rst
describe these datasets and their preprocessing, then explain how we computed
the covariance matrices of the signals. We followed the same preprocessing and
processing steps as in [Engemann et al., 2022] for the `�lterbank-riemann' pipeline.
Finally, we detail the design of each benchmark.

2.6.1 Datasets

Cam-CAN MEG data The Cambridge Center of Aging and Neuroscience
(Cam-CAN) dataset [Taylor et al., 2017] consists of MEG recordings from a healthy
population covering a wide age range. These data were recorded for each subject
during resting state with eyes closed, an audio-visual (passive) task with visual
and auditory stimuli presented separately, and a sensorimotor (smt) task with the
same stimuli as the previous task combined with a manual response. All data were
collected with the same 306-channel VectorView MEG system (Elekta Neuromag,
Helsinki) with a sampling rate of 1 kHz.

Sample description: We included 646 subjects (319 female, 327 male) with all
three recordings. Their age distribution is from 18.5 to 88.9 years with an average
of 54.9± 18.4 years and an almost uniform spread over the age range. There was
no exclusion of participants. The set of subjects of each benchmark only depends
on the availability of recordings for the source and the target tasks and the success
of the preprocessing and the feature extraction. Thus some subjects with only two
tasks recorded are not included in all benchmarks leading to small variations of
the subject sample between benchmarks.

Preprocessing: We applied a FIR band-pass �lter between 0.1 and 49Hz to all
data. We decimated the signals with a factor of 5 to get a sampling frequency of
200Hz. To compensate for environmental noise, we performed a temporal signal-
space-separation (tSSS) method [Taulu et al., 2005] with a chunk duration of 10
seconds and a correlation threshold of 98%. We only picked channels corresponding
to magnetometers (after tSSS signals from magnetometers and gradiometers are
mixed and linearly related).
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TUAB EEG data The Temple University (TUH) EEG Corpus [Harati et al.,
2014] is a large publicly available dataset of clinical EEG recordings. This dataset
includes socially and ethnically diverse subjects. In this work, we focus on the
Temple University Hospital Abnormal EEG Corpus (TUAB) [Obeid and Picone,
2016], a subset of the TUH EEG Corpus in which recordings were labeled as normal
or abnormal by medical experts. Data were collected using several Nicolet EEG
devices between 24 and 36 channels and sampled at 500Hz. The subjects were at
rest during the recording.

Sample description: We only included healthy subjects with normal EEG in
our benchmark. This led to a sample of 1385 subjects (female = 775 and male =
610) with ages between 0 and 95 years (mean = 44.4 years and std = 16.5 years).

Preprocessing: Data were band-pass �ltered between 0.1 and 49Hz with a
zero-phase �nite impulse response (FIR) �lter using the �rwin with Hamming
window featuring a 0.0194 passband ripple, 53 dB stopband attenuation, a 0.1Hz
lower transition bandwidth and a 12.25Hz upper transition bandwidth, and a
�lter length of 6601 samples (33.005 s). Data were then resampled to 200Hz.
We selected a subset of 21 channels common to all recording devices used in this
dataset. When several recordings were available for one patient, we picked the
�rst to get only one recording per subject.

LEMON EEG data The Leipzig Mind-Brain-Body database provides multi-
modal data from healthy groups of young and elderly subjects [Babayan et al.,
2019]. In our benchmark, we only used EEG recordings from this dataset. They
were recorded with a 62-channel ActiCAP device and sampled at 2500Hz. Each
subject did two recordings at rest with two conditions: eyes closed and eyes open.

Sample description: We included 213 subjects from the LEMON database in
our benchmark. No selection criteria were applied, and we kept the data for which
the processing and the feature extraction were successful. This led to a cohort
with 134 males and 79 females aged from 20 to 77 years. The age distribution of
the LEMON presents a peculiarity: it is split into two separate age groups, one
with individuals being between 20 and 35 years old and the second between 55
and 77 years old.

Preprocessing: A band-pass �lter between 0.1 and 49Hz was applied to the
data and resampled to 200Hz. To keep a maximum of data, recordings with eyes
closed and eyes open were pooled before feature extraction.

2.6.2 Processing and feature extraction

Name low δ θ α βlow βmid βhigh

Range (Hz) 0.1 � 1 1 � 4 4 � 8 8 � 15 15 � 26 26 � 35 35 � 49

Table 2.2: De�nition of frequency bands.
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Figure 2.3: Pipeline for regression modeling with M/EEG with dif-
ferent dataset harmonization steps. For every subject, we summarize the
M/EEG recording by the covariance matrix after performing artifact cleaning
(Section 2.6.1). The covariances computation, alignments steps, projection to
the tangent space, and vectorization steps are done separately for seven frequency
bands of Table 2.2. Alignment steps detailed in Section 2.4.2 are computed from
the covariance distribution across all subjects. The re-center and re-scale steps are
performed separately for source and target datasets. The Procrustes steps combine
information across source and target datasets. Finally, the seven resulting tangent
vectors are concatenated to form one vector per subject used for regression.
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After preprocessing, each �ltered recording was segmented in 10 s epochs with-
out overlap. Epochs were then �ltered into seven frequency bands as de�ned
in Table 2.2 as in [Engemann et al., 2022]. We performed artifact rejection by
thresholding extreme peak-to-peak amplitudes on single epochs using the local
autoreject method [Jas et al., 2017]. Subsequently, we computed covariance matri-
ces from the set of artifact-free epochs with the Oracle Approximating Shrinkage
(OAS) estimator [Chen et al., 2010]. The ensuing regression pipeline, including all
alignment steps, is illustrated in Figure 2.3.

For MEG signals, the tSSS method reduces noise by projecting them in a sub-
space mainly containing the signal, leading to rank-de�cient covariance matrices.
As a result, it is not possible to correctly apply our alignment methods directly,
as rank-de�cient covariance matrices are not SPD matrices. To extract valid SPD
matrices, we follow the approach from [Sabbagh et al., 2019] introduced in Sec-
tion 1.3.3 and apply Principal Component Analysis to reduce the dimensionality of
the covariance matrices, which renders them full rank. Matrices of both domains
are transformed following (1.25) as:

ΣS,�ltered,i = WSΣS,iW
⊤
S ∈ RR×R (2.28)

ΣT ,�ltered,i = WSΣT ,iW
⊤
S ∈ RR×R (2.29)

For Cam-CAN data, we set R = 65. This spatial �lter is applied to each
frequency band separately. We did not apply this procedure to EEG data.

2.6.3 Alignment, vectorization, and regression

The matrices from both domains were �rst aligned with the methods described
in Section 2.4.2. We projected the aligned data in the tangent space at ΣS to
get tangent vectors. Tangent vectors from all frequency bands were concatenated.
Then we applied ridge regression after standardizing (z-scoring) all the features.
To select the regularization hyperparameter, we used a generalized (leave-one-out)
cross-validation [Gene H. Golub and Wahba, 1979] on a logarithmically spaced
grid of 100 points from 10−5 to 1010. For quantifying prediction performance, we
use the R2 score.

2.6.4 Cam-CAN (MEG): same subjects

For this benchmark, we used the experimental tasks of the Cam-CAN dataset
for de�ning the di�erent domains. Here, the source subjects were the same as the
target subjects. Only the experimental task (e.g., audiovisual VS audiovisual +
motor) changed from one domain to the other. All subjects included underwent
MEG recordings for both the source and the target domain. Therefore, impor-
tantly, the mixing matrix and the age distributions were the same for the source
and target. As we dealt only with healthy participants, we aimed to minimize the
error in age prediction when learning on one task (source domain) and predicting
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Figure 2.4: Impact of data alignment on age prediction across di�erent
tasks on the same subjects from Cam-CAN dataset (R2 score). Align-
ment methods comparison for three di�erent source-target tasks using 2000 repeat-
bootstrap to select the subjects. Both domains contained the same subjects, only
their task was di�erent. Models are depicted along the y-axis, and standard box-
plots represent their associated R2 score. The dashed black lines represent chance-
level performance. (A) Generalization of age prediction regression model from
resting state to the passive task. Re-centering and the paired rotation correction
led to an increased R2 score with no obvious bene�ts for additional re-scaling.
(B) The regression model was trained on resting-state data, and predictions were
made on the recordings of the somatosensory task. Re-centering the data led to
slightly improved R2 scores. Again, the re-scaling step did not lead to further
improvements. Correcting the rotation with the paired method contributed to im-
proving 99% of the splits in comparison to only re-centering. (C) Here we used the
data from the passive task as the source domain and the somatosensory task as
the target domain. Re-centering and re-scaling steps did not a�ect the prediction
performance. The paired rotation correction improved the scores in all splits.
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on another (target domain). To estimate standard deviation, we did a bootstrap
with 100 repetitions.

We �rst focused on a regression problem for which there was an individual noise
on the mixing matrices, but their distribution was the same in source and target
sets because the subjects were the same. It also implies that the age distribution
was identical for both domains. The interest of this analysis is to assess what
kind of shift is produced when only the task changes and if alignment methods
can rectify this. Results for each alignment method on age prediction for three
source-target tasks associations are displayed in Figure 2.4.

The z-score method led to scores similar or lower to what is obtained without
alignment across all three Panels, as expected from the simulation results. For the
two �rst Panels (A and B), the source domain contained the resting-state record-
ings, and the target tasks were, respectively, the passive and the somatosensory
tasks. The R2 scores we obtained after these two benchmarks were highly similar.
When no alignment was done, the mean R2 score was around 0.7. Re-centering
the distributions led to a reduced standard deviation and an increased mean R2

score in both situations, even though this was more pronounced in Panel (A). The
re-scaling step had no obvious impact on performance. The paired rotation correc-
tion led to improved prediction scores on 87.4% of the bootstrap iterations in Panel
(A) and on 99.1% of the iterations in Panel (B) compared to only re-centering. In
Panel (C), the source domain was the passive task, and we made predictions on the
somatosensory task, leading to quite di�erent results. The performance reached
with no alignment was already very high, with a mean R2 of 0.9. Re-centering
and re-scaling gave the same results as not performing any alignment. Then, the
paired rotation correction step induced increased scores for all bootstrap itera-
tions (R2 = 0.951 ± 0.005). Going from rest to tasks a�ects the geometric mean
of the covariance matrix distributions, but not when going between passive and
smt tasks. In all three situations, the performance gain obtained with Procrustes
paired implies the presence of a rotation of the tangent vector distribution.

2.6.5 Cam-CAN (MEG): di�erent subjects

In this second benchmark on the Cam-CAN data, we again de�ned the di�erent
domains in terms of the experimental MEG tasks performed by the subjects. Yet,
the critical di�erence with the previous benchmarks is that the source subjects
and the target subjects were distinct persons. To implement this analysis, we
randomly divided all Cam-CAN subjects into subsets of 80% forming the source
subjects, and the left-out 20 % forming the target subjects. A strati�cation was
performed by age decade to maintain similar age distributions between splits. We
repeated this split with 100 di�erent random initializations.

In this second benchmark, we focused on domain-shift di�erences between MEG
tasks in non-overlapping samples of distinct subjects. As a consequence, the distri-
butions of mixing matrices, necessarily, di�ered for the source and target domains.
We performed a cross-validation in which 80% of the subjects were assigned to
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Figure 2.5: Impact of data alignment on age prediction across di�erent
tasks for di�erent subjects from Cam-CAN dataset (R2 score). Alignment
methods comparison for three di�erent source-target tasks using 100 strati�ed
Monte Carlo cross-validation (shu�e split) iterations to determine which subjects
form the source and the target sets. We depict the models along the y-axis and
represent the R2 scores with standard boxplots. The dashed black lines repre-
sent chance-level performance. (A) The model was trained on the rest task, and
predictions were made on the passive task recordings. When re-centering source
and target distributions, prediction performance substantially improved, whereas
re-scaling did change performance. (B) The target set was composed of record-
ings from the somatosensory task. The improvement of the re-centering step was
smaller but still present. Re-scaling, still, did not lead to obvious improvements.
(C) In the last Panel, the passive task was the source domain, and the somatosen-
sory task was the target. In this case, aligning was not helpful and led to the same
performance as not performing any alignment.
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the source domain and 20% to the target domain. To keep relatively similar age
distributions in the train and test splits, we did a strati�cation on the age decades
of the subjects (cf StratifiedShuffleSplit of the Scikit-Learn software). Ap-
plying the paired rotation correction in this setup was no longer possible. Thus,
it is impossible to analyze whether a rotation exists in the shift. We present the
results of each alignment step in Figure 2.5.

When covariance matrices were not aligned, generalizing from rest to passive
tasks led to a R2 score of 0.55 ± 0.05 (A), and when the target task was the
smt task, we observed an R2 = 0.54 ± 0.04 (B). The z-score method performed
again similarly to the procedure without alignment. The re-centering step led to
comparable results across generalization scenarios involving resting state and any
event-related task (Panels (A) and (B)). Again, matching the source and target
dispersions with re-scaling was not helpful. Finally, all methods showed similar
performance when the passive and the smt tasks were the source and the target
tasks, respectively (C). Our observations for this benchmark match those we made
when the subjects were the same for the source and target sets. The R2 scores
reached after alignment in Figure 2.5 are considerably lower than in Figure 2.4.
Having di�erent subjects in the source and the target domain clearly creates a
more di�cult-to-reachable shift.

2.6.6 TUAB to LEMON (EEG): di�erent subjects

In this benchmark, we gauged the performance of alignment methods when the
source and target domains are two di�erent datasets. Here, the source domain was
composed of data from TUAB, and the target one of data from LEMON. These
datasets were not recorded with the same device. However, they had 15 channels
in common. We picked the same channels on both datasets to de�ne covariance
matrices of the same shape and similar information. The target set was kept �xed,
and we implemented a bootstrap procedure on the source subjects to estimate
standard deviations. In this setup, in addition to evaluating the alignment meth-
ods on the Riemannian regression model, we also applied them with a regression
model based on Source Power Comodulation (SPoC). SPoC is a supervised spatial
�ltering method in which the �lters WSPoC maximize the covariance between the
power of the �ltered signals and the outcome y [Dähne et al., 2014]. Denoting by
Σ̃ = 1

N

∑N
i=1 Σi the Euclidean average covariance matrix and Σy = 1

N

∑N
i=1 yiΣi

the weighted average covariance matrix, the �rst �lter wSPoC is given by:

wSPoC = argmax
w

w⊤Σyw

w⊤Σ̃w
. (2.30)

The same idea was proposed by [de Cheveigné and Parra, 2014]. As WSPoC

recovers the inverse of the mixing matrix A [Sabbagh et al., 2020], the SPoC
regression model is de�ned as:

zi = diag(log(WSPoCΣiW
⊤
SPoC)) (2.31)
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Figure 2.6: Impact of data alignment on age prediction across di�erent
EEG datasets (R2 score). Data from the TUAB dataset were used as the source
domain, and from the LEMON data as the target domain. We compare the align-
ment methods across 2000 bootstrap iterations on the source data (N = 1385).
The target set was always the same (N = 213). The methods are represented
along the y-axis, and we depict their associated R2 scores with standard boxplots.
The dashed black lines represent chance-level performance. (A) Results of align-
ment methods combined with the Riemannian approach of (2.7) (as for all the
results we have previously presented). Without alignment, the prediction made
on the LEMON data led to R2 scores far lower than what was reported in [En-
gemann et al., 2022] (10-fold cross-validation on LEMON data only: 0.54 ± 0.13
represented by the dashed gray line). When both domains are re-centered to iden-
tity, we reached performances similar to when the model is trained on LEMON.
Re-scaling did not visibly improve results. (B) Results when the regression model
follows the SPoC approach. Not aligning led again to poor R2 scores. Unlike the
�rst panel, the z-score method improved the predictions similarly to re-centering.
Re-scaling helped to reach performances on par with the Riemannian model trained
on LEMON.
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We now consider the resting-state data from two di�erent EEG datasets. The
source and target populations are di�erent, as well as the recording devices, but
all recordings were done at rest. The source dataset is the larger TUAB dataset
(N=1385), and the target dataset is the smaller LEMON dataset (N=213). TUAB
also has a broader age range. This way, the regression model will be asked to pre-
dict age values that fall within the range observed during model training. We
performed a bootstrap with 2000 iterations on TUAB data. The results are re-
ported in Figure 2.6. In addition to the Riemannian approach we focused on in
this work (A), we were also interested in the impact of the alignment methods on
a non-Riemannian model like SPoC (B).

Without alignment, the Riemannian model and SPoC led to poor results with
mean R2 scores around 0.26. On Panel (A), the z-score method performed at
the level of the dummy model. Re-centering the data drastically improved the
age prediction performances with R2 scores of 0.44 ± 0.06 with a visibly reduced
variance. Adding the re-scaling step on top of re-centering did not bring any im-
provement in performance. In [Engemann et al., 2022], the `�lterbank-riemann'
pipeline trained on LEMON data only with a 10-fold cross-validation led R2 scores
of R2 = 0.54 ± 0.13. Here, the training dataset only consisted of data from the
TUAB dataset. The Riemannian re-center step made it possible to reach perfor-
mance comparable to a model trained within the same dataset. With SPoC (B),
re-centering led to a reduced standard deviation compared to no alignment. The
highest R2 scores were achieved when the re-scaling step was added to the align-
ment procedure and almost reached the performance of the Riemannian model
trained on LEMON.

Aligning the covariances distribution helped improve prediction performance
even with a regression model like SPoC that does not leverage the geometry of
the covariance matrices. This observation motivated an examination of how align-
ment a�ects the SPoC patterns, the inverse of the SPoC spatial �lters WSPoC, and
the resulting powers. As re-centering is a linear transformation, it is possible to
combine it with the SPoC patterns for visualization. Thus this is the alignment
method we used for the results displayed in Figure 2.7. The �rst two rows of
(A) illustrate the �ve �rst SPoC patterns of unaligned source (TUAB) and target
(LEMON) data. Without alignment, the source patterns of the �rst row were di-
rectly applied to the unaligned source and target data, resulting in the log powers
represented by the blue dots in the scatterplot (B). The target log powers covered
a wider range of values than the source log powers and did not match the identity
line. We then trained the model on the aligned source data and applied it to the
aligned source and target data to get the log powers values represented as orange
crosses on the scatterplot (B). Re-centering each domain independently resulted
in more comparable source and target log powers on average across subjects. To
visualize the patterns associated with the aligned log powers and compare them
to the unaligned source and target patterns, we displayed on the third row of Fig-
ure 2.7 (A) the SPoC patterns of the aligned source data adjusted with the target
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Figure 2.7: Impact of alignment of di�erent EEG datasets on their SPoC
patterns and source powers. TUAB data were used as the source domain, and
LEMON data as the target domain. Alignment refers to re-centering the source
and the target distribution by whitening them respectively by their geometric
mean. To obtain these �gures, data were �ltered in the alpha band. We included 19
channels (15 commons and 4 with similar locations on the scalp) in both datasets.
(A) Topographic maps of the �ve �rst SPoC source patterns without alignment
(�rst row) and target patterns without alignment (second row). The third row
corresponds to the aligned source patterns adjusted with the target whitening
inverse �lter. These are the patterns applied to unaligned target data to obtain
the target powers with alignment. The color map is normalized across each row.
(B) Scatter plot of the target log powers as a function of the source log powers
without and with alignment averaged across subjects. The dashed black line is the
identity line. Alignment makes target and source log-powers more comparable.
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whitening inverse �lter Σ
1
2
T . In other words, these adjusted patterns correspond

to the SPoC �lters applied to the unaligned target data to obtain the target log
powers with alignment. The shapes of the adjusted patterns look similar to the
source patterns of the �rst rows without any clear transformation in the direction
of the target patterns. Even though this analysis was performed in the alpha band,
we made the same observations in all other frequency bands.

2.7 Discussion

In this study, we thoroughly explored domain adaptation methods that align
M/EEG covariance matrix distributions for regression problems on both simula-
tions and large datasets. We considered methods from BCI applications [Rodrigues
et al., 2019, Maman et al., 2019, Bleuzé et al., 2021] articulated in three alignment
steps: re-center the geometric means, equalizing dispersions, and rotation correc-
tion. These alignment steps are evaluated in the regression context of generalizing
age prediction across di�erent domains. We investigated how dataset shifts can
occur by analyzing a statistical generative model of M/EEG data. We presented
simulated dataset shift scenarios based on this model for which alignment steps
can e�ectively compensate the shift, plus a noise scenario to get a sense of how
the methods would perform with real data. The simulation results showed that
Procrustes paired is the most e�ective method in all scenarios. It was expected
as it includes the three alignment steps and a rotation correction informed by
the pairing of source and target subjects. We then designed M/EEG benchmarks
with di�erent domain de�nitions to determine the alignment methods' e�ciency in
those various settings. Coherently with the simulation results, Procrustes paired
achieved the best performance, but since it cannot be applied in all situations,
re-centering is the best option.

We compared the alignment steps leveraging Riemannian geometry with a z-
score method that transforms the covariance matrices into correlation matrices.
This method systematically performed worse than all the others. Taking into
consideration the geometry of the data space is essential. Among the three Rie-
mannian alignment steps, re-centering and the paired rotation correction of the
source and target distributions help to improve the prediction performance in the
M/EEG benchmarks. Re-centering and the paired rotation correction were shown
to compensate for changes in the mixing matrices of the generative model, so we
expected these steps to reduce the shift in benchmarks where the target population
is not the same as the source population. In the �rst benchmark on Cam-CAN
data, the source and target subjects were the same, but we still observed that
re-centering and Procrustes paired led to better scores. On the other hand, equal-
izing their dispersions did not bring clear gains in performance in any benchmark.
In the Cam-CAN benchmarks, the scores reached when the subjects are d i�erent
in the domains are distinctly lower than with the same subjects: the shift is bigger
(lower no alignment baseline) and harder to recover. For the EEG benchmark, we
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used the TUAB dataset as the source and the LEMON dataset as the target. Here,
all recordings were done at rest but with di�erent recording devices and in di�erent
populations. Re-centering the distributions in the EEG benchmark exceeded our
expectations. Re-centering was su�cient to recover performance close to what is
reached when training the Riemannian model on LEMON [Engemann et al., 2022].
The re-centering step is simple to implement and has already been very e�ective
in BCI classi�cation to deal with variability between sessions [Barachant et al.,
2013] but also between subjects [Zanini et al., 2018]. Our results suggest it is also
e�ective in a regression context with variability between populations, tasks, and
recording devices.

We extended our evaluation of the impact of alignment methods on di�erent
EEG datasets to the SPoC model [Dähne et al., 2014]. In this setting, the z-
score method and re-centering performed both equally better than no alignment.
Interestingly, re-scaling was bene�cial and helped to reach performance close to the
Riemannian model trained on LEMON. By inspecting the SPoC patterns and the
associated log powers, we demonstrated that the observed gain in the performance
of re-centering was enabled by more similar log powers between source and target
than without alignment. In other words, data alignment adapts the target features
to the regression equations �tted on the source data, which explains generalization.

Unfortunately, the two last benchmarks are missing a rotation correction method.
As Procrustes paired led to an apparent score increase in the �rst benchmark, we
expect a rotation correction to be bene�cial in the other benchmarks. Yet, the
simulation study showed that the unpaired Procrustes method failed to correctly
estimate the rotation when there is noise or when the shift gets too large. The re-
sult suggests that this method would likely fail with M/EEG data. The condition
of matching subjects between the source and target in Procrustes paired is too re-
strictive and is not applicable in many settings. The supervised rotation correction
methods developed for classi�cation problems [Maman et al., 2019, Bleuzé et al.,
2021, Rodrigues et al., 2019] are unsuitable for regression. Further investigations
are needed to �ll the lack of rotation correction in regression contexts.

Another limitation of this work is that we only performed benchmark that in-
volved source and target covariance matrices formed from the same set of sensors.
The dimensionalities of the source and the target data must be equal to apply the
predictive model to it. It has been proposed to deal with di�erent dimensionalities
of covariance matrices via zero-padding [Rodrigues et al., 2021]. However, this
method is not applicable if there is no rotation correction afterward, so we could
not use it. We also observed that our framework is not robust to sensor permuta-
tion in the covariance matrices, even with the same sets of sensors. In our EEG
benchmark, we had to select the common channels between the two datasets and
sort them to reach acceptable performance even for the re-center step. In addition
to leading to a gain in performance, having a proper rotation correction would help
to deal with issues related to di�erent numbers or types of sensors in the source
and target datasets.
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Besides the limitations linked to the rotation correction, further points would
deserve future studies. First, we explored unsupervised alignment methods that do
not explicitly share any information between the source and the target domains.
Comparing our results with supervised methods could allow us to quantify the
gain of supervision and to have additional insights into the trade-o� between the
approaches. A second element to consider is that our goal was to evaluate the
alignment methods on a regression problem by minimizing the prediction error.
We focused on brain age prediction as age is a label that is easy to collect. But
other prediction targets should equally bene�t from the methods presented in this
work. Importantly, we conducted our benchmarks on healthy participants sampled
from the general population. Yet, the biggest impact of our results may be seen
when bridging datasets from heterogeneous clinical populations, which remains to
be demonstrated. Finally, in this work we focus on linear regression model but
recent work demonstrated that this Riemannian framework can also be applied
with non-linear models [Bonet et al., 2023]. Kernel-based models have been shown
to perform well on brain age prediction but were not investigated in a domain
adaptation context.
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In Chapter 1 and Chapter 2, we introduced the problem of dataset shift in EEG
data and highlighted the need for domain adaptation methods to e�ectively man-
age these shifts. Until now, our focus was on situations where shifts predominantly
occur in the input data X. We analyzed the mechanisms and causes of these shifts,
and investigated domain adaptation techniques designed to handle di�erences in
in the distribution of input data. We observed that implementing a riemannian
re-centering alignment improved prediction performance when there were changes
in tasks performed during recording, or di�erent participants between the source
and target domains.

In this chapter, we extend our investigation to scenarios where shifts occur in
both the input data X and the outcome variable y. This situation is more re-
�ective of real-world EEG data analysis, where participant populations can vary
considerably between di�erent recording sites. We illustrate this scenario using
the HarMNqEEG dataset [Li et al., 2022], which includes EEG data from various
recording sites with di�ering age ranges and distributions. Through our experimen-
tal analysis, we demonstrate that the alignment approaches used in the previous
chapter are inadequate for this context and fail to deliver optimal performance.

To address this limitation, we propose a novel domain adaptation method ca-
pable of handling shifts in both X and y distributions. Our results show that
this new method outperforms previous techniques on the HarMNqEEG dataset,
thereby o�ering a more robust solution for EEG data analysis in the situation of
joint dataset shifts.

3.1 Dealing with complex dataset shift in EEG data

Machine learning (ML) has enabled advances in the analysis of complex bio-
logical signals, such as magneto- and electroencephalography (M/EEG), in diverse
applications including biomarker exploration [Wu et al., 2020, Hakeem et al.,
2022, Yang et al., 2022] or developing Brain-Computer Interface (BCI) [Wol-
paw et al., 1991, Forenzo et al., 2024, Allahgholizadeh Haghi et al., 2019, Anu-
manchipalli et al., 2019]. However, a major challenge in applying ML to these
signals arises from their inherent variability, a problem commonly referred to as
dataset shift [Dockès et al., 2021]. In the case of M/EEG data this variability can
be caused by di�erences in recording devices (electrode positions and ampli�er
con�gurations), recording protocols, population demographics, and inter-subject
variability [Mellot et al., 2023, Engemann et al., 2018, Heremans et al., 2022,
Jiang et al., 2023]. Notably, shifts can occur not only in the data X but also in
the biomedical variable y we aim to predict, further complicating the use of ML
algorithms.

Riemannian geometry has signi�cantly advanced EEG data analysis by en-
abling the use of spatial covariance matrices as EEG descriptors [Barachant et al.,
2010, 2013, 2012, Nguyen et al., 2017, Kobler et al., 2022, Lopez Naranjo et al.,
2024, Li et al., 2022, Sabbagh et al., 2020, Gemein et al., 2020, Wilson et al.,
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Figure 3.1: Joint shift in X and y distributions on the HarMNqEEG
dataset [Li et al., 2022]. Subset of mean PSDs (A) and age distributions (B)
from three recording sites used for the empirical benchmarks.

2024]. In Barachant et al. [2013, 2012], the authors introduced a classi�cation
framework for BCI based on the Riemannian geometry of covariance matrices.
These methods classify EEG signals directly on the tangent space using the Rie-
mannian manifold of symmetric positive de�nite (SPD) matrices (S++

P ), e�ectively
capturing spatial information. More recently, Sabbagh et al. [2019, 2020], Bomat-
ter et al. [2024] extended this framework to regression problems from M/EEG
data in the context of biomarker exploration. Furthermore, Sabbagh et al. [2019,
2020] proved that Riemannian metrics lead to regression models with statistical
guarantees in line with log-linear brain dynamics [Buzsáki and Mizuseki, 2014] and
are, therefore, well-suited for neuroscience applications. Across various biomarker-
exploration tasks and datasets, recent work has shown that Riemannian M/EEG
representations o�er parameter-sparse alternatives to non-Riemannian deep learn-
ing architectures [Engemann et al., 2022, Paillard et al., 2024, Gemein et al.,
2020].

Domain adaptation addresses the challenges posed by di�erences in data dis-
tributions between source and target domains, e.g., when data are recorded with
di�erent cameras in computer vision [Wang and Deng, 2018], di�erent writing
styles in natural language processing [Li et al., 2019a], or varying sensor setups in
time series analysis [He et al., 2023]. In particular, DA considers target shift where
the shift is in the outcome variable y. For classi�cation it means source and target
data share the same labels but in di�erent proportions [Li et al., 2019b]. Target
shift is also frequent in the context of multicenter neuroscience studies, as the
studied population of one site may vary signi�cantly from the studied population
of another site. Figure 3.1 Illustrates an example of this situation with data from
the HarMNqEEG dataset Li et al. [2022]. To tackle various sources of variability
in neurophysiological data like EEG, there is a need for a DA approach that can
deal with a joint shift in X and y.
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The rest of the chapter is organized as follows. In Section 3.3, we discuss works
related to the approach we propose in this chapter. We �rst review covariance-
based methods used for domain adaptation in the BCI context. We interpret the
predictive pipeline used throughout the manuscript on S++

P as parallel transports
combined with Riemannian logarithmic mappings. We also discuss mixed-e�ects
models, which are to be applied in context where the distribution of the input
data X and the outcome variable y are shifted. In Section 3.4 we present our
proposed method, Geodesic Optimization for Predictive Shift Adaptation (GOPSA),
which learns to parallel transport each domain along a geodesic. We detail the
optimization problem and the train-time and test-time algorithms associated with
GOPSA. Finally, in Section 3.5, we apply GOPSA as well as di�erent baselines on the
HarMNqEEG dataset. In addition, we provide a model inspection to understand
the behavior of GOPSA and its impact on the data.

3.2 Contributions

The content of this chapter is based on the work presented in the preprint:

Apolline Mellot, Antoine Collas, Sylvain Chevallier, Alexandre Gramfort, and
Denis A. Engemann. �Geodesic Optimization for Predictive Shift Adaptation on
EEG data.� under review,

In this work, we address the challenging problem of multi-source domain adap-
tation with predictive shifts on the SPD manifold, focusing on distribution shifts
in both the input data X and the variable to predict y. We propose a novel
test-time domain adaptation method called Geodesic Optimization for Predictive
Shift Adaptation (GOPSA), which adapts models to new domains during inference
without retraining on source data. It enables mixed-e�ects modeling by jointly
learning parallel transport along a geodesic for each domain and a global regres-
sion model common to all domains, with the assumption that the mean ȳT of the
target domain is known. GOPSA aims to advance the state of the art by: (i) ad-
dressing shifts in both covariance matrices and the outcome variable y, (ii) being
tailored for regression problems, and (iii) being a multi-source test-time domain
adaptation method, meaning that once trained on source data, it can generalize
to any target domain without requiring access to source data or retraining a new
model.

The scripts of the baseline methods and the proposed approach are available
available on GitHub along with the codes for the experimental evaluation on the
HarMNqEEG dataset:

https://github.com/apmellot/GOPSA.git
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3.3 Related work

3.3.1 Covariance-based transfer learning

In Zanini et al. [2018], the authors addressed domain adaptation for EEG-based
BCI using re-centering a�ne transformation of covariance matrices, presented in
Section 2.4.2, to align data from di�erent sessions or human participants, im-
proving classi�cation accuracies. Yair et al. [2019] extended this with parallel
transport showing its e�ectiveness in EEG analysis, Peng et al. [2022] introduced
a domain-speci�c regularizer based on the Riemannian mean. Notably, this paral-
lel transport approach reduces to Zanini et al. [2018] when the common reference
point is the identity.

In a deep learning context, Kobler et al. [2022] proposed to do a per-domain
online re-centering which can be seen as a domain speci�c Riemannian batch norm.
Going beyond re-centering, Riemannian Procrustes Analysis (RPA) [Rodrigues
et al., 2019] was proposed for EEG transfer learning, using three steps: mean
alignment, dispersion matching, and rotation correction. However, the rotation
step is unsuitable for regression problems and RPA adapts only a single source to
a target domain. In Chapter 2, we demonstrated the bene�ts of re-centering for
regression problems, showing improvements in handling task variations in MEG
and enhancing across-dataset inference in EEG.

3.3.2 Mixed-e�ects models

On the other hand, mixed-e�ects models (or multilevel models) have been suc-
cessfully used to tackle data shifts in X and y [Gelman, 2006, Hox, 1998]. In
biomedical data, mixed-e�ects models are crucial due to the presence of common
e�ects, such as disease status and age. These common e�ects are often inter-
twined with site-speci�c e�ects, like di�erences in recording devices and protocols.
Riemannian mixed-e�ects models have been used to analyze observations on Rie-
mannian manifolds, accommodating individual trajectories with mixed e�ects at
both group and individual levels [Kim et al., 2017, Schiratti et al., 2015, 2017].
These models adapt a base point on the manifold for each data point and utilize
parallel transport for this adaptation, which is necessary for accurate trajectory
modeling. However, they di�er signi�cantly from the problem we address in this
work. Notably, the input data X are covariates (e.g., age or disease status) which
belong to a Euclidean space and the variables y to predict belong to the manifold
(e.g., MRI di�usion tensors on S++

P ) which is the opposite of the paper's studied
problem. This distinction is critical as it highlights that while both methods use
the geometry of Riemannian manifolds, the nature of the predicted variables and
the type of data used di�er from existing Riemannian mixed-e�ects models.
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Chapter 3. Joint shift in data and label distributions

3.4 Learning to re-center from highly shifted y distribu-

tions

In this section, we introduce a novel multi-source domain adaptation method,
called Geodesic Optimization for Predictive Shift Adaptation (GOPSA), that oper-
ates on the S++

P manifold and is capable of handling vastly di�erent distributions
of y. Our approach implements a Riemannian mixed-e�ects model, which consists
of two components: a single parameter estimating a geodesic intercept speci�c to
each domain and a set of parameters shared across domains. Notably, GOPSA is
test-time adaptable, meaning that once trained on source data, it can generalize
to any target domain without requiring source data or retraining a new model.

At train-time, GOPSA jointly learns the parallel transport of each of the K
source domains and the regression model shared across domains. At test-time, we
assume having access to the target mean response value yT and predict on the
unlabeled target domain of covariance matrices (ΣT ,i)

NT
i=1. GOPSA focuses solely on

learning the parallel transport of the target domain so that the mean prediction,
using the regression model learned at train-time, matches yT .

3.4.1 Parallel transport along the geodesic for multi-source do-
main adaptation

Parallel transport

A classical practice to align distributions is parallel transport of covariance matri-
ces from their mean to the identity and then apply the logarithmic mapping (1.12).
Parallel transport along a curve allows to move SPD matrices from one point on
the curve to another point on the curve while keeping the inner product between
the logarithmic mappings with any other vector transported along the same curve
constant. The following lemma gives the parallel transport of Σ′ from Σ to IP
along the geodesic between these two points (See proof in Appendix B.1).

Lemma 3.4.1 (Parallel transport to the identity). Given Σ,Σ′ ∈ S++
P , the

parallel transport of Σ′ along the geodesic from Σ to the identity IP at α ∈ [0, 1]
is

PT (Σ′,Σ, α) ≜ Σ
−α/2Σ′Σ

−α/2 .

Learning on S++
P

In (1.15) we introduced a classical non-linear feature extraction [Barachant et al.,
2012, Mellot et al., 2023, Bonet et al., 2023] of a dataset {Σi}Ni=1, with Σ the
Riemannian mean of the dataset. As the logarithmic mapping (1.12) at the iden-
tity is simply the matrix logarithm, this feature extraction can be written as the
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combination of parallel transport and logarithmic mapping at the identity:

ϕ
(
Σi,Σ

)
= uvec

(
log
(
Σ

−1/2
ΣiΣ

−1/2
))

(3.1)

= uvec
(
logIP

(
PT
(
Σi,Σ, 1

)))
∈ RP (P+1)/2 (3.2)

where uvec vectorizes the upper triangular part with o�-diagonal elements multi-
plied by

√
2 to preserve the norm.

In the multi-source domain adaptation scenario, we have access to K labeled
source domains, each consisting of Nk covariance matrices, along with their cor-
responding response values, denoted by {(Σk,i, yk,i)}Nk

i=1. Correcting dataset shifts
by re-centering all source datasets to a common point on the manifold [Zanini
et al., 2018], corresponds to parallel transporting data {Σk,i}Nk

i=1 of each domain
k ∈ J1, KK from its Riemannian mean Σk to the identity,

ϕ(Σk,i,Σk) = uvec
(
log
(
Σ

−1/2

k Σk,iΣ
−1/2

k

))
. (3.3)

This method is the go-to approach for reducing shifts of the covariance matrix
distributions coming from di�erent domains and has been applied successfully
for brain-computer interfaces [Rodrigues et al., 2019, Yair et al., 2019] and age
prediction from M/EEG data [Mellot et al., 2023], as presented in the previous
chapter.

In Section 2.4.2, we presented how the re-center alignment is usually performed
on S++

P . In particular, (3.3) generalized the re-center formulation for the multi-
source context in order to account for the shifts of each domain. However, this
operator can only work if the variability between domains is considered as noise.
As explained earlier, we are interested in shifts in both features and the response
variable. Thus, (3.3) discards shift coming from the response variable and hence
harms the performance of the predictive model. Based on the Lemma 3.4.1, we
propose to parallel transport features to any point on the geodesic between a
domain-speci�c Riemannian mean Σk and the identity. Indeed, GOPSA parallel
transports Σk,i on this geodesic with α ∈ [0, 1] and then applies the Riemannian
logarithmic mapping (1.12) at the identity,

ϕ(Σk,i,Σk, α) ≜ uvec
(
logIP

(
PT
(
Σk,i,Σk, α

)))
(3.4)

= uvec
(
log
(
Σ

−α/2

k Σk,iΣ
−α/2

k

))
. (3.5)

This allows each domain to undergo parallel transport to a certain degree, e�ec-
tively moving it toward the identity.
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3.4.2 Train-time

GOPSA aims to learn simultaneously features from (3.4) and a regression model.
To do so, we solve the following optimization problem

minimize
βS∈R

P (P+1)/2

αS∈[0,1]K

K∑
k=1

Nk∑
i=1

(
yk,i − β⊤

S ϕ
(
Σk,i,Σk, αk

))2
(3.6)

with αS = [α1, . . . , αK ]
⊤. This cost function is decomposed into three key as-

pects. First, covariance matrices undergo parallel transported using Lemma 3.4.1
to account for shifts between domains. Second, they are vectorized, and a lin-
ear regression predicts the output variable from these vectorized features. Third,
the coe�cients of the linear regression βS and the αS are learned jointly so that
the predictor is adapted to the parallel transport and reciprocally. Besides, to
enforce the constraint on αS , we re-parameterize it using the sigmoid function,
which de�nes a bijection between R and (0, 1), thereby ensuring that the resulting
αS values lie within the desired range: αk = σ(γk) ≜ (1 + exp(−γk))−1. Thus,
the constrained problem (3.6) can be formulated as the following unconstrained
optimization problem

minimize
βS∈R

P (P+1)/2

γS∈RK

K∑
k=1

Nk∑
i=1

(
yk,i − β⊤

S ϕ
(
Σk,i,Σk, σ(γk)

))2
, (3.7)

with γS = [γ1, . . . , γK ]
⊤.

Let us de�ne the matrix ZS(γ) ∈ RNS×P (P+1)/2, with NS =
∑K

k=1Nk, as the
concatenation of the source data, where each row corresponds to a feature vector:

ZS(γ) =
[
ϕ
(
Σ1,1,Σ1, σ(γ1)

)
, . . . , ϕ

(
ΣK,NK

,ΣK , σ(γK)
)]⊤

. (3.8)

In the same manner, the source labels are concatenated to yS = [y1,1, . . . , yK,NK
]⊤ ∈

RNS . Given a �xed γS , the problem (3.7) is solved with the ordinary least squares
estimator. In practice, we choose to regularize the estimation of the linear regres-
sion with a Ridge penalty. Thus, (3.7) is rewritten as

γ⋆
S ≜ argmin

γ∈RK

{
LS(γ) ≜ ∥yS −ZS(γ)β

⋆
S(γ)∥22

}
subject to β⋆

S(γ) ≜ ZS(γ)
⊤(λIN +ZS(γ)ZS(γ)

⊤)−1yS ,

(3.9)

where β⋆
S(γ) ∈ RP (P+1)/2 are the Ridge estimated coe�cients given a �xed γ and

λ > 0 is the regularization hyperparameter. The problem (3.9) is e�ciently solved
with any gradient-based solver [Nocedal and Wright, 1999].
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The train-time of GOPSA is summarized in Algorithm 1. The proposed training
algorithm begins by calculating the Riemannian mean of covariance matrices for
each domain k. It then iteratively optimizes the parameters γS by computing the
feature matrix (3.8), determining Ridge regression coe�cients (3.9), and updating
γS using a gradient descent step on the loss function (3.9) until convergence.
The output result is the optimized Ridge regression coe�cients. For clarity of
presentation, Algorithm 1 employs a gradient descent. In practice, we use L-
BFGS and obtain the gradient using automatic di�erentiation through the Ridge
solution that is plugged into the loss in (3.9).

3.4.3 Test-time

At test-time, we now have a �tted linear model on source data with coe�cients
β⋆
S(γ

⋆
S). The goal is to adapt a new target domain (ΣT ,i)

NT
i=1 for which the average

outcome yT is assumed to be known. First, let us de�ne the matrix ZT (γ) ∈
RNT ×P (P+1)/2 as the concatenation of the target data

ZT (γ) =
[
ϕ
(
ΣT ,1,ΣT , σ(γ)

)
, . . . , ϕ

(
ΣT ,NT ,ΣT , σ(γ)

)]⊤
. (3.10)

Then, GOPSA adapts to this new target domain by minimizing the error between
yT and its estimation computed with the �tted linear model. This minimization is
performed with respect to γT ∈ R that parametrizes the parallel transport of the
target domain, i.e.,

γ⋆
T = argmin

γ∈R

{
LT (γ) ≜

(
yT −

1

NT
1⊤
NT

ZT (γ)β
⋆
S(γ

⋆
S)

)2
}

. (3.11)

Finally, the predictions on the target domain are

ŷT = ZT (γ
⋆
T )β

⋆
S(γ

⋆
S) ∈ RNT . (3.12)

The test-time procedure of GOPSA is summarized in Algorithm 2. The algo-
rithm begins by calculating the Riemannian mean of the target covariance matrices
{ΣT ,i}NT

i=1. It then iteratively optimizes the parameter γT by computing the feature
matrix (3.10), the derivative of the loss function (3.11), and updating γT using a
gradient descent step until convergence. The algorithm determines the estimated
target outcomes, ŷT , by using the optimized γ⋆

T on the feature matrix, combined
with the pre-trained regression coe�cients β⋆

S(γ
⋆
S). The output result is the pre-

dicted target outcomes ŷT . It should be noted that, once again, for clarity of
presentation, Algorithm 2 employs a gradient descent, but other derivative-based
optimization methods can be used.
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Algorithm 1: Train-Time GOPSA

Input: For all k ∈ J1, KK, {(Σk,i, yk,i)}Nk
i=1, initialization of γS , step-sizes

{ξt}t≥1

for k = 1→ K do

Σk ← Riemannian mean of {Σk,i}Nk
i=1

end
t← 1
while not converged do

ZS(γS)← Compute features with (3.8)
β⋆
S(γS)← Compute Ridge coe�. with (3.9)
∇LS(γS)← Compute loss gradient of (3.9)
γS ← γS − ξt∇LS(γS)
t← t+ 1

end
return β⋆

S(γ
⋆
S)

Algorithm 2: Test-Time GOPSA

Input: {ΣT ,i}NT
i=1, mean outcome value ȳT , initialization of γT , trained

Ridge coe�. β⋆
S(γ

⋆
S), step-sizes {ξt}t≥1

ΣT ← Riemannian mean of {ΣT ,i}NT
i=1

t← 1
while not converged do

ZT (γT )← Compute features with (3.10)
L′

T (γT )← Compute loss derivative of (3.11)
γT ← γT − ξtL′

T (γT )
t← t+ 1

end
ŷT ← ZT (γ

⋆
T )β

⋆
S(γ

⋆
S)

return ŷT
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3.5 Empirical benchmarks

In this section, we built empirical benchmark to evaluate the performance of
GOPSA. We �rst present the simulated data that we used to illustrate the relevance
of our method when there is a joint distrbution shift of the data and the labels.
Then, we present the EEG dataset that we used to evaluate the performance of
GOPSA with real data from di�erent recording sites. Finally, we present the baseline
methods that are compared with GOPSA.

3.5.1 Simulated data

To generate simulated data, we used the generative model described in Sec-
tion 2.3.1. The data are generated following the classical instantaneous mixing
model:

xi(t) = Asi(t) (3.13)

where xi(t) ∈ RP are the observed time-series, si(t) ∈ RP are the underlying
signal of the neural generators and A is the mixing matrix whose columns are
the observed spatial patterns of the neural generators. Furthermore, we use a
log-linear model to construct y:

yi = β0 +
P∑
ℓ=1

βℓ log(pℓi) (3.14)

where pℓi ∈ R is the variance of the ℓ-th element of the underlying signal si(t) as
introduced in Chapter 2 [Sabbagh et al., 2019, 2020, Mellot et al., 2023].

From this, we generate domains by applying two shifts. One on X that changes
the mixing matrix, and one on y by shifting the variances. In addition, we wish
to generate several domains with shifts on X and y. We denote the domains by k
and the number of domains by K.

Simulated shift in the data distribution: We introduced a shift in the data
distribution by applying a a�ne transformation to the covariance matrices Σ of
x:

Σ 7→ Bξ
kΣBξ

k (3.15)

with Bk ∈ S++
P and ξ ≥ 0 controlling the amplitude of the shift.

Simulated shift in the label distribution: We introduced a shift in the label
distribution by modifying the variance of the underlying signal pℓi:

pℓi 7→ p1+kξ
ℓi (3.16)

with ξ ≥ 0 still controlling the amplitude of the shift. Thus, the distribution of y
is shifted per domain because of the log-linear relationship of (3.14). It should be
noted that β is kept constant across domains.
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3.5.2 EEG dataset

Dataset

The HarMNqEEG dataset [Li et al., 2022] was used for our numerical experiments.
This dataset includes EEG recordings collected from 1564 participants across 14
di�erent study sites, distributed across 9 countries. In our analysis, we consider
each study site as a distinct domain. Figure 3.2 provides detailed demographic
information. The EEG data were recorded with the same montage of 19 channels
of the 10/20 International Electrodes Positioning System. The dataset provides
pre-computed cross-spectral tensors for each participant rather than raw data,
and anonymized metadata including the age and the sex of the participants. More
precisely, the shared data consists of cross-spectral matrices with a frequency range
of 1.17Hz to 19.14Hz, sampled at a resolution of 0.39Hz.

Pre-processing

A standardized recording protocol was enforced to ensure the consistency across
EEG recording of the dataset. In addition to recording constraints, this protocol
included artifact cleaning procedures. The cross-spectrum were computed using
Bartlett's method (See Appendix B.2). Our pre-processing steps were guided by
the pre-processing pipeline outlined in Li et al. [2022]. First, we performed a
common average reference (CAR) on all cross-spectrum (See Appendix B.2) as
di�erent EEG references were used across domains. Subsequently, we extracted
the real part of the cross-spectral tensor to obtain co-spectrum tensors contain-
ing frequency-speci�c covariance estimates along the frequency spectrum. Due to
the linear dependence between channels introduced by the CAR, the covariance
matrices are rank de�cient. To address this, we applied a shrinkage regularization
with a coe�cient of 10−5 to the data. Additionally, we implemented a global-
scale factor (GSF) correction, which compensates for amplitude variations between
EEG recordings by scaling the covariance matrices with a subject-speci�c factor
[Hernández et al., 1994, Li et al., 2022] (See Appendix B.2). Following these
pre-processing steps, we obtained a set of 49 covariance matrices for each EEG
recording, with each matrix corresponding to a speci�c frequency bin of the EEG
signal. This pre-processed co-spectrum served as the input data for our domain
adaptation study.

Performance evaluation and hyperparameter selection

To evaluate the performance of the compared methods, we conducted experiments
across several combinations of source and target sites. We selected source do-
mains such that the union distribution of their predictive variable y encompasses
a broad age range. All remaining sites were assigned as target domains. For each
source-target combination we performed a strati�ed shu�e split approach with 100
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Figure 3.2: Age distribution of the 14 sites of the HarMNqEEG
dataset [Li et al., 2022]. The distributions are represented with a kernel density
estimate. The y-scales are not shared for visualization purpose.
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repetitions on the target data. Strati�cation was based on the recording sites to
ensure that each split contained a balanced proportion of participants from each
site. The regularization parameter λ in Ridge regression was selected with a nested
cross-validation (grid search) over a logarithmic grid of values from 10−1 to 105.

3.5.3 Baseline methods

To evaluate the bene�t of GOPSA, we compared it against four baselines. The
four baseline methods used in this work are detailed in the following. For every
methods we have access to K labeled source domains, each including Nk covari-
ance matrices and their corresponding variables of interest (Σk,i, yk,i)

Nk
i=1. The

method DO Dummy and the mixed-e�ects model baseline DO Intercept both ac-
cess the mean value yT of the target domain variable to predict. We remind that as
the dataset used in the empirical benchmarks is constituted of several frequency
bands, each method is applied to each frequency band independently and then
computed vectors are concatenated. For each baseline method, the regression task
was performed with Ridge regression.

Domain-aware dummy model (DO Dummy)

As GOPSA requires access to the mean ȳk of each domain, we used a domain-aware
dummy model predicting always the mean ȳk of each domain.

No re-center / No domain adaptation (No DA)

This second baseline method involves applying the regression pipeline outlined
in Sabbagh et al. [2019, 2020] without any re-centering. In this setup, all covari-
ance matrices are projected to the tangent space at the source geometric mean Σ
computed from all source points, no matter their recording sites.

The covariance matrices are used as input of the regression pipeline without
any re-centering. First, the geometric mean of the source matrices is computed:

ΣS ≜ argmin
Σ∈S++

P

K∑
k=1

Nk∑
i=1

δR(Σ,Σk,i)
2. (3.17)

Then, source feature vectors are extracted with:

ϕ(Σk,i,ΣS) = uvec
(
log
(
Σ

−1/2

S Σk,iΣ
−1/2

S

))
∈ RP (P+1)/2. (3.18)

Finally, the target feature vectors are extracted from the target data (ΣT ,i)
NT
i=1

with:

ϕ(ΣT ,i,ΣS) = uvec
(
log
(
Σ

−1/2

S ΣT ,iΣ
−1/2

S

))
∈ RP (P+1)/2. (3.19)

96



3.5. Empirical benchmarks

Re-center to a common reference point (Re-center)

As introduced in Section 3.4.1, a common transfer learning approach is a Rieman-
nian re-centering of all domains to a common point on the manifold [Zanini et al.,
2018, Mellot et al., 2023]. This baseline thus correspond to re-centering each do-
main k, source and target, independently by whitening them by their respective
geometric mean Σk.

Domains are re-centered to a common reference point, here we decided to use
the identity. First, the geometric mean of each domain is computed:

Σk ≜ argmin
Σ∈S++

P

Nk∑
i=1

δR(Σ,Σk,i)
2 . (3.20)

Then, feature vectors are extracted using the speci�c geometric mean of each
domain:

ϕ(Σk,i,Σk) = uvec
(
log
(
Σ

−1/2

k Σk,iΣ
−1/2

k

))
∈ RP (P+1)/2 . (3.21)

Covariance matrices of the target domain (ΣT ,i)
NT
i=1 are also re-centered to the

identity using their geometric mean :

ΣT ≜ argmin
Σ∈S++

P

M∑
i=1

δR(Σ,ΣT ,i)
2 (3.22)

ϕ(ΣT ,i,ΣT ) = uvec
(
log
(
Σ

−1/2

T ΣiΣ
−1/2

T

))
∈ RP (P+1)/2. (3.23)

Re-scale to a common dispersion (Re-scale)

This baseline method consists in �rst re-centering the domains to a common ref-
erence point as done in Re-center with (3.21) and (3.23). Then re-scaling the
covariance matrices distribution of each domain so that they have the same dis-
persion. The dispersion dk of each domain are computed as previoulsy presented
in Chapter 2, Section 2.4.2 with (2.11), and are then used to re-scale the distribu-
tion of each domain to one:

Σk,i 7→ Σ
1/

√
dk

k,i (3.24)

Finaly the feature vectors are extracted from the recentered and rescaled data:

ϕ(Σk,i,Σk) = uvec
(
log
(
(Σ

−1/2

k Σk,iΣ
−1/2

k )1/
√
dk
))
∈ RP (P+1)/2 (3.25)

The same transformations are applied to the target domain with its dispersion dT :

ΣT ,i 7→ Σ
1/

√
dT

T ,i (3.26)

ϕ(ΣT ,i,ΣT ) = uvec
(
log
(
(Σ

−1/2

T ΣT ,iΣ
−1/2

T )1/
√
dT
))
∈ RP (P+1)/2 (3.27)
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For No DA, Re-center and Re-scale, the regression task was performed using
a Ridge regression, which included an intercept:

β⋆
S , β

⋆
0,S = argmin

β∈RP (P+1)/2

β0∈R

K∑
k=1

Nk∑
i=1

(
yk,i − β⊤zk,i − β0

)2
+ λ ∥β∥22 (3.28)

where zk,i is computed with (3.18), (3.21) or (3.25). The predicted values were
computed as:

ŷT ,i = (β⋆
S)

⊤zT ,i + β⋆
0,S (3.29)

where zT ,i is computed with (3.19), (3.23) or (3.27).

Domain-aware intercept (DO Intercept)

This method consists in �tting one intercept β0 per domain. In practice since we
assume to know ȳT , we correct the predicted values so that their mean is equal to
ȳT . This approach is in line with de�ning mixed-e�ects models on the Riemannian
manifold [Li et al., 2022].

In addition to the K labeled source domains, we assume to have access to the
mean of the variable to predict of the target domain ȳT . At train-time, we �t a
Ridge regression with a speci�c intercept for each domain

β⋆
S = argmin

β∈RP (P+1)/2

K∑
k=1

Nk∑
i=1

(
yk,i − β⊤ϕ(Σk,i,ΣS)− yk

)2
+ λ ∥β∥22 . (3.30)

Then, at test-time, we �t a new intercept β0,T using the target features:

ϕ
(
ΣT ,i,ΣS

)
= uvec

(
log
(
Σ

−1/2

S ΣT ,iΣ
−1/2

S

))
∈ RP (P+1)/2. (3.31)

The �tted intercept is

β0,T = yT −
1

NT

NT∑
i=1

(β⋆
S)

⊤ϕ
(
ΣT ,i,ΣS

)
(3.32)

and the predictions are

ŷT ,i = (β⋆
S)

⊤ϕ
(
ΣT ,i,ΣS

)
+ β0,T . (3.33)

Deep learning GREEN

For this last method, we used the GREEN architecture [Paillard et al., 2024], which
is a deep-learning architecture tailored for EEG applications like age prediction.
It combines Gabor wavelets and Riemannian geometry to extract useful features
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for predicting the desired biomedical outcome. Since the HarMNqEEG dataset
consists of covariance matrices, we used the `G2' variant of GREEN: the architecture
is cropped to start at the covariance matrices level with pooling layers, so it does
not include the Gabor wavelets part. This variant is an SPD network as the input
data are SPD matrices [Huang and Van Gool, 2017]. Although GREEN has been
evaluated on multiple datasets for various predictive tasks, it has not yet been
applied in a domain adaptation context and does not include an adaptation layer.

We applied the domain-adaptation methods independently to each of the 49 fre-
quency bins, resulting in 49 geometric means per domain, except for GREEN, which
processes all frequency bands simultaneously. yT of each domain was estimated
on target splits (50% of the data) that do not overlap with the evaluation target
splits (50% remaining). Statistical inference for model comparisons was imple-
mented with a corrected t-test following Nadeau and Bengio [1999]. Experiments
with 100 repetitions and all site combinations have been run on a standard Slurm
cluster for 12 hours with 250 CPU cores.

3.6 Results

Then, we evaluated the e�ectiveness of GOPSA in the context of age prediction
from EEG spatial covariance matrices [Sabbagh et al., 2020, Engemann et al.,
2022]. Each domain k corresponds to a distinct recording site, while each sample
point i represents an EEG recording from a human participant. We compared
the performance of GOPSA against four baseline methods detailed below. We em-
ployed three performance metrics to evaluate the prediction accuracy across dif-
ferent source/target domain splits: Spearman's ρ, quantifying correct ranking and
robust to location and scale errors, as well as the commonly used coe�cient of de-
termination (R2) score, and Mean Absolute Error (MAE), which are sensitive to
location and scale errors. We present the detailed results on the publicly available
dataset HarMNqEEG [Li et al., 2022].

3.6.1 Simulated data

Figure 3.3 presents the results of simulated experiments where shifts are applied
on either X, y, or both (X, y) as presented in Section 3.5.1. All methods were
evaluated in three simulation scenarios: shift in X only, shift in y only, and joint
shift in X and y. The intensity of the shift was controlled by ξ in all scenarios.
If there is no shift in X, we observe that No DA perfectly estimates the y because
the log-linear model is respected across domains even when the y distribution
changes (Figure 3.3 B). The performance of No DA however drops when a shift in
X is introduced (Figure 3.3 A and C). Re-center and Re-scale led to the same
results as no scaling shift was applied in the simulation. Both were able to correct
the shift in X, but performed poorly when a shift in y was added (Figure 3.3 B
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Figure 3.3: R2 scores ↑ for di�erent methods on simulated data. Per-
formance is measured across 5 source domains and 1 target domain, with shifts
controlled by ξ (0 to maximum). Data are generated 100 times, with 5 sensors
and 300 covariance matrices per domain. The target domain is randomly selected
between the 6 domains generated as presented in Section 3.5.1, with the remaining
domains used as sources. (A) A shift is applied on the covariance matrices fol-
lowing (3.15). (B) A shift is applied on the variances following (3.16). (C) Both
shifts from (3.15) and (3.16) are applied simultaneously.

and C). GREEN notably showed consistant performance across all scenarios, and
was relatively resistant to both types of shifts given it is not designed for domain
adaptation. DO Intercept and GOPSA showed the best performance across all
scenarios, with an advantage for GOPSA. The interest of GOPSA is to estimate this
log-linear model with shifts in (X, y) per domain (Figure 3.3 C) which other
methods were not able to do.

These experiments demonstrate the e�ciency of the proposed method, in esti-
mating shifts in X between domains, even in the presence of a shift in y, contrary
to the baseline methods. Theoretically, based on the generative model of the sim-
ulated data, the data and outcome y are linked by a log-linear relationship. This
implies that, knowing the shift in X for the target domain, predictions can be
made even when y distributions do not overlap between the source and target.
Since GOPSA estimates the target shift in X by minimizing (ȳ − ŷi)

2, it is capable
of handling such scenarios.

3.6.2 EEG data

We computed benchmarks for �ve combinations of source sites and we dis-
played the results for the three metrics selected for performance evaluation, each
colored box representing one method (Figure 3.4). A min-max normalization was
applied to each site combinations separately across methods. We �rst conduced
model comparisons in terms of absolute performance across all baselines (A). No
DA, without domain speci�c re-centering, performed worse than DO Dummy in terms
of R2 score and MAE. Re-center and Re-scale led to lower performances across
all metrics, which can be expected as the Riemannian mean is correlated with age
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Figure 3.4: Normalized performance of the di�erent methods on several
source-target combinations for three metrics. Spearman's ρ ↑ (left), R2

score ↑ (middle) and Mean Absolute Error ↓ (right). As a large variability in the
score values was present between the site combinations, we applied a min-max
normalization per combination to set the minimum score across all methods to
0 and the maximum score to 1. (A) Boxplot of the concatenated results for the
three normalized scores. One point corresponds to one split of one site combina-
tion. (B) Boxplots of the di�erence between the normalized scores of GOPSA and
DO Intercept. A row corresponds to one site combination, one point corresponds
to one split. For each plot, the associated results of Nadeau's & Bengio's corrected
t-test [Nadeau and Bengio, 1999] are displayed. A p-value lower than 0.05 indi-
cates a signi�cant di�erence between the two methods. Ba: Barbados, Be: Bern,
Chb: CHBMP (Cuba), Co: Columbia, Cho: Chongqing, Cu03: Cuba2003, Cu90:
Cuba90, G: Germany, M: Malaysia, R: Russia, S: Switzerland
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Table 3.1: Performance scores for di�erent combinations of source sites.
The remaining sites were used as target domains.

Spearman's ρ ↑
Sites source DO Dummy No DA GREEN Re-center DO Intercept GOPSA

Ba,Cho,G,S 0.51 ± 0.04 0.63 ± 0.02 0.69 ± 0.03 0.52 ± 0.02 0.75 ± 0.02 0.78 ± 0.02
Be,Chb,S 0.58 ± 0.02 0.73 ± 0.01 0.75 ± 0.02 0.43 ± 0.02 0.68 ± 0.02 0.72 ± 0.02
Ba,Co,G 0.62 ± 0.02 0.64 ± 0.02 0.72 ± 0.02 0.42 ± 0.02 0.71 ± 0.02 0.74 ± 0.02
Cu03,M,R,S 0.62 ± 0.03 0.63 ± 0.01 0.70 ± 0.05 0.46 ± 0.02 0.76 ± 0.02 0.75 ± 0.04
Ba,Be,Cho,
Co,Cu90,G,R 0.77 ± 0.02 0.79 ± 0.01 0.82 ± 0.01 0.44 ± 0.03 0.85 ± 0.01 0.87 ± 0.01
Mean 0.62 ± 0.03 0.68 ± 0.01 0.74 ± 0.03 0.45 ± 0.02 0.75 ± 0.02 0.77 ± 0.02

R2 score ↑
Sites source DO Dummy No DA GREEN Re-center DO Intercept GOPSA

Ba,Cho,G,S 0.21 ± 0.02 0.06 ± 0.06 0.26 ± 0.33 -0.32 ± 0.10 0.57 ± 0.03 0.58 ± 0.05
Be,Chb,S 0.25 ± 0.02 -0.07 ± 0.08 0.39 ± 0.30 -1.36 ± 0.13 0.43 ± 0.03 0.49 ± 0.03
Ba,Co,G 0.48 ± 0.03 0.26 ± 0.03 0.47 ± 0.09 0.10 ± 0.03 0.60 ± 0.03 0.64 ± 0.03
Cu03,M,R,S 0.26 ± 0.02 0.26 ± 0.04 0.48 ± 0.13 -0.30 ± 0.07 0.51 ± 0.02 0.51 ± 0.09
Ba,Be,Cho,
Co,Cu90,G,R 0.60 ± 0.03 0.54 ± 0.02 0.62 ± 0.10 0.14 ± 0.02 0.76 ± 0.02 0.75 ± 0.02
Mean 0.36 ± 0.03 0.21 ± 0.05 0.44 ± 0.19 -0.35 ± 0.07 0.57 ± 0.02 0.59 ± 0.04

MAE ↓
Sites source DO Dummy No DA GREEN Re-center DO Intercept GOPSA

Ba,Cho,G,S 9.25 ± 0.16 12.00 ± 0.21 9.08 ± 1.98 14.69 ± 0.24 7.69 ± 0.19 7.61 ± 0.25
Be,Chb,S 9.48 ± 0.14 11.83 ± 0.37 8.67 ± 2.30 22.48 ± 0.24 9.28 ± 0.20 8.61 ± 0.20
Ba,Co,G 9.42 ± 0.14 13.83 ± 0.46 9.44 ± 0.77 15.25 ± 0.45 8.77 ± 0.15 8.50 ± 0.20
Cu03,M,R,S 9.64 ± 0.17 10.98 ± 0.22 8.53 ± 1.12 16.50 ± 0.25 8.94 ± 0.18 8.75 ± 0.72
Ba,Be,Cho,
Co,Cu90,G,R 10.37 ± 0.23 11.40 ± 0.31 9.53 ± 1.10 15.92 ± 0.45 8.53 ± 0.23 8.40 ± 0.24
Mean 9.63 ± 0.17 12.01 ± 0.31 9.05 ± 1.45 16.97 ± 0.33 8.64 ± 0.19 8.37 ± 0.32
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3.7. Model inspection

in our problem setting Figure 3.1. Eventhough its architecture does not include
an adaptation layer, GREEN reached better performance than the previous methods
mentionned, but lacked consistency across site combinations and metrics with large
variance especially for the R2 score and MAE. For all scores, DO Intercept and
GOPSA reached the best average performance with lower variance. A version of Fig-
ure 3.4 (A) without normalization is presented in Appendix B.3. As DO intercept
and GOPSA showed overlapping performance distributions, we investigated their
paired split-wise (non-rescaled) score di�erences (B). The site-speci�c di�erences
of GOPSA scores minus DO Intercept are displayed with their associated p-values.
For one site combination (Ba,Be,Cho,Co,Cu90,G,R), DO Intercept yielded higher
R2 scores, and no signi�cant di�erence was found between the two methods for
Ba,Co,G. Similarly, no signi�cant di�erence was observed on Spearman's ρ results
for Cu03,M,R,S. Overall, GOPSA signi�cantly outperformed DO Intercept in �ve
site combinations for MAE, four for Spearman's ρ and three for R2 score. De-
tailed results for each source-target combination are presented in Appendix 3.1
for Spearman's ρ, R2 score, and MAE. The bottom rows correspond to the mean
performance of each method of all site combinations, and their average standard
deviation (see Appendix B.4 for associated boxplots). We expected GOPSA to out-
perform the baseline methods (e.g. DO Intercept) whenever joint (X, y) shifts
occur. In our experimental benchmark, GOPSA signi�cantly outperformed the base-
line methods in some site combinations, but not all. This allows us to assume that
not all site combinations show joint shifts.

3.7 Model inspection

Next, we investigated the impact of the di�erent re-centering approaches on
the data Figure 3.5. Power spectrum densities (PSDs) were computed as the mean
across sensors of the diagonals of the covariance matrices Riemannian mean for
each site combination after No DA, Re-center and GOPSA (A). PSDs for No DA
display the initial variability between sites without recentering (cf. Figure 3.1).
Re-center resulted in �at PSDs because all data were re-centered to the identity.
PSDs produced by GOPSA are �attened and more similar across sites compared to
No DA without removing too much information, unlike the une�ective Re-center
method (cf. Figure 3.4). The alpha values are inspected as a function of the site
mean age (B). Re-center leads to alpha values all equal to one as all sites are
re-centered to the identity. For GOPSA, we observed a linear relationship between
alpha and the sites' mean age (R2 = 0.99). This is a direct consequence of the op-
timization process in GOPSA, which thus can be regarded a geodesic intercept in a
mixed-e�ects model. Overall, GOPSA e�ectively re-centered sites with younger par-
ticipants closer to the identity matrix. Re-centering sites around a common point
helped reduce the shift in X, while not placing all sites at the exact same reference
point helped manage the shift in y, hence preserving the statistical associations
between X and y.
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Figure 3.5: Model inspection of GOPSA versus No DA and Re-center. Power
Spectral Densities (PSDs) and α values were computed on the source sites Bar-
bados, Chongqing, Germany, and Switzerland. The remaining sites were used as
target domains. (A) Mean PSDs computed across sensors for No DA, Recenter
and GOPSA on two source (Barbados and Switzerland) and two target (New York
and Columbia) sites. (B) α values versus site's mean age for Re-center and GOPSA.
One point corresponds to one site. The coe�cient of determination is reported for
the GOPSA method.

3.8 Conclusion

We proposed a novel multi-source domain adaptation approach that adapts
shifts in X and y simultaneously by learning jointly a domain speci�c re-centering
operator and the regression model. GOPSA was speci�cally developed to handle
joint shifts in the data distribution and the outcome distribution, as illustrated by
the simulations in Figure 3.3.

GOPSA is a test-time method that does not require to retrain a model when
a new domain is presented. GOPSA achieved state-of-the-art performance on the
HarMNqEEG [Li et al., 2022] dataset with EEG from 14 recording sites and over
1500 participants. Our benchmarks showed a signi�cant gain in performance for
three di�erent metrics in a majority of site combinations compared to baseline
methods. GOPSA can thus be used by researchers as a decision rule to infer the
presence of joint shifts and, hence, serve as a tool for data exploration and model
interpretation. While we focused on shallow regression models, the implementa-
tion of GOPSA using PyTorch readily supports its inclusion in more complex Rie-
mannian deep learning models [Huang and Van Gool, 2017, Wilson et al., 2024,
Carrara et al., 2024, Paillard et al., 2024, Kobler et al., 2022]. This direction
seems promising given our observation that GREEN � a simple deep net com-
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bining Riemannian computation with a fully connected layer - already possessed
some intrinsic robustness to data shifts. This may point at the capacity of the
fully-connected layer to provide additional non-linear transformations that can ac-
commodate the data-generating scenario in which continuous log-linear generators
are modi�ed in a discrete manner by site factors. More generally, it emphasizes
the potential of complex nonlinear methods for domain adaptation, in line with
a recent study on the same dataset reporting positive generalization results using
a kernel method [Jarne et al., 2024]. Furthermore, although this work speci�-
cally addresses age prediction, the methodology is applicable to a broader range
of regression analyses. While GOPSA necessitates knowledge or estimability of the
average y per domain, this requirement aligns with that of mixed-e�ects mod-
els [Gelman, 2006, Hox, 1998, Yarkoni, 2022], which are extensively employed in
biomedical statistics. By combining mixed-e�ects modeling with Riemannian ge-
ometry for EEG, GOPSA opens up various applications at the interface between
machine learning and biostatistics, such as, biomarker exploration in large mul-
ticenter clinical trials [Rossetti et al., 2020, Vassallo et al., 2021, Vespa et al.,
2020].
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In Chapter 2 and Chapter 3, we explored the reasons behind dataset shifts
in M/EEG data, identifying that such shifts can manifest as changes in the data
distribution, the label distribution, or both. Initially, we focused on how aligning
the data distribution alone can enhance the generalization of machine learning
models across di�erent tasks and populations, under the assumption that label
distributions remain consistent. Subsequently, in Chapter 3, we went further and
tackled the joint shift in both data and label distributions. We proposed a novel
method to align and combine datasets with signi�cantly di�erent age distributions
in order to increase the size of the training set.

However, our analyses so far have been constrained to data recorded with the
same EEG sensor con�guration. The methods we presented did not address scenar-
ios where features have di�erent dimensions. Although the HarMNqEEG dataset
includes a consistent sensor con�guration across sites, allowing us to sidestep this
issue, the TUAB and LEMON datasets in the �rst chapter have di�erent sen-
sor numbers and positions. We got around this problem by selecting a subset of
common channels across datasets.

In this chapter, we shift our focus to contexts where EEG datasets have di�er-
ing sensor con�gurations. Speci�cally, we address situations where the common
channels across datasets are insu�cient for performing the desired analytical tasks.
To overcome this challenge, we propose using �eld interpolation to map EEG sig-
nals from various sensor locations onto a common template of �xed positions.
We then compare the e�ectiveness of this approach against other state-of-the-art
methods in the context of BCI applications. This strategy aims to harmonize
datasets with varying electrode con�gurations, further enhancing the robustness
and generalizability of EEG data analysis.

4.1 The problem of EEG data with di�erent sensor con�g-

urations

In machine learning, dataset shift occurs when there are changes in the data
and/or label distributions between the training and testing datasets, often due
to variations in the environment, population, or recording devices. In the previ-
ous chapters, we investigated the impact of dataset shift on the performance of
machine learning models applied to EEG data. We demonstrated that domain
adaptation techniques can mitigate the e�ects of dataset shift and improve the
generalization of models across di�erent datasets. However, using di�erent record-
ing devices can also result in changes in the number and positions of electrodes.
Indeed, there are many di�erent devices for recording EEG data, each with its
own electrode con�guration and labeling. These changes can lead to di�culties in
aligning data, extracting features, and building predictive models that are robust
and generalizable across di�erent datasets. Even though the recording procedure
is di�erent, the underlying phenomenon of interest is not dependent on the setup
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and should be invariant to its variability. We can thus expect relevant information
to be present in the data for any con�guration.

Classical multivariate statistical analysis assumes that the training and testing
data share the same feature space and dimensionality. The dimensionality assump-
tion extends to classical domain adaptation approaches, including the methods
used in the previous chapters of this thesis. In the case of real-life practical cases,
such as EEG recordings with di�erent sensor con�gurations, this assumption does
not hold true. Two datasets recorded with di�erent sensor con�gurations may not
have the same dimensions or features, breaking classical approaches. Even within
the same dataset, some electrodes might be malfunctioning or improperly placed
for certain participants but not for others. To address this issue, we need to either
�nd a way to match the di�erent EEG con�gurations, or to extract features with
the same dimensions across datasets that are invariant to the sensor con�guration
and are related to the physical phenomenon under study.

In this chapter, we propose to combine heterogeneous datasets in an unsuper-
vised manner. The pipeline is composed of two steps: the �rst one to match the
EEG positions across datasets, and the second one to align the statistical distri-
butions of the data. The multivariate time series from EEG recordings done with
di�erent sensor con�gurations into signals with a common sensor con�guration,
matching the positions and dimensions across datasets. Then, the statistical dis-
tributions of the data are aligned to mitigate the dataset shift, and harmonized
features are extracted. Predictions are �nally made by training a model on several
labeled datasets (sources) and then applied to an unseen and unlabeled dataset
(target). The proposed approach to match both the EEG con�gurations and the
data distributions is a test-time method that does not require access to the training
data when applying the model to a new dataset.

We propose to map EEG channels to a template of �xed positions by leveraging
the underlying physics of EEG data through �eld interpolation. This mapping
can be applied to the raw data as well as to clean epochs, and before feature
extraction. This step addresses the problem of di�erent EEG sensor positions. To
benchmark this approach other state-of-the-art methods on BCI applications, we
use the same pipeline as in the previous chapters that represents EEG signals as
covariance matrices. We leverage the Riemannian re-centering operator to align the
statistical distributions of data from di�erent source domains, mitigating dataset
shift. In the end, we extract features from compatible statistical distributions and
with compatible dimensions.

The rest of this chapter is organized as follows: Section 4.3 presents a litera-
ture review on domain adaptation methods that aim at dealing with EEG data
with di�erent sensor con�gurations. Section 4.4 describes the proposed method to
match the EEG sensor positions by detailing how interpolation of EEG signals is
performed. In Section 4.5, we present the experimental evaluation of the proposed
method on six publicly available BCI datasets and report on the advantages of
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�eld interpolation compared to other methods.

4.2 Contribution

The content of this chapter is an extended version of the following publication:

A. Mellot, A. Collas, S. Chevallier, D. Engemann, A. Gramfort.
Physics-informed and Unsupervised Riemannian Domain Adapta-
tion for Machine Learning on Heterogeneous EEG Datasets. 32nd
European Signal Processing Conference (EUSIPCO), 2024.

Field interpolation is commonly used to interpolate bad channels in MEG sig-
nals. Our contribution is to apply �eld interpolation in a domain adaptation setup
to combine several EEG datasets with di�erent sensor con�gurations. Spherical
spline interpolation has already been investigated in this context, but not �eld
interpolation.

The advantage of our method compared to other existing methods is that it is
applied before feature extraction and can therefore be used with any machine learn-
ing or domain adaptation models. This approach ensures �exibility and broader
applicability across various EEG analysis frameworks.

Python codes for the �eld interpolation for domain adaptation and for the fol-
lowing benchmark are available in:

https://github.com/apmellot/EUSIPCO_2024.git

4.3 Literature review

Heterogeneous domain adaptation is a branch of domain adaptation that deals
with domains represented by di�erent types of features. In the context of EEG
data, this situation often arises when signals are recorded from di�erent sensor
con�gurations. This chapter focuses on this speci�c problem.

Few methods have been proposed to tackle the challenge of heterogeneous do-
main adaptation with EEG data from di�erent sensor con�gurations. In the fol-
lowing sections, we review the most commonly used and recent methods in this
area.

4.3.1 Dimension Reduction Approaches

A group of methods in heterogeneous domain adaptation is based on the idea
of projecting data into a common lower-dimensional space where points from all
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datasets have the same dimension and can be compared.
There are domain adaptation methods that use this principle to align data

distributions across domains. For example, the TCA method [Pan et al., 2011]
aims to �nd a subspace projection that preserves the shared attributes between
domains. However, this method is not designed to handle domains with di�erent
feature dimensions.

Region Based Pooling (RBP) is a method that reduces data dimensions to
match them across domains [Tveitstøl et al., 2024]. To achieve this, one idea is to
pool channels from the same region to form a common region representation across
datasets. The EEG montage is �rst split into several regions. Within each region,
channels are pooled using various strategies such as average pooling or channel
attention weighted average pooling. No clear advantage of this method compared
to spherical spline interpolation was found. Therefore, we did not include this
method in our benchmark. Additionally, another reason it was not included is
that one of our datasets has only three sensors, which limits the number of regions
that can be formed and, consequently, the e�ectiveness of the method.

The current common practice when dealing with EEG data from di�erent sen-
sor con�gurations is to select a subset of common channels across datasets. This
is the method we chose to represent this group of approaches.

Common Channel Selection

Selecting EEG channels that are consistently present across all subjects and datasets
is the �rst strategy that comes to mind, particularly e�ective when there is a suf-
�cient number of shared channels to perform the desired analytical tasks [Wei
et al., 2022, Mellot et al., 2023]. However, as the number of subjects and datasets
increases, the variability in sensor positions due to the use of di�erent recording
devices becomes more pronounced. This can lead to a situation where there are too
few common channels for the task, as was observed in our experimental evaluation,
where only one common channel in the middle of the head (Cz) was insu�cient
for right/left-hand classi�cation.

4.3.2 Imputation Approaches

Another group of methods in heterogeneous domain adaptation is based on
imputation. The �rst step in these methods is to expand the data dimension so
that all datasets have the same dimension. Usually, the �nal expanded dimension
corresponds to the union of the feature types from all datasets. This expansion will
lead to some missing values in the data. The second step involves using imputation
techniques to �ll in these missing values.

We investigate two types of imputation: a geometry-based approach linked to
the representation of EEG signals as covariance matrices in the predictive pipeline,
and a signal-based approach that can be compatible with other predictive modeling
techniques.
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Geometry-based imputation

Rodrigues et al. [2021] proposed to transform the data points into an expanded
common space with an isometric transformation, which preserves the distance of
the original data points in the new expanded space. We consider K datasets of
di�erent dimensionality (or di�erent numbers of sensors) Pk with k = 1, . . . , K.
The expanded space dimension is Pexp =

⋃
Pk. The resulting expanded version

Σ↑
i of a matrix Σi from the k-th dataset is:

Σ↑
i =

[
Σi 0Pk×(Pexp−Pk)

0(Pexp−Pk)×Pk
I(Pexp−Pk)

]
∈ RPexp×Pexp (4.1)

This transformation is applied to all datasets to get covariances of size dexp× dexp.
In addition, a permutation of the expanded matrices rows and columns is per-
formed to make the same channels correspond across datasets. This expansion
of covariances was originally designed to be followed by a supervised transfer
learning method called Riemannian Procrustes Analysis (RPA) [Rodrigues et al.,
2019]. However, since we operate in an unsupervised setting, we only apply the
re-centering step introduced in Section 2.4.2 in this framework.

Signal-based imputation

The �ComImp� method [Nguyen et al., 2023], o�ers a direct machine learning
approach to handle missing data in EEG recordings. First, the time series data are
expanded to match the union of the set of channels, hence generating missing values
in the data. In our case the EEG signal is expanded to be of size Pexp × T . Then,
statistical imputation techniques can be employed. Such approaches require �tting
the imputation method on training data that include at least one non-missing value
per channel. Here, we considered a multivariate imputer that models each feature
with missing values as a function of the other features with a regression. We used
the IterativeImputer class of the Scikit-Learn software [Pedregosa et al., 2011] with
a ridge estimator.

End-to-end deep learning approaches have also been developed to deal with het-
erogeneous EEG data. For example, recent works propose leveraging spatial atten-
tion mechanisms by using the electrodes' coordinates [Truong et al., 2023, Défossez
et al., 2023]. These methods dynamically weigh the importance of di�erent elec-
trodes, which helps in handling variability in sensor con�gurations across datasets.
However, we did not investigate these approaches in this work due to their end-
to-end nature and computational cost. End-to-end deep learning models require
signi�cant computational resources for training and can be less interpretable com-
pared to other methods. Our focus was on methods that could be more easily
integrated into existing EEG analysis pipelines and that o�ered a balance between
performance and computational e�ciency.
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In summary, while di�erent types of approaches exist to address the challenges
of heterogeneous domain adaptation in EEG data, our work primarily explores
dimension reduction with common channel selection and imputation techniques.
These methods provide practical solutions for handling di�erences in sensor con-
�gurations across datasets.

4.4 Proposed approach: EEG channels interpolation

As introduced in Section 1.2.1 Interpolation is a technique used in the con-
text of EEG data processing to reconstruct the signals of malfunctioning or too
noisy channels, usually referred to as `bad' channels. It uses the signals from the
functional channels around the bad ones. In this work, we used interpolation to
map the di�erent channels of EEG datasets: the EEG signal was reconstructed on
�xed �nal positions based on the existing signal from all sensors of the datasets.
Interpolation involves constructing a linear operator A ∈ RP×Pk that maps the
Pk existing EEG channels to the P positions of a �xed template: X̂ = AX.
X ∈ RPk×T are the recorded EEG signals and X̂ ∈ RP×T are the reconstructed
signals. This operator can be estimated to reconstruct the EEG signal at any de-
sired position, even if there is no corresponding sensor at that location. Depending
on the EEG montage, P can either be smaller or larger than Pk. We present two
interpolation techniques used with EEG data: the spherical spline interpolation
(SSI) and the �eld interpolation (FI).

Implementations of both spherical spline interpolation and �eld interpolation
are provided in the MNE-python software [Gramfort et al., 2013].

4.4.1 Spherical spline interpolation

The idea behind SSI is to model the data using smooth functions that are
de�ned on the surface of a sphere, and the functions in our case are spherical
splines [Perrin et al., 1989]. In practice, the existing sensors' locations and desired
�nal positions are �rst projected onto a unit sphere. Then, the linear mapping
matrix is computed and �nally used to interpolate the signal at the desired po-
sition based on the existing signal. The following details on the spherical spline
interpolation are adapted from the MNE-python documentation.

We approximate the head as a sphere. We measured the potential at the surface
of this sphere at Pk points with rp, p = 1 . . . Pk their locations. We want to estimate
the potential at a new point r at the surface of scalp, where we don't have any
measurement. Spherical splines estimate this potential as:

V (r) = c0 +
P∑

p=1

cpgm(cos(r, rp)) (4.2)
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with C = (c1, . . . , cPk
) the unknown spline coe�cient, gm a function of order m

de�ned as:

gm(x) =
1

4π

∞∑
n=1

2n+ 1

(n(n+ 1))m
Pn(x) (4.3)

where Pn are the Legendre polynomials of degree n.

To determine the potential at any point, we estimate the constants C by impos-
ing two conditions. First, the spherical spline interpolation function must repro-
duce the potential at the Pk points where we have measurements:

GssC + Tsc0 = X (4.4)

whereGss ∈ RPk×Pk is the matrix with elementsGss(p, p
′) = gm(cos(rp, rp′)), X is

the EEG signal measured at the Pk good sensors' positions, and Ts = (1, 1, . . . , 1)⊤.
(4.4) is the matrix formulation of (4.2).

Second, the sum of the spline coe�cients c1, . . . , cPk
must be equal to zero:

T⊤
s C = 0 (4.5)

This condition acts as an average refence applied to the data. By solving (4.4)
and (4.5) simultaneously, we obtain:[

c0
C

]
=

[
T⊤
s 0
Ts Gss

]−1 [
0
X

]
= C′X (4.6)

where C′ ∈ R(Pk+1)×Pk is the matrix

[
T⊤
s 0
Ts Gss

]
without the �rst column.

The potentials X̂ we want to estimate at the new positions can then be computed
following the same spline interpolation formula as in (4.4):

X̂ = GdsC + Tdc0 (4.7)

where Gds ∈ RP×Pk is the matrix with elements Gds(q, p) = gm(cos(rq, rp))
beetween the P new positions rq and the Pk positions where we have measure-
ments, and Td = (1, 1, . . . , 1)⊤ of dimension P . Using (4.6), we can rewrite (4.7)
as:

X̂ = [Td Gds]

[
c0
C

]
= [Td Gds]C

′X (4.8)

The interpolation matrix we estimate to map the EEG signals from the P
recorded channels to the Pj �nal positions is A = [Td Gds]C

′.
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In practice we use a regularized version of the this interpolation matrix by
adding a positive regularization term λ to each elements of the matrix Gss when
estimating the spline coe�cients:{

(Gss + λ1)C + Tsc0 = X

T⊤
s C = 0

(4.9)

4.4.2 Field interpolation

The �eld interpolation consists of estimating the generators of activity in the
brain from the recorded EEG signals and then mapping these generators to the
desired positions using a forward model.

Forward model

The forward model relates the distribution of estimated brain activity to sensor
data at any electrode location [Gramfort et al., 2013]:

X = FG+E (4.10)

where X ∈ RPk×T is the measured EEG data, F ∈ RPk×N is the forward model,
G ∈ RN×T are the brain generators, and E ∈ RPk×T is the noise. F , also known
as the lead �eld matrix, describes the relationship between the neural generators
and the resulting �eld measured by the sensors.

To estimate this forward model, we model the brain generators as a canoni-
cal distribution, and the head as a sphere with several layers. The lead �eld is
computed by solving the Poisson equation for the electric potential, taking into ac-
count the conductivity of di�erent tissues. Methods like the �nite element method
(FEM) or boundary element method (BEM) are commonly used.

Minimum Norm Estimate

To obtain electric potential estimates at a missing electrode location, the data
recorded at the available electrodes are mapped to brain space using a Tikhonov
regularization [Tikhonov, 1977], which is referred to as Minimum Norm Estimate
(MNE) [Hämäläinen and Ilmoniemi, 1994] in the M/EEG community. The solution
to the MNE problem is given by:

Ĝ = (F⊤F + λI)−1F⊤X (4.11)

where λ is the regularization parameter, Ĝ are the estimated brain generators and
I is the identity matrix.

Then the forward model can be applied to the estimated EEG generators to
obtain potential values for any electrode location:

X̂ = F̂ Ĝ (4.12)
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Figure 4.1: 2D projection of sensor positions on the scalp. On the left, the
sensor locations of the 6 datasets studied. On the right, the 17 �nal positions used
for interpolation.

with F̂ ∈ RP×T the forward model matrix for the new electrode locations and
X̂ ∈ RP×T the estimated EEG data at these locations.

4.5 Experimental evaluation

The methods described in Section 4.3 and Section 4.4 were evaluated on six
publicly available BCI datasets from the MOABB repository [Aristimunha et al.,
2023]. In this section, we present the data and how they were processed for the
benchmark. We then describe the classi�cation pipeline and the evaluation proto-
col used to compare the di�erent methods.

Datasets Participants Channels Sessions Runs
BNCI2014_001 (B1) 12 22 2 6
BNCI2014_004 (B4) 9 3 5 1
PhysionetMI (P) 109 64 1 1
Shin2017A (S) 29 30 3 1
Weibo2014 (W) 10 60 1 1
Zhou2016 (Z) 4 14 3 2

Table 4.1: Summary of diverse characteristics of the datasets.
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4.5.1 Data description

The number of subjects, channels, sessions, runs, and trials varies across the
datasets, the details of which are listed in Table 4.1. In addition, Figure 4.1 displays
the 2D projection of the sensor positions on the scalp for all datasets. All datasets
were recorded with the left mastoid as reference, except for Weibo2014 where
the reference was taken at the nose. All datasets consist of EEG data recorded
while participants performed motor imagery tasks. The subjects were instructed
to imagine moving either their right or left hand without actually moving it in
response to a visual cue. The classi�cation problem is thus a binary classi�cation
task.

Preprocessing

All data were band-pass �ltered between 8 and 32Hz with an In�nite Impulse
Response (IIR) forward-backward �lter and resampled at 128Hz. The signals
were segmented in epochs at each trial and of duration corresponding to the trial
length with no overlap. Subsequently, spatial covariance matrices were computed
from the �ltered epochs as presented in Section 1.3.3 by regularizing the empirical
covariance matrices with the Ledoit-Wolf shrinkage to avoid rank de�ciency.

4.5.2 Classi�cation pipeline

Section 4.2 illustrates the classi�cation pipeline depending on the method used
for matching the EEG positions across datasets. ComImp, SSI and FI are ap-
plied to the clean epochs right after the preprocessing step. The epochs are then
transformed into covariance matrices. The DT method is applied to the covari-
ance matrices. The Re-Center step is used to align the data distributions across
datasets following the procedure detailed in Section 2.4.2. Subjects are used as
domains for re-centering. The geometric mean of the subjects used in the train
set is computed by considering all their data points. For the test subject, the
geometric mean is computed on the data from its �rst session, or �rst run if there
is only one session, or the �rst half of the data if there is only one session and one
run.

The six datasets we used have only one channel in common: the Cz channel,
located at the top of the head. The common channel selection thus resulted in
keeping the signal from the Cz channel, and the associated covariance matrices
came down to one value, the variance of this channel. As the union of the channels
across all datasets represents Pexp = 84 channels, the time series were expanded to
84 channels after ComImp, and the expanded covariance matrices after DT were
of size 84× 84.

For both interpolation methods, we set the �nal positions to which all epochs
across all datasets were interpolated to the following P = 17 channels: [Fp1, Fp2,
F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4, T3, T4, T5, T6]. The 2D projection
of these �nal positions location on the scalp is shown in Figure 4.1. Even though
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Preprocessing

Projection and Vectorization
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Re-Center

Predictions
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Figure 4.2: Processing pipeline of EEG data. Depending on the method, di-
mensions are matched either when data are represented as epochs for interpolations
or as covariances for DT. When there is no alignment performed, the Re-Center
step is removed.

we chose P < Pexp, all channels of each dataset were used to reconstruct the
interpolated signals. We determined this number of �nal positions not too low to
ensure that the task-related data was present in the reconstructed signals, and not
too large so the computation time would remain reasonable. The regularization
term of the SSI was set to 1e−7 and the one of the FI to 1e−3.

For all methods, we used as classi�er a logistic regression from Scikit-Learn
with a L2 regularization set to C = 1. In addition, we employed a subject-speci�c
calibration procedure to estimate the upper bound of achievable performance. Here
we use a fraction of the target subject's data as part of the training set. This was
achieved by splitting the target subject's data into two halves, utilizing the �rst
half for training and the second for evaluation. Consequently, this yielded a single
calibration accuracy value for each subject.

4.5.3 Leave-one-dataset-out validation

We evaluated the four methods using a leave-one-dataset-out scheme. We �rst
performed this evaluation with an increasing number of target channels seen in the
training set by increasing the number of training datasets. For example, when the
target dataset was Shin2017A, the �rst training set consisted of BNCI2014_004
only, the second of BNCI2014_004 and Zhou2016, and so on until the training set
included all �ve remaining datasets. In a second step, �ve of the six datasets were
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combined to form the training set, including all of their subjects. Each subject
of the left-out dataset was used as a test set, resulting in one performance value
per subject and method. This procedure was repeated six times so that each
dataset was left out once. To statistically evaluate the di�erence in performance
between SSI and FI, we performed a Wilcoxon signed-rank test on the classi�cation
accuracies obtained from single-trial predictions per method.

4.5.4 Results

Results shown in Figure 4.3 correspond to the �rst evaluation in which we
gradually included datasets in the training set. It displays the classi�cation accu-
racy di�erence of each subject of the target dataset as a function of the number
of target channels seen during training. The accuracy di�erence was computed by
subtracting the FI accuracy to other methods, subject per subject. The common
channel selection method (green lines) systematically led to lower accuracies than
FI. For every left-out dataset, except for Shin2017A, ComImp and DT reach lower
accuracies than FI with few target channels seen during training. When more
target channels are seen in train, source free methods perform similarly to source
dependent methods for Weibo2014, Zhou2016 and PhysionetMI, with accuracies
comparable to those of the calibration (purple box on Figure 4.4). However, in
BNCI datasets, the performance of ComImp and DT outperformed FI when more
target channels were seen during training. Interestigly, for BNCI2014_004, the
performance of SSI was at the level of the performance of common channel se-
lection. For Shin2017A, FI consistently outperforms all other methods, especially
ComImp, DT and common channel selection. The reason is that Shin2017A shares
very few channels with the other datasets, and these channels are not located near
the motor cortex.

The boxplots displayed in Figure 4.4 correspond to the last point of the learning
curves in Figure 4.3, for which �ve of the datasets were used as training set.
The methods are sorted according to whether they require access to target labels
(supervised), source data (source dependent), or nothing (source free). For every
left-out dataset, except for Shin2017A, interpolation methods performed similarly
to source dependent methods and calibration. For Shin2017A, the observations are
the same as on the learning curve. Out of all six datasets, the FI led to accuracies
signi�cantly higher than the SSI for four datasets with p-values p ≤ 5e−2. In
addition, interpolation methods were faster to compute than ComImp and DT due
to the smaller size of the dimension matched data (17 channels for interpolation
compared to 84 for ComImp and DT).
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Figure 4.3: Comparative learning curves for an increasing number of
target channels seen during training. FI performance was used as reference
for the accuracy di�erence. The increasing number of seen target channels is
obtained by gradually including datasets in the train set, which is speci�ed in
the x-axis. The error bar represents the 95% con�dence interval over the target
subjects' performance.
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Figure 4.4: Boxplots of accuracies when the classi�er is trained on the
�ve other datasets. One point corresponds to one subject of the target dataset.
A black line represents the median of the box and the mean by a white circle. The
black lines indicate the chance level. The stars represent the results of a Wilcoxon
test (ns: p > 5e−2, *: 1e−2 < p ≤ 5e−2, **: 1e−3 < p ≤ 1e−2, ****: p ≤ 1e−4).
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4.6 Conclusion

In this work, we used a physics-informed, unsupervised, and source-free domain
adaptation approach for EEG analysis, speci�cally addressing challenges arising
from varying electrode con�gurations. This approach leverages the underlying
physics of EEG signals through �eld interpolation, mapping EEG signals to a
common sensor con�guration As it is applied before any feature extraction, it
can be integrated into di�erent EEG analysis pipelines and is not con�ned to the
covariance framework.

The results demonstrated that the �eld interpolation (FI) approach achieved
similar or better accuracies compared to source-dependent approaches, such as
signal-based imputation (ComImp) and Dimensionality Transcending (DT), es-
pecially when the training data included limited target channels. Additionally,
FI systematically outperformed SSI, highlighting its robustness in scenarios with
varying electrode con�gurations.

Despite the promising results, several factors require further investigation. One
such factor is the impact of extrapolation, when the new electrode location is
outside the surface of the observed sensors' locations. Understanding this impact
will help to improve how the interpolation technique is used and ensuring its
reliability in diverse recording setups. Another area of interest is the in�uence
of the choice of �nal positions on the performance of the interpolation methods.
Speci�cally, examining how the number and arrangement of �nal positions a�ect
the accuracy and generalizability of the model could provide valuable insights for
optimizing electrode con�gurations in future studies.
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The research presented in this thesis addresses one of the key challenges in M/EEG
data analysis: the presence of systematic variability between recordings that arise
from varying recording conditions, equipment, and participants. These di�erences
can lead to shifts, commonly referred to as dataset shifts, in the data and the
associated labels. Dataset shifts are signi�cant obstacles to the successful applica-
tion of machine learning models in settings where data is collected across di�erent
hospitals, using di�erent equipment, and on varied populations. This thesis has
explored the complexities of dataset shifts in M/EEG data and has contributed
novel methods to address the di�culty of generalizing predictive models across
datasets recorded in di�erent contexts.

Summary of contributions

The focus of this thesis was to better understand and mitigate dataset shifts
in M/EEG data. In the course of this work, we considered dataset shifts from
multiple perspectives and proposed approaches to address each speci�c type of
shift that can occur in M/EEG data. The contributions made in this work can be
summarized as follows:

� Comprehensive analysis of dataset shifts: We have provided a detailed
investigation of the causes and e�ects of dataset shifts in M/EEG data. This
included a detailed understanding of how the data is generated and of the
underlying physiological processes. How to handle and pre-process the data
to ensure that the models can learn the relevant patterns was also considered
carefully. Additionally, we studied the mechanisms that lead to dataset shifts
and examined their consequences on the predictive performance of machine
learning models when no domain adaptation is performed.

� Proposed harmonization and adaptation methods: Building on exist-
ing methods, such as the Riemannian-based alignment techniques and �eld
interpolation, we introduced novel approaches to address di�erent forms of
dataset shifts occuring in M/EEG data. We �rst aimed to harmonize the
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data, i.e., to align the data distributions to make them more similar. To be-
gin with, we focused on shifts in the data distribution, and then extended our
methods to account for additional shifts in the label distribution. Second,
we inspected techniques to match electrode numbers and positions between
datasets to ensure comparability across di�erent helmet con�gurations. The
approaches used in this thesis are source-free (or test-time) and require no re-
training of the predictive model on the source data when a new target dataset
becomes available. We also designed these methods to be as unsupervised
as possible, reducing the need for labeled data in the target domain.

� Evaluation on simulated data and real M/EEG recordings: The
proposed methods were throughly evaluated using both synthetic data and
large-scale real-world datasets, including multi-site clinical EEG recordings.
These experiments demonstrated the e�ectiveness of our approaches in mit-
igating the negative e�ects of dataset shifts, leading to more reliable and
generalizable machine learning models to predict from M/EEG data.

� Interpretability and clinical relevance: The framework presented in this
thesis has direct implications for clinical EEG analysis, where variability in
data collection environments often hampers the success of machine learning
models. While addressing these variations is a separate e�ort in itself, we
hope that the methods proposed in this thesis can serve as a catalyst for
future work, enabling clinicians and researchers to develop tools that ensure
more consistent and accurate assessments of neurological conditions across
di�erent patient populations and recording sites.

Futur directions

Following the contributions made in this thesis, several perspectives can be
considered for future research. These possible perspectives discussed below are
orgamized from relatively easy and short-term to more complex and long-term
research directions.

Several aspects of the work presented in this thesis could be further explored
in the direct future: the computational e�ciency of the methods, the impact of
the parameters choices and the evaluation of the proposed methods on other ap-
plications. While the current work has demonstrated the e�ectiveness of these ap-
proaches, enhancing the scalability and computational e�ciency to accommodate
larger datasets would one step further to facilitate the integration of the proposed
methods into clinical applications. Moreover, the impact of the �arbitrary� choices
made in the proposed methods, such as the choice of the reference electrode, the
number of sensors, or the number of components to keep in the covariance matrices,
could be more thoroughly assessed. This would provide a better understanding
of the robustness of the methods and their sensitivity to these choices. Finally,
the proposed methods could be extended beyond the focus of age prediction to
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explore the impact of the proposed methods in other applications, such as disease
diagnosis or cognitive impairment detection. Doing so would bring us closer to
practical clinical implementations, further validating the methods across diverse
contexts.

In the medium term, other promising and research directions could be pursued.
One perspective would be to combine the di�erent contributions from this thesis to
handle shifts in data, labels, and recording devices simultaneously, evaluating this
combined framework across multiple applications. The next logical step would be
to use the proposed approaches to integrate datasets, potentially achieving better
results than traditional supervised learning. By merging complementary informa-
tion from various datasets, model performance could be enhanced, particularly
in clinical scenarios. Additionally, the interpretability of the models should be
further investigated. When predicting from M/EEG data, the �nal results are
not the only important aspect; it is also of interest to know which features are
driving the predictions and how they relate to the underlying neurophysiological
processes. Developing models that are both e�ective and interpretable will help
bringing machine learning techniques in clinical contexts, where understanding of
the models are essential.

Finally, several more complex research avenues could be explored. The �rst
one that comes to mind to expand the applicability of the proposed methods be-
yond covariance-based approaches. For example, integrating these domain adapta-
tion techniques with deep learning architectures could lead to end-to-end learning
models capable of directly extracting invariant features from raw M/EEG signals.
Such integration could help to be more adaptable to new and unseen datasets
while maintaining strong generalization capabilities. Investigating the intersection
of domain adaptation with deep learning holds great promise for advancing both
theoretical research and practical applications in brain health monitoring and neu-
roscience. However, in line with the perspectives previously stated, this should be
done while �nding a way to make it interpretable. Another aspect of M/EEG clin-
ical applications that was not covered in this thesis is the longitudinal analysis.
Investigating if and how datasets shifts would manifest in such studies and how
they can be mitigated could open new opportunities for longitudinal studies in
clinical research and for understanding the aging brain.

Final thoughts

The Riemannian geometry-based methods explored in this thesis, while de-
veloped for M/EEG data, are mathematically principled and could have broader
utility. For instance, di�usion tensor imaging has already applied Riemannian
methods to study white matter structures in the brain. The potential of these tech-
niques could extend to other �elds, such as geosciences, where similar challenges
of variability, alignment, and feature extraction from complex, high-dimensional
data arise. Exploring how these methods could generalize to di�erent scienti�c
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domains may o�er new opportunities in �elds that require robust data analysis
and domain adaptation techniques.
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A Chapter 2

A.1 Procrustes unpaired and the Variance- Threshold func-

tion

In this appendix, we show that the unpaired Procrustes method should be
handled carefully. In particular, we show that the vectorized logarithm maps
{zi}Ni=1, de�ned in Equation (2.7), only span a subspace of RP (P+1)/2 regardless of
the number of covariance matricesΣi. Indeed, the rank ofZ = {zi, i = 1 . . . NS} ∈
RP (P+1)/2×N is at most P . This implies that, computing the left singular vectors
U ∈ RP (P+1)/2×P (P+1)/2 of Z, we get U⊤Z ∈ RP (P+1)/2×N that has at maximum P
rows with non zero variances. Thus, the other rows must be discarded using, for
example, the class VarianceThreshold from the scikit-learn library [Pedregosa
et al., 2011]. Otherwise, numerical issues can be encountered using functions like
StandardScaler from the scikit-learn library. To prove these assertions, we begin
by recalling the mixing model of Σi with no noise in the next hypothesis.

Assumption A.1.1 (Mixing model). We have a set of covariance matrices {Σi}Ni=1

that respect the following mixing model

Σi = ADiA
⊤ (A.1)

with A ∈ RP×P an invertible mixing matrix and with Di ∈ RP×P diagonal with
strictly positive elements.

This assumption induces that the Riemannian mean Σ of {Σi}Ni=1 de�ned
in Equation (1.11) and the associated Riemannian logarithmic mappings

{log(Σ− 1
2ΣiΣ

− 1
2 )}Ni=1 have particular structures. These structures are computed

in the following lemma.

Lemma A.1.2. Knowing A and {Di}Ni=1, the Riemannian mean Σ has a closed
form expression which is

Σ = AD̄A⊤ (A.2)

147



Appendix A. Chapter 2

with D̄ diagonal with elements D̄jj =
(∏N

i=1(Di)jj

) 1
N
. Furthermore, the Rieman-

nian logarithmic mappings of any Σ
− 1

2ΣiΣ
− 1

2 at identity is

log(Σ
− 1

2ΣiΣ
− 1

2 ) = Σ
− 1

2A−⊤ log(D̄−1Di)A
⊤Σ

1
2 . (A.3)

The log function on the right-hand side of the equation applies the scalar logarithm
on the diagonal elements.

Proof: By a�ne invariance of δR, we have Σ = AD̄A⊤ with

D̄ = argmin
Σ∈S++

P

N∑
i=1

δ2R(Σ,Di). (A.4)

From [?], D̄ is the unique solution of

N∑
i=1

log(D−1
i D̄) = 0P . (A.5)

It is readily checked that D̄ diagonal with elements D̄jj =
(∏N

i=1(Di)jj

) 1
N

sat-

is�es the Equation A.5. Using these results and the matrix logarithm property
log(EBE−1) = E log(B)E−1 for any E ∈ RP×P invertible and B ∈ RP×P such
that log(B) and log(EBE−1) exist, we have

log(Σ
− 1

2ΣiΣ
− 1

2 ) = Σ
1
2 log(Σ

−1
Σi)Σ

− 1
2

= Σ
1
2 log(A−⊤D̄−1DiA

⊤)Σ
− 1

2

= Σ
1
2A−⊤ log(D̄−1Di)A

⊤Σ
− 1

2 .

(A.6)

These structures induce that the vectorized logarithm maps {zi}ni=1 only span a

subspace of R
P (P+1)

2 .

Proposition A.1.3. The matrix Z = {zi, i = 1 . . . N} ∈ R
P (P+1)

2
×N has a maxi-

mum rank of P .

Proof: We begin by de�ning the full vectorization counterpart of (2.7)

z̃i = vec(S ⊙ log(Σ
− 1

2ΣiΣ
− 1

2 )) ∈ RP 2

(A.7)

where vec is the operator that concatenates the columns of a given matrix. Then,
by denoting s = vec(S), we get

z̃i = diag(s)vec(log(Σ
− 1

2ΣiΣ
− 1

2 ))

= diag(s)vec(Σ
1
2A−⊤ log(D̄−1Di)A

⊤Σ
− 1

2 )

= diag(s)(Σ
− 1

2A⊗Σ
1
2A−⊤)vec(log(D̄−1Di))

(A.8)
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where ⊗ is the Kronecker product. Denoting Z̃ = {z̃i, i = 1 . . . NS} ∈ RP 2×N , it
follows that

Z̃ = diag(s)(Σ
− 1

2A⊗Σ
1
2A−⊤)×

[
vec(log(D̄−1D1)), . . . , vec(log(D̄

−1Dn))
]
.

Since rank(Σ
− 1

2A⊗Σ
1
2A−⊤) = P 2, we have that

rank(Z̃) = rank
([
vec(log(D̄−1D1)), . . . , vec(log(D̄

−1Dn))
])

Since log(D̄−1Di) has at most P non-zero elements,

rank(Z̃) ≤ P.

To conclude, the rows of Z are included in those of Z̃, hence

rank(Z) ≤ P.
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B.1 Proof of Lemma 3.4.1

First, we recall that the geodesic associated with the a�ne invariant metric
from Σ to Σ′ is

Σ♯αΣ
′ ≜ Σ

1/2
(
Σ

−1/2Σ′Σ
−1/2
)α

Σ
1/2 for α ∈ [0, 1]. (B.1)

Hence, Σ♯αIP = Σ1−α.
From Yair et al. [2019], the parallel transport of Σ′ from Σ1 to Σ2 is

EΣ′E⊤ with E ≜ Σ
1/2
1

(
Σ

−1/2
1 Σ2Σ

−1/2
1

)1/2

Σ
−1/2
1 . (B.2)

Hence, the parallel transport of Σ′ from Σ to Σ♯αIP is EΣ′E⊤ with

E ≜ Σ
1/2
(
Σ

−1/2Σ1−αΣ
−1/2
)1/2

Σ
−1/2

= Σ
1/2Σ

−α/2Σ
−1/2 = Σ

−α/2
(B.3)

which concludes the proof.

B.2 Cross-spectrum computation and preprocessing

Bartlett estimator

From Li et al. [2022], the features provided in the HarMNqEEG dataset have been
computed using the Bartlett's estimator by averaging more than 20 consecutive
and non-overlapping segments. Thus, data consist of cross-spectral matrices with
a frequency range of fmin = 1.17Hz to fmax = 19.14Hz, sampled at a resolution of
∆ω = 0.39Hz. These cross-spectral matrices are denoted Sk,i(ω) ∈ H++

P where k
is the site, i the participant and ω ∈ {fmin, fmin +∆ω, . . . , fmax}.
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Common average reference (CAR)

The cross-spectrum matrices Si(ω) were re-referenced from their original montages
with a CAR:

S̃k,i(ω) ≜ HSk,i(ω)H
⊤ (B.4)

where H ≜ IP − 1P1
⊤
P/P .

Global Scale Factor (GSF)

Co-spectrum matrices were re-scaled with an individual scalar ζ̂k,i that is calculated
as the geometric mean of their power spectrum across sensors and frequencies:

ζ̂k,i ≜ exp

(
1

NωP

Nω−1∑
ℓ=0

P∑
c=1

log

((
Ŝk,i(fmin + ℓ∆ω)

)
c,c

))
(B.5)

whereNω ≜ fmax−fmin/∆ω+1. The GSF correction is then applied to the co-spectrum
(the real part of the cross-spectrum) for all frequencies ω:

Σk,i(ω) ≜ ℜ
(
S̃k,i(ω)

)
/ζ̂k,i . (B.6)

The Σk,i(ω) ∈ S++
P are the features used the Section 3.5.
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B.3 Figure 3.4 without normalization

Without Re-center:

0.50 0.75 1.00
Spearman’s ρ ↑

DO Dummy

No DA

DO Intercept

GOPSA

−0.2 0.2 0.6 0.8

R2 score ↑
7 9 11 13 15

MAE (years) ↓

Figure B.1: Performance of four methods on several source-target com-
binations for three metrics: Spearman's ρ ↑ (left), R2 score ↑ (middle) and
Mean Absolute Error ↓ (right). Re-center was removed from the plot to better
visualize the other methods. A box represents the concatenated results across all
site combinations. One point corresponds to one split of one site combination.

With Re-center:

0.3 0.6 0.9
Spearman’s ρ ↑

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

−2 −1 0 1

R2 score ↑
7 10 13 16 19 22

MAE (years) ↓

Figure B.2: Performance of all methods on several source-target combi-
nations for three metrics: Spearman's ρ ↑ (left), R2 score ↑ (middle) and Mean
Absolute Error ↓ (right). A box represents the concatenated results across all site
combinations. One point corresponds to one split of one site combination.
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B.4 Boxplots of each source-target sites for the three met-

rics

The following �gures represent the performance scores that are displayed in
Table 3.1.

0.4 0.6 0.8
Spearman’s ρ ↑

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Ba,Cho,G,S

0.4 0.6 0.8
Spearman’s ρ ↑

Be,Chb,S

0.4 0.6 0.8
Spearman’s ρ ↑

Ba,Co,G

0.4 0.6 0.8
Spearman’s ρ ↑

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Cu03,M,R,S

0.4 0.6 0.8
Spearman’s ρ ↑

Ba,Be,Cho,Co,Cu90,G,R

Figure B.3: Spearman's ρ ↑ for every site combination. One panel corre-
sponds to the results of one site combination. One point corresponds to one split.
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−0.5 0.0 0.5

R2 score ↑

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Ba,Cho,G,S

−2 0 2

R2 score ↑

Be,Chb,S

0.00 0.25 0.50 0.75

R2 score ↑

Ba,Co,G

−0.5 0.0 0.5

R2 score ↑

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Cu03,M,R,S

0.00 0.25 0.50 0.75

R2 score ↑

Ba,Be,Cho,Co,Cu90,G,R

Figure B.4: R2 score ↑ for every site combination. One panel corresponds to
the results of one site combination. One point corresponds to one split.
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7 10 13 16

MAE (years) ↓

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Ba,Cho,G,S

8 12 16 20 24

MAE (years) ↓

Be,Chb,S

7 10 13 16

MAE (years) ↓

Ba,Co,G

7 10 13 16

MAE (years) ↓

DO Dummy

No DA

Re-center

DO Intercept

GOPSA

Cu03,M,R,S

7 10 13 16

MAE (years) ↓

Ba,Be,Cho,Co,Cu90,G,R

Figure B.5: Mean Absolute Error ↓ for every site combination. One panel
corresponds to the results of one site combination. One point correspond to one
split.
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Synthèse en français

Les études en neurosciences rencontrent des dé�s dans la collecte de grandes bases
de données, limitant ainsi l'utilisation de l'apprentissage statistique. L'intégration
de données publiques peut être une solution, mais les données recueillies dans
di�érents contextes présentent souvent des di�érences systématiques, appelées
décalages de données (dataset shifts). Ces décalages, causés par des variations
dans les sites d'enregistrement, le dispositif d'enregistrement ou les protocoles ex-
périmentaux, compliquent l'application des méthodes d'apprentissage, qui exigent
généralement des données d'entraînement et de test similaires. Cette thèse exam-
ine ces décalages dans les données M/EEG pour en comprendre les causes, leurs
e�ets sur les modèles d'apprentissage, et propose des solutions adaptées au type
de décalage pour améliorer la généralisation des modèles prédictifs.

Dans un premier temps, nous avons analysé les décalages survenant dans les
enregistrements M/EEG en lien avec l'activité cérébrale, l'anatomie ou la con�g-
uration des capteurs. Pour harmoniser la distribution des données, nous avons
utilisé une approche riemannienne d'alignement des données et l'avons adaptée à
la régression non supervisée. Pour évaluer l'e�cacité de l'alignement, nous avons
réalisé des expériences sur des données simulées et réelles. Nous avons montré que
la performance des modèles d'apprentissage peut être a�ectée par ces décalages et
qu'elle peut être améliorée en alignant les distributions de données.

Dans la deuxième partie, nous nous sommes concentrés sur les décalages sur-
venant à la fois dans les données M/EEG et la distribution de la variable à prédire
y. Cette situation est courante dans les études cliniques où les données sont recueil-
lies dans di�érents sites et auprès de di�érentes populations. Dans ce contexte,
l'alignement proposé précédemment n'est pas su�sant pour traiter les décalages.
Nous avons proposé une nouvelle méthode pour aborder l'adaptation de domaine
dans des situations où les domaines sources ont des distributions de y distinctes.
Cette méthode exploite la structure géométrique de la variété riemannienne pour
apprendre conjointement un opérateur de recentrage spéci�que au domaine et
le modèle de régression. Nous avons réalisé des comparaisons empiriques sur la
généralisation inter-sites des modèles de prédiction de l'âge avec des données EEG
provenant d'un grand ensemble de données multinationales. L'approche proposée
a signi�cativement amélioré la généralisation des modèles à travers les sites par
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rapport aux méthodes de référence.
Finalement, nous avons abordé le problème des di�érents dispositifs d'enregistrement

EEG. Le nombre et les positions variables des capteurs rendent di�cile la compara-
ison des données provenant de di�érents dispositifs, et rendent même impossible
l'utilisation directe des méthodes d'apprentissage. Pour remédier à cela, nous
avons proposé une approche non supervisée exploitant la physique des signaux
EEG : nous avons interpolé les canaux EEG de diverses con�gurations sur des
positions �xes avec l'interpolation basée sur la physique de la propagation électro-
magnétique. Une évaluation comparative avec d'autres méthodes a été e�ectuée
sur six bases de données publiques pour la classi�cation d'imagerie motrice main
droite/gauche. L'interpolation s'est montrée similaire ou meilleure que les autres
méthodes.

Les contributions de cette thèse visent à améliorer la généralisation des mod-
èles d'apprentissage appliqués aux données M/EEG sous di�érents aspects et sit-
uations. Le but était de mieux comprendre les décalages de données M/EEG et
de proposer des approches pour atténuer leurs e�ets dans des scénarios réalistes.
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