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Abstract  

Loss aversion is a cognitive bias influencing decision making, according to which potential 

losses have a larger psychological impact than potential gains of equal magnitude. Even if this 

bias has been extensively studied in the monetary domain, recent work has challenged its very 

existence, especially in the context of small symmetric stakes. Moreover, it is still unclear 

whether loss aversion is at play in other incentive domains. In this study, we empirically 

assessed monetary loss aversion for small symmetric stakes, as well as the extendibility of this 

bias to another domain, namely the food domain. We recruited a group of 58 female 

participants, who played two comparable gambling tasks in which they had to accept or reject 

mixed gambles involving either monetary or food outcomes. Through computational 

modelling we estimated loss aversion parameters in both the monetary and the food tasks. 

We found that participants showed loss aversion both in the monetary and in the food 

domain. Importantly, loss aversion in the monetary and food domain was positively correlated 

across participants (Spearman’s rho = 0.48, [95%CI 0.21 – 0.70], p < 0.001). Together, these 

results provide support for the existence of loss aversion even in the context of small 

symmetric monetary stakes, and further show that this bias seem to extend to at least the 

food domain, suggesting that it may be considered as a domain-general bias. 

Keywords: loss aversion, prospect theory, decision-making, food  
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Introduction  

A large body of research has shown that people often do not act as mere expected 

value maximizers when facing risky choices. For instance, in a heads or tails game, most people 

would reject a 50/50 chance to win 120€ or lose 100€, while the expected value (i.e., average 

net value over repeated trials) is positive. In order to account for such behavior, prospect 

theory has postulated that human behavior is influenced by a number of cognitive biases [1]. 

Among these biases is loss aversion, which describes the fact that losses tend to have a larger 

psychological impact than gains of equal magnitude [2–4]. As a consequence, the idea of losing 

a sum of money is experienced as more painful than the anticipated pleasure of earning the 

same amount, leading to decisions such as the rejection of the above gamble. While the 

concept of loss aversion was formulated in the monetary domain in the initial version of 

prospect theory [1], later developments emphasized its relevance in other domains such as 

trading goods [5] or job choices [6].  

However, the pervasiveness of loss aversion bias has recently been questioned, 

sparking a debate as to whether loss aversion is indeed a universal and generalizable principle 

in line with a domain-general view as proposed by Kahneman and Tversky, or whether it is a 

more domain-specific bias likely to appear only under specific conditions. For instance, several 

moderators have been shown to influence loss aversion, such as age, level of education, and 

lack of knowledge or experience about the domain [2]. Additionally, substance use appear to 

impact loss aversion, as evidenced by studies indicating reduced or absent loss aversion bias 

in individuals with alcohol dependence, cocaine users, or current cigarette smokers [7–9]. 

Kahneman himself made an attempt to define the boundaries of loss aversion, emphasizing 

specific circumstances that are not subject to this bias, such as the context of an intentional 

trade [10]. Studies in the field of evolutionary psychology have also argued that loss aversion 

is highly sensitive to context and is influenced by underlying evolutionary-rooted motives 

[11,12]. Moreover, in recent debate, some authors have questioned the very existence of loss 

aversion, claiming that whether losses loom larger, equal to or smaller than gains is entirely 

dependent on the situation [13,14]. For instance, it has been argued that loss aversion 

disappears when making decisions based on experience [15–17]. In experimental economics 

some studies have shown that loss aversion only arises when the monetary stakes are high 
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enough [17–21], while the magnitude of the stakes also seems to influence temporal loss 

aversion [22]. Finally, it has been shown that loss aversion varies with the relative range of 

gains and losses involved; it appears to emerge primarily in situations with a narrow range of 

potential losses and a wide range of potential gains, rather than in scenarios with symmetric 

ranges of gains and losses [21,23]. Additionally, the rank position of gains and losses has been 

shown to influence the manifestation of loss aversion [24].  

Although loss aversion is likely influenced by moderators [2], a body of previous work 

suggest that it may be a domain-general bias, viewing it as a fundamental and deeply-rooted 

behavior that has been preserved along evolution [25]. Of note, loss aversion has been 

acknowledged as an influential behavioral phenomenon in several decision-making theories, 

even before the advent of prospect theory [26]. It has often been conceptualized as an 

expression of an even more general bias -the negativity bias- according to which negative 

events overall have more psychological weight compared with positive ones [27]. In line with 

this domain-general conceptualization, loss aversion -which was originally formulated in the 

context of risky choice- has been extended to riskless choices [10]. As such, it has been 

proposed to play a role in a variety of empirical phenomena ranging from finance and 

marketing to psychology and political science, such as the endowment effect [2,5,28], the 

status quo bias [29], the sunk cost fallacy [30], the equity premium puzzle [31], and the 

enhanced sensitivity to disadvantages compared with advantages [4]. Nevertheless, whether 

these phenomena are truly driven by loss aversion is still widely debated, and various 

alternative accounts have been proposed over the years [14,32,33]. A handful of studies have 

also investigated whether loss aversion behavior is observed outside the monetary domain, 

testing its generalizability. While some studies have failed to provide evidence supporting this 

generalizability (such as in effort-based decision-making, where the asymmetry in the 

sensitivity to increasing vs decreasing effort fails to be captured by loss aversion [32], or in the 

context of social and environmental outcomes [35]), others have found supporting evidence. 

For instance, in marketing research on brand choice involving multiple properties such as price 

and quality, it has been shown that not only are people loss averse for both price and quality 

(i.e., more sensitive to losses than gains in price/quality) [36], but that loss aversion for quality 

is even stronger than loss aversion for price [37]. Loss aversion has also been observed for 

time [38] and in the health domain, with people showing loss aversion towards remaining 
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years of life [39,40]. In addition to laboratory studies, field work has also supported the role 

of loss aversion in everyday life, explaining for instance performance behaviors of professional 

golfers, soccer players, and football player [41–44], as well as the decision-making tendencies 

of sellers in the housing market [45].  

 The dearth of studies on loss aversion outside the monetary domain can be partly 

explained by the difficulty to quantitatively assess the relative value of positive and negative 

non-monetary prospects [27,46]. While it is straightforward to compare monetary prospects 

such as +100€ or -50€, it is far more difficult to similarly quantify gains and losses in domains 

such as quality or health. Some previous studies have effectively quantified non-monetary 

prospects, as in Strickland et al. [9], where gains and losses were measured in terms of cocaine 

quantities. Yet, most studies circumvent this issue by translating the value of non-monetary 

items onto a monetary scale -e.g., using willingness-to-pay procedures [12,36,39]- thus 

conflating monetary and non-monetary loss aversion. Alternatively, some studies resort to 

qualitative or observational (rather than quantitative or experimental) approaches, which are 

intrinsically limited for precisely measuring loss aversion [47]. Surprisingly, even within the 

monetary domain, only few studies allow for parametric quantitative estimation of loss 

aversion [47]. Finally, another issue in non-monetary domains is that it can be non-trivial to 

determine the location of a reference point in relation to which gains and losses are defined 

[39].  

Overall, results of previous research illustrate the ongoing debate concerning the 

generalizability of loss aversion to different contexts, such as small and symmetric stakes or 

other incentive domains than the monetary one. In this study we aimed to address the above 

debate and tackle the question of loss aversion generalizability. We tested its extendibility to 

small symmetric monetary stakes, as well as to an independent domain, namely food. We 

chose the food domain because food is easily quantifiable (e.g., in terms of weight, volume, 

calories) and, as a natural reinforcer, is well suited to test the idea that loss aversion is deeply 

rooted and fundamental bias. We used a well-established “mixed gamble” task, in which 

participants have to accept or reject gambles offering a 50/50 chance of variable symmetric 

gains or losses. We employed a monetary version of this task [48], as well as a minimally-

adapted version using juice gains and losses. We reasoned that, if loss aversion is indeed a 
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general bias, its influence should manifest even in contexts involving small and symmetric 

stakes and extend beyond monetary scenarios such as food.   

 

Materials and Methods 

Participants 

The data were acquired between 14th March 2008 and 7th December 2009 in the 

context of a larger study (ENDANO cohort, ethical authorization of French Comité de 

Protection des Personne, n° 83-03 and 2688) that included various tasks and questionnaires in 

healthy volunteers as well as patients with anorexia nervosa (see Table S1 for an overview of 

the data collected). This study was conducted according to the principles of the Declaration of 

Helsinki. Participants were informed about the study and procedures, and they provided 

written informed consent before doing the experience. Note that one previous paper was 

published based partly on the same participants, but using entirely different data [49]. The 

present study focusses on the loss aversion task in healthy volunteers.  

Sixty-seven healthy volunteers were recruited through advertisement. The following 

inclusion criteria were used: aged between 18 and 45 years old, female, fluent French speaker, 

no history of eating disorders, no psychological or neurological disorder, no current 

psychotropic medication, and normal or corrected-to-normal vision. We recruited only female 

participants because they also served as a matched control group for a group of patients with 

anorexia nervosa, a disorder that is much more prevalent in females than males [50]. A semi-

structured psychiatric interview (Diagnostic Interview for Genetic Studies, DIGS, [51]) was 

performed by a trained psychologist (AV) with guidance from a senior psychiatrist (PG), and 

confirmed that none of the included participants suffered from lifetime psychiatric disorder. 

Two participants were excluded for not completing the entirety of the two tasks. 

Additionally, seven participants were excluded from the analysis based on their extreme 

behavior (see “Participants exclusion” section). Therefore, the reported results are based on 

data from 58 healthy volunteers. 
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Experimental tasks 

We used two versions of the same task, in the monetary domain and the food domain, 

both adapted from the loss aversion paradigm introduced by Tom et al. [48]. The two versions 

were designed to be as similar as possible. In both tasks, participants were asked to decide 

whether to accept or reject mixed gambles with a 50% chance of gaining a certain amount of 

money/juice, and a 50% chance of losing another amount of money/juice (Fig 1). They were 

instructed to make a decision within a 3-second timeframe (consistent with previous task 

design [48]), balancing the need for thoughtful consideration with task efficiency and 

participant engagement. We employed symmetric gambles (i.e., equivalent range of gains and 

losses), in which monetary gains and losses varied between 5 and 17€, in increments of 1€, 

while juice gains and losses varied between 3 and 15cl, in increments of 1cl (see gain-loss 

matrix in Fig 1). Thus, allow to investigate loss aversion within what can be considered as small 

stakes. Rather than using a rigid accept/reject decision rule [48], participants responded using 

a four-choice response scale that aligns more closely with real-life decision-making scenarios. 

This approach involves more nuanced considerations beyond binary choices and encourages 

participants to qualitatively reflect on the attractiveness of each gamble. Possible responses 

were “Accept ++” (strong willingness to accept), “Accept +” (moderate willingness to accept), 

“Reject +” (moderate willingness to reject) and “Reject ++” (strong willingness to reject). 

Choice was highlighted for 1s, and then a fixation cross appeared for 1s before a new gamble 

was presented. All possible gambling pairs from the gain-loss matrix (i.e., 13x13 = 169 trials) 

were presented to the participants in a random order. In case of no response within 3-seconds, 

a warning appeared, and the missed gamble was presented again later. Gains and losses were 

defined in relation to a reference point, which were visually depicted (see  1), corresponding 

to an initial endowment: in the monetary task, volunteers were endowed with a 20€ voucher, 

while in the food task, they were endowed an 18cl glass of juice. Participants were told that 

at the end of each task, one randomly chosen gamble would be played for real and that the 

outcome would be added or subtracted from the initial endowment (in case of a rejected 

gamble, the endowment would remain untouched). Both tasks started with a training part, at 

the end of which the random draw of one gamble was simulated in order to allow subjects to 

visualize the whole task’s procedure. 
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Fig 1. Task Design for the monetary task (A) and food task (B). For each task the 13x13 matrix 

represents all gambles presented to participants with 50/50 chance of gaining a certain amount of 

money or juice (x axis) or of losing a certain amount of money or juice (y axis). Participants had to 

answer to all the 169 possible gambles, which were randomly presented as shown here for one example 

for each task. Note that the reference point for gains and losses was visually salient: in the monetary 

task, it was materialized by the stack of 20 coins of 1€ on the left of the picture, while in the food task, 

it was materialized by the red dashed line indicating the 18cl endowment. 

 

Both the monetary and the food tasks were administered in the same session, and 

their order was counterbalanced across participants. In order to maximize motivation for 

juice, participants could choose between three different types of juices (i.e., orange juice, 

tropical juice and apple juice), and were asked to fast (abstain from breakfast) in the 12 hours 

preceding the experiment, which always took place in the morning. Moreover, participant’s 
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motivation to earn money and juice was measured using subjective ratings both before and 

after each task. Motivation was measured by means of a 5-point Likert scale, asking the 

participants to rate the pleasure they would expect from receiving the money or appetitive 

juice in that moment.  

Participants received a compensation of 20€ in the form of a gift voucher for taking 

part in this study. As mentioned above, this amount could vary as a function of the outcome 

of the randomly chosen gamble played for real. The mean final compensation was 20.71€ (SD 

= 7, [min max] = [5€ 35€]). Similarly, the amount of earned juice also varied depending on the 

outcome of the random gamble played for real. The mean final volume was 19.00cl (SD = 5.97, 

[min max] = [6cl 33cl]).  

Participants exclusion  

A basic assumption of prospect theory is that participants are motivated to obtain 

rewards and thus behave as utility maximizers: they are more likely to accept gambles when 

potential gains increase and, conversely, less likely to accept gambles when potential losses 

increase. It is important to exclude participants whose behavior violates this basic assumption. 

To do this, we employed two strategies.  

First, we used the subjective motivation ratings to identify participants with an 

extremely low motivation to earn money or juice (criterion #1). For each task and participant, 

we averaged the pre-task and post-task ratings, and excluded participants with an average 

score < 2 out of 5. Two participants were excluded based on this criterion for not being 

motivated to earn juice.  

Second, we quantified the influence of gains and losses on participants’ behavior using 

a logistic regression, similarly to previous studies [48,52]. Specifically, Accept or Reject 

decisions were modelled as a function of gain and loss magnitude, using the glmfit function in 

Matlab (version 2018a): Choice = βgain x Gain + βloss x Loss + Intercept. We excluded participants 

whose choices did not appear to be driven neither by gains nor losses, which was reflected by 

non-significance of both βgain and βloss (criterion #2, inspired from Botvinik-Nezer et al. [52]). 

Corresponding response matrices (see Fig S1 and S2) typically showed numerous violations of 

stochastic dominance, reflecting random behavior and/or a lack of understanding of the task. 
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This criterion also allowed us to identify participants with problematic convergence of 

parameter estimation, for instance due to small variance in their responses (i.e., too few 

accepted or rejected gambles). Four participants were excluded on this criterion in the 

monetary task and one participant was excluded in both tasks.  

In total, 7 participants were thus excluded based on these criteria. Note that, for the 

sake of transparency, results of sensitivity analyses including these participants are reported 

in Table S2 and Fig S3. 

Modelling  

We used the framework of prospect theory to model participants’ choice behavior, 

following the same approach as in our previous work [53]. Within that framework, the 

subjective utility of each gamble (SUG) can be approximated by the following equation: 

SUG = pGain × Gain - pLoss × Loss × λ 

In this equation, pGain is the gain probability and pLoss is the loss probability. Given that both 

tasks employ mixed gambles with a 50/50 chance of gaining or losing a certain amount of 

money or juice, these probabilities are fixed, i.e., pGain = pLoss = 0.5. Gain is the gain value of 

the gamble and Loss is the absolute loss value of the gamble. The relative weighting of gains 

and losses is reflected by the loss aversion parameter λ. A value of λ > 1 indicates overvaluation 

of losses relative to gains, reflecting a loss aversion bias, λ < 1 indicates overvaluation of gains 

relative to losses, while λ = 1 indicates equal valuation of gains and losses.  

Participants’ choices were reduced from a qualitative scale to a binary response, i.e., 

“Accept ++” and “Accept +” were pooled into an “Accept” category, while “Reject +” and 

“Reject ++” were pooled into a “Reject” category. The probability of accepting each gamble 

was then modelled with a softmax function, which was fitted to these binary choices: 

P(gamble acceptance) = 
1

1+e (−µ (SUG+c))
 

This function includes two other parameters: a so-called “inverse temperature” 

parameter (μ) and a constant parameter (c). The constant parameter (c) reflects a value-

independent gambling bias toward or away from gambling. If c > 0, there is a tendency to 
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accept gambles regardless of their subjective utility. If c < 0, there is a tendency to reject 

gambles regardless of their subjective utility (see Supplementary Methods and Results and 

Table S3 for more details about the rationale for including a constant parameter). The inverse 

temperature parameter reflects consistency of choice behavior. If μ = 0, choices are random, 

whereas increasing values of μ reflect increasing consistency in choice behavior, with positive 

values of μ reflecting higher gamble acceptance with higher gain and lower loss value, and 

vice versa for negative values of μ. 

Note that we made some simplifying assumptions in our modelling, similar to previous 

studies [2,48,53,54]. These simplifications limit the inflation of free parameters to be 

estimated, in order to maximize the reliability of this estimation. First, we assumed a linear 

valuation of gains and losses, in contrast to the curvilinear value function of prospect theory. 

This is a common and reasonable assumption [48,55,56], especially given the relatively narrow 

range of gains and losses used in our protocol, which make the curvature negligible. 

Additionally, the task employed was not optimized to reliably estimate this parameter [57]. 

Second, we assumed no subjective transformation of probabilities as described in prospect 

theory and assumed equal weights for the 0.5 probability of gains and losses. This is also a 

reasonable assumption given that the probability weighting function of prospect theory shows 

a shallow slope in the middle range of probabilities (i.e., around 0.5), reflecting low sensitivity 

to changes in probabilities in that range [58]. Also, it has been shown that individuals are less 

sensitive to probability differences in the context of mixed gambles [59].  

Finally, it can be argued that since the reference point (corresponding to the initial 

endowments of 20€ and 18cl of juice) was visually salient in both tasks (see Fig 1), participants 

may have perceived gains and losses in the mixed gambles as increments and decrements 

from an initial gain. In other words, they may have interpreted the gambles as a 50/50 chance 

of a small gain (endowment - loss) vs a high gain (endowment + gain). Such a “gain framing” 

may have in turn decreased the attractiveness of the gambles not due to loss aversion, but 

due to risk aversion, i.e., the concave value function in the gain domain. In order to rule out 

this possibility, we performed additional model comparison analyses, in which we compared 

our loss aversion model to such a “risk aversion” model, aiming to determine which of these 

two models best describes participants’ behavior (see Supplementary Methods and Results).  
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Parameter estimation and statistical analyses 

Parameter estimation was performed within the framework of Hierarchical Bayesian 

Inference (HBI), using the “computational and behavioral modeling” toolbox 

(https://payampiray.github.io/cbm) implemented in Matlab [60]. As a hierarchical approach, it 

has the advantage of regularizing participant-level parameters based on group statistics, 

therefore providing more reliable group-level parameters as well as better individual 

estimates. Moreover, as a fully Bayesian approach, HBI allows the assessment of uncertainty 

in parameter estimation by means of probability distributions [60], and has proven more 

accurate than non-hierarchical inference and hierarchical parameter estimation (i.e., showing 

a smaller estimation error). Importantly, HBI is also less sensitive to outliers, and thus more 

robust, compared with hierarchical parameter estimation methods [60].  

First, we fitted our model to each participant’s data separately, in a non-hierarchical 

fashion, through Laplace approximation, employing gaussian priors (with mean 0, and 

variance 6.25 as suggested in Piray et al. [60]. This first step allows to define an approximation 

of posterior parameters at the individual level. Then, these estimated parameters were used 

to initialize the hierarchical Bayesian inference, which is an iterative algorithm. On each 

iteration, group mean and variance are updated based on individual parameters, serving as 

group mean and variance in the next iteration (known as empirical priors, since priors are 

constructed based on data). Iterations continue until the change in parameter values between 

two consequent iterations is considered small enough. Finally, group parameters are 

estimated using a weighted average, in which the influence of each participant on the group 

parameters depends on the extent to which the model is responsible for generating the 

dataset of that participant [60]. 

Since the estimated loss aversion parameters were not normally distributed, we 

employed non-parametric statistics using R (version 4.1.2). Specifically, we used a one-sample 

two-tailed Wilcoxon signed-ratio test (stats package) to assess whether mean loss aversion 

was significantly superior to 1 in both the monetary and food domains. Finally, we tested for 

a correlation between loss aversion in the monetary and the food domain, using Spearman’s 

rho coefficient (stats package) and Bayesian non-parametric correlation (BayesFactor 

package).  

https://payampiray.github.io/cbm
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Results  

Demographic characteristics  

All included participants were females, with a mean age of 31.8 years (SD = 11.0) and 

a mean education level of 11.2 years (SD = 2.8) after level 2 of the International Standard 

Classification of Education (ISCED). The average monthly income of participants was 880€ (SD 

= 959).  

Descriptive statistics  

The mean subjective motivation ratings (measured by means of a 5-point Likert scale 

and averaged across the pre-task and post-task ratings) were respectively 4.22 (SD = 0.81) in 

the monetary domain and 3.68 (SD = 0.87) in the food domain.  

Participants accepted on average 29% of the gambles (50/169 gambles; SD = 28) in the 

monetary domain and 37% (62/169 gambles; SD = 26) in the food domain. There was a positive 

correlation between the mean gamble acceptance in the food and the monetary domains 

(Spearman’s rho = 0.56, [95%CI 0.31 – 0.75], p < 0.001). Mean frequency of gamble acceptance 

across the gain-loss matrix is reported in Fig 2, while mean reaction times are reported in Fig 

S4.  

Participants did not answer within the 3-second delay on 2.4% of the presented 

gambles on average, both in the food domain (4/169 gambles; SD = 6) and in the monetary 

domain (4/169 gambles; SD = 4).  

Loss aversion in monetary and food domains 

Model comparison analyses showed that participants’ behavior was better explained 

by a loss aversion model than a risk aversion model (see Modelling section in Materials and 

Methods and Supplementary Methods and Results). We therefore reported group parameters 

for loss aversion, inverse temperature and the constant in Table 1. Mean subjective 

motivation ratings to earn money or juice were not correlated with group parameters, either 

in the monetary or food domain (see Supplementary Methods and Results). 
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Fig 2. Frequency of gamble acceptance in the monetary task (A) and the food task (B). Heatmaps 

represent mean frequency of acceptance across participants as a function of gains and losses, with 

white color indicating a 0.5 frequency of acceptance, and red/blue colors indicating increasing 

frequency of acceptance/rejection of gambles. Note that, on average, participants are most uncertain 

in their responses (i.e., 0.5 frequency of acceptance) when gains are about twice as large as the losses, 

indicating loss aversion. The projection of frequency of acceptance along the gain axis (bottom) further 

depicts how acceptance unfolds with increasing gains, independently of losses (which are averaged). 

Similarly, the projection of frequency of acceptance along the loss axis (left) depicts how acceptance 

unfolds with increasing losses, independently of gains. Note that the slope for losses is steeper than the 

slope for gains, also reflecting loss aversion, i.e., faster change in frequency of acceptance for a similar 

change in losses compared with gains. 

 

Table 1. Group parameters for the monetary and food loss aversion tasks (n = 58). Group means 

correspond to a weighted average output by the HBI procedure (see Parameter estimation and 

statistical analyses section in Materials and Methods). Note that since mean values have been argued 

to be biased towards loss aversion, median estimates are also reported, allowing for comparability with 

group metrics employed in previous studies [6,48].  

  Monetary Task Food Task 

 Group mean 

(standard error) 

Group median 

(standard deviation) 

Group mean 

(standard error) 

Group median 

(standard deviation) 

Loss aversion  1.87 (0.14) 1.78 (0.99) 2.81 (0.25) 2.86 (1.83) 
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Inverse temperature  1.01 (0.06) 0.99 (0.41) 0.76 (0.09) 0.61 (0.64) 

Constant  1.74 (0.56) 1.31 (4.19) 5.22 (0.91) 3.59 (6.73) 

 

According to the Wilcoxon signed-rank one-sample test, loss aversion parameters were 

significantly greater than 1 in the monetary task (W = 1504, [95%CI 1.53 – 2.15], p < 0.001) as 

well as in the food task (W = 1535, [95%CI 2.29 – 3.36], p < 0.001). Results of sensitivity 

analyses including all participants (i.e., no exclusions) also showed loss aversion parameters 

significantly greater than 1 (see Table S2).  

 

Relationship between monetary and food loss aversion 

 Loss aversion values in the monetary and food domains showed a positive correlation 

across participants (Spearman’s rho = 0.48, [95%CI 0.21 – 0.70], p < 0.001) (see Fig 3). Results 

of sensitivity analyses including all participants (i.e., no exclusions) also showed a significant 

positive correlation (see Fig S3).  

 

Fig 3. Correlation between loss aversion in the monetary and the food domains (n = 58). The histograms 

and density curves (top and right) show the distribution of loss aversion values in each domain.  
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 The Bayesian correlation analysis yielded a BF10 = 452(Kendall’s tau = 0.35, [95%CI 0.16 

– 0.50]), indicating that our data is 452 times more likely under the hypothesis of a positive 

relationship between monetary and food loss aversion (alternative hypothesis, H1) than under 

the null hypothesis of no relationship between the two (H0). Such a BF10 > 10 is usually 

considered as strong evidence for a positive relationship [50]. 

Discussion  

In this study, we observed loss aversion behavior for small and symmetric monetary 

stakes, as well as for gambles involving gains and losses of fruit juice amounts, in a group of 

healthy female participants. These results provide some evidence for loss aversion 

extendibility beyond the monetary domain. Importantly, we also showed that monetary and 

food loss aversion were tightly correlated within participants. Overall, our results provide 

some evidence supporting the conceptualization of loss aversion as a domain-general 

individual trait.  

First, we showed that loss aversion in the monetary domain was clearly observable 

even in the presence of low stakes and among female participants who were older than typical 

college student samples. This is an important observation in the context of previous critiques 

of loss aversion, which have suggested that loss averse behavior may have been 

overestimated due to the use of relatively high stakes among college students, who do not 

receive a regular income and may thus perceive monetary stakes as larger than older people 

[2]. Moreover, contrasting with previous critics [17,23,24,62] and consistent with some 

previous work [54–56], we could show that loss aversion was preserved when using symmetric 

distribution of gains and losses. Our mean estimate of monetary loss aversion is 1.87, i.e., well 

aligned with a recent meta-analysis reporting an average value of 1.96 [95%CI 1.82 – 2.1] [63].  

Most importantly, our study shows that loss aversion is measurable in, and extendible 

to, the food domain. As such, participants perceived losses of juice as looming larger than 

corresponding gains of juice, corresponding to a loss behavior in the food domain. Moreover, 

loss aversion in the food domain was positively correlated with loss aversion in the monetary 

domain. Our study aligns with previous research, offering additional evidence against the 

alleged 'death' of loss aversion [2,64]. More generally, loss aversion behavior as observed in 
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both tasks is consistent with reaction patterns showing that participants tended to be most 

hesitant (i.e., longer reaction times) when deciding about gambles in which gains were about 

twice the losses (see Fig S4). However, this pattern was slightly less striking in the food domain, 

due to higher inter-individual variability in response times, probably more strongly influenced 

by contextual factors like thirst. Indeed, the level of thirst- measured by means of an open 

question on a 5-point Likert scale and averaged across the pre-task and post-task ratings- was 

correlated with reaction times in the food domain (BF10 = 8.24, Kendall’s tau = 0.25, [95%CI 

0.07 – 0.41]), while motivation for money was not correlated with reaction times in the 

monetary domain (BF01 = 4.33, Kendall’s tau = -0.07, [95%CI -0.24 – 0.10]). It has been 

proposed that tendencies in decision-making under risk are deeply rooted in human 

evolutionary psychology, and represent an innate feature emerging early in human 

development. In line with this idea, loss averse behavior (partly via the endowment effect) has 

been observed in other primates such as capuchin monkeys and chimpanzees [25,65,66] 

(although see Farashahi et al. [67] who have reported steeper gain than loss curves in rhesus 

monkeys), as well as in non-primate animals such as pigeons [68,69]. In light of the probable 

evolutionary origins of this bias, it may thus not be surprising that loss aversion is also at play, 

or even greater, when considering survival-related reinforcement such as food, which has 

preceded more evolved and secondary rewards such as money. However, directly testing for 

differences between monetary and food domains poses challenges without establishing a 

clear correspondence between incentives (i.e., between 1€ and 1 cl of juice). Future research 

should try to establish this correspondence to enable meaningful comparisons of potential 

variations in loss aversion magnitude across different reward contexts. 

Demonstrating the extension of loss aversion to the food domain among healthy 

individuals could hold significant clinical implications. For example, it prompts future research 

to explore whether the weight assigned to food losses vs gains is altered in eating disorders 

such as anorexia nervosa or binge eating disorder. This would build upon existing studies that 

have identified impairments in decision-making processes within these populations 

[49,70,71]. 

Of note, participants were on caloric restriction and thirsty when performing the 

experiment, as they had been asked to fast for the 12 preceding hours. Under these 
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conditions, one might argue that the desire to gain a prompt food reward could have been 

fueled by the urge to respond to a physiological need, contributing to maximizing loss aversion 

in the food domain. Yet, there was no correlation between the level of thirst and loss aversion 

(as well as between the level of thirst and constant and inverse temperature parameters) in 

the food domain (see Supplementary Methods and Results). This result thus suggests that 

food loss aversion was independent of physiological thirst level. 

This study has several limitations. First, the sample size employed in this study was 

relatively small, although larger than most previous studies [48,72,73]. Future studies should 

try to replicate the present results in larger samples. Second, all participants were females, 

which prevents us from extending our results to the male population. In particular, it has been 

proposed that sex might impact loss aversion, and that females might show a stronger loss 

aversion bias [74,75]. Future studies should explore potential sex differences in the context of 

loss aversion in the food domain. Future research should also investigate whether loss 

aversion is extendible to other food categories than juice, as well as other domains than food. 

Third, as detailed in the Materials and Methods section, the use of an initial endowment 

serving as a reference point for gains and losses may have induced a “gain framing” context, 

in which the attitude towards gambles would have been driven by risk aversion (concave value 

function) rather than loss aversion. Although our model comparison procedure suggested this 

was unlikely (see Supplementary Methods and Results), future studies may want to replicate 

the current findings while using a zero reference point unambiguously framing the gambles’ 

options as gains and losses. Finally, it should be noted that the design of our mixed gamble 

task has been criticized for biasing participants towards loss aversion, given that the status 

quo is to reject the gamble option [18,21]. While we tried to mitigate this possibility by using 

a constant parameter in our modelling -aiming to capture such a value-independent bias- it is 

still possible that loss aversion values may have been slightly over-estimated in our study.  

Despite these limitations, we believe that our study provides empirical evidence that 

loss aversion can be quantified and extended beyond the monetary domain. As such, our 

results provide some support for the conceptualization of loss aversion as a domain-general 

bias.   
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Supplementary Methods 
 
Study exclusion 
 
27 studies were excluded due to the following reasons: 

- 8 studies employed the same dataset as in another included study(1–8) 
- 8 studies used non-relevant task design (1 non-visual stimuli(9), 1 non-visual 

stimuli and conditioning task(10), 1 positively valenced emotional stimuli(11), 1 
Theory of Mind task(12,13), 1 stress induction task(14), 1 rejection-acceptance 
task(15), 1 Stroop task using words(16)) 

- 4 studies were conference abstracts(17–20) 
- 3 studies did not perform group comparisons(21–23) 
- 2 studies were systematic reviews or meta-analyses(24,25) 
- 1 study was a methodological paper(26) 
- 1 study provided dubious data(27). Reasons for questioning the reliability of this 

study were that within-group T-maps showed highly unexpected results in 
healthy controls, opposite to what is typically observed in studies of emotional 
processing; unfortunately, the authors declined to engage in double-checking 
their results when we invited them to, so we preferred to exclude this study 

 
Criteria for contrast selection 
 
When more than one article was published using the same sample of participants, we 
favored the article using methods most closely aligned with our inclusion criteria (e.g., 
we discarded studies that only report region of interest (ROI) results in favor of studies 
that report whole-brain analyses), and then we favored the one that could provide the 
contrast maximizing homogeneity between studies. When more than one contrast from 
the same study was available, we chose the contrast expected to maximize amygdala 
activation (e.g., contrasts related to the implicit rather than explicit condition(28), or, 
when a contrast with all negative emotions pooled together was not available, a 
contrast favoring fearful stimuli over other emotions(29)). Finally, in keeping with the 
goal of specifically isolating emotional processing regardless of content, when possible 
we preferred contrasts of the form negative emotional stimuli versus neutral stimuli, 
rather than negative emotional stimuli versus control condition/implicit baseline. 
 
Partial brain coverage inclusion 
 

There is a common consensus regarding the need to exclude studies only 
employing ROI analyses, in order to avoid biasing whole-brain results in favor of these 
regions(30). In this meta-analysis, ROI studies were thus excluded. However, we 
included one study that used a thick-slab acquisition -and thus had a partial brain 
coverage(31)- given that this coverage was much wider than classical ROIs and 
encompassed the main brain regions typically involved in emotion processing such as 
the amygdala (see Supplementary Figure S1 in Wolf et al., 2011 for an image of the 
thick-slab acquisition employed). 

Also, it is important to note that, since the latest version of SDM (SDM-PSI 6.21) 
no longer assumes a uniform distribution of false positive foci and does not test for 
spatial convergence, inclusion of studies with partial brain coverage does not 
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necessarily lead to increased Type I errors. On the contrary, this could increase Type 
II errors in regions not covered by these studies(32). 
Heterogeneity, publication bias and robustness 
 

I² statistic, which represents the percentage of total variation due to between-
study heterogeneity rather than sampling error, was visually inspected at the whole-
brain level through the I2 statistic heterogeneity map (a meta-analytical map storing for 
each voxel a value of I2 statistic). Heterogeneity is considered to be low when I² values 
are below 40%, moderate when I² values are between 30-60%, substantial when I² 
values are between 50-90%, and considerable when I² values are between 75-
100%(33). The inspection of the heterogeneity map suggests the presence of low or 
moderate heterogeneity almost across the whole brain, with only few clusters 
indicating substantial heterogeneity (see Figure S2). Moreover, I2 statistic values were 
extracted from amygdala ROIs with SDM-PSI. The presence of low heterogeneity in 
the amygdala was suggested by low I² statistics in the left (I²=10.6%) and the right 
(I²=15.5%) amygdala. This was also reflected by all included studies lying inside the 
triangular region of the funnel plot (see Figure 3C in the main text). 

Additional analyses were conducted to explore the possible importance of 
between-study heterogeneity on the results. In order to determine whether results differ 
according to the definition of “at risk of schizophrenia” (i.e., familial risk, clinical high 
risk, or psychometric risk), we performed three whole-brain subgroup meta-analyses. 
The effect of the type of contrast (i.e., negative emotional versus neutral stimuli 
contrast, or negative emotional versus control condition/implicit baseline contrast) as 
well as the effect of the task itself (i.e., implicit or explicit task) were also addressed 
through whole-brain subgroup meta-analyses. We also ran an additional analysis only 
including studies employing faces, in order to further homogenize the stimuli used 
across several tasks. Finally, a whole-brain meta-regression with a linear model using 
participants’ mean age as a regressor was performed to see whether age differences 
across studies influenced the results. Due to the limited number of studies included in 
subgroup analyses, and in order to reduce the increased risk of Type I error associated 
with multiple tests, results of additional analyses were thresholded at pTFCE<0.005 as 
previously done in Dugré et al., 2020(34). No statistically significant results were found 
in either of the above sensitivity analyses.   

Publication bias was assessed in amygdala ROIs, first through visual inspection 
of the funnel plot, which represents precision of each study as a function of its effect 
size. In the absence of publication bias, studies are expected to be symmetrically 
distributed (see Figure 3C in the main text for visual inspection of publication bias). 
Secondly, we used Egger’s regression test, a quantitative method that tests for the 
presence of asymmetry in the funnel plot, which was not significant for either left (z=-
0.02, p=0.98) or right (z=-0.65, p=0.52) amygdala, indicating reasonable symmetry of 
the funnel plot and thus no evidence of a publication bias. 

Finally, we performed sensitivity analyses for the purpose of examining the 
robustness of results and identifying outlier studies. For this analysis, we used a 
jackknife procedure, consisting of discarding one whole-brain T-map of the meta-
analysis dataset at a time. The lack of significant differences in brain activation in at-
risk individuals compared with healthy controls was replicated in all whole-brain 
jackknife analyses, suggesting that this lack of significance was not driven by single 
outlier studies. 
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Partial coverage of the amygdala 
 

The proximity of the amygdala to the sphenoid sinus makes the BOLD signal in 
this region more vulnerable to susceptibility artifacts caused by air-tissue interface(35). 
The resulting dropout of the BOLD signal in this region led to partial coverage of the 
amygdala in several studies included in this meta-analysis(36–40). In order to limit the 
influence of this partial coverage at the group-level, the authors of these studies were 
contacted and asked to rerun their analyses after modifying an SPM default parameter 
(all studies used SPM). Indeed, in order to create first-level brain masks, SPM employs 
a default threshold that restricts the statistical analyses only to voxels that exhibit a 
value that is at least 80% of the mean global signal present in the data. If there is signal 
dropout in at least one participant, for instance due to susceptibility artifacts, the 
second-level mask (which corresponds to the intersection of first-level masks) will not 
cover this region. Therefore, authors were asked to rerun analysis after changing the 
default threshold parameter from 80% to 20%, in order to enlarge first-level brain 
masks, while also applying an explicit mask excluding voxels outside of the brain. 

Two authors successfully engaged in this process and could provide T-maps with 
an improved coverage of the amygdala(36,40). Three studies with a partial amygdala 
coverage were still included since authors could not perform the requested analysis 
due to time restrictions(37–39). 

Future studies, and particularly those targeting commonly artefacted regions like 
the amygdala, should employ acquisition protocols that counteract the negative 
consequences of these artifacts(41). 
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Supplementary Figure S2. Whole-brain heterogeneity map 

 
 
Heterogeneity map displaying for each voxel the I² statistic. Since an I² statistic above 
50% is commonly interpreted as substantial heterogeneity, the map was thresholded 
at I²>50%. A few small clusters displayed evidence of substantial heterogeneity in 
bilateral superior frontal gyrus, cerebellum, posterior temporal lobe, substantia nigra 
and left insula. Functional T-maps are overlaid on the Colin 27 anatomical template.  
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Supplementary Methods  

Literature search  

 

PubMed search employed a combination of the following keywords: (“schizophren*” OR 

“psychosis”) AND (“relatives” OR “first-degree” OR “siblings” OR “twins” OR “brothers” OR 

“sisters” OR “offspring” OR “parents” OR “genetic risk”) AND (“neuroimaging” OR “fMRI” OR 

“functional Magnetic Resonance Imaging”) AND (“emotion*” OR “affect” OR “mood” OR “face” 

OR “facial”). 

Web of Science review was based on the following keywords: TS=(schizophren* OR 

psychosis) AND TS=(relatives OR first-degree OR siblings OR twins OR brothers OR sisters 

OR offspring OR parents OR genetic risk) AND TS=(neuroimaging OR fMRI OR functional 

magnetic resonance) AND TS=(emotion* OR affect* OR mood OR face OR facial). 

 

Study exclusion 

 

50 studies were excluded due to the following reasons: 

- 12 studies did not include neutral faces1–12  

- 11 studies used non-relevant task design (1 structural magnetic resonance imaging13, 

2 non-visual stimuli14,15, 2 resting state16,17, 6 studies employed scenes or stories 

instead of faces18–23)  

- 7 were conference abstracts24–30  

- 7 studies employed the same dataset as in another included study31–37  

- 6 studies were systematic reviews or meta-analyses38–43  

- 6 study did not include a group of first-degree relatives44–49  

- 1 study was a method paper50 

 

Sensitivity analysis combining image- and coordinate-based meta-analysis  

 

In order to assess the robustness of our image-based meta-analytic results, we performed a 

sensitivity analysis wherein we added 2 studies reporting brain coordinates. The SDM 

methodology allows to conduct such meta-analyses that combines 3D statistical images and 

peak coordinates by leveraging its ability to reconstruct 3D statistical maps from image 

coordinates. This involves converting t-values of peak coordinates into effect sizes and 

gradually imputing effect sizes for surrounding voxels, considering proximity to peaks and 

accounting for estimation inaccuracies through multiple imputations51,52.  
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Table S1. Quality assessment checklist adapted from Zheng et al., 201853. For each 

study and each item, a score of 0/0.5/1 is assigned (0 if criteria not met, 0.5 if partially 

met, 1 if clearly met). Total score is 12 out of 12. 

Category 1: Sample characteristics  

Patients were evaluated with specific standardized diagnostic criteria 

Important demographic data (age, gender, and education) were reported with mean (or 

median) and standard deviations (or range)) 

Healthy comparison subjects were evaluated to exclude psychiatric and medical illnesses  

Important clinical variables were reported with mean (or median) and standard deviations (or 

range)) 

Sample size per group > 10 

Category 2: Methodology and reporting 

Whole brain analysis was automated with no a-priori regional selection 

Magnet strength at least 1.5T 

Whole brain coverage of fMRI scans  

The acquisition and preprocessing techniques were clearly described so that they could be 

reproduced  

Coordinates reported in a standard space  

Significant results are reported after correction for multiple testing using a standard 

statistical procedure (FDR, FWE or permutation-based methods)   

Conclusions were consistent with the results obtained and the limitations were discussed  
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Table S2. Main objective and main results of the included studies 

Reference 
 

Main objective  Main results Quality 
score 

Diwadkar et al., 201254 To investigate effective brain connectivity 
associated with emotional processing in 
schizophrenia 

Abnormal connectivity during emotion 
processing in offspring of patients with 
schizophrenia 

11 

Oertel et al., 201955 To investigate associative memory in 
schizophrenia 

Abnormal brain activity during retrieval in 
patients with schizophrenia and to a lesser 
degree in first-degree relatives 

12 

Park et al., 201656 To investigate implicit emotion processing in 
schizophrenia 

Abnormal brain activity to fearful and neutral 
faces in first-degree relatives 

11 

Pirnia et al., 201557 To investigate associative memory in 
schizophrenia  

Abnormal brain activity to successful 
encoding in patients with schizophrenia  

11.5 

Quarto et al., 201858 To investigate effective brain connectivity 
associated with emotional processing in 
schizophrenia 

Abnormal connectivity during emotion 
processing in both schizophrenia patients 
and first-degree relatives  

11.5 

Spilka et al., 201559 To investigate implicit emotion processing in 
schizophrenia 

Abnormal brain activity to emotions in first-
degree relatives and patients with 
schizophrenia.  

11.5 

Wolf et al., 201160 To identify and modulate emotion processing 
in schizophrenia 

Abnormal brain activity to emotion 
identification induced by GABAergic 
modulation in first-degree relatives  

11 
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Table S3. MNI coordinates of within-group meta-analysis. We employed the 
Hammersmith brain atlas (n30r83, © Copyright Imperial College of Science, Technology and 
Medicine 2007. All rights reserved61) in order to determine the name of brain structures. 

Brain region Hemisphere MNI (x,y,z) SDM-Z 

Healthy controls - Activations 

Amygdala  Left -22, -3, -16 4.5863 

Amygdala Right 22, -3, -14 4.4872 

Insula Left  -32, 4, -10 5.2278 

Insula  Right  32, 4, -4 4.8726 

Putamen  Left  -22, 8, 6 5.4896 

Putamen  Right  26, 7, -2 5.7281 

Occipital lobe (Fusiform Face Area) Left  -44, -81, -5 4.0052 

Occipital lobe (Fusiform Face Area) Right  42, -86, -8 3.93463 

Healthy controls - Deactivations    

Posterior cingulate gyrus Left -4, -31, 26 3.9956 

Posterior cingulate gyrus Right 6, -33, 28 3.9061 

Superior parietal gyrus  Left  -12, -61, 44 3.3147 

Superior parietal gyrus  Right  12, -70, 40 3.6446 

Occipital lobe Left -30, -82, 24 3.7414 

Occipital lobe Right 40, -84, 24 3.3893 

Pre-subgenual frontal cortex Left -10, 26, -12 4.4617 

Pre-subgenual frontal cortex Right  8, 28, -10 4.6346 

First-degree relatives - Deactivations 

Superior temporal gyrus Left  -64, -23, 4 3.7838 

Superior temporal gyrus Right  59, -28, 8 5.0942 

Middle inferior temporal gyrus Left  -54, -12, -16 2.5841 

Middle inferior temporal gyrus Right   54, -20, -16 4.0745 

Precentral gyrus Left  -11, -32, 66 3.3799 

Precentral gyrus Right   2, -28, 66 3.6165 

Postcentral gyrus  Left  -14, -32, 68 3.5393 

Postcentral gyrus  Right  34, -32, 52 3.6572 

Subgenual frontal cortex Left  1, 22, -12 3.5019 

Subgenual frontal cortex Right -12, 22, -14 3.4752 

Parahippocampal gyrus Left  -22, -30, -22 4.4278 

Parahippocampal gyrus Right  34, -21, -22 3.3432 
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Brain region Hemisphere MNI (x,y,z) SDM-Z 

    

Table S4. MNI coordinates of between-group meta-analysis. We employed the 
Hammersmith brain atlas (n30r83, © Copyright Imperial College of Science, Technology and 
Medicine 2007. All rights reserved61) in order to determine the name of brain structures. 

Brain region Hemisphere MNI (x,y,z) SDM-Z 

First-degree relatives < Healthy controls 

Hippocampus  Left -26, -22, -12 -2.8437 

Parahippocampal gyrus Left -20, -18, -20 -2.8497 

Hippocampus  Right 28, -12, -16 -3.141 

Insula Left -40, -10, 8 -3.96045 

Insula Right 64, 20, -4 -2,423 

Putamen Left -17, 4, -9 -2.60312 

Amygdala Right 28, 0, -26 -2.8438 

Amygdala Left -22, -4, -24 -2.18346 

Inferiolateral parietal lobe  Left -46, -52, 28 -2.6742 

Inferiolateral parietal lobe Right 52, -27, 39 -2.10457 

Superior parietal gyrus  Right  8, -52, 68 -3.47912 

Superior parietal gyrus Left  -22, -52, 62 -2.34547 

Cerebellum Left -18, -48, -32 -2.85079 

Cerebellum  Right 16, -36, -34 -2.2929 

Inferior frontal gyrus Right 52, 22, 12 -2.36139 

Precentral gyrus  Right 2, -24, 68 -3.25278 

Precentral gyrus Left -16, -24, 74 -2.70431 

Postcentral gyrus Left -10, -30, 76 -2.79808 

Postcentral gyrus Right 8, -31, 76 -2.76954 

Posterior cingulate gyrus Left -10, -22, 40 -2.41395 

Posterior cingulate gyrus Right 10, -7, 42 -2.37083 
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Supplementary Figure S1. Forest plots depicting the mean ± variance of effect sizes for 

group comparison in the left and right amygdala (defined using the Melbourne Subcortex 

Atlas62). The black diamonds represent the overall effect size. 

  

Left Amygdala Right Amygdala 
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Supplementary Figure S2. Funnel plots in left and right amygdala. The symmetrical 

distribution of studies suggests no evidence for publication bias. 
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Supplementary Figure S3. Combined image- and coordinate-based between-

group meta-analysis of functional neuroimaging studies investigating brain 

responses to neutral faces in healthy first-degree relatives of patients with 

schizophrenia versus healthy controls (n = 7 studies; 157 first-degree relatives and 207 

healthy controls). These are dual-coded images63,64 in which color represents mean Hedges’ 

g (brain regions showing activations are depicted in red while deactivations are depicted in 

blue), and transparency represents z-values. Black line contours denote significant (de-

)activations at pTFCE < 0.05.  
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Supplementary Figure S4. Meta-analysis without studies with partial brain 

coverage (1 study excluded60, n = 4 studies; 100 first-degree relatives and 125 healthy 

controls). These are dual-coded images63,64 in which color represents mean Hedges’ g (brain 

regions showing activations are depicted in red while deactivations are depicted in blue), and 

transparency represents z-values. Black line contours denote significant (de-)activations at 

pTFCE < 0.05. 
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Supplementary Figure S5. Meta-analysis (with mean age and quality of the study 

as covariates) of functional neuroimaging studies investigating brain responses to 

neutral faces in healthy first-degree relatives of patients with schizophrenia versus 

healthy controls (n = 5 studies; 120 first-degree relatives and 150 healthy controls). 
These are dual-coded images63,64 in which color represents mean Hedges’ g (brain regions 

showing activations are depicted in red while deactivations are depicted in blue), and 

transparency represents z-values. Black line contours denote significant (de-)activations at 

pTFCE < 0.05. 
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Supplementary Figure S6. Whole-brain heterogeneity map. Heterogeneity map 

displaying for each voxel the I2 statistic. Since an I2 statistic lower than 40% is 

commonly interpreted as low heterogeneity65, the map was thresholded at I2 > 40%. 

Black line contours denote clusters showing at least substantial heterogeneity (I2 > 

60%).  
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Supplementary Methods  

 

Microglia genes   

The present study exclusively included genes that are part of a core transcriptional 

signature of human microglia [1]. This signature was established by Patir and colleagues 

through the identification of co-expressed genes associated with microglia, ensuring their 

presence in at least three out of nine distinct human datasets of microglia. 

Among these genes, we only included microglia genes previously shown to be 

transcriptionally altered in SZ. We identified these genes according to three criteria.  

Firstly, we selected the following genes whose expression was found to be altered in 

at least one study included in the meta-analysis conducted by Snijders et al. [2] (which 

explored the expression of 8 genes in total): AIF1 (Hedges’ g = -1.324, p-value = 

0.003), CD68 (Hedges’ g = -0.845, p-value = 0.028), CSF1R (Hedges’ g = -0.874, p-

value = 0.023), HLA-DRB4 (Hedges’ g = -1.403, p-value = 0.014).  

Secondly, we selected the following genes that were transcriptionnaly altered both in 

a postmortem study exploring 16 microglia genes from Snijders et al. [2] (CSF1R 

(Log2FC = -3.306, adj p-value = <0.05), IRF8 (Log2FC = -2.945, adj p-value = <0.05), 

ITGAX (Log2FC = -2.535, adj p-value = <0.05), OLR1 (Log2FC = -5.500, adj p-value = 

<0.05), TMEM119 (Log2FC = -6.532, adj p-value = <0.05)) and in the largest 

transcriptomic study in schizophrenia investigating the expression of 25774 genes, 

from Gandal et al. [3] (CSF1R (Log2FC = -0.176, adj p-value = <0.05), IRF8 (Log2FC 

= -0.229, adj p-value = <0.05), ITGAX (Log2FC = -0.305, adj p-value = <0.05), OLR1 

(Log2FC = -0.215, adj p-value = <0.05), TMEM119 (Log2FC = -0.237, adj p-value = 

<0.05)): CSF1R, IRF8, ITGAX, OLR1, TMEM119.  

Thirdly, we selected the following genes that consistently exhibited differential 

expression in individuals with schizophrenia compared with healthy controls in a meta-

analysis conducted by Bergon and collaborators [4] which explored the expression of 

8655 genes in postmortem brain tissues (CX3CR1 (FC = -1.24, adj p-value = < 0.001), 

NCF4 (FC = 1.06, adj p-value = 0.0005), TLR2 (FC = 1.12, adj p-value = 0.00013), 

TSPO (FC = 1.10, adj p-value = 0.0006)), as well as 16661 genes in peripheral tissues 

(CX3CR1 (FC = -1.19, adj p-value = 0.0019), NCF4 (FC = 1.13, adj p-value = 0.017), 
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TLR2 (FC = 1.16, adj p-value = 0.0007), TSPO (FC = 1.12, adj p-value = 0.012)): 

CX3CR1, NCF4, TLR2.  

HLA-DRB4 was not included due to the lack of specificity of the microarray probes, 

and TSPO was omitted as its relevance as a microglia marker has been questioned 

[5] with evidence suggesting a closer association with astrocytes [6]. 

Eventually, it should be noted that the genes included in this study exceeded the 

minimum requirement of being present in three datasets, as established by Patir et al. 

when defining the core transcriptional signature of human microglia [1]. Indeed, our 

candidate genes were present in a larger number of datasets, specifically in at least 

six out of the nine co-expression derived datasets, thus reinforcing their strong 

association with microglia. Additionally, it is noteworthy that all the genes included in 

this study were also identified in a recently published list of microglia signature genes 

that are highly expressed in bulk brain tissues [7]. 

 

Inclusion of datasets 

Since our primary aim was to map transcriptional alterations of microglia genes in brain 

and peripheral tissues samples, one dataset per brain region (or peripheral tissue) was 

selected. When more than one dataset from the same brain region (or peripheral 

tissue) was available, we selected the one that would maximize the following 2 criteria 

in this particular order of relevance: 1) the dataset is capable to explore the largest 

number of genes from our list of candidate genes; 2) the dataset has the largest 

number of subjects. Based on these criteria, 2 datasets (GSE21138 from Narayen et 

al., 2008 [8]; GSE38481 from de Jong et al., 2012 [9]) from the list of 12 eligible 

datasets were not included in the main analyses.  

 

Datasets included  

It should be noted that the datasets included in this study are slightly different from 

those that were pre-registered on AsPredicted.org (#67610, 

https://aspredicted.org/285rn.pdf). This is due to the following reasons: 1) we initially 

planned to include datasets using three types of Affymetrix arrays (HG–U133_Plus_2, 

Human Gene 1.0 ST or Human Gene 1.1 ST) which could technically interrogate our 

https://aspredicted.org/285rn.pdf
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list of candidate genes. However, this criterion precluded the inclusion of other array 

platforms capable of exploring these candidate genes (such as Agilent or Illumina 

arrays). Therefore, this criterion was removed, and only custom-designed microarrays 

were excluded. Consequently, an additional non pre-registered dataset was included 

in this study (GSE62191 from de Baumont et al., 2015 [10]); 2) we excluded one pre-

registered dataset (GSE93987 from Arion et al., 2015 [11] since it was captured 

through a laser microdissection of pyramidal cells, and thus did not contain microglia 

cells violating our inclusion criteria; 3) we also excluded one pre-registered dataset 

(GSE73129 from Horiuchi et al., 2016 [12]) due to lack of probe accuracy of at least 

half of the candidate genes (i.e., 5 genes present a lack of variability in gene expression 

values for all participants, probably reflecting transcriptional noise). 

Following this selection, we report results from 9 different datasets. Finally, it should 

be noted that for two included datasets, we could not reliably measure the expression 

of a few genes (CD68 and ITGAX in the superior temporal cortex; NCF4 and TMEM119 

in the frontal cortex) due to a lack of probe accuracy for those genes. The presently 

reported non-significant differences between individuals with schizophrenia and 

healthy controls for those latter genes in the relevant datasets should therefore be 

considered with caution.  

 

Bayesian analyses  

In additional Bayesian analyses, we quantify evidence in favor of the null (H0) and 

alternative (H1) hypotheses using the Bayes Factor (BF). Indeed, BFs are the ratio of 

the likelihood of the data under the alternative hypothesis and under the null 

hypothesis. BF10 quantifies the evidence in favor of H1 compared with H0, while BF01 (= 

1/BF10) quantifies the evidence in favor of H0 compared with H1. Conventionally a BF10 

(or BF01) that exceeds the threshold of 3 represents moderate evidence in favor of H1 

(or H0), while when it exceeds the threshold of 100 the evidence can be considered as 

decisive. Finally, it is not possible to conclude regarding the presence or absence of 

group differences when BF10 (or BF01) is between 1 and 3 (i.e., anecdotal evidence) 

[13]. 

 



66 

 

Supplementary Figure 1. Flow Chart outlining the selection procedure of GEO 

datasets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Abbreviations: GEO, Gene Expression Omnibus; IPSC, induced pluripotent stem cells; DLPFC, dorsolateral prefrontal cortex; BA, 
Brodmann area; PBMCs, peripheral blood mononuclear cells 

Datasets assessed for eligibility 
(n = 88) 

Datasets excluded (n = 76): 

• Reprogrammed tissue (IPSC) (n = 42) 

• No individuals with schizophrenia (n = 7) 

• Microsection not containing microglia  
(n = 7) 

• SuperSeries already included (n = 5) 

• No healthy control group (n = 3) 

• Custom designed microarray (n = 3) 

• ≤ 10 participants per group (n = 3) 

• Not exploring gene expression (n = 2) 

• Immature microarray technology (n = 2) 

• Relatives as control group (n = 1) 

• Animal data (n = 1) 
 

Eligible datasets (n = 12): 

In brain tissues  

• GSE17612 in anterior prefrontal cortex (Maycox et al., 
2009 [14]) 

• GSE35977 in parietal cortex (Chen et al., 2013 [15]) 

• GSE21138 in DLPFC -BA46 (Narayan et al., 2008 [8]) 

• GSE53987 in DLPFC -BA46, associative striatum, 
hippocampus (Lanz et al., 2019 [16]) 

• GSE62191 in frontal cortex (de Baumont et al., 2015 
[10])  

• GSE21935 in superior temporal cortex (Barnes et al., 
2011 [17]) 

• GSE35974 in cerebellum (Chen et al., 2013 [15]) 

In peripheral tissues  

• GSE27383 in PBMCs (van Beveren et al., 2012 [18]) 

• GSE73129 in olfactory epithelium (Horiuchi et al., 
2016 [12]) 

• GSE62333 in skin fibroblast (Cattane et al., 2015 [19]) 

• GSE38484 in whole blood (de Jong et al., 2012 [9]) 

• GSE38481 in whole blood (de Jong et al., 2012 [9]) 
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database (n = 88) 
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