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"Comme à des enfants, on nous a raconté des histoires, on nous a dit qu’on était trop petit, que
c’était déjà foutu ! Montrons-leur qu’on a grandi."

"As to children, we were told stories, we were told we were too small, that it was too late! Let’s
show them we have grown up."

Camille Etienne, environmental activist





Abstract

The number of Artificial Intelligence applications being developed and deployed is continually
increasing. The effects of these activities on the biosphere, particularly on climate change, have
attracted attention since 2019, but assessment methodologies still require improvement. More ad-
vanced evaluation methods and a deeper understanding of these impacts are necessary to minimize
the environmental impacts of artificial intelligence.

With an emphasis on the training phase, this thesis investigates how machine learning (ML)
affects the environment.

First, a study is conducted to assess the electricity consumption of IT infrastructures by com-
paring power meters currently in use with different benchmarks and infrastructures, focusing on
Graphic Processing Units (GPUs). The comparison is supported by numerous experiments and is
based on classic quantitative criteria, as well as qualitative criteria such as ease of use, configura-
bility, and documentation quality.

These findings are used to analyze the electricity required to train models selected from the
MLPerf benchmark on various ML infrastructures, ranging from an edge device to a supercom-
puter. Fine-grained measurements and reproducible experiments offer distinct perspectives on
each computing infrastructure. The proposed methodology enables an equitable comparison of
the amount of electricity consumed by the studied infrastructures.

Finally, the thesis shifts toward examining the more general environmental impacts of ML,
based on an estimation of the embodied impacts of ML infrastructures. These impacts are allo-
cated to each model training, enabling a comparison with the impacts of electricity usage. While
numerous ML environmental impact indicators exist, this study focuses on primary energy con-
sumption, global warming potential, and abiotic depletion potential for minerals and metals.

In conclusion, this thesis proposes a methodology that enables a reproducible multi-criteria
evaluation of the impact of machine learning training on the environment and can be applied to
different ML infrastructures, thus enabling fair comparison and enlightened choices.
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Resumé

Le nombre d’applications basées sur l’intelligence artificielle (IA) développées et déployées
ne cesse d’augmenter. L’impact de ces activités sur la biosphère, notamment sur le dérèglement
climatique, attire l’attention depuis 2019, mais les méthodes d’évaluation nécessitent encore des
améliorations. Des méthodes d’évaluation plus avancées et une meilleure compréhension de ces
impacts sont nécessaires pour minimiser l’impact environnemental de l’intelligence artificielle.

En mettant l’accent sur la phase d’entraînement, cette thèse étudie l’impact de l’apprentissage
automatique sur l’environnement.

Dans un premier temps, une étude est menée pour évaluer la consommation électrique des
infrastructures informatiques en comparant les compteurs d’électricité actuellement utilisés, en
se concentrant sur les unités de traitement graphique (GPU). La comparaison est étayée par de
nombreuses expériences et repose sur des critères quantitatifs classiques, ainsi que sur des critères
qualitatifs tels que la facilité d’utilisation, la configurabilité et la qualité de la documentation.

Ces résultats sont utilisés pour analyser l’électricité nécessaire à l’entraînement de modèles
sélectionnés à partir du benchmark MLPerf sur différentes infrastructures d’apprentissage automa-
tique, allant d’un appareil embarqué à un supercalculateur. Des mesures fines et des expériences
reproductibles offrent des perspectives distinctes sur chaque infrastructure. La méthodologie pro-
posée permet une comparaison équitable de la quantité d’électricité consommée par les infrastruc-
tures étudiées.

Enfin, la thèse s’oriente vers l’évaluation des impacts environnementaux, en se basant sur
une estimation des impacts liés à l’extraction des matériaux, à la fabrication, au transport et à
la fin de vie de chaque composants des infrastructures de calcul. Ces impacts sont répartis sur
chaque entraînement de modèle, permettant une comparaison avec les impacts de la consommation
d’électricité. Si de nombreux indicateurs d’impact environnemental de l’apprentissage existent,
cette étude se concentre sur la consommation d’énergie primaire, le potentiel de réchauffement
climatique et le potentiel d’épuisement abiotique des minéraux et des métaux.

En conclusion, cette thèse propose une méthodologie permettant une évaluation multi-critères
reproductible de l’impact de l’entraînement du machine learning sur l’environnement et pouvant
être appliquée à différentes infrastructures spécialisées pour l’apprentissage, permettant ainsi une
comparaison équitable et des choix éclairés.
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General Introduction

General Introduction

H uman activities pose a significant threat to the biosphere, upon which society is utterly de-
pendent. Addressing the colossal challenges of transforming society to make it sustainable while
facing the effects of climate change has been the objective of many scientific and political in-
ternational panels or United Nations conferences (COP). The Paris Agreement [UN2015] is an
international treaty signed in 2015 that results from such discussions. Its goal is to limit global
temperature increase to well below 2 degrees Celsius while pursuing efforts to limit the increase
to 1.5 degrees. Reaching this goal requires significantly reducing Greenhouse Gas (GHG) emis-
sions as soon as possible. In the same year, all the United Nations member states adopted the
2030 Agenda for Sustainable Development including 17 Sustainable Development Goals (SDGs)
to fight poverty while improving health and education and tackling climate change - to only cite a
few. More than global temperature, scientists have identified 9 planet boundaries that can signifi-
cantly impact human society if exceeded [Rockström2009, Steffen2015]. Among them, six were
more recently estimated to be reached [Richardson2023] including climate change, land system
change, and freshwater change.

The 2023 report of the Intergovernmental Panel on Climate Change (IPCC) [Dasgupta2023]
presents digital technologies as an industry that can help mitigate climate change and achieve
several SDGs by improving energy management. However, it also states that gains can be coun-
terbalanced by growth in demand for goods and services. Digital technologies can additionally be
harmful to other SDGs by increasing inequalities and labor, for example. Artificial Intelligence
(AI) exacerbates those effects. It has been used in many industries to increase energy efficiency
and productivity but its global environmental footprint is drastically increasing and is not restricted
to GHG emissions [Wu2022]. Although digital technologies and artificial intelligence can indi-
rectly affect each planet boundaries, positively or negatively, they directly impact primary energy
consumption, climate change, water usage, and rare metal depletion [Benqassem2021].

In response to those observations, the European Union (EU) now requires all large companies
to report on the impact of their activities on people and the environment, as part of the European
Green Deal to reduce the GHG emissions of the continent. The Corporate Sustainability Reporting
Directive (CSRD) 1 entered into force at the beginning of January 2023, defining the information
companies have to report. The Energy Efficiency Directives 2 includes obligations on the energy
performance of digital infrastructures, for example of data centers 3.

In this context, institutes and companies need standards and tools to evaluate the footprint of
their digital services to be able to report, monitor, and reduce it. This thesis propose a methodology
to estimate the environmental impacts of training Machine Learning (ML) models.

1Directive (EU) 2022/2464 of the European Parliament and of the Council of 14 December 2022 amending Regula-
tion (EU) No 537/2014, Directive 2004/109/EC, Directive 2006/43/EC and Directive 2013/34/EU, as regards corporate
sustainability reporting (Text with EEA relevance)

2Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy effi-
ciency and amending Regulation (EU) 2023/955 (recast) (Text with EEA relevance)

3Commission Delegated Regulation (EU) 2024/1364 of 14 March 2024 on the first phase of the establishment of a
common Union rating scheme for data centers
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Chapter 1. Introduction

This introduction presents the current figures on the environmental footprint of Information
and Communication Technologies (ICT) (Section 1.1) before focusing on Machine Learning (ML).
Section 1.2 is an overview of the material evolution of ML since it was first introduced in the 1950s
and Section 1.3 covers the current state of the art on the evaluation of ML impacts. Finally, Section
1.4 presents the research questions and the objectives of this thesis, Section 1.5 its contributions,
and Section 1.6 its content.

1.1 ICT environmental impacts

Information and Communication Technologies (ICT) regroup all devices required to access
and use digital services such as social media or online shopping. They are usually divided into
user interfaces, networks, and data center components. An ICT service is a service based on ICT
devices such as a web search engine, a mailbox, or any website. They usually rely on all three ICT
categories to deliver a service.

This section covers the environmental impacts associated with ICT, starting by listing the main
devices that make up ICT, before providing basic definitions of energy and environmental impacts
and their relation to ICT.

1.1.1 The materiality of ICT

Information and Communication Technologies can easily be seen as immaterial since most of the
infrastructure is hidden from the user. Understanding its materiality is crucial for appreciating its
environmental impacts.

User interfaces include desktop computers, smartphones, wearable devices, and gaming con-
soles. Most of them require batteries and thus were designed to consume low power. Networks
consist of fiber optic cables or copper cables but require routers, signal amplifiers and transform-
ers, and antennas to interconnect with each other and the users. They are distributed all around the
earth and are mostly shared among internet providers and users.

Data centers are massive buildings storing and processing the data we access online. They
house computing nodes, networking devices, cooling systems, and power systems such as distri-
bution units or backup batteries. Computing nodes are responsible for useful work and are more
computationally and power-intensive than user devices. They are generally composed of a Cen-
tral Processing Unit (CPU), Random Access Memory (RAM), storage devices, network interface
cards, a motherboard connecting all those components, and a power supply unit to convert elec-
tricity into usable power. An AI-specialized compute node can additionally host up to 8 Graphic
Processing Units (GPUs).

Such facilities can be broken down into three types of data centers:

• Cloud data centers are focused on delivering content and services, like websites or streaming
platforms. They rely on server nodes with one CPU and are designed to efficiently and
reliably scale on demand. Their size and position might vary to minimize user latency and
data movement.

• Data centers specialized in High Performance Computing (HPC) handle intensive compu-
tational tasks such as scientific research on universe simulation, climate predictions, and
now ML workloads. Compute nodes require more powerful CPUs and GPUs and are often
customized for specific workloads.

• Edge data centers process data close to the user to reduce the latency for real-time appli-
cations. They are usually smaller than other facilities and rely on smaller compute nodes
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1.1. ICT environmental impacts

designed to be power efficient.

1.1.2 Focus on energy of ICT

Energy can be used to refer to various concepts with significant differences thus proper definitions
are needed. Energy - as its most basic definition - is the capacity to do work. Primary Energy is
the energy as it is available as resources before it has been transformed [Ritchie2022]. Figure 1.1a
lists the main types of energy and shows the evolution of primary energy consumption by source
since 1800. Fossil energies (coal and oil) represent most of it. Electricity is a type of energy
resulting from the movement of electrons. The electrical power is expressed in Watt (W) and the
electrical energy in Watt-hour (Wh). Electricity is transformed from primary energy. Figure 1.1b
presents the evolution of electricity production by source from 1985. In 2022, global primary
energy consumption hit a peak of 178,899 TWh, while electricity generation only reached 28,661
TWh, representing around 16%. Electricity is the main energy source for the usage phase of ICT
devices.

For simplicity, in this thesis, the terms "energy" and "electricity" will interchangeably refer to
"electrical energy", and "power" will refer to "electrical power".
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Figure 1.1: World statistics on energy and electricity [Ritchie2022]
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The International Energy Agency (IEA) reports that Data Centers (excluding cryptocurrencies
mining) consumed between 240 and 340 TWh of electricity in 2022, while the data transmission
network used between 260 and 360 TWh [Agency2024]. Thus they represent at most 2.4% of
the world’s electricity consumption. The IEA forecasts that data centers will be one of the major
contributors to electricity demand growth (+29%) between 2023 and 2026, mainly due to Artifi-
cial Intelligence. The Shift Project found that the share of digital technologies in primary energy
consumption reached 5% in 2020 and could double during the next 10 years to over 9% [Fer-
reboeuf2021]. Differences between both estimates are explained by the large scope of the Shift
Project analysis. The authors additionally include user devices such as smartphones and TVs.

Such a demand on power grids has significant impacts since production is hardly flexible and
is highly influenced by geopolitical crises and weather conditions.

1.1.3 Focus on environmental impacts of ICT

All industries have direct or indirect impacts on the environment, ICT included. Freitag et al. [Fre-
itag2021] conducted a survey of existing estimations and concluded that the share of the digital
sector represented between 2.1% and 3.9% of global GHG emissions in 2021. Its significance is in
its growth of around 5.5% per year between 2015 and 2019, according to the Shift Project. Freitag
et al. don’t provide a similar number, but forecast exponential growth, taking into account a slow-
down in energy efficiency improvement and the investment in cryptocurrencies and AI. No similar
estimation has been produced on other environmental indicators such as rare metal depletion.

The operational (or opex) impact of ICT corresponds to the impact related to the energy
spent to charge or power devices, while the embodied (or capex) impact includes the impact
of extracting raw materials, manufacturing, transporting, and dealing with the end of life of the
equipment. ICT is an industry characterized by the significance of the impact of the embodied
phase. Extracting raw materials and converting them into processors requires a lot of energy and
water, consequently emitting carbon and consuming rare metals that can hardly be recycled.

According to the Shift Project, the embodied phase corresponded to 37% of the total impact
in 2019. Another study from Gupta et al. [Gupta2022] shows that the carbon footprint of com-
puting has shifted from opex-related activities towards hardware manufacturing. Although it is
most significant for battery-fueled equipment such as smartphones and laptops for which the man-
ufacturing cost represents between 60 and 80% of the carbon footprint, it is also true for data
center hardware. Indeed, electricity efficiency has improved in the past decades while the aver-
age lifetime has remained constant, and as a consequence, the share of opex-related activities has
decreased.

ICT can have several levels of impact. Its direct or first-order impacts are the impacts due
to the IT infrastructure. It is the only category of impacts studied in this thesis. However, ICT
can have other impacts. The second-order impact refers to the impact of its applications, such as
optimizing the energy consumption of a building using an AI algorithm that might compensate for
its direct impacts. A third-order impact category exists and corresponds to the systemic impacts
that the ICT service can have on society [Ligozat2022]. The rebound effect is an example of third-
order impact: an improvement in the energy efficiency of a technology can lead to an increase in
its total energy consumption through behavior change, as it was stated in the 2023 IPCC report.

Machine Learning is a sub-field of ICT and its recent popularity combined with its growing
demand in computations has been contributing to the increasing impacts of IT infrastructures.
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Figure 1.2: Evolutions in Machine Learning models since 1950, as the maximum value up to the
given year [AI2024]

1.2 Designing computing infrastructures to handle ML computations

Machine Learning has radically changed since it was first introduced in the 1950s. This growth
can be seen from different perspectives. Figure 1.2 shows the exponential growth in the number of
trainable parameters of state-of-the-art models since the 1950s, reaching more than 1011 in 2023.
It was exacerbated by a common practice in ML to overparametrize the models, i.e. choosing
a model with more parameters than data points in the dataset. In the Epoch AI database that
was used to generate figure 1.2, 47% of the notable models with parameter and data point infor-
mation have more parameters than data points. 29% of those models have more than 10 times
more parameters than data points. Overparametrization means more computations and, accord-
ing to Thompson et al. [Thompson2020], "the computation required to train an overparameter-
ized model should grow at least as a fourth-order polynomial with respect to performance, i.e.
Computation = O(Per f ormance4)". Thus improving the performance of a model requires much
more computations. As a consequence, the number of Floating Point Operation (FLOP) required
to train models has been growing from 10 in 1957 to 1025 in 2023.

The availability of massive datasets has been critical in the advances of the research field. For
example, the release of ImageNet in 2012 has unlocked research in computer vision and led to the
publication of state-of-the-art models in classification and image recognition. Figure 1.2 shows
the evolution in the number of data points required to train the most notable state-of-the-art models
as reported by Epoch AI [AI2024]. The biggest datasets reached a thousand billion data points in
2023.

Both the number of data points and the quality of the samples have a significant impact on
learning. Collecting and processing data can be expensive. Creating a dataset comes with various
challenges: annotating inputs for supervised tasks, fairness between categories (problem of racism
when a recruitment algorithm reproduces the bias of past data), or finding the best processing
technique for learning to be more efficient (normalization). Advances in these areas enabled the
explosion in the number of parameters.

Since the 1950s, the progress in ML has been closely linked to the progress in hardware per-
formances. Unlike most data center workloads, gradient computations are memory-intensive and
highly parallelizable. The evolution in hardware specialized for ML has been significant in the
past few decades. This section starts by detailing this evolution. The failure of the hardware evo-
lution to match the requirement from ML model training and its cost has led to the multiplication
of compute nodes used for training by distributing data parallelism. Finally, new demands such as
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data privacy and user personalization have pushed the computations toward the user, bringing new
challenges in managing computations and data movement.

1.2.1 Performance of ML-specialized hardware
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Figure 1.3: Evolutions in Machine Learning specialized hardware (GPU, TPU) metrics, as the
maximum value up to the given year [Hobbhahn2023]. The interconnect speed and the TDP are
expressed on a linear scale while the other metrics use a logarithm scale.

Moore’s law predicted a fast increase in chip performance, stating in 1965 that the number of
transistors in an integrated circuit doubles about every two years. In ML, the progress in Graphic
Processing Unit (GPU) has marked a shift. Thompson et al. show that GPUs have allowed to
reduce the computation time by 35 by 2012 [Thompson2020]. Since then, the performance of
ML-specialized hardware has been exponentially improving. Sevilla et al. [Sevilla2022] estimated
that a large-scale ML trend had started in 2015 and since then the performance of ML-specialized
hardware (FLOP/s) has been doubling every 9.9 months for a selected number of large-scale mod-
els. Researchers from Epoch AI have made statistics on the performance of GPUs and Tensor
Processing Unit (TPU), publishing more detailed results:

• Computational performance [FLOP/s] has doubled every 2.3 years for both ML and general
GPUs.

• Computational price-performance [FLOP per $] has doubled every 2.1 years for ML GPUs
and 2.5 years for general GPUs.

• Energy efficiency [FLOP/s per Watt] has doubled every 3.0 years for ML GPUs and 2.7
years for general GPUs

The performance of ML-specialized hardware is classically evaluated in Floating Point Operation
per Seconds (FLOP/s), but other metrics impact the performance of training ML models. Man-
aging data movement has become a critical issue. This can be seen in figure 1.3 which is based
on the database released by Epoch AI [Hobbhahn2023] and depicts the highest recorded value for
each metric throughout the period from 2008 to given year. It shows the logarithm evolution of
the FP64 performance, the memory size per board, and the memory bandwidth. The interconnect
speed and the thermal design power are displayed on a linear scale. All metrics have significantly
increased since 2008. The FP64 performance in FLOP/s has gained more than two orders of mag-
nitude between 2008 and 2023. The improvement in memory size has been slower but steady.
The memory bandwidth was doubled in 2016 and 2022, enabling a boost in FP64 performance
that had been stagnating since 2014. Those advancements are partly due to the development of
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accelerating chips using tensors for matrix multiplication. The most popular and efficient chips
are NVIDIA’s V/A/H100 and Google’s TPUs. A reduction in the precision of floating point has
also led to a significant improvement in FLOP/s. Figure 1.4 shows the improvements due to using
tensors and reducing the precision for the most popular and recent hardware. Reducing the pre-
cision can increase by 2 orders of magnitude the number of operations per second, but a balance
needs to be found with the decrease in learning performance. Using tensor mostly improves the
performance.
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Figure 1.4: Performance of the most recent and popular ML-specialized hardware with various
precision [Hobbhahn2023]

One can notice that the best hardware performance reaches 1015 FLOP/s (Figure 1.4) when
the most recent models require up to 1025 FLOP (Figure 1.2) to be trained. That would mean
more than 300 years of training. Despite the major improvements in hardware performance, the
demands from ML model training have increased more rapidly. ML developers have taken advan-
tage of the parallelization characteristic of ML training computations to compensate for this gap,
thus distributing data to parallelize learning across GPUs and compute nodes. Top500 is a project
tracking and detecting trends in high-performance computing. It produces a list of the 500 most
powerful HPC systems twice a year. The Frontier system is the most powerful system in June
2024. It contains more than 8 million cores and has a peak performance of 1.6 ⇤ 1018 FLOP/s,
reducing the number of training days of the most recent model to 72.

1.2.2 Distributed Data Parallelism

Figure 1.2 shows the evolution in the number of machines used for training one model in the
past decade, according to Epoch AI database [AI2024]. Distributed learning started to gain at-
tention in 2012 when AlexNet was trained between five and six days on two GTX 580 3GB
GPUs [Krizhevsky2012]. The average number of GPUs used to train models went from 2 in 2012
to 3196 in 2024 [AI2024], although the reality is more heterogeneous. Some models still rely on
only one GPU while the most expensive model in the database (Gemini 1.0 Ultra) was trained on
55000 Google V4 TPUs in 100 days.

Distributed learning comes with new challenges. It necessitates robust high-speed networking
capabilities to share parameters while minimally impacting the training time. ML clusters consist
of a few to hundreds of nodes equipped with 8 GPUs. The communication between nodes has
improved a lot too. Figure 1.3 shows that interconnect speed has been multiplied by 3 since 2018
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thanks to the new generations of NVLink and NVSwitch.
Despite the improvement in hardware performance and the increase in hardware number, the

training time continues to exponentially increase. As can be seen in Figure 1.2, the longest training
time was multiplied by 10 between 2007 and 2008 and reached months around 2015. The Thermal
Design Power, the maximal power supported by the computing components, is increasing too. In
Figure 1.3, we can see that the latest GPU has a TDP of 700 W. With typically 8 GPUs and 2
CPUs, an ML compute node can consume up to 8kW which is significantly higher than a classic
data center compute node. It means that despite the increase in energy efficiency, the total energy
consumed by ML training is soaring. Data center infrastructures have had to be adapted to support
such electricity demand 1 and significantly impact the electricity grid [Libertson2021].

1.2.3 Pushing computations towards the edge

The growth of the volume of data generated by user devices and the corresponding threat to privacy
has led to the development of new paradigms in learning. Federated Learning (FL) is an example
of such evolution that’s widespread and well-researched. Instead of parallelizing a unique dataset,
it relies on the client’s local datasets. It was first introduced by Google [McMahan2017] whose
goal was to improve keyboard predictions and voice detection with data coming from clients while
preserving client privacy. The data that is generated from user interaction can be used to person-
alize or fine-tune models. FL and edge computing can be seen as moving the computations closer
to the user rather than bringing the data to the compute node. Instead of collecting user data back
to data centers, data samples are kept close to where it was produced.

Examples of devices that can benefit from FL are smartphones, smartwatches, smart speakers,
or more generally embedded devices. The number of smartphones globally reached 8.36 billion
in 2022 [in Data2024]. Although such devices consume less power (under 100 W) than compute
nodes, the scale is much larger and devices additionally rely on networks.

1.3 ML environmental impacts

A methodology evaluating the environmental footprint of ML should include all the digital
devices and hardware components that it has relied on. On one hand, centralized learning pushes
the development of more and more powerful and energy-consuming specialized hardware. On
the other hand, edge computing is pushing for more computations located in user terminals, in-
creasing their energy consumption and relying on networks. Such a methodology should also take
into account the impact of each phase of the development and deployment of ML models, from
collecting and processing data to selecting, testing, training, and fine-tuning models and finally
deploying them. Figure 1.5 gives an overview of the model and hardware life cycles.

This section summarizes the most relevant work done on the environmental impacts of ML.

1.3.1 Electricity consumption and carbon emissions of the training phase

The interest in the carbon emissions of training ML models started in 2019 with the work of
Strubell et al. [Strubell2019]. The authors evaluate the energy consumption and carbon emission
of 4 NLP models based on electricity measurements. They demonstrate that their carbon emissions
are significant, comparing them to the lifetime emissions of thermal cars. They show that training

1https://www.datacenterdynamics.com/en/analysis/how-meta-redesigned-its-data-centers-f
or-the-ai-era/
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a Transformer model with neural architectural search is equivalent to the emissions of 5 cars in
their lifetime.

This initial study on state-of-the-art NLP models was followed by similar work on other disci-
plines or models. [Henderson2020] evaluate the emissions of a few reinforcement learning mod-
els, proposing a leaderboard to foster competition to reduce carbon emissions. Researchers from
Google [Patterson2021] present an analysis of popular architecture like Transformer 4, GPT-3,
Meena, and Gshard. Similarly, researchers from Meta published the operational footprint of the
offline training of recommendation models deployed by the company [Wu2022]. [Luccioni2023b]
analyze the electricity consumption and carbon emissions of training BLOOM, an open-source
LLM.

[Schwartz2019] proposed in 2019 the term "Green AI" to promote AI models optimizing
energy efficiency in addition to model accuracy. The authors alert on the exponential evolution
of ML model size. Those observations are later confirmed by other analysis [Thompson2020,
Sevilla2022], showing that this drastic growth includes other metrics too, such as the computation
burden (FLOP), the training time, and by consequences the energy consumption, despite the im-
provement in performance and energy efficiency of specialized hardware. [Patterson2022] balance
this result by stating that, at Google, improvements in model, software, and hardware efficiency
enabled a stagnation of the share of ML-related workload in the company’s total energy consump-
tion. Since the energy spent in Google data centers is significantly growing 2, it doesn’t mean
that the energy spent in ML is constant, but, according to the authors, its growth is much slower
than the growth in model parameters and training computations. It corroborates previous findings
from [Henderson2020] that FLOP is not correlated to energy consumption in ML training and
should not be used as an estimation as it was previously done.

Measuring and estimation tools [García-Martín2019] reviewed in 2019 the key approaches to
estimating the energy consumption of computations and how to apply them on machine learning
applications. The first section focuses on energy estimation models and groups the 23 reviewed
techniques into four categories: (i) performance counter-based models; (ii) simulations; (iii) ar-
chitecture or instruction-based models; (iv) real-time power. The second section covers energy

2https://www.gstatic.com/gumdrop/sustainability/google-2024-environmental-report.pdf
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measurement and estimation tools. Only five command-line tools are described and none of them
include GPUs. Three of them are based on RAPL. Finally, two use cases show the usefulness of
selected tools but they are not compared with each other nor with power meters. Since then, new
tools and methodologies have been proposed to make energy consumption and carbon emission
measurement easier for model developers. First, in 2019, two online tools were published to enable
estimations based on the model training time and hardware and data center characteristics. [La-
coste2019] provide a website called "MLCO2 impact" for estimating carbon emissions based on
GPU type, experiment length, and cloud provider. [Lannelongue2021] have further integrated fac-
tors in their online calculator such as core usage and unitary power draw for more hardware pre-
cision and the pragmatic scaling factor to take into account successive training tests. Both rely on
processor databases to make the tools more accessible to the users. A second wave of Python soft-
ware published in 2020 [Henderson2020, Anthony2020, Schmidt2021] enabled more precise esti-
mation by retrieving values from RAPL and Nvidia-SMI interfaces. [Bannour2021] compare those
energy estimation tools on both qualitative and quantitative criteria. They evaluate the tools on
Natural Language Processing (NLP) use cases, focusing on CO2 equivalent emission estimations,
and show that the estimates can vary significantly. [Dodge2022] are the first to conduct a study
of cloud instances and compare the training of popular models on them. [Jay2023, Heguerte2023]
review such tools and evaluate them against power meters on HPC benchmarks and AI trainings,
respectively. They show a significant gap between compute node consumption and the tool esti-
mations.

Recommendations Those studies also provide recommendations on how to reduce the emis-
sions of ML training. Most of them urge the community to report the energy consumption
[Strubell2019,Lacoste2019,Lannelongue2021,Henderson2020,Anthony2020,Patterson2021,Wu2022,
Dodge2022] to increase transparency and better understand the impact of the field. Similarly, they
ask conferences to include such reports and reproducibility in their acceptance criteria 3. They also
recommend using efficient models and hardware [Strubell2019,Schwartz2019,Lacoste2019,Hen-
derson2020, Patterson2021, Patterson2022, Wu2022], dimensioning the hardware to the model
[Heguerte2023], minimizing the hyperparameter and architectural search [Schwartz2019,Lacoste2019],
carefully choosing the cloud provider or data center location to minimize the carbon mix of the
electricity and the Power Usage Effectiveness (PUE) of the data center and maximize the off-
set [Schwartz2019, Lacoste2019, Henderson2020, Patterson2021, Dodge2022]. Both Google and
Meta evaluate the impact of such optimization on their carbon footprint. At Meta, optimizations
including machine, GPUs, and low-precision data format led to an 810x reduction in operational
footprint [Wu2022]. At Google, the choice of model, data center, and specialized hardware can
reduce the carbon footprint 100 to 1000 times [Patterson2021]. Dodge et al. show that the "flex-
ible start" and "Pause and Resume" scheduling strategies can save up to 27% carbon emissions,
averaged over the year.

Global estimations To the best of our knowledge, there is no estimation of the worldwide cost of
ML as there is for ICT. The closest number we have is a company-level estimation by Google [Pat-
terson2022]. The authors estimated that 10% to 15% of Google’s total energy consumption be-
tween 2019 and 2021 was dedicated to ML-related workloads (both training and inference). Con-
sidering that the annual energy consumption of Google in 2020 was 15.4 TWh, ML-related work-
loads consumed between 1.54 and 2.31 TWh. In comparison to the total energy consumed by data
centers as provided by the IEA, Google ML-related workloads represent approximately 1%.

The IEA approached the question differently. They evaluate the impact of AI using the number

3It has been added to NeurIPS Ethics Guidelines: https://neurips.cc/Conferences/2023/EthicsGuidel
ines
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of GPUs sold by Nvidia and estimate that dedicated AI data centers will consume approximately
100 TWh in 2026 [De Vries2023, Agency2024]. They also forecast that the growth in data center
electricity consumption will increase by 29% from 2023 to 2026 of the electricity demand in the
European Union.

1.3.2 The carbon footprint of manufacturing and other hardware life cycle phases

In their review of existing estimation tools published in 2021, [Bannour2021] state that emissions
resulting from the production and end-of-life phases are unaccounted for or partially accounted
for. Since then, several studies have been published.

[Gupta2022] study the Life Cycle Assessment (LCA) of multiple user and data center devices
based on sustainability reports. They compare the share of operational and embodied carbon
footprint and they show that manufacturing can account for the majority of the hardware and
infrastructure impacts, especially since the energy efficiency of digital devices is increasing.

[Ligozat2022] propose a framework to assess the environmental impacts of AI applications
and the embodied costs with several criteria. They present how Life Cycle Assessment can be
applied to AI services and list the life cycle stages that should be considered according to the ITU
recommendation [ITU2014]. Unfortunately, they don’t apply the framework to a use case.

A study called "Sustainable AI: Environmental Implications, Challenges and Opportunities"
by [Wu2022] is the most advanced analysis by 2023 of the carbon footprint of the development
and deployment process of ML at a company level. The authors study various use cases at Meta,
mainly recommendation models that run daily. They are the first to project the embodied carbon
cost to Large-Scale ML tasks with a time-based allocation. They show that at Meta the manufac-
turing cost corresponds to half the operational cost thus a third of the global carbon footprint. Data
from Meta’s research training infrastructure show that the GPU utilization stays between 30% and
50% when the utilization should be maximized to amortize the embodied footprint.

[Dodge2022, Morand2024] include the embodied footprint in their tool.
The analysis of the footprint of training BLOOM [Luccioni2023b] includes the embodied cost,

allocated with a time-based approach. The authors find that the embodied cost represents 22.2%
of the total carbon footprint. They additionally compute the exact additional consumption due
to running the data center infrastructure, encompassing more elements than the PUE would, and
discover that it corresponds to 28.9% of the total footprint, leaving a bit less than 50% to the
dynamic use of the compute nodes.

Unfortunately, few recommendations are provided on how to reduce the embodied impact of
AI. AI companies still buy large amounts of AI-specialized computing nodes and manufactur-
ing companies continue to design new chips without any proper evaluation of the corresponding
carbon footprint and other environmental consequences.

1.3.3 Impacts of inference phase and deployment

The effect of the inference phase on the environment has long been discarded and dimmed in-
significant as regards the effect of training. The large-scale deployment of popular chatbots such
as ChatGPT marked a shift in this, attracting scientific interest. Performing one inference has sig-
nificantly less impact than training. It is the scale in the number of inferences that is beginning to
have a significant impact, thus the behavior of users now has importance.

Both articles from Google [Patterson2022, Patterson2024] and Meta [Wu2022] have provided
statistics for their companies. At Google, inference represented 60% of ML energy use for the
three years they studied. Meta published that inference accounted for two-thirds of the company’s
ML footprint. [Patterson2022] cite statements from Amazon Web Services claiming the share of
inference in ML workloads could go up to 90% among their consumers [Leopold2019,Barr2019],
but without information on how this would translate in terms of energy footprint.
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While analyzing the cost of BLOOM, [Luccioni2023b] conducted an experiment to estimate
the energy and carbon impact of deploying the model on Google Cloud. Over 18 days, the compute
nodes handled 230,768 requests, consuming 3.960 kWh and 1.4 gCO2eq per request. The service
would have to run for more than 7 years with a similar workload to be equivalent to the training
cost.

Improving the energy efficiency of inference is a large area of research, but those articles
suggest that the rebound effect might counterbalance its gains.

1.3.4 Electricity consumption and carbon emissions of the training phase in edge
devices and Federated Learning

The impact of bringing ML to the edge has also been studied. Application-level analyses propose
methodologies on how to estimate the energy consumed by Federated Learning [Savazzi2021].
Studies compare centralized, federated, and distributed learning settings on various applications:
image classification models [Qiu2021, Qiu2024], speech detection [Qiu2024], LLMs [Wu2022],
reinforcement learning [Savazzi2022a] and continual learning [Savazzi2022a]. In conclusion,
bringing ML to the edge doesn’t systematically enable saving in terms of energy consumption
or carbon emissions. It depends on the number of rounds and the efficiency of hardware and
communication [Savazzi_2022b].

On the opposite, a recent study from Patterson et al. [Patterson2024] shows that FL can emit
100 times more carbon than CL, at Google scale. The authors define an equivalent of the PUE
for smartphones, calling it the charger PUE (CPUE). They found it was as high as 3.1. Moreover,
one case study suggests that training on devices also uses 12 more energy than training in the data
center. From a different perspective, ML energy use was less than 3% than the global energy use
of smartphones.

As in learning algorithms, FL brings new challenges in reducing the environmental impacts of
ML. Edge devices have a more significant embodied footprint while being under-utilized during
their lifetime which makes it harder to amortize. They may have less access to renewable en-
ergy. Short lifespans due to planned obsolescence or rapid technological advancements lead to a
constant stream of electronic waste.

1.3.5 Adding more environmental impact indicators

When presenting their framework, [Ligozat2022] indicate that LCA enables other indicators of
environmental damage than carbon emissions. However, none of the previously mentioned stud-
ies include another indicator. This focus on carbon emissions can be harmful if it hides other
significant impacts such as rare metal depletion or the stress induced by increased water demand
at specific locations. While renewable energy and data centers with a lower carbon electricity mix
can reduce the carbon footprint of computations, the shift can increase other impacts.

To the best of our knowledge, "TinyML" [Prakash2023] is the only study with a multi-criteria
analysis (climate change, water demand, freshwater eutrophication, photochemical oxidant for-
mation), but it’s applied to microcontrollers which mostly process data and perform inference,
and are rarely used for training. It is interesting to notice that energy consumed during device
production is one of the most significant parts of each impact. Extracting raw materials demands
the most water and the usage phase represents less than 10% of total impact, except for freshwater
eutrophication.

Additionally, none of the existing studies convert electricity into primary energy, omitting the
transformation cost.
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1.4 Research challenges and objectives

A strong assessment methodology should enable developers to find leverages to reduce the
impacts, in the usage phase as well as in the choice of computing infrastructure. Such a methodol-
ogy should not be specific to an application domain but should apply to any ML model. Focusing
on Greenhouse Gas (GHG) emissions might be important to address climate change, but a more
holistic approach that considers the full range of environmental impacts is essential to designing
truly sustainable digital services.

This thesis focuses on the training phase of machine learning, as it presents the most significant
opportunity to reduce the environmental footprint through careful computing infrastructure design.
Compared to the inference phase, where deployment constraints often limit infrastructure choices,
the training phase allows for greater flexibility in selecting the most environmentally friendly
hardware and software configurations.

This thesis aims to address these challenges with the following objectives:

• Proposing a methodology to assess more environmental impacts of both the usage and em-
bodied phase of training ML models.

• Applying this methodology to state-of-the-art ML models and various sizes of ML infras-
tructures to compare them.

• Providing a deeper understanding of the electricity consumption of ML training when in-
frastructures become more diverse and complex.

Experiments presented in this thesis were carried out on several clusters. The Champollion
cluster was designed by HPE and made available to us thanks to Bruno Monnet through col-
laboration with MIAI. The Grid’5000 / Slices testbed is supported by a scientific interest group
hosted by Inria that includes CNRS, RENATER, and several Universities as well as other orga-
nizations 4. This work was funded by MIAI (ANR19-P3IA-0003) and the BATE project (BATE-
UGAREG21A87) of the Auvergne Rhône-Alpes French region.

1.5 Contributions

The development of the methodology and its application on several models and infrastructures
led to the following contributions:

• A methodology to assess the global warming potential, the primary energy, and the abiotic
depletion potential of the training phase of a model life cycle, including the embodied cost
of the computing infrastructure.

• A quantitative and qualitative comparison of existing electricity measuring tools.

• An analysis of the electricity consumption of training ResNet-50, 3D U-Net, Mask R-CNN,
RNN-T, BERT-large, and DLRM on an Apollo 6500 Gen10+ node and of training ResNet-
50 on an Nvidia Jetson AGX Xavier.

• An analysis of the embodied impacts of both infrastructures and a comparison of the usage
phase with the allocated embodied impacts.

4https://www.grid5000.fr/

15

https://www.grid5000.fr/


Chapter 1. Introduction

• A comparison between such infrastructures, in terms of electricity consumption and envi-
ronmental impacts.

During this thesis, I had the opportunity to publish articles in peer-reviewed conferences and
journals. They are detailed in Appendix A.

1.6 Content

This thesis is organized as follows:

• Chapter 2 covers our proposed methodology. It presents the computing infrastructure and
the ML models on which we applied the methodology.

• Chapter 3 provides background knowledge on how to measure the electricity consumption
of computing infrastructures and a qualitative and quantitative assessment of a selection of
software-based power meters.

• Chapter 4 analyses the electricity consumption of training the model we selected. It gives an
overview of power profiles and utilization metrics and studies the relationship between the
electricity consumption and the model parameters, the accuracy and the number of nodes.
Assessing the Apollo node and the Jetson node on the same use case enables a comparison
of their energy efficiency.

• Chapter 5 estimates the embodied impact of the computing infrastructures and allocates
them to the training phase of the models. A comparative analysis is made.

• Chapter 6 discusses the results presented in the previous chapters and puts them into per-
spective.
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We propose a methodology to evaluate the environmental impact of training Machine Learning
models, with the following characteristics:

• Versatile: it can be applied to any computing infrastructure and ML model training.

• Reproducible: Experimental settings ensure that no extra phenomena affect electricity con-
sumption and environmental estimations are based on open-sourced databases.

• Insightful: It enables the developer to find reduction leverages.

To do so, we get inspiration from a methodology standard called Life Cycle Assessment
(LCA). LCA is a technique for assessing the environmental aspects associated with a product
over its life cycle. It is defined by ISO standards (ISO 14040 1 and 14044 2) and by a specific
methodology standard for ICT goods, network, and services from the International Telecommuni-
cation Union (ITU) [ITU2014]. It has the advantage of enabling multi-criteria assessment and the
inclusion of all the life cycle phases and all the relevant impacts a product or a service can have.
Its most important goals are to permit an analysis of phases with improvement potentials and com-
parisons between products or services. This is especially important to evaluate if the digitalization
of services leads to a reduction of impacts [Rasoldier2022].

LCA consists of 4 main stages:

• Define the perimeter, or Functional Unit (FU), of the assessment. For example, it can be
performing one inference of an AI model.

• The Life Cycle Inventory (LCI): List the material and energy flows and their interaction
with the environment. Determine the most relevant impact categories. In AI, one must
consider all development phases (model selection, model training) and the equipment used
to perform them.

• Assess every impact category for the FU.

• Review hypothesis with sensibility analysis.

The chapter starts by presenting the scope of methodology (Section 2.1). Section 2.1.2 de-
tails the experimental setup and data collection process required for the methodology to be both
insightful and reproducible. Section 2.1.3 is focused on LCI modeling and impact categories.

To illustrate the versatility of our approach, we apply it to two distinct computing infrastruc-
tures and 6 models from every major discipline. We selected infrastructures designed for AI: an
HPC infrastructure and an edge device, and we describe them in section 2.2. Through this com-
parative analysis, we highlight the methodology’s potential to assess the footprint of infrastructure
for AI workloads. The ML models we selected are detailed in section 2.3. We picked models from
the MLPerf training benchmark suite since it represents state-of-the-art models from every major
discipline. Section 2.4 presents the Functional Units for each model and infrastructure that will be
assessed in this thesis.

1https://www.iso.org/fr/standard/37456.html
2https://www.iso.org/fr/standard/38498.html
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2.1 Methodology

2.1.1 Scope

The life cycle of an AI model can be decomposed into many phases. First, data needs to be
collected, processed, and eventually labeled. Then, the model is selected and trained on the data.
Finally, the model is deployed such that users can access it. Each phase has an impact, as it was
presented in Chapter 1.

In this thesis, we evaluate the electricity consumption and environmental impact of the training
phase of an ML model. This training is performed until a given quality is reached on the validation
dataset.

We assume that a model and a dataset have already been selected, that the dataset has been
processed, and the hyper-parameter search has already been conducted. Thus data collection, data
processing, model selection, hyper-parameter search, and model deployment and inference are
outside of the scope of this methodology. Figure 2.1 shows the scope of our methodology in the
ML model life cycle.
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Figure 2.1: Scope of the methodology in the ML model life cycle.

The quality of the model on the validation dataset is the main performance metric of a model.
It provides an estimate of how well the model will perform on real-world data and can be used
to compare multiple models. Fixing the quality enables fair hardware performance comparisons
across infrastructures.

Both the OPEX and CAPEX costs are included in the environmental assessment. The scope
is retricted to the direct effects. We consider that the computing node is not shared during the
execution and that the training uses every component it contains.

The scope encompasses the infrastructure that was used to perform the training. That includes
the computing node, the rack that contains it, the power supply but not the networking components,
the support devices of the data center, and the cooling infrastructure. Storage is also outside the
scope of our methodology. Most studied [Strubell2019, Luccioni2023b] take into account useful
equipment outside of the computing node using the Power Usage Effectiveness (PUE), but we
decided not to include them to simply to the CAPEX phase impact evaluation.

The functional units are detailed specifically for each use case studied in the thesis in Sec-
tion 2.4. To enable fair comparison, FUs should be evaluated on a year of reference.

2.1.2 Experimental setup and data collection for the measure of electricity con-
sumption

The operational phase of training ML models has a growing impact. As shown in Chapter 1, both
the Thermal Design Power (TDP) and the training time of training ML models are increasing over
time. As a consequence, so does their electricity consumption.

ML nodes consist of several components working together to train models. Storage holds
the dataset and periodically sends data batches to local RAM. This data is then transferred to
GPUs for intensive computations. The CPU plays a crucial role in managing the training process,
including data preprocessing and model compilation. Interconnect refers to the communication
pathways connecting these components. Key interconnect technologies include PCIe, NVLink,
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and InfiniBand, each offering varying levels of bandwidth and latency. High-bandwidth, low-
latency interconnects are crucial for accelerating data transfer between CPUs, GPUs, and memory,
significantly impacting training performance. Understanding the electricity footprint of a node
requires careful monitoring of all those components.

How the electricity consumption is measured matters. The power consumption should be
monitored at a frequency high enough to be able to capture the evolution of the power of each
component of the node. Each of those criteria can bring different insights that are necessary to
find leverages in energy reduction, especially if they can be correlated to the implementation of
the training algorithm or the model characteristic.

Reproducibility is a key ingredient of this methodology because electricity consumption is
highly variable and influenced by factors such as external temperature. To accurately study this
metric, experiments must be rigorously reproduced multiple times. An idle period of at least 30
seconds between experiments is essential to ensure power consumption returns to a baseline level
before starting the next trial. Power profiles can vary slightly between nodes, even for identical
systems. The experimental setup should involve a single node or a fixed set of nodes.

In Chapter 3, we compare existing measuring tools on many criteria, and notably on those
aspects, to be able to select the one that best suits our needs.

We collect the evolution of validation and train loss and quality from the AI training. The
frequency must be set such that their evolution can be studied regarding electricity consumption.

2.1.3 Estimating the embodied cost associated with the model training phase

As it was mentioned in Chapter 1, the embodied (or CAPEX) impact of ICT devices is significant
and needs to be included to assess the environmental impact of a service. The embodied impact of
computing infrastructures can be estimated from databases like Boavizta 3.

ML nodes that perform training are most of the time used for more than one training or for
another ML workload. Associating the whole embodied impact of the node to one training would
be exagerated. Attributional Life Cycle Inventory (LCI) is an LCI model that allocates each im-
pactful process from the life cycle of a service. It is known to have fewer uncertainties than the
consequential approach while being easier to implement due to the availability of databases. An
allocation key must be defined to assign the impacts to a specific service. In the case of ML
training, we consider that the computing node is dedicated to the service for the entire execution.
Therefore, we use a time-based allocation, as in Equation 2.1.

Allocated impact = Embodied impact⇤ Execution Time
AUR⇤Total lifetime

(2.1)

With AUR the Average Utilization Rate being the portion of the equipment lifetime during
which it was actively used as opposed to idle or underutilized. The AUR is a hypothesis that might
be different depending on infrastructure.

We express the environmental impacts into three categories [Simon2024]:

• Primary Energy (PE), in mega Joule (MJ). It represents the cumulative energy consumption
of a system, including all energy sources used directly or indirectly from extraction to end-
use.

• Global Warming Potential (GWP), in equivalent C02 emission (kg CO2 eq), that evaluates
the contribution to climate change.

• Abiotic Depletion Potential (ADP) of minerals and metals, in equivalent antimony (kg.Sb.eq),
that represents the increase in scarcity of minerals and metals resources.

3https://datavizta.boavizta.org/
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These 3 categories encompass the most significant environmental concerns associated with
digital technologies [Benqassem2021]. Primary Energy (PE) consumption, though not a direct
measure of environmental impact, is a critical sustainability indicator. This is because limited
energy resources can indirectly contribute to various environmental issues. Increasing the stress on
electricity grids can lead to the usage of electricity production site emitting more equivalent CO2
per kWh or to the installation of additional electricity production sites that can have a significant
impact of the local environment, biodiversity, and communities. PE also includes industrial heat
cost.

Water Usage is another consideration for AI’s environmental footprint. However, including a
water consumption metric is currently hindered by a lack of reliable data [Li2023]. Additionally,
water’s impact is highly contextual. "When and Where" water is withdrawn significantly affects its
environmental significance. One liter used in a drought-stricken region has a much greater impact
than one used during a rainy season with plentiful resources [Li2023].

For the operational impact of ML training, we convert the electricity consumption to PE to
account for energy used in the electricity production process. The impact factors of electricity
were published in the ADEME database 4. We recommend using location-based impact factors.

2.2 Infrastructures

To apply our methodology, we selected two infrastructures that were designed for ML training.
Champollion is an HPC platform while Jetsons are edge devices. They are representative of typ-
ical AI environments. Notably, Champollion is an AI cluster with similar capabilities as clusters
that are used to train Large Language Model (LLM)s, in terms of computational power, memory
capacity, and network bandwidth. Jetson nodes are designed to be embedded devices thus their
electricity power consumption is low while their computational capabilities enable them to run AI
applications like object detection in self-driving cars. Both infrastructures have potential to reduce
the footprint of AI workload. On one hand, Champollion is energy efficient but on the other hand,
a Jetson node has a low power consumption. Depending on the application, it is not clear which
infrastructure consumes more energy. Due to this open question, they are relevant choices for
this thesis. Additionally, their differences in software stack, computational capabilities, and power
consumption show that our methodology can be applied to different infrastructures.

We had the chance to be able to experiment on the Champollion cluster thanks to a collabora-
tion between HPE and MIAI. The Jetson cluster was available on the Grid’5000 testbed.

This section describes the specifications of the Apollo 6500 Gen10+ nodes of the Champollion
cluster and of the Nvidia Jetson AGX Xavier node.

2.2.1 HPC: the Champollion cluster and its Apollo nodes

Champollion is a supercomputer designed by HPE. It was ranked 370 on the Top5005 in June 2023
which ranks supercomputers by their ability to run the Linpack benchmark (solve a set of linear
equations) and 13 in the Green500 6 which ranks them by their energy efficiency. In June 2024,
Champollion was ranked 451 on the Top500 and 22 on the Green500. Its specifications can be
found in table 2.1. The cluster consists of 20 nodes connected with 8 Mellanox HDR Infiniband
switches. The inter-GPU communication is operated by the NVLink technology. Appendix C

4https://base-empreinte.ademe.fr/
5https://www.top500.org/system/180073/
6https://www.top500.org/lists/green500/list/2023/06/
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presents the schema of the Champollion organization. The cluster performance theoretical peak
is 2.52 PFLOPS (1015 FLOPS) and its power consumption was measured to be 60.20 kW on the
Linpack benchmark. Its energy efficiency and similarity to computing infrastructures used to train
the most well-known models like GPT make Champollion a relevant infrastructure for this study.

Node model Apollo 6500 Gen10+

Number of nodes 20

GPU model NVIDIA A100-SXM-80GB

Number of GPU per node 8

GPU TDP (W) 400

CPU model AMD EPYC 7763 64-Core Processor

Number of CPU per node 2

CPU TDP (W) 280

Memory 1 TB

Switch model Mellanox HDR Infiniband

Number of switch 8

Switch power consumption (W) 375

Installation year 2022

Table 2.1: Champollion characteristics. TDP: Thermal Design Power; W: Watt

The nodes have access to various storage options. Each node has 3 TB available through
local nonvolatile memory express (NVMe) interfaces. A Parallel File System Storage (PFSS) and
Clusterstor E300 can be used to store the datasets.

For simplicity, a node from the Champollion cluster will be referred to as an Apollo node in
the remainder of this thesis.

2.2.2 Edge: Jetson

We relied on nodes from the Estats cluster of the large-scale test beds for experimental research
called Grid’5000 [Balouek2013]. This cluster was selected because its nodes have similar com-
putational capabilities as embedded devices specialized for AI training. On top of that, it was
designed to consume low power with power modes from 10 W to 30 W. The energy consumption
of the Nvidia Jetson serie and leverages for energy reduction has been studied [S.K2022].

The specifications of this cluster can be found in table 2.2. Appendix C show a picture of one
node. Each node has access to a 2 TB Solid State Drive (SSD) available through local NVMe
interfaces.

Table 2.3 shows the theoretical performances of a Jetson node.
For all experiments, we used Ubuntu 20.04 as available on the Grid’5000 testbed. In order to

increase consumption stability and the consistency of our results, we have set the CPU frequency
to the maximum supported. We also installed an Nvidia GPU driver when relevant, with default
power management configuration.

For simplicity, an Nvidia Jetson AGX Xavier node will be referred to as a Jetson node in the
remainder of this thesis.

23



Chapter 2. Methodology, Infrastructures, and Machine Learning Training Benchmark

Node model Nvidia Jetson AGX Xavier

Number of nodes 12

GPU model NVIDIA GV10B, Volta architecture

Number of GPU per node 1

CPU model Nvidia Carmel (Carmel), aarch64, 8 cores

Number of CPU per node 1

Memory 32 GB

TDP (W) 30

Installation year 2023

Table 2.2: Jetson characteristics. TDP: Thermal Design Power; W: Watt

FP16 (half) 2.820 TFLOPS (2:1)

FP32 (float) 1,410 GFLOPS

FP64 (double) 705.0 GFLOPS (1:2)

Table 2.3: Theoretical performance of a Jetson node

2.3 A Machine Learning Training benchmark: MLPerf

As it was said in the Chapter 1, ML has radically changed since it was first introduced in
the 1950s. Appendix B presents the mathematical foundations of ML (Section B.1) and Neural
Networks (NN) (Section B.2). It introduces key concepts of ML that are used in this thesis. ML
applications are numerous and diverse thus we selected a benchmark representing most of those
applications.

MLPerf is a consortium of major commercial and academic organizations created to design
a benchmark suite for deep learning to fairly evaluate system performance. The suite has several
benchmarks from HPC training to tiny inference. We focus here on the MLPerf training suite. It
covers a broad and diverse range of applications and is updated twice a year to stay up to date,
which makes it compatible with a study of the power and energy consumption of training state-
of-the-art AI models. The benchmark code is open source and the implementation and training
procedures are precisely defined to ensure reproducibility and fair comparison of systems, which
aligns with our methodology guidelines.

For this thesis, we chose models from three major areas of ML. Computer Vision is a field
that aims at mimicking the human visual system. This includes processing digital images, under-
standing their content, and delivering useful and relevant information. The most common tasks
in computer vision are classification and detection. Self-driving cars and medical image diagno-
sis are two of the numerous applications of computer vision. Convolutional Neural Networks are
now the reference in image processing and are used for both image classification and semantic
segmentation. Appendix B.3 describes such networks. Natural Language Processing (NLP) fo-
cuses on understanding, manipulation, and generation of natural language by machines. Question
answering and machine translation are two examples of NLP tasks. Language is more complex
than images in the sense that there is an order and organization in a sentence that needs to be
taken into account. Appendix B.4 presents Transformer, a model architecture that is used by
most NLP model. Recommendation is another significant field whose goal is to suggest con-
tent or products based on amassed user data, such as purchase history, clicks, conversions, and
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demographics. Recommendation systems are ubiquitous in our daily digital lives, influencing ev-
erything from the products we see on e-commerce platforms to the music we listen to on streaming
services. The amount of data for recommendation use cases has roughly doubled between 2019
and 2021 [Wu2022].

We selected 6 out of the 8 benchmarks available in April 2022 to represent most applications
and models. The list can be found in table 2.4. At the time this thesis was published, the MLPerf
Training Benchmark Suite included 16 models.

Area Benchmark Model Dataset Quality Target

Vision Image classification ResNet-50 v1.5 ImageNet 75.90% classification

Vision Image segmentation (medical) 3D U-Net KiTS19 0.908 Mean DICE score

Vision Object detection (heavy weight) Mask R-CNN COCO 0.377 Box min AP and 0.339 Mask min AP

Language Speech recognition RNN-T LibriSpeech 0.058 Word Error Rate

Language NLP BERT-large Wikipedia 2020/01/01 0.72 Mask-LM accuracy

Commerce Recommendation DLRM Criteo 1TB Click Logs 0.8025 AUC

Table 2.4: Characteristics of the selected models

The following sections briefly present each model.

2.3.1 Image classification: ResNet

Image classification is the process of assigning a label or category to an entire image based on its
visual content. It has a wide range of application, from moderation in social media to detecting
diseases in medical imaging.

A challenge called ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus-
sakovsky2015] was held every year from the database creation year in 2009 until 2017 to en-
courage research in computer vision. A dataset of the same name was made public to support
the challenge. ImageNet is a unique database with more than fourteen million images annotated
for classification and detection in more than twenty thousand categories. The challenge stopped
with its last winner reaching a top-5 error of 2.251%. To put those results in perspective, a hu-
man/computer performance comparison was made [Russakovsky2015]. A trained human achieved
a top-5 error of 5.1% on a selected dataset.

ResNet was one of the breakthroughs from the ImageNet challenge, achieving a 3.57% error in
2015. Developed by Microsoft, ResNet is based on residual blocks which are convolution blocks
with an identity shortcut connection [He2015]. It was thought to deal with the degradation of the
training accuracy when adding layers. Previously, one of the greatest challenges when increasing
the depth of a neural network was the problem of vanishing gradient. During back-propagation,
gradients of parameters are computed thanks to the chain rule. Yet parameters have values between
0 and 1. By multiplication, gradients only decrease. After a certain number of layers, the model
stops learning because the gradient update of the parameters is too low.

ResNet can learn to bypass a block if it increases its performance, conforming to figure 2.2a.
Therefore it can’t have lower performance than if there were no blocks. As a consequence, the
developers were able to add hundreds of layers, and the model was still learning and improving
its accuracy. The increase in the number of parameters means that the computation cost becomes
more significant.

2.3.2 Object detection and Image Segmentation: Mask R-CNN

Segmentation is another major area of computer vision. It refers to the task of dividing the im-
age into segments representing different objects. There exist two levels of granularity within the
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(a) Residual block [He2015]. Relu (rectified linear unit) is
an activation function. (b) Squeeze-Excitation block [Hu2019].

Figure 2.2: Examples of novel architecture blocks

process of segmentation, namely, instance and semantic segmentation. Instance segmentation will
identify each object as one instance, even if they belong to the same class of objects such as pedes-
trians in a traffic surveillance image, while semantic segmentation will classify all the pixels into
a set of previously defined classes.

Convolutional Neural Network (CNN)s, as it was used in the Handwritten digit recognition
problem, ended with a linear output that loses the spatial information. However, in semantic seg-
mentation, each pixel of the original image needs a probability of belonging to a certain class.
Region proposal networks perform well on segmentation tasks and Mask R-CNN is one of the
best versions of this kind of model, outperforming previous state-of-the-art models in instance
segmentation, bounding box object detection and person keypoint detection in the COCO (Com-
mon Objects in Context) 2016 challenge [He2017].

Mask R-CNN was published in 2014 by Ross Girshick from Facebook AI research [He2017].
It is an extension of Faster R-CNN which is a region proposal network (RPN) method for object
detection. Two main steps compose this sort of method: a proposition of a region of interest (ROI)
and the evaluation and selection of this proposed ROI. A schema of the architecture can be found
in figure 2.3a.

First, a classic CNN such as ResNet produces feature maps that are given to the RPN. Thus
instead of going through all the possible regions from raw input, it only scans the features, reducing
the complexity. The RPN produces two outputs: the class of the region (object or background)
and the offset (coordinate) of the bounding box.

The second stage is a refinement of those outputs. ROI alignment exists because the proposed
regions come from various scales when the input of the following fully connected layer needs to
have a fixed size. To produce a segmentation mask, the output also needs to have the same shape as
the original input. Through a pooling layer and interpolation, the ROI is resized. Then, in parallel
to predicting the class and the box offset, Mask R-CNN produces a binary mask thanks to a Fully
Convolutional Network (FCN).

2.3.3 Object detection and Image Segmentation: 3D U-Net

One of the issues of Mask R-CNN is the loss of context. Indeed, when an ROI is selected, all the
surrounding information is not taken into account to produce the mask. U-Net offers a solution
to this challenge. It was published in 2015 [Ronneberger2015]. It is composed of a several-
level contracting path and a corresponding expansive path (U shape), as can be seen in Figure
2.3b. The contracting path uses FCN and pooling layers to produce several levels of feature maps.
The expending path up-samples features maps and concatenates them with the ones from the
contracting path. This is what allows the model to keep context information and to have the best
performances in biomedical images where the context is essential.

In biomedical image segmentation, U-Net is the most used model [Ghosh2019].
For 3D U-Net as defined in MLPerf, the filter sizes of the convolutional layers are 256, 128,

64, 32, and 16 in the contracting path order. In the expanding path, the decoder blocks are up-
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(a) Architecture of Mask R-CNN [Ghosh2019] (b) Architecture of U-Net [Ronneberger2015]

Figure 2.3: Segmentation model architectures

sampled instead of transposed, which means that inputs are resized by interpolation and that no
additional weights are learned.

2.3.4 Language understanding: BERT

The first critical step in NLP is to make language understandable in a numerical way. Words
are embedded into dense vector representations that words with similar meanings are close in the
representation space. This is done by minimizing the context distance between words. Encoding
information is an unsupervised task and thus can be used on a large unlabeled corpus. Additionally,
resulting models can be easily applied to many tasks relying on natural languages by adding layers
and fine-tuning thus reducing the computational cost.

Figure 2.4: Pre-training and fine-tuning procedures for BERT.

BERT was published by Google Brain in 2019 [Devlin2019]. It stands for Bidirectional En-
coder Representations from Transformers. It is composed of two parts, as can be seen in Fig-
ure 2.4: Pre-Training and Fine-Tuning. Pre-Training is unsupervised and consists of two steps.
First, it randomly masks words in the text and trains BERT to predict the masked word based on the
surrounding context. This helps BERT understand the meaning and relationships between words.
Secondly, it takes pairs of sentences as input and trains BERT to predict if the second sentence
follows the first sentence logically. This helps BERT understand the flow and connection between
sentences. The other particularity of BERT is that it is bidirectional. Instead of going through
the sentence from left to right, it gets context from both the words on the right and the left of the
given token. It is one of the main differences between BERT and Generative Pre-trained Trans-
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former (GPT) [Radford2018]. BERT is known for its strength in tasks like question answering
and sentiment analysis, while GPT-3 excels at creative text generation.

MLPerf includes BERT-Large. BERT-Large consists of 24 layers with 1024 Transformer
blocks and 16 self-attention heads. In total, it has 340 million parameters.

2.3.5 Speech Recognition: RNN-T

Speech Recognition allows computers to convert spoken language into text. Examples of appli-
cations are virtual assistants and automatic transcription. Although related to language under-
standing, speech recognition has several characteristics that make it hard to directly use models
presented before. First, it is monotonic, meaning that inputs and outputs should somehow be
aligned. Speech Recognition models are often run online and need a low latency.

RNN-T stands for Recurrent Neural Network Transducer [Graves2012]. It was published by
a researcher from the University of Toronto in 2012. It relies on a Prediction Network and a
Transcription Network. The prediction network is a LSTM layer that attempts to model each
element of the input given the previous ones while the transcription network is the encoder of the
input, as can be seen in Figure 2.5a. A joiner was added in follow-up work [Graves2013] as a fully
connected layer that takes both network outputs as inputs. The need to compute probabilities for
each possible alignment leads to a significant memory consumption in training [Lugosch2020].
However, this is not the case for inference, making RNN-T faster than attention-based models.

(a) Architecture of RNN-T [Graves2013]. (b) Architecture of DLRM [Naumov2019].

Figure 2.5: Architectures of RRN-T and DLRM.

2.3.6 Recommendation: DLRM

DLRM was developed by Facebook (now Meta) and published in 2019 [Naumov2019]. It is cur-
rently deployed at the scale of the company and continuously trained with user data. Inspired
by matrix factorization, it uses deep learning to enhance its performance. Figure 2.5b shows a
schematic view of the different blocks DLRM is composed of. Embedding is used to reduce the
dimensionality of user and product data. Interactions between features and clients are inspired
by matrix factorization and are referred to as "Factorization machines". This is done by taking
the dot product between all pairs of embedding vectors and processing dense features. Several
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Multi-Layer Perceptrons (MLP) are added to help process data. DLRM is known for the signifi-
cant number of learnable parameters, but also its parallelizable characteristics. Meta uses model
parallelism for the embeddings and data parallelism for the MLPs, resulting additionally in heavy
communication costs. DLRM consists of both a bottom MLP for processing dense features con-
sisting of three hidden layers with 512, 256, and 64 nodes, respectively, and a top MLP consisting
of two hidden layers with 512 and 256 nodes. DLRM has approximately 540M parameters.

2.4 Functional units

A functional unit (FU) describes a quantity of a product or the quality of a service based on
the expected performance it delivers in its end-use application. The performance criteria in the
ML training case is the model’s quality on the validation dataset. In this thesis, we define 6 FUs,
one for each model described in Table 2.5. For a fair comparison, FUs should be assessed against
a single reference year. Models are initialized with random weights before the training starts.

ResNet-50 Train ResNet-50 on ImageNet until it achieves a 75.90% classification accuracy.

3D U-Net Train 3D U-Net on KiTS19 until it achieves a 0.908 Mean DICE score.

Mask R-CNN Train Mask R-CNN on COCO until it achieves a 0.377 Box min Average Precision
and a 0.339 Mask min Average Precision.

RNN-T Train RNN-T on LibriSpeech until it achieves a 0.058 Word Error Rate.

BERT Train BERT-large on Wikipedia 2020/01/01 until it achieves a 0.72 Mask-LM accu-
racy.

DLRM Train DLRM on the Criteo 1TB Click Logs until it achieves a 0.8025 Area Under
ROC Curve (AUC).

Table 2.5: Functional unit

Each FU is evaluated on an Apollo node. The ResNet-50 FU is evaluated on both an Apollo
node and a Jetson node to enable a comparison of both infrastructures. The systems are limited to
the computing node used to perform the training.

The BERT FU is assessed when run on 1, 2, and 4 Apollo nodes, to study the effect of multi-
node learning on the electricity consumption.

Chapter 3 compares tools that can be used to measure the electricity consumption of a comput-
ing node and selects one suitable for our methodology. For each FU, the electricity consumption
as defined in Section 2.1.2 is studied in Chapter 4 while the environmental indicators presented in
Section 2.1.3 are assessed in Chapter 5.
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Accurately determining the environmental impact of AI training demands precise measure-
ment of the electricity consumed by the underlying computing infrastructure. This thesis proposes
a methodology based on precise power and energy measurements, necessitating a tool capable of
high frequency and accuracy. To provide valuable insights, the tool needs to collect and analyze
data at a finer level of detail. The purpose of this chapter is to give an overview of computing
infrastructure electricity measurement, to compare existing measuring tools, and justify our tool
choice.

This chapter builds upon joint work presented in [Jay2023]. While the experimental results
and analysis presented here are the author’s contributions, the majority of the text was co-written.
The study, originally conducted in 2022, has been updated to incorporate the tool employed
throughout this thesis. Tools that did not report GPU metrics and Energy Scope, due to its lack of
a public version control system and associated reproducibility and transparency concerns, were
excluded.

The most mature and less intrusive way to measure the power consumption of a computing
node is through the use of physical power meters. However, they require the deployment of an
additional measuring infrastructure. In addition, data must be collected and made available using
specific software often imposed by the power meter supplier. Finally, a physical power meter only
measures the overall consumption of the computing node. It does not detail the consumption of
the various components or services launched on this computing node.

On the other hand, numerous power models and internal interfaces have been developed in
order to provide consumption metrics at multiple levels. They are able to provide energy con-
sumption data with granularities ranging from the overall consumption of the computing node to
the consumption of a single operating system process. Moreover, these technologies are already
available or can be implemented on already existing systems, not requiring any additional financial
investment or specific hardware setup.

Nevertheless, implementing power models and using these internal interfaces directly to re-
trieve power consumption metrics requires detailed knowledge of the underlying hardware being
used. A multitude of tools has been developed in order to facilitate this task. In this chapter, we
call these tools software-based power meters and divide them into three categories: energy calcu-
lators, energy measurement software, and power profiling software. Energy calculators estimate
energy consumption using thermal design power (TDP)-based modeling. Energy measurement
and power profiling software can report respectively the energy and power consumption of the
CPU (Central processing unit), DRAM (Dynamic random-access memory), and GPU (Graphics
processing unit) as retrieved from the internal interfaces. Some of them additionally implement
power models in order to give an estimation of the consumption at the level of a process, a con-
tainer, or a virtual machine. However, each tool is not equal in terms of the available feature set,
the supported sampling rates, or the quality of the estimation. We have found that it can be difficult
to choose the right tool for a specific need.

In this chapter, we study a selection of software-based power meters from various angles such
as hardware compatibility, underlying technologies used, estimation models used, intrusiveness,
quality of estimation, quality of documentation, their strengths, and their limitations. In order
to evaluate some characteristics such as the quality of the estimation and the intrusiveness, we
executed a set of benchmarks on a computing node equipped with high-precision external power
meters.

Section 3.1 details the technologies and modeling behind the tools we selected. Section 3.2
describes the tools we chose to include in the study, the qualitative criteria we compared them
with, and a comparative table. Section 3.3 presents our experimental setup. Section 3.4 shows our
quantitative results. Section 3.5 concludes the chapter.
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3.1 Background

The electricity consumption can be studied with two metrics: the total energy consumed by the
execution of a program and the evolution of the power that was consumed during the execution.
Power is the time rate of doing work or delivering Energy. It is usually expressed in Watt (W) and
energy in Joule (J). Electrical power measurement relies on two metrics: current (in amperes) and
voltage (in volts). It is characterized by Equations 3.1 and 3.2.

Energy (J) = Power (W)⇥Time (seconds) (3.1)

Power (W) = Current (A)⇥Voltage (V) (3.2)

Electricity is a well-established scientific field in which current and voltage are fundamental
concepts. Current can be measured using a coil whose magnetic field is directly affected by the
current. This effect can be evaluated thanks to the movement of a magnet, for example. This
amperemeter is in series in the circuit and the coil is placed in parallel to a shunt resistor that
enables only a small fraction of the current to be taken from the circuit, thus having close to no
impact. This is called a shunt meter. One alternative is to measure the Hall effect, as most external
power meters do. Voltage is measured similarly to the current, but the voltmeter is placed in
parallel to the circuit. Both are needed to measure the apparent power but it is possible to calculate
one from the other if the characteristics of the electrical circuit such as its resistance are known.

Computing devices are designed to work under a given power called the Thermal Design
Power (TDP). It is provided by the manufacturer and corresponds to the maximum amount of heat
that can be generated by a component under a steady workload. The TDP of a standard CPU
is around 100 W and the TDP of GPUs now reaches close to 1000 W, depending on the model.
Figure 1.3 shows the evolution of the TDP in the past decades. The power of a computing node
is continuously monitored in order to cap the hardware frequency when the power reaches the
TDP. This means that most node components are equipped with shunt meters. Values are stored in
registers and thus not directly available to the user.

This section starts by detailing how such registers can be accessed. Then it lists other tools
that can be used to measure power and energy in computing nodes. It additionally presents a
methodology to estimate power consumption based on hardware characteristics and usage mea-
surements. Ultimately, it reveals the additional power required to operate the computing node at
the data center level and how it can be calculated.

Measuring the electricity consumption of digital hardware can affect the system on various
levels, from measurements to collecting and processing the data. The overhead needs to be taken
into account when selecting a tool. The differences between tools are also due to the collection
of data. If the equipment is placed outside the motherboard, collection requires precise dating,
additional communication devices, and database implementation.

3.1.1 Hardware sensors and software interfaces

Computing node vendors and component manufacturers embed digital sensors, onboard measure-
ment circuits, and interfaces that measure the power consumption of the entire system, the pro-
cessor socket, the memory, and other computing node components. The scope and the precision
depend on the model and the manufacturer. Some of these sensors and interfaces are already
integrated into widely used computing nodes and energy consumption data is available through
performance counters or vendor-specific APIs, making this method more cost-effective and user-
friendly. For example, Intel, AMD, IBM, and Nvidia have released technologies to measure and
control the power consumption of computing node components.
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Intel CPU RAPL

The RAPL (Running Average Power Limit) interface was introduced by Intel in 2011 [David2010]
in the Intel Sandy Bridge architecture. It allows the energy consumption estimation at fine gran-
ularity with high sampling rates and the power consumption capping of various parts inside the
processor. The first implementation of RAPL used a software power model to estimate energy us-
age based on “a set of architectural events from each Intel architecture core, the processor graphics,
and I/O” [Rotem2012].
The second implementation of RAPL, introduced with the Haswell architecture, is based on fully
integrated voltage regulators and enables actual power measurement, improving the accuracy of
RAPL measurements [Hackenberg2015].
RAPL reports energy consumption and can limit the power consumption on different levels or
power domains: entire CPU socket (PKG), all CPU cores (PP0), integrated graphics (PP1), dy-
namic random-access memory (DRAM), and entire SoC (PSys). The availability of power do-
mains may vary between architectures and processor models. RAPL energy consumption reports
can be accessed through MSR (Model-specific registers). The values in these registers are ex-
pressed in energy units and represent the energy consumed in microjoules since the processor was
started.
RAPL registers have a high update frequency and low-performance overhead [Khan2018]. Their
energy counters are updated approximately every 1 ms (1000 Hz). RAPL is an always-running
interface and starts to work when the processor boots.
However, the RAPL interface lacks detailed low-level implementation documentation. Thus the
exact methodology of the RAPL calculations remains unknown. The RAPL registers are not up-
dated precisely every 1 ms [Weaver2012], have no timestamps attached [Hackenberg2013], and
are updated in a non-atomic way [Khan2018]. The RAPL registers are limited to 32 bits and can
overflow. This must therefore be taken into account when reading the RAPL values directly.

AMD APM

In Bulldozer architecture (Family 15h), AMD introduced an on-chip energy consumption estima-
tion called Application Power Management (APM). AMD APM gives an average power for the
last time frame of approximately 10 ms on the Bulldozer 4P architecture. The accuracy of APM
depends on the system configuration and on the workload. For instance, it shows highly inaccurate
power assumptions during sleep modes [Hackenberg2013].

AMD RAPL

In Zen architecture (Family 17h), AMD replaced APM with RAPL (Running Average Power
Limit) [AMD2017]. The AMD RAPL has a similar implementation to the Intel RAPL while
using different registers. Schone et al. [Schöne2021] studied the functionality and the accuracy of
AMD RAPL implementation. The accuracy study shows that this implementation is more similar
to the first software model-based Intel RAPL implementation and shows inconsistent results in
some cases.
In addition, the AMD implementation does not provide a DRAM power domain and DRAM power
consumption is not fully included in the package domain. As, depending on the input data, the
power consumption of workload may differ by more than 18% for the whole system [Schöne2019],
the lack of full DRAM power consumption reporting heavily impacts AMD RAPL accuracy for
data-dependent workloads.
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Nvidia GPU NVML

NVIDIA provides users with an API called NVIDIA Management Library (NVML) [Corpora-
tion.2019]. It provides access to GPU device metrics such as current utilization, temperature, and
power draw. According to the official documentation, the method nvmlDeviceGetPowerUsage()

returns the current power draw within an accuracy of 5% of the GPU and its associated circuitry
(e.g. memory). Retrieval of current power draw is supported by Nvidia GPUs of the Fermi gener-
ation and newer. Even if there is no information on whether the power is measured or estimated,
several works mention that it is measured from onboard sensors [Arafa2020, Sen2018].

3.1.2 Intra-node devices

Intra-node devices can be defined as equipment placed in the motherboard. These types of de-
vices include Baseboard Management Controllers (BMC) embedded in computing nodes, devices
placed between a computing node’s power supply and main board as PowerMon2 [Bedard2010],
and devices for component-level instrumentation as PowerInsight [Laros2013]. These devices can
provide accurate consumption of individual computing node components [El Mehdi Diouri2013,
Diouri2014] but need an additional financial investment and lack user-friendliness.

3.1.3 External Devices

External devices, commonly known as power meters, are not embedded in computing nodes. They
are generally positioned between the wall socket and the power supply unit of a computing node.
These devices include external power meters and Power Distribution Units (PDUs) with measuring
capabilities. Nowadays, numerous external power meters are available on the market, such as
OmegaWatt or HPE iLO intelligent power distribution units (iPDUs).

External measurement has been used for a long time, provides users with accurate power con-
sumption values, and is the only way to measure the consumption of the entire computing node.
As the measurement is purely external, this method has little impact on the measured system. This
method has drawbacks. Firstly, external devices report only the consumption of the entire com-
puting node, without any details at the level of different computing node components or running
processes. Secondly, measuring the energy consumption of large-scale systems using this solution
can be very cost-ineffective as multiple expensive devices need to be purchased. Thirdly, most de-
vices available in the market have low measurement rates, which gives too coarse-grained results
that may not be suitable for some use cases, for example profiling the power consumption of the
various phases of an application. Finally, these devices rarely provide data in a user-friendly form
as they usually use serial interfaces and need additional software to get values.

3.1.4 Usage-based modeling

With minimum information on the system, the power consumption can be modeled using the
Thermal Design Power (TDP). Components such as Intel processors may exceed the maximum
TDP for a limited amount of time when running with Turbo Boost or using Intel Advanced Vector
Extensions [Intel2023]. Despite this, the TDP value can be used as a reasonable approximation of
component power consumption at maximum use.

So, if the TDP, average CPU usage, and total execution time are known, we can use the fol-
lowing simple equation to estimate the total CPU power consumption.

Energy = TDP⇥Avg. Utilization⇥Execution Time (3.3)

This type of modeling has many advantages. It is very simple, can give a coarse-grain idea
of power consumption, and can be done offline. However, this model assumes that component
consumption will never exceed its TDP value and tends to be inaccurate for inconsistent or non-
intensive workloads.
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3.1.5 The extra power spent by computing infrastructures

Much electricity is lost from production to where it is used from loss in transportation and trans-
formation.

Digital devices rely on Alternative Current (AC) meaning that both current and voltage os-
cillate between their positive maximum and their negative symmetric. An offset between both
waves leads to a decrease in instant power and is due to the inductive or capacitive qualities of the
devices. This offset depends on devices and is called the power factor. Manufacturers provide
it. The resulting power is referred to as the real power as opposed to apparent power. Most
circuits have a power factor higher than 0.9 which can be a significant factor for energy measure-
ment. It is worth noticing that digital devices internally operate in continuous current thanks to a
converter in the power supply unit, leading to power loss as well. At the aggregated level of a data
center, [Ahmed2021] shows that the internal power supply system can consume more than 10%
of the rated IT load.

Additionally, many devices are needed for the processing unit and other useful components to
be used. This energy consumption should be taken into account as well.

The power consumption of data centers mainly comes from the compute nodes, the cooling
system, and the power supply system. The consumption of non-computing components in data
centers is represented by the Power Usage Effectiveness (PUE). It is the ratio between the total
energy consumed and the energy consumed by IT infrastructure, the perfect value being 1. Ac-
cording to the Uptime Institute Global Data Center Survey Results 2024, the average world PUE
was 1.56. However, the main data center companies report a much lower value, as can be seen in
Table 3.1.

Google Amazon Meta Microsoft

1.06-1.10 1.07-1.15 1.09 1.18

Table 3.1: Examples of PUE from data center companies in 2023, as reported by their 2023
sustainability reports.

This extra power should be taken into account by measurement tools to provide accurate met-
rics.

3.2 Software-based power meters

Most of the methods previously introduced require either specific hardware equipment or de-
tailed knowledge of the underlying hardware being used. They can’t be used as they are and
often require additional implementation. For example, integrated technologies need to be queried
and processed in order to get energy metrics. Fortunately, software packages or programs were
developed to simplify the process for the users.

3.2.1 Selected tools

We selected tools able to measure or estimate energy consumption with varying levels of granu-
larity that are suited for AI workloads relying on Graphic Processing Units. The tools are grouped
into four categories: (i) External and intra-node devices; (ii) Power profiling software; (iii) Energy
measurement software packages; (iv) Energy calculators. Each group corresponds to a specific
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purpose therefore to different requirements and setups. This section describes the most important
characteristics of those tools. The version of each studied tool is indicated in parentheses.

External and intra-node devices

We selected two power measuring devices that are available at large-scale test beds for experi-
mental research called Grid’5000 [Balouek2013], and that we used for our experiments. They are
sending data to a database using the Kwollect metric collection system [Delamare2021].

OmegaWatt has a maximum sampling frequency of 50 Hz and a precision of 0.1 W. It is
placed between the node and the power delivery device.

Baseboard Management Controller (BMC) reports the power consumption of the entire
computing node with a sampling frequency of 0.2 Hz.

Power profiling software

Such tools are able to return the power profile of a program.
Alumet (Preliminary version) [Raffin2023] is a Rust program collecting data from NVML and

RAPL for each node component and handling register overflows. The preliminary version used
in this thesis was later updated to include more features 1. A plugin API allows to extend the
capabilities of the tool. The user can build his measurement tool by selecting the plugins that suit
his needs, or by creating a new plugin with a couple of lines of code. The measurement pipeline
can be reconfigured on the fly, without restarting the agent. For instance, it is possible to adjust
the acquisition frequency in real time. It was developed to be lightweight and easily configurable.

Energy measurement software packages

Energy measurement software packages report the total energy consumed by the computing node
during the execution of the program. The three software packages we selected are all Python
packages based on Intel RAPL and Nvidia NVML interfaces. They monitor the energy consump-
tion between a start and an end pointer to insert in the code. In addition to returning the energy,
they fetch the CO2 signal from the machine location and its IP address so it can find the energy
efficiency and compute the carbon footprint. They also include the PUE if its value is available.

Carbon Tracker (version 1.1.6) [Anthony2020] was developed in 2020. It uses powercap
interface files in order to access RAPL counters and NVML python library in order to get CPU
and GPU consumption metrics. It can be integrated into a machine learning model training to
predict the energy consumed by the whole training from the training of one epoch. It assumes
that the energy consumed in one epoch doesn’t change through training. The resulting logs are
readable and can be processed by a code interface. It can be used in a Jupyter notebook.

Code Carbon (version 2.0.0) [Schmidt2021] retrieves consumption information from RAPL
files of powercap interface, Power Gadget, and NVML python library between checkpoints in the
code. It also automatically retrieves the TDP coefficient from an internal database if Intel RAPL
and Power Gadget are not available. A dashboard is available with Comet to visualize the energy
of various experiments.

Experiment Impact Tracker (version of June 4, 2021) [Henderson2020] distinguishes itself
by separating the consumption of the Python script execution process from the rest of the system.
The resulting data can be accessed by a code interface or a JSON file.

1https://alumet.dev/
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Energy calculators

Energy calculators are software-based power meters available on the web relying on TDP usage-
based modeling to compute the energy consumed by equipment.

ML CO2 impact (version of Jul 5, 2022) [Victor Schmidt] was developed for cloud-based
experiments and only supports one piece of equipment at a time. The required parameters are
hardware type, hours used, cloud provider, and region of computing. Only the most common
hardware type is in its database. By selecting "private provider", you can fill in the carbon effi-
ciency of your equipment and region and the percentage of carbon offset. However, you can only
select one piece of equipment at a time.

Green Algorithms (version 2.2) [Lannelongue2021] relies on more parameters and provides
the user with more metrics than the carbon footprint: runtime, type of cores, number of cores,
model, memory available (in GB), platform used for the computations (cloud provider, personal
computer, local server), region, usage factor of the CPU, power usage effectiveness (PUE) if local
server was selected, and pragmatic scaling factor. The last item is the number of times the ex-
periment was run, to account for example for hyper-parameter search in machine learning model
training. This calculator provides the user with various metrics such as the carbon footprint, the
energy needed, the number of tree months to sequester the carbon emitted, and the equivalent
number of kilometers in driving a car or flying in a commercial plane.

3.2.2 Other available tools

perf, PowerAPI [Spirals2020] and Scaphandre (version 0.4.1) [Petit2020] are power profiling
software that were included in the study but don’t report GPUs metrics. nvidia-smi, Likwid,
[Gruber2021] PowerTOP, and powerStat are command line tools difficult to use to understand
the energy consumption of a program. powermetrics and Intel Power Gadget are supported only
by MacOS or Windows operating systems. PAPI [Weaver2012] is an interface to power-related
performance counters. Other tools such as PyJoules [Spirals2019] and Cumulator are Python
packages highly similar to those studied in this work. Kepler is another promising software-based
power meter developed to work exclusively in the Kubernetes environment, which is beyond the
scope of this work.

3.2.3 Comparison criteria

We describe the various criteria we used to qualitatively compare the selected software-based
power meters in Table 3.2. Those criteria were selected to best differentiate the tools.

We divided the criteria into four categories: (1) Development, by whom and when the tool was
developed; (2) Environment, what are the hardware requirements and in which environment they
can be used; (3) Functionality, how each tool works internally; (4) User-friendliness, how easy it
is to use and configure.

Development

Both metrics give information on the developer and when the tool was developed.

• Origin Who developed it.

• First / latest release date When the tool was released for the first time and when was made
the latest release (as of 6 September 2022).

Environment

The environment metrics provide details on the hardware requirements and in which environment
they can be used.
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• Hardware compatibility Technologies that must be available at the computing node to run
tools.

• Scope The granularity at which the solution provides consumption values. Levels: machine,
resource (CPU, GPU, DRAM(CPU)), cgroups, processes.

• Job management system support Whether the tool has built-in job management system
support (OAR, SLURM).

Functionality

Each tool has different functionalities and relies on different mechanisms.

• Hardware technology used The technology used to measure or estimate energy consump-
tion. For example, RAPL and NVML.

• Software power model used If a model is used on top of the hardware technology. For
example, to estimate the energy consumed at the process level.

• Default sampling frequency The frequency at which the solution samples energy consump-
tion values by default.

• Online reporting If the data are available in real-time or if it is provided only at the end of
the execution.

• Power profiling If the solution has power profiling capabilities in the form of time series or
if the solution reports only total resulting energy consumption.

User-friendliness

The user-friendliness evaluates how easy it is to use and configure a tool.

• Configurability "Poor", "Fair" or "Good" depending on the number of configurable pa-
rameters supported among the following list: acquisition frequency, result data form, used
model, and result data (power, energy, or carbon emission).

• Availability of source code Whether the source code of the tool can be found online and
with what license the tool is distributed.

• Ease of use How easy it is to install and use the solution. "Poor" if one needs an understand-
ing of the architecture of the tool or its environment to be able to configure it and collect its
results. "Fair" if the tool doesn’t need any architecture-dependent configuration but an ad-
ditional mechanism is required to retrieve results. "Good" if no configuration or additional
mechanism is needed to retrieve results. "Very good" if no installation or software skills are
required.

• Quality of documentation "Poor" if the documentation is not sufficient to use and config-
ure the tool. "Fair" if the documentation is sufficient, but an effort is needed to understand
how it works. "Good" if the available documentation addresses usage questions such as
parameter settings [Bannour2021].

• Resulting data format The format of the result data that is provided. For example, as a
value stored in a code variable (Code) or written into a database back-end (Prometheus,
InfluxDB, MongoDB, Riemann, Warp10), sent via a socket connection (Socket), a text file
(JSON, CSV, Latex), available on a web page (Web) or just printed in the standard output
(Stdout).
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• Data visualization possibilities Dashboards (Grafana, Comet, custom) or online web re-
sources.

3.2.4 Qualitative comparison

In table 3.2, we compare the selected tools on the criteria introduced in the previous section.
External and intra-node devices offer broad compatibility and real-time metrics but are limited

to machine-level data and lack configuration flexibility. Among the remaining tools, a common
trade-off emerges between user-friendliness and configurability, with simpler interfaces typically
providing fewer details or features. None of the software-based power meters analyzed support
job management, a critical feature for large-scale experiments. Furthermore, data formats and
visualizations exhibit significant heterogeneity across tools.

Some tools have unique features. Notably, Alumet is the sole option for real-time data col-
lection. Code Carbon uniquely provides TDP-based estimation as a fallback when NVML and
RAPL are unavailable. Unfortunately, Experiment Impact Tracker and ML CO2 Impact are no
longer actively maintained.

3.3 Experimental setup

After qualitatively comparing the software-based power meters, we conducted a group of ex-
periments to verify how the selected tools work, evaluate the quality of their outputs, and quanti-
tatively compare them.

3.3.1 Environment

Infrastructure We executed all experiments on a machine from the Gemini cluster of large-scale
test beds for experimental research Grid’5000 [Balouek2013]. This cluster was selected because it
contains nodes with multiple recent GPUs supporting power metric retrieval with Nvidia NVML,
two CPUs with the second implementation of Intel RAPL, and high-performance external power
meters.

The nodes in this cluster have the following specifications:

• System model: Nvidia DGX-1

• CPU: 2 x Intel Xeon E5-2698 v4 (Broadwell, 2.20GHz, 20 cores/CPU)

• Memory: 512 GB

• GPU: 8 x Nvidia Tesla V100-SXM2-32GB (32 GB)

External power meter The power consumption of each node in the Gemini cluster is indi-
vidually monitored by an Omegawatt [OmegaWatt2018] power meter. This power meter has a
maximum sampling frequency of 50 Hz and a precision of 0.1 W. We used them with a sampling
frequency of 1 Hz.

BMC In the Gemini cluster, each node has a BMC that reports the power consumption of the
entire host system with a sampling frequency of 0.2 Hz.
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Table 3.2: Qualitative comparison of selected software-based power meters.
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Operating system and configuration For all experiments, we used the minimal variant of
Ubuntu 20.04 available on the Grid’5000 testbed. In order to increase consumption stability and
the consistency of our results, we have disabled Hyper-Threading and Turbo-Boost technologies
and set the CPU frequency to the maximum supported. We also installed an Nvidia GPU driver
when relevant, with default power management configuration.

3.3.2 Selected benchmarks

In order to evaluate software-based power meters, we executed benchmarks representative of typ-
ical workloads, well-known by the community, and implemented for GPUs. For this purpose, we
chose the NAS parallel benchmarks implemented for GPU in CUDA [Araujo2021].

We selected three NAS benchmark kernels in order to simulate an intensive use of different
computing node components. The first kernel is the EP (Embarrassingly parallel) kernel that gen-
erates pairs of Gaussian random deviates thus making intensive use of the CPU (and respectively
GPU). The second kernel is the MG (Multi-Grid) kernel. This kernel performs a V-cycle multigrid
algorithm and tests both short and long-distance data communication, thus is memory intensive.
The third kernel is the LU (Lower-Upper Gauss-Seidel solver) kernel. This kernel is a pseudo-
application that performs a synthetic computational fluid dynamics (CFD) calculation. LU is less
CPU intensive than EP but also uses memory.

Every parallel NAS benchmark has a class that can be thought of as a problem size. For
instance, for the MG benchmark, classes from A to E will have increasing grid size, iteration num-
ber, and therefore execution time. The class for each benchmark kernel was chosen empirically
for our experiments in order to have suitable execution times.

3.3.3 Experimental protocol

We evaluated the consumption results given by the software power meters listed in Section 3.2.1
while executing the NAS benchmark kernels presented in Section 3.3.2. We added a one-minute
interval between each benchmark execution to let the computing node component cool down after
each benchmark run and prevent the power consumption of subsequent executions from being
impacted.

Tools configuration Most of the software-based power meters studied in this work were used
with the default configuration. However, some of them have multiple configuration possibilities or
the default values are not suitable for our experiments. Experiment Impact Tracker and Carbon
Tracker multiply the computed energy by a Power Usage Effectiveness (PUE) ratio by default. It
was systematically removed to enable a comparison sorely on the energy estimation.

Reproducibility In order to make the results more reliable, all the experiments were carried out
ten times. We have automated the execution of all the experiments as well as the processing of
their results.

3.4 Results

3.4.1 Computing node components power profile

Alumet is the sole tool with the additional feature of reporting power profiles of components of
the computing node: CPU, DRAM, and GPU.
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Figure 3.1 shows the power profiles for every CPU, DRAM, and GPU as provided by the
above-mentioned software. We can also mention that the DRAM consumption reported by each
tool seems to reflect the actual DRAM usage by each benchmark. For memory-intensive bench-
marks such as MG, we see the change in DRAM consumption reports while the benchmark is
running. Whereas, for the EP benchmark which uses no memory, the DRAM consumption data
remains unchanged. It confirms that the benchmarks are GPU intensive, except for MG which
has a phase when only the CPU and the DRAM are working. Within this phase, the intensity in
memory seems to prevent the GPUs from working at maximum utilization.

Figure 3.1: Power profiles of specific components: DRAMs, CPUs, and GPUs.

3.4.2 Comparing total computing node power profile

Figure 3.2 shows the GPU benchmark profiles as reported by the external power meter, the BMC,
and Alumet.

Figure 3.2: Power profiles provided by Alumet, BMC, and the External power meter on the GPU
benchmarks.

We can see that the evolution of the Alumet power profile is visually similar to the evolution
of the external power meter and BMC profiles, despite a non-negligible offset between the three
instruments. This offset depends on which component of the computing node is included in the
reports of each tool. The external power meter is installed between the computing node and the
wall socket. Thus, it reports the overall consumption of the computing node with all its compo-
nents. The BMC is installed internally after the power supply unit (PSU) unit and the reporting
scope differs according to its implementation. The values given by BMC are therefore predictably
lower. Alumet is based on Intel RAPL and Nvidia NVML, which only includes the consumption
of the CPU, DRAM, and GPU components. The consumption of other components, such as fans,
storage, and network interfaces, is not included.
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The evolutions of the benchmarks are well captured by each tool. For the LU and MG bench-
marks, the tool gives a more variable power profile than for EP. This variability is due to the lower
power consumption of the GPU during the waiting times introduced by the memory operations
performed by the LU and MG benchmarks. However, each tool captures them differently. Tools
with a higher acquisition frequency like Alumet and the external power meter better capture con-
sumption changes when running the benchmark, resulting in a more precise power profile. Tools
with low acquisition frequency like the BMC are not able to capture all consumption details and
will therefore give a less accurate power profile.

In Figure 3.2, we notice that the power reported by the external power meter does not go
down instantly at the end of the computation phase, notably for the EP and LU benchmarks. The
power takes some time to return to idle values. This additional consumption could be due to the
fans running at high speed in order to cool the components after the execution of the benchmark.
Since the power profile given by software-based power meters excludes fan consumption, this
phenomenon is not observed by Alumet.

3.4.3 Correlation and offset with external power meter

We previously observed that the software-based power profiles are similar and are visually strongly
correlated with the external power meter and the BMC profiles. We will study this correlation in
more depth in this section.

The tools do not have exactly the same timestamps and sampling frequencies. To do a point-
by-point correlation study between power profiles, we had to fit the higher frequencies data points
to the lower ones by averaging. To compute the correlation, we used the library Pandas [Re-
back2022] and the default Pearson correlation.

The Pearson correlation coefficient between Alumet and the external power meter is around
0.99 for all benchmarks, which is a highly strong correlation. Furthermore, the more stable the
execution, the higher the correlation.

It can be noticed in Figure 3.2 that the offset between the software-based power meter and the
external power meter is not constant. To verify this assumption, we computed the regression using
the linear regression method of scikit-learn [Pedregosa2011]. We have found that the regression
slope was 1.17, with the external power meter values being the response variable. The resulting
linear regression can be seen in Figure 3.3. The higher the power, the bigger the offset. We
suppose that this offset increase is related to the components whose consumption is not included
by the tools, such as the power supply unit and the fans.

We believe it can be generalized that the relation between the power reported by the external
power meter and the software-based power meters is not constant. Thus, estimating the total power
consumption from the power reported by the tools can’t be done by simply adding a constant offset.
Furthermore, this relation is specific to each computing infrastructure and must be evaluated for
each compute node architecture or even for each individual compute node. To do so is necessary
if the goal is to report the exact energy consumed by a workload.

3.4.4 Quantitative comparison

After studying the power profiles, we looked into the total energy consumed during the execution
of the benchmarks. For the external power meter, the BMC and the software-based power meters
only supporting the power profile as an output, the total energies are calculated by integrating the
power time series.

Figure 3.4 shows the total energy in joule spent per benchmark as provided by the tools,
the external power meter, and the BMC. The error lines on top of the bars indicate the standard
deviation of the energy. The external power meters report higher energy than the tools and the
higher variability of the values provided by BMC leads to a greater standard deviation compared
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Figure 3.3: Power-power plot between the external power meter and power profiling tools.

to the external power meter. The standard deviation of the energy reported by the tools is not
significant in general which means that the tools are consistent.

The differences between tool reports are large, which is due to a higher difference in sampling
frequency (see Table 3.2). Experiment Impact Tracker has a higher variability on all benchmarks
but especially on the MG benchmark. For all benchmarks, the online calculators (Green Algo-
rithm, ML CO2 Impact) tend to report energies closer to the external power meters than the tools
based on RAPL and NVML, but not on the MG NAS benchmark. This suggests that those calcu-
lators work better for constant workloads too, and when the average usage is known.

3.5 Conclusion

This chapter compares six software-based power meters: Alumet [Raffin2023], Carbon Tracker
[Anthony2020], Code Carbon [Schmidt2021], Experiment Impact Tracker [Henderson2020], Green
Algorithms [Lannelongue2021], and ML CO2 Impact [Victor Schmidt]. We detail the existing
methods to measure or estimate the energy consumption of a computing node or an application
execution. Then we present and compare the selected tools qualitatively. An experimental study
investigates the quality of the power profiles and the energy estimations under computation and/or
memory-intensive benchmarks. Those experiments allow us to evaluate other characteristics of
the software-based power meters, such as the quality of their reports. We experimentally validate
the consistency of the power or energy consumption reported by the software-based power meters
by comparing them with high-performance external power meters. We find that the profiles are

45



Chapter 3. Measuring the electricity consumption of computing infrastructures

Figure 3.4: Total energy consumed by the benchmarks as reported by the power meters. Tools:
Alumet (AL), Carbon Tracker (CT), Code Carbon (CC), Experiment Impact Tracker (EIT), Green
Algorithm (GA), ML CO2 Impact (MCI).

highly correlated. We show and explain why the offset between the external power meter and the
software-based power meters is significant and not constant. We have found that the software-
based power meters based on Intel RAPL and Nvidia NVML can be used to estimate consumption
at a fine granularity. All studied tools give relatively similar consumption values. The main differ-
ences between them are the supported sampling frequencies, the user-friendliness, the environment
in which they can be used, and the ability to estimate the power at various granularities.

Goals in measuring the power or the energy can be numerous. We identify a few scenarios and
give recommendations on which tool to select based on our study.

Whether the workload to study is a long-running job or short execution is of importance.
Monitoring short executions demands a high sampling frequency. But when looking for a tool
easy to use and when the precision is not critical, we would recommend Green Algorithms as they
don’t require any additional development or tool installation.

When the objective is to reduce the amount of energy needed to execute a workload, most
of the tools can be used since they all report the energy although, for some of them, you might
need to compute the energy from the power time series. We have found that the energy calculators
Green Algorithm and ML CO2 Impact can give very good estimations on the conditions of having
a constant workload and an in-depth knowledge of the execution (duration and average usage),
with the disadvantage that there is no guarantee on the quality of the estimation.

The three energy measurement Python libraries are highly similar in their energy reports. Code
Carbon has the lowest offset in all experiments. Carbon Tracker computes the energy on the fly
to be able to make predictions on the whole program. It is also well documented in our opinion.
Experiment Impact Tracker has higher variability in the estimations.

Alumet is the sole tool for monitoring the power consumption in real-time and reporting data
at the component level.

No software-based power meter allows one to exactly measure the complete energy or the
power consumed by the computing node while executing a workload, as we have shown that the
relationship between the external power meter and the tool power is not constant.

In this Chapter, we showed that using a tool able to monitor the power consumption at the
component level can bring valuable insights, as opposed to energy-measuring or node-level tools.
The limit of such a tool is the significant gap between component and node-level consumption that
can’t be estimated without an external power meter.

In Chapter 4, we use Alumet to better understand the power consumption of each component
of the Apollo and the Jeston nodes on the functional units presented in Chapter 2, as well as the
total electricity spent to achieve the FU. Their analysis provides us with insights and leverages.
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4.1. On Apollo, a node from HPE AI supercomputer Champollion

In this Chapter, we present the electricity consumption of the Functional Units (FUs) described
in section 2.4 on an Apollo 6500 Gen10+ node and an Nvidia Jetson AGW Xavier whose specifi-
cations are described in section 2.2. Sections 4.1 and 4.2 focus on each computing infrastructure.
Section 4.3 puts both sections in perspective by comparing them.

4.1 On Apollo, a node from HPE AI supercomputer Champollion

All 6 FUs were executed on an Apollo node. This section starts by presenting the settings
specific to Apollo before presenting the analysis of the results.

4.1.1 Settings

Hyperparameters were selected from a random grid search. The only parameter differencing the
execution is the random seed, as expected for any MLPerf submission. Models are trained until
they reach the quality target, as defined in Table 2.4.

Monitoring energy and power

Apollo nodes are equipped with the HPE iLO 5 management processor which monitors the power
consumption thanks to iPDU attached to the power supplies, according to the user guide. The
specifications states that it has a 99% precision and measures power consumption below 100
mW 1. Measurements are displayed every 10 seconds and are five-minute averages. To analyze
more finely the evolution of power, we additionally collect power and energy information from
the Nvidia Management Library (NVML) and the Running Average Power Limit (RAPL) which
monitors the power consumption of each GPU and CPU at a frequency of 2 Hz.

Reproducibility

The frequencies and power caps of the CPUs and GPUs are set to the maximum. Hyper-threading
is disabled. For single-node experiments, we executed the benchmark on one fixed node to avoid
variability in the energy consumption of nodes. Experiments are repeated at least 7 times to ensure
generalization.

4.1.2 Results

The Apollo node was able to achieve the 6 FUs.

Global statistics

Table 4.1 presents the average and standard deviation of the energy consumption, training time,
GPU utilization, and CPU utilization of each FU on one Apollo node, as reported by RAPL and
NVML. The energy consumption corresponds to the sum of the electricity consumed by the CPUs
and GPUs.

The performance (training time) is comparable with what HPE submitted for the v2.1 round.
The GPU utilization percentage is high on average (88%) while the CPU utilization is low (22%)

1https://www.hp.com/hpinfo/newsroom/press_kits/2010/techforum2010/pdf/TF_IPD_DataSheet.
pdf
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Energy (kWh) Time (min) Utilization (%)

GPU CPU

FU

ResNet-50 1.61 ± 0 29.42 ±0.19 94.84 ± 0.71 28.57 ± 0.72

3D U-Net 1.73 ± 0.7 31.72 ± 12.6 96.94 ± 0.89 8.2 ± 0.07

Mask R-CNN 2.16 ± 0.09 43.6 ± 1.69 89.87 ± 0.2 8.84 ± 0.02

RNN-T 1.97 ± 0.11 36.12 ± 2.21 95.46 ± 0.28 68.47 ± 0.89

BERT-large 1.13 ± 0.01 20.83 ± 0.25 96.88 ± 0.11 6.88 ± 0.01

DLRM 0.14 ± 0 4.18 ± 0.02 57 ± 0.46 5.36 ±0.03

Table 4.1: FU performance statistics on Apollo (average ± standard deviation).

which shows that the infrastructure is well-dimensioned for the majority of the selected models
and that the implementation allows it to benefit plainly from the infrastructure.

DLRM trains the fastest (less than 5 minutes) while the other model trainings require between
20 and 43 minutes. It also has a lower GPU utilization than average, as opposed to 95% for the
other models. 3D U-Net stands out with a highly variable training time, which means that the
quality of training is highly influenced by training randomness. Finally, RNN-T has a high CPU
utilization, which suggests a larger amount of data processing than other models.

Power profiles

The evolution of power in Figure 4.1 offers more insights. The execution includes several phases:
initialization, training steps, and evaluation phases. The initialization is globally not significant,
except for DLMR for which it lasts almost at half the execution. The evaluation phases are shared
out among the training and correspond to the low power peaks. Peaks are more or less low or
frequent depending on the models, likely depending on the size of the data to load. RNN-T is
characterized by highly frequent evaluation peaks. We can additionally notice that the power
drawn during the most intensive training phase is different from one model to another. It ranges
from 2100 W to 3500 W.

As a consequence, using an estimation solely based on the Thermal Design Power (TDP) and
the training time would result in an average percentage error of 30%.

Correlation between model parameters and electricity consumption

To better understand those differences, we explore the parameters that can impact electricity con-
sumption. The number and precision of the parameters as well as the size of the samples and the
batches seem like the most significant factors that might influence the training. Table 4.2 shows
the size of model parameters, datasets, and data batches. We include the size of the dataset and
batches in gigabytes (GB) since sample types are highly diverse - from short texts to large images.
The differences between models are quite significant. The dataset size ranges from 20 to 500 GB,
the batch size from 5 to 2763, and the number of parameters from 19 to 540 million. It is inter-
esting to notice that the batch size in GB that was optimal to train RNN-T is significantly higher
than for other models which leads to believe that time is wasted in loading data. It explains why
RNN-T training consumes more energy than BERT-large and DLRM when it has fewer parame-
ters to train. Surprisingly, DLRM is the fastest model to train when it has the largest number of
parameters and the heaviest database. It is the model with the lowest instant power consumption.
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(a) ResNet-50 v1.5 (b) 3D U-Net

(c) Mask R-CNN (d) RNN-T

(e) BERT (f) DLRM

Figure 4.1: Power evolution of training models.
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This suggests that the model fills most of the memory thus forcing the batch size to be small. In
conclusion, the memory capacity of the node prevents the GPU from being intensely used during
training.

Model Parameter number (M) Dataset size Batch size

Sample GB Sample In GB

ResNet-50 v1.5 25.6 1.28e+6 167 408 53

3D U-Net 19 6.72e+4 40 56 229

Mask R-CNN 25.6 4.00e+4 20 96 48

RNN-T 29.8 2.78e+5 500 1536 2763

BERT-large 345 3.00e+6 400 384 51

DLRM 540 3.78e+9 342 55296 5

Table 4.2: Model implementation details. The batch size is the ratio between the dataset size and
the number of samples in a batch.

From Table 4.2 and Table 4.1, Figure 4.2 shows the correlation2 between the implementation
details (Number of parameters, Batch size, and Dataset size) and the performance (Electricity
consumption, Execution time, CPU and GPU utilization, and Average power consumption). Over
the 6 FU, the energy consumption and training time are highly correlated (higher than 99%) as
can be expected since the workloads have a similar power profile. The GPU utilization is mostly
correlated with the average power consumption, which is not surprising since the GPUs repre-
sent most of the power consumption and the power of a component is directly impacted by its
utilization. The CPU utilization is highly correlated with the batch size in gigabytes which might
be linked to pre-processing data tasks performed by the CPU. Surprisingly, the energy consump-
tion is inversely correlated with the number of parameters and the number of samples per batch.
This analysis suggests that the type of model, the distribution of data, the software used, and the
optimization techniques might have more impact than the number of parameters, the number of
samples in the batch, or the size of the dataset.

The impact of data transfer can also be important. As the size of the dataset increases, the
storage needs to be distributed and the choice of storage system affects the data loading latency.
When training ML models, the computations are made on a batch of data in parallel and if this
batch doesn’t fit in memory or even locally, it needs to be loaded regularly. The latency becomes
significant if this loading frequency is high and the loading time is significant. Unfortunately,
we didn’t monitor the amount of data transferred from the various ports. The datasets are by
default stored in the Clusterstor. We noticed it had a real impact on ResNet training throughput.
By moving the dataset to the local storage, the training time was divided by 7 and the energy
consumption by 3. The energy consumed by the interface ports is not included in the energy
monitoring. Monitoring the total energy consumed by the node might bring insights into the
impact of data transfer on the total energy consumption.

Comparing iLO and software-based power meters

As we presented in Chapter 3, the gap between the software-based power meter and an external
power meter can be significant and corresponds to the consumption of the fan, the data transfer,
and network cards. In this section, we study the gap between a software-based power meter and

2https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Figure 4.2: Correlation between model characteristics and training performances.

an iPDU called iLO and installed on each Apollo node for each FU. Figure 4.3c shows the power
evolution for the RNN-T FU and the DLRM FU. We can see that the gap is not consistent, although
the evolution is very similar. iLO reports are the average over the datapoints of the last 5 minutes
which explains the time offset between both power meters.

Figure 4.3d shows the relationship between the total energy of each repetition of the FUs as
reported by iLO and a software-based power meter. One data point corresponds to one FU. We
would have expected the data points to be at the left of the x = y line since iLO should have
reported a higher energy consumption. This is not the case, although it is different depending on
the model. On average, the energy reported by the software-based power meter is higher than the
one reported by iLO, but that is not the case for BERT.

Those findings are not coherent with previous results. In Chapter 3, we found that reports from
RAPL and NVML were reasonable based on a power meter placed between the plug and the node.
An iPDU should show the same behavior and we were not able to explain the incoherence.

Impact of quality target on training energy consumption

The quality of the model on the validation dataset is a measure of the performance of the model.
Training an ML model systematically follows the same pattern. The quality increase is slowing
batch after batch. In terms of time and energy, it means that each quality percentage consumes
more to be reached.

The quality metric depends on the model and the application. It can be a metric to minimize
or to maximize. Figure 4.4 shows that the accumulated energy has an exponential relationship
with the quality metric. Figure 4.4e presents this relationship for models whose quality metric is
maximized, and Figure 4.4h for models whose quality metric is minimized. Except for ResNet and
Mask R-CNN, most of the energy is consumed by the very last percent of the quality metric. Thus
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Figure 4.3: Comparing iLO and software-based power meter monitoring.

the quality target should be carefully defined and could be a significant energy reduction leverage.
As a suggestion, the quality target could be determined in advance depending on the needs of the
application. It would allow the developers to stop the training as soon as it has reached its target.
Learning should be closely watched and continued only if the algorithm is significantly learning.

Impact of sizing up the infrastructure

We conducted experiments to study the impact of increasing the number of nodes used for the
training. Figure 4.5 shows the relationship between the energy consumption and the training time
and the number of processed samples for BERT FU on 1, 2, and 4 nodes. Nodes are selected
randomly among the 20 nodes of Champollion at each experiment.

For a given number of nodes, five experiments were conducted, each one characterized by a
seed and a set of nodes. The color indicates the set of nodes, as some of them overlap particularly
when the experiments require 4 nodes. It can be seen that the variability in time and energy is
quite significant, due to the instability of multi-node training. It means that the target was attained
with fewer steps in some experiments than in others, and as a consequence, fewer samples were
processed. The number of processed samples was selected to compare different numbers of nodes
since more nodes are able to process more samples in the same amount of time. However, we
could expect the energy consumed to be similar for identical numbers of processed samples.

In Figure 4.5a, it can be noticed that when the number of nodes is multiplied by two, the time
is not divided by 2 but by a factor of 1.5. This is due to the regularisation effect of processing
more samples in parallel which slows down the training. As a consequence, the algorithm has to
process more samples thus requiring more time.

Similarly, Figure 4.5b shows that training with twice as many nodes consumes more energy
(by a factor of 1.31). This means that there is a tradeoff to find between minimizing the energy
consumption and minimizing the training time.

It seems that the energy depends more on the number of samples that were needed to reach the
quality target than on the number of nodes. For the few data points for which the number of nodes
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(f) Mask R-CNN
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Figure 4.4: Energy required to reach each quality metric point for the Apollo node for each FU.
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Figure 4.5: Training time and energy relationship with the total number of processed samples for
the BERT FU. The color indicates the set of nodes that was used.

is different and the number of processed samples is equivalent, it seems that more nodes consume
more energy. This is likely due to the time overhead of transferring and aggregating data across
nodes.

Distributing data and learning across nodes is a common practice to reduce the training time.
However, it does not seem like a good leverage to reduce energy consumption. It also has a
significant impact on the learning thus a hyperparameter optimization is needed to find the best
trade-off.

4.1.3 Discussion

Studying the power and electricity consumption of computing nodes in ML training comes with
many challenges. Existing measurement tools are unreliable and prevent insights from compo-
nents other than the CPUs and the GPUs that are monitored by software-based power meters.
Unfortunately, components like networking interfaces and switches play a significant role in train-
ing and their impact on the total energy cost would be interesting to study.

Not many leverages can be used to reduce the electricity consumption of the FUs on one
Apollo node. Our study does not find a strong correlation between implementation parameters and
energy consumption. The computing nodes need to be dimensioned for the model that needs to be
trained. Each model has its memory and computation characteristics as well as its software and
optimization libraries and those libraries need to be adjusted to the computing node. Integrating
software information in the analysis might be interesting. Optimizing the classic performance
criteria like the training time leads to a reduction in energy consumption, for a given node and
model. For our set of experiment, the choice of quality target is the most impactful leverage.
Increasing the number of nodes can reduce the training time, but not the energy consumption, and
this conclusion was established without taking switches and networking interfaces into account,
which might significantly increase the overall consumption.
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4.2 On Jetson, an embedded AI device

As previously explained, only the ResNet-50 FU was executed on a Jetson node. The majority
of the other models exceeded the Jetson node’s computational capacity for training. Additionaly,
the training time of the models that fit was too significant to allow the study of several models.

4.2.1 Settings

We conducted a grid search to find the best hyperparameters for the model and the hardware. The
parameters are listed in Table 4.3. The learning rate is divided by 10 every 40,000 steps and the
training is stopped if the accuracy does not improve for 20,000 steps. The number of workers is
set to 2 to reduce the CPU load.

Parameter Value

Image resolution 224x224

Batch size 192

Learning rate 0.001

Loss Negative log likelihood

Optimizer Adam

Early stop (step) 20,000

Accuracy target 75.9%

Accuracy metric Averaged

Table 4.3: Hyperparameters for the ResNet-50 FU on Jetson AGX Xavier

Monitoring energy and power

Nvidia processors are equipped with power meters that can control and monitor the instant power
consumed by the GPU, the CPU, and the memory. The power mode is set to 30 W. At the beginning
of each experiment, the Jetson-stats application3 is launched to monitor the CPU and GPU power
and usage of each host. The acquisition frequency is 1Hz. Energy is computed as the sum of the
product of instant power and the average time interval between two acquisitions.

Reproducibility

The frequency of the CPU and the GPU are fixed to their maximum value. The cache is emptied
every 500 steps to avoid OOM errors. Considering the duration of the experiments, it was more
difficult to perform a hyper-parameter search and the FU were only repeated twice with different
random seeds.

4.2.2 Results

The training was stopped because it had not improved. The maximum reached accuracy on the
train dataset was 74% and 55% on the evaluation dataset. Thus we define ResNet-50* FU as in
table 4.4.

3https://rnext.it/jetson_stats/reference/jtop.html#jtop.jtop.power
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ResNet-50* Train ResNet-50 on ImageNet until it achieves a 55% classification score.

Table 4.4: Functional unit

Global statistics

Table 4.5 shows the performance of Jetson on the ResNet-50* FU. We can notice that the training
time is significant, reaching almost 88 hours. This explains a total energy consumption of 3.15
kWh. For coherence with the Apollo node, in the remainder of this thesis, we only consider the
energy consumption of the GPU and CPU, which is 1.97 kWh. The high GPU utilization proves
that we were able to push the component to its limits. Similarly, the RAM averages at 69%.

Energy (kWh) Time (min) Utilization (%)

GPU CPU

FU

ResNet-50* 1.97 5332 97.93 15.56

Table 4.5: FU performance statistics on Jetson.

Power profiles

The evolution of the instant power consumption can be seen in Figure 4.6. The displayed power is
an average of the last 30 seconds to improve the figure readability.

Figure 4.6: The power consumption of ResNet-50* FU on Jetson AGX Xavier.

The GPU consumes on average 19.60 W during training while the CPU only consumes 2.66
W. The average total power consumption is 37.04 W, which is surprising since the TDP of the
Jetson AGX Xavier is 30 W. The significant gap between the sum of the CPU and GPU and the
total consumption comes from the consumption of RAM, storage, and network components.

With a closer look at Figure 4.6, we can notice regular power peaks. It corresponds to evalua-
tions on the test set which leads to intense In/Out (I0) operations when the machine is preprocess-
ing samples, loading them to the GPU, and performing inference. Those steps require less GPU
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and more CPU usage which explain both upward and downward peaks. Larger peaks are due to
learning rate change and checkpointing.

Impact of accuracy on training energy consumption

Figure 4.7 shows the energy required to reach each point gain in accuracy. As before, each accu-
racy point is harder to reach than the previous, except for a peak around 50% accuracy.
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Figure 4.7: Energy required to reach each accuracy point for the Jetson node on the ResNet-50*
FU.

4.2.3 Discussion

It seems that a batch size of 192 was the limiting factor to reach the target accuracy. Other than
optimizing the performance of the training, it is also the highest batch size before getting Out Of
Memory (OOM) errors. This suggests that the hardware is under-dimensioned for the model. Thus
a memory constraint prevents the training from reaching the accuracy we know can be attained
with the given model and dataset.

4.3 Comparing the electricity consumption of deep learning training
across ML infrastructure

On Apollo, ResNet-50 took 1.61 kWh to reach a 75.9% classification score. On Jetson, the
model stopped learning after reaching 55% on the test dataset, and it required 1.97 kWh. In
summary, it took 18% more energy to reach 60% of the target.

Figure 4.8 shows the energy required to reach each accuracy point while training ResNet-50
on ImageNet for both the Apollo and the Jetson nodes. This graph enables us to compare the
energy efficiency of the training on both infrastructures.

We evaluate Apollo on the ResNet-50* FU to enable a fair comparison. Apollo required 0.57
kWh and 11.26 minutes to achieve this FU. Reducing the target accuracy by 20.9% divided the
metrics by more than 2.

Figure 4.9 compares on several criteria the ResNet-50* FU on the Jetson node and the Apollo
node and the ResNet-50 FU on the Apollo node. Original criteria (electricity consumption, train-
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Figure 4.8: Energy required to reach each accuracy point for the Jetson node and the Apollo node
while training ResNet-50 on ImageNet.

ing time, and accuracy) were normalized between 0 and 1 such that the objective for each criterion
is to be closer to 1. Thus, the larger the surface, the better the infrastructure. The electricity con-
sumption and training time were converted to electric efficiency and speed which are criteria we
want to optimize for each FU. The normalization values were selected to highlight the comparison
between computing infrastructures and FUs. As a consequence, the value should not be taken
into account as absolute values but relatively between traces. Minimum normalization values are
systematically zeros.

It can be seen that Apollo dominates Jetson on the three criteria. The speed is the most dif-
ferentiating criterion. Compared to the amount of time required to train on a Jetson node, the
difference between both FU on an Apollo node is not significant. However, the electric efficiency
was improved by reducing the target accuracy.

Speed

AccuracyElectric Efficiency

Node (FU)
Apollo (ResNet-50*)
Apollo (ResNet-50)
Jetson (ResNet-50*)

Figure 4.9: Multi-criteria comparison of the ResNet-50 and ResNet-50* FUs on Jetson and
Apollo. Values were normalized between 0 and 1, with 1 being the target of the corresponding
criteria. For criteria with values outside of the [0,1] interval, values were normalized between 0
and 1, with 1 being the target of the corresponding criteria. Minimum and maximum values are
set to (3, 0), (100, 0) for electricity consumption (kWh) and duration (hours), respectively, thus
converting them into efficiency metrics.
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In Chapter 5, we convert electricity consumption into environmental impacts and estimate the
embodied cost of the hardware. Considering the difference in the size of both nodes, it might be
possible that the more significant embodied cost of an Apollo node compensates for the additional
electricity cost of the ResNet-50 FU on the Jetson node.
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Chapter 5. The environmental impacts of ML infrastructures and ML training

ICT has numerous environmental impacts including but not exclusively primary energy con-
sumption, rare metal resources depletion (or abiotic depletion), or carbon emissions. Those im-
pacts come from various phases in the life cycle of products.

In this chapter, we describe how we estimate the embodied impacts of the Apollo and Jetson
nodes (Section 5.1) and allocate them to the Functional Units defined in Chapter 2. We analyze the
effects of each component of both nodes on the total impact (Section 5.2), study the relative usage
and embodied impacts (Section 5.3), and compare the impacts of training ResNet-50 on Apollo
and Jetson nodes on the three indicators (Section 5.4). Section 5.5 provides a sensitivity analysis
of the environmental impacts on the hypothesis.

5.1 LCA, databases, and hypothesis

Environmental data on manufacturing computing nodes is scarce, especially for recent com-
pute nodes such as Apollo. We rely on the API of Datavizta which collects data from the Green
Cloud Computing database [Gröger2021] for most of the compute node embodied impacts. How-
ever, the impacts of Nvidia GPUs are not open-sourced and have to be estimated. For the electricity
mix impact factor and PUE parameters, we decided to use the geographical region averages, as we
aim to produce conclusions uninfluenced by the temporal dynamics of the electricity mix and data
center efficiency differences.

Table 5.1 summarizes the notations that will be used to describe the methodology.

Notations

I : Environmental Impact (expressed in kg CO2 eq, kg Seb, and MJ)

Icapex : Embodied Impact (manufacture, transport, and end of life)

Iopex : Operational Impact (usage)

IFelec : Electricity mix Impact Factor

E : Electricity consumption

AUR : Active Utilization Rate

PUE : Power Usage Effectiveness of the data center

T : Use time of the equipment

s : Surface or area (of the GPU die or of the board)

c : Memory capacity

d : Memory density

w : Node weight

Table 5.1: Definition of variables used for the environmental equations
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5.1. LCA, databases, and hypothesis

5.1.1 Estimating the embodied impacts of GPUs

Without open-source LCA of GPUs, we follow a methodology proposed by Boavizta1. While
it was not yet peer-reviewed, the proposition is well-documented and based on environmental
evaluation of chips and circuits [Liu2014, Ozkan2018, Pirson2021, Nassajfar2021] and was used
by another academic study [Morand2024]. As an example, [Luccioni2023b] used an arbitrary
value of 150 kgCO2eq for an Nvidia GPU. Instead, Boavizta relies on a study by the German
Federal Environment Agency (Green Cloud Computing), which developed a model of the impacts
of CPUs using as inputs their die area size (sdie), memory density (d) and capacity (c), the printed
circuit board (PCB) area (sPCB). We can use their model if we assume that GPUs are based on
similar semiconductors. Equation 5.1 lists the equations we used to estimate the impacts of each
GPU from the specifications previously mentioned. Constant values can be found in Boavizta
Documentation2.

Icompute(sdie) = sdie ⇤ Icompute,manu f actoring + Icompute,transport

Imemory(c,d) =
c
d

⇤ Imemory,manu f actoring + Imemory,transport

Iboard(sPCB) = sPCB ⇤ Iboard

IGPU,capex =

Icompute(sdie)+ Imemory(c,d)+ Iboard(sPCB)+ IHeatSink + IPCIEConnector

(5.1)

Another advantage of this method is that it enables a comparison between the impact of each
component of the GPU. Its flexibility enables it to be applied to different chip designs, and notably
various memory capacities, while being based on easily accessible design parameters.

5.1.2 Estimating the embodied impacts of the node

We use the Boavizta API 3 to estimate the impacts of CPUs, RAM, storage, and other components.
The storage is not included due to the lack of knowledge of the Apollo infrastructure.

CPU For both computing nodes, we selected the number of CPU, cores, and amount of RAM
according to their specification. However, the models of CPU were not available in the database.
We chose the Milan architecture for Apollo and the ICE lake architecture for Jetson to be the
closest to their respective architectures.

Other components The impacts of the power supply and the node case size are averaged across
models. We consider one power supply for one node. Considering the difference in the size of the
node cases we are studying and the significance of the case impacts in the total impacts of nodes,
we didn’t want to use the same values for the case impacts of Apollo and Jetson. Thus we assume
that the impacts of the node case (Icase) are proportional to the node weight (w), as in Equation 5.2.

Icase =
w
w̄

⇤ Īcase (5.2)

1https://github.com/Boavizta/boaviztapi/issues/65
2https://boavizta.org/en/blog/empreinte-de-la-fabrication-d-un-serveur,https://github.c

om/Boavizta/boaviztapi/issues/65
3https://dataviz.boavizta.org/serversimpact
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Chapter 5. The environmental impacts of ML infrastructures and ML training

With w̄ and Īcase the weight and the case impacts of a classic server. We assume a classic server
weighs 20 kg, an average value from the products Boavizta relied on to estimate the case impacts.
According to the specifications, Apollo weighs 96.27 kg and Jetson 1.548 kg.

5.1.3 Allocating the embodied impacts of the node to training

As explained in chapter 2, section 2.1, we chose a time-based allocation, as in Equation 5.3.

Itraining,capex =
Ttraining

AUR⇤Tli f etime
⇤ (IGPU,capex + ICPU,capex + IRAM,capex + IOther,capex) (5.3)

We assume a lifetime (Tli f etime) of 4 years and an average utilization rate (AUR) of 50% for the
Apollo and Jetson nodes.

5.1.4 Estimating the impacts of the electricity consumption

The electricity consumption is multiplied by the electricity impact factorto obtain the opex-related
impacts of the training.

Itraining,opex = IFelec ⇤Etraining (5.4)

We used the French electricity mix impact factors4.

5.1.5 The environmental impacts of training

The total impacts of training are the sum of both operational and embodied impacts.

Itraining = Itraining,opex + Itraining,capex (5.5)

5.2 Node embodied impacts

Applying the proposed methodology on an Apollo node and a Jetson node results in the em-
bodied impacts presented in table 5.2. The embodied impacts of Apollo are around an order of
magnitude higher than the impact of Jetson, as can be expected since an Apollo node contains 8
GPUs and 2 CPUs and Jetson only one of each thus the amount of metals and manufacturing is
significantly higher for Apollo.

Apollo Jetson

GWP (kg CO2eq) 3.86E+03 8.79E+01

ADP (kg Sbeq) 2.79E-01 2.74E-02

PE (MJ) 4.97E+04 1.25E+03

Table 5.2: Total embodied or capex-related impact of Apollo and Jetson

4From ADEME V2.02 Base Impact and the IRENA 2022 report. PE impact factors are not available in open access
thus we used the consumption of fossil resources along with the percentage of produced renewable energy (23,5%).
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Figure 5.1: Share of each compute node component in the total manufacturing impacts of each
node.

Figures 5.1a and 5.1b show the part of each compute node component in the total manufac-
turing impacts of an Apollo node and a Jetson node, respectively. It can be seen that for both
nodes, the memory chips are the most impactful components overall, although the CPU and the
GPU board have a more significant ADP impact than GWP and PE impacts. The share of CPU
in the total impact is higher for Jetson, which can be explained by the higher proportion of GPU
and RAM components in Apollo for a relatively similar computing capacity to the CPUs. The im-
pact of other components (power supply, node case) is more significant for Apollo than for Jetson
which is due to the allocation in weight we performed from the average node impacts.

5.3 Allocating the embodied impact to training

This section focuses on the impacts of training by analyzing the usage and allocated embodied
impacts of the FUs. It also compares the ResNet-50* FU on Jetson and Apollo. A sensitivity
analysis shows the effect of the hypothesis on the results. Calculations were done on a spreadsheet
and published on the web 5.

5https://docs.google.com/spreadsheets/d/e/2PACX-1vTVrRxa05Wb5JTqr3L7Uzq25G9YGoYz1EEqS6o
z2_2eu1dBBUr7VtWKiw6H3G0h0MeWe5C4_3Ej5SBY/pubhtml
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Chapter 5. The environmental impacts of ML infrastructures and ML training

5.3.1 Impacts of training on Apollo

Table 5.3 summarizes the impacts of training each model (See Table 2.5 for details), after apply-
ing Equation 5.4 on the electricity consumption and the allocation equation 5.3 on the embodied
impacts of Apollo.

ResNet-50 3D U-Net Mask R-CNN RNN-T BERT DLRM

GWP (kg CO2eq) 2.14E-01 2.30E-01 2.98E-01 2.62E-01 1.51E-01 2.28E-02

ADP (kg Sbeq) 6.08E-06 6.55E-06 9.00E-06 7.47E-06 4.30E-06 8.59E-07

PE (MJ) 2.07E+01 2.22E+01 2.79E+01 2.54E+01 1.46E+01 1.81E+00

Table 5.3: Total impacts of each FU on Apollo, including both manufacturing and usage.

Figure 5.2a compares the usage and manufacturing parts in the impacts allocated to train-
ing ResNet. The usage dominates the PE and GWP impacts while manufacturing and transports
dominate the ADP impact.

(a) Apollo

(b) Jetson

Figure 5.2: Share of usage and embodied phase in the total impacts of the ResNet-50* FU on the
Apollo node and on the Jetson node.

5.3.2 Impacts of training on Jetson

Similarly, Table 5.4 shows the total impacts of the ResNet-5* FU on a Jetson node, and Figure
5.2b the share of usage and manufacturing and transport in those total impacts. It can be noticed
that the share of the embodied phase is more important for Jetson than for Apollo, which can be
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explained by the difference in training time, considering that we set the same lifetime for both
infrastructures.

ResNet-50*

GWP (kg CO2eq) 5.03E-01

ADP (kg Sbeq) 1.07E-04

PE (MJ) 2.90E+01

Table 5.4: Total impacts of the ResNet-50* FU on Jetson, including both manufacturing and usage.

5.4 Comparison of the environmental impacts of training on Apollo
and on Jetson

The larger embodied impacts of Apollo don’t compensate for the inferiority of the computing
capacity of Jetson. Table 5.5 shows the total impacts of executing the ResNet-50* FU on the
Apollo node and the Jetson node.

Apollo Jetson

GWP (kg CO2eq) 7.83E-02 5.03E-01

ADP (kg Sbeq) 2.33E-06 1.07E-04

PE (MJ) 7.39E+00 2.90E+01

Table 5.5: Total impacts of the ResNet-50* FU, including both manufacturing and usage.

The global warming potential (GWP) of the ResNet-50* FU on Jetson is 2.36 times as high as
on Apollo. The abiotic depletion potential (ADP) is 17.36 times higher, and the Primary Energy
(PE) is 1.40 times more important. Figure 5.3 adds those three impacts to the comparison started
in Chapter 4. Instead of reducing the gap between both computing nodes, taking into account the
impact of electricity and the allocated embodied impacts exacerbates the dominance of Apollo.
The criteria most differentiating the nodes are the speed and the ADP efficiency. In conclusion,
the larger embodied impact of an Apollo node doesn’t counterbalance the longer training time on
Jetson.

69



Chapter 5. The environmental impacts of ML infrastructures and ML training

Speed

Accuracy

Electric Efficiency

GWP Efficiency

ADP Efficiency

PE Efficiency

Node (FU)
Apollo (ResNet-50*)
Apollo (ResNet-50)
Jetson (ResNet-50*)

Figure 5.3: Multi-criteria comparison of the ResNet-50 and ResNet-50* FUs on Jetson and
Apollo. Values were normalized between 0 and 1, with 1 being the target of the corresponding
criteria. For criteria with values outside of the [0,1] interval, values were normalized between 0
and 1, with 1 being the target of the corresponding criteria. Minimum and maximum values are
set to (3, 0), (100, 0), (0.70, 0), (0.00013, 0), (50, 0) for electricity consumption (kWh), duration
(hours), GWP (kg CO2eq), ADP (kg Sbeq), and PE (MJ), respectively, thus converting them into
efficiency metrics.

5.5 Discussion and sensitivity analysis

This section highlights the importance of using an accurate software-based power meter to
measure electricity consumption. The estimation of the usage phase is more reliable and the
comparison has greater value.

We decided to use an average electricity impact factor to simplify the process, but this method-
ology could be used with a dynamic electricity impact factor to compare - for example - carbon
aware computing techniques, whose benefits have been proven [Madon2022, Vasconcelos2023].
ML model training workloads are suitable for such techniques since they are less impacted by
delays.

This analysis could be improved by taking into account storage and network. Doing so would
require defining another allocation key since such equipment is not shared in a time-based ap-
proach.

The Average Utilization Rate (AUR) and the lifetime of the node have significant impacts on
the total impacts of training ML models on both Apollo and Jetson. For the previously presented
results, we assume an AUR of 65% and a lifetime of 4 years for both nodes. But depending on
where the workload is performed, those values can be highly different. Considering the current
demand for AI hardware, it is fair to assume that ML nodes are more efficiently used and the
AUR reached 100%. If that were the case, the ADP would be reduced by 53%. If the lifetime was
multiplied by 1.5, there would be a 49% decrease in ADP. The lifetime of specialized clusters such
as Champollion is harder to predict than classic server nodes since they require more resources to
build and use. It would be reasonable to assume that they are used for longer than 4 years. In those
two scenarios, the GWP would be reduced by around 16% for the Apollo node and 30% for the
Jetson. The PE would be reduced by around 2% and 6%, respectively.

Enlarging the scope to the data center or the infrastructure supporting the node such as the
cooling system would require including the PUE of the data center and adding the capex impact
of those supporting infrastructures. It would likely not change the outcome of the comparison
since HPC data centers are known to be highly efficient compared to edge data centers, except if
we assume that the Jetson is placed outside of a data center thus not requiring cooling. In many
cases, the edge device is powered by a battery which makes enlarging the scope highly unlikely to
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change the outcome of the comparison.

Going beyond those results, Chapter 6 discusses the limits of this methodology and perspectives
for future work.
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Chapter 6. Conclusion, discussion, and perspectives

In this thesis, we propose a methodology to assess the environmental impacts of the training
phase of a Machine Learning (ML) model, with a focus on electricity consumption and how to
account for the embodied impacts of the manufacturing phase of the hardware life cycle. We
define 3 environmental impact indicators and an allocation key to attribute the embodied cost to the
training phase, relying on the Life Cycle Assessment (LCA) standard methodology. We developed
this methodology with two objectives. First, it enables an analysis of the electricity usage of
the computing infrastructure adequate to find leverages to reduce the electricity consumption.
Secondly, it can be used to compare computing infrastructures and to make a decision on the
infrastructure that is optimal for a given use case. As a consequence, this methodology is versatile,
insightful, and reproducible. To highlight those qualities, we selected 6 models from different
areas of ML from the MLPerf benchmark and we trained them on two computing infrastructures
specialized for AI: a supercomputer, the Apollo 6500 Gen10+ node from the HPE Champollion
cluster, and an edge device, Nvidia Jetson AGX Xavier. Thus we defined 7 Functional Unit (FU),
one for each model and an additional one, ResNet-50*, with a reduced quality target to enable the
comparison between the infrastructures since the Jetson node couldn’t achieve the target of the
ResNet-50 FU.

To be able to apply our methodology, we first had to select an electricity measuring tool suit-
able for computing nodes. To accomplish this, in Chapter 3, we conducted an extensive compar-
ison of software-based power meters to understand how electricity measuring tools work, which
one best suits the need of the methodology, and what limits we must consider when assessing the
electricity consumption of a computing program.

As a first analysis, we studied the electricity consumption of training each FU on an Apollo
node and the ResNet-50* FU on a Jetson node. We study the power profile and the correlation
between the characteristics of models and the FU electricity consumption. Additionally, we eval-
uate the BERT FU on up to 4 Apollo nodes and show that increasing the number of nodes is not
a leverage to reduce the electricity consumption. An analysis of the energy required to reach each
accuracy point shows that this metric can be used as an early stop criterion.

Secondly, we estimate the embodied costs for each component of the Apollo and the Jetson
nodes and show that the memory (RAM, GPU Memory chip) is the most impactful component.
Then, we allocate them to the FUs and found that the usage phase dominates the Primary Energy
(PE) and the Global Warming Potential (GWP) impacts while the embodied phase represents most
of the Abiotic Depletion Potential (ADP) indicator.

A comparative analysis of both nodes using the ResNet-50* FU demonstrates the effectiveness
of our methodology in assessing not only the electricity consumption but also broader environ-
mental impact indicators. While the Jetson node exhibited a lower embodied carbon footprint, its
computational efficiency was significantly outperformed by the Apollo nodes, resulting in an at
least five-fold efficiency advantage for the Apollo node across all impact categories.

Reproducibility is a significant aspect of our methodology. Section 6.1 presents the steps we
followed to ensure reproducibility. Experiments we conducted and their outcome have shown
some limitations to our methodology for assessing the environmental impacts of ML training.
Section 6.2 provides an overview of those limits. Section 6.3 explores perspectives to improve our
methodology.

6.1 Reproducibility

Reproducibility has many advantages. Transparently documenting experimental protocols,
datasets, and analytical methods facilitates independent verification thus enhancing the reliability
and validity of the research. Additionally, open access to these materials fosters collaboration
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and accelerates scientific progress. In this thesis, we control the experimental setup by fixing
the environment and parameters affecting electricity consumption, as outlined in each chapter.
Specifically, CPU and GPU frequencies, as well as idle time before execution, were held constant
to minimize power fluctuations.

The code that was used to conduct the experiments presented in this thesis can be found in the
following repositories:

1. Repository for Chapter 3: https://github.com/vladostp/an-experimental-com

parison-of-software-based-power-meters (folder GPU Benchmarks), Persistent
identifier: https://hal.inria.fr/hal-03974900. Those artifacts allowed [Jay2023] to
be awarded a reproducibility badge.

2. Repository of the software-based power meter we used in Chapter 4: https://github.c
om/TheElectronWill/nvml-sensor, Persistent identifier: https://hal.science/ha
l-04664358.

3. Repository for Chapter 4 and Section 6.2.3: https://github.com/mjay42/Assessin
g-the-electricity-consumption-of-ML-training.

4. Spreadsheet for Chapter 5: https://docs.google.com/spreadsheets/d/e/2PACX-1
vTVrRxa05Wb5JTqr3L7Uzq25G9YGoYz1EEqS6oz2_2eu1dBBUr7VtWKiw6H3G0h0MeWe5C

4_3Ej5SBY/pubhtml.

6.2 Discussion

First, if the goal is to choose between a supercomputer and an edge device for training a given
model, many more criteria need to be considered on top of environmental footprint. Section 6.2.1
proposes a more comprehensive comparison. We based our results on software-based power meter
monitoring which fails to encompass the consumption of the whole node, as it is proved in Chap-
ter 3. Section 6.2.2 summarizes challenges we had with measuring electricity consumption. Our
methodology also assumes that it is possible to replicate training. However, in many use cases,
it can be too expensive in terms of resources and time. Section 6.2.3 shows that it is possible to
estimate the total training cost from observations. We identified other limits we didn’t have time
to explore. The correlation analysis for the Apollo node wasn’t conclusive, and more experiments
would have been required to collect data from more components like the networking interfaces
or the type of storage. LCA databases come with significant uncertainties [Wattiez2024, Peere-
boom1998, Herrmann2015] which we failed to take into account and doing so would strengthen
our analysis. We also didn’t include the differences in power supply units and storage between the
nodes, when both have a significant influence on the total impact of the nodes.

6.2.1 Extending the comparison criteria set for Apollo and Jetson on the ResNet-
50* Functional Unit

It was inherently unfair to compare an Apollo node to a Jetson node on the ResNet-50* Functional
Unit (See Table 4.4). While a Jetson might outperform a typical web server in terms of compu-
tational power, its primary function is edge inference, not training cutting-edge models. At best,
it can personalize these models using local data. However, model size is typically tailored to the
processing power of the device, favoring smaller, more efficient models.

Our methodology fails to fully capture the strengths of the Jetson as an edge device. It can
perform computations at the network’s edge, significantly reducing latency and data transfer for
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the user. Additionally, it’s far more accessible in terms of both development expertise and cost. An
Nvidia Jetson AGX Xavier 32GB can be purchased online for a few thousand dollars, while a clus-
ter like Champollion likely costs 100 times more to build and necessitates experienced engineers
to operate. In Figure 6.1, we include those new criteria in the comparison.

Speed

Accuracy

Electric Efficiency

GWP Efficiency

ADP EfficiencyPE Efficiency

Latency

Cheapness

Accessibility

Node (FU)
Apollo (ResNet-50*)
Jetson (ResNet-50*)

Figure 6.1: Multi-criteria comparison of the ResNet-50* on Jetson and Apollo. For criteria with
values outside of the [0,1] interval, values were normalized between 0 and 1, with 1 being the
target of the corresponding criteria. Minimum and maximum values are set to (3, 0), (100, 0),
(0.70, 0), (0.00013, 0), (50, 0) for electricity consumption (kWh), duration (hours), GWP (kg
CO2eq), ADP (kg Sbeq), and PE (MJ), respectively, thus converting them into efficiency metrics.

This overview of both infrastructures can help decision-makers choose the best option depend-
ing on their needs. It is proof that our methodology can be used to effectively compare computing
infrastructures on such functional units.

From our use case, we can conclude that edge devices are not a solution to reduce the elec-
tricity consumption of training ML models. In most use cases, they are used in addition to HPC
infrastructures thus increasing the total environmental footprint of a model training phase. Alter-
natively, edge computing can be an opportunity for constraining the learning and inference phases,
since it has access to less data and computations. This approach encourages the development of
applications focused on sufficiency or lower quality expectations rather than solely performance,
which we found to be the most effective strategy for energy reduction.

6.2.2 Challenges in measuring the electricity consumption of computing nodes

In this thesis, we were able to experiment with multiple power meters which came with various
challenges.

In Chapter 3, we conducted extensive experiments to study the offset between the power con-
sumed by the computing components (CPUs, GPUs, RAM) and the total power consumed by the
computing node. We show that the gap is significant and depends on the node thus it can hardly
be predicted for different computing nodes such as Apollo or Jetson nodes.

In Chapter 4, we studied two computing nodes equipped with different power meters than
in Chapter 3 and than each other. On Apollo, we had access to the AMD version of RAPL in
addition to NVML as software-based power meters and to iLO, an iPDU. We found inconsistencies
between them that we were not able to explain. We based all our results on RAPL and NVML since
they enable component power consumption reports. On Jetson, the software-based power meter
called Jetson-stats or TegraStats reports the power consumption of the CPU and the GPU as well
as the total consumption of the node. Surprisingly, the total consumption is higher than the TDP of
the node and of the power mode that we set. Before migrating on the Estats cluster of Grid’5000,
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we made tests on a Jetson development kit that we were able to monitor with an external power
meter called PowerSpy2 1 that has a resolution of 20 ms and a 99% precision. Figure 6.2 shows
the evolution of the power as reported by both power meters on training ResNet-18 on an Nvidia
Jetson AGX Xavier 32 Go development kit. We can see that the external power meter reports a
power of 30W, which corresponds to the configured power mode. The offset with TegraStats is
significant and corresponds to almost a third of the external power meter reports. Despite identical
specifications, the development kit and the node don’t have the same energy patterns.

Figure 6.2: Comparison of the power consumption reported by TegraStats and PowerSpy2 on
training ResNet-18 on an Nvidia Jetson AGX Xavier 32 Go development kit.

In conclusion, the offset between tools and total node consumption depends on the tool and
should be considered when studying the electricity consumption of a node. There are many oppor-
tunities to improve the quality and reliance of existing power meters. Additionally, it is necessary
to add tools to be able to take into account the entire node as well as the networking components
to better understand the total impact of training ML models.

6.2.3 Trainings too expensive to replicate

Most existing methodologies presented in Chapter 1 require replication of the training, as we did
in this thesis, to evaluate the electricity consumption of training. In many use cases, it can be too
expensive in terms of resources and time.

As an example, training a generative AI model such as Stable Diffusion demands weeks of
computations using 32 nodes. In this section, we replicate a fraction of the training while monitor-
ing the electricity consumption and estimate the total training based on those observations. [An-
thony2020] had already proven that the electricity consumption of epochs is constant and could
be predicted from the first epoch. We show that this characteristic can be used to estimate the
total training electricity cost by replication after the training is completed, assuming sufficient
information from the original training. Our approach is open-sourced and reproducible.

This section is based on a joint work [Berthelot2024]. It corresponds to my contribution to
the article.

We illustrate our approach on Stable Diffusion [Rombach2022], an open-source text-to-image
generative deep-learning model. Stable Diffusion was developed by researchers from the CompVis
Group at Ludwig Maximilian University of Munich and Runway with a compute donation by
Stability AI and training data from non-profit organizations. We selected Stable Diffusion because

1https://www.alciom.com/en/our-trades/products/powerspy2/
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it is popular, its model is open-sourced, and its successive versions can be downloaded on Hugging
Face 2. Additionally, image generation is the most energy-consuming LLM task [Luccioni2023a].
Several versions of the model exist from successive training phases from v1-0 to v1-5. The first
model version used by the service at the start of August 2022 was v1-4, which was replaced by
v1-5 two months later. The number of steps that were required for versions v1-1, v1-4, and v1-5
are displayed in Table 6.1.

We executed experiments on nodes from the Sirius cluster, whose specifications are described
in Appendix C.1, of the large-scale experimental Grid’5000 platform [Balouek2013]. This cluster
was selected because of its similarity with the resources used by developers for the training and
inference of the Stable Diffusion model.

For all experiments, we used Ubuntu 20.04 and we installed an Nvidia GPU driver with the
default power management configuration. The power consumption of the Sirius cluster is moni-
tored by an Omegawatt [OmegaWatt2018] power meter, which has a precision of 0.1 watts (W).
We used it with a sampling frequency of 1 Hz. Additionally, we gathered power metrics from
Nvidia NVML and Intel RAPL at a sampling frequency of 2 Hz. To ensure reproducibility, all
results are averaged from seven experiments. We based our experiments on the Diffusers library
and the Accelerate optimizer framework.

We were able to train the v1-1 Stable Diffusion model on Sirius with the same gradient ac-
cumulation, batch size, and optimizer as originally. The learning rate was kept constant. The
original training was distributed across 32 nodes. Assuming that the energy consumed by each
node is equivalent, we carried out the experiments on a single node. We used the Pokemon BLIP
captions dataset 3 which contains 833 images with captions. A linear regression was trained on
data points gathered from 61 training experiments with 7 to 3500 training steps, and we tested it
on 6 experiments with 5000 to 6500 training steps. Two resolutions of images were used for the
original training, 256x256 and 512x512. Thus we conducted the experiments and built a regres-
sion for each resolution (Equation 6.1 and 6.2, respectively). Those regressions were validated
with a score higher than 99%.

Energy (kWh) = 5.26e�04 ⇥N +2.01e�02 (6.1)

Energy (kWh) = 1.78e�03 ⇥N +1.64e�02

Where N is the number of training steps.
(6.2)

Table 6.1 presents the estimated energy consumed by the model versions that are pertinent for
this work, based on the number of steps provided by the developers of Stable Diffusion and our
regression models. The estimated energy was multiplied by the number of nodes originally used
(32).

In conclusion, we show that it is possible to estimate the total training electricity consumption
from the replication of a few training steps. To do so, we need the model to be open-sourced, a
cluster with similar computing capacity equipped with a power meter, and some basic knowledge
on the training such as the number of steps and the specification of the cluster that was used.

2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions
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Version Image # steps Estimated energy (kWh)

size 1 node 32 nodes

v1-1
256 2.37e+05

4.70e+02 1.50e+04

512 1.94e+03

v1-4 512 2.25e+05 4.01e+02 1.28e+04

v1-5 512 5.95e+05 1.06e+03 3.39e+04

Table 6.1: Estimated electricity consumption of training Stable Diffusion (number of steps
provided by the developers)

6.3 Perspectives

We explore three perspectives to improve our methodology. Extending the scope to include
the data collection and processing phase as well as the model deployment could be done using an
LCA methodology. This is discussed in Section 6.3.1. Our methodology can be used to assess
the direct impact of model training, but it fails to evaluate its indirect impact on society thus in
Section 6.3.2, we propose a few solutions to enable the evaluation of the indirect effects of the
development of models. Finally, Section 6.3.3 lists other impact categories that would need to be
considered to assess the sustainability of ML models.

6.3.1 A more complete LCA of model development and deployment

The ML development phase that was mostly studied in this thesis - training - is only one of the
numerous phases of an ML model life cycle (Figure 1.5). The collection of data and its prepro-
cessing is often discarded because it is assumed that it is only done once in the life cycle of a
model. However, in many cases, data is a continuous stream that needs to be processed and the
collection phase becomes more significant.

The impact of model deployment might be more difficult to assess since it depends on user
behavior. In [Berthelot2024], we replicate the inference of Stable Diffusion v1-1 to measure
the electricity consumption of using the model. Stable Diffusion has the particularity of being
deployed online as a service4 and can be freely accessed from user terminals. The Functional Unit
we consider is the cost of the service for one year, covering the activity periods of the v1-4 and
v1-5 versions of the model (2 and 10 months) before a new one is proposed on the site.

We use web measurement tools to evaluate the number of users that used this AI-based web
service in one year (2022), the average time they spend on the website, and the amount of data
that is downloaded and uploaded from the data center to the user terminal. Those measurements
can be used to allocate the world average impacts of user terminals and networks to the service.
The training is allocated considering the time during which the version is deployed in the year we
study.

Figure 6.3 shows the share of each digital infrastructure involved in the service in the total
impacts of the FU. We found that in the case of Stable Diffusion deployed online, the share of
inference in the total environmental cost of the development and deployment of the model for one
year dominates the share of training. The training accounts for 10% of the GWP impact and 8%
of the PE impact.

4https://stablediffusionweb.com/
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Figure 6.3: Share (in percentage) of each digital infrastructure involved in the service in the total
impacts of the FU.

We were able to conduct this study because Stable Diffusion had already been deployed. To
use this methodology prior to the deployment, we would need to estimate the amount of users and
their average time on the website. The potential behavior of users can be very different from one
use case to another. However, this methodology can be used to evaluate various scenarios.

Edge computing can be seen as an opportunity to reduce the network part of the deployment,
which is significant for this use case. It is not clear how it might affect the Inference and the
End User terminals part. In this thesis, we saw that edge devices are not systematically more en-
ergy efficient than HPC infrastructures. Simultaneously, HPC infrastructure can be shared among
services thus their active utilization rate is expected to be higher. Edge computing has also the
potential to increase the embodied impact of end-user terminals. The MLPerf benchmark and
dashboard could be used to assess such scenarios since they cover nodes designed for inference
with tiny, mobile, edge, and data center categories. Adding the electricity consumption to the list
of performances would facilitate such assessment and the inclusion of environmental criteria into
decision-making.

Our methodology could also be used to assess different learning paradigms such as feder-
ated learning, transfer learning, fine-tuning, and scenarios combining those concepts and different
computing infrastructures. Most of the time, a model is not trained only once but it is continually
improved or personalized to a use case. Typically, a model is intensively trained using an HPC
infrastructure on a large but generalist dataset. Then it is deployed to user devices where it is con-
tinuously improved on local data - which is called fine-tuning or personalization - or via federated
learning.

As a consequence, instead of being seen as an alternative solution to data center computing,
edge computing could be seen as a complementary field, bringing ML to applications and indus-
tries where it would not be possible otherwise due to privacy or latency limitations. For example,
Federated Learning is being used in the medical field to improve models without centralizing
highly sensitive patient data. The use case of this thesis suggests that the environmental impact of
such scenarios can be significant and should be assessed.

6.3.2 Consequential Approach in LCA

Accounting for the embodied impact of the infrastructure is an important challenge. The attribu-
tional approach we used in this thesis has many limits. It suggests that computing infrastructures
exist already and that services share them and can be used to analyze the impacts of a product or
service at a micro-level. For example, in Chapter 5, the sensitivity analysis enabled us to say that
multiplying the lifetime by 1.5 could decrease the Abiotic Depletion Potential (ADP) by 48% for
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the Apollo node on the ResNet Functional Unit (FU) if other parameters are kept constant. How-
ever, doing so could have impacts outside of the service level. Increasing the lifetime of clusters
means that more infrastructures are available, but it can have various impacts on the economy. For
example, it might lead to producing less hardware, or, at the opposite, to more ML models being
developed and deployed.

The attributional approach fails to assess those impacts thus it is not suitable to assess the im-
pact of the service at the macro or economic level. In other words, it doesn’t take into account the
indirect effects of the service. However, AI workloads have a significant impact on the economy.
As it was presented in Chapter 1, more powerful and efficient hardware is designed and put into
the market every few years to allow ever bigger models to be trained and deployed at a larger scale.

Another approach, called consequential LCA, estimates the consequences of changing a part
of the economy. Its goal is to answer the questions "What environmental impact product X is
responsible for? What are the consequences of consuming X?" instead of "What environmental
impact can be attributed to product X?". It is better for decision-making at the macro scale or
strategic level. However, it is more challenging to model. It relies on marginal life cycle inventory
databases that are less common and the impact of the choice of service might not be linear. It
requires modeling the relationship between every actor influencing the sector: the capacity of
chip manufacturers to produce chips and how it is influenced by demand, the investment of ML
companies in hardware, the advances in research, the impact of ML workloads on productivity
and society, etc.

The discussion on edge computing in the previous Section suggests that edge computing could
be seen as an indirect effect of ML training thus it would be interesting to integrate it into a
consequential approach. Many factors might influence the advancement of edge computing and
its environmental impacts and a consequential approach has the potential of shedding light on
the still open question of whether edge computing can help reduce the impacts of the sector or
exacerbate them.

6.3.3 Assessing the sustainability of an ML model

Environmental indicators used in this thesis are not enough to evaluate the sustainability of a
service. Models were proposed to assess sustainability as a fair allocation of planet boundaries to
each human [Hjalsted2021]. In other words, each inhabitant could have a budget for each indicator
that, scaled up, would respect planet boundaries. And if the budget remaining after considering
food, housing, or transport is enough to support the service, then it might be called sustainable.
This is only an example of how sustainability can be assessed, and this aspect could be explored
to improve the methodology.

While environmental considerations are crucial, sustainability encompasses more criteria. In
2015, the United Nations established the 17 Sustainable Development Goals addressing issues like
health, poverty, and education. The EU AI Act, which came into effect in August 2024, regulates
the development and use of AI. Beyond environmental impact, it emphasizes security risks, trans-
parency, traceability, and ethical considerations5. Therefore, our proposed methodology should
be used in conjunction with other assessment frameworks to comprehensively evaluate an ML
model’s impact on society.

5https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-reg
ulation-on-artificial-intelligence
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Conclusion

General conclusion

C omputing infrastructures handling Machine Learning (ML) trainings are consuming more
electricity than ever when the carbon intensity of electricity is still significant. Simultaneously,
the growing amount of computations required by ML workloads pushes for more powerful hard-
ware with an impactful manufacturing process. More advanced evaluation methods and a deeper
understanding of these impacts are necessary to minimize the environmental impacts of the field.

This thesis introduces a novel methodology for assessing the environmental impact of ML
model training, with a particular emphasis on electricity consumption and the embodied impact
of the computing infrastructure. A study is conducted to compare power meters on their capacity
to assess the electricity consumption of IT infrastructures and by extension understand how elec-
tricity measuring tools work, identify their limits, and select the one that best suits the needs of
the methodology. To validate our methodology, we selected 6 models from different areas of ML
from the MLPerf benchmark and we trained them on two computing infrastructures specialized
for ML: a supercomputer, the Apollo 6500 Gen10+ node from the HPE Champollion cluster, and
an edge device, Nvidia Jetson AGX Xavier. We demonstrate the versatility, reproducibility, and
insightfulness of the proposed approach by comparing both infrastructures. The environmental
impact of the manufacturing and usage phases of the training are assessed through 3 indicators:
the global warming potential, the primary energy, and the abiotic depletion potential.

Key findings include significant variation in energy consumption among models and hardware
platforms, a dominance of memory components on embodied environmental impact, and a su-
periority of the high-performance computing infrastructure over the edge device despite a higher
embodied impact. Recommendations for future research encompass expanding the analysis to in-
clude the data collection and model deployment phases, refining power measurement techniques,
and developing methods to evaluate the broader societal implications of ML.

We hope this work will contribute to a better and broader assessment of ML workloads thus
promoting transparency and responsible practices in this industry.
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mesure d’énergie : côté GPU. Compas 2022, Jul 2022, Amiens, France.
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• Adrien Berthelot, Eddy Caron, Mathilde Jay, Laurent Lefèvre. Towards a multi-criteria
evaluation of the environmental footprint of generative ai services. ICT4S 2024 - Interna-
tional Conference on Information and Communications Technology for Sustainability, Jun
2024, Stockholm, Sweden. pp.1-1, 2024.

A.4 Communications

• Mathilde Jay. Méthodologies pour la résilience de l’intelligence artificielle. Résilience et IA,
Plate-Forme Intelligence Artificielle (PFIA). 27 June - 1er July 2022, Saint-Étienne, France.
https://ci.mines-stetienne.fr/pfia2022/

• Ma thèse en 3 minutes. MIAI days. 9 December 2022, Grenoble, France.

• Mathilde Jay and Vladimir Ostapenco. An experimental comparison of software-based
power meters: focus on CPU and GPU. Journées non thématiques GDR RSD. 27 January
2023, Lyon, France. https://gdr-rsd.fr/journees2023/

• Mathilde Jay. Évolution de la méthodologie d’évaluation de la consommation énergétique
de l’apprentissage et pistes d’amélioration. GreenDays. 23 March 2023, Lyon, 2023. http
s://perso.ens-lyon.fr/laurent.lefevre/greendayslyon2023/programme_gre

endays2023.html

• Mathilde Jay. Apprentissages frugaux dans des centres de calculs proches de l’utilisateur.
Neuvième journée PERSPECTIVES ET DEFIS DE l’IA sur le thème de « IA et écologie »
organisée par L’Association Française pour l’Intelligence Artificielle (AFIA). 4 April 2023,
Paris, France. https://afia.asso.fr/les-journees/pdia-2023/

• Mathilde Jay. Comparaison de wattmètre logiciels. EcoCode Challenge. 5 April 2023,
Paris, France. https://www.davidson.fr/blog/davidson-accueille-la-deuxiem
e-edition-du-challenge-ecocode-dans-ses-locaux

• Danilo Carastan Dos Santos and Mathilde Jay. Impact environnemental de l’IA: La partie
immergée de l’IA-iceberg. Pint of Science. 22 May 2023, Grenoble, France. https:

//pintofscience.fr/event/impact-environnemental-de-lia

• Panel discussion at the GreenTech Forum. La recherche en numérique : écoresponsabilité,
défis scientifiques, environnementaux et sociétaux. 21 Novembre 2023, Paris, France. http
s://www.greentech-forum.com/2023/programme-evenements

• Mathilde Jay. More than electricity, more than carbon: Assessing the environmental cost
of the Stable Diffusion service. Journées de Recherche en Apprentissage Frugal (JRAF).
13-14 December 2023, Grenoble, France. https://jraf-2023.sciencesconf.org/

• Mathilde Jay and Guillaume Raffin. Prendre la mesure de la measure. GreenDays. 28
March 2024. https://perso.ens-lyon.fr/laurent.lefevre/greendaystoulouse
2024/programme_greendays2024.html

XIV

https://ci.mines-stetienne.fr/pfia2022/
%20https://gdr-rsd.fr/journees2023/
https://perso.ens-lyon.fr/laurent.lefevre/greendayslyon2023/programme_greendays2023.html
https://perso.ens-lyon.fr/laurent.lefevre/greendayslyon2023/programme_greendays2023.html
https://perso.ens-lyon.fr/laurent.lefevre/greendayslyon2023/programme_greendays2023.html
https://afia.asso.fr/les-journees/pdia-2023/
https://www.davidson.fr/blog/davidson-accueille-la-deuxieme-edition-du-challenge-ecocode-dans-ses-locaux
https://www.davidson.fr/blog/davidson-accueille-la-deuxieme-edition-du-challenge-ecocode-dans-ses-locaux
https://pintofscience.fr/event/impact-environnemental-de-lia
https://pintofscience.fr/event/impact-environnemental-de-lia
https://www.greentech-forum.com/2023/programme-evenements
https://www.greentech-forum.com/2023/programme-evenements
https://jraf-2023.sciencesconf.org/
https://perso.ens-lyon.fr/laurent.lefevre/greendaystoulouse2024/programme_greendays2024.html
https://perso.ens-lyon.fr/laurent.lefevre/greendaystoulouse2024/programme_greendays2024.html


A.5. Program committee and workshop chair

A.5 Program committee and workshop chair

Program committee:

• ICML 2023 Workshop FL

• NeurIPS 2023 Workshop WANT

• NeurIPS 2023 Workshop Diffusion

• ICML 2024 Workshop WANT

Session chair:

• "What computer science research in the Anthropocene?" Workshop. ICT For Sustainability
(ICT4S). June 2024, Stockholm, Sweden. https://conf.researchr.org/track/ict4s
-2024/ict4s-2024-workshops

A.6 Impact

The methodology we presented in [Berthelot2024] was taken as an example by AFNOR, a
leading French standards organization, to develop their general reference framework for Frugal
AI 1. This framework, aiming to measure and reduce the environmental impact of AI, was written
by French experts from both the academic and industrial worlds.

The published articles got significant attention, as evidenced by their number of citations on
Google Scholar. [Jay2023] was cited 40 times within 16 months, while [Berthelot2024] received
17 citations in the first nine months.

1https://www.boutique.afnor.org/fr-fr/norme/afnor-spec-2314/referentiel-general-pour-l
ia-frugale-mesurer-et-reduire-limpact-environneme/fa208976/421140
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B
Mathematical Foundations of Machine Learning

and Neural Networks

This Chapter introduces key concepts of ML.

B.1 Mathematical foundations

Artificial Intelligence (AI) is intelligence delivered by a digital system. It might also be defined
as a computer system displaying human-like intelligence. AI is a field of research in computer sci-
ence but can be seen as a field of Information and Communication Technologies as it is integrated
into digital services, and relies on the same equipment: user interfaces, networks, and data cen-
ter components. Machine Learning (ML) is a sub-field of AI in which the system automatically
learns from data. ML performs well in many tasks, from detecting objects in images to translating
languages.

The concepts behind machine learning were inspired by the human brain. When children learn
to name animals, they are shown images and told which animal they correspond to. The process
is done repeatedly until they can make out the features differencing the animals and name all the
animals in the pool of images. This particular example is a classification task whose goal is to
match image inputs to categories, but there exist many other tasks. A regression is similar but
outputs are numerical values, for example, predicting the age of a child based on her height. Both
tasks are supervised tasks, implying that the output is known during learning. On the other hand,
unsupervised learning does not require truth labels and corresponds to tasks such as creating
clusters with similarities among the inputs.

The goal of ML is to model the relationship between inputs x 2 X and outputs y 2 Y . This is
done by (1) finding a model and (2) providing it with a set of data examples {xi,yi}d

i=1 ⇢ X ⇥Y
until the model is able to map the input to the closest output. The first phase is done by searching
for the best parametric function fq : X 7! Y among a family of functions Fq to approximate the
relationship. The second step consists of adjusting the parameters q 2 Q, such that the output of
our model fq (x) closely matches the desired output y.

For that purpose, one needs to define a loss function L that can be used to minimize the error
between fq (x) and y. The choice of loss function needs careful consideration since the shape of
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the input, output, and model directly influence its effectiveness. It also needs to be convex to use
optimization theory. The quality refers to a metric that can be used to evaluate the progress of
learning while not being used in the optimization. Indeed, some metrics might be better designed
for the task while not having the previously listed requirements. The choice of the targeted quality
is also important since reaching the next quality point requires more computations and energy than
the previous, as was stated in the introduction.

The objective is to find q̂ such as Equation B.1 is verified.

q̂ = argminq (L( fq (X),Y )) (B.1)

Equation B.1 is a non-convex optimization problem that is not solvable with optimization
theory. Thus, q̂ is approximated using Gradient Descent. This optimization technique finds a
local minimum by taking repetitive steps down the function’s slope. The direction is determined
by the gradient — fq . The next step is computed from Equation GD. That is one of the most
significant characteristics of ML since those steps require the same amount of computations. This
can simplify the evaluation of the training energy consumption.

qn+1 = qn �h—q L( fq ,X ,Y ) (GD)

h is a hyperparameter called the learning rate that can be used to control the descent and is
usually dynamically adjusted during training.

Equation GD is often too expensive to compute on the whole dataset. Stochastic Gradient De-
scent (SGD) consists of computing the gradient on each sample of the dataset, and the parameters
are updated systematically as in Equation SGD. This technique has significant drawbacks since
samples can have highly different gradients thus leading to inefficient learning. To avoid this, the
dataset is divided into batches Xb ⇥Yb of several samples of data, and the batch loss gradients are
averaged as in Equation MBGD. This algorithm is called mini-batch gradient descent. Applying
equation MBGD on one batch is referred to as a step. Going through all batches corresponds to
one epoch. The batch size is an important hyperparameter since it is a balance between computa-
tion capabilities and learning speed-up.

qn+1 = qn �h—q L( fq ,x,y) with x 2 X ,y 2 Y (SGD)

qn+1 = qn �h Â
{x,y}2Xb⇥Yb

1
|Xb|

—q L( fq ,x,y) with Xb ⇢ X ,Yb ⇢ Y (MBGD)

Such a process is referred to as Centralized Learning. One drawback is that applying the
algorithm on one batch needs to be done on one machine. This can be a bottleneck when the dataset
is too large. To solve this issue, learning can be distributed on two levels: model-parallelism and
data-parallelism. On the first level, different model parts are trained on different machines on the
same data. For simplicity reasons, the second level is preferred: each machine is tasked with one
batch (Equation MBGD), and the parameters trained in each machine are aggregated on a central
machine when each working machine has finished training.

qn+1 =
1
m Â

i2{1,m}
qi (B.2)

Gradient accumulation consists of accumulating the gradients computed on several batches
to simulate a bigger batch size. The gradients are not used to update the parameters after each
batch forward and backpropagation passes but they are stored and summed up. After a given
number of batches, the sum is used to update the parameters which are sent to the central machine.
Gradient accumulation enables to use of bigger batch sizes and reduces the time lost in sharing the
data and aggregating.
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Many evolutions of stochastic gradient descent have been developed to automatically adapt
the learning rate to the learning state and stabilize the batch gradient while staying in a reasonable
computation space. Adam [Kingma2014] is the most effective and common of them. The method
computes individual adaptive learning rates for different parameters from estimates of the first and
second moments of the gradients, with little memory requirements. Such methods are referred to
as optimizers.

The number of steps or epochs needed to reach the optimal is usually impossible to predict.
Because of this, the loss needs to be monitored regularly and the learning is stopped when the loss
stops decreasing. This is called early stopping.

Over-fitting is a phenomenon that happens systematically in Machine Learning. It means the
model has become too specialized or too biased on the dataset and is not able to generalize to new
data. To avoid this situation, the dataset is divided into train, test, and validation datasets. Early
stopping is based on the test dataset. A trade-off needs to be found between under-fitting and
over-fitting. The validation dataset is used when the training is done as a final loss or quality and
enables model comparison. There exist many regularization techniques to reduce over-fitting.
Examples include reducing the batch size and transforming the samples (crop, resize, rotate).

B.2 Model architectures: Neural networks

Many model architectures exist. In this thesis, the focus is put on Neural Network (NN) as
they have had a lot of interest from research and academia in the past decades.

Rosenblatt’s 1957 tech report introduced the perceptron as "a perceiving and recognizing au-
tomaton". Designed to mimic a human neuron, it is also called an artificial neuron. In the human
brain, a neuron is activated if the input signals are charged enough. To model this, the inputs x 2 X
are aggregated in a weighted sum. To represent the threshold, a bias b is added to the sum and the
result is passed to an activation function s : R 7! {0,1}, as in Equation B.3.

y = s(wwwT xxx+b) (B.3)

A single perceptron enables a linear separation of the space. To model more complex relation-
ships, layers of several neurons can be added to form a Multi-Layer Perceptron (MLP). Each layer
neuron output is an input to the next layer, resulting in a densely connected network also called a
Neural Network (NN). The weights w and biases b correspond to the parameters q 2 Q defined
in Section B.1. A neural network can be represented by the parametric function fq .

Evolutions of the artificial neuron have been proposed to model even more complex relation-
ships. A Convolutional Neural Network (CNN) is able to detect features in images, a Recurrent
Neural Network (RNN) can process stream data, and a Residual Neural Network (ResNet) can
skip neurons to avoid vanishing gradients, thus, enabling learning on much bigger networks.

As explained in the previous section, the parameters are trained using gradient descent. The
process used to compute the gradients of a NN is called backpropagation. Computing the suc-
cessive gradients of each of the layers can be computationally expensive, and this is evaluated
through the number of Floating Point Operation (FLOP) required to train a model.

Finding the best NN architecture for a given task can be tedious. It became a research problem
in itself: Neural Architecture Search. The hyperparameter search is a laborious task too, and
various strategies exist.

As more and more tasks are explored with deep learning models, the tendency has become to
start from so-called foundation models, already trained and effective on one task, and use them
as backbones for another task by combining them, fine-tuning them or adding more layers.
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Large Language Model (LLM) are NN models with an exceptionally high number of param-
eters that can comprehend and generate human language text. BERT [Devlin2019] and GPT [Rad-
ford2018] are two popular LLMs.

Generative-AI refers to models that can generate text or images. They are known to require
more parameters and computations than previously proposed models. The most famous models
are ChatGPT, Dall-e, and MidJourney.

B.3 A focus on Convolutional Neural Networks

Convolutional Neural Networks are now the reference in image processing and are used for
both image classification and semantic segmentation.

A Convolutional Neural Network (CNN) is based on a mathematical operation called convo-
lution, which expresses how the shapes of two input functions influence each other. It is defined
by f ⇤g(x) =

R
f (y)g(x�y)dy, f and g being the input signals. From this formula, it can be stated

that the result function is maximum where the inputs have a similar shape. It becomes the corre-
lation formula in case of identical input. In signal processing, this operation can be used to detect
a certain pulse in a signal. By extension in image processing, convolution can be used to detect a
certain feature such as a line or a curve in the image.

Typically, the first input of the convolution is the original image and the second is a two-
dimension grid called a kernel or a filter. In figure B.1a, the kernel is moved from left to right
and from the top to the bottom. For each position, the output of the convolution is the sum of the
element-wise product of each value of the kernel with the original image. The output is, therefore,
the highest where the image is similar to the kernel. Here, the kernel can be used to detect crosses
in the original image.

(a) Example of a convolution kernel (b) LeNet CNN for Handwritten digit recognition [Lecun1998].

Figure B.1: Details of CNN

A CNN is a succession of convolution layers, as can be seen in figure B.1b. In each layer,
several kernels are used to produce different feature maps. The number and the size of kernels
can be used to adapt the granularity of details to the problem. To have several levels of details,
cascaded layers can be used. A CNN can, therefore, learn a hierarchical representation of the data.
Figure B.1b shows one of the first CNNs called LeNet [Lecun1998]. Developed for handwritten
digit recognition, the model has two convolution layers. The first one extracts six features from the
original image. and the second one, sixteen. Subsampling layers allow for reducing the dimension
of the feature maps. Three fully connected layers provide the outputs, here ten, as the number of
digits. Classification tasks require linear output in the form of a probability distribution over the
number of classes.
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B.4 A focus on Transformers

Transformers is a model architecture that revolutionized NLP by enabling efficient and scal-
able processing of sequential data. It was published in 2017 by Google Brain. Unlike traditional re-
current neural networks (RNNs), Long Short-Term Memory (LSTM) and Gated Recurrent Neural
Networks, Transformers utilize self-attention mechanisms to capture dependencies across entire
sequences simultaneously, allowing for faster training and better handling of long-range depen-
dencies. This architecture led to the development of advanced models like BERT, GPT, and their
successors. Transformer has an encoder-decoder architecture as can be seen in Figure B.2a. Both
the encoder and the decoder rely on multi-head attention layers as can be seen in Figure B.2b.
Quite similar to kernels in convolution layers, Multi-Head attention allows the model to attend to
different aspects of the input simultaneously. Instead of finding patterns and features in images,
one head can attend to grammar and another to meaning. An attention layer is more parallelizable
than an RNN. The positional encoding (Fig. B.2a) allows the model to keep the sequential order
that would be lost in the attention layer.

(a) Architecture of a Transformer [Vaswani2017]
(b) Architecture of the Multi-Head Atten-
tion layer [Vaswani2017]

Figure B.2: Transformer model architectures
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C
Node specifications

C.1 Champollion

C.1.1 Front view of the cluster

The cluster is placed in racks and cabinets as can be seen in Figure C.1.

Figure C.1: Front view of Champollion.
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C.1.2 Inter-node communications

The inter-node communications are handled by 8 Infiniband Mellanoc switches organized as in
Figure C.2.

Figure C.2: Organisation of switches in the Champollion cluster.

C.1.3 Inter-GPU communications

The inter-GPU communications rely on the NVLink technology, as can be seen in Figure C.3.

C.2 Jetson

The NVIDIA Jetson AGX Xavier 32 GB development kit (Figure C.4) has a width and a depth
of 10 cm. It is 8.7 cm high.

C.3 Sirius

Table C.1 presents the specifications of the Sirius cluster of Grid’5000, a large-scale test bed
for experimental research [Balouek2013].
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C.3. Sirius

QuickSpecs  HPE Apollo 6500 Gen10 Plus System 

Optional Features 
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HPE ProLiant XL675d System Block Diagrams – Modular SXM GPU Configuration 

 
Notes: For the highest reliability and best customer experience, HPE must install the NVLink GPU in the factory.  Field 
installations and upgrades of NVLink GPU are no longer supported. 

 
HPE ProLiant XL645d System Block Diagrams - PCIe GPU Configuration 

Figure C.3: Schema of inter-GPU communications in Apollo nodes.

Cluster Sirius

System Nvidia DGX A100

CPU model AMD EPYC 7742 (Zen 2, 64
cores/CPU)

# CPUs 2

GPU model Nvidia A100-SXM4-40GB

# GPUs 8

Memory 1 TB

Table C.1: Experimental setup
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Figure C.4: NVIDIA Jetson AGX Xavier 32 GB development kit
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A Versatile Methodology for Assessing
the Electricity Consumption and Envi-
ronmental Footprint of Machine Learning
Training: from Supercomputers to Edge
Devices

Résumé
Le nombre d’applications basée sur l’intelligence artificielle (IA) développées et dé-
ployées ne cesse d’augmenter. L’impact de ces activités sur la biosphère, notam-
ment sur le dérèglement climatique, attire l’attention depuis 2019, mais les méth-
odes d’évaluation nécessitent encore des améliorations. Des méthodes d’évaluation
plus avancées et une meilleure compréhension de ces impacts sont nécessaires
pour minimiser l’impact environnemental de l’intelligence artificielle.
En mettant l’accent sur la phase d’entraînement, cette thèse étudie l’impact du ma-
chine learning (ML) sur l’environnement. Dans un premier temps, une étude est
menée pour évaluer la consommation électrique des infrastructures informatiques
en comparant les compteurs d’électricité actuellement utilisés, en se concentrant
sur les unités de traitement graphique (GPU). Ces résultats sont utilisés pour anal-
yser l’électricité nécessaire à l’entraînement de modèles sélectionnés à partir du
benchmark MLPerf sur différentes infrastructures d’apprentissage automatique, al-
lant d’un appareil embarqué à un supercalculateur. Enfin, la thèse s’oriente vers
l’évaluation des impacts environnementaux plus généraux du ML, en se basant sur
une estimation des impacts liés à la fabrication des infrastructures de calcul.
En conclusion, cette thèse propose une méthodologie permettant une évaluation
multi-critères reproductible de l’impact de l’entraînement du machine learning sur
l’environnement et pouvant être appliquée à différentes infrastructures de ML, per-
mettant ainsi une comparaison équitable et des choix éclairés.

Mots-clés : Apprentissage Automatique, Impact Environemental, Supercal-
culateur, Embarqué, Entraînement, Multi-critère

Abstract
The number of Artificial Intelligence applications being developed and deployed is
continually increasing. The effects of these activities on the biosphere, particularly
on climate change, have attracted attention since 2019, but assessment method-
ologies still require improvement. More advanced evaluation methods and a deeper
understanding of these impacts are necessary to minimize the environmental im-
pacts of artificial intelligence.
With an emphasis on the training phase, this thesis investigates how machine learn-
ing (ML) affects the environment. First, a study is conducted to assess the elec-
tricity consumption of IT infrastructures by comparing power meters currently in use
with different benchmarks and infrastructures, focusing on Graphic Processing Units
(GPUs). These findings are used to analyze the electricity required to train models
selected from the MLPerf benchmark on various ML infrastructures, ranging from
an edge device to a supercomputer. Finally, the thesis shifts toward examining the
more general environmental impacts of ML, based on an estimation of the embodied
impacts of ML infrastructures.
In conclusion, this thesis proposes a methodology that enables a reproducible multi-
criteria evaluation of the impact of machine learning training on the environment and
can be applied to different ML infrastructures, thus enabling fair comparison and
enlightened choices.

Keywords : Machine Learning, Environmental Impacts, Multi-criteria, Su-
percomputer, Edge, Training
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