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Résumé

Cette thèse s’intéresse à la construction d’une échelle de temps autonome et robuste aux
erreurs d’horloge pour des essaims de satellites. Prévu pour une utilisation dans un es-
saim de nanosatellites, cette nouvelle échelle de temps appelée ATST (Autonomous Time
Scale using the Student’s T-distribution) peut traiter les anomalies dues aux imperfec-
tions des horloges et aux liens inter-satellites manquants dans un environnement hostile.
Plus précisément, les types d’anomalies traités incluent les sauts de phase, les sauts de
fréquence, un bruit de mesure élevé dans certains liens et d’éventuelles données man-
quantes. En calculant la moyenne pondérée des résidus issus de l’équation de l’échelle de
temps de base (BTSE), la contribution des satellites avec des mesures anormales est réduite
pour la génération de l’échelle de temps. Les poids attribués à chaque horloge sont basés
sur l’hypothèse que les résidus de l’ensemble suivent une loi de Student, ce qui permet
d’utiliser des méthodes d’estimation robustes à la présence d’éléments aberrants.

La performance de l’algorithme ATST est équivalente à celle de l’algorithme AT1 ora-
cle, qui est une version de l’échelle de temps AT1 avec la capacité de détecter parfaitement
toutes les anomalies dans des données simulées. Bien que l’algorithme n’ait pas de méthode
de détection explicite, l’algorithme ATST affiche toujours un niveau de robustesse com-
parable à celui d’un détecteur parfait. Cependant, l’algorithme ATST est conçu pour un
essaim avec de nombreuses horloges de types homogènes et est limité par une complexité
numérique élevée. De plus, les anomalies sont toutes traitées de la même manière sans dis-
tinction entre les différents types d’anomalies. Malgré ces limitations identifiées, ce nouvel
algorithme ATST représente une contribution prometteuse dans le domaine des échelles de
temps grâce à la robustesse atteinte.

Une méthode de traitement des horloges ajoutées ou retirées de l’ensemble des horloges
disponibles est également proposée dans cette thèse en conjonction avec la méthode ATST.
La méthode obtenue préserve la continuité de phase et de fréquence de l’échelle de temps
en attribuant un poids nul aux horloges concernées lorsque le nombre total d’horloges est
modifié. Un estimateur des moindres carrés (Least Squares, LS) est présenté pour montrer
comment les mesures des liens inter-satellites peuvent être traitées en amont pour réduire
le bruit de mesure et en même temps remplacer les mesures manquantes. L’estimateur LS
peut être utilisé avec une méthode de détection qui élimine les mesures anormales. Il peut
alors remplacer les mesures supprimées par les estimations correspondantes.
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Cette thèse étudie également les performances de l’estimateur du maximum de vraisem-
blance (MLE) pour les paramètres des lois de probabilités à queues lourdes, plus précisément
pour la loi de Student et pour un mélange de lois gaussiennes. Les améliorations obtenues
en supposant que ces lois sont effectivement à queues lourdes par rapport à l’hypothèse de la
loi gaussienne sont démontrées avec les bornes de Cramér-Rao mal-spécifiées (MCRB). Les
expressions obtenues des MCRB pour une loi de Student et un mélange de lois gaussiennes
confirment que les lois à queues lourdes sont meilleures pour l’estimation de la moyenne en
présence de valeurs aberrantes. Elles permettent également de montrer que l’estimation des
paramètres des lois à queues lourdes nécessite au moins 25 horloges pour obtenir une erreur
d’estimation proche de la MCRB correspondante, c’est-à-dire que l’estimateur atteigne son
efficacité asymptotique.

Des propositions de pistes de recherche futures incluent le traitement des limitations de
l’algorithme ATST concernant les types et le nombre d’horloges. Une nouvelle définition
des pondérations des résidus issue d’une méthode d’apprentissage statistique utilisant des
données d’apprentissage est envisageable grâce à l’utilisation des résidus de l’échelle de
temps de base BTSE. Une autre piste de recherche est le traitement des anomalies transi-
toires qui pose actuellement problème pour l’algorithme ATST. Un traitement de ce type
d’erreurs pourrait être envisagé avec un algorithme d’apprentissage statistique ou avec un
estimateur robuste de la fréquence des horloges sur une fenêtre de données passées.

Mots clés: Estimation robuste, échelles de temps, détection des anomalies, bornes de
Cramér-Rao mal-spécifiées.



Abstract

A new robust time scale algorithm, Autonomous Time scale using the Student’s T-distribution
(ATST), has been proposed and validated using simulated clock data. Designed for use in a
nanosatellite swarm, ATST addresses phase jumps, frequency jumps, anomalous measure-
ment noise, and missing data by making a weighted average of the residuals contained in
the Basic Time Scale Equation (BTSE). The weights come from an estimator that assumes
the BTSE residuals are modeled by a Student’s t-distribution.

Despite not detecting anomalies explicitly, the ATST algorithm performs similarly to a
version of the AT1 time scale that detects anomalies perfectly in simulated data. However,
ATST is best for homogeneous clock types, requires a high number of clocks, adds compu-
tational complexity, and makes no distinction of anomaly types. Despite these identified
limitations, the robustness achieved is a promising contribution.

The implementation of ATST includes a method that maintains phase and frequency
continuity when clocks are removed or reintroduced into the ensemble by resetting appropri-
ate clock weights to zero. A Least Squares (LS) estimator is also presented to pre-process
inter-satellite measurements, reducing noise and estimating missing data. The LS esti-
mator is also compatible with anomaly detection which removes anomalous inter-satellite
measurements because it can replace the removed measurements with their estimates.

The thesis also explores optimal estimation of parameters of two heavy-tailed distri-
butions: the Student’s t and Bimodal Gaussian mixture. The Misspecified Cramér Rao
Bound (MCRB) confirms that assuming heavy-tailed distributions handles outliers better
compared to assuming a Gaussian distribution. We also observe that at least 25 clocks are
required for asymptotic efficiency when estimating the mean of the clock residuals. The
methodology also aids in analyzing other anomaly types fitting different distributions.

Future research proposals include addressing ATST’s limitations with diverse clock
types, mitigating performance loss with fewer clocks, and exploring robust time scale gen-
eration using machine learning to weight BTSE residuals. Transient anomalies can be
targeted using machine learning or even a similar method of robust estimation of clock
frequencies over a window of past data. This is interesting to research and compare to the
ATST algorithm that is instead proposed for instantaneous anomalies.

Key words: Robust estimation, time scales, anomaly detection, signal processing,
time and frequency transfer, misspecified bounds.
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comprendre en anglais, et pour votre patience et vos encouragements dans le développement
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Merci aussi aux membres de la communauté scientifique qui ont pu m’apprendre de
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Abstract 5

1 Context 13
1.1 Space-based Radio Interferometry . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Clock technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Standardized Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Clock noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Satellite-based Clock technologies . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Anomalies in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Time Scales 33
2.1 Coordinated Universal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Basic Time Scale Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Kalman Filter Composite Clock . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Anomaly detection for KF time scales . . . . . . . . . . . . . . . . . 44
2.3.5 Robust Estimation for known anomalies . . . . . . . . . . . . . . . . 46

2.4 AT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 BTSE Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.4 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 AT1 Phase jump detection . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.6 AT2 Frequency jump detection . . . . . . . . . . . . . . . . . . . . . 51
2.4.7 Oracle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9



10 CONTENTS

3 A New Robust Time Scale Algorithm 55
3.1 Anomalous Clocks and the Student’s t-distribution . . . . . . . . . . . . . . 56

3.1.1 Clock Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Clock Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 BTSE Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 Verifying the Student’s t-distribution . . . . . . . . . . . . . . . . . . 59

3.2 Weights of ATST Time Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Robustness of ATST time scale . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.3 Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Results in presence of anomalies . . . . . . . . . . . . . . . . . . . . 69

3.4 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 Noise and anomaly mitigation with Missing measurements . . . . . . 78
3.4.3 Removal of Missing clocks . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.4 Reintroduction of Missing clocks . . . . . . . . . . . . . . . . . . . . 81

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Estimation Performance Limits 87
4.1 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Cramér Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Misspecified Cramér Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Analysis of Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 True Distribution: Gaussian . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.2 True Distribution: Student’s t . . . . . . . . . . . . . . . . . . . . . 97
4.4.3 True Distribution: Bimodal Gaussian Mixture . . . . . . . . . . . . 99
4.4.4 Misspecified Estimation of Scale Parameter . . . . . . . . . . . . . . 100

4.5 Bounds for Time Scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Future Work 107
5.1 Combining ATST with AT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Machine Learning Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Transient Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Robust Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Conclusion 117

Glossary 119

A Two-sample Variances and Noises 123



CONTENTS 11

B Confidence Limits 125

C Simulation of Satellite Clocks 127

D Clock Anomaly Magnitudes 129

E Estimator Derivations 135
E.1 Maximum Likelihood Estimator - Student’s t-distribution . . . . . . . . . . 135
E.2 Maximum Likelihood Estimation - Bimodal Gaussian Mixture . . . . . . . . 138

F Bound Derivations 143
F.1 Derivation of pseudo-true parameters. . . . . . . . . . . . . . . . . . . . . . 143
F.2 Deriving Matrices A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
F.3 MCRB computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



12 CONTENTS



Chapter 1

Context

The motivation of this thesis originates from a preliminary study by the French Space
Agency (CNES): Nanosatellites pour une Observatoire Interférometrie Radio dans l’Espace
(NOIRE) refers to a proposed mission to conduct low frequency radio interferometry using
a swarm of nanosatellites [1]. The study of such a mission provides context for general
applications that use satellites as distributed systems that make collaborative observations.
That is, the particularity of a swarm of nanosatellites is the interesting aspect of the mission
that can be applied to many other future scientific endeavors. A swarm in this context
is considered as a collection of similar satellites (nano-sized refers to a mass from 1-10
kg) that maintain proximity with each other by having similar orbits. This differs from
constellations that try to separate the satellites to increase coverage. In addition, regular
inter-satellite communications are pivotal in the function of the swarm, whether it concerns
positioning, timing, or correlation of measurements.

Although the broad topic of a swarm of nanosatellites is the core application, the
requirements for the application of NOIRE are used as an example of specifications and
potential difficulties faced in a swarm. The NOIRE mission is not the only mission that aims
to perform radio astronomy observations in space, with other scientific agencies pursuing
similar strategies. As radio interference is prevalent in the Earth environment in the
frequency bands of interest, Lunar orbits have been chosen for the NOIRE mission.

Radio interferometry requires synchronization of the local clocks in an array of devices
separated by some distance. Each device has an individual clock that does not necessarily
count time in a synchronized manner with the other devices. For this reason, the design of
reference times, otherwise known as time scales is pivotal in obtaining a stable and reliable
method of synchronizing clocks in distributed systems, whether that be radio telescopes on
Earth or a swarm of satellites in Lunar orbit. In short, a time scale takes the best qualities
of an ensemble of clocks to act as a virtual reference clock that is continuous in phase and
frequency as well as being more stable than any individual clock in the ensemble.

This chapter will first discuss the principles of radio interferometry and introduce the
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14 CHAPTER 1. CONTEXT

potential issues that arise by applying this method of scientific observations in space.
Certain requirements for radio interferometry and nanosatellites are introduced to give
context for the objectives of this thesis. Since the NOIRE mission is limited by nanosatellite
technologies, some key challenges and limitations faced by clocks onboard nanosatellites
are also discussed. Such challenges will indicate the clocks of interest and new methods
that must be researched in this thesis, i.e., robust methods of generating a time scale using
only the clocks onboard nanosatellites. The requirement to depend solely on the onboard
clocks makes the resulting time scale autonomous. This autonomy also suggests that
compensation of anomalies should be automatic to ensure continuity of phase and frequency
in the reference clock. The final contribution should be an autonomous and robust time
scale that has better performance than individual satellite clocks, which supports correction
of the onboard clocks by steering to the time scale.

By developing a novel solution to the challenge presented by NOIRE, several additional
fields can obtain new outlooks on current methodologies. Potential contributions can arise
in the fields of time-scale algorithms, robust estimation, autonomous navigation, and ap-
plied machine learning. Before such contributions can be properly identified and addressed,
the state of the art shall be explored so that the requirements can be appropriately defined.

1.1 Space-based Radio Interferometry

The NOIRE mission was established as a result of collaboration between a series of prede-
cessor studies supported by the European Space Agency (ESA) and from the Dutch teams
at ASTRON, in which the common idea has been to deploy a swarm of nanosatellites
that cooperate as nodes of a space-based radio interferometer [1]. Some of the earliest of
these predecessor studies are Distributed Aperture Array for Radio Astronomy In Space
(DARIS) and the Orbiting Low Frequency Array (OLFAR). Studies for the OLFAR mis-
sion identified a desired observation target of low-frequency electromagnetic radiation (≤30
MHz) and investigated the potential orbit locations for at least 10 identical and scalable
satellites [2, 3, 4]. Additional studies on a space-based radio observatory exist from insti-
tutes outside Europe such as the Solar Radio Imaging Array (SIRA) [5], the AERO-VISTA
mission using a pair of cubesats [6], and the swarm of nanosatellites for Space Ultra-Low
Frequency Radio Observatory (SULFRO) [7]. The principles behind radio interferometry
in general should be properly studied to understand the potential challenges that will be
faced by these missions in attempting space-based radio interferometry.

Radio interferometry is well-established on Earth in the form of Very Long Baseline
Interferometry (VLBI), which uses an array of distributed radio telescopes to synthetically
increase the aperture and observe long wavelengths of electromagnetic radiation. The
existing Very Long Baseline Array (VLBA) was conceived to observe radio frequencies
in the order of 327 MHz to 43 GHz [8]. New scientific discoveries can be achieved by
observing the novel low-frequency radio waves that are below 100 MHz and go as low
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as 100 kHz. Such low frequencies mean larger wavelengths, and consequently more widely
spread VLBI arrays and a need for reduced radio interference. As is demonstrated in Figure
1.1, the distance between adjacent nodes relates directly to a difference in time of arrival
(TOA) of the target wavefront. In fact, the difference in TOA (∆TOA) is the principle
observation made in VLBI that allows science based on radio astronomy to be conducted
[9]. As a result, the precision of the different TOA is important in the reconstruction of
the interferometric measurements.

Figure 1.1: Illustration of the wavefront arriving to physically separated sensors with some
difference in time of arrival ∆TOA.

Figure 1.2 demonstrates the same principle of VLBI applied to satellites. A key differ-
ence in the two different applications is that satellites are not necessarily fixed relative to
some common reference or even with respect to each other. Conversely, the dishes fixed
to the ground on Earth have well known positions and distances between each other. The
resulting interferometry performed by the swarm of satellites will rely on both relative
positioning and timing between the satellites. With a high number of satellites, a reason-
able method of positioning would be based on the Differential Time of Arrival (DTOA)
method used in positioning based on Global Navigation Satellites Systems (GNSS). This
reveals another parameter in the swarm that relies on time precision, and hence another
motivating factor to provide a reliable time reference.

The precision of TOA measurements are affected by unique and stochastic behaviors of
the clocks responsible for the time stamps of the measurements. The clock technologies used
in the VLBA are Hydrogen Masers, chosen for their good long-term stability [10], meaning
that random fluctuations in the clock frequency over large time intervals are minimized.
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Figure 1.2: Illustration of the wavefront arriving to physically separated sensors with some
difference in time of arrival ∆TOA.

As a result, the TOA will be unaffected by additional errors over long observation times
due to inconsistencies between clocks in each radio observation device and the end product
of radio sky images are not deteriorated.

Unfortunately, Hydrogen maser clocks cannot operate onboard nanosatellites due to
size, weight, and power constraints. As a result, only certain clock technologies can be
considered for space-based interferometry. These clocks are not necessarily sufficient to
achieve the desired stability for correlation of coherent interferometric observations. The
next section will introduce the different performance metrics for clocks and how the space-
based technologies differ compared to those used in ground stations. If the clock technolo-
gies alone are not stable enough, they only need to be synchronized with respect to a time
scale that achieves the desired stability. An envisaged time scale is a common reference
that is synthetically generated using the timing information from every clock in the swarm
of satellites.

Time scale algorithms are inherently designed to provide a reference time that is more
stable than any individual clock used in the generation. The noises in each independent
clock are essentially averaged down and the resulting time scale can expect an improvement
in stability that is a function of the total number of clocks. Since a swarm of satellites
will consist of many independent on-board clocks, the time scale is expected to make a
significant gain in stability compared to the individual clocks. That is, neglecting any
anomalies that may occur on the clocks and any accessibility issues with sharing timing
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information throughout the swarm. Realistically, the space environment is not a place that
allows us to neglect potential anomalies on either the clocks or the inter-satellite links that
allow comparisons of clocks on different satellites.

1.2 Clock technologies

A clock is able to display the time thanks to an internal oscillator with a defined period of
oscillations. If that period is stable, the time that passes can be measured by counting the
peaks in the output voltage of the oscillator. The actual signal provided by an oscillator
is a voltage V (t) affected by stochastic noises [11]:

V (t) = V0(t)(1 + α(t)) cos (2πν0t+ ϕ(t)) , (1.1)

where the nominal voltage V0(t) fluctuates according to the amplitude noise α(t), and
the phase fluctuations are defined by ϕ(t). The nominal frequency ν0 corresponds to the
frequency that would result in perfectly uniform periodic oscillations, which would provide
an ideal oscillator for timing purposes. However, deviations from the nominal frequency
are always present due to internal clock noises that occur in a range of different types.
The instantaneous frequency of the oscillator can be represented in terms of the phase
fluctuations [12]:

ν(t) = ν0 + 1
2π

dϕ

dt
, (1.2)

where this instantaneous frequency is typically presented as a fractional frequency y(t) that
describes a normalized deviation from the nominal frequency

y(t) = ν(t) − ν0
ν0

= 1
2πν0

dϕ

dt
= dx

dt
. (1.3)

The fractional frequency also functions as the rate of change of the time deviation x(t)
with respect to the nominal clock that oscillates with constant frequency. That is, the
time difference is also a difference in the absolute phase of clock hi and a perfect clock hp

xi,p(t) = hi(t) − hp(t) = ϕ(t)
2πν0

, (1.4)

where ϕ(t) has already been defined as the source of random phase noise in the timing of
oscillator signal and hp(t) represents the absolute phase of an oscillator that is perfectly
stable.

1.2.1 Standardized Time

The unit of the second defined in the International System of Units (SI) is based on a
fixed value of the nominal frequency. The standard definition of a second was declared at
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the 13th Conférence Générale des Poids et Mesures (CGPM) to be ”the duration of 9 192
631 770 periods of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the Caesium 133 atom”. In 1997, it was clarified this is for
an atom at rest at a thermodynamic temperature of 0 K [13]. This was further altered
to the current definition at the 26th CGPM to ”The second, symbol s, is the SI unit of
time. It is defined by taking the fixed numerical value of the Caesium frequency ∆νCs,
the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to
be 9 192 631 770 when expressed in the unit Hz, which is equal to s–1” [14]. The key
modification being the focus on a fixed numerical value of the defining constant, ∆νCs (to
aid reproducibility) [15].

Since the standard unit of the second is directly related to this specific atomic element,
oscillators must then know their relative frequency offsets [16]. Examples of elements used
for oscillators besides Caesium are Rubidium (Rb), Quartz (Qz), and Hydrogen microwave
lasers (H masers). There is promising work towards a globalized weighted average to define
the SI second using the potentially less uncertain optical clock technologies that are still
being developed [16]. Even if an oscillator has a different nominal frequency to that which
defines the second, the difference in phase due to the frequency offset can be compensated.
However, stochastic variations in the phase and frequency of an oscillator will result in time
deviations that cannot be predicted and cannot be measured directly. The next section
explains the types of stochastic noises that can cause phase fluctuations in different types
of oscillators.

1.2.2 Clock noises

A summary of the general types of noise experienced by an oscillator are listed below:

• White Phase Modulation (WPM), α = 2,

• Flicker Phase Modulation (FPM), α = 1,

• White Frequency Modulation (WFM), α = 0,

• Flicker Frequency Modulation (FFM), α = −1,

• Random Walk Frequency Modulation (RWFM), α = −2.

Each noise is linked to a term hα, where α specifies the type of noise. See Appendix A for a
summary of the equations defined in [11, 17] that relate hα to typical stability metrics such
as, power noise spectra or two-sample variances. There are several types of two-sample
variances that are useful to independently visualize each of the noise types, the generalized
formula for two-sample variance is:

σ2
y(τ) = E

[1
2(ȳ2 − ȳ1)2

]
, (1.5)
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where ȳ2 and ȳ1 are fractional frequencies averaged over an interval of time equal to τ
seconds. The most basic and widely used two-sample variance is the Allan variance (AVAR)
[18]. The estimate of the AVAR is obtained using the following equation

σ2
y(τ) = 1

2(M − 1)

M−1∑
k=1

(ȳk+1 − ȳk)2 , (1.6)

where M total samples of the fractional frequency are available and the subscript k+1 refers
to fractional frequency measured τ seconds after the fractional frequency with sunscript k.
Due to the effective averaging in the AVAR computation, the variance over large sampling
intervals τ requires a long duration of time to collect sufficient samples and obtain an
accurate approximation of the long term stability. Besides increasing the total number
of samples, the confidence of the AVAR estimate can be improved by taking overlapping
samples, i.e., use every possible pair of samples separated by the desired sampling interval.
As demonstrated in Figure 1.3, the dependence of overlapping samples is neglected to
increase the total number of samples that can be used for a fixed total number of samples.

Figure 1.3: The difference between non-overlapping and overlapping samples for estimation
of a two-sample variance [12].

The formula for computing the Overlapping AVAR (OAVAR) is then [12]:

σ2
y(τ) = 1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

j+m−1∑
k=j

(ȳk+m − ȳk)2 , (1.7)

where the increment of k is now equal to the minimum measurement interval τ0 and the
sampling interval is some integer multiple of the minimum measurement interval τ =
mτ0. Generally, the stability of an oscillator is visualized in terms of deviation instead of
variance, i.e., Allan Deviation (ADEV or OADEV for the overlapped version). Even after
improving the confidence in the estimate by using overlapping samples, the estimate will
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retain a significant level of uncertainty that should be included in the stability analysis.
The confidence interval for estimating the OADEV is defined in [17] with specific equations
for each different type of noise listed above. The equations for the confidence intervals are
detailed in Appendix B. Throughout this work, the OADEV is used to observe the stability
of clocks and time scales, where the uncertainty is displayed in the form of error bars. For
generality purposes, the discussions of the stability will refer to the stability as ADEV
although the overlapping form is used in the associated figures.

The ADEV is a useful metric to assess the types of noise on an oscillator as well as
assess the absolute stability of a given clock. Regardless of the order of magnitude of the
clock noises, the ADEV will follow a certain slope on the log-log plot over intervals of
sampling time that correspond to specific types of noise. Figure 1.4 shows the regions and
their corresponding slopes.

WPM 
or 

FPM
WFM FFM RWFM

Freq.
Drift

Figure 1.4: The relation between the slope of the ADEV and the types of noises experienced
in oscillators [11, 12].

Depending on the type of oscillator some of the above noises are dominant over a larger
range of sampling intervals so the ADEV does not necessarily display all of the noise types.
Alternative two-sample variances are special cases of 1.5 for special cases of noise analysis.
For example, the Hadamard variance (HVAR) helps visualize higher order frequency noises
and removes the effect of frequency drift in the estimated variance.
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1.3 Satellite-based Clock technologies

An in depth study has been presented in [6] to demonstrate the required clock stability
and other characteristics such as jitter noise and temperature sensitivity for their mission.
The AERO-VISTA mission [6] is intended to make observations of radio emissions at a
frequency of 15 MHz and lower using interferometry, which aligns well with the range
desired for NOIRE. The study has identified two key types of clocks for use in the pair of
cubesats performing interferometry: the Chip Scale Atomic Clock (CSAC) and the Oven
Controlled Crystal Oscillator (OCXO). The choices of these clocks are based on power and
size compatibility with a small satellite payload as well as the clock stability requirements.
The characteristic noise models for potential clocks to be used in the swarm are defined
using the specifications of OCXO and CSAC clocks [19, 20], which then allow each type of
clock to be simulated according to the methodology described in C.

1.3.1 Requirements

The clock technologies can potential be used by themselves if they meet the requirements
for the mission, i.e., without the aid of a time scale as a reliable reference. However, it
is clear that the anomalies that can occur due to the harsh environment will result in
reduction in the performance of the individual clocks. This section will discuss the desired
requirements for the NOIRE mission and can be extended to other examples of satellite
swarms or space based interferometry.

Time Synchronization

The time synchronization requirement refers to the maximum allowable error between each
of the clocks in the swarm and the common reference. Even without worrying about space
based applications, the relative times of each clock in an ensemble will diverge over time if
no steering is applied to re-synchronize the clocks. Since this thesis is focused on the design
of the time scale algorithm, it is assumed that the virtual clock generated by the algorithm
is used as the synchronization reference. That is, the time scale is generated first, then the
onboard clocks are gradually steered such that their phase and frequency match that of the
time scale and hence benefit from the improved performance of the time scale. For that
reason, the synchronization accuracy of the designed time scale with respect to a perfect
reference clock is analyzed to observe the synchronization performance of steered clocks.
When moving from the simulated scenarios to real data, the perfect reference is replaced
by some other reference that may be available and is significantly reliable and stable.

The International Telecommunications Union (ITU) presents recommendations for clock
systems in coherent networks [21]. Although the scientific objectives are needed to specify
an exact requirement for the synchronization accuracy, the general limits that are consid-
ered in standardized recommendations can be a good first target for assessing the perfor-
mance of the proposed time scale. The metrics for assessing synchronization performance
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are Maximum Time Interval Error (MTIE) and Time Deviation (TDEV), which are related
to the offsets of individual clock systems from the Coordinated Universal Time (UTC). In
the context of an autonomous time scale, the role of UTC is replaced by the new time
scale. This justifies the similarity between the requirements for coherent synchronization
of clocks in the swarm and the requirements suggested by the ITU. The MTIE refers to the
largest change in clock time with respect to a specific reference over a given time interval
τ [22], i.e.,

MTIE(τ) = max
t0>0

{
max

t0−τ<t<t0
{xE,p(t)} − min

t0−τ<t<t0
{xE,p(t)}

}
, (1.8)

for the offset of the designed time scale E from the perfect reference p. The above expression
is the theoretical formula for MTIE but in reality, over long periods of time it is complicated
to be certain about the maximum value. For that reason the confidence interval of the
MTIE is limited to 95% [12]. The TDEV is an extension of the Modified ADEV (MDEV),
denoted as Mσy(τ) which is designed to split the effects of white and flicker phase noises.
This is important for observing the phase stability instead of frequency stability. The
reader is invited to consult Appendix A for details on the computation of the MDEV,
which is then converted to TDEV according to the following [11]:

σx(τ) = τ√
3

Mσy(τ). (1.9)

The constraint that is placed on locked clocks is presented in the following table for different
intervals. Locked clocks refers to clocks that are steered to the time scale, so there is some
feedback control to make sure the error remains small.

MTIE limit (ns) TDEV limit (ns) Sampling Interval (ns)

4 1 0.1 < τ ≤ 1

0.11τ + 3.89 1 1 < τ ≤ 100

3.75 × 10−5τ + 15 1 100 < τ ≤ 3 × 104

3.75 × 10−5τ + 15 3.33 × 10−5τ 3 × 104 < τ ≤ 3 × 105

3.75 × 10−5τ + 15 10 3 × 105 < τ ≤ 4 × 105

30 10 τ > 45

Based on the above requirements, the speed at which the clocks are steered could be de-
signed. The upper limits for the synchronization metrics are illustrated in Figure 1.5 below
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alongside the achievable performance for the OCXO and CSAC clocks. It is clear that the
suggested upper limits are not respected by the clock technologies by themselves. The true
restrictions on the required accuracy could be relaxed depending on the swarm require-
ments, opening the range of acceptable sampling intervals. Otherwise, through steering
to the designed time scale, the MTIE and TDEV will be reduced, therefore attaining an
improved range of appropriate sampling intervals for even these requirements.
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Figure 1.5: The achievable synchronization performance for the simulated OCXO and
CSAC clocks alongside the recommended upper limit for telecommunications applications.

Noticeably, the CSAC clock performs much better in terms of synchronization and can
even satisfy the MTIE requirements over long intervals. The occurrence of anomalies on
the clock will cause the performance of the individual clocks to be perturbed, however, if
the time scale algorithm appropriately mitigates the anomalies then the steered clocks can
not only achieve improved performance but avoid the negative effects of the anomalies.
A specific sub-criteria for the time scale to ensure it has properly mitigated the effects of
anomalies is the continuity.

Phase and Frequency Continuity

The requirement of phase and frequency continuity specifically refers to the maximum
allowable instantaneous change in either of these parameters for the time scale. That is, a
discontinuous clock (or time scale) would result in a significant increase in the short term
MTIE and a deterioration of the frequency stability, so the continuity requirement can also
be linked to the MTIE and the ADEV. Anomalies can cause the phase or frequency of an
individual clock to change instantaneously to another value, these types of anomalies are
hereon referred to as jumps. Since an autonomous time scale is built using the clocks in the
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swarm, the jumps can propagate into the time scale if it is not sufficiently robust. Missing
data also interferes with the continuity of the time scale specifically due to the reduced
performance of the ensemble time with fewer clocks.

Without continuity in the individual clocks or the time scale, the coherence of the
distributed measurements is at risk of being negatively impacted because more or less time
is thought to have passed since the previous correlation. The nature of the jump anomalies
will be presented in Section 1.3.2. Such anomalies break the requirement of continuity
by default, so the time scale must guarantee continuity in the presence of anomalous and
missing data to provide a reference that does not risk errors in the correlation. Continuity
can be confirmed by observing the phase and frequency evolution of the time scale over
a window that contains both nominal and anomalous clock data. The time scale should
maintain a similar magnitude of instantaneous changes before and after the occurrence
of the anomaly. Depending on the type of clocks used to generate the time scale this
magnitude could vary, hence the requirement of continuity is simply confirmed by the
trend of the clock phase and frequency.

Frequency Stability

The requirements of clock stability are derived based on a maximum coherence loss of 15%
for the scientific measurements, this is equivalent to a limit on the phase difference between
two satellites due to frequency instability. Coherence loss is quantified for an integration
time τ by C(τ) [23]

C(τ) =
∣∣∣∣1τ
∫ τ

0
exp (iϕj(t) − iϕk(t))) dt

∣∣∣∣ , (1.10)

where C(τ) = 1 means no loss in coherence. The worst-case loss for the AERO-VISTA
mission occurs when measuring 15 MHz over 100 s, corresponding to the longest integration
time and highest frequency. The NOIRE mission does not necessarily have the same worse
case coherence loss because the scientific objectives still need to be confirmed pending
parallel studies, only an upper limit of 100 MHz is stated [1]. This maximum observable
radio frequency “without significant loss” can be related directly to the ADEV over a
sampling interval corresponding to the integration time [24, 25]

fobs ≤ 1
2πτσy(τ) . (1.11)

The corresponding constraint on the ADEV for any sampling interval τ would then be

τσy(τ) ≤ 1
2πfobs

, (1.12)

τσy(τ) ≤ 1.59 × 10−9. (1.13)

Substituting any value of τ would coincide with that interval being the time over which
transient events are able to be observed in the scientific observations. Therefore according
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to the final application of the NOIRE mission, the ADEV can be optimized for the intended
sampling interval. Nevertheless, there is nothing to lose ensuring that the condition (1.13)
is satisfied for a wide range of sampling intervals.

A typical metric used to discussed clock performance in a general manner uses the
concept of seconds lost (in synchronization) over a certain interval of time. The value of
τσy(τ) provides exactly that metric for an interval of τ seconds. That is, the constraint
that allows observation up to 100 MHz means the timing is permitted to lose at most
1.59 ns over any measurement interval. To understand if the OCXO and CSAC clocks
can achieve this required stability, simulated ADEV curves for those types of clocks are
displayed alongside the limiting curve for ADEV in Figure 1.6. The ADEV and OCXO
clocks is estimated using typical values of the characteristic noise experience by each type
of clock. More details on the simulation of these types of clocks are found in Appendix C.
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Figure 1.6: The limitation on the clock ADEV for a range of different sampling intervals.
The intervals at which the individual clocks ADEVs are lower than the limit are the possible
intervals that can be used for observing the desired radio frequency.

The clocks can both satisfy the requirement of maximum ADEV (1.13) for some in-
tegration times. However, each type of clock has a maximum integration time where the
coherence requirement is broken. An optimally designed time scale will have an improved
frequency stability (reduced by a factor 1/

√
N) compared to each individual clock, meaning

onboard satellites clocks can be steered to the time scale and obtain the required perfor-
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mance for the integration times where the stability was not sufficient. If anomalous clocks
are used to generate the time scale and the anomalies are not properly compensated, the
benefit of steering to a stable and continuous time scale is lost. This motivates the design
of a robust time scale to ensure the requirements are still satisfied by the time scale in
presence of anomalies while extending the range of possible sampling intervals that achieve
the required ADEV.

When analyzing the effects of anomalies on the frequency stability of the time scale, the
occurrence rate of the anomalies is important. For example, if an anomaly occurs once over
a period of one day but the sampling frequency provides a measurement every 10 seconds,
the anomaly is averaged out in the estimation of the ADEV although the continuity of
the time scale can still be broken. In the above figure and all following analyses, the total
duration of simulated data is taken as a 3 hour interval. Observing the effects of a single
anomaly on the different clock types in this duration is equivalent to assuming the satellites
will face one anomaly of that magnitude every 3 hours.

Before defining existing time scale algorithms in the next chapter, the types of anomalies
are presented, where measurement anomalies are a unique issue to deal with when relying
on a time scale instead of only onboard clocks.

1.3.2 Anomalies in space

The expected anomalies to be faced by clocks operating in space are: phase jumps, fre-
quency jumps, anomalous measurements, missing data, changes in variance, periodic de-
viations, and clock drift. Although it is useful to consider the sources of these anomalies
and attempt to reduce their occurrence, this thesis assumes that there are no specially
designed protections included in the design of the nanosatellites. With this assumption,
the assessment of robustness to the anomalies allows a decision to be made on how much
time and money should be invested into preventative measures in the NOIRE mission.

As clock data is either presented as phase or frequency differences, the affects of the
different types of anomalies are expressed in terms of the nominal phase and frequency of
clock i plus some contaminating term a(t) that changes depending on the type of anomaly.

x̃i,p(t) = xi,p(t) + a(t), (1.14)

and the fractional frequency being the rate of change of the phase offset leads to the
contaminating term also being converted to a rate of change

ỹi(t) = yi(t) + ȧ(t), (1.15)

where ȧ(t) = d
dt [a(t)]. The clock anomalies can now be expressed in terms of their char-

acteristic contaminating function a(t). The anomalies can affect the clocks in one way,
however, a different response could occur in a time scale algorithm if the anomaly is not
properly treated. The response of a time scale to the individual anomalies is not necessarily
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identical to the effect on the individual clocks due to the methods of assigning weights and
estimating frequencies. In fact, the design of a robust time scale algorithm should provide
a time reference that is completely unaffected by the expected anomalies. To properly
identify what the time scale should avoid, the affects of expected anomalies are visualized.

It is difficult to identify the extent of the anomalies that will be faced by the satellites
used for the NOIRE mission. The anomalies known to occur in existing clock technologies
are therefore used as an initial assumption of the expected problems to be faced. Regardless
of the realistic magnitudes of anomalies that are expected, the inclusion of a sufficient
number of satellites in the swarm can still effectively reduce the impact. In the unlikely
case that several satellites suffer an anomaly at the same time, the impact will be more
substantial than singular anomalous satellites. It is assumed that the more likely scenario is
that each satellite experiences an anomaly at some random point in time. If the independent
anomalies occur relatively frequently, the impact of even small magnitude jumps can be
considerable.

Phase Jumps

A phase jump anomaly is something already experienced in clocks based on Earth that
can be observed and removed from the clock data manually by timing experts. Specialized
algorithms already exist to automatically detect these types of jumps and will be discussed
in more detail in the next chapter. A phase jump causes the time offset of the affected clock
to increase or decrease by a magnitude of ∆x indefinitely. The contamination function then
has the form

ax(t) = ∆xH(t− ta), (1.16)

where H(t− ta) is the Heaviside step function which has a value of zero for t < ta and one
for t ≥ ta, and ta is the time epoch at which the anomaly occurs. Ideally, the anomaly
is detected at the instant it occurs to mitigate it’s affects in real-time and allow the radio
image correlation. The time derivative of the contamination function shows that the clock
frequency is also affected by the phase jump, in the form of an outlier at time ta

ȧx(t) = ∆xδ(t− ta), (1.17)

where δ(t − ta) is a Dirac distribution. An example of the magnitude of a phase jump
observed in monitoring Global Positioning System clocks is around 70 ns [26] but can also
be as low as a few nanoseconds [27]. The causes of phase jumps can be considered a
characteristic behavior of oscillators or a result of the method of comparing clock phases
[28]. The latter case is also considered in this work but as a separate anomaly referred
to as a measurement or link anomaly. The presence of a single phase jump results in a
discontinuity in both the phase and the frequency of an oscillator so that it is no longer
capable of meeting the requirements for the mission. An example of this is shown in Figure
1.7,
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Figure 1.7: The impact of a simulated 50 ns phase jump on the phase and frequency of the
simulated clocks.

Frequency Jumps

Frequency jumps are equivalent to the phase jumps, where the frequency of the clock is
abruptly changed at a certain time epoch ta. Similarly to the phase jump anomalies,
there are existing detection methods for this type of anomaly but with a limitation on the
detection delay. See the next chapter for more discussion on the existing anomaly detection
algorithms. The form of the contaminating function with respect to the frequency state is

ȧy(t) = ∆yH(t− ta), (1.18)

where the Heaviside step is used to indicate the change in the frequency. In practice, the
frequency jump does not necessarily occur instantaneously, so can take some time before
it is possible to identify a frequency jump. A temporary frequency jump is also possible
where the step would then reduce back to zero at the end of the period with the frequency
shift. This type of temporary frequency jump has been experimentally shown to occur
during exposure of a Temperature Compensated Crystal Oscillator (TCXO) to radiation
or a magnetic field, conditions that are relevant in the space environment [29]. Temporary
frequency jumps can also be viewed as a transient phase anomalies, which exist on OCXO
clocks due to large changes in temperature [30, 31].

When an oscillator suffers from a frequency jump, the phase is contaminated according
to a change in slope that is proportional to magnitude of the anomaly. For an indefinite
frequency jump:

ay(t) = ∆yR(t− ta), (1.19)
where R(t− ta) is the unit ramp function that equals zero for t ≤ ta and R(t− ta) = t− ta
for t > ta. Depending on the size of the frequency jump it may not cause a significant
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change in the clock phase for several time epochs after the moment the jump occurred.
Generally, the magnitude of frequency jumps are smaller than those of phase jumps. This
is why the detection of a frequency jump is typically constrained by some time delay.

Figure 1.8 indicates the changes in the phase and frequency of OCXO and CSAC clocks
that suffer from a frequency jump of 10 ns/s over a period. The magnitude of the simulated
anomaly is larger than the magnitudes experienced in tests to make the change in the clocks
more clear in the figure.
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Figure 1.8: The impact of a simulated 10 ns/s frequency jump on the phase and frequency
of the simulated clocks.

Environmental Sensitivities

Temperature coefficients are used to indicate the magnitude of frequency error per degree
of temperature change. CSAC clocks have a temperature coefficient around ±5×10−12/◦C
and OCXO clocks having a coefficient of ±1.33 × 10−11/◦C according to experimental
results in [31]. These coefficients are defined for the temperature range from -10◦C to 70◦C
and result in phase errors over several hours in the order of a few microseconds for OCXO
and around 1 µs for the tested CSACs. Tests for TCXO clocks exposed to radiation
or a magnetic field resulted in jumps in fractional frequency of 0.4 ns/s and 0.05 ns/s,
respectively. This gives a rough idea of the expected magnitude of frequency variations
that are often transient in nature, and can occur periodically in relation to orbital periods
or temporary radiation events.
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Periodic fluctuations

Spacecraft in orbit are exposed to periodic temperature and radiation fluctuations due to
the periodicity of their orbits. A spacecraft in eclipse will surely experience a temperature
drop, and can expect some level of shielding from solar radiation. As a result, the temporary
frequency jumps can effectively occur in the form of transient frequency fluctuations over
some defined period. Depending on the amplitude of the fluctuations, the ADEV at half
the period of the fluctuation is expected to increase with a local maximum due to the
increase instability at that time interval. This type of anomaly is therefore specifically
disadvantageous for remaining capable of collecting scientific data over a broad range of
different time intervals. The contaminating function can be defined for a certain amplitude
A and period P

ap(t) = A sin
(2π
P
t

)
, (1.20)

the amplitude of the anomaly in the frequency is then scaled proportionally to the frequency
of the fluctuations

ȧp(t) = 2πA
P

cos
(2π
P
t

)
. (1.21)

Measurement Anomalies

The presence of measurement anomalies is an important constraint on making clock com-
parisons between satellites, which is necessary for generating a time scale. This type of
anomaly does not affect the onboard clocks but the time scale that we aim to create by
using information from all of the clocks in the swarm. The definition of measurement
anomalies considers significant and variable measurement noise on the observed differences
between the satellite clocks. To define this type of anomalies, the method of measuring
clock differences should be explained.

Assuming a method of two way transfers is possible between neighbouring satellites,
the fundamental principle of pseudorange measurements are useful for determining the
relative positions of the satellites in the swarm [32]. Generally, the pseudorange considered
in GNSS applications includes delays due to atmospheric and ionospheric effects, which
can be removed through the use of two way transfers. In lunar orbit, the atmospheric and
ionospheric delays are not an issue but any similar effects but any similar effects can be
absorbed into the measurement noise or considered an anomaly. A simplified form of the
equation for the pseudorange between satellite A and satellite B is:

ρAB(t) = DAB(t) + cxAB(t) + nAB(t) = cτAB(t), (1.22)

where the pseudorange ρAB(t) is written simply as the sum of the geometric distance
DAB(t), the position error due to the satellite clock differences cxAB, and measurement
noise present on the inter-satellite communication link nAB(t). The pseudorange is obtained
by measuring the travel time of a signal sent from one satellite to the other, denoted as
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τAB(t). This explains why the difference in the clock time appears in the pseudorange
equation, as a source of error in the inter-satellite distance in addition to the measurement
noise. Again, by taking advantage of a two way signal transfer between the satellites, either
the distance or clock offset can be obtained from the measured pseudoranges. That is, the
pseudorange in the opposite direction must be simultaneously measured with ρA,B(t) to
ensure negligible variations in the measured distance and clock offset:

ρBA(t) = DBA(t) + cxBA(t) + nBA(t) = cτBA(t), (1.23)

where DBA(t) = DAB, xBA = −xAB, and the noise variance is equal for both directions
but have independent values because the two way transfer is not instantaneous or perfectly
simultaneous [33]. Taking the difference between the two pseudoranges allows the time
difference between the two clocks to be observed with a residual noise related to the noise
distribution for the link between satellites A and B

xAB(t) = τAB(t) − τBA(t)
2 + nAB(t) − nBA(t)

2c . (1.24)

If the noise in the link between satellites A and B is contaminated by an additional inter-
ference or if the inter-satellite separation increases rapidly, the measured clock difference
is then anomalous. The determination of the travel time for the signal of interest can also
be erroneous due to ambiguities in the sub-millisecond measurements of the signal code for
the pseudorange, but several procedures have been implemented to solve for this ambiguity
[34, 35]. Ambiguities in the carrier wave compared to the signal code can also result in
anomalous measurements of the signal transit time when attempting to improve estimates
using carrier phase [36, 37]. This can understandably result in behavior similar to a phase
jump. For example, the time difference when satellite A is affected by a phase jump is

x̃AB(t) = xA,p(t) + ax(t) − xB,p(t) = xAB(t) + ax(t), (1.25)

which can be equivalent to the measured phase difference in the case there is a change in the
noise variance or a bias in the travel time measurement due to characteristic anomalies,
i.e., the contamination function is now a representation of the error in τAB due to the
measurement process:

ax(t) = τ̂AB(t) − τAB(t)
2 + τ̂BA(t) − τBA(t)

2 , (1.26)

where τ̂AB(t) is an estimate of the signal travel time and differs from the actual signal
travel time according to the signal noise ratio (SNR) and other uncertainties in the obser-
vation/estimation procedure. There are many proposals for joint estimation of the clock
bias and the inter-satellite distances with more detailed procedures than demonstrated
above. The state-of-the-art typically takes into account the motion of the satellite between
consecutive two-way communications and also estimates clock frequency differences (clock
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skew) [33, 38, 39]. Several of the estimators use a specialized method of Maximum Likeli-
hood Estimation (MLE) or Least Squares (LS) estimation, which allows verification of the
optimality of the estimators.

Although the estimators of clock bias are proven to be asymptotically efficient, i.e.,
proven to achieve minimum error when the signal noise ratio is sufficiently high, these esti-
mators are not necessarily robust to the anomalies discussed above. For the design of the
time scale algorithms, it is assumed that anomalies and measurement noise will not nec-
essarily be compensated before obtaining the independent phase difference measurements
between any pair of satellite clocks. The contributions presented in this thesis address es-
timators that are robust to the expected anomalies, integration of the robust estimators in
the basic definition of a time scale, and the performance of those robust estimators in the
asymptotic regime. As a result, the necessity to remove anomalous measurements is also
analyzed by observing the results of using a basic LS estimator on contaminated measure-
ments compared to permitting them to be processed in the robust time scale algorithm.

Missing Measurements

Missing measurement anomalies refer to the case that the distance between satellites be-
comes too great to establish a communication link or if there are temporary issues in the
transmission of signals. This can mean that certain inter-satellite links are either unavail-
able or so noisy that they are not worth keeping in the determination of the time scale. It
can be shown that when a certain satellite becomes completely isolated from the rest of
the swarm, the time scale requires special treatment of the remaining clock measurements
and the isolated satellite needs to be reintroduced appropriately. There is an identified gap
in the literature on a specific methodology to follow when generating a time scale with a
missing clock.

It is sure that timing laboratories around the world deal with this problem manually
on a regular basis, but an algorithm that can handle this automatically would be ideal
for the satellite swarm. The next chapter explains the current time scale algorithms and
how they deal with the anomalies presented. The design of a new robust time scale is
then based on the same core principles of a general time scale algorithm but introduces a
new method of anomaly mitigation. The assessment of the anomaly mitigation in the next
chapter does not include the case of missing measurements due to the lack of specialized
algorithms to deal with this type of anomaly. A contribution towards a robust time scale
algorithm is presented later in Chapter 3 that aims to mitigate phase jumps, frequency
jumps, and measurement anomalies. An additional section is included in that chapter to
present a contribution towards dealing with missing measurements.



Chapter 2

Time Scales

The context of this thesis has demonstrated a need for a robust time scale. This chapter
is dedicated to explaining the current state-of-the-art time scale algorithms. There are
several designs of time scales that are defined in different manners for different applications.
Nevertheless, there is a common core amongst the designs that has been identified in the
research conducted during this thesis. This common requirement for all time scales is
referred to as the Basic Time Scale Equation (BTSE) and will be shown where it applies for
each corresponding time scale algorithm. By providing several points of view on the BTSE
in various time scale algorithms, a new understanding of the state-of-the-art solutions is
presented, which is pivotal to the primary contribution of the thesis presented in the next
chapter.

Without dedicated anomaly detection and mitigation strategies, the time scale will also
be corrupted by the same anomalies that cause the individual clocks to fail to achieve the
minimum required stability. Specialized methodologies exist for detection and compen-
sation of phase jumps and frequency jumps in the widely used AT1 time scale [40, 41].
Otherwise, the implementation of a Kalman Filter to estimate clock states has allowed a
range of general anomaly detection methods to be applied [42, 43, 44, 45]. Such anomaly
detection algorithms are presented in this chapter to appropriately communicate the pos-
sible methods that are currently available. By first presenting the current state-of-the-art,
the novelty of the contribution presented in the next chapter will be more apparent.

2.1 Coordinated Universal Time

The Coordinated Universal Time (UTC) is a common reference well-known around the
world as a basis for time zones or even precise timing in computers. The UTC reference
time is linked to the traditional realization of time that relies on the rotation of the Earth.
As a result, UTC has discontinuities due to inconsistencies in the rotation of the Earth,
which must be corrected with leap seconds [46]. The Temps Atomique International (TAI)

33
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is a continuous reference time that follows the Standard International (SI) definition of
the second and acts as the base for UTC before adding leap seconds. The TAI is kept in
accordance with the definition of the second by having the frequency of the free atomic
time scale (EAL for Echelle Atomique Libre) steered to a Primary Frequency Standard
(PFS).

The EAL is the primary realization of a time scale that applies a weighted average to
the timing information obtained amongst an ensemble of clocks. This weighted average
is effectively the application of what is referred to as the BTSE. Several existing time
scale algorithms apply the weighted average with different definitions of the weights, and
intermediate steps such as frequency estimation and predictions. Since the focus of this
thesis is the development of a new and robust time scale algorithm, the steps of going
from EAL to TAI then to UTC are considered outside of the scope. Depending on the
application of the time scale, the frequency may need steering to a frequency standard and
may benefit from being linked to the global reference UTC, but these steps are well-defined
so can be easily implemented on any algorithm that is used to obtain a realization of EAL.

Whatever the chosen algorithm to obtain EAL, each laboratory makes their own real-
ization of UTC, denoted as UTC(k) for laboratory k. The local UTC(k) realizations are
made according to the time scale algorithm applied to the measured clock comparisons
between physical clocks in the laboratories and appropriately translating from the equiv-
alent EAL. The report BIPM Circular T is published each month and presents the phase
deviations between UTC(k) and the global UTC along with uncertainties. This is impor-
tant for the dissemination of the time reference system used on Earth, so that relevant
applications can benefit from the precisions of the best clocks in the world. However, the
NOIRE mission will not necessarily need synchronization with respect to UTC. The swarm
of nanosatellites will be making their observations autonomously and just need the time
stamps with respect to a stable reference. The best method of using a stable and common
time scale for all the satellites without needing regular timing information sent from Earth
is to compute an independent time scale using only the onboard clocks. This will help
reduce the requirements for ground-based communication with the swarm, hence, the cost
of the mission is also reduced by keeping a minimum complexity of receiver infrastructure.

A summary of the components that make up the realization of the UTC is illustrated in
Figure 2.1. The specificities of steering and including leap seconds are considered outside
the scope of this thesis, where the main objective is to provide a novel method of computing
the weighted average in the Basic Time Scale Equation.
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Figure 2.1: Diagram of the different stages that are implemented to realize the UTC time
scale as described by the Bureau International des Poids et Mesures (BIPM) [46].

2.2 Basic Time Scale Equation

A time scale in general takes a weighted average of a network of clock data to provide a
common ensemble time, being more stable than any individual clock [46, 47, 48, 49, 50].
The output of a time scale algorithm is the difference in time between each clock contained
in the ensemble and the mutual time scale xi,E(t) = hi(t) − hE(t), where hi(t) indicates
the absolute time of clock i, which is unobservable. Each clock can then be synchronized
because the time scale hE(t) is a common reference time. To compute xi,E(t), the algorithm
requires predictions of each of the clock phases x̂j,E(t), measurements of the time differences
between all of the clocks in the ensemble xj,i(t) = hj(t)−hi(t), and weights assigned to each
clock in the ensemble wj(t − τ), where τ is the time between consecutive measurements.
A time scale is then realized for an ensemble of N clocks using the BTSE [49, 51, 52, 46]:

xi,E(t) =
N∑

j=1
wj(t− τ) [x̂j,E(t) − xj,i(t)] , (2.1)

where the predictions, measurements, and weights can be defined differently for each al-
gorithm. Similarly, supplementary time scale equations could be used to determine clock
frequency and drift with independent weights that set the corresponding stochastic com-
ponents to zero [51]. By default, the weights are computed using information from the
previous epoch for the AT1 time scale algorithm [48]. More about this algorithm is ex-
plained in later sections. The need to be robust to anomalies means that the weights should
be updated at the current time epoch to compensate the effects in near real-time. That
is, the BTSE can be recomputed at the current time with updated weights that obtain
information about the performance of each clock at the current time wj(t).

The BTSE can also be explained as the solution to a system ofN equations that includes
a weighted average of the clock phase noise (one equation) and relevant phase difference
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measurements (N − 1 equations) [49]. That is, the following system of equations:

N∑
j=1

wj(t− τ)hj(t) =
N∑

j=1
wj(t− τ)x̂j,E(t), (2.2)

x1,2(t) = h1(t) − h2(t), (2.3)
... (2.4)

x1,N (t) = h1(t) − hN (t). (2.5)

The system of equations above should be solved for the absolute time of each clock hi(t),
yielding solutions that are equivalent to the BTSE defined above. The solutions are not
perfect because the predictions in (2.2) are not perfect observations of the true phase due
to the stochastic evolution of the clock states.

It can be shown that the error between the solutions to the BTSE and the true absolute
phase is identical for all clocks since

xi,E(t) = hi(t) +
N∑

j=1
wj(t− τ) [x̂j,E(t) − hj(t)] . (2.6)

Based on the definition of the output being a phase deviation from the time scale, the
absolute time of the time scale is

hE(t) =
N∑

j=1
wj(t− τ) [hj(t) − x̂j,E(t)] , (2.7)

which is the weighted average of the prediction errors. Intuitively, the prediction errors
ej(t) = x̂j,E(t)−hj(t) represent the unpredictable component of the clock phase, i.e., caused
by stochastic processes only. For a perfectly stable time scale, either the predictions should
be as close as possible to the true phase or the weights should be appropriately adjusted
for those clocks that are relatively more unpredictable. Since anomalies are by definition
unpredictable they clearly require reduced weights otherwise the absolute time of the time
scale will change according to the magnitude of the anomaly. Assuming anomalies are
properly mitigated or not present in the clock data, the time scale produces a common
reference time with a stability improved by a factor of

√
N in terms of Allan deviation.

The design of the new time scale algorithm in the next chapter includes study of
non-uniform measurement noise between inter-satellite communication links in the form
of measurement anomalies and another case where the noise is negligible in comparison
to the clock stochastic processes but the clocks have internal anomalies. These cases are
generally considered nominal operations but with different magnitudes of measurement
noise. As discussed in Section 1.3.2, link noise can also be affected by anomalies in the
space environment causing certain measurements to have an elevated variance or bias that
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is non-negligible. The next chapter explains a contribution in the form of a new time scale
algorithm that is robust to such measurement based outliers in the weight computations
and another contribution that presents preprocessing opportunities for the measurements
in the swarm to mitigate measurement anomalies before computing the time scale.

A step by step list is provided below to detail the required steps to be able to recursively
compute the BTSE at each time instant, separated by the sampling interval τ . Assuming
that the previous offset of each clock from the time scale is known, the steps to compute
the BTSE include

1. Predictions: The offset from the time scale at the current time is predicted using
the previously known offset.

2. Measurements: The absolute phases of each clock are indirectly observed by mea-
suring the clock time differences.

3. Weight computation: Depending on the algorithm implemented, the weights are
either computed using past values in order to realize the BTSE or if anomalies are
detected, the weights are modified.

4. BTSE: The offset of each clock from the common time scale is calculated with the
weighted average of the BTSE residuals. These BTSE residuals refer to the difference
between individual clock phase predictions and the time difference measurements.

5. Frequency Estimation: The frequency of the time scale is estimated according
to the outputs of the BTSE to aid in the next prediction of the clock phases with
respect to the time scale. Higher order clock states such as drift or biases could also
be estimated at this step.

Each of the terms in the BTSE is detailed independently in the next sections for two
different types of time scale algorithms below. Depending on the algorithm, the methods
for predicting clock states, computing clock weights, and the detection and compensation
of anomalies will differ. The Kalman Filter methodology is presented first to allow links
to the KF formulation in the later section on the AT2 time scale for compensation of
frequency jumps.

2.3 Kalman Filter Composite Clock

This section explains how the principle clock states are included in the traditional Kalman
Filter (KF) formula to obtain a common reference. This method of obtaining a time scale
is most famously used for the GPS composite clock [53], but other timing laboratories
implement the KF in a similar manner [54, 55]. At first glance, the equations related to
the KF do not seem coherent with the BTSE but it can be demonstrated that the KF
algorithm is equivalent to a batch least squares [56] of the clock residuals, i.e., a type of
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weighted average. The KF algorithm consists of two key steps: the prediction step, which
is made before the measurements are obtained, and the update step, which is equivalent
to applying weights as described in the BTSE to the difference between the measurements
and the predictions.

2.3.1 Measurements

The only method of measuring true clock phases is through making time comparisons
between pairs of clocks and obtaining the phase differences xj,i(t). Since the KF algorithm
deals simultaneously with phase, frequency, and drift estimation, the measurements are
presented as a linear equation of the state vector:

Hx(t) =



x1,p(t) − x2,p(t)

x1,p(t) − x3,p(t)
...

x1,p(t) − xN,p(t)


=



x1,2(t)

x1,3(t)
...

x1,N (t)


, (2.8)

where the observation matrix H has dimensions (N − 1) × 3N and contains +1 and −1 in
the appropriate positions to obtain the measured phase differences:

H =



1 −1 0 · · · 0 . . . · · · 0

1 0 −1 0 . . . . . . . . . 0
...

... . . . . . . . . . . . . . . . ...

1 0 · · · 0 −1 0 · · · 0


(2.9)

An advantage of the KF algorithm is that it implements the measurement noise into
the computation of the timescale. However, the required assumptions must be compatible
with reality, otherwise, the KF algorithm will poorly compensate for unexpected issues.
We define the set of N − 1 noisy measurements in the vector:

z(t) = Hx(t) + n(t), (2.10)

where the vector n = [n1,2(t), · · · , n1,N (t)] includes the unique noise associated with each
of the links between satellite 1 and the other satellites. The fact that unique inter-satellite
links will have different measurement noises is typically not addressed in KF-based time
scales, instead it is just assumed that the measurement noise is uniform and follows a
Gaussian distribution:

n(t) ∼ N (0,R). (2.11)
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Not only is the assumption of the distribution inherent in the definition of the KF but
the matrix R must be known or estimated. The variance associated with white phase
noise in the clocks is suggested as a good first approximation for the measurement noise
matrix. However, this variance is not guaranteed to be fixed and will change significantly
in the presence of anomalies. As a result, the KF algorithm must have robust approaches
introduced to process potential anomalies in measurements and clock states.

2.3.2 Predictions

To predict the states of a clock, we must assume a certain model of the clock dynamics. A
state equation specifies the dynamic propagation for each of the states of interest. These
states are: the clock phase with respect to a perfect reference time xi,p(t) = hi(t) − hp(t),
the clock fractional frequency yi,p(t), which is related to the rate of change of the clock
phase, and the clock frequency drift di,p(t), which is simply the rate of change of the
fractional frequency. Due to the nature of atomic clocks, the dynamic evolution of these
states is not predictable. That is, there are stochastic noises associated with each clock
state. Assuming that clock drift is not negligible, the phase state equation is:

xi,p(t) = xi,p(t− τ) + τyi,p(t− τ) + τ2

2 di,p(t− τ) + ε(t), (2.12)

where ε(t) is the stochastic component associated with the characteristic phase noise of a
clock. We assume a linear evolution of the frequency due to the drift and assume that the
drift is constant except for another random noise component

yi,p(t) = yi,p(t− τ) + τdi,p(t− τ) + η(t), (2.13)
di,p(t) = di,p(t− τ) + ξ(t). (2.14)

The state vector x(t) = [x1,p(t), · · · , xN,p(t), y1,p(t), · · · , yN,p(t), d1,p(t), · · · , dN,p(t)]T con-
tains the phases of each clock, the frequencies of each clock, and the drifts of each clock.
The combination of the dynamic equations for each state (2.12), (2.13), and (2.14) provides
the overall state equation:

x(t) = Ax(t) + b(t), (2.15)
where the stochastic components are contained in the process noise vector:

b(t) = [ε1(t), · · · , εN (t), η1(t), · · · , ηN (t), ξ1(t), · · · , ξN (t)]T , (2.16)

and A is the matrix that simultaneously specifies the dynamic models in (2.12) to (2.14)

A =


1 τ τ2

2

0 1 τ

0 0 1

⊗ IN = Φ ⊗ IN , (2.17)
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where ⊗ denotes the Kronecker product and IN is the N ×N identity matrix.
b(t) ∼ N (0,Q). (2.18)

The KF-based time scales use a specific model of Q to represent the variances and covari-
ances of the unpredictable components of clock evolution [57]

Q =


s1τ + s2

τ3

3 + s3
τ5

20 s2
τ2

2 + s3
τ4

8 s3
τ3

6

s2
τ2

2 + s3
τ4

8 s2τ + s3
τ3

3 s3
τ2

2

s3
τ3

6 s3
τ2

2 s3τ

 , (2.19)

where s1, s2, and s3 are diffusion coefficients corresponding to the intensity of the white
frequency noise, random walk frequency noise, and random walk drift noise, respectively.
The white phase noise is contained in the measurement noise of the KF model and the
flicker frequency noise can be modeled by a linear combination of Markov processes that
are treated as additional states in the KF model [58]. The inclusion of the Markov states is
not necessary to obtain a functioning time scale and does not provide further insight into
the core problem of clock anomalies. For these reasons the Markov modeling is omitted
from the scope of this thesis.

Regardless of how detailed the prediction model is, there will always be some error with
respect to the true clock states. The KF estimates the covariance matrix of the estimation
error P with an initial prediction step

P(t|t− τ) = AP(t− τ |t− τ)AT + Q. (2.20)
Information from the previous time instant is used in the prediction step of the KF algo-
rithm. Parameters computed at time t using past information are specified with t|t − τ .
The prediction equation also uses this notation to refer to the a priori KF estimate

x̂(t|t− τ) = Ax̂(t− τ |t− τ). (2.21)
We now have predictions of the clock states and an estimate of the variance of those
predictions. The expected distribution of the predictions is Gaussian

x̂(t|t− τ) ∼ N (x,P(t|t− τ)) . (2.22)
Other models for the above process noise and state equations are established for clocks
affected by jump-type anomalies [59]. However, these models are more suited to simulations
with known magnitudes of anomalies. If the extended models are included in the KF
algorithm, the jump magnitudes would then be additional states to estimate. Consequently,
the state vector would need to be modified to include N more parameters to estimate for
each type of anomaly. This is not necessarily impossible for one type of anomaly, as shown
in [50]. Nevertheless, trying to estimate several different types of anomalies on several
clock states would result in a loss in the estimation performance and is restricted by the
available measurements.
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2.3.3 Weights

The update step of the KF is the moment that residuals are weighted with the prede-
termined Kalman gain matrix to obtain an improved estimate of the clock states. The
Kalman gain matrix K is derived according to a minimization of the state mean square
error, leading to [60]:

K = P(t|t− τ)HT
(
HP(t|t− τ)HT + R

)−1
. (2.23)

The resulting matrix is N × (N − 1), where N − 1 is the number of measurements used
to estimate the independent phase values. In the best-case scenario: we can approximate
the measurement noise covariance R perfectly, there are no missing measurements so H is
well-defined by (2.9), and the state estimation covariance P is representative of the actual
clock estimation error. However, in the case of unpredictable anomalies, none of these
approximations are necessarily true. In addition, the Kalman gain matrix is calculated
using only past information, there is no link between the current measurements and the
current weights. For these reasons, we cannot rely on K alone to mitigate the effects of
anomalies. Detection algorithms are a strong field of research for the robustification of
KF time scales. The KF update equation uses the gain matrix to simultaneously estimate
phase, frequency, and drift:

x̂(t) = x̂(t|t− τ) + K (z − Hx̂(t|t− τ)) , (2.24)

and the resulting estimation covariance is also updated:

P(t) = (I − KH) P(t|t− τ) (I − KH)T + KRKT . (2.25)

The distribution of the updated estimates is then

x̂(t) ∼ N (x(t),P(t)). (2.26)

An important modification to the KF algorithm for generating a preferred timescale is the
method of “covariance x-reduction” [61]. This means the components of the matrix P(t)
associated with phase covariance are set to zero after the update step. If this is not done,
the phase covariance will grow without limit because the number of measurements is less
than number of states being estimated.

We can rewrite the KF update (2.24) in terms of individual clock phases, frequencies,
and drifts, using a notation compatible with the BTSE notation, xi,KF(t) is the ith element
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of x̂(t), and x̂i,KF(t) is the ith element of x̂(t|t− τ):

x1,KF(t)
...

xN,KF(t)

y1,KF(t)
...

yN,KF(t)

d1,KF(t)
...

dN,KF(t)



=



x̂1,KF(t)
...

x̂N,KF(t)

ŷ1,KF(t)
...

ŷN,KF(t)

d̂1,KF(t)
...

d̂N,KF(t)



+



K1,1 · · · K1,M

...
...

KN,1 · · · KN,M

KN+1,1 · · · KN+1,M

...
...

K2N,1 · · · K2N,M

K2N+1,1 · · · K2N+1,M

...
...

K3N,1 · · · K3N,M




x1,2(t) − (x̂1,KF(t) − x̂2,KF(t))

...

x1,N (t) − (x̂1,KF(t) − x̂N,KF(t))

 .

(2.27)
The above expression includes M = N − 1 measurements of the phase differences between
clock 1 and all other clocks. This is sufficient to obtain a solution and is sufficient to
explain the implicit weights. The elements of the matrix K depend on past information
and predictions so should be a function of (t− τ) but the notation is omitted for brevity.
The above equation is identical to simultaneously computing the BTSE N times for each
clock state. In this case, the reference clock for the measurements is fixed but the weights
are different for each realization of the BTSE. Each clock has N weights implicitly assigned
via the Kalman gain matrix. These implicit weights correspond to a linear combination of
the elements in K. The equations defining the implicit weights vary depending on whether
or not we are estimating the states for the clock common to all measurements or another
clock. Equation (2.27) leads to:

xi,KF(t) = x̂i,KF(t) +
N∑

j=2
Ki,(j−1) (x1j(t) − (x̂1,KF(t) − x̂j,KF(t))) , (2.28)

yi,KF(t) = ŷi,KF(t) +
N∑

j=2
K(i+N),(j−1)(x1j(t) − (x̂1,KF(t) − x̂j,KF(t))), (2.29)

di,KF(t) = d̂i,KF(t) +
N∑

j=2
K(i+2N),(j−1)(x1j(t) − (x̂1,KF(t) − x̂j,KF(t))). (2.30)

The resulting implicit weights can be written in terms of the elements of the Kalman gain
matrix, but the exact expressions will vary depending on the measurements used and which
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clock is being estimated. For example, when estimating the phase of the reference clock,
the KF’s equivalent BTSE is given by the following (with the dependence on time omitted
for brevity of the equations):

x1,KF = x̂1,KF +
N∑

j=2
K1,(j−1) (x1j − (x̂1,KF − x̂j,KF )) , (2.31)

x1,KF = x̂1,KF − x̂1,KF

 N∑
j=2

K1,(j−1)

+ x1,p

 N∑
j=2

K1,(j−1)

+
N∑

j=2
K1,(j−1) (x̂j,KF − xj,p) ,

(2.32)

x1,KF = x1,p + (x̂1,KF − x1,p)

1 −
N∑

j=2
K1,(j−1)

+
N∑

j=2
K1,(j−1) (x̂j,KF − xj,p) , (2.33)

x1,KF = x1 +
N∑

j=1
wj(x̂j,KF − xj), (2.34)

where the corresponding implicit weights are a function of the Kalman gain which was
computed using past values

wj(t− τ) = 1 −
N∑

i=2
K1,(i−1), j = 1, (2.35)

wj(t− τ) = K1,j−1, j > 1. (2.36)

Since the sum of the weights is equal to 1, we can simplify the KF with implicit weights to
be in an identical form to the BTSE. Substituting the above implicit weights into (2.1) will
provide the realization of the KF timescale with respect to clock 1, denoted as x1,KF(t),
and leading to:

x1,KF (t) =
N∑

j=1
wj(t− τ)(x̂j,KF (t) − xj,1(t)). (2.37)

A similar simplification is possible for the BTSE used to compute xi,KF(t), where i ̸= 1:

wj(t− τ) = −
N∑

l=2
Kj,(l−1), j = 1, (2.38)

wj(t− τ) = 1 +Kj,j−1, j = i, (2.39)
wj(t− τ) = Ki,j−1, j ̸= 1,j ̸= i. (2.40)

If a different set of measurements are used, e.g., N − 1 phase differences with respect to
clock 2 and hence i = 2, the implicit weights are adjusted appropriately. For each of the
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different values of i, the KF update equation (2.24) computes the BTSE simultaneously,
each time with different implicit weights to obtain the same common timescale from the
specified measurements.

With only N−1 linearly independent measurements, the gain matrix will automatically
assign the required weights for each state estimate. Additional measurements would intro-
duce additional elements in the matrix K that appropriately modify the implicit weights.
Similarly to the phase, the KF algorithm automatically performs the prediction and es-
timation of the frequency and drift states while applying optimized weights. The Sup-
plementary Time Scale Equations (STSE) for frequency and drift have implicit weights
different to the phase weights and defined by the additional rows of the Kalman gain
matrix KN+1, · · · ,K3N .

The implicit weights for all of the clock states are not robust to an anomaly occurring
at time t = ta because the Kalman gain matrix is computed only using a priori information
from t = (ta − τ). Consequently, any anomaly in the clock states will not have its effect
reduced by the implicit weights and the timescale will become unstable. For this reason,
the KF algorithm requires additional robustness through specific detection methods or an
adaptive Kalman gain matrix.

2.3.4 Anomaly detection for KF time scales

Creating a robust KF algorithm consists of detecting anomalies and modifying weights
such that the detected anomalies do not contribute to the estimates of the clock states. To
maintain some level of brevity, the specific robust modifications to the KF timescale are
not introduced in this work but some compatible detection methods are discussed below.

Likelihood ratio test

The Likelihood Ratio Test (LRT) focuses on using a test statistic and a threshold above
which this test statistic indicates the presence of an anomaly [62]. The choices of test
statistics and thresholds can be made based on performance requirements, such as the
probability of a false alarm (PFA) and the probability of non-detection (PND). The PFA
refers to how often the test will incorrectly detect an anomaly. An example of a false alarm
in time scale applications is measurement noise increasing instantaneously for a specific
link, e.g., x1,2, and causing the detection of a phase jump on clock 1 or 2, which did not
actually have any anomaly. If this occurs on too many links at the same time, the effective
number of clocks contributing to the time scale could decrease because their weights are
reduced more than necessary. The PND is related to the probability of failing to detect
anomalies. For example, phase jumps and frequency jumps of small magnitude may not
cause the test to exceed the threshold but still result in instability of the resulting time
scale.

Figure 2.2 illustrates how the distribution of anomalies can overlap with the distribution
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of nominal data and cause such errors in the detection of anomalies. The demonstration
in Figure 2.2 can be extended to consider anomalies that occur according to two identical
distributions symmetrically mirrored about the mean of the nominal data, as would be the
case for clock jumps that have similar probability to occur in either direction.

Figure 2.2: A basic illustration of the PFA and PND for a certain distribution of anoma-
lies. The example threshold is shown at -2 and would then be at +2 for symmetrically
mirrored anomalies. No threshold can guarantee a perfect separation between the clean and
contaminated data when the distributions overlap. Since the anomalies could potentially
provide realistic observations, there is a chance of mistaking the anomalies for nominal
observations, i.e., the PND. Also there are certain values of the nominal data that may be
discarded as anomalies, indicated by the PFA.

There is always a trade-off between PFA and PND because a low PFA implies a high
PND and vice versa. The preferred optimization of this trade-off can depend on the
correction procedure that is followed after the detection. A false alarm could result in
removing a clock that is positively contributing to the time scale, an over-correction that
can cause discontinuity and lowered stability in the time scale. For this reason, we would
aim to minimize PFA. However, a certain proportion of the undetected anomalies are
guaranteed to cause instability in the resulting time scale. By reducing PFA we increase
the PND and vice-versa. Therefore, anomaly detection and identification will always retain
some risk in the design.

The LRT designs the required threshold for a fixed PFA [62]. This test has been used for
the detection of phase jumps [45], frequency jumps [42, 43, 45], and other non-jump-type
anomalies such as changes in drift or variance [63, 45]. In each of the references, certain test
statistics are better suited to certain types of anomalies, i.e., no individual test is sufficient
to optimally identify the occurrence of all types of anomalies. The KF measurement resid-
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uals, windows of past data for an estimate of the Dynamic AVAR (DAVAR) [45], average
frequencies over a specified window [40, 43], and variance of the KF frequency residual [42]
are all examples of test statistics used in the state-of-the-art anomaly detection for KF
time scales.

There are also added constraints in the time between an anomaly occurring and its
detection. For example, the identification of frequency jumps or clock drifts requires several
observations after the time of the anomaly occurrence. The delay between the appearance
and detection of the anomaly can differ depending on the magnitude of the frequency
jumps or drifts. The detection delay for these anomalies means that the time scale should
be retroactively fixed after the anomaly has already made an impact.

2.3.5 Robust Estimation for known anomalies

Besides anomaly detection, robust estimators can be applied to the KF to estimate the
states with properly adapted weights for measurements affected by anomalies [64, 65]. This
includes implementation of the known robust M-estimator, which similarly requires the
tuning of a threshold to ensure performance in nominal operations is not reduced [66]. The
challenge of obtaining an optimum threshold for detection or tuning a robust M-estimator
is not a problem with another type of robust estimation based on heavy-tailed probability
distributions. This type of robust estimation refers to modeling the combined probability
of anomalies and normal observations and using knowledge of the probability distribution
or an appropriate score function to estimate the impact of the anomalies. Extensions
to robust estimation for a KF are not actively applied to the computation of KF based
time scales. Similarly, other time scale algorithms rather rely on the detection aspect of
robustness and not the estimation which can function more autonomously because there
is no need to detect then adapt the time scale.

Taking advantage of estimation can also refer to estimation of deterministic parameters
that characterize certain anomalies. For example, environmental conditions can cause a
periodic transient effect on the clock phases. By introducing additional states in the KF
model, the same KF algorithm can be used to jointly estimate the phase, frequency, drift,
and harmonic coefficients that cause the periodic variation for each clock [50]. Similarly,
one could define other types of additional states in the KF model to represent other types
of anomalies.

2.4 AT1

The other algorithm to be assessed is a state-of-the-art and optimal solution to the BTSE,
called the AT1 algorithm. The AT1 algorithm from NIST is widely used for simple represen-
tation of a real-time computed time-scale [49]. The algorithm includes all past information
through use of exponential filters to provide ideal transient behavior in the predicted clock
frequencies and computed clock weights depending on optimal time constants for different
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types of clocks [48]. The AT1 algorithm has had several updates that address phase jumps
and frequency jumps in the clocks and integrates the principle of the Kalman Filter (KF)
to help with frequency estimation in the AT2 algorithm [40, 41].

2.4.1 Measurements

With only N − 1 independent clock phase comparisons, i.e., xj,i(t) for a fixed satellite i,
the BTSE can be computed N times to obtain the N time differences between each clock
and the generated time scale xi,E(t). In most cases, the AT1 algorithm is used to compute
time scales in timing laboratories where the measurement noise can be averaged down to
a negligible level with respect to the clock noise. Nevertheless, the application to a swarm
of satellites should not neglect measurement noise, so the noise on independent satellite
links is defined. The statistical model of phase difference measurements zji(t) with additive
measurement noise is:

zji(t) ∼ N (hj(t) − hi(t), σ2
ji(t)), (2.41)

where the phase difference measurements for the links between clocks j and i are denoted
as zji(t) = xji(t) + nji(t) and the subscript ji refers to the specific link between clocks
j and i. The above is equivalent to an assumption of independent measurements that
experience the same noise level. Realistically, each link would have a different level of
noise variance depending on the inter-satellite distances or anomalies in the links. The
impact of anomalies in the measurement process will be specifically investigated by adding
instantaneous changes to the measurement noise at random time epochs. Adding anomalies
on the measurement links is a manner of expressing a varied measurement noise throughout
a swarm. That is, when the measurement noise is generally negligible but it is significantly
high for some specific links then those links with large noise could be suffering from an
anomaly.

2.4.2 Predictions

The predictions of clock phases are equivalently defined for the AT1 time scale algorithm
and other existing algorithms such as the KF, e.g., using a second-order polynomial, we
obtain:

x̂i,E(t) = xi,E(t− τ) + τyi,E(t− τ) + τ2

2 di,E(t− τ), (2.42)

where the above can be reduced to a linear model if we neglect drift. Similarly to (2.42), the
AT1 time scale replicates a prediction equation for both the frequency and drift parameters:

ŷi,E(t) = yi,E(t− τ) + τdi,E(t− τ), (2.43)
d̂i,E(t) = di,E(t− τ). (2.44)

The fractional frequency yi,E(t) is a dimensionless parameter that denotes the frequency
difference between clock i and the generated time scale as a ratio to the nominal frequency.
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The fractional frequency is hereby referred to as frequency for brevity. The drift parameter
di,E(t) is only necessary if the impact of drift is significant on the clocks over the interval
τ between predictions. The clocks used in the simulations of Section 3.3 have negligible
drift so di,E(t) = 0. The term yi,E(t) is expressed with respect to the time scale to show
that it is an estimated parameter, just like xi,E(t). In general, the frequency is simply
the rate of change of the phase, i.e., y(t) would be the rate of change of h(t). However,
when referring to yi,E(t), we do not simply find the rate of change of xi,E(t) but follow
a different estimation process. The final frequency estimates will be explained in Section
2.4.4 because they are obtained with a certain weighting process.

Certain stochastic noises exist in clock technologies that are unpredictable and result in
predictions that vary randomly from the true clock states. For consistency in the methods
presented in this paper, a statistical model is introduced involving the initial definition of
AT1 predictions assuming Gaussian distributions for hi(t), yi(t), di(t):

hi(t) ∼ N (x̂i,E(t), ϵ2xi
(t)), (2.45)

yi(t) ∼ N (ŷi,E(t), ϵ2yi
(t)), (2.46)

di(t) ∼ N (d̂i,E(t), ϵ2di
(t)). (2.47)

The principle of these distributions is that a predictable clock would follow the prediction
equations perfectly. However, the true clock states deviate from the predictions by some
random amount at each time epoch. The distribution of possible values that the true
clock states can have is initially assumed to be Gaussian. In addition, we are assuming no
correlation between the clock states, whereas a multivariate solution such as a KF algorithm
would be capable of implementing correlated noise. The variances for each of the associated
distributions are denoted as ϵ2xi

(t), ϵ2yi
(t), and ϵ2di

(t). They are not necessarily linked to a
specific noise type in the stochastic clock model but rather a collection of all the internal
clock noises that contribute to the prediction errors. The equations for the phase prediction
variances are presented in Section 2.4.4 because the weights are based on these prediction
variances.

2.4.3 BTSE Residuals

The BTSE residuals are presented as the difference between the predictions and the mea-
surements rji(t) = x̂j,E(t) − zji(t), which are the exact terms being weighted in the BTSE.
Based on the above definitions of the measurements and predictions, the statistical model
for the BTSE residuals can be written as

rji(t) ∼ N (xi,E(t), ϵ2xj
(t) + ϵ2xi

(t) + σ2
ji(t)). (2.48)

Each of the above residuals differs from a predictable clock (represented by the output of the
phase predictions) with variance described by ϵ2xj

+ϵ2xi
+σ2

ji. Since all of the residuals used to
compute xi,E(t) will have the same term ϵ2xi

(t) in the variance, the logical choice of weights
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would be the inverse of ϵ2xj
(t) +σ2

ji(t). The AT1 algorithm neglects the measurement noise
variance σ2

ji and aims to estimate the error of each clock from the prediction by estimating
each ϵxj . Despite neglecting measurement noise, any added variance due to measurement
noise would still impact the variance estimate and, as a result, the weights.

2.4.4 Weights

The BTSE realizations xi,E(t) are computed with weights defined from the previous time
epoch for the basic AT1 algorithm. The resulting values should provide a time scale with
improved frequency stability compared to the individual clocks. This is done by assigning
lower weights to less predictable clocks. As mentioned above, the variance of the BTSE
residuals would be a good metric for placing small weights on the clocks that vary the
most from a predictable clock. For weight computation, the unique variance of the BTSE
residuals rji(t) is given by only ϵ2xj

. This is called a unique variance because the variance
ϵ2xi

is common to each observation and should not affect the weights. The unique phase
variances of each clock can be expressed with the fundamental definition of variance for a
zero-mean dataset

ϵ2xj
(t) = E

[
(x̂j,E(t) − hj(t))2

]
, (2.49)

where E[·] denotes the expected value. The above variance cannot be computed exactly
because we cannot access hj(t) as a direct measurement. The next best approximation
is the estimate of xj,E(t) using the previously computed weights. The error between the
phase predictions and the result of the BTSE at time t provides an approximation of the
prediction standard deviation

ϵ̂j(t) = |x̂j,E(t) − xj,E(t)|Cj(t− τ), (2.50)

where the variance is now denoted ϵ2j (t) to signify that it is not a realization of the actual
phase variance. There is a bias induced on the variance according to the previous weights
that is compensated by multiplying by the term Cj(t−τ) = 1√

1−wj(t−τ)
[67]. The estimated

error is then squared and subjected to an exponential filter [68, 41, 48]

ϵ2i (t) = ϵ̂2i (t) +Nτ ϵ
2
i (t− τ)

1 +Nτ
. (2.51)

The time constant Nτ for the prediction errors is chosen to be the sampling interval at
which the white frequency noise of the clocks becomes dominated by flicker frequency noise
[40], i.e., the weights are not permitted to change rapidly outside the time interval at which
the frequency stability is best for the corresponding clocks. Finally, the AT1 weights are
calculated with the inverse of the filtered prediction error, then normalized so the sum of
all weights equals 1, i.e.,

wi(t) =
1

ϵ2
i (t)∑N

i=1
1

ϵ2
i (t)

. (2.52)
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A limitation is placed on the maximum allowable value of the weights so the time scale
does not become too reliant on any single clock [41]. According to (2.50), this algorithm
requires the BTSE to be computed before the weights at time t can be determined. Hence,
anomaly detection is needed to identify whether the current clock data is impacted by
anomalies and if corrections are needed.

The weighting steps of the AT1 algorithm apply weights to not only clock phases but
also clock frequencies. We consider the rate of change of the weighted phase estimate over
the time interval τ to be our first approximation of the frequency:

yi,s(t) = xi,E(t) − xi,E(t− τ)
τ

, (2.53)

where any corrections of phase jumps should be applied before making the first approxi-
mation of frequency. The AT1 algorithm proposes an exponential filter on the frequency
approximation. This assigns a certain weight (related to a time constant mi) to a predic-
tion of the frequency and ensures a gradual change to the new intermediate frequency. The
time constant mi can be specifically tuned to provide the best result for each type of clock
in the ensemble [48]. The same value as Nτ can be used for the frequency time constant
for clocks that have significant flicker frequency noise [48].

yi,AT1(t) = yi,s(t) +miŷi,AT 1(t)
1 +mi

. (2.54)

The frequency estimation is the only difference between the AT1 and AT2 algorithms. The
AT2 algorithm instead estimates frequency using a KF. A univariate KF is defined for
each of the N clocks, with the predictions from (2.43) varying according to the random
walk Frequency Modulation (FM) and the “measurements” from (2.53) varying due to
the white FM. This is shown to be equivalent to another exponential filter with different
definitions of time constant depending on the variances of predictions and measurements
[48, 40]. Due to this equivalence with the exponential filter, the original AT1 frequency
estimation is retained in this work to simplify the choice of time constants. Normally, the
AT2 algorithm is used as a method of detecting frequency jumps according to a certain
threshold. The next section will discuss the methods of choosing thresholds to detect
anomalies. It will also establish the AT1 oracle time scale as a baseline for assessing the
robustness of the new time scale.

2.4.5 AT1 Phase jump detection

In the description of the time step detection of the AT1 algorithm, new weights should be
used to recompute the ensemble average, i.e., the BTSE when the prediction error exceeds
a given threshold [40, 41]. Each of the references have a different smoothing function
to adjust the weights gradually for prediction errors that are still close to the detection
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threshold.

wcti = 1,ki ≤ 3, (2.55)
wcti = 1 − (3 − ki)2 ,3 < ki < 4, (2.56)

wcti = 4 − ki,3 < ki < 4, (2.57)
wcti = 0,ki ≥ 4, (2.58)

where (2.56) is defined in [40], (2.57) is defined in [41], and the test parameter is given by:

ki = |xi,E(t) − x̂i,E(t)|
ϵi

. (2.59)

Weight control terms are used to rescale the weights before recomputing the BTSE with
the newly modified weights. This somewhat mimics the idea of robust estimation that
adapts the weights according to an outlier score, gradually reduction to zero. Hence,
there is motivation to introduce robust estimation to the AT1 algorithm to provide a more
rigorous definition of the weight adjustment for anomalous clocks and no need to choose a
specific threshold for detection.

2.4.6 AT2 Frequency jump detection

The measurement variance Ri(t) is given by the estimated Allan variance over the sam-
pling interval that corresponds to white frequency noise [40]. The other variance term is
computed according to the KF,

P̂i(t|t− τ) = P̂i(t− τ |t− τ) +Qi(t), (2.60)

where the process noise Qi(t) is the Allan variance associated with random walk frequency
noise. Following the formulation of the standard KF algorithm expressed in the previous
section, we obtain the update equations

yi,AT2(t) = Ri(t)ŷi,AT 2(t) + P̂i(t|t− τ)yi,s(t)
Ri(t) + P̂i(t|t− τ)

, (2.61)

P̂i(t) = Ri(t)P̂i(t|t− τ)
Ri(t) + P̂i(t|t− τ)

. (2.62)

In the one-dimensional case, the KF update equation is equivalent to an exponential filter.
This time, the time constants are replaced by estimates of the measurement noise Ri(t) and
the prediction error variance P̂i(t), assuming that clock frequencies are uncorrelated. The
estimates of the variance parameters can be reliably obtained for laboratory clocks. An
ensemble of clocks in space would not necessarily have such reliable models of measurement
noise or prediction error due to the increased probability of anomalies. Hence, there are



52 CHAPTER 2. TIME SCALES

additional procedures put in place to detect such anomalies and recompute the BTSE
[48, 40, 41]. For example, the test statistic used for detecting time steps in AT1 is the
phase prediction error

κxi = |xi,E(t) − x̂i,E | , (2.63)
and the threshold is linked to the standard deviation of the phase predictions. The hypoth-
esis for the case with no anomalies is that the test statistic follows a Gaussian distribution,
it is then simple to choose a threshold of three standard deviations. The test statistic tells
us if there is a phase jump anomaly if

κxi > 3ϵi. (2.64)

The proposed test statistic for a frequency jump is also reasonable, being the difference
between the average frequency over some past interval of length L, yi,avg, and the frequency
estimate at the beginning of that interval yi,E(t− Lτ)

κyi = |yi,avg(t) − yi,E(t− Lτ)| . (2.65)

Conversely, the process of deciding the threshold for frequency jumps is more convoluted.
Estimates of the white FM noise variance (σ2

α) and the random walk FM noise variance
(σ2

β) are required to determine another test variance (σ2
L) that provides the threshold. The

choice of threshold is then four standard deviations (using this test variance) “because it
was empirically found to be appropriate” [40]. The details of the threshold for frequency
jump detection are described in [40]. As with the other tests, the frequency jumps are
detected if the following condition is satisfied:

κyi > 4σL. (2.66)

It is suggested to use several different length values L to be sure of a frequency jump since
it occurs over a continuous time period. The estimates of the white and random walk
noises can already be obtained in the AT2 frequency update step

σ2
αi

= τ0τxiRi, (2.67)

σ2
βi

= 3n
2n2 + 1Qi, (2.68)

where τ0 is the smallest time interval between measurements, τxi is the specific measurement
interval for clock i if there are periods of missing data, and n = τyi

τ0
. We assume there are

no periods of missing data in this work so we take τxi = τ0 for all clocks. Contrarily, we still
use different τyi to avoid frequency samples contaminated by phase jumps. Next, the test
variance is computed using an interval of past frequency values with the following length:

Lmax = 1
2


√√√√1 + 4

(
σα

τ0σβ

)2

− 1

 (2.69)
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2.4.7 Oracle detection

The AT1/AT2 jump detection methods are not as rigorous as those defined with the like-
lihood ratio test. As a result, it is hard to assess the performance for different magnitudes
of phase jumps, frequency jumps, and anomalies in measurement links. In addition, the
delay required to detect and identify a frequency jump is not compatible with the swarm
application, which must be robust and autonomous without needing to go back in time
and correct a frequency jump in post-processing.

An example of perfect detection can be used instead of comparing a new algorithm to
the pre-defined anomaly detection for AT1/AT2, which is not straightforward to implement
in the same manner as the original designers. We can use a priori knowledge of simulated
anomalies to generate the AT1 oracle time scale. The AT1 oracle time scale is an example
of achievable performance if we compensate the phase jumps, frequency jumps, and link
anomalies at the exact time they occur because it is known in advance that they will occur
at that time. This allows the time scale to be corrected almost perfectly by setting the
relevant weights to zero at the exact time of the anomaly. That is, the BTSE becomes:

xi,E(t) =
N∑

j=1
wj(t) [x̂j,E(t) − xji(t)] , (2.70)

after computing wj(t) and knowing that an anomaly occurs at time t. The weights remain
high for reliable clocks, keeping them in the ensemble, whereas clocks with low weights have
their impact on the ensemble reduced. For phase jump anomalies, the weights are expected
to be small due to a larger-than-normal prediction error. Frequency jumps or drifts that
may initially have small impacts on the measured clock phases may not necessarily result
in computing a low weight. This is where the AT1 oracle algorithm forces the weights to be
zero at the exact time of the anomaly to remove the contribution of the anomalous clock
or measurement. The method of iteratively applying the weights is similar to the method
suggested to compute the EAL time scale in [46], driving weights to some low value (or
zero) upon detecting abnormal behavior. The weights of clocks with any measurement
links that have an anomaly are forced to zero at the time of the anomaly.

The primary contribution of this thesis aims to design a robust procedure that assigns
independent weights to each measurement based on the observations obtained at each
instant of time. This is similar to the robust estimation discussed in Section 2.3.5 for
implementation in the KF-based algorithm but compatible with the AT1 formulation.
The choice to adapt robust estimation to an “AT1-like” time scale algorithm is based on
the ability to more explicitly understand the functions of the weights and to provide a
direct relation to the statistical model, allowing later studies and adaptations based on
other potential models. The next chapter presents the primary contribution of this thesis,
being a novel method of deweighting the clock phase measurements according to a robust
estimation algorithm.
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Chapter 3

A New Robust Time Scale
Algorithm

The Autonomous Time scale using the Student’s T-distribution (ATST) is a new time
scale algorithm that uses robust estimation to simultaneously mitigate the effects of phase
jumps, frequency jumps, and anomalous phase difference measurements. More precisely,
it is assumed that the combination of normal and corrupted clock data is modeled by a
Student’s t-distribution, which implicitly assumes that the data has some probability of
containing outliers. This distribution comes from a family of heavy-tailed probability dis-
tributions that assigns non-zero probabilities to the occurrence of outliers [66]. Therefore,
the Maximum Likelihood Estimators (MLEs) for the defining parameters of the Student’s
t-distribution are robust to anomalies that cause such outliers. The method of mitigating
the impact of the outliers in the MLE is comparable to the method of assigning weights to
individual clocks in the BTSE to build the time scale. Hence, the new ATST time scale is
designed by taking advantage of this similarity.

This chapter presents robust estimation as a method of mitigating anomalies, which acts
as an alternative to anomaly detection. Besides dealing with missing measurements, the
detection procedures discussed in Chapter 2 for removing measurement anomalies are not
necessary in the ATST algorithm. This provides a motivation to use the ATST algorithm
because it includes an implicit autonomous detection of anomalies, although, at the cost
of other restrictions that will be discussed in this chapter. To confirm the validity of a
robust time scale, it should maintain good performance in the absence of anomalies and
should not lose performance in the presence of anomalies. The ATST time scale algorithm
is therefore assessed by comparing it to the AT1 algorithm in the nominal case and the
AT1 algorithm with perfect detection of anomalies otherwise. AT1 with perfect detection is
herein referred to as AT1 oracle because it effectively knows the occurrence of all anomalies
before the moment they occur.

55
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3.1 Anomalous Clocks and the Student’s t-distribution

Ideally, a robust time scale can compensate for anomalies of a wide range of magnitudes
and types without any degradation in the nominal case. As was discussed above, anomaly
detection methods have constraints on the choice of test statistics and detection thresholds
depending on the type of anomaly. The objective of this section is to present a new weight-
ing procedure for the calculation of the BTSE that provides a robust time scale not reliant
on the detection or identification of specific anomalies. The weights will be based on the
MLE for the mean of the Student’s t-distribution (see Appendix E.1), generating the new
autonomous time scale using the Student’s T-distribution referred to as ATST. To under-
stand how the ATST attains robustness, the Student’s t-distribution should be explained.
In general notation, a random variable X that is distributed according to a univariate t-
distribution is denoted as X ∼ T (µ, σ2, ν). The parameters of the Student’s t-distribution
are the location parameter µ, which is also the mean value, the scale parameter σ2, and
the shape parameter given by the number of degrees of freedom ν. The parameters σ2 and
ν are related to the variance of the distribution by var(X) = σ2 ν

ν−2 for ν > 2. The degrees
of freedom parameter is directly related to the level of abnormality of the distribution.
Indeed, as ν → ∞ the t-distribution approaches a Gaussian distribution. Conversely, low
values of ν coincide with a probability distribution heavily impacted by outliers. Figure
3.1 illustrates this connection between the shape parameter and the normality of the data.
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Figure 3.1: Examples of the Student’s t-distribution probability density functions for differ-
ent numbers of degrees of freedom ν. The distribution converges to a Gaussian distribution
for infinite value of ν. Lower values of ν correspond to heavier probabilities in the tails,
hence a greater proportion of contaminated data.
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The nature of the shape parameter allows the estimates of the mean and variance to
simplify to the normal case if the data is not contaminated with outliers. This is of interest
because a robust time scale should not sacrifice performance in the nominal case to mitigate
anomalies. The probability density function (PDF) of the Student’s t-distribution has a
specific form that assigns a given probability of outliers occurring. The PDF defines the
required equations to estimate the parameters of the distribution as described in Appendix
E.1. These equations show that the degrees of freedom also contribute to robust estimates
of the other parameters, i.e., the presence of anomalies is accounted for in the estimates of
the mean and variance. The MLE of the mean is a weighted average of the data according
to the Expectation Maximization (EM) algorithm specified in Appendix E.1, where the
weights are lower for less probable observations according to the PDF of the Student’s
t-distribution. To summarize, the proposed ATST time scale is generated by assuming the
clock data is modeled by a Student’s t-distribution and using the robust estimate of the
mean of that data as a realization of the robust time scale.

3.1.1 Clock Measurements

The proposed ATST algorithm considers all unique pairs of satellites as sources of inde-
pendent phase difference measurements. A unique measurement noise is present on each
satellite link. As was defined in section 2.2, the phase difference measurements are

zj,i(t) = xj,i(t) + nj,i(t). (3.1)

Anomalies in certain measurement links can be represented by some outlier being added
to the noise on a specific link, leading to:

zj,i(t) = xj,i(t) + nj,i(t) + ∆nj,i(t) = xj,i(t) + ñj,i(t). (3.2)

Phase difference measurements are grouped into sets of N − 1 measurements according to
the common reference clock i. This is also necessary for the BTSE to compute xi,E(t) in
the AT1 algorithm.

3.1.2 Clock Predictions

Identical to the AT1 prediction step, the proposed ATST algorithm assumes a second-order
polynomial to predict the clock phases

x̂i,E(t) = xi,E(t− τ) + τyi,E(t− τ) + τ2

2 di,E(t− τ). (3.3)

The true clock phase will deviate from the predictable clock phase by some random amount
according to the internal noises. The possibility of phase jumps and frequency jumps will
cause the clocks to sometimes deviate from the predictable clock by an even greater amount
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than the standard clock models expect. The ATST algorithm assumes that any anomaly
in the clocks modifies the instantaneous true phase by some unpredictable bias

h̃i(t) = hi(t) + ∆hi(t). (3.4)

These deviations are effectively outliers in the clock phases at a given instant in time. The
outliers due to clock anomalies can be observed in the prediction errors

ẽi(t) = h̃i(t) − x̂i,E(t) = ei(t) + ∆hi(t), (3.5)

where we recall here that the prediction error is ei(t) = hi(t) − x̂i,E(t). We make this
assumption at all time instants regardless if any anomaly occurs. Since the phase state is
also affected by frequency jumps, we expect that only modifying the assumption on the
phase prediction error is sufficient to achieve a robust result.

3.1.3 BTSE Residuals

The BTSE residuals are expressed in terms of the clock phase measurements affected by
anomalies, e.g., corrupted clock j provides the phase h̃j(t) and/or an anomaly on link j, i
introduces a contaminated noise ñj,i(t): recall the definition of zj,i(t) as a function of hj(t)
and hi(t)

rj,i(t) = x̂j,E(t) − zj,i(t), (3.6)
rj,i(t) = x̂j,E(t) − (h̃j(t) − hi(t) + ñj,i(t)), (3.7)
rj,i(t) = hi(t) + ej(t) − ∆hj(t) − nj,i(t) − ∆nj,i(t). (3.8)

The objective of a time scale is to provide a common reference for any clock, xi,E(t) =
hi(t)−hE(t). Without loss of generality, the noise due to stochastic processes on each clock
j = 1, · · · , N and the measurement links j, i for fixed i are assumed to be noisy observations
of the absolute phase of the time scale hE(t). The residuals can then be written in terms
of the time scale that we aim to estimate

rj,i(t) = hi(t) − hE(t) + bj,i(t). (3.9)

It is assumed that the effects of outliers due to internal clock malfunctions and link anoma-
lies imply a Student’s t-distribution for bj,i(t) and hence for the residuals rj,i(t). If the phase
of clock i is affected by an anomaly, it is equivalent to estimate the actual deviation as
xi,E(t) = h̃i(t) − hE(t), which allows steering of the corrupted clock to the common time
scale. Additional assumptions allow simplification of the parameters for the defining dis-
tribution. The instantaneous measurement noise throughout the ensemble is assumed to
be zero mean with a uniform variance across all links, each link is independent of the other
links and link anomalies are random occurrences that could appear on any link. The inter-
nal clock noises are also considered independent, with random chances of suffering from an
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anomaly. Consequently, the BTSE residuals can be modeled by a heavy-tailed distribution
such as the Student’s t-distribution:

rj,i(t) ∼ T
(
xi,E(t), σ2

i (t), νi(t)
)
. (3.10)

The parameters of the above distribution depend only on the reference clock i because
the phase of clock i is constant throughout the N BTSE residual samples. That is, for
each possible reference clock i there is a unique distribution defined by: the mean xi,E(t),
which provides the phase offset of clock i from the designed time scale, the scale parameter
σ2

i (t) is related to the dispersion of every other clock compared to clock i, and the shape
parameter νi describes the impact of anomalies on the estimation of xi,E(t). The shape
factor νi(t) is related to the heaviness of the tails so can be linked to the number and
magnitude of outliers.

A certain value of νi(t) corresponds to only one out of N residuals being affected by an
anomaly. If that anomaly increases to a significantly larger value, then νi(t) decreases to
correspond with heavier tails of the distribution. If several measurements had outliers, then
νi(t) would also decrease to indicate a higher likelihood of those anomalies. This allows
us to deal with different mixtures of corrupted measurements by assigning appropriate
weights as long as the statistical assumption remains correct. Making a robust estimate
of the mean mitigates the anomalies modeled by the Student’s t-distribution and provide
a robust realization of the time scale. It is true that some measurements are reused for
different sets of residuals so there can be some level of correlation between the dispersion
and shape parameters for each of the possible reference clocks. Nevertheless, the mean is
the main parameter of interest and always remains unique to each reference clock.

Note that the N measurements include rii(t) = hi(t) + x̂i,E(t) − hi(t) = x̂i,E(t), which
is simply the sum of the absolute phase of clock i and the prediction error for clock i. This
is the same form as rji(t) = hi(t) + x̂j,E(t) − hj(t), representing the observations made
by the other BTSE residuals which deviate from hi(t) by their corresponding prediction
errors. In other words, if the anomaly is on clock i, the residual rii(t) will appear as an
outlier compared to the other measurements that have all jumped due to the common
observation of clock i, which now deviates from the predicted value. The number of clocks
N must be sufficiently large for the statistical model to be efficient, in this work N = 50
clocks is assumed to coincide with the available number of clocks envisioned for a swarm
of satellites.

3.1.4 Verifying the Student’s t-distribution

The assumption of the Student’s t-distribution is verified for this number of clocks in Figure
3.2, which shows the histograms of the BTSE residuals with phase jumps, frequency jumps,
and outliers on the measurement links. The figure is divided into columns by time epochs:
before, during, and after the occurrence of an anomaly ta. The rows of Figure 3.2 are
separated by type of anomaly. The distributions are plotted using the corrupted clock as
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the common reference for all the measurements. This shows that even with an identical
anomaly on all phase difference measurements, the inclusion of rjj(t) causes the distribution
to still be affected by an outlier. The following comments can be made:

• As expected, the distribution of the BTSE residuals at the time immediately before
an anomaly is well approximated by both the Gaussian and Student’s t-distributions.
Hence, we expect a good performance for the MLE of the t-distribution in the nominal
case.

• At the epoch of the anomalies, there are outliers in the residuals, corresponding to
the magnitude of the jumps. For these histograms, fifty OCXO clocks are simulated
with a jump on a single clock at t = ta with a magnitude of 10−8. The units of the
jumps are compatible with the relevant states, i.e., 10 ns for phase and measurement
jumps, and 10 ns/s for a jump in the fractional frequency yi. As can be observed at
t = ta, the histogram of the residuals is better fitted by the Student’s t-distribution
than by the Gaussian distribution.

• The outlier in the measurement only occurs at t = ta, so we see that the distribution
returns to a Gaussian distribution at the time after the link anomaly. We observe
the phase jump resulting from the frequency jump is also 10 ns, but this outlier does
not disappear at the following time epoch because the frequency has changed for
one clock, resulting in a different rate of change for the phase of the affected clock.
Additionally, the phase jump outlier switches sides at the following epoch due to the
prediction error over that interval (τ = 10 s) being significantly different than from
the now-shifted phase. Again, the Student’s t-distribution provides a good fit for the
distribution of the residuals just after the time of the anomaly.

If the total number of clocks is too low, the number of samples for the BTSE residuals
is too low to appropriately fit a statistical distribution. Space-based applications often
function with redundant technologies to contribute to robustness, e.g., many clocks on
many satellites. Hence, the limitation of having few observations is not an immediate
concern but is relevant to dealing with missing data, which is addressed in Section 3.4.
Simultaneously occurring anomalies would also change the distributions of the data, but
it is expected that this simply changes the shape parameter of the Student’s t-distribution
so it remains a valid model.

The outliers introduce a bias on the estimate of the mean of the Gaussian distribution
because the outlying measurements have equal weight to every other measurement. The
estimation of the mean of the Student’s t-distribution is robust to anomalies because it
assigns lower weights to less probable measurements. For this reason, we are interested
in using the weights determined by the MLE for the Student’s t-distribution to produce a
new robust time scale.
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(a) t = ta − τ . (b) t = ta. (c) t = ta + τ .

(d) t = ta − τ . (e) t = ta. (f) t = ta + τ .

(g) t = ta − τ . (h) t = ta. (i) t = ta + τ .

Figure 3.2: Student’s t PDFs are shown to model the statistics of the residuals with and
without an outlier on one of the measurement links.

3.2 Weights of ATST Time Scale

The derivation of the MLE for the parameters of the Student’s t-distribution is detailed in
Appendix E.1. To generate the ATST, only the equations in the EM algorithm are nec-
essary to obtain a weighted average of a certain dataset. More precisely, the t-distributed
BTSE residuals for a fixed clock i, i.e., rji(t) ∼ T

(
µ(t), σ2(t), ν(t)

)
, are used to define the

initial values of the estimates as follows:

µ̂0(t) = 1
N

∑N
j=1 rji(t), σ̂2

0(t) = 1
N−1

∑N
j=1 (rji(t) − µ̂0(t))2 , ν̂0(t) = 3. (3.11)
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Note that the initial value of the number of degrees of freedom ν0 = 3 is chosen to always
initially assume that outliers are possibly present in the clock measurements. This initial-
ization does not affect the results when there are no anomalies because the location and
scale estimates using the Gaussian MLE are close to the Student’s t-MLE in this context.
Note also that the Student’s t-MLE is declared to have converged when a certain stop-
ping rule has been reached. The stopping rule is usually a minimum difference between
estimates on consecutive iterations, say ε < 0.01, where ε is computed based on the con-
secutive error between estimates of each parameter [69]. The resulting EM algorithm is
described in Algorithm 1:

Algorithm 1 Expectation Maximization for a Robust MLE
function tEM(rj,i(t))

Init.: µ̂0(t) = 1
N

∑N
j=1 rj,i(t), σ̂2

0(t) = 1
N−1

∑N
j=1 (rj,i(t) − µ̂0(t))2,ν̂0(t) = 3,

while ε > 0.01 do
uj,k = ν̂k−1+1

ν̂k−1+
(rj,i−µ̂k−1)2

σ̂2
k−1

, µ̂k =
∑N

j=1 uj,krj,i∑N

j=1 uj,k

, σ̂2
k =

∑N

j=1 uj,k(rj,i−µ̂k)2

N ,

νk estimated as the solution of the following equation for νk

N

[
ϕ

(
νk

2

)
− ϕ

(
ν̂k−1 + 1

2

)]
+

N∑
j=1

[uj,k − log(uj,k) − 1] = 0. (3.12)

ε =
∥∥∥θ̂k − θ̂k−1

∥∥∥ (3.13)

k=k+1
end while
return µ̂k, σ̂

2
k, ν̂k

end function

where the subscript k denotes the iteration number of the EM algorithm executed with the
observations obtained at time t. Note that another iterative algorithm (using Newton’s
method as specified in Appendix(E.22)) is needed to estimate the number of degrees of
freedom satisfying (3.12) [69]. Once the EM algorithm has converged, the values of uj,k

act as weights on each of the BTSE residuals. The terms uj,k are designed to mitigate
outliers because a greater difference between the data and the estimated mean results in
a smaller weight. These terms are also able to return to the Gaussian assumption in the
case of nominal data because a large number of degrees of freedom results in the weights
being approximately 1/N for each clock. However, this causes problems if a mixture of
different clock types are present, meaning that the weights are not assigned based on each
clock’s unique stability. Hence, the new algorithm is first evaluated with an ensemble of
homogeneous OCXO clocks to prove robustness before integrating different clock behaviors.
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The robust estimates of the scale parameter and number of degrees of freedom are also
included in the weight computation. Both these parameters do not change depending on
the residual rj,i and hence affect the weights of each individual clock equally. The MLE of
µ, denoted as µ̂ in Algorithm 1 is obtained according to a weighted average of the BTSE
residuals with the normalized weights wj,AT ST (t) = uj,k(t)

/∑N
i=1 ui,k(t) as defined in the

above algorithm. Hence, the robust MLE of the location parameter is equivalent to a BTSE
with specifically designed weights. As detailed for the BTSE in Chapter 2, each xi,E(t)
is computed using a different clock i as the common reference for the measurements, and
hence, the residuals. The ATST time scale is then obtained as:

xi,ATST(t) = tEM (rj,i(t)) =
∑N

j=1 uj,krji(t)∑N
j=1 uj,k

, (3.14)

where tEM(rji(t)) is the output from the EM algorithm and differs depending on which
set of residuals is used at the input. At each iteration of the EM algorithm, the weights
are further refined thanks to using the adapted estimates µ̂k−1 and σ̂2

k−1. The iterative
nature of the EM algorithm also inherently involves a recomputation of the BTSE at each
iteration. This is also how AT1 oracle compensates phase jumps and frequency jumps
by recomputing the BTSE using the weights computed at a given time instant, where the
weights are set to zero whenever an anomaly is known. The ATST algorithm is essentially a
recursive application of this procedure that re-adapts the weights before each computation
in each iteration of the EM algorithm. However, instead of a detection threshold or a priori
knowledge on the occurrence of anomalies, ATST uses a threshold for the convergence of
the EM estimator to confirm that the weights are appropriately attributed to anomalous
measurements. Intuitively, the convergence is obtained quickly (often immediately) if no
anomalies are present. More iterations are needed when the initial estimate significantly
deviates from the first recomputation.

The ATST weighting procedure differs from the standard BTSE because each set of
residuals yields a unique set of weights, i.e., the weights are assigned based on specific
inter-satellite links. The weights computed for estimating x1,ATST(t) are not necessarily
the same as the weights computed for x2,ATST(t) because they each use a different set
of inter-satellite links being zj,1(t) and zj,2(t), respectively. Despite this variation in the
weights used for each realization of the BTSE, it can be shown that each estimate still
results in a common time scale. By varying the weights according to the unique residuals,
the algorithm takes into account the higher deviations of both measurements and clocks
affected by anomalies. Such errors result in reduced weights to simultaneously deal with
phase jumps, frequency jumps, and link anomalies. The robustness of the ATST time scale
to these types of anomalies is demonstrated in the next section alongside the AT1 oracle.

Additionally, the weights computed according to the MLE defined above will naturally
ensure there is no dominant clock by assigning very similar weights at each point in time.
This can be observed in Figure 3.3, where the weight for a single clock in an ensemble
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of fifty clocks is concentrated around 1/50 except for time epochs with anomalies. Unless
there is a significant number of anomalous clocks at the same time epoch, the weights of the
nominal clocks will not increase drastically. This autonomous constraint on the maximum
clock weight is advantageous because the AT1 algorithm normally requires monitoring to
ensure no individual clock dominates the time scale. By keeping the weights of clocks
unaffected by anomalies close to equally distributed around 1/50, the time scale will not
be susceptible to sudden changes in clocks that are more stable at a certain time instant
then face an anomaly at the next. However, this is not preferable for a time scale with a
mixture of different clock types, e.g., the weights will not necessarily take into account the
stability of a Cesium clock over long time intervals when compared to a crystal oscillator
at a single time epoch.

Figure 3.3 displays the weights of the three clocks that are affected by different anoma-
lies, and whose histograms are shown in Figure 3.2. We can observe a reduction in weights
at the corresponding time of the anomalies, except for the link anomalies. The weight
of a single clock should not necessarily be reduced because a single link has an anomaly,
even if that clock is part of the affected link. Instead, the ATST weight corresponding to
the affected measurement link is reduced. The weights associated with phase jumps and
link anomalies are only reduced for a short period, whereas the frequency jump results in a
weight that gradually rejoins the ensemble. The weights of the less stable clocks are reduced
while the weights of the other clocks are increased somewhat equally to compensate.
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(a) Phase jump.
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Figure 3.3: Weights of the ATST and AT1 time scale in the presence of the different types
of anomalies. In the case of phase jumps and frequency jumps the weights are defined in
the same way for AT1 and AT1 oracle so only one of them is plotted. When considering
link anomalies, AT1 oracle manually sets the weight of clock 1 to zero whenever an anomaly
is on a link including clock 1.

Since the estimation of the ith phase xi,ATST(t) is already designed to be robust to phase
jumps and frequency jumps, we expect the distribution of past frequencies to be unaffected
by those anomalies. As a result, the frequency can be estimated using an average over a
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window of past frequency values or use the same exponential filter as the AT1 algorithm

yi,ATST(t) = ŷi,ATST(t) +miyi,s(t)
1 +mi

. (3.15)

The time constant mi is chosen based on the types of clocks involved, so the ATST algo-
rithm maintains some level of compatibility with mixtures of different types of clocks. By
using the same methodology of frequency updates as the AT1 algorithm, we eliminate one
aspect that could affect the relative performance of ATST and AT1. The final comparison
will be solely based on the different methods of assigning weights to the BTSE residuals.
At the beginning of the algorithm, the frequency estimate must be initialized to obtain a
first prediction of the phase. The clock phases are assumed to be measured with respect
to a stable reference, obtaining xi,r(t) for the first 10 time steps. The algorithm would
then start at the beginning of the eleventh time step assuming that the frequency over
the first ten time steps is constant. It is also assumed that the drift is negligible, so it is
initialized at a value of zero. With the complete definitions of the estimations used, the
ATST algorithm is presented in Algorithm 2:

Algorithm 2 ATST Time Scale Generation
Inputs: zj,i(t), τ , xi,E(t− τ)
Init.: xi,ATST(10τ) = 0, yi,ATST(10τ) = xi,r(10τ)−xi,r(0)

10τ , di,ATST(10τ) = 0,
for 11τ ≤ t ≤ tf do

x̂i,ATST(t) = xi,ATST(t− τ) + τyi,ATST(t− τ) + τ2

2 di,ATST(t− τ),
ŷi,ATST(t) = yi,ATST(t− τ) + τdi,ATST(t− τ),
di,AT ST (t) = di,AT ST (t− τ),
for 1 ≤ i ≤ N do

rj,i(t) = x̂i,ATST(t) − zj,i(t),
xi,ATST(t) = tEM (rj,i(t)),
i = i+ 1,

end for
yi,s(t) = xi,ATST(t)−xi,ATST(t−τ)

τ ,
yi,AT ST (t) = ŷi,ATST(t)+miyi,s(t)

1+mi
,

t = t+ τ .
end for
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3.3 Robustness of ATST time scale

To verify that the ATST time scale is robust to the anomalies of interest, we will assess the
primary criteria against the requirements introduced in Chapter 1. That is, synchronization
with respect to MTIE and TDEV, frequency stability in the form of the OADEV, and
fractional frequency and phase evolution to confirm the continuity. The time and frequency
stabilities of the new time scale should be unaffected by anomalous clocks and maintain
similar performance in comparison to the AT1 oracle. If the ATST matches the performance
of AT1 oracle, then it can be concluded that it is sufficiently robust to the tested anomalies.
There should be no observable jumps or outliers in the frequency or phase of the time scale
at any point in time. Measurement noise is expected to place a higher constraint on the
frequency stability of the time scale, but anomalies in the links should not add to that
constraint. Before presenting the results, the setup of the simulated data is explained and
justified for the application of a swarm of nanosatellites.

3.3.1 Simulated data

The proposed robust time scale can be appropriately tested by using simulated clock data
to obtain a high number of clocks corresponding to the clocks onboard the nanosatellites
in the swarm. As was mentioned earlier, a homogeneous ensemble of OCXO clocks is used
because of the nature of the ATST weights under nominal conditions. The simulation
methodology and how it can be extended to other types of clocks is explained in Appendix
C. The noise variance levels of each simulated clock were varied randomly by multiplying
the variance by a normally distributed random variable to obtain unique but relatively
similar stochastic behaviors.

For this work, the interval between measurements is fixed at 10 s to be compatible
with scientific observations of short-duration events. This results in many measurements
being made over a day, hence increasing the likelihood of experiencing anomalies in the
measurements. The proportion of anomalies is then assumed to be one phase jump per
clock, one frequency jump per clock, and one anomaly per inter-satellite link at random
times over a 6 hour simulation period. For OCXO clocks, the time constants for the error
and frequency estimates in the AT1 algorithm are established from the respective OADEV.

3.3.2 Metrics

The phase evolution of the time scales is a visualization of their equivalent virtual clocks.
To obtain the phase of the time scales we simply take the difference between the output of
the BTSE and the simulated clock data

hi(t) − xi,E(t) = hi(t) − (hi(t) − hE(t)) = hE(t). (3.16)
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The fractional frequency of the time scales is obtained by taking the first difference of the
phase

yE(t) = hE(t) − hE(t− τ)
τ

. (3.17)

For clarity purposes, the frequency offsets are removed from the phase of the time scales
by subtracting the averages of their frequencies over the whole simulation period ȳE

hE(t) := hE(t) − tȳE . (3.18)

Finally, the OADEV is computed according to the standard formula for a given set of phase
samples [11, 12]

σ2
y(τ) = 1

2(M − 1)

M−2∑
t=0

(
hE(t+ 2τ) − 2hE(t+ τ) + hE(t)

τ

)2
, (3.19)

where M − 2 realizations of the time scale phase are available, restricting the maximum
sampling interval to τ = M−2

2 . Confidence intervals are included on the computed values
of OADEV to indicate the increase in uncertainty of the OADEV as the number of samples
decreases for higher sampling intervals [17].

The ATST time scale is first validated under nominal conditions before evaluating the
responses to the anomalies of interest. Figure 3.4 displays the phase, frequency, and fre-
quency stability of the ATST algorithm alongside the AT1 algorithm without any anoma-
lies. It is confirmed that when all the clocks are nominal throughout the simulation period,
the ATST time scale obtains very similar performance to the AT1 algorithm. This is true
because the weights are approximately 1/N and each of the clocks have similar perfor-
mances.

The criteria used to assess the synchronization of the time scale are displayed next in
Figure 3.5, where the ATST algorithm is shown to match the performance of the AT1
time scale under nominal conditions. The validity of the new time scale is confirmed
by demonstrating the equivalence of both time and frequency stability compared to an
existing, optimal time scale such as AT1. These figures also demonstrate how the time
scale expands the range of functional sampling intervals in which the requirements stated
in Chapter 1 are satisfied.

3.3.3 Measurement Noise

The effect of Gaussian measurement noise on the time scales is presented before assessing
the effects of link anomalies. Figure 3.6 displays the phase, frequency, and frequency
stability of the ATST algorithm alongside the AT1 algorithm and measurement noise,
referred to below as link noise. The magnitude of the noise variance is chosen such that it
exceeds the Allan deviation of the individual clocks in the ensemble at the measurement
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Figure 3.4: Nominal stability performance of the ATST and AT1 oracle time scales using
the above-mentioned ensemble of fifty OCXO clocks. The OADEV (c) compares the time
scales to a singular OCXO clock to show the improvement in stability with respect to a
single clock. Note that the ATST performance is very close to that of “AT1 oracle”. Error
bars on the OADEV are included to indicate the 68 % confidence interval for the simulation
period used.
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Figure 3.5: Nominal timing performances of the ATST and AT1 oracle time scales using
the above-mentioned ensemble of fifty OCXO clocks.

interval of 10 s. This noise is assumed to be a white phase modulation noise. This is chosen
to illustrate the impact of measurement noise on the two different time scales.

As shown in Figure 3.6c, the short-term OADEV of the time scales is affected according
to the OADEV of the link noise. Since the measurement noise is included in the time scale
equation, there is a magnitude of noise variance at which the short-term stability of the
time scale becomes worse than that of the individual clocks in the ensemble. At this
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point, the objective of the time scale to provide a virtual clock better than any individual
clocks is not achieved. Anomalies in the measurement noise will effectively increase the
variance of the link noise and hence, the short-term stability. As a result, a negligible
level of measurement noise can become significant enough to deteriorate the time scale if
anomalies in the measurements are not properly treated.
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Figure 3.6: Continuity and stability performance of the time scales using the above-
mentioned ensemble of fifty OCXO clocks and a uniform noise on every satellite link with
variance σ2

n = 10−19.

The measurement noise is shown to increase the short-term Allan deviation equivalently
for both time scales. This means neither time scale is necessarily preferred for applications
with Gaussian measurement noise. The effect of measurement noise on the MTIE and
TDEV is also limited to the short term, with each of the time scales compensating the
noise by the same amount.

3.3.4 Results in presence of anomalies

Anomalies in both the clocks and the measurements are analyzed in this section for both
ATST and AT1 oracle. Note that AT1 has no specialized method of dealing with mea-
surement anomalies. The AT1 oracle algorithm simply mitigates the anomalies by setting
the weights of the clocks in the affected measurement links to zero, assuming it knows
exactly which links are affected by anomalies. It is likely that several links are affected by
anomalies throughout the measurement process, so each unique link is simulated with an
anomaly at a random point in time.

Figure 3.8 displays the phase, frequency, and ADEV of ATST, AT1, and AT1 oracle for
the jump type anomalies in absence of measurement noise. The anomalies are investigated
separately by introducing a single phase jump on each clock or a single frequency jump on
each clock in two different simulations. The magnitudes are randomly distributed values
with zero mean and a standard deviation of 100 ns, and 100 ns/s for the phase jump and the
frequency jump, respectively. The resulting maximum values faced are then approximately
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Figure 3.7: Timing accuracy assessed for the ATST and AT1 oracle time scales with uniform
measurement noise on every satellite link with variance σ2

n = 10−19.

equal to the 3σ values, i.e., ±300 ns for phase jumps and ±300 ns/s for frequency jumps.
This is to illustrate a scenario that has a more significant impact on the time scale created
with fifty clocks. The magnitudes tested in this section are presented so that the impact
is visible on the ensemble of 50 clocks. For conciseness of this chapter, other simulations
with smaller or larger anomaly magnitudes are available in Appendix D, where the same
level of robustness is confirmed.

Figures 3.8b and 3.8e demonstrate spikes in the frequency of AT1 without anomaly
compensation. Nevertheless, both AT1 oracle and ATST are able to compensate the inves-
tigated phase jump and frequency jump anomalies. Outliers with an order of magnitude
similar to the phase jumps are introduced on every unique link to generate the link anoma-
lies. This magnitude of the link anomalies in Figure 3.11 is chosen to cause the resulting
contaminated measurement noise to exceed the original measurement noise with a variance
of 10−19. Alternatively, the measurement noise can be reduced to a negligible level so that
link anomalies with a magnitude of 10 ns are impactful. The results with such lower inten-
sity anomalies are shown in Appendix D. Appendix D also indicates the responses of the
time scales with link anomalies of larger magnitudes to prove that there is not an upper
limit on the magnitude of anomalies that can be mitigated.

Phase jumps cause intermediate frequency values to be outliers at the time of the
anomaly and as a result, introduce a loss in frequency stability for AT1 without any
treatment of anomalies. This is seen in the OADEV of the OCXO clock in Figure 3.8c.
Phase jumps can also cause frequency jumps in the non-robust time scales because the
frequency approximations are significantly affected by the phase jump, which consequently
affect the following prediction of phase if the frequency time constant is not high enough.
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This is visible in Figure 3.8b, where the effect of a phase jump on the frequency of AT1
is identical to that seen in Figure 3.8e for a frequency jump anomaly at the same point in
time. Link anomalies introduce unexpected measurements in the clock phase differences,
also producing outliers in the frequency of the non-robust time scale. As a result, the
short-term OADEV is increased for the AT1 time scale without anomaly mitigation.
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Figure 3.8: Time scale performance with phase jumps (top row) and frequency jumps
(bottom row) each with order of magnitude randomly assigned in the interval -300 to 300
in the units of ns or ns/s, respectively.

The following figure presents the metrics that classify the synchronization performance
for the time scale. Since the MTIE and TDEV have remained relatively unchanged in
Figure 3.9 compared to the nominal case, the errors in synchronization of any clocks steered
to the time scales are verified to be robust to the presence of anomalies. Again, the ATST
time scale is able to achieve very similar (or close) performance to the AT1 oracle time
scale, and the time scales are able to achieve the required performance for more values of
sampling intervals. The difference in the MTIE performance in the case of phase jumps is
approximately constant for all sampling intervals so is assumed to be linked to a frequency
offset between the two time scales that can be later compensated.

Figure 3.10 demonstrates that the ATST weights differ to the AT1 weights while still



72 CHAPTER 3. A NEW ROBUST TIME SCALE ALGORITHM

10
1

10
2

10
3

10
4

10
0

10
2

10
4

AT1 oracle

ATST

AT1

Limit

OCXO

(a) Max time error,
Phase jumps.

10
1

10
2

10
3

10
4

10
0

10
2

10
4

AT1 oracle

ATST

AT1

Limit

OCXO

(b) Max time error,
Frequency jumps.

10
1

10
2

10
3

10
4

10
0

10
2

10
4

AT1 oracle

ATST

AT1

Limit

OCXO

(c) Max time Error,
Link anomalies.

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

OCXO

AT1 oracle

ATST

AT1

Limit

(d) Time dev.,
Phase jumps.

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

OCXO

AT1 oracle

ATST

AT1

Limit

(e) Time dev.,
Frequency jumps.

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

OCXO

Link noise

AT1 oracle

ATST

AT1

Limit

(f) Time dev.,
Link anomalies.

Figure 3.9: Maximum Time Interval Error (top row) and Time Deviation (bottom row) for
the new time scale compared to the AT1 oracle with phase jumps (left column), frequency
jumps (middle column), and anomalies on the measurement links (right column).

managing to compensate the anomalies. In response to a frequency jump, the ATST weight
remains low for some period before it is allowed to increase, which is likely related to the
exponential filter on the frequency estimates. The weights are increased much more quickly
in response to the other anomalies. This could be considered advantageous because the
effective number of clocks is not reduced for a long period of time as is the case for the
AT1 algorithm.

Figures 3.11a, 3.11b, and 3.11c present the robustness of the ATST time scale to link
anomalies. The metrics linked to synchronization are detailed above in Figures 3.9e and
3.9f, where the anomalies are appropriately mitigated. This is a novel contribution because
the measurement anomalies have previously been neglected in the design of time scales.
The AT1 oracle time scale has a priori knowledge of the link anomalies and sets wi(ta) =
wj(ta) = 0 for a link anomaly on measurement zj,i(ta). The result is a time scale that
can remove all link anomalies perfectly. In practice, this is not compatible with real time
processing. However, the AT1 oracle time scale provides the performance limit for the best
method to deal with link anomalies, serving as a good basis for comparing the proposed
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Figure 3.10: Weights for clock 1 as defined by the ATST and AT1 oracle time scale when
every clock in the ensemble suffers from an anomaly at some point int time. Compared to
Figure 3.3, the weights are seen to change more frequently due to anomalies occurring in
other clocks in the ensemble.

ATST time scale. Since ATST remains just as stable as AT1 oracle in both the long and
short terms, experiences no jumps in frequency, and retains a similar phase evolution, it
can be concluded that ATST is robust to all of these anomalies, as designed in Section 3.1.
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Figure 3.11: Time scale performance with link anomalies with randomized amplitudes for
each jump with a maximum order of magnitude of 300 ns. The base measurement noise
without anomalies is normally distributed with zero mean and a variance of σ2

n = 10−19.

One advantage of using the ATST algorithm is that it does not require the establishment
of some method to detect and identify link anomalies. The ATST time scale is robust to
phase jumps, frequency jumps, and link anomalies, without differentiating between the
anomalies. Assuming the Student’s t-distribution as a model of the BTSE residuals results
in an estimate of the mean that automatically considers outliers in the data when they
are present. When there is no anomaly, the assumption of t-distributed residuals naturally
simplifies to a Gaussian assumption. The basis of using the Student’s t-distribution to
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assign weights encompasses all of these types of anomalies in the same assumption. This is
supported in the results shown in Figure 3.12, where phase jumps, frequency jumps and link
anomalies are all present throughout the simulation period. The performance in presence
of all anomalies is proven to be robust because the ATST time scale maintains similar
performance to the AT1 oracle. Robustness to all anomalies without need to differentiate
between them is beneficial in the context of a swarm of satellites because it is not simple
to identify the types of anomalies or their sources.
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Figure 3.12: Time scale performance with a combination of all of the above anomalies with
the same orders of magnitude but at different times throughout the simulation period.

The ATST algorithm has also mitigated the effects of the combined anomalies on the
synchronization performance, as detailed in Figure 3.13. Again the newly proposed robust
time scale is able to match the performance of the AT1 oracle algorithm within some
margin of error and the required limit is only exceeded at longer time intervals. Compared
to the case with phase jump anomalies where AT1 oracle achieved a lower MTIE, the ATST
algorithm is now shown to obtain slightly better MTIE in this case. This suggests some
level of uncertainty in the estimate of MTIE, which should be better explored for future
analyses.

The weaknesses of the ATST algorithm include identification of anomalies, minimum
sample size, computational complexity, and heterogeneity of clock weights. The ATST
algorithm does not differentiate between different types of anomalies so is more suitable
for autonomous applications where anomalies are unavoidable in both clocks and measure-
ments but identifying their source is not a priority. As explained in section 3.1, the BTSE
residuals can only be modeled by the Student’s t-distribution if enough samples (clocks)
are available.

Further analysis on the missing data problem is presented in Section 3.4 and an idea
of the required minimum number of clocks is inferred from the results in Chapter 4 on
optimum estimation performance. Additionally, ATST computes the weights and the time
scale in an iterative EM algorithm, which introduces additional computational complex-



3.4. MISSING DATA 75

10
1

10
2

10
3

10
4

10
0

10
2

10
4

AT1 oracle

ATST

AT1

Limit

OCXO

(a) Max time error.

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

OCXO

Link noise

AT1 oracle

ATST

AT1

Limit

(b) Time dev.

Figure 3.13: Timing accuracy compared for the ATST and AT1 oracle time scales with
each of the above anomalies occurring in the swarm.

ity when compared to AT1 and may impact the ability to apply the time scale in real
time applications. Lastly, by assigning the weights approximately equal for all clocks, the
potential to benefit from different types of clocks is lowered. That does not necessarily
mean the ATST cannot be adapted for mixtures of different clock types, but the current
version is optimized for homogeneous clocks. A proposal to combine the ATST with the
AT1 algorithm and gain the ability to profit from the performances of different clock types
is explained in Chapter 5.

3.4 Missing data

A majority of time scale algorithms neglect measurement noise in their definitions. This
is because measurement noise is usually dealt with in pre-processing. Any remaining noise
after initial treatment is usually a simple white phase noise that only slightly affects the
short-term stability of the resulting time scale. For a swarm of nanosatellites, the presence
of measurement noise cannot be neglected. More importantly, the potential errors in the
measurement process can act as another source of anomalies and cause certain pairs of
satellites to have even more significant measurement noise. The measured clock bias data
will hence be corrupted by non-uniform measurement noise with outliers. In addition, any
averaging of the noise over a long period of time is assumed to be incompatible with the
scientific mission of the swarm because the period of time between collecting clock data
and making scientific observations is too short. A contribution of this thesis is to consider
all possible measurements that can be made in the swarm at a single time instant, and
assess the ability to reduce the measurement noise. The amount of possible measurements
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is expected to change as the relative positions of the satellites vary. Therefore, a certain
portion of the measurements thought to be available could be lost at a given time instant.
The impact of losing different amounts of measurements is also assessed in the processing
of measurement noise.

Two cases of missing measurements are considered: (i) missing inter-satellite links,
and (ii) missing satellites. The first case refers to the link between a specific pair of
satellites being lost, whereas the second scenario would mean a certain satellite has lost
contact with all other satellites in the swarm. The reason for losing measurements can be
because a satellite has drifted too far from its neighbors temporarily, a malfunction has
occurred at some point in the communication chain, or measurements can be deliberately
removed because they are identified as anomalous. There are plenty of methods that
could be implemented to detect anomalies in a general data set but there has not been
any publication on detecting anomalies in the clock bias measurements made in satellite
constellations. Certain detection methods are aimed at anomalies in the clocks themselves
but do not consider the possibility of a corrupt measurement being confused for a phase
jump in the measured clocks. Basing anomaly detection on the measured clock biases
helps eliminate specific bad links in the swarm that could corrupt the estimates even after
applying phase jump detection algorithms like those proposed in earlier chapters.

3.4.1 Measurement noise

Time scales are typically generated after pre-processing any source of measurement noise.
This means that the phase difference measurements that are substituted into the BTSE are
assumed to have negligible noise. In reality the measurement noise will be more significant
in a swarm of nanosatellites. Due to other constraints, the satellites may not necessarily
perform the required pre-processing to reduce measurement noise to a negligible level. In
the context of using inter-satellite links and pseudo-range solutions to obtain the clock
phase differences, the measurement noise is expected to vary as a function of the relative
inter-satellite distances. Hence, certain pairs of satellites could provide better-quality mea-
surements. This is an important factor to consider when discussing the BTSE because the
result will no longer provide a common reference. In presence of additive measurement
noise, the BTSE can be rewritten as follows:

xi,E(t) =
N∑

j=1
wj(t− τ) [x̂j,E(t) − (xji(t) + nji(t))] , (3.20)

xi,E(t) =
N∑

j=1
wj(t− τ) [x̂j,E(t) − xji(t)] −

N∑
j=1

wj(t− τ)nji(t), (3.21)

with measurement noise nji(t) referring to the random noise on the specific link between
clocks i and j. For each clock i, the resulting estimate of xi,E(t) will depend on the
weighted sum of the noise on each link that includes clock i. In addition, anomalies in
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the measurement process can cause certain links to have significantly greater measurement
noise than others. The measurements that are affected by anomalies should then be given
lower weights in the BTSE to minimize the impact of corrupted measurements.

The stochastic processes of an oscillator are not necessarily the only noise that con-
tributes to the stability of the time scale. When clock comparisons are made between
satellites, a non-negligible noise is expected to be introduced in the measurements. This
modifies the system of equations with an additive noise of nji(t) on each unique link be-
tween satellites j and i. As a result, the BTSE no longer provides a unique reference for
every solution:

xi,E(t) =
N∑

j=1
wj(t− τ) [x̂j,E(t) − (xj,i(t) + nj,i(t))] , (3.22)

which can be separated into the classical BTSE and an additional weighted average of the
measurement noise:

xi,E(t) =
N∑

j=1
wj(t− τ) [x̂j,E(t) − xj,i(t)] +

N∑
j=1

wj(t− τ)nj,i(t). (3.23)

The resulting expression for the absolute time of the time scale now depends on the reference
clock i that is used for observing the inter-satellite time differences:

h̃E(t) =
N∑

j=1
wj(t− τ) [hj(t) − x̂j,E(t)] +

N∑
j=1

wj(t− τ)nj,i(t) = hE(t) +
N∑

j=1
wj(t− τ)nj,i(t).

(3.24)
Depending on the number of clocks and amplitude of the measurement noise, the weighted
average may be sufficient to eliminate the noise or reduce it to a level that is negligible
compared to the variance of the time scale. If the noise is not fully mitigated by the
weighted average, then the generated time scale will not be a common reference amongst
all the satellites because the noise is unique to each clocks.

The measurements with and without measurement noise can be defined in two vectors:

z(t) = [z1,2(t), · · · , z1,N (t), z2,3(t), · · · , z(N−1),N (t)]T , (3.25)

x(t) = [x1,2(t), · · · , x1,N (t)]T , (3.26)

where the measurements with noise z(t) include all possible unique links between satellites
and their associated noise; however, the measurements without noise in x(t) are simply the
N−1 unique and non-redundant measurements required to compute the BTSE. Anomalous
clocks or measurements will result in a larger deviation from the prediction than if there
was no problem. When such a deviation exceeds a certain threshold, the corresponding
clock or measurement can be classified as an anomaly by dedicated detection algorithms
[41, 45].
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Appropriately reducing the weights corresponding to anomalous clocks and corrupted
measurement links allows the time scale to be robust to problems faced in the swarm.
However, this method requires anomaly detection and quantification to adjust weights cor-
rectly. This work instead considers the case of missing measurements as a generalization
for dealing with all types of anomalies. That is, contaminated measurements can be re-
moved from the data set if they are detected, becoming missing measurements. As a result,
the proposed methodology to deal with missing communication links can be extended to
removing measurements classified as anomalies.

3.4.2 Noise and anomaly mitigation with Missing measurements

Assuming that neighboring satellites can communicate all unique clock comparisons be-
tween them, a total of N(N − 1)/2 unique observations are available in a swarm of N
satellites. With negligible noise, N −1 unique and independent measurements are required
to generate a time scale using the BTSE. As shown in (3.21), noise in the measurements
introduces uncertainty in the realization of a time scale. Since each time difference mea-
surement can be written as a linear combination of the other measurements, the noise can
be reduced with an LS estimator for the N − 1 required measurements. That is, the set
of all possible clock comparisons z(t) can be written as a set of linear equations of the
required measurements x(t). An example is written for the case of N = 4 satellites but
can be easily expanded to greater numbers of satellites

z(t) =



z1,2(t)

z1,3(t)

z1,4(t)

z2,3(t)

z2,4(t)

z3,4(t)



=



1 0 0

0 1 0

0 0 1

1 −1 0

1 0 −1

0 1 −1




x1,2(t)

x1,3(t)

x1,4(t)

+



n1,2(t)

n1,3(t)

n1,4(t)

n2,3(t)

n2,4(t)

n3,4(t)



, (3.27)

or otherwise,
z(t) = A(t)x(t) + n(t). (3.28)

The matrix A(t) depends on time because its number of rows depends on the number
of available measurements. For example, the link between satellites 1 and 2 may not be
physically possible to obtain or it could be neglected due to a detected anomaly. As a
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result, the first row would not appear in A(t). The LS estimator is defined as:

x̂LS(t) = min
x(t)

{
∥z(t) − A(t)x(t)∥2

}
, (3.29)

x̂LS(t) =
(
A(t)T A(t)

)−1
A(t)T z(t) (3.30)

The number of measurements in z(t) will reduce for each unavailable or removed mea-
surement, hence, the number of rows in matrix A(t) will also decrease. While the rank
of this matrix remains equal to N − 1, the LS estimator can still estimate the required
measurements contained in x with residual error proportional to the number of available
links.

To visualize the noise reduction achievable by the LS estimator, a situation with N =
25 satellites is simulated to represent a swarm of nanosatellites. All inter-satellite clock
comparisons are simulated with Gaussian zero-mean additive measurement noise with a
standard deviation of 0.3 ns. Anomalies of 10 ns are introduced at randomly chosen times
on each unique link, some links may have anomalies at the same instant but each link only
has one anomaly. Figure 3.14a indicates the intensity of the measurement noise on the
N − 1 required measurements made with respect to satellite 1. These measurements are
sufficient to be substituted directly into (3.21) but will result in an unstable reference.
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Figure 3.14: Least squares estimator noise reduction for the 24 inter-satellite links mea-
suring the time differences x1,2, · · · , x1,25 by using redundant measurements in the satellite
swarm.

The LS estimator provides estimates with a residue lower than the noise shown in
Figure 3.14b. The anomalous measurements are not removed so that the LS estimator can
be assessed in the case of non-detection. The anomalies are seen to be reduced because
there is a sufficient number of additional measurements available simultaneously without
anomalies.
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With one out of 300 possible measurements affected by an anomaly at a single time
instant, the spike due to that anomaly is noticeably filtered. However, when one of the
required measurements, e.g., x1,2(t) has no anomaly, an anomaly occurring on one of the
redundant measurements, e.g., x3,4(t) can cause the estimate to have a significant deviation
compared to the direct measurement at that time instant. Depending on the magnitude
of measurement noise and the magnitude of the anomaly, either the direct measurement
or the LS estimator could be preferred.

The LS estimator still functions with certain measurements removed. Therefore, mea-
surements classified as anomalies can be removed and the LS estimator can use the ad-
ditional measurements to estimate those removed measurements. Figure 3.14c illustrates
the benefit of removing the anomalous measurements (assuming they can be perfectly de-
tected) by showing that the error is reduced in comparison to the direct measurements
seen in Figure 3.14a. The proposed LS estimator is then useful in preprocessing of phase
difference measurements that includes anomaly detection and sharing of redundant phase
difference measurements.

If an anomaly affects the clock states, e.g., a phase or frequency jump, the number of
measurements removed results in a reduction of the rank of A(t). In this case, the weights
and the BTSE should be modified at the instant the measurements are removed. This is
similar to the case of dealing with completely isolated clocks, which is explained in the
next section.

3.4.3 Removal of Missing clocks

A swarm has access to N satellites in the best-case scenario. Considering Nm satellites
can lose connection from the swarm at time tm, how do we maintain continuity in the time
scale when only using measurements from the remaining Na = N−Nm clocks? The change
in the time scale due to having a reduced number of clocks is defined as:

CNm(tm) = xi,E(tm)|N − xi,E(tm)|Na , (3.31)

where the time scale computed with the remaining Na clocks is

xi,E(tm)|Na =
Na∑
j=1

uj(tm − τ)rj,i(tm), (3.32)

and the time scale if all clocks were still available, is

xi,E(tm)|N =
Na∑
j=1

wj(tm − τ)rj,i(tm) (3.33)

+
N∑

j=Na+1
wj(tm − τ)rj,i(tm), (3.34)
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which is split into two sums for the remaining and missing clocks. Neglecting the fact that
rj,i(tm) is not available for the missing clocks, we can compute the change in the time scale

CNm(tm) =
Na∑
j=1

(wj(tm − τ) − uj(tm − τ)) rj,i(tm) (3.35)

+
N∑

j=Na+1
wj(tm − τ)rj,i(tm). (3.36)

The weights that were computed at the previous time instant are used to generate the AT1
time scale, with weights calculated for the full system denoted as wj(t − τ), and weights
computed for the reduced system denoted as uj(t − τ). Since the weights of the missing
clocks were computed using the information from the previous time epoch, they do not
consider that those clocks are missing at t = tm. Since it is simple to detect which clocks
are missing at t = tm, the weights of those clocks can be set to zero. If the weights of the
missing clocks are set to zero then the remaining weights must be renormalized to maintain
the uniqueness of the time scale for each clock. This means that the weights should be
modified such that

wj(tm − τ) = wj(tm − τ)
/

Na∑
i=1

wi(tm − τ) , j ≤ Na, (3.37)

wj(tm − τ) = 0, j > Na. (3.38)

If the above values are substituted into (3.36) then the expression for the change in the
time scale due to losing Nm clocks becomes

CNm(tm) =
Na∑
j=1

(wj(tm − τ) − uj(tm − τ)) rj,i(tm). (3.39)

This can be set to zero, ensuring phase continuity of the time scale by setting uj(tm − τ) =
wj(tm − τ) for the weights used to compute the reduced time scale at t = tm. This proves
why resetting the weights of missing clocks to zero allows continuity in the time scale
when the number of available clocks changes. The above derivation can similarly justify
continuity for an increasing number of clocks in the ensemble. However, if the weights
always stay at zero for new (or returning) clocks then the time scale will never benefit from
the increased number of clocks available.

3.4.4 Reintroduction of Missing clocks

When inter-satellite links are reintroduced into the swarm at t = tr, the time scale must
again ensure continuity to avoid instantaneous jumps by ensuring the returning clocks
have zero weights when computing xi,E(tr). Since the weights of the missing clocks were
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already reset in the past, wj(tr − τ) = 0 is guaranteed for returning clocks j and xj,E(tr)
is computed using the non-returning clocks. At the time instant after the clocks have
returned (t = tr + τ), the new clock measurements were still effectively “missing” at the
previous epoch but there is some information provided by xj,E(tr).

To profit from the new measurements, the weights must eventually be non-zero, but they
must not change rapidly because that will cause a jump in the time scale. Hence, a gradual
reintroduction of the weights for the new clocks is used after the first reset at t = tr. The
AT1 time scale algorithm is compatible with this requirement thanks to an exponential
filter that gradually increases weights over time according to an optimally chosen time
constant. This time constant defines the amount of time before the reintroduced clocks
are capable of contributing to the time scale again. The weights computed by the ATST
algorithm do not explicitly control the rate of change of the weights so the algorithm may
not function as well as AT1.

Figure 3.15 demonstrates how the weights are reset for the AT1 and ATST time scale.
The weights after the moment of reintroduction at t = 8000 s are shown to be gradually
increased for both algorithms. However, the exponential filter that controls the reintro-
duction for AT1 is not present in the ATST algorithm. It is possible that the exponential
filter on the frequency estimates affects the temporal evolution of the weights for the ATST
algorithm because the weights are determined with respect to prediction errors, which in
turn depend on the frequency estimate. This is important for the reintroduction to be
gradual and maintain continuity in the time scale. For a greater number of clocks being
introduced at the same time, the period of reintroduction may not be sufficiently long for
the ATST weights. That being said, a much higher number of clocks going missing and
being reintroduced at the exact same time should not exceed the number tested in the
below figures.
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Figure 3.15: Weights for the different time scale algorithms with a reset occurring at the
moments of clock removal and reintroduction.
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Figure 3.16 illustrates the resulting time scale with and without the appropriate weights
being reset at the required times. AT1R and ATSTR are used to refer to the AT1 and
ATST time scales using the proposed weight reset methodology. The time scale is computed
with 10 out of 50 total simulated clocks being removed at once (at t = 5000 s). All of
the isolated clocks are reintroduced simultaneously after 50 minutes. This is a potential
occurrence in the application of a swarm of satellites where the availability of inter-satellite
links is intermittent. The results prove that continuity is still maintained with something
as simple as forcing the weights to zero at the appropriate times. The ATST algorithm
maintains continuity at the point of reintroduction because the weights do not change too
rapidly although they still increase faster than the weights in the AT1 algorithm.
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Figure 3.16: Performance of the proposed weight reset method for the AT1 and ATST
time scale algorithms when 10 clocks become isolated simultaneously and are reintroduced
simultaneously after 3000 seconds.

Although continuous, the overall stability of the time scale is still reduced compared
to the case with no isolated clocks. This is unavoidable because the optimal reduction in
ADEV for a time scale is proportional to the number of clocks. The ADEV is estimated
using simulated samples over 20000 seconds with a data rate of 10 seconds. This means
that the outage period of 3000 seconds for the missing clocks has a marginal effect on the
overall ADEV. If the ADEV were instead estimated over only the duration of isolation,
the time scale stability would be degraded to the achievable level for the reduced number
of available clocks.

The continuity can be further confirmed for the tested time scales by observing the
MTIE and TDEV in Figure 3.17. The AT1 time scale is presented as an example of a
time scale that does not apply the required reweighting at the time a clock goes missing
or is introduced. The loss in the time accuracy due to not treating the missing clocks is
apparent in the short term MTIE, whereas the proposed method successfully mitigates this
loss.
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Figure 3.17: Timing accuracy assessed for the ATST and AT1 oracle time scales with
Nm = 10 and the proposed reweighting methodology to ensure continuity.

3.5 Summary

The main contribution of this thesis is presented in this chapter together with two other
minor contributions. The ATST time scale provides a new and robust method of adjusting
the weights associated to clocks in the BTSE. The performance has been shown to be
similar to an oracle version of the AT1 time scale algorithm that has perfect detection of
phase jumps, frequency jumps and anomalies in inter-satellite measurement links. It has
also been shown that the ATST algorithm is compatible with removing and reintroducing
up to 10 clocks simultaneously. It is recommended to use the proposed ATST time scale
for swarm applications with many satellites (at least 25) and where anomalies are frequent
and the time scale must remain unaffected.

All investigated types of anomalies are considered the same in the ATST algorithm,
i.e., a source of undesired errors that can be modeled by a specific heavy-tailed statistical
distribution. The resulting time scale is robust to each of the types of anomalies but
cannot automatically identify which types of anomalies are present. The weights defined
by the ATST algorithm are stable for nominal clocks, being fixed at approximately 1/N
and only changing from that value when an anomaly occurs. The ATST is recommended
for ensembles of homogeneous clocks to take advantage of the equal weights under nominal
conditions, but a path forward for including diversity in clock types is possible and worth
investigating. The first idea is to attempt a combination of the AT1 and ATST algorithms,
aiming to match the detection performance of AT1 oracle by integrating the weights from
the ATST algorithm. This idea is expanded upon in Chapter 5 with some preliminary
results.
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The proposed LS estimator provides estimates of time difference measurements with
reduced error residuals thanks to the many redundant measurements that can be shared
within the satellite swarm. Using an LS estimator to filter the measurement noise is the
last contribution of this chapter that provides a simple method to reduce the problem of
measurement noise in the swarm while also accounting for missing communication links and
link anomalies. Indeed, the LS estimator is capable of mitigating jumps on measurement
links given enough nominal redundant measurements. The main advantage of the LS
estimator is the compatibility with a good detection algorithm to remove any inter-satellite
measurement links that are corrupted by anomalies and obtain estimates of the removed
measurements. Future work should be conducted to analyze the detection capabilities of
the ATST algorithm or to find other novel methods that can reliably detect such link
anomalies.
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Chapter 4

Estimation Performance Limits

The proposed ATST time scale has introduced a new statistical model for the clock resid-
uals allowing some robustness to the potential presence of outliers affecting the clock mea-
surements. The Cramér-Rao Bound (CRB) is a useful metric to assess the estimation
performance for parameters defining a precise statistical model. In the case of the clock
residuals following a Student’s t-distribution, the corresponding CRB can demonstrate the
minimum possible Mean Square Error (MSE) attainable for an estimator of the location
parameter. The CRB for certain statistical distributions presents a performance limit for
time scales defined by assuming the clock residuals follow those distributions. In this chap-
ter, the bounds are analyzed for the Gaussian distribution, the Student’s t-distribution, and
another typical model for anomalous data being a specific Gaussian mixture distribution.

Besides the CRB, the effect of incorrectly assuming the statistical model can be assessed
with the Misspecified Cramér-Rao Bound (MCRB). For example, the assumption that
the clock residuals follow a Student’s t-distribution provides a model that encompasses
the effects of outliers. Assuming that the data follows a Gaussian distribution instead
is expected to deteriorate the estimation performance when outliers exist. The MCRB
for the case of assuming a Gaussian distribution is derived when the true data follows
either a Student’s t-distribution or a two-variance Bimodal Gaussian Mixture (BGM). The
results show just how much the MSE is restricted by neglecting the presence of anomalies
in the assumed model. The benefit of using the ATST time scale over assigning equal
weights to each clock is quantified and validated by evaluating the case where the data
is actually distributed by a Student’s t-distribution. The other statistical model that
includes a probability of outliers then demonstrates if assuming that distribution could
also be beneficial to generate a robust time scale. By having a quantifiable improvement,
it is simply to make a choice about which assumption would be preferred for each possible
true distribution of the clock residuals.

This chapter derives the MCRB in a generalized manner so it can be followed for other
specific statistical distributions with known Probability Density Functions (PDFs), allowing

87
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future comparison of different types of distributions that could potentially model the clock
residuals. The results of the derivations should coincide with the recent generalized results
from [70], i.e., the Gaussian assumption has an MCRB for the location parameter that is
identical to the true variance of the data. The effects of misspecification are also established
for certain parameters of a BGM or a general N-mode Gaussian Mixture [71]. Instead
of misspecifying parameters, this work analyzes misspecification of the assumed type of
distribution. Although this simplifies to a special case of parameter misspecification, the
general form of the corresponding MCRB is not available in the literature.

4.1 Statistical models

The true models that are considered to represent contaminated data are types of heavy-
tailed probability distributions. The Student’s t-distribution has been defined in Chapter
3 with it’s parameters estimated using the EM algorithm detailed in Appendix E.1. The
BGM distribution consists of the sum of two Gaussian distributions with different variances
but equal means. The parameters of the BGM can similarly be estimated using an EM
algorithm so the assumption of this distribution for the clock residuals can generate a time
scale in a similar manner to the ATST.

The BTSE residuals rji(t) as introduced in Chapter 2 allow N time observations of
clock i, which is common to each of the residual measurements. As was stated in the
definition of the ATST, the residuals with fixed clock i are assumed to follow a Student’s
t-distribution with parameters ηt = [µt, σ

2
t , ν]T :

rji(t) ∼ T (µT , σ
2
T , ν), (4.1)

where µT is the location parameter, σ2
T is the scale parameter and ν is the number of

degrees of freedom (assumed to be constant). These parameters depend on the fixed
reference clock i and each sample j is considered some random deviation from the time
of clock i with respect to the time scale. The parameters are written in a simplified form
without the dependence on clock i to generalize the derivation of the bounds. The Student’s
t-distribution provides a good model of a random variable that has a non-zero probability
of outliers occurring [72]. The joint PDF of a vector r(t) = (r1,i(t), · · · , rN,i(t))T of N i.i.d.
random variables distributed according to a univariate Student’s t-distribution is:

pT (r;ηt) =
N∏

j=1

1
σT

√
πν

Γ(ν+1
2 )

Γ(ν
2 )

(
1 + 1

ν

(
rji − µT

σT

)2
)−( ν+1

2 )
, (4.2)

where the dependence on time for the residual samples is omitted for brevity. Another
statistical model for the residuals rji(t) is a BGM that mixes two Gaussian distributions
with equal means but different variances, scaled by a factor of k ≥ 1, with k = 1 simplifying
to the classical Gaussian distribution:

rji(t) ∼ GM(µGM, σ
2
GM, ε, k). (4.3)
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If the true distribution is described by the BGM above, the true parameter vector is ηGM =
[µGM, σ

2
GM, ε, k]T , where 0 ≤ ε ≤ 1 refers to the probability of a sample being anomalous.

The BGM consists of the nominal mode, which follows a Gaussian distribution denoted
as g1(r;µGM, σ

2
GM), and an anomalous mode that generates outliers with probability ε

according to another Gaussian distribution denoted as g2(r;µGM, kσ
2
GM). The PDF of r(t)

assuming its components are independent is:

pGM(r;ηGM) =
N∏

j=1

 (1 − ε)√
2πσ2

GM

exp
(

−1
2

(rji − µGM)2

σ2
GM

)

+ ε√
2πkσ2

GM

exp
(

−1
2

(rji − µGM)2

kσ2
GM

) , (4.4)

where the time dependency is again omitted for brevity. In both cases, the estimation of the
location parameter µt or µGM acts as an estimator of the time difference of clock i from the
generated time scale. Since each estimation procedure results from an EM algorithm, the
other parameters must be jointly estimated. If the presence of the anomalies is neglected
then the estimator of the location parameter is instead defined as the sample average. That
is, the clock bias measurements and the internal clock noises are misspecified and assumed
to be Gaussian with misspecified parameter vector θ = [µG, σ

2
G]T :

rji(t) ∼ N (µG, σ
2
G). (4.5)

The Gaussian assumption would then be an incorrect model for the random variable,
providing the following misspecified PDF with different location and scale parameters

pG(r(t);µG, σ
2
G) =

N∏
i=1

1√
2πσ2

G

exp
[
−1

2

(
rji(t) − µG

σG

)2]
. (4.6)

The reference time computed for the constellation is expected to lose stability in the pres-
ence of anomalies if the Gaussian assumption is made. By deriving the MCRB for this case,
the benefits of correctly fitting a heavy-tailed distribution to the anomalous data are re-
vealed. The assumptions of the Student’s t-distribution or the BGM distribution presented
earlier could also be considered misspecified if the true distribution is really modeled by the
other distribution. This implies that other MCRBs could be relevant for the investigated
heavy-tailed distributions.

4.2 Cramér Rao Bounds

The case where the assumed statistical model is correct implies that the minimum possible
MSE is specified by the CRB. That is, for estimation of the parameter µ, the MSE is
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bounded as follows:
E
[
(µ̂− E[z])2

]
≥ CRBµ, (4.7)

where E[z] refers to the mathematical expectation of the data with respect to the true
distribution, i.e., the true mean of the data. Knowledge of the CRB is convenient for
assessing the performance of an MLE because it is known that the MSE of the correctly
specified MLE converges to the CRB in the asymptotic regime. The asymptotic regime
refers to the case where the observed information has a sufficient number of samples or a
reasonably high signal-noise ratio. The CRB for the estimation of the mean of a Gaussian
distribution is well-defined [62]:

CRBµG = σ2
G

N
. (4.8)

In the application of time scale generation, the number of samples N is equivalent to the
number of clocks. The CRB is then reminiscent of the expected gain in stability of a time
scale being proportional to the number of clocks. Depending on the true model of the data,
the form of the CRB can change depending on additional parameters. The CRB for the
univariate Student’s t-distribution is [73]:

CRBµT =
(
ν + 3
ν + 1

)
σ2

T

N
, (4.9)

and for the BGM with scaled variance, the CRB is not available in a simple closed-form
expression, however, the CRB can be lower bounded by a value that can be approximated
by the following expression [71]:

CRBµGM =
(

k

k − ε(k − 1)

)
σ2

GM
N

. (4.10)

The CRBs for the two heavy-tailed distributions are compared impartially to the CRB
of the Gaussian distribution by including additional scaling factors that normalize the
variance of the true distribution. The normalized variances of each of the distributions are
then considered the same and equal to σ2 = σ2

G, leading to:

CRBµT =
(
ν + 3
ν + 1

)(
ν − 2
ν

)
σ2

N
, (4.11)

CRBµGM =
(

k

k − ε(k − 1)

)( 1
ε(k − 1) + 1

)
σ2

N
. (4.12)

The parameters that describe the outliers in the data for the Student’s t-distribution (ν)
and the BGM distribution (ε, k) provide some scaling factor with respect to the Gaussian
CRB. These heavy-tailed distributions can obtain an equivalent lower bound on the esti-
mation performance by equating the scaling factors of the normalized variance and finding
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a relation between ν and ε, k. With the variances of the two distributions normalized,
the link between the bounds for the t-distribution and the BGM is obtained by using the
following relation:

(
ν + 3
ν + 1

)
(ε(k − 1) + 1) =

(
ν

ν − 2

)
k

k − ε(k − 1) . (4.13)

For any two fixed parameters out of ν, ε, and k, the complimentary third parameter that
ensures an equal CRB can be found. Figure 4.1 provides curves that satisfy (4.13) for
certain fixed values of each of the parameters. An example of a combination that will be
investigated is ε = 0.1, k = 100 for the BGM, which coincides with a number of degrees of
freedom of ν = 2.1325 for the Student’s t-distribution. The figure below provides a joint
visualization of the dependencies between the parameters used to define outliers in the two
heavy-tailed distributions.
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Figure 4.1: Useful curves for finding the parameters for the two heavy-tailed distributions
that result in an equivalent CRB.

It makes sense that low numbers of degrees of freedom coincide with a large scaling
factor in Figure 4.1a because they both relate to the intensity of outliers. Figure 4.1b shows
that the proportion of outliers has a turning point at ε = 0.5 to represent the point that
the contaminating Gaussian distribution becomes dominant in the BGM. As ε approaches
one, the data becomes Gaussian again but with a different variance. This is observed in
Figure 4.1b where the degrees of freedom diverge to infinity for ε ≈ 1, corresponding to
a Gaussian distribution. Similar behavior is shown for the scaling factor in Figure 4.1c
but this is rather due to the constraint that the BGM and Student’s t-distributions have
the same CRB. The main outcome from these figures is the ability to infer the parameters
of the heavy-tailed distributions that provide an equivalent CRB. Estimators that assume
the incorrect heavy-tailed distribution for the data could then obtain estimates satisfy the
above constraint and hence reach an MSE close to the correctly specified CRB.
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4.3 Misspecified Cramér Rao Bounds

Table 4.1 indicates the possible combinations of true and assumed distributions between
those presented above and shows the relevant bounds. A general result has already been
obtained for the case of assuming the Gaussian distribution while the true distribution could
be any elliptically symmetric distribution [70]. This result is verified and a closed-form
expression for specific examples is provided by deriving the MCRB from first principles
with the true distribution specified by either the Student’s t-distribution or the BGM
distribution. For precision in the notations, the MCRB is presented with subscripts to
XXXXXXXXXXXAssumed

True Gaussian (pG) BGM (pGM) Student’s t (pT )

Gaussian (pG) CRBµ ✓ MCRBµ(pGM||pG) ✓* MCRBµ(pT ||pG) ✓*

BGM (pGM) MCRBµ(pG||pGM) ? CRBµGM ✓ MCRBµ(pT ||pGM) ?

Student’s t (pT ) MCRBµ(pG||pT ) ? MCRBµ(pGM||pT )? CRBµT ✓

Table 4.1: Combinations of assumed and true distributions used to compute the MCRBs
of interest. Check marks (✓) signify which combinations of assumed and true distributions
have derived closed-form bounds. The question marks symbolize the combinations that
have not yet been defined and potentially do not have a closed form, and * means “derived
in this work”.

refer to the parameters being estimated. For example MCRBθ refers to the matrix that
contains the bounds (independent and joint) for each parameter in θ. As an example, in
the Gaussian case, one has:

MCRBθ(p||q) =

 MCRBµ(p||q) MCRBµ,σ2(p||q)

MCRBσ2,µ(p||q) MCRBσ2(p||q)

 . (4.14)

The MCRB will also specify the true (p) and assumed (q) distributions in parentheses
because several combinations are considered in this work. Specifically, MCRBθ(pt||pG)
refers to the MCRB when assuming the Gaussian distribution with PDF pG but with the
true model following a Student’s t-distribution with PDF pt. Correspondingly, we can
write MCRBθ(pGM||pG) for the other bound of interest.

The starting point to derive the MCRB is the definition of the Kullback Leibler Diver-
gence (KLD), a statistical similarity measure between the true and assumed models defined
as follows [74]:

DKL(p(z;η)||q(z;θ)) = Ep

[
log

(
p(z;η)
q(z;θ)

)]
, (4.15)
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where the subscript of Ep indicates the expectation with respect to the true PDF p, which
remains the general notation for declaring any true distribution. To derive the MCRB,
the pseudo-true parameters must be derived, which are defined as the parameters that
minimize the KLD between the true and assumed models

θ̃p = arg min
θ

{DKL} = arg min
θ

{
Ep

[
log

(
p(z;η)
q(z;θ)

)]}
. (4.16)

The subscript p is included to indicate that the pseudo-true parameters depend on the true
distribution. Conveniently, the expression for the KLD can be simplified to remove the
components that do not depend on θ:

θ̃p = arg min
θ

{−Ep [log (q(z;θ))]} . (4.17)

We obtain the following pseudo-true values for the two true distributions that model ob-
servations with outliers:

µ̃pT = µT , µ̃pGM = µ, (4.18)

σ̃2
pT

= σ2
T

ν

ν − 2 , σ̃2
pGM = σ2 ((k − 1)ε+ 1) , (4.19)

where the full derivations are detailed in Appendix F.1. The pseudo-true parameters
are denoted as θ̃p = [µ̃p, σ̃

2
p]T , the subscript p refers to the true distribution and can

be replaced by pt or pGM for the Student’s t-distribution or the BGM, respectively. It is
noteworthy that the parameters that minimize the KLD between the misspecified Gaussian
distribution and the distributions that model anomalous data are the mean and variance of
the corresponding true distributions. The variance of the t-distribution, and as a result, the
pseudo-true scale parameter is only defined for numbers of degrees of freedom ν > 2. This
restriction must also exist for the bounds, so we assume the number of degrees of freedom
is always greater than two. The next steps to derive the MCRB involve the computation
of two matrices [75]:

A(θ̃p) = Ep

[(
∂2 log(q(zj ;θ))

∂θ∂θT

])
θ=θ̃p

, (4.20)

B(θ̃p) = Ep

[((
∂ log(q(zj ;θ))

∂θ

)(
∂ log(q(zj ;θ))

∂θT

)])
θ=θ̃p

. (4.21)

Note that the above matrices are only concerned with the marginal PDF of a single sample
zj . Under the assumption that each sample is i.i.d. the MCRB is defined as:

MCRBθ(p||pG) = 1
N

A(θ̃p)−1B(θ̃p)A(θ̃p)−1. (4.22)
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The derivatives in (4.21) are provided in Appendix F.2. The results are then used to
compute the MCRB for each of the two true distributions in Appendix F.3. For the
Student’s t-distribution, the following result is obtained:

MCRBθ(pT ||pG) =


σ̃2

pT
N 0

0
(

ν−1
ν−4

) 2σ̃4
pT

N

 , (4.23)

where the bound associated with σ2 is undefined for ν ≤ 4. The pseudo-true scale param-
eter is simply the sample variance of the true distribution. Therefore the bound for the
estimation of the location parameter is equivalent to the CRB defined for the Gaussian
distribution. As expected, the misspecified bound for σ2 also simplifies to the Gaussian
CRB for ν → ∞ because the true distribution then simplifies to a Gaussian. Similar results
are visible when the true model is the BGM:

MCRBθ(pGM||pG) =


σ̃2

pGM
N 0

0 Q(ϕ)
2(ϕ+1)2

2σ̃4
pGM
N

 , (4.24)

where ϕ = ε(k − 1) and Q(ϕ) = −ϕ2 + (3k + 1)ϕ+ 2. The predefined domains of ε and k
suggest that 0 ≤ ϕ ≤ k−1, which means that there are no values of ε or k that result in an
undefined bound. The value of Q(ϕ)

2(ϕ+1)2 is always greater than one for the defined range of
values for ϕ so the bound is never an undefined value and exceeds the equivalent Gaussian
CRB for 0 < ϕ < k − 1.

4.4 Analysis of Bounds

The MCRB provides the minimum MSE that can be attained in the asymptotic regime by
the MLE that assumes a misspecified model for the observed data [76, 77, 78]. Similarly
to the definition of the CRB, for an unbiased estimator:

Ep

[
(µ̂q − Ep[z])2

]
= MSEµ̂q (p||q) ≥ MCRBµ(p||q), (4.25)

where the misspecified estimator of the location parameter is denoted as µ̂q and is made
assuming that the distribution of the data follows a statistical model with PDF q and
the true distribution is with PDF p and location parameter µ. Despite the combinations
in Table 4.1 marked with question marks having unknown bounds, it is still possible to
assess the performance of assuming those distributions in a misspecified case with toy
examples. That is, the estimators that assume either a Student’s t distribution or the BGM
distribution can be tested on data that is truly generated by specific statistical models. As
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a result, the performance in presence of both nominal (Gaussian) and contaminated (heavy-
tailed) data is tested and the compatibility between the two heavy-tailed distributions can
be analyzed.

Without the need for any estimators to be implemented, the derived MCRBs and CRBs
can be compared to show the gain in MSE that is achievable when the presence of outliers is
correctly specified. Figure 4.2a demonstrates the equivalence of the MCRBs derived in this
work (blue and red triangles) and the Gaussian CRB (green squares). The significance of
this result is that assuming a Gaussian distribution without knowing the true distribution
is actually heavy-tailed results in an estimator of the mean with the MSE bounded by the
actual variance of the data. Since the true distribution is still symmetric and unbiased, the
Gaussian MLE does not experience any increase in the bound due to the misspecification
of the type of distribution.

Figure 4.2a also displays the effect of misspecification on the achievable MSE of a
given estimator. The well-specified estimator is expected to reach the associated CRB
(see CRBµt and CRBµGM ), resulting in a lower MSE compared to the MCRB that bounds
the misspecified estimator. This confirms that misspecification on the type of distribution
results in higher MSE, which is not desirable in any case. The bounds are displayed
such that the variance of the data is normalized and the x-axis displays the total number
of samples (clocks) available. This ensures that the resulting bounds are appropriately
compared for a common dataset with an arbitrary statistical model but equal variance for
any assumed distribution.

The improvement due to assuming the correct distribution depends on the values of the
parameters that describe the intensity of the outliers. As demonstrated in Figure 4.2b, the
CRB (yellow squares) approaches the MCRB (blue and red triangles) as the contamination
becomes weaker, i.e., as the number of degrees of freedom increases for the Student’s t-
distribution, and if the proportion or magnitude of outliers decreases for the BGM. Figure
4.2b also shows several combinations of ε and k that result in a CRB equal to the CRB for
the Student’s t-distribution with ν = 3 (yellow, green and purple squares).

Due to the lower bounds for the two heavy-tailed distributions, it is hypothesized that
assuming the Student’s t-distribution although the true model follows the BGM (and vice
versa) does not necessarily cause the error of the misspecified estimator to deviate from
the CRB. Therefore, the associated MCRBs are assumed to not deviate much from the
CRB. This conclusion provides insight into MCRB(pT ||pGM) and MCRB(pGM||pT ), which
are not straightforward to derive.

Instead of using real clock data, the analysis is conducted with toy examples where
the true model of the data is known exactly. The experiments have used random number
generators such that N i.i.d. samples are generated according to a chosen statistical distri-
bution. To validate the derived MCRBs, the performance of specific estimators is evaluated
alongside the relevant bounds in the next sections. The Gaussian MLE is considered a mis-
specified MLE (MMLE) when the true distribution is not Gaussian. The MLEs for the
Student’s t-distribution and the BGM are not closed-form and require iterative Expecta-
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(a) Heavy-tailed distributions parameterized for
strong effects from anomalies.
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(b) Heavy-tailed distributions parameterized for
weaker effects from anomalies.

Figure 4.2: Both of the derived MCRBs are shown to be superimposed with the Gaussian
CRB. The CRBs associated with the heavy-tailed distributions are also overlapping because
they are parametrized so that their respective CRBs coincide. The CRBs being lower than
the MCRBs confirms that it is preferred to assume the correct model of the data.

tion Maximization (EM) algorithms. As explained in Chapter 3, the derivation of the EM
algorithm for the Student’s t distribution is detailed in Appendix E.1, the EM algorithm
for the BGM is derived in Appendix E.2.

4.4.1 True Distribution: Gaussian

To justify the assumptions of the heavy-tailed distributions, it is preferred that the MSEs
of the associated estimators converge to the CRB for a Gaussian distribution

EpG

[
(µ̂t,GM − EpG [z])2

]
→ CRBµG = σ2

G

N
, (4.26)

where the arrow signifies asymptotic convergence. Although not rigorous, verifying (4.26)
in simulations can suggest that MCRBµ(pG||pT ) and MCRBµ(pG||pGM ) are both equivalent
to the Gaussian CRB. The convergence is illustrated in figure 4.3. This is a minor proof
that assuming these specific heavy-tailed distributions does not introduce a restriction on
the MSE of the estimator if the data is truly modeled by a Gaussian distribution.

This result is not surprising for the estimators assuming heavy-tailed distributions
because the EM algorithms initialize their estimators with the Gaussian MLE. In the case
the data truly has a Gaussian distribution, the convergence criteria for the EM algorithms
is already satisfied with the initial estimates so the resulting performance is equivalent to
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Figure 4.3: Convergence of investigated estimators when the true distribution is Gaussian.

the Gaussian MLE. The above figure also demonstrates that the number of clocks needed
to converge to the optimum estimation error is around 15 clocks if the distribution is
Gaussian. This corresponds to nominal clock performance and setting the weights of each
clock equal to 1/N .

4.4.2 True Distribution: Student’s t

The correctly specified estimator is the one defined in the EM algorithm for the Student’s
t-distribution, this estimator is expected to converge to the associated CRB:

Ept(µT ,σ2
T ,ν)

[
(µ̂T − EpT [z])2

]
→ CRBµT (σ2

T , ν), (4.27)

the MCRB corresponding to assuming a BGM can be analyzed by using simulations and
assessing the convergence. Assuming a BGM results in joint estimation of the parameters
µGM , σ2

GM , ε, and k where the combination of the estimated values ε̂ and k̂ are assumed
to provide an approximation of the true CRB, CRBµGM (σ̂2

GM , ε̂, k̂) ≈ CRBµt(σ2
T , ν). That

is, ε̂ and k̂ satisfy (4.13) within some margin of error. This approximation of the true
bound can relate to an approximation of the true distribution so that the convergence of



98 CHAPTER 4. ESTIMATION PERFORMANCE LIMITS

the estimator assuming a BGM can be analyzed with respect to the true CRB:

EpGM (µ̂GM ,σ̂2
GM ,ε̂,k̂)

[
(µ̂GM − EpGM [z])2

]
→ CRBµGM (σ̂2

GM , ε̂, k̂) ≈ CRBµT (σ2
T , ν). (4.28)

The condition of ε̂ and k̂ satisfying (4.13) is not guaranteed so any error in those estimates
would contribute to some level of misspecification. Analyzing the convergence of the mis-
specified estimator allows a visualization of the significance of any errors in the estimates
that cause losses with respect to the true CRB.

Figure 4.4a shows that the estimator assuming the Gaussian distribution (blue circles)
converges to MCRBµG(pT ||pG) (blue triangles), verifying the derived MCRB and that
assuming the Gaussian distribution is limited by that same bound. However, the MSE of
the correctly specified MLE (black crosses) for data generated by a Student’s t-distribution
is lower than the MCRB so there is an improvement in estimation accuracy by correctly
specifying the model. As predicted based on the equivalence between the CRB of the two
heavy-tailed distributions, assuming the BGM (magenta diamonds) obtains a similar MSE
to the correctly specified MLE when the data has a Student’s t-distribution.
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(a) Number of degrees of freedom ν = 2.1325.
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(b) Number of degrees of freedom ν = 3.

Figure 4.4: MSE performance of the correctly specified and misspecified estimators, when
the data is generated by a Student’s t-distribution. The errors for each of the estimators
are presented as MSEµ̂(p1||p2), where p1 is the true distribution and p2 is the assumed
distribution.

Figure 4.4b reveals that for ν = 3, the MSE of the correctly specified estimator (black
crosses) converges rapidly to the associated CRB (yellow squares). Indeed, the minimum
number of clocks required to converge to the optimum estimation error is large but there
is a noticeable improvement in MSE with respect to the misspecified estimator ofr as
few clocks as 35. As demonstrated in Figure 4.4a, the MSE of the MLE (black crosses)
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requires significantly more samples before converging to the CRB for the t-distribution
(yellow squares) with a low number of degrees of freedom. A first assumption on the cause
of this delayed convergence is an increased variance and hence uncertainty of the data
due to more severe or frequent outliers. Additionally, the EM algorithm is potentially not
sufficient to converge to the MLE for each of the estimated parameters as the number of
degrees of freedom approaches the limit of ν = 2. There are modified algorithms that
improve upon the EM used to estimate te parameters of the Student’s t-distribution, some
especially designed to improve the estimation of the degrees of freedom [69]. Future work
can be conducted to assess the impact of the different EM algorithms on the convergence
of the MSE.

4.4.3 True Distribution: Bimodal Gaussian Mixture

The estimator that correctly specifies the true distribution is now denoted as µ̂GM , which
is expected to converge in MSE to the appropriate CRB.

EpGM

[
(µ̂GM − EpGM [z])2

]
→ CRBµGM . (4.29)

The estimator defined by the Student’s t-distribution jointly estimates µt, σ2
t , and ν, where

the estimator for the number of degrees of freedom can provide an approximation of the
true CRB, CRBµt(σ̂2

t , ν̂) ≈ CRBµGM (σ2
GM , ε, k). That is, ν̂ satisfies (4.13) for the true

values of ε and k, within some margin of error. Let this approximation of the true bound
relate to an approximation of the true distribution so that the convergence of the estimator
assuming the Student’s t-distribution can be analyzed:

EpT (µ̂T ,σ̂2
T ,ν̂)

[
(µ̂T − EpT [z])2

]
→ CRBµT (σ̂2

T , ν̂) ≈ CRBµGM (σ2
GM , ε, k). (4.30)

Again, it is not guaranteed that ν̂ is perfect at approximating the true BGM distribution
so any error in the corresponding estimator would cause misspecification. The importance
of the misspecification can be properly assessed through simulation of the misspecified
estimator.

Figure 4.5a demonstrates that the MMLE assuming the Gaussian distribution (blue
circles) follows the other MCRB (red triangles), verifying the derivation. The correctly
specified estimator (magenta diamonds) has an MSE reaching the CRB (purple squares)
despite using the EM algorithm. This does not necessarily mean the CRB is always reached,
different magnitudes for the parameters ε and k should be tested in future work. The same
equivalence between the two heavy-tailed distributions is observed in Figure 4.5a, where
the MMLE assuming the t-distribution (black crosses) obtains a very similar MSE to the
correctly specified MLE. This combination of results implies that there is not necessarily a
preferred assumption to make between the two investigated outlier-compatible distributions
in terms of MSE. Nevertheless, a preferred assumption could be decided based on the
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(a) BGM distribution with proportion of outliers
ε = 0.1, and variance scaling factor k = 100.
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(b) BGM distribution with proportion of outliers
ε = 0.1, and variance scaling factor k = 13.

Figure 4.5: MSE performance of the correctly specified and misspecified estimators, when
the data is generated by a BGM distribution. The errors for each of the estimators are
presented as MSEµ̂(p1||p2), where p1 is the true distribution and p2 is the assumed distri-
bution.

simplicity of estimation in either of the associated EM algorithms. This further analysis is
saved for future work.

Both of the estimators defined by the MLE for a heavy-tailed distribution are capable
of reaching the CRB with the true distribution being a BGM, although a slight offset is
present in the misspecified case. This means that the delay in convergence noticed in Figure
4.4a is most probably linked to the properties of the true distribution of the data and not
necessarily the EM algorithm. In fact, the parameters ε = 0.1 and k = 100 were shown
to provide a CRB equivalent to the CRB of a Student’s t-distribution with ν = 2.1325.
Hence, if the cause of the delay was solely due to the EM algorithm then the MSE of the
estimators would be expected to converge just as slowly to the CRB in Figure 4.5a. These
toy examples show that heavy-tailed distributions can make good assumptions for other
heavy-tailed distributions but some have more restricting performance. Hence, the BTSE
residuals in the swarm can be assumed to follow either distribution with a minimum of 35
clocks required in either case to obtain an improved and robust estimation performance in
comparison to the misspecified Gaussian assumption.

4.4.4 Misspecified Estimation of Scale Parameter

The misspecified estimation performance for the scale parameter is basically provided by
the MSE of the sample variance estimator that assumes a Gaussian distribution. The per-
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formance of this estimator relative to the true scale factor of the heavy-tailed distributions
is also analyzed for verification of the MCRB that was derived for the case of joint estima-
tion of the location and scale parameters. The estimator is expected to converge in MSE
to the MCRB plus the squared bias of the estimator due to misspecification. For the case
of assuming a Gaussian distribution when the true distribution is some other heavy-tailed,
real, elliptically symmetric distribution p:

Ep[(σ̂G − σp)2] → MCRBσ2
G

+ (∆σ2)2, (4.31)

where ∆σ2 = σ̃2
p − σ2

p is the difference between the pseudo-true and true scale parameters,
which is known in closed form using the results of the pseudo-true derivations. The same
addition of the bias is necessary for the previously verified bound but it was shown in the
derivation of the pseudo-true parameters that the misspecified estimator of the location
parameter is not biased so ∆µ = 0.

Figure 4.6 shows the MSE of the misspecified estimator for each of the three true
distributions analyzed above. This figure is intended to validate the derived MCRB and
show that there is a bias in the misspecified estimator. The MSE of the biased estimator
depends on the true distribution of the data according to the difference shown in Figure
4.6 between the Student’s t-distribution (red crosses) and the BGM (black diamonds) with
the same parametrization that results in equal CRBs for the location parameter.

The context for the misspecified estimator of the scale parameter is not strongly linked
to the time scale application so the results will only be used as justification of the derived
bound, which is a contribution that can be applied to more general scenarios. Further work
should be conducted to appropriately compare the correctly specified estimators of the scale
parameter to the misspecified bounds. That is, the EM algorithms’ ability to improve the
MSE for the scale estimator should be tested. Besides assessment of the EM algorithms
estimation accuracy of the scale parameter, the importance of estimating the scale can
be investigated for other applications. The NOIRE mission specifically, may find use of
a robust estimator of the scale of the true distribution to better process measurements
made for scientific observations, positioning solutions, studies of the relativistic effects of
satellites in orbit, and even can be interesting in defining a Lunar Coordinated Time scale.

4.5 Bounds for Time Scale analysis

The use of CRB and MCRB are not typical analysis tools for time scale performance,
but the link between the BTSE and robust estimation has made it clear that time scale
algorithms can still benefit from classical statistical tools. The estimation of the location
parameter is related to the realization of a time scale xi,E(t), as was defined for ATST.
The realization of the time scale is then considered an estimate of the true location, which
is assumed to be the offset of clock i from a perfectly stable time scale. Then the MSE can
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Figure 4.6: Convergence of the correctly specified and misspecified estimators of the scale
parameter when the assumed distribution is Gaussian. The estimators have MSE plotted
with the label explaining the true distribution: σ̂2

G − σ̂2
p is the error of the estimator that

assumes a Gaussian distribution while the true distribution of the data is p.

be related to the phase of the time scale itself:

Epi(t)
[
(xi,E(t) − xi,p(t))2

]
= E

[
x2

E,p(t)
]

≥ CRBµi , (4.32)

where pi(t) refers to the specific probability distribution that models the BTSE residuals
rji(t). In the context of time scales, the convergence of the time scale MSE to the bound is
only achieved for ensembles with a sufficient number of clocks. The bound is defined based
on the true distribution of the data, which may vary according to the presence of anomalies,
changes in measurement noise, or simply due to the different stochastic behaviors present
in the clocks at different time intervals. Assuming the CRB remains constant at every time
instant and the MSE of the designated estimator (or BTSE equivalently) converges to the
bound at times t−τ and t then the resulting time scale could be considered perfectly stable
over the time interval τ .

In reality, the distribution defining the BTSE residuals varies at each time epoch.
The primary constraint is the natural evolution of the dispersion of the residuals due to
internal clock noises, which will always result in some evolution of the CRB over time.
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However, unnatural variations in the data such as jumps and outliers can be mitigated by
appropriately choosing a heavy-tailed distribution. To observe the benefit of the heavy-
tailed distributions in this context, it is better to observe the bounds without the normalized
variances.

We assume that the only change in the dispersion of the data (and hence the bound) over
some time interval is due to an anomaly. That is, the scale parameter σ2 remains constant
although the true variance of the data will increase due to an anomaly. The choice of the
distribution should minimize the difference between the bounds for data with and without
anomalies. The bounds before and after the occurrence of an anomaly can be described
by the true distribution at the time epoch before an anomaly ta − τ being Gaussian and
the true distribution at ta being a Student’s t distribution where the specification of the
true and assumed distributions for the MCRBs are now stated in a superscript to make
room for the time dependencies. The approximation for the MCRB listed above is valid
according to the convergence of the estimator performance shown in the previous section.
The change in the CRB is smaller over the time interval τ when assuming the Student’s t
distribution compared to assuming the Gaussian distribution since ν

ν−2
σ2

N > ν+3
ν+1

σ2

N for all
ν > 2.

According to the equivalence of the time scale phase to the bounds shown in (4.32),
the change in continuity of the time scale can be related to the change in the bounds if the
number of clocks is sufficient to obtain convergence. This means the MTIE at the measure-
ment interval is given by the change in the bounds due to the anomaly changing the true
distribution. Therefore, the loss in accuracy of the time scale due to assuming a Gaussian
distribution when the data is truly given by a Student’s t-distribution is always greater
than the loss assuming the correct distribution. The jump that exists when assuming the
true distribution can be considered small enough that it is negligible for a relatively high
number of degrees of freedom, i.e., for a low number of anomalies occurring at the same
time. Additionally, the time interval error when assuming the correct distribution could
potentially remain negligible compared to the change in the time scale due to the natural
evolution over that interval.

XXXXXXXXXXXAssumed
True Before anomaly

Gaussian

At time of anomaly

Student’s t

Gaussian CRBµ(ta − τ) = σ2

N MCRB(pt||pG)
µ (ta) =

(
ν

ν−2

)
σ2

N

Student’s t MCRB(pG||pt)
µ (ta − τ) ≈ σ2

N CRBµ(ta) =
(

ν+3
ν+1

)
σ2

N

Table 4.2: Bounds for a Gaussian distribution before the anomaly and a Student’s t dis-
tribution at the time of anomaly.
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A similar analysis can be conducted where the model of the clock data changes from a
Gaussian distribution to a BGM distribution when the anomalies occur:

XXXXXXXXXXXAssumed
True Before anomaly

Gaussian

At time of anomaly

BGM

Gaussian CRBµ(ta − τ) = σ2

N MCRB(pGM||pG)
µ (ta) = (ε(k − 1) + 1) σ2

N

BGM MCRB(pG||pGM)
µ (ta − τ) ≈ σ2

N CRBµ(ta) =
(

k
k−ε(k−1)

)
σ2

N

Table 4.3: Bounds for a Gaussian distribution before the anomaly and a BGM distribution
at the time of anomaly.

It can be shown that the change in the bound is also smaller for the correctly specified
estimator when the true distribution is a BGM. That is

(
k

k−ε(k−1)

)
σ2

N < (ε(k − 1) + 1) σ2

N

for the defined ranges of ε, and k. Depending on the values of the parameters ν, ε, and
k that appropriately model the actual anomalies, the change in the bound from ta − τ to
ta could be smaller for one of the two distributions. In the general case that the exact
distribution is not known, the estimated parameters for ν, ε, and k would be the ones that
define how much of a change in the time scale is experienced. Some examples of different
parameterizations are shown in Figure 4.7 to indicate how the bounds can be roughly linked
to the stability analysis of the time scale.

The two heavy-tailed distributions have been parametrized with the combination of
ν, ε, and k shown above that results in equivalent CRBs for the two distributions with
normalized variance. The variances have not been normalized in the figure above to appro-
priately show the effect of anomalies on the minimum attainable error, hence an increase
in variance from time ta − τ to ta is expected. For the chosen parameters ν, ε, and k,
the increase of the bounds will be greater for those associated with anomalies that re-
sult in the residuals following a Student’s t-distribution because ν+3

ν+1 >
(

k
k−ε(k−1)

)
and(

ν
ν−2

)
> (ε(k − 1) + 1). This is illustrated in Figure 4.7 where the CRB for the Student’s

t-distribution (yellow circles) and MCRB(pT ||pG)
µG (ta) (blue triangles) are higher than the

respective bounds corresponding to the anomalies resulting in a BGM as the true distri-
bution. This simply indicates that a Student’s t-distribution results in a greater variance
of the data for the parameters chosen to define the two heavy-tailed distributions.

The true magnitude of the increase of estimation error and hence, loss in stability will
depend on how the anomalies contaminating the clock data actually modify the statistics of
the clock residuals. In any case, by correctly assuming the distribution of the contaminated
clock data, the losses are shown to be significantly reduced. An algorithm such as ATST
is theoretically supported by the analysis of the change in the bounds as an improved
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(a) Bounds when the true distribution at the
time before anomaly is Gaussian and Student’s t
when the anomaly occurs at ta.
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(b) Bounds when the true distribution at the
time before anomaly is Gaussian and BGM when
the anomaly occurs at ta.

Figure 4.7: Examples of the change in the estimation performance limits depending on the
assumption made on the statistical model at time instances with and without a anomalies.
Estimators applied to toy examples are included to verify the bounds at the different points
in time and to represent the MCRBs that have not been explicitly derived.

method of estimating the clock phase compared to assuming clock data follows a Gaussian
distribution. The assumption of the Gaussian distribution is equivalent to assuming the
data is not contaminated by anomalies and the weights of each clock being assigned equally.
While other existing time scale algorithms such as AT1 cannot be similarly compared by
this analysis of bounds, any future algorithms that are designed with similar statistical
modeling can be assessed quite easily. Therefore, the presented bound analysis is a useful
contribution for future work on statistical models of clocks affected by different types of
anomalies.
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Chapter 5

Future Work

Although the new robust time scale algorithm was shown to be robust to phase jumps,
frequency jumps, and anomalies in the simulated inter-satellite measurements, the perfor-
mance with real data must still be verified and there are still limitations that should be
overcome. The first issue to address is the functionality with a mixture of different types of
clocks, where the stability over different time intervals is taken into account when comput-
ing the time scale. It is suggested to address this problem by introducing the exponential
filter on the prediction errors from the AT1 algorithm into the ATST algorithm. This
hopefully results in a robust time scale that can match the AT1 oracle even with a mixture
of different clock types.

There is still room for improvement in generating a time scale that is robust to other
types of anomalies such as those that occur over longer time intervals as opposed to the
instantaneous jump type anomalies already addressed in this thesis. After properly un-
derstanding the value of the BTSE residuals in classifying anomalies, other methods of
computing the clock weights could be proposed for an alternative algorithm. The advan-
tages of machine learning in detection and classification of anomalies is at the forefront
of research in many domains. The next proposal for future work explains how machine
learning can assign weights to each clock based on information about the predictability
of each clock over several time intervals. This is possibly useful in optimizing time scale
stability over specific sampling intervals and addressing anomalies that occur over time by
correctly choosing the time intervals.

Other than the new method of computing weights, transient anomalies could poten-
tially be compensated by using robust estimation or anomaly detection based on historical
data of clock frequencies. This is an extension to the work conducted on robust frequency
estimation during the thesis and would require further analysis on the appropriate statis-
tical distributions used to model the effects of such anomalies over the chosen window of
frequency data.

107
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5.1 Combining ATST with AT1

A simple test of the difference between the ATST weights and AT1 weights for a mixture of
different clock types allows confirmation of the principle behind the weighting in the ATST
algorithm. Since there is no filtering of the weights in the ATST algorithm, the stability
of each of the clocks over extended sampling intervals is not taken into account. This is
the advantage offered by the AT1 algorithm that filters the weights according to previous
values with a time constant coinciding with the most stable sampling interval of the specific
clock type. An advantage of instead following the ATST weight methodology is that any
individual clock could potentially be affected by an anomaly at any instant in time. As
the weights are assigned according to only the current measurements, an anomalous clock
that showed great stability in the past will not necessarily have a dominant weight due to
past behavior.

A property of the ATST weights is that clocks that function nominally receive a weight
that is approximately equal to 1/N , meaning that the case with no anomalies is equivalent
to taking an average amongst all the clocks in the ensemble. Figure 5.1 confirms that this
is the case even if a clock with orders of magnitude greater stability is included in the
ensemble, e.g., an H maser clock. The weights computed using the AT1 algorithm will
assign an appropriate weight to the H maser clock so that the time scale benefits from the
improved stability of the H maser. However, it is important to put a constraint on the
maximum weight to avoid the H maser becoming too dominant.
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(a) Weights computed under
nominal conditions.
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(b) Weight response to phase
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Figure 5.1: The weights computed by the AT1 and ATST algorithms for a single H maser
clock that appears in an ensemble with N = 50 clocks. It is demonstrated that the
ATST algorithm maintains a balanced weight assignment even though the H maser has
significantly better stability. It is also shown that the ATST algorithm can still detect
jumps in the H maser by reducing the weight at the appropriate time.

If the H maser experiences a phase jump, frequency jump or an anomaly in the re-
spective measurements, the high weight from the previous time epoch will bias the newly
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computed weight in the AT1 algorithm, meaning the anomaly may still impact the time
scale. Another contribution of the ATST algorithm is proposed such that the weights
computed using the Student’s t-distribution are used to deweight the anomalous clocks in
the AT1 algorithm. Since the ATST weight corresponding to the H maser is not biased by
previous stability, and since the ATST algorithm has been shown to detect anomalies as
good as an oracle detector (for certain anomalies), the advantages of both ATST and AT1
can be fused by appropriately combining the weighting procedures.

The weight control for the AT1 algorithm in presence of a phase jump adjusts the
weights computed as the inverse of the estimated prediction error according to specific
deweighting functions. Instead of using the weight control terms that are suggested for
the AT1 algorithm, the weights that are computed in the ATST algorithm can be used to
adjust the weights. That is, a joint algorithm, denoted as ATJ is proposed that still uses
the exponentially filtered prediction error to compute the weights but scaled by a factor
given by the weights computed by the robust estimator for the Student’s t-distribution:

wi,AT J(t) =
wi,ATST(t)

ϵ2
i (t)∑N

j=1
wj,ATST(t)

ϵ2
j (t)

. (5.1)

This is similar to the weight control term that was derived for phase jumps in AT1 but
should also work for frequency jumps and link anomalies, as shown in Section 3.3.4. When
the weights computed by the ATST algorithm are low due to phase jumps, frequency jumps
or link anomalies, the weights of the joint algorithm will also be low and hence, the anoma-
lies will not impact the resulting time scale. For nominal clocks, the weights computed by
ATST are all approximately 1/N , so the joint algorithm will function basically identically
to the AT1 algorithm. This proposed joint algorithm is expected to take advantage of the
different clock types like in the AT1 algorithm but can remain robust to the anomalies that
the ATST algorithm can compensate. Since the ATST algorithm was shown to deal with
both phase jumps and frequency jumps, as well as measurement anomalies this method
is preferred for robustifying AT1 compared the separate and complicated methods using
AT2.

The resulting weights for the joint algorithm are shown in Figure 5.2 with responses
to both phase jumps and frequency jumps. The weights are equivalent to the AT1 oracle
but without “cheating” with a priori knowledge of the anomalies occurring. All anomalies
have been deweighted by the weights computed in the ATST algorithm while the AT1
algorithms ability to include the benefits of different clock types is not lost in the periods
of nominal operations. The need for a maximum weight constraint is still required for the
joint ATJ algorithm but this limitation is easy to implement in practice.
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Figure 5.2: The weights computed by the AT1 and ATST algorithms compared to the joint
ATJ algorithm. The weights are appropriately reduced due to the reduction of the ATST
weights to match the AT1 oracle anomaly detection. The AT1 weight increases rapidly for
the H maser after the frequency jump but this is not present with the joint algorithm.

A result that requires further analysis is the jump in the weight that occurs for the
AT1 algorithm immediately after the frequency jump. This could be because of the good
performance of the H maser dominating the weight computations. In that case, it is
advantageous to use the joint algorithm because it does not experience the same spike in
the weights. Further study is required to determine the optimal weight limitation. The
proposed joint algorithm is presented in the future work chapter because it requires further
tests for realistic proportions of mixed clock types. This can be interesting in future studies
that use real clock data when comparing the ATST and AT1 algorithms, the AT1ST time
scale should achieve the best of both algorithms.

5.2 Machine Learning Weights

A novel detection method can be investigated that helps identify anomalous measurements
using a machine learning methodology such as the Isolation Forest (IF) [79], allowing the
removal of those measurements. An example of this detection method can generate an IF
using the available measurements at the current time. The IF consists of a collection of
isolation trees that divide the input data according to split branches until each observation
is completely isolated from the others. In theory, an anomalous data point will become
isolated with few separations. After construction of the IF, outlier scores are assigned to
each measurement according to the following expression:

s(x) = 2
−E[h(x)]

c(n) , (5.2)

where the average path length to isolate an individual sample x is given by E[h(x)] and
c(n) is the average path length for all n samples. The measurements x can be multivariate
and contain a wider range of information about the errors in each of the clocks. As was
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detailed in Chapter 2, the BTSE aims to minimize the weighted average of the prediction
errors so the scores that are assigned to the prediction errors for each clock are a good
candidate for weights for another new time scale algorithm. The IF score approaches a
value of one for observations that are more likely to be an anomaly, whereas a score close
to zero or less than 0.5 corresponds to a normal data point. For this reason, the scores can
be used to assign weights to each clock by simply taking the normalized inverse scores as
follows:

wi(t) =
1

s(xi)∑N
j=1

1
s(xj)

. (5.3)

If the scores are greater than a predetermined threshold, the associated measurements are
considered outliers and should be discarded, i.e., by setting the weights to zero. The chosen
threshold is subject to the anomaly detection trade-off on PND vs. PFA but is necessary
if this method of using machine learning is to be used to determine the weights because
there is no guarantee of having outlier scores that result in weights close to zero.

To base the scores on the performance of clocks over various time intervals, the BTSE
residuals can be computed with predictions over several time intervals to get additional
measurements of the predictability of each clock. The clock phase predictions can then be
written as a function of the sampling interval τ as follows:

x̂i,E(t, τ) = xi,E(t− τ) + τyi,E(t− τ). (5.4)

For two different sampling intervals τ1, and τ2, a different scale of prediction error will
be present in the corresponding BTSE residuals. This allows the resulting scores to be
computed based on the stability over the different time intervals. Neglecting measurement
noise means only one reference clock is required for the BTSE residuals. In this case, the
data that will be used to generate the IF would then take the following form

Z =



x̂1(t, τ1) − x1,1(t) x̂1(t, τ2) − x1,1(t)

x̂2(t, τ1) − x2,1(t) x̂2(t, τ2) − x2,1(t)
...

...

x̂N (t, τ1) − xN,1(t) x̂N (t, τ2) − xN,1(t)


=



x1,p(t) + e1(t, τ1) x1,p(t) + e1(t, τ2)

x1,p(t) + e2(t, τ1) x1,p(t) + e2(t, τ2)
...

...

x1,p(t) + eN (t, τ1) x1,p(t) + eN (t, τ2)


(5.5)

where Z =
[
z1, · · · , zN

]T

is an N × 2 matrix with each column corresponding to a
different sampling interval and the prediction error over different intervals is denoted as
ei(t, τ). The above allows an illustration of the two dimensional problem in Figure 5.3
where simulated clock data with and without anomalies is sorted according to a generated
IF that was automatically tuned using the default MATLAB function “iforest()”.
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Figure 5.3: Scatter plots of the predictor variables that are obtained by making predictions
over two different sampling intervals. The values with an outlier score greater than three
times the median absolute deviation are highlighted to indicate the samples that should
have reduced weights.

The above figures show that the scores can allow detection of outlying values in the
presence of phase jumps and frequency jumps. By introducing more sampling intervals,
the detection of more transient types of anomalies could be facilitated. Other machine
learning methodologies such as Support Vector Machines (SVM) and Local Outlier Factor
(LOF) similarly assign outlier scores to the data that could in turn produce more effective
weights than the IF or ATST solutions. For this reason, it is interesting to investigate
different methods of machine learning and find the best possible information to feed into
the algorithms to obtain robustness to all kinds of anomalies. Another potential set of
data can be residuals from the STSE for the clock frequency (similar to the residuals from
the BTSE), taking advantage of both the phase and frequency differences between clocks
to assign weights.

5.3 Transient Anomalies

The anomalies presented in Chapter 1 have not all been addressed in the core contri-
butions of the thesis. Phase jumps, frequency jumps, and anomalies in the inter-satellite
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measurements are important issues that have been appropriately addressed in the proposed
solutions. For a more generalized robust time scale algorithm, the mitigation of the more
transient clock anomalies should be further explored. For example, clock frequency drift,
periodic oscillations, and temporary frequency jumps are all anomalies that have a strong
impact on space applications but not necessarily mitigated by the robust estimation used
to generate the ATST time scale.

Modeling the statistics for a window of past frequency data is one path to explore that
may allow robust estimation or anomaly detection to be applied to these types of anomalies.
The idea of applying machine learning to obtain weights that are based on different time
intervals can also be compatible with the mitigation of anomalies that occur over specific
time intervals. Without any special modifications to deal with transient anomalies, the
ATST algorithm is compared to the AT1 oracle in Figure 5.4 in response to a temporary
frequency jump of 10 ns/s for a period of 3000 s. The same collection of 50 simulated
OCXO clocks is used with the anomalies added once on each clock with known times of
occurrence and duration. Only a temporary frequency jump is tested because this type
of anomaly is most similar to the jumps and missing data anomalies that were already
investigated. The AT1 oracle sets the weights to zero at the beginning and end of the
temporary jumps to simulate perfect detection.
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Figure 5.4: Examples of the time scale performance in presence of temporary frequency
jumps with a period of 3000 s and a magnitude of 10 ns/s.

The ATST time scale is shown to be better at mitigating effects on long term stability
whereas the AT1 oracle time scale performs better at short term and indeed suffers losses
in the long term. The losses for the AT1 oracle in long term may be linked to the number
of frequency jumps that occur in the simulation period, i.e., 100 jumps in the ensemble
representing the start and end of each temporary anomaly. As a result of the large number
of times the clocks have their weights set to zero, the effective number of clocks in the
ensemble may be reduced for extended periods of time and hence the stability cannot match
an ensemble with all the clocks. A time scale algorithm using the machine learning based
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weights or the joint AT1ST time scale could potentially show improvements to the ATST
algorithm for this type of temporary frequency jump as well as other types of transient
anomalies. Besides such promising methods, the continuation of some previous work on
robust frequency estimation could help with the problem of transient anomalies.

5.4 Robust Frequency Estimation

The results of using a time scale algorithm that uses robust estimation of the frequency
based on the Student’s t-distribution were published in [80]. That work illustrates that
the robust frequency estimate is robust only to the effects of phase jumps and the weights
computed with the robust estimate of frequency variance were not useful in mitigating
the impact in the BTSE. This is not as good as the ATST solution that provides robust
estimates by appropriately assigning weights for several types of anomalies.

The robust frequency estimator is instead suggested as an aid in detecting anomalies,
because the robust estimate is a good baseline for determining thresholds. The ATST al-
gorithm was designed for robustness against instantaneous anomalies but could potentially
fail when faced with transient anomalies that occur over extended periods of time. For
that reason, robust frequency estimation using a history of past frequency data might be
explored to help deal with such anomalies.

An ideal clock frequency is constant over time, implying good stability and a predictable
phase. As a result, the frequency estimate can be made using frequency data over a
window of past time instances. This is similar to the existing solution of the ALGOS time
scale algorithm [49]. Instead of taking an average frequency over the window, the robust
frequency estimation would take a weighted average of the frequencies over the window by
assuming that they follow an appropriate statistical distribution for the expected anomalies.

The end of this section explains how to build a robust time scale based on frequency
estimation, as proposed in [80]. Each sample of frequency for clock i in the window of L+1
samples can be collected as [yi,s(t− Lτ), · · · , yi,s(t− τ), yi,s(t)]. The choice of the window
length varies depending on the distribution of the frequency samples. The length must be
sufficient for the estimator to converge to its optimum performance but the distribution
must also remain well modeled by the assumed distribution. As the types of noise vary over
different sampling intervals, the resulting distribution from a large window of past samples
may result in more uncertainty in the resulting estimate. Figure 5.5 displays the different
distributions that can model the true frequency of a single simulated OCXO or CSAC. The
actual frequency of the simulated clocks is used to demonstrate the expected distribution
of frequencies without any dependence on the time scale algorithm or frequency estimation
chosen.

The histograms displayed in Figure 5.5 are created using the frequency of the simulated
clocks as described in Appendix C. The OCXO clock has a clear change in the distribution
when increasing the window length. The distribution of the OCXO frequency is close to
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Figure 5.5: Frequency samples of a single simulated clock spread over a window of past
values separated by sampling interval τ = 10 s. Each sample corresponds to an integer
multiple of τ where m = 0, · · · , L. Two different numbers of samples L are used to show
how the distribution may change due to different noise types occurring over different time
intervals.

symmetric and approximately Gaussian, allowing an estimate of the mean frequency. The
mean value of the OCXO clock distributions changes as a function of the window length
because these types of clocks experience random walk frequency modulations and frequency
drift over long time intervals, as observed in the Allan deviation. Conversely, the histogram
for the CSAC clock shows two symmetric distributions with similar mean values for the
two window lengths. This is explained by the absence of random walk frequency noise in
these types of clocks.

Both types of clocks have a frequency distribution over the window that can be well
modeled by a Gaussian distribution for the window lengths tested. Further work is required
to identify the best type of distribution to assume for the transient anomalies. It would also
be interesting to analyze the MCRB with respect to the actual distribution to appropriately
demonstrate the gain in correctly modeling the frequency affected by transient anomalies.
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Conclusion

A time scale algorithm robust to phase jumps, frequency jumps, anomalies in measure-
ments, and missing clock data has been proposed and verified using simulated clock data.
The new robust time scale is intended to be used in a swarm of nanosatellites operating
in a remote region of space, so the onboard clocks are expected to suffer from these types
of anomalies and more. The proposed time scale algorithm is the Autonomous Time scale
using the Student’s T-distribution (ATST), which generates a common reference time by
taking a weighted average of the Basic Time Scale Equation (BTSE) residuals. These
residuals refer to the terms that are weighted in the existing AT1 time scale and implicitly
in the Kalman Filter based time scale. By assuming the BTSE residuals are modeled by a
Student’s t-distribution when anomalies occur, we are able to obtain weights that mitigate
the contribution of any of the aforementioned anomalies in the generation of the time scale.

The performance of the ATST time scale is compared to a realization of the AT1 time
scale with perfect detection of the investigated anomalies. Since the data is simulated,
the algorithm is told exactly when an anomaly has occurred to automatically reduce the
weights of the associated clock and obtain the AT1 oracle time scale. For the types of
anomalies tested, the ATST algorithm was capable of matching the performance of AT1
oracle, which is promising for an algorithm that does not explicitly detect the anomalies.
However, the limitations of the ATST are also presented: the algorithm is only suitable for
swarms with homogeneous clock types, the total number of clocks must be sufficiently high
to converge to an optimum estimator, the algorithm introduces additional computational
complexity, and the lack of ability to differentiate between the different types of anomalies.

Another contribution that is implemented in the design of ATST, and is applicable to
other time scales is the derivation of a procedure that deals with removing and reintroduc-
ing clocks to an ensemble. The simple proof has shown that continuity in the phase of the
time scale can be maintained by setting the weights of removed and returned clocks to zero
and renormalizing the weights of the other clocks so the sum is still equal to one. In ad-
dition to this method of maintaining continuity when the total number of available clocks
changes, a Least Squares (LS) estimator that pre-processes the inter-satellite measure-
ments is introduced to make use of redundant measurements in the swarm for reduction of
measurement noise and anomalies, and estimation of the missing measurements when pos-
sible. In the presence of anomalies, the LS estimator is compatible with anomaly detection
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methodologies because anomalous measurement links can be removed while the estimator
provides a replacement using the redundant information shared within the swarm.

The final contribution of the thesis analyzes the optimal estimation performance of the
Maximum Likelihood Estimator (MLE) for the parameters of a Student’s t-distribution.
More specifically, the loss in performance by instead assuming the BTSE residuals follow
a Gaussian distribution is demonstrated by deriving the Misspecified Cramér Rao Bound
(MCRB). Thanks to this derivation, it has been confirmed that the sample mean is limited
in mean square error by the variance of the true distribution, which is inflated in the
presence of outliers so the estimation performance is reduced. By assuming a heavy-tailed
statistical distribution like the Student’s t-distribution or a Bimodal Gaussian Mixture, the
outliers are taken into account by the associated MLEs and it is shown that a lower bound is
obtained. This analysis shows the benefits of using Student’s t residuals for construcitng a
robust time scale. It also allows a conclusion on the minimum number of clocks necessary
for the ATST to be efficient, being 25 clocks but this number could increase for more
extreme anomalies. Lastly, the bounds are linked to the concept of time scale continuity
by showing the change in the bound due to the presence of anomalies changing the true
distribution. This new methodology can be useful for analyzing other types of anomalies
that fit other types of statistical distributions.

Besides the contributions directly presented in this thesis, discussions about potential
future research have also been provided. Some of these future studies directly address
the limitations identified for the ATST algorithm to allow introduction of different types of
clocks and potentially mitigate the loss in performance for applications with fewer numbers
of clocks in the ensemble. Other proposals explore a different path to generating a robust
time scale but take advantage of the knowledge gained on how the BTSE residuals can
be weighted according to any existing weighting algorithms. Specifically machine learning
is interesting because of outlier scores that are assigned in unsupervised learning models,
which can directly provide weights to mitigate anomalies that can be observed over many
different time intervals. Another application of robust estimation to frequency estimation
could similarly produce meaningful results for transient anomalies so several options are
available for exploring a different robust time scale algorithm.



Glossary

ADEV Allan Deviation

AERO-VISTA Auroral Emissions Radio Observer - Vector Interferometry Space Tech-
nology using AERO

AIAA American Institute of Aeronautics and Astronautics

ALGOS Algorithm defined by the BIPM with a specialized method of using past fre-
quency data but no specific acronym definition.

ASTRON Netherlands Institute for Radio Astronomy

AT1 Algorithm defined by the NIST with exponential filtering but no specific acronym
definition.

AT2 Extension of AT1 algorithm defined by the NIST with a KF but no specific acronym
definition.

ATJ The Joint time scale resulting from combining the proposed ATST algorithm and
the existing AT1 algorithm.

ATST Autonomous Time scale using the Student’s T-distribution

AVAR Allan Variance

BGM Bimodel Gaussian Mixture

BIPM Bureau International de Poids et Mesures

BTSE Basic Time Scale Equation

CGPM Conférence Générale des Poids et Mesures

CNES Centre National d’Études Spatiales

CRB Cramér Rao Bound
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CSAC Chip Scale Atomic Clock

DARIS Distributed Aperture Array for Radio Astronomy In Space

DAVAR Dynamic Allan Variance

DTOA Differential Time Of Arrival

EAL Échelle Atomique Libre

EFTF European Frequency and Time Forum

EM Expectation Maximization

ESA European Space Agency

EUSIPCO European Signal Processing Conference

FFM Flicker Frequency Modulation

FM Frequency Modulation

FPM Flicker Phase Modulation

GLONASS Global Navigation Satellite System

GM Gaussian Mixture

GNSS Global Navigation Satellite System

GPS Global Positioning System

HVAR Hadamard Variance

ICASSP International Conference on Acoustics, Speech, and Signal Processing

IEEE Institute of Electrical and Electronics Engineers

IF Isolation Forest

INP Institut National Polytechnique

ION Institute of Navigation

IRIT Institut de Recherche en Informatique de Toulouse

ITU International Telecommunication Union
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KF Kalman Filter

KLD Kullback Liebler Divergence

LOF Local Outlier Factor

LRT Likelihood Ratio Test

LS Least Squares

MCRB Misspecified Cramér Rao Bound

MDEV Modified Allan Deviation

MLE Maximum Likelihood Estimator

MMLE Misspecified Maximum Likelihood Estimator

MTIE Maximum Time Interval Error

MVAR Modified Allan Variance

NIST National Institute of Standards and Technology

NOIRE Nanosatellites pour un Observatoire Interférométrique Radio dans l’Espace

NPL National Physical Laboratory

OADEV Overlapping Allan Deviation

OAVAR Overlapping Allan Variance

OCXO Oven Controlled Crystal Oscillators

OLFAR Orbiting Low Frequency Array

PDF Probability Density Function

PFA Probability of False Alarm

PFS Primary Frequency Standard

PM Phase Modulation

PND Probability of Non-Detection

RW Random Walk
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RWFM Random Walk Frequency Modulation

SIRA Solar Radio Imaging Array

SNR Signal Noise Ratio

STSE Supplementary Time Scale Equation

SULFRO Space Ulta-Low Frequency Radio Observatory

SVM Support Vector Machine

TéSA Télécommunications Spatiales et Aéronautique

TA2 Algorithm defined by NIST without specific acronym definition

TAI Temps Atomique International

TCXO Temperature Controlled Crystal Oscillator

TDEV Time Deviation

TOA Time Of Arrival

UTC Coordinated Universal Time

VLBA Very Long Baseline Array

VLBI Very Long Baseline Interferometry

WFM White Frequency Modulation

WPM White Phase Modulation



Appendix A

Two-sample Variances and Noises

This appendix provides an extract from the seminal Enrico’s chart that provides a useful
summary of oscillator noises and two-sample variances [11]. The variances that are dis-
played in this appendix are the Allan Variance (AVAR), Modified AVAR (MVAR), and
the Hadamard Variance (HVAR). Although there are other types of two-sample variances
that can be relevant for other applications, the AVAR, MVAR, and HVAR are presented
to demonstrate how they can provide knowledge about different characteristic oscillator
noises. Only the AVAR is used to assess the frequency stability in the context of this
project. The Modified ADEV or MDEV is the square root of the MVAR and is used
to compute the TDEV for assessment of the synchronization. The approximation of the
MVAR is given by the following expression [12]:

Mσ2
y(τ) = 1

2m2τ2 (M − 3m+ 2)

M−3m+2∑
j=1

j+m−1∑
i=j

[xi+2m − 2xi+m + xi]

2

, (A.1)

where τ = mτ0 for minimum sampling period (or measurement interval)τ0 and M is the
total number of frequency samples available.

The HVAR is a tool that could aid in future analysis of the effects of clock drift on the
proposed time scale algorithm by comparing to the other variances.

The table below presents power spectral noise as a function of frequency f and two-
sample variances as functions of the sampling interval τ . The cutoff frequency fH is a
characteristic of the physical oscillator. The total variance or spectral noise is obtained by
taking the sum of the expressions for each noise type.
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Table A.1: The expressions for different uncertainty measures of typical noise processes in
oscillators.

Noise

Type
Sy(f) AVAR σ2

y(τ) MVAR Mσ2
y(τ) HVAR Hσ2

y(τ)

White

PM
h2f

2 3fH

4π2
h2
τ2

3
8π2

h2
τ3

5fH

6π2
h2
τ2

Flicker

PM
h1f

1 1.731−log(2)+3 log(2πfHτ)
4π2

h1
τ2

(24 log(2)−9 log(3))
8π2

h1
τ2 ≈ 5[γ+log(480.1πfHτ)]

6π2
h1
τ2

White

FM
h0f

0 1
2

h0
τ

1
4

h0
τ

1
2

h0
τ

Flicker

FM
h−1f

−1 2 log(2)h−1
(27 log(3)−32 log(2)

8 h−1
8 log(2)−3 log(3)

2 h−1

Random

Walk FM
h−2f

−2 2π2

3 h−2τ
11π2

20 h−2τ
2π2

6 h−2τ

Integrated

Flicker FM
h−3f

−3 not converging not converging π2[27 log(3)−32 log(2)]
6 h−3τ

2

Integrated

RW FM
h−4f

−4 not converging not converging 44π2

60 h−4τ
3

Linear drift Dy N/A 1
2D

2
yτ

2 1
2D

2
yτ

2 0



Appendix B

Confidence Limits

The method of computing the confidence intervals for the estimation of the ADEV is
different depending if the overlapping or non-overlapping estimation method is used. Since
this thesis always presents an OADEV, this is the only confidence interval presented in this
appendix. Although the other forms are available in the same references used to obtain
the following equations [12, 17]. Since the estimate of the Allan variance is a sum of the
squared two-sample differences, it is assumed to follow a χ2

k distribution with k degrees of
freedom. A test statistic is defined for the chi-squared distribution as

χ2
ke

=
ke(τ)σ̂2

y(τ)
σ2

y(τ) , (B.1)

where ke(τ) is an equivalent number of degrees of freedom that is defined according to the
type of noise experienced by the oscillator at the sampling interval over which the ADEV
is estimated. The estimated variance ˆσ2

y(τ) is differs from the true variance σ2
y(τ). The

typical estimation uncertainty presented in published figures of ADEV is the 1σ or 68%
confidence interval. That is, the test statistic and equivalent number of degrees of freedom
are related to the probability that a random variable x lies within a certain region of values:

pmax = Pr
(
x ≤ χ2

ke

)
= 0.84, (B.2)

and
pmin = Pr

(
x ≥ χ2

ke

)
= 0.16. (B.3)

Given the equivalent number of degrees of freedom, the above expressions can provide
an upper and lower bound on the test statistic such that there is 68% certainty that the
true variance lies within the corresponding interval. The resulting constraint on the true
variance is then presented below:

ke(τ)
χ2

ke
(pmax) σ̂

2
y(τ) ≤ σ2

y(τ) ≤ ke(τ)
χ2

ke
(pmin) σ̂

2
y(τ). (B.4)
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Table B.1 lists empirical formulas for ke depending on the type of noise that is dominant
over the sampling interval τ . In the below table, the number of samples is denoted as N ,
and the sampling interval τ is represented by a ratio with the minimum sampling interval
τ0, m = τ

τ0
.

Table B.1: Empirical equations for equivalent number of degrees of freedom used to deter-
mine confidence interval of ADEV estimate [17].

Noise Process Degrees of freedom ke(τ)

White PM (N+1)(N−2m)
2(N−m)

Flicker PM exp
(
log

(
N−1
2m

)
log

(
(2m+1)(N−1)

4

)) 1
2

White FM
(

3(N−1)
2m − 2(N−2)

N

)
4m2

4m2+5

Flicker FM
2(N−2)2

2.3N−4.9 for m = 1

5N2

4m(N+3m) for m ≥ 2

Random Walk FM
(

(N−1)2−3m(N−1)+4m2

(N−3)2

)
N−2

m

For each sampling interval used to estimate the ADEV, the equivalent number of degrees
of freedom is found using the expressions listed above. The known inverse cumulative
distribution function for the chi-squared distribution permits us to obtain the test statistic
for a given combination of ke and p, which can then be substituted into (B.4) to obtain
the upper and lower limits of the true variance. These limits are displayed in all of the
figures of ADEV in this paper in the form of error bars. It is known that the error bars
should increase as the sampling interval increases due to having less samples and hence
more uncertainty.



Appendix C

Simulation of Satellite Clocks

To simulate clock data, we use a noise generator that follows the expected stochastic
behavior of the type of clock that we are interested in simulating. The power spectral
density for clock phase can be written as a sum of each of the different noise types

Sx(f) = Sy(f)
(2πf)2 = 1

(2πf)2

2∑
α=−2

hαf
α =

0∑
β=−4

gβf
β, (C.1)

where gβ = hα
(2π)2 and β = α − 2. The variance associated with each clock noise is then

computed

Qd(β) = gβ

2(2π)β
(
τβ+1

0

) . (C.2)

The clock noises are then generated independently according to the discrete generation
method highlighted in [81]. Finally, the noise terms are summed to produce a simulation
of an oscillator that has the same noise characteristics as the original source of the hα

coefficients. Slight variability has been added to the variance Qd(β) for each simulated
clock to ensure that they do not have identical frequency stabilities. The simulator can
similarly use the typical OADEV of any other type of clock to replicate several simulated
clocks with similar performance. Figure C.1 shows the phase, frequency, and OADEV for
a small collection of simulated OCXO clocks. It is clear that they each have their unique
characteristic noise but maintain the typical performance for an OCXO clock.
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Figure C.1: Examples of 5 simulated OCXO clocks (top) and 5 simulated CSAC clocks
(bottom) with diversity in the clock behaviours.



Appendix D

Clock Anomaly Magnitudes

This section addresses alternative magnitudes of anomalies to elaborate on the resolution
of the robust time scale proposed in Chapter 3. The proposed ATST time scale is already
demonstrated to be as robust as the AT1 oracle time scale (i.e., AT1 with perfect detection
of anomalies) in Chapter 3 for the following anomalies:

• Phase jumps with magnitude randomly generated by a Gaussian distribution with a
standard deviation of σ∆x = 100 ns.

• Frequency jumps with magnitude randomly generated by a Gaussian distribution
with a standard deviation of σ∆y = 100 ns/s.

• Anomalies on measurement links j, i between clock j and clock i with magnitude
randomly generated by a Gaussian distribution with a standard deviation of σ∆nj,i

=
100 ns.

The phase jumps and frequency jumps refer to anomalies in the states of the clocks. The
link anomalies are instantaneous changes in measurement noise for certain inter-satellite
links in a swarm of satellites. The precise amplitude of the anomalies is randomly assigned
according to a standard Normal distribution but the order of magnitude is maintained to
describe the anomalies on all clocks.

Figures D.1 and D.2 display the time scale performance with smaller magnitudes of
anomalies: σ∆x = 10 ns, σ∆y = 10 ns/s, and σ∆nj,i

= 10 ns. The proposed ATST
algorithm remains equivalent to the AT1 oracle for the small magnitudes, which means
it is not necessarily blind to weaker effects in the assignment of clock weights. This can
potentially be a problem for algorithms that rely on a detection threshold that is too large
to detect weaker anomalies.
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Figure D.1: Time scale performance with phase jumps (top row), frequency jumps (middle
row), and link anomalies (bottom row). The base measurement noise without anomalies is
normally distributed with a variance of σ2

n = 10−20.
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Figure D.2: Maximum Time Interval Error (top row) and Time Deviation (bottom row)
for the new time scale compared to the AT1 oracle with phase jumps of 10 ns (left column),
frequency jumps of 10 ns/s (middle column), and anomalies on the measurement links of 10
ns (right column).The base measurement noise without anomalies is normally distributed
with a variance of σ2

n = 10−20.

Figures D.3 and D.4 display the time scale performance with larger magnitudes of
anomalies: σ∆x = 1 µs, σ∆y = 1 µs/s, and σ∆nji

= 1 µs. The larger scale anomalies may
not be as realistic but in the case they do occur it is useful to identify the behavior of the
time scale algorithm. The ATST time scale does not match the AT1 oracle perfectly in
ADEV but still manages to autonomously mitigate the effects to a reasonable level.
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Figure D.3: Time scale performance with phase jumps of 1 µs (top row), frequency jumps
(middle row) of 1 µs/s, and link anomalies of 1 µs (bottom row). The base measurement
noise without anomalies is normally distributed with a variance of σ2

n = 10−19.
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Figure D.4: Maximum Time Interval Error (top row) and Time Deviation (bottom row)
for the new time scale compared to the AT1 oracle with phase jumps of 1 µs (left column),
frequency jumps of 1 µs/s (middle column), and anomalies on the measurement links of 1
µs (right column).The base measurement noise without anomalies is normally distributed
with a variance of σ2

n = 10−19.
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Appendix E

Estimator Derivations

E.1 Maximum Likelihood Estimator - Student’s t-distribution

An MLE is defined based on knowledge of a likelihood function that fits the observations
being made. In this work, the Student’s t-distribution is used to model the distribution of
clock data contaminated with anomalies. The likelihood of a sample distributed according
to the univariate Student’s t-distribution is defined as follows [66]:

L(z;µ, σ2, ν) =
N∏

i=1
p(zi;µ, σ2, ν) =

N∏
i=1

1√
νπσ2

Γ
(

ν+1
2

)
Γ
(

ν
2
) [

1 + 1
ν

(
zi − µ

σ

)2
]− (ν+1)

2

, (E.1)

with z = (z1, ..., zN )T . The parameters µ, σ2, and ν are the mean, scale, and shape
parameters, respectively. The shape parameter is also referred to as the number of degrees
of freedom and is related to the quantity of outliers in the data. A random variable zi that
follows the Student’s t-distribution is denoted as zi ∼ T (µ, σ2, ν). The MLE for each of
the parameters µ, σ2, and ν aims to identify the values of those parameters that maximize
the likelihood (E.1) for a given sample z:

[
µ̂, σ̂2, ν̂

]T
= arg max

µ,σ2,ν

{
L(z;µ, σ2, ν)

}
. (E.2)

To simplify the derivations, it is usual to derive the expression of the MLE by minimizing
the negative log-likelihood [62]

[
µ̂, σ̂2, ν̂

]T
= arg min

µ,σ2,ν

{
− logL(z;µ, σ2, ν)

}
. (E.3)
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In the case of the univariate Student’s t-distribution, the MLEs of the unknown parameters
are the solutions to the following equations

∂ log(L)
∂µ

= ν + 1
σ4

N∑
i=1

zi − µ

ν +
(

zi−µ
σ

)2 = 0, (E.4)

∂ log(L)
∂σ2 = 1

σ2 + ν + 1
σ4

N∑
i=1

(zi − µ)2

ν +
(

zi−µ
σ

)2 = 0, (E.5)

∂ log(L)
∂ν

= ϕ

(
ν

2

)
− ϕ

(
ν + 1

2

)
+

N∑
i=1

 ν + 1

ν +
(

zi−µ
σ

)2 − log

 ν + 1

ν +
(

zi−µ
σ

)2

− 1

 = 0,

(E.6)

where ϕ(x) = ψ(x) − log(x), x > 0, and the digamma function ψ(x) is given by:

ψ(x) = d

dx
log [Γ(x)] = Γ′(x)

Γ(x) . (E.7)

As each parameter depends on the other two, the MLEs of µ, σ2, ν cannot be computed
directly. However, it is well known that the Student distribution can be represented by an
infinite mixture of Gaussian distributions:

zi|vi ∼ N
(
µ,
σ2

vi

)
, vi ∼ G

(
ν

2 ,
2
ν

)
, (E.8)

where G(a, b) denotes a gamma distribution with parameters a and b. The joint PDF of
z = [z1, · · · , zN ]T and v = [v1, · · · , vN ]T , referred to as complete likelihood, is expressed
as:

Lc(z,v) =
N∏

i=1

1√
2πσ2

(
ν
2
)ν/2

Γ
(

ν
2
) v ν+1

2 −1
i exp

(
−vi

2

(
ν +

(
zi − µ

σ2

)2
))

, (E.9)

Marginalizing the complete likelihood with respect to v yields the likelihood as described
in (E.1). This representation allows an expectation maximization (EM) algorithm to be
derived [82]. The EM algorithm is based on the so-called complete log-likelihood, which is
the logarithm of the joint distribution of (z,v):

lc(z,v) = Nν

2 log
(
Nν

2

)
−N log Γ

(
ν

2

)
+
(
ν + 1

2 − 1
) N∑

i=1
log vi − N

2 log(2π) (E.10)

−N

2 log
(
σ2
)

− 1
2

N∑
i=1

vi

[
ν + (zi − µ)2

σ2

]
. (E.11)

After an initialization of the unknown parameters, the EM alternates between Expectation
(E) and Maximization (M) steps:



E.1. MAXIMUM LIKELIHOOD ESTIMATOR - STUDENT’S T-DISTRIBUTION 137

• Initialization: The location and scale parameters are initialized with the Gaussian
MLEs and the number of degrees of freedom is chosen to be small because that will
help minimize the number of iterations in case there is an anomaly:

µ̂0 = 1
N

N∑
i=1

zi, (E.12)

σ̂2
0 = 1

N − 1

N∑
i=1

(zi − µ̂0)2, (E.13)

ν̂0 = 3. (E.14)

• E Step: At iteration k, given θ̂k−1 =
(
µ̂k−1, σ̂

2
k−1, ν̂k−1

)T
, the E step computes the

expectation of lc(z,v) with respect to the variables vi, which requires the following
computations

ui,k = E[vi|zi, θ̂k−1] = ν̂k−1 + 1
ν̂k−1 + (zi−µ̂k−1)2

σ̂2
k−1

, (E.15)

wi,k = E[log(vi)|zi, θ̂k−1] = ψ

(
ν̂k−1 + 1

2

)
− log

(
1
2

(
ν̂k−1 + (zi − µ̂k−1)2

σ̂2
k−1

))
,

(E.16)

and leads to the objective function Q

Q(θ; θ̂k) = Nν

2 log
(
Nν

2

)
−N log Γ

(
ν

2

)
+
(
ν + 1

2 − 1
) N∑

i=1
wi,k − N

2 log(2π)

(E.17)

−N

2 log
(
σ2
)

− 1
2

N∑
i=1

ui,k

[
ν + (zi − µ)2

σ2

]
. (E.18)

• M Step: At iteration k, the M Step maximizes the Q function with respect to the
parameters µ, σ2, ν, which yields

µ̂k =
∑N

i=1 ui,kzi∑N
i=1 ui,k

, (E.19)

σ̂2
k =

∑N
i=1 ui,k(zi − µ̂k)2

N
, (E.20)

Nϕ

(
ν̂k

2

)
+

N∑
i=1

[ui,k − wi,k − 1] = 0. (E.21)
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The terms ui,k act as weights in the estimate of the location and scale parameters. These
weights take small values for samples that are far from the estimated mean and are approx-
imately equal if the degrees of freedom are large, reducing the estimator to the classical
sample mean and variance or MLEs for the parameters of a Gaussian distribution. By
assigning lower values to outliers the weighted average is able to mitigate the effects of
anomalies.

The solution to (E.21) is obtained through the application of Newton’s method, which
converges to a solution after few iterations. Consider the solution to (E.21) is the root of
the function f(x), then Newton’s method allows us to iteratively approximate that root
by the following

xn+1 = xn − f(xn)
f ′(xn) , (E.22)

where the initial guess can be the previous estimate of the number of degrees of freedom,
x0 = ν̂k−1(t). The above is repeated until reaching a maximum number of iterations
or a minimum difference between consecutive approximations is reached. Once the er-
ror between consecutive estimates has reached the chosen minimum, the estimators have
converged.

E.2 Maximum Likelihood Estimation - Bimodal Gaussian
Mixture

Assuming the Bimodal Gaussian Mixture distribution is used to model contaminated data
with proportion of anomalous data ε and variance scaling factor k, the likelihood function
is:

L(z;θ) =
N∏

i=1
p(zi;θ)

L(z;θ) =
N∏

i=1

1 − ε√
2πσ2

exp
(

−1
2

(
zi − µ

σ

)2
)

+ ε√
2πkσ2

exp
(

− 1
2k

(
zi − µ

σ

)2
)
, (E.23)

with z = (z1, ..., zN )T and θ = [µ, σ2, ε, k]T . To simplify the expression of the PDF
and furthermore simplify the following derivations, the PDF is rewritten such that the
exponentials are presented by two sub-functions g0(zi;η0) and g1(zi;η1)

L(z;θ) =
N∏

i=1
(1 − ε)g0(zi;η0) + εg1(zi;η1), (E.24)

where each of the sub-functions g0 and g1 is the PDF of an equivalent Gaussian distribution
and their respective reduced parameter vectors are η0 = [µ, σ2]T and η1 = [µ, σ2, k]T . The
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MLE for the parameters defining the BGM are the respective values that maximize the
likelihood (E.1) for a given sample z:

θ̂ =
[
µ̂, σ̂2, ε̂, k̂

]T
= arg max

θ
{L(z;θ)}. (E.25)

The log-likelihood is maximized instead of the likelihood function, which still results in the
appropriate MLE for each parameter

log (L(z;θ)) =
N∑

i=1
log [(1 − ε)g0(zi;η0) + εg1(zi;η1)] . (E.26)

In the case of the univariate BGM, the MLE of the location parameter is the solution to
the following equation

∂ log (L(z;θ))
∂µ

=
N∑

i=1

1
L(zi;θ)

[
(1 − ε)∂g0(zi;η0)

∂µ
+ ε

∂g1(zi;η1)
∂µ

]
= 0, (E.27)

with the derivatives of the sub-functions
∂g0(zi;η0)

∂µ
=
(
zi − µ

σ2

)
g0(zi;η0), (E.28)

∂g1(zi;η1)
∂µ

=
(
zi − µ

σ2

)
g1(zi;η1)

k
, (E.29)

so the equation for the MLE of the mean becomes

∂ log (L(z;θ))
∂µ

=
N∑

i=1

(
zi−µ

σ2

)
L(zi;θ)

[
(1 − ε)g0(zi;η0) + ε

k
g1(zi;η1)

]
= 0. (E.30)

The above expression does not have a closed form expression for µ that does not depend
on the other parameters. It can similarly be shown that the estimators for the other
parameters will also depend on the mean. Due to this interdependence of the estimators,
the method of Expectation Maximization (EM) is required to iteratively estimate each
parameter until converging to an approximation of the MLE.

To define the EM algorithm, latent variables must be introduced that allow a complete
likelihood function to be defined. Since there are two modes of the BGM, one linked to
normal data and the other linked to anomalous data, a latent variable γi is introduced as
an outlier label for each sample so can take two possible values with known probabilities.
The latent variable is then a Bernoulli random variable

γi ∼ B(1, ε), (E.31)

where the two possible labels are γi = 0 for normal data and γi = 1 for anomalous
data. The probability that either label is assigned to the latent variable is linked to the
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contamination proportion L(γi = 0) = 1−ε and L(γi = 1) = ε. The conditional probability
for the samples zi given a certain label is linked to the sub-functions expressed above

L(zi|γi = l) = gl(zi;ηl), (E.32)

i.e., the samples labeled as normal data will effectively be samples of the nominal Gaussian
mode g0(zi;η0) and the anomalies come from the contaminating Gaussian mode g1(zi;η1).
The joint PDF of z = [z1, · · · , zN ]T and γ = [γ1, · · · , γN ]T , referred to as complete likeli-
hood, is expressed as:

Lc(z,γ) = εNa(1 − ε)N−Na

N∏
i=1

g0(zi,η0)1−γig1(zi,η1)γi , (E.33)

where Na = ∑N
i=1 γi is the number of samples that have been labeled as anomalous. The

EM algorithm is based on the so-called complete log-likelihood, which is the logarithm of
the joint distribution of (z,γ):

lc(z,γ) = Na log(ε) + (N −Na) log(1 − ε) (E.34)

+
N∑

i=1
(1 − γi) log (g0(zi,η0)) +

N∑
i=1

γi log (g1(zi,η1)) . (E.35)

After an initialization of the unknown parameters, the EM alternates between Expectation
(E) and Maximization (M) steps:

• Initialization: The location and scale parameters are initialized with the Gaussian
MLEs and the number of degrees of freedom is chosen to be small because that will
help minimize the number of iterations in case there is an anomaly:

µ̂0 = 1
N

N∑
i=1

zi, (E.36)

σ̂2
0 = 1

N − 1

N∑
i=1

(zi − µ̂0)2, (E.37)

ε̂0 = 0.01, (E.38)
k̂0 = 1.5. (E.39)

• E Step: At iteration j, given θ̂j−1 =
(
µ̂j−1, σ̂

2
j−1, ε̂k−1, k̂j−1

)T
, the E step computes

the expectation of lc(z,γ) with respect to the variables γi, and leads to the objective
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function Q

Q(θ; θ̂j) = E[lc(z,γ)|z, θ̂j−1] = log(ε)
N∑

i=1
E
[
γi|z, θ̂j−1

]
+N log(1 − ε)

− log(1 − ε)
N∑

i=1
E
[
γi|z, θ̂j−1

]
+

N∑
i=1

log (g0(zi;η0))

+
N∑

i=1
E
[
γi|z, θ̂j−1

] (
log

(
g1(zi;η1)
g0(zi;η0)

))
(E.40)

The objective function requires some estimation of the latent variable in the form of
it’s expected value given the measurements zi and previous estimates of the parame-
ters of interest θ̂j−1. For a Bernoulli random variable it is known that the expectation
is equivalent to the probability of of success, in this case, the likelihood of an outlier

ui,j = E[γi|zi, θ̂j−1] = L(γi = 1|zi) = L(γi = 1)L(zi, θ̂j−1|γi = 1)
L(zi; θ̂j−1)

, (E.41)

ui,j = ε̂j−1g1(zi; η̂1,j−1)
(1 − ε̂j−1)g0(zi; η̂0,j−1) + ε̂j−1g1(zi; η̂1,j−1) , (E.42)

where the estimated reduced parameter vectors are η̂0,j−1 = [µ̂j−1, σ̂
2
j−1]T and η̂1,j−1 =

[µ̂j−1, σ̂
2
j−1, k̂j−1]T . The term computed above provides a sort of normalized proba-

bility of an outlier occurring, i.e., ui,j is large if the likelihood of sample i being an
outlier is close to the total likelihood of that observation according to the BGM. The
objective function is updated to include the expectation of the latent variable and
written in terms of the parameters to be estimated

Q(θ; θ̂j) = log(ε)
N∑

i=1
ui,j +N log(1 − ε) − log(1 − ε)

N∑
i=1

ui,j

− N

2 log(2πσ2) − 1
2

N∑
i=1

(zi − µ)2

σ2 − log(k)
2

N∑
i=1

ui,j

+ 1
2

N∑
i=1

ui,j
(zi − µ)2

σ2 − 1
2k

N∑
i=1

ui,j
(zi − µ)2

σ2 (E.43)

• M Step: At iteration k, the M Step maximizes the Q function with respect to the
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parameters µ, σ2, ε, k, which yields

µ̂j =
∑N

i=1wi,jzi∑N
i=1wi,j

, (E.44)

σ̂2
j =

∑N
i=1wi,j(zi − µ̂k)2

N − 1 , (E.45)

ε̂j =
∑N

i=1 ui,j

N
, (E.46)

k̂j =
∑N

i=1 ui,j(zi − µ̂j)2

σ̂2
j

∑N
i=1 ui,j

. (E.47)

The weights used to estimate the location and scale parameters are

wi,j = 1 − ui,j + ui,j

k̂j−1
, (E.48)

which can be understood as the normalized probability that a sample is nominal (1 − ui,j)
summed with the normalized probability of the sample being an anomaly divided by the
scaling factor of the anomalous variance (ui,j

k ). For anomalous data, ui,j is large as well
as k. Therefore the weights wi,j decrease proportionally with the scaling factor of the
contaminating variance and are small for anomalous samples. This results in a robust
estimate of the mean and nominal variance of the BGM.

The iterative EM steps are repeated until the error between consecutive estimates re-
duces below a chosen threshold or a maximum number of iterations has occurred. By
appropriately initializing the estimates, the number of iterations should remain low. Nev-
ertheless the presence of anomalies complicates the difference between the initial estimates
and true parameters so computational limitations should be considered when applying EM
algorithms defined for different distributions.



Appendix F

Bound Derivations

F.1 Derivation of pseudo-true parameters.

The pseudo-true parameters θ̃ = [µ̃, σ̃2]T are the parameters of the assumed distribution
that minimize the KLD from the true distribution

θ̃ = arg min
θ

{DKL} = arg min
θ

{
Ep

[
log

(
p(z;η)
q(z;θ)

)]}
, (F.1)

where p(z;η) represents the true distribution of the data and can be replaced by either
pt(z;µt, σ

2
t , ν) or pGM(z;µ, σ2, k, ε). The choice of the true distribution is based on how

anomalies can appear in the observations. The cost function for finding the pseudo-true
parameters is simplified to only include the parameters of the Gaussian distribution:

θ̃ = arg min
θ

{−Ep [log (q(z;θ))]} . (F.2)

Substituting the log-likelihood function for the Gaussian distribution leads to:

−Ep [log (q(z;θ))] = N

2 Ep

[
log

(
2πσ2

G

)]
(F.3)

+ 1
2

N∑
i=1

Ep

[(
zi − µG

σG

)2
]
. (F.4)

We then expand the quadratic function of z to separate the misspecified parameters µG

and σ2
G from the expectation

−Ep [log (q(z;θ))] = N

2 log
(
2πσ2

G

)
+ 1

2σ2
G

(
N∑

i=1
Ep

[
z2

i

]
− 2µG

N∑
i=1

Ep[zi] +Nµ2
G

)
. (F.5)

143
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The mean and variance of a random variable that follows the Student’s t-distribution are
known to be:

Ept [z] = µt, var(z) = Ept [z2
i ] − Ept [zi]2 = σ2

t

ν

ν − 2 .

Similarly, the moments of the BGM model are known. The expectation of the BGM can
be written as a linear combination of the expectations with respect to each of the modes.
Using the BGM PDF

pGM(z;µ, σ, k, ε) = (1 − ε)g1(z;µ, σ2) + εg2(z;µ, kσ2), (F.6)
where g1(z;µ, σ2) and g2(z;µ, kσ2) are the PDFs of the corresponding Gaussian distribu-
tions, the expected values can be evaluated as follows

EpGM [zi] = (1 − ε)Eg1 [zi] + εEg2 [zi] , (F.7)
EpGM [zi] = µ, (F.8)

EpGM

[
z2

i

]
= (1 − ε)Eg1

[
z2

i

]
+ εEg2

[
z2

i

]
, (F.9)

EpGM

[
z2

i

]
= (1 − ε+ εk)σ2 + µ2 = var(z) + EpGM [z]2. (F.10)

The objective function to be optimized becomes:

− Ep [log (q(z;θ))] = N

2 log
(
2πσ2

G

)
+ 1

2σ2
G

(
N∑

i=1
var(zi) +

N∑
i=1

Ep [zi]2 − 2µG

N∑
i=1

Ep[zi] +Nµ2
G

)
, (F.11)

which can be further simplified to make it easier to obtain a generalized result for the
pseudo-true parameter µpt:

−Ep [log (q(z;θ))] = N

2 log
(
2πσ2

G

)
+ N

2σ2
G

(
var(zi) + (Ep[zi] − µG)2

)
. (F.12)

The value of µG that minimizes the above cost function is obtained when µG = Ep [z].
Therefore,

µ̃ = Ep [z] , (F.13)
where the true distribution determines whether the pseudo-true location parameter co-
incides with the true parameter. As was shown above, random variables following the
Student’s t-distribution and the BGM both have a simple expression for the expected
value. For the pseudo-true scale parameter, the following result is obtained:

− ∂

∂σ2
G

Ep [log (q(z;θ))] = N

2σ2
G

(F.14)

− N

2(σ2
G)2

(
var(zi) + (Ep[zi] − µG)2

)
. (F.15)
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Substituting the pseudo-true parameter for µG, one obtains:

Nσ2
G

2 − N

2 var(z) = 0. (F.16)

The resulting pseudo-true parameter is the sample variance of the Student’s t-distribution:

σ̃2 = varpt(z), (F.17)

where the subscript pt specifies the variance of the true distribution of the data. With the
above result, we can conclude that the mean and variance of the Student’s t-distribution
are the pseudo-true parameters that minimize the KLD between a Gaussian distribution
and a Student’s t-distribution

µ̃t = µt, (F.18)

σ̃2
t = σ2

t

ν

ν − 2 . (F.19)

The same is true for the BGM with the variance being a linear combination of the variances
of two Gaussian modes because each mode has the same mean.

µ̃GM = µ, (F.20)
σ̃2

GM = σ2 ((k − 1)ε+ 1) . (F.21)

F.2 Deriving Matrices A and B

The log-likelihood function of N i.i.d. Gaussian random variables in z = (z1, · · · , zN )T is:

log(q(z;θ)) = −N

2 log(2π) − N

2 log(σ2
G) − 1

2

N∑
i=1

(
zi − µG

σG

)2
. (F.22)

Instead of using the joint PDF, we take advantage of the linearity of derivatives and
expectations to compute A and B using the marginal PDF for a single sample:

log(q(zi;θ)) = −1
2 log(2π) − 1

2 log(σ2
G) − 1

2

(
zi − µG

σG

)2
. (F.23)

The equation for the MCRB then takes into account the N i.i.d. random variables. Com-
puting the Hessian with respect to the parameter vector θ = [µG, σ

2
G] provides all the terms
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required to compute the required matrices:

A =

A1,1 A1,2

A2,1 A2,2

 =
(
Ep

[
∂2 log(q(zi;θ))

∂θ∂θT

])
θ=θ̃p

, (F.24)

=

Ep


∂2 log(q(zi;θ))

∂µ2
G

∂2 log(q(zi;θ))
∂µG∂σ2

G

∂2 log(q(zi;θ))
∂σ2

G∂µG

∂2 log(q(zi;θ))
∂(σ2

G)2




θ=θ̃p

. (F.25)

Straightforward computations lead to:

∂ log(q(zi;θ))
∂µG

= zi − µG

σ2
G

, (F.26)

∂2 log(q(zi;θ))
∂µ2

G

= − 1
σ2

G

, (F.27)

∂2 log(q(zi;θ))
∂µG∂σ2

G

= −zi − µG

(σ2
G)2 , (F.28)

∂ log(q(zi;θ))
∂σ2

G

= − 1
2σ2

G

+ 1
2

(zi − µG)2

(σ2
G)2 , (F.29)

∂2 log(q(zi;θ))
∂(σ2

G)2 = 1
2(σ2

G)2 − 1
(σ2

G)2

(
zi − µG

σG

)2
, (F.30)

∂2 log(q(zi;θ))
∂σ2

G∂µG
= −zi − µG

(σ2
G)2 . (F.31)

We follow a similar process to Appendix F.1 to find the expectations of the above expres-
sions. Substituting the pseudo-true values µG = µ̃p, σ2

G = σ̃2
p yields:

A1,1 =
(
Ep

[
∂2 log(q(zi;θ))

∂µ2
G

])
θ=θ̃p

= − (varp(zi))−1 , (F.32)

A1,2 =
(
Ep

[
∂2 log(q(zi;θ))

∂µG∂σ2
G

])
θ=θ̃p

= 0, (F.33)

A2,2 =
(
Ep

[
∂2 log(q(zi;θ))

∂(σ2
G)2

])
θ=θ̃p

= −1
2 (varp(zi))−2 , (F.34)

A2,1 =
(
Ep

[
∂2 log(q(zi;θ))

∂σ2
G∂µG

])
θ=θ̃p

= 0. (F.35)
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where the term A2,2 has been computed using Ep

[(
zi−µG

σG

)2
]

from Appendix F.1:

(
Ep

[(
zi − µG

σG

)2
])

θ=θ̃p

=
(
varp(zi) + (Ep[zi] − Ep[zi])2)

varp(zi)
= 1. (F.36)

This provides all expressions necessary for A:

A(θ̃p) =

− (varp(zi))−1 0

0 −1
2 (varp(zi))−2

 . (F.37)

The elements of B can be computed using the following derivatives:

∂ log(q(zi;θ))
∂µG

∂ log(q(zi;θ))
∂µG

=
(
zi − µG

σ2
G

)2

, (F.38)

∂ log(q(zi;θ))
∂µG

∂ log(q(zi;θ))
∂σ2

G

=(
zi − µG

σ2
G

)(
− 1

2σ2
G

+ 1
2

(zi − µG)2

(σ2
G)2

)
, (F.39)

∂ log(q(zi;θ))
∂σ2

G

∂ log(q(zi;θ))
∂σ2

G

=
(

− 1
2σ2

G

+ 1
2

(zi − µG)2

(σ2
G)2

)2

, (F.40)

hence

B =
(
Ep

[(
∂ log(q(zi;θ))

∂θ

)(
∂ log(q(zi;θ))

∂θT

)])
θ=θ̃p

(F.41)

=

B1,1 B1,2

B2,1 B2,2

 . (F.42)

The expectation of B1,1 is computed using (F.36):

Ep

[
∂ log(q(zi;θ))

∂µG

∂ log(q(zi;θ))
∂µG

]
= 1
σ2

G

Ep

[(
zi − µG

σG

)2
]
. (F.43)

Substituting the pseudo-true values and using (F.36) leads to:

B1,1 = (varp(zi))−1 . (F.44)
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The terms B1,2 and B2,1 are:

B1,2 = B2,1 = −1
2

(
Ep

[
zi − µG

(σ2
G)3

])
θ=θ̃p

+
(

1
2σ3

G

Ep

[(
zi − µG

σG

)(
zi − µG

σG

)2
])

θ=θ̃p

, (F.45)

B1,2 =
(

1
2σ3

G

Ep

[(
zi − µG

σG

)3
])

θ=θ̃p

. (F.46)

The third-order moment as described above is zero for a symmetric distribution around
the value µG. However, the true distribution p is symmetric around Ep[zi], so we have to
change the expression

B1,2 =
(

1
2(σ2

G)3Ep

[
((zi − Ep[zi]) + (Ep[zi] − µG))3

])
θ=θ̃p

. (F.47)

Expanding the cubic function, one has:

B1,2 =
(

1
2(σ2

G)3Ep

[
(z − Ep[zi])3

])
θ=θ̃p

+
(

3(Ep[zi] − µG)
2(σ2

G)3 Ep

[
(zi − Ep[zi])2

])
θ=θ̃p

+
(

3(Ep[zi] − µG)2

2(σ2
G)3 Ep [(zi − Ep[zi])]

)
θ=θ̃p

+
(

(Ep[zi] − µG)3

2(σ2
G)3

)
θ=θ̃p

. (F.48)

Substituting the pseudo-true parameter for the mean µG = Ep[zi] yields:

B1,2 = B2,1 =
(

1
2(σ2

G)3Ep

[
(zi − Ep[zi])3

])
σ2

G=σ̃2
p

. (F.49)

The above expectation is zero because we are now taking the third-order moment of a sym-
metric distribution around its mean, Ep[zi]. Therefore, for the true symmetric distributions
considered, the off-diagonal elements of B are:

B1,2 = B2,1 = 0. (F.50)
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Next, we expand the expression for B2,2 and substitute the pseudo-true parameters

B2,2 = Ep

 1
4(σ̃2

p)2 − 1
2σ̃2

p

(zi − µ̃p)2

(σ̃2
p)2 + 1

4

(
(zi − µ̃p)2

(σ̃2
p)2

)2
 , (F.51)

then, factoring the constant terms

B2,2 = 1
4(σ̃2

p)2 −
(

1
2(σ2

G)3Ep

[
(zi − µG)2

])
θ=θ̃p

+
(

1
4(σ2

G)4Ep

[
(zi − µG)4

])
θ=θ̃p

. (F.52)

Again, we use the result of (F.36) and the independence of each zi to further simplify

B2,2 = 1
4(σ̃2

p)2 − 1
2(σ̃2

p)2 +
(

1
4(σ2

G)4Ep

[
(zi − µG)4

])
θ=θ̃p

. (F.53)

Expanding the 4th-order polynomial so it is presented in terms of the parameters of a
Student’s t-distribution:

Ep

[
(zi − µG)4

]
= Ep

[
((zi − Ep[zi]) + (Ep[zi] − µG))4

]
(F.54)

Ep

[
(zi − µG)4

]
= Ep

[
(zi − Ep[zi])4

]
+ 4(Ep[zi] − µG)Ep

[
(zi − µt)3

]
+ 6(Ep[zi] − µG)2Ep

[
(zi − Ep[zi])2

]
+ 4(Ep[zi] − µG)3Ep [zi − Ep[zi]] + (Ep[zi] − µG)4. (F.55)

Again, substituting the pseudo-true value of the location parameter simplifies all terms
that contain Ep[zi] − µG = Ep[zi] − µ̃p = 0 for the true distributions investigated. The
expression then becomes:

B2,2 =
(

− 1
4(σ2

G)2 + 1
4(σ2

G)4Ep

[
(zi − Ep[zi])4

])
θ=θ̃p

. (F.56)

For the final element of the B matrix, the fourth-order central moment of the true distribu-
tion should be evaluated. The expression will differ depending on the specific distribution
that truly describes the data so the B matrix is split based on the true distribution. The
fourth-order central moment is known for the Student’s t-distribution [83]:(

Ept

[
(zi − µt)4

])
θ=θ̃p

= 3ν2

(ν − 2)(ν − 4)(σ2
t )2, (F.57)
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We substitute the above results into the expression for B2,2 to give the result for the
misspecified scenario with the two possible true models. The first result being for the
Student’s t-distribution

B2,2(pt||q) = − 1
4(σ̃2

pt
)2 +

(
σ2

t
ν

ν−2

)2

4(σ̃2
pt

)4
3(ν − 2)
(ν − 4) , (F.58)

and simplify,

B2,2(pt||q) = −1
4

(
σ2

t

ν

ν − 2

)−2
+ 3(ν − 2)

4(ν − 4)

(
σ2

t

ν

ν − 2

)−2
. (F.59)

Therefore, we obtain the following matrix:

B(pt||q) =


(
σ2

t
ν

ν−2

)−1
0

0
(

3(ν−2)
4(ν−4) − 1

4

) (
σ2

t
ν

ν−2

)−2

 . (F.60)

For conciseness, we can write both A and B in terms of the pseudo-true scale parameter,
which we know to be the variance of the true distribution, in this case being the Student’s
t-distribution

A =

−
(
σ̃2

p

)−1
0

0 −1
2

(
σ̃2

p

)−2

 , (F.61)

B(pt||q) =


(
σ̃2

p

)−1
0

0
(

ν−1
2(ν−4)

) (
σ̃2

pt

)−2

 . (F.62)

All terms are the same in both A and B for any other type of true distribution when
considering the Gaussian model. The only term that varies so far is B2,2, which depends
on the true distribution. For the BGM, the last term should be derived separately. The
expression for the fourth-order central moment can be simplified as a linear combination
of the fourth-order moments for each of the modes(

EpGM

[
(zi − EpGM [zi])4

])
θ=θ̃p

= (1 − ε)
(
Eg1

[
(zi − µ)4

])
θ=θ̃

+ ε
(
Eg2

[
(zi − µ)4

])
θ=θ̃

. (F.63)

The fourth-order moment for a Gaussian distribution is also already established, so for the
distributions g1(zi;µ, σ2) and g2(zi;µ, kσ2) are:

Eg1

[
(zi − µ)4

]
= 3σ4, (F.64)

Eg2

[
(zi − µ)4

]
= 3k2σ4. (F.65)
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Leading to the resulting central moment for the BGM(
EpGM

[
(zi − EpGM [zi])4

])
θ=θ̃p

= 3(1 − ε)σ4 + 3εk2σ4 = 3σ4((k2 − 1)ε+ 1). (F.66)
The above is substituted into (F.56) and allows us to evaluate the last term of the corre-
sponding matrix

B2,2(pGM ||q) = − 1
4(σ̃2

pGM
)2 + 1

4(σ̃2
pGM

)4 3σ4((k2 − 1)ε+ 1), (F.67)

with significant simplifications after substituting the pseudo-true parameter for dispersion:

B2,2(pGM ||q) = −ε2(k − 1)2 + ε(k − 1)(3k + 1) + 2
4σ4(ε(k − 1) + 1)4 . (F.68)

To reduce the size of the following expressions, the term ϕ(ε, k) = ε(k − 1) is defined and
the numerator of B2,2(pGM ||q) is denoted as the quadratic function of that term, i.e.,

Q(ϕ(ε, k)) = −ε2(k − 1)2 + ε(k − 1)(3k + 1) + 2. (F.69)
The matrix B(pGM ||q) is then written as:

B(pGM ||q) =


(
σ̃2

p

)−1
0

0 Q(ϕ)
4(ϕ+1)2

(
σ̃2

pGM

)−2

 . (F.70)

F.3 MCRB computation

The final computation of the MCRB is a simple matrix multiplication, where the inverse
of A is trivial

MCRBθ(p||q) = 1
N

A−1B(p||q)A−1. (F.71)

For the same misspecified assumption of a Gaussian distribution for the data, only the
term B varies according to the true distribution. First the misspecified bound where the
true data follows a Student’s t-distribution is shown in (F.73) and the MCRB for the case
where the true distribution is a BGM is then shown in (F.75).

MCRBθ(pt||q)

= 1
N

−σ̃2
pt

0

0 −2
(
σ̃2

pt

)2



(
σ̃2

pt

)−1
0

0
(

ν−1
2(ν−4)

) (
σ̃2

pt

)−2


−σ̃2

pt
0

0 −2
(
σ̃2

pt

)2

 , (F.72)

= 1
N

σ̃2
pt

0

0
(

2(ν−1)
(ν−4)

) (
σ̃2

pt

)2

 , (F.73)



152 APPENDIX F. BOUND DERIVATIONS

MCRBθ(pGM ||q)

= 1
N

−σ̃2
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Titre : Algorithme d'échelle de temps autonome et robuste pour un essaim de nanosatellites
Mots clés : Es�ma�on robuste, Echelles de temps, Détec�on des anomalies, Traitement de signal, Transfert de temps et fréquence, Bornes
malspecifiées
Résumé : Un nouvel algorithme est proposé et validé pour générer une échelle de temps robuste. Prévu pour une u�lisa�on dans un essaim de
nanosatellites, l'Autonomous Time Scale using the Student's T-distribu�on (ATST) peut traiter les anomalies subies par les horloges et les liens
inter-satellites dans un environnement hos�le. Les types d'anomalies traités incluent les sauts de phase, les sauts de fréquence, un bruit de
mesure élevé dans certains liens et les données manquantes. En prenant la moyenne pondérée des résidus contenus dans l'équa�on de l'échelle
de temps de base (BTSE), la contribu�on des satellites avec des mesures anormales est réduite pour la généra�on de l'échelle de temps. Les
poids a�ribués à chaque horloge sont basés sur l'hypothèse que les résidus suivent la loi de Student. 

 La performance de l'algorithme ATST est équivalente à celle de l'algorithme AT1 oracle, qui est une version de l'échelle de temps AT1 avec la
capacité de détecter parfaitement toutes les anomalies dans des données simulées. Bien que l'algorithme n'ait pas de méthode de détec�on
explicite, l'ATST affiche toujours un niveau de robustesse comparable à celui d'un détecteur parfait. Cependant, l'ATST est conçu pour un essaim
avec de nombreuses horloges de types homogènes et est limité par une complexité numérique élevée. De plus, les anomalies sont toutes
traitées de la même manière sans dis�nc�on entre les différents types d'anomalies. Malgré ces limita�ons iden�fiées, le nouvel algorithme
représente une contribu�on prome�euse dans le domaine des échelles de temps grâce à la robustesse a�einte. 

 Une méthode de traitement des horloges ajoutées ou re�rées de l'ensemble est également proposée dans ce�e thèse en conjonc�on avec
l'ATST. Ce�e méthode préserve la con�nuité de phase et de fréquence de l'échelle de temps en a�ribuant un poids nul aux horloges per�nentes
lorsque le nombre total d'horloges est modifié. Un es�mateur des moindres carrés (Least Squares, LS) est présenté pour montrer comment les
mesures des liens inter-satellites peuvent être traitées en amont pour réduire le bruit de mesure et en même temps remplacer les mesures
manquantes. L'es�mateur LS peut être u�lisé avec une méthode de détec�on qui élimine les mesures anormales, puis l'es�mateur LS remplace
les mesures supprimées par les es�ma�ons correspondantes. 

 Ce�e thèse examine également l'es�ma�on op�male de l'es�mateur du maximum de vraisemblance (MLE) pour les paramètres des lois de
probabilités à queues lourdes : précisément la loi de Student et la loi des mélanges gaussiens. Les améliora�ons obtenues en supposant
correctement ces lois par rapport à l'hypothèse de la loi gaussienne sont démontrées avec les bornes de Cramér-Rao mal spécifiées (MCRB). Le
MCRB dérivé confirme que les lois à queues lourdes sont meilleures pour l'es�ma�on de la moyenne en présence de valeurs aberrantes.
L'es�ma�on des paramètres des lois à queues lourdes nécessite au moins 25 horloges pour obtenir l'erreur minimale, c'est-à-dire que
l'es�mateur a�eigne l'efficacité asympto�que. Ce�e méthodologie pourra nous aider à analyser d'autres types d'anomalies suivant des lois
différentes. 

 Des proposi�ons pour des pistes de recherche futures incluent le traitement des limita�ons de l'algorithme ATST concernant les types et le
nombre d'horloges. Une nouvelle moyenne pour a�ribuer les poids en u�lisant le machine learning est envisageable grâce à la compréhension
des résidus du BTSE. Les anomalies transitoires peuvent être mieux traitées par le machine learning ou même avec un es�mateur robuste de la
fréquence des horloges sur une fenêtre de données passées. Cela est intéressant à explorer et à comparer à l'algorithme ATST, qui est proposé
pour des anomalies instantanées.

Title: Autonomous and robust �me scale algorithm for a swarm of nanosatellites
Key words: Robust es�ma�on, Time scales, Anomaly detec�on, Signal processing, Time and frequency transfer, Misspecified bounds
Abstract: A new robust �me scale algorithm, the Autonomous Time scale using the Student's T-distribu�on (ATST), has been proposed and
validated using simulated clock data. Designed for use in a nanosatellite swarm, ATST addresses phase jumps, frequency jumps, anomalous
measurement noise, and missing data by making a weighted average of the residuals contained in the Basic Time Scale Equa�on (BTSE). The
weights come from an es�mator that assumes the BTSE residuals are modeled by a Student's t-distribu�on. 

 Despite not detec�ng anomalies explicitly, the ATST algorithm performs similarly to a version of the AT1 �me scale that detects anomalies
perfectly in simulated data. However, ATST is best for homogeneous clock types, requires a high number of clocks, adds computa�onal
complexity, and cannot necessarily differen�ate anomaly types. Despite these iden�fied limita�ons the robustness achieved is a promising
contribu�on to the field of �me scale algorithms. 

 The implementa�on of ATST includes a method that maintains phase and frequency con�nuity when clocks are removed or reintroduced into
the ensemble by rese�ng appropriate clock weights to zero. A Least Squares (LS) es�mator is also presented to pre-process inter-satellite
measurements, reducing noise and es�ma�ng missing data. The LS es�mator is also compa�ble with anomaly detec�on which removes
anomalous inter-satellite measurements because it can replace the removed measurements with their es�mates. 

 The thesis also explores op�mal es�ma�on of parameters of two heavy-tailed distribu�ons: the Student's t and Bimodal Gaussian mixture. The
Misspecified Cramér Rao Bound (MCRB) confirms that assuming heavy-tailed distribu�ons handles outliers be�er compared to assuming a
Gaussian distribu�on. We also observe that at least 25 clocks are required for asympto�c efficiency when es�ma�ng the mean of the clock
residuals. The methodology also aids in analyzing other anomaly types fi�ng different distribu�ons. 

 Future research proposals include addressing ATST's limita�ons with diverse clock types, mi�ga�ng performance loss with fewer clocks, and
exploring robust �me scale genera�on using machine learning to weight BTSE residuals. Transient anomalies can be targeted using machine
learning or even a similar method of robust es�ma�on of clock frequencies over a window of past data. This is interes�ng to research and
compare to the ATST algorithm that is instead proposed for instantaneous anomalies.


	Résumé
	Abstract
	Context
	Space-based Radio Interferometry
	Clock technologies
	Standardized Time
	Clock noises

	Satellite-based Clock technologies
	Requirements
	Anomalies in space


	Time Scales
	Coordinated Universal Time
	Basic Time Scale Equation
	Kalman Filter Composite Clock
	Measurements
	Predictions
	Weights
	Anomaly detection for KF time scales
	Robust Estimation for known anomalies

	AT1
	Measurements
	Predictions
	BTSE Residuals
	Weights
	AT1 Phase jump detection
	AT2 Frequency jump detection
	Oracle detection


	A New Robust Time ScaleAlgorithm
	Anomalous Clocks and the Student’s t-distribution
	Clock Measurements
	Clock Predictions
	BTSE Residuals
	Verifying the Student’s t-distribution

	Weights of ATST Time Scale
	Robustness of ATST time scale
	Simulated data
	Metrics
	Measurement Noise
	Results in presence of anomalies

	Missing data
	Measurement noise
	Noise and anomaly mitigation with Missing measurements
	Removal of Missing clocks
	Reintroduction of Missing clocks

	Summary

	Estimation Performance Limits
	Statistical models
	Cramér Rao Bounds
	Misspecified Cramér Rao Bounds
	Analysis of Bounds
	True Distribution: Gaussian
	True Distribution: Student’s t
	True Distribution: Bimodal Gaussian Mixture
	Misspecified Estimation of Scale Parameter

	Bounds for Time Scale analysis

	Future Work
	Combining ATST with AT1
	Machine Learning Weights
	Transient Anomalies
	Robust Frequency Estimation

	Conclusion
	Glossary
	Two-sample Variances and Noises
	Confidence Limits
	Simulation of Satellite Clocks
	Clock Anomaly Magnitudes
	Estimator Derivations
	Maximum Likelihood Estimator - Student’s t-distribution
	Maximum Likelihood Estimation - Bimodal GaussianMixture

	Bound Derivations
	Derivation of pseudo-true parameters.
	Deriving Matrices A and B
	MCRB computation


