
HAL Id: tel-04907812
https://theses.hal.science/tel-04907812v1

Submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Optimal parameters determination for the execution of
MPI applications on parallel architectures

Richard Sartori

To cite this version:
Richard Sartori. Optimal parameters determination for the execution of MPI applications on par-
allel architectures. Artificial Intelligence [cs.AI]. Université de Bordeaux, 2024. English. �NNT :
2024BORD0423�. �tel-04907812�

https://theses.hal.science/tel-04907812v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE

DE MATHÉMATIQUES ET D’INFORMATIQUE

par Richard Sartori

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Détermination de Paramètres Optimaux pour le
Déploiement d’Applications MPI sur Architectures

Parallèles

Date de soutenance : 19 Décembre 2024

Devant la commission d’examen composée de :

M. Guillaume MERCIER . . . . . Maître de conférences, Bordeaux INP Directeur
Mme. Soraya ZERTAL . . . . . . . . Professeur, Université Paris-Saclay . . Rapporteuse
M. Philippe CLAUSS . . . . . . . . . Professeur, Université de Strasbourg . Rapporteur
M. Olivier BEAUMONT . . . . . Directeur de recherche, INRIA . . . . . . Président
Mme. Emmanuelle SAILLARD Chargée de recherche, INRIA . . . . . . . . Examinatrice
M. Patrick CARRIBAULT . . . Directeur de recherche, CEA . . . . . . . . Examinateur

Membres invités :
M. Pierre LEMARINIER . . . . . Product Owner, EVIDEN . . . . . . . . . . . Co-Encadrant
M. Emmanuel JEANNOT . . . . Directeur de recherche, DDN Japan . Co-Encadrant



Contents

Remerciements 7

Résumé en français 9

Abstract 10

Résumé étendu en français 11
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Blackbox Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Squelettonisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Introduction 15
1.1 The HPC context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Evolution of Supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Open MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 An Overview of Open MPI Tuning 21
2.1 Open MPI Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 MCA Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 The tuned Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Performance Discrepancies between Implementations . . . . . . . . 24
2.1.4 The Tuning File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 State of the Art and Related Work . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Brute Force Tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Incremental Tuners using Probing . . . . . . . . . . . . . . . . . . . 29
2.2.4 Black Box Optimization . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Blackbox Optimization 31
3.1 Methodology of BBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Formalization of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 The Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Choice of the Initial Sampling Point . . . . . . . . . . . . . . . . . . 34
3.3.3 Choice of the Next Sampling Point . . . . . . . . . . . . . . . . . . 35

1



Contents

3.3.4 Choice of the Stopping Criterion . . . . . . . . . . . . . . . . . . . 36
3.4 Agnosticism of the blackbox Approach . . . . . . . . . . . . . . . . . . . . 36
3.5 Pre-existing Software used to Produce the Tuning File . . . . . . . . . . . 37

3.5.1 ACCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 ShaMAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 ACCO and ShaMAN Integration to Optimize an MPI Runtime . . . . . . . 38
3.7 Validity of the Bayesian Optimization over Brute Force . . . . . . . . . . . 39

3.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.2 Experiment Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Comparisons between Brute Force and Baysian Optimizations . . . . . . . 42
3.8.1 Execution Time Comparison between Bayesian Optimization and

Brute Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.2 Tuning Time Comparison . . . . . . . . . . . . . . . . . . . . . . . 45
3.8.3 Scalability Study for a Single Collective Operation . . . . . . . . . . 46

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Skeletonization 49
4.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Skeleton Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Communication Pattern . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Communication Variable . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Types of Dependencies between Variables . . . . . . . . . . . . . . . 52
4.2.4 Slicing Criterion and Program Slice . . . . . . . . . . . . . . . . . . 53

4.3 Application Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 A Complete Example (DGEMM) . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 The Top-Down Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 The Bottom-Up Phase . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Automatization with LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 An Implementation with LLVM . . . . . . . . . . . . . . . . . . . . 61

4.5.2.1 A Simple Example of a Pass . . . . . . . . . . . . . . . . . 62
4.5.2.2 A More Detailled Example . . . . . . . . . . . . . . . . . . 64
4.5.2.3 SkeletonPass Preparation . . . . . . . . . . . . . . . . . . 65
4.5.2.4 Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2.5 Variables Status Propagation . . . . . . . . . . . . . . . . 69
4.5.2.6 Removal of Unecessary Variables . . . . . . . . . . . . . . 71
4.5.2.7 The LLVM IR Preparation . . . . . . . . . . . . . . . . . 73
4.5.2.8 Limitations of the Skeletonizer . . . . . . . . . . . . . . . 74

4.6 Tuning Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.1 Workflow of the Tuning Process using Skeletonization . . . . . . . . 77

4.7 Skeletonization Process Validation . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.1 Viability of the Approach . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.3.1 FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3.2 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3.3 CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2 R. Sartori



Contents

4.7.3.4 MiniFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.3.5 Lulesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.3.6 Evaluation of the Skeleton . . . . . . . . . . . . . . . . . . 82

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusion 85
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Benchmarks 89
A.1 OSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 MiniFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 Lulesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B User Manual of the Skeletonizer 91

Publications 99
Articles in Peer-reviewed Journals . . . . . . . . . . . . . . . . . . . . . . . . . . 99

MPI Tuning 3



List of Figures

1.1 Evolution of the computing power in the TOP500 . . . . . . . . . . . . . . 16

2.1 Schematic representation of the Modular Architecture of Open MPI . . . . 22
2.2 Visual representation of an hwloc output . . . . . . . . . . . . . . . . . . . 23
2.3 Communication scheme of a linear implementation of MPI_Bcast . . . . . . 25
2.4 Communication scheme of an implementation of MPI_Bcast using a binomial

tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Communication scheme of a hierarchical implementation of MPI_Bcast . . 26

3.1 Schematic representation of the optimization loop . . . . . . . . . . . . . . 33
3.2 Schematic Representation of the Workflow . . . . . . . . . . . . . . . . . . 39
3.3 Execution time gain of using the solution found by Bayesian Optimization

compared to the default parametrization (Pise machine) . . . . . . . . . . 43
3.4 Execution time gain of using the solution found by Bayesian Optimization

compared to the default parametrization (Bora machine) . . . . . . . . . . 43
3.5 Number of benchmark runs before reaching stop criterion . . . . . . . . . . 47

4.1 Schematic Representation of the Skeleton Usage . . . . . . . . . . . . . . . 50
4.2 Compilation process using LLVM . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The inheritance graph of the class llvm::Constant . . . . . . . . . . . . . 66
4.4 BasicBlocks with branching between them and their order of processing . . 71
4.5 MiniFE benchmark performance in diverse MPI configurations, Pise machine 80
4.6 Lulesh benchmark performance in diverse MPI configurations, Pise machine 81
4.7 Relative error in Lulesh performance for the best and worst configuration . 81
4.8 Lulesh benchmark, Pise machine . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Lulesh benchmark, (N=27, PPN=27, Pb_S=90), Bora machine . . . . . . 83

4



List of Tables

2.1 MCA parameters that can be set using a tuning file (replace * by the name
of a collective communication operation) . . . . . . . . . . . . . . . . . . . 26

3.1 Hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Collectives and their corresponding algorithms . . . . . . . . . . . . . . . . 41
3.3 Median difference in execution time and noise between best parametriza-

tion found by Bayesian Optimization and optimal parametrization (Pise
machine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Time to solution for each heuristic and each collective, rounded up to the
nearest minute (Pise machine) . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Time to solution for each heuristic and each collective, rounded up to the
nearest minute (Bora machine) . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Median number of iterations performed by Bayesian Optimization compared
to exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Tuning time (in minutes) vs. number of nodes (for the Reduce collective
operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 FT benchmark, 32 nodes, 32 processes per node . . . . . . . . . . . . . . . 78
4.3 EP benchmark, 32 nodes, 48 processes per node . . . . . . . . . . . . . . . 79
4.4 CG benchmark, 32 nodes, 32 processes per node . . . . . . . . . . . . . . . 79

5



List of Listings

1.1 Signature of MPI_Send and MPI_Recv . . . . . . . . . . . . . . . . . . . . . 17
2.1 Signature of MPI_Bcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Example of an Open MPI configuration file . . . . . . . . . . . . . . . . . . 27
4.1 Signature of MPI_Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Example of a data dependency . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Example of a control dependency . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Example of a communication dependency . . . . . . . . . . . . . . . . . . . 53
4.5 parallel matrix-matrix multiplication in C . . . . . . . . . . . . . . . . . . 56
4.6 Source code equivalent of Listing 4.5 after skeletonization . . . . . . . . . . 58
4.7 Example of two pointers that are partial aliases . . . . . . . . . . . . . . . 59
4.8 Example of Alias Analysis Usage . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 A Simple LLVM pass that prints function names . . . . . . . . . . . . . . . 62
4.10 Convoluted hello_world program in C . . . . . . . . . . . . . . . . . . . . 62
4.11 Possible output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.12 Human readable version of the LLVM IR . . . . . . . . . . . . . . . . . . . 63
4.13 Portion of a pass eliminating conditional branches . . . . . . . . . . . . . . 64
4.14 C code allocating memory with malloc . . . . . . . . . . . . . . . . . . . . 68
4.15 Generic function to add to the context . . . . . . . . . . . . . . . . . . . . 69
4.16 Specialized functions to add to the context . . . . . . . . . . . . . . . . . . 69
4.17 Specialized function for LoadInst . . . . . . . . . . . . . . . . . . . . . . . 69
4.18 Specialized function for StoreInst . . . . . . . . . . . . . . . . . . . . . . 70
4.19 LLVM IR of Listing 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.20 Code responsible for removing instructions in a block . . . . . . . . . . . . 72
4.21 Specialized function to remove a ReturnInst from context . . . . . . . . . 73
4.22 C code approximating

√
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.23 C code using global variable . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6



Remerciements

QUATRES années de thèse se sont conclues sur un satisfaisant "Nous vous descernons le
titre de Docteur en Informatique de l’Université de Bordeaux". Ce manuscrit a été rédigé,
non sans peine, et il ne me reste donc plus qu’à écrire ces remerciements.

Tout d’abord, merci au jury. Merci à Soraya et Philippe pour avoir relu ce manuscript.
J’espère que sa lecture a été plus facile pour vous que sa rédaction ne l’a été pour moi.
Merci Emmanuelle pour avoir accepté d’être examinatrice, avoir un membre de l’équipe
Storm dans le jury du thèse de l’équipe Tadaam me semble particulièrement intéressant.
Merci également à Patrick, membre émérite du CEA pour qui j’espère que mon travail
sera utile. Merci à Oliver pour avoir assuré la présidence de ce jury.

Les remerciements suivants s’addressent à ceux sans qui cette thèse n’aurait pas pu
exister : Guillaume, Pierre et Emmanuel. Votre soutien et votre encadrement au cours de
ces longues années ont été très important pour moi. Merci de m’avoir fait découvrir le
monde de la recherche et le monde de l’entreprise. Merci de m’avoir transmis (une partie
de) votre immense savoir, votre goût pour la recherche et la méthode scientifique du monde
informatique. Vos exigences et les miennes différaient, merci donc de m’avoir enseigné
la façon d’aller au bout de mes idées. Malgré les inévitables dissensions, travailler avec
vous fût toujours un plaisir très enrichissant. Je me demande quelle part représente votre
envestissement dans tous les résultats que nous avons produit. Cette thèse est tout autant
la vôtre que la mienne, je vous laisse donc le soin de donner la réponse à cette question.

Un merci collectif à l’équipe qui a maintes fois changé de nom, de membres et même
d’entreprise mais dont j’ai toujours fait partie. D’Atos à EVIDEN, un grand merci aux
plus permanents François, Piotr, Florent et Emmanuel, mais également à tous ceux qui
sont passés par chez nous, Guillaume, Yannis, Romain, Julien, Ahmed, et à tous ceux
dont le nom m’est sorti de la tête. Un merci tout particulier à mes camarades de thèse
du côté de Grenoble : Cassandra, Radja et Charles. La première m’a tout appris par son
parcours et son abnégation, et j’espère avoir pu tout transmettre aux seconds. Je leur
souhaite un grand courage pour la suite. Un grand merci également à Quentin, qui m’a
apporté un soutien indéfectible et une aide inestimable, que cela soit en C++ ou autour
d’un café. Mon petit doigt me dit que tu te trouveras une thèse.

Un merci tout aussi collectif à l’équipe Tadaam, sans nul doute la meilleure équipe
le l’INRIA Bordeaux! Merci à Brice, Luan, Alexandre, Francieli, Guillaume, Mihail et
François pour les échanges autour d’un rubik’s cube ou d’un babyfoot, la médiathèque, le
droit des logiciels, hwloc, les I/Os, les bancs de test MPI, le Brésil, les États-Unis et le
fait de se moquer des étudiants de l’ENSEIRB (je vous laisse associer les activités aux
permanents). Ensuite, merci à l’openspace pour m’avoir supporté, dans les deux sens
du terme. La capacité de cet openspace à passer de l’ambiance la plus studieuse à la
plus insouciante m’impressionera toujours. Merci à mes camarades de thèse du côté de
Bordeaux : Alexis, Romain et Luc. Pas tous dans la même équipe mais tous dans le même
bateau, vos travaux dans vos thèses m’ont aidé d’une façon ou d’une autre pour la mienne.

7



Merci aux autres qui sont passé par l’openspace, quel que soit votre statut : Clément,
Clément, Corentin, Pierre, Robin, Julien, Jean-Alexandre, Mahamat, Thibaut et Méline.
Pour finir avec les membres de l’équipe, merci à Catherine et Fabienne pour leur patience
à toute épreuve dans mes démarches administratives.

Merci aux autres équipes HPC du centre, Storm et Topal. Merci en particulier à
Emmanuelle, Hayfa, Alice, Romain et Vincent pour les bons moments passés à découvrir
San Fransisco. Merci à Mathieu et Nathalie pour les discussions autour du babyfoot ou à
la médiathèque.

Merci également aux autres membres du centre qui gravitent autour de la recherche :
Philippe pour sa connaissance extensible de LLVM et du rubik’s cube, Emmanuel pour
ses conseils sur Guix. Merci également aux personnes qui maintiennent les plateformes de
calculs, notamment PlaFRIM qui a été utilisé pour certaines expériences de cette thèse. Il
est communément admis qu’il s’agit du seul outil nécéssaire à la recherche en informatique,
et ce qui est bien c’est qu’il n’y a pas besoin de nettoyer après les expériences, à l’inverse
de la physique-chimie.

On ne remerciera pas le Covid, qui aura grandement chamboulé le planning de cette
thèse.

Un immense merci à ma famille, vous m’avez toujours soutenu, et même si vous m’avez
posé des dizaines de questions et lu mes articles je doute qu’aucun d’entre vous ne puisse
expliquer ce que j’ai fait exactement au cours de ces années. Merci à mes parents et ma
tante pour avoir fait le déplacement depuis la Bourgogne-Franche-Comté pour assister à
ma soutenance.

Pour finir, merci à toutes celles et ceux que j’ai pu oublier, mais qui ont été à mes
côtés au cours de cette thèse.

8 R. Sartori



Résumé en français

Résumé Les supercalculateurs sont utilisés pour traiter des problèmes numériques
complexes, comme les simulations, les prévisions météorologiques ou l’intelligence artificielle,
nécessitant d’importantes ressources de calcul, inaccessibles aux ordinateurs traditionnels.
Composés de multiples et puissants ordinateurs interconnectés, leurs capacités ne cesse
de croître. Toutefois, développer des applications capables d’exploiter pleinement cette
puissance devient de plus en plus difficile. En effet, divers facteurs doivent être pris en
compte : des unités de calcul hétérogènes nécessitant des méthodes de programmation
spécifiques, la hiérarchie mémoire, les transferts de données, les communications réseau et
l’ordonnancement des tâches. Pour surmonter ces défis, le standard MPI a été créé, offrant
une interface unifiée pour faciliter la programmation des supercalculateurs et la gestion
des communications entre leurs composants.

Dans cette thèse, nous explorons les différentes façons d’améliorer les performances
des applications utilisant MPI en ajustant divers paramètres afin d’exploiter au mieux
les ressources matérielles disponibles sur les supercalculateurs. Le travail se concentre
sur Open MPI, une implémentation open-source de MPI, et propose des techniques
d’optimisation pour réduire le temps et les ressources nécessaires à cette tâche. Parmi celles-
ci, nous explorons l’optimisation par boîte noire (BBO), une méthode agnostique vis-à-vis
de l’application, qui permet d’explorer l’espace des paramètres de manière efficace. L’idée
principale derrière la BBO est d’utiliser des heuristiques intelligentes pour sélectionner les
points les plus prometteurs de l’espace des paramètres à évaluer. Plutôt que de tester toutes
les combinaisons possibles, la méthode BBO permet d’explorer cet espace en minimisant
le nombre d’évaluations nécessaires. En comparaison avec une exploration exhaustive, le
temps requis pour réaliser le processus est largement réduit tout en fournissant une solution
aux performances pratiquement identiques. Cette approche est particulièrement utile dans
le contexte des applications MPI, où l’espace des paramètres peut être gigantesque.

D’autre part, nous introduisons également le concept de squelettisation des applications
MPI, une nouvelle technique qui permet d’accélérer le processus d’optimisation en extrayant
un "squelette" de l’application. L’extraction est automatisée à l’aide des outils fournis par
LLVM, un ensemble d’outils fonctionnant autour d’une représentation intermédiaire. Cela
rend l’extraction du squelette indépendante du language de programmation utilisé pour
l’application. Ce squelette préserve les éléments essentiels à l’optimisation de l’application,
notamment ses schémas de communication, tout en éliminant les aspects calculatoires. Il
peut par la suite être utilisé en remplacement de l’application originale dans le processus
d’optimisation, ce qui réduit le temps nécéssaire à son déroulement sans compromettre la
validité des résultats obtenus.

Les contributions présentées montrent que finement ajuster les paramètres de l’implémentation
de MPI a du potentiel pour améliorer les performances des applications HPC.

Mots-clés Calcul haute performance, MPI, optimisation, IA, squelettisation
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Abstract

Abstract Supercomputers are used to tackle complex numerical problems, such as simu-
lations, weather forecasting, or artificial intelligence, that require significant computational
resources, inaccessible to traditional computers. Composed of multiple powerful intercon-
nected computers, their capabilities continue to grow. However, developing applications
that can fully leverage this power is becoming increasingly difficult. Indeed, various factors
must be taken into account: heterogeneous computing units requiring specific programming
methods, memory hierarchy, data transfers, network communications, and task scheduling.
To overcome these challenges, the MPI standard was created, providing a unified interface
to facilitate the programming of supercomputers and the management of communications
between their components.

In this thesis, we explore various ways to improve the performance of applications
using MPI by adjusting various parameters to make the best use of the hardware re-
sources available on supercomputers. The work focuses on Open MPI, an open-source
implementation of MPI, and proposes optimization techniques to reduce the time and
resources required for this task. Among these, we explore Black Box Optimization (BBO),
an application-agnostic method that allows for efficient exploration of the parameter space.
The main idea behind BBO is to use smart heuristics to select the most promising points
in the parameter space to evaluate. Instead of testing all possible combinations, the BBO
method enables exploration of this space while minimizing the number of necessary evalu-
ations. Compared to exhaustive exploration, the time required to conduct the process is
significantly reduced while providing a solution with virtually identical performance. This
approach is particularly useful in the context of MPI applications, where the parameter
space can be enormous.

On the other hand, we also introduce the concept of skeletonization of MPI applications,
a new technique that accelerates the optimization process by extracting a "skeleton" of
the application. The extraction is automated using tools provided by LLVM, a set of
tools operating around an intermediate representation. This makes the skeleton extraction
independent of the programming language used for the application. This skeleton preserves
the essential elements for optimizing the application, including its communication patterns,
while eliminating computational aspects. It can then be used in place of the original
application in the optimization process, reducing the time required for execution without
compromising the validity of the obtained results.

The contributions presented demonstrate that fine-tuning the parameters of the MPI
implementation has the potential to improve the performance of HPC applications.

Keywords High-Performance Computing, MPI, optimization, AI, skeletonization
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Résumé étendu en français

Introduction
Le calcul haute performance (HPC) constitue une pierre angulaire dans la résolution de
problèmes calculatoires complexes, notamment dans des domaines tels que la simulation
climatique, l’astrophysique, la découverte de nouveaux médicaments, et l’intelligence
artificielle. Ces applications nécessitent des ressources de calcul massives, que seuls les
supercalculateurs peuvent offrir. Ces machines, composées de milliers voire de millions de
processeurs interconnectés, permettent d’effectuer des calculs à une échelle inatteignable
pour des ordinateurs traditionnels. Les supercalculateurs, tels que Frontier, qui figure
parmi les plus puissants au monde, sont devenus des outils incontournables, bien que
leur conception et leur maintien représentent des coûts colossaux. Frontier, par exemple,
rassemble plus de 8 millions de cœurs et utilise une combinaison de CPUs et de GPUs,
marquant ainsi l’évolution vers des architectures de plus en plus hétérogènes.

L’augmentation exponentielle des performances des supercalculateurs a historiquement
suivi la loi de Moore, qui prédisait un doublement du nombre de transistors sur une puce
tous les deux ans. Cependant, cette progression a été freinée par les limites physiques
des processeurs traditionnels, principalement en raison des problèmes liés à la dissipation
thermique. En conséquence, la fréquence des processeurs ne peut plus être augmentée
indéfiniment, entraînant une stagnation dans l’évolution des performances. Cette lim-
itation a conduit à une réorientation vers des systèmes multiprocesseurs, où les gains
de performance sont réalisés en combinant plusieurs processeurs dans des architectures
massivement parallèles.

Pour tirer parti de cette évolution, des technologies comme les GPU (processeurs
graphiques), capables d’exécuter des tâches massivement parallèles, sont de plus en plus
intégrées aux supercalculateurs. Cette transition vers des architectures hétérogènes,
combinant CPUs, GPUs et d’autres types d’accélérateurs spécialisés comme les FPGAs, a
profondément modifié le paysage du calcul haute performance. Cependant, gérer cette
diversité matérielle pose des défis importants, tant en termes de programmation que
d’optimisation des performances.

C’est dans ce contexte que l’interface de passage de messages (MPI) s’est imposée
comme un standard pour la programmation parallèle. Créée pour pallier les problèmes
de portabilité entre les différentes bibliothèques propriétaires de communication inter-
processus, MPI permet aux applications de communiquer efficacement sur des systèmes
distribués. Son indépendance vis-à-vis du matériel sous-jacent en fait un outil clé pour
le développement d’applications HPC. Les bibliothèques MPI permettent de gérer les
communications entre processus répartis sur différents nœuds d’un supercalculateur, en
offrant une interface standardisée pour les opérations telles que l’envoi et la réception de
messages, la synchronisation et les communications collectives.

Nous nous intéressons principalement à l’implémentation Open MPI. Elle est largement
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adoptée dans les environnements HPC pour sa modularité et sa capacité à s’adapter à
différents matériels et réseaux. Open MPI est conçue pour être extensible, permettant
d’ajouter des modules et des composants dynamiques qui optimisent les performances
pour des environnements spécifiques. Elle est notamment utilisé dans des infrastructures
à grande échelle où des réseaux rapides comme InfiniBand et Ethernet sont déployés.
Cependant, bien que MPI fournisse les bases nécessaires pour des communications efficaces,
la complexité des architectures modernes nécessite un réglage fin des paramètres afin
d’exploiter pleinement les ressources matérielles.

L’objectif de cette thèse est d’explorer et de proposer des méthodes d’optimisation
pour les applications utilisant MPI, notamment Open MPI. Parmi les approches étudiées,
l’optimisation par boîte noire (BBO) se distingue comme une méthode puissante pour ex-
plorer efficacement l’espace des paramètres sans connaissance préalable des caractéristiques
de l’application. Cette approche repose sur des heuristiques intelligentes qui permettent
d’identifier rapidement les configurations les plus prometteuses, réduisant ainsi consid-
érablement le temps nécessaire à l’optimisation par rapport à une exploration exhaustive
de l’ensemble des paramètres.

De plus, la thèse introduit le concept de squelettisation des applications MPI, une
technique innovante qui vise à simplifier le processus d’optimisation. Cette méthode consiste
à extraire un squelette de l’application, c’est-à-dire une version allégée qui conserve les
schémas de communication essentiels tout en éliminant les calculs lourds. Ce squelette est
utilisé pour effectuer des bancs de tests et ajuster les paramètres, réduisant ainsi le temps
d’optimisation sans compromettre la validité des résultats. L’extraction du squelette est
réalisée de manière automatisée à l’aide des outils fournis par LLVM, une infrastructure
de compilation.

Les contributions de cette thèse montrent que l’ajustement fin des paramètres de
l’implémentation MPI, en particulier via des méthodes d’optimisation avancées comme la
BBO et la squelettisation, peut significativement améliorer les performances des applica-
tions HPC, tout en minimisant le temps et les ressources nécessaires pour atteindre ces
performances optimales.

Blackbox Optimization
Le chapitre 3 de cette thèse porte sur l’application de l’optimisation par boîte noire
(BBO) pour l’ajustement des paramètres de l’implémentation MPI. La complexité des
architectures modernes et la diversité des configurations possibles rendent cette tâche
difficile et fastidieuse, surtout si l’on considère une recherche exhaustive de l’optimum, car
l’espace de paramètres croît de façon exponentielle. Pour répondre à ce défi, la méthode
BBO est employée afin d’explorer seulement une partie restreinte de cet espace tout en
maintenant la qualité du résultat.

L’approche par boîte noire se caractérise par son agnosticisme vis-à-vis de l’application
optimisée, traitée comme une entité dont on peut uniquement évaluer les performances sur
des points de l’espace des paramètres, sans connaissance préalable de sa structure ou de ses
caractéristiques internes. Cette méthodologie repose sur une exploration guidée de l’espace
des paramètres en se basant sur des heuristiques. L’heuristique utilisée ici est l’optimisation
bayésienne, qui permettent d’identifier rapidement les configurations les plus prometteuses.
Le processus d’optimisation utilise une fonction d’acquisition qui équilibre l’exploration et
l’exploitation de l’espace des paramètres : il privilégie les zones peu explorées avec une
grande incertitude tout en tenant compte des zones où les performances s’avèrent déjà
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intéressantes. De plus, un modèle probabiliste (les processus gaussiens) est employé pour
estimer la moyenne et l’écart-type des performances de chaque configuration testée. Ce
modèle fournit une prédiction de l’efficacité des configurations potentielles et oriente le
choix des points de l’espace des paramètres à évaluer.

Dans la phase expérimentale, des configurations optimales sont recherchées pour quatre
opérations collectives courantes en MPI: broadcast, gather, reduce et allreduce. Les
expérimentations sont conduites sur deux plateformes distinctes (Pise et Bora), chacune
ayant des configurations matérielles spécifiques, avec un nombre variable de processus MPI
par nœud et des tailles de messages allant de 4 octets à 1 Mo. Pour chaque opération
collective, le temps d’exécution des bancs de tests est mesuré à l’aide de configurations
par défaut et de configurations optimisées par BBO. Les résultats montrent que la BBO
réduit le temps d’optimisation de 95% en moyenne par rapport à une recherche exhaustive,
tout en atteignant une précision de réglage d’environ 6% par rapport à l’optimum global
(avec une médiane à 0,7%).

Pour implémenter cette méthodologie, deux outils, ACCO et ShaMAN, sont intégrés
pour former une boucle de réglage efficace et automatisée. ACCO pilote les bancs de
tests OMB, collectant les données de performance des configurations testées, tandis que
ShaMAN applique des modèles prédictifs pour estimer les configurations prometteuses.
Ce flux de travail est conçu pour fonctionner efficacement sur des clusters en temps réel,
en utilisant un gestionnaire de tâches (comme SLURM) pour distribuer les tâches MPI
aux nœuds du cluster. La coordination de ces deux outils n’a besoin d’être lancée qu’une
seule fois par cluster pour obtenir un réglage des paramètres MPI, applicable à une variété
d’applications HPC.

L’analyse finale met en lumière la scalabilité de cette approche : les configurations
optimisées par BBO s’adaptent bien à l’augmentation du nombre de nœuds et à la diversité
des architectures matérielles. En moyenne, l’optimisation apporte une amélioration de
48,4% en performances par rapport aux paramètres par défaut d’Open MPI (52,8%
en médiane), avec des gains plus marqués dans des configurations à fort parallélisme
(par exemple, lorsqu’un seul processus MPI est assigné par cœur). Cette flexibilité et
adaptabilité rendent cette approche particulièrement bien adaptée aux environnements
HPC modernes, où les exigences de performance et de coût en ressources sont élevées.

En conclusion, l’utilisation de la BBO avec optimisation bayésienne dans le cadre de
MPI permet de trouver un compromis optimal entre le temps de réglage et la qualité de
l’ajustement des performances, offrant une solution efficace et extensible pour des clusters
HPC de grande envergure.

Squelettonisation
Le chapitre 4 de cette thèse introduit une méthode innovante de squelettisation pour
optimiser les applications MPI, une technique conçue pour simplifier le processus de
réglage des paramètres de communication dans les environnements HPC. Cependant,
ce réglage peut être très long, surtout si l’application elle-même est lourde à exécuter.
La squelettisation vise à résoudre ce problème en produisant une version simplifiée de
l’application, dénommée squelette. Celui-ci conserve uniquement le schéma de commu-
nication de l’application, éliminant ainsi les calculs internes, ce qui réduit de manière
significative le temps d’exécution lors des étapes de réglage.

Dans l’état de l’art des approches de parallélisation, les squelettes algorithmiques sont
utilisés pour abstraire les schémas de calcul parallèles et réduire la complexité du code.
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Cependant, les méthodes existantes nécessitent souvent que l’application soit structurée
autour de ces squelettes, ce qui limite leur applicabilité. La méthode présentée dans ce
chapitre permet de générer un squelette pour n’importe quelle application MPI sans que
celle-ci soit conçue en amont pour s’y prêter.

La génération du squelette d’une application MPI repose sur plusieurs concepts :
l’analyse du schéma de communication, la détection des variables de communication et
le critère de découpage du programme. Le processus commence par une première phase
descendante pour identifier les variables critiques des routines MPI (appelées variables
de communication), suivie d’une phase ascendante où leur statut de dépendance est
propagé pour déterminer quelles instructions doivent être conservées. Les instructions
non essentielles au schéma de communication sont ensuite supprimées, ce qui aboutit à
un programme minimal, capable de reproduire le comportement de communication de
l’application d’origine, mais avec un temps d’exécution considérablement réduit.

Afin de démontrer la méthode, un exemple complet est présenté où les étapes de
simplification du code sont décrites en détail. Cette approche est ensuite automatisée
à l’aide de LLVM, un ensemble d’outils de compilation. L’utilisation de passes LLVM
personnalisées permet d’analyser et de modifier le code de manière automatisée, rendant
la méthode de squelettisation applicable même à de grandes bases de code. La passe de
squelettisation est implémentée pour détecter les variables de communication et les instruc-
tions nécessaires, en marquant celles-ci pour garantir que le schéma de communication est
préservé. Finalement, la structure du squelette est optimisée, garantissant une exécution
rapide et ainsi une efficacité maximale pour le réglage des paramètres MPI.

Plusieurs limitations sont également discutées de cette approche dans ce chapitre.
Par exemple, les applications dépendant de variables globales ou utilisant le système
d’exceptions de C++ ne sont pas directement prises en charge, bien que certaines optimi-
sations permettent de contourner ces limitations dans certains cas.

Les tests expérimentaux démontrent que l’utilisation du squelette dans le processus de
réglage réduit le temps d’optimisation de manière significative par rapport à l’utilisation
de l’application complète.

En conclusion, la squelettisation proposée dans cette thèse offre une méthode puissante
et adaptable pour optimiser les applications MPI. Elle ouvre la voie à des réglages plus
rapides et plus efficaces, réduisant ainsi les temps d’exécution des applications HPC.
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Introduction
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1.1 The HPC context
High-Performance Computing (HPC) is a scientific field using large scale computing
platforms, called supercomputers, to solve advanced computational problems. HPC has
become an indispensable framework across a broad spectrum of scientific and industrial
applications, enabling the simulation and analysis of highly complex phenomena that
are beyond the reach of conventional computing resources. Use cases range from climate
modeling [9], astrophysics [48], and drug discovery [27] to large-scale data analysis in
fields such as genomics [46] and artificial intelligence [56]. In this aspect, supercomputers
must adapt to a wide variety of constraints and requirements, coming the from multiple
independent applications that the computer can run concurrently. The building and
maintaining costs of these platforms can only be justified by the opportunity of running
a large panel of applications. The current leader of the TOP500 [60], Frontier, has an
estimated cost of $600M. At the time of writing, it is composed of 9472 CPUs and 37888
GPUs, for a total number of cores exceeding 8 millions. With these extreme magnitude
orders, new programming and optimization problems emerges.

15



1.2. Evolution of Supercomputers
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Figure 1.1: Evolution of the computing power in the TOP5001

1.2 Evolution of Supercomputers
Historically, Cray Research designed the first supercomputer in 1975. As adding new
components to a single module became increasingly complex, they started to split their
computer into smaller interconnected units, creating Cray-1, the first supercomputer.

Nowadays, the number of elements aggregated in a supercomputer are orders of
magnitude higher, reaching a combined computing power over 1 EFLOP/s (1018 FLOP/s).
The FLOP/s, or Floating-Point Operations per Second, is the standard unit for measuring
the performance of a supercomputer. For comparison, the Cray-1 had an estimated
theorical peak performance of 160 MFLOP/s.

As presented in Figure 1.1, the evolution of supercomputers has been driven by the
growing demand for increased computational power across a wide range of scientific,
industrial, and defense applications. Historically, this demand was met through the
consistent advancement of semiconductor technologies, as predicted by Moore’s Law,
which stated that the number of transistors on a chip would roughly double every two
years, leading to exponential increases in computational performance. This fast scaling
allowed for consistent improvements in processor speeds and capabilities, which fueled the
development of ever more powerful supercomputers capable of tackling larger and more
complex problems.

However, the era of continual CPU (Central Processing Unit) frequency scaling came to
an halt due to fundamental physical limitations known as Dennard’s scaling. According to
Dennard’s scaling theory, as transistors become smaller, power density would remain con-
stant, allowing for higher clock speeds without significant increases in power consumption.
But as transistors approached nanometer scales, heat dissipation issues and power leakage
caused this principle to break down. As a result, further increases in CPU clock frequencies
became impractical, creating a bottleneck in the continued evolution of computing power
through traditional means.

1AI.Graphic, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33540287
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To address this bottleneck, the solution to increase the computational power shifted
from enhancing a single processor’s capabilities to combining multiple processors into
a unified system. This architectural change led to the rise of supercomputing clusters,
where numerous processors, each housed in separate nodes, are interconnected through
high-speed networks. This shift allowed for significant performance improvements without
relying on clock speed increases.

Over time, multiple new components emerged, called accelerators. They are designed
to perform a single task, but significantly faster than a CPU. The prime example is the
Graphics Processing Units (GPUs) which can, with their highly parallel architecture, offer
substantial performance improvements for many scientific applications that require massive
parallelism. The architecture of supercomputers then stopped relying solely on CPUs to
integrating various accelerators, most notably Graphics Processing Units, in ever increasing
numbers. Supercomputers have progressively adopted a more heterogeneous architectures,
extensively incorporating GPUs and, to a lesser extent, FPGAs (Field-Programmable
Gate Arrays), a type of configurable integrated circuit.

With this shift towards heterogeneous architectures, programming models had to
evolve to accommodate the complexity of managing diverse hardware components in
supercomputing clusters. The Message Passing Interface has emerged as a key framework
to address this challenge, enabling parallel processing across distributed and heterogeneous
systems.

1.3 MPI
The Message Passing Interface, or MPI, is the de facto standard for parallel programming
in distributed computing environments, currently in version 4.1. Introduced in 1993, it
has become the backbone of HPC applications due to its ability to efficiently manage
communications between processes running across multiple nodes in a supercomputing
cluster. Unlike shared-memory models, where multiple processes access a common memory
space, MPI enables communication between processes that have separate memory, making
it well-suited for large-scale distributed systems where data needs to be exchanged between
different compute nodes.

The MPI standard was introduced to adress the lack of portability of the different
proprietary communication libraries that were historically used for inter-process commu-
nication. Thus, MPI is not tied to any specific hardware or architecture to ensure its
portability across different computing systems. The standard provides a comprehensive
set of functionalities for data transfer, synchronization, and collective communication
operations, allowing developers to implement complex parallel algorithms.

1 int MPI_Send(const void* buf , int count , MPI_Datatype datatype , int dest
, int tag , MPI_Comm comm);

2 int MPI_Recv(void *buf , int count , MPI_Datatype datatype , int source ,
int tag , MPI_Comm comm , MPI_Status *status);

Listing 1.1: Signature of MPI_Send and MPI_Recv

At its core, MPI is a hardware-agnostic interface for inter-process communication.
Its most fundamental operation is the point-to-point communication, allowing two MPI
processes to send and receive a message respectively. The signature of the two functions
used to realize this simple data exchange can be seen in Listing 1.1. The buf, count
and datatype parameters represent the data exchanged. The count is the number of
elements of type datatype exchanged. The elements are read from the buf of the sender
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and written in buf of the receiver, which needs to be large enough to contain the data.
The value of count of the receiving process must be greater or equal to the count value
of the sending process. The datatype is either a basic datatype, which corresponds to a
type in the host language, or a derived datatype. A derived datatype is constructed with a
sequence of types (basic or derived), each with a displacement. It allows the user to define
their own datatypes and use them to send more complex elements, such as for example
a C structure. The sequence of types, displacements omitted, is called the signature of
the derived datatype. If a basic datatype is used, it must match for both the sender and
the receiver, while in the case of derived datatype only the signature must be identical.
The comm parameter represents an MPI communicator, a concept defined in the standard.
It represents a communication context. This communicator must also be the same for
both callers. The dest and source are the identifiers of the receiving process and sending
process respectively, in the context of the communication (the communicator). The tag
parameter is an additional information bundled with the message. The combination of src,
dest, tag and comm is called the message enveloppe, and ensures correct ordering when
multiple independents messages are exchanged by the same pair of processes. The status
parameter is used to obtain informations about the exchange. Finally, the vast majority of
MPI routines return an integer that indicates if the call was successful, allowing for error
checking. The MPI standard includes hundreds of routines and defines official bindings in
C and Fortran.

There are several open source MPI implementations, the most widespread being
MPICH [30] and Open MPI [26], which will be presented in Section 1.3.1. These two
projects serve as the basis for most of the other implementations of the standard including,
without being limited to, commercial implementations from Intel, Microsoft or NEC.

1.3.1 Open MPI

Open MPI is an open source implementation of the MPI standard, that fully conforms to
its 4.1 version. It is widely used by supercomputers listed in the TOP500. Developed and
maintained by a consortium of partners from academia, research, and industry, Open MPI
benefits from a community-driven development approach, facilitating the integration of
new features. Open MPI is designed to be modular and extensible, supporting various
components through dynamically loaded backends. For example, it provides support
for multiple network interfaces (e.g., InfiniBand, Ethernet) and plugins for different
interconnects (e.g., UCX, PSM2), enabling performance optimizations. This flexibility
allows it to adapt to evolving hardware and software environments. Open MPI is suitable
for clusters requiring adaptability to changing network hardware or where modularity and
ease of integration with different systems are essential. It is also well-suited for mixed
HPC environments that undergo frequent reconfigurations.
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1.4 Contribution
In this thesis, we will investigate the Message Passing Interface, mainly focusing on
Open MPI, which plays a fundamental role in parallel programming within HPC systems.
Efficient communications between processes is crucial for achieving high performance.
While MPI provides a standardized and portable way to handle this communication, the
complexity of hardware architectures and network configurations can introduce bottlenecks.
Factors such as network latency, bandwidth, and process placement can significantly
impact the running time of an application. Achieving optimal performance thus requires
careful tuning, that can be done by leveraging Open MPI ’s flexibility and scalability. We
will explore the various parameters within Open MPI that can be adjusted to enhance its
efficiency, such as algorithms, segment sizes, and the configuration of collective operations.
Beyond reviewing existing methods, ranging from brute-force approaches to more advanced
black-box optimization techniques, we will introduce new strategies designed to streamline
and automate the tuning process.

A key focus of this research will be the development of novel tuning techniques aimed
at reducing the time and computational resources required for optimization. This includes
the use of proxy applications through skeletonization, where a simplified version of an
MPI application is employed during the tuning phase to significantly decrease the runtime
without compromising accuracy. We will also investigate how machine learning and
statistical models, such as Bayesian Optimization, can be integrated into MPI tuning to
intelligently navigate the vast parameter space and identify optimal configurations faster
than traditional methods. Through these innovations, we aim to contribute with new tools
and methodologies that will make MPI tuning more adaptive, scalable, and applicable
to a broader range of applications and hardware architectures, ultimately enhancing the
performance of HPC systems in real-world scenarios.

1.5 Document Organization
The remainder of this document is organized as follows: Chapter 2 presents the architecture
of Open MPI and provides an overview of the various tuning options available through
its Modular Component Architecture. It also reviews the state-of-the-art methods for
MPI tuning, including brute-force approaches and performance prediction techniques,
establishing the context and challenges associated with the tuning process.

Chapter 3 introduces the Black Box Optimization approach for MPI tuning. This
chapter details the methodology and formalization of the problem, describing how Bayesian
Optimization can be used to efficiently explore the large parameter space without prior
knowledge of the application’s characteristics. It includes a comparative study of brute-
force methods and black-box optimization, demonstrating the latter’s efficiency in finding
optimal configurations with reduced computational cost.

We extend the tuning approach with the concept of skeletonization in Chapter 4. We
developped a method to extract the so-called skeleton of an MPI application, a simplified
version that retains its core communication pattern. By using this skeleton for tuning
instead of the full application, we significantly reduce the time and computational resources
required. The chapter also covers the automation of the skeletonization process using
LLVM and validates the effectiveness of this approach through experimental results.

In the conclusive Chapter 5, we make a synthesis of the contributions and discuss the
implications of the work. This chapter also outlines potential future work, suggesting how
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the methodologies developed can be further enhanced and applied to broader contexts, such
as real-time adaptive tuning or integration with emerging heterogeneous architectures.
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Tuning is a crucial part in the developpement of applications destined to run on
the large scale supercomputers. It is done toachieve the most performance out of the
underlying hardware and reach the smallest possible time to run. We mostly focus our
efforts on tuning one implementation of the MPI standard: Open MPI. It seemed the
easiest to tune, but most of our techniques could be applied to other implementations as
well as to other runtimes.
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Figure 2.1: Schematic representation of the Modular Architecture of Open MPI

2.1 Open MPI Architecture
Open MPI is primarily intended for use on supercomputers. Architecture, hardware,
interconnect, accelerators are among the many elements that can widely differ from one
cluster to another, and its the role of the MPI implementation to allow all these components
to communicate. To offer both performance and an hardware-agnostic implementation,
Open MPI is designed around the Modular Component Architecture (MCA). It is a
ensemble of frameworks, interfaces that collectively cover the entire MPI standard. Each
framework is implemented by a component, itself composed of one or multiple modules. At
launch time, before the application runs, modules are assembled into components, which
are then assembled into a fully furnished MPI implementation.

Frameworks An MCA framework is an interface responsible for providing a specific
element of the MPI standard, for example providing MPI collective operation functionality.
The framework is also responsible, at runtime, for finding and dynamically loading
components that implements it.

Components An MCA component is an implementation of a framework’s interface. It
is a standalone collection of code that can be bundled into a plugin. It is either a static
library, that will be inserted into the application at compile-time, or a dynamic library
which will be dynamically found and loaded into the application at runtime.

Modules An MCA module is an instance of a component, that is usually centered a
very specific use case of the component. For example, the coll component can manage
both the Shmem and tuned modules, the former being specifically designed for intra-nodes
communications using shared memory and the latter being a more generic and widely
usable implementation.

Frameworks, components, and modules can be dynamic or static, and can be inserted
in the application either at runtime or at compile-time. Open MPI can be thus adapted to
the architecture as the user can decide which component to use, to best suit their hardware
and/or their application.

Figure 2.1 presents the modular architecture of Open MPI. Frameworks are represented
in green, with an emphasis on the coll component, which is responsible for providing
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Figure 2.2: Visual representation of an hwloc output

the collective communication operations. The Point-to-point Management Layer (PML)
component provides the basic functionality of allowing two MPI processes to send and
receive messages. The One Sided Communication (OSC) component is responsible for
giving the processes the ability to expose part of their memory for other processes to read
and write to it. Modules are represented in light blue. We will focus on the tuned module,
which offers multiple implementations for each collective communication operations. The
user can chose which one to use depending on the circumstances through a tuning file,
described in Section 2.1.4. The different implementations may yield different performances,
there is no best algorithm, as can be seen in Section 2.1.3. It is up to the user to tune
their system and find which implementation is best suited for their specific use case and
hardware. The coll module is usually not used alone, as the shared memory (sm) module
is oftenly loaded concurrently and used for intra-node communications.

Open MPI, along with MPICH, are usually coupled with hwloc [15]. From their online
documentation: "The Portable Hardware Locality (hwloc) software provides a portable
abstraction (across operating systems, versions, architectures, . . . ) of the hierarchical
topology of modern architectures, including NUMA memory nodes (DRAM, HBM, non-
volatile memory, CXL, etc.), processor packages, shared caches, cores and simultaneous
multithreading." MPI implementation primarily use hwloc to acquire informations about
the computing hardware, as its complexity increases, to make the most efficient use of its
parallelism.
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2.1.1 MCA Parameters

MCA parameters serve as the fundamental unit for runtime tuning in Open MPI. These
parameters are simple key-value pairs widely used throughout the codebase to replace
critical constants. A straightforward example would be the threshold between short and
long messages. Short messages are transmitted eagerly without waiting for synchronization
with the receiver, while long messages use a rendezvous protocol. The discriminating factor
between these two protocols is the total size of the message (in bytes). By defining this
threshold as an MCA parameter, users or system administrators can adjust it at runtime
to suit a specific application or hardware. For instance, a value that works well for 100
Mbps Ethernet may be unsuitable for Gigabit Ethernet. MCA parameters can be set in
four different ways, listed here by precedence:

• editting the command to be executed, by adding –mca key "value" to its arguments

• through an environment variable: export OMPI_MCA_key="value"

• by defining an MCA parameter file, where each line sets a value with key = value,
and then supplying the file with the –am option

• editting one of the two MCA parameter files that are defined and automatically used
by the implementation: user supplied values in $HOME/.openmpi/mca-params.conf
and system supplied values in $prefix/etc/openmpi-mca-params.conf. The for-
mer takes precedence over the latter

2.1.2 The tuned Module

As explained in Section 2.1, the tuned module is an implementation of the coll component
that provides several algorithms for each of the collective communication operations. If
this module is selected by the implementation, or explicity required by the user, several
MCA parameters become available to the user. They allow the user to set, for each
collective communication operation, which algorithm is used, with which segment size
and fan-in/out value. Table 3.2 list all possible algorithms for a selection of collective
communication operations. Their performance might differ from hardware to hardware
and from application to application, and are discussed in Section 2.1.3. The segment size
is the size in bytes of the messages sent on the underlying hardware. Setting this value
improves performance when messages requiring fragmentation are sent, as the supported
message size varies with the interconnect used by Open MPI. The fan-in/out value dictates
the maximal number of children when a tree-based algorithm is used, and is ignored
otherwise. The available MCA parameters also allow the user to provide a tuning file,
further described in Section 2.1.4, which is a more complete and succint way of setting up
the Open MPI runtime environment. The tuned module is enabled by default, but as of
Open MPI 5.0, the han [3] module will supersede it as the new default. This new module
is specifically designed to handle hierarchical collective communication operations, with
the possibility of using different algorithms depending on the level at which the operation
takes place, similar to Figure 2.5.

2.1.3 Performance Discrepancies between Implementations

The performance of a collective communication algorithm depends on a number of param-
eters, such as the hardware, the message size, the number of nodes, etc. In this Section,
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Figure 2.3: Communication scheme of a linear implementation of MPI_Bcast
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Figure 2.4: Communication scheme of an implementation of MPI_Bcast using a binomial
tree

we present three possible implementations of the MPI_Bcast collective communication
operation. MPI_Bcast, is the collective communication operation where the MPI process
with rank root sends some data to all other MPI processes in a communicator. Its
signature is presented in Listing 2.1. The data is described by the three parameters
buffer, count and datatype. In the following examples, the root shall be rank 0 of
the communicator used by the collective communication operation. Arrows represent
point-to-point communications. If an arrow is dotted, it means that the algorithm requires
a self communication for a process, and no actual data transmission occurs.

1 int MPI_Bcast(void *buffer , int count , MPI_Datatype datatype , int root ,
2 MPI_Comm comm)

Listing 2.1: Signature of MPI_Bcast

Figure 2.3 presents the communication scheme of a very naive implentation, where
the rank 0 sequentially sends the data to all other processes. It has the advantage of
being very easily implemented, but its major drawback is its lack of parallelization, which
severly impacts performance. This is usually not the preferred implementation, however it
might be the best performing algorithm if there are very few proceses, or if the hardware
is specifically designed for it.

Figure 2.4 shows the communication scheme of an implementation that maximizes
the number of parallel point-to-point communications, using a binomial tree. First, the
communicator is divided in two sub-communicators, with process rank 0 being one of
the root. Then process rank 0 sends the data to the other root, which in this case is
process rank 4. This routine can then recurse until every process has received the data.
It is the preferred solution when all communications are equivalent, which is usually
the case at the scale of a single node. When dealing with multiple nodes, inter-node
communications are usually more time consumming than intra-node communications,
rendering this implementation less appealing.

Finally, Figure 2.5 presents a hierarchical approach of the problem, where multiple
implementations can be used at different scales on the machine. For example, an algorithm
that minimizes the number of communications can be used at the swicth level, where
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Figure 2.5: Communication scheme of a hierarchical implementation of MPI_Bcast

Parameter
name Variable name Description Default

Algorithm OMPI_MCA_coll_tuned_*_algorithm
Which *

algorithm is
used

0

Segment
size

OMPI_MCA_coll_tuned_*_algorithm_
segmentsize

Segmentation
size in bytes

used by
default for *
algorithms

0

Fan in out OMPI_MCA_coll_tuned_*_algorithm_tree_
fanout

Fanin/out for
n-tree used for
* algorithms

4

Table 2.1: MCA parameters that can be set using a tuning file (replace * by the name of
a collective communication operation)

communications are very time consumming, while a binomial tree is used at the node level,
where communications are cheaper. This approach might be privilegied for large scale
supercomputers. That type of algorithm is also provided by the han module.

As we can see, there is no best algorithm that outperforms all others in all situations,
and that is why tuning is required for any application that is to be run on a supercomputer.

2.1.4 The Tuning File

The tuned module of Open MPI provides a simple interface for tuning its runtime
environment. Several MCA parameters could be used, but the simpler approach involves
the creation of a tuning file, which contains any number of rules for the values of the MCA
parameters algorithm, fan-in/out value and segment size. Their full MCA name along
with the default value are indicated in Table 2.1.

Listing 2.2 gives an example of such a tuning file. It indicates that in the case of an
MPI_Allreduce operation, with 8 nodes or more and 64 MPI processes or more, two rules
shall apply: if the message size is lower than 1024 bytes, algorithm number 7 shall be used,
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with a fan-in/out value of 4 and a segment size value of 32. If the message size is greater
than 1024 bytes, algorithm number 1 will be used, with a fan-in/out value of 4 and a
segment size value of 64. This is a simplified example, more rules for other collectives, node
counts or communicator sizes can be added. This file format allows to set any number of
rules and conditions for the applications. To use this file as the Open MPI tuning file, the
following MCA variables shall be set:

• coll_tuned_dynamic_rules_filename set to the path to your configuration file

• coll_tuned_dynamic_rules_fileformat set to 1

• coll_tuned_use_dynamic_rules set to 1

1 1 # number of rules for collectives
2 2 # Id of the collective (allreduce)
3 1 # Number of rules for nodes
4 8 # if nnodes >= 8
5 1 # number of rules for comm sizes
6 64 # comm size >= 64
7 2 # number of rules for message sizes
8 0 7 4 32 # size id faninout segsize
9 1024 1 4 64 # size id faninout segsize

Listing 2.2: Example of an Open MPI configuration file

2.2 State of the Art and Related Work
Over the years, several tuning methods have been developed, ranging from traditional
brute-force approaches to more sophisticated automated and incremental tuning techniques.
Each method addresses the challenge of searching a vast optimization space with different
trade-offs between time, effort, and tuning precision.

In this Section, we will review the state-of-the-art MPI tuning methods, including brute-
force tuning, auto-tuners, incremental tuners, and hybrid techniques, highlighting their
approaches, strengths, and limitations. These methods provide valuable tools for improving
the performance of MPI applications, enabling them to fully exploit the capabilities of
modern supercomputing systems.

2.2.1 Brute Force Tuners

Brute force tuning is one of the most straightforward approaches to optimize MPI perfor-
mance. In this method, all possible configurations of MPI parameters are systematically
tested to identify the optimal settings for a given application and system. This includes
varying communication protocols, buffer sizes, and process placement policies to find the
combination that results in the best performance.

While brute force tuners are exhaustive and can guarantee finding the best configuration,
they entail significant drawbacks. The primary limitation is the combinatorial explosion
of tuning parameters, which makes the search space grow exponentially as more variables
are considered. This results in high computational costs and long runtimes, especially on
large-scale systems with numerous nodes.

Our approachs mitigate this issue by either exploring only a fraction of the vast tuning
space, or by simplifying the application being run to drastically cut down on the time
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required to explore it. Both approaches could even be combined for an even greater time
save.

Despite these challenges, brute force tuners remain useful in cases where the number of
tunable parameters is small. They also serve as a baseline for comparing the effectiveness
of more advanced tuning methods.

OTPO The Open Tool for Parameter Optimization [17] (OTPO) is a new framework
designed to aid in the optimization of the MCA parameters. OTPO systematically tests
a large numbers of combinations of Open MPI’s runtime tunable parameters based on a
user input file to determine the best set for a given platform. It is the standard tool used
by the Open MPI community for tuning MCA parameters.

mpitune Similar to OTPO, the mpitune [34] utility allows the user to automatically
adjust MPI library parameters, such as collective operation algorithms, to the cluster
configuration or application. However, it is restricted to Intel MPI.

2.2.2 Performance Prediction

To overcome the impossibility of running large scale tunning campaigns, an option is to
lower the accuracy of the tuning by predicting the performance of an application instead
of executing it at full scale. With enough accuracy, a model can be used to predict the
effects of changing the tuning of MPI on the performances of the application, thus allowing
for its fine tuning. However, this approach is usually very dependant on the application
being tuned, and this technique can only be used for long-running applications.

FACT In [67], Zhai et al. present a method called FACT, designed to efficiently collect
communication traces of large-scale parallel applications. The goal of FACT is to reduce
the time and resources needed to obtain communication traces, which are crucial for
optimizing and analyzing the performance of parallel applications.

Traditional communication trace collection methods for parallel applications are time-
consuming and require significant computational resources. FACT addresses these limita-
tions by enabling trace collection on small-scale systems while maintaining the accuracy
of communication traces. It works by slicing the program using static analysis, removing
unnecessary computations while preserving all communication-relevant parts. The reduced
program slice is then executed to collect communication traces.

Experiments with programs such as the NAS Parallel Benchmarks [45] and Sweep3D [64]
showed that FACT can significantly reduce resource consumption (by up to two orders of
magnitude) while accurately preserving the spatial and volume communication attributes
of the original programs. The traces collected by FACT can be used for process placement
optimization, debugging, and communication patterns analysis.

FACT enables a better usage of resources by allowing large-scale applications to
be traced using small-scale systems, reducing memory usage and execution time. It is
also scalable, providing significant performance improvements, with experiments showing
reductions in memory consumption and execution time when collecting communication
traces.

While the predictions accurately describe the application, it only reduces the con-
sumption of resources by a constant factor, which will not change with the growth of the
parameter space. That is why this solution does not consider influential variables such as
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the segment size or the fan-in/out value, as it would exponentially increase the resource
consumption. In contrast, the time required by our solution does not scale with the size of
the parameter space.

PHANTOM Following their previous paper, Zhai et al. presented a framework called
PHANTOM [66]. It is designed to predict the performance of parallel applications on
large-scale machines using only a single node. This approach is particularly valuable when
large-scale machines are not yet available, or their entire capacity can’t be used for testing.

PHANTOM aims to solve this by using a single node and a deterministic replay to
measure sequential computation time accurately. By observing that processes in parallel
applications tend to exhibit similar behavior, PHANTOM clusters them into groups and
only replays a representative process from each group, which reduces the time and resources
needed. It then combines this computation-time acquisition approach with a trace-driven
network simulator to predict overall performance.

PHANTOM was validated on applications like ASCI Sweep3D [64], achieving less than
5% error on 1024 processor cores. The approach also demonstrated superior accuracy
compared to regression-based models. Thus proving its usefulness for early-stage system
design, cross-platform performance prediction, and helping developers optimize their
applications before large-scale machines become available.

Similar to FACT, PHANTOM does not consider the segment size not the fan-in/out
value. Additionaly, the approach requires a model that is specific to the application, which
makes it application-dependant. On the contrary, our solution is truly application-agnostic
as the tuning produced is tied to the hardware instead of the executable.

2.2.3 Incremental Tuners using Probing

Probing-based tuners build a performance model by selectively testing algorithms during
the execution of MPI collective operations. This allows the tuner to adapt to varying
hardware and network conditions, which can fluctuate during different runs or on different
systems. The tuner incrementaly refines its algorithm selection by updating the model
based on observed performance, reducing the likelihood of using inefficient algorithms over
time.

This approach offers the advantage of ongoing optimization without requiring separate
benchmarking phases, making it more flexible and effective in heterogeneous or variable
environments, although the performance on the first executions and the exploration of all
possible configurations might be suboptimal.

OMPICollTune The OMPICollTune [32] solution proposed by Hunold et al. started
as an attempt at verifying the validity of an MPI implementation. Some collective
communication operations can be implemented using the others, like MPI_Allreduce
can be implemented using MPI_Reduce followed by MPI_Bcast. By identifying all such
situations, monitoring the performances of both solutions and asserting that the specific
function is more efficient than the composite implementation, they were able to validate
an MPI implementation. Using the tools developped for this purpose, they also achieved
complete MPI probing along with an embedded tool to select the algorithm to use, which
can be used to effectively tune MPI from the inside.

Tuning MPI was not the primary goal of this approach, but rather a fortunate side
effect. In addition, finding a situation that invalidates an MPI implementation, and thus

MPI Tuning 29



2.3. Problematic

a possible optimization, is solely guided by randomness. The solutions presented in this
thesis are specifically designed to optimize the MPI implementation in the most efficient
way possible.

2.2.4 Black Box Optimization

Black-box optimization refers to the optimization of a function of unknown properties,
most of the time costly to evaluate and which can only be evaluated a limited number of
times. As no hypothesis is made on the optimized function, the only information available
to the optimizer is the history of the black-box function, as the list of the inputs and the
corresponding outputs. Black-box optimization has shown promising results in different
optimization fields such as energy consumption [43], I/O accelerators [51] or high-end
storage bays [16], and could be adapted to tune MCA parameters. This approach is further
explored in Chapter 3.

2.2.5 Machine Learning

Machine Learning (ML) is a field of study in artificial intelligence concerned with the
development and study of statistical algorithms that can learn from data and generalize
to unseen data and thus perform tasks without explicit instructions. ML finds application
in many fields, including natural language processing, computer vision, speech recognition,
email filtering, etc [31].

With its wide applicability and performance, ML is a interesting candidate for MPI
tuning. Its has already been used successfully for the optimization and tuning of NUMA
systems [54]. The method shows an average 1.68x performance improvement over a
locality-optimized NUMA baseline with all prefetchers enabled, and achieves 95% of the
optimal performance while reducing the need to evaluate all configurations, saving time
and resources.

2.3 Problematic
In conclusion, we have seen that MPI tuning is an active research field, with multiple
angles from which to attack the central problem: How can MPI implementations be
fine-tuned efficiently to maximize performance across various applications, architectures
and runtime systems? Traditional methods of manually tuning MPI library parameters are
insufficient due to the complexity and scale of modern HPC systems. We will investigate
how automated techniques can streamline and enhance the tuning process, ensuring optimal
communication performance without requiring deep, system-specific knowledge.
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3.1. Methodology of BBO

This chapter presents the use of a classical technique to tune an MPI application. As
described in Chapter 2, the number of configurations that the tuning profile can adopt is
exponential, and finding the optimal one is a time consuming process, especially if the
application itself takes a long time to execute.

In this chapter, we applied the technique called "Blackbox Optimization" (BBO) to
explore a fraction of the parameter space, denoted Θ, finding a compromise between
the quality of the solution and the time to reach it. One of the main advantage of
this technique over the others discussed in Section 2.2 is its agnocticism regarding the
optimized application. Indeed, said application is treated as a blackbox, meaning that
the only assumption made is that it can be evaluated at any point of Θ, and thus the
technique can be applied to optimize any MPI application.

3.1 Methodology of BBO
As stated in Section 2.2.4, exhaustively sampling the parameter space is not a viable option
due to its size. To overcome this issue, the idea is to use a strategy, or heuristic, that
decides which point of the parameter space is the most interesting to evaluate. Applying
repeatedly this heuristic allows the algorithm to quickly converge toward a local optimum
for the tuning file.

Black-box optimization refers to optimizing a function with unknown properties that
are often costly to evaluate, resulting in a limited number of possible evaluations. These
methods are promising for tuning various systems, including computer systems. When
applied to computer system tuning, the approach treats the system as a blackbox, analyzing
the relationship between input and output parameters as described in Figure 3.1. In this
Figure, we denote θi the points of the parameter space that were evaluated. The set of all
points (θi)1≤i≤n is the parameter space, noted Θ. As stated in Section 3.3.1, there is a
one-to-one relationship between the points of Θ and the tuning files, thus evaluating all
θi is equivalent to testing all possible tuning files. The function that we aim to optimize
is noted f , in this case it is the execution time of a benchmark application, discussed in
Section 3.5, that we want to minimize. BLACKBOX represents the application being
executed and optimized, along with every environment variable that may impact f . In
our case the specific collective communication operation, the MPI implementation used
and the execution context, which is composed of the hardware used and its current state.
Since the blackbox does not require previous knowledge on the relationship between the
parametrization of the collectives and the performance of the application, it is easier
to implement than an analytical model. Finally, the OPTIMIZER is the mechanism
that guides the exploration of the parameter space toward the most interesting points to
evaluate using Bayesian Optimization. It is further detailled in Section 3.3.3.
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History of MPI parametrization and associated performance measures:
(θk, f(θk))1≤k≤i

MPI parametrization: θi+1
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Figure 3.1: Schematic representation of the optimization loop

3.2 State of the Art
Auto-tuning using blackbox optimization has been used in several domains in the last
years. It has yielded good results in very diverse situations and has been particularly
helpful in computer science for finding optimal configurations of various software and
hardware systems. In [23], the authors compare two derivative-free methods (Bounded
Optimization by Quadratic Approximation method and Constrained Optimization by
Linear Approximation method) to find the optimal configuration of the Hadoop framework.
Bayesian Optimization has also been successfully used for finding the optimal configuration
of Apache Storm computation system in [35]. A more general tuning framework, called
BOAT, relying on structured Bayesian Optimization is described in [21]. Within the
HPC community, auto-tuning has gained a lot of attention for tuning particular HPC
applications and improve their portability across architectures [10]. In [55] and [39],
a comparison of several random-based heuristic searches (simulated annealing, genetic
algorithms, etc.) are provided when used for code auto-tuning while [13] yields good results
with surrogate modeling using boosted regression trees. The energy consumption of the
HPC machines has also benefited from Bayesian Optimization, as the "kukai" system [44]
made the Green500 list after using an auto-tuner based on a combination of Gaussian
Process regression and the Expected Improvement acquisition function. Reinforcement
learning, which is another guided search method, has also been successfully used as an
auto-tuner to optimize the performance of the Lustre filesystem in data center storage
systems [2]. Also, an optimal parametrization for the several layers of the HDF5 library
was found using genetic algorithms in [1]. An extension of this auto-tuner which selects the
best parameters according to the I/O pattern is described in [11]. Prior studies regarding
MPI application tuning have shown that the best communication algorithm for a collective
communication operation highly depends on the message to be transferred [5, 58, 7].
Tuning an MPI application mostly relies on finding a suitable set of MCA parameters,
described in Section 2.1, which is not an easy task considering the large number of available
parameters.
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3.3 Formalization of the Problem
Let S be the MPI library to optimize and θi its parametrization, which belongs to a
discrete subset of the possible parametrizations of the MPI libraries Θ = {θi}i∈N. Let
A be a program measuring the performance of the collective communication operation
chosen to be optimized within the library S. Let E be the execution context for which we
want to optimize the benchmark. Let Fs be the performance function associated with the
application, the execution context and the MPI library:

FS : (A, E ,Θ) −→ R

The optimization problem that we are trying to solve is:

min
θi∈Θ

FS,A,E(θi)

In our situation, Θ is the Cartesian product of all possible values of parameters listed
in the following Section 3.3.1, and E is the platform used for the experiments, presented in
Section 3.7.1. A would be one of the OSU Micro Benchmarks (OMB), a benchmark suite
developped by the Ohio State University (OSU), specifically targetting MPI collective
communication performances. These benchmarks are furter detailed in Annexe A while
our usage of them is described in Section 3.5.3.

3.3.1 The Parameter Space

The parameter space, denoted Θ, is the cartesian product of all possible values of the
MCA parameters considered and all possible combinations of number of nodes, num-
ber of MPI processes and message sizes that the application can be called with. As
mentioned in Chapter 2, the combinatorial explosion of the size of this space will pro-
hibit an exhaustive exploration. A bijection can be constructed between Θ and the
set of all tuning files described in Section 2.1.4, as we can view θi as an set of tuples
(N, np, size, paramk, valuek)1≤k≤n where k is the number of MCA parameters considered.
In our case, k is equal to 3, the collective communication algorithm identifier, the segment
size and the fan-in/out value. These parameters are a subset of the ones available in the
tuned component, described in Section 2.1.2. The segment size is the number of bytes
of the messages sent by the MPI implementation on the underlying hardware, chopping
messages whose payload is bigger than the segment size into chunks whose size is at most
the segment size. Fan-in/out is a positive value that is used if the considered algorithm is
tree-based, in which case it represents the target number of children for each node of the
tree. For non tree based algorithms, this value is ignored, which renders the optimization
of this parameter irrelevant and problematic. A tuning file can then be constructed for
each θi, according to the rules specified in Section 2.1.4.

3.3.2 Choice of the Initial Sampling Point

The first step of any blackbox optimization algorithm is the selection of the initial
parameters to start the optimization process. An acceptable initialization starting plan
must respect at least two properties [37, 53, 29]: the space constraints property and the
non-collapsible property. The space constraints are shaped by the possible values that can
be taken by the parameters. The non-collapsible property specifies that no parametrization
can have the same value on any dimension. It ensures that if an axis of the parameters
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space is removed, then no two points would have the same coordinates. This is especially
important as we have no insight on the individual effect of each parameter, and we want
to avoid evaluating points with similar performance as much as possible. For example, the
dimension corresponding to the fan-in/out value can be flat, as this parameter is ignored
in certain situations. In these cases, the property ensures that two parametrizations still
can be distinguished. Latin Hypercube Sampling [37] is a usual choice as an initialization
strategy, because of its simplicity and its efficiency [42]. We shall rely only on this method
for initialization.

3.3.3 Choice of the Next Sampling Point

Besides the initialization plan, Bayesian Optimization requires two inputs to be instantiated:
the acquisition function and the probabilistic model used to represent the performance
function.

The acquisition function An acquisition function indicates for each configuration
its potential performance improvement by being evaluated next, given the input of the
probabilistic model. It should offer a trade-off between exploration of parameter zones
where the model is uncertain (i.e., zones with a high variance) and the exploitation of
already promising well-explored zones (i.e., zones where the mean is low). One of the
most common acquisition methods is the Expected Improvement (EI), which computes the
expected improvement from switching from f ∗, the best configuration found so far:

I(θ) =

{
f ∗ − f(θ) f(θ) < f ∗

0 f(θ) ≥ f ∗

EI(θ) = E(I(θ))

I represents the relative improvement and EI denotes the expected improvement,
computed as the expectancy of the relative improvement. As EI is one of the most popular
algorithms and has been proven to be an efficient acquisition function to solve a wide
range of problems, we will focus solely on this acquisition function.

The probabilistic model A suitable probabilistic model should be able to give an
estimation of the mean and the standard deviation for each possible parametrization. The
most popular choice is Gaussian Processes [49] which generate distributions over functions
used for Bayesian non-parametric regression. Other methods, such as Parzen trees [62] and
Random Forests [12] were also implemented, our tests showed Gaussian Processes to be the
most effective, so we focus on this model. The results of the experimentations are presented
in Section 3.8. A Gaussian Process is fully characterized by a mean function µ at each
parametrization, as well as a covariance function Σ between all of the parametrizations of
the parameters grid. Mean and variance predictions at parametrization θi are obtained as:

µ(θi) = k∗K
−1y

σ2(θi) = Σ(θi, θi)− kT
∗ K

−1k∗

where k∗ denotes the vector of covariances between all previous observations, K is
the covariance matrix of all previously evaluated configurations and y are the observed
performance values. The selected covariance function Σ has a strong impact on the
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performance of the model [33], and we opted for the common choice of a radial-basis
function kernel (with d the Euclidean distance): Σ(θi, θj) = exp(d(θi, θj)).

3.3.4 Choice of the Stopping Criterion

The stopping criterion dictates when we estimate that the current best parametrization
is satisfaying enough. The optimization process runs until either the maximum number
of steps is exceeded or a stopping criterion evaluates to true. Multiple criteria can be
used, for example setting the number of steps to the size of Θ and the criterion to always
return false will be equivalent of reverting back to an exhaustive search. For our use-case,
we chose a maximum number of iterations set to 150. Additionally, we decided to stop
the optimization process if the improvement over the last 15 iteration is less than 1%.
Experimentations shows that the arbitrarily chosen value 150 is never reached, so its only
used as a time saver to avoid exploring too much space in the case the convergence is slow.

3.4 Agnosticism of the blackbox Approach
Wilkins et al. proposed an approach called FACT [8] (Fast Communication Trace Collection)
that focuses on minimizing the amount of data fed to the auto-tuners and that shows
remarkable resilience to the decrease of the number of runs of the application. However, it
does not consider other influential parameters such as the segment size nor fan-in/out and
the employed performance model (RandomForestRegressor) deteriorates when the number
of dimensions of the parameters space increases [12]. Last, FACT’s approach is not fully
application-agnostic: "Considering training data must be recollected as frequently as every
job allocation, FACT-based collective autotuning is only practical for longer-running jobs."

The successor to FACT, ACCLAiM [4], introduces an auto-tuning machine learning-
based method for optimizing collective communication operations. This time, the method
is effectively applied to real applications, but their focus is primarily on the type of
collective communication operation, without considering other crucial parameters like the
segment size or the fan-in and fan-out values. However, ACCLAiM’s tuning process takes
place at runtime and implies a model training for every job run on the target system,
which may not be practical when dealing with a vast optimization space. In contrast,
our approach is truly application-agnostic and optimizes independently each collective
communication operation for the target system once and for all. An application is then
able to select transparently the best algorithm when it calls a collective communication
routine. The tuning in ACCLAiM is carried out on a per-application basis, necessitating
adjustments whenever a new application is introduced or when there are changes in the
communication pattern of an existing one. This stands in contrast to our approach, which
requires a single tuning process for the entire cluster, applicable universally.
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3.5 Pre-existing Software used to Produce the Tuning
File

3.5.1 ACCO

ATOS Collective Communications Optimizer (ACCO) [24], is a specialized tool designed
to optimize the collective communication operations in MPI. It leverages a brute-force
exploration approach to evaluate all possible communication strategies for these collective
operations, systematically identifying the most effective method for the specific architecture
and communication patterns in use.

This emphasis on exhaustive exploration is especially crucial for the module han,
described in Section 2.1.2, which is now the default implementation used in the coll in
Open MPI version 5.0 and higher. Indeed, the hierarchical nature of these algorithms
introduces a wide range of potential communication paths and strategies, which can
differ significantly in performance. By rigorously testing every possible configuration,
ACCO ensures that the optimal communication strategy is selected, leading to substantial
performance gains. This makes ACCO an invaluable tool for HPC practitioners looking to
fine-tune the performance of collective operations, particularly in environments that use
advanced hierarchical communication models.

ACCO automates the submission and retrieval of benchmarks, parses their outputs
to finally produce a tuning file, following the processus described in Section 2.1.4. It
internally uses the OSU Micro Benchmarks suite, detailled in Section 3.5.3, to evaluate
the performances of the underlying architecture.

3.5.2 ShaMAN

Smart HPC Application MANager (ShaMAN) [50, 52] is a framework to perform auto-
tuning of configurable component running on HPC distributed systems. It performs the
auto-tuning loop by parametrizing the component, submitting the job through the Slurm
workload manager, and getting the corresponding execution time. Using the combination
of the history (parametrization and execution time), the framework then uses blackbox
optimization to select the next most appropriate parametrization, up until the number of
allocated runs is over or the stopping criterion is reached.

The framework was originally designed to optimize I/O operations, but due to its
genericity, it was extracted to be a standalone tool to perform optimizations, regardless of
the underlying system being tuned.

ShaMAN comes out of the box with several optimization heuristics, several noise
reduction strategies and pruning strategies. Most notably, alongside genetic algorithms
and simulated annealing, the optimization heuristic surrogate modeling is implemented,
and use the Bayesian Optimization detailled in Section 3.3.3. The other criteria and
strategies presented in Section 3.1 are also implemented in ShaMAN.

3.5.3 Benchmarks

The OSU Micro Benchmarks (OMB) [47] are a widely recognized suite of performance tests
developed by the Ohio State University (OSU) specifically for evaluating the performance
of MPI implementations. These benchmarks are crucial in the field of HPC as they provide
detailed measurements of various aspects of MPI communication, including point-to-point
latency, bandwidth, and message rates. The OMB suite covers a broad spectrum of MPI
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functionalities, such as collective operations or one-sided communication, making it an
indispensable tool for assessing and optimizing the performance of parallel applications on
various HPC architectures. By delivering fine-grained insights about the communication
patterns and overheads, the OSU Micro Benchmarks help researchers and developers
to fine-tune their systems and achieve optimal performance in distributed computing
environments. However, they suffer from potential timing issues [22] for their use of
unsynchronized clocks. This issue only affects precise timing, and was not considered here
due to the high number of repetitions that were done for each benchmark (1000 repetitions
for sizes below 217 bytes, and 100 above). For each of the tuned collective and each tested
size, we use the corresponding benchmark in the suite. To ensure stability and reduce the
noise when collecting execution times, the OSU benchmark was parameterized to perform
200 warmup runs before performing the actual test.

3.6 ACCO and ShaMAN Integration to Optimize an
MPI Runtime

The ShaMAN software, generic by design, is meant to be customized to solve optimizations
problems, such as the execution time of MPI applications. Combined with the capabilities
of ACCO, they would create a perfect framework to handle the problem at hand. The
goal is to extract the core component of the two pieces of software and assemble them
accordingly to facilitate the tuning process.

Figure 3.2 presents how the differents tools used to produce the tuning file were
integrated together. The system is divided into three main components: the two pieces
of software and the underlying cluster. ACCO handles the orchestration of OSU Micro
Benchmarks, parsing the output results and providing the results to ShaMAN. It utilizes
a Tuner module that generates configurations parameters, which are then saved in a
tuning file, represented here by a red box. This tuning file is subsequently passed to the
MPI runtime on the cluster, where a job manager, in our case SLURM [65], oversees its
execution across multiple nodes. ShaMAN, on the other hand, integrates a regression
model to predict the performance of different configurations. It calculates an Expected
Improvement metric to guide the search for optimal parameters and includes the stopping
criterion to determine when the optimization process should halt. The process is cyclical,
with ShaMAN providing new configurations back to ACCO, which in turn produces a new
tuning file for the MPI runtime until an optimal configuration is found. This coordinated
effort allows for efficient tuning and execution of MPI programs across a parallel system,
ensuring that the best possible performance is achieved.
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Figure 3.2: Schematic Representation of the Workflow

3.7 Validity of the Bayesian Optimization over Brute
Force

The goal of the validation plan is to assess the performance of using Bayesian Optimization
for tuning a set of benchmarks, both in terms of performance compared to the default
parametrization and time to solution compared to an exhaustive search in the parametric
space.

3.7.1 Experimental Setup

For our experimentations, we used the hardware described in Table 3.1. Both platforms
feature different number of nodes and number of cores per processor, which lead to different
number of experimentations on each. The Pise platform has 32 nodes with two 24-core
AMD CPUs. On the other hand, the Bora cluster has only 24 nodes with two 18-core
Intel CPUS. To limit the number of experimentations while fully utilizing both platforms,
we decided to use nodes in increments of 6. Only the experimentations with 30 nodes
could not be reproduced on the Bora cluster.

3.7.2 Experiment Plan

The evaluation of the performance of Bayesian Optimization is carried out by tuning four
of the most commonly used collectives communication operations:
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Platform Pise Bora
Node count 32 24
Open MPI

version 4.0.4 4.1.5

CPU 2 x AMD Rome 24 cores
(AMD EPYC 7402)

2 x Intel Skylake 18 cores
(Xeon Gold 6140)

Interconnect Mellanox ConnectX-6
HDR200 (pcie4) OmniPath 100GBit/s

Table 3.1: Hardware description

• Broadcast: Broadcast is one of the collectives where one process sends the same
data to all processes in a communicator. A classic use of broadcast is to send out
user input to a parallel program, send out configuration parameters to all processes
or simply send out the result of a local computation to multiple processes.

• Gather: The gather collective takes data from several processes and gathers them to
one single root process. This operation is highly useful to many parallel algorithms,
such as parallel sorting and searching.

• Reduce: The reduce collective operation is similar to the gather operation, with the
addition of a user-defined operation to apply on the collection of data. It takes an
array of input elements from each process and returns an array of output elements
to the root process. These output elements contain the result of a user-defined
operation such as the sum or the maximum, performed on the collection of data,
which makes it very useful for parallel applications.

• Allreduce: Many parallel applications will require accessing the reduced results
across all processes rather than only the root process, and the goal of the allreduce
operation is to reduce the values and distribute the results to all processes. While
being equivalent to a reduce followed by a broadcast, this explicit collective operation
enables libraries to implement more efficient algorithms.

The tuned module, presented in Section 2.1.2, allows us to modify, along with the
segment size and the fan-in/out values, the underlying algorithm used by the collective
communication operation. The different algorithms and their names are listed in Table 3.2.

The sizes used for the messages sent through the MPI collective communication opera-
tion range from 4B to 1MB, with a multiplicative step of 2. Two hardware configurations
are selected, to emulate two of the most common process placements policies encountered
in HPC applications:

• A single MPI process per node: we run a single MPI process per node, for a total
of 12 MPI processes. This type of setting is typical of hybrid applications relying
on MPI for inter-node communications and on another solution for their intra-node
communications, for instance OpenMP.

• A single MPI process per core: we used two platforms, described in Section 3.7.1.
On the Bora machine, we run 36 MPI processes per node, for a total of 432 MPI
processes, while on the Pise these numbers are 48 and 576 respectively. This type
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Collectives Algorithm name and number
Broadcast 1 - Basic linear

2 - Chain
3 - Pipeline

4 - Split binary tree
5 - Binary tree

6 - Binomial tree
7 - Knomial tree

8 - Scatter allgather
9 - Scatter allgather ring

Gather 1 - Basic linear
2 - Binomial

3 - Linear with synchronization
Reduce 1 - Linear

2 - Chain
3 - Pipeline
4 - Binary

5 - Binomial
6 - In order binary
7 - Rabenseifner

Allreduce 1 - Basic linear
2 - No overlapping (tuned reduce + tuned broadcast)

3 - Recursive doubling
4 - Ring

5 - Segmented ring
6 - Rabenseifner

Table 3.2: Collectives and their corresponding algorithms
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of setting is typical of pure, MPI-only applications which rely on the MPI library for
all their communications (inter-node and intra-node alike).

This results in a total of 160 optimization experiments (4 collectives, 20 sizes and
2 different topologies). The performance metric for tuning is the time elapsed by the
benchmark for the selected message size given to the operation.

3.7.3 Evaluation Metrics

To evaluate the performance of our suggested method, the reference execution time is
first computed which means running the different configurations of the benchmarks with
the default parametrization. This default parametrization is run one hundred times to
account for possible noise in the collected execution time. An exhaustive sampling of the
parametric space is then performed, in order to get the corresponding execution time at
each possible parametrization, and selects the parametrization with the minimal execution
time as the optimal one, which acts as the baseline and is also run one hundred times for
noise mitigation.

The tuning of the system is also performed using Bayesian Optimization, as described
in Section 3.3.3. The best parametrization found by the optimization process is considered
to be the best parametrization found by Bayesian Optimization and is also run one hundred
times to account for noise. We are interested in comparing the trade-off between the
tuning time and distance to optimal between both methods.

The performance of Bayesian Optimization in terms of elapsed time and number of
benchmark runs required to reach the optimum is also discussed and compared to the
number of iterations required by brute force. We also provide insights on the impact of
the number of nodes on the elapsed time required to reach the optimum, in the case of
Bayesian Optimization as well as for exhaustive search, for the reduce collective operation.

3.8 Comparisons between Brute Force and Baysian Op-
timizations

The execution time gain of using the best parametrization found by the Bayesian Op-
timization compared to the default one is represented in Figure 3.3 for Pise. Over all
experiments, we find an average improvement of 48.4% (52.8% in median), using the best
parametrization found with Bayesian Optimization. We find an average improvement of
38.42% (29% in median) for experiments with a single MPI process per node and of 58.9%
(65.3% in median) when using a single MPI process per core, highlighting the efficiency of
tuning the Open MPI parametrization instead of simply relying on the default one.

The time gain brought by Bayesian Optimization varies depending on the tuned
collective communication operation, with some where the default parametrization is more
adapted than others. It is the case for the allreduce collective when running one MPI
process per node, where the Bayesian parametrization provides a median improvement
of 0.9% (18% on average). Other collective operations have a default parametrization
that is not adapted at all. It is for example the case of the gather collective with one
MPI process per core, where we see an improvement of 91% in median and on average.
The improvement of the default parametrization is strongly dependent on each evaluated
parameter (message size, number of processes per node or type of operation) and is difficult
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Figure 3.3: Execution time gain of using the solution found by Bayesian Optimization
compared to the default parametrization (Pise machine)
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Figure 3.4: Execution time gain of using the solution found by Bayesian Optimization
compared to the default parametrization (Bora machine)
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to predict. This highlights the importance of tuning each configuration to get the best
performance, and the need for an efficient tuning method.

For the Bora case, we also see a huge gain brought by the best parameterization, as
shown in Figure 3.4, with an average gain of 39.3%. For the single process per node case,
results are very similar to that of Pise, the gain is 45.0% using the best parameterization.
We also see how machine-dependent is the tuning: the gain of allreduce is closer to 100%
for large message on the Bora machine while the default parameterization was almost
optimal on the Pise machine. For one process per core (36 processes per node), we observe
that for small message sizes, the gain can be very large for gather but relatively small
when dealing with large messages. Nevertheless, in this case, the average gain is 33.6%.

3.8.1 Execution Time Comparison between Bayesian Optimization
and Brute Force

The median difference in elapsed time, along with the noise measurement, between the best
parametrization found by Bayesian Optimization and the optimal parametrization found by
exhaustive search is represented in Table 3.3. Over all optimization experiments, the average
distance between the optimum and the result returned by Bayesian Optimization is of 5.71
microseconds (0.04 in median) for an average noise of respectively 2.03 microseconds in
mean and 0.05 microseconds in median. This means that in median, the difference between
using the best parametrization of our tuner compared to the true best parametrization is
imperceptible from the noise. It indicates that the tunings produced by both methods are
nearly indistinguishable in terms of performance, thus strongly recommanding our method
as it does not degrade the result while being significantly faster. When looking at the
relative difference between the optimum and the results from Bayesian Optimization, we
find an average distance of 6% (0.7% in median) between the two.

Collective # of MPI proc. ∆T (µs) Noise (µs)
allreduce 12 0.04 0.43

576 3.80 1.05
bcast 12 0.26 0.32

576 0.18 0.32
gather 12 0.01 0.04

576 0.00 0.02
reduce 12 0.00 0.06

576 0.00 0.03

Table 3.3: Median difference in execution time and noise between best parametrization
found by Bayesian Optimization and optimal parametrization (Pise machine)

When looking at the different collective communication operations and hardware
platforms, we find an average distance of 6% and the difference between the two optimal
parametrizations to be inferior to the measured noise, for all collective operations except in
the case of allreduce with 576 MPI processes. When looking at each optimization problem
separately, we find that for 105 optimization problems out of 160, the distance of the
performance returned by Bayesian Optimization to the optimum is below the measured
noise of the system. For the problems where the difference between the results returned
by the tuner and the optimum cannot be explained by noise, we find a quite low average
difference of 1.90 microseconds (0.18 in median). The noise difference between collectives
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is explained by multiple factors. Gather and reduce show low noise due to their simple
communication pattern (all-to-one). On the opposite, the allreduce collective involves
much more intertwined messages, which explains its higher noise and noise sensitivity.
Broadcast’s higher noise is explained by the best performing algorithm found (k-nomial
tree) which, according to Subramoni et al. [6], introduces some noise due the imbalanced
communication pattern. While the tuner has not been able to find the optimum in these
cases, we find that the difference in performance is negligible for applications running in
production and the gain compared to the default parametrization is enough to advocate
for the benefits of Bayesian Optimization.

3.8.2 Tuning Time Comparison

The elapsed time required to reach the optimum for each of the collective communication
operations and hardware configurations is reported in Tables 3.4 and 3.5. With a time gain
of more than 85% for each collective operation, we see the difference coming from using
guided search heuristics instead of testing every parametrization with exhaustive sampling.
The time required to run all the 1296 optimization experiments ranges from a total of
8048 minutes (5 days and 14 hours) using brute force to 355 minutes (approximately 6
hours) using Bayesian Optimization, resulting in a total speed-up of 95%. The speed-up is
relatively uniform across each collective communication operation and each target platform.

Coll. #
proc Brute force Bayesian Opt. Gain (%)

Allreduce 12 53 5 91.40
576 453 47 89.66

Bcast 12 745 24 96.82
576 5098 134 97.39

Gather 12 24 4 85.42
576 1041 78 92.56

Reduce 12 88 6 94.01
576 551 62 88.82

Table 3.4: Time to solution for each heuristic and each collective, rounded up to the
nearest minute (Pise machine)

Coll. #
proc Brute force Bayesian Opt. Gain (%)

Allreduce 12 65 7 89.23
432 515 49 90.49

Bcast 12 701 36 94.86
432 4509 87 98.07

Gather 12 27 5 81.48
432 930 83 91.08

Reduce 12 102 12 88.24
432 585 46 92.13

Table 3.5: Time to solution for each heuristic and each collective, rounded up to the
nearest minute (Bora machine)
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Collective Exhaustive
search Bayesian Optimization

Pise Bora
Allreduce 1400 29.0 30.5

Bcast 2000 30.0 31.0
Gather 800 26.0 28.0
Reduce 1600 29.5 31.0

Table 3.6: Median number of iterations performed by Bayesian Optimization compared
to exhaustive search

The median number of iterations per collective operation is reported in Table 3.6. For
Bayesian Optimization, the number of iterations is stable across each collective operation
and each parametrization (mean number of approximately 30), but the size of the tuned
message has an impact on the number of iterations, as shown in Figure 3.5(a) and
Figure 3.5(b), respectively, for the Pise and Bora machines. Moreover, we see that the
number of steps (i.e., the tuning time) does not depend on the machine but on the number
of MPI processes involved. The 150 steps limit mentionned in Section 3.3.4 has been
chosen arbitrarily to set an upper bound on the number of iterations. The table shows
that in practice, the process converges before that value is reached.

The key point when comparing Bayesian Optimization to brute force that we want to
emphasize is the trade-off that we are introducing with the Bayesian Optimization between
tuning time and accuracy of the solution. Since Bayesian Optimization does not explore
all the parameter space, it may not be perfectly accurate but is much faster than a brute
force method. Overall, we are speeding-up the tuning process by 95% while maintaining
an accuracy of the solution that is 6% away from to the optimal solution in average (0.7%
in median).

3.8.3 Scalability Study for a Single Collective Operation

For the reduce collective operation and a single MPI process per node, the tuning time for
different numbers of nodes is shown in Table 3.7. We see that the number of nodes has
a non-linear impact on the convergence of the algorithms. The elapsed time for tuning
using Bayesian Optimization is especially stable across the number of nodes because of the
early detection of non-promising tuning, but also across the different architectures. The
similarity between the two behaviors on very different architectures gives us confidence
that our suggested solution is not only application-agnostic but also architecture-agnostic
and shall adapt well on large-scale production HPC clusters.

# nodes Brute force Bayesian Optimization
Pise Bora

6 160.52 4.46 5.71
12 185.32 5.98 7.02
18 209.19 5.81 5.41
24 218.41 6.39 5.04

Table 3.7: Tuning time (in minutes) vs. number of nodes (for the Reduce collective
operation)
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Figure 3.5: Number of benchmark runs before reaching stop criterion
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3.9 Conclusion
In this Chapter, we introduced the use of Bayesian Optimization to find the optimal
parametrization of Open MPI collective communication operations within its component
called tuned. We highlighted the importance of tuning every configuration and the need
for an efficient tuning method which we proposed using a blackbox technique based on
Bayesian Optimization. It induces a trade-off between the tuning time and accuracy of
the solution that favors Bayesian Optimization over a brute force method.

We applied this method to optimize four MPI collective communication operations
across two different hardware topologies and 20 message sizes. Our results show that
Bayesian Optimization yields solutions that are, on average, within 6% of the optimal
values (0.7% in median) identified through exhaustive brute-force testing, while achieving
a 95% reduction in tuning time. This leads to an average performance improvement of
48.4% (52.8% in median) in collective operations compared to the default Open MPI MCA
parameters.

Our scalability analysis demonstrates that the proposed tuner scales effectively, making
this technique suitable for tuning parameters in large-scale HPC environments. As a result
of this work, the ShaMAN optimizer module has been integrated as the primary method
for exploring the parameter space in the ACCO software.
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4.1. State of the Art
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Figure 4.1: Schematic Representation of the Skeleton Usage

This chapter presents the main principles of a new method to tune an MPI application.
As described in Chapter 2, producing a tuning file adapted to a specific application can
be a time-consuming process, especially when the application itself takes a long time to
execute.

The idea here, as shown in Figure 4.1, is to use a proxy application, denoted skeleton(A),
instead of the original application A in the tuning process. The desired properties of
skeleton(A) would be similar to those of A from an MPI point of view while having a
smaller running time.

4.1 State of the Art
In the domain of parallel computing, algorithmic skeletons have emerged as an effective
high-level abstraction for structured parallel programming. These abstractions allow
programmers to focus on the algorithmic structure without managing low-level details
like communication and synchronization, which can significantly reduce the complexity
and error-proneness of parallel programming. Early skeletonization approaches like those
proposed by Cole [20] outlined foundational patterns, such as divide-and-conquer, which
remain prevalent in the field. Cole’s work laid the groundwork for many skeleton frameworks
by providing a formal, structured approach to parallel programming, abstracting frequently
used computational patterns like task queues and pipelines into reusable higher-order
functions that can be tuned in isolation.

Subsequent research expanded these skeletonization techniques, exploring their ap-
plication to various domains. For instance, Bird [14] formalized higher-order functions
in functional programming, which facilitated the design of parallel algorithms based on
skeletons. These algorithms, that can be optimized independently, allow for an elegant
and performant way of implementing parallel applications, which is particularly useful in
parallel environments.

Moreover, there has been a significant focus on improving the performance and adapt-
ability of skeletons. For example, systems like ASSIST [61] offer flexible parallel skeleton
implementations that adapt dynamically to changing computational resources. Such ad-
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vancements align with the need for resource-aware computing, particularly in heterogeneous
environments like clusters and grids [28].

The refinement of skeleton libraries, like SkeTo [57] and Muesli [19], further promoted
the adoption of parallel skeletons by providing practical implementations that integrate well
with MPI. However, they are only tools that provide programmers with well established
building blocks to create their applications, while our approach aims at reducing an
application to its minimal communicating component. This method builds the skeleton,
and therefore does not require the application to be based on one, which makes it available
for all MPI-based applications.

In their paper [28], González-Vélez et al. provide a comprehensive review of algorithmic
skeleton frameworks (ASKFs), which are high-level, structured parallel programming tools.
They identified three types of ASKFs:

• Data-parallel: operations like map, reduce, and scan, typically applied to large
data sets

• Task-parallel: Patterns like farm and pipeline that handle task distribution across
processors.

• Resolution skeletons: Implement algorithms like divide-and-conquer and branch-
and-bound, which recursively solve problems by splitting them into smaller parts

In the previously mentionned [67], Zhai et al. used the concept of a program slice,
which gave us the idea for the skeletonization process. A program slice can be used to
represent the minimal subset of instructions in a program that preserves an attribute of
the complete program. In their case, the preserved attribute is the program trace, while
in our approach we aimed at preserving the entire communication pattern. The concept is
presented in details in Section 4.2.4.

4.2 Skeleton Generation
As described in Figure 4.1, an alternate path is taken to produce the tuning file. To reach
this goal, the application A undergoes a transformation named skeletonization, detailled
in Section 4.3. To generate skeleton(A), the application A must be analyzed extensively
to determine for each instruction if it can be removed or if it has to be preserved.

To perform the skeletonization process, we use the concepts of Communication Pattern
and Communication Variable to evaluate the instructions in the application. These
concepts are detailled in Sections 4.2.1 and 4.2.2 respectively.

4.2.1 Communication Pattern

Different MPI applications may exhibit different communication patterns, which can be
characterized by three key attributes: volume, spatiality and temporality [18, 38]. The
volume attribute encompasses both the number of messages and their sizes sent through
the MPI library. The spatial attribute, or spatiality, is expressed in terms of the traffic
pattern among the MPI processes whilst the temporal attribute, or temporality, is captured
by the message generation rate. We need a concept to formalize whether or not a program
statement does modify any one of these attributes, namely a program slice [63, 67].
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4.2.2 Communication Variable

A Communication Variable (Comm Variable for short) is a parameter of an MPI commu-
nication routine which directly impacts either the volume, the spatiality or the temporality
of the MPI program. For example, in the signature of the MPI_Send operation shown in
Listing 4.1, the buf parameter is not a Comm Variable. Indeed, it holds a pointer to
the data to send, and its content does not not change the communication pattern. On
the other hand, all other parameters of MPI_Send are Comm Variables: the count and
datatype parameters characterize the number of bytes to send, changing their values will
modify the volume attribute. The combination of dest and comm determines which MPI
process will receive the message, and their modification will change the spatial attribute.
Finally, the tag value, if changed, might modify the message ordering and thus the spatial
attribute.

1 int MPI_Send(const void* buf , int count , MPI_Datatype datatype , int dest
, int tag , MPI_Comm comm)

Listing 4.1: Signature of MPI_Send

It is possible to determine whether or not a parameter of an MPI communication
routine is a Comm Variable by reading the MPI standard, as the role and effect of each
parameter is defined in it. As explained before, some parameters fall into the Comm
Variable category, while others need more examination. One of the most notable example
is the parameter of type MPI_Op, present in multiple MPI collectives communication
operations such as MPI_Reduce. It is an MPI structure, wrapping the function that is
called when doing the reduction operation. We initially supposed that the function used
would not change the communication pattern, as all predefined MPI_Ops like MPI_SUM
are commutative. However, after carefully examining the Open MPI source code, we
found that user-defined MPI_Ops are allowed to call other MPI functions. Moreover, the
predefined MPI_NO_OP, doing nothing when invoked, is a special case as MPI is allowed to
return early from an MPI_Reduce using it, thus not performing any communication. In
either case, the value of the parameter of type MPI_Op is able to change the communication
pattern, earning the Comm Variable status. Conversely, output parameters and return
values are not provided by the user, they are the result of the function call, therefore they
are not marked as Comm Variables by the function call.

However, variables not marked as Comm Variables in a specific MPI call might be
marked as such at a later point in the code. For example, it is often the case with
the output parameter of MPI_Comm_rank, which contains the rank of the calling MPI
process. As an output parameter, it is initially not marked as a Comm Variable, but offset
computation usually depend on its value, therefore marking it as a Comm Variable. This
dependency transmission is further described in Section 4.2.3. This mechanism allows the
transmission of the status to a variable v if the value of a Comm Variable depends on the
value of v. This definition of a Comm Variable is used throughout the entire description
of the skeletonization process to refer to variables, registers, statements or instructions of
A that should be preserved in skeleton(A).

4.2.3 Types of Dependencies between Variables

Dependencies are relations between variables where the value of one influences the value
of the other. Three types of dependencies may be detected:
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• X has a Data dependency on Y if the program’s computation might change if/when
the statements where X and Y appear are reversed.

• X has a Control dependency on Y if the value of variable Y determines whether or
not the statement containing variable X is executed.

• X has a Communication dependency on Y if X has a data dependency on Y and
the statement where Y appears is an MPI communication operation.

In Listing 4.2, the relation of x toward y is an example of a data dependency. If the
statements on Lines 2 and 3 were reversed, the value of x after their execution would
certainly not be 42.

1 int x, y;
2 y = 42;
3 x = y;

Listing 4.2: Example of a data dependency

In Listing 4.3, the relation of x toward y is an example of a control dependency, the
value of y is controlling a possible increment of x.

1 int x, y;
2 if (y > 256) {
3 x++;
4 }

Listing 4.3: Example of a control dependency

In Listing 4.4, the relation of x toward y is an example of a communication dependency,
as the value of x depends on the value of y which itself is the result of an MPI operation,
in this case MPI_Recv.

1 int x, y;
2 MPI_Recv (&y, 1, MPI_INT , src , tag , comm , MPI_STATUS_IGNORE);
3 x = y;

Listing 4.4: Example of a communication dependency

4.2.4 Slicing Criterion and Program Slice

A slicing criterion of a program P is a pair ⟨p, V ⟩, where p is a statement in P , and V is
a subset of the variables in P . A program slice based on the slicing criterion ⟨p, V ⟩, is the
minimal subset of statements that preserves the behavior of the original program up to
the statement p with respect to the program variables in V . These concepts are used in
conjunction to identify the specific portions of a program that exhibit a specific behavior.
In our case, the behavior that we want to identify and isolate is the part that determines
its communication pattern.
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4.3 Application Skeleton
We aim at determining the slice of the MPI application A based on the slicing criterion
⟨a, V ⟩ where a is the last statement of A and V is the subset of the Comm Variables of A.
We use the last statement to cover the entire program. This program slice is therefore
the minimal program that exhibits the same communication pattern and behavior than
A. To achieve this objective, we identify the variables of A that are Comm Variables,
using our knowledge of the MPI routines that are present in the codebase, and we then
propagate this status to all variables of A that have a dependency on them so as to
preserve the program slice. At this point, every variable that modifies the behavior of
A is marked with the Comm Variable status, thus removing all unmarked variables and
the operations performed on them will result in the slicing criterion ⟨a, V ⟩. This new
program, that exhibits the same communication pattern without the computational part
of the application, is the desired skeleton of the application A. It will be referred to as
skeleton(A) in the following Sections.
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4.4 A Complete Example (DGEMM)
For a more concrete description of this process, we present a complete example of a
linear algebra general parallel matrix-matrix multiplication written in C (BLAS DGEMM),
presented in Listing 4.5. The skeletonization process requires two phases, the first one
analyzes all instructions from top to bottom to indentify the Comm Variables , the second
one propagates the status from bottom to top.
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1 #include <mpi.h>
2 #include <stddef.h>
3

4 #define N 80
5 #define MAT(m, i, j) (m)[(j)*N+(i)]
6 #define COMM MPI_COMM_WORLD
7

8 int main(void) {
9 int err , myid , nprocs , cols , mysize , tag , master , offset;

10 MPI_Status st;
11 double A[N*N], B[N*N], C[N*N];
12 err = MPI_Init(NULL , NULL);
13 err = MPI_Comm_rank(COMM , &myid);
14 err = MPI_Comm_size(COMM , &nprocs);
15 cols = N / (nprocs - 1);
16 mysize = cols * N;
17 tag = 1;
18 master = 0;
19 if (myid == master) {
20 for (int i = 0; i < N; ++i) {
21 for (int j = 0; j < N; ++j) {
22 MAT(A, i, j) = i + j;
23 MAT(B, i, j) = i * j;
24 }
25 }
26 for (int dest = 1; dest < nprocs; ++dest) {
27 offset = (dest - 1) * mysize;
28 err = MPI_Send(A, N*N, MPI_DOUBLE , dest , tag , COMM);
29 err = MPI_Send(B+offset , mysize , MPI_DOUBLE , dest , tag , COMM);
30 }
31 for (int source = 1; source < nprocs; ++ source) {
32 offset = (source - 1) * mysize;
33 err = MPI_Recv(C+offset , mysize , MPI_DOUBLE , source , tag , COMM , &

st);
34 }
35 } else {
36 err = MPI_Recv(A, N*N, MPI_DOUBLE , master , tag , COMM , &st);
37 err = MPI_Recv(B, mysize , MPI_DOUBLE , master , tag , COMM , &st);
38 for (int k = 0; k < cols; ++k) {
39 for (int i = 0; i < N; ++i) {
40 MAT(C, i, k) = 0.0;
41 for (int j = 0; j < N; ++j) {
42 MAT(C, i, k) += MAT(A, i, j) * MAT(B, j, k);
43 }
44 }
45 }
46 err = MPI_Send(C, mysize , MPI_DOUBLE , master , tag , COMM);
47 }
48 err = MPI_Finalize ();
49 (void) err;
50 return 0;
51 }

Listing 4.5: parallel matrix-matrix multiplication in C
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4.4.1 The Top-Down Phase

We start with the identification of the Comm Variables. They are listed here, along
with their line number to avoid confusion between multiple occurrences of the same
label: (myid, 13), (nprocs, 14), (dest, 28), (tag, 28), (mysize, 29), (dest, 29), (tag, 29),
(mysize, 33), (source, 33), (tag, 33), (st, 33), (master, 36), (tag, 36), (st, 36), (mysize, 37),
(master, 37), (tag, 37), (st, 37), (mysize, 46), (master, 46), and (tag, 46). N, MPI_COMM_WORLD
and MPI_REAL are not variables, but constant values, and are therefore left unmarked. The
err variable, the output result of MPI routines, behaves similarly to buf, and is thus not
marked with the Comm Variable status, as it does not impact the communication pattern
unless an error occurs and is properly handled.

4.4.2 The Bottom-Up Phase

In this phase, all dependencies involving a Comm Variable are determined in order to
propagate this status upward in the program. In this example program, the Comm Variable
(mysize, 16) has a Data dependency on the regular variable (col, 16), promoting it to a
Comm Variable. It is the sole occurrence of a dependency that changes the status of a
variable. Now that all Comm Variables are known, the statements that do not modify
them can be removed. For instance, the assignments to the variable offset on Lines 27
and 32 can be removed. Similarly, the initial construction of A and B on Lines 20 to
25 can be deleted, along with the assignments to C on Lines 38 to 45. The remaining
statements constitute the skeleton of the program. The code produced after manually
performing the two steps is presented in Listing 4.6.
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1 #include <mpi.h>
2 #include <stddef.h>
3

4 #define N 80
5 #define MAT(m, i, j) (m)[(j)*N+(i)]
6 #define COMM MPI_COMM_WORLD
7

8 int main(void) {
9 int myid , nprocs , cols , mysize , tag , master , offset;

10 offset = 0;
11 MPI_Status st;
12 double A[N*N], B[N*N], C[N*N];
13 MPI_Init(NULL , NULL);
14 MPI_Comm_rank(COMM , &myid);
15 MPI_Comm_size(COMM , &nprocs);
16 cols = N / (nprocs - 1);
17 mysize = cols * N;
18 tag = 1;
19 master = 0;
20 if (myid == master) {
21 for (int dest = 1; dest < nprocs; ++dest) {
22 MPI_Send(A, N*N, MPI_DOUBLE , dest , tag , COMM);
23 MPI_Send(B+offset , mysize , MPI_DOUBLE , dest , tag , COMM);
24 }
25 for (int source = 1; source < nprocs; ++ source) {
26 MPI_Recv(C+offset , mysize , MPI_DOUBLE , source , tag , COMM , &st);
27 }
28 } else {
29 MPI_Recv(A, N*N, MPI_DOUBLE , master , tag , COMM , &st);
30 MPI_Recv(B, mysize , MPI_DOUBLE , master , tag , COMM , &st);
31 MPI_Send(C, mysize , MPI_DOUBLE , master , tag , COMM);
32 }
33 MPI_Finalize ();
34 return 0;
35 }

Listing 4.6: Source code equivalent of Listing 4.5 after skeletonization

4.5 Automatization with LLVM
The skeletonization process presented in the previous Section is both error-prone and
time-consuming when performed manually, which makes it an excellent candidate for
automation. The initial realization is presented in Section 4.7.1, however the viability of this
approach is largely undermined by the fact that it is carried out manually, thus rendering
it not applicable to applications with a large codebase. To carry out the skeletonization
automatically, tools to realize code analysis and transformation were required, and the
LLVM suite was selected. The complete automatization process is detailled in Section 4.5.2,
while LLVM itself is presented in Section 4.5.1.

4.5.1 LLVM

The LLVM project [59, 40] is a collection of modular and reusable compiler and toolchain
technologies, that can be used to develop a frontend for any programming language and a
backend for any instruction set architecture. LLVM is designed around an intermediate

58 R. Sartori



4. Skeletonization
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Figure 4.2: Compilation process using LLVM

representation (LLVM IR, or simply IR) that is a language independent and portable
representation of the code. One of its most notable tool is clang, a compiler for the C
programming language. It includes numerous passes, transformation functions that run on
the IR to perform various optimizations, such as eliminating dead code or propagating
constants values.

Figure 4.2 shows a compilation example using clang. The green box represents what
occurs inside the green arrows. The clang executable is a wrapper around multiple binaries
inside LLVM that are invoked sequentially such as a parser, a lexer, an optimizer or an
assembler. Each of those binaries is a standalone and can be called independently, or by
providing the appropriate flags to clang.

The frontend (clang -cc1) is used to convert C source code into the LLVM IR. It first
parses the file to generate the Abstract Syntax Tree (AST), emitting syntax errors if the
code does not respect the C language syntax. It is eventually preceded by a precompiler
phase where C macros are expanded. If the code is syntaxically correct, the LLVM IR
is generated. It can be written in two different formats, .bc and .ll. The first one is a
binary file (bitcode) and is memory efficient, while the second is a regular text file that is
human-readable.

Then, the optimizer opt is invoked on the resulting IR. LLVM contains multiple
transformation functions, known as LLVM passes, that take the IR or part of it as a
parameter to produce a result. The immutable passes do not modify the input but analyse
the IR to produce an object containing useful informations about it. For example, the
BasicAliasAnalysis pass is a stateless machine running on the IR that produces an
object of the generic type AAResults, object that can be queried to know if two memory
locations can be accessed from one another. For example, Listing 4.7 presents two pointers
that can both be used to access the value 3, through array[3] and *(two+1). In this
situation, we say that array and two are aliases (partial aliases in that case).

1 int array [5] = { 0, 1, 2, 3, 4 };
2 int* two = &array [2];

Listing 4.7: Example of two pointers that are partial aliases

The query results of an AAResults are of type AliasResult, an enumeration with
values:
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• NoAlias: The two locations are not aliases at all

• MayAlias: The two locations may or may not be aliases (this is the least precise
result)

• PartialAlias: The two locations are aliases, but only due to a partial overlap

• MustAlias: The two locations are aliases

These informations produced by this pass are very useful for other passes to perform their
own transformation, but said transformation will invalidate the AAResult. Other passes
producing alias analysis exist and are used in more specific cases, the BasicAliasAnalysis
is the least elaborated one, but also one of the cheapest to compute and other alias analyses
may rely on it to handle simple cases.

The informations produced by immutable passes can be later used by the other kind
of passes, the transformation passes, that modify the IR to achieve a desired property. For
example, the LoadStoreVectorizer transformation pass is able, under some conditions,
to merge multiple small load instructions into a single wider load instruction (known as a
vector load, hence the name). It operates in a similar way on store instructions, and is
usually applied to codes that are intended to run on GPU devices, where loading multiple
elements at once is very beneficial on their architecture. To operate properly, this pass
requires, among other prerequisites, an alias analysis that is able to prove that two memory
locations are disctinct (they are not aliases) so that they can be combined.

1 void increment(int* ptr1 , int* ptr2 , int amount) {
2 *ptr1 += amount;
3 *ptr2 += amount;
4 }

Listing 4.8: Example of Alias Analysis Usage

In Listing 4.8, the result of clang will depend on the result of the alias analysis. If it
detects that ptr1 and ptr2 are not aliases, their load/store instructions can be combined.
If it can be proven that ptr1 and ptr2 are aliases (ptr1 == ptr2), then another pass
(InstructionCombine) will merge the two add instructions together. In all other cases,
such optimization can not be performed.

As a side note, even an advanced alias analysis may not be able to find any aliases,
thus leading to no optimization. To influence the analysis and help the optimization,
developpers have one keyword at their disposal: the restrict type qualifier. It only applies
to pointers and indicates that within the scope where a pointer p is restrict-qualified,
any object accessed through p (directly or indirectly) is only accessible through p and no
other pointer. If any of ptr1 or ptr2 was marked restrict, the alias analysis will be
able to deduce that they are not aliases of one another and perform the combination.

Each pass can be invoked independently, but some have dependencies, as seen with the
LoadStoreVectorizer pass. An other example of dependency would be the transformation
pass that unrolls loops (LoopUnrollPass), which require the IndVarSimplify pass to run
before it, and that its result were not invalidated. The IndVarSimplify pass transforms
the induction variables (variables used as loop indices) into simpler forms, potentially
allowing them to be removed when trying to unroll the loops. Each pass is responsible for
updating the intermediate results and notify when they are invalidated. These dependencies
are all resolved by the opt tool, which tries to run as few passes as possible, executing
required passes first, precomputing intermediate results and feeding them to passes that
do not invalidate them in priority.
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The passes can thus be invoked in sequences, denoted pipelines. Several predefined
pipelines exist, the most notable being of the form default<OX> with X corresponding to
an optimization level (0 to 3, or s to optimize for binary size). As opt is the backbone of
clang, all these pipelines are by extension available as options to the compiler.

Finally, the linker llvm-link analyzes the IR at the end of the opt pipeline. It is
responsible for aggregating different IRs, resolving symbols and producing an executable
file. The LLVM IR is, similary to the input language, independent of the output format,
or instruction set. That allows llvm-link to produce files for different architectures,
including (but not restricted to) x86-64, ARM and WebAssembly. At the end, llvm-link
outputs an executable binary using as default the host’s instruction set.

LLVM allows the user to define its own passes, that can be independently applied to
the IR as part of a compilation pipeline (a sequence of LLVM passes). The skeletonization
process was implemented as a transformation pass.

4.5.2 An Implementation with LLVM

The manual process of skeletonization, as outlined at the beginning of this Section, is both
labor-intensive and error-prone, making it unsuitable for complex and large codebases.
To address these issues, we implemented an automated solution using the previously
mentioned LLVM compiler infrastructure. In this Section, we detail step-by-step this
new LLVM pass, along with the specific challenges that we encountered to ensure the
correctness and efficiency of the skeletons produced.

Here are the main steps of the core of our solution, encapsulated in the SkeletonPass::run()
function, which implements the skeletonization process:

• step 1 builds the data structure that will contain the informations (FuncMap)

• step 2 finds the main function and adds it to the data structure

• step 3 fills the data structure by recursively exploring the IR (starting with main)

• step 4 marks Comm Variable as such using the knowledge of the MPI standard, as
discussed in Section 4.2.2

• step 5 recursively propagates the Comm Variable status using dependencies that
can be obtained with LLVM

• step 6 recursively removes instructions that were not marked as Comm Variable

• step 7 adjusts and prepares the resulting IR

The implementation consists of a single core function (SkeletonPass::run) whose
sole parameter is a reference to the LLVM IR (llvm::Module&). It is compiled into
a shared library that can be loaded dynamically by the opt tool, and the function
SkeletonPass::run is executed, with its parameter being the current state of the IR.

The LLVM IR is comparable to a matryoshka doll, as it is composed of contain-
ers included in other containers. The topmost container is the previously mentioned
llvm::Module, which contains global elements like functions, aliases and global variables.
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4.5.2.1 A Simple Example of a Pass

1 using namespace llvm;
2

3 PreservedAnalyses FunctionNames ::run(Module& M) {
4 for (Function& F : M) {
5 errs() << F->getName () << ’\n’;
6 }
7 return PreservedAnalyses ::all();
8 }

Listing 4.9: A Simple LLVM pass that prints function names

In the simple pass example shown in Listing 4.9, we use C++ range-based for
loop to iterate over the Module container, more specifically over the Function ele-
ments. For each of them, we print their name on the standard error stream of opt.
PreservedAnalyses::all() is returned to indicate that no analysis pass (such as BasicAliasAnalysis)
was invalidated by executing this plugin. The boilerplate code required for the pass to
cleanly fit in opt is not shown here.

1 void greet(char* who) {
2 printf("Hello %s\n", who);
3 }
4

5 int main() {
6 greet("world");
7 return 0;
8 }

Listing 4.10: Convoluted hello_world program in C

1 greet
2 main

Listing 4.11: Possible output

When this plugin code is executed over the LLVM IR produced by Listing 4.10, the
output prints the two function names, in unspecified order, as shown in Listing 4.11.
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1 @.str = private unnamed_addr constant [10 x i8] c"Hello %s\0A\00", align
1

2 @.str.1 = private unnamed_addr constant [6 x i8] c"world \00", align 1
3

4 ; Function Attrs: noinline nounwind optnone uwtable
5 define dso_local void @greet(ptr noundef %0) #0 {
6 %2 = alloca ptr , align 8
7 store ptr %0, ptr %2, align 8
8 %3 = load ptr , ptr %2, align 8
9 %4 = call i32 (ptr , ...) @printf(ptr noundef @.str , ptr noundef %3)

10 ret void
11 }
12

13 declare i32 @printf(ptr noundef , ...) #1
14

15 ; Function Attrs: noinline nounwind optnone uwtable
16 define dso_local i32 @main() #0 {
17 %1 = alloca i32 , align 4
18 store i32 0, ptr %1, align 4
19 call void @greet(ptr noundef @.str .1)
20 ret i32 0
21 }

Listing 4.12: Human readable version of the LLVM IR

Listing 4.12 presents the human-readable version of the non optimized LLVM interme-
diate representation of the code in Listing 4.10. Some of the irrelevant part were omitted.
It reads as follows: Lines 1 and 2 hold the constant string variables, under the names @.str
and @.str.1, later referenced in both greet and main. Lines 4 to 11 is the definition of
the greet function. It has several attributes on Line 4, most of them being here because
no optimization was performed. The complete list of attributes attached to a function
can be found by looking at the # after the function signature and locating in the file the
line starting with the same # identifier (not shown in the Listing). Text starting with a
semicolon is a comment, LLVM only adds it for readability but ignores it when using the
IR. The noinline attribute is present by default and indicates that the function may not
be inlined. It disappears if the code is compiled with any higher level of optimization,
as inlining a single function is often possible. The nounwind simply indicates that the
function does not use exceptions, and therefore that no special unwinding instructions need
to be emitted when calling it. Unwinding is detailled further in Section 4.5.2.8. greet
takes a single pointer argument, denoted %0 and marked noundef, meaning that if the
compiler manages to prove that an undefined pointer ends up in this place, it must emit an
error. Line 6 corresponds to an llvm::AllocaInst, an instruction that reserves memory
for a variable by making space on top the stack. In this case, the variable is a pointer, most
likely a 64 bits wide as the alignment is 8, but the exact width used is internal to LLVM.
The result of the llvm::AllocaInst can be referred to as %2. It is used in the very next
line, as the value of the parameter %0 is stored in the reserved memory. A store instruction
(llvm::StoreInst) does not have a return value, one can only access the results with the
pointers. Line 8 is a llvm::LoadInst, the exact opposite of a store. It loads a value from
memory, usually in preparation for the next instruction. The loaded value is a pointer,
loaded from %2 and accessible through %3. Line 7 and 8 could easily be removed, they are
present here solely because no optimization was done. Line 9 calls the function printf
using the previously mentionned @.str and %3. The syntax i32 (ptr, ...) indicates
that printf is a variadic function, taking a pointer and list of arguments of unknown
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length as inputs to return an integer (i32). The full list of arguments is indicated after it.
The return value is stored in %4, but in this case it is not referenced later. Finally, the last
line returns from the function, it corresponds to a llvm::ReturnInst and in this case it
returns nothing (void). Line 13 declares the printf function. Let’s remember that when
the LLVM IR is produced and worked with, the linking phase has not been performed yet.
The declaration is simply indicating a requirement for the linker to resolve. Lines 16 to 21
are the definition of the main function. The first instruction in it allocates memory on the
stack to hold the return value, in this case an integer. This instruction is present for every
non-void function, and the 4 bytes alignment is a prerequisite specific to the main function
for compatibility with 32 bits architectures. They could easily be removed, along with the
store instruction next line storing 0 in the allocated memory, because the last line directly
returns 0. These redundant instructions are present once again because of the absence
of optimizations. Line 19 is a llvm::CallInst, invoking the function printf with the
argument @.str.1. Finally, as previously stated, the next line returns the value 0.

4.5.2.2 A More Detailled Example

Listing 4.13 presents parts of a more advanced pass that is able to remove conditional
branches whose condition can be determined at compile time.

1 static bool eliminateCondBranches(Function& F) {
2 bool Changed = false;
3

4 for (BasicBlock& BB : F) {
5

6 // Skip blocks without conditional branches as terminators.
7 BranchInst* BI = dyn_cast <BranchInst >(BB.getTerminator ());
8 if (!BI || !BI ->isConditional ())
9 continue;

10

11 // Skip blocks with conditional branches without ConstantInt
conditions.

12 ConstantInt* CI = dyn_cast <ConstantInt >(BI->getCondition ());
13 if (!CI)
14 continue;
15

16 // Remove dead branch
17 Changed = true;
18 ...
19

20 }
21 return Changed;
22 }

Listing 4.13: Portion of a pass eliminating conditional branches

It works by taking as input a Function and iterating over its BasicBlocks, the
containers at the base of the LLVM IR, representing blocks of instructions without jumps.
They must however end with a jump instruction, represented in the IR by a BranchInst.
They are instructions containing the addresses of the next BasicBlock the control flow
has to jump to, and an optional condition if there are multiple successor blocks. If after
some optimization the condition can be reduced to a compile time constant, the following
pass will be able to remove the dead branch.

LLVM IR makes extensive use of the C++ class capabilities. Every compilation concept
is implemented as a class to encapsulate its characteristics and functionalities, as can
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be seen in the case of the BranchInst. It can also be seen in Figure 4.3, which shows
the inheritance graph of the llvm::Constant class, that many elements inherit from this
interface, most notably ConstantData which refers to constant values declared in the code.
Their main commonality is the possibility for the user of the class to access informations
that are known at compile time, which explains the presence of GlobalVariable among
the descendants of Constant. Indeed, a GlobalVariable may not be constant but fits
the Constant requirements of having its information available at any time, including
whether or not it is constant. The GlobalVariable has an exclusive method isConstant
to access this information. Through optimizations, a variable value can be promoted to a
ConstantData or one of its descendant like ConstantInt.

Presented in Listing 4.13, the dyn_cast<> operator is used throughout the LLVM
codebase. It checks to see if the operand is of the specified type, and if so, returns a pointer
to it (this operator does not work with references). If the operand is not of the correct type,
a null pointer is returned. Thus, this works very much like the dynamic_cast<> operator in
C++, and should be used in the same circumstances. Typically, the dyn_cast<> operator
is used in an if statement, as seen in Listing 4.13. This operator was introduced for compile
time performance, and works by making use of the LLVM built-in type informations instead
of relying on the much more costly C++ dynamic_cast<> which require the compiler to
generate a virtual table at compile time and dereference several pointers through the table
at runtime.

The cast at Line 7 accesses the last instruction of the BasicBlock through the
getTerminator() method and checks if it is a BranchInst or derived from it. The
BranchInst are instructions that will cause a jump in the code execution, like an if state-
ment or a return instruction. BasicBlocks are a list of instructions with the condition
that:

• no instruction but the last one is a BranchInst

• the last instruction must be a BranchInst

They are the basic blocks between which the control flow of the program jumps. If the
conditions are not respected, the LLVM assembler will refuse to create a binary and abort.
Line 8 verifies that the instruction is a BranchInst by checking if it is not nullptr, and
then checks if the branch is not conditional. If we enter this if statement, we know that
there is no conditional branch to remove, and move to the next block.

If the execution reaches below Line 10, we know that we have a conditional branch
that could be removed. Line 12 casts the condition of the branch to a ConstantInt, and
the following if checks the result for nullptr. If the casts results in a nullptr, we know
that the optimization could not reduce the condition to a compile-time constant, and we
can not remove the branch. However, if the cast succeeds, we have a an opportunity for
optimization as the branch is conditional (thus having multiple successors), but we can
remove successors that can not be reached (as we know the value of the condition).

4.5.2.3 SkeletonPass Preparation

At first, the SkeletonPass initializes the data structures that we use in the following phases
to keep track of every information required. A struct VarInfos is used to store the
following informations:

• Trilean commVar: is the variable a Comm Variable
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Figure 4.3: The inheritance graph of the class llvm::Constant

• Trilean memVar: is the variable the output of a memory allocation call

• Trilean returnVar: is the variable returned by the function

• Trilean resultVar: is the variable the result of a function call

The meaning of these informations will be detailled further in Section 4.5.2.4. Within
the LLVM IR, an llvm::Instruction is itself a variable that can be manipulated and
that, most of the time, corresponds to a register once compiled in the binary. Therefore,
the term Variable will be used to refer to an llvm::Instruction and its associated
informations. We do not know a priori the type of the llvm::Instruction, so we store
only the informations that apply to all types. The handling of specific types of instruction
is delegated to a specialized function.

The statuses are not stored as booleans but as trileans, which have an additional
maybe value. This special state is used when the status is ambiguous, most notably when
analyzing a conditional loop where the status of the variables depends on values that are
outside the body of the loop. The default value of a trilean matches that of the boolean
(false), which means that the default value of a varInfo represents a variable that has
no special status.

Pointers to an llvm::Instruction and VarInfos structures holding the associated
informations are stored as key-value pairs in an map. The type std::unordered_map
was chosen for the two following reasons: first, we only have access to the Intermediate
Representation, which is mostly composed of pointers to llvm structures scattered across
the memory, and we need to match these pointers to their VarInfos. Second, the number
of instructions in a function can grow to arbitrarily large sizes, and we needed a data
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structure that allows to quickly access the informations associated with an instruction.
The unordered map provided by the standard library was appropriate as we can customize
it to use any hashable type as the key (and pointers are numbers, thus hashable), and the
map allows access to every element in a constant amortized time. This map is denoted as
the VarMap of the function.

The FuncInfos works very similarly to the VarInfos, but at the llvm::Function
level. It is composed of:

• VarMap varMap: informations about the variables of the function

• std::vector<VarInfo> parameters: informations about the parameters of the
function

• VarInfo retvalStatus: informations about the returned value

The default value has both varMap and parameters empty, they will be filled later on.
All parameters can be only be determined in advance for MPI functions.

Finally, the most important data structure is the FuncMap, associating pointers to
llvm::Function to the FuncInfo with their relevant values. It is this structure, named
context, that we initialize to an empty map at the very beginning of the function
SkeletonPass::run.

4.5.2.4 Code Analysis

The first iteration through the LLVM IR fills the structure defined in the previous Section
with the relevant informations. It starts by finding the main function, a symbol that must
exist for the Module to be correct. Once found, we iterate over the BasicBlocks of the
function, and then over the Instructions of each BasicBlock.

The most important instruction types have a specialized overloaded function to add
them to the context, as some properties are to be preserved for the IR to remain valid.
Other informations are also stored to preserve some of the code, most notably memory
allocations and deallocations so as to not cause any SIGSEGV or OOM killers.
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1 #include <stdio.h>
2 #include <stdlib.h>
3

4 typedef struct {
5 int value;
6 } myint_t;
7

8 // opaque pointer
9 typedef void* myint;

10

11 myint myint_allocate(void) {
12 return malloc(sizeof(myint_t));
13 }
14

15 void myint_free(myint i) {
16 free(i);
17 }
18

19 int myint_get(myint const i) {
20 myint_t* ptr = (myint_t *) i;
21 return ptr ->value;
22 }
23

24 void myint_set(myint i, int v) {
25 myint_t* ptr = (myint_t *) i;
26 ptr ->value = v;
27 }
28

29 int main(void) {
30 myint i = myint_allocate ();
31 myint_set(i, 42);
32 printf("%d\n", myint_get(i));
33 myint_free(i);
34 return 0;
35 }

Listing 4.14: C code allocating memory with malloc

Listing 4.14 demonstrates the use of the memVar status, added to fix one of the main
problem of the skeletonizer: memory allocation. It is an additional status that variables
can have, indicating that they are the result of a memory related function call. Similarly
to MPI functions, memory allocating and deallocating functions can be known by reading
the documentation. Typical buffer are not marked with the Comm Variable status, leading
to their initialization being removed from the skeleton. However, in the common case
of mallocated buffers, this behavior is problematic as we need the memory to exist for
the MPI functions to access it without triggering a segmentation fault signal (SIGSEGV).
In this example, the call to the function myint_allocate and its return value will be
marked with the memVar status as it arises from a call to malloc. Similarly, myint_free
and its argument will be marked due to the free call. Currently, the hardcoded database
for memory-related functions only contains functions from the malloc, mmap, brk and
posix_memalign families, but can easily be extended.

As the iteration progresses, the FuncMap gradually fills up with informations by repeat-
edly calling a specialized function on every traversed instruction. Listing 4.16 shows the
specialized functions to add an llvm::Instruction to the FuncMap. If no specialization
matches the current instruction, a generic one is called which only performs the addition
to the context, without any additional operation, as presented in Listing 4.15.
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1 template <>
2 void add(Instruction* I, FuncMap& context) {
3 // Retrieve parent function
4 Function* parent = I->getFunction ();
5 // add default empty varInfo to the context
6 context.at(parent).variables[I] = {};
7 }

Listing 4.15: Generic function to add to the context

1 template <>
2 void specialized_add(ReturnInst* RI , FuncMap& context) {
3 Function* parent = RI ->getFunction ();
4 // create and retrieve varInfo
5 VarInfos& varInfos = context.at(parent).variables[RI] = {};
6 // tag the instruction as "being returned"
7 varInfos.returnVar = true;
8 }

Listing 4.16: Specialized functions to add to the context

4.5.2.5 Variables Status Propagation

Once the analysis of the Module is completed, all the informations required to propagate
the Comm Variable status are gathered in the FuncMap, and the process can begin. We
start from the last instruction of the main function and work our way upward. This
direction was chosen for simplicity: an instruction usually depends on something that
precedes it, therefore working from bottom to top minimizes the number of out-of-order
operations that the pass has to perform.

This step works by iterating backward on every instruction, calling for each a function
to perform that propagation. The function is given informations through the context, and
a specialized function is called for instruction types that require a more careful treatment.
For example, the CallInst, which represents the call of another function F , requires to
recursively invoke the propagation process inside F .

1 template <>
2 bool specialized_propagate(LoadInst* LI , FuncMap& context , CallStack& cs

) {
3 (void) cs;
4 // if the LoadInst itself is a commVar , tag the pointer operand as

commVar
5 if (getVarInfos(LI , context).commVar) {
6 Instruction* pointer = dyn_cast <Instruction >(LI ->getPointerOperand ()

);
7 VarInfos& varInfos = getVarInfos(pointer , context);
8 if (varInfos.commVar) return false; // no rerun needed
9 // else set comm var to true and rerun propagation

10 varInfos.commVar = true;
11 return true;
12 }
13 return false;
14 }

Listing 4.17: Specialized function for LoadInst
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1 template <>
2 bool specialized_propagate(StoreInst* SI, FuncMap& context , CallStack&

cs) {
3 (void) cs;
4 Instruction* pointer = dyn_cast <Instruction >(SI ->getPointerOperand ());
5 if (! getVarInfos(pointer , context).commVar) return false; // no rerun

needed
6 // the pointer operand is commVar , tag self and value operand as

commVar
7 Instruction* value = dyn_cast <Instruction >(SI ->getValueOperand ());
8 bool rerun = false;
9 VarInfos& valueInfos = getVarInfos(value , context);

10 if (! valueInfos.commVar) {
11 valueInfos.commVar = true;
12 return = true;
13 }
14 VarInfos& selfInfos = getVarInfos(SI, context);
15 if (! selfInfos.commVar) {
16 selfInfos.commVar = true;
17 return = true;
18 }
19 return rerun;
20 }

Listing 4.18: Specialized function for StoreInst

Listing 4.17 presents the specialized function used to propagate informations from a
LoadInst to the context. The parameter of type CallStack is voided as it is only used
for CallInst. The same description fits the Listing 4.18, showing the specialized function
for the StoreInst.

For example, if we run the skeletonization process on Listing 4.2, that illustrated the
data dependency, up to the propagating step, the corresponding LLVM IR will ressemble
to Listing 4.19. If we suppose that x is a Comm Variable, as x has a data dependency on
y, then y must inherit the Comm Variable status. In Listing 4.19, %1 and %2 correspond
respectively to the declarations of x and y, and %1 is marked as Comm Variable. As we
go from bottom to top, the first line to examine is the number 5, where the value of %4 is
stored at %1. As %1 is a Comm Variable, %4 will be marked as a Comm Variable. Next
is the line number 4, which loads the value of %2. As the instruction itself is a Comm
Variable, it will mark its argument, %2 as a Comm Variable. Finally, the line number 3
stores a constant value at %2 which is a Comm Variable, thus marking itself as Comm
Variable.

1 %1 = alloca i32 , align 4
2 %2 = alloca i32 , align 4
3 store i32 42, ptr %2, align 4
4 %4 = load i32 , ptr %2, align 4
5 store i32 %4, ptr %1, align 4

Listing 4.19: LLVM IR of Listing 4.2

All specialized functions return a boolean, which indicates whether or not the propaga-
tion should be run again on this block. It is used to handle cases where an instruction
depends on something happening after it, the most common cases are loops, where the
loop condition depends on its body. For these situations, the Trilean type is used. We
entrer a loop where the status of each instruction that is not a Comm Variable is marked
with the value maybe. This is to account for a potential modification of the status after the
inital execution of the pass. During this phase, if a status is modified, an extra execution of
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Figure 4.4: BasicBlocks with branching between them and their order of processing

the loop is needed, and the function returns true. The loop continues until no additional
executions are needed, at which point all statuses that are still classified as maybe are
reverted back to false. Figure 4.4 shows the organisations of BasicBlocks in the case of
two nested for loops.

In this situation, processing instructions in the block number 4 (the begining of the
outer loop) might depend on instructions in the block number 3 (the inner loop). This is
usually a control dependency, that is linked to a pair of LoadInst and StoreInst. If the
status of any of the two instructions changes, it means that a control dependency occured,
and that another execution is needed. The specialized function to propagate from these
instruction types will thus return true, as can be seen at Line 10 of Listing 4.17.

CallInst also requires careful processing, as its status dictates if the function call must
be kept. If it is to be kept, the status will be used to qualify the return value of the function
before executing the propagation from it. The return value of main is not considered as
a Comm Variable. The status of all other function calls is known before applying the
propagation inside the function, and this status should not change (unless recursion was
used, that is one of the limitations of the processus discussed in Section 4.5.2.8).

4.5.2.6 Removal of Unecessary Variables

Once the propagation has finished, we know for each instruction if it has an impact on
the communication pattern, and thus if it needs to be kept or not. This next step is thus
rather simple: if an instruction does not need to be kept, it is removed.

Several properties of the IR, required for LLVM to correctly work, must be preserved
through the removal process:
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• Functions that feature a non-void return type in their signature must return something
(an llvm::ReturnInst without value is disallowed)

• Memory locations (pointers and arrays) must keep their initialization (as to not have
uninitialized pointers that are very likely to cause a SIGSEGV when used)

• BasicBlocks must end with an instruction that is derived from llvm::BranchInst,
which includes llvm::ReturnInst

• The remaining IR must not contain llvm::UndefValue, which is the LLVM way of
representing an undefined value or an invalid reference.

The first property is the reason for the presence of a member returnVar in the
VarInfos struct. Similarly to Comm Variable and memVar, it stores a Trilean information
indicating if the relevant variable is returned from the function, in which case it has
to be preserved (even if said variable is not a Comm Variable). It is used to mark
variables that are returned by the current function, in order to preserve the associated
llvm::ReturnInst. For variables that are returned from a function, an additional status,
resultVar is used in the VarInfos struct. This trilean is used during the removal process
to check if the returned variable is assigned to another variable. If that is the case, removing
the assignment will be linked to the removal of the function call. Indeed, removing the
function call without removing the following assignment will result in an invalid reference.
Conversely, removing the assignment without removing the function call is a violation of
either a data dependency or a communication dependency

The second property is handled with the memVar member of the VarInfos and is
discussed in details in Section 4.5.2.4.

1 auto iterator = block ->begin();
2 while (iterator != block ->end()) {
3 Instruction* I = &* iterator;
4 if (remove(I, context)) {
5 I->replaceAllUsesWith(UndefValue ::get(I->getType ()));
6 iterator = I->eraseFromParent ();
7 continue;
8 }
9 ++ iterator;

10 }

Listing 4.20: Code responsible for removing instructions in a block

Listing 4.20 shows how the skeletonizer proceeds to remove instructions within a block.
An iterator is created to iterate over every instruction of the block. Dereferencing this
iterator does not produce an Instruction* but an LLVM struct that override operator&,
and that is why the instruction is acquired with the syntax &*. The remove function is
tasked to call the specialized functions for instructions that must be handled carefully.
These functions simply return a boolean indicating whether or not their instruction must
be removed, depending on the context. If no specializations were made for an instruction
type, the remove function simply checks if the instruction is marked with any status (Comm
Variable, memVar, returnVar or resultVar), in which case it returns true, otherwise it
returns false.

If the remove function indicates that the instruction must be removed, we first call the
LLVM function to replace in the IR all uses of the instruction with an undefined value of
the same type. That replacement is made to avoid complications with missing references
later on. Next, as the instruction is no longer used anywhere, we can safely remove it
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using EraseFromParent. As removing an element will invalidate the iterator, this function
returns a new valid iterator that is assigned to the previous one. Finally, we increment
the iterator to proceed to the next instruction.

1 template <>
2 bool specialized_remove(ReturnInst* RI , FuncMap& context) {
3 // never remove ReturnInst
4 (void) RI; (void) context;
5 return false;
6 }

Listing 4.21: Specialized function to remove a ReturnInst from context

As an example of a specialized function, Listing 4.21 presents the one responsible
for checking if an llvm::ReturnInst must be removed. In our case, to satisfy the third
property, such instruction must never be removed.

To remove all llvm::UndefValue and satisfy the fourth property, an optimization pass
is run at the end of the skeletonizer. This last pass will additionally remove all code that
was rendered dead due to the skeletonization process and is discussed in further details in
Section 4.5.2.7.

The ratio between the number of instructions kept to the initial number of instructions
is not directly correlated to the improvement in execution time. As the example in
Section 4.4 shows, removing the entire body of a loop will cause the removal of the entire
loop, and depending on the number of times this loop is executed, it can have a much
larger impact than removing an instruction executed only once. Similary, removing a
CallInst only accounts for one instruction removed, but the real number of instructions
removed is that of the function not called.

4.5.2.7 The LLVM IR Preparation

Finally, some preparations are now done to the IR before producing the skeleton. Firstly, to
prevent the use of potentially uninitialized variables, all variables declared with AllocaInst
are initialized to 0. Indeed, the skeletonizer might remove the initalization of some variables,
as it can not distinguish initialization from any other computation. Thus, if the variable
is later used as an offset, it might lead to SIGSEGV because the offset could have any
numerical value. Initializing to 0 solves this issue.

Secondly, an optimization pass, default<03>, is run on the IR. Indeed, the initial LLVM
IR of the application is not optimized, to give the skeletonizer all possible opportunities to
remove instructions. Once the skeletonizer is done, the optimization pass is run to align
the performances of the skeleton with that of the original application. Most importantly,
it eliminates all the llvm::UndefValues added by the skeletonizer where it decided that
an instruction should be removed, and it will also has the added benefit of removing dead
code potentially left with all the cut instructions.

Listing 4.6 shows the result of the skeletonization process on the code presented in
Listing 4.5, if it were reverse engineered from LLVM IR to C source code. We can see
that the initialization of the matrices A and B has been completely removed, both buffers
will now contain uninitialized data. Similarly, the triple nested loops doing the matrix
multiplication is missing, no computation involving the uninitialized data is done. Finally,
the computation of the offset has been removed, but its value is used as the index of the
elements to access within the buffers. As described in Section 4.5.2.7, the prepararation
step added an instruction to initialize the value to 0, to avoid using uninitialized data as
an offset.
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4.5.2.8 Limitations of the Skeletonizer

These steps make the skeletonizer able to handle a majority of codes produced for the
HPC field. However, some code patterns or language features still limits its capacity to
process every possible application, and they will be discussed in this section.

1 #include <mpi.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <time.h>
6

7 #define TRIES_PER_ROUND 1000
8 #define MAX_ROUNDS 1000
9 #define EPSILON 1E-5

10

11 int main() {
12 int my_rank , i, rounds = 0;
13 float x, sqrt2;
14 long A = 0, B = 0;
15 long world_A , world_B;
16

17 MPI_Init(NULL , NULL);
18 MPI_Comm_rank(MPI_COMM_WORLD , &my_rank);
19 srand(my_rank + time(NULL));
20

21 do {
22 for (i = 0; i < TRIES_PER_ROUND; i += 1) {
23 x = (float)rand() / (float)(RAND_MAX /2);
24 if (x * x < 2.0) {
25 A += 1;
26 }
27 }
28 B += TRIES_PER_ROUND;
29 rounds += 1;
30

31 MPI_Allreduce (&A, &world_A , 1, MPI_LONG , MPI_SUM , MPI_COMM_WORLD);
32 MPI_Allreduce (&B, &world_B , 1, MPI_LONG , MPI_SUM , MPI_COMM_WORLD);
33

34 sqrt2 = 2.0 * (float)world_A / (float)world_B;
35

36 } while (rounds < MAX_ROUNDS && fabs(sqrt2 * sqrt2 - 2.0) > EPSILON);
37

38 if (my_rank == 0) {
39 printf("sqrt (2) ~ %f, found in %d rounds\n", sqrt2 , rounds);
40 }
41

42 MPI_Finalize ();
43 return 0;
44 }

Listing 4.22: C code approximating
√
2

Sending Comm Variables through MPI buffers In Listing 4.22, we use the Monte-
Carlo method to approximate the value of

√
2 to demonstrate one of the limitations of

the skeletonizer: Comm Variables sent through MPI buffers. Indeed, the condition at
Line 36 is a convergence criterion whose value dictates the number of loops to do. The
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condition depends on the value of sqrt2, which depends on world_A and world_B which
in turn have a communication dependency with A and B on Lines 31 and 32. As a result,
all these variables are considered Comm Variables , which will turn practically all variables
in the program into Comm Variables . This is an issue for the skeletonizer as it loses all
possibility to remove any instruction, and the resulting skeleton is almost identical to the
original application. The choice that was made is to not propagate the Comm Variable
status through communication dependencies. In this case, it frees the skeletonizer from
propagating the status to the variables A and B, thus allowing to remove the entire loop
at Lines 22 to 28. However, the behavior of both applications might diverge, as some
variables could evolve differently in the original application and in the skeleton. This
discrepancy could possibly impact the communication pattern, as it is the case for the
variable sqrt2, because it depends on variables sent through MPI buffers. Removing the
propagation in these situations is still a reasonable choice to make as in most cases, the
data sent through the buffers does not impact the communication pattern. The most
common exception is a convergence critertion, as seen in the example, but these cases
are usually protected with a static condition on the number of loops, condition that is
preserved by the skeletonizer. However, it has the infortunate side effect of fixing the
number of loops that the skeleton will perform, and thus requiring the user to also fix this
number in the original application for them to have the same number of loops.

1 #include <stdio.h>
2 #include <mpi.h>
3 #define ROOT 0
4

5 int global;
6

7 int main(void) {
8 MPI_Init(NULL , NULL);
9 int size; MPI_Comm_size(MPI_COMM_WORLD , &size);

10 int rank; MPI_Comm_rank(MPI_COMM_WORLD , &rank);
11 if (rank == ROOT) {
12 global = 42;
13 MPI_Bcast (&global , 1, MPI_INT , ROOT , MPI_COMM_WORLD);
14 } else {
15 MPI_Bcast (&global , 1, MPI_INT , ROOT , MPI_COMM_WORLD);
16 }
17 printf("[%d] %d\n", rank , global);
18 MPI_Finalize ();
19 }

Listing 4.23: C code using global variable

Mutable global variables are a notorious example of a poor code practice, their use
is allowed but strongly discouraged. In the case of the skeletonizer, the AliasAnalysis
discussed in Section 4.5.1 is not always able to detect to which global variable a pointer
refers to, thus the skeletonizer is unable to know whether or not is should apply the
Comm Variable status on a LoadInst. A naive but working solution would be to consider
every global variable as being a Comm Variable, thus marking any load of a global object
as being required. This approach was our initial solution, but was replaced by a new
method, which features a much simpler implementation: if at any point LLVM assures
that an instruction loads information from a mutable global object, the skeletonizer aborts,
indicating that the use of global variable is not supported. It is a sensible path to take as
the use of such a variable can be avoided in almost all situations.
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Function calls through function pointers If the compiler is not able to know in
advance which function will be called, then the skeletonizer is unable to correctly recurse
and analyze the function called. This situation oftenly arise in C++ when inheritance
is used. An LLVM pass that performs constant propagation could help in this situation:
it is an optimization pass that moves computations from run-time to compile-time when
possible. It mostly applies to variables that can be proven to be constants, in which
case the pass substitutes the computations with the result at compile-time. It is, under
some conditions, able to determine which function will be called through a pointer, thus
proving the pointer to be constant, and modifies the IR accordingly. In this situation, the
limitation is lifted, and that is why this pass is run before the skeletonization.

Variadic functions Similarly, the skeletonizer is unable to correctly mark the arguments
of a function if the function has a variable number of arguments. Therefore, variadic
functions are not supported. This choice is reasonable as their use in functions that
perform MPI operation is rare.

Exceptions The C++ exceptions system, when used, require special instructions in the
LLVM IR. Indeed, a function that can throw an exception is a function that the control
flow can exit in two ways, through a regular return statement or through the exception
system. Such a function requires various modifications to be called, such as a special call
instruction (llvm::InvokeInst), along with a landing pad, a special label to go to in case
of an exception. This renders the analysis considerably more difficult, especially if we
consider that Comm Variables can be thrown through the exception mechanism. As a
result, we use the LLVM pass lower-invoke, which transforms a code with exceptions to
one without them, simply by removing any potential throws. It was originally designed
for platforms that do not support stack unwinding, which is the process of rewinding back
in the stack to run the destructor of still allocated elements in the case of an exception,
as specified in the C++ standard. All exception-handling code becomes dead code after
this pass. It is not a perfect solution, but it allows us to perform our tests on some C++
codebases that use exceptions, such as MiniFE [41].

4.6 Tuning Time Reduction
As shown in Figure 4.1, the objective is to use the automatically produced proxy application
in place of the original application in the tuning process. To gain time during this
optimization, we want to compare the performance of the skeleton relative to the application,
along with the gains brought by the tuning in both cases.

To ease the reading of the following sections, we introduce several notations:

• skeleton(A) : the application obtained after applying the process described in
Section 4.3 to the application A

• (A | B) : the execution time of application A with the tuning produced using the
application B.

• (A | ∅) : the execution time of application A without tuning (MCA parameters are
thus set to their default values)
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(app|∅)
(app|app)

< 1 =⇒ degradation
= 1 =⇒ neutral tuning
> 1 =⇒ improvement

(app|∅)
(app|skeleton(app))

< 1 =⇒ degradation
= 1 =⇒ neutral tuning
> 1 =⇒ improvement

1− (skeleton(app)|∅)
(app|∅)

≈ 0 =⇒ moderate acceleration
≈ 1 =⇒ considerable acceleration

(app|app)
(app|skeleton(app))

≈ 0 =⇒ tuning not applicable
≈ 1 =⇒ tuning applicable

Table 4.1: Expectations

The ratio (app|∅)
(app|app) represents the gain brought by an optimal tuning by comparing

the application without tuning with its tuned version. We want this ratio to be at least
strictly superior to 1, and as high as possible in the best case scenario. It also represents
the upper limit for the next ratio, (app|∅)

(app|skeleton(app)) , which represents the gain brought by
a tuning using skeleton(app), the result that our approach aims to produce. The ratio
1 − (skeleton(app)|∅)

(app|∅)
is the most interesting, it represents the fraction of the time gained

by executing skeleton(app) instead of app. The closer this ratio is to 1, the greater the
time saved. Finally, the last ratio (app|app)

(app|skeleton(app)) indicates how the tuning produced using
skeleton(app) compares to the optimal tuning. For the best results, we want it to be as
close as possible to 1. These expectations are summarized in Table 4.6

4.6.1 Workflow of the Tuning Process using Skeletonization

As described in Figure 4.1, we take the original application (app) and compile it to
LLVM IR using clang, without optimizations. If app makes use of C++ exceptions, the
lower-invoke pass is also run on the IR. At this point, we can invoke the SkeletonPass
on the IR to perform the skeletonization process and produce skeleton(app). Then, the
optimization pass O2 or O3 is run on the skeleton, as stated in Section 4.5.2.7. Finally,
the resulting IR must be linked in the same way app is, to produce the final binary that
will execute the skeleton.

This binary, skeleton(app), is then used in any tuning process, exactly how app would
be used to produce a tuning. As shown in Section 4.7.3.6, this step is significantly faster
than if app was used. In this case, we used the tuning process described in Section 4.3 to
produce the tuning file relative to skeleton(app). Finally, we can validate that the tuning
file is correct by using it with app and find that it reduces the execution time.
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Class (FT | ∅) (sec)
(FT |∅)
(FT |FT )

(FT |∅)
(FT |skeleton(FT ))

1− (skeleton(FT )|∅)
(FT |∅)

(FT |FT )
(FT |skeleton(FT ))

C 1.67 1.018 1.012 0.054 0.994
D 38.36 1.016 1.012 0.056 0.996
E 233.59 1.004 1.001 0.015 0.997

Table 4.2: FT benchmark, 32 nodes, 32 processes per node

4.7 Skeletonization Process Validation

4.7.1 Viability of the Approach

To prove the viability of the approach, a few short benchmarks were selected to manually
perform the skeletonization process and assess the applicability and complexity of this
technique. We selected the NAS Parallel Benchmarks [45] as our testing suite and have
arbitrarily choosen the CG (Conjugate Gradient), FT (Fast Fourier Transform) and EP
(Embarassingly Parallel) kernels for the experiment. Their behavior has been studied
thoroughly [25, 38] and is therefore well-known, allowing a more extensive discussion of the
results. Following the workflow detailled in Section 4.6.1, we evaluated the performances
of the skeletons, and then used them in replacement of the original NAS applications in
the tuning process. The results obtained with the skeleton manually created are detailled
in Section 4.7.3.

4.7.2 Experimental Setup

For our experimentations, we used the hardware described in Section 3.7.1. They are two
very different platforms, one uses Intel CPUs coupled with an OmniPath interconnect,
while the other one uses AMD CPUs with a Mellanox interconnect. Having comparable
results on both architectures will prove that the approach is hardware-agnostic.

4.7.3 Results Discussion

4.7.3.1 FT

Results for the FT benchmark are presented in Table 4.2. FT is communication bound
and does very little computation [25], therefore skeleton(FT ) behaves very similarly to
FT, which explains the near-identical performance. Tuning the skeleton instead of the
full application leads to similar tuned parameters values and thus does not degrade
performance, but it does not reduce the exploration time to find those parameters either.
If using the proposed skeletonization approach brings no real benefit in this case, it can
still be employed on applications with a similar behavior as it includes no drawback either.

4.7.3.2 EP

Results for the EP benchmark are presented in Table 4.3. EP is computation bound with
very few communications performed [25]. That is why the skeleton appears to be so much
faster. However, no tuning of its communications would heavily change the behavior of that
type of applications, which makes the approach irrelevant in this case (which could be well
detected by a static analysis). One can note however that when approaching an application
without knowing its communication pattern, using our proposed skeletonization would
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Class (EP | ∅) (sec)
(EP |∅)
(EP |EP )

(EP |∅)
(EP |skeleton(EP ))

1− (skeleton(EP )|∅)
(EP |∅)

(EP |EP )
(EP |skeleton(EP ))

A 0.03 1.500 1.001 0.667 0.667
B 0.08 1.143 1.143 0.875 1.000
C 0.33 1.179 1.139 0.970 0.966
D 4.50 1.011 1.004 0.998 0.993
E 72.08 1.011 1.003 1.000 0.992

Table 4.3: EP benchmark, 32 nodes, 48 processes per node

Class (CG | ∅) (sec)
(CG|∅)
(CG|CG)

(CG|∅)
(CG|skeleton(CG))

1− (skeleton(CG)|∅)
(CG|∅)

(CG|CG)
(CG|skeleton(CG))

C 2.55 1.045 1.024 0.200 0.980
D 55.32 1.066 1.040 0.637 0.976
E 576.93 1.055 1.053 0.789 0.998

Table 4.4: CG benchmark, 32 nodes, 32 processes per node

drastically reduce the exploration time, even if the resulting parameters values would not
bring much benefit.

4.7.3.3 CG

Results for the CG benchmark are presented in Table 4.4. CG is the most interesting
case, which falls between the two previous ones [25]. skeleton(CG) is significantly faster,
taking only a fraction of the time of CG, therefore quickly yielding a tuning. Moreover,
the tuning obtained performs nearly exactly like the tuning obtained using CG. The
small difference (less than 0.5%) is explained by further analysis of the respective tuned
parameters obtained with ShaMAN for CG and skeleton(CG): they actually differ on the
broadcast algorithm, but the broadcast function is only used once during the application.
This explains why the ratio differs from 1, but the difference is negligible. Tuning using
skeleton(CG) instead of CG leads to a tuning with near identical performance and is much
faster to obtain.

4.7.3.4 MiniFE

MiniFE [41] is a mini-application using several MPI collective communication operations
(MPI_Allgather, MPI_Allreduce, MPI_Bcast, and MPI_Reduce) to compute differential
equations using the finite elements method. It is further detailled in Annexe A. We
executed various configurations with different algorithms for these collectives, adjusting
segment sizes and fan-in/out values. This led to a substantial reduction in execution time,
averaging a 32% improvement.

Figure 4.5 displays results for a grid of 2003 and 64 processes (8 nodes with 8 processes
per node). We projected the results to evaluate the effectiveness of the skeletonizer in
identifying the best configuration for each (segment size, fan-in/out value) pair. In most
cases, the skeletonizer accurately identified one of the optimal configurations of the original
miniFE, with an average error of 1.4%. For detecting the worst configuration, the accuracy
was slightly lower but generally within a 10% margin (6.5% on average).
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Figure 4.5: MiniFE benchmark performance in diverse MPI configurations, Pise machine

4.7.3.5 Lulesh

The Lulesh [36] benchmark simulates a hydrodynamics problem using a numerical method.
It is further detailled in Annexe A.

We ran the Lulesh benchmarks in two setups: the original version and a skeletonized
variant. These benchmarks were evaluated across diverse MPI configurations, including the
number of processors (N), processes per node (PPN), and varying problem sizes (Pb_S),
and were carried out on the Pise platform.

Figure 4.6 presents a comparison between timings obtained from the skeletonized
version and the original Lulesh application, using different MPI_AllReduce algorithms.
Our objective is to assess if the optimal (▽) and worst-case (△) timings for each collective
communication algorithm align across both versions.

Results show that the skeletonized version performs significantly faster than the original,
achieving speedups of 7.5x, 28x, and 49x for problem sizes 30, 60, and 90, respectively.
In most cases, the skeleton accurately identifies both the worst and best cases for MPI
configurations. When discrepencies occur, they are generally within the noise margin. The
main exception is for the combination (N=8, PPN=1, Pb_S=90), where the skeletonized
configuration’s optimal timing corresponds to the worst case in the original application.

To further assess the skeletonizer’s reliability for configuration selection, we analyzed
the error in selecting configurations based on the skeletonized version compared to the
real application, as shown in Figure 4.7. Two cases are illustrated: "min_error", which
measures the discrepency when selecting the skeletonizer’s best configuration relative
to the actual best runtime of the original, and "max_error", which demonstrates the
skeletonizer’s effectiveness in ruling out poor configurations.

In the majority of cases, error rates remain well below 10%, with many showing no
discrepancy when using the skeletonized configuration. The only notable exception occurs
with (N=8, PPN=1, Pb_S=90), where the skeletonizer’s suggested worst configuration is
approximately 10% off from the original’s actual worst.

For clarity, the figures primarily focus on variations in collective communication algo-
rithms used in Lulesh. In Figure 4.8, we explore an additional scenario in which both fan-
in/out values and segment sizes for two collective communication operations (MPI_Reduce
and MPI_Allreduce) are varied, focusing on the case (N=8, PPN=1, Pb_S=90). Here,
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Figure 4.6: Lulesh benchmark performance in diverse MPI configurations, Pise machine
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Figure 4.8: Lulesh benchmark, Pise machine

the error between the best skeletonized configuration and the best original configuration is
consistently below 2.8%, while error in detecting the worst configuration remains under
2.5%. If skeletonization is employed to find optimal or avoid suboptimal configurations
(considering a mix of collective algorithms, fan-in/out, and segment size), the error remains
below 3% in both cases.

Finally, we conducted an experiment on the second platform, Bora, concentrating on
the specific case (N=27, PPN=27, Pb_S=90), one of the largest test case. We exhaustively
explored all the combinations of algorithms, fan-in/out values and segment sizes. Multiple
plots in this figure illustrate the efficiency of the skeletonizer at identifying the worst
configuration, highlighting consistent performance. It is especially visible in the case fan-
in/out= 64 and segment size= 1048576, correctly identifying the spike in execution time
with this configuration. Due to the flatness of the graphs, pinpointing the best configuration
is a complicated process, but it can be observed that the selected configuration features
similar performance of that of the best one. Unlike Figure 4.7, no notable irregularities
were observed, confirming the stability of the skeletonizer on this platform. The results
demonstrate a relative speedup of approximately 8.5x, further underscoring the effectiveness
of the method in accelerating execution time while maintaining accurate configuration
selection. This lesser speedup is a factor in the higher stability of the behavior on the
Bora machine.

4.7.3.6 Evaluation of the Skeleton

The results above demonstrate that the automatic skeletonization method proposed effec-
tively simplifies non-trivial MPI programs while achieving significant execution speedups.
This acceleration allows application tuning to be conducted much more rapidly without
compromising quality. Indeed, in most cases, the MPI configuration that delivers the
fastest execution time with the skeletonized version also ranks among the top-performing
configurations for the original application. When discrepancies do occur, they typically
arise because of the minimal differences between configurations, result of the high speedup
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Figure 4.9: Lulesh benchmark, (N=27, PPN=27, Pb_S=90), Bora machine

brought by the skeleton.
The most important fact to validate about the resulting skeleton is to verify that it

features the same communication pattern as the original application. This was verified
on every automated test run using a built-in tool of Open MPI: the PML monitoring.
As stated in Section 2.1, Open MPI has a modular architecture, which leaves us the
choice of the PML (Point-to-point Management Layer) to use. The one we chose is the
monitoring as it allow the user to query each MPI process for the number of messages
and quantity of bytes sent to any other MPI process. All skeletons exhibited the exact
same communication pattern as their original applications.

Additionally, one expected feature of the skeleton is its rapidity of execution relative
to its source. As can be seen for all three NAS benchmarks, the ratio 1− (skeleton(app)|∅)

(app|∅)

is always strictly inferior to 1 regardless of app, which means that the execution time of
skeleton(app) always represents less than 100% of the execution time of app, thus implying
that the skeleton always executes faster.
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4.8 Conclusion
In this chapter, we presented a novel approach for the optimization of MPI applications
through a process called skeletonization. By generating a simplified version of the original
application which retains only the communication behavior, we have demonstrated a
method to significantly reduce the time required for tuning MPI parameters.

We detailed an automatic process for the generation of these skeletons, highlighting the
challenges of manually creating them. The LLVM-based implementation allows for consis-
tent and accurate generation of skeletons, even for complex applications, by systematically
removing unnecessary computations while preserving essential communication patterns.

Our experimental results have shown that the skeletons produced by our method are
effective in maintaining the communication characteristics of the original applications
while offering substantial reductions in execution time. This enables rapid exploration of
the tuning space and application of optimizations that would otherwise be infeasible due
to the high computational cost of the original application.

While the skeletonization process has proven effective for the set of tested applications,
certain limitations remain, particularly when dealing with complex code structures such
as recursive functions, or global variables. These limitations suggest areas for future work,
including the development of more advanced analysis techniques and the expansion of the
skeletonizer’s capabilities.

Overall, the skeletonization approach provides a promising direction for optimizing MPI
applications by offering a scalable and automated way to minimize the tuning overhead.
This work lays the foundation for further research into automated optimization techniques,
potentially extending beyond MPI to other parallel computing paradigms.
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High-Performance Computing platforms used to run parrallel applications grow more
and more heterogeneous, and with it the need to optimize the MPI implementations that
HPC rely upon. The current thesis is a part of the recent developpement aiming at fine
tuning Open MPI, mostly focusing on two distinct approaches, Blackbox Optimization
and Skeletonization.

5.1 Contributions
Blackbox Optimization One significant contribution lies in the development and
application of blackbox optimization techniques for MPI parameter tuning, as detailed in
Chapter 3. This approach models the MPI application as a black box, employing Bayesian
Optimization to navigate the parameter space effectively without exhaustive exploration.
The proposed optimization framework reduces the need for intensive computational
resources by intelligently narrowing down possible configurations based on prior results.
By incorporating Bayesian models, which iteratively improve predictions based on observed
data, we achieve high-performance configurations with minimal tuning overhead. This is
particularly beneficial for complex applications or architectures where traditional tuning
methods are impractical. Moreover, the blackbox approach enables adaptability across
different MPI implementations and architectures, making it a versatile solution for a range
of HPC environments.

Skeletonization In Chapter 4, we introduced the skeletonization process, another core
contribution of this thesis. Skeletonization generates a simplified version of an MPI applica-
tion, referred to as its "skeleton," which retains only the communication characteristics of
the original application while eliminating other computational complexities. By preserving
the core communication pattern, the skeleton enables rapid performance tuning without
the computational cost typically associated with full-scale application execution. This
process leverages the LLVM compiler infrastructure for automated skeleton extraction,
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ensuring consistency and accuracy in skeleton generation, even for large and intricate
applications. Skeletonization thus provides a practical and scalable approach for MPI
tuning, allowing for reduced overhead in the optimization process while maintaining fidelity
to the communication behavior of the original application.

The skeletonization method also enhances usability by integrating seamlessly into
existing software infrastructures, requiring no expertise in compiler theory or manual code
modification. As a result, non-specialist users can apply sophisticated tuning techniques to
their applications, which broadens the accessibility and potential impact of this work. This
automation, combined with the high fidelity of skeletons to their original counterparts,
ensures that performance optimizations derived from skeleton-based tuning are reliable
and effective.

Collectively, the contributions in this thesis represent a significant advancement in
the domain of MPI application tuning. By reducing tuning time and computational
costs, the blackbox optimization and skeletonization techniques introduced here have the
potential to enhance performance in various MPI applications, particularly those running
on large-scale HPC systems. Additionally, these methods pave the way for future research,
including dynamic adaptive tuning and the application of these techniques to other parallel
computing paradigms. This work establishes a foundation for further exploration into
automated tuning solutions that could ultimately contribute to more efficient and accessible
HPC application optimization.

5.2 Discussion
The central problem tackled in this thesis was how to efficiently fine-tune MPI imple-
mentations to maximize performance across various applications and architectures. Both
Blackbox Optimization and Skeletonization provided answers to this problem from different
perspectives and brought substantial benefits by addressing key performance bottlenecks
without relying on exhaustive manual tuning or requiring deep system-specific knowledge

The Blackbox Optimization approach developed in this thesis effectively manages
the complexities of MPI parameter tuning across various architectures and application
types. Its core strength lies in its agnostic approach, treating applications as opaque
functions that can be optimized based solely on performance outputs. By applying
Bayesian Optimization to MPI parameters, we achieve a performance tuning process that
is adaptable and computationally efficient. Unlike traditional brute-force methods, BBO
intelligently samples the parameter space, directing resources only towards configurations
with high performance potential. This adaptability proves especially valuable in large-scale
systems, where exhaustive tuning would be computationally prohibitive. Consequently,
BBO is not only faster but also widely applicable across different types of MPI applications.

In parallel, the skeletonization approach offers a complementary solution by allowing
rapid performance evaluations through simplified application models. The skeletons
generated through the LLVM-based automation are particularly effective in accurately
representing the communication patterns of the original application, which ensures that
optimizations made on the skeleton translate directly to performance gains on the original
application. Moreover, this skeletonization process enables scalable tuning on larger, more
complex applications that would otherwise be impractical to optimize exhaustively.

While both BBO and skeletonization offer efficient alternatives to exhaustive tuning,
each method has unique trade-offs. BBO achieves a broad applicability by treating
applications as black boxes, making it a flexible solution for tuning without needing
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detailed application-specific knowledge. However, skeletonization offers more speed by
simplifying the application itself, which accelerates the tuning process but requires a
careful balance to ensure that the skeleton retains enough fidelity to accurately represent
the original application’s performance dynamics.

The combination of these two methods thus creates a highly adaptable tuning framework:
BBO provides a systematic way to approach optimization without application-specific
modeling, and skeletonization accelerates the process by reducing the computational load
of each tuning evaluation. Together, these methods contribute a versatile solution to the
longstanding problem of efficiently tuning MPI applications on ever-evolving HPC systems.

5.3 Future Work
This thesis opened numerous research paths, and some of them could not be fully explored.

A promising avenue for future work involves leveraging Machine Learning models to
further classify MPI applications based on their communication patterns, computational
intensity, and hardware dependencies. Using ML for classification could help group
applications with similar tuning requirements, potentially creating "tuning profiles" that
can be reused across applications with comparable behavior. By clustering applications into
relevant tuning classes, it may be possible to rapidly approximate optimal configurations
for new applications by aligning them with an existing profile, reducing the tuning time
and and the need for computational ressources.

Integrating dynamic adaptive tuning mechanisms is another exciting prospect. Dynamic
tuning would involve continuous monitoring of application performance metrics during
execution, allowing for dynamic adjustments to MPI parameters. Such an approach could
react to fluctuations in workload or system states, adapting configurations to optimize
performance. Implementing feedback loops that modify MPI parameters based on dynamic
data could make tuning both more responsive and resilient, particularly for applications
deployed in evolving HPC environments.

An automated framework encompassing BBO, skeletonization, and ML classifica-
tion could serve as a powerful toolkit for MPI tuning. Such a framework would enable
non-specialist users to automatically adjust configurations for optimal performance, de-
mocratizing access to sophisticated tuning techniques. Integrating these tools into a
cohesive, user-friendly platform could facilitate broader adoption and make optimization
more accessible to developers across various scientific and engineering domains.

In summary, the methodologies developed in this thesis lay a solid foundation for
future research. By expanding machine learning applications, developing adaptive tuning
mechanisms, and addressing the needs of heterogeneous systems, future work can further
enhance the versatility and impact of MPI tuning techniques, pushing the boundaries of
HPC performance optimization.
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5.4 Perspectives
Looking ahead, the future of MPI tuning lies in the integration of more intelligent,
automated systems. Both Blackbox Optimization and Skeletonization provide foundational
steps toward this goal, but there remains significant potential for innovation.

Furthermore, as HPC systems continue to evolve towards more heterogeneous architec-
tures, the ability to tune applications across diverse hardware environments will become
increasingly important. The methods developed in this thesis provide a solid starting
point for such advancements, offering scalable, adaptable, and efficient tuning solutions for
the next generation of MPI applications. Future research will push MPI tuning techniques
to new heights, enabling HPC systems to handle increasingly complex applications with
greater efficiency, flexibility, and accessibility.
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Appendix A

Benchmarks

A.1 OSU
The OSU Micro Benchmarks (OMB) [47] suite is a comprehensive set of tests designed
to evaluate the performance of key communication primitives in HPC environments,
particularly those using MPI. Developed by the Ohio State University (OSU), OSU Micro
Benchmarks provides fine-grained insights into the behavior of MPI implementations
across different platforms. It includes a variety of benchmarks that measure latency,
bandwidth, and message rate for point-to-point and collective communication operations.
These benchmarks help researchers and system architects identify bottlenecks in network
communication and optimize both hardware and software performance. Due to its focus
on low-level communication patterns, the OSU Micro Benchmarks suite is widely used to
evaluate the efficiency of MPI libraries, network hardware, and HPC system configurations,
making it an essential tool in the fine-tuning of distributed applications.

A.2 NAS
The NAS Parallel Benchmarks (NPB) [45] suite is a collection of programs developed
by NASA Advanced Supercomputing (NAS) to evaluate the performance of parallel
supercomputing systems. They are usually reffered to as the NAS benchmarks. These
benchmarks simulate a variety of computational problems which are common in aerospace
and scientific applications, making them highly relevant for real-world HPC workloads.
The suite includes several benchmarks, each designed to test different aspects of system
performance, such as computation, communication, and memory access. The benchmarks
are implemented using multiple runtimes, including MPI, allowing them to assess the
scalability and efficiency of shared and distributed memory systems. The NAS benchmarks
provide a standardized way to compare the performance of HPC systems and optimize
parallel algorithms, compilers, and hardware configurations. Their behavior and limitations
have been thoroughly studied [25], allowing their results to offer researchers and system
architects valuable insights for enhancing the performance of parallel applications.

89



A.3. MiniFE

A.3 MiniFE
The miniFE [41] benchmark is a simplified finite element code that serves as a proxy
application for testing and evaluating HPC systems. The finite element method (FEM)
is a numerical technique used to solve complex partial differential equations (PDEs) by
dividing a large problem domain into smaller, simpler subdomains called finite elements.
By approximating the solution over these elements and assembling them, FEM provides
an efficient way to model physical phenomena in engineering and scientific problems.
MiniFE emulates the performance characteristics of more complex finite element analysis
applications, allowing for the investigation of issues such as parallel scalability, memory
access patterns, and communication efficiency in distributed systems. The benchmark
leverages MPI to distribute its workload across multiple processors, with possible imbalances
in workload, to solve a sparse linear system using the Conjugate Gradient method with an
incomplete lower-upper (ILU) preconditioner. MiniFE provides a valuable framework for
optimizing MPI implementations and hardware performance in scientific and engineering
simulations.

A.4 Lulesh
The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) [36]
benchmark is a representative application for evaluating the performance of parallel
computing systems, particularly in HPC environments. It simulates a shock hydrodynamics
problem using a Lagrangian numerical method, which is common in scientific computing
workloads. Designed by the Lawrence Livermore National Laboratory (LLNL), LULESH is
widely used to test and optimize MPI implementations. Its structured yet computationally
intensive nature makes it an ideal benchmark for assessing the scalability and efficiency of
communication patterns, load balancing, and memory access across distributed systems.
By tuning parameters like mesh size and decomposition, LULESH allows researchers to
investigate performance bottlenecks and evaluate improvements in MPI-based systems,
offering key insights into real-world HPC application behavior.
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Appendix B

User Manual of the Skeletonizer
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Glossary

communication dependency X has a Communication dependency on Y if X has a
data dependency on Y and the statement where Y appears is an MPI communication
operation. 50, 69

control dependency X has a Control dependency on Y if the value of variable Y
determines whether or not the statement containing variable X is executed. 50

data dependency X has a Data dependency on Y if the program’s computation might
change if/when the statements where X and Y appear are reversed. 50, 67, 69

DGEMM In the BLAS naming convention: D=double GE=general matrix MM=matrix-
matrix product. 52

program slice the minimal subset of statements that preserves the behavior of the
original program up to the statement p with respect to the program variables in V .
48, 50

SIGSEGV Signal sent by the operating system to an offending program when it attempts
an invalid memory access. more commonly known as segfault. 64, 65, 69, 70

slicing criterion a pair ⟨p, V ⟩, where p is a statement in P , and V is a subset of the
variables in P . 50

TOP500 Project ranking the 500 most powerful (in FLOP/s) non-distributed computers
in the world. 13, 14, 16
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Acronyms

ACCO ATOS Collective Communications Optimizer. 11, 34, 35, 45

BLAS Basic Linear Algebra Subprograms. 52

CPU Central Processing Unit. 9, 13, 14

FLOP/s Floating-Point Operations per Second. 13

FPGA Field-Programmable Gate Arrays. 9, 14

GPU Graphics Processing Unit. 9, 13, 14

HPC High-Performance Computing. 6, 8–13, 15–17, 27, 30, 34, 35, 45, 71, 82–86

LLNL Lawrence Livermore National Laboratory. 86

LULESH Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. 86

MCA Modular Component Architecture. 17–24, 26, 30, 31, 45

ML Machine Learning. 26, 27, 84

MPI Message Passing Interface. 5, 7–12, 15–19, 21, 24, 26, 27, 29–31, 34–37, 39, 41, 43,
45, 47–51, 54, 58, 64, 65, 71–73, 76, 77, 79–86

NAS NASA Advanced Supercomputing. 25, 75, 80, 85

NPB NAS Parallel Benchmarks. 25, 75, 85

NUMA Non-Uniform Memory Access. 27

OMB OSU Micro Benchmarks. 11, 31, 34, 35, 85

OOM Out Of Memory. 64

OSU Ohio State University. 31, 34, 35, 85

PlaFRIM Plateforme Fédérative pour la Recherche en Informatique et Mathématiques.
6

ShaMAN Smart HPC Application MANager. 11, 34, 35, 45
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