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RESUMÉ

L’identification de dispositifs dits sensibles est soumise à différentes contraintes de
sécurité ou de consommation d’énergie, ce qui rend les méthodes d’identification clas-
siques peu adaptées. Pour répondre à ces contraintes, il est possible d’utiliser les défauts
intrinsèques de la chaîne de transmission des dispositifs pour les identifier. Ces défauts
altèrent le signal transmis et créent alors une signature par nature unique et non repro-
ductible appelée empreinte Radio Fréquence (RF). Pour identifier un dispositif grâce à son
empreinte RF, il est possible d’utiliser des méthodes d’estimation d’imperfections pour
extraire une signature qui peut être utilisée par un classifieur, ou bien d’utiliser des méth-
odes d’apprentissage telles que les réseaux de neurones. Toutefois, la capacité d’un réseau
de neurones à reconnaître les dispositifs dans un contexte particulier dépend fortement
de la base de données d’entraînement. Dans cette thèse, nous proposons un générateur de
bases de données virtuelles basé sur des modèles de transmission et d’imperfections RF.
Ces bases de données virtuelles permettent de mieux comprendre les tenants et aboutis-
sants de l’identification RF et de proposer des solutions pour rendre l’identification plus
robuste. Dans un second temps, nous nous intéressons aux problématiques de complexité
de la solution d’identification via deux axes. Le premier consiste à utiliser des graphes
programmables intriqués, qui sont des modèles d’apprentissage par renforcement, basés
sur des techniques d’évolution génétique moins complexes que les réseaux de neurones. Le
second axe propose l’utilisation de l’élagage sur des réseaux de neurones de la littérature
pour réduire la complexité de ces derniers.
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ABSTRACT

Identifying so-called sensitive devices is subject to various security or energy consump-
tion constraints, making conventional identification methods unsuitable. To meet these
constraints, it is possible to use intrinsic faults in the device’s transmission chain to iden-
tify them. These faults alter the transmitted signal, creating an inherently unique and
non-reproducible signature known as the Radio Frequency (RF) fingerprint. To identify
a device using its RF fingerprint, it is possible to use imperfection estimation methods
to extract a signature that can be used by a classifier, or to use learning methods such
as neural networks. However, the ability of a neural network to recognize devices in a
particular context is highly dependent on the training database. This thesis proposes a
virtual database generator based on RF transmission and imperfection models. These
virtual databases allow us to better understand the ins and outs of RF identification and
to propose solutions to make identification more robust. Secondly, we are looking at the
complexity of the identification solution in two ways. The first involves the use of intricate
programmable graphs, which are reinforcement learning models based on genetic evolu-
tion techniques that are less complex than neural networks. The second is to use pruning
on neural networks found in the literature to reduce their complexity.
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RÉSUMÉ ÉTENDU

La communication et l’identification sont deux composantes essentielles de la survie
d’une espèce, qu’il s’agisse des êtres humains, des animaux ou encore des plantes. Toutes
ont en effet développé des moyens de communication et d’identification pour partager des
informations. L’être humain, par exemple, utilise naturellement la parole pour commu-
niquer, et au fil des siècles il a développé de nombreuses techniques de communication,
telles que le télégraphe, la communication par câble, puis la télécommunication, jusqu’à
l’ère d’Internet et des objets connectés, aussi appelés Internet des Objets (IoT). Depuis
une dizaine d’années, le déploiement de l’IoT ne cesse de croitre dans de très nombreux
domaines tels que la santé, le sport, domotique, villes et batiments intelligentes, etc.
L’introduction massive de cette technologie pose des défis en matière de sécurité pour
assurer la transmission des données entre les dispositifs légitimes. Parmi ces défis, on peut
notamment noter la question de l’identification de l’émetteur.

Dans le monde biologique, chaque individu a son identité biologique qui permet d’éviter
que les indivius soient confondus. Pour simplifier l’identification, l’être humain utilise
un numéro d’identification tels que numéro de sécurité sociale, ou d’identité numérique.
Toutefois, dans certains contextes, une identification biologique est utilisée pour limiter
les risques d’usurpation d’identité. L’empreinte digitale, par exemple, est une signature
unique et biologique intrinsèque à l’être humain qui permet de nous reconnaître. De la
même manière, les dispositifs communicants sans fil sont la plupart du temps différentiés
grace à un identifiant, aussi appelé adresse MAC. Cependant, les traitements de codage et
de chiffrement nécessaires à l’utilisation de cette clé d’identification peuvent s’avérer lourds
en termes de calcul pour l’émetteur et ne permettent pas toujours d’éviter l’usurpation
d’identité. C’est la raison pour laquelle des travaux proposent, à l’instar de l’empreinte
digitale pour l’être humain, d’utiliser l’empreinte Radio Fréquence (RF) ou RFF des
dispositifs.

L’empreinte RF d’un émetteur est une signature unique, créée par les composants
matériels de la chaîne de transmission, qui apparaît dans les signaux transmis. La chaîne
de transmission est composée d’un convertisseur numérique-analogique (CNA), d’un oscil-
lateur local (LO) et d’un amplificateur de puissance (AP), comme détaillé sur la Figure 1.
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Le CNA transforme le signal complexe dans le domaine analogique pour obtenir x(t).
L’oscillateur module le signal à la fréquence porteuse fc, et l’AP amplifie le signal, créant
xant(t) pour la transmission via l’antenne.

LNA FiltreAPCNA
Canal

CANdémodulation
IQ

SDR RxTx

𝑥(𝑡)

𝑥!"#(𝑡)

𝑥$%&(𝑡)

IQIQ

𝑓'(

Figure 1 – Chaîne de transmission et de réception.

Tous ces composants déforment le signal et créent la signature appelée l’empreinte RF
de l’émetteur notée FRFFTx . Le signal émis peut être modélisé par :

xant(t) =FRFFTx (x(t)) , (1)
xant(t) =FAP ◦ FLO ◦ FCNA (x(t)) , (2)

où ◦ représente l’opérateur de composition de fonction qui exprime les traitements suc-
cessifs de la chaîne de transmission, chaque étape créant une fonction de distorsion.
F∗ représente le comportement d’un composant, y compris sa distorsion. Les fonctions
imbriquées de (2) montrent l’impact de chaque composant et la difficulté d’extraire des
caractéristiques et de modéliser la transmission. Le LO ajoute des distorsions liées à
la fréquence appelées Carrier Frequency Offset (CFO), au gain et à la phase appelés
déséquilibre IQ, et du bruit de phase ou Phase Noise (PN). L’AP a un impact sur le gain
et la phase, car il introduit une non-linéarité dans l’amplitude complexe du signal. La
Table 1 présente les composants matériels et les dégradations correspondantes, les arti-
cles référencés dans ce tableau correspondent aux travaux qui utilisent et présentent les
dégradations.

Dans la Figure 1, le bloc canal représente l’environnement de propagation sans fil
défini par le bruit, les signaux d’interférence et les canaux à trajets multiples ainsi qu’à
évanouissement qui pourraient avoir un impact sur le signal. Ce canal de propagation est
modélisé par Fcanal. Le bloc rouge Rx représente le récepteur avec ses composants (non
détaillés dans le modèle mais similaires au modèle inversé Tx) et sa fonction de distorsion
appelée RF du récepteur, FRFFRx . L’étude de l’impact du récepteur dépasse le cadre de
cette thèse et nous ne considérons qu’un récepteur unique pour l’identification. De plus,
il est important de noter que le récepteur peut être non légitime et ne pas disposer de
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Composants Imperfections Références
Horloge Clock jitter [119]
CNA Erreur d’échantillonnage [112, 75]

Oscillateur local
Bruit de phase [126]

Offset de fréquence porteuse [106]
I/Q imbalance [110, 107]

Amplificateur de puissance Non linéarité [75]

Table 1 – Relations entre les composants matériels et les dégradations utilisées pour
l’identification des empreintes RF.

beaucoup d’informations sur l’émetteur et le canal de transmission, et donc manquer
d’informations pour extraire correctement les dégradations RFF. Le signal reçu xidf peut
donc être exprimé comme suit :

xidf(t) = FRFFRx ◦ Fcanal ◦ FRFFTx (x(t)) . (3)

L’environnement de propagation est défini par l’emplacement des appareils, la position
relative des émetteurs et des récepteurs, le niveau de bruit, les signaux brouillés, etc.
Toutes ces perturbations rendent difficile l’identification des empreintes RF. Ces problé-
matiques sont largement étudiées dans le cadre de l’état de l’art et seront appelées impact
des conditions du canal ou de l’environnement dans cette thèse.

Contexte d’application

Récemment, le nombre de contributions lié à l’identification par empreinte RF a connue
une croissante importante [46, 115], et divers contextes d’application sont présentés. Le
contexte d’application induit des hypothèses et des connaissances a priori différentes sur
le(s) émetteur(s) et les signaux émis. Par conséquent, il est important de le prendre en
compte.

Authentication pour renforcer la sécurité : il est possible d’utiliser les imperfec-
tions RF pour réduire le risque d’usurpation d’identité et améliorer les niveaux de sécurité
dans les systèmes sans fil.

Authentication avec réduction de la consommation d’energie : il est possi-
ble de réduir la taille du paquet de transmission et donc de limiter le coût energétique
d’une transmission. Elle est particulièrement intéressante pour les dispositifs IoT avec des
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paquets courts pour lesquels la surcharge induite par l’authentification est importante.
En outre, il s’agit d’une solution inviolable pour authentifier des dispositifs IoT à faible
consommation d’énergie et/ou à faible capacité de calcul [47].

Identification pour la défense ou l’attaque : les cybercriminels peuvent utiliser
des failles de sécurité et des systèmes logiciels pour masquer leurs activités, mais l’identifica-
tion par empreinte RF peut permettre de les traquer en exploitant l’hypothèse qu’ils
utilisent à un moment donné leur véritable identité.

Cette thèse ayant été financée par la DGA, le context applicatif qui nous intéresse
est celui de la défense. Il pourrait être intérressant de pouvoir différencier des émetteurs
alliers des émetteurs inconnus et donc potentiellement ennemis.

L’identification

Dans l’état de l’art, il existe deux familles de méthodes d’identification par em-
preinte RF : les méthodes paramétriques et les méthodes par apprentissage. Les méthodes
paramétriques suivent deux étapes : premièrement les caractéristiques de l’empreinte sont
extraites du signal par estimation ou changement de domaine. Puis un algorithme de
classification est utilisé pour classer les signaux et estimer le dispositif émetteur, comme
présenté sur la Figure 2.

Classifieur
- SVM
- KNN

Estimation 
du dispositif
émetteur

Apprentissage profond
- CNN, RNN, LTSM

- Transformers

Deep Learning

Méthodes Paramétriques

Méthodes par apprentissage 

Dispositif
cible

Échantillons IQ

Radio Logicielle

Deep learning

Méthodes Hybrides

Extractionde caracteristiques
- Estimation

- Changement de domaine

Pré-traitements
- Egalisa<on de canal

- Augmenta<on de donnée 

Extraction de caractéristiques
- Estimation

- Changement de domaine

Figure 2 – Etat de l’art des solutions d’identification.
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Les méthodes par apprentissage profond supervisé sont de plus en plus répandues et
souvent réalisées par des Réseaux de Neurones qui prennent en entrée le signal brut ou
pré-traité avec une égalisation de canal ou un changement de domaine. Les réseaux les
plus couramment utilisés sont des Réseaux de Neurones Convolutifs ou Convolutional
Neural Network (CNN). Par exemple, dans [92, 91], Sankhe et al. explorent différentes
architectures de CNN avec plus ou moins de paramètres. D’autres types de réseaux ont
également été explorés comme les réseaux récurrents [102], ou encore les transformers [96].
Dans nos travaux nous utilisons principalement un réseau de la littérature [91]. Pour
évaluer la bonne classification d’un réseau, deux métriques sont utilisées, le Score F1 et
la précision. Dans notre contexte le Score F1 est très proche de la précision car les bases
de données sont toujours équilibrées, il est exprimé en pourcentage ou encore par une
valeur comprise entre 0 et 1 (dans l’intervalle [0 ; 1], avec 1 la meilleure classification.
Le réseau procède à la classificiation à partir de données qui lui sont fournies. Dans le
cadre de l’identification par empreinte RF, ce sont directement les deux signaux temporels
correspondant aux voies I et Q.

Pour faciliter l’apprentissage, les données complexes sont transmises au réseau par 2
voies indépendantes la voie I et la voie Q. Certains auteurs proposent de pré-traiter les
données pour faciliter la reconnaissance de l’empreinte RF comme l’égalisation de canal
qui permet d’estimer le canal de propagation afin de le compenser et de réduire son im-
pact sur les données. En effet, la présence de ce canal déforme le signal et peut rendre
l’empreinte invisible pour le réseau, ce qui rend son identification difficile, voire impossible.
Une autre possibilité est de faire de l’augmentation de données, cette technique consiste à
ajouter de la diversité dans la base de données tout en augmentant la quantité de données
pour permettre au réseau de mieux se focaliser sur l’empreinte RF et non sur une carac-
téristique de la base de données. En classification d’image par exemple, l’augmentation de
données consiste à flouter l’image, la retourner, ajouter du bruit etc. Dans notre contexte,
ajouter du bruit ou changer l’environnement de propagation à plusieurs reprises lors de
l’enregistrement des signaux peut-être une piste.

Bases de données et challenges

Si les Réseaux de Neurones obtiennent des résultats de classification prometteurs, leur
entrainement nécessite une base de données qui soit importante et robuste pour permettre
la résilience et la généralisation. En particulier l’état de l’art, ainsi qu’une étude menée
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au cours de cette thèse, démontrent une chute des performances lorsque les conditions
d’enregistrement des signaux changent entre l’entrainement et le test, ce qui montre que
le réseau de neurone ne parvient pas à généraliser la classification. Les bases de données
de l’état de l’art peuvent être divisées en plusieurs catégories. Dans un premier temps on
trouve des bases de données privées et experimentales telles que celles utilisées pour les
projets DARPA [91, 94]. Ensuite il existe des bases de données experimentales publiques
comme Oracle [92] ou bien WiSig [40] qui sont deux bases de données intéressantes pour
l’identification d’empreinte RF car chacune est composée de plusieurs enregistrements
dans différents contextes. Enfin il existe des bases de données synthétiques crées grâce
à des modèles de communications sans fils et des modèles d’empreinte RF. Ce type de
bases de données proposé par [122], offre de la flexibilité pour explorer et comprendre
l’identification par empreintes RF, toutefois cette base de données n’est pas publique.
Les études menées sur les bases de données réelles montrent la difficulté d’interprétabilité
des résultats. Pour améliorer cette interprétabilité, il serait intéressant de pouvoir créer
facilement des bases de données pour explorer différents contextes et mises en situations.
Toutefois créer une base de données n’est pas trivial et peut être chronophage, c’est
pourquoi dans ces travaux nous proposons de surmonter les limites des bases de données
réelles grâce à un générateur de bases de données virtuelles, ou synthétiques.

Le générateur de bases de données

Le générateur de bases de données virtuelle implémenté au cours de cette thèse est
composé de différents blocs pour offrir de la flexibilité. Il est possible de définir le nombre
de transmetteurs à simuler, la taille de la base de données, les données qui sont transmise
et la modulation. En effet le type de trames peut avoir un impact sur la capacité à
retrouver l’empreinte radio fréquence tout comme la modulation peut avoir un impact
sur la signature RF. Les modèles d’empreinte RF sont paramétrables et permettent donc
de définir une multitude d’empreintes en changeant les paramètres des modèles. Enfin il
est possible de simuler la propagation de l’onde RF dans un canal de propagation. La
Figure 3 présente les différents blocs du générateur de bases données. Le générateur est
utilisé pour tester la capacité d’un réseau de neurones à classifier les données lorsque le
scenario d’acquisition des données est différent de celui qui a été utilisé pour l’acquisition
des données d’entrainement. La résilience du réseau peut donc être facilement testée à
différent niveau suivant les scénarios. Le réseau utilisé pour ces travaux est un CNN
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de l’état de l’art composé de deux couches convolutives et de trois couches entièrement
connecté.
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Figure 3 – Générateur de base de données virtuelle.

Nous étudions différents scénarios et particulièrement l’impact du type de trames
transmises par les émetteurs sur notre capacité à identifier les emetteurs, en fonction
de la similarité des empreintes RF. La similarité entre les émetteurs est définie par un
intervalle exprimé en pourcentage, plus la valeur est faible plus la similarité entre les em-
preintes des émetteurs augmente. Une première étude est menée sur l’impact individuel
des imperfections en fonction de leur similarité d’un transmetteur à l’autre sur la capacité
du réseau à classifier les signaux dans un contexte préambule idéal. Dans ce mode, tous les
transmetteurs émettent et répètent la même séquence. Les résultats révèlent l’importance
de l’AP pour séparer les transmetteurs. Ensuite une étude de la combinaison des imperfec-
tions est proposée, avec un interet particulier pour l’impact des similarités des empreintes
sur la capactité de classification. Cette étude présente et évalue les leviers à notre dis-
position pour améliorer l’apprentissage. Nos résultats présentent une spécialisation du
réseau de neurones aux données d’entrainement lorsque les transmetteurs présentent une
forte similarité d’empreinte RF, ce phénomène est peut-être enrayé en fournissant plus de
données au réseau lors de l’entrainement, comme présenté Figure 4.

Une étude poussée sur l’impact du CFO a été menée car l’offset de fréquence est im-
pacté par la température ambiante et donc de fortes variations de CFO peuvent apparaitre
sur un même transmetteur à différents instants.

Enfin, nous proposons de faire l’apprentissage avec des données de type payload. Dans
ce mode, les transmetteurs émettent tous des séquences de symboles aléatoires, différentes
d’un transmetteur à l’autre et d’une émission à l’autre, avec une très forte diversité due
à la génération de séquences aléatoires pour chaque transmetteur. Ainsi nous montrons
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Figure 4 – Score F1 obtenu en test en fonction du nombre de signaux utilisés pour entraîner
le réseau lorsque l’entraînement a atteint 98% du score F1.

qu’il faut utiliser un plus grand nombre de données lors de l’entrainement pour permet-
tre d’obtenir de bon résultats. Cette méthode d’apprentissage permet d’obtenir de bons
résultats en test, même dans des conditions bruitées par un canal de propagation. Ce qui
permet de proposer une solution d’augmentation de données moins complexe à mettre en
place que les solutions de l’état de l’art basé sur la diverstié de canaux de propagation.

Des données virtuelles aux données réelles

L’utilisation de données basée sur des modèles offre une grande flexibilité d’exploration,
mais il est intérressant de confronter les résultats obtenus à ceux que l’on peut obtenir
grâce à une base de données constituée de signaux expérimentaux. Nous avons donc
proposé différents scénarios allant d’un cas de communication idéal réalisé par un cable
jusqu’à des conditions réelles avec un éloignement des transmetteurs de quelques mètres.
Pour chaque scénario, nous proposons deux modes, le mode Préambule et le mode Payload
tous deux présentés précédemment. Les résultats permettent de confirmer les conclusions
établies avec le générateur de bases de données. Les bases de données expérimentales
créées permettent d’évaluer le degré de résilience d’un réseau de neurones en fonction des
différents scénarios.
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Apprentissage automatique léger pour l’identification
d’empreinte RF

Les réseaux de neurones présentent une bonne capacité de classification et des résul-
tats prometteurs, toutefois la complexité de ces systèmes en apprentissage et en inférence
dépend fortement de leur architecture mais restent fortement complexes. Dans le con-
texte de l’loT, l’identification par RFF peut être contrainte en termes de complexité,
d’architecture matérielle et de consommation d’énergie. Nous proposons d’adresser cette
problématique suivant deux axes, le premier étant l’utilisation des graphes programmables
intriqués pour l’identification et le second axe concerne l’élagage des réseaux de neurones.

Introduit en 2017 par Kelly et al. [51], les Tangled Program Graph (TPG) sont des
modèles d’apprentissage par renforcement construits grâce à des techniques de program-
mation génétique. Contrairement aux réseaux de neurones dont la topologie est choisie
par un expert en science de la donnée, les TPG sont construits au fil des évolutions géné-
tiques. Par conséquent leur topologie et leur complexité s’adaptent automatiquement à
la complexité de la tâche à apprendre. Les TPG ont prouvé leur compétitivité face aux
réseaux de neurones de l’état de l’art, permettant une réduction de la complexité et de la
quantité de mémoire nécessaire, en entraînement et en inférence [50].
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Figure 5 – Evolution temporelle du score F1 des différents réseaux sur différents matériels,
pour une taille de lot de 200.

Pour évaluer les performances et valider l’intérêt d’utiliser les TPG, nous comparons
la vitesse de convergence de la phase d’entraînement d’un TPG et d’un réseau de la
littérature. La Figure 5 présente le score F1 obtenu pour chaque réseau en fonction du
temps. La performance du TPG sur CPU est représentée avec les triangles jaunes et celles
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du CNN sur CPU et GPU avec respectivement les triangles bleus et les carrés bleus. En ce
qui concerne les résultats obtenus sur CPU, le TPG présente une accélération importante
par rapport au CNN. Sa vitesse est en effet très proche d’un entraînement du CNN sur
un GPU avec un avantage pour les systèmes embarqués : l’apprentissage peut se faire sur
une plateforme sans accélération GPU spécifique avec une vitesse similaire.

L’élagage (ou pruning) part du constat qu’un réseau contient naturellement trop de
paramètres et possède de nombreuses redondances, provoquant un gaspillage d’espace et
de ressources de calculs. L’élagage d’un réseau tire son nom de la botanique, et consiste
retirer certaines parties du réseau d’apprentissage, qu’il s’agisse de neurones ou voire
même de couche complète (filtre), de façon à rendre le réseau plus léger et rapide. Il existe
différentes méthodes d’élagage basées sur l’élagage des filtres ou des neurones entiers, ou
plus fine, en retirant certaines parties des filtres ou certains poids des neurones. Une étude
est menée sur différent types d’élagage et on montre qu’il est possible de diviser la taille
du réseau par deux ou plus en fonction de sa taille initiale sans perdre de performances.
La Figure 6 présente le score F1 en fonction du niveau d’élagage obtenu pour un réseau de
la littérature sur deux bases de données. Le niveau d’élagage est définit suivant la sparsity
de 0 à 1, avec 0 le réseau non élagué.
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Figure 6 – Score F1 en fonction du niveau de l’élagage du réseaux de neurones.

Conclusions et perspectives

Ces travaux mettent en évidence la difficulté d’assurer l’identification par reconnais-
sance des empreintes RF et non une reconnaissance d’un biais de la base de donnée tel
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que la position relative du dispositif. Les résultats de cette thèse offrent donc de nom-
breuses perspectives de travaux. L’outil développé au cours de la thèse peut permettre
d’envisager le transfert learning ou encore de modéliser un véritable jumeaux numériques
de radio logicielle connue telles que celles utilisées pour nos experimentations. A long
terme, étudier et proposer des méthodes de prétraitement des données pourrait permettre
l’identitifcation par empreinte RF dans un contexte non controlé. Enfin, l’identification
par empreinte RF dans un contexte basse consommation semble intéressant à explorer
avec une étude de consomation d’énergie des solutions d’identification.

Le reste du manuscrit se décline sous six chapitres.

— Le chapitre 1 introduit et définit l’identification par empreinte RF, les contextes
d’application et les challenges qui en découlent.

— Le chapitre 2 introduit les principes de communication numériques et définit les em-
preintes RF puis présente l’état de l’art des solutions d’identification par empreinte
RF. Les méthodes paramétriques et les méthodes par apprentissage profond sont
présentées dans ce chapitre.

— Le chapitre 3 présente un état de l’art des bases de données utilisées pour l’identifica-
tion par empreinte RF dans le contexte académique. Cet état de l’art permet de
définir les challenge liés aux bases de données en particulier lorsqu’on utilise des
réseaux de neurones, et une première étude est menée sur deux bases de données et
trois réseaux de neurones de la littérature.

— Le chapitre 4 décrit le générateur de bases de données développé pendant la thèse.
Cet outil permet de créer des bases de données virtuelles incluant des modèles
d’imperfections RF. Ce générateur est un outil en libre accès [11] et disponible pour
la communauté.

— Le chapitre 5 présente les résultats obtenus grâce au générateur de bases de données
virtuelles qui ont été présentés en conférence [12] avec une étude de l’impact du
canal de propagation sur l’identification. Ce chapitre présente également d’autres
travaux basés sur le générateur publiés dans un journal [14] abordant l’impact du
mode de transmission, du CFO et de la similarité des imperfections.

— Le chapitre 6 présente une étude menée au laboratoire avec des radios logicielles
pour confronter les résultats et conclusions tirées de l’utilisation du générateur de
bases de donnée virtuelles et des signaux réels non simulés.
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— Le chapitre 7 introduit l’intérêt des réseaux légers pour les applications d’identifica-
tion d’empreinte RF et présente deux solutions d’apprentissage permettant de ré-
duire la complexité de l’identification.

— Enfin le chapitre 8 presente une conclusion et les perspectives de cette thèse.
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Chapter 1

INTRODUCTION

1.1 History of communication

The world we know today would only exist with communication. From time immemo-
rial, living species - trees, animals, fungi, and humans - have developed communication
techniques to interact with other species members. These communications are based on
the generation of an acoustic (voice), mechanical, electrical, or electromagnetic wave and
the transmission of this wave via a propagation channel. For example, animals, such as
humans, communicate using sound waves with a more or less complex communication
language.

Most natural communications are short-distance, for example, the sound allows us to
communicate with someone in the same area. In 1794, with the first optical telegraph,
researchers wanted to make communication between humans at long distances possible.
Since then, they always tried to improve these communications as it is shown in Figure 1.1.
In 1832, the Morse language was created to improve communication and after several years
the phone became a particular object of houses. The communication distance increases
gradually with the communication between countries and then continents.

During the Second World War, the laboratories of the belligerents perfected new ap-
plications to offer new technical opportunities for the war such as radar and walkie-talkie.
After the war, the first American satellite was launched in 1958, in 1962 the Telstar was
launched and involved sending images and sounds between countries via space satellites.
In France, Pierre Marzin, the director of the National Center for Telecommunications
Studies (CNET), convinced the administration to install the French reception station in
Pleumeur-Bodou. In 11 July 1962 at 0.47 am, in front of an audience of 190 technicians
and 150 journalists, the first televised images of the United States via the Telstar 1 satellite
were captured by the antenna located in Pleumeur-Bodou.

In 1973, Martin Cooper placed the first cellular mobile call to his rival at Bell Labs.
The first mobile phone had a maximum talk time of 30 minutes, and it took a year for
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Figure 1.1 – Telecommunication timeline.

the battery to recharge. The phone would eventually be a prototype for Motorola’s first
mobile phone. In 1966, the concept of the Internet was created with a real development
across several years and was born officially in 1983, gradually internet replaced other
communication methods until it became the most widely used means of communication.
The advent of sensor miniaturization changed the paradigm and developed a need to share
and exchange data. At the same time, the technical progress allowed network creation with
several devices that exchange information, and the concept of the Internet of Things (IoT)
was created. Since a decade ago, the IoT has been introduced in health, for pain control
applications, in sports for performance evaluation, in quotidian life, and in the industry for
domotic flat to control lighting and security. This massive introduction of the IoT in many
applications, challenges the researcher and engineer to propose low-consumption systems
to improve the embedded characteristics. Moreover, security is also a challenge to ensure
a correct transmission between the legitimate transmitter and the legitimate receiver.
Improving the security challenge can be separated into two axes: encryption of data and
authentication of the transceiver. In this PhD, we focus on the emitter identification.

1.2 Need of secure identification

Each biological species has its own identity and cannot be identified as another one.
This identity is biological but to simplify communication we decided in our society to
allocate an identification (ID) number to people to identify them. In most cases, the ID
number is sufficient for identification but in other critical situations, it is not sufficient. To
ensure security and avoid spoofing identification by using the identity of another person,

40



Introduction

Alice 

Bob 

Eve 

Mac @: 00-1B-63-84-45-E6 

Mac @: 00-2C-43-23-44-B2

Mac @ : Alice   Authorized 

Mac @ : unknown

(a) Identification thanks to MAC address.
Alice 

Bob 

Eve 

Mac @: 00-1B-63-84-45-E6

Mac @: 00-1B-63-84-45-E6

Mac @ : Alice Authorized 

Mac @ : Alice Authorized 

(b) Spoofing identification with MAC address.

Figure 1.2 – Identification and spoofing presentation.

the biological identity is used. For example, the fingerprints, the DNA (deoxyribonucleic
acid), or the background of the eye are a biological signatures which can be used to identify
people without any doubt. In the same manner, the development of electronic devices that
can communicate with each other requires identification protocols. This identification is
mainly based on the meta-data of the communication protocol that gives an address or a
registration number to enable the authentication as shown in Figure 1.2a, with the Media
Access Control (MAC) address identification protocol. However, because this device can
be a victim of spoofing as shown in Figure 1.2b, the identification may require more secure
identification.

In Figure 1.2b, Bob recognizes Alice thanks to its MAC address but Eve can pretend to
be Alice if she knows Alice’s MAC address, and sends the wrong information to Bob, this is
called spoofing. Much research has been done to improve the encryption of MAC addresses
to make it more robust to attack but the algorithms are heavy and not always adapted
for IoT. The IoT constraint limits the development of the security process, encryption for
example, for cost reasons or just to reduce energy consumption. Therefore, IoT devices
become an easy target for attackers to get access to the IoT network, which can be
included in a bigger private network without a real security system.

That is why, to ensure identification, the State of the Art (SoA) proposes to use
the electronic identity of the device as the biological identity for humans. The analogy
between humans and electronic devices is illustrated in Figure 1.3. This electronic identity
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Figure 1.3 – Analogy between transmitter impairments and human biological character-
istics.

is the aggregation of device imperfections which create some distortions in the transmitted
signals. These distortions are called: Radio Frequency Fingerprint (RFF), specific emitter
identity, or, physical layer identity.

The RFF identification is a sub-family of Physical-Layer authentication in wireless
communications [115], called sometimes Specific Emitter Identification (SEI). This iden-
tification is and must be independent of the location of wireless users, as opposed to the
methods based on channel properties [71, 99, 114], that require a strong assumption on
users’ stationarity [77]. The RFF identification can be used lonely or combined with the
MAC address or key to improve the authentication security, depending on the application
context.

The intrinsic definition of RFF makes it hard to replicate and allows a secure authen-
tication. Moreover, it is possible to reduce the communication protocol without sending
an address. Hence, a trade-off has to be found between the security of data and the energy
consumption to ensure robust and lightweight authentication systems [3]. The signal is
transmitted over a wireless propagation channel, which filters the signal and adds noise
that can affect the RFF and make identification difficult.

42



Introduction

1.3 Deep Learning RFF identification and challenges

The RFF identification can be considered as a signal classification. For a decade, the
Deep Learning (DL) techniques have been massively introduced for image classification
and obtained very good performance for recognition and classification issues. Since 2018,
because of the complexity of RFF identification caused by the different distortions of the
different components, the SoA has switched to parametric-based classification in favor of
DL classification. In particular, the classification is done thanks to a neural network, and
most of the time a Convolutional Neural Network (CNN).

However, the DL identification challenges the community on different aspects of the
training. Firstly, while DL techniques present promising results, there is a strong need for a
large and robust database [46]. Secondly, the SoA results show a performance penalty when
the signal acquisition conditions change. The signal acquisition conditions are defined
by the day of capture, the position of the both transmitter and the receiver, and the
environmental parameters such as temperature and electromagnetic environment. Finally,
the complexity of the DL-based SoA techniques makes it difficult to have an embedded
identification system.

In this PhD, we first focus on the database issues, and then we propose to interest us
to the complexity of the classification solutions. The behavior of the network training with
SoA database shows a disturbance caused by environmental changes and makes robust
identification impossible. Moreover, Jagannath et al. propose to identify static devices by
their location [46], which signifies that the distortion of the propagation channel can be
a solution to recognizing the device by the propagation channel characteristics between
transmitter and receiver. However, location methods have strong limitations because they
are intrinsically sensitive to environmental variations and identification accuracy falls in
a dynamic context. A secure identification solution should be robust to time and environ-
ment changes, especially in a wireless context.

Most existing RFF identification works use experimental data to explore RFF iden-
tification [40, 94, 92]. A study is proposed in Chapter 3 on two different databases to
understand the behavior of the network. This study shows that the number of data/sig-
nals in the current databases is not enough. In particular, the diversity of data and the
metadata about database creation is not pertinent to understand correctly the network
behavior. We discuss the limits induced by the lack of information of experimental proto-
col, and the difficulty to create a dataset without bias to ensure the RFF identification.
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Figure 1.4 – A description of what the virtual database generator is designed to do.

1.4 RFF Virtual Database Generator

To overcome the limits of databases, we propose a virtual database generator as a
first contribution. This generator allows to create a virtual database based on wireless
transmission models, RFF models and wireless propagation channel models. A large panel
of parameters can be chosen to create different scenarios such as the type of data to
be emitted, the wireless protocol, the number of signals, and the presence of noise for
example. This flexible generator, presented in Chapter 4, allows us to explore several
database issues and propose some solutions validated thanks to the virtual databases.
The principle objective is presented in Figure 1.4 and is called RiFyFi. First, a database
is created following a scenario (S1), then the network is initialized and trained. Then,
a second database is created with the same virtual transmitters according to another
scenario (S2), the trained network is loaded and predicts the class of the signals of the
second database. Finally, the capacity of the network to correctly classify the transmitters
is evaluated. A scenario is defined by multiple meta-parameters such as the number of
signals and the type of the transmitted sequence which can be a preamble sequence that
corresponds to the part of a communication header or it can be payload sequences that
are always different.
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In Chapter 5, the results of the different studies are presented and some design rules
of experimental databases are drawn for different scenarios. We found out that the power
amplifier imperfections play the biggest role in RFF accuracy. We evaluate the number
of signals required to train the network depending on different scenarios in particular in
preamble and payload scenarios with and without propagation channels. The flexibility
of the generator allows us to analyze the impact of the unstable known behavior of the
frequency, by changing the parameter values of the model.

After this study, and the conclusion obtained we propose to create different exper-
imental datasets to test and determine if the same conclusions can be made with the
experimental data and confront the synthetic world and real world. The digital twins
are a great tool to explore and understand the classification mechanism. However, the
objective is to improve our understanding of real data so creating a dataset thanks to
the conclusions done with the digital twins and observing the network training behavior
allows us to conclude on the interest of this generator.

1.5 Lightweight Machine Learning for RFF identifi-
cation

Throughout this PhD, a particular interest in lightweight classification has been de-
veloped with different research. Firstly, the recent interest in the Tangled Program Graph
(TPG), mainly applied to image classification, makes it interesting in our context. The
TPG is a reinforcement learning model based on genetic programming techniques. The
main advantage of TPG is the adaptability of the complexity. We show that the con-
vergence speed of the TPG in CPU is close to the SoA neural network on a Graphics
Processing Unit (GPU) and obtained close results in the test in a favorable scenario com-
pared to the neural network of the SoA. Finally, we propose to use pruning techniques
to reduce the size of the neural network. Different architectures of networks are pruned
and compared in terms of complexity and classification performance. The performance is
evaluated thanks to real databases studied in Chapter 3 and the generalization capability
is evaluated thanks to a second dataset scenario.
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Mobility
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presented in the Open Journal of Communication Society and the ICC conference has
been done in collaboration with Professors from Tampere University Pr. Mikko Valkama
and Pr. Elena Simona Lohan.
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1.7 Thesis Organization

This thesis is structured as follows

— Chapter 2 presents some fundamentals of digital communications and RF impair-
ments definitions, and the RFF identification solutions with parametric-based meth-
ods and DL-based methods.

— Chapter 3 presents the SoA of databases for RFF identification and the challenges
linked to the databases. A preliminary study is then presented to evaluate the limits
of two public databases which seem interesting.

— Chapter 4 introduces the proposed Virtual Database Generator, called RiFyFi_VDG,
with RFF impairments models which offers scenario flexibility description.

— Chapter 5 presents the results of the exploration of both the parameters and the
scenarios obtained thanks to RiFyFi_VDG. First, an independent study is proposed
to analyze the individual impact of each impairment. Then we explore different
situations in a preamble transmission mode and secondly in a payload mode.

— Chapter 6 proposes experimental datasets creation to validate the lessons learned
from the virtual database generator, in different modes and scenarios.

— Chapter 7 introduces two lightweight identification solutions, the TPG and the DL
pruning techniques. The two solutions are independently studied and confront to
generalization issues to evaluate the performance of the identification solutions.

— Finally Chapter Conclusions and Perspectives presents the main points of this PhD
and the future works that can be considered. The perspectives are presented follow-
ing the two main contributions: the first one concerns the use of the RiFyFi generator
for transfer learning and the second point focuses on lightweight opportunities and
solutions.
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Chapter 2

RFF IDENTIFICATION STATE OF THE ART

In recent years, the RFF identification has been largely studied [46] to improve authen-
tication security. The purpose of RFF is to uniquely identify a device by recognizing flaws
in the emitted signal. These flaws are created by hardware impairments of the transmitter.
The impairments create unique electromagnetic distortions in the transmitted signal [8],
and these distortions are used to differentiate devices. While, in most telecommunica-
tion standards, identification methods are based on the meta-data of the communication
protocols such as a MAC address, the RFF identification can be combined with such
classic identification to improve and ensure identification without spoofing [34]. While
RFF identification principle was born in the 2000s, using parametric models, the number
of RFF identification by classification methods has recently exploded with the advent of
DL [94, 34]. In particular, supervised DL is massively used in RFF classification, as it
automatically learns how to classify radio transmitters by recognizing complex patterns
from labeled signals.

This chapter presents the SoA of RFF identification methods. Section 2.1 presents
the ideal (i.e. without any impairments) communication chain between an emitter and a
receiver. Section 2.2 describes and defines RF transmission and the different impairments,
Section 2.3 presents different applications contexts. Section 2.4 describes the identification
system and Section 2.5 presents the parametric methods used for identification based on
particular feature extraction which is characteristic of RFF. Section 2.6 presents the DL
methods that take in input the signal in time domain. Finally, Section 2.7 presents the
recent methods that combined feature extraction and DL techniques, and Section 2.8
concludes this chapter.

2.1 Introduction to digital communication principles

This section presents the communication model between an emitter and a receiver. To
ensure the communication, the useful data are concatenated in a packet, as detailed in
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Pre MAC Pay

Header Data

Figure 2.1 – Transmission packet.

Figure 2.1 where the preamble (Pre) part corresponds to the synchronization information,
then the MAC address (MAC) of the transmitter and the receiver, and the useful data,
payload (Pay). This packet is then processed as a binary stream following the description
in this section. First, the ideal baseband model is presented, then this model is updated
to introduce the carrier frequency model, with single and multi-carrier waveforms.

2.1.1 Baseband transmission

Tx Rx
Channel

𝑥(𝑡)

Binary stream

𝑦(𝑡)

{𝑏} {𝑏)}

Alice Bob 

Figure 2.2 – Transmission and reception chains.

To illustrate the transmission of information, we suppose that Alice and Bob are re-
spectively the sender and the receiver and that Alice wishes to send a message, a binary
stream, to Bob via a propagation channel, this situation is presented in Figure 2.2. The
transmission of this information involves many disciplines: source coding, channel coding,
and, more generally, what is known as information theory, which makes it possible to
guarantee the reliability of the transmission as a function of the propagation channel.
Information theory and binary information protection are beyond the scope of this work,
however, the rest of the transmission chain is the main point of this PhD. To carry out
the transmission, the transmitter must convert the binary stream into a signal, which
is transmitted through the propagation channel which can modify the signal. Then the
receiver decodes the signal to obtain a binary stream. The performance of this communi-
cation chain is evaluated thanks to the Bit Error Rate (BER). The BER is a fundamental
metric used to quantify the accuracy of digital communication systems. It represents the
ratio of bits received in error to the total number of bits transmitted. In other words, BER
measures the probability that a bit transmitted over a communication channel is received
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incorrectly due to various factors such as noise, interference, distortion, or channel prop-
erties. Considering Additive White Gaussian Noise (AWGN) b(t) propagation channel,
the received signal y(t) can be expressed as y(t) = x(t) + b(t). Assuming a digital sam-
pling with sampling time T, the equation can also be represented as a discrete sequence
y[n] = x[n] + b[n] with x[n] = x(nT ).

A. Transmitter
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Figure 2.3 – Transmission chain for baseband signals.

The transmitter chain is composed of different steps that are described in Figure 2.3
in a baseband context. First, the binary stream is converted into symbols ak, two symbols
-1 and 1 to represent respectively the bit 0 and 1, this symbol modulation is called Pulse
Amplitude Modulation (PAM). Other modulations exist and allow to decrease the BER
with specific channel or propagation conditions. Then this signal a[k] is up-sampled with
α factor, and filtered to obtain the digital signal x[n]. The filter is designed to prevent
symbol interference. Finally, this digital signal is converted to an analog one thanks to
the Digital to Analog Converter (DAC).

The transmitted signal x(t) can be express as

x(t) =
+∞∑

k=−∞
a[k]he(t − kTs), (2.1)
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where he is the formatting filter, and Ts corresponds to the sampling time which corre-
sponds to Nyquist theorem, and Bs = 1

Ts
.

B. Receiver

At the receiver side, the processing chain is the opposite of the transmission chain as
represented in Figure 2.4. The received signal y(t) is firstly converted to digital signal
y[n] and then synchronized to choose the corrected sample during the down-sampling.
After the synchronization, the signal is filtered and down-sampled. Finally, the symbols
are demapped to obtain the estimated binary stream. The objective is to obtain the lowest
BER and to reduce it the receiver implements a Forward Error Correction (FEC) after
the symbols demapping, not present in Figure 2.4 because it is out of the scope of this
PhD.
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Figure 2.4 – Reception chain for baseband signals.

C. Limit of baseband transmission

The baseband signal is typically used for wired transmission communication. The fre-
quency of signals does not allow communication over long distances. In addition, baseband
transmission uses the entire bandwidth of the transmission medium, which limits the num-
ber of independent channels that can operate simultaneously without interferences. This
reduces the spectral efficiency compared to broadband transmission techniques. Because
baseband signals operate at lower frequencies, they are more susceptible to noise and
interference, including ElectroMagnetic Interference (EMI) and crosstalk from adjacent
channels or transmission lines. This can degrade signal quality and limit achievable data
rates.
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2.1.2 RF Transmission

To overcome the problems of baseband signals, such as long-distance transmission,
it is possible to use carrier frequency transmission. Carrier frequency modulation allows
transmitting the signals at high frequency. In this section, two technologies are presented
single-carrier and multi-carrier.

A. Single-carrier

Figure 2.5 shows the transmitter chain in carrier frequency transmission. The first
difference with the baseband chain is the symbol shaping, here the modulation can be
done in the complex domain to get I and Q paths, represented by xI and xQ. The symbol
modulation example here is 4-Quadrature Amplitude Modulation (QAM) with 2 bits per
symbol, but there are many other QAM modulations to represent more bits per symbol.
The rest of the chain is then very similar to the baseband chain but operates on each part
of the complex signal. After the DAC, a Local Oscillator (LO) is introduced to modulate
the signals at a chosen carrier frequency. Both parts of the complex signal are processed
by the Power Amplifier (PA) and emitted by the antenna.
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Figure 2.5 – Transmission chain with carrier frequency.
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The complex analog signal can be written as x(t) = xI(t)+jxQ(t) after the DAC. Then
the signal is modulated by the LO at a chosen carrier frequency here fc with ωc = 2πfc,
and the complex signal 1 at the output of the LO is expressed as:

xmix(t) = x(t)ejωct, (2.2)
xmix(t) = xI(t) cos(ωct) − xQ(t) sin(ωct) + jxQ(t) cos(ωct) + jxI(t) sin(ωct). (2.3)

This signal can also be expressed as:

xmix(t) = ℜ(xmix(t)), (2.4)
xmix(t) = xI(t) cos(ωct) − xQ(t) sin(ωct), (2.5)

where ℜ stands for the real part of the complex number. Finally the signal xmix(t) is
amplified by the PA and the transmitted signal is expressed as:

xRF (t) = GP A × xmix(t), (2.6)

which can be expressed with the baseband model:

xRF (t) = GP Axmix(t), (2.7)
xRF (t) = GP A|xmix(t)|ej(∠xmix(t)), (2.8)

where |.| denoted L1 norm, and ∠ represent the angle of xmix(t). (2.8) expression will be
useful in Chapter 4.

This signal is then transmitted via the wireless propagation channel. This propagation
channel is a multipath channel defined by its impulse response h. Therefore the received
signal y(t) can be expressed as:

y(t) = h ∗ xRF (t). (2.9)

The path of the channel depends on the configuration of the environment propagation,
such as the signal bouncing off different surfaces with different paths before arriving at the

1. All complex variables will be underlined in the rest of the PhD.
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receiver. For example, considering a 3-path channel the received signal can be expressed
as:

y(t) = h1xRF (t) + h2xRF (t − t2) + h3xRF (t − t3). (2.10)

At the receiver side, the interesting signal has been convoluted by the channel, and
the BER after demapping symbols can be affected by the channel. To remove this effect,
the receiver implements a channel equalization. The objective is to estimate h−1 and
convolute the received signal by h−1 to obtain an estimation of the transmitted signal.
Several techniques exist to equalize the propagation channel [10, 33] such as using a known
part of the signal to estimate the difference between the expected signal and the received
one.

B. Multi-carrier

Multi-carrier communication is a technique where data is simultaneously transmitted
over multiple carrier frequencies. It is possible to transmit multiple data streams in par-
allel, leading to efficient spectrum utilization and high data rates. The transmitted signal
at the output of a multi-carrier transmitter scheme can be expressed as:

xu(t) =
∞∑

n=−∞

K∑
k=1

a[n, k]GTu(t − nTu)e2jπfkt, (2.11)

with K the number of subcarriers, GT u the formatting filter, fk the subcarrier frequency
and Tu the symbol time. The first sum corresponds to the elements transmitting in the
time domain, and the second sum corresponds to the subcarriers.

The most known example of multi-carrier communication is Orthogonal Frequency
Division Multiplexing (OFDM), but other multi-carrier schemes exist as well, such as
Discrete Multitone Modulation (DMT) [59] or Filter Bank Multi-carrier (FBMC) [30].

The transmitted signal at the output of an OFDM transmitter scheme can be expressed
as:

xu(t) =
∞∑

n=−∞

∑
k∈Ω

a[n, k]ΠTu(t − nTu)e2jπfkt, (2.12)
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with Ω the subcarrier ensemble, ΠT u the formatting filter which is a gate, fk the multi-
carrier frequency which is linked to the subcarrier index k and the subcarrier spacing ∆F

with the relationship

fk = k∆F = k
Fe

N
= k

NTe

. (2.13)

To ensure orthogonality, in the presence of a multipath channel model, a Cyclic Prefix
(CP) is added to extend the symbol size from Tu to Ts and ensure having a complete
period of the subcarrier frequency, with the presence of several paths with different delays
if there are lower than the CP duration. The signal can be expressed as:

x(t) =
∞∑

n=−∞

∑
k∈Ω

a[n, k]ΠTs(t − nTs)e2jπ k
N ( t

Te
−NCP) (2.14)

with NCP the number of samples added to extended the symbol size. In particular, if
the signal is sampled at the frequency Fe, the term in the second sum corresponds to
an inverse discrete Fourier transform of the input sequence of symbols at time index n,
corresponding to an inverse discrete Fourier transform.

subcarrier 1
subcarrier 2
subcarrier 3
subcarrier 4
subcarrier 5
subcarrier 6
subcarrier 7

Figure 2.6 – Spectrum of OFDM subcarriers.
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Figure 2.6 presents how OFDM divides the available spectrum into multiple orthogonal
subcarriers, allowing for efficient use of the spectrum. Each subcarrier can be modulated
independently, following the process described in Figure 2.5. OFDM presents several ad-
vantages such as the resistance to frequency selective fading which is a common issue
in wireless communication where different frequency components of a signal experience
different levels of attenuation and delay. OFDM is highly flexible and can be adapted to
various communication standards and requirements. It is used in many wireless standards
such as Wi-Fi, LTE, WiMAX, and digital television broadcasting.

OFDM simplifies frequency equalization compared to single-carrier modulation. OFDM
can support multiple access schemes like Orthogonal Frequency Division Multiple Access
(OFDMA), enabling efficient sharing of the spectrum among multiple users or devices.
Overall, OFDM combination of spectral efficiency, robustness against various channel im-
pairments, flexibility, and compatibility with various communication standards makes it
a widely used and important technology in modern communication systems.

C. Conclusion

The transmission chain considered in this PhD is the multi-carrier transmission chain,
in particular the OFDM one. The chain is composed of different hardware components
to transform the binary sequence to a symbols sequence and then modulate the signal to
transmit it with the carrier frequency. The hardware components of the transmission chain
have some manufacturing defects, which create impairments in the transmitted signals,
the RFF. The next section presents the different impairments and the RFF identification.

2.2 RF impairments and RFF definition

The RFF of a transmitter is a unique signature created by the hardware components of
the transmission chain, which appears in the transmitted signals. The transmission chain
is composed of different components presented in the previous section, and is detailed
in Figure 2.7. First of all, the binary source information data is converted into symbol
sequences thanks to symbol modulation, presented in the previous section, for example,
the 4-QAM. Then a DAC transforms the complex signal into the analog domain to yield
x(t). The LO modulates it at the carrier frequency fc, and the PA amplifies the signal,
creating xant(t) for transmission via the antenna.
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Figure 2.7 – Transmission and reception chains with RFF.

Devices Impairments References
Clock Clock jitter [119]

Digital to Analog Converter Sampling error [112, 75]

Local Oscillators
Phase Noise [126]

Carrier Frequency Offset [106]
I/Q imbalance [110, 107]

Power Amplifier Non linearity [75]

Table 2.1 – Relationship between the hardware components and the impairments used for
RFF identification.

All those components distort the signal and create the signature called the RFF of the
transmitter denoted FRFFTx . The emitted signal could be modeled by:

xant(t) =FRFFTx (x(t)) , (2.15)
xant(t) =FPA ◦ FLO ◦ FDAC (x(t)) , (2.16)

where ◦ represents the function composition operator which expresses the successive pro-
cessing of the transmission chain, each stage creating a distortion function. F· represents
a component behavior, including its distortion. The nested functions of (2.16) show the
impact of each component and the difficulty of extracting features and modeling the
transmission with RFFs. The LO adds distortions related to the frequency called Carrier
Frequency Offset (CFO), gain and phase called In Phase - Quadrature (IQ) imbalance,
and Phase Noise (PN). The PA impacts the gain and the phase in particular the PA
introduces non-linearity in the complex amplitude of the signal. Table 2.1 presents the
hardware components and the corresponding impairments, the papers referenced in this
table correspond to works that used and present the impairments.

In Figure 2.7, the channel block represents the wireless communication environment
defined by the noise, interference signals, and the multi-path and fading channels that
could impact the signal. The propagation channel is modeled by Fchannel. The red block
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Rx represents the receiver with its components (not detailed in the model but similar
to the Tx reversed model) and its distortion function called the RFF of the receiver,
FRFFRx . Investigating the impact of the receiver is beyond the scope of this PhD and we
only consider a unique receiver for identification. However, it is important to note that the
receiver may be illegitimate, and so may not have much information about the transmitter
and the transmission channel, and so may be missing information to correctly extract the
RFF impairments. The received signal xidf can therefore be expressed as

xidf(t) = FRFFRx ◦ Fchannel ◦ FRFFTx (x(t)) . (2.17)

Fchannel models the propagation environment of the signal between the transmitter and the
receiver used to capture the signal for RFF identification. This propagation environment
is defined by the location of devices, the relative position of transmitters and receiver(s),
the noise level, the interfered signals, etc.; these also influence the received power. All
these disturbances make difficult the RFF identification. This issue is largely studied in
the SoA and will be called channel or environmental condition impact in the rest of the
PhD. In the next chapter, a preliminary study of databases will highlight the impact of
the environmental conditions on RFF identification and the database design biases.

2.3 Application Contexts

Recently, the number of contributions on RFF identification has increased [46, 115],
and presents diverse application contexts such as IoT and cybersecurity, authentication,
or defense. The application context of RFF identification is important to consider because
it induces different knowledge of the transmitter(s) and emitted signals. Therefore, the
different applications lead to different identification scenarios.

2.3.1 Authentication to enhance security

First of all, the RFF identification can be used to enforce the security of device au-
thentication. For example, Guo et al. [34] use the term "1 to 1 authentication" to verify
if the RFF of a device matches its MAC address [37]. In this context it is possible to use
the RF impairments to enhance security levels in wireless systems, this supposes to have
access to the devices to create an identification system that can recognize the RFF of
each device in the wireless network.
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Figure 2.8 – Authentication to enhance security.

The legitimate receiver, called Bob in Figure 2.8, received a signal from the authorized
device Alice, Bob has to check the MAC address to recognize Alice and ensure the authen-
tication by checking the RFF. If a malicious device, Eve, impersonates the MAC address
of Alice, the RFF checking will not correspond and allow to reject the authentication.
In their paper, Guo et al. [34] also present the "1 to N" authentication as recognizing
an authorized device but not which one it is. The identification system has two classes
authorized and unauthorized devices.

2.3.2 Authentication with reduced overhead

The RFF identification can be used as an energy-efficient technique for the transmitter
because it reduces the size of the transmitting packet. It is particularly attractive for
short-packet IoT devices where the overhead of authentication is important. Moreover,
it is a tamper-proof solution for authenticating low-power/computationally capable IoT
devices [47]. The low-power devices are subject to spoofing attacks, because of poorly
designed software security systems. Moreover, due to its openness, wireless networks are
more vulnerable to malicious attacks than traditional wired networks. Cybercriminals are
taking advantage of these vulnerabilities to impersonate. However, hardware impairment-
based authentication hardened the security and required fewer power resources for the
transmitter. Contrary to the first application, here no key is required to identify devices
so the transmitter can adapt and skip the MAC address transmission to reduce power
consumption. Contrary to the previous application, in this context, the authentication
only relies on the RFF identification.

2.3.3 Defense or Attack

Finally, the RFF identification can be useful in a defense context or attack. For in-
stance, cybercriminals are taking advantage of security vulnerabilities, and a malicious
user can implement software systems to cover the tracks of its behavior. In this context,
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Polak et al. [75] present a work that concentrates on breaking criminals’ anonymity in
wireless systems. This approach can be used by digital forensics to exploit the standard
assumption that a criminal at some point in time employs their true identity. In another
paper, Polak et al. [77] suggest testing devices from a pool of suspects to decide which one
was most likely used during the crime. In this context, it is important to note that this
type of approach can be complex to implement in practice, as it requires specific signals
from suspects to improve identification.

In this PhD, the term "sensitive devices" is introduced in the title to address the de-
fense context in particular the cyber electronic, and allow the detection of non-legitimate
electronic devices by wireless transmission. Once a non-legitimate device is detected, a
defense strategy could be to interfer its transmission using a jammer to alter the eaves-
dropper or a beamforming approach to isolate the transmissions between the legitimate
transceivers.

2.3.4 Conclusion

The RFF identification can be useful in different application contexts such as IoT
authentication or military defense. As this thesis was funded by the DGA, the considering
application context is the defense. It could be interesting to be able to differentiate allied
transmitters from unknown and therefore potentially enemy transmitters.

2.4 Identification System

To identify the transmitter with RFF, the signal should be captured and classified
among the different potential candidates. In the SoA, Software Defined Radio (SDR) is
massively used in database creation to record the signals or as transmitters due to their
flexibility and accessibility. A SDR is an RF wireless communication system where the
traditional hardware components of a radio, such as mixers, filters, amplifiers, modu-
lators/demodulators, and detectors, are implemented using software on a computer or
embedded system. In SDR, most of the signal processing functions are performed using
software running on a general-purpose computer or specialized Digital Signal Processing
(DSP) hardware. This allows for greater flexibility, reconfigurability, and adaptability in
the radio system [64, 20]. One of the key advantages of SDR is its ability to support multi-
ple communication standards and protocols through software updates or reconfiguration,
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Figure 2.9 – SoA identification solutions.

eliminating the need for hardware changes. This makes SDR ideal for applications such
as military communications, civilian radio, and amateur radio, where interoperability and
flexibility are crucial. Additionally, SDR enables the development of advanced features
such as dynamic spectrum access, cognitive radio, and adaptive modulation techniques.
Moreover, the SDR allows us to develop a system independent of modulation to detect
only faults thanks to IQ samples. In RFF identification, presented in Figure 2.9, the SDR
is used to capture the signal as it can record large bandwidths and store the raw IQ
samples before applying specific post-processing to help with signal classification. After
recording, the complex signal become the input of the identification/classification system
which attributes the signal to a device or a device group (authorized or not).

In the SoA, the RFF identification is based on three different family methods, repre-
sented in Figure 2.9. Primarily, the parametric methods combine feature extraction and
classification thanks to Machine Learning (ML). Since 2018, the DL which takes raw
IQ samples in input, has been massively explored especially for blind applications, DL is
so the second method. Since 2021, some hybrid methods have appeared combining feature
extraction and DL classification.

In parametric methods, the extraction step uses expert-defined features based on the
physical properties of RF signals. These methods are adapted for a small number of devices
(<100) but are not adapted for scale applications. Moreover, they required knowledge
of the communication protocols [85], which is not realistic in the defense application
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context, in particular in our use case. To address scale or blind applications such as
defense or attack, the SoA proposes to take advantage of DL performance to perform
classification. The hybrid methods are proposed to ensure the RFF classification by DL,
the feature extraction highlights relevant device impairments that help the network to
classify following the RFF.

2.5 Parametric-based methods

This section introduces the first identification solution based on the parametric meth-
ods. These methods exploit the intrinsic and unique nature of the impairments to identify
the device and are composed of two steps: feature extraction and classification. Both parts
of these methods can be done with multiple techniques. The next subsection presents the
different features and extraction techniques and the one after presents the classification
methods.

2.5.1 Features extraction

Feature extraction has been largely explored in the SoA and the possibilities are mul-
tiple due to the large choice of features, induced by the different impairments impact.
The feature extraction methods are separated into two families depending on the part of
the signals used to classify, Figure 2.10 presents a classification of extraction techniques
following transient-based and asymptotic-based methods.

Features extraction

Asymptotic Transient

Constellation Waveform Waveform

RFF
features

Transform

RFF
features

Transform

Stat. moments

Transform

RFF
features Kernels

Signal
featuresStat. moments Kernels
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Figure 2.10 – SoA feature extraction classification.
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The transient part of the signal opposite to the steady-state or asymptotic behavior,
corresponds to the sudden change in the signal at the beginning of the communication
seen in Figure 2.11. This change leads to nonlinear perturbations that are specific to an
emitter. The fingerprint can be based on caracteristic features estimation [109, 118, 38, 19]
or statistics estimation [18, 108, 62, 9] or domain transform kernel values [81, 104, 106].
The features estimations concern the transient particularity such as the energy envelope
or duration of the transient signal.

Steady-state/
Asymptotic

TransientNoise

Figure 2.11 – Established signal representation.

The steady-state or Asymptotic part of the signal corresponds to the moment of emis-
sion after the transient part. The study of this transmission part is separated into two cat-
egories: i) waveform domain and ii) constellation domain, also called modulation domain
in [8] contrary to waveform domain where the signal is not demodulated. Demodulation at
the receiver requires synchronization and perfect knowledge of the modulation scheme, an
assumption that is not always verified. Then each class is separated into two or three sub-
classes, i) estimation features such as CFO or PA coefficient for Waveform-based [75, 42,
43, 23, 120] and IQ imbalance for constellation-based [8], ii) transform-based extraction
such as wavelet domain coefficients [54], iii) statistic moments of the signals [70, 79].

To summarize, four feature extraction techniques exist and can be applied to the
transient part or asymptotic part of the signal to extract emitter characteristics.

— The first family of features corresponds to physical impairment value estimators,
such as the PN or the CFO, that are often estimated directly from the signal or
after a domain transform, called RFF features in Figure 2.10.

— The second family of features corresponds to statistical moment value estimators,
such as variance, kurtosis, and skewness, called statistic moments in Figure 2.10.
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— The third family corresponds to the use of domain transforms such as Wavelet or
frequency domain and the use of the coefficients as fingerprints, called kernels values
in Figure 2.10.

— The fourth family is only used for transient signals and corresponds to signals feature
extraction not directly from the impairments estimator.

These different features can be combined to enhance the identification process. The next
subsections present the different techniques used in the SoA presented in Figure 2.10,
with firstly the transient-based research and then the asymptotic-based one. Tables 2.2
and 2.3 summarize the subsection. The second column presents the classifier used, such
as K Nearest Neighbor (KNN) [17] and Support Vector Machine (SVM) [16] that are
presented in the next subsection. The third column gives the domain used to extract
features, and then the fourth presents the features. Finally, the fifth one lists the type of
results, experimental or simulation-based.

Ref. Classifier Transform Features estimation Exp. or Simulation
Domain Transform kernels values

[106] Genetic Algorithm Wavelet TF 2 Wavelet coefficients Simulation
[81] - Spectrum - Spectrum analysis
[104] PSD correlation PSD PSD coefficients Exp: 100 Wifi emissions

Domain Transform and statistic moments estimation
[108] KNN Short Time FT Energy envelope Statistics Exp: 7 Bluetooth devices
[62] SVM PSD, FrFT Statistics moment (2,3,4) Exp: 10 walkie-talkie

[9] SVM Gabor TF
Standard deviation,

Exp: 4 transmitters
variance, slope, and kurtosis

Domain Transform and signals features estimation
[109] PNN 3 Hilbert TF PCA: Amplitude profile Exp: 8 WiFi transmitters
[19] 1NN Hilbert TF PCA: Spectral feature Exp: 50 identical cards
[18] Mahalanobis Hilbert TF Fisher LDA Exp: (50 COTS)

[118] SVM
Hilbert–Huang TF: Sum of energy

Exp: 8 emittersEMD and Hilbert TF Duration of transient signal
Duration of the max. energy point:

[38] Multivariate
DWT

DWT coefficients,
Exp: 30 transmittersStatistical amplitude, phase, etc.

Classifier

Table 2.2 – Transient-based methods.

2. Transform (TF)
3. Probabilistic Neural Network (PNN)
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A. Transient-Based methods

The transient-based methods are decomposed into two steps, first transient extrac-
tion and then feature extraction with different techniques. Different transient detection
techniques have been investigated such as amplitude-based and phase-based, for example,
Ureten et al. [109] considered transient amplitude features while Hall et al. [36] used tran-
sient phase features and [104] proposed a variance-based approach. Soltanieh et al. [103]
propose a review of RFF techniques and present 6 different methods to extract the tran-
sient part of the signal.

a. Domain transform kernels values: The transient-based features are structurally
blind because they do not rely on modulation at all. For transient-based feature extraction,
the authors propose to estimate some characteristic features from the waveform domain.
The most popular technique is to use domain transform to highlight some differences in the
signals. For example, in 1995 several works proposed Wavelet Transformation (WT) [15,
106] and used the wavelet coefficients as fingerprints. Then, Remley et al. [81] present in
2005 different Power Spectral Density (PSD) of received signals from different transmitters
and show the difference. This work reveals the interest of the frequency domain for RFF
identification, however, no ML classification is proposed. In 2008, the PSD is used as a
featured extractor by Suski et al. [104] considering PSD coefficients.

b. Domain transform and statistic moments estimation: While it is possible to
directly use coefficients as fingerprints, Ur Rehman et al. [108], apply a short time Fourier
Transform (FT) and use the statistical moments of the energy envelope to characterize
the devices and then used a KNN to classify the device. In the same idea, Lin et al. [62]
propose PSD transform and create a fingerprint vector based on statistical moments of
the PSD.

c. Domain Transform and signal features estimation: The third interesting
domain transform is the Hilbert transformation [19, 109, 18] which creates complex-valued
analytic functions. This transformation is used to compute the instantaneous attribute of
a signal such as amplitude [109], phase or spectral features [19, 118] that are considered
as fingerprints. Other transformations are used such as Gabor transform [9] combining
with statistics features extraction or Discrete Wavelet Transform [38]. Hall et al. [38]
propose to use Discrete Wavelet Transforms (DWT) coefficients, amplitude, phase, and
many other features to compose the fingerprinting vector and then use a Multivariate
statistical classifier to perform identification.

66



2.5. Parametric-based methods

The features can be used independently or together to create a strong fingerprint vector
based on different metrics such as statistics in [9] or time characteristic of transient signals
and energy in [118] or Discrete Wavelet transform coefficients, amplitude, phase and others
in [38]. The work of Xie et al. [115] presents a survey of Physical-Layer authentication in
wireless communication. The first part of this paper presents the passive physical layer
authentication which corresponds to RFF identification. This survey offers an interesting
classification of parametric methods with a larger panel of work especially when they
detail the number of features used to classify devices. The classification proposed by Xie
et al. presents some very specific methods that are not presented here to alleviate the SoA
classification.

Ref. Classifier Transform Features estimation Exp. or Simulation
Constellation - Impairment features estimation

[8] SVM
-

I/Q origin offset, Frequency
Exp: ORBIT nodes [69]

KNN error, SYNC correlation
[117] KNN - IQ imbalance estimation Exp: 5 Tx simulation
[55] Own classifier - Phase shifting 5 Tx nodes

[67]
Non parametric

-
Phase shifting and Simu: 1 to 6 devices

bayesian model frequency offset Exp: 4 ZigBee devices
Constellation - Domain Transform and impairment features estimation

[73]
Own hybrid

DCFT
DCFT, frequency ,

Exp: 54 ZigBee devices
classifier modulation and IQ offset

[112] Error probability FFT Non linearity coefficients Exp: 6 Micaz sensors nodes
Waveform -Impairment features estimation

[23] LRT - PA estimation Modelisation
[75] LRT - PA estimation and DAC Exp: 8 measures of PA
[43] Hypothesis test - CFO estimation Exp: 2 transmitters

[42]
MSE with Kalman

- CFO estimation Simu: false alarm detection
predicted CFO

[120] Visibility Graph - CFO estimation Exp: 2 devices
Waveform - Statistic moments estimation

[70] MDA/MLE - Statistics moment (2,3,4) Exp: 4 ZigBee devices

[79] MDA/MLE -
Statistics derive from amplitude

Exp: 7 ZigBee devices
phase and frequency

Waveform - Domain Transform kernels values
[80] KNN PSD Normalized PSD coefficients Exp: 3 WiFi transmitters
[62] SVM Bispectrum AIB, CIB, RIB and SIB Exp: 10 walkie-talkie

[54] MDA/MLE
Dual tree Complex Wavelet coefficients

Exp: 4 Cisco devices
WF TD statistics

Table 2.3 – Steady-state based methods.
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B. Asymptotic-Based methods

Unlike transient methods, asymptotic methods are divided into two families, constellation-
based and waveform-based. In the same way, it is possible to extract different features by
estimation or domain transform to characterize the transmitter fingerprint.

a. Constellation-Based
Impairment features estimation: In the constellation-based techniques, the signal

is demodulated before features extraction offering the possibility to estimate the impair-
ment values, such as phase shifting [55, 67], frequency offset [67, 8], or IQ imbalance [8,
117]. The use of such parametric methods is strongly limited by the knowledge about
the transmission chain, protocol, modulation, and the superposition of impairments. In
PARADIS [8], Brik et al. propose to extract features by measuring artifacts in wireless
frames in the modulation domain and then use ML to identify the different devices. Their
method requires demodulating the signal and requires a priori knowledge on the receiver
side. They established different metrics to characterize the device identity such as (i) fre-
quency error, (ii) SYNC correlation, (iii) I/Q offset, (iv) magnitude error, and (v), phase
error, and then combined the metric to create a fingerprint vector. Then two classifiers
are implemented and evaluated, one using the SVM algorithm and the other using the
KNN algorithm. The authors evaluated PARADIS on the ORBIT indoor wireless testbed
facility [69].

Recently, Yuan et al. [117] also proposed a novel OFDM RFF method that relies on the
hardware property of the IQ imbalance and nonlinearity of the transmitter together. First,
they estimate the parameters of the nonlinearity of the transmitter and Finite Impulse
Response (FIR) of the wireless multipath channel, with a Hammerstein system parameter
separation technique. Then, they use estimation techniques for IQ imbalance compensa-
tion. Finally, they combine the nonlinear coefficients and the IQ imbalance parameters to
produce the RFF characteristic vector. Then the RFF is used by a KNN to classify the
signal.

Domain Transform and impairment features estimation: In constellation-based
methods, some authors propose to employ the Differential Constellation Trace Figure
(DCTF) to highlight impairments. The DCTF is a graphical representation of a signal
in a complex plane, where each point on the diagram represents a symbol transmitted in
the signal. Peng et al. [73] propose an identification solution based on four modulation
features, that are DCTF, carrier frequency offset, modulation offset, and I/Q offset ex-
tracted from the constellation trace figure. To classify the signals they develop a hybrid

68



2.5. Parametric-based methods

classifier that adjusts feature weights according to the channel conditions. In [112], Wang
et al. propose a wireless physical-layer identification model based on the complete wireless
transmission chain. They only consider the non-linearity of the transmitter front-end, and
other hardware impairments are considered as additional noises. The feature extraction
consists of domain change here spectral domain, and dimensionality reduction with a Lin-
ear Discriminant Analysis (LDA). The classification consists of matching all the reference
fingerprints and assigned to the identity with the smallest distance score.

b. Waveform-Based
Impairment features estimation: In the Waveform domain, the estimation tech-

niques usually used in wireless communication for impairment compensation are used to
create a specific fingerprint. The three families of feature extraction presented at the be-
ginning of this section can be used to extract features in the waveform domain of the
asymptotic signal. The first method targeted a particular impairment in the waveform
domain such as the CFO and PA non-linearity, the second method focused on statistical
moments, and finally the domain transformation such as the PSD.

CFO: The CFO is caused by the LO imperfections, and can be used as fingerprint [42,
120, 43]. Hou et al. proposed a RFF identification scheme based on time-invariant CFO
analysis [42]. In other work, they propose a time-varying CFO scenario [43]. Using the
CFO as a fingerprint is not interesting because the LO is sensitive to the temperature
and the CFO is impacted by it [122]. The CFO on its own (or without refinement) is not
a relevant signature.

Power amplifier impairments: The PA is the last component in the wireless transmitter
chain and adds some non-linearity in the signal. By studying the possibility of using the
imperfections of PA and DAC, Polak et al. [75] show that the PA nonlinearity dominates
the RF chain, in particular the DAC imperfections. In a second work, they propose to use
spectral analysis to identify a device thanks to its PA non-linearity in the case of artificial
data distortion introduction in attack context [76]. For this extraction, the parameters of
the Volterra model for the corresponding PA are estimated and then a Likelihood Ratio
Test (LRT) is used to authenticate the devices [23, 75].

Statistic moments estimation: It is possible to use statistic moments of order 2
(variance), 3 (kurtosis), and 4 (skewness), and combine them to characterize the signal.
Two different works, based on ZigBee devices identification propose to use statistic mo-
ments to identify the transmitter thanks to a multi-dimensional analysis and a Maximum
Likelihood Estimation (MLE) algorithm to perform the classification [70, 79].
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Domain Transform kernels values: While some authors propose to compute spe-
cific algorithms to estimate the value of impairments such as CFO and PA, others propose
to use domain transform to highlight specific behavior and obtain a signature. The PSD
coefficients can be used in the asymptotic domain to create a fingerprint, the work [80]
proposes an analysis of the RF receiver front-end on the classification accuracy. For the
classification, Rehman et al. [80] use normalized PSD coefficients extracted from the
preamble part of the signals.

The second interesting domain transform is the wavelet domain. For example, Klein
et al. [54] address intra-manufacturer discrimination using identical model devices man-
ufactured by Cisco. The fingerprint is based on DT-CWT and the classification is done
by a Multi discriminant analysis and Maximum Likelihood Estimation. (MDA/MLE)
processing.

It is possible to combine different features and different techniques. For example [62]
proposes to perform Specific emitter identification (SEI) on transient signals with both
PSD and Fractional Fourier Transform (FrFT) and proposes the bispectral transform to
analyze the asymptotic signal. The bispectral transform analysis of the signal has the
advantages of phase retention, scale variability, and time shift-invariance. Finally, the
RFF vector is used by a SVM model which classifies the signal.

C. Features extraction conclusion

This subsection has presented several RFF identification works based on parametric
methods and especially the different features and manner to extract them. The variety of
features and extraction methods is impressive, but the features extracted can be affected
by environmental conditions and so impact the classification recognition. The next section
presents the most important parametric-based classification methods in the SoA.

2.5.2 Parametric-based Classification

The parametric-based methods combine feature extraction with a ML classification
stage. The ML algorithms can be classified into four categories: supervised algorithms,
unsupervised algorithms, reinforcement learning, and hybrid algorithms [5]. The most
popular techniques for RFF are supervised and unsupervised algorithms.
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A) Supervised learning

Supervised learning has the particularity to require a correctly identified training set of
observations, with predefined classes. The correctly identified training set is used to train
the classifier. For parametric methods in RFF, identification means that the fingerprints or
features have been collected during the training step and stored in a labeled library. During
the test, the fingerprint of an unknown device is computed and compared to the existing
library to identify the device. The most important databases used for RFF classification
are presented in the next chapter. In the rest of this section, a brief description of the
main supervised ML is proposed. For a more detailed description, we refer the reader to
the cited references.

a. The K Nearest Neighbor (KNN) algorithm is a ML algorithm that classifies a
data sample thanks to the labels of the nearest data samples (neighbors). This technique
is computationally efficient during the training step. However, the classification phase may
entail higher computational demands compared to other algorithms, which can be an im-
portant issue in real-time, and constraints RFF identification applications. To determine
the distance and determine the nearest neighbors, it is possible to use the Euclidean dis-
tance or the Mahalanobis or Minkowski distances. The KNN classifier is used in different
works to classify the device following their fingerprint features KNN [19, 108, 8, 80, 117].
Danev et al. [19] propose to use the 1-NN to estimate the similarity between testing and
reference signatures from a given class due to the reduced training required to perform
the classification. While [108, 80] propose a 3-NN to classify the devices.

b. Support Vector Machine (SVM) is a supervised learning algorithm used for
classifying data points based on labeled training samples. These samples typically consist
of observables paired with reference fingerprints. SVM partitions the labeled dataset into
two distinct areas on a multi-dimensional surface through the utilization of a separating
function. This function can take various forms such as linear, polynomial, or sigmoidal.
Given this partitioning, SVM functions as a binary classifier, making it adept at dis-
tinguishing between two devices directly or validating the asserted identity of a device.
The SVM offers several benefits for fingerprint classification such as great accuracy and
resilience against outliers. Compared to alternative methods, SVM demonstrates a lower
susceptibility to overfitting. Its efficiency in binary classification is particularly advan-
tageous during the verification phase. However, SVM’s drawback lies in its potentially
slow learning process, often demanding a significant amount of training time. The SVM
classifier is used in different works of the SoA such as [62, 118, 19, 9]. [8] performed
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the classification with KNN and SVM and showed that the SVM is more effective than
KNN probably due to the SVM data pre-processing where the input was mapped onto a
higher-dimensional space.

c. Bayesian Classifiers are statistical classifiers and they predict the class member-
ship probability, that is the probability that a given sample belongs to a particular class.
A subtype of the Bayesian classifier is the Naïve Bayes Classifier, which assumes that all
variables contribute to classification and are mutually correlated. This assumption may be
true for certain categories of fingerprints, particularly those originating from shared phys-
ical components like RF equipment. Bayesian methods offer advantages such as efficient
adaptation of probability distribution without overfitting and the ability to work effec-
tively with a limited number of training samples, which is beneficial in scenarios where
acquiring a large dataset of fingerprints for training is challenging. Hall et al. propose to
use a Bayesian classifier to perform transient detection in [36] and then for fingerprint
classification in [37]. However, Bayesian classifiers tend to be less accurate compared to
other classifiers.

d. Likelihood Ratio Test (LRT) [75] and [23] present a classifier based on a Likeli-
hood ratio test. After computing the features extraction they obtain the parameter vectors
describing the nonlinear aspects of the user’s transmitters. Then, the probability of error
of the receiver is minimized by a LRT to classify the emitter. In the same idea, [112]
proposes to minimize the probability error or the mean square error compared to a pre-
dicting value in [42]. Finally, to complete the MLE algorithm, some authors propose a
multi-dimensional analysis [79, 54, 70] before improving classification accuracy.

B) Unsupervised learning

refers to a class of algorithms that operate without a training set, the algorithms
must find the hidden structures within unlabeled or unclassified data. In the context
of device identification or verification, unsupervised algorithms are employed to group
similar fingerprints from various logical devices into clusters. Unsupervised learning can
be used to combat counterfeiting or identity spoofing attacks. It also removes many of the
constraints imposed by the need for labeled databases. Various techniques exist in the SoA
such as K-Means Clustering, hierarchical clustering, unsupervised Bayesian Learning [67],
and Principal Component Analysis (PCA) a multivariate method for data compression
and dimensionality reduction [38]. PCA aims to extract important information from data
and present it as a set of new orthogonal variables called principal components [109, 19].
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The PCA can be used to extract the most relevant features and reduce the size of the
fingerprint vector.

2.5.3 Conclusion

To conclude, parametric methods require knowledge about the targeted signals to be
able to estimate the channel or to demodulate the signal and obtain IQ imbalance estima-
tion for example. The application context of defense, which is particularly focused in this
PhD does not offer ideal conditions for signal knowledge. This is why the identification
based on DL seems more adaptable. Moreover, even if the authors try to focus on impair-
ments, other environmental biases are integrated. For example, in [117] the non-linearity
includes the channel non-linearity and so the relative position between transmitters and
the receiver.

2.6 Deep Learning methods

Recently, with the explosion of the use of DL, many research works have been focused
on this second family of classification solutions. The supervised DL techniques use labeled
signals from different transmitters during the training phase and learn how to recognize
the source of the different signals. The first papers that proposing these methods use time
domain signals as input. In the next section, the recent hybrid methods are presented
that combined specific emitter features extraction with DL to improve the robustness of
classification. In this section, we focus the SoA on DL solutions based on time domain
signals, with and without pre-processing. Many DL architectures exist, in particular CNN
is used to extract and classify RFFs [102, 94, 92, 91, 97].

Firstly, a short definition of the different types of DL architectures such as the Feed-
forward Neural Network (FNN), the CNN, the Recurrent Neural Networks (RNN), and
the Transformers, that are the relevant network in the SoA, are presented. Then the par-
ticularities of the different works of the SoA are presented in particular the pre-processing
solutions are described.
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2.6.1 Network presentation

A neural network is composed of nodes, each node computes an output by multiplying
inputs with weights, adding a bias, and then using an activation function such as linear,
ReLu, gaussian, sigmoïd, etc. The output can be expressed as

y = f(
∑

i

wixi + bias), (2.18)

where, wi is the weight, xi the input and f the activation function. Figure 2.12 presents a
lonely node and two parallel nodes. These nodes are associated with creating some layers
such as a fully connected layer or convolutional layer. The size of the network depends on
the number of network parameters (weight and bias) and the complexity of the network
depends on the number of operations such as multiplication done. The complexity aspects
are presented in Appendix A.
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Figure 2.12 – Architecture of a neuron.

A Feedforward Neural Network (FNN), also called a fully connected neural
network or dense network is a type of Artificial Neural Network (ANN) that consists
of multiple layers of nodes, including an input layer, one or more hidden layers, and an
output layer. A layer is composed of N parallel nodes. Information flows in one direction,
from the input layer through the hidden layers to the output layer, without feedback loops.
Figure 2.13 presents a fully connected network composed of 1 hidden layer, 5 input nodes,
and 3 output nodes. All the nodes of layer L are connected to all the nodes of layers L-1
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and L+1 with a corresponding weight associated with each connection. FNNs are widely
used for supervised learning tasks such as classification and regression, where they learn
to map input data to output predictions through a process of forward propagation and
backpropagation [6, 88].

Hidden layers
input layers output layers

i1

i2

i3

i4

i5

Output 1

Output n

…

Figure 2.13 – Architecture of an FNN.

A Convolutional Neural Network (CNN) is a type of artificial neural network
designed specifically for processing structured grid-like data, such as images. CNNs con-
sist of multiple layers, including convolutional layers, pooling layers, and fully connected
layers, as present in Figure 2.15. convolutional layers apply filters to the input data, en-
abling the network to learn hierarchical representations of features present in the input.
The convolution is described in Figure 2.14, the blue and yellow cubes represent the in-
put data, here the IQ samples in the context of RFF identification. The first and last two
blocks of the sequences are created to preserve the same size of data between input and
output, this is called zero padding, detailed in Appendix A. The first filter convolutes the
data, and the result creates a vector of dimension 1, called a channel. Then the second
filter convoluates the data and creates a second channel. Then the new vectors become the
input of the next convolutional layer. The pooling layers downsample the feature maps
generated by the convolutional layers, reducing their dimensionality and computational
complexity. In Figure 2.15, a max-pooling layer is represented, this layer divided the data
by 2, conserving the maximum value between 2 neighbor data. Finally, the CNN is often
composed of fully connected layers at the end of the network, as it shown in Figure 2.15.
In the classification context, the last layer is a softmax, which generates a normalized
probability score, the total sum of the probabilities of which will be equal to 100%, or 1.
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Figure 2.14 – Filter convolution in CNN for RFF application with IQ samples in input.
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Figure 2.15 – Architecture of a CNN.

CNNs are widely used in image recognition, object detection, and other computer
vision tasks due to their ability to automatically extract meaningful features from raw
input data [61].

A Recurrent Neural Network (RNN) is a type of artificial neural network de-
signed to process sequential data by incorporating feedback loops. Unlike feedforward
neural networks, RNNs have connections that form directed cycles, allowing them to
retain information over time. This architecture enables RNNs to learn patterns and de-
pendencies in sequential data by processing each input in sequence and updating their
internal state based on previous inputs. RNNs are commonly used in natural language
processing, speech recognition, time series analysis, and other tasks where the order of the
data is significant. Figure 2.16 presents how an RNN works with a language processing
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example, the left part presents the principle, and the estimation of the letter will be used
to estimate the next letter. The right part shows how RNN works. Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM) are a type of RNN architecture, offering
improvements in terms of their ability to capture long-range dependencies and mitigate
the vanishing gradient problem. GRUs are simpler and more computationally efficient,
while LSTMs are more powerful and versatile, making them suitable for a wide range of
sequential data tasks [90, 97].
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Figure 2.16 – Principle of a RNN.

Transformer architecture refers to a class of models designed for various Natural
Language Processing (NLP) tasks. These models are characterized by their ability to
process input data in parallel through multiple layers of self-attention mechanisms and
feed-forward neural networks. Transformers have revolutionized NLP by enabling the
modeling of long-range dependencies in text data and achieving SoA performance in tasks
such as language translation, sentiment analysis, and text generation. The performances of
transformers on temporal data interest researchers of the SoA for RFF identification [96,
97].

Generative Adversarial Network (GAN) is a type of artificial intelligence algo-
rithm that consists of two neural networks, the generator and the discriminator, that are
trained simultaneously through a game-like scenario. During training, the generator tries
to produce increasingly realistic data to fool the discriminator, while the discriminator
learns to become better at distinguishing real data from fake data. This process creates
a feedback loop where both networks improve over time. The ultimate objective of Gen-
erative Adversarial Network (GAN)s is to train a generator network that can produce
high-quality data samples that are indistinguishable from real data and can be useful
for data augmentation. However, it can be used to separate trust devices and adversarial
devices in the RFF context [87].
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2.6.2 From signals to learning

DL has been increasingly used in classification for several years, especially for image
classification. Inspired by these DL architectures, several authors propose to use a similar
classifier for RFF identification. Figure 2.17 presents the general flow from signals to the
trained network.
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Figure 2.17 – Training process with DL techniques.

Firstly a database has been created by recording the signals from different transmit-
ters thanks to a SDR. The database is so composed of complex signals from different
transmitters, that each signal must correspond to a label to identify its emitter. Then the
database is separated to form the training set and test set. To ensure good learning the
database must be balanced between all transmitters.

Training a neural network involves adjusting its parameters, weights, and biases, so
that it can effectively map the signals (input), to desired labels (output). Initially, the
weights and biases of the neural network are usually set to small random values. These
values determine how the network will initially respond to input data.

During forward propagation, the sequence of signal is fed into the network and compu-
tations are performed layer by layer until the output is generated. Each neuron in a layer
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calculates a weighted sum of its inputs, applies an activation function to this sum, and
gives the result to the next layer. Instead of updating the model parameters after each
individual sequence (which can be computationally inefficient), the sequences of signal
are grouped in batch which allows for more efficient computation by performing updates
based on multiple sequences at once. Once the labels are generated for each sequence of
the batch, they are compared to the desired labels using a loss function. The loss function
quantifies how well the network predictions match the true target values. This loss func-
tion is generally a cross-entropy in classification problems but could be a mean square
error function for regression problems. The core algorithm used to train neural networks
is called backpropagation. It involves calculating the gradients of the loss function with
respect to the network weights and biases. These gradients indicate the direction and
magnitude of change required to reduce the loss. Using the calculated gradients, the net-
work updates its weights and biases to minimize the loss. The most common optimisation
algorithm used for this is gradient descent which iteratively adjusts the parameters in
the direction opposite to the gradient to find the minimum of the loss function. However
different optimizers exist that reduce the risk of trapping a local minima and are more
efficient such as Adam (Adaptive Moment Estimation) which is the one used in this PhD.

The training typically involves repeating this process for multiple epochs until a stop-
ping criterion is met. Within each epoch, the neural network iterates through all the
batches of the training dataset. For each batch of the training dataset, the network
performs forward propagation to compute predictions, calculates the loss between the
predicted outputs and the true targets, and then performs backpropagation to compute
gradients and update the model parameters (weights and biases). An epoch refers to one
complete pass through the entire training dataset, during the training process. The stop-
ping criterion could be reaching a maximum number of epochs, achieving satisfactory
performance on the validation dataset, or observing no improvement in performance for
several epochs.

During training, it is common to monitor the performance of the model on a separate
validation dataset after each epoch. This helps track how well the model is learning and
whether it is overfitting or underfitting the training data. Overfitting the training data is
a common issue in DL which occurs when the network is too specialized for the training
data and not able to perform on validation or testing set. After training is complete,
the final performance is evaluated on a separate test set to assess how well the model
generalizes to unseen data.
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The presentation of the training network has revealed several hyperparameters that
impact the training process and the results of the training. First, the database is sliced to
obtain signal sequences, and the sequences are fed into the network. The size of the slicing
windows depends on the network architecture and impacts the number of samples used to
estimate the label. Then the batch size is important because it determines how many signal
sequences the network sees between two updates. The batch size is important for network
training because the number of updates per epoch depends on this hyperparameter.

During training, the loss function, learning rate, and optimizer can affect the evolution
of the training. The learning rate must be sufficient to improve the training accuracy after
each epoch but not too important to obtain precise learning. The loss function depends
on the application context of DL, for classification, the cross-entropy function is adapted.

Concerning the network architecture the activation function and the dropout can
significantly impact the learning. The activation function can be linear, rectifier linear
unit (ReLU), Logistic, or Gaussian, and allows to highlighting of the value of a node. The
dropout is a regularization technique used in DL models, particularly in neural networks,
to prevent overfitting and improve generalization performance. The dropout is a value
contained in [0; 1]. Depending on this value, a subset of neurons are randomly selected
and temporarily removed, along with all of their incoming and outgoing connections,
during the forward and backward passes.

Finally to prevent overfitting, a common method is to create new data thanks to the
dataset by adding different levels and types of noise in the dataset. This method is called
data augmentation.

2.6.3 Deep learning for RFF identification

Figure 2.18 presents the processing flow of RFF identification based on DL. Firstly a
database has been created by recording the signals from different transmitters thanks to
a SDR. The database is composed of different sequences of IQ samples and each sequence
must correspond to a label to identify its emitter. Then the database is separated to
form the training set and test set. The training set is pre-processed, with data augmen-
tation post-acquisition and/or channel equalization, and most of the time the sequences
are shaped with normalization, slicing, sliding, etc. Data augmentation is the process of
increasing the size of the database. This technique can be performed during data acquisi-
tion by recording many signals from each transmitter. However, if this is not sufficient, it
is possible to perform a virtual augmentation after the acquisition by adding some data
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Figure 2.18 – Processing chain with SoA DL techniques.

from the acquisition, with some modifications, to the dataset using different techniques.
The test set is pre-processed in the same manner as the training set, excepting the data
augmentation. The testing set allows the detection of overfitting which occurs when a ML
model learns the training dataset too well, capturing noise or random fluctuations in the
data rather than the underlying pattern. Finally, in the inference step, the signals are
captured and pre-processed and the network identifies the emitter by estimation.

This section gives a preview of the SoA of RFF identification-based DL which takes
in input IQ sample sequence with and without pre-processing.

A. IQ samples based DL

The DL was introduced for modulation recognition in 2016 by O’Shera et al. [68],
then inspired by this paper, Riaz et al. [84] propose in 2018 to use a DL architecture
to performed RFF identification. They introduced a CNN with two convolutional layers
composed of 50 filters of size 1×3 for the first layer and 2×3 for the second. The network
takes in input a vector of l I/Q samples for a sequence of length l, here l = 128. The
CNN is compared with conventional methods such as SVM with several features such as
amplitude, phase, Fast Fourier Transform (FFT) value, etc. The CNN achieves promising
results with 98% of accuracy compared to conventional methods with 55% of accuracy.
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In the same year, [63] propose to perform RFF identification thanks to CNN, they create
a dataset where each transmission between transmitter and receiver is included in the
dataset several times with varying levels of simulated AWGN.

In 2019, Sankhe et al. [92] propose an approach to detect a unique transmitter from a
large group of bit-similar devices, which means the same hardware, same MAC ID, and
same protocol, using only IQ samples at the physical layer. They use a CNN composed of
2 convolutional layers and three fully connected layers, to identify 16 devices. The devices
are Universal Software Radio Peripheral (USRP) X310 that are high quality. Sankhe et
al. analyse two situations: static channel environnement and dynamic channel. In the
first situation, they present good results with CNN architecture taking raw IQ samples
in input without any channel estimation or particular pre-processing corresponding to
the communication protocol of the targeted device. In dynamic situations, they add some
controlled impairments to strengthen the RFF and improve the classification.

Using DL for RFF identification seems interesting. However, the signal can contain
other relevant signatures such as a MAC-ID which is a more significant signature compared
to hardware imperfections. In this case, the network will learn the MAC address and, in
a spoofing context, the system is not protected. To overcome this issue, Jian et al. [48]
demonstrate that the slicing technique introduced by Riaz et al. [84] produce a MAC-
learning resistant classification, permitting a MAC spoofing-resistant RFF identification.
They experiment on a deep CNN composed of five stacks of 2 convolutional layers one
max-pooling layer and three fully connected layers at the end of the network. Another
potential relevant signature is the propagation channel environment, since 2019 several
authors have highlighted this issue and proposed several solutions to avoid it that are
presented in the next subsection.

B. DL on equalized data

Sankhe et al. [92] propose to also study a dynamic propagation channel situation. They
performed three experiments to show the channel impact. First, the network is trained
with one location and tested on the same location and achieves near-perfect results, then
the training is done on several locations and tested on the same locations, achieving good
results but confusing some transmitters. Finally, the network is trained with data from one
location and tested with data from another location, the classification is unpredictable.
To overcome this channel issue, they propose to introduce controlled imperfections at
the transmitter side thanks to feedback modifications that use channel estimation at the
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receiver. This solution is interesting in securing the wireless network but not in defense
applications because the transmitter is not accessible to introduce controlled imperfec-
tions. In 2020, Sankhe et al. [91] propose an extended version of the paper [92]. In this
version, they propose an undercomplete demodulation to remove the effect of the channel
and conserve the RFF imperfections. The channel is estimated thanks to the pilot training
sequence. They present more precisely their contribution to add controlled impairments in
particular for scalability and communication impact. The results give very good accuracy
for wire transmission training and wireless tests in two locations, indoor and outdoor.

In the same idea, Restuccia et al. [82] propose a system for real-time channel resilient
and adversary resilient optimization based on DL classification. The innovation lies in
the use of a carefully optimized digital finite input response filter at the transmitter end.
This adjustment of the filter strengthens the device fingerprint according to the current
channel conditions and creates a more relevant signature for the network.

The DL technique has also been presented as a solution for scalable applications with
many devices. In 2020 Jian et al. [47] present a massive experimental study by using a
dataset from DARPA within WiFi and ADS-B signals from 10,000 transmitters captured
in the wild. They performed two processing steps on WiFi signals, band filtering, and
partial equalization, and used only raw IQ samples for ADS-B signals. As in previous
papers, the slicing method is used, combined with sliding windows. In this study, the
authors are interested in scalability, the size of the training set, the channel effect, the
SNR, and the data transmission. The results, obtained with two different CNNs, show
the difficulty of classifying a large WiFi population (1000) compared to a small one (100)
with the same number of transmissions per device. Moreover, they propose to study the
multi-burst during inference to classify a signal thanks to different sequences of this signal.
The multi-burst is a great solution to improve accuracy per transmission, particularly in
a large population context.

On the same idea, Al-Shawabka et al. [94] propose to analyze the impact of wireless
channels. They create an important dataset to evaluate the impact of the channel on
CNN-based RFF identification. Three different CNNs architectures are proposed and
tested, and different pre-processing are tested such as FFT and WiFi equalization to avoid
channel disturbance. The results conclude that the wireless channel impact negatively the
classification accuracy. However, IQ data equalization improves accuracy by up to 23%
compared to no equalization.
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Finally, Shen et al. [97, 96] suggest pre-processing the data to obtain a Channel Inde-
pendant Spectrogramm (CIS) and avoid channel problems.

C. Channel mitigation by data augmentation

While channel equalization seems to overcome channel learning, the SoA suggest using
data augmentation to avoid channel issues. For example, in 2020 Soltani et al. [102] present
two data augmentation solutions. The first one consists of physical data augmentation by
adding different channels between the transmitters and the receiver. This solution has
been simulated thanks to the channel model and additive Gaussian noise which simulated
the noise of the receiver. The second data augmentation is done on received data from the
DARPA dataset: after the transmission, they apply different channel models to the data.
The results show better performance for the first solution. However, the data augmentation
at the receiver side improves the results from 60% to 80%. In the same idea, Shen et
al. [96, 97], propose to compare two types of data augmentation called, Offline and Online,
where Offline corresponds to one unique augmentation during database creation while
with online augmentation, new data is created at each iteration of the algorithm. The
performances obtained thanks to online augmentation are better because the network is
trained with a bigger dataset, this technique requires more computational resources, but
less memory resources compared to offline augmentation.

D. Channel mitigation by data augmentation during aquisition

A real physical data augmentation is proposed by Morin et al. [66, 65], they randomize
the position of the transmitter during the training dataset acquisition, in other words, the
network could not attribute a particular channel environment to a transmitter because
the position changed. They used the FIT/CorteXlab testbed with several nodes that
allowed them to test physical layer identification techniques. This data augmentation is
probably the most interesting compared to the post-acquisition one but requires time and
many experiments to create the dataset. Nevertheless, the capturing room is an anechoïc
chamber with spatial regularity.

Hanna et al. [40] propose a study on a large-scale WiFi dataset called WiSig, the study
concludes with the difficulties of the network to generalize the learning. For example, they
perform the training with data from a receiver and test with data from another receiver,
and the classification accuracy is significantly degraded compared to testing with the
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data from the same receiver. To overcome this issue they propose data augmentation by
increasing the number of receivers during the training.

E. Other techniques to improve performance

In 2021, Zhang et al. [121] designed a robust RFF identification protocol thanks to
the comprehensive study of RF impairments modeling in a wireless transmission context.
The model includes oscillator imperfections, IQ gain and phase imbalance, and PA non-
linearity. An experimental measure of the CFO over three months reveals an important
variation that is not suitable for RFF classification as it interferes with other imperfec-
tions. They advise estimating and compensating the CFO to avoid RFF identification
depending on temperature changes. Without this compensation, the CNN focuses on the
most relevant feature which is the CFO.

While some authors focus the classification research on CNN, some others propose
different architectures such as RiftNet [85], which is composed of a Dilated Causal Con-
volution (DCC) layer to extract features from the preamble, and from the other data.
Moreover, this paper proposes to use the multi-burst decision to improve the classifica-
tion acuracy [97]. Recently, the performance of transformer architecture in DL application
aroused the interest of researchers, in several works. Shen et al. [97, 96, 98] propose to
classify the signals with a transformers architecture. Initially, designed for sequence trans-
lation model, the transformers are composed of multi-head attention layers and allow to
process of variable-length sequential data during inference. This characteristic has been
studied and compared to other networks by Shen et al. [97]. They propose four neural
networks that can process signals of variable lengths, namely flatten-free CNN, LSTM
network, GRU network, and a transformer. The flatten-free layer consists of replacing the
flattening layer with a global average pooling 2D layer, to fix the length of the dense layers
input. The LSTM is a variant of RNN that are also study for RFF identification [102, 88,
93, 95]. The GRU is another variant of RNN, simpler as LSTM.

If the DL, in particular, CNN, achieves promising results, the number of parameters
and the computation of the model are ignored by the authors. However, several applica-
tions presented in the previous section of this chapter require an embedded recognition
system to be deployed. To address this issue [27] proposes a lightweight CNN which con-
serves high recognition accuracy.
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2.6.4 Conclusion

In conclusion, DL methods contributions are summarized in Table 2.4, they are mainly
based on IQ sample sequence pattern recognition. However, the RFF imperfections pat-
terns are not easy to detect and some pre-processing is introduced in the SoA to improve
the classification accuracy. Some pre-processing, such as channel equalization, requires
knowledge of the target signals to estimate the channel. Identification based on DL seems
to be more adaptable to our application context compared to parametric methods. How-
ever, a comprehensive study is needed to improve the classification accuracy with less
knowledge about the target signals and a large and robust database is required to ensure
RFF recognition.

2.7 Hybrid

While the previous section has presented DL solutions based on IQ samples, this
section presents the hybrid RFF identification methods that combines the parametric
features extractions and DL. The idea is to help the network to focus on the impairments
and this pre-processing can avoid channel learning as [98, 97] where Shen et al. imple-
mented a channel-independent spectrogram for LoRa preamble to obtain robust channel
identification. The hybrid methods commonly required some knowledge about the signals
to extract some RF impairments:

IQ imbalance: In their previous work Peng et al. [73] proposed to use DCTF as a
feature combining with frequency, and IQ offset and a own classifier to perform the RFF
identification. In 2020, [72] inspired by other work on DL they propose to use a CNN to
classify the DCTF. The DCTF highlights in particular the IQ imbalance.

Power amplifier: Another paper [60] proposes to use a density trace figure to high-
light the non-linear PA memory effect. Then a CNN is used to classify the density trace
figures and so RFF identification based on PA impairments.

CFO: A recent paper proposes another IQ data representation which is called Dou-
ble side Envelope Power Spectrum [24], this IQ representation highlights the oscillator
behavior. They test the classification across different situations, by changing the channel,
the location, and the time. The results are interesting however a study of the impact of
the temperature is missing.

Conclusion The hybrid methods are interesting for RFF identification as they offer
the computational complexity of DL combined with the extraction features, by decreasing
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the potential number of parameters. Feature extraction can help the network to focus on
RFF classification and not use other information in the signal to classify them.

2.8 Conclusions

This chapter presents a large overview of RFF identification. This identification based
on hardware singularities is difficult because of numerous challenges linked to the ex-
traction of features by parametric-based methods or thanks to DL layers [4]. The SoA
presents parametric-based methods that use specific feature extraction and an ML classi-
fier to perform the identification. Several extractions are proposed and combined to obtain
characteristic vector features. The SoA presents different types of neural network struc-
tures, that are already used for computer vision or natural language processing, such as
CNN structure or LSTM and transformers. However, these models are designed to capture
features in specific domains, often related to image processing, and they are probably not
the most performant network for RFF issues. In addition, training is defined by numer-
ous hyperparameters that configure the training evolution, such as learning rate, batch
size, dropout, and regularization parameters, making it difficult to fine-tune the network.
Finally, the length of the input can impact the classification, in many works, the authors
propose to slice the signals [91, 102, 40]. This allows to use fixed-size input structure
network contrary to Shen [97].

While the classification accuracy in DL depends on the training step, it also depends
on the data because the training and classification are impacted by the complexity and
several issues of wireless transmission such as signal interference, propagation channel,
the level of noise, the protocol of communication, etc. Therefore, there is a strong need
for a large and robust database [46]. The next chapter presents the SoA of the databases
proposed and used by the community for RFF identification.
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Year Author Network Signal Data Contributions
Processing Processing

2016 O’Shera [68] CNN - Slicing Modulation recognition
2018 Riyaz [84] CNN - Slicing RFF identification
2019 Jian [48] CNN - Slicing Slicing for MAC-spoofing resilient
2019 Sankhe

CNN Equalization Sliding
Add controlled imperfections

2020 [92, 91] to maximize the accuracy

2019 Restuccia [82] CNN - -
Leverages FIR to maximize the

accuracy under dynamic channel

2019 Roy [88]
CNN, FNN

- Normalisation Used GAN to recognize trusted Tx
RNN, GAN

2019 Morin [66]
CNN - -

Increase channel variations to
2020 [65] be channel changed resilient
2020 Jian [47] CNN Equalization Sliding Massive experimental study
2020 Al-Shawabka

CNN Equalization Sliding
Experimental study

[94] of channel impact

2020 Soltani [102]
RNN Augmentation, Explore data augmentation
CNN - Normalisation, on Tx side (simulation) and

Sliding Rx side (experiments)

-
Augmentation CIS

2021 Shen [98] CNN CIS Normalisation Data augmentation
CFO compensation

Synchronisation Augmentation Multi packet interference
2021 Shen [96] Transformers CIS Normalisation process signals of variable length

CFO compensation
2021 Zhang [121] CNN Synchronisation CFO compensation Tx, Rx Modelisation
2020 Robinson CNN +

Filtered Normalisation Propose new NN
2021 [86, 85] DCC

2021
Al-Shawabka CNN

Filtered Augmentation
Evaluation of DL

[93] RNN-LSTM Data augmentation

2022 Hanna [40] CNN Equalization
Normalisation

Propose a large data base
Slicing

2022 Yang [116] 3 CNNs - Normalisation
Voting scheme with I, Q
and I + Q channel data

2023 Shen [97]
LSTM, GRU,

CIS Augmentation Process signals of variable lengths
Transformers

2023 Feng [27] Light CNN Filtered
Normalisation Propose a light CNN, compared

Slicing to SVM and classic CNN

Table 2.4 – Summary table of DL-based work for RFF identification
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Chapter 3

DATABASE CHALLENGES FOR RFF
IDENTIFICATION

The previous chapter presented the SoA of RFF identification based on ML solutions,
in particular on supervised DL. Since network training and performance evaluation are
possible thanks to labeled databases, this chapter introduces the databases of the SoA
and the challenges related to data acquisition. This chapter presents in Section 3.1 the
SoA of databases used for RFF identification, particularly the databases used to train and
test DL techniques. Then, Section 3.2 intro ces the challenges related to databases. Then
in Section 3.3 two open databases are studied to reveal the current challenges. Finally,
Section 3.4 presents the need for a tool to explore the RFFs and their impact on DL
identification capacity.

3.1 State of the Art of RFF Databases

As it was presented, DL solutions achieve good results, but the classification accuracy
of such methods dramatically depends on the database used to train the network. This
phenomenon is well known in image classification, the training dataset has to represent
correctly all situations that the network has to classify to perform correctly. For instance,
with dog classification, the training dataset requires many types of dogs in different po-
sitions and views to recognize any dog images. Therefore, DL needs a large, diverse, and
robust database to recognize certain features that allow classification. For RFF identi-
fication there is a strong need for large and robust databases, composed of raw labeled
signals [46] from different transmitters to ensure RFF recognition in many environmental
conditions.

Since 2019, the SoA on RFF identification with DL has increased and different databases
to experiment RFF identification have been proposed in the literature. A selection of re-
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cent papers on RFF databases is presented in Table 3.1. These databases are separated
into two types: experimental-based and simulation-based. They are created with different
wireless protocols, presented in the fifth column in Table 3.1 such as WiFi [40, 91, 92]
and LoRa [96, 106]. Column 4 "Is data public?" gives information on public accessibility
and column 6 gives information about the number of emitters where Device Under Test
(DUT) are commercial off-the-shelf devices. Finally, column 7 gives additional information
or contributions of the paper. The next subsections present different families of databases
used in the SoA of RFF identification, particularly the database with real signals called
experimental databases and databases with simulated signals called simulated databases.
First, the real databases are introduced with private and public databases, and finally, we
focus on simulated databases.

3.1.1 Experimental Databases

A. Private

The largest existing database for RFF identification was created by Defense Advanced
Research Projects Agency (DARPA) in 2020. This database, used by authors from North-
eastern University in Boston, is a private one and is used in many papers [47, 102, 91, 94,
48]. This database is composed of two datasets, one with WiFi signals, with 5117 DUTs,
and an average of 166 transmissions for each device. The second dataset is composed of
ADS-B signals from 5000 DUTs and an average of 76 transmissions for each device [102].
This database offers the possibility to train the network with a large number of devices.
Unfortunately, this database is only available to researchers with US government sponsors.

Peng et al. [73, 72] designed a large RFF database for ZigBee standard. They use
54 DUTs as transmitters and one USRP as a receiver to create the database. They per-
formed ten measurements for each ZigBee device at different locations with line-of-sight
transmissions. Their database is only used by them for different works.

Many papers in the literature are based on data created for the study of the paper
with few devices [84, 96, 36, 83] and the authors never give open access to their database.
Consequently, the reproducibility of experimental results is not possible and makes it
difficult to understand and explore the identification scenario proposed by the authors,
in particular, if the experimental setup is not precisely described by metadata the reader
can only try to reproduce similar results with its own database.
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B. Public

The University of Boston created their own databases for experiments in papers [84,
91, 92]. First, they created a database with 5 USRPs B210 transmitters with different
distances varying between 2 and 50 ft [84]. Then in 2019, they created the ORACLE
database with 20 USRPs X310 transmitters [92] that emitted WiFi signal. They sug-
gested introducing software-controlled impairments at the transmitter side to enhance
identification robustness. This recommendation arises because the X310 transmitters are
produced with low variability components, resulting in minimal RF front-end variations
between the two devices.

In 2022, Hanna et al. proposed a new public database for RFF [40] called WiSig.
WiSig is constructed with many signals and with information on how signals have been
captured, such as transmitter location and the type of transmitter used (Atheros). They
provide a large-scale WiFi dataset captured by 41 USRPs with 20 MHz bandwidth from
different references. The signals come from 174 WiFi transmitters over four different days
of captures performed over a month. The authors have created different databases with
many transmitters (150), many receivers (32), and many signals: 1000 for each trans-
mitter, probably not so much compared to other databases. They present WiSig as a
RFF database to explore the identification in a static environment with different types of
transmitters and different numbers of transmitters/receivers/signals/days.

In the same way, Al-Shawabka et al. present in [94] a public database for RFF. This
database is composed of 4 datasets, each of them is composed of 20 transmitters, 12 B210
and 8 X310, and one fixed receiver. They first explore the best pre-processing and then
they explore the impact of antenna and channel with both wired and wireless communi-
cations in an anechoic chamber.

Morin et al. [66] work on an unbiased database creation, they leverage FIT/CorteXlab
anechoic chamber to capture signals and control the propagation environment as well as
the interference profile, which enables the full control of the generated datasets. To increase
channel variations and to reduce the possibility for the receiver to learn from the channel
properties, the MultiRx setup is proposed where they merge the signals observed from
several devices acting alternatively as identification receivers. However, this combination
of signals creates confusion between the channel effect and receiver effect, which cannot
be studied separately.

Jagannath et al. present in 2022 [45] a new public dataset that includes emissions from
10 Commercial Orbital Transportation Services (COTS) IoT emitters (2 laptops and 8
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Reference Year Database Is data Protocol Numbers of Additional informations or
public? emitters Contribution

Experimental Databases

Hall [36] 2003 Own No Bluetooth 10 Txs Exploit the phase to
detect transient part

Riyaz [84] 2018 Own No WiFi 5 B210
Sankhe 2019 ORACLE Yes WiFi 16 X310 Add control impairments with feed-back
[91, 92] DARPA No WiFi 140 DUTs driven to increase differentiability

Morin [66] 2019
FIT/

Yes WiFi 21 N2932
Physical data augmentation,

CorteXlab to minimise the impact
of the propagation channel

Peng [73] 2019 Own No ZigBee 54 DUTs
Adopt 4 novels modulation-based

features effective
in ZigBee node classification

Jian [47] 2020 DARPA No
WiFi 5000 DUTs Investigate 2 CNNs for

ADS-B 5000 DUTs RFF identification under different
environmental scenarios

Soltani [102] 2020 DARPA No WiFi 50 to Study the interest of
5000 DUTs data augmentation

2020
Own Yes WiFi 13 N210 and Evaluate the impact

Al-Shawabka 7 X310 of the wireless
[94] DARPA No WiFi, 100 to channel on CNN-based

ADS-B 10000 DUTs fingerprinting algorithms

Shen [96] 2021 Own No LoRa 10 DUTs Improve low SNR classification
accuracy with data augmentation

Elmaghbub 2021 Own Yes LoRa 25 Pycom Study the sensitivity to
[25] devices deployement variability

Reus-Muns 2020 POWDER No WiFi, 4 USRP X310 Incorporate the triplet loss
[83] 4G, 5G with the deep CNN

Hanna [40] 2022 WiSig Yes WiFi 174 USRPs
Create 4 datasets for RFF
identification varying days,
NT x, receivers and signals

Jagannath 2022 Own Yes Bluetooth 10 DUTs 2 days to do generalization.[45]
Chillet [13] 2023 WiSig Yes WiFi 6 USRPs Use TPG as a classifier
Elmaghbub 2023 Own Yes WiFi 50 Pycom 2 datasets outdoor and indoor[26] devices
Elmaghbub 2023 Own Yes WiFi 50 Pycom 4 datasets:

[24] devices wire, wireless, different locations
Simulation based Databases

Soltani [102] 2020 Own Yes WiFi 10 Txs Model only IQ imbalance impairment

Zhang [121] 2021 Own No LoRa 50 to 200 Tx
Uniformly and randomly
distributed IQ imbalances

and PA nonlinearities

Chillet 2024 RiFyFi_VDG Yes WiFi NT x
Virtual database generator

IQ imbalance, PA, PN, CFO

Table 3.1 – Summary table of databases for RFF identification

commercial chips) that are captured with a USRP X300 device. The data set is split into
two: Day1 and Day2, each recorded in a different time frame, location, and testbed setup
to allow for critical generalization testing of the trained DL model.

Elmaghbub et al. propose different WiFi datasets [26],[24] composed of 50 Pycom de-
vices. They create outdoor and indoor scenarios, wired and wireless scenarios on different
days, and static or dynamic propagation channels. They captured the first two minutes
of transmissions using the USRP B210 at a sample rate of 45 MSps. The captured sig-
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nals were then digitally down-converted to the baseband and stored as I/Q samples on
a computer. To avoid any data dependency on the identity of the WiFi transmitter,
all transmitters were configured to broadcast the same packets, which include the same
spoofed MAC address and a payload of zero bytes.

3.1.2 Simulation based Database

Soltani et al. [102] propose to simulate 10 virtual transmitters to create a custom
dataset and study the impact of multiplying the number of channels seen by the network
during the training phase. However, they decided to model only IQ mismatch because of
the complexity of modeling many RF impairments.

Zhang et al. present [121], a model-based database with 4 impairments models. They
work on a comprehensive study of RF impairments modeling to address the need for the
design of a robust RFF identification protocol. Their model includes LO imperfections,
IQ gain and phase imbalance, and PA non-linearities. They study the impact of individual
and overall impairments in different configurations and define a robust RFF identifica-
tion protocol when RF impairments cannot be reconfigured or customized to help the
identification. Their work focuses on the estimation and calibration of the CFO and the
calibration of the IQ imbalance of the receiver.

3.2 RFF Databases Challenges

The design space of the RFF database has been largely explored by the community.
However, the data collection process poses several challenges, particularly related to design
choices and pre-processing techniques. The design choices are related to the devices and
the signal, such as protocols and environmental conditions during the recordings. The
pre-processing techniques include data augmentation, shaping and normalization, and
compensation techniques.

3.2.1 Design choices

A. Devices

In the literature, experimental signals are mostly generated using DUTs or SDR plat-
forms for both transmitters and receivers. The work of Zhang et al. [122] shows that the
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type of transmitter and receiver is important in RFF identification because the ability
to discriminate two devices is related to the RFF difference between the two devices.
For example, a USRP X310, a high-quality device, is manufactured with low variability
components, resulting in minimal RF front-end variation between two devices. Sankhe et
al. [91] show that two X310 are more difficult to separate than two B210. Furthermore, [80]
studies the effect of the receiver on the classification capacity, a receiver could be sensitive
to an emitter. Therefore, the similarity between devices affects the classification accuracy.
For commercial devices such as smartphones or laptops, the quality of the embedded elec-
tric circuit can vary between constructors or device references. The quality of the electric
circuit impacts the diversity of impairments around a mean value. This means that it
is more difficult to identify two high-quality devices from the same constructor and the
same references than two different devices. The massive experimental study conducted by
Jian et al. [47] shows that the number of devices affects classification accuracy. This is
probably due to the increased probability of having two devices with similar fingerprints.

B. Signals

The protocol chosen can affect classification accuracy due to the signal modula-
tion used. For example, LoRa technology uses spread spectrum modulation techniques,
whereas OFDM works by dividing the available spectrum into multiple orthogonal (non-
interfering) subcarriers, each carrying its narrowband signal. This means that the effect of
RFF does not apply to the same type of signal. In addition, the environmental conditions
during signal acquisition can affect wireless transmission. Therefore, some identification
applications use propagation conditions to identify the emitters such as the Received Sig-
nal Strength (RSS) and the Channel State Information (CSI) [123, 21]. However, these
applications assume the static position of transmitters and receivers, which is not a nec-
essary assumption for RFF identification.

In RFF identification, the environmental conditions can create a bias in the database,
which can be considered by the classification stage as a principal discriminant characteris-
tic of devices. For example, signals recorded with one location or during only one particular
day may not be representative of all situations, which causes generalization problems and
the inability of the network to predict the emitted device in other situations, other days
for example. Therefore, the amount and diversity of data is also important to ensure the
generalization of the training network and good accuracy of the inference
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3.2.2 Pre-processing Techniques

A. Input data selection and shaping

The nature of the signals and the frame structure protocol affect the analysis of the
results derived by the authors, making it difficult to compare different works. For example,
Shen et al. [96] use only the preamble for WiFi data, while in ORACLE [92] the frame
consists of a MAC address field with always the same address and a random payload.
Jian et al. [48] proposes to slice the signals containing the MAC address to be resilient
to MAC address spoofing. Alhazbi et al. [4] explain that selecting the most appropriate
data segment to input into the identification network is a significant challenge. Ideally, the
chosen segment should have consistent and repetitive patterns to ensure that the DL model
learns from the unique characteristics of the RF signal rather than being influenced by the
specific content of the wireless segment. The preamble of the radio packet, which contains
synchronization-related information, is particularly attractive due to its consistency across
different devices and packets within the same communication technology. However, these
relatively short signal sequences provide limited data to learn the RFF. Conversely, using
the payload of wireless packets, which is typically longer, presents challenges due to data
scrambling and content variability which makes it difficult to correlate data. In the pre-
processing techniques, the authors from the SoA use different sequence sizes, such as 128
IQ samples for [91] and 256 IQ samples for [40], obtained by slicing or sliding the signal.
This sequence size is important because it must allow for RFF observability to enable RFF
classification. The sequence is particularly short, for example at 20MHz it corresponds
to 12µs. In addition, to overcome overfitting on the amplitude difference of the signals,
the authors from the SoA use dataset normalization, which is common for DL learning
database.

B. Bias compensation

Wireless data is inherently dynamic and subject to time-varying channel conditions,
hardware imperfections, and noise. These factors can lead to performance variations and
scaling issues in the received data. Since DL models are sensitive to scale, these inconsis-
tencies, if not addressed, can adversely affect the models learning and ability to generalize.
In particular, a difference in amplitude can create a bias that can cause the quick con-
vergence of the model to a solution that is primarily based on the magnitude of device
identification. By normalizing all feature ranges of wireless data, DL models can accu-
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rately capture the underlying data distribution pattern and mitigate bias towards features
with large scales. This normalization approach accelerates model convergence, stabilizes
neural networks, enhances model generalization capabilities, and ultimately improves DL
model performance for identification tasks. To avoid some classification problems such
as channel or receiver effects, some authors propose to pre-process the data before using
the neural network, [91] proposing an under-complete demodulation that aims to remove
only the channel effect from the raw IQ samples without compensating for the device
imperfections. In the same idea, [47, 94] propose to perform channel equalization, and
[98] propose a CIS representation.

In conventional wireless communications, the receiver performs other compensations
such as IQ imbalance and CFO compensation to improve the bit error rate. In RFF
identification, the aim is to preserve these impairments to perform identification. However,
the CFO is not a stable impairment because the frequency error changes as a function
of temperature. Shen et al. [96] and Zhang et al. [121] propose CFO compensation to
overcome this problem and increase identification stability.

Compensating for the bias requires knowledge of the signals and the transmit/receive
chain, which is not always possible.

3.2.3 Conclusion

In classification problems, the database used to determine how to separate the different
classes is important. The construction of this database and the different design choices will
impact the capacity to separate the transmitters. Moreover, using DL for classification
increases the importance of the database, since the network is based only on the lessons
it makes thanks to this database. For RFF identification, many parameters will affect the
classification, and having information about this database will help to draw conclusions
about network performance. The next section presents a primary study of two different
databases.

3.3 Primary study of SoA databases for RFF identi-
fication with DL

This section proposes a preliminary study based on two different databases of the
SoA. This study aims to show the limits of the actual databases to initiate a reflection

96



3.3. Primary study of SoA databases for RFF identification with DL

on needs and different degrees of flexibility. Figure 3.1 shows the different parts of the
experiment. The database is composed of signals and labels for different scenarios (differ-
ent acquisitions), the goal is to train the network with a particular scenario and evaluate
the classification ability on all scenarios. The networks used to classify the signals are
presented then two experiments are proposed.

Test

Training phase

IQ samples 90%

10%

Tx1

Tx6

Dataset/Scenario 1
Labeled Database

Input: signals 𝑥!"#(𝑡)

Labels (n° radio)

IQ samples

Tx1

Tx6

Dataset/Scenario K
Input: signals 𝑥!"#(𝑡)

Labels (n° radio)

…

10%

Test in ideal case 

Resilience test
Estimated label

Mean Error Accuracy

Figure 3.1 – Overview of the training and testing network with signals.

3.3.1 Networks: Presentation and evaluation

For this study, three CNNs are used to evaluate the database relevance to train different
networks. To evaluate the network classification performance, two metrics are used: the
F1 score and the accuracy. The accuracy is calculated by counting the number of correct
predictions tp + tn out of the total number of classifications. For the class c the accuracy
can be expressed as:

Accuracy(c) = tp(c) + tn(c)
tp(c) + tn(c) + fp(c) + fn(c) (3.1)

where tp(c) stands for the number of true positives for class c, fp(c) stands for false
positives, tp(c) for true positive and fn(c) the number of false negatives. These terms
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are presented in Figure 3.2 for a classification of 3 transmitters and considering the class
number one.

— True Positive (or tp), these are the elements of the class studied which have been
correctly predicted.

— True Negative (or tn), these are elements not belonging to the class studied which
are not predicted as belonging to the class studied.

— False Positive (or fp), these are items not belonging to the class studied but
predicted as belonging to this class.

— False Negative (or fn), these are the elements of the class studied predicted as
not belonging to this class.
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Figure 3.2 – Confusion Matrix and analyze class corresponds to transmitter 1.

The F1 score is calculated on the batch sequences as follows:

F1 = E
c∈C

 2
1

P (c) + 1
R(c)

 , (3.2)

with

P (c) = tp(c)
tp(c)+fp(c)

R(c) = tp(c)
tp(c)+fn(c)

where E [·] stands for the expectancy operator applied here on all the classes c ∈ C. P (c) is
called the precision for the class c is the percentage of correct predictions for a particular
class out of the total number of predictions made for that class. R(c) is the recall for the
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class c, which is the measure of the ability of a classification model to identify all positive
occurrences of a particular class, representing the percentage of correct predictions for that
class relative to the total number of actual occurrences of that class. The F1 score is a tool
for measuring the overall performance of a classification model, combining both precision
and recall. It takes into account true positives, false positives, and false negatives. More
specifically, the F1 score measures the ability of the model to make accurate predictions
for all classes, avoiding misclassifications and identifying all true occurrences of each class.
The F1 score is interesting when the dataset is not balanced. In our case, the F1 score is
very close to the accuracy value because the dataset is completely balanced. In this PhD,
the F1 score is expressed between 0 and 1 or in percentage in the confusion matrix to
improve the readability.

The three networks chosen in this section have been already proposed and studied
for RFF identification in the SoA 1. The first one called Sankhe_2020 is a CNN inspired
by the network proposed by Sankhe et al. [91], with 4 convolutional layers. Each layer is
composed of two blocks of 128 filters size 7 × 1 and 5 × 1 and a max-pooling stage. After
the 4 convolutional layers, the CNN has 3 fully connected layers with 256 nodes, 128, and
the number of classes. After the two first fully connected layers, a dropout layer is added
with dr ∈ [0; 1]. For the ending layer, a softmax layer is added. In input, the network takes
complex-based band signals without pre-processing. These signals are split into two raws
I and Q, and N corresponds to the input size. This architecture is presented in Figure 3.3,
the notation NFiltersCL(a, b) stands for the number of filters in the Convolutional Layer
with (a,b) the size of the filters. For instance, 128 CL(7,1) is for a layer of 128 convolutional
filters of size (7,1). The notation MP 2 stands for Maxpooling 2. The green rectangles
and expressions below represent the data and the format of data between each layer.

The second network called Sankhe_2019 [92], is composed of 2 convolutional layers,
both layers are composed of 50 filters of size 7. After the convolutional layers, the CNN
includes 3 fully connected layers with 256, 80, and the number of classes NT x. After the
two first fully connected layers a dropout layer is added with dr ∈ [0; 1]. This architecture,
shown in Figure 3.4, is composed of fewer filters but requires more parameters.

Finally, the third one was proposed by Gutierrez del Arroyo [35], called Arroyo_2022
in this PhD, is composed of three convolutional layers each followed by a max-pooling
layer. The first convolutional layer is composed of 64 filters of size 10 the second layer has

1. The architectures presented here can be different from the structure used by the SoA authors if
description information is missing in the referenced paper.
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Figure 3.3 – Deep Learning architecture Sankhe_2020.
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Figure 3.4 – Deep Learning architecture Sankhe_2019.

32 filters and the third one has 16 filters. This architecture is presented Figure 3.5, the
architecture has fewer parameters than the previous ones.

For N = 256 as done in [40], the first architecture has 1,232,774 parameters, the
second has 3,316,402 parameters and the third has 60,114 parameters. All the experiments
have been realized with a dropout of 0.5 and a learning rate at 10−4 after an empirical
exploration of the learning parameter which allows correct learning. The chosen activation
function is ReLu for all the networks and the optimizer is Adam. The batch size has been
empirically explored and set to 64.
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Figure 3.5 – Deep Learning architecture Arroyo_2022.

3.3.2 First use case: Study of the WiSig database

A. Database

WiSig is a recent database [40] that has been built with many signals and a lot of
information about how the signals were captured, such as transmitter location and type
of radio used. They provide a large WiFi dataset captured by 41 USRPs with 20 MHz
bandwidth from different references. The signals come from 174 WiFi transmitters in four
different captures over one month. The authors have created different databases with many
transmitters (150), many receivers (32), and many signals (1000 for each transmitter). For
our experiments, we chose the ManySig database with 6 transmitters and 12 receivers.
We have represented the locations of the transmitters and receivers to study the influence
of the channel, which can be observed in Figure 3.6. Each transmitter, shown in the blue
square in Figure 3.6, has transmitted 1000 signals of 256 IQ samples. All the transmitters
are Atheros AR5212 and AR5213. The receivers are placed in the room, so the propagation
channel may differ from one radio to another. The database is split into two parts, 90%
(5400 signals) for training and 10% (600 signals) for testing. Both sets of data are balanced
as they contain signals from all transmitters with a balanced ratio.

B. Presenting the experiments

In this study, the receiver Rx1 is used and two different datasets are used: the equalized
one and the non-equalized one. The aim is to analyze the results obtained with equalized
and non-equalized data by training a network with data from certain day(s) and testing on
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Figure 3.6 – Locations of Tx and Rx in the Orbit grid, for ManySig dataset.

other days. In their paper Hanna et al. [40] present an experimental study of the number
of days used during training for equalized and unequalized data. The results are presented
in Figure 3.8a and have been recreated by us in Figure 3.8b using the description of the
CNN used by Hanna et al. [40], presented in Figure 3.7.
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Figure 3.7 – Deep Learning architecture Hanna_2022.

This architecture is composed of 2 layers of 8 and 16 convolutional filters of size 2 by
3 each followed by a max-pooling layer. Then 2 layers of 16 convolutional filters of size
1 by 3 each followed by a max-pooling layer. Finally, three fully connected layers with
ReLu and dropout are implemented with 100 neurons, 80 and the number of classes NT x.
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(a) Results presented by Hanna et al [40].
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Hanna et al [40].

Figure 3.8 – Accuracy obtained in test (day 4) in the function of the number of training
days, day 1, days 1 and 2 or days 1, 2 and 3.

The last day (4) is reserved for testing and the first three days are used for training,
Figure 3.8a represents the accuracy obtained in the test while the network is trained with
data from one day (the day 1), two days (the days 1 and 2) and three days (the days 1,
2 and 3). A difference between the two figures can be observed but the conclusions done
by Hanna et al. are still valid about the importance of equalized data to obtain better
performance on other days. The average results obtained with our three networks are
then shown in Figure 3.9. We trained the three networks 5 times with the non-equalized
datasets 3.9a and the equalized datasets 3.9b. First, the evolution of the curves shows that
increasing the number of training days improves performance. Moreover, this figure seems
to show the conclusion related to the importance of equalization, especially the difference
in the one-day training set. The results obtained by Hanna et al. are equivalent and they
conclude on the interest of the equalisation to improve the classification performance.

However, we propose to verify the results by comparing the accuracy obtained in the
test on data from day 4 when the training is done with data from day 1, day 2, or day
3. Table 3.2 shows the accuracy obtained on the test set (day 4) while training with
data from day 1, 2, or 3, for equalized and not equalized data. The first row represents
the value of the first blue squares in Figure 3.9. The accuracy of rows 2 and 3 shows
that it is not possible to conclude on the equalization interest in this context because
depending on the training day, the performance on the test is very different. Indeed, the
test accuracy obtained when the training is done with data from day 3 performs better
with non-equalized data. Because of this conclusion, we propose to analyze more precisely
the behavior of the networks on this database.
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Figure 3.9 – Accuracy obtained in test (day 4) in the function of the number of training
days, day 1, days 1 and 2 or days 1, 2 and 3.

Train

Test
No Equalization Equalization

day1 60% 90%
day2 84% 80%
day3 95% 78%

Table 3.2 – Accuracy obtained in test with data from day 4 for different training situations
with Sankhe_2020.

C. Non-equalized data

The first experiment consists of training the network with the dataset of a particular
day and testing the network with each day’s dataset. Tables 3.3 shows the mean error
classification accuracy obtained for the three different networks for each situation. The
rows represent the training day and the columns represent the testing day. These experi-
ments aim to show the ability of the network to perform classification when the situation
is not the same. The possible changes between days 1, 2, 3, and 4 are the temperature,
the pressure, and the presence of other interfering signals out of the capturing room, but
the transmitters and receivers have not moved between recordings. Tables 3.3 show the
percentage of error classification. For all tables, the diagonal is around 1 or 2%, which
means that the network classifies perfectly all the signals of the test day n, while the
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Train

Test day1 day2 day3 day4

day1 1 60 50 50
day2 62 0 17 25
day3 45 7 0 5
day4 38 18 6 0

(a) Sankhe_2020.

Train

Test day1 day2 day3 day4

day1 1 19 14 21
day2 36 0 2 5
day3 34 1 1 2
day4 24 3 1 0

(b) Sankhe_2019.

Train

Test day1 day2 day3 day4

day1 2 43 24 31
day2 55 1 9 16
day3 44 6 1 7
day4 36 14 6 1

(c) Arroyo_2022.

Table 3.3 – Mean error accuracy in percentage obtained for different days in test and train
with no equalized data.

training is done on the training dataset from day n. However, for the three networks and
in particular, for the Sankhe_2020 network, the classification of the signals of days 2,
3, and 4, while the training is done on day 1, is particularly bad. This is probably due
to a change in environment during the recording. Excluding the first row and column
of the matrices, the results obtained are interesting and show a low percentage of error.
Sankhe_2019 architecture gives better results than the other two.

D. Equalized Data

The same experiment was carried out with equalized data to compare the results.
Results are shown in Tables 3.4. Firstly, the difference between day 1 and the other days
seems less pronounced. However, the performances obtained on days 2, 3, and 4 for the
training days 2, 3, and 4 are on average worse with 11.8% than the performance obtained
with non-equalized data on average 5.5%, regardless of the training or test day.
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Train

Test day1 day2 day3 day4

day1 1 22 29 2
day2 29 0 24 17
day3 43 22 0 24
day4 30 7 13 0

(a) Sankhe_2020.

Train

Test day1 day2 day3 day4

day1 1 22 26 1
day2 22 0 16 17
day3 44 18 0 12
day4 29 3 6 0

(b) Sankhe_2019.

Train

Test day1 day2 day3 day4

day1 2 30 40 20
day2 39 1 24 26
day3 41 29 1 28
day4 27 10 17 1

(c) Arroyo_2022.

Table 3.4 – Mean error accuracy in percentage obtained for different days in test and train
with equalized data.

E. Conclusion

The Wisig database offers the possibility to train a network and perform classification.
However, the transmitters and receiver are always in the same location, reducing the
opportunity to train the network in a dynamic context. In addition, this study shows that
even in a static context, it is difficult to analyze the results because of external factors
that cannot be controlled. These external factors can affect the recording data and make
it difficult to recognize the RFF. Hanna et al. proposed to equalize data to improve
classification and in particular the generalization to overcome the external factor issues.
However, our study reveals that using equalization on data from days 2, 3, and 4 augments
the error classification accuracy from an average of 5.5% without equalization to 11.8%.
It is difficult to conclude that the network learns to recognize RFF and not the location of
transmitters thanks to the propagation channel signature, and difficult to conclude about
the real necessity of channel equalization. For example, it would be interesting to have a
different signal acquisition with different transmitter positions to test the resilience of the
network. In the next section, another database is used to evaluate the training possibilities
and performances.

106



3.3. Primary study of SoA databases for RFF identification with DL

3.3.3 Second use case: Study of the Oracle database

A. Database

In the ORACLE database [92], all the transmitters consist of bit-similar USRP X310
radios transmitting frames conforming to the IEEE 802.11a standard, generated using the
MATLAB WLAN System toolbox. The generated data frames contain random payloads
but share identical address fields before being streamed to the selected SDR for over-
the-air wireless transmission. The receiver SDR samples the incoming signals at a rate
of 5 MS/s at the center frequency of 2.45 GHz. In total, they collect over 20 million
samples for each transmitter. The experiments are carried out in an open area with fewer
reflections, as shown in Figure 3.10. The separation between the transmitter and receiver
is gradually increased from 2 ft to 62 ft, with intervals of 6 ft (1 ft = 30.48 cm). The
dataset consists of recordings of collected raw IQ samples from 16 high-end X310 USRP
SDRs with the same B210 SDR as the receiver. The recordings are organized into different
folders with different transmitter/receiver separation distances in feet, with two different
record moments called run 1 and run 2.

Figure 3.10 – Experimental environment in Oracle [91].

B. Presenting the experiments

To obtain consistent results compared to the WiSig database, we only use 6 trans-
mitters. In the first experiment, only 2 ft and 62 ft data are used to train the network.
The training is done with 900 signals to 5400 signals per transmitter, from run 1 and
the test is performed on 100 signals per transmitter from the same recording set, run 1.

107



Chapter 3 – Database Challenges for RFF Identification

Figure 3.11 presents the average F1 score on the 3 networks obtained in the test as a
function of the number of signals in the training set. The data from the 2 ft distance gives
a worse performance in the test compared to the 62 ft distance. However, increasing the
number of signals in training allows us to reach better performances in both cases for the
three networks.
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(b) 62 ft.

Figure 3.11 – Average F1 score obtained in test in function of the number of training
signals for 2ft distance.

Then, we propose to use both sets of recordings, called run 1 and run 2 by Sankhe et
al. [92]. The training is realized with data from run 1, with 900 signals per transmitter,
and the test is realized with data from run 2. The training is realized among 5 seeds to
obtain a mean percentage of correct classification accuracy. This experiment has been
done for the three networks and different distances. Table 3.5 presents the mean percent-
age of accuracy obtained in the test with data from run 2. First, the three networks have
the same behavior, particularly for extreme distances. The three networks are not able
to classify the transmitter in the 2 ft situation, and the more the distance increases, the
more the networks can correctly separate the transmitters. To understand this behavior,
the experimental recording condition has to be analyzed, but we miss some important
information such as the position of the transmitters during the transmission. The dis-
tance information does not allow us to know how the transmitters are positioned in the
room. Figure 3.12 presents a scenario where all transmitters are in the same position
for different distances and Figure 3.13 presents a second scenario where the transmitters
are in different positions. With the second assumption, the propagation channel between
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the transmitters and the receiver is different at 62 ft than 2 ft which can be a relevant
difference between transmitters and allows the network to differentiate the transmitters
thanks to the propagation channel.

2ft 20ft 38ft 56ft 62ft

Sankhe_2020 13% 63% 41% 75% 75%
Arroyo_2022 15% 16% 52% 59% 80%
Sankhe_2019 14% 15% 42% 68% 80%

Table 3.5 – Test accuracy obtained with Run 2 data using a network trained with Run 1
data, with different train/test distances.

Receiver

Transmitters

ReceiverTransmitters

62 ft situation 2 ft situation

Figure 3.12 – Assumption 1 of transmitters and receiver location for Oracle database.
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Figure 3.13 – Assumption 2 of transmitters and receiver location for Oracle database.
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C. Conclusion

The study of the Oracle database reveals the importance of having database design
information to understand the network behavior, without this information, we can only
make some assumptions about the results. Here the study shows that it is easier to separate
the devices in long distance context than short distance however, the more important
the distance is, the more important the interferences are so the network probably uses
other characteristics than RFF to classify the devices. This primary study highlights the
importance of data and shows that the networks seem to achieve fairly similar performance
on classification accuracy with the same behavior.

3.4 Need for Virtual Database Generator

The design space of RFF database is largely explored by the community. However, it is
difficult to design a good training database related to an application context. In addition,
the experimental database must provide different test contexts to validate RFF learning
resilience. Real databases cannot provide the flexibility, reproducibility, and exhaustivity
we need to understand and ensure that the network is currently learning the RFF, and
creating a real database is a long process. Virtual databases are therefore very useful
to study RFF identification scenarios and to design a robust RFF identification proto-
col [121]. However, the authors only give access to the final database [102] that could be
useful to reproduce the experiments but limits the exploration possibilities. The commu-
nity misses, therefore, a generic virtual database generator. The next chapter presents the
virtual database generator that creates a database based on the scenario description to
study the DL RFF identification process and explore database design space such as the
number of signals, the type of signals, and the impact of each impairment.
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Chapter 4

PROPOSED VIRTUAL DATABASE

GENERATOR

This chapter presents the Radio Frequency Fingerprint Virtual Databse Generator
RiFyFi_VDG, which is the first contribution of this PhD. This generator, coded in the
Julia language, was conceived and developed to help the community address and un-
derstand RFF identification with the DL technique, and provides a tool for exploring
database design, as a digital twin. The RiFyFi_VDG can create a database of signals
in a few seconds from different simulated transmitters based on RF transmission models
and parametric impairments models. The databases created by the generator can be used
to understand RFF identification with the DL technique and allow the exploration of
impairments, database design, and learning models. Creating a virtual database requires
digital communication models, hardware impairments models, and wireless propagation
channel models, that are detailed in Section 4.1. Section 4.2 presents the practical use
of the database generator with examples. Finally, we propose an overview of the global
framework used for RFF identification called RiFyFi framework coded in Julia language
too in Section 4.3. A part of this work was done at Tampere University in Finland in
2023, under the supervision of Pr. Mikko Valkama and Pr. Elena Simona Lohan.

4.1 Virtual Database and Radio Model

RiFyFi_VDG is a Julia package integrated into the RiFyFi system, allowing virtual
database creation thanks to wireless communication models, hardware impairments mod-
els, and wireless propagation channel models. This section describes the models imple-
mented in this generator.
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Chapter 4 – Proposed Virtual Database Generator

A. Symbols

First, the wireless communication model between an emitter and a receiver requires
creating a signal for transmission. Here, two signal modulations are implemented in Ri-
FyFi_VDG: single-carrier modulation and OFDM. For single-carrier, we consider that the
binary sequence is modulated by QAM symbols and then followed by a single-carrier mod-
ulation. For OFDM, we consider that the binary sequence is modulated by QAM symbols
and then followed by an OFDM modulation with subcarrier-based pilot insertion. OFDM
modulation is massively used in standard communication in WiFi for example, and so
particularly in the RFF database as it is shown in Table 3.1 and its signal varies greatly
in amplitude which makes it interesting for the analysis of non-linear imperfections 1.

In this PhD, we mainly focus on an OFDM transmission, similar to a WiFi com-
munication system, we have implemented and studied the other protocol to present the
flexibility of the RiFyFi_VDG. After the symbol modulation, the binary sequence be-
comes a complex sequence and both parts of the complex signal are separately processed
and modulated at the carrier frequency fc. Figures 4.1 show the PSD obtained for an
OFDM modulation and a single-carrier modulation, thanks to RiFyFi_VDG. For single-
carrier modulation, the roll off is β = 0.3, with an oversampling factor of 4 and a square
root raised cosine filter of 6, and a 4-QAM. For OFDM the total number of subcarriers is
512 with 336 active subcarriers (224 for data and 112 for pilot).

(a) OFDM. (b) Single-carrier.

Figure 4.1 – Power spectral density illustrations for OFDM and single-carrier modulation.

1. It is possible to use other communication, a proof of concept has been proposed with a LoRa
interface [11]
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4.1. Virtual Database and Radio Model

B. Transmitter impairment models

In this subsection, the initial model proposed in Chapter 2 is completed with impair-
ment models of each hardware component. As a remember, the DAC, the LO, and the
PA, distort the signal and create the signature called the RFF of the transmitter denoted
FRFFTx . The emitted signal can be modeled by:

xant(t) =FRFFTx (x(t)) , (4.1)
xant(t) =FPA ◦ FLO ◦ FDAC (x(t)) . (4.2)

In this section, the objective is to detail the impairment models behind (4.2). The
impairments modeling is described in Figure 4.2 and is based on SoA models. We con-
sider here a classic Zero Intermediate Frequency or homodyne modulation stage with I/Q
modulation. The signal is multiplied by a carrier frequency generated from a LO and
different impairments occur in the transmission chain. As Zhang et al. [121] this study
is focused on the main features: CFO impairments ∆ω, gain and phase IQ imbalance gI ,
gQ and θ, PN Φ(t), and PA nonlinearity. We decided to omit DAC deficiencies because
their deficiencies are not relevant for RFF identification, as shown by Polak et al. [75].
The pattern of each depreciation is described below.
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Figure 4.2 – Homodyne transmitter chain architecture with impairments.
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Chapter 4 – Proposed Virtual Database Generator

Before the LO, the analytical signal is modeled as:

x(t) = xI(t) + jxQ(t), (4.3)

where xI and xQ represent the real and imaginary part of the complex signal x. All complex
variables will be underlined in the rest of the modelization. The LO allows modulating the
signal to the carrier frequency fc, this modulation may create three different impairments.
The first one is called CFO, then the LO is polluted by phase noise, and the imbalance
between the two branches is called IQ imbalance.

Carrier Frequency Offset (CFO) impairments: The LO modulates the signal at the
ideal carrier frequency, fc. However, CFO impairments introduces a frequency offset ∆f ,
resulting in the effective carrier frequency, f0, noted as:

f0 = fc + ∆f. (4.4)

For the sake of brevity, the models are expressed in terms of angular frequency with ω∗ =
2πf∗. Based on (2.3), the modulated signal xmix(t) with such impairment, is expressed as
a gain and phase error by:

xmix(t) = xI(t) cos((ωc + ∆ω)t) − xQ(t) sin((ωc + ∆ω)t), (4.5)

which can be equivalently written as:

xmix(t) = x(t)ej(ωc+∆ω)t, (4.6)
xmix(t) = ℜ(xmix(t)), (4.7)

where ℜ stands for the real part of the complex number.

IQ imbalance impairments: In the presence of imbalance, the LO can be expressed
according to Figure 4.2 in the form:

XLO(t) = gI cos(ω0t + θ) + jgQ cos(ω0t + π

2 − θ), (4.8)

XLO(t) = gI cos(ω0t + θ) + jgQ sin(ω0t − θ),
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where θ is the phase impairment, and gI and gQ the gain impairments. The expression
can be simplified as done by Valkama et al. [111]:

XLO(t) = K1e
−jω0t + K2e

jω0t, (4.9)

where K1 = gIe−jθ + gQejθ

2 , K2 = gIejθ − gQe−jθ

2 .

The signal xmix(t) at the output of the LO in the presence of IQ imbalance could be
expressed:

xmix(t) = x(t) × XLO(t), (4.10)
= x(t)K1e

−jω0t + x(t)K2e
jω0t.

In our model, as it is often done in the SoA, a balanced IQ mismatch is considered with
gI = gQ = g

2 .

Phase Noise (PN) impairments: The PN has been modeled in the literature with
different models, like Gaussian, Wiener, or Lorentz and we focus on the Wiener model
as it is a commonly used case in the literature to model free oscillator [122]. The LO PN
ϕ(t) may be modeled by [78]:

ϕ(t) =
√

cB(t), (4.11)

where B(t) denotes a standard Wiener process and parameter c describes the LO quality
called diffusion rate [78]. B(t) is defined as B(t2)−B(t1), where t1 and t2 are the duration
of the noise with variance

√
t2 − t1. N (0, 1), where N (0, 1) is a normal law with zero

mean and variance 1. In the rest of the PhD, we consider the digital Wiener PN model
parameterized by its state noise variance σ2

ξ [31].

Considering all impairments described from now, the output of the LO that is xmix(t) =
FLO (x(t)), could be expressed by:

xmix(t) = x(t)K1e
−j(ω0t+ϕ(t)) + x(t)K2e

j(ω0t+ϕ(t)). (4.12)

Power Amplifier (PA) impairments without memory: At the end of the transmis-
sion chain, the PA amplifies a low-power signal to a higher-power one. Here we propose a
memoryless model of PA where the past of the signal does not affect the amplification of
the present. To model the memoryless nonlinear effect of the PA in our system, the Saleh
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model used in SoA [121] is chosen. The non-linearity is modeled as amplitude/amplitude
(AM/AM) denoted A(t) and amplitude/phase (AM/PM) distortions denoted ξ(t).

A(t) = αAM |xmix(t)|
1 + βAM |xmix(t)|2 , (4.13)

ξ(t) = αP M |xmix(t)|2
1 + βP M |xmix(t)|2 ,

where |.| denoted L1 norm. αAM , αP M , βAM , βP M are the parameters of Saleh model [121].
Finally, the signal xP A(t) after the PA is modeled as:

xP A(t) = A(t)ej(∠xmix(t)+ξ(t)), (4.14)

where ∠ represent the angle of xmix(t).
Power amplifier impairments with memory: The power amplifier can be modeled
with a memory effect, the signal xP AM(t) after the PA is modeled as [74]:

xP AM(t) =
P∑

p=1
p odd

fp(t) ∗ (|xmix(t)|p−1|xmix(t)|), (4.15)

where P is the nonlinearity order of the model and fp(t) denotes the pth-order response
of the polynomial model.

C. Note on the impact of the carrier frequency:

The models proposed and used in our database generator are valid whatever the car-
rier frequency value, but the parameterization of the model will depend on the carrier
frequency. For example, the CFO depends on the carrier frequency following:

∆fmax = ppm

106 fc, (19)

where ppm corresponds to the oscillator precision in part per million. For instance, a pre-
cise oscillator (Temperature Compensated X Oscillator, or an oscillator whose frequency is
controlled by digital/analog compensation) at 0.13ppm as chosen in the work corresponds
to a CFO of 300 Hz at 2.4 GHz.
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D. Channel models

The channel model implemented in our database generator is a wireless flat-fading
transmission with random delay spread. The maximum of the delay spread is set at 36,
which corresponds to the CP of the OFDM considered here. The signal obtained after the
channel is modeled as:

y(t) = h(t) ∗ xP A(t) + n(t), (4.16)

where ∗ is the convolution operator, h represents the impluse response of the propagation
channel and, n(t) is a AWGN. The power of the tap follow a rayleigh model centered
around 1 (e.g Rice model), to ensure that neough power is always received at the reception
stage.

h(t) =


1 + αγ, if t = τ

0 else.
(4.17)

where α corresponds to the rayleigh model random variable and γ respresent a ponderating
factor with the value of 0.3. Figure 4.3 presents the different parameters influence.

The doppler effect is not considered and the channel power does not change in function
of time in other word we considered that the devices are fixed during the transmission.
In order to model changes in environmental propagation, we consider that different flat
fading channels can be encountered. To achieve this, we generate different channels applied
to a few consecutive sequences of 256 IQ samples, with each channel having a different
random power and delay spread

Figure 4.3 – Parametric propagation channel model.

E. Conclusion:
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All these impairment models are implemented in RiFyFi_VDG, a device is defined
by device scenario which corresponds to 8 parameters: the gain and phase imbalance, the
value of the CFO, the variance of PN, and the 4 parameters of PA Saleh model. The value
of each parameter as well as the similarities between devices is discussed in Section 4.2.

4.2 Practical use: from models to scenarios

This section presents the practical use of RiFyFi_VDG and how to create different
database scenarios thanks to the parametric generator and models. First, the device sce-
nario is presented in Subsection 4.2.1. Then the database parameters are presented in
Subsection 4.2.2. Finally, each step of signal creation is presented with different examples
with the symbols scenario in Subsection 4.2.3, the fingerprint scenario in Subsection 4.2.4,
and finally the propagation channel scenario is presented in Subsection 4.2.5.

4.2.1 Impairment similarity scenarios

To simulate the behavior of different transmitters, the values of the impairments have
to be different for each device with more or less similarity between transmitters. The
impairment similarity is a critical point of the SoA, because recognizing two devices from
the same manufacturer is more difficult than two devices from two manufacturers. The
impairment similarity scenarios are described in a JSON file. It is possible to create
a random devices scenario or load a devices scenario with a particular percentage of
similarity between transmitter impairements, created before. The percentage similarity
scenarios are described in the next chapter. Some authors of the SoA propose to create a
grid to make sure that the space between two impairment values is sufficient. In Zhang
paper [121], the impairments follow a uniform random distribution within an interval. In
this PhD, we study the impact of the similarity between two RFF devices.

4.2.2 Database design parameters

As the SoA shows, the RFF identification conditions are multiple such as the type
of data within the frame used to identify the transmitter [48], the level of noise [47],
the number of signals, the number of different propagation channels in the database, the
number of transmitters and the similarity between them. It is difficult to determine which
are the influencing parameters that can affect the data and behavior of the network.
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4.2. Practical use: from models to scenarios

Therefore, exploring these different scenarios, by changing only one of the settings at a
time with a single framework seems interesting and could help in designing a real database.
With RiFyFi_VDG for each database creation, it is possible to choose:

— the number of transmitters NT x,

— the number of signals per device in the database Nsignals,

— the number of IQ samples in a signal ChunkSize,

— the frame type and the modulation,

— the activated impairments,

— the similarities between RFF emitters/ impairment similarity scenario,

— the level of noise,

— the channel scenario for training and test sets,

— the repartion of training and test set.

All of these parameters are part of the database generator in Figure 4.4.
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Figure 4.4 – Parametric database generator chain.

In RiFyFi, a signal scenario consists of key parameters separated into 4 types: symbol
generation, type of modulation, RFF, and propagation channel as shown in Figure 4.4.
First, the symbol, represents the type of signal/frame used for identification: Preamble,
MAC address, or payload (Pre, MAC, Pay). Then, it is possible to choose the type of
Modulation between at least two possibilities: OFDM or single-carrier. Then, the RFF
block defines the transmitter impairments considered: CFO, PN, PA, IQ imbalance, or
all impairments. After the transmitter model description, the Channel block defines the
propagation conditions, such as noise or channel model. Finally, it is possible to add a
receiver model with its own RFF 2. At the end, two matrices are created, one with data

2. Note that in this work the impact of the receiver will not be explored, and a unique receiver without
any impairments is considered.
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and the other with labels due to the supervised learning context. The data matrix is
composed of IQ samples of size (ChunkSize, 2, Nsignals × NTx) is created. This matrix is
transformed by the shaping block to obtain the required format for training, the data is
shuffled and split to create both, training and test sets. Then the database composed of
data and labels is saved in 2 CSV files for train and 2 CSV files for test to be used by
the network. The labels matrix is composed of 2 dimensions (NTx, Nsignals).The labels are
saved in vector format with only the corresponding Tx label for each signal (in the same
order as in the data file).

4.2.3 Symbols scenario and Modulation

This subsection addresses the type of binary sequence and the modulation used. Con-
sidering the binary sequence, three scenarios are proposed:

— Preamble, all sequences are the same,
— MAC address, each transmitter has a particular sequence,
— Payload, all sequences are different.

Then the binary sequence is modulated to obtain symbols, we have proposed two scenarios:
— OFDM
— Single Carrier

For OFDM, a symbol is composed of 548 IQ samples with an FFT size of 512 and a CP
size of 36. For single-carrier, a symbol is composed of 4 IQ samples.

Depending on the modulation, the number of symbols that have to be generated is
determined to obtain a sequence of 64 ChunkSize IQ samples, this sequence is called
a burst. The symbols are randomly generated and then, depending on the desired type
of frame (Preamble, MAC address, or Payload), the other bursts are created to obtain
Nsignals × ChunkSize IQ samples. Figure 4.5 presents the three modes.

Creating a Preamble-based database requires generating the same sequence of symbols
for all emitters. It can be a specific data sequence or a special sequence such as Zadoff-
Chu sequences. In RiFyFi_VDG, the random generation of symbols is controlled by a
seed, therefore to obtain a preamble the seed is always the same. Figure 4.5 presents the
different modes. For Preamble, mode the long gray rectangle represents a burst and is
repeated for all transmitters.

The second possibility is to generate a unique sequence for each transmitter. This
scenario is close to a MAC address scenario where the signal contains the MAC address.
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1 burst = 64 Chunks

1 Chunk = 256 IQ samples

TX1

TX2

…
TXN

Preamble Mode

TX1

TXN
…

MAC Mode

TX2

TX1

TXN

…

Payload Mode

TX2

Figure 4.5 – Generation of different types of sequence/frame.

To simulate this scenario, the seed is changed for each transmitter. In Figure 4.5 the color
of the rectangle changes for each transmitter.

The last possibility is to generate different sequences for each transmission, this sce-
nario is called Payload where the identification can only be done through RFF. To simulate
this scenario, the seed is changed for each burst and each transmitter. In Figure 4.5 the
color of the rectangle always changes.

Example
We propose to create a database of two devices: NTx = 2, with 1000 signals
per transmitter: Nsignals = 1000. Each signal corresponds to 256 IQ samples:
ChunkSize = 256 IQ samples. The emitted signal is a preamble transmitting with
OFDM modulation. The sampling frequency is 5.2608 × 106 Hz.

Figure 4.6 presents two bursts of the "Example" data from transmitter 1 3 without
impairments. The first burst which corresponds to 16384 complex IQ samples is in blue
and the second is in yellow. As shown in Figure 4.6 the preamble time is 3.2ms and is

3. or transmitter 2, because at this step of the data creation, the signal of transmitter 1 and 2 are
similar because we choose Preamble mode
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repeated to obtain 256,000 IQ samples. The peaks observed in the figure are due to the
pilot of the preamble.

Figure 4.6 – Part of the signal without impairments.

4.2.4 Fingerprint Scenario

In fingerprint scenarios, it is possible to activate different impairments which is not
possible with real devices. However, it offers exploration possibilities. First of all, it is
possible to activate one or multiple impairments, to combine their effects. Six scenarios
are created:

— CFO: only CFO impairment

— Imbalance: only gain and phase IQ imbalance impairment

— PN: only PN impairment

— PA: PA impairment with Saleh model

— PA_memory: PA with measured memory model

— All_impairments: CFO, imbalance, PA with Saleh model and PN.

In the next chapter, the impact of impairments is independently studied, and then the
most realistic scenario is addressed: All_impairments.

Example
In the example context, all the impairments are activated with clearly different
impairment similarity scenarios presenting in Table 4.1.

122



4.2. Practical use: from models to scenarios

(a) View of burst 1, with impairments. (b) View of burst 2, with impairments.

Figure 4.7 – Parts of the signal of the transmitter Tx1 with impairments.

(a) View of burst 1, with impairments. (b) View of burst 2, with impairments.

Figure 4.8 – Parts of the signal of the transmitter Tx2 with impairments.

Figures 4.7 and 4.8 present two different parts of the signal of transmitters one and
two respectively. The figures show the impact of the impairments, in particular the CFO
impact which creates this waveform. The CFO of Tx2 is more important than the CFO
of Tx1 and this phenomenon is observable in Figures 4.8. Indeed the CFO leads to a
frequency modulation whose frequency is higher for the second transmitter. It is really
easy to change the parameters of Table 4.1 to understand the impact of the impairments on
the signal. Unlike many applications in image classification, such as dog or cat recognition,
here it is difficult to know by eye which transmitter the signal comes from.

123



Chapter 4 – Proposed Virtual Database Generator

Impairment Parameters Value Tx1 Value Tx2

CFO ∆f 270 Hz 330 Hz
Imbalance gQ 1.350 dB 1.650 dB

θ 0° 5°
PN σ2

ξ 9 × 10−8 1 × 10−7

αAM 1.943 2.375
PA βAM 1.037 1.267

αP M 3.603 4.404
βP M 8.194 10.014

Table 4.1 – Values chosen for impairment parameters.

4.2.5 Channel or Noise Scenario

Finally, it is possible to add AWGN or propagation channels to the transmitted signal
to model the transmission over the air. Figures 4.9 and 4.10 present different scenarios.
The signal is the first part of Tx1 with an SNR of 10 dB in Figure 4.9a, and an SNR
of 0 dB in Figure 4.9b. The noise affects the waveform of the signal and will affect the
classification accuracy. The propagation channel models implemented in this database
generator are based on a power delay profile, such as a static multipath channel. Here we
define two classical channel profiles which are the ETU and EVA models, presented in
previous section.

Example
In the example context, we propose to add an additive noise with 10 dB of SNR,
and 0 dB, Figure 4.9.

Example
In the example context, we propose to add an ETU propagation model with 9 taps,
Figure 4.10.

4.2.6 Conclusion

The RiFyFi_VDG is easy to use and to adapt with several parameters to create vari-
ous scenarios for training the network or testing and evaluate the classification abilities.
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(a) SNR: 10 dB. (b) SNR: 0 dB

Figure 4.9 – Parts of the signal of the transmitter Tx2 with impairments and noise.

Figure 4.10 – Part of the signal of the transmitter Tx2 with impairments and multipath
channel.

RiFyFi_VDG is an accessible tool in [11]. An example script to use RiFyFi_VDG is
available in order to reproduce an example.

4.3 RiFyFi System overview

In this section, we present our flexible framework for RFF identification coded in Julia
language and explain some technical points about the development of RiFyFi framework
to make it completely flexible. Julia [29] is a high-level language, efficient in: abstraction
and execution, with many DL and telecom libraries [56]. The framework is composed of i)
a database management block and ii) a classification stage based on DL. The global frame-
work, presented in Figure 4.11 offers the flexibility to load data from an existing database
or use RiFyFi_VDG to create a new virtual database based on a scenario description.
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To ensure the flexibility of the framework, we create some data structures: one for
database description which integrates a structure for augmentation parameters, and one
for network definition which integrates a structure for training parameters. The structures
called Param_Data and Param_Network, are the input of the different framework parts,
seen in Figure 4.11.
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Figure 4.11 – RiFyFi Framework flow.

4.3.1 Databases in RiFyFi

This subsection describes the database management block with the database specifici-
ties. This block takes as input the Param_Data structure and creates the corresponding
database by loading existing signals or creating virtual ones. The database is shuffled and
separated for train and testing before being saved in CSV files with a particular name
that describes the database. Different Julia packages have been created to load the data,
one for each database: Oracle, WiSig which are composed of fixed data, and RiFyFi which
is considered as an infinite possibility database. A virtual augmentation package has been
created to add a propagation channel to the data. This package can be used with Ri-
FyFi_VDG to simulate wireless communication or with a real database such as WiSig to
augment the data.

First, the user has to describe the database parameters to create the Param_Data
structure which is the input of the first bloc Database in Figure 4.11. This structure
depends on the database: for example, the WiSig database proposes different receivers so
the structure has to define the receiver(s) used. However, the Oracle database only has one
receiver but different distances. That is why a Julia package is created for each database to
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allow data structure personalization. To use another database with RiFyFi, the user has to
create a new Julia package, inspiring from the existing ones. The common parameters of
Param_Data structure are the name of the databases: WiSig, Oracle, VDG; the number
of transmitters; the number of signals; the ChunkSize, and the channel parameters.

— For the WiSig database the Param_Data structure contains information about the
receiver(s), the day(s) of capturing data, and the equalization or not.

— For the Oracle database, the added information is the distance(s) between trans-
mitter and receiver and which one of both captures is chosen.

— The virtual database requires more information such as the type of frame, type of
modulation, the activated impairments, and the name of the impairment similarity
scenario to load the correct JSON file.

The channel parameters are used by the Virtual Augmentation package, seen in Fig-
ure 4.11. The objective is to add a channel model to augment the database at the receiver
side in a real data context or simulate a propagation channel in a virtual data context.
This allows to evaluate the impact of channel variation exploration in different contexts.
For instance, Al-Shawabka et al. [94] experiment with different propagation channel con-
texts with variation and conclude with the need to have a robust system to channel
variation. However, the application context will determine the properties of a system that
can be defined as robust. For applications where the time window between training and
identification is narrow, generalization is not expected to be a problem as the channel will
remain static, especially when considering motionless devices. On the contrary, an appli-
cation with motion devices requires more generalization to be able to classify devices in
different locations. The RiFyFi_VDG flexibility allows the different scenarios exploration
to find or create a robust identification system depending on the application context.

4.3.2 RFF Identification training in RiFyFi

The Identification stage in Figure 4.11 takes as inputs the description of the required
database and the description of network architecture and training parameters. The de-
scription of the network consists of the name here three SoA architectures that are im-
plemented, the input size of the network, the number of transmitters it has to classify,
and the value of dropout. The training parameters concern the learning rate, the num-
ber of epochs, and the batch size. The network architectures implemented in RiFyFi are
Sankhe_2020, Sankhe_2019, and Arroyo_2022 and have been described in Chapter 3.
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First, the training and testing databases are loaded with the labels, then the network is
initialized with the corresponding architecture. The input size depends on the ChunkSize
of the signal and the output depends on the number of classifying devices, the outputs of
the network are the probability of belonging to a class. Finally, the network is trained with
different learning parameters. During the training part, the network takes signals from the
training set grouped in batches as input. The labels of the signals in the batch are predicted
and compared with the true labels using cross-entropy as the loss function to apply the
back-propagation. This process is repeated for each batch and each epoch. At each epoch,
the F1 score is computed for training and testing data and saved with execution time to
obtain the curves shown in Figure 4.12. These curves represent the F1 score evolution
during training at each epoch for training and test sets. These curves allow us to compare
the training evolution in different contexts or with different parameters or architectures.
For example, two situations are presented the first one is an ideal training with close
performance on training and test sets. The second situation shows a performance stall in
the test, that is related to an overfitting of training data.

The training ends when the shutdown condition has been reached which is when the
network reaches P% of mean accuracy on training data. This is probably not the best
condition but it allows the behavior comparison of the networks. The framework saves
the network status in .bson file and saves the performance evolution during the training
phase in a .csv file.
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Figure 4.12 – F1 score curves examples which can obtain with RiFyFi framework.
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4.3.3 Evaluation in RiFyFi

Finally, to evaluate the network it is possible to use another database or the testing
one, the network predicts the label, and thanks to the true labels a confusion matrix is
created to show the capacity of the network to classify the signal in the correct class.
The ideal confusion matrix is 100% on the diagonal and 0% for the other case. However,
the network can confuse the transmitters and classify some signals from transmitter 4 as
transmitter 2.

4.4 Conclusion

The RiFyFi framework has been implemented and improved all along this PhD, to
explore the network architecture, the learning parameters, the different databases, and fi-
nally the RiFyFi_VDG generator has been developed to explore more specifically database
design. The next chapter presents an investigation of the individual impact of impairments
with the network introduced in [91] aimed to reveal the most discriminant impairments
for this network. The selection of an [91]-like network is based on several studies indicating
that networks composed of convolutional and fully connected layers have demonstrated
strong performance in RFF classification tasks [47, 102, 91, 84].
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Chapter 5

UNDERSTANDING RFF WITH VIRTUAL

DATABASES: EXPERIMENTS AND

RESULTS

This chapter presents the results of the first contribution of this PhD. The major
contribution is the virtual database generator presented before and the global open-source
Julia framework for RFF identification. The previous studies presented in Chapter 2,
highlight the similar behavior of the 3 CNNs chosen. For the sake of brevity, we suggest
using only one network architecture in this chapter, which is Sankhe_2020. In Section 5.1
the impairments are studied separately to draw some preliminary conclusions, and then
in Section 5.2 several conglomerate studies are proposed, with in particular changing the
frame type and modulation, in the presence or absence of a propagation channel. Finally,
Section 5.4 concludes this first contribution.

5.1 Investigation of the individual impact of impair-
ments

In this section, impairments are separately studied with different confidence intervals,
described in this section, around a fixed mean value, inspired by the SoA [121] and defined
in Table 5.1. In [102], Soltani et al. propose to create 10 virtual transmitters, and they
vary the amplitude imbalance from 1 to 5.5 dB with steps of 0.5 dB and phase imbalance
from 1◦ to 82◦ with steps of 9◦. This simulation seems not realistic, because the values
of IQ imbalance are too important. Zhang et al. [121] set the range of gain and phase
imbalances to [-1 1] dB and [-5 5] degrees, which are more realistic values. For the PA they
used a Saleh model with the values presented in Table 5.1 which vary within ±5%. In our
work, different intervals are explored. The confidence interval is a metric to model the
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Impairment Parameters Mean value

CFO ∆f 300 Hz
Imbalance ḡQ ḡI 1.5 dB

θ̄ 2.5°
PN σ̄2

ξ 10−7

¯αAM 2.1587
PA ¯βAM 1.1517

¯αP M 4.0033
¯βP M 9.104

Table 5.1 – Mean value chosen for impairment parameters.

disparity between the electric circuits embedded in the transmitters. The RFF identifi-
cation complexity depends on the similarities between the RFF transmitters. For a given
number of transmitters, a large confidence interval reduces the similarity between two
transmitters. However a small confidence interval increases the RFF similarity between
devices, and, therefore, it makes the identification difficult. For this study, some learning
parameters are empirically adjusted upstream for each impairment to compare them in
favorable situations. The parameters are specifically the dropout (dr), the learning rate
and the batch size, which is always set to 64 in this chapter. For this study, we chose the
number of transmitters as a function of the number of impairment parameters we have
to explore, 2 transmitters are not enough to explore 2 or 4 parameters simultaneously.
The results presented in this section are obtained by means of 5 different training net-
works with different seeds to ensure the results obtained. The different colors in the tables
evaluated the performance (shades of green, orange, or red).

5.1.1 CFO

To study the CFO impairment, we set the mean value at 300 Hz and create different
similarity scenarios with p% for two transmitters with the following CFO values:

∆fT x1 = ∆̄f(1 − p%), (5.1)
∆fT x2 = ∆̄f(1 + p%), (5.2)
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5.1. Investigation of the individual impact of impairments

with p = 5%, 2%, 1% and 0.5%. The CFO values of both transmitters for each similarity
scenario p are given in Appendix B (Table 1).

Figure 5.1 presents the F1 score evolution during the training phase and Table 5.2
summarizes the results with the mean F1 score obtained during the training phase on the
training set and test set at different epochs. For the next impairments and for the sake of
conciseness we only use the tables to present results.
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Figure 5.1 – F1 score evolution during training for the different CFO scenario similarity,
2 transmitters and 900 signals per transmitter for train.

Results are obtained with a learning rate γ = 10−4 and no dropout and they show
that narrowing the impairment interval between two transmitters increases the network
difficulty in learning how to distinguish between these transmitters. Nevertheless, this is
compounded by the fact that numerous studies have demonstrated the instability of the
CFO, which further exacerbates the situation we will not focus on this. The study of CFO
highlights the link between the RFF transmitter similarity scenario and the capacity of
the network to separate transmitters.

F1 score at 20 epochs 50 epochs 100 epochs 315 epochs
p Train Test Train Test Train Test Train Test

5% 98% 98%
2% 93% 91% 98% 98%
1% 53% 51% 92% 89% 97% 95%

0.5% 48% 46% 52% 47% 57% 56% 98% 87%

Table 5.2 – Mean F1 score evolution during training phase for different CFO scenarios.
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5.1.2 IQ imbalance

As done with the CFO, we explore different similarity configurations for IQ imbalance,
defined by gQ, gI and θ with gQ = −gI and θ ∈ {θmin, θmax} with 4 transmitters.

gQT x1 = gQT x3 = ḡQ(1 − p%) (5.3)
gQT x2 = gQT x4 = ḡQ(1 + p%) (5.4)

θT x1 = θT x2 = θmax (5.5)
θT x3 = θT x4 = θmin (5.6)

The two impairments, gain and phase have been explored together by testing all combi-
nations, with p equal 10%, 5%, 3% and 1% and the ensemble {θmin, θmax} takes {0◦, 5◦},
{1◦, 4◦} and {2◦, 3◦}. Table 2 in Appendix B presents gain and phase values for each
transmitter. The results are obtained without dropout and a learning rate at 10−4.

F1 score at 85 Epochs 130 Epochs 210 Epochs
Train Test Train Test Train Test

g: 10% [0°;5°] 92% 88%
g: 10% [1°;4°] 66% 61% 95% 80%
g: 10% [2°;3°] 44% 42% 48% 44% 84% 48%
g: 5% [0°;5°] 94% 91%
g: 5% [1°;4°] 69% 66% 89% 79%
g: 5% [2°;3°] 58% 49% 67% 48% 96% 50%
g: 3% [0°;5°] 90% 87%
g: 3% [1°;4°] 70% 64% 86% 76%
g: 3% [2°;3°] 58% 49% 58% 48% 86% 53%
g: 1% [0°;5°] 63% 55% 84% 55%
g: 1% [1°;4°] 30% 28% 69% 55% 91% 51%
g: 1% [2°;3°] 12% 12% 13% 13% 70% 18%

Table 5.3 – Mean F1 score evolution during training phase for different IQ imbalance
impairments, γ = 10−4.

Table 5.3 presents F1 score values at different times for the different impairment
combinations. Comparing the first rows of results with a 10% similarity scenario shows
that increasing the phase similarity from {0◦, 5◦} to {1◦, 4◦} increases the number of
epochs required for the network to converge. Moreover, for {2◦, 3◦} the test performance

134



5.1. Investigation of the individual impact of impairments

drops even after long training. Then, comparing the first row of the 10% similarity scenario
and the first row of the 3% scenario shows a slight difference in the F1 score value at the
same time. Moreover in combination with {2◦, 3◦} and gain over 3%, results show an
over-learning on training data as it stops around 50% on Test data. The analysis of the
confusion matrix in Table 5.4b, under 10% and {2◦, 3◦} similarity conditions, reveals
an effective classification of Tx1 with 89% of correct classification. However, it exhibits
confusion between Tx1 and Tx3, as well as Tx2 and Tx4. In summary, a 1◦ gap between
two transmitters is insufficient for a clear differentiation.

When the IQ imbalance gain is set below 1%, during training, the network tends
to over-learn and stops at around 50%. This is confirmed by the confusion matrix in
Table 5.4a, which highlights a classification issue, as the network only seems to recognize
three classes.

True

Guess Tx1 Tx2 Tx3 Tx4

TxTrue1 67.0 0.0 18.0 15.0
TxTrue2 66.0 0.0 17.0 17.0
TxTrue3 67.0 0.0 19.0 14.0
TxTrue4 65.0 0.0 18.0 17.0

(a) g: 1% and [2◦; 3◦] combination.

True

Guess Tx1 Tx2 Tx3 Tx4

TxTrue1 89.0 0.0 11.0 0.0
TxTrue2 0.0 52.0 0.0 48.0
TxTrue3 82.0 0.0 18.0 0.0
TxTrue4 0.0 48.0 0.0 52.0

(b) g: 10% and [2◦; 3◦] combination.

Table 5.4 – Confusion Matrix for test data for IQ imbalance impairment.

The study of IQ imbalance shows a decrease in convergence speed when the similarity
between impairments increases for the gain and phase with a limit for recognizing devices
at 1% for gain and at 1° difference for phase.

5.1.3 Phase Noise

The PN is a particular impairment because, as it is a noise, it is difficult to find the
specific difference between transmitters only based on PN. To study the PN, different PN
values (between 10−7 and 10−4) are set for 4 different transmitters, and experiments have
been done with different learning rates and dropouts. However, the results are always bad:
the F1 score on the test set is about 25%, even after a large number of epochs. This result
shows that the network is not able to separate the transmitters. To conclude, the PN is
not a relevant impairment to separate transmitters.
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Figure 5.2 – PN realizations.

5.1.4 Power Amplifier

To study the PA effect, two types of model introduced in Section 4.1 are used. The first
one is the Saleh model, and the second is the memory model based on coefficients from
real measurements. This memory model (MM) is presented by [2]. The memory model
contains around 100 emitters models but we extract 2 groups of 4 PA models to better
stress the impact of closed PA configurations "MM close" and distinct PA configurations
"MM far". For the Saleh model, the different parameters are presented in Table 4 of the
Appendix B for different impairment similarities expressed as:
For αAM and αP M ,

αT xi = αT xi+2 = α(1 − p%) with i = 1, (5.7)
αT xi = αT xi+2 = α(1 + p%) with i = 2. (5.8)

For βAM and βP M ,

βT xi = βT xi+1 = β(1 + p%) with i = 1, (5.9)
βT xi = βT xi+1 = β(1 − p%) with i = 3. (5.10)

Different experiments are done and present instability of the network during the train-
ing phase. To reduce this problem the dropout is set at dr = 0.25 and the learning rate is
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F1 score at 160 epochs 500 epochs 970 epochs
Train Test Train Test Train Test

5% 98% 99%
2% 74% 70% 96% 95%
1% 28% 26% 80% 59% 95% 76%

0.5% 24% 23% 50% 38% 81% 49%
0.3% 25% 23% 44% 24% 87% 23%

MM far 86% 87% 91% 92% 93% 93%
MM close 33% 31% 57% 49% 74% 54%

Table 5.5 – Mean F1 score evolution during training phase for different PA impairments,
γ = 10−5 dr = 0.25.

decreased at γ = 10−5. Table 5.5 presents the F1 score value during training for the train
dataset and test dataset. This shows a decrease in convergence speed when the similar-
ity between impairments increases and for p ≤ 0.5% the network overlearns on training
data. The use of the memory model allows us to show the flexibility of our framework in
particular the interest of the generator is to use any RFF parametric models. Finally, it
shows that the results obtained with the Saleh model are realistic in terms of convergence
speed.

5.1.5 Conclusion of individual impairment effects

The investigation of the individual impact of impairment reveals the link between the
RFF impairments similarity and the capacity of the network to classify several devices.
The impairments are not all relevant, in particular, the PA and IQ imbalance seems to be
interesting. This study shows the importance of tuning learning parameters to adapt the
network to the data. Moreover, the network seems to converge faster for the CFO and IQ
imbalance.

5.2 Conglomerate scenarios study

In this section, different transmission scenarios with all impairments are studied with
NT x = 6 transmitters and p% interval, for IQ imbalance, CFO and PA (Saleh model). For
the PN two variances of state noise centered around σ2

ξ = 10−7and σ2
ξ = 10−4 are explored.

The values chosen for each parameter of the 6 transmitters are calculated following (5.13).
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Table 5 in Appendix B presents the parameter values calculated for p = 5% similarity, for
example. Except for θ, the parameter values P p

T xk
for device k ∈ [1, NT x] are computed

as:

P p
T Xk

= P p
min + k

(P p
max − P p

min)
NT x

, (5.11)

with P p
min = Mean Value(1 − p%), (5.12)

P p
max = Mean Value(1 + p%), (5.13)

with P p
min the minimum of the impairment parameter in the p% similarities scenario and

P p
max the maximum. Figures 5.3 present an example of repartition value for the CFO

impairments at 5% and 3%. In Figure 5.3a the CFO value is between 285 Hz and 315 Hz,
while in Figure 5.3b the similarity is more important because the CFO is between 295 Hz
and 300 Hz.
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300
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(a) CFO at 5%.
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300

Hz

295 305

Tx1 Tx6

(b) CFO at 3%.

Figure 5.3 – Repartition of CFO values around the mean (300Hz), for 6 transmitters and
different percentages.

Four different similarity scenarios are studied, 5%, 3%, 2% and 1%. For θ parameters,
P p

T Xk follows (5.11) but P p
min and P p

max depend of the similarity scenario. For p = 5% and
3%, we set:

P p
min = 0◦ P p

max = 5◦, (5.14)

while for p = 2% and 1%, we set:

P p
min = 1◦ P p

max = 4◦. (5.15)
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5.2.1 Preamble scenario

In this section, the preamble mode is studied, which corresponds to sending the same
sequence for all transmitters, several times.

A. How close can the RFF of 6 devices be?

This section addresses the convergence speed of the CNN in preamble scenarios with
all impairments and different contexts. The databases are composed of 6 emitters with
1000 WiFi-like signals per emitters, with OFDM modulation. Each database is split into
90% and 10% to create training and test sets, respectively. Table 5.6 presents the F1 score
values during training for both training and test sets, for the different similarity scenarios.
The training is ended when the network obtains an F1 score of 98% on the training set.
First, at 5% similarity, two state noise variances of the PN scenarios are studied, 10−7 and
10−4. The results in Table 5.6 indicate that increasing the state noise variance worsens
both classification and generalization challenges due to the additional noise introduced
into the signal. At 30 epochs the network has reached 98% in the testing dataset in 10−7

scenario, but for 10−4 the network obtain only 93% on test. The results are interesting
and present good performance for both PN scenarios with the worst result for 10−4 as
the first study shows the PN was not relevant but could disturb the network by adding
noise and making the identification difficult. For the rest of the study, phase noise is set
to 10−7.

F1 score at 30 epochs 60 epochs 280 epochs
σ2

ξ p Train Test Train Test Train Test
10−4 5% 96% 93%

10−7

5% 98% 98%
3% 48% 45% 96% 85%
2% 32% 25% 43% 19% 85% 30%
1% 31% 17% 45% 17% 84% 18%

Table 5.6 – Mean F1 score evolution during training phase for Preamble and different
similarity scenarios, γ = 10−4, dr = 0, 900 signals per transmitter for train and 100
signals per transmitter for test.

Then different similarity scenarios: 5%, 3%, 2% and 1% are compared. The network
has no difficulty in classifying the 6 transmitters in the 5% scenario. As the similarity
increases, the network needs more time to learn and classify the devices. The complexity
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F1 score at 280 epochs 500 epochs 1100 epochs
p Train Test Train Test Train Test

2% 42% 17% 73% 30% 97% 50%
1% 41% 16% 76% 19% 99% 17%

Table 5.7 – Mean F1 score evolution during training phase for Preamble and different
similarity scenarios, γ = 10−5, dr = 0.25, σ2

ξ = 10−7, 900 signals per transmitter for train
and 100 signals per transmitter for test.

of the classification problem increases as device impairments become closely situated,
making it more challenging for the network to distinguish between them. To solve this
issue it is possible to change some learning parameters such as the learning rate and add
dropout to avoid overfiting, as it is presented in Table 5.7. In the 2% similarity scenario,
these changes improve the F1 score in the test but not enough. Furthermore, in the case
of the 1% similarity scenario, the test F1 score remains at approximately 18%, close to
random value 1/NT x. This suggests that the network struggles to learn RFF due to the
proximity of impairments and only specializes on the training set. We propose to increase
and explore the number of signals per transmitter required to improve the performance
of the network and avoid overfitting. Figure 5.4 presents the F1 score obtained in the test
as a function of the number of signals in the training dataset. The network obtains an
F1 score of 80% in the test when 9000 signals per transmitter are used in the training
dataset for a 1% similarity. The number of required signals to train the network increases
with the similarity between devices. It is thus more difficult for the network to separate
and classify them. This reveals a countermeasure to RFF identification by using emitters
with very similar impairments.

In the Preamble scenario, the network specializes on the training data: for another
preamble used in the test, the network obtained about 25% of the F1 score and is not
able to identify the RFF in other data contexts. However, if the identification application
uses only the preamble to identify the device, over-learning in those conditions gives the
guarantee that the neural network will perform well in this situation.

B. How about the impact of signal modulations?

This subsection addresses the diversity of signal modulations by considering single
carrier frequency modulation. For this, a QAM sequence is upsampled and filtered by a
square root raised cosine filter with a roll-off of 0.33. The QAM sequence is the same

140



5.2. Conglomerate scenarios study

0 0.2 0.4 0.6 0.8 1·1040

0.25

0.5

0.75

1

Number of signals in the training set: 90% of Nsignals

Te
st

F1
sc

or
e

2%
1%

Figure 5.4 – F1 score obtained in test in function of the number of signals used to train the
network when training has reached 98% of F1 score, in Preambule scenario with γ = 10−4

dr = 0.

for all transceivers (in preamble mode) and set to have the same length as the OFDM
sequences.

The results presented in Table 5.8 are obtained without dropout and with a learning
rate at 10−4 with 900 signals in train set. The F1 scores are very close to the results pre-
sented in the previous Table 5.6. The convergence speed is comparable to the convergence
speed obtained with OFDM and decreases when the similarity between devices increases.
It is important to notice that our simulator readily accommodates additional modulation
schemes or even standard-compatible signals. It paves the way for specialized analysis
focused on standards or applications beyond the scope of this PhD.

Modulation F1 score 35 epochs 60 epochs 400 epochs
at Train Test Train Test Train Test

Single 5% 98% 95%
Carrier 3% 64% 59% 98% 81%

2% 15% 10% 33% 10% 98% 24%

Table 5.8 – Mean F1 score evolution during training phase for Preamble and different
similarity scenarios for single carrier modulation, γ = 10−4, dr = 0, σ2

ξ = 10−7, 900 signals
per transmitter for train and 100 signals per transmitter for test.
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C. What is the most relevant feature?

To study the most relevant impairment, we choose to use the 1% similarity scenario
and increase to 10% one after one the interval for one impairment. At 10% in the previous
section, all individual impairments allow separating transmitters. Here we study the co-
existence of all impairments and explore how they interfere together and impact the
classification accuracy. Table 5.9 presents the results obtained in the test when the network
has reached 98% of F1 score on the train set for different situations. The best performances
are obtained when the PA is set to 10% with 94% of F1 score and reveals the importance
of PA in RFF identification.

Scenarios
F1 score Test

CFO IQ imbalance PA
10% 1% 1% 20%
1% 10% 1% 34%
1% 1% 10% 94%

Table 5.9 – F1 score obtained in test when training has reached 98% for different RFF at
10%, γ = 10−5 dr = 0.25.

D. Does the dynamic CFO impact the classification?

The previous result highlights the most relevant features and Table 5.9 shows that the
CFO is not really impacting in our context. In Section 4.1, we presented and chose a precise
oscillator: an oscillator with a compensation system with 0.13 ppm, and fixed value. In
this condition, the CFO does not impact the classification. However, the SoA extensively
covers this topic and leads to the conclusion that the CFO has a significant impact on
RFF identification [28, 122, 24, 44]. Considering this point, we propose a simulation to
study the impact of the dynamic CFO on the classification. First, two different mean
values ∆̄f of the CFO are chosen: 300 Hz and 2400 Hz, corresponding to around 0.1 ppm
and 1 ppm respectively, both at 2.4 GHz. In these two scenarios, we consider different
dispersion scenarios called δf , which corresponds to the CFO difference between 2 devices
and that is expressed as:

∆fT xi+1 = ∆fT xi + δf , (5.16)
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where ∆fT xi and ∆fT xi+1 correspond to the CFO impairment for transmitters i and i + 1
during the training phase.

Figure 5.5 presents the F1 score obtained in the test when the CFO has shifted between
the training phase and test phase for different dispersion scenarios. The other impairments
are set at 5% similarity, and the learning parameters are still dr = 0 and γ = 10−4 with
900 signals per transmitter in training set. This shift, called frequency variation, and
noted νf , can model the impact of a temperature variation and is expressed as:

∆fT estT xi
= ∆fT rainT xi

± νf , (5.17)

where ∆fT estT xi
and ∆fT rainT xi

correspond to the CFO value of transmitter i during the
training or test phase.
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Figure 5.5 – F1 score obtained in test in function of the CFO dispersion values δf for two
different ∆̄f , and 6 transmitters.

The left part of Figure 5.5 concerns a mean CFO value at 300 Hz with three dispersion
values: 10 Hz, 100 Hz and 500 Hz between each transmitter. For a dispersion δf of 10 Hz,
the result shows that an important CFO variation such as νf = ±1000 Hz, in red, between
the training and the test set, affects the classification accuracy but the network is still able
to classify many signals (around 75%). In other words, the CFO dispersion is too weak to
be a relevant impairment for the network. For δf = 500 Hz, the results are different. For
a νf = 500 Hz or 1000 Hz, the accuracy drops, meaning that the network associates the
transmitter to a particular CFO value. This reveals the importance of the CFO dispersion
in this scenario to classify the transmitters. In other words for 500 Hz dispersion, the CFO
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is a relevant impairment for the network. In this case, a CFO variation due to temperature
can affect dramatically the identification.

Finally, for ∆̄f = 2400 Hz at the right part of the figure, the conclusions are the same as
with ∆̄f = 300 Hz. For δf = 1000 Hz, the orange bar, which corresponds to νf = 500 Hz,
has reached 50%. This occurs because the network decision boundary is positioned midway
between two CFO values. As a result, 50% of the sequences are correctly classified, while
the other 50% are classified into the nearest class. In the rest of the study, we keep the
parameterization of a precise oscillator: 0.13ppm (temperature compensated X oscillator,
or an oscillator whose frequency is controlled by digital/analog compensation).

E. How does the number of transmitters impact the classification?

The number of transmitters is multiplied by two and the RFF impairment values
are computed in a 5% interval around the mean values. In this situation, the network
required on average 250 epochs to achieve 98% of accuracy in training. Compared with
the 6 transmitters situation, the network required more epochs to converge because the
complexity of the problem has increased.

F1 score at 30 epochs 60 epochs 250 epochs
NT x Train Test Train Test Train Test
6 Tx 96% 93%
12 Tx 88% 86% 89% 87 % 98% 94%

Table 5.10 – Mean F1 score during training phase for 5% similarity and 12 devices and 6
devices with γ = 10−4 dr = 0.
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Conclusion
— A strong similarity between RFF transmitters increases the network conver-

gence time and decreases the F1 score performance.

— Changing the learning parameters can improve the classification in the test
but increasing the number of signals seems the best option.

— The PA is the most relevant impairment for identification.

— For a 500 Hz dispersion of CFO between transmitters, the CFO becomes the
most relevant impairment.

— The network classification accuracy is affected by a variation of 1000 Hz, but
is still around 75% of F1 Score, for 100 Hz dispersion between transmitters.

5.2.2 MAC address scenario

In this section, we study the classification of 6 transmitters where the sequence emitted
by the transmitter (training and test sets) contains a different MAC address per trans-
mitter. After 6 epochs the network has reached 99% F1 score on the training set and 98%
on the test set for the 5% similarities and 1% similarities scenario with a learning rate
at 10−4 and no dropout. The confusion matrix given in Table 5.11a presents the result
of classification in the test without MAC spoofing. The rows of the confusion matrix are
the true labels while the columns are the labels estimated by the network. The numbers
represent the percentage obtained for each case. Table 5.11b is obtained when the Tx1
spoofed the MAC address of Tx3. The spoofing represents a real risk in cybersecurity, it’s
possible to use the MAC address of another device to be identified as this device by an
authentication system.

In the MAC address scenario, the address in the signal is the strongest signature and
prevents the network from focusing on RFF, the learning system, and the network only
learns the MAC address to identify the device. In this situation, the identification system
will not be robust to spoofing. To tackle such issues, the virtual database allows exploring
the scenario to determine a way to secure the transmission by slicing the signal [48].
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True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 100 0 0 0 0 0
Tx2 8 87 2 1 1 1
Tx3 0 0 100 0 0 0
Tx4 0 0 0 100 0 0
Tx5 0 0 0 0 100 0
Tx6 0 0 0 0 0 100

(a) Without spoofing.

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 0 0 100 0 0 0
Tx2 8 87 2 1 1 1
Tx3 0 0 100 0 0 0
Tx4 0 0 0 100 0 0
Tx5 0 0 0 0 100 0
Tx6 0 0 0 0 0 100

(b) Tx1 spoofed MAC address from Tx3.

Table 5.11 – Confusion Matrix for test data in MAC scenario.

5.2.3 Payload scenario

The Payload scenario is the most difficult one because all data are different. In this
section, the number of signals required to obtain robust RFF learning in the Payload
scenario is studied.
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Figure 5.6 – F1 score obtained in test in function of the number of signals used to train
the network when training has reached 98% of F1 score.

Such a scenario represents non-correlated data and is complex for the network. For
example with 900 signals at 5% similarity, the F1 score in the test stays around 30%
compared to the Preamble situation where the network achieves 98% in the test. In the
Payload scenario, the network overfits on training data. To avoid this issue the number
of signals used in the train is explored. The results are obtained with a learning rate at
10−4 and no dropout. Figure 5.6 presents the F1 score obtained in the Test set when
the network has reached 98% of the F1 score on the training set, obtained for 2 different
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Number of signals 5% 10%
900 27s 25s

4,500 160s 110s
9,000 8min 220s
45,000 45min 19min
90,000 2h 38min
450,000 +10h 2h12

Table 5.12 – Time required for the network to reach 98% of F1 score on training data, in
Payload context.

similarity scenarios. In blue, we represent the 5% similarity scenario database, and yellow
represents the 10% similarity scenario. Table 5.12 completes the results by adding the
time of training to reach 98% of the F1 score.

Figure 5.6 shows a great improvement of the F1 score in the test when the number of
signals is increased. However, Table 5.12 presents the time required to achieve the different
training and the time convergence speed increase when the number of signals increases
because of the number of data seen in an epoch. The number of signals and the time of
training can represent some limit depending on the application context. For example, in
cyber defense, the amount of data may be limited by the difficulty of collecting data. The
time to train the network may be limited by the need for a short response time.

5.3 Network channel resilience study

SoA motivations

Chapter 3 reveals the impact of propagation channel in classification accuracy and the
need to have a channel resilient database to train the network to recognise the impair-
ments. In the SoA, several works have shown the need for data augmentation to improve
the resilience of the propagation channel [102, 92, 66, 13]. For example, Morin et al. [66]
showed that incorporating varied multipath channel parameters in the training dataset
improved network resilience in different transmission scenarios by up to 44% compared
to static training, referred to as "plain" in their experiments. However, data augmenta-
tion requires a long process to record signals in varied transmission conditions to build
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the training dataset. Therefore, we use the RiFyFi virtual database generator to investi-
gate the network robustness, and enable comprehensive monitoring of all aspects of the
experimental setup.

5.3.1 Impact of propagation channel on the classification accu-
racy in Preamble mode

A. Network resilience evaluation

To evaluate the resilience of the network under different conditions, multiple datasets,
called scenarios, are required to test the network under different environmental condi-
tions compared to the training one. The resilience of a DL network is evaluate thank the
following process :

— 1. Creating a database (model-based or experimental) following a propagation chan-
nel scenario Strain;

— 2. Using this database to train the DL network;

— 3. Creating a new database with another scenario Sres;

— 4. Using this new database to evaluate the resilience of the DL network in the
scenario Sres.

Different crucial aspects of channel impact are studied in Preamble context to create
an RFF database: the number of signals required to perform DL classification, the impact
of RFF similarities between emitters, and the propagation channel impact. In this section,
all the experiments are done with 5 transmitters, the learning rate is set at γ = 10−5, and
the dropout at 0.25.

The propagation channel considered models a wireless flat-fading transmission over
a path with random power,and delay spreads powers are generated. Due to the power
variations, we have to considered a new normalisation of the dataset. In the previous re-
sult without considering the propagation channel, the entire dataset was used to calculate
the mean and variance, which were then applied for normalization. However in this way
the network use principally the amplitude to classify the transmitters. In this section we
propose to normalize the data by group of few consecutives sequences, that have the same
propagation channel, means that each group of sequences of each transmitters has the
same mean value at the end because all sequence are normalised following his own statis-
tics. This new normalisation may have an impact on the network training/classification.
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First of all, we consider two scenarios: scenario S1 for Strain, which models a wired
transmission, is used to train the network and evaluate its static performance, and then
scenario S2 for Sres models a wireless flat-fading transmission over a path with random
power, and several channel powers are generated. The training is done with data from S1

and the test is realize on both scenario S1 and S2. The S2 set is composed of 100 signals per
device and per channel, and we simulate 100 different channels for each device. Table 5.13
present the F1-Score obtained in the different similarities for both testing scenrario. The
results show that the network could not identify the transmitter in S2 case. Moreover,
because of this new normalisation, we have to significanthly increase the number of signal
in the training database to avoid overfitting and obtained around 90% of F1-Score on Test
S1.

Training on S1

p% Nsig. Test S1 Test S2

10% 10000 98% 27%
7% 10000 92% 24%
5% 10000 91% 23%
3% 10000 89% 23%

Table 5.13 – F1-Score obtained in different similarity scenarios to evaluate the resilience,
Preamble mode.

B. How many channel should we have?

In this section, we apply data augmentation during the training step by generating
propagation channel diversity. The database is extended by adding signals with impair-
ments by different numbers of channels. The objective is to evaluate/estimate how many
different propagation channels are required in the training database to ensure the channel
resilience of the network in different environment.

The network is trained with a dataset composed of Nchan. × NT x × Nsignals, where
Nsignals = 1800, NT x = 5. Then the F1-Score is evaluated on a dataset composed of 100
different channels with 200 signals. In this experiment, the network learning rate is set to
10−5, the dropout dr to 0.25 and the batch size to 64.

Figure 5.7 presents the F1-Score obtained in S2 Test for different level of channel
diversity, in this case the channel diversity is important as Nchan. is large. The results
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obtained show that data augmentation allow to increase the performances accuracy ob-
tained in different propagation channels conditions. Moreover, different floors appear for
each similarity scenario, after 100 channels per transmitters means that over 100 channels
per transmitter are required. Right part of Table 5.14 gives the F1-Score obtained by
mean 5 seeds of data generation and training for 100 propagation channels for different
similarity scenario.
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Figure 5.7 – Mean F1 score obtained in test in function of the number of channels used
to train the network when training has reached 98% of F1 score.

Training on S1 Training on S2

p% Nsig. Test S1 Test S2 Nsig. Nchan. Test S2

10% 10000 98% 27% 1800 100 84,5± 0.8%
7% 10000 92% 24% 1800 100 74.8± 0.6%
5% 10000 91% 23% 1800 100 67.6±0.2%
3% 10000 89% 23% 2700 100 69.2±0.3%

Table 5.14 – F1-Score obtained in different training and similarity scenarios to evaluate
the resilience, Preamble mode.

These simulations show that over 100 channels per transmitter are required to ensure
intersting performance resiliency, meaning capturing signals from each transmitter at 100
different locations, which is a too long and complex process for many RFF identification
applications. For instance, let’s consider that changing the propagation channel context
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for a transmitter takes just 5 seconds. This means a new record with a different propaga-
tion channel is created every 5 seconds. Collecting sufficient data for a single transmitter
requires over 500 seconds (approximately 8 minutes). However, if the process isn’t auto-
mated and manual context switching takes a full minute, the time required per transmitter
would exceed 1 hour and 30 minutes or even more.

5.3.2 Diversifying data to ensure robustness and resilience

A. Methodology

We propose to change the paradigm of data augmentation to reduce the complexity
and time required to build a training database while ensuring network resilience. The
channel diversity used in traditional data augmentation generates entropy, which helps
the network to be resilient to environmental influences. The top of Figure 5.8 presents
conventional data augmentation, used in the previous section, with a fixed data preamble
and channel diversity. In our approach, diversity is directly introduced into the transmitted
data, increasing the entropy of the signals used for identification. The bottom of Figure 5.8
shows our solution with an ideal propagation channel, such as a wired one, which simplifies
the process of recording signals from different transmitters with sufficient diversity.

Channel
diversity

Fixed preamble

ADCDAC Training

𝑥!"#(𝑡)

𝑥$%&(𝑡)

IQ
I RFF Tx

Key RFF parameters

Diversity on 
Payload
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ideal channelDAC
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I RFF Tx
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𝑥$%&(𝑡)

IQ

State of the art solutions 

Our solution

Figure 5.8 – Increase entropy of training dataset by adding diversity in transmitted data.

In practice, long sequences of random symbols are generated and transmitted and are
thus disturbed by RF impairments. This transmission mode, called payload, is used to
train the network to recognise the RFF in a noisy and diverse environment. To present a
proof of concept, experiments are firstly conducted using model-based databases. These

151



Chapter 5 – Understanding RFF with Virtual Databases: Experiments and Results

databases are created according to the previously described parameters, including different
similarity scenarios and a payload mode. Two transmission scenarios are used: S1 for the
wired transmission model, and S2 for the wireless propagation model with multiple paths
and noise levels.

B. Simulation-based proof of concept with data diversification

Three large databases with 10%, 7% and 5% similarity have been created, each consist-
ing of random OFDM symbols to obtain 180,000 signals of 256 IQ samples. Each dataset
are normalized following the new normalisation by group of sequences. The network is
trained with each dataset in S1 scenario using a learning rate of 10−5 and a dropout
dr=0.25. After training, the networks are evaluated in both scenarios S1 and S2. Ta-
ble 5.15 shows the network F1-score following both scenarios. We chose to create 180,000
signals to match the diversity achieved with 1,800 signals and 100 channels per signal, as
in traditional data augmentation.

Training on S1

p% Nsig. Test S1 Test S2

10% 180000 77% 59%
7% 180000 60% 47%
5% 180000 45% 39%

Table 5.15 – F1-Score obtained in different training and similarity scenarios,
Payload mode.

The results show that a very large dataset is indeed necessary to perform identification.
However, only one record per transmitter is required, which is a great simplification com-
pared to the usual data augmentation, where 100 recordings per transmitter are typically
required. Using this approach, recording 180,000 signals per transmitter takes approxi-
mately 30 seconds, making it at least 16 times faster (assuming an optimistic recording
time of every 5 seconds) than the previously described method. Table 5.16 shows the
confusion matrix obtained in test in scenario S2 for a 10% similarity. The network oc-
casionally confuses transmitters, in particular each transmitter i are often confused with
the i − 1 and i + 1 due to the close proximity in the impairment definition.

In the next chapter some experimental databases are created to validate the solution
proposed in this section.
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True

Guess
Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 69.7 25.4 3.0 0.5 1.4
TxTrue2 17.9 51.0 25.5 3.8 1.8
TxTrue3 2.4 17.6 53.4 22.1 4.4
TxTrue4 1.3 1.7 18.1 49.8 29.1
TxTrue5 1.1 0.4 2.5 22.0 74.0

Table 5.16 – Confusion Matrix obtained for 10% similarity scenario in test S2,
Payload mode.

5.4 Conclusion

This work proposes an exploration of database design for RFF identification with DL
considering the similarity between the RFF of transmitters, the transmission scenario,
and the number of signals.

In Sections 5.1, and 5.2.1, our analysis showed in preamble context:

— a strong similarity between RFF transmitters increases the network convergence
time and decreases the F1 score performance,

— changing the learning parameters can improve the classification in the test but
increasing the number of signals seems the best option,

— the PA is the most relevant impairment for identification.

In Section 5.2.1, our analysis of the CFO showed

— for a 500 Hz dispersion of CFO between transmitters, the CFO becomes the most
relevant impairment,

— the network classification accuracy is affected by a variation of 1000 Hz, but is still
around 75% of F1 score, for 100 Hz dispersion between transmitters.

In Section 5.2.3 our analysis of the Payload scenario showed

— a large number of signals in the Payload scenario can mitigate the issue of the
propagation channel.

In Section 5.3.1 our analysis of the propagation channel showed

— the channel presence can deteriorate significantly the classification accuracy,
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— a large number of signals with propagation channel diversity are required which is
time consuming,

— similar RFF devices can be a countermeasure to avoid RFF identification.

In Section 5.3.2 our proposition to change the data augmentation paradigm
showed

— the improvement of channel resilience by increasing data diversity instead of channel
diversity,

— the reduction of time required to produce the real database with enough diversity.

RiFyFi_VDG can help to pre-evaluate the required database design with a lot of
flexibility. This generator is an open source tool available in [11]. These works have been
published in [12, 14].
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Chapter 6

FROM VIRTUAL DATA TO REAL DATA

In this chapter, we propose to create our own datasets based on the lessons learned
from our experience with the generator. The objective of this part is to validate the pre-
vious conclusions made thanks to transmitters model-based dataset. Section 6.1 presents
the experimental setup for the different scenarios of datasets used in this chapter. Then
Section 6.3 presents and discusses the results obtained with Preamble mode, and Sec-
tion 6.4 presents the Payload mode. Finally, Section 6.5 proposes some perspectives of
this work to improve the classification accuracy.

6.1 Experimental scenarios description

The lessons of the previous chapter highlight the need for numerous signals when
the similarity between transmitters is important and the best resilience of the payload
mode in different scenarios. The goal is to verify both points. First of all, five SDRs are
used as transmitters, and one, always the same, is used as receiver. Table 6.1 presents
the name of the transmitter and the references with the label considered in the datasets.
The transmitters are all different excepted the two E310, however for one of them the
use of GPS has been desactivated so the CFO is probably less stable compared to the
other one. The power emission of each transmitter is adjusted to obtain the same power
in reception. This step ensures that the network will not focus on the power difference
which changes depending on the conditions. We decide to create different datasets to
evaluate the capacity of the network to recognize the transmitters in a real world proof of
concept. For each transmission scenario, we have two different modes: the Preamble and
the Payload.

In the Preamble scenario the transmitters all transmit the same sequence of 30 OFDM
symbols, and repeat this sequence for 8 seconds. For Payload mode, each transmitter
transmits random OFDM symbols for 30 seconds. The time defined for Preamble and

155



Chapter 6 – From Virtual Data to Real Data

Label Name of transmitter Constructor RF daughter board
Tx1 Blade RF Nuand AD9361
Tx2 ADALM Pluto Analog device AD9363
Tx3 E310 (no gps) ETTUS AD9361
Tx4 E310 ETTUS AD9361
Tx5 X310 ETTUS UBX-160

Table 6.1 – Transmitters used to create the experimental dataset.

Payload is different because thanks to the generator we know that we need more data to
train a network with Payload mode.

Then we define five different scenarios, presented in Table 6.2:

— S1, the transmitters are sending the data through the same wire, same attenuator
for each radio, and transmitters are assumed cold (i.e the transmitters are turn on
just to perform the transmission). This scenario will be used to train the network,
all remaining scenarios are only used to test resilience.

— S1bis, the scenario 1 has been repeated another day to ensure the reproducibility of
the ideal scenario.

— S2, same as S1 but the transmitters are turned on in the morning and the recording
is done in the afternoon so the components of the transmitters are considered hot.

— S3, the transmission is done over the air (OTA) in anechoïc chamber and all the
transmitters are placed the same location for the transmission.

— S4, same as S3 but the transmitters have different locations.

— S5, over-the-air scenario in an office with different locations.

— S6, a room with several metallic objects which can potentially increase the effect of
the propagation channel.

6.2 Experimental overview

The network used in this chapter is the Sankhe_2020. The network is trained with
data from scenario 1, different training are done with different sizes of datasets. From
9,000 signals per transmitter to 45,000 for Preamble mode, and from 9,000 signals per
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Train/test Scenario Channel hot/cold Tx location

Train 1 Wired cold -
Test 1bis Wired cold -
Test 2 Wired hot -
Test 3 OTA Anechoic chamber cold same place
Test 4 OTA Anechoic chamber cold different locations
Test 5 OTA office cold different locations
Test 6 OTA metallic room cold different locations

Table 6.2 – Experimental scenarios description.

(a) Scenario 4. (b) Scenario 5.

(c) Scenario 6.

Figure 6.1 – Photos of experimental setup for different scenarios.
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transmitter to 180,000 for Payload mode. The training ends when the network reaches
98% of the F1 score on training data. Then each network is evaluated through the testing
dataset of each scenario. The testing datasets are composed of 5,000 signals per transmit-
ter, and correspond to the end of the recorded signals as shown in Figures 6.2 and 6.3. The
learning parameters are set to γ = 10−4 for the learning rate, dr = 0.5 for the dropout,
and the batch size is set to 64.

TX1

TX2

TXN

Training: Preamble Mode Scenario 1

8 sec

9,000 sig. 18,000 sig. 27,000 sig. 36,000 sig. 45,000 sig.

TX1

TX2

TXN

Test: Preamble Mode Scenario x

8 sec

5,000 sig.

Figure 6.2 – Training and Test dataset repartition on capturing signal for Preamble mode.

TX1

TX2

TXN

Training: Payload Mode Scenario 1

30 sec

9,000 sig. 18,000 sig. 45,000 sig. 90,000 sig. 180,000 sig.

TX1

TX2

TXN

Test: Payload Mode Scenario x

30 sec

5,000 sig.

Figure 6.3 – Training and Test dataset repartition on capturing signal for Payload mode.
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6.3 Experimental results in Preamble mode

Table 6.2 presents the mean F1 score obtained on 3 seeds of the network for each
scenario depending on the size of the training dataset. The column 1 corresponds to the
results obtained with the test part of scenario 1, and column 1bis corresponds to a second
recording done a few days after to ensure the reproducibility of the ideal case. Columns
1 and 1bis show that increasing the number of signals increases the F1 score obtained in
the test in both cases.

The comparison of the F1 Score obtained with scenario 1 or 1bis and scenario 2 shows
a drop in classification performance. Using the SDR on or off has thus an impact on the
performance. However, this drop is reduced by increasing the number of signals in training
up to 36,000.

F1 score obtained for testing scenarios
Number of signals 1 1bis 2 3 4 5 6

9,000 76.7% 89.3% 74.5% 43.7% 40.0% 27.0% 20.1%
18,000 95.8% 96.4% 86.7% 41.0% 40.0% 20.3% 25.0%
27,000 97.9% 97.2% 90.0% 34.5% 40.0% 19.8% 24.0%
36,000 98.4% 97.5% 92.2% 40.8% 40.0% 20.0% 26.7%
45,000 97.8% 97.3% 89.3% 41.5% 40.0% 24.9% 20.0%

Table 6.3 – F1 Score obtained in Test for each scenario in Preamble mode, depending on
the number of signals used to train the network.

The network evaluation on scenarios 3 to 6 shows bad performance, and in particular,
the performance decreases with the scenario difficulty. However, this result was expected
because the network was trained with an ideal scenario, and adding a propagation channel
in the test affected the classification. We propose to show one confusion matrix per scenario
to understand the network behavior.

Tables 6.4 present the confusion matrices obtained in the test for each scenario. Ta-
bles 6.4a and 6.4b reveal great performance with wired transmission. In scenario 2, trans-
mitter 1 is sometimes confused with transmitter 3. Tables 6.4c and 6.4d show a different
behavior: the transmitters 2 and 5, respectively the Pluto and the x310 are perfectly rec-
ognized but the other transmitters are confused, the confusion is not the same for both
scenarios which means that a particular effect of channel or power affected the recogni-
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True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 93.5 0.0 6.4 0.0 0.1
TxTrue2 0.0 99.9 0.0 0.1 0.0
TxTrue3 1.9 0.0 97.6 0.5 0.0
TxTrue4 0.0 0.1 0.3 99.6 0.0
TxTrue5 1.9 0.0 0.0 0.0 98.1

(a) Scenario 1

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 71.1 0.0 28.9 0.0 0.0
TxTrue2 0.0 92.0 0.0 8.0 0.0
TxTrue3 2.9 0.0 96.5 0.6 0.0
TxTrue4 0.0 5.8 0.0 94.2 0.0
TxTrue5 0.3 0.0 0.0 0.0 99.7

(b) Scenario 2

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.0 13.7 0.2 86.1 0.0
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 92.9 0.0 7.1 0.0 0.1
TxTrue4 7.1 0.0 92.3 0.5 0.0
TxTrue5 0.0 0.0 0.0 0.0 100.0

(c) Scenario 3

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.6 0.0 0.0 0.0 99.4
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 61.7 0.0 0.0 0.0 38.3
TxTrue4 0.0 100.0 0.0 0.0 0.0
TxTrue5 0.0 0.0 0.0 0.0 100.0

(d) Scenario 4

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.0 99.6 0.2 0.1 0.0
TxTrue2 71.7 0.0 0.1 0.0 28.2
TxTrue3 0.7 0.0 33.7 65.6 0.0
TxTrue4 0.4 97.9 1.2 0.5 0.0
TxTrue5 0.9 0.0 0.0 0.0 99.1

(e) Scenario 5

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.0 100.0 0.0 0.0 0.0
TxTrue2 0.0 99.7 0.2 0.1 0.0
TxTrue3 0.0 78.1 0.6 21.3 0.0
TxTrue4 0.8 0.0 0.0 0.0 99.2
TxTrue5 0.0 99.3 0.4 0.3 0.0

(f) Scenario 6

Table 6.4 – Confusion Matrices obtained for each scenario with a network trained with
50,000 signals per transmitter, from scenario 1 in Preamble mode.
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tion. Finally Table 6.4e is really difficult to interpret, but Table 6.4f all transmitters are
classified as Tx2 excepted the transmitter 4.

6.4 Experimental results in Payload mode

Table 6.5 presents the results obtained for Payload mode for each scenario depending
on the size of the training dataset, and Tables 6.6 present the corresponding confusion
matrices. The column 1of Table 6.5 corresponds to the results obtained with the test part
of scenario 1. Compared to the Preamble mode, the Payload mode requires more signals to
reach the same accuracy, which is coherent with RiFyFi conclusion. The behavior obtained
in columns 1, 1bis and 2 are really similar to the Preamble mode. In particular the results
for the scenario 2 are improved means that the diversity ensure the robustness of the
identification. The scenarios 3 to 5 obtain better results in Payload mode than the results
obtained with Preamble mode, which means that increasing the diversity of the signals
increases the robustness of the network. Reaching 50% of F1-score is not totally satisfying
however regarding the confusion matrices presented in Table 6.6e for scenario 5, we notice
that some transmitters are perfectly to correctly recognize aand some other are not. In
future experiments it could be interested to classify different types of devices. The others
confusion matrices whow a correct recognition of different devices in particular for the
scenario 1 and 2.

F1 score obtained for testing scenarios
Number of signals 1 1 bis 2 3 4 5 6

9,000 42.4% 47.8% 56.9% 37.8% 36.9% 22.3% 38.6%
18,000 75.4% 73% 78.5% 53.2% 45.6% 42.2% 37.3%
45,000 91.1% 89% 88.7% 57.6% 54.9% 48.4% 22.4%
90,000 94.8% 92.9% 93.3% 59.6% 53.5% 50.8% 9%
180,000 96.4% 94.5% 95.2% 60.46% 53.5% 50.4% 14.5%

Table 6.5 – F1 Score obtained in Test for each scenario in Payload mode, depending on
the number of signals used to train the network.

However, these experiments highlight the need to pre-process the data to improve the
quality of the signal and so the classification accuracy in particulary in scenario 6. In
scenario 6 the received power is largely reduced and disturbe the network classification.
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Contrary to the most approaches of the SoA, in this PhD channel equalization is not a
wanted solution because it requires data knowledge that we do not want to depend on.

6.5 Conclusion and experimental perspectives

This study confirmes the previous conclusion done thanks to the generator RiFyFi_VDG,
with a drop in performance probably due to the important similarities between the devices.
We have proposed an alternative and less complex approach for creating RFF DL iden-
tification training databases. Our solution shifts the focus from channel diversity to data
diversity to enhance network resilience to varied propagation environments. The results
and analysis show significant performance improvements compared to similar Preamble
data recording methods. In addition, our solution is at least 16 times faster than SoA
data augmentation methods. While this solution alone does not fully address all identifi-
cation needs, it reliably distinguishes between different types of transmitters, making it
particularly useful in applications where precise recognition is less critical and identifying
the transmitter type is sufficient. The datasets created for these experiments allow us to
evaluate the level of resilience of the networks depending on the different scenarios, which
is not offered by the SoA databases with this level of granularity. In a noisy context with
a drop in received power, it is important to note that the signal quality is deteriorating
and needs to be improved to help the network to recognize the transmitter. That is why
future work can be done to find a pre-processing to filtrate the signal without deteriorat-
ing the RFF. Finally, in future works, it will be interesting to use the preamble mode and
estimate the impairments of our SDRs. Then the impairments will be used as parameters
of RiFyFi_VDG. This will allow us to implement a digital twin of each device and then
train a network with a virtual database in payload mode. Then the network capabilities
are evaluated to identify the real devices.
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True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 93.8 0.0 0.5 5.7 0.0
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 0.7 0.0 97.3 2.0 0.0
TxTrue4 5.9 0.0 2.3 91.7 0.2
TxTrue5 0.1 0.0 0.0 0.3 99.7

(a) Scenario 1

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 94.7 0.0 0.7 4.5 0.1
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 0.5 0.0 97.7 1.7 0.0
TxTrue4 9.5 0.0 3.1 87.3 0.1
TxTrue5 0.2 0.0 0.0 3.3 96.5

(b) Scenario 2

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 53.9 0.2 0.4 17.4 28.1
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 3.7 0.0 92.7 3.5 0.0
TxTrue4 23.1 0.0 30.9 45.9 0.1
TxTrue5 42.9 0.0 9.8 26.3 21.0

(c) Scenario 3

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 46.7 0.0 53.3 0.0 0.0
TxTrue2 0.0 100.0 0.0 0.0 0.0
TxTrue3 0.0 0.0 99.7 0.2 0.0
TxTrue4 0.0 100.0 0.0 0.0 0.0
TxTrue5 39.4 0.0 5.3 31.6 23.7

(d) Scenario 4

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.0 46.3 0.1 11.1 42.5
TxTrue2 1.9 90.8 0.2 6.8 0.2
TxTrue3 5.0 0.0 79.8 15.1 0.1
TxTrue4 0.7 0.0 1.4 61.8 36.1
TxTrue5 36.5 0.0 6.7 35.7 21.1

(e) Scenario 5

True

Guess Tx1 Tx2 Tx3 Tx4 Tx5

TxTrue1 0.0 0.1 0.0 99.9 0.0
TxTrue2 0.1 1.3 0.0 98.6 0.0
TxTrue3 0.8 0.0 2.4 96.9 0.0
TxTrue4 3.8 0.0 35.4 60.8 0.0
TxTrue5 0.0 0.3 0.0 99.6 0.0

(f) Scenario 6

Table 6.6 – Confusion Matrix obtained for each scenario with a network trained with
180,000 signals per transmitter from scenario 1 in Payload mode.
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Chapter 7

COMPARISON OF MACHINE LEARNING

FOR LIGHTWEIGHT RFF IDENTIFICATION

If DL techniques are promising and show very good classification results, they also
exhibit an important complexity both at training and inference steps, dependent on their
architecture [124]. In the IoT context, RFF authentication might be with stringent com-
plexity and energy constraints. This chapter presents works realized during the PhD and
has been done with the help of student internships, Baptiste BOYER and Emma BOTH-
EREAU, and addresses the complexity issues. The common thread of these studies is
lightweight RFF identification. Section 7.1 presents the lightweight RFF identification
motivations. The first study concerns the Tangled Programm Graph. In Section 7.2 we
propose to use TPG-based classification to achieve a lightweight and accurate RFF identi-
fication scheme. This study has been published in a publication at PIMRC 2023 [13]. The
second study presented in section 7.3 concerns pruning applied to classic neural networks.
The results of this study led to the beginning of a new PhD for 2023-2026 by Emma
BOTHEREAU.

7.1 Lightweight RFF Identification motivations

The previous chapters are mainly focused on DL and they promise and show very
good classification results. Nonetheless, they exhibit an important complexity both at the
training and the inference steps, depending on their architecture [124]. In the IoT context,
RFF authentication might be with stringent complexity and energy constraints. Therefore,
the lightweight RFF identification is an interesting axe of this PhD. The lightweight
identification is a vast subject and different levers can be used to improve the embedded
characteristic. For example, to obtain the result of previous chapters, a GPU has been
used. However, in most IoT contexts the devices can only embed a CPU. Therefore having
an identification solution working on a CPU can be interesting. For DL techniques, it is
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possible to realize the training part on GPU and then use a CPU for inference. However,
in a dynamic context where transmitters appear or disappear, we can imagine that having
a retrainable network in real-time can improve the accuracy of classification. That is why
having a light network to implement it on a CPU is needed. The next section presents
the second major contribution of this PhD, which addresses the complexity issues by
proposing to use TPG instead of CNN for the RFF identification.

7.2 Efficient RFF Identification with Tangled Pro-
gram Graph

The lightweight TPGs are a recent light-by-construction ML technique based on ge-
netic programming principles [101]. Previous works demonstrated that for comparable
performance with a SoA of DL, TPGs inference required 2 to 3 orders of magnitude less
computations complexity, and 3 to 5 orders of magnitude less memory [50].

7.2.1 A brief introduction of TPG

Introduced in 2017, TPG is a successful Reinforcement Learning (RL) model [51] that
is built on SoA genetic programming techniques. Unlike neural networks whose topology is
generally chosen by an expert data scientist, TPGs are grown from scratch for each learn-
ing environment, and their topology and computational complexity adapt automatically
to the complexity of the learned task. TPGs have proven to be competitive with SoA
neural networks, providing several order of magnitude improvements in computational
complexity and memory requirements on various use cases, with gains at both training
and inference [50].

RL, presented in Figure 7.1, is based on an agent that observes the environment
and makes actions to change the state of the environment. As these actions change the
environment, the agent will propose other actions based on a reward and new observations.
A TPG is structured as a directed graph whose vertices and edges, called teams and
programs, respectively, specify a control flow of an RL agent, and not a data flow as in
neural networks. The control flow of the TPG stems from its root vertex, each time a
new state of the learning environment is observed. All programs associated with outgoing
edges of the root team are executed with the current state of the environment as their
input. An example of TPG and the semantics is given in Figure 7.2.
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Figure 7.1 – Reinforcement learning principle.
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Figure 7.2 – Semantics of the TPGs.

A program is a genetically evolved assembly sequence of instructions taking as inputs
the different variables exposed by the environment, here the IQ samples, and returning a
single value, called a bid, per program. The programs are composed of basic instructions
such as the addition and the multiplication of time domain signals to analyze. Once all
programs have completed their execution, the edge associated with the largest output
bid is identified, and the execution of the TPG continues following this edge. Eventually,
the edge with the largest bid leads to a leaf vertex, associated with a specific action of
the RL agent on the environment. After this action, the RL agent can observe again the
environment.

The training process for TPG is not based on gradient descent, like DNNs, but on a
genetic algorithm. The genetic algorithm is a bio-inspired optimization algorithm, based
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on a randomly generated population of learning agents. An initial graph is randomly
created with different roots where each root represents a different policy, here a policy
corresponds to a classification. Each learning agent observes the environment and takes
an action following the above description. Then, after objective evaluations which affect
some rewards to each individual policy, the algorithm selects the roots associated with
the greatest rewards and removes the other ones from the graph. The best ones are
used to create a new population of root teams, which are introduced in the graph by
randomly copying and mutating surviving ones. This new population corresponds to a
new generation in Figure 7.2.

The TPG is grown from scratch, along all generations, for each learning environment,
and complexity is added to the model if it leads to a greater reward. This makes the
complexity of the TPGs dependent on the complexity of the learned task [52, 51].

7.2.2 TPGs for RFF classification

Despite being initially proposed for RL, TPGs are also used for classification. In this
case, an Action represents a class membership decision. For example, TPG-based classi-
fication applied on the CIFAR-10 dataset achieves interesting results [101].

TPG-based classification leads to a similar framework as the one described in Fig-
ure 2.18. The network is the TPG, the update phase is done by a genetic algorithm and
an iteration corresponds to a generation. The inputs of TPG for each prediction are a
set of 256 IQ samples as with DL. At each generation, each root of the TPG takes 600
random sequences of 256 IQ samples in input. The reward is based on the F1 score which
is calculated on the 600 sequences.

The genetic update of TPG could create a solution where one class is not classified
[101]. Because the global accuracy or F1 score is given as a reward, this may hide disparities
between classes, with a class being perfectly detected all the time, and another never. That
is why the TPG update, in the classification case, changes to conserve at least one sub-
graph per class [22]. In this work, we use the Gegelati tool to implement TPG [22]. In the
implementation used throughout our experiments, the natural selection process has been
modified as follows. When selecting the n best roots that survive for the next generation
of the training, p% of the roots are selected based on their averaged F1 score on all m

classes, while the other (100 − p)% are selected for their F1 score on a single class. In this
work, p = 10% is used.
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7.2.3 Timing and accuracy comparison in a favorable scenario

In this section, the performance of both TPG and CNN are compared. Both algorithms
are trained on the CPU of a core Intel i7-8850H @2.60GHz with 6 cores and 12 threads and
with SSE4.2 and AVX2 extensions. The CNN is also trained on a GPU NVIDIA Quadro
P1000. The TPG is not implemented on the GPU as its non-symmetric structure is not
suitable for such architecture. The WiSig database, introduced in Chapter 3, offers many
degrees of freedom such as: the day of capture data, and receiver (positions and references).
In this experiment, data are received on day 1 by the receiver Rx1 for both the training
and test phases. It corresponds to a favorable scenario for training and identification
because the receiver is the same for all signals and the relative position is different for all
transmitters. Moreover, the testing scenario is the same as the learning one and the data
are equalized.

Tables 7.1a and 7.1b give the confusion matrices obtained with the TPG [22] and
the Sankhe_2020 CNN presented in Chapter 3, respectively. The rows of the confusion
matrix are the true labels while the columns are the labels estimated by the network.
The numbers represent the percentage obtained for each case. Those matrices show the
capacity of TPG to learn radio labels correctly. Table 7.1a allows to validate the correct
functioning of TPG. Both confusion matrices are very similar.

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 96 1 0 1 0 2
Tx2 0 93 0 7 0 0
Tx3 0 3 95 0 0 2
Tx4 1 3 0 96 0 0
Tx5 0 0 1 0 99 0
Tx6 0 0 0 0 0 100

(a) TPG

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 100 0 0 0 0 0
Tx2 0 87.5 0 12.5 0 0
Tx3 0 30 70 0 0 0
Tx4 0 0 0 100 0 0
Tx5 12.5 0 0 0 87.5 0
Tx6 0 0 0 0 0 100

(b) CNN

Table 7.1 – Comparison of confusion Matrix obtained with CNN and TPG for training
and test in same conditions with equalized data.

To compare those results in terms of timing, Figures 7.3 give the F1 scores during the
training phase as a function of time for different batch sizes. The batch size corresponds
to the number of signals used to take a decision and update the classifier: the network or
TPG. The yellow triangles represent the F1 score of TPG during the training phase on
the CPU, each triangle represents a generation with only one update. For a batch size of
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(c) Batch size = 600.

Figure 7.3 – Time evolution of the F1 score of the different networks on different hardware,
for different batch sizes.

64 signals which means 64 signals per generation for TPG, the convergence is not stable
compared with 600 signals in a generation. The blue triangles represent the evolution of
the F1 score for the CNN learning phase on the CPU while the blue squares correspond
to the F1 score of the CNN using the GPU, each symbol corresponds to the F1 score
value after an epoch or a generation, depending to the batch size the number of update
by epoch change. When considering CPU, the TPG exhibits an important speed-up when
compared to the CNN. Its speed is very close to a CNN training on a GPU with two
advantages (i) the learning can be done on a platform without the GPU accelerator with
similar speed (ii) the energy consumption is reduced as only the CPU is used for the TPG.
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This analysis shows similar performance between TPG and DL. In the rest of the
section, we analyze the behavior of TPGs with different propagation channels. A brief
study of the impact of the receiver is proposed in Appendix C.

7.2.4 Environment impact on TPG classification

The impact of environmental change on classification accuracy is now evaluated on
TPG. In this part, the only changing factor is the day of the emission. The locations of
transceivers do not change, so the propagation channel should not change either. However,
the transceivers are not in a controlled room, so 3 factors can affect the RFF:

— The environment channel: the transceivers are not in an anechoïc chamber and
interference signals may alter the quality of the labeled database.

— The environmental conditions: the ambient factors such as humidity or temperature
are not controlled in the room and can impact the performance of the components
and change the distortions.

— The RFF modifications over time: the days of capture signals are distributed over
one month so the component degradation could impact the RFF of the devices.

Table 7.2a gives the average accuracy for a test, realized on signals from days 2, 3 and
4, whereas the training is realized with signals from only day 1. The TPG obtains 56% of
mean accuracy, with a perfect recongition of certain transmitters such as transmitters 1,
4 and 5.

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 77.4 20.0 0.0 1.0 0.4 1.2
Tx2 2.7 40.8 0.0 56.5 0.0 0.0
Tx3 6.2 29.7 7.5 0.0 25.3 31.4
Tx4 2.1 17.3 1.1 79.5 0.0 0.0
Tx5 0.4 0.0 0.4 0.0 99.2 0.0
Tx6 0.6 3.1 56.4 3.7 4.3 31.9

(a) Train with day 1 and test with different
days.

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 100 0 0 0 0 0
Tx2 1 60 21 18 0 0
Tx3 3 1 17 1 7 71
Tx4 0 0 1 99 0 0
Tx5 0 0 1 0 99 0
Tx6 0 11 0 0 0 89

(b) Augmented days training and test on day
1.

Table 7.2 – Confusion Matrix obtained with TPG.

The confusion matrix shows how difficult it is to generalize the training with other
environmental conditions, as the conclusion done with neural network in Chapter 2. To
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mitigate this problem a common process used with neural networks is data augmentation
to present many different environmental conditions to the network [102]. With this aug-
mentation, the network should learn the RFF without the implication of the environment.
The augmentation can be realized physically or virtually. For physical augmentation, the
number of experiments is increased to create more environmental conditions. Here, the
database offers the possibility to physically augment the training dataset thanks to the
different days captured. Data from days 2, 3, and 4 is used for training and the test is
realized on day 1.

Table 7.2b gives the accuracy results achieved with data augmentation. It shows that
TPG is able to generalize the identification and achieve 77% of mean accuracy for the new
day. The comparison with Table 7.2a shows that physical data augmentation is interesting
for RFF classification, especially with environments where variations may occur.

7.2.5 Study the behavior on WiSig

We propose to realize the same study as the one presented in Chapter 2 with the
WiSig dataset. The TPG is trained with the dataset of a particular day and tested with
each day dataset. Tables 7.3 show the mean error classification accuracy obtained for each
situation, with no equalized data in Table 7.3a and equalized data in Table 7.3b. The rows
represent the training day and the columns represent the testing day. These experiments
aim to show the ability of the TPG to perform classification when the situation is not
the same, and the error classification is given in the tables. The TPG cannot reach 98
or 99% accuracy in training with no equalized data and reached around 60% to 70%.
With equalized data, the TPG reached 95% to 98% of accuracy in training. Compared
with results obtained in Chapter 2 with the networks, the TPG obtained worse results,
with both equalized and no equalized data. The mean error accuracy for no equalized
data was 24% while TPG obtained 49%. For equalized data, Sankhe_2020 obtained 16%
of mean error accuracy while the TPG obtained 29%. However, using mean accuracy to
evaluate the TPG tends to mitigate the interest of TPG because as shown in Table 7.2a,
some transmitters are correctly classified and some others are totally misclassified. This
is probably due to the non-symmetric characteristic of the TPG. To conclude a 50% error
in Table 7.3 can be obtained with 90% of classification for 3 transmitters and around 10%
for 3 others.
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Train

Test day1 day2 day3 day4

day1 31 54 58 61
day2 65 42 50 57
day3 57 45 31 43
day4 60 51 49 36

(a) TPG no equalized data.

Train

Test day1 day2 day3 day4

day1 5 43 40 33
day2 48 1 43 49
day3 52 29 2 32
day4 39 20 34 1

(b) TPG eqalized data.

Table 7.3 – Mean error accuracy in percentage obtained for different days in test and train
with WiSig Database.

7.2.6 Conclusion

This section proposes to use a new machine learning technique called TPG to identify
devices with RFF recognition. The results show a fast F1 score progression of TPG during
the training phase on the CPU. The progression is very close to the F1 score progression
of SoA CNN on the GPU. In the second part, TPGs are used to assess a deep analysis
of the chosen database and interpretations of the impact of the propagation channel. The
analysis concludes with the negative impact of changing captured conditions between the
training and test phases for identification. We present the interest of physical data aug-
mentation to be able to identify the transmitters in different situations. The augmentation
has to be on different days and proposes different realistic configurations that we can have
in the inference phase. Finally, a study is proposed to compare the network and TPG on
the WiSig database and allows to conclude on the need to adjust some hyperparameters
of TPG. Other studies are provided in Appendix C and has been published in [13].

7.3 Prunning Neural networks

This section presents the study realized during a master research around pruning.
DL is often associated with high computational and memory requirements, which can be
challenging for embedded systems. To obtain low complexity models, various compression
methods have been explored, such as bit quantization [32], transfer learning [53], and
network pruning [39, 41]. Over the past 5 years, the use of pruning to reduce complexity
has increased significantly. Pruning was introduced in 1989 by LeCun et al. in [57] to
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decrease the complexity of learning models by selectively eliminating network elements
with the least influence on the model performance. The ratio of neutralized weights is
called sparsity. There are several network pruning techniques, which are presented in the
next subsection.

7.3.1 Prunning Definition and Methods

A. Definition

Pruning is based on the observation that a network naturally contains too many pa-
rameters and has many redundancies, wasting space and computation. Pruning takes its
name from botany, which involves removing branches from a plant. Thus, pruning a neu-
ral network involves removing certain parts of the learning network, whether neurons or
filters, to make our algorithm lighter and faster. This method also has the advantage
of generalizing the problem and limiting the overfitting effect. The brain has a similar
behavior: during the growth period, neurons multiply, and then with age, they diminish,
leaving only the most efficient connections. The aim is, therefore, to deconstruct a network
as much as possible, as shown in Figure 7.4, where on the right side some connections
and neurons have disappeared, without losing the expected performance. This raises the
question of whether it is preferable to design a lightweight network directly, or whether it
is preferable to make a large network and reduce it using pruning methods.

Figure 7.4 – Pruning example on FNN.

Let N = {(W k, Bk), k ∈ J1, KK} be a convolutional neural network consisting of K

layers, with each layer k defined by a weight matrix W k representing the weights and a
bias vector Bk representing the biases. For simplicity, the individual weights are referred
to as wj. We define N as the total number of parameters present in network N . During
the pruning, the ratio of weights set to zero is called sparsity and the desired sparsity is
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called r. A mask M = {(MW k , k ∈ J1, KK} is considered for the network N . The matrices
MW k have the same dimensions as W k.

mwj
refers to the mask value for a given weight wj, they take the value 1 if the weight

of the network is to be kept and 0 if it is to be pruned. We define the pruned network as:

Nr = {(W k ⊙ MW k), k ∈ J1, KK}, (7.1)

with ⊙ for element-wise multiplication. We then express the sparsity r as:

r = 1 − 1
N

×
∑

wj∈N
mwj

. (7.2)

The number of biases in a neural network is negligible compared to the number of
weights. Therefore, they are ignored during pruning.

There are various pruning methods. It is possible to prune entire filters or neurons, or
more finely, by removing certain parts of the filters or certain neuron weights. Moreover,
three different pruning configurations exist:

1. Prunning: This simply involves removing the weakest weights from the network.

2. Prunning and re-training: The pruned network is recovered and then trained
again.

3. Iterative pruning: This method, illustrated in Figure 7.5, consists of training a
network, then pruning and re-training the network several times.

Training Pruning Training

Figure 7.5 – Iterative pruning.

Training after pruning allows the network to reposition itself on the remaining weights
while exploiting the strongest connections already formed during the initial training. Neu-
rons whose connections have all been removed must also be deleted. These neurons are
considered to be inactive or ‘dead’, so they will have no contributions to make to the rest
of the network.
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B. Unstructured pruning - Weight pruning

One of the most common pruning methods is unstructured pruning. This approach
involves removing weights from individual items which generally have the lowest values.
This can be done either on the whole network or layer by layer.

a. Global approach

Introduced by Han et al. [39] in 2015, this pruning method involves removing the least
useful weights across the entire network, independently of layers. To apply this method
in this work, we remove weights using the following method:

1. Selection of a threshold value.

2. Choose a norm (L1 or L2 norm) or a criterion, presented in the next subsection.

3. Delete all weights in the network whose norm is less than the threshold value.

b. Local approach

Another method of pruning called the ‘layer approach’ or ‘local pruning’, exists and
involves pruning layer by layer rather than the whole network, as in the previous ap-
proach. Each layer is subject to an individually defined threshold. This approach has the
advantage of maintaining a regular and balanced network structure, which preserves the
quality of predictions. In addition, a balanced structure can facilitate parallelization of
the calculation, which can speed up data processing.

c. Criteria for unstructured pruning

To be able to prune, it is necessary to define a criterion. This criterion consists of
defining a score S or a rule to select the weights to be removed. Here we only presented the
criteria used in this study which are data-independent criteria described in the literature:

Random This criterion involves randomly removing weights across the network.
L1 norm Also known as the magnitude norm, this norm focuses on removing weights

with the smallest magnitude [39].

S(wj) = |wj|. (7.3)
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LAMP This criterion is a magnitude-based criterion that can be applied globally to
the network [58]. It takes into account the relative magnitude of each weight within a
given layer W k. For wj ∈ W k:

S(wj, W k) = (wj)2∑
wi≥wj ,wi∈W k

w2
i

. (7.4)

SynFlow This criterion [105] is sensitivity-based. It evaluates the weights based on
their sensitivity when subjected to a loss function with input data consisting of ones.

S(wj, g(wj)) = |wj × g(wj)|. (7.5)

Here, g(wj) represents the gradient value obtained when a loss function is calculated as
the sum of all the outputs, given input data consisting entirely of ones, for the network
under study with all its weights considered in absolute value.

All criteria outlined here are meant to be applied with global pruning, implying that
weight removal is determined by their scores across the entire network, regardless of their
specific locations within the network. However, some norms can also be used for local
pruning, which means that we prune each layer with the desired sparsity ratio separately.
Local pruning means that all layers will undergo pruning with the same ratio.

C. Structured pruning - Pruning neurons and filters

It is also possible to perform structured pruning. This pruning method involves re-
moving not weights, but neurons, filters or whole organized parts of filters (rows, columns,
blocks) [89, 49]. While this method ensures that the structure of the network is preserved,
it generally results in a greater deterioration in performance than unstructured pruning.
For this reason, this method will not be studied in this document.

7.3.2 SoA Prunning applied to RF identification

Jian et al. [49] propose a CNN and a pruning method that uses the Alternating Di-
rection Method of Multipliers to identify devices with their RF signature. They choose
to prune only the convolutional layers, justifying this choice by the fact that these are
the most computationally demanding parts. This article takes as an example a variant
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of ResNet called ResNet50-1D. Wang et al. [113] propose a pruning strategy to perform
local pruning as defined above, followed by 5 epochs of re-training. Using this method,
the authors obtain a reduced model size of 93.5% of sparsity.

The common approach of the SoA involves retraining, demanding substantial data and
extensive computational resources. To address this, we use data-free pruning, offering a
solution to reduce the size of neural networks while preserving the network identification
capabilities without the need for additional computational and memory resources for data
processing. Moreover, the article [49] does not explore the behavior of the network in an
ever-changing environment. Yet, the primary goal of RFF identification is to recognize
devices in different environments, requiring the network to identify devices across various
time periods and contexts. We name this capacity resilience.

7.3.3 Pruning-based identification system overview

We consider a scenario where multiple transmitters are interacting with a single re-
ceiver. The signals emitted by the different transmitters are received and collected to
construct a database. This database is then used to train a classifier with the objective of
identifying all transmitters independently. Once the network is trained, it is transferred
to the receiver device. However, as introduced in Figure 7.6, we propose an additional
processing step after the training phase, involving the pruning of the network. While
various pruning techniques can be employed, we specifically examine data-free unstruc-
tured pruning. Sparse networks, together with the acceleration and memory optimization
techniques [100], are promising. Once the network has undergone pruning, it is used in
the receiver system, as depicted in Figure 7.6. Our goal is to attain the highest level of
network sparsity, while preserving its accuracy performance, without utilizing data for
the pruning operation and by preserving resilience.

A. Datasets

The datasets used in this study are Oracle and WiSig, introduced in Chapter 2. For
each dataset, two distinct scenarios are defined, designated as Scenario 1 (S1) and Scenario
2 (S2). The datasets are described in Table 7.4. The signals from Scenario 1 are extracted,
shuffled, and divided into training and testing datasets (90% assigned to training and 10%
assigned to test). The signals from Scenario 2 are employed as a second test (test S2). We
define resilience as the network ability to perform with data that is either recorded at a
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Figure 7.6 – Integrating pruning in RFF identification process.

different time or in a different context than the data it was trained on, here the resilience
is measured with S2.

Database WiSig - ManySig [40] ORACLE [92]

Description Recordings on 4 days over a
month.

Signals recorded from 2ft to 62ft
with two runs per location.

Transmitters 6 - Atheros AR5212/AR5213 16 - USRP X310
Signals 1000/day/Tx 4000/Tx/location/run

Scenario 1 Day 1 no equalized Run 1 - 2ft
Scenario 2 Day 2-3-4 no equalized Run 2 - 2ft

Table 7.4 – Summary of RFF identification datasets and scenarios chosen.

B. Convolutional Neural Networks

We chose to observe the performance of a reference architecture used in previous chap-
ters, Sankhe_2020 [91] and a particularly lightweight network Hanna_2022 [40] presented
with the WiSig dataset. It illustrates that networks of fundamentally different complexity
can follow a similar methodology for complexity reduction. We give them the same raw
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IQ signals in the time domain as input with dimensions of 256×2, representing 256 times
samples across two channels (I and Q channels). With these inputs, Sankhe_2020 and
Hanna_2022 respectively have 1 232 774 and 39 778 parameters for the classification of
six transmitters.

C. Methodology

For reproducibility and representativeness, all experiments are performed on 5 fixed
seeds. Each seed has an impact on both the train-test split and the weight initialization. All
networks are trained on data from S1 (training dataset) and tested on S1 (testing dataset)
and S2. Networks are evaluated on their macro F1 Score (expressed as a percentage).

D. Pruning algorithm

In this work, two different pruning are implemented and tested: local and global. In
local pruning, a mask is first created with the same dimensions as the weights for each
dense or convolutional layer, with all weights initially set to one. For each layer, scores are
computed for each weight. To achieve the desired sparsity level, we calculate the number
of weights that should be set to zero. This requires selecting an appropriate threshold and
then setting the masks for weights with scores lower than the threshold to zero. After
applying pruning to all layers, an element-wise multiplication of the weight matrices with
their respective mask matrices is performed.

In global pruning, the methodology is similar. However, the weights are not removed
on a per-layer basis, instead, the specified number of weights with the lowest scores are
eliminated, regardless of their position in the network.

7.3.4 Experimental study

A. Training behavior

In this section, we examine the performance of the networks during training, using
the Adam optimizer, a loss scheduler, diminishing of 10% the loss value every 10 epochs,
and cross-entropy as the loss function. Networks are trained for 200 epochs with an early
stopping if the loss does not decrease for 10 epochs. At the end of each training epoch, we
evaluate the F1 Score of the networks on two different sets of datasets: Scenario 1 (S1)
and Scenario 2 (S2).
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7.3. Prunning Neural networks

The mean, minimum, and maximum F1 Scores of both CNNs for the different databases
are shown in Table 7.5. The best results between Sankhe_2020 and Hanna_2022, for each
scenario and dataset, are underlined.

Scenario Mean Min Max Mean Min Max

Sankhe_2020 Hanna_2022
WiSig [40]

S1 99.73 99.34 100.0 99.57 99.02 99.85
S2 58.55 51.47 69.32 56.98 49.23 72.75

ORACLE [91]
S1 99.92 99.67 100.0 98.35 97.36 99.55
S2 29.70 26.26 32.89 26.40 25.10 27.67

Table 7.5 – Networks F1 Scores on the different datasets, without pruning.

a. Disparity between datasets and networks

While both networks perform similarly on S1, their performance on S2 varies sig-
nificantly. The second scenario can be very different from the first, particularly for the
Oracle database where the location of the transmitters is not fixed, which reduces the
resilience of the network. More precisely, Sankhe_2020 outperforms Hanna_2022 across
both databases due to its greater depth and parameter count, allowing it to handle more
complex data. Despite Hanna_2022 having significantly fewer parameters, its classifica-
tion performance remains strong.

b. Variability and Resilience

Hanna_2022 exhibits greater variability than Sankhe_2020 across different seed val-
ues, particularly in resilience testing with S2. While Hanna_2022 often shows lower
minimum scores compared to Sankhe_2020, some Hanna_2022 realisations outperform
any achieved by Sankhe_2020. This variability mainly originates from the initial ran-
dom network weight values rather than the test/train data distribution, indicating that
Hanna_2022 higher dependence on initialization is due to its fewer parameters. Conse-
quently, some Hanna_2022 implementations may exhibit superior resilience compared to
any Sankhe_2020 networks.
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The choice of network architecture is crucial for RFF identification and should be made
carefully. While larger networks may offer greater reliability and adaptability, smaller
networks can enhance resilience at the expense of increased instability and slightly lower
performance in the first scenario. In the next section, we will delve into pruning as a
method to reduce network complexity while maintaining performance.

B. Pruning behavior

In this section, different pruning approaches are applied on both networks with differ-
ent criteria and the performance of the network after pruning is evaluated thanks to the
databases.

Performances and sparsity

The previously trained networks (see Table 7.5) are pruned at different sparsity levels
from 0.05 to 0.95 in 0.05 increments with the LAMP criterion. These pruned networks
are then evaluated on both S1 and S2 over all 5 seeds.

The behavior of Sankhe_2020 and Hanna_2022, pruned at different sparsity with
the LAMP criterion, are shown in Figure 7.7a and Figure 7.7b on S1 and Figure 7.7c
and Figure 7.7d on S2, respectively. The average of the five seeds was plotted for all
pruned networks, with the minimum and maximum F1 Scores achieved for each sparsity
displayed in transparency. The observations for the LAMP criterion remain valid for the
other criteria. A study which taking into account all the criteria mentioned above is
presented in Appendix D.

The two CNNs trained on the datasets exhibit different behaviors. Indeed, as the
dataset becomes more complex, involving numerous transmitters across various locations
and time points, the less the network is able to be sparse with unstructured pruning, as
can be observed in the ORACLE datasets. Moreover, it can be observed in Figure 7.7a
and Figure 7.7b that Sankhe_2020 is capable of handling a higher degree of pruning than
Hanna_2022. This is due to the fact that Sankhe_2020 has more parameters and a greater
depth. Finally, Figure 7.7c and Figure 7.7d demonstrate that unstructured pruning, when
maintaining the F1 Score on S1, preserves both the original resilience and variability on
S2, as was found in Table 7.5.
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(b) Hanna_2022 for S1.
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(c) Sankhe_2020 for S2.
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Figure 7.7 – LAMP pruning on different datasets and different networks.

7.3.5 Conclusion

This section proposes the application of unstructured pruning to compress CNNs with-
out retraining, resulting in sparse networks for RFF identification. A comparison of two
networks, Sankhe_2020 and the lightweight Hanna_2022, across two different databases
reveals notable differences. Sankhe_2020, with a deeper structure, exhibits greater sta-
bility across various seeds, while Hanna_2022 instability leads to high-performing real-
izations only on some seeds.
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The study demonstrates that unstructured pruning can achieve sparsity levels ranging
from 0.35 to 0.60 without compromising the F1 Score or resilience. However, the choice
of the initial network significantly impacts the pruned performance.

Further investigation into iterative pruning may prove beneficial in enhancing both
F1 Score and sparsity levels. While this method requires training data, it mitigates the
criticality of the initial network structure and enhances classification accuracy. This work
will be published in set [7].

184



Chapter 8

CONCLUSIONS AND PERSPECTIVES

8.1 Conclusions

RFF identification is an emerging physical layer authentication technique that can be
used to detect spoofing and distributed denial of service attacks. This method uses the
electromagnetic signature of the device in the form of imperfections in the transmitted
signal to recognize the device. These identification solutions can be particularly used
in the IoT context to reduce the risk of spoofing or to reduce the complexity of the
identification process in the transmitter side. RFF identification can be used for different
application contexts, attack, defense, or monitoring. There are two types of methods:
parametric-based solutions and deep learning-based solutions. This thesis focuses on the
DL solutions and the link between the network performances and the training dataset.
In particular, the impact of the propagation channel and the bias in the database are
considered and studied.

Firstly, this thesis introduces a virtual database generator RiFyFi_VDG based on
wireless transmission and RFF models included in a flexible framework RiFyFi for RFF
identification. An exploration of the database design for RFF identification with DL is
proposed. This exploration considers the similarity between the RFF of transmitters, the
transmission scenario, and the number of signals. Our analysis shows the impact of the
similarity between RFF transmitters on the network convergence speed and the F1 score
performance in a preamble context. A very large number of signals per transmitter is re-
quired when the RFF similarities between transmitters are strong or in a payload context,
so having similar RFF devices can be a countermeasure to avoid RFF identification. The
virtual database generator can help to pre-evaluate the required database design with a
lot of flexibility, as shown by changing the OFDM modulation to a single carrier modula-
tion. The RiFyFi is an open-source tool available at [11]. The RFF models allow to have a
better understanding of RFF identification. However, it is also interesting to use real data
to confirm our hypothesis and the findings obtained thanks to virtual data. Based on our
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results obtained with virtual data, we propose six scenarios of increasing difficulty. The
study shows that the use of payload data in training improves the classification accuracy
and the resilience of the network for other scenarios, with the still open perspective on
pre-processing for harsh transmission scenarios.

The second theme of this PhD is to reduce the complexity of identification solutions.
We propose to use a new machine learning technique called TPG, which is a reinforce-
ment learning based on genetic programming techniques, to identify devices thanks to
their RFF. The TPG-based classification allows to achieve a lightweight and accurate
identification. The results show a fast F1 score progression of TPG during the training
phase on the CPU. The progression is very close to the F1 score progression of the SoA
CNN on the GPU, which means that this machine-learning technique is promising for RFF
identification. Finally, SoA pruning techniques have been applied two SoA networks, with
different criterion to reduce the complexity of the networks by removing some weights. The
study is conducted on two experimental SoA databases and shows that the complexity of
the network can be divided by two depending on the initial size of the network.

8.2 Perspectives

During this thesis, several doors opened up thanks to discussions and seminars, some of
which will be interesting to explore in future works. The identification of RFF poses several
problems depending on the application context considered. As a reminder, this thesis is
funded by the DGA, so the most interesting application contexts are defense. For example,
one goal may be to identify a suspicious device among many others to detect a potential
intruder. The RFF can be used to detect a class of similar devices, the RiFyFi_VDG is a
great tool for experiments in this context without the need for many similar transmitters.
However, our experiment shows that we need to improve the classification accuracy in
noisy contexts, which is the first long-term contribution of this thesis that is considered.
In the second time, it could be interesting to use transfer learning to improve classification
accuracy. Then, the RiFyFi_VDG gives the opportunity to create a digital twin of a device
to improve the reality of our synthetic data. Finally, from a practical point of view, the
RFF identification system needs to be embedded in a laptop, for example.
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8.2.1 How mitigate the propagation channel effect with signal
pre-processing? (long-term)

Some recent SoA papers suggest pre-processing the data before using the neural net-
work. This pre-processing can help to extract a particular impairment. For example, in
Chapter 2, IQ imbalance extraction was mentioned thanks to DCTF [73] and PA extrac-
tion thanks to density trace figure [60]. Our experience with RFF identification has shown
that it is very difficult to overcome a lack of power or a noisy scenario. In particular, the
differences obtained between virtual and experimental data show the difficulty of detect-
ing the RFF with the neural network. In this future work, different methods have to be
explored, such as specific pre-processing to extract impairments and non-specific methods
to improve the network classification even in a blind context. This work can be considered
as long-term, as it requires the extension of the SoA to the signal pre-processing and can
be a future PhD topic.

8.2.2 Using RiFyFi for Transfer learning (middle term)

The ideal scenario for DL involves having a large amount of labeled training data that
matches the distribution of the test data. However, collecting enough training data is ex-
pensive, time-consuming, or even unrealistic. Transfer learning offers a promising solution
by focusing on transferring knowledge across different domains [125]. This concept, which
may have its roots in educational psychology, is supported by C. H. Judd generalization
theory of transfer. According to Judd, transfer learning results from the generalization
of experience. He suggests that as long as a person can generalize their experiences, it
is possible to transfer knowledge from one situation to another. A key prerequisite for
this transfer is the presence of a connection between the two learning activities. It could
be interesting to perform transfer learning thanks to the digital twins RiFyFi_VDG and
observe the performance and the learning capacity obtained on experimental data. For
example, the network could be first trained using signals from several virtual devices and
then retrained using signals from experimental devices.
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8.2.3 Build a digitals twins of our experimental setup (middle
term to long term)

The SoA of parametric-based identification gives us several ways to extract and esti-
mate impairments. These techniques could be used to extract the different impairments
of the transmitters used to create our real database, such as the CFO, the AM/AM of the
PA, and the gain and phase for IQ imbalance. Then RiFyFi_VDG can be parametrized
to create the digital twins of our emitters, especially in a context where the access to
the device is reduced. It could be interesting to try an attack scenario by capturing the
signal of the targeted devices. Then it possible to estimate the different impairments for
each device and use RiFyFi_VDG to create a virtual database of emitters and train a
network on this database. After that, the network can be used to identify the device in
a real context. In the middle term, the inference will be performed in an ideal situation
with a wired connection, and then in a real situation.

8.2.4 Lightweight opportunities (short term)

The lightweight solutions presented in this PhD are the main perspectives considered
for future work in the short term. In fact, the PhD of Emma BOTHEREAU has begun
at IRISA Laboratory in GRANIT team in october 2023 on frugal learning for RFF with
lightweight aspect. The idea of this future work is to evaluate the capacity of numerous
classes of light or heavy network to perform RFF identification, with resilience capacity
when the scenario of the test is different from the training one. Then a perspective could
be to implement a network or a light ML solution like TPG on the embedded system to
perform the learning or only load the train network on an embedded system.

Finally, in future works, the energy consumption of different network architectures will
be compared during the training phase and inference, on different hardware architectures,
CPU, GPU or FPGA. This work could be interesting to evaluate the frugality of a network
and to compare identification solutions in the context of embedded solutions.

8.2.5 System approach (long term)

Finally, the combined perspectives of this thesis point to a civil or military system
with a compromise between security level and energy consumption. Because it is diffi-
cult to create a labeled database, it could be interesting to label signals thanks to data
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decoding. In this case the devices have to transmit a known sequence, for example with
preamble and MAC address. At the receiver side, the sequence is decoded to label the
signal and an estimation of the impairments is done thanks to the preamble sequence. The
impairments parameters can be used to create a virtual database thanks to RiFyFi_VDG,
this database is used to train the network. Finally, depending on the application context
and the security/energy trade-off, two identification solutions are: double authentication
thanks to the MAC address and the RFF, or using only the RFF to reduce the information
transmission cost for the transmitter and thus the energy consumption.
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APPENDIX A

Deep Learning complexity

This short section section presents some elements to understand the complexity of the
neural network. We propose to evaluate the number of parameters and the number of
multiplications per layers.

Parameters: include all elements that are editable during the training step, such as
the values of coefficients of the filters, the weights, and the bias.

Multiplication: is the most expensive operation and the most common used in classic
and intensive DL. In a network, these multiplications are mainly found at the level of the
filters to carry out the convolutions as well as between the inputs of the neurons and their
associated weights.

Fully Connected Network

In fully connected layers the number of parameters and multiplication are calculated
as follows

Parameters:

Each of the m outputs is a neuron connected to the n input elements. Thus, for a
Dense layer, we have weights and bias for each combination between an input node and
an output node:

nbparametres = (n + 1) × m, (1)

with m the number of neurons and n the number of input elements.
Multiplications:

Each of the m output neurons has n connections to the inputs. We therefore have n

multiplications by neurons:
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nbmultiplications = n × m. (2)

Convolutionnal Neural Network

In convolutional layers, the number of parameters and multiplications are calculated
as follows

Parameters:
For a convolutional layer, each filter has its own bias. So the number of parameters is

nbparameters = (wf × hf × cf + 1) × N, (3)

with wf , hf and cf the size of the filter and N the number of filter.
Multiplications:

nbmultiplications = (wf × hf × cf ) × (wout × hout) × N. (4)

The max-pooling generates no multiplication, because this layer only compares the
elements to conserve only one.

Softmax layer

The Softmax layer projects the data into the interval [0,1].
Multiplications :

We have one multiplication by elements. So for a layer with N elements, we have

nbmultiplications = N (5)

We define a step or stride s (generally worth 1) as well as a filling or padding p. The
stride corresponds to the number of offset elements between 2 windows. Padding allows
you to add 0s around the image to change the size of the output image. We generally use
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the SamePadding option so that the output image has the same dimensions as the input
image.
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Figure 1 – Convolution with different strides and padding.
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APPENDIX B

RiFyFi parameter values

Below are presented the tables of all the parameters used in the various scenarios.

300Hz Tx1 Tx2
CFO 5% 285 315
CFO 2% 294 306
CFO 1% 297 303

CFO 0.5% 298.5 301.5

Table 1 – CFO values for different similarity scenarios.

p% Tx1 Tx2 Tx3 Tx4
g: 10% 1.350 1.650 1.350 1.650

Gain g: 5% 1.425 1.575 1.425 1.575
g: 3% 1.455 1.545 1.455 1.545
g: 1% 1.485 1.515 1.485 1.515
[0°;5°] 5° 5° 0° 0°

Phase [1°;4°] 4° 4° 1° 1°
[2°;3°] 3° 3° 2° 2°

Table 2 – Gain and phase impairments values for different IQ imbalances.

Tx1 Tx2 Tx3 Tx4
10−5 10−4 10−6 10−7

Table 3 – Phase Noise values.

193



p% parameter Tx1 Tx2 Tx3 Tx4
αAM 2.051 2.267 2.051 2.267

5% βAM 1.209 1.209 1.094 1.094
αP M 3.803 4.203 3.803 4.203
βP M 9.559 9.559 8.649 8.649
αAM 2.116 2.202 2.116 2.202

2% βAM 1.175 1.175 1.129 1.129
αP M 3.923 4.083 3.923 4.083
βP M 9.286 9.286 8.922 8.922
αAM 2.137 2.180 2.137 2.180

1% βAM 1.163 1.163 1.140 1.140
αP M 3.963 4.043 3.963 4.043
βP M 9.195 9.195 9.013 9.013
αAM 2.148 2.169 2.148 2.169

0.5% βAM 1.157 1.157 1.146 1.146
αP M 3.983 4.023 3.983 4.023
βP M 9.150 9.150 9.058 9.058
αAM 2.152 2.165 2.152 2.165

0.3% βAM 1.155 1.155 1.148 1.148
αP M 3.991 4.015 3.991 4.015
βP M 9.131 9.131 9.077 9.077

Table 4 – Values of impairments for different PA impairments.

Parameter 5% Tx1 Tx2 Tx3 Tx4 Tx5 Tx6
Imbalance g 1.425 1.455 1.485 1.515 1.545 1.575
Imbalance θ 0.000 0.017 0.035 0.052 0.070 0.087

CFO ∆f 285 291 297 303 309 315
PN σ2 10−7 0.950 0.970 0.990 1.01 1.03 1.05
PN σ2 10−4 0.950 0.970 0.990 1.01 1.03 1.05

PA αAM 2.051 2.094 2.137 2.180 2.223 2.267
PA βAM 1.094 1.117 1.140 1.163 1.186 1.209
PA αP M 3.803 3.883 3.963 4.043 4.123 4.203
PA βP M 8.649 8.831 9.013 9.195 9.377 9.559

Table 5 – Values of impairments for different all impairments.
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APPENDIX C

Study the influence of the training conditions for TPG

In this section, the impact of both the propagation channel and the receiver is ana-
lyzed. The WiSig database is well documented and contains information on the kind of
transceiver used, later denoted by reference. The key point is that all the receivers are
the same reference (SDR N210) except for two receivers: receivers number 4 (Rx4) and 9
(Rx9), represented by orange circles in Figure 3.6. To stress the impact of the receivers,
all training phases are realized with receiver Rx1.

Influence of the channel

The first analysis is done with signals from receiver Rx6. Receivers Rx1 and Rx6 are
one meter distance and they are the same reference. Hence, the channel propagation has
changed because of the distance between receivers and the RFF of the receiver has changed
a little because of the singularity of the two systems. Table 6a shows that our emitters are,
on average, correctly identified but the detection performance has been altered compared
to the ideal case exposed in Section V-B. Two conclusions can be drawn: Two receivers
from the same reference and with closed positions could be swapped during training and
test phases with an accuracy penalty with respect to the ideal case. It also proves that
different propagation channel between two devices from the same reference affects the
results or, in other words, that the network learns a part of the propagation channel.

We now propose to realize the same analysis with the test done on signals from receiver
Rx7. This receiver is the same reference as Rx1 and Rx6 but it is localized at the opposite
of the room. Table 6b shows that three emitters are correctly identified and the average
identification accuracy decreases in comparison with the results achieved by Rx6. The
main difference between the two receivers is the location. So in a dynamic context, for
which the channel propagation changes between training and test steps, the identification
capacity decreases. To mitigate this phenomenon, we propose a channel augmentation
using different receivers with the same reference. The confusion matrix 7 shows the result
of a training realized on signals from Rx1, 2 and 3 and a test done on signals from Rx5, 6,
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True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 75.0 8.5 1.1 8.1 2.7 4.6
Tx2 4.0 57.6 0.4 36.5 1.3 0.1
Tx3 1.2 11.9 0.6 0.5 5.4 80.4
Tx4 3.0 7.9 0.5 86.7 1.1 0.8
Tx5 1.4 0.1 3.8 0.5 94.2 0.0
Tx6 7.9 51.1 9.8 0.1 31.0 0.1

(a) RX 6

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 83.2 8.7 0.9 4.6 1.1 1.5
Tx2 2.5 62.5 0.2 34.3 0.3 0.2
Tx3 19.9 3.1 0.0 75.4 0.7 0.9
Tx4 0.3 99.3 0.0 0.3 0.1 0.0
Tx5 0.2 5.5 0.3 1.6 92.4 0.0
Tx6 24.3 31.3 0.8 41.1 2.5 0.0

(b) RX 7

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 15.4 12.2 24.4 19.6 16.0 12.5
Tx2 11.5 7.6 33.1 23.3 16.4 8.0
Tx3 4.4 4.8 69.9 11.9 7.9 1.1
Tx4 7.9 10.6 46.0 15.5 13.3 6.6
Tx5 6.0 7.1 41.2 22.1 19.3 4.2
Tx6 1.5 2.9 64.5 14.0 11.4 5.7

(c) RX 9

Table 6 – Confusion matrix obtained with TPG for test done with different receivers.

7 and 8. The results are clearly better with the augmentation. The TPG is able to identify
transmitters with other receivers in different locations but the same reference when the
training phase is done with a diversity of receivers and locations.

This result would be even better by enhancing the augmentation with data from Rx1
moving at more locations.

Influence of the receiver RFF

Finally, we realize the test on the signals from receiver Rx9 again with a training phase
on Rx1. Rx9 is close to Rx7 so we can expect a similar confusion matrix as in Table 6b".
The main difference between Rx7 and Rx9 is the reference of radio. Rx9 is B210 when Rx7,
1 and 6 are N210. Table 6c shows the results obtained with this configuration and shows
the incapacity to correctly identify the transmitter and in particular a strong performance
penalty with respect to Table 6b.
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True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 76.6 4.7 7.0 9.3 0.0 2.4
Tx2 7.9 65.3 10.6 14.2 0.3 1.7
Tx3 18.5 2.0 15.1 34.9 11.8 17.7
Tx4 5.6 69.9 5.6 17.7 0.2 1.0
Tx5 0.8 0.0 4.3 1.6 87.8 5.5
Tx6 7.7 0.3 11.3 1.2 2.6 77.0

Table 7 – Confusion Matrix obtained with TPG and augmented receivers training and
test on receivers 5 to 8.

Some key assets can be drawn here: even a slight modification of the propagation chan-
nel or the environment propagation may lead to an important drop in detection accuracy.
Physical data augmentation is thus required to keep good generalization properties. Be-
sides, we prove here that the receiver RFF has a tremendous impact on the capacity
to accurately classify a transmitter, even more than the propagation channel itself. It
shows the necessity to propose a diverse and extensive dataset that can be physically
augmented with a strong variety of propagation channels, environment characteristics,
and strong diversity in both transmitter and receiver references.
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APPENDIX D

Pruning performance across all criteria

This section, presents the performance across all criteria, presenting previously, con-
sidering three distinct experimentations:

i. Improving F1 Score on S1 through pruning,

ii. Achieving the highest pruning sparsity while maintaining over 99% F1 Score,

iii. Achieving the highest pruning sparsity while maintaining over 95% F1 Score.

All the criteria presented before are used in this section for global pruning. Exepted
the L1 criterion is also intended to be used for local pruning, so we will examine the L1
criterion for both local and global pruning.

For each experiment, we calculated the average value across all seeds for all criteria
to determine the highest level of sparsity possible. Table 8 presents the best criterion for
each experimentation with the F1 Score obtained on S1 and S2 and the sparsity of the
best configuration that answers to the experimentation objective.

The Local L1 criterion does not appear in the results table because the local criteria are
less effective than global pruning because it uniformly removes weights across all layers.
As the pruning ratio increases, layers with fewer parameters are quickly affected, leading
to a shortage of connections. Meanwhile, other layers still have many weights that can
be pruned without much impact on performance. The most interesting criterion seems to
be LAMP in our experiment context. First, we propose to compare the criteria and then
compare the networks.

LAMP vs SynFlow

Regarding global criteria, global L1 is less effective than both SynFlow and LAMP.
SynFlow performs better on Hanna_2022 than Sankhe_2020, likely due to the smaller
size of the network paired with the efficiency of gradient-based pruning, which seems to
be particularly effective on small networks like Hanna_2022. But, overall, LAMP proves
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to be the most effective criterion for both networks, allowing at least 35% pruning while
preserving 99% of the F1 Score.

To enhance the classification process (Experimentation 1), SynFlow appears to be a
better choice, as it enhances the F1 Score. Nevertheless, to reduce the number of active
parameters, i.e., to achieve higher sparsity (Experimentation 2 and 3), LAMP appears to
be the most suitable candidate for RFF identification.

Pruning improving F1 Score (S1)

On average, for Sankhe_2020, we have a F1 Score increase on S1 of 0.01% to 0.19%,
while for Hanna_2022, the increase is between 0.01% to 0.15% (compared to unpruned
networks, Table 7.5). Nevertheless, these gains are observed at low sparsity levels of only
0.05 to 0.10 for Hanna_2022 and 0.15 to 0.30 for Sankhe_2020.

Sankhe_2020 vs Hanna_2022

Despite Sankhe_2020 having more parameters than Hanna_2022, the sparsity that
allows to validate the same experimentation is often smaller for Hanna_2022. Despite
Sankhe_2020 being pruned up to 0.55 sparsity on the WiSig dataset in i experimentation,
Sankhe_2020 still retains 14 times more active parameters than the original Hanna_2022.

Impact of initial design and pruning process

The initial design of the neural network is crucial for achieving the desired F1 Score
and network size as all results are strongly correlated to the F1 Score of the original net-
work for both S1 and S2.

Unstructured pruning methods, without retraining, are consistent across all tested
datasets, showing that unstructured pruning is a viable method for reducing the number
of active parameters of RFF identification neural networks.
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Experimentation Criterion F1 Score S1 F1 Score S2 Sparsity r

Sankhe_2020
i LAMP 99.92 58.17 0.30
ii LAMP 99.50 53.63 0.55
iii LAMP 99.50 53.63 0.55

Hanna_2022
i Global L1 99.72 57.01 0.05
ii LAMP 99.41 54.41 0.45
iii LAMP 95.09 51.24 0.60

(a) WiSig

Experimentation Criterion F1 Score S1 F1 Score S2 Sparsity r

Sankhe_2020
i LAMP 99.93 29.35 0.25
ii LAMP 99.49 29.17 0.35
iii LAMP 96.08 29.73 0.50

Hanna_2022
i SynFlow 98.37 26.30 0.05
ii - - - -
iii SynFlow 95.21 24.75 0.35

(b) ORACLE

Table 8 – Mean F1 Score and Sparsity for Different Models and Criteria.
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Titre : Identification de dispositif sensibles par apprentissage de l’empreinte Radio Fréquence

Mot clés : Apprentissage automatique supervisé, empreinte RF,

Résumé : L’identification de dispositifs
dits sensibles est soumise à différentes
contraintes de sécurité ou de consommation
d’énergie, ce qui rend les méthodes d’identifi-
cation classique peu adaptées. Pour répondre
à ces contraintes, il est possible d’utiliser les
défauts intrinsèques de la chaîne de transmis-
sion des dispositifs pour les identifier. Ces dé-
fauts altèrent le signal transmis et créent alors
une signature unique appelée empreinte Ra-
dio Fréquence (RF). Pour identifier un dispo-
sitif grâce à son empreinte RF, il est possible
d’utiliser des méthodes paramétriques pour
extraire une signature qui peut être utilisée
par un classifieur, ou bien d’utiliser des mé-
thodes d’apprentissage telles que les réseaux
de neurones. Toutefois, la capacité d’un ré-
seau de neurones à reconnaître un dispositif

dans un contexte particulier dépend fortement
de la base de données d’entraînement. Dans
cette thèse, nous proposons un générateur
de bases de données virtuelles basé sur des
modèles de transmission et d’imperfections
RF, permettant d’étudier la robustesse d’un
réseau en fonction des donnée d’apprentis-
sage. Dans un second temps, nous proposons
de réduire la complexité de l’identification via
deux axes. Le premier consiste à utiliser des
graphes programmables intriqués, qui sont
des modèles d’apprentissage par renforce-
ment, basés sur des techniques d’évolution
génétique moins complexes que les réseaux
de neurones. Le second axe propose l’utilisa-
tion de l’élagage sur des réseaux de neurones
de la littérature pour réduire la complexité de
ces derniers.

Title: Sensitive Devices Identification through Learning of Radio Frequency Fingerprint

Keywords: Deep Learning, Radio Frequency Fingerprint

Abstract: The identification of so-called sen-
sitive devices is subject to various security or
energy consumption constraints, making con-
ventional identification methods unsuitable. To
meet these constraints, it is possible to use in-
trinsic faults in the device’s transmission chain
to identify it. These faults alter the transmit-
ted signal and create a unique signature called
the Radio Frequency (RF) fingerprint. To iden-
tify a device using its RF fingerprint, it is pos-
sible to use parametric methods to extract a
signature that can be used by a classifier, or
to use learning methods such as neural net-
works. However, the ability of a neural network
to recognise a device in a particular context

is highly dependent on the training database.
In this thesis, we propose a virtual database
generator based on transmission models and
RF imperfections, making it possible to study
the robustness of a network as a function of
the training data. Secondly, we propose to re-
duce the complexity of identification in two
ways. The first involves the use of intricate pro-
grammable graphs, which are reinforcement
learning models based on genetic evolution
techniques that are less complex than neu-
ral networks. The second involves the use of
pruning on neural networks from the literature
to reduce their complexity.
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