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Abstract

This thesis explores the challenges of conducting large-scale Computational Fluid Dynamics (CFD) sim-
ulations on modern High-Performance Computing (HPC) platforms, with a particular focus on Graphics
Processing Units (GPUs). We present novel strategies and optimizations that aim to push the boundaries
of current CFD simulation capabilities, particularly in the context of memory management.

We provide a foundational overview of fluid simulation methods and discuss the state-of-the-art methods
for managing high memory requirements. Building upon this groundwork, we propose a relatively sim-
ple yet effective single-GPU implementation that achieves satisfactory performance. We then extend this
implementation to a multi-GPU framework thanks to task-based runtime systems, such as PaRSEC and
StarPU.

In PaRSEC, we develop a new feature in the PTG DSL to allow for more flexibility in the definition
of tasks and show that it can be used to express a stencil computation elegantly with no visible cost on
performance. In StarPU, we develop a generic stencil solver that can run on a distributed environment
and show that we can achieve high scalability. Finally, we improve the Heteroprio scheduler of StarPU
by introducing AutoHeteroprio, a fully automatic scheduler that can adjust the priorities of the tasks at
runtime, contrary to Heteroprio, which requires manual priority assignment.

In a second part, we focus on using explicit data compression to achieve better memory efficiency. We
begin by designing wavelet schemes, tailored for CFD simulations, and show that they can achieve high
compression ratios with minimal loss in simulation accuracy. We then tune the wavelet-based compression
for high compression throughput on GPUs and show that effective memory gains can be achieved without
compromising simulation accuracy nor performance.

Résumé

Dans cette thèse, nous explorons les défis liés à la réalisation de simulations de dynamique des fluides
(CFD) à grande échelle sur des plates-formes informatiques modernes de haute performance, en mettant
particulièrement l’accent sur les unités de traitement graphique (GPU). Nous présentons des stratégies et
des optimisations novatrices visant à repousser les limites des capacités actuelles de simulation CFD, en
particulier dans le contexte de la gestion de la mémoire.

Nous fournissons un aperçu fondamental des méthodes de simulation des fluides et discutons des méthodes
de pointe pour gérer les fortes exigences en mémoire. En nous appuyant sur ces bases, nous proposons une
implémentation relativement simple mais efficace sur un seul GPU qui atteint des performances satisfaisantes.
Nous étendons ensuite cette implémentation à un cadre multi-GPU grâce à des systèmes de runtime basés
sur des tâches, tels que PaRSEC et StarPU.

Dans PaRSEC, nous développons une nouvelle fonctionnalité sur le DSL PTG pour permettre plus
de flexibilité dans la définition des tâches et montrons qu’il peut être utilisé pour exprimer un calcul de
stencil de manière élégante sans coût visible sur les performances. Dans StarPU, nous développons un
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solveur de stencil générique qui peut fonctionner sur un environnement distribué et montrons que nous
pouvons atteindre une grande scalabilité. Enfin, nous améliorons l’ordonnanceur Heteroprio de StarPU en
introduisant AutoHeteroprio, un planificateur entièrement automatique qui peut ajuster les priorités des
tâches à l’exécution, contrairement à Heteroprio, qui nécessite un attribution manuelle des priorités.

Dans un deuxième volet, nous nous concentrons sur l’utilisation de la compression de données explicite
pour obtenir une meilleure efficacité mémoire. Nous commençons par concevoir des schémas d’ondelettes,
adaptés aux simulations CFD, et montrons qu’ils peuvent atteindre des taux de compression élevés avec une
perte minimale de précision de simulation. Nous réglons ensuite l’algorithme de compression pour obtenir
un meilleur un débit de compression sur les GPU et montrons que des gains mémoire effectifs peuvent être
obtenus sans compromettre la précision ni les performances de la simulation.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) simulations are a type of numerical simulation used to study the
behavior of fluids. It is a topic of high interest in various fields, such as aeronautics, meteorology, and envi-
ronmental sciences. As the hardware capabilities of modern computers have increased, the CFD community
has been able to simulate more complex and realistic scenarios. However, the hardware landscape has also
become more complex, requiring increased knowledge and expertise to efficiently use the available resources.

Graphics Processing Units (GPUs) have become a popular choice for accelerating CFD simulations, as
they offer high computational power and energy efficiency. However, one downside of using GPUs is that
they have a limited amount of memory. Once the memory requirements of a simulation exceed the available
memory of a GPU, new strategies must be developed to ensure a correct execution of the simulation. One
common strategy is to split the simulation across multiple GPUs, which introduces new challenges related
to data movement and synchronization. Another strategy is to split the data into smaller chunks and use
a back-and-forth approach to process one chunk at a time. However, this second strategy is generally slow
and inefficient on GPUs, as all the data must transit through the (relatively) slow PCIe bus.

In this thesis, we aim to propose new solutions to achieve better memory efficiency when the data size
exceeds the memory capacity of the system. We, hence, put a particular emphasis on the memory constraints,
which are often overlooked at the expense of computational performance.

1.1 How High-Performance Computing is key to CFD simulations
High-Performance Computing (HPC) is a field of computer science that deals with the development of
algorithms and software to solve complex problems on large-scale systems. HPC systems are used in a
wide range of fields, from scientific research to industrial simulations. One such field is CFD, where the
requirements for computational power and memory can be extremely high due to the complexity of some
simulations.

To be able to simulate these scenarios accurately, it is essential to have access to powerful computing
resources and to use them efficiently. This is why the HPC community has developed a wide range of tools
and techniques to help researchers and engineers make the most of the available hardware. In the context of
CFD simulations, HPC can help reduce the time and cost of simulations, allowing researchers and engineers
to explore more scenarios and make better decisions.

1.2 Motivations of this thesis
GPUs are a popular choice for accelerating CFD simulations due to their high computational power and
energy efficiency. However, despite their computational power, GPUs have a limited amount of memory,
which can be a bottleneck for large simulations. This limitation entices the CFD community to lean towards
using the most recent GPUs, which have more memory.

In modern data centers, the trend is to include GPUs with a large amount of memory, such as the NVIDIA
A100 GPU, which can have up to 80 GB of memory, or the more recent NVIDIA H100 GPU, which can have

17



18 CHAPTER 1. INTRODUCTION

up to 188 GB of memory. However, even with such capacities, large-scale CFD simulations can still exceed
the available memory. For instance, a 3D grid of 3696× 3696× 3696 cells with single-precision floating-point
numbers would overflow the memory of an NVIDIA H100 GPU. In practice, increasing simulation sizes can
easily lead to memory overflows, even on the most recent GPUs. Even if the grid fits within the memory of
a recent GPU, an argument can be made regarding the price efficiency of using such GPUs.

GPU Memory Size Price Price/GB
NVIDIA GeForce RTX 4080 16 GB 1390$ 86.88$/GB

NVIDIA P100 16 GB 198$ 12.38$/GB
NVIDIA V100 32 GB 3683$ 115,09$/GB
NVIDIA A100 40 GB 7949$ 198.73$/GB
NVIDIA H100 80 GB 43989$ 549,86$/GB

Table 1.1: Prices of different NVIDIA GPUs, gathered on Amazon on April 9th, 2024 and their cost per GB
of memory.

Table 1.1 shows the prices of different NVIDIA GPUs and their cost per GB of memory. This is an
approximate measure, as GPU prices can vary depending on the retailer and the region. Moreover, a
significant portion of a GPU’s price is due to the computational power it provides, not just the memory.
However, it gives an idea of the cost of memory on different GPUs. We see that on data center GPUs (P100,
V100, A100, H100), the cost per GB of memory increases with the memory size and the generation of the
GPU. The GeForce RTX 4080, a consumer GPU, is shown for comparison. Although it is less "price efficient"
than the P100, it is still better than the other GPUs.

Given these price differences, one can wonder if it is worth buying a recent GPU with a large amount
of memory rather than multiple lower-end GPUs. The same consideration applies to the computational
capabilities of the GPUs. The more recent GPUs are more powerful, but the price per GFLOP is also
higher. This raises questions about the rationale for using the most recent GPUs for CFD simulations, as
the cost of memory (and computational power) is higher. However, making efficient use of hardware can be
challenging, and the cost of developing efficient software can be higher than the cost of the hardware itself.
This is why the HPC community invests significant effort in designing efficient "generic" methodologies to
allow larger projects to make better use of the available hardware.

In this thesis, we follow this trend by focusing on reducing the memory footprint of CFD simulations.
While most of the existing literature does not tackle the issue of system memory limitations, there are
practical cases where the memory footprint is the limiting factor [298, 103]. We believe that reducing the
memory requirements of CFD simulations not only unlocks the potential for larger simulations but also
allows for more efficient overall simulations due to reduced data movement and cache pressure. We hope
that the concepts developed throughout this thesis will be exploited by the CFD community to design more
memory-efficient simulations and thereby relieve the pressure on hardware.

1.3 Contributions
This thesis examines the computational and memory challenges in high-performance computing environ-
ments, with a focus on conducting CFD simulations on multi-GPU systems. We begin with a detailed
analysis of various fluid simulation methods and their computational implementations, setting the stage for
the subsequent exploration of advanced concepts.

One of the primary obstacles in leveraging GPU architectures for CFD simulations is their restricted
memory capacity, which limits the scale of simulations. In contrast to conventional strategies that pre-
dominantly rely on Adaptive Mesh Refinement (AMR) for memory management, our research proposes an
innovative method utilizing explicit data compression to significantly decrease the memory requirements of
CFD simulations. This method not only tackles the pressing issue of memory constraints but also introduces
new strategies for handling memory in high-resolution simulations.

Our exploration into achieving high performance on GPUs includes a thorough examination of stencil
computation optimizations. We emphasize the role of task-based runtime systems, particularly PaRSEC
and StarPU, in improving the efficiency of task scheduling and execution. Key achievements include the
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introduction of a new feature for the PTG DSL in PaRSEC and the creation of a generic stencil solver for
StarPU, enhancing the capabilities of distributed, multi-GPU environments for CFD simulations.

Additionally, we present AutoHeteroprio, an innovative scheduler for StarPU designed to automatically
determine task priorities using heuristic algorithms, optimizing resource use. This scheduler has been eval-
uated against existing systems, showing enhanced performance in various conditions, which highlights its
effectiveness in heterogeneous computing settings.

A significant contribution of this thesis is the design of a high-performance compression scheme tailored
for CFD simulations. Considering the specific requirements of CFD simulations, such as mass conservation
and polynomial filtering, we customized our compression techniques accordingly. The implementation of
wavelet-based compression schemes represents a key advancement, demonstrating potential for substantial
memory savings without compromising the accuracy of simulations.

Further, we optimized wavelet-based compression for use in GPU shared memory, aiming for an ideal
balance between compression ratio and computational performance. This work addresses the memory limi-
tations of contemporary GPUs and sets new benchmarks for executing extensive CFD simulations.

In summary, this thesis offers a comprehensive strategy for improving the efficiency and feasibility of
large-scale CFD simulations on multi-GPU systems. By addressing both the computational and memory
challenges, we provide a solid foundation for future research, with the goal of enabling more complex and
accurate fluid dynamics simulations in various scientific and engineering fields.
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Chapter 2

Scientific groundwork and current
State-of-the-Art

2.1 Numerical analysis
2.1.1 Numerical discretization
Numerical discretization is a cornerstone methodology in CFD that translates the physical phenomena of
fluid flow into a format that can be processed by computers. This technique involves breaking down the
continuous domain of fluid motion into a discrete set of points or cells, enabling the approximation of
fluid dynamics equations, such as the Navier-Stokes equations, through numerical methods. The essence of
numerical discretization lies in its ability to convert complex differential equations governing fluid flow into
algebraic equations that are solvable using computational resources. Without numerical discretization, it
would be tedious, if not impossible, to simulate the intricate behavior of fluid flows in real-world applications.

The concept of discretization applies to different aspects of numerical simulations:

• Discrete Domain: The continuous fluid domain is divided into a finite number of small, discrete
elements or volumes. For spatial discretization, these are often referred to as grid points (in the case
of finite difference methods) or cells (in the context of finite volume methods). The choice of grid size
and topology significantly influences the accuracy and computational cost of simulations;

• Temporal Discretization: Similar to spatial discretization, the time domain is divided into discrete
intervals. The simulation progresses by calculating the state of the fluid at each time step, advancing
from initial conditions towards the solution over time;

• Discretization Schemes: There are several approaches to numerical discretization, each with its
own merits and applicability. The Finite Difference Method (FDM) approximates derivatives at grid
points using differences between neighboring points. The Finite Volume Method (FVM) integrates
conservation laws over discrete volume elements, ensuring the conservation of physical quantities. The
Lattice Boltzmann Method (LBM), on the other hand, models fluid flow through the interactions of
fictitious particles on a lattice, offering advantages in dealing with complex boundaries and multiphase
flows.

Throughout this work, the simulation domain is discretized into a regular grid of cells, with each cell
representing a volume element. This choice of topology is common due to its simplicity and efficiency, but
there are other discretization methods that we do not consider in this work. We consider a Lx×Ly domain,
where Lx and Ly are the lengths of the domain in the x and y directions, respectively. The domain is divided
into nx×ny cells, resulting in a grid spacing of ∆x = Lx

nx
and ∆y = Ly

ny
in the x and y directions, respectively.

For the sake of simplicity, but also for convenient numerical properties, we assume that ∆x = ∆y. Hence,
we have a grid of small square cells Ci,j :

Ci,j =]i∆x, (i+ 1)∆x[×]j∆y, (j + 1)∆y[, i ∈ [0, nx − 1], j ∈ [0, ny − 1], (2.1)
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assuming that the origin of the domain X is in the square ]0, Lx[×]0, Ly[. Naturally, these definitions can
be extended to the 3D case by adding a third dimension z and a grid spacing ∆z.

Each cell Ci,j contains a set of conservative variables Wx,y that represent the physical properties of the
fluid at that location. The conservative vectorWx,y,t is a function of the space variables x and y and the time
variable t and is the unknown of the system. The conservation laws are expressed as a partial differential
equation (PDE) of the form:

∂tW +∇ · (Q(W )) = 0, (2.2)

where ∇· is the divergence operator and Q(W ) is the flux of the system of conservation laws.
The divergence operator is defined by

∇ · (Q(W )) = ∂

∂x
Qx(W ) + ∂

∂y
Qy(W ), (2.3)

where Qx and Qy are two application from Rm to Rm.
Then, depending on the numerical method used, we define a set of discrete shift vectors N along the

directions of the grid which are used for approximating the flux of the system of conservation laws. If we
use a regular time step ∆t, the W vector can be represented as Wn

x,y, where n is the time step. The solution
at time step n+ 1 can then be approximated using a formula of the form:

Wn+1
x,y = ϕ(Wn

x+Nx,1,y+Ny,1 ,W
n
x+Nx,2,y+Ny,2 , . . . ,W

n
x+Nx,d,y+Ny,d), (2.4)

where ϕ is a function from Rm×d to Rm and d is the number of velocities in N . This formulation varies
greatly depending on the numerical method used, but the general idea remains the same: the value of each
cell is computed based on the values of its neighbors.

Throughout this work, we have used two numerical methods: the Finite Volume (FV) method and the
Lattice Boltzmann Method (LBM). The FV method is close to the framework we have just described and
is widely used in CFD simulations [93, 157, 149]. In the LBM framework, the formulation is different, as it
is based on a physical kinetic interpretation of the Navier-Stokes equations [67, 294, 182]. The literature on
LBM is too vast to be summarized here. We, hence, refer to the synthesis book of Succi [256] for a general
introduction to LBM. The approach we use in our experiment is based on the BGK (Bhatnagar-Gross-Krook)
model, which offers multiple practical advantages in practice [38]. The contributions by Bouchut et al. [47, 48]
and Aregba-Natalini et al.[17] are also of particular interest to delve into this approach. Additionally, the
work of Krüger et al. [139] provides a comprehensive overview of the LBM method and its applications. For
the purpose of this thesis, the important aspect of LBM is that the implementation relies on a vectorial
kinetic representation, rather than the conservative vectors W . This has computational implications that
are discussed in Sections 2.2.1 and 3.2.3.

Overall, what is important for high-performance computing is the similarity between the different numer-
ical methods. Formula 2.4 shows a clear pattern for memory accesses. At each time step, the new value of
each cell is computed based on the values of its neighbors and/or its own value. This type of algorithm falls
into the class of stencil algorithms, also known as Iterative Stencil Loops (ISL) when performed iteratively.
In this work, we will always assume that the data is stored in a regular grid and that the computation is
done performing a stencil computation on this grid. The next section will delve into the specifics of ISL and
explain more practical aspects of this type of algorithm.

2.1.2 Iterative Stencil Loops

Iterative Stencil Loops (ISL) constitute the focus of this work. ISL are a class of algorithms that are widely
used in scientific computing, particularly in the context of CFD simulations. ISL are characterized by their
regular data access patterns and their reliance on local information to compute the values of the cells in the
grid. The basic idea of ISL is to iterate over a regular grid of data, and at each iteration, to compute the
value of each cell based on the values of its neighbors. This computation is typically done using a fixed set
of operations, which are applied to each cell in the grid.
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(a) One value per cell. (b) 4 values per cell.

Figure 2.1: Examples of 2D stencils. The start of the arrows indicate the data that is read, while the end of
the arrows indicate where the result of the stencil is stored. Example 2.1a shows a simple 2D stencil, where
the computation of each cell depends on its four neighbors. Example 2.1b shows an example where each cell
has four values (here, potentially the kinetic fluxes) and the computation of each cell depends on one value
from each of the four neighbors.

Figure 2.1 shows two examples of 2D stencils, which illustrate the basic idea of ISL. We can see that there
is an interconnected pattern of data dependencies, which makes it impossible to perform the computation
in place in the general case. Instead, a common approach is to use two grids, one for the input data and
one for the output data, and to alternate between them at each iteration. Some stencils, however, can be
computed in place due to particular data access patterns or strategic use of intermediate results.

The regularity of the data access patterns in ISL makes them well-suited for parallel execution on modern
hardware, such as multi-core CPUs and GPUs [306, 303, 297]. In particular, GPUs are well-suited for running
ISL, as they are designed to efficiently execute large numbers of parallel threads. The regularity of the data
access patterns in ISL allows for efficient memory access and data reuse, which are crucial for achieving high
performance on GPUs.

The basis of the ISL is the stencil, which indicates the pattern of data access and computation that
is applied to each cell in the grid. The stencil is defined by a set of offsets, which indicate the relative
positions of the neighbors of a cell. Depending on the shape of the stencil, the used hadware and the specific
problem being solved, different optimization strategies can be applied to improve the performance of the ISL.
In general, these optimization strategies rely on improving the efficiency of memory access or data reuse.
Chapter 3 provides various strategies and examples of stencil optimizations.

As the optimizations are problem-specific, a common approach is to rely on automatic optimization tools
to generate efficient code [232, 287, 240, 242, 241, 158]. Among these tools, some rely on DSLs (Domain
Specific Languages) to precisely describe the computation and the data access patterns. We refer, for
instance, to AnyDSL [1], Forma [221], Devito [148], Snowflake [305], and Halide [213]. The use of specialized
DSLs is the most common approach for implementing efficient stencils. Some drawbacks of using them
include the difficulty of integrating them into existing codebases, the cost of learning a new language, and
the lack of adaptability to particular behaviors that are not captured by the DSL. While the use of (at
least partly) automatic tools is discarded in our work, the concepts developed in this thesis can be used in
conjunction with these tools to further improve the performance of ISL.

The stencil approach has several advantages, but also multiple drawbacks. From the perspective of
physical simulations, using a stencil approach can be inefficient for capturing particular fluid behaviors. For
example, if the fluid velocity follows a particular and known pattern, it can become more effective to use
a non-uniform mesh. Another example is when the fluid describes complex behavior in a small region of
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the domain, while the rest of the domain is relatively simple. In this case, the most common approach is
to use an Adaptative Mesh Refinement (AMR) method, which is described in Section 2.2.2. Finally, an
important drawback of the stencil approach is that the required memory grows greatly as the resolution
of the grid increases. Due to the regular structure of the grid, the memory usage grows quadratically (in
2D) or cubically (in 3D) with the resolution of the grid, which can become a limiting factor for large-scale
simulations. Hence, the memory requirements can rapidly become the bottleneck of stencil-based simulations.
This latter drawback is the central focus of this work. In the following section, we present the state of the
art of techniques that aim at simulating large-scale CFD simulations in memory-constrained environments.

2.2 Reducing the memory footprint of CFD simulations
In this section, we delve into the current landscape of techniques that aim to increase the scale of CFD
simulations that can be performed for a given amount of memory. Some of these techniques use explicit
data compression algorithms. We detail these techniques in Section 2.2.3. However, using explicit data
compression methods can be too costly in terms of performance for large-scale simulations. This is why most
approaches adopt strategies that achieve effective memory gains without using explicit data compression. We
present the most prevalent of these techniques in Section 2.2.1. The gains achieved by these techniques are
often limited due to the regular structure of the grid and the inherent memory requirements of stencil-based
algorithms. This is why a wide range of research has been conducted on designing more advanced numerical
scheme that make better use of the available memory. The most popular framework for this is Adaptive
Mesh Refinement (AMR), which is presented in Section 2.2.2.

2.2.1 Memory-efficient CFD Simulations
When the memory requirements approach the limits of available memory, it becomes important to focus
efforts on minimizing the memory usage of the algorithm. Several strategies can be employed to accomplish
this objective. Some of these strategies are tailored to specific numerical methods, whereas others have
broader applications. In this section, we discuss the most prevalent approaches employed in practice to
secure substantial memory savings, without altering the fundamental nature of the numerical method.

Firstly, a factor of 2 can be saved by using in-place computation. Indeed, without in place computation,
two grids are required: one for the input data and one for the output data. In-place computations are not
always possible and can be more complex to implement and costly in terms of performance. The LBM
framework, for instance, is well-known for its potential to perform in-place computations. In Section 3.2.3,
we present a naive implementation of an LBM scheme and briefly explain how it can be adapted to perform
in-place computations. Welein et al. present this naive approach in its two forms: the pull and push
approaches [289]. A natural extension of this approach, introduced by Bailey et al., consists of using the pull
version on even time steps and the push version on odd time steps (or vice versa) [23]. This extension allows
to perform in-place computation and is referred to as the AA-pattern in the literature. Subsequently, Geier et
al. introduced another in-place computation technique inspired by works from Neumann et al., dubbed the
esoteric twist [196, 104, 154]. The literature extensively discusses the advantages and drawbacks of different
access patterns and their implications in terms of performance and memory usage [190, 114]. In this work,
we choose to remain agnostic to the specific access pattern and do not assume in-place computation. We,
however, acknowledge that some of our results could be further improved by using scheme-specific knowledge.

When in-place computations are not possible, another approach involves segmenting the grid into subgrids
and performing computations on each subgrid separately. This technique allows for the grid to be stored in
memory only once. The only additional memory required is for storing an extra subgrid for subgrid-level
computations and the interfaces between subgrids. A more comprehensive discussion on this method is pro-
vided in Section 3.3. Though commonly applied to distribute stencil computations across multiple processing
units, multiple studies have examined its effectiveness in reducing memory usage on single nodes [151, 278].
In Chapter 9, we make the similar obervation that effective memory gains can be achieved thanks to this
method (despite not being the primary objective of the work). Valero-Lara extend this concept by optimizing
the entire computational process for GPUs, achieving near-optimal performance [279].

Several studies have explored the use of mixed-precision arithmetic in the context of numerical simula-
tions [155, 176]. The main goal of mixed-precision arithmetic is generally to use the hardware capabilities
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more efficiently, but they can also lead to memory savings. These approaches generally rely on scheme-
specific knowledge and use lower precision for parts of the computation that do not require high precision.
We refer to the work of Antz et al. [2] and Higham [115] who provide a broad survey of the state of the art
in mixed-precision arithmetic for scientific computing. The problem of mixed-precision approaches is that
they can be complex to implement and require an understanding of the numerical scheme, for a modest gain
in memory savings.

Overall, all the strategies discussed in this section are effective for achieving memory savings without
compromising the core principles of the numerical method. They are advantageous due to their simplicity
in implementation and minimal computational overhead. Nevertheless, the extent of memory reduction
attainable through these strategies is often modest. To realize more significant memory reductions, more
advanced techniques must be employed. A prevalent strategy involves altering the numerical scheme itself
to optimize memory utilization. The next section will present the state of the art in this area, focusing on
the Adaptative Mesh Refinement (AMR) framework.

2.2.2 Adaptative Mesh Refinement

Even though our approach does not use Adaptative Mesh Refinement (AMR), we briefly review the state of
the art of this method, as it is the most popular technique in computational fluid dynamics for compressing
the computational domain. In this section, we aim to present the method, its advantages and drawbacks,
the state of the art, and how it differs from our approach. It is important to keep in mind that it is a
well-established technique whose literature is extensive and that we do not aim to provide a comprehensive
review of the subject.

AMR techniques are commonly used to achieve "compression" in different numerical methods, such as
FV and LBM schemes. We refer for instance to [192, 73] for some works using AMR in a FV context and to
[300, 33, 34] for some works using AMR in a LBM context. We also refer to work of Harten [110] for a more
generic approach to multiresolution schemes.

This is done by refining the mesh in regions where high resolution is required, while coarsening it in regions
where lower resolution is sufficient. The refinement and coarsening of the mesh are done dynamically during
the simulation based on some predefined criteria, such as gradients in the flow field or concentration field.
The simulation space is then represented as a hierarchy of cells with varying levels of resolution, typically
using a quadtree in 2D simulations and an octree in 3D simulations. While AMR can significantly reduce
the amount of computational tasks and the memory footprint of CFD simulations, it requires additional
effort to implement and maintain. In particular, it requires careful management of data structures and
communication between different levels of refinement [192]. It is often stated that the primary goal of AMR
is to reduce the computational cost of the simulation, but it also de facto reduces its memory usage. But
the complexity of the implementation and the irregular memory access may often lead to disappointing
speedups. The parallel load balancing of the AMR approach is also a delicate task [56, 62].
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(a) Max depth = 1. (b) Max depth = 2.

(c) Max depth = 3. (d) Max depth = 4.

Figure 2.2: Illustration of the quadtree structure on a fake simulation of a fluid with two different states
(red and blue) and a cylinder within the red region. The interfaces between the red and blue regions are
defined as the region of interest (ROI) and are refined to a higher resolution than the rest of the domain. We
show four different quadtrees with different maximum levels of refinement and we impose a face-balanced
quadtree, there must be at most one refinement level difference between adjacent cells.

To illustrate the AMR method, consider Figure 2.2, which shows a fake simulation of a fluid with two
different states (red and blue) and a cylinder within the red region. In this fake simulation, we identify two
regions of interest (ROI): one at the boundary of the cylinder and the other between the red and the blue
regions.

In a real simulation, this would mean that the behavior of the fluid in these regions is more critically
important to the overall precision of the simulation than the rest of the domain. Figures 2.2a, 2.2b, 2.2c
and 2.2d show the quadtree structure of the domain at different maximum levels of refinement. As we can
see, the two regions of interest end up being refined to a higher resolution than the rest of the domain. By
using a quadtree structure, AMR allows for the efficient allocation of computational resources by refining
only the areas where it is necessary to achieve the desired level of accuracy, while keeping the rest of the
mesh coarser. Some works, such as the one from Abgrall [4], use AMR approaches with unstructured meshes
but are not applicable to the stencil-based approach.

AMR can be classified into two categories: block-based and cell-based [254]. In block-based AMR, the
leaves of the quadtree correspond to blocks of cells, whereas in cell-based AMR, each leaf represents an
individual cell [192, 73, 33, 34]. This distinction is crucial because it affects both the storage and commu-
nication of data between different refinement levels. In block-based AMR, inter-block communications are
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typically done by duplicating data at the boundaries of blocks using ghost cells. Intra-block communication
is typically performed implicitly by the stencil kernel. On the other hand, in cell-based AMR, all the com-
munications with the neighbors rely on local analysis of the quadtree structure [299], making it more flexible
but potentially at the cost of increased communication costs due to less regular data access. Overall, block-
based AMR is more commonly used in LBM solvers, as the regularity within each block enables efficient
kernel design. In this review, we only consider block-based AMR: each leaf of the quadtree corresponds to
a contiguous block of cells (not an individual cell).

Although AMR is a well-established technique, it has its own drawbacks. In the following, we discuss
three of the main challenges associated with AMR: designing the numerical scheme, handling the hierarchical
structure and implementing it on GPUs.

Designing the numerical scheme As the mesh can be refined and coarsened dynamically, the numerical
scheme must be designed with the AMR method in mind. The primary challenge lies in handling interfaces
between cells at different levels of refinement, complicating the design for a physically consistent numerical
scheme. Additionally, scheme-specific challenges and technicalities often arise, further complicating the
implementation of AMR [197]. Consequently, while AMR represents the state of the art for achieving an
optimal balance between accuracy and computational cost, it is significantly more complex to implement
than a uniform grid.

Another challenge is defining regions of interest and the criteria that represent them. These criteria,
often based on the physical properties of the fluid, are defined empirically, making it difficult to explain low
accuracy in the results and ensure a desired property for the simulation.

Overall, there are numerous reasons why not all simulations can benefit from AMR. Despite being a
better trade-off between accuracy and computational cost, AMR also has its own drawbacks, which is why
it is generally only employed when performance is critical. This is why the stencil-based approach remains
the most common method for CFD simulations.

Handling the hierarchical structure AMR relies on the use of a hierarchical data structure to store the
different levels of refinement. In the classical implementation, the mesh is represented by a balanced quadtree
or octree. The balance property ensures a 2:1 or 1:1 correspondence between cells at adjacent refinement
levels. Some works aim to deviate from this paradigm to achieve better performance. For example, Freret et
al. [100, 101] propose an anisotropic hierarchical structure. Unlike a quadtree, this anisotropic structure can
contain non-square cells and allows for a more flexible refinement. In another work, Sætra et al. [224] use a
hierarchical tree with few structural constraints. The used structure is extremely flexible and allows them
to run an entire simulation on a GPU. Both works, however, ensure a 2:1 correspondence at most between
cells at adjacent refinement levels.

This 2:1 correspondence is a strong convention that is widely used in the field of AMR due to its
convenience and effectiveness. It will inevitably impose limitations on how the space can be refined. The
example shown in Figure 2.2d illustrates one such limitation, where the top-left node of Figure 2.2c is
divided into four subcells to maintain a face-balanced quadtree structure. This limitation (caused by the 2:1
correspondence requirement) can impact the efficiency of the simulation, as it can cause over-refinement in
some regions of the domain due to their proximity to a highly refined region. This can result in unnecessary
computational cost and memory usage. While it may be possible to mitigate these types of limitations
to some extent, it is difficult to completely avoid them while maintaining the benefits of the hierarchical
structure.

Finally, the irregular nature of the data caused by the hierarchical structure can make it difficult to
efficiently distribute the workload. Multiple works propose different load balancing strategies to alleviate
this issue [121, 210, 150, 56, 61]. The main challenge is to find a reasonable strategy that is cheap in terms
of communications.

Overall, the main technical challenge associated with AMR is to reduce its computational overhead, in
particular for large-scale simulations. Numerous works propose efficient algorithms to alleviate the overhead
induced by the AMR method [230, 111, 245]. Thanks to a careful communication and structural design,
these studies show that AMR simulations can exhibit good scalability, with a speedup of approximately x1.5
for each doubling of computational resources.
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AMR on GPUs Implementing AMR on GPUs can be challenging due to several factors. One of the
main challenges is the irregularity of the data caused by the hierarchical structure used by AMR. This
irregularity can make it difficult to efficiently map the data to the GPU architecture, which is optimized
for regular and homogeneous data access. Schive et al. [234] propose a hybrid CPU-GPU implementation
of the AMR method for astrophysics (magneto-hydrodynamics) simulations. They use an octree structure
that is kept up-to-date on the CPU, while the GPU is used to perform the physics computations. Sætra
et al. [224] provide a 100% GPU implementation of the shallow-water equations using AMR. In their work,
they use a general tree where each node contains the grid (tile) corresponding to their whole logical space
(children included). The communication between nodes is ensured through the use of ghost cells in each
tile. The regridding process (coarsening and refinement) is performed by computing a criterion for each tile.
To compute the criterion efficiently, they use the GPU shared memory to perform a reduction operation on
the tile. Overall, they achieve good hardware utilization and achieve speedups of more that x2.5 on their
simulation, while preserving the accuracy of the results.

With the Daino framework, Wahib et al. [288] propose an automatic AMR GPU code generation. This
high-level framework uses a compiler-based approach to automatically transform serial uniform mesh code
annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated hardware. The
authors demonstrate the efficiency of Daino automated transformations by comparing the execution time
of the generated code with that of hand-written AMR code. They also highlight the potential productivity
gains of Daino by showing that auto-generating AMR code requires negligible lines of code compared to
hand-written AMR implementations.

It is worth noting that various works aim at improving the performance of AMR on GPUs by taking
advantage of the particular properties of a scheme [228] [235]. However, investing in the development of a
specific AMR implementation for a given scheme is time-consuming and often not relevant for a project.
Indeed, a more generic approach that is fast to implement while reaching a decent utilization of the available
resources can be preferable.

In summary, the hierarchical structure required by AMR offers a powerful framework for efficiently
distributing the computing power over a simulation space. However, it comes with a cost in terms of
implementation and maintenance. A majority of existing numerical scheme implementations are based on a
stencil approach, use a uniform grid, and are, therefore, not compatible with AMR.

In that respect, our approach is more convenient, as it does not require a hierarchical structure. Instead,
our approach relies on a compression scheme that compresses a uniform grid. Therefore, it is directly
compatible with numerous existing schemes that use the classical stencil approach. Finally, it is important
to note that our approach is also fundamentally compatible with block-based AMR, as each (uniform) block
can be treated independently.

2.2.3 Entropy coding and data compression
In CFD, data compression is typically used through multiscale analysis. We have seen in the previous
section that this method induces a layer of complexity both in the mathematical model and in the imple-
mentation. Another approach is to use explicit data compression methods to reduce the memory footprint
of the simulation.

The use of data compression in scientific computing has been a topic of interest for several years. Cappello
et al. conducted a thorough study to assess the relevance of using lossy compression in scientific comput-
ing [63]. They identify use cases where lossy compression is advantageous, particularly when it comes to
addressing memory bandwidth and storage limitations of computational hardware. In scenarios where mem-
ory bottlenecks significantly constrain the simulation, employing compression to alleviate these bottlenecks
can be more advantageous than the overhead introduced by the compression process.

The idea of incorporating data compression in CFD simulations has been explored in several studies
that we will survey in the following sections. We will refer to the concept of entropy, which is a measure
of the information content of a message, as defined in information theory [246]. Because CFD data are not
random, the entropy of the signal can be reduced by making assumptions about the data structure. The
scientific literature on this topic differs from that of general data compression in that it aims to find the
best assumptions on the signal for a given class of simulations to achieve the best compression ratio and/or
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compression speed. In Section 2.2.3, we present a general overview of data compression in fluid simulations.
Then, in Section 2.2.3, we present the current state of the art in the use of the Discrete Wavelet Transform
in CFD data compression.

Data compression in fluid simulations

Fluid simulations often generate massive datasets, necessitating advanced data compression techniques to
address memory and computational challenges. Compression techniques can be classified by several criteria,
such as the nature of compression (lossy/lossless), processing mode (streaming/offline), the employment of
predictive models, reliance on floating-point representations, and specific spatial structures considerations.
Such categorizations facilitate a better understanding and comparison of different techniques within fluid
simulations.

Lossless compression methods, being reversible, preserve the integrity of data, ensuring no impact on
the physics simulation results. Conversely, lossy compression leads to some information loss. While these
techniques can achieve higher compression ratios, the design of lossy compression must be meticulous to
maintain result accuracy. One strategy for managing data loss in simulations is to identify regions of interest
(ROIs) and permit data loss primarily in areas outside these specified regions [195]. Machine learning is an
option for achieving lossy compression but offers limited guarantees on the accuracy of the results. It has,
however, demonstrated potential for in situ visualization of CFD data [169].

Streaming compression methods, designed for real-time data processing, are preferred in large-scale simu-
lations due to their reduced memory footprint. A rudimentary example of compression is the mixed-precision
representation. This method provides limited compression ratios, while considerably impacting accuracy, ren-
dering it less effective compared to other techniques [155]. A more effective approach is to use a generic
compression algorithm that is known to be efficient on the used hardware (here, GPUs) [231, 204, 167, 250,
134, 304]. This approach benefits from incorporating domain-specific knowledge, which reduces the entropy
of the data [162]. Typically, the streaming compression approach encompasses:

• Predictor: Estimates data from previously encoded points.

• Difference Operator: Computes the difference between the predicted and actual value, producing
the residual.

• Residual Coder: Encodes residuals for compression, often using entropy coding.

In the context of fluid simulations, innovations in streaming data compression often originate from enhance-
ments in these components [92, 217, 164]. Using prediction/difference pretreatments aims to reduce data
entropy, making it more compressible. By allowing one of these components to be lossy, it becomes possible
to further reduce entropy, often by setting a threshold and encoding residuals that exceed it.

Transitioning from streaming to offline compression, we explore techniques that process data in chunks
or entirely. These techniques often achieve superior compression ratios but can demand more memory
and sometimes entail higher computational costs. The Lorenzo predictor, which uses neighbors across N
dimensions for data prediction, serves as a notable example of offline compression for CFD data [120, 168].
Though it is categorized as offline due to its multidimensional data access, with the right implementation,
its memory usage can remain low. Other techniques that employ multidimensional prediction exist as
well [99]. While these approaches primarily focus on compression speed, other methods aim to achieve
higher compression ratios. The Discrete Wavelet Transform (DWT), known for its high compression ratios
with CFD data, exemplifies this approach. The subsequent section discusses the Discrete Wavelet Transform,
its role in CFD data compression, and reviews relevant studies on the topic.

Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is widely recognized across various fields, especially in CFD data
compression [192, 73, 33, 34]. In this context, wavelets with compact support, biorthogonality, and a de-
sign tailored for a multi-resolution approach are favored. These attributes enable the DWT to process
both frequency and spatial data efficiently. DWT decomposes an input signal into two main components:
the approximation, which captures low-frequency information, and the detail, representing high-frequency
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nuances. This decomposition is performed iteratively, with each level of the DWT capturing a different
frequency band. At the end of this process, the low details can be discarded, hence introducing loss, and fed
to an entropy coder to achieve high compression ratios. In Chapter 7, we provide a more technical overview
of the DWT and how it can be used in practice.

Researchers have extensively explored the use of DWT in CFD data compression [274, 129, 236]. These
investigations establish the foundational knowledge supporting the use of DWT in CFD data compres-
sion. Because of its significant memory demand, DWT is not typically utilized as a standalone compression
method [243]. Instead, it serves as a tool to manage different resolution levels in data, optimizing compu-
tational resource allocation. Prominent multi-level methods, such as AMR [35] and multigrid methods [53],
share this concept but do not incorporate the DWT directly. Other methods explicitly integrate different
DWT levels within their framework [108, 226, 227].

One foundational study by Cohen et al. [73] conducts the CFD computations directly on the adaptive
wavelet structure. They perform a careful mathematical analysis showing that this approach is almost op-
timal in terms of memory occupation and algorithm complexity. This optimality is obtained thanks to the
excellent compression and approximation properties of the wavelet transform and also to its suitability to
hyperbolic conservation laws, where local perturbations propagate at finite speed. However, this mathemat-
ical analysis is rather theoretical and does not take into account the very irregular structure of the sparse
wavelet representation. In practice, handling this structure generates an unacceptable overhead on modern
GPUs, because of non-coalescent memory access. In this paper, we propose a more pragmatic approach
which harnesses the compression rate of the DWT, but keeps as much as possible the very efficient memory
pattern of the LBM stencil pattern.

The use of wavelets in explicit data compression is also very common. However, traditionally, the con-
siderable overhead of DWT has made these methods more suitable for storing or visualizing results, rather
than for direct compression of simulation data [43]. Many of these techniques are inspired by or based on
the JPEG2000 standard [102]. The advent of modern GPUs, with their architectural improvements, marks
a shift in this domain. These advancements enable more efficient use of DWT, making it a viable option for
in situ compression in performance-critical simulations [212]. Our research aligns with this trend, aiming
to leverage the DWT for in situ compression of CFD data on GPUs. In Chapter 9, we show that tuning
the DWT for modern GPU architectures can achieve significant memory savings with little computational
overhead.

2.3 Discussions
In this chapter, we have first introduced the framework of numerical discretization for CFD simulations.
We have then explained that in cases when the underlying physical model uses a regular grid structure, the
solving of the equations can be performed using a stencil-based approach. This approach is particularly well-
suited for parallel execution on modern hardware, including GPUs. However, it also introduces challenges,
such as the high memory requirements of the regular grid structure. A significant portion of our research
addresses this challenge, notably in Chapters 7, 8, and 9.

The rest of our work is dedicated to performing efficient distributed CFD simulations on GPUs. Opti-
mizing the performance of stencil-based computations is a topic of high interest, as it applies to a wide range
of scientific and engineering applications. This aspect is already covered in a wide variety of works, which
propose different strategies to optimize the performance of stencil computations. In our study, we focus on
distribution of the workload rather than on the optimization of the algorithm at a single GPU level. In
Chapters 4, 5, and 6, we present our contributions to this field.

While this work does not focus on the optimization of stencil algorithm, it is important to understand
the basic principles and challenges within this framework. In the next chapter, we will present a technical
discussion on how to perform efficient stencils on GPUs, as well as what framework is classically adopted for
distributing the work. This chapter will serve as a basis for the following chapters, where we will present
our contributions to the field of stencil computations on GPUs.



Chapter 3

Efficient fluid simulations on GPUs

As we have seen in the previous section, CFD simulations can often be implemented as stencil loops. All
stencil-based algorithms share common characteristics, such as the need for data locality, and the need for
efficient data transfers. In this section, we present the most common challenges that arise when implementing
stencils on the GPU.We adopt a general approach, as the presented concepts are applicable to multiple shapes
of stencils and grid layouts.

3.1 GPU Architecture and Processing Model
Graphics Processing Units (GPUs) are a type of processor that is optimized for data-parallel workloads. As
their name suggests, they were originally designed for rendering graphics, but they have since been used for
a wide variety of general-purpose computing tasks (GPGPU). In particular, the early 2010s saw a growing
trend of using GPUs for scientific computing, and among them, for fluid simulations [57, 76]. This trend
was driven by the increasing computational power of GPUs, which was not matched by the increase in CPU
performance. However, GPUs use a different architecture and processing model than CPUs, which requires
a different approach to programming. In this section, we present the specificities of GPU architecture and
how they translate into programming challenges. The presented information is based on the architecture of
NVIDIA GPUs, but most concepts are directly applicable to other vendors as well.

3.1.1 Hardware Architecture
The basic unit of computation in a GPU is the Streaming Multiprocessor (SM). A GPU consists of multiple
SMs that operate in parallel. SMs can be assimilated to a CPU core, as they are relatively independent from
each other, but their inner workings are quite different. An SM is composed of multiple CUDA cores (usually
64 or 128), which are another layer of parallelism. Each CUDA core can operate asynchronously from the
others. However, the CUDA cores of an SM remain largely interconnected, as they share resources such as
the register file, the shared memory, and the instruction cache. Finally, each CUDA core contains a pair of
warps, which can be seen as the basic unit of work. A warp can be seen as an SIMD (Single Instruction,
Multiple Data) unit, optimized for processing vectors of size 32 (threads), even if the actual hardware does
not necessarily match this view. Pairs of warps are optimized for working together, as a larger SIMD unit
(of 64 threads), but they can desynchronize to an extent, for example in case of divergent control flow.

The memory hierarchy of a GPU is also quite different from that of a CPU. Firstly, the registers are
not physically bound to a specific CUDA core (or warp). The registers are stored in the register file and
are dynamically allocated by the warp scheduler, which assigns registers to warps as they are needed. It
is important to note that the register file, while shared by all CUDA cores within an SM, is not directly
accessible as addressable memory; rather, it increases the available registers per unit.

On top of the register file, each SM has a shared memory (related to the L1 cache), which is a small, fast
memory that is shared by all CUDA cores within the SM. This memory, consists of SRAM (Static Random-
Access Memory) and is directly addressable. It can be leveraged to achieve higher memory efficiency, or
as a scratchpad memory for inter-thread communication. If the shared memory is not used explicitly by
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the kernel, it will be utilized automatically as a cache, thereby being referred to as the L1 cache. It is
organized in banks, which can be accessed in parallel, but there are limitations to the number of concurrent
accesses that can be made to the same bank. Improper access patterns can lead to bank conflicts, which can
significantly reduce the performance of the kernel.

Finally, the GPU has a global memory, which is the main memory of the device. It is much larger
than the shared memory and is accessible by all SMs. However, it consists of DRAM (Dynamic Random-
Access Memory), which is slower than SRAM. It is optimized for coalesced memory accesses, which means
that the memory accesses should be aligned and contiguous. This paradigm varies slightly between different
generations of GPUs, but the general principle remains the same. Accesses to the global memory are handled
by the memory controller, which is responsible for scheduling the memory requests and ensuring that the
memory is used efficiently. Among other things, the memory controller can use the L2 cache to reduce the
number of requests to the global memory.

There are also other types of memory, such as the constant memory, which is read-only and cached, and
the texture memory, which is optimized for 2D and 3D spatial locality. These types of memory are, however,
rarely used in scientific computing, and we will not discuss them further.

Figure 3.1: Turing architecture (GTX 16 series and RTX 20 series), provided by NVIDIA. The datacenter
equivalent is the Volta architecture (V100).

To execute a kernel on the GPU, the program is pushed as bytecode to the device and dispatched to
the Streaming Multiprocessors (SMs) for execution. This bytecode is specific to the GPU architecture and
is generally not analyzed by the programmer. However, there exists an intermediate representation known
as PTX (Parallel Thread Execution) assembly language, which is architecture-independent and allows for
analysis and optimization by the programmer, although it is often unnecessary for most applications. Instead,
programmers typically develop kernels in CUDA, a C++-like language, which offers a more user-friendly
interface to the underlying complexities of the GPU. Nonetheless, understanding the fundamental hardware
architecture is necessary to write efficient kernels. In the subsequent section, we briefly present the CUDA



3.1. GPU ARCHITECTURE AND PROCESSING MODEL 33

programming model and the main challenges that arise when programming for the GPU.

3.1.2 Programming Interface
The CUDA programming model is based on the separation of the host and device code. The host code is
executed on the CPU, while the device code is executed on the GPU. The host code can allocate/transfer
memory from/to the device, launch (device) kernels, and is responsible for the overall control flow of the
program. The device code corresponds to the GPU code that is actually executed on the device.

Let us base our discussion on the example of a basic SAXPY (Single-precision A*X Plus Y) kernel. The
kernel is a simple function that computes the element-wise product of two vectors, and adds the result to a
third vector. A possible CUDA implementation of this kernel is shown in Code 3.1. Then, the kernel must
be launched from the host code, as shown in Code 3.2.
1 __global__ // __global__ indicates that the function is a kernel
2 void saxpy (int n, float a, float *x, float *y, float *out) {
3 int i = blockIdx .x * blockDim .x + threadIdx .x;
4 if (i < n) {
5 out[i] = a * x[i] + y[i];
6 }
7 }

Code 3.1: A simple CUDA kernel that performs SAXPY.

1 // launch 1024 blocks of 256 threads each
2 saxpy < < <1024 , 256>>>(N, 2.0 , x, y, out);

Code 3.2: Launching the SAXPY kernel from the host code.

The kernel launch must specify the number of blocks and the size of the blocks (the number of threads
per block). The maximum number of blocks and threads per block is limited, among other things, by the
amount of shared memory, the number of registers available on the device, and the requirements of the
kernel. There is also a hard limit on them, which depends on the compute capability of the device. A block
is a layer of parallelism that exists within an SM and is built at the start of the kernel launch. It is composed
of a number of threads, which are given a unique identifier within the block. During the execution of the
kernel, the blocks are distributed to the SMs and across the CUDA cores/warps in a way that is not directly
controllable by the programmer. Hence, the affected hardware is not known in advance, and the programmer
must rely on the runtime system to schedule the blocks.

The SAXPY kernel is a simple example with no data dependencies between threads, and the threads can
be executed independently. Hence, This example is naturally parallel and the main challenge is to ensure
that the memory accesses are efficient. We can measure the effective memory bandwidth of the kernel by
calculating the number of bytes read and written, and dividing by the execution time:

Bandwidth = Bytes read + Bytes written
Execution time (3.1)

Here, we have 2N float values read and N float values written, where N is the size of the vectors. The
effective memory bandwidth measured on a P100 GPU is approximately 545 GB/s, which is approximately
75% of the peak memory bandwidth of the device (732 GB/s). The memory accesses are efficient because
the consecutive threads (in terms of thread id) access contiguous memory locations, which corresponds
to coalesced memory accesses. If we replace the index i by threadIdx.x + blockIdx.x * blockDim.x
(inverting the order of the two terms), as the contiguous threads will access memory addresses separated by
the size of a block (multiplied by the size of the data type). In this case, the measured effective memory
bandwidth is approximately 178 GB/s, which is only 24% of the peak memory bandwidth of the device.
Here, the unoptimal memory accesses induce a slowdown of approximately 3x on a P100 GPU, which is
an expensive device optimized for high performance computing. On more consumer-oriented devices, the
slowdown is typically higher.

Now let us introduce an example where the parallelism is not as straightforward.
1 __global__ void sum_naive (int n, float *x, float *out)
2 {
3 int tid = threadIdx .x + blockIdx .x * blockDim .x; // Global thread id
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4 atomicAdd (out , x[tid ]);
5 }

Code 3.3: A simple CUDA kernel that performs a reduction.

The kernel in Code 3.3 performs a sum of all the elements of an array and puts the result in a single location.
The atomicAdd function lets us perform an atomic addition (here, in global memory), which ensures that
the final result is correct.

However, this naive implementation leads to a contention on the memory location out, which leads to
a dramatic slowdown. A better solution is to make use of block-level mechanisms to perform a lower-level
reduction before requesting a global memory access (through atomicAdd). One such mechanism is the shared
memory, which we mentioned in Section 3.1, which is fast and shared by all threads within a block. The
shared memory can be leveraged to perform a block-level reduction, the result of which necessitates only
a single global memory access to be added to the final result. The shared memory is used explicitly by
declaring a variable with the __shared__ keyword.
1 __global__ void sum_block_level_reduction (int n, float *x, float *out)
2 {
3 assert ( blockDim .x <= 256); // Assume that the block size is less than 256
4
5 __shared__ float cache [256]; // Shared memory
6 int tid = threadIdx .x + blockIdx .x * blockDim .x; // Global thread id
7 cache [ threadIdx .x] = x[tid ];
8
9 for(int r= blockDim .x/2; r!=0; r/=2) {
10 __syncthreads ();
11 if ( threadIdx .x < r)
12 cache [ threadIdx .x] += cache [ threadIdx .x + r];
13 }
14
15 if ( threadIdx .x == 0)
16 atomicAdd (out , cache [0]);
17 }

Code 3.4: A simple CUDA kernel that performs a block-level reduction.

Code 3.4 shows a possible implementation of this idea. Since we have no guarantee that the different
threads will be executed in lockstep, we need to use the __syncthreads() function to ensure that all threads
have finished writing to the shared memory before we start reading from it. The key in this implementation
is that atomicAdd, which is a slow operation, is only called once per block, and not once per thread. The
intermediate results of the reduction are stored in the shared memory, which is fast and shared by all threads
within a block.
1 __global__ void sum_warp_level_reduction (int n, float *x, float *out)
2 {
3 int tid = threadIdx .x + blockIdx .x * blockDim .x;
4 float accumulator = x[tid ];
5 int tid_warp = threadIdx .x%32; // Thread id within the warp
6
7 // Split the remaining threads in half at each iteration
8 for(int r=16; r >=1; r/=2) {
9 int temp = *( int *) (& accumulator ); // Cast to int
10 // Get the value of the accumulator from the threads with tid >= r
11 temp = __shfl_down_sync (0 xFFFFFFFF , temp , r);
12 if( tid_warp < r)
13 accumulator += *(( float *) (& temp)); // Interpret back to float
14 }
15
16 if( tid_warp == 0)
17 atomicAdd (out , accumulator );
18 }

Code 3.5: A simple CUDA kernel that performs a warp-level reduction.

One way to avoid using __syncthreads() is to perform a warp-level reduction. Code 3.5 shows a possible
implementation of this idea. Warps function in lockstep, which means that all threads within a warp execute
the same instruction at the same time. This lets us avoid using __syncthreads(), which can be expensive
as it introduces a barrier. Here, the inter-thread communication is performed using the __shfl_down_sync
function, which is a warp-level communication function. It sends the values of the accumulator variable
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from the threads with tid ≥ r to the threads with tid < r. In this implementation, the atomicAdd function
is called once per warp. It, hence, uses more global memory accesses than the block-level reduction, but it
can still be faster in practice.

GPU Quadro T200 P100 (16GB)
Maximum (theoretical) 128 GB/s 732 GB/s

Naive (Code 3.3) 2.4 GB/s 1.7 GB/s
Block-level (Code 3.4) 57 GB/s 117 GB/s
Warp-level (Code 3.5) 77 GB/s 54 GB/s

Array size 536 MB 2 GB

Table 3.1: Effective memory bandwidth of the different reduction kernels on two different GPUs. The kernel
with the best throughput is highlighted in bold.

Choosing between the block-level and warp-level approach is not necessarily straightforward. Table 3.1
shows the effective memory bandwidth of the different reduction kernels on a Quadro T200 and a P100 GPU.
The block-level reduction is faster on the P100, while the warp-level reduction is faster on the Quadro T200.
Without additional investigation, it is difficult to predict which approach will be the most efficient. The
usual approach is to rely on thorough benchmarking to determine the best approach for a specific problem.

The presented examples show how the CUDA programming model can be used to express parallelism
in a simple and straightforward way. Knowledge of the underlying hardware is beneficial to write efficient
kernels, as we have seen with the examples of the SAXPY kernel and the reduction kernels. In the next
section, we will show how the aforementioned concepts can be applied to obtain reasonably efficient stencil
kernels on the GPU.

3.2 Implementing a numerical scheme on the GPU
Numerous research works have been dedicated to the implementation of efficient numerical schemes on the
GPU [36, 233, 25] The challenges are mostly similar when a stencil-based approach is chosen, namely the
need for efficient data transfers and efficient data reuse. In this section, we propose an implementation for a
Magnetohydrodynamics (MHD) scheme on the GPU, which we will use as a textbook example to illustrate
the challenges of implementing a stencil-based algorithm on the GPU.

3.2.1 Description of the equations
The scheme aims to simulate the behavior of a magnetized fluid, which is a topic of high interest in various
fields. There are several methods to achieve this, with different properties and computational costs. We
consider the MHD equations with Divergence Cleaning, also referred to as the MHD-DC equations [86]:

∂t


ρ
ρu
Q
B
ψ

+∇ ·


ρu

ρu⊗ u+ (p+ B·B
2 )I −B ⊗B

(Q+ p+ B·B
2 )u− (B · u)B

u⊗B −B ⊗ u+ ψI
c2hB

 =


0
0
0
0
0

 , (3.2)

where I is the identity matrix, ρ is the density, u is the velocity, Q is the total energy, B is the magnetic
field, and ψ is the divergence cleaning potential. The velocity and magnetic field vectors are represented as
follows:

u = (u1, u2, u3)T , B = (B1, B2, B3)T , (3.3)

whereas the pressure is described by the perfect-gas law with a constant polytropic exponent γ > 1,

p = (γ − 1)
(
Q− ρu · u2 − B ·B

2

)
. (3.4)



36 CHAPTER 3. EFFICIENT FLUID SIMULATIONS ON GPUS

Under the condition that the magnetic field satisfies the divergence-free requirement,

∇ ·B = 0, (3.5)

and the potential ψ remains constant, the MHD-DC equations simplify to the standard MHD equations.
Hence, the MHD-DC equations serve as an extension of the MHD equations, allowing for a non-zero diver-
gence in the magnetic field.

We can represent the state of the system as a vector of m = 9 conservative variables:

w = w(x, t) =


ρ
ρu
Q
B
ψ

 ∈ Rm. (3.6)

The flux is given by

F (w, n) =


ρu · n

ρu · nu+ (p+ B·B
2 )n−B · nB

(Q+ p+ B·B
2 )u · n− (B · u)B · n

u · nB −B · nu+ ψn
c2hB · n

 ∈ Rm, (3.7)

where n is a vector of R3 of the velocity components. The flux is the quantity (of mass, momentum, energy,
etc.) that is transported across a surface corresponding to the vector n ∈ R3.

These equations establish the foundation for the numerical scheme, applicable via a stencil-based ap-
proach within the LBM framework. Extensive discussions on the numerical method are available in several
publications [86, 272, 24, 273, 19]. The implementation discussed herein draws upon the work by Baty et
al. [29], which delivers an efficient GPU-based execution of the method, leveraging the LBM framework.

(a) Initial state. (b) State at t = 10.

Figure 3.2: Simulation of the MHD-DC equations performed on a 2048× 2048 grid at t = 0 and t = 10. The
plot shows the density field associated with the (−1, 0) velocity component. The density within the vortex
takes the form of a spiral, rolling in a clockwise direction. This structure is moving towards the top right
corner at a constant speed.

The presented method offers multiple advantages. Firstly, there exist analytical solutions for the MHD
equations, when the initial conditions are chosen appropriately. A frequently employed validation test is the
Orszag-Tang vortex, a standard benchmark for MHD simulations [200, 77, 209]. A visual representation of
this case is shown in Figure 3.2, where the density field is displayed at t = 0 and t = 10. On the other hand,
a correct implementation should demonstrate a convergence rate of 2, which means that the error reduces by
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a factor of 4 upon halving the grid size. This, combined with the fact that the analytical solution is known,
provides a straightforward method for verifying the correctness of the numerical scheme.

In the subsequent section, we propose an LBM scheme for the MHD-DC equations, which we will imple-
ment on the GPU in Section 3.2.3.

3.2.2 Kinetic representation
To implement the above scheme, we use a kinetic representation of the conservative variables, following the
LBM framework. Instead of relying on a grid of conservative variables, we use a grid of kinetic vectors,
which represent the distribution of particles in the domain.

Let us define our velocity set vk = (v1
k, v

2
k)T , k = 1 . . . 4, as:

v1 =
(
−1
0

)
, v2 =

(
1
0

)
, v3 =

(
0
−1

)
, v4 =

(
0
1

)
. (3.8)

Each conservative variable w is related to the kinetic data by

w =
4∑
k=1

fk. (3.9)

The physical domain D =]0, L[×]0, L[ is discretized into a grid of N×N points, with a space step ∆x = L/N .
The domain is made periodic for the sake of simplicity, but boundary conditions such as Dirichlet or Neumann
conditions can be implemented.

Since the velocities align with the mesh, we can from now on reason with the discretized grid only, where
a cell at coordinates (i, j) corresponds to the physical space [i∆x, (i+ 1)∆x]× [j∆x, (j + 1)∆x]. We denote
this discretized grid data as fnk,i,j , where i and j are the spatial indices, n is the time index, and k = 1, . . . , 4
is the kinetic velocity index. With this notation, each fnk,i,j contains m values: the quantity of particles
moving in the direction vk in the cell (i, j) at time n. Hence, each spatial cell (i, j) contains 4m values: m
for each kinetic direction. We also introduce wni,j , which is the conservative state of the cell (i, j) at time n.

The goal of the numerical scheme is to provide the rules to compute fn+1 from fn. Following the classical
LBM approach, we rely on two steps: the transport step and the relaxation step. Let us first consider the
transport step, which is a simple shift of the values:{

fn+1,shift
1,i,j = fn1,i+1,j , f

n+1,shift
2,i,j = fn2,i−1,j ,

fn+1,shift
3,i,j = fn3,i,j+1, f

n+1,shift
4,i,j = fn4,i,j−1.

(3.10)

This step corresponds to the movement of particles along the lattice directions.
Then, the relaxation step handles the collision of particles. For this, the equilibrium function f eq, which

maps a conservative vector (Rm) to a kinetic vector (Rm×4) for each cell, is defined thanks to equation (3.7):∑
k

f eqk,i,j(w
n
i,j)vk · n = F (wni,j , n). (3.11)

The conservative values wni,j are computed as in equation 3.9, but with the shifted values fn,shift, i.e., the
macroscopic state resulting from the transport step:

wni,j =
4∑
k=1

fn,shiftk,i,j . (3.12)

Finally, the relaxation step combines the equilibrium and the transported values to compute the new
approximation:

fn+1
k,i,j = ωf eqk (wn+1

i,j )− (ω − 1)fn+1,shift
k,i,j , (3.13)

where 1 ≤ ω ≤ 2 is a relaxation parameter. If ω = 1, the scheme is very robust, entropy dissipative, but
quite diffusive. If ω = 2, the scheme is a second order in time approximation of the original equations, but
unstable in shocks. In practice, we use an ω value close to 2, which is stable and achieves good accuracy.

In this section, we have described a LBM numerical scheme for the MHD equations with Divergence
Cleaning, that approximates the solution of the MHD equations described in section 3.2.1. In the next
section, we will show how this scheme can be implemented on the GPU.
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3.2.3 Implementing the scheme on the GPU
To implement the MHD-DC scheme on the GPU, we aim to leverage the massive parallelism offered by the
device. For simplicity, this discussion focuses on a 2D domain, reducing the conservative variables count to
m = 7 by eliminating one dimension for both velocity and magnetic field vectors. Consequently, the scheme,
adopting four distinct velocities, necessitates q = 4× 7 = 28 kinetic vectors, defining it as a D2Q28 scheme
within LBM terminology.

The kernel includes the same two primary steps as the numerical scheme: the transport step and the
relaxation step. In the GPU implementation, the transport step corresponds to reading the kinetic vectors
from the neighboring cells, while the relaxation step includes the required computations to update the kinetic
vectors and the final write.

The chosen layout for the lattice structure is a 3D array with dimensions _NX × _NY × 28. The array
adheres to a row-major layout, prioritizing x as the fastest varying dimension, followed by y, and k as the
slowest.
1 __global__
2 void time_step ( const float * lattice_in , float * lattice_out ) {
3 for(int tid= blockIdx .x * blockDim .x + threadIdx .x; tid < _NX * _NY;
4 tid += gridDim .x * blockDim .x) {
5
6 int x = tid % _NX;
7 int y = tid / _NX;
8
9 float fnow [28];
10 // shift of values in domain
11 get_flux_from_neighbors (fnow , lattice_in , x, y);
12
13 // First order relaxation
14
15 float wnow [7];
16 f2w(fnow , wnow); // kinetic to conservative
17
18 float fnext [28];
19 w2f(wnow , fnext ); // conservative to kinetic
20
21 // second order relaxation
22 const float omega = 2.f;
23 for (int ik = 0; ik < 28; ik ++)
24 fnext [ik] = omega * fnext [ik] - ( omega - 1) * fnow[ik ];
25
26 // Save the result to the output lattice
27 for (int ik = 0; ik < 28; ik ++)
28 lattice_out [tid + ik * _NX * _NY] = fnext [ik ];
29 }
30 }

Code 3.6: CUDA pseudo-code for performing a time step of the MHD-DC scheme.

1 const int dir [4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; // The 4 velocities
2
3 __device__
4 void get_flux_from_neighbors ( float *f, const float *lattice , float *f, int x, int y) {
5 for (int d = 0; d < 4; d++) { // 4 velocities
6 int x_neighbor = (x - dir[d][0] + _NX) % _NX;
7 int y_neighbor = (y - dir[d][1] + _NY) % _NY;
8
9 for (int iv = 0; iv < 7; iv ++) { // 7 conservative variables
10 int ik = d * 7 + iv;
11 f[ik] = lattice [ x_neighbor + y_neighbor * _NX + ik * _NX * _NY ];
12 }
13 }
14 }

Code 3.7: CUDA pseudo-code for the function get_flux_from_neighbors.

The implementation of the MHD-DC scheme on the GPU is demonstrated in Codes 3.6 and 3.7. This
approach ensures coalesced memory writes due to the indexing strategy, where tid + ik * _NX * _NY forms
a contiguous block for different threads. This contiguity is achieved by appropriately setting tid to ensure
threads are adjacent in memory.

Memory reads within the get_flux_from_neighbors function adopt a pattern as shown below:
lattice[x_neighbor + y_neighbor * _NX + ik * _NX * _NY]. (3.14)
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Without considering the modulo operation, this equation simplifies to:

lattice[x + dir[d][0] + (y + dir[d][1]) * _NX + ik * _NX * _NY] (3.15)

which further simplifies to:

lattice[tid + ik * _NX * _NY + dir[d][0] + dir[d][1] * _NX], (3.16)

demonstrating a coalesced access pattern of lattice[tid + constant] for all threads within a given it-
eration, with constant being a constant. The modulo operation introduces uncoalesced accesses at the
boundaries, but their impact on performance is minimal due to their infrequency.

The functions w2f and f2w are not depicted here, but they are central to the scheme. The w2f function
computes f eq from the conservative values w using equation (3.11), while the (f2w) function aggregates the
kinetic vectors to conservative values (here, by summing across the four velocities as in equation 3.9).

For the sake of generality, we do not assume in-place computations, as some schemes cannot be imple-
mented in-place. It can ben noted here, however, that this specific scheme could be implemented in-place,
which would reduce the memory footprint. To do this, we can modify the global memory accesses so that the
data are written to the same location they are read from. Then, the get_flux_from_neighbors function
would need know the parity of the time step and read the fluxes either from the neighbors or from the cell
itself. This in-place implemlentation would be referred to as an AA-pattern in the literature [23], while our
naive implementation is known as a pull pattern [289]. The literature extensively refers to different access
patterns that differ both in terms of execution time and memory requirements.

3.2.4 Evaluating the performance
To evaluate the performance of the MHD-DC scheme on the GPU, we measure the effective memory through-
put on different GPUs.

GPU P100 V100 A100
Maximum (theoretical) 732 GB/s 900 GB/s 1555 GB/s
Effective throughput 501 GB/s 769 GB/s 1270 GB/s

Efficiency 68% 85% 82%

Table 3.2: Observed effective memory bandwidth of the MHD-DC scheme on different GPUs. The efficiency
is calculated as the ratio of the effective throughput to the theoretical maximum. The grid size is 2048×2048
on each configuration.

Table 3.2 shows the measured memory throughput and the theoretical maximum on different GPUs.
The effective throughput is calculated as the number of bytes read and written divided by the execution
time. We can see that the implementation is efficient, with a throughput relatively close to the theoretical
maximum. Analyzing the performance in these terms is convincing, as it provides a clear upper bound on the
performance of the kernel. Indeed, assuming that a global memory access is required for each read and write,
it is impossible to achieve a higher throughput than the theoretical maximum. This methodological approach
will be used thoroughly throughout this thesis to have an objective measurement of the performance of the
different implementations.

This section has illustrated the implementation of a numerical scheme on the GPU, using the MHD-DC
equations as an example. We have shown that, with this implementation, the GPU is nearly used at its full
capacity, with a throughput close to the theoretical maximum. When implementing a numerical scheme on
the GPU, the same thought processs is generally applicable, especially for schemes based on a regular grid.
The limit of this framework is the size of the grid, as the memory capacity of the GPU puts a hard limit on
the size of the grid that can be simulated.

In the case where the grid size exceeds the memory capacity of the GPU, a solution is to distribute the
computation across multiple GPUs. However, distributing stencil computations introduces challenges. We
will discuss these challenges throughout the rest of this chapter. In the following section, we explain the
usual framework for distributing this type of computation across multiple GPUs.
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3.3 Distributing the computation

Figure 3.3: This example shows how bordering data are corrupted, depending on the direction vectors. The
subgrid has an overlapping depth of 2 and a data size of 4 × 4. If the data are fetched (yellow arrows)
from outside the subgrid or from a corrupted cell, the target cell becomes corrupted. When the norm of the
direction vectors is 1, 2 steps can be performed without corrupting the main data, while a norm of 2 only
allows for 1 step.

The typical approach to distributing stencil computations across multiple GPUs is to divide the domain into
subgrids, each of which is assigned to a different GPU. Each subgrid contains extra data at its border that
duplicate the values of its neighbors. These extra data are referred to as the halo of the subgrid. Some
other names are used in the literature, such as ghost cells, padding, or overlap. The idea is to allow each
subgrid to perform the stencil computation independently, without having to communicate with its neighbors.
Figure 3.3, for instance, shows how the stencil can be performed independently from the neighbors, as long
as the ghost cells are correctly updated. It shows two examples, one with a direction vector (stencil) of norm
1 and one with a direction vector (stencil) of norm 2. Both examples assume an overlapping depth of 2. We
can see that depending on the shape of the stencil and the overlapping depth, the number of steps that can
be performed without compromising the result varies. Throughout this work, we refer to different sizes for
a subgrid. The whole subgrid size, which includes the ghost cells, is referred to as the true size. The size of
the area denoted in blue on the figure is referred to as the logical size. We define the logical space as the
space where useful computations are performed. As we can see on the figure, at the end of the process, only
the blue area contains useful information that can be used for the next step.

Figure 3.4: Typical execution flow of a stencil solver. It consists of a succession of exchange and step phases.
The step phase is often divided into a shift (read the neighbors) and a relax (compute the new values) phase.
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To ensure the coherency of the overall stencil loop, a synchronization phase is needed. We refer to this
phase as the exchange phase or simply the synchronization depending on the context. In Figure 3.4, we
show the basic execution flow of a distributed stencil computation. We first initialize the grid values on
each subgrid, then perform successive alternating exchange and step phases. The important idea is that
depending on the overlapping depth n, we can perform n steps after each synchronization. There are,
therefore, perfomance implications in the choice of the overlapping depth.

Figure 3.5: This schematic shows how the "faces" can be exchanged between the subgrid in the 2D case, with
an overlapping depth of 1. The horizontal copy phase is divided into two parts to better display the process.
For the sake of clarity, not all necessary data copies (yellow arrows) are shown. In a real case scenario, the
data consist of vectors of floating-point values, rather than integers.

To be more specific, we provide an example for a synchronization between 2× 2 subgrids in Figure 12.2.
The schematic shows the exchange of "faces" between the subgrids. If we divide the synchronization into two
successive phases (horizontal and vertical), we can achieve a full synchronization that includes the corners.
The trick is to use a wider frame for the vertical synchronization, which includes the ghost "horizontal" cells.
For example, the "7" value is first written to the corresponding ghost cell of the top-left subgrid during the
horizontal exchange, then copied to the bottom-left subgrid, resulting in the "7" value being correctly written
to the corner of the bottom-left subgrid.

Overall, several tweaks can be made to optimize the process flow of a stencil computation, but the
concepts we presented here generally apply to most distributed stencil computations. For instance, the
synchronization phase does not necessarily translate into a separated phase in the code. Moreover, it is
generally achieve through the use of an interfacial buffer, which contains the data to be exchanged. In
principle, only the interfacial buffers should be exchanged between the GPUs, to minimize the amount of
data to be transferred. Section 4.5 provides a more detailed example of how interfacial buffers can be used
to optimize the synchronization process.

So far, we have discussed the general framework for distributing stencil computations. When performance
is a concern, as is the case in most scientific computing applications, new challenges arise and require careful
consideration. In the next section, we discuss some of the most common challenges encountered when
implementing distributed stencil computations on GPUs.
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3.4 Challenges
Stencil algorithms are typically recognized for their high parallelization potential, stemming from their
uniform data access patterns. The challenges encountered, however, are frequently similar across various
implementations. This section outlines prevalent challenges in deploying stencil computations on GPUs,
drawing insights from the stencil implementation detailed in Section 3.2. While the previous discussions
have been anchored in a specific example, the challenges highlighted are broadly applicable to a wide array
of stencil types.

Kernel Optimization The optimization of stencil kernels is an interesting, yet problem-specific challenge.
It is generally accepted that the limiting factor of stencil computations is memory bandwidth. Hence, the
discussion on optimization often revolves around making efficient data reuse and data access patterns. We
are aware of multiple studies that focus on improving kernels for GPUs [82, 222, 247]. Although we did not
make pivotal contributions to this field, we have used the insights from these studies to optimize our kernels.

Data Management Data management is a critical aspect of stencil computations, especially when consid-
ering distributed implementations. Numerous studies have been dedicated to optimizing distributed stencil
computations [293, 302, 206, 122]. In general, the main focus is to achieve optimal balance between mini-
mization of memory transfers and cost of synchronization. The most common techniques in this regard are
temporal blocking and region sharing [124, 194, 188, 248]. Another issue that is closer to the concerns we
raise in this thesis is the data management when the GPU memory is exceeded. Midorikawa et al. have pro-
posed to use the SSD as a swap space for the GPU memory, make careful data-aware decisions to minimize
the impact of the swap, and evaluate the performance of their method on a stencil computation [187]. How-
ever, the issue of strategically addressing system memory limitations, particularly when it exceeds capacity,
often receives insufficient attention in the literature, likely under the assumption that leveraging additional
hardware resources can circumvent the problem.

Coherence and Fault Tolerance In the realm of large-scale distributed computation, an increase in
computation size and complexity often leads to a rise in the likelihood of system failures. The complexity
of these systems introduces the potential for failures at various stages of computation, which can stem from
hardware malfunctions, software bugs, or network disruptions, making fault tolerance a prevalent challenge
in distributed computing. The consequences of a single failure can be catastrophic in distributed systems,
leading to data corruption, loss of computational progress, and waste of large amounts of computational re-
sources. Ensuring coherence within these systems necessitates conducting operations in the correct sequence
to achieve the intended final results, which is paramount for the consistency of computations. However, the
manual parallelization of tasks, for instance through the use of frameworks like MPI, not only increases the
likelihood for implementation errors but also makes identifying and debugging these errors challenging.

To mitigate these issues, adopting robust software libraries specifically designed for fault tolerance in
distributed environments is often recommended. Libraries such as FTI and SCR stand out as common choices
for ensuring fault tolerance in large-scale distributed systems [191, 31]. These tools provide a foundational
layer of resilience, enabling developers to concentrate on computational goals rather than the underlying
complexities of fault tolerance and error recovery.

Consequently, the incorporation of such libraries into the development process of large-scale distributed
systems is crucial. In the context of research, where the focus is usually on the development of novel
algorithms and methodologies, the use of robust methodologies for fault tolerance is not necessarily a pri-
ority. However, it is important to note that the resilience of the system becomes critical in a production
environment, where the loss of computational resources can have significant financial implications.

Heterogeneous Hardware Modern supercomputers are often composed of a mix of different hardware.
This can include CPUs, GPUs, FPGAs, and other accelerators. The challenge is to make the most of the
available hardware, which can be quite different in terms of performance and memory hierarchy. It is critical
for some applications, where one type of processor is better for a part of the process, while another type is
better for another part [6, 13, 170]. In other applications, where one type of processor is better for the whole
process, it can still be relevant to perform heterogeneous computations to make the most of the available
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resources. A common example for this is for processes that are faster on the GPU. As most supercomputers
include computing node with both CPUs and GPUs, it would be a waste of resources to deliberately not use
the CPUs.

Load Balancing Load balancing is a critical aspect of distributed computing and parallel processing. The
issue stems from the fact that the computational load is rarely perfectly balanced across all processing units.
This can be due to a variety of factors, that range from low-level hardware uncertainties to high-level choices.
In the case of stencil computations, the load balancing issue poses a challenge, notably in the framework we
described in Section 3.3.

In general, the strategy is to partition the domain into subgrids of equal size, with the assumption that
the computational load is uniform across the domain [138]. However, several factors can lead to an imbalance
in the computational load, such as local fluid dynamics, boundary conditions, and code optimizations [214].
This is why modern distributed stencil solvers often include a load balancing mechanism that redistributes
the workload across the processing units to minimize idle time and maximize computational efficiency [28].
The challenge lies in developing a load balancing mechanism that is both efficient and scalable. For instance,
it can be detrimental to transfer a subgrid from one GPU to another, as the cost of the transfer can outweigh
the benefits of the load balancing.

3.5 Conclusions
In this chapter, we have presented the main concepts related to stencil computations, with a focus on
the implementation of stencil computations on GPUs. We have shown how the GPU architecture can be
leveraged to achieve high performance for stencil computations, and how the CUDA programming model can
be used to express parallelism in a simple and straightforward way. We have also discussed the challenges
of implementing stencil computations on GPUs, in particular the unique challenges of distributed stencil
computations.

As we have seen, the literature on stencil computations is vast and varied, with many different approaches
and optimizations. These optimizations are often problem-specific, and the choice of optimization depends
on the specific problem at hand. While our work does not focus on the optimization aspect of stencil
computations, it is important to be aware of the underlying principles to provide relevant contributions
to the field. As we have seen throughout this chapter, the challenges associated with distributed stencils
are typically solved thanks to the use of an external library, such as MPI or a custom library. The HPC
community values runtime execution engines for their role in offering an interface that enables efficient
parallel execution within the realm of high-performance computing. In the next chapters, we present the
advantages of using such a runtime system for the implementation of distributed stencil. First, in Chapter 4,
we present our contributions to the field of efficient stencil computations with the PaRSEC runtime system.
Then, in Chapter 5, we present a parallelization approach with the StarPU runtime system.
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Chapter 4

High-performance parallelized stencils
with PaRSEC

When performance is critical, the classical approach to distributing stencil computations is to rely on a
dedicated engine. Among the most popular ones, we can cite OpenLB [137], pyLBM [105], Palabos [152],
LB3D [239], StencilFlow [85], and many others. These frameworks are designed to simplify the development
of CFD simulations, while providing high performance. In general, they work by performing a domain
decomposition, where the global grid is divided into subgrids, which are then distributed to the available
processing units (similar to what we describe in Section 3.3). However, to achieve the highest performance
in distributed environments, it is often necessary to use a more flexible approach, which can allow for better
load balancing, better data locality, etc. In this work, we focus on the development of a high-performance
CFD simulations using task-based runtime systems. This chapter focuses on the PaRSEC [46] runtime
system, while the next chapter focuses on the StarPU [20] runtime system. Both PaRSEC and StarPU
are considered state-of-the-art in the field of HPC, and are used in many research projects and production
environments. They rely on different programming models (but are both Task-Based), and have different
features and capabilities.

This chapter provides a summary of the task-based approach in Section 4.1, highlighting the benefits of
using runtime systems to address the challenges of distributed computing. We then delve into the specifics of
the PaRSEC runtime system in Section 4.2, highlighting its key features and capabilities. Subsequent sections
build on this foundation, with Section 4.3 explaining the PTG programming model, central to PaRSEC. Our
enhancements to this model, designed to optimize stencil computations, are detailed in Section 4.4. Our
implementation of a D2Q9 stencil with PaRSEC is outlined in Section 4.5, where we also discuss leveraging
the PTG model to achieve high performance. The chapter concludes with a performance evaluation of our
implementation on a single A100 GPU in Section 4.6 and discusses the results in Section 4.7.

4.1 Task-Based Runtime Systems
The increasing complexity of modern HPC systems has made the development of efficient applications more
challenging. Multiple challenge can arise when aiming to efficiently use the available resources, such as
ensuring coherency of the data, managing the memory transfers, handling heterogeneous processing units,
etc [131, 189]. Addressing these challenges inevitably leads to a higher complexity in the code, which can
make the code harder to maintain and to understand [280, 281]. This is why the HPC community has
invested much effort into designing programming models and runtime systems.

One modern way of addressing the problem is to use runtime systems. These frameworks aim to provide a
high-level interface to the user, abstracting some of the complexities inherent to distributed computing [267].
They usually rely on a programming model that describes the program in a way that is automatically
processable by the runtime system. A powerful class of programming models is the task-based programming
model, which allows the user to describe the program as a set of tasks, which are then scheduled by the
runtime system. The common denominator of these frameworks is that the basic unit of work is a task. A
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task can be seen as a part of the program that can be executed on a processing unit, which can be a CPU
core, the whole CPU, a GPU, etc. The runtime system is generally responsible for scheduling the tasks on
the available processing units, managing the data transfers, ensuring the coherency of the data, etc.

There are several reasons why using a runtime system can be beneficial. One reason is performance, which
is the main reason for our work. The performance gains can be achieved thanks to efficient scheduling from
the runtime system, low-level optimizations embedded in the runtime system (e.g., overlapping computation
and communication), the ablity to perform heterogeneous computing, or simply the ability to parallelize a
process that would be hard to parallelize otherwise. Other reasons include the ability to handle dynamic
workloads, the ability to handle failures, or the resilience to changes in the configuration of the system.

The use of task-based parallelization has already been studied in the context of stencil computations [22,
205, 185]. The work of Lima et al. [165] appears to be the closest to our work. They provide a comparison of
different implementations for a D3Q19 simulation and conclude that the task-based (StarPU) implementation
is the fastest. This highlights the potential of the task-based approach, even if their work is limited to a
single node. The works of Raut et al. [220, 219] are also relevant for our work. Their approach, based on
Legion [30] (a task-based runtime system), demonstrated that the task-based approach can compete with
the traditional MPI+OpenMP approach. They notably extended their work to multi-GPU systems [218].
Although they assuredly provided a highly scalable distributed implementation, it is not clear whether their
approach is easily extendable to schemes where a vectorial kinetic representation is required, as in the LBM.
Moreover, we were not able to find any public implementation of their work, which makes it hard to analyze
their approach in detail. However, the Legion runtime system appeared to be a good candidate for our work,
but we did not further investigate its capabilities due to a lack of time.

In the following sections, we will present the PaRSEC runtime system and explain how its paradigm can
be leveraged to implement multi-GPU Lattice-Boltzmann simulations.

4.2 Overview of PaRSEC
PaRSEC is a task-based runtime system that has been created to handle the challenges of distributed
hetetogeneous computing. It provides DSLs such as the Parameterized Task Graphs (PTG) model [79] and
the Dynamic Task Discovery (DTD) model [117]. These models allow the user to describe the program with
a high level of abstraction. PaRSEC has been used in various research projects and has demonstrated high
potential in various fields [44, 45, 3].

The development of the PaRSEC runtime system was initiated to address the challenges of efficiently
managing memory and ensuring data coherence across a diverse range of processing units. Addressing these
challenges, PaRSEC introduces a programming model centered around task flows.

Within this model, the PTG model enables users to describe programs algebraically as sets of tasks
along with their dependencies (more on this in Section 4.3). This approach stands in contrast to traditional
parallel programming models, which often depend on a fixed (explicit) task graph or adopt a fully dynamic
methodology. The PTG model, on the other hand, allows for the deduction of the entire graph without the
need for explicit synchronization by every processing unit at any point during execution. This is achieved
thanks to compile-time analysis of the algebraic description of the program, which allows the runtime system
to make informed decisions about task execution order and resource allocation. One primary limitation of
this method is the static nature of the (virtual) graph, which is fully determined at the start of execution.

DTD was introduced in part to address this limitation [117]. This secondary DSL adopts a more dynamic
approach, allowing for the dynamic discovery of tasks as computations evolve. DTD is especially beneficial
for applications demanding high adaptability. For the applications considered in this work, the PTG model
is sufficient, as the task sets are known in advance.

PaRSEC offers several advantages:

• High scalability is offered through its capability to manage a large volume of tasks;

• Low synchronization overhead features prominently, minimizing delays and improving overall efficiency,
especially in distributed computing environments where communication costs can be significant;

• Efficient task scheduling is provided by leveraging expressive dependency descriptions, enabling the
runtime system to make informed decisions about task execution order and resource allocation;
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• High adaptability to various hardware architectures is demonstrated, allowing seamless operation across
multicore CPUs, GPUs, and other specialized processors, thereby maximizing performance and resource
utilization.

Nevertheless, PaRSEC also has limitations. The complexity involved in expressing algorithms via PTG
may pose a steeper learning curve for developers than higher-level programming models. The efficiency of
an execution is highly dependent on the task flow description, the quality of which heavily depends on user
expertise. Moreover, the static nature of the PTG model can make it challenging to express applications
with dynamic task sets. Even if DTD partly addresses these limitations, it still requires a high level of
expertise to use effectively, making PaRSEC difficult to use for users outside the HPC community.

Subsequent sections will detail our contributions to the PaRSEC project, focusing on facilitating stencil
computations on multi-GPU systems. The forthcoming section will elaborate on the PTG programming
model. Section 4.4 will discuss our extensions to the PTG model to more aptly express stencil computations.
Sections 4.5 and 4.6 will show a use case involving the implementation of a D2Q9 stencil with PaRSEC and
its performance evaluation on a single A100 GPU.

4.3 PTG Programming Model
The PTG model is a high-level programming model that allows the user to describe the program as a set
of tasks and their dependencies. The tasks must be divided into task classes, which are the basic unit of
description in the PTG model. Then, the user can describe the in and out data accesses of each task in
JDF language, which is the DSL that implements the PTG model. Each of these accesses are described by
a dataflow, which is a set of rules that describe how the data is accessed. More specifically, the rules must
describe where to fetch the data (in dependencies) and where to "send" the data (out dependencies).

Let us consider a simple example with a GEMM (General Matrix Multiply) algorithm. The inputs of
the algorithm are two matrices A and B, and the output is the matrix C. To allow distributed computing,
we divide the matrices into tiles and refer to them as Ai,j , Bi,j , and Ci,j . To define a GEMM task class, we
need to provide rules for computing a tile of C.
1 GEMM(m, n) // Name of the task class and its parameters
2
3 // Ranges of m and n ( tile coordinates )
4 m = 0 .. matrix_size_m -1
5 n = 0 .. matrix_size_n -1
6
7 // Read data are described with "<-" and write data with "->"
8 READ dataflow_A <- A(m, ...) // The line (of tiles ) m of A
9 READ dataflow_B <- B(... , n) // The column (of tiles ) n of B
10 WRITE dataflow_C -> C(m, n)
11
12 // Kernel for computing C(m, n)
13 BODY
14 float *C_mn = dataflow_C ; // The tile C(m, n)
15 memset (C_mn , 0, tile_size * tile_size * sizeof ( float ));
16
17 for(int k = 0; k < matrix_size_k ; k++) {
18 // Amk and Bkn are not retrievable in this example
19 float *A_mk = ...;
20 float *B_kn = ...;
21 for(int i = 0; i < tile_size ; i++) {
22 for(int j = 0; j < tile_size ; j++) {
23 C_mn[i, j] += A_mk[i, k] * B_kn[k, j]
24 }
25 }
26 }
27 END

Code 4.1: Pseudo-(non working) code for the GEMM task class.

The pseudo-code provided in Code 4.1 recalls the basic structure of a GEMM algorithm. It is not valid
JDF code, because it does not give the exact order k in which the Ai,k and Bk,j tiles must be computed.
One way to express this is to introduce an iterator k that gives the exact order of the computation.
1 GEMM(m, n, k) // Name of the task class and its parameters
2
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3 // Ranges of m and n ( tile coordinates )
4 m = 0 .. matrix_size_m -1
5 n = 0 .. matrix_size_n -1
6 k = 0 .. matrix_size_k -1
7
8 READ dataflow_A <- A(m, k)
9 READ dataflow_B <- B(k, n)
10 // Now , dataflow_C is read and written
11 RW dataflow_C
12 // If first iteration , allocate a new piece of memory , otherwise , use the existing one
13 <- (k==0) ? new : dataflow_C GEMM(m, n, k -1)
14 // If last iteration , write the result to C, otherwise , sent to the next iteration
15 -> (k< matrix_size_k -1) ? dataflow_C GEMM(m, n, k+1) : C(m, n)
16
17 // Kernel for updating C(m, n)
18 BODY
19 float * current_C = dataflow_C ; // Current tile C(m, n)
20 float *A_mk = dataflow_A ; // Current tile A(m, k)
21 float *B_kn = dataflow_B ; // Current tile B(k, n)
22
23 for(int i = 0; i < tile_size ; i++) {
24 for(int j = 0; j < tile_size ; j++) {
25 if(k == 0)
26 current_C [i, j] = 0;
27 current_C [i, j] += A_mk[i, k] * B_kn[k, j]
28 }
29 }
30 END

Code 4.2: Example JDF code for the GEMM task class.

The updated Code 4.2 is near-valid JDF code. The main difference is that the dataflows have been
rewritten so that they correspond to a piece of data (tile). Due to the introduction of the iterator k, the
piece of data that will contain the result is now processed matrix_size_k times.
1 // Let us focus on the dataflow_C :
2 RW dataflow_C
3 <- (k==0) ? new : dataflow_C GEMM(m, n, k -1)
4 -> (k< matrix_size_k -1) ? dataflow_C GEMM(m, n, k+1) : C(m, n)
5
6 // Each task class has access to a dataflow_C buffer
7 // The data are processed in by the runtime system
8 // The following pseudo - code shows how the JDF code can be translated into C code
9
10 void pdeuso_code_get_dataflow_C ( void * dataflow_C , int m, int n, int k) {
11 // Conditional block deduced from the JDF code
12 if(k == 0) {
13 // Allocate a new piece of memory
14 dataflow_C = new_dataflow_C ();
15 } else {
16 // Get the data from dataflow_C GEMM (m, n, k -1)
17 dataflow_C = get_dataflow_C (m, n, k -1);
18 }
19 }
20
21 void pseudo_code_send_dataflow_C ( void * dataflow_C , int m, int n, int k) {
22 // Conditional block deduced from the JDF code
23 if(k < matrix_size_k -1) {
24 // Send the data to dataflow_C GEMM (m, n, k+1)
25 send_dataflow_C ( dataflow_C , m, n, k+1);
26 } else {
27 // Write the result to C(m, n)
28 void * C_m_n = get_C (m, n);
29 memcpy (C_m_n , dataflow_C , tile_size * tile_size * sizeof ( float ));
30 }
31 }

Code 4.3: Pseudo-code for translating the JDF code for dataflow_C into C code.

The new dataflow_C dataflow is more complex and provides insights into how the dataflows are designed
in PTG. For instance, Code 4.3 shows pseudo-codes that describe how the JDF code for dataflow_C can
be translated into C code. Basically, a dataflow must provide at least one of two rules: one for reading
and one for writing. Here, pdeuso_code_get_dataflow_C shows how the rule for reading the data can be
implemented, while pseudo_code_send_dataflow_C shows does the same for writing the data. It is possible
to have only one of these rules, for instance, if the data is only read or only written. It is important to note
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that dataflows correspond to the description of the in/out data accesses of a task class and do not represent
the actual data, which is handled by the runtime system.

An in dependency to a dataflow should always be met with an out dependency from the same dataflow.
In this case, the dataflow is read and written by the same dataflow (dataflow_C). We can see the exact
correspondence between the out and the in rules: dataflow_C GEMM(m, n, k+1) and dataflow_C GEMM(m,
n, k-1).

The high expressiveness of the PTG model comes with a cost. Here, the introduction of the iterator k
added additional constraints to the order of execution and, hence, added avoidable barriers to parallelism.
One idea to avoid this is to use the concept of parametrized flows, which is a way to express the dataflows
in a more abstract way, as demonstrated in Code 4.4.

1 READ dataflow_A [k = 0 .. matrix_size_k -1] <- A(m, k)
2 READ dataflow_B [k = 0 .. matrix_size_k -1] <- B(k, n)

Code 4.4: Pseudo-code for the A and B dataflows using the idea of parametrized flows.

In the case of GEMM, this approach would not be efficient, because it would require to store an entire
line of A and an entire column of B per tile of C, which does not favor data locality. However, we can see
that the concept of parametrized flows is a powerful tool to express the dataflows in a more abstract way,
and it is especially useful for stencil computations, as we will see in the next section.

4.4 Extending the PTG model for stencil computations

The concept of parametrized flows was developed in response to the intricate dependency patterns com-
monly observed in stencil computations. Challenges in these computations largely arise from the need for
subgrid synchronization, a crucial aspect of the algorithmic framework. Difficulties encountered encompass
the requirement for stencil-specific optimizations, the impact of temporal blocking on dependency manage-
ment, and the pursuit of a formulation that enhances the capacity for generalization. These challenges are
showcased in Section 4.5.

Our first enhancement in PaRSEC involves the development of a data structure designed to elegantly
represent multi-dimensional data. Prior to this enhancement, PaRSEC primarily utilized data structures
suited to matrix-based applications typical of linear algebra, which do not adequately generalize to multi-
dimensional contexts. In PaRSEC, the abstraction and management of any data type are handled with the
parsec_data_collection structure, which encapsulates the data. A parsec_data_collection represents
a collection of data segments (such as matrix tiles) and a set of access rules. The newly introduced data
structure, parsec_multidimensional_grid, supports an arbitrary number of dimensions, thereby offering
the flexibility and expressiveness required for advanced stencil implementations.

The integration of parametrized flows marks another crucial advancement. To illustrate the challenges
posed by the traditional PTG model in representing stencil computations, consider the example of a simple
2D stencil.

1 for(int i = 1; i < width -1; i++) {
2 for(int j = 1; j < height -1; j++) {
3 float sum = 0;
4 for(int k = -1; k <= 1; k++) {
5 for(int l = -1; l <= 1; l++) {
6 sum += input [i+k][j+l] * gaussian_kernel [k+1][l+1];
7 }
8 }
9 output [i][j] = sum;
10 }
11 }

Code 4.5: Pseudo-code for a gaussian blur 2D stencil without parallelization.
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Figure 4.1: Dependency structure of a gaussian blur 2D stencil with 3x3 subgrids.

To parallelize Code 4.5, we divide the grid into 3 × 3 = 9 equally-sized subgrids and no overlapping.
Figure 4.1 shows the dependency structure of the algorithm under this configuration. A way of expressing
this in PTG is to create a task class for each direction.
1 GAUSSIAN_BLUR (x, y) // Name of the task class and its parameters
2
3 // Ranges of x and y ( tile coordinates )
4 x = 0 .. width -1 // 0 .. 2 for 3x3 subgrids
5 y = 0 .. height -1 // 0 .. 2 for 3x3 subgrids
6
7 // Rules for getting the neighboring subgrids
8 READ LEFT_SUBGRID <- (x >0) ? input (x-1, y) : NULL
9 READ RIGHT_SUBGRID <- (x<width -1) ? input (x+1, y) : NULL
10 READ UP_SUBGRID <- (y >0) ? input (x, y -1) : NULL
11 READ DOWN_SUBGRID <- (y<height -1) ? input (x, y+1) : NULL
12
13 // Main in/ out dataflows
14 READ OWN_SUBGRID_IN <- input (x, y)
15 WRITE OWN_SUBGRID_OUT -> output (x, y)

Code 4.6: Pseudo-JDF code for the gaussian blur 2D stencil.

Code 4.6, presenting near-valid JDF syntax, illustrates the foundational JDF structure for implementing a
Gaussian blur 2D stencil. The issue under consideration is the rule redundancy for acquiring neighboring sub-
grids. While manageable for a system with four dataflows, this redundancy escalates in higher-dimensional
scenarios, potentially leading to errors. Moreover, such redundancy could degrade the scheduling efficiency
due to the less discernible dependency pattern. Parametrized flows, as demonstrated in Code 4.7, offer a
more succinct expression of the dependency pattern.
1 const int dx [4] = {-1, 1, 0, 0};
2 const int dy [4] = {0, 0, -1, 1};
3
4 // [...]
5
6 READ NEIGHBOR_SUBGRID [d = 0 .. 3] <- input (x+dx[d], y+dy[d])

Code 4.7: Pseudo-JDF code for the gaussian blur 2D stencil with parametrized flows.

To effectively integrate this code within PaRSEC, alterations to accommodate parametrized flows are
imperative. Two methodologies for managing parametrized flows are proposed. Initially, one approach entails
analyzing and expanding the parametrized flows at compile time, thus generating a comprehensive set of
rules, as depicted in Code 4.8.
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1 // Expanded flows
2 READ NEIGHBOR_SUBGRID_0 <- input (x-dx [0] , y-dy [0])
3 READ NEIGHBOR_SUBGRID_1 <- input (x+dx [1] , y+dy [1])
4 READ NEIGHBOR_SUBGRID_2 <- input (x-dx [2] , y-dy [2])
5 READ NEIGHBOR_SUBGRID_3 <- input (x+dx [3] , y+dy [3])
6
7 // [...]
8
9 // If we want to avoid boilerplate code , we can use a macro :
10 # define NEIGHBOR_SUBGRID (d) NEIGHBOR_SUBGRID_ ##d

Code 4.8: Pseudo-JDF code for the gaussian blur 2D stencil with expanded parametrized flows.

The primary challenge with the static approach to handling parametrized flows is that it presupposes
known bounds at compile time to deduce the number of rules. In contrast, a dynamic approach allows
for the expansion of parametrized flows during execution, leveraging runtime information to unfold the
parametrized flows. The static method is simpler to implement and potentially more efficient but suffers
from a lack of adaptability. On the other hand, the dynamic method offers greater flexibility at the cost
of potential efficiency losses and increased complexity in implementation. Implementing the static model
requires merely an initial rewriting pass within the PTG compiler, whereas adopting a dynamic model
necessitates comprehensive changes to internal operations within PaRSEC.

This research explores an intermediate strategy that expands parametrized flows at execution start. Un-
like the static approach, this method performs expansion at runtime, leveraging execution-time information
to unfold the parametrized flows. This adjustment necessitates modifications only to the PTG compiler,
which is a JFD to C compiler, avoiding extensive alterations to the runtime system itself. The primary chal-
lenge lies in ensuring that the generated C code appropriately adjusts the necessary structures at execution
start, maintaining overall execution coherence. This introduces substantial technical challenges on which we
will not elaborate further in this document.

The outcome of this research is an enhanced version of the PTG compiler capable of managing parametrized
flows effectively. In the subsequent section, the application of this new compiler feature to develop a high-
performance LBM D2Q9 solver will be discussed.

4.5 Implementation of a D2Q9 stencil with parametrized flows
To assess the potential of the PTG model to express stencil computations, let us consider the implementation
of a D2Q9 stencil. We choose a numerical scheme whose dependency structure can be leveraged to achieve
efficient subgrid synchronization.

4.5.1 Description of the D2Q9 stencil
The conservative variables of this LBM scheme are the density and the density-weighted velocity: W =
(ρ, ρux, ρuy). The used velocity set is (0, 0), (±1, 0), (±1, 0), and (±1,±1) [38], with corresponding weights:
4
9 (for the center), 1

9 (for the 4 "faces"), and 1
36 (for the 4 "corners") [309]. The rest of the construction is

similar or can be extrapolated to 2D from the D3Q27 scheme we describe later in Section 9.3.1 but in two
dimensions. In this section, we focus on the dependency structure of the D2Q9 stencil and assume that the
numerical process is the result of the application of a stencil on the grid, as described in Code 4.9.
1 const int dir [9][2] = {{0 , 0}, {1, 0}, {0, 1}, {-1, 0}, {0, -1}, {1, 1}, {-1, 1}, {-1, -1}, {1,

-1}};
2 const float weights [9] = {4.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/36 , 1.f/36 , 1.f/36 , 1.f /36};
3
4 // Iterate over the physical grid , ignore the borders
5 for(int i = 1; i < width -1; i++) {
6 for(int j = 1; j < height -1; j++) {
7 float f[9];
8
9 // Fetch the 9 neighboring cells
10 for(int d=0; d <9; d++) {
11 int dx = dir[d ][0];
12 int dy = dir[d ][1];
13 f[d] = input [i+dx ][j+dy ][d];
14 }
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15
16 phy(f, weights ); // Apply the stencil
17
18 // Save the result
19 for(int d=0; d <9; d++)
20 output [i][j][d] = f[d];
21 }
22 }

Code 4.9: Pseudo-code for the D2Q9 stencil.

(a) Simulation at t = 200s.

(b) Simulation at t = 400s.

Figure 4.2: Velocity field of the D2Q9 stencil at t = 200s and t = 400s.

Figure 4.2 shows the velocity field of the D2Q9 stencil at t = 200s and t = 400s. The sphere blocks the
fluid and highly periodic vortices, known as von Kármán vortices, appear after a certain time. The specifics
of this simulation are not relevant in this chapter. However, we ensured that the results remain physically
plausible (no obvious numerical instability) and that the simulation is stable over time.

As we have explained in Section 3.3, the standard method for parallelizing this kind of stencil is to divide
the grid into subgrids and to use interface buffers to synchronize the subgrids. Between each time step, the
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edge values of the subgrids are written to the interface buffers. These buffers are then sent to the target
location and are used for updating the ghost cells of the neighboring subgrids, hence duplicating the edge
values of the neighbors. Using intermediate buffers helps avoiding data transfers, as their size is substantially
smaller than the size of the subgrids. In the case of the D2Q9 stencil, it is possible to reduce the size of the
interface buffers by leveraging the shape of the stencil.

Left Interfacial buffer Subgrid Right Interfacial buffer

Values copied for synchronization
Kinetic value
Macroscopic value
Lattice velocity

Legend

Figure 4.3: Efficient writing to the interface buffers for the D2Q9 stencil on the x-axis for a single time step.
Only the outgoing fluid is written to the interface buffers. the same principle applies to the y-axis.

The size of the interface buffers can be reduced by a factor of three by using only the relevant directions,
as shown in Figure 4.3. Since the numerical only requires the outgoing fluid of the neighboring cells, only the
values whose direction is towards the exterior of the subgrid are written to the interface buffers. Without
knowing the lattice structure, all the edge kinetic values would have had to be written to the interface buffers.

While this technique minimizes the size of the interface buffers, it can also be inefficient. In a distributed
environment, it can be relevant to perform less communication but more computation. In iterative stencils,
it is possible to duplicate computations to achieve better performance with techniques related to temporal
blocking. In our framework, this can translate to increasing the depth of the ghost cell area (overlap) and,
hence, the size of interface buffers. With this technique, the synchronization can be done less frequently,
and the computation can be done more efficiently.
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Left subgrid Left interface Right interface Right subgrid

L cpy R cpy L cpy R cpy L cpy R cpy

Macroscopic value
Ghost area
Interface buffer

Legend

Figure 4.4: Synchronization process for the D2Q9 stencil using a depth of 3 in the ghost cell area. The
brackets indicate the regions that should be equal after the synchronization. Namely, L copy represents the
left-to-right copy, R copy the right-to-left copy. The ghost area is only shown for the relevant direction for
the sake of clarity, but there are ghost cells in all directions.

Figure 4.4 shows how this principle can be applied to the D2Q9 stencil. The main difference with the
previous figure is that all the kinetic values of the neighboring cells are written to the interface buffers, rather
than only the outgoing fluid. This is because the cells in the ghost area can now influence each other in
all directions. With this type of synchronization, a depth of d allows to perform d iterations of the stencil
without synchronization.

We, hence, have two presumably efficient ways of synchronizing the subgrids: the first one is to use the
shape of the stencil to reduce the size of the interface buffers, and the second one is to increase the depth of
the ghost cell area to reduce the number of synchronizations. In this implementation we adopt a different
method depending on the axis. On the y-axis, we use the first method, and on the x-axis, we use the second
method. This choice aims to maximize coalesced memory accesses on the GPU. The first method is more
efficient for the y-axis because the kinetic data are contiguous in memory for the whole line. The second
method allows to achieve better memory efficiency on the GPU. For instance, with a depth of 32, the memory
accesses can be grouped by 32, which aligns perfectly with the memory access pattern of the GPU.

This choice introduce a complex synchronization pattern, as the y-axis requires a synchronization every
time step, while the x-axis requires a synchronization every 32 time steps. The exchange of the corner values
is also not trivial to implement, as the corner values are not easily accessible. In the next section, we will
see how this synchronization pattern can be implemented in PaRSEC, leveraging parametrized flows.

4.5.2 Implementation with parametrized flows
To conciliate the y-axis synchronization and the PaRSEC data collection mechanism, we group the kinetic
values by their y offset (with regards to the stencil). The kinetic values that go upwards will be grouped
together, and so will the kinetic values that go downwards/horizontally. Hence, each subgrid is acutally
composed of 3 pieces of data (at the level of the data collection) and we refer to them with the dy iterator,
that ranges from -1 to 1, or sometimes from 0 to 2 for the sake of clarity.

It is logical to have a corresponding task class for each part of the work. We, hence, have the fill_grid task
class, which sets the initial condition of the scheme, the LBM_step task class, which applies the stencil (a
time step), and the write_horizontal_slices/read_horizontal_slices task classes, which perform the subgrid-
to-interface and interface-to-subgrid copies (with the method shown in Figure 4.4). For technical reasons
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that we do not detail here, there is a GPU kernel read_vertical_slices that does not have a corresponding
task class. The vertical synchronization is done directly in the LBM_step task class, as it is necessary at each
time step. To achieve high performance in distributed environments, we need to ensure that the intermediate
buffers can be sent alone to the target location. For this, we interleave task classes for the horizontal and
vertical interfacial buffers, which do not perform any computation but allow PaRSEC to treat their dataflows
as single pieces of data. This would not work as intented with only the LBM_step task class because the
engine would transfer all the data required by the neighboring LBM_step task classes, including the large
kinetic grids. The interleaved task classes are called vertical_interface and horizontal_interface and represent
the state of the buffer at a given synchronization. We also implement two task classes for saving the results
to disk, save_file and save_file_reduce. The save_file task class is a CPU task class that writes the data to
disk, while the save_file_reduce task class is a GPU task class whose purpose is to iterate over the subgrids
and write the data to a single (reduced) piece of data.
1 LBM_step (subgrid_x , subgrid_y , step)
2
3 subgrid_x = 0 .. subgrid_number_x -1
4 subgrid_y = 0 .. subgrid_number_y -1
5 step = 0 .. number_of_steps -1
6
7 RW INTERFACE_DOWN
8 // Takes the data from the vertical interface at the (step -1) ’th synchronization (if exists )
9 <- (step !=0)
10 ? VERTICAL_INTERFACE vertical_interface (subgrid_x , subgrid_y , 0, step -1)
11 : NULL
12 // Writes the data to the vertical interface at the step ’th synchronization
13 -> (step != number_of_steps -1)
14 ? VERTICAL_INTERFACE vertical_interface (subgrid_x , subgrid_y , 1, step)
15 : NULL
16
17 RW INTERFACE_UP
18 // Similar to INTERFACE_DOWN , but targets ( subgrid_y +1)% subgrid_number_y instead of subgrid_y
19
20 // For each dy offset
21 READ SUBGRID_FROM [dy = 0..2]
22 // If there was a save at the previous step , read the reduced data
23 // Note : the first set ( initial condition ) is always saved
24 <- (step% save_interval == 0)
25 ? SUBGRID_SAVE_REDUCE save_file_reduce (subgrid_x , subgrid_y , d, step/ save_interval )
26 // If there was a horizontal sync at the previous step , read the data after the sync
27 // Note : we synchronize every overlap_x steps
28 <- (step% overlap_x ==0)
29 ? SUBGRID_HORIZONTAL_WRITE [dy] write_horizontal_slices (subgrid_x , subgrid_y ,
30 step/overlap_x -1)
31 // Else , read from the previous step
32 <- SUBGRID_TO [dy] LBM_step (subgrid_x , subgrid_y , step -1)
33
34 WRITE SUBGRID_TO [dy = 0..2]
35 // Mostly similar to SUBGRID_FROM , not shown for the sake of brevity
36
37 BODY [type=CUDA]
38 float * subgrid_FROM_DY [3];
39 float * subgrid_TO_DY [3];
40 for(int dy =0;dy <3;++ dy)
41 {
42 // The parametrized flows SUBGRID_FROM and SUBGRID_TO can be accessed like arrays
43 subgrid_FROM_DY [dy] = SUBGRID_FROM [dy ];
44 subgrid_TO_DY [dy] = SUBGRID_TO [dy ];
45 }
46
47 LBM_step_call (subgrid_x , subgrid_y ,
48 subgrid_FROM_DY , subgrid_TO_DY ,
49 INTERFACE_UP , INTERFACE_DOWN ,
50 ...); // Call the actual LBM step kernel
51 END

Code 4.10: Pseudo-JDF code with parametrized flows for the LBM_step task class.

Code 4.10 provides insights into how the LBM_step task class is implemented in JDF. SUBGRID_FROM
and SUBGRID_TO are parametrized flows that provide the rules for getting and sending the subgrids.
They both correspond to 3 dataflows, one for each dy offset. Hence, when we enter the body of the task
class, we have access to the 3 in and out kinetic grids. We also have access to the INTERFACE_UP and
INTERFACE_DOWN data, which correspond to the vertical buffers using the method shown in Figure 4.3.
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Let us focus on the parametrized flow declaration READ SUBGRID_FROM[dy = 0..2]. Three in depen-
dencies are declared, depending on the time step. These in dependencies are read from up to down, meaning
that if the first condition is matched, the following ones are not checked. The first one expresses where the
in data can be found if the data has been saved at the previous step, while the second one indicates where
the data can be found if a horizontal synchronization has been performed. The last one is the general case,
where the data is read from the previous LBM_step task class.

The rest of the task classes are not necessarily relevant to detail the current discussion. The write_horizontal_slices
and read_horizontal_slices task classes interleave the LBM_step task class to allow for the synchronization
of the horizontal buffers. The vertical_interface and horizontal_interface task classes only act as intermedi-
ary task classes. The save_file and save_file_reduce task classes have not been designed to be efficient and
have only been implemented to test the correctness of the implementation.

Most GPU kernels are also not detailed in this document, as they do not constitute a performance bottle-
neck. The only kernel that has been optimized is the LBM_step kernel, which is the most computationally
intensive kernel, as it typically represents about 99% of the execution time. We propose three different
implementations of the LBM_step kernel in Codes 4.11, 4.12, and 4.13.
1 __global__
2 void LBM_step_naive (
3 float * subgrid_FROM_DY [3] , float * subgrid_TO_DY [3] ,
4 int x_margin , // depth of the cells we ignore on the x-axis ,
5 PRECISION * interface_down , PRECISION * interface_up , // interface buffers
6 )
7 {
8 int cellNum = subgrid_size_x * subgrid_size_y ;
9
10 for (int id = blockIdx .x * blockDim .x + threadIdx .x; id < cellNum ; id += blockDim .x* gridDim .x)
11 {
12 int subgrid_true_x = id % subgrid_size_x ;
13 int subgrid_true_y = id / subgrid_size_x ;
14
15 // Tell if the cell necessitates a computation
16 bool need_computation =
17 subgrid_true_x >= x_margin && subgrid_true_x < subgrid_size_x - x_margin ;
18
19 // Read the data from the subgrid
20 float f[9];
21 for(int d=0; d <9; ++d)
22 {
23 // dx and dy are the offsets by which we shift the values
24 int dy = velocities [d ][1]; // -1, 0, 1
25 int dx = velocities [d ][0]; // -1, 0, 1
26 int target_true_x = subgrid_true_x - dx;
27 int target_true_y = subgrid_true_y - dy;
28
29 // The ghost cells on the y- axis are handled by the interface buffers
30 if( is_in_ghost_area_up (dy , target_true_y ))
31 f[d] = interface_up [ target_true_x +( dx +1)* subgrid_size_x ];
32 else if( is_in_ghost_area_down (dy , target_true_y ))
33 f[d] = interface_down [ target_true_x +( dx +1)* subgrid_size_x ];
34 // Else , we read the neighbot value from the subgrid
35 else if( need_computation )
36 f[d] = subgrid_FROM_DY [dy +1][ target_true_y * subgrid_size_x + target_true_x ];
37 }
38 // Now f contains the values of the 9 neighbors
39
40 if( need_computation )
41 phy(f); // Compute the new values of f ( relaxation , equilibrium , etc .)
42
43 // Write the new values to global memory
44 for(int d=0; d <9; ++d)
45 {
46 int dy = velocities [d ][1];
47
48 // Update the current subgrid
49 if( need_computation )
50 SUBGRID_TO_DY [dy +1][ subgrid_true_y * subgrid_size_x + subgrid_true_x ] = f[d];
51
52 // If on the edge , update the interface buffers
53 if( is_in_edge_area_up (dy , subgrid_true_y ))
54 interface_up [ subgrid_true_x +(1+ dx)* subgrid_size_x ] = f[d];
55 if( is_in_edge_area_down (dy , subgrid_true_y ))
56 interface_down [ subgrid_true_x +(1+ dx)* subgrid_size_x ] = f[d];
57 }
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58 }
59 }

Code 4.11: Pseudo-CUDA code for the naive LBM_step kernel.

1 __global__
2 void LBM_step_optimized (...)
3 {
4 int dimX = subgrid_size_x - 2* x_margin ;
5 int dimY = subgrid_size_y ;
6 int cellNum = dimX * dimY;
7
8 for (int id = blockIdx .x * blockDim .x + threadIdx .x; id < cellNum ; id += blockDim .x* gridDim .x)
9 {
10 int rx = id % dimX;
11 int ry = id / dimX;
12 int subgrid_true_x = x_margin + rx;
13 int subgrid_true_y = ry;
14
15 // We do not need to check if the cell is in the computation area
16
17 // The rest of the kernel is the same as the naive kernel
18 }
19 }

Code 4.12: Pseudo-CUDA code for the optimized LBM_step kernel.

1 __global__
2 void LBM_step_per_line (...)
3 {
4 int x_min = x_margin ;
5 int x_max = subgrid_size_x - x_margin - 1;
6 int y_min = 0;
7 int y_max = subgrid_size_y - 1;
8
9 for(int true_y = y_min + blockIdx .x;true_y <= y_max ; true_y += gridDim .x)
10 {
11 for(int true_x = x_min + threadIdx .x;true_x <= x_max ; true_x += blockDim .x)
12 {
13 // The rest of the kernel is similar to the naive kernel ( but no check for the

computation area )
14 }
15 }
16 }

Code 4.13: Pseudo-CUDA code for the per-line LBM_step kernel.

These codes differ in the way the CUDA grid is organized. Since we have a margin on the x-axis (due to
the ghost area), no computations is needed for the cells in this area. The naive kernel iterates on the whole
grid regardless of the margin and ignores the cells that do not need to be computed. The optimized kernel
only iterates on the cells that need to be computed. The per-line kernel iterates so that one line along the
x-axis is computed by one CUDA block. It is not clear what approach is the best. The naive kernel ensures
perfectly coalesced accesses, while the other two lower idle thread time. In the next section, we perform
various experiments, one of which is to determines the most efficient version.

4.6 Performance Evaluation

4.6.1 Benchmarking the CUDA kernels
In this first study, we aim to determine the most efficient configuration for running the D2Q9 LBM stencil.
There are two major unknowns: the chosen depth of the overlap on the x-axis and the implementation for
the LBM_step kernel. To assess the impact of these parameters, we run the D2Q9 stencil for 4500 iterations
on a 20736× 10368 (single precision) grid, with an A100 GPU. We make the overlap vary from 1 to 32 and
thest the naive, the adjusted grid, and the per-line implementations of the LBM_step kernel. The block
configurations have been fine-tuned for each kernel on an overlap value of 10. The shown results are the
average of 16 runs.
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Figure 4.5: Comparison of the execution times of the CUDA kernels for the D2Q9 stencil under different
configurations. The overlap_x is the depth of the ghost cell area over the x-axis. The different LBM_step
kernels are denoted by different hatch patterns, from left to right: the naive kernel (described in Code 4.11,
the adjusted grid kernel (described in Code 4.12), and the per-line kernel (described in Code 4.13).

Figure 4.6: Comparison of the execution times of the CUDA kernels for the D2Q9 stencil with different
overlaps on the x-axis. Only the naive LBM_step kernel is considered.

Figure 4.5 presents the execution times for various LBM_step kernels with overlap values ranging from
12 to 20. This analysis reveals that the naive kernel outperforms its counterparts across the tested overlap
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values, establishing itself as the fastest. However, it is also observed that the performance of the naive kernel
is highly sensitive to changes in the overlap value.

To delve deeper into this phenomenon, Figure 4.6 specifically examines the naive LBM_step kernel,
extending the range of overlap values from 1 to 32. On this new scale, it appears clearly that the best
performance is achieved when the overlap size aligns with powers of two. The best performance is achieved
for an overlap of 16 and 32, followed by 8 and 24, and then 4, 10, 20, and 28. The reason for this behavior
likely lies in the memory access pattern of the naive kernel. The naive LBM_step kernel is written in such a
way that all threads are perfectly coalesced for memory accesses and threads that target the ghost cells are
simply not used. When the overlap is 16, the first and last warps will use exactly half of their threads (as
long as the subgrid size is a multiple of 32) and the CUDA grid will be perfectly aligned with the subgrid.
Although it is not clear whether these performance peaks are due to better balancing of the scheduler or to
a hardware feature, it is not surprising to see that such improvements are not possible or less efficient for
other overlap values.

Overall, it is observed that the LBM_step kernel is by far the most influential factor in the overall
performance of the D2Q9 stencil. The other kernels, while still having a slight impact for low overlap values,
become negligible as the overlap increases. This is expected, as the synchronization mechanism on the x-axis
has been designed to optimize data accesses for the GPU.

The conclusion of this first experiment is that optimal performance is reached with the naive LBM_step
kernel and an overlap of 16. For the moment, only the GPU time of the kernels has been measured. The
next step is to measure the time of the entire D2Q9 stencil, including the potential overhead of PaRSEC. In
the next section, we will see how the global execution performs with or without parametrized flows.

4.6.2 Comparison with standard PaRSEC dataflows
In this section, we want to assess the computational cost of using parametrized flows. In the tested D2Q9
application, all the parametrized dataflows depend on the y-offset of the stencil, which is known at compile
time. This makes it possible to unroll the parametrized flows by hand, by duplicating them and modifying
the correponsing values, as shown in Code 4.6. The dependencies (of the flows) can also be unrolled by hand,
by adding a rule in the condition for each possible value of the parameter, as demonstrated in Code 4.14.
1 RW SUBGRID_SAVE_REDUCE
2 // If first save , retrieve from initial condition
3 <- (s==0)
4 ? SUBGRID_D FillGrid (subgrid_x , subgrid_y , dy)
5 // Else , retrieve from the result of LBM_STEP
6 <- (true)
7 ? SUBGRID_TO [dy] LBM_STEP (subgrid_x , subgrid_y , (s)* save_interval -1)
8 // Send to the next LBM_STEP
9 -> (s* save_interval < number_of_steps )
10 ? SUBGRID_FROM [dy] LBM_STEP (subgrid_x , subgrid_y , s* save_interval )
11
12 // Can be unrolled to
13
14 RW SUBGRID_SAVE_REDUCE
15 <- (s==0)
16 ? SUBGRID_D FillGrid (subgrid_x , subgrid_y , dy)
17 <- (true && dy ==0)
18 ? SUBGRID_TO_0 LBM_STEP ( subgrid_x , subgrid_y , (s)* save_interval -1)
19 <- (true && dy ==1)
20 ? SUBGRID_TO_1 LBM_STEP ( subgrid_x , subgrid_y , (s)* save_interval -1)
21 <- (true && dy ==2)
22 ? SUBGRID_TO_2 LBM_STEP ( subgrid_x , subgrid_y , (s)* save_interval -1)
23 // Send to the next LBM_STEP
24 -> (s* save_interval < number_of_steps && dy ==0)
25 ? SUBGRID_FROM_0 LBM_STEP (subgrid_x , subgrid_y , s* save_interval )
26 -> (s* save_interval < number_of_steps && dy ==1)
27 ? SUBGRID_FROM_1 LBM_STEP (subgrid_x , subgrid_y , s* save_interval )
28 -> (s* save_interval < number_of_steps && dy ==2)
29 ? SUBGRID_FROM_2 LBM_STEP (subgrid_x , subgrid_y , s* save_interval )

Code 4.14: Example of unrolling the dependencies of a parametrized flow. The dy parameters ranges from
0 to 2 for the sake of the example.

This lets us compare both versions of the D2Q9 stencil, one with parametrized flows and the other with
unrolled flows. For the version with unrolled flows, PaRSEC is compiled with disabled parametrized flows
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and is, hence, close to the standard version of PaRSEC. Both versions are compiled with the highest level
of optimization and the same compiler flags. The shown results are the average of 256 runs. The rest of the
parameters are the same as in the previous experiment.

GPU kernels initialization whole run PaRSEC overhead
Parametrized 14.5793 s 0.0226 s 16.3202 s 11.94%

Non-parametrized 14.5786 s 0.0225 s 16.3187 s 11.94%

Table 4.1: Execution times for the parametrized and non-parametrized versions of the code.

Table 4.1 presents the results of this experiment. The first column shows the execution time of the GPU
kernels, the second one shows the execution time of the initialization time, and the third one shows the total
execution time. The initialization time is the time taken to create the PaRSEC context, the task classes,
and the dataflows. The PaRSEC overhead is computed as the relative difference between the total execution
time and the execution times of the GPU kernels.

The initialization time is expected to be greater for the parametrized flows version, as the generated code
adds more work for the rewiring of the data structure. However, this experiment shows that the overhead
of the initialization in the parametrized flows is not noticeable. Otherwise, the other times are similar for
both versions, which shows that the changes made to the PTG compiler do not significantly impact the
performance of PaRSEC.

4.7 Discussion
In this work, we have introduced the possibility of using parametrized flows in PaRSEC. We have demon-
strated that this feature can be used to implement a D2Q9 stencil with results similar to what can be achieved
with standard PaRSEC dataflows. The current state of the implementation does not handle execution on
multiple nodes, which is a serious, but not definitive, limitation.

The main advantage of using parametrized flows is that it allows for a more compact and readable code.
It is also a bit more flexible, as the number of dataflows can be deduced at initialization time, rather than
at compile time with standard PaRSEC dataflows. With parametrized flows, it is theoretically possible to
implement a generic JDF stencil distribution code that would work for different stencil shapes and number
of dimensions. We have seen that the impact on the performance of using parametrized flows is negligible
in practice, which is a good sign for the future of this feature.

Some limitations of parametrized flows are due to the use of PaRSEC as a runtime system. There is a
practical maximum number of dataflows that can be created for a given task class. This maximum number
depends on the overall dependency structure of the program and is caused by the use of internal masks of
size 32.

Overall, this work is a first step towards a more flexible and expressive DSL. We have shown that it
is possible to implement a high-performance stencil with parametrized flows in PaRSEC. Future work will
focus on fixing the limitations of the current implementation and on evaluating the performance of PaRSEC
on multiple nodes.

This concludes our contribution to the field of stencil computations using the PaRSEC framework. In
the next section, we present the rest of our contribution to this field, with a focus on the StarPU runtime
system.



Chapter 5

Efficient ditributed stencils on StarPU

In the previous chapter, we have presented our contributions to the efficient parallelization of stencil-based
algorithms using PaRSEC, a task-based runtime system. We refer to Section 4.1 of the aforementioned
chapter for a general introduction to task-based runtime systems and the justification as to why they are
relevant for the parallelization of stencil-based algorithms. In this chapter, we present our work on the
parallelization of stencil-based algorithms using StarPU, another task-based runtime system.

In this second work, we use the StarPU runtime system [20] to parallelize stencil-based algorithms. We
use a more generic approach than in the previous work with PaRSEC and, hence, make as few assumptions
as possible about the shape of the stencil. The main goal of this work is to create a generic framework for
efficient task-based parallelization of stencils using StarPU.

StarPU is a task-based runtime system that aims to provide a unified interface for parallelizing applica-
tions on heterogeneous architectures. It provides support for multiple technologies, such as OpenCL, CUDA,
and MPI. While StarPU shares some similarities with PaRSEC, it also has some key differences, including a
different programming model. Instead of using an algebraic description of the dependencies between tasks,
StarPU uses a dynamic approach where the dependencies are resolved at runtime. It has demonstrated high
potential in various fields [10, 11, 64]. In this section, we present the main features of interest of StarPU,
and how they can be leveraged to implement multi-GPU Lattice-Boltzmann simulations.

In Section 5.1 and Section 5.2, we present the StarPU programming model and how it can be leveraged
to parallelize stencil-based algorithms. Then, in Section 5.3, we present preliminary results we have obtained
on the D2Q7 scheme we presented in Section 3.2. Finally, in Section 5.4, we present the latest results we
have obtained on a larger simulation.

5.1 Programming Model

Initially, StarPU employed a method where programmers explicitly defined a task graph as a Directed Acyclic
Graph (DAG), specifying both the tasks and their dependencies. This direct approach, however, was not
the most user-friendly, prompting a shift towards a more abstract and dynamic method. The improvement
lies in the automatic deduction of the task graph from the data accesses declared at task submission, based
on the principle of sequential consistency order [145].

Adopting the Sequential Task Flow (STF) paradigm [9], StarPU significantly streamlined this process. In
STF, tasks are sequentially submitted to the runtime system without the need for programmers to explicitly
define dependencies among them. It becomes the responsibility of the runtime system to ensure execution
coherence by analyzing the data accesses of each submitted task. This evolution simplifies task management
and enhances user experience by abstracting the complexity of dependency management.
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1 for (k = 0; k < NT; k++) {
2 POTRF (A[k][k]);
3 for (m = k+1; m < NT; m++) {
4 TRSM (A[k][k], A[m][k]);
5 }
6 for (n = k+1; n < NT; n++) {
7 SYRK (A[n][k], A[n][n]);
8 for (m = n+1; m < NT; m++) {
9 GEMM (A[m][k], A[n][k], A[m][n]);

10 }
11 }
12 }

Code 5.1: Pseudo-code for generating the Cholesky
factorization graph.

Figure 5.1: Task graph for the Cholesky factorization
algorithm.

Figure 5.1 and Code 5.1, as introduced by Thibault [265], illustrate a tiled Cholesky factorization algo-
rithm and its associated task graph. The algorithm is coded sequentially, comprising a series of operations
such as POTRF, TRSM, SYRK, and GEMM. These operations interact with data segments (tiles) and their access
types (e.g., read, write, read-write), forming the dependency relations among tasks. Such dependencies are
representable via a DAG, with nodes signifying tasks and edges denoting task dependencies. It is essential
to note that such DAGs are rarely explicitly constructed by the runtime system, as such structures become
inefficient with increasing number of tasks.

The Cholesky factorization example underscores the advantages of the STF paradigm. It simplifies the
programming process by allowing a straightforward algorithmic description without the need to manually
outline dependencies, enhancing the ease of programming significantly. Compared to more verbose mod-
els like PTG, where describing dependencies may introduce errors and excessive boilerplate code, the STF
paradigm stands out for its simplicity. The balance between the effort required to specify dependencies and
the potential performance benefits varies by application and runtime system. However, numerous applica-
tions utilizing StarPU have reported leading performance across diverse domains [12, 10, 42, 143, 11, 178, 15,
257, 18, 52, 65, 14], indicating an effective compromise between programming convenience and performance.
Therefore, opting for STF in parallelizing stencil-based algorithms appears to be a judicious choice. In
the forthcoming sections, we will delve into our methodology for distributing stencil-based algorithms using
StarPU.

5.2 Distributed stencil-based algorithms with StarPU
Our strategy for parallelizing stencil-based algorithms with StarPU aligns with the principles outlined in
Section 3.3 and Chapter 4. The domain is segmented into subgrids to facilitate distribution across compu-
tational resources. Synchronization of these subgrids, essential for updating ghost cells, is managed through
an intermediary buffer, optimizing inter-node communication efficiency.

In StarPU, explicit data management is achieved via handles, abstract data constructs that encapsulate
metadata about the data, such as its memory location or size. These handles are independent from the
actual data and are used to declare data accesses at task submission.

Our method involves utilizing two handles for each subgrid, designated for reading and writing, respec-
tively. These "read" and "write" handles are alternated with each simulation time step.
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The management of intermediate buffers can be performed in different ways. One approach, depicted in
Code 5.2, is to allocate a temporary buffer for each of the necessary "sends". This approach is convenient
as it matches the way the interfaces should be exchanges, but could lead to an increased overhead due to
continuously allocating and deallocating memory handles. Moreover, it can result in lowered parallelism if
the tasks are not inserted properly. Another approach is to use a fixed number of buffers, which are allocated
at the beginning of the simulation and released at the end. The number of buffers must be carefully chosen
to prevent deadlocks or resource starvation. To be sure that no starvation occurs, we can assign two buffers
per subgrid interfaces, a subgrid interface being a shared face between two subgrids in the 3D case. One
buffer is associated to the A to B direction and the other to the B to A direction, A and B being the two
subgrids. Code 5.3 shows how the task insertions for the synchronization can be done with a fixed number
of buffers.
1 for (t = 0; t < NB_STEPS ; t++) {
2
3 // Perform a time step on each subgrid
4 for (i = 0; i < num_subgrids ; i++) {
5 // Perform the LBM step
6 insert_task (
7 step , // Task type
8 READ , subgrid_handles [i%2][i], // Input data
9 WRITE , subgrid_handles [(i+1) %2][i] // Output data
10 );
11 }
12
13 // Send the bordering cells to the neighbors if it is not the last time step
14 if(t < NB_STEPS -1) {
15 for (i = 0; i < num_subgrids ; i++) {
16 // List of directions in which there is an exchange
17 const directions = [(1 ,0) , ( -1 ,0) , (0 ,1) , (0 , -1) ];
18 for (d in directions ) {
19 // Get the entry in subgrid_handles corresponding to the neighbor for the next

((i +1) %2) time step
20 neighbor = get_neighbor (i, d, (i+1) %2);
21
22 buffer = new_starpu_handle (); // " allocate " a temporary buffer
23
24 // Copy the bordering cells from subgrid i to the temporary buffer
25 insert_task (
26 subgrid_to_slice , // Task type
27 READ , subgrid_handles [(i+1) %2][i], // Input : the current subgrid
28 WRITE , buffer // Output : the temporary buffer
29 );
30
31 // Write the buffered values to the neighbor
32 insert_task (
33 slice_to_subgrid , // Task type
34 READ , buffer , // Input : the temporary buffer
35 RW , neighbor // Output : the neighbor
36 );
37
38 relieve_starpu_handle ( buffer ); // " free " the temporary buffer
39 }
40 }
41 }
42 }

Code 5.2: Pseudo-code for the insertion of tasks using temporary buffers. The LBM step is first performed
on each subgrid, followed by the exchange of bordering cells with neighboring subgrids. This method offers
little parallelism, because the synchronization imposes a strong sequential constraint, as subgrid_to_slice
can only be called if the read-write of the slice_to_subgrid (neighbor) has been completed.

1 slice_handles [ SLICE_NUM ] = initialize_all_interfaces ();
2
3 for (t = 0; t < NB_STEPS ; t++) {
4 // For each subgrid
5 for (i = 0; i < num_subgrids ; i++) {
6
7 // If it is not the first time step , we update the ghost cells from the buffers
8 if(t > 0) {
9 const directions = [(1 ,0) , ( -1 ,0) , (0 ,1) , (0 , -1) ];
10 for (d in directions ) {
11 insert_task (
12 slice_to_subgrid , // Task type
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13 READ , slice_handles [ get_slice_index (t, i, d)], // Input : the slice
14 RW , subgrid_handles [i%2][i] // The subgrid to update
15 );
16 }
17 }
18
19 // Now that the ghost cells are up -to -date , we can perform the LBM step
20 insert_task (
21 step , // Task type
22 READ , subgrid_handles [i%2][i], // Input data
23 WRITE , subgrid_handles [(i+1) %2][i] // Output data
24 );
25
26 // If it is not the last time step , we fill the buffers
27 if(t < NB_STEPS -1) {
28 const directions = [(1 ,0) , ( -1 ,0) , (0 ,1) , (0 , -1) ];
29 for (d in directions ) {
30 insert_task (
31 subgrid_to_slice , // Task type
32 READ , subgrid_handles [(i+1) %2][i], // Input : the current subgrid
33 WRITE , slice_handles [ get_slice_index (t+1, i, d)] // Output : the slice
34 );
35 }
36 }
37 }
38 }

Code 5.3: Pseudo-code for the insertion of tasks using a fixed amount of buffers. The execution is more
streamlined, at the cost of more memory usage, as the slice buffers must remain allocated during the entire
simulation.

To achieve distribution across multiple nodes, we use the StarPU MPI backend. This backend works by
wrapping the MPI calls in StarPU calls, allowing for a seamless integration of MPI communication in the
task-based programming model. It is based on a user-defined repartition of the handles across the nodes.
Based on this repartition, StarPU can at all times determine which node is responsible for a given handle and
perform the necessary data transfers and execute the tasks at an appropriate time to ensure data consistency.
Concretely, The distributed version of our code differs in the following ways:

• The starpu_variable_data_register calls, which are used to register the data to StarPU, are re-
placed by starpu_mpi_data_register;

• The starpu_mpi_data_register function requires a rank parameter to specify the MPI rank that will
be responsible for the data. We set the ranks so that the subgrids are grouped in contiguous clusters
of approximately the same size;

• The starpu_task_insert calls are replaced by starpu_mpi_task_insert, which will silently handle
the MPI communication.

With this methodology, we can expect satisfactory performance on a distributed memory system. The
fact that the subgrids are assigned once and for all to a node ensures that they are never moved through
the network, which would be detrimental to performance. In the next section, we conduct preliminary
experiments to validate our approach. The goal is to test whether the proposed method is suitable for the
parallelization of stencil-based algorithms.

5.3 Validation of the method
To evaluate the performance of this approach, we conducted experiments on a D2Q7 scheme. This scheme,
described in Section 3.2.2, is convenient thanks to its order 2 convergence, which allows us to be near-certain
that the implementation is correct when we observe the same convergence rate. The reference implementation
is Patapon [29], whose implementation is close to the one we present in Section 3.2.3. These preliminary
results have been presented at the Compas 2022 conference [96].
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5.3.1 Methodology
The goal of the test case is to compare the performance of our StarPU implementation (TB-LBM ; Task-
Based Lattice-Boltzmann Method) with the reference implementation Patapon. There are several differences
between the two implementations:

• Patapon uses OpenCL, while TB-LBM uses CUDA;

• Patapon can only use 1 GPU, whereas TB-LBM can distribute the work on multiple processors;

• TB-LBM always use the StarPU backend and the subgrid system, which creates an overhead.

We present the results for 3 configurations: 1 GPU, 2 GPUs, and 2 GPUs + 1 CPU. For the 1-GPU
configuration, we set a single subgrid of the same size as the global grid and an overlapping depth of 1. For
the other 2-GPU configurations, we divide the space into 4× 4 = 16 subgrids and use an overlap of 8.

We use different grid dimensions: small (1024), medium (2048), large (4096) and huge (8192). The data
of the huge test case does not fit into the memory of one of the tested GPU and cannot be simulated by
Patapon. TB-LBM with 1 GPU could execute this test case if the grid was split into smaller subgrids, but
we impose that there is only one subgrid in this benchmark. We adapt the number of performed time steps
depending on the grid size. The huge case performs 64 time steps, the large one performs 256, the medium
1024, and the small 4096 (we multiply by 4 between each case). This allows us to expect the number of
computations to be the same between the different grid sizes.

The following parameters are common to all the test cases:

• Hardware: the experiments were performed on a single node with two Intel(R) Xeon(R) CPU E5-2683
v4 at 2.10GHz (32 cores in total). The node also has two NVidia P100 GPUs, each with 16GB of
memory;

• Software: we use the 11 February 2022 commit of the master branch of StarPU, GCC 9.3, and CUDA
11.2. Our application has been compiled with the following flags -03 with GCC and -O3 -arch=sm_60
with nvcc. We use the StarPU scheduler DMDA (HEFT).

5.3.2 Analysis
Figure 5.2 shows the execution times for the different configurations and grid sizes. We observe that the
performance between the different configurations varies greatly depending on the grid size. For the medium
and the large grid sizes, going from 1 GPU to 2 GPUs speedups the execution by about 2. It is an argument
in favor of our strategy because it means that we do not lose excessive performance with our decomposition.
For a small grid size, however, the TB-LBM with 1 GPU is the fastest configuration of the four. This is a
surprising result that is likely due to the small size of the data that makes the face exchanges very efficient.

Patapon is relatively consistent in terms of execution time throughout the possible grid sizes. TB-LBM
is more fluctuant, which can be explained by the fact that we use a system of subgrids and slice exchanges
that induces memory transfers and scheduling choices that we do not control, whereas Patapon has a linear
transferless execution. The difference between Patapon and TB-LBM also depends on the grid size:

• For the small size, TB-LBM is always faster than Patapon.

• For the medium size, Patapon is always faster.

• For the large size, Patapon is faster than the 1-GPU configuration but slower than the two 2-GPU
configurations.

In theory, we would expect that the step kernel of Patapon is slower or comparable to that of 1-GPU TB-
LBM because OpenCL kernels are generally slower than CUDA ones. In this experiment, the medium and
large test cases do not behave as expected. There are 3 main differences between Patapon and TB-LBM
that can explain this. The first one is the step kernel that is slightly different. The second difference is the
use of StarPU itself which can lead to inefficient scheduling choices. In our case, we observed that only the
DMDA scheduler provides satisfactory results. Finally, the last and more likely difference that could explain
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Figure 5.2: Execution times for the different grid sizes (small, medium, large and huge) and three hardware
setup alternatives. Patapon is a state-of-the-art software that is only able to run on 1 GPU. TB-LBM
implements the subgrid mechanism and is able to run on multicore hybrid configurations.

that TB-LBM is sometimes slower is the regular use of a synchronization mechanism to keep the halo of each
subgrid coherent. In TB-LBM 1-GPU, there is only one subgrid but the halo of this subgrid still needs to be
synchronized between the opposite sides which induces a substantial amount of additional read/writes. In
Patapon, there is no such synchronization as the step kernel accesses the neighbors with a modulo operation.
For the 2-GPU and the 2-GPU + CPU configurations, the difference with Patapon is less noticeable. On
the other hand, adding the CPU processor does not appear to help the execution.

Finally, the result of interest is the huge test case. Since the data do not fit into a single GPU, we
measure the ability of TB-LBM to distribute the algorithm. The test cases are designed in such a way that
the amount of operation stays the same. We can, therefore, extrapolate that the computational throughput
of Patapon would theoretically allow an execution time of ≈ 2.4s in the huge test case which corresponds to
a speedup of approximately 31%. This demonstrates the relevance of using StarPU and, by extension, the
task-based method for performing LBM simulations on a large scale.

When these experiments were initially conducted, the StarPU MPI backend was not fully operational,
preventing us from testing our implementation on multiple nodes. However, the results from these early
tests were promising and convinced us that completing the MPI backend was a worthwhile endeavor. Since
then, we have successfully implemented and launched the MPI backend. In the next section, we will evaluate
the overall performance of this now operational MPI implementation by conducting a larger distributed
simulation.

5.4 Evaluation on a larger simulation
In this section, we aim to go further in the evaluation of the TB-LBM implementation. To achieve this, we
run a D3Q27 stencil, which is the same we present later in Chapter 9. Hence, the results we present here
can be fairly compared with those of the aforementioned chapter. We refer to Section 9.3.1 for the details
of the numerical scheme.

5.4.1 Methodology
Technical details

Unless stated otherwise, the physical parameters are the same as in Chapter 9. The implementation is
adapted to match the StarPU programming model. The LBM step and subgrid synchronization kernels are
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encapsulated in StarPU tasks. The synchronization is is performed thanks to two tasks: subgrid_to_slice
and slice_to_subgrid. The slices are of size N1 × N2 × 9, where N1 and N2 are the dimensions of the
subgrid along the two axes perpendicular to the direction of the exchange. We limit the number of exchanged
velocities to 9 using the same argument as in Figure 4.3.

Each node is permanently assigned a specific set of subgrids. The subgrids are distributed in such a way
that each node is responsible for a contiguous set of subgrids. The configuration of computational resources,
including the number of nodes, the quantity of GPUs per node, and the scheduling strategy employed, are
dynamically determined based on the experimental requirements.

Hardware setup

The experiments are conducted on the sirocco07-13 nodes of the PlaFRIM platform. Each node is equipped
with two Intel Xeon E5-2683 v4 CPUs, each with 16 cores, and two Nvidia P100 GPUs. The nodes are
interconnected via an OmniPath 100 Gbit/s network. The GPUs are connected to the CPUs via PCI
Express, and the network is based on OpenFabrics.

5.4.2 Assessing the best scheduling strategy
The scheduling is a crucial aspect of the performance of a task-based runtime system. The impact of the
scheduling strategy on the performance of the simulation depends on several factors, such as the hardware
setup, the dependency structure of the tasks, the granularity of the tasks, etc. StarPU offers several schedul-
ing strategies, each with its own strengths and weaknesses. Presumably, in our case, the efficiency of the
overall simulation will heavily benefit from achieving good data locality. This is because the entire design of
the application is based on the premise that most of the data transfers are the exchanged interfaces A bad
choice of scheduling can easily lead to a situation where the subgrids are moved from one GPU to another
on each time step, which would be detrimental to performance. In StarPU, three scheduling strategies are
thought to handle this aspect particularly well: dmda, dmdas, and Heteroprio. The Lws strategy is also the-
oretically designed to encourage data locality, but it is generally less efficient than the other three strategies.
Here, we focus on evaluating different scheduling strategies to identify those that could be most relevant for
enhancing performance across various setups.

Figure 5.3 shows the execution times of the D3Q27 scheme with the four scheduling strategies on a 4-node
setup, each with two GPUs. The box plots represent the execution times for 32 runs of the simulation. To
ensure the grid size is large enough to warrant distribution across multiple GPUs, the total logical grid size
is 384 × 1536 × 384, accounting for a total grid size of 23.328 GB (if stored as a single array). This grid
is divided into 3 × 12 × 3 subgrids, aiming to achieve enough granularity to distribute the work across the
available computational resources effectively.

In our analysis, we observed that the dmda and dmdas scheduling strategies consistently outperformed
the Heteroprio approach in terms of execution times. Conversely, the Lws strategy exhibited inferior perfor-
mance, which aligned with our expectations due to its known limitations in handling the granularity of the
tasks and dependencies effectively.

Although Heteroprio performed slightly worse in our initial tests, we believe it should be able to outper-
form dmda and dmdas with the appropriate tuning, in particular by incorporating more spatial-awareness.
The main reason for this belief is that Heteroprio works by assigning priorities to task types. In our case,
since we did not make a distinction between tasks within a task type (i.e., all step tasks have the same pri-
ority), the scheduler does not have the necessary information to make the best decisions. Since the different
in execution times between the different scheduling strategies appears relatively small, it can be argued that
with proper tuning, Heteroprio could be the most efficient strategy. Consequently, throughout the rest of
this work, we continue to employ Heteroprio and refine this strategy in subsequent experiments, aiming to
explore its adaptability and improve its efficiency within our simulation framework.

5.4.3 Performance evaluation
In this section, we evaluate the performance of the proposed implementation. We first assess the bottlenecks
of the implementation and then conduct strong and weak scaling experiments to evaluate the capacity of
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Figure 5.3: Execution times of the D3Q27 scheme on 4 nodes and 2 GPU per node with different scheduling
strategies. The total grid is divided into 3× 12× 3 subgrids. The work is distributed across four nodes, each
equipped with two P100 GPUs.

the implementation to parallelize the simulation. These results aim to provide insights into the efficiency of
the implementation and identify potential areas for improvement.

Assessing the bottlenecks

In this first experiment, we aim to identify the main bottlenecks of the implementation. For this, we set a
configuration which should be close to real use cases, but with no attempt to fine-tune the parameters. The
total grid is divided into 2 × 16 × 1 subgrids and we perform 32 time steps. We run the simulation on 2
nodes, each equipped with 2 GPUs.

The execution with one GPU per node lasted 4.57 seconds, whereas the execution with two GPUs
per node lasted 4.13 seconds. The proportion of time dedicated to performing actual computation kernels is
approximately 27% for the single-GPU configuration and 15% for the dual-GPU configuration. These results
indicate unexpectedly high non-kernel execution times. Additionally, the minimal performance improvement
between the single-GPU and dual-GPU configurations is unexpected. Ideally, a speedup close to 2 would be
anticipated; however, the observed speedup is only 1.11. This suggests an implementation issue, which we
aim to diagnose by analyzing the execution traces.

Figures 5.4 shows the execution traces when limited to using a single GPU per node, while Figure 5.5
shows the trace with no constraint on the number of GPUs used. These traces are generated thanks to the
FxT [80] tool, which is embedded in StarPU. Then, the ViTE tool [75] is used to visualize the traces.

These traces highlight the communication bottlenecks of the implementation. Let us distinguish be-
tween two types of communication bottlenecks: the inter-node MPI communications and the intra-node
communications. The intra-node communications only occur in the dual-GPU configuration (Figure 5.5),
where data can be exchanged between the two GPUs of a node. On the traces, we can see that the purple
region (intra-node communications) accounts for a significant portion of the execution time, which explain
the limited speedup between the single-GPU and dual-GPU configurations. Most of these purple bands are
associated with a single data transfer (white arrow). Further analyses reveal that these costly data transfers
are attributed to whole subgrid exchanges between the GPUs. These exchanges can occur if the scheduler
decides to move a subgrid from one GPU to another, typically to avoid a load imbalance.
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Figure 5.4: Execution trace of the D3Q27 scheme on 2 nodes, each with a single GPU. The time frame has
been chosen arbitrarily and is 500 ms long. Red sections indicate worker idle time, orange sections show
MPI communications, and green sections represent kernel execution. White arrows illustrate data transfer
trajectories.

Figure 5.5: Execution trace of the D3Q27 scheme on 2 nodes, each with 2 GPUs. The time frame has
been chosen arbitrarily and is 500 ms long. Red sections indicate worker idle time, orange sections show
MPI communications, green sections represent kernel execution, and purple sections highlight intra-node
communications (here, inter-GPU data transfers). White arrows illustrate data transfer trajectories.

For the moment being, we do not have a satisfactory solution to this issue. A possible solution would
be to create or improve a scheduler that would discourage the movement of large data in such a situation.
Here, we have a case where it is usually better to keep a GPU in starvation (idle) than to steal a subgrid
from another GPU. The best we have been able to do is to quantify the exact number of subgrid "swaps" and
tune the Heteroprio scheduler in order to minimize them. Thanks to this tuning, we were able to conclude
that the default locality strategy of Heteroprio is actually the best one in that regard. It should be noted
that subgrids could be affected a priori to a GPU, but this would incur a less dynamic execution, which is
not the direction we want to take.
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On the other hand, the inter-node MPI communications are a bottleneck that appears in both configura-
tions. This was unexpected, as the subgrid system was designed to minimize the amount of data exchanged
between nodes. By analyzing the exact number of initiated communications, we can quantify the amount of
data exchanged. Over the execution, a total amount of 558 MB of data was exchanged between the nodes
(with both configurations, as the communications are identical). For executions of more than 4 seconds, this
equates to a bandwidth of 139.5 MB/s. This is too low for the 10 Gbit/s Ethernet network. A latency of
approximately 4 seconds ÷744 calls = 5.4 ms per call would also appear to be too high.

Running a minimalist MPI benchmark on the same nodes revealed that the observed latency is indeed
around 5 ms. Hence, the problem is likely due to a configuration issue. For our purposes, this latency is
acceptable, as we are able to achieve near-optimal computation/communication overlap with P100 GPUs.
However, this issue will need to be addressed in future work to ensure the implementation properly scales to
larger systems and more powerful GPUs.

In the two following experiments, use the same subgrid configuration, but distribute the MPI ranks
differently. In this experiment, the MPI ranks were distributed across the Y-axis: low ranks are on the first
node and high ranks on the second node. With aditional tuning, we realized that performance could be
slightly improved by distributing the ranks across the X-axis. This leads to each rank being responsible for
a "slice" of the subgrids. The possible reason for this improvement is that the dependency releases are more
evenly distributed across the subgrids, leading to a less impactful scheduling decision. For instance, with 2
nodes, if the ranks are distributed along the Y-axis, which has 16 subgrids, only the 1st, 8th, 9th, and 16th
subgrids will include useful computations for the inter-rank synchronization, and the scheduler might not
be able to make the best decision. On the other hand, if the ranks are distributed along the X-axis, all the
ranks can potentially be involved in the synchronization, leading to a more balanced dependency structure.
In the following experiments, we will show the performance we obtain using the X-axis distribution.

Strong scaling

To evaluate the capacity of the implementation to parallelize the simulation, we perform a strong scaling
experiment. Here, we limit the number of used GPU per node to 1, to avoid the intra-node communication
bottleneck. We use a constant 192 × 768 × 192 (total) grid size, which would require 2.916 GB of memory
if it were stored as a single array. This grid is divided into N × 16 × 1 subgrids, where N is the number
of used nodes. Accounting for the fact that we use two subgrids (one for the reads and one for the writes),
the ghost cells, and slices for the synchronization, the total theoretical memory usage ranges from 6.179 GB
to 6.426 GB depending on the number of nodes, which is well within the memory capacity of a single P100
GPU. To ensure a substantial workload, we set the number of iterations to 48.

Figure 5.6 shows the execution times of the simulation for different numbers of nodes. The colored parts
of the bars represent the cumulated execution time of the kernels, while the white parts represent the rest:
either idle time or StarPU overhead (e.g., data transfers, scheduling). The presented results are the average
of 32 runs. Since the subgrid partitioning is fine-tuned for 4 nodes, the execution times for 1 and 2 nodes
should not be considered optimal. However, the busy time (i.e., the time spent executing the kernels) lets
us extrapolate potential performance for the 1 and 2 node configurations.

The results show a decreasing trend in the busy time with the number of nodes, which is a positive sign
of good scalability. It is reasonable to expect that with further tuning, the 1 and 2 node configurations would
exhibit lower idle times (the overhead typically increases with the number of nodes). We can, hence, focus
our analysis on the busy time. The speedup on busy time observed between the 1 and 4 node configurations
is approximately 2.45, which is less than what we would expect in an ideal scenario (close to 4). One of the
reasons for this discrepancy is the increased work introduced by the synchronization tasks subgrid_to_slice
and slice_to_subgrid. This is due to the increased number of interfaces that need to be synchronized as
the number of subgrids increases. In theory, if the synchronization kernels took the same time as in the 1-
node configuration, the speedup would be of approximately 3.16. The other reason is the latency of the MPI
communication, which becomes a bottleneck when the problem size is small relative to the entire system.

Finally, the 4-node configuration shows an average overhead of StarPU is 62.6%, which is relatively high.
An analysis of the traces shows that the execution is mostly bottlenecked by the MPI communication, and
in particular the latency of the communication. Considering the chosen implementation, it is not surprising
that the efficiency of the execution decreases for small problem sizes. For such problems, this issue could be
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Figure 5.6: Strong scaling of the StarPU implementation of the D3Q27 scheme. The total grid size is fixed
and the number of nodes is increased.

circumvented by using temporal blocking, which would minimize the number of MPI communications and
increase the amount of available tasks (and hence parallelism) at each time step.

To assess the performance in a context where the problem size is large enough to warrant distribution
across multiple nodes, we conduct a weak scaling experiment.

Weak scaling

Since we aim to simulate larger problems, the most relevant metric for us is the weak scaling. This time,
we make the total grid size increase with the number of nodes. The D3Q27 scheme is bounded by memory
accesses, so it is reasonable to define the workload as the number of grid points multiplied by the number
of iterations. The configurations are, hence, set so that Nx ×Ny ×Nz × it_num÷N ≈ constant, where N
is the number of nodes, Nx, Ny, and Nz are the sizes of the global grid along the three axes, and it_num is
the number of iterations. Table 5.1 shows the exact configurations used for this experiment. The rest of the
parameters are the same as in the strong scaling experiment.

N Nx Ny Nz it_num Nx ×Ny ×Nz × it_num Nx ×Ny ×Nz × it_num÷N
1 256 1024 256 54 3.69× 109 3.69× 109

2 320 1280 320 55 7.21× 109 3.60× 109

4 384 1536 384 64 1.45× 1010 3.63× 109

Table 5.1: Configurations used for the weak scaling experiment.

Figure 5.7 presents the total execution times for the simulation across different node counts, in a format
similar to previous experiments. The results, averaged from 32 runs, are depicted with colored bars showing
the cumulative execution times of the kernels and white portions indicating idle time or StarPU overhead
such as data transfers and scheduling. As with earlier experiments, the subgrid partitioning was optimized
for 4 nodes, rendering the performance at 1 and 2 nodes suboptimal. The subgrid partitioning is the same
as in the previous experipent.

We can see that the kernel execution time is almost constant for the different configurations, indicating
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Figure 5.7: Weak scaling of the StarPU implementation of the D3Q27 scheme. The total grid size increases
with the number of nodes.

a properly balanced workload. However, the non-kernel execution time decreases with the number of nodes,
which is an artifact of the chosen subgrid partitioning. Let us then focus on the execution of the configuration
with 4 nodes. We observe an average of 4.12 seconds for the kernel execution time and 0.95 seconds for the
idle execution time, which gives an overhead of 23.2%. It is an acceptable overhead for a task-based runtime
system, especially considering the fact that no load balancing is performed.

A more objective measure of the performance of this configuration is the theoretical number of memory
accesses performed per second, also referred to as the processing speed. It correponds to the minimum
number of memory accesses (read or write) required to perform the simulation. This measure, whose formula
is provided later in Equation 9.9, lets us compare scenarios with and without subgids, different grid sizes,
etc. For the configuration with 4 nodes, we obtain a theoretical number of memory accesses of 588, 6 GB
per second.

To assess whether this processing speed is justified in terms of computational throughput, we compare
it to the processing speed of a case with no subgrids and a single GPU. We run 32 simulations with the
same parameters as the 1-node configuration and obtain a processing speed of 216, 8 GB per second. If we
bring this processing speed by node, we obtain 147.2 GB/s/node for the 4-node configuration and 216.8
GB/s/node for the 1-node configuration. Hence, we observe a loss of efficiency of 32.1% when scaling to 4
nodes, which is close to the observed overhead (idle time) of 23.2%.

Overall, we can conclude that the observed performance of our tasked-based LBM solver is satisfactory,
even for distributed simulations. It should be noted that even if we had observed a lower performance, the
approach would still be relevant for larger simulations, as the memory requirements would prevent the use
of a single GPU. In the next section, we will begin a discussion on the use of StarPU for LBM simulations
and the obervations we made during the development of the solver.

5.5 Conclusion
In this chapter, we have presented our contribution oriented towards the efficient use of StarPU for parallel
stencil computations. We have presented a generic approach for parallelizing stencil-based algorithms. Our
work led to the development of a task-based LBM solver that is both versatile and efficient. Contrary to our
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PaRSEC implementation, this solver is able to run on multiple nodes and can serve as an anchor for future
comparisons. Our implementation is competitive compared to a state-of-the-art implementation and can be
executed on heterogeneous architectures.

However, it should be acknowledged that the latest results obtained on a large D3Q27 simulation are
not as good as expected. The main reason for this appears to be the latency of the MPI communication.
We initially expected this latency to be low enough to allow for an efficient overlap of computation and
communication. However, the high processing speed of the GPUs makes the workload vanish too quickly,
leading to a high idle time if the pratitioning is not correctly tuned. This issue is exacerbated with more
powerful GPUs, as the processing speed increases, rendering the proposed approach inefficient. Our solution
to this problem would be to use a dynamic partitioning of the subgrids, which would allow us to adapt the
workload to the processing speed of the GPUs. This partitioning would allow to use different approaches
(e.g. temporal blocking, compression) on different parts of the domain. Multiple technical challenges took
more time to overcome than expected, leaving this solution unexplored at the time of writing. However,
future works will focus on this next logical step.

Numerous problems can arise when using task-based runtime systems. Throughout this work, we have
encountered several issues that have required us to delve into the inner workings of the runtime system
to understand the problem and find a solution. One such issue was the proper tuning of Heteroprio, the
scheduler we used in our experiments. As this scheduler works with user-defined priorities, it is crucial to set
these priorities correctly to ensure the best performance. At an early stage of the project, it was not clear
how to set these priorities, and we had to experiment with different values to find the best configuration.
This led to the idea of improving the scheduler by making it infer the priorities automatically. This required
a substantial amount of work and is the subject of the next chapter.
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Chapter 6

Improving the Heteroprio Scheduler
of StarPU

In the preceding chapters, we explored the advantages of employing a task-based runtime system. These
systems offer a range of benefits, including enhanced performance through optimized resource utilization and
simplified development via high-level interfaces that abstract some complexities associated with distributed
computing. However, these interfaces can also mask the complexity of the underlying system, potentially
impacting the performance of applications. Task scheduling, the focus of this chapter, is a critical aspect in
this context. This chapter is based on a paper we published in the journal PeerJ Computer Science [98].

In StarPU, task scheduling is managed dynamically by the scheduler at runtime. Operating within the
Task-Flow model, the scheduler relies on partial graph information for its decisions, as it does not have
complete knowledge of the dependency graph at the time of scheduling. The primary role of the scheduler
is to determine the next task for execution and the processing unit it should run on, decisions that can
significantly influence application performance.

Heteroprio [11], one of the default scheduling strategies in StarPU designed for heterogeneous machines,
has shown notable performance improvements in various applications [13, 171] Yet, its effective use re-
quires manual priority assignment to different task types within applications, often necessitating extensive
benchmarking or accurate programmer intuition about scheduling needs. This requirement for additional
programming effort means Heteroprio does not qualify as a fully automated scheduler. Moreover, its depen-
dence on static priorities limits its adaptability during execution, which is a drawback in scenarios where
flexibility is crucial.

This study proposes a method for automatically computing efficient priorities for Heteroprio, with a
primary focus on automation. Achieving high performance serves as a secondary objective. We introduce
heuristics that provide a fitness score for each task type/processing unit combination, allowing for the
deduction of priorities by sorting processing units and task types by descending score. The contributions of
this study include:

• describing various heuristics leading to efficient priorities;
• defining a new methodology for automatically configuring the Heteroprio scheduler according to these

priorities;
• evaluating our approach across a wide array of graphs using emulated executions;
• validating our concept in StarPU by running existing task-based scientific applications with our new

automatic scheduler.

These contributions have resulted in a new version of Heteroprio in StarPU, referred to as AutoHeteroprio,
which qualifies as a fully automatic scheduler, unlike the semi-automatic nature of Heteroprio. Furthermore,
we demonstrate that using the fully automatic version does not lead to significant slowdowns and may
sometimes facilitate speedups.

The paper is organized as follows: Section 6.1 provides the background and prerequisites, defining the
task scheduling problem, presenting related works, introducing Heteroprio, and formalizing the problem

75
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targeted in our study. Section 6.2 presents the heuristics and implementation details. Finally, Section 6.3
discusses the performance evaluation of our approach.

6.1 Background

6.1.1 Scheduling problem

The primary goal in the task graph scheduling problem is to minimize the overall program finish time, also
known as makespan. This finish time is influenced by the order of task execution and their allocation to
a specific processor type [140]. Variations in the finish time objective exist. For instance, some studies
focus on reducing the mean finish time (MFT), referred to as the mean time of a system or the mean
flow time, which represents the average finish time of all tasks executed [59, 156]. The MFT metric aims
to minimize the memory required for storing incomplete tasks. Other research targets improvements in
metrics such as energy consumption [308]. Despite these variations, the overall finish time remains the most
commonly utilized metric in scheduling for measuring performance, which is why it is the metric adopted
for performance measurement in this work.

Related work

The quest for an optimal schedule in heterogeneous computing is recognized as NP-complete [58], prompting
researchers to develop various strategies for efficient execution. Scheduling can be categorized as either
static, where decisions are made before execution, or dynamic, with decisions made during the execution of
applications. The spectrum between these categories includes hybrid approaches that integrate elements of
both static and dynamic scheduling [88].

Yu-Kwong Kwok and Ahmad [301] detail a static scheduling approach for distributing workload across
fully connected multiprocessors, employing the dynamic critical-path scheduling algorithm that computes
a critical path for task sequencing. Despite the potential of static scheduling, the preference has shifted
towards dynamic scheduling, especially since static methods may not fully capture complex dependencies
representable by a Directed Acyclic Graph (DAG).

Topcuoglu, Hariri, and Wu [271] introduce the Heterogeneous Earliest-Finish-Time (HEFT) and Critical
Path on a Processor (CPOP) algorithms. HEFT optimizes task scheduling by minimizing the earliest finish
time, whereas CPOP calculates critical paths for each processor, considering communication costs in its
scheduling decisions. The requirement of HEFT to analyze the entire task graph introduces overhead,
particularly for larger graphs.

Khan [130] proposes the Constrained Earliest Finish Time (CEFT) algorithm, incorporating constrained
critical paths (CCPs) that represent windows of ready tasks, offering improvements over HEFT but encoun-
tering similar bottlenecks.

Jiang, Shao, and Guo [123] explore Tuple-Based Chemical Reaction Optimization for scheduling, pro-
ducing results comparable to those of HEFT. Choi et al. [69] propose dynamic scheduling based on historical
Estimated-Execution-Time (EET) for each task, aiming to optimize processor allocation, though sometimes
deviating to avoid work starvation.

Xu et al. [296] develop an efficient genetic algorithm for heterogeneous scheduling, achieving performance
comparable to that of HEFT and CPOP. However, the effectiveness of genetic-based schedulers is often
contingent on processing large-sized DAGs or multiple iterations.

Wen, Wang, and O’Boyle [290] focus on calculating relative CPU and GPU speedups for task prioritiza-
tion, effective in scenarios with minimal data transfers but limited in complex scheduling contexts.

Luo et al. [173] utilize a graph convolutional network and reinforcement learning for scheduling op-
timization, demonstrating efficiency in simulations but with uncertainties regarding real-time application
feasibility.

Comprehensive surveys of classical scheduling strategies are provided by Maurya and Tripathi [181], and
Beaumont et al. [32], offering insights into the performance and complexities of various algorithms.
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Heteroprio overview

The Heteroprio scheduler has been developed for optimizing the fast multipole method and is implemented
in StarPU [49, 11, 20]. StarPU is designed such that the scheduler is a distinct component that a user can
change or customize. StarPU schedulers rely on two mechanisms known as push-task and pop-task. The
push-task is called when a task becomes ready (i.e. when all its dependencies are satisfied). The workers
indirectly provoke this call at the end of the execution of a task, if it does allow a new task to be executed.
A worker calls the pop function when it fetches a task. This happens either because it has just finished
executing a task or after it has been idle for a certain amount of time. Thus, in StarPU, the behavior of a
scheduler can be summarized by its push and pop mechanisms.

Heteroprio uses multiple lists of buckets. Each bucket is a first in, first out (FIFO) queue of tasks. When
a task becomes available, it is pushed to a bucket. The target bucket is set by the user when submitting the
task. There is typically one bucket per task type but the user can choose to group the tasks as they wish.
Besides, each architecture has a priority list that represents the order in which the corresponding workers
access the buckets. When a worker becomes available, it iterates over the buckets using the priority list and
picks a task from the first non-empty bucket it finds. Therefore, these lists define which tasks are favored by
a particular architecture. The user must fill them before the beginning of the parallel execution. Figure 6.1
schematizes how the workers select their tasks in Heteroprio. For the sake of simplicity, the CPU and GPU
priorities are mirrored, but this is not necessarily the case: we can apply any permutation to the priority
list of a processor type.

Figure 6.1: Schematic of the principle of Heteroprio. The CPU workers iterate on buckets 1, then 2, and
finally 3. The GPU workers iterate the other way around in this example.

We provide a detailed example of an execution with Heteroprio in the appendix 11.1.1. In 2019, an
enhancement has been brought to Heteroprio to take into account the data locality [50]. The original version
treats all workers of the same type exactly equally, which completely discards memory management and
can lead to massive and sometimes avoidable data movement. In the new version of Heteroprio, known as
LaHeteroprio, workers select their tasks not only depending on their position in the FIFO list of the buckets
but also depending on their memory affinity with the tasks. The affinity is computed thanks to multiple
heuristics that the user can choose.

6.1.2 Formalization
General scheduling problem

The scheduling problem is usually defined as follows. Let us consider an application that has a matching
DAG referred to as G = (V,E), where V are the v nodes and E are the edges. Each node represents a task,
and each edge represents a dependency between two tasks. We define Q as the set of q processors and W as
the computation cost matrix. The nodes (tasks) are referred to as vi, where i can range from 1 to v. The
processors are referred to as pj , where j can range from 1 to q. This computation cost matrix is of size v× q
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and wi,j represents the cost of executing task vi on processor pj . The cost can be any metric that we seek
to minimize. In our case, it is the execution time of a task.

To take data transfers into account, we can add the following definitions. The Data matrix represents the
required data transfers. Datai,k is the amount of data that needs to be transferred from the processor that
executes vi to the processor that executes vk. The B matrix defines the transfer rates between processors:
Bi,k is the transfer rate between pi and pk. The L vector represents the communication startup cost of each
processor. Hence, the model allows us to define the communication cost of one edge (i, k):

ci,k = Lm + Datai,k
Bm,n

, (6.1)

where m and n represent, respectively, the chosen processor for vi and vk.
To provide a formal definition of the makespan, we introduce the Actual Start Time, and the Actual

Finish Time (AST, and AFT). The AFT of a task vi is defined by AFT (vi) = AST (vi) + wi,j (where pj is
the chosen processor for task vi). The AST of a task vi is defined as follows:

AST (vi) = maxvj∈pred(vi)(AFT (vj) + cj,i) , (6.2)

where pred(vi) is the set of predecessors of vi. This formula expresses that the task vi starts as soon as
possible, but after all the transfers have been completed. The memory transfers can be ignored by removing
the cj,i term.

The schedule length (or makespan) is defined as the finish time of the last task:

makespan = max
vi∈V

(AFT (vi)) . (6.3)

We define this makespan as our objective and aim to minimize it. The formalization we provide in this
section is general and applicable to most scheduling situations. In the next section, we define additional
notations and constraints that relate to the use of Heteroprio.

Heteroprio automatic configuration problem

In this section, we present additional definitions that are needed for the specific Heteroprio scheduling
problem. We define a set of b buckets referred to as bi, where i can range from 1 to b. The concept of bucket
is explained in 6.1.1. A solution is defined by a matrix S, where Si,j is the priority of task vi on processor pj .
When a task is affected to a processor pj , it has to be the one with the highest priority in the S matrix for
pj over all the tasks that are ready to be executed. We assume that a single bucket is assigned to each type
of task. As explained in section 6.1.1, this is not necessarily the case. The number of task types is expected
to be significantly smaller than the total number of tasks. Thanks to this, our algorithms have complexity
tied to q or b (rather than v) and run fast in practice. This can be illustrated by comparing the possible
Heteroprio schedules against all the possible schedules. Consider a graph of 32 tasks with no edges (no
dependencies), two different types (A and B), and one processor. As only the execution order of the tasks
can change, there are

(32
1
)

= 32! ≈ 2.63 · 1035 possible schedules. The scheduling decisions that Heteroprio
can take depend on the matrix S, which has only 2 possible configurations in this case: one where A has
the highest priority and one where it is B. In every situation, Heteroprio has always exactly (b!)q possible
schedules, where b is the number of different task types, which is assumed to equal the number of buckets.
As Heteroprio is designed to handle two processor types, we can simplify some notations. If arch refers to
the CPU, arch refers to the GPU and vice versa. It should be noted, however, that the heuristics have
been generalized to more than 2 processing unit types. Additionally, warchi refers to the estimated cost of
executing vi on processor arch. Finally, the presented model does not take into account memory transfers,
as they are only to a small degree taken into account in Heteroprio.

6.2 Heuristics for automatic configuration
In this section, we first detail the metrics that we use as a basis for our heuristics (section 6.2.1). The
heuristics are described in a second step in section 6.2.2.
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6.2.1 Relevant metrics
We recall that we do not try to obtain priorities for each task but for each type of task. Consequently, when
the number of predecessors, the number of successors, or the execution time are required, the average of all
tasks of the same type is used. We also emphasize that these metrics are not the heuristics, but rather the
values that are fed to the heuristics. These only aim at giving a quantitative input to the heuristics.

CPU-GPU execution time difference. The CPU-GPU execution time difference can be expressed
either as a relative or an absolute difference.

We use the following notations when referring to these metrics:

diff arch(vi) = warchi − warchi , (6.4)

rel_diff arch(vi) = warchi

warchi

, (6.5)

where warchi is the cost of vi on arch.
The idea of using these metrics is to be able to favor the most efficient architecture. Although the two

metrics aim at measuring the same effect, they are not equivalent, as explained in the following example.
XXXXXXXXXXWorker

Task A B

CPU 100s 1s
GPU 130s 10s
Relative difference (wGPUi /wCPUi ) ×1.3 ×10
Absolute difference (wGPUi − wCPUi ) 30s 9s

Table 6.1: Example of relative and absolute costs for tasks of two types and two types of processors.

Let us consider the costs of two tasks on two architectures of Table 6.1. The question is which task type
should a CPU worker favor. Here, we consider that both types of processors can execute tasks of types A
and B. The relative difference would suggest executing B is a better choice, as its relative difference is higher
(the CPU is 10 times faster). However, the absolute difference would suggest that A is a better choice, as it
saves 30 seconds instead of 9 seconds.

The absolute and relative differences can, therefore, induce different scheduling choices.

Normalized out-degree (NOD). The normalized out-degree formula [166] is given by:

NOD(vi) =
∑

vj∈succ(vi)

1
ID(vj))

, (6.6)

where ID(vj)) is the inner degree of task vj (i.e., its number of predecessors). This metric gives an indication
about how many tasks can be expected to be released. In this view, it would mean that releasing 1

ID(vj)) of
a task vj is as if it is partially released, at a proportion of 1

ID(vj)) . For example, releasing 2 tasks at a "ratio"
of 1

2 can be viewed as being equivalent to releasing 10 tasks at a ratio of 1
10 . This obscures the combinatorial

nature of task-based execution but is a useful tool for guiding heuristics.
However, the NOD does not take into account the type of the tasks that will be released, which is critical

in some cases. For example, in a case where we lack GPU jobs (starvation), the released GPU work is more
beneficial than the released CPU work.

Normalized released time (NRT). We introduce the normalized released time (NRT). This metric is
derived from the NOD and given by:

NRTarch(vi) =
∑

vj∈succ(vi)

Pexec(vj , arch) · warchj

ID(vj))
, (6.7)
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where Pexec(vj , arch) is the probability that vj is executed on architecture arch. This probability is not
known during an execution. We instead measure the processor execution proportion of each task type
during the execution and use this proportion as an approximation of the probability in our formula.

This formula is more refined than the first NOD formula for two reasons. Firstly, it takes into account the
cost of the potential released successors. It is presumably better to release N tasks with a cost of 10 seconds,
than N tasks of 1 second because it may release a higher workload. Secondly, CPU and GPU execution
times are differentiated. This difference is crucial in a heterogeneous system. Having an NRT formula for
both CPU and GPU gives information about where the released work is likely to be executed.

Useful released time (URT). We extend the normalized released time to define the useful released time
given by:

URT (vi) = NRTCPU (vi) · IDLE(CPU) +NRTGPU (vi) · IDLE(GPU) , (6.8)

where IDLE(arch) is the idle proportion of arch workers over all the execution. The URT represents how
much useful time will be released after a task has finished its execution. The useful time is defined as
the amount of released work that could help feeding the starving processors. This useful released time is
estimated by scaling the released work (NRT) of each architecture to the idle proportion of the corresponding
architecture. It is implied that the idle proportion is a relevant way of quantifying how much a processor is
starving.

6.2.2 Heuristics for task prioritizing
In this section, we present six heuristics: PRWS, PURWS, offset model, softplus model, interpolation model,
and NOD-time combination.1.

Parallel released work per second. In a typical scenario, tasks with high NOD scores should be en-
couraged to be executed as soon as possible, since they tend to release new tasks in the long run. In both
theoretical and practical scenarios, however, using NOD alone as a score does not produce efficient priorities.
Indeed, a task can have numerous successors (high NOD) but of low cost. If the costs of the successors are
low, the newly released workload will also be low.

To take this effect into account, we introduce a new variable that is designed to give information about
the quality of the released tasks. The idea is to keep a high degree of parallelism. This variable is the sum
of the execution times of the successors of a task on their best architecture. With this variable we create the
formula for the PRWS heuristic:

PRWSarch(vi) = NOD(vi)
warchi

· (
∑

vj∈succ(vi)

min
arch∈Q

(warchj )) + diff arch(vi) (6.9)

Dividing by the cost of the task lets us measure the "releasing speed" (the released work comes at the
cost of executing vi). Adding diff arch(vi) to the sum helps favoring the best architecture. To improve the
work balance between the CPUs and the GPUs, the URT metric can be used instead of the NOD. The
Equation 6.9 becomes:

PURWSarch(vi) = URT (vi)
warchi

· (
∑

vj∈succ(vi)

min
arch∈Q

(warchj )) + diff arch(vi) . (6.10)

Offset model. The offset model has a score that is defined by the following formula:

offset_modelarch(vi) = (URT (vi) + α) · (diff arch(vi) + β) . (6.11)

In this model, the score is computed by multiplying URT (vi) and diff arch(vi). α and β are two hyperpa-
rameters that control the displacement for each of the two values. For example, if α = 0 and β = 0, then
tasks that have a URT of 0 and those that have a diff of 0 would have the same score (0), implying that

1Other heuristics are presented in a research report [95]
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they are equivalent in terms of criticality. The default values for α and β are 1.3 and 1. This model has the
downside of requiring two hyperparameters. Moreover, it is unable to distinguish between tasks when their
diff equals −β, even if their URT are different.

Softplus model. The softplus model is given by the formula:
softplus_modelarch(vi) = (1 + URT (vi)) · ln(1 + ediffarch(vi)) (6.12)

The idea of this model is comparable to that of the offset model but uses the softplus function (softplus(x) =
ln(1 + ex)). In contrary to the offset model, we multiply by softplus(diff arch(vi)) rather than by diff arch(vi)
directly. The softplus mostly changes the behavior of the heuristic when the diff is negative or around
zero. This tends to negate the impact of diff when it tends towards zero.

Interpolation model. The interpolation model combines the two previous models. When the URT
approaches zero, it tends towards the offset model. It behaves more like the softplus model as the URT
grows. It is given by:

interpolation_modelarch(vi) =
rpg(URT (vi)) · (1 + URT (vi)) · (1 + arch(vi))

+(1− rpg(URT (vi))) · ((−log(1 + exp(−archDiff)))) ,
(6.13)

where the interpolation is defined by the rpg function as follows:

rpg(x) =
{

1 if x ≥ 1
√
x ·
√

2− x otherwise
(6.14)

This model aims at improving the two previous ones. We assume that the offset model gives particularly
good priorities when URT is low and conversely for the softplus model. The idea is to perform an interpolation
between the two models depending on the URT value and is controlled by the rpg function. rpg(URT (vi)) ∈
[0, 1] because the URT is always positive. When URT (vi) = 0, the interpolation model behaves like the
offset model (with α = 1 and β = 1). When URT (vi) ≥ 1, it behaves like the softplus model, but without
the (1 + URT (vi)) term.

NOD-time combination. The NOD-time combination (NTC) heuristic is defined by the following for-
mula:

NTC arch(vi) = diff arch + α ·NOD(vi) · e−β·max_rel_diff 2
(6.15)

where
max_rel_diff = max(rel_diff arch(vi), 1/rel_diff arch(vi)) (6.16)

This equation needs two hyperparameters α and β. This heuristic aims at diminishing the importance of
the NOD as the relative cost difference increases. α controls the importance of the NOD, compared to that
of the diff , while β controls the range in which the NOD is taken into account. If rel_diff arch(vi) is too
high, the exponential is negated and the score equals diff arch. The default value of α and β are 0.3 and 0.5.

6.2.3 Notes concerning the implementation in StarPU
Cost normalization. If all the costs of the nodes of a DAG are scaled by a factor α, the heuristics should
give the same priorities. This would not be the case if we directly input the raw task costs. We, therefore,
choose to normalize the costs of the task types.

Normalizing a set of heterogeneous costs is not straightforward. We propose the following normalization
formula:

zi,j = v · wi,j∑
0≤i<v min

0≤j<q
(wi,j)

, (6.17)

where zi,j is the normalized cost.
This formula normalizes the costs so that the average cost of a task on its best architecture equals 1. This

method relies on the assumption that tasks are usually executed on their best architecture. This assumption,
however, is disputable in some scenarios.



82 CHAPTER 6. IMPROVING THE HETEROPRIO SCHEDULER OF STARPU

Execution time prediction. The heuristics presented in this study rely on the execution times of the
tasks. We consider that every task of a certain type has the same execution time. In practice, however, tasks
of the same type can have radically different costs. Since the tasks have not been computed at the time they
are pushed in the scheduler, we need to estimate their duration in real-time. We choose to approximate the
cost of a task group by taking the average effective execution time of previous tasks of the corresponding
type. If a task has never been executed on an architecture, we have no precise estimation of its execution
time. We, therefore, implement two behaviors:

• the estimation is set to a default value of 100000 seconds (default behavior);

• if an estimation exists on another processor, we take the fastest estimation, else we take 100000 seconds.

This solution is imperfect, in particular when their execution times are dispersed. In this case, the scores
given by the heuristics may translate into inefficient priorities. We assume that in most cases, taking the
average execution time is sufficient for generating reliable priorities.

Task-graph. In this model, we consider that the applications are converted into a task graph which is a
DAG. Most memory access types (READ, WRITE, READ-WRITE) can be translated in a dependency in
a DAG. Some accesses, however, cannot be transcribed in terms of direct static dependencies. For example,
StarPU has a memory access type known as STARPU_COMMUTE which is used when several contiguous
(READ-)WRITE accesses can be performed in any order but not at the same time. A simplistic use case of
this would be when the tasks increment a shared counter. This access mode has been used in mathematical
applications, e.g., for an optimized discontinuous Galerkin solver or the fast multipole method [8, 52]. For this
type of access, we can reason in terms of availability rather than dependency: 1) if no task is commuting on
the data, any task can take the memory node, and 2) if one task is commuting, the memory node is blocked.
Thus, the heuristics cannot use all the information they have on applications that use these relatively
uncommon memory access types. In practice, in the presented heuristics, these accesses are treated as write
accesses.

Heteroprio automatic configuration. In our implementation, we update the priority lists in the sched-
uler only when a task is pushed in the scheduler. More precisely, the priorities are updated the first time
a task is pushed (the first time the scheduler discovers a new type of task), and then every nth pushed
task. This choice avoids updating the priorities too often and should, therefore, help reduce the scheduling
overhead.

6.3 Performance study
6.3.1 Evaluation based on emulated executions
We create a simple simulator for running a fake StarPU execution. As input, it takes the fake DAG of an
application, the costs of the tasks, and the priority lists. It then simulates an execution with the Heteroprio
scheduler based on our model (see section 6.1.2). As output, it gives the theoretical execution time of the
whole fake application. This theoretical execution time does not include data transfers.

It can be viewed as a black box where we input priorities and obtain an execution time as output.
We, therefore, choose this tool as a base for elaborating our experimental protocol. This protocol aims at
generating a score for a heuristic based on how well it performs in multiple scenarios. It has two purposes.
Firstly, it provides a fast way to check how successful a heuristic is. Secondly, it provides an additional
argument for our work if the heuristics perform as well in the protocol as in real applications.

Graph generation

To be able to evaluate our heuristics, we generate a dataset of 32 graphs with diversity in the number of
task types, the costs of the tasks, and the graph shape. To generate a graph, we generate tasks while filling
a pipeline of workers 2. We affect each task to its best worker. Consequently, at the end of the generation

2The DAG generating code is publicly available [51]
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process, we know the scheduling that minimizes the makespan and have a lower bound for a hardware
configuration that corresponds to the pipeline. We also generate a predecessor matrix P randomly. This
predecessor matrix is of size v× v and Pi,j . It represents the average number of predecessors of tasks of type
i that are of type j. Our graph generation method uses this predecessor matrix as input and adjusts the
predecessors of the newly created tasks so that they match the values of the matrix.

The generator needs the following parameters:

• a seed for the generation of random numbers

• the final amount of tasks

• a list of task types, with their associated CPU and GPU costs and their expected proportion in the
pool of tasks

• a number of CPU and GPU workers

• a predecessor matrix

Table 6.2 gives details about the generated datasets.



84
C

H
A

PT
ER

6.
IM

PR
O

V
IN

G
T

H
E

H
ET

ER
O

PR
IO

SC
H

ED
U

LER
O

F
STA

R
PU

data
index

CPU
number

GPU
number CPU/GPU

close
CPU-GPU

task
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far
CPU-GPU

task
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with
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predecessors
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average
predecessor
number

max
predecessor
number

task
without
successor
proportion

task
with

numerous
successors
proportion

max
successor
number

average
CPU-GPU

diff
(relative)

0 4 14 0.286 0.549 0.336 0.502 4.038 7 0.423 0.243 41 0.580
1 13 8 1.625 0.377 0.623 0.000 2.101 3 0.467 0.084 105 0.905
2 11 12 0.917 0.687 0.135 0.000 2.526 3 0.781 0.033 540 0.855
3 2 7 0.286 0.191 0.302 0.211 2.529 4 0.388 0.104 142 1.089
4 13 15 0.867 0.508 0.233 0.007 1.289 5 0.575 0.057 102 1.605
5 9 7 1.286 0.276 0.573 0.141 2.301 4 0.360 0.127 546 1.154
6 13 3 4.333 0.314 0.026 0.000 2.396 3 0.339 0.118 62 0.715
7 11 1 11.000 0.226 0.531 0.000 1.491 3 0.496 0.062 307 1.036
8 9 12 0.750 0.418 0.582 0.000 1.675 3 0.255 0.070 22 0.187
9 12 1 12.000 0.405 0.043 0.367 2.927 4 0.176 0.180 57 0.388
10 2 9 0.222 0.167 0.777 0.000 0.995 1 0.301 0.005 7 3.791
11 13 10 1.300 0.232 0.529 0.000 1.384 3 0.507 0.083 24 1.720
12 4 6 0.667 0.286 0.530 0.000 1.325 3 0.658 0.060 103 1.179
13 4 11 0.364 0.018 0.497 0.000 1.462 3 0.563 0.031 72 1.484
14 8 1 8.000 0.498 0.468 0.000 1.850 2 0.459 0.088 52 1.756
15 3 8 0.375 0.112 0.888 0.000 2.686 3 0.570 0.072 111 4.153
16 15 3 5.000 0.294 0.126 0.000 1.347 2 0.466 0.094 20 1.243
17 10 1 10.000 0.452 0.514 0.000 2.258 3 0.766 0.064 548 0.228
18 7 3 2.333 0.160 0.565 0.139 1.679 4 0.432 0.094 54 1.793
19 9 14 0.643 0.269 0.725 0.000 1.817 3 0.334 0.084 108 2.238
20 8 11 0.727 0.386 0.392 0.000 1.859 3 0.294 0.093 25 0.850
21 8 8 1.000 0.527 0.324 0.323 2.655 5 0.386 0.083 439 0.917
22 15 9 1.667 0.350 0.650 0.126 2.268 4 0.281 0.107 147 2.050
23 14 4 3.500 0.008 0.973 0.000 1.288 3 0.228 0.022 116 12.786
24 1 2 0.500 0.115 0.175 0.133 1.934 5 0.327 0.115 18 0.881
25 9 11 0.818 0.278 0.278 0.000 2.030 3 0.275 0.119 13 0.626
26 4 14 0.286 0.299 0.512 0.166 1.884 4 0.372 0.111 34 0.771
27 15 1 15.000 0.453 0.417 0.000 1.551 2 0.685 0.090 55 0.253
28 9 3 3.000 0.635 0.266 0.099 1.474 5 0.477 0.066 131 0.187
29 15 8 1.875 0.288 0.539 0.396 3.558 6 0.186 0.264 50 1.534
30 10 10 1.000 0.612 0.000 0.169 2.552 7 0.368 0.197 28 0.434
31 12 13 0.923 0.395 0.605 0.000 1.516 3 0.482 0.094 17 2.245

Table 6.2: Details of the randomly-generated graph dataset. CPU-GPU close tasks are the tasks that have less than +20% between the two processor
costs and conversely for far CPU-GPU costs. Here, "numerous" means 5 or more.
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Protocol

We run fake executions on the 32 generated graphs for each heuristic. We compare the obtained makespans
to the makespans obtained with control priorities and provide a slowdown for each heuristic. The control
priorities are obtained with an iterative optimization algorithm. The algorithm begins with random CPU
and GPU priorities. It then performs multiple iterations, alternating between CPU and GPU. At every
iteration, all the possible priority permutations for the current architecture (CPU/GPU) are tested and
the fastest permutation is kept. In the case of a tie, the fastest priorities are chosen randomly among the
equally-ranked bests. These control priorities aim at giving anchor points for computing the slowdowns of
the heuristics.

Results

````````````Test case
Heuristic Offset Softplus Interpolation PURWS PRWS NTC

0 1.119 1.120 1.119 1.285 1.285 1.135
1 1.001 1.049 1.001 1.062 1.062 1.001
2 1.045 1.031 1.063 1.170 1.264 1.209
3 1.096 1.154 1.032 1.178 1.208 1.241
4 1.117 1.104 1.138 1.159 1.119 1.110
5 1.052 1.048 1.007 1.194 1.165 1.062
6 1.318 1.280 1.361 1.182 1.061 1.452
7 1.436 1.536 1.530 1.752 1.056 1.019
8 1.144 1.078 1.076 1.046 1.017 1.025
9 1.029 1.042 1.029 1.017 1.017 1.023
10 1.329 1.329 1.329 1.000 1.000 1.048
11 1.010 1.010 1.010 1.128 1.160 1.010
12 0.992 1.009 1.035 1.038 1.047 0.990
13 1.026 1.126 1.069 1.183 1.183 1.126
14 1.014 1.003 1.014 1.034 1.034 1.014
15 1.010 1.010 1.010 1.321 1.281 1.283
16 1.020 1.297 1.297 1.020 1.020 1.020
17 1.052 1.019 1.058 1.050 1.050 1.026
18 1.193 1.054 1.040 1.366 1.304 1.193
19 1.163 1.487 1.163 1.224 1.279 1.354
20 1.000 1.000 1.268 1.254 1.254 1.163
21 1.156 1.251 1.156 1.474 1.351 1.158
22 1.134 1.118 1.134 1.143 1.197 1.065
23 0.999 1.126 0.999 1.002 1.126 1.154
24 1.007 1.055 1.020 1.191 1.154 1.043
25 1.042 1.068 1.042 1.037 1.037 1.055
26 1.124 1.063 1.076 1.075 1.084 1.070
27 1.028 1.028 1.013 1.002 1.002 1.019
28 1.034 1.018 1.114 1.065 1.077 1.034
29 1.092 1.082 1.083 1.159 1.159 1.009
30 1.014 1.014 1.014 1.075 1.051 0.992
31 1.106 1.106 1.106 1.118 1.118 1.118

Table 6.3: Slowdown obtained on emulated executions by comparing the estimated lower-bound against
Heteroprio-based executions using the different heuristics. The lower bound is estimated with an iterative
optimization algorithm.
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The results of our emulated simulations are available in Table 6.3. We show the slowdown of the 6 heuristics
we present in this paper (compared to the control priorities): PRWS, PURWS, offset model, softplus model,
and interpolation model. We see that some slowdowns are lower than 1. This means that some heuristics find
better priorities than the control priorities, which have been found with an iterative optimization algorithm.
In general, we observe that the slowdown ranges between +0% and +20%. In most test cases, the best of the
6 heuristics usually has a slowdown of less than +10%. There are some exceptions such as cases number 0,
4, 19, 21, 22, or 31. From these simulated executions, we expect the choice of heuristic to have a significant
impact.

6.3.2 Evaluation on real applications
Configuration

Hardware. We carry out our experiments on three configurations. Each one has a different GPU model.
In this paper, we use the model name of the GPUs for referring to the associated configuration:

• K40M is composed of 2 Dodeca-cores Haswell Intel Xeon E5-2680 v3 2.5 GHz, and 4 K40m GPUs
(4.29 TeraFLOPS per GPU). We use 7 CUDA streams per GPU;

• P100 is composed of 2 Hexadeca-core Broadwell Intel Xeon E5-2683 v4 2.1 GHz, and 2 P100 GPUs
(8.07 TeraFLOPS per GPU). We use 16 CUDA streams per GPU;

• V100 is composed of 2 Hexadeca-core Skylake Intel Xeon Gold 6142 2.6 GHz, and 2 V100 GPUs (14.0
TeraFLOPS per GPU). We use 16 CUDA streams per GPU.

Software. We select four applications that are already parallelized with StarPU to evaluate our scheduler:

• ScalFMM [10] is an application that implements the fast multipole method (FMM). The FMM
algorithm computes the n-body interactions between the particles directly and across a tree mapped
over the simulation box. We use it with two test-cases based on the testBlockedRotationCuda program.
The first one runs with the default parameters and 10 million particles. The other one runs with a
block size of 2000, a tree height of 7, and 60 million particles;

• QrMUMPS computes the QR factorization of sparse matrices [12] using the multifrontal method [91].
When it was extended to heterogeneous architectures in 2016 by Florent LOPEZ [170], Heteroprio was
the fastest scheduler of StarPU for this application. In our experiment, we choose to measure the
factorization time of the TF16 matrix [266], from the JGD_Forest dataset;

• Chameleon is a library for dense linear algebra operations that supports heterogeneous architec-
tures [7]. We select the same operations as the ones considered by the authors for the benchmarks
presented in their user guide: a Matrix Multiplication (GEMM), a QR factorization (QRM), and a
Cholesky factorization (POTRF). We use a block size of 1600 and a matrix size of 40000 for the Matrix
Multiplication and the QR factorization. For the Cholesky factorization, we use a matrix size of 50000;

• PaStiX is a library which provides a high performance solver for sparse linear systems [113, 142]. We
consider two stages of the example program named ’simple’: the LU factorization and the solve step.
The program generates a Laplacian matrix. We choose a matrix size of 1003.

For a given set of parameters (scheduler, hardware configuration, etc.), each application is run 32 times.
All these applications can be configured to use StarPU and, therefore, the task-based model. The codelets
(low-level kernels) are encapsulated into tasks that are submitted to StarPU. The four applications have
CPU and CUDA kernels and at least one task that has both a CPU and a CUDA implementation. For
the latter hybrid tasks, the scheduler is responsible for making the proper processor type choice. Finally,
the tested applications are all written in C, except for QrMUMPS which is written in Fortran. To make
the applications usable for our tests, we change parts of them. We update QrMUMPS and ScalFMM so
that they use performance models, which are needed by our automatic strategy but also by most schedulers.
Additionally, we create new static priorities for the Heteroprio scheduler in Chameleon and PaStiX. The
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methodology for setting these priorities is detailed in the appendix 11.1.2. Unless otherwise indicated, the
execution times are the median value of the 32 corresponding runs. All schedulers that need a calibration
run (which sets up the performance models) use an extra run that is not included in the final results.

Comparison between manual and automatic priorities

In this study, we compare the performance of four versions of the scheduler: Heteroprio, LaHeteroprio, Au-
toHeteroprio, and LaAutoHeteroprio (AutoHeteroprio with LA enabled). We use Heteroprio as the reference
value and provide the speedups of the three other versions. For AutoHeteroprio and LaAutoHeteroprio, we
provide the data of the best heuristic, i.e. the heuristic whose average execution time is the lowest. The
median execution time of Heteroprio (the reference) is divided by each individual execution time for obtain-
ing speedups. By doing so, we obtain a set of speedups for each case, rather than a single value. This lets
us display a median and two limits of a confidence interval. For this confidence interval, we exclude the 5%
highest and 5% lowest values.
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Figure 6.2: Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio in the two
ScalFMM test cases. We study two test cases: (a) 10 million particles and (b) 60 million particles. The
hatched area represents the interval of confidence of the 32 corresponding runs.

Figure 6.2 shows the results for ScalFMM. In the first test case (10 million particles), all the versions are
comparable on the p100 and k40m architecture. In the v100 case, AutoHeteroprio and LaAutoHeteroprio are
about 2 times faster than normal Heteroprio. In the second test case (60 million particles), AutoHeteroprio
and LaAutoHeteroprio are more than 80 times faster on the p100 and k40m architectures and about 5 times
faster on the v100 architecture. LaHeteroprio (respectively, LaAutoHeteroprio) does not show such a high
difference to Heteroprio (respectively, AutoHeteroprio) in this scenario. The reason for this is that data
transfers are hard to avoid in this application because only two task types have a GPU implementation.
Their data must be transferred back to the main memory to be used by tasks on the CPU.
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Figure 6.3: Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio on
Chameleon test cases (GEMM, POTRF, and GEQRF). P100, V100 and K40M relate to the hardware
configuration. The hatched area represents the interval of confidence of the 32 corresponding runs.

Figure 6.3 shows the results for Chameleon. In this application, automatic priorities are systematically
slower than their manual counterparts. Indeed, AutoHeteroprio generally has a speedup of less than 1 and
LaAutoHeteroprio is usually worse than LaHeteroprio. Furthermore, LaHeteroprio and LaAutoHeteroprio
tend to be faster, which suggests that locality has greater importance in Chameleon than in ScalFMM.

We explain the lack of performance of automatic versions by a lack of precision in the execution time
estimations of the tasks. This leads to an inefficient choice of priorities. The execution time estimations of
the tasks are biased because AutoHeteroprio averages the execution time of a task type. Yet, in Chameleon,
the data size has an important impact on the execution times of the tasks. This breaks our initial premise
which is that each task within a bucket has the same execution time.

We provide the results for the QR Factorization from QrMUMPS and on the LU Factorization from
PaStiX in Figures 6.4a and 6.4b, respectively. In both cases, AutoHeteroprio shows a significant increase
in performance on all configurations. In the QR-MUMPS test, AutoHeteroprio reaches more than +18%
speedup. In the LU factorization, it goes past x2.3 speedup on the k40m architecture. It appears that the
dynamic change of the priorities at runtime of the automatic Heteroprio is an advantage in both applications
(to evaluate these changes, we manually export the priorities during the executions).
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Figure 6.4: Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio in the
Qr factorization (QrMumps) and the LU factorization (PaStiX). (a) Qr factorization (QrMUMPS). (b) LU
factorization (PaStiX). The hatched area represents the interval of confidence of the 32 corresponding runs.

Overall, we have multiple observations. It appears that using automatic priorities does not always harm
performance. In some cases, it can even increase them. Automatic priorities are only slower in the case of
the GEMM and POTRF test cases in Chameleon. In some cases, the speedups of the automatic priorities
become particularly high when run on a new architecture (e.g. Figure 6.2). This demonstrates the ability
of automatic priories to adapt to the current architecture. Manual priorities, on the other hand, can hardly
be efficient on multiple different architectures.

Comparison with other schedulers

In this section, we compare Heteroprio with other schedulers available in StarPU:

• the Eager scheduler uses a central task queue from which all workers retrieve tasks concurrently. There
is no decision on the task distribution. The worker picks the first task that is compatible with their
PU;

• the LWS (Locality Work Stealing) scheduler uses one queue per worker. When a task becomes ready,
it is stored in the queue of the worker that released it. When the queue of a worker is empty, the
worker tries to steal tasks from the queues of other workers;

• the Random scheduler randomly assigns the tasks to compatible workers;

• the DM (deque model) scheduler uses a HEFT-like strategy. It tries to minimize the makespan by
using a look-ahead strategy;

• the DMDA (deque model data aware) follows the principle of DM but adds the data transfer costs;

• the DMDAS (deque model data aware) acts as the DMDA scheduler but lets the user affect priorities
to the tasks. Since this scheduler needs user-defined priorities, we discard DMDAS from the results
when the application does not define custom priorities.

For the sake of conciseness, by default we only display the results for the best between Heteroprio (respec-
tively AutoHeteroprio) and LaHeteroprio (respectively LaAutoHeteroprio). When the difference between the
LA and the non-LA version is noticeable, we display the 4 versions. For the automatic Heteroprio versions
(AutoHeteroprio and LaHeteroprio), we aggregate all the data of every heuristic designed in AutoHeteroprio.
Since there are 28 different heuristics in AutoHeteroprio and 32 runs for each one, the data for the automatic
configuration consists of 28× 32 = 896 runs, while other the other shown data consist of 32 runs.
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Figure 6.5 shows the execution times of the solve step in PaStiX with different schedulers on the p100
configuration (the results for the v100 and k40m configurations are comparable).
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Figure 6.5: Execution times of the PaStiX solve step for different schedulers on the P100 configuration.
The boxes show the distribution of the 32 makespans (896 for AutoHeteroprio and LaHeteroprio) for each
scheduler.

We can group the schedulers into three performance categories (sorted from slowest to fastest):

• AutoHeteroprio and LaAutoHeteroprio

• DM, DMDA, and DMDAS

• basic Heteroprio, LaHeteroprio, LWS, and Eager

To explain this result, let us explain the task structure of this application. There are only two types of tasks
with average execution times of 95 and 120 microseconds. These execution times are relatively short for a
runtime system like StarPU. Indeed, the overhead of StarPU is relatively high, as it has been designed to
handle large amounts of data. In particular, the use of a scheduler is only relevant when the expected gained
time is greater than the overhead of the scheduler. In this test case, it appears that the scheduling decision
has less importance than in other applications, as lightweight schedulers tend to perform better. It confirms
that Heteroprio and LaHeteroprio have a low overhead. Their overhead is comparable to those of LWS and
Eager. This test also points out that AutoHeteroprio and AutoLaHeteroprio have a significant overhead.
For these, the overhead is higher than that of DM, DMDA, and DMDAS.

We compare the schedulers for the QrMUMPS test case in Figure 6.6. AutoHeteroprio performs better
than manual Heteroprio, which is already better or as good as other schedulers, depending on the configu-
ration.
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Figure 6.6: Execution times for QrMumps for different schedulers on the three configurations. The boxes
show the distribution of the 32 makespans (896 for AutoHeteroprio) for each case.

Figure 6.7 presents the results for the Matrix multiplication in Chameleon, on the k40m and the p100
configurations. The V100 has been left out as the results are similar to the P100 configuration. We observe
that AutoHeteroprio is faster and more reliable than schedulers like LWS or random but less efficient than
the DM schedulers. The results for the Cholesky factorization that we present in Figure 6.8, are similar. In
this configuration, AutoHeteroprio is closer to the performances of DM. Manual Heteroprio performs almost
as well as DM.
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Figure 6.7: Execution times for Chameleon GEMM for different schedulers on two configurations. The boxes
show the distribution of the 32 makespans (896 for LaAutoHeteroprio) for each case.
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Figure 6.8: Execution times for Chameleon Cholesky factorization for different schedulers on the p100 and
the k40m configuration. The boxes show the distribution of the 32 makespans (896 for LaAutoHeteroprio)
for each scheduler.

We present the results for the Chameleon QR Factorization in Figure 6.9. In the p100 configuration



6.3. PERFORMANCE STUDY 93

(and the v100 configuration which is comparable), both Heteroprio versions perform comparably to the DM
scheduler. In the k40m configuration, the performance of both versions is low. Heteroprio only seems to do
better than the random scheduler. The Eager scheduler outmatches DM schedulers.
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Figure 6.9: Execution times for Chameleon QR factorization for different schedulers on the p100 and the
k40m configuration. The boxes show the distribution of the 32 makespans (896 for LaAutoHeteroprio) for
each scheduler.

In the case of factorization with PaStiX (Figure 6.10), AutoHeteroprio performs well on the p100 con-
figuration. In contrast, on the k40m configuration, DMDAS, DMDA, and LWS schedulers perform better.
With the v100 configuration, the results of AutoHeteroprio are only better than the ones of Heteroprio.
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Figure 6.10: Execution times for PaStiX factorization for different schedulers on the three hardware configu-
rations (k40m, p100 and v100). The boxes show the distribution of the 32 makespans (896 for AutoHeteroprio
and LaAutoHeteroprio) for each scheduler.
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The results of the ScalFMM tests cases are shown in Figures 12.3 and 12.4. These are represented
using a logarithmic scale because of the high differences between the execution times of the schedulers. We
can see that AutoHeteroprio performs well on this application. It is comparable and sometimes better than
schedulers of the DM family. Note that the DM and DMDA schedulers can use more than one calibration run.
This presumably explains their uppermost bullets in the figures. AutoHeteroprio only needs one calibration
run before achieving its best performance.
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Figure 6.11: Execution times for the first ScalFMM test case on the three hardware configurations (k40m,
p100 and v100). The scale of the Y-axis is logarithmic. The boxes show the distribution of the 32 makespans
(896 for AutoHeteroprio) for each scheduler.
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Figure 6.12: Execution times for the second ScalFMM test case on the three hardware configurations (k40m,
p100 and v100). The scale of the Y-axis is logarithmic. The boxes show the distribution of the 32 makespans
(896 for AutoHeteroprio) for each scheduler.

This second study gives an overview of the performance of different applications with various schedulers
in StarPU. With these results we can estimate the impact of the choice of scheduler on the overall execu-
tion time and evaluate the competitiveness of Heteroprio with manual or automatic priorities. In general,
AutoHeteroprio offers satisfying results compared to its competitors. When it does not, it is usually in
cases where the Heteroprio (manual) version is already slow. The only cases where AutoHeteroprio does not
achieve acceptable performance when compared to Heteroprio are the Chameleon GEMM and the PaStiX
solve step. Moreover, AutoHeteroprio does improve the performance of Heteroprio significantly in other
cases such as in QrMumps, PaStiX factorization, and some ScalFMM configurations. Therefore, this study
suggests that AutoHeteroprio is a competitive scheduler for a runtime system like StarPU. In addition to
this, it is fully automatic, contrary to some of its competitors (Heteroprio, LaHeteroprio, and DMDAS).

Comparison of different heuristics in AutoHeteroprio

In AutoHeteroprio, the priority lists are computed thanks to heuristics. In section 6.3.2, we show the
performance of the best heuristic over all the 28 measured executions, while in section 6.3.2 we show the
aggregated performance of the 28 heuristics. In this section we seek to measure the impact of the choice
of heuristic. We compute the average execution time of each heuristic and compare it against the average
execution time of all heuristics. We establish the results shown in Table 6.4, which are the maximum and
minimum differences observed across all the 28 heuristics on each application. While it appears that the
relative difference is relatively low, typically around 1%, it is always less than 5%, with the largest difference
being in the POTRF test case. In the latter case, the slowest heuristic is nearly 10% slower than the fastest.

Application FMM Chameleon Chameleon Chameleon PaStiX QrMUMPS
POTRF GEMM GEQRF

longest time +3% +5% < +1% < +1% +1.5% +1%
shortest time > -1% -4% > -1% > -1% -1% -1%

Table 6.4: Longest and shortest relative time observed between heuristics across all test-cases.

We provide the average relative differences between heuristics for the Cholesky factorization in Chameleon
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(POTRF) in Figure 6.13. This is the application in which the choice of heuristic has the most impact.

Offset model Softplus model Interpolation model PURWS PRWS NTC
0.80

0.85

0.90

0.95

1.00

1.05

1.10
M

ak
es

pa
n 

(re
la

tiv
e,

 a
ve

ra
ge

)
v100
p100
k40m

Figure 6.13: Relative difference between 6 heuristics in the case of the Cholesky factorization (Chameleon
POTRF).

We observe that the heuristics PRWS and PURWS are the ones that give the best execution times,
while the NTC (NOD Time Combination) heuristic is the one leading to the worst execution times for this
application.

This study suggests that the choice of heuristic typically has an impact of less than 1% on the resulting
execution time. The highest impact we measure is less than 10% slowdown between the fastest and the slowest
heuristic in the POTRF test case. The impact of the choice of heuristic is, therefore, limited compared to the
one of the scheduler. In practice, this implies that application developers can rapidly assess the performance
of Heteroprio on their application only by testing one heuristic (typically with a ±1% makespan confidence
interval). Additionally, once a user determines that Heteroprio is efficient for their application, they can
further fine-tune the scheduler by benchmarking different heuristics and choosing the best one.

6.3.3 Evaluation on a stencil application
The results of the previous section suggest that AutoHeteroprio is a competitive scheduler for StarPU. This
scheduler has been designed with a generic approach, as we used randomly generated graphs to create the
heuristics. We have shown that this approach effectively leads to efficient priorities in already existing
applications. In this section, we provide insights into the ability of AutoHeteroprio to find the correct
priorities on the D3Q27 stencil application we use in Section 5.4.

Given that the scheduling challenge varies greatly depending on the subgrid partitioning and that we
have already provided a comparison of different schedulers in Section 5.4.2, we only focus on the priorities
that AutoHeteroprio finds for our stencil application. We run the application 28 times, each time with a
different heuristic. The chose grid layout is 2× 8× 2, and the experiment is run with 2 nodes, each with 2
P100 GPUs. The used priorities are printed every 32 times a task is pushed to the scheduler and a script is
used to extract and count them. This methodological choice allows to capture the potential evolution of the
priorities during the execution of the application.

Table 6.5 shows the proportion of the different priorities found by AutoHeteroprio. Since the application
is bottlenecked by the inter-node communication, the found priorities do not appear to significantly impact
the execution time. However, it is still interesting to analyze the priorities found by AutoHeteroprio and
relate them to the properties of the codelets.
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Priorities proportion
i2s - s2i - step 57.8%
s2i - i2s - step 19.4%
s2i - step - i2s 19.0%
step - s2i - i2s 3.8%

Table 6.5: Proportion of the different priorities found by AutoHeteroprio in our stencil application. s2i and
i2s correspond to the subgrid_to_interface and interfaces_to_subgrid codelets, respectively.

Codelet average NOD average URT
step 0.54 0.56

subgrid_to_interface 2.36 0.93
interface_to_subgrid 2.54 1.12

Table 6.6: Codelet-specific data for the D3Q27 simulation.

Table 6.6 provides the average NOD and URT, which are the two most interesting metrics for this case.
Since we only have GPU codelets, the diff (time difference between the execution on this architecture and
the execution on the fastest architecture) is always 0. The NOD (formula 6.6) estimates the number of
new tasks that could be released after the execution of a task, while the URT (formula 6.8) estimates the
(normalized) amount of working time that could be added to the processing unit.

Ranking the codelets by either their NOD or URT always gives the same order: interface_to_subgrid
- subgrid_to_interface - step, which is the most common priority found by AutoHeteroprio. The con-
figuration subgrid_to_interface - interface_to_subgrid - step are the second most common priori-
ties found by AutoHeteroprio. These second priorities also make sense, as subgrid_to_interface and
interface_to_subgrid are very close in terms of NOD and URT. As the metrics are updated regularly, a
swap between subgrid_to_interface and interface_to_subgrid is likely to occur simply due to the vari-
ance in the measurements. The third priority set, subgrid_to_interface - step - interface_to_subgrid,
appears to be associated with heuristics that value having a low absolute execution time. Finally, the last
priority set, step - subgrid_to_interface - interface_to_subgrid, is simply an edge case for a heuristic
(not described in this work for the sake of conciseness) where having a diff of 0 sets all the scores to 0 and
make the order arbitrary.

With only 3 task types and a single architecture, this experiment helps us understand the behavior of
AutoHeteroprio on a simple application. We see that the found priorities usually align with the goals we
would expect from a scheduler. The tasks that are the most critical (high NOD or URT) are often prioritized
first.

In the next section, we will conclude this chapter and discuss the potential improvements that could be
made to AutoHeteroprio.

6.4 Discussion
This study has demonstrated the evolution of the Heteroprio scheduling paradigm from semi-automatic to
fully automatic, eliminating the need for user intervention in the decision-making process of the scheduler.
Through the development and validation of specific heuristics within an execution simulator, this transition
has proven to be effective. These heuristics have delivered performance levels comparable to, or in some
cases superior to, the Heteroprio framework in real-world applications.

At the outset of this chapter, the primary goal was articulated as establishing a fully automatic sched-
uler, with a secondary goal of ensuring high performance. The introduction of AutoHeteroprio marks the
achievement of the first goal by presenting a system that operates autonomously. In terms of performance,
AutoHeteroprio has demonstrated efficiency, matching or exceeding the performance of the semi-automatic
version in the majority of scenarios. However, it is important to note that in specific cases, such as with
the stencil application, AutoHeteroprio does not reach the performance levels of dmda or dmdas. This dis-
crepancy can be attributed to the coarse granularity of tasks within the application. It is also observed
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that AutoHeteroprio encounters performance limitations under circumstances where Heteroprio similarly
struggles. These limitations are inherent to the design principles of Heteroprio and are not addressed by the
current scope of this work.

Expanding on the methodologies employed in this study, a limitation in AutoHeteroprio is its reliance
on multiple heuristics for the computation of priorities. The findings indicate that the selection of a specific
heuristic does influence the performance of the scheduler, albeit with a limited impact. The necessity to
choose a heuristic—and potentially adjust its hyperparameters based on application-specific performance
needs—poses a challenge. Currently, a default heuristic is employed, with the expectation that users may
switch it as required. An improvement could involve dynamically selecting the heuristic, allowing it to adapt
during the execution of the application based on the performance metrics of the scheduler. However, this
approach introduces complexities in defining effective runtime performance evaluation metrics and criteria
for selecting the optimal heuristic.

Another potential area for enhancement is the clustering of tasks. In the current version of AutoHetero-
prio, tasks are clustered by task type, which is not a true StarPU concept. The differentiation of tasks relies
on their names, which works well in practice but is not a robust approach. A more sophisticated approach
could incorporate statistical techniques for clustering, accommodating both the qualitative (e.g., the task
name, the availability of a CPU/GPU implementation) and quantitative (e.g., the expected execution time,
the NOD) data associated with tasks. For this purpose, several suitable clustering algorithms have been
identified, such as the K-Prototypes algorithm [119], TwoStep Cluster Analysis [249], and hierarchical clus-
tering algorithms based on the Gower distance [283]. Whether this strategy would enhance performance,
considering the potential overhead from per-task clustering, is not clear.

Further contemplation leads to the idea of applying heuristics on a per-task basis rather than per type.
Currently, tasks are aggregated by "type" due to the bucket mechanism of Heteroprio. A more granular
approach would allow metrics to directly reflect individual tasks, not merely an average across a bucket.
This shift would necessitate a fundamental reevaluation of the underlying scheduling mechanism, which is
currently not optimized for distinguishing between individual tasks. Hayfa et al. are currently working on a
scheduler that considers each task individually [261].

Finally, there is potential for developing a dual scheduling mode that responds to the runtime context.
This idea stems from observations that Heteroprio shows rapid performance when tasks have low execution
times, case in which the overhead from scheduling is critical. In contrast, when task execution times are
high, the impact of scheduling overhead is less significant, allowing for more time to be dedicated to informed
decision-making. A dual mode, alternating between Heteroprio and HEFT (DAG analysis) based on the
context, could enhance scheduling efficiency. The criteria for selecting the mode could include factors such
as the presence of starved workers, execution time of tasks, or the number of tasks in the queue. While
this method holds promise for improving performance, implementing it properly requires significant effort.
Integrating Heteroprio and dmda (a StarPU scheduler based on HEFT) involves dealing with a range of
technical details aimed at enhancing their effectiveness, which may not always be compatible.

This chapter concludes our contributions to the field of task-based runtime systems. In Chapter 3,
we have introduced the challenges associated with stencil applications and opened on the potential of task-
based runtime systems to address these challenges. Then, in Chapter 4 and Chapter 5, we have presented our
contributions to the integration of stencil-specific concepts into state-of-the-art task-based runtime systems.
In PaRSEC, we have introduced the concept of parametrized flows, which lets us perform subgrid-level
temporal blocking in an elegant manner. In StarPU, we have designed a robust and efficient stencil solver
that leverages the task-based model of the runtime system. Finally, in this chapter, we have presented
AutoHeteroprio, a fully automatic scheduler that extends the Heteroprio scheduler of StarPU and achieves
high performance in real-world applications. These contributions are the result of a collaborative effort
between us and the communities of PaRSEC and StarPU, whom we thank for their support and feedback.

This thesis focuses on achieving high performance in memory-constrained environments. While the path
of using runtime systems appeared promising to achieve efficient data management, we believe that the cur-
rent state of the art in task-based runtime systems is not yet mature enough to address such challenges. The
reason for this is that the memory model of these runtime systems is logically optimized for performance in
systems with abundant memory. Hence, few flexibility is offered to the user to control the data management.
Futures works will be directed towards implementing a new memory model for StarPU, which will aim to
better guide scheduling decisions based on the memory constraints of the system.
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However, the rest of this thesis focuses on the development of efficient compression methods without
concerns for integration into runtime systems. The goal is to provide solid proof of concepts that can be
integrated into runtime systems in the future. In the next chapter, we present the discrete wavelet transform,
a powerful tool for data compression, and explain how it can be tuned for efficient data compression in the
context of fluid simulations.
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Chapter 7

Designing wavelets for CFD
simulations

7.1 Introduction to the Discrete Wavelet Transform
The Discrete Wavelet Transform (DWT) stands out as a powerful tool for signal processing and analysis. This
technique breaks down a signal into coefficients, allowing to reveal its unique aspects across different scales
and positions. These coefficients capture in-depth time and frequency details, providing a comprehensive
representation of the signal.

The DWT forms the backbone of our approach to data compression. It enables the effective analysis and
modification of multi-dimensional data, offering a flexible framework for achieving high compression ratios.
The evolution of wavelet compression traces back to the works of Haar and Gabor, transitioning from concepts
of continuous wavelets to the DWT. Grossmann and Morlet introduced the term "wavelet" in the 1980s [106],
marking the beginning of a significant shift in how signals could be processed. Subsequent contributions by
Daubechies, such as [83] and [84], have solidified wavelet theory, culminating in its application in standards
like JPEG2000 for image compression [251]. The comprehensive book by Mallat [255] offers an extensive
review of wavelet research, providing insights into the theoretical and practical aspects of wavelet analysis.

Grasping specific properties of wavelets, such as symmetry, vanishing moments, compact support, and
mass conservation, helps understand the design of the wavelets utilized in this research. Symmetry in
wavelets facilitates image reconstruction by ensuring that the error pattern is symmetric, which is beneficial
for visual perception. Vanishing moments enable wavelets to disregard specific data trends, beneficial for
noise reduction and data compression. Mass preservation is critical in ensuring that the total mass or
information content of the signal remains unchanged post-transform, a necessity for accurate simulations.
We provide some additional details on these properties in the Appendix 11.2, but the literature referenced
earlier, particularly the works by Daubechies and Mallat, provides in-depth insights into these properties.

A well-known concept in wavelet theory is Multiresolution Analysis (MRA) [110, 4, 193]. It provides a
robust framework for efficient signal processing and analysis, enabling the decomposition of signals at different
resolution levels. The idea of MRA is to decompose a dicretized signal into a sequence of approximations
at different resolution levels, each capturing the characteristics of the signal at a specific scale. This process
can be reversible, allowing for the reconstruction of the original signal from the approximations.

Figure 7.1 illustrates the general principle of MRA using low-pass and high-pass filters. Each level of
discrete wavelet transform corresponds to a pair of low-pass and high-pass filters. The low-pass filter obtains
the approximation coefficients aj,k, while the high-pass filter captures the detail coefficients dj,k. The detail
coefficient capture the disrepancy between the "expected" signal and the actual signal. The notation aj,k
and dj,k denote the coefficients at the jth level of decomposition. The approximation coefficients serve as
input for the next decomposition level, and the process repeats until the desired level of decomposition is
achieved. If the transform is reversible, the original discretized signal can be reconstructed using inverse
filters specially designed to combine the approximation and detail coefficients from each level.

To visually show the concept of MRA, refer to Figure 7.2, which depicts the process using a Gaussian-
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Input signal
HP Filter

LP Filter

d1,k
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HP Filter
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HP Filter
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Figure 7.1: General principle of Multiresolution Analysis using LP and HP Filters. The notation aj,k and
dj,k denote the coefficients at the jth level of decomposition.
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Figure 7.2: Multiresolution Analysis using a Gaussian function for signal decomposition. The continuous
signal (dotted line) is represented by 16 sampled points. The green approximation coefficients capture the
low-frequency components, while the red details represent the discrepancies between the approximation and
the analyzed signal. The notation aj,k and dj,k indicates the coefficients at the jth level of decomposition.
For example, d1,k corresponds to the detail coefficients after one level of wavelet transform. After each
decomposition level, the signal is downsampled by a factor of two.
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like function as the original signal. The green dots represent the original signal obtained by sampling
the continuous original signal at equally spaced intervals. The red dots represent the detail coefficients,
highlighting discrepancies between the approximation coefficients and the exact values of the original signal.
In this example, a variation of Haar wavelets is employed, where aj,k coefficients remain identical to those
of the previous level, and dj,k coefficients are calculated as the difference between the analyzed signal and
the aj,k coefficients. Note that these wavelets are designed for clarity and pedagogical purposes, and may
not be efficient or practical for real-world applications.

Overall, MRA offers a structured approach for breaking down signals into layers at various scales, enhanc-
ing signal processing and analysis efficiency. It operates under the premise that signals display consistency
or regularity across these scales. When signals vary greatly at different scales, MRA may not be as effective.
However, the required regularity is often seen in CFD simulations, making MRA a suitable tool for data
compression in this context. The selection of wavelets is also crucial, as it determines the properties of the
compression scheme which can be critical for the accuracy of the simulation. The forthcoming section will
explore wavelet design, focusing on attributes that render them ideal for CFD simulations.

7.2 Designing Wavelets for CFD Simulations

7.2.1 Challenges

Designing wavelets for CFD simulations focuses on achieving efficient data compression while preserving
important aspects of the signal. As discussed in Section 3.3, the global grid is typically divided into subgrids,
each managed by a separate processor, which influences the application of wavelet transforms. Typically,
wavelet transforms anticipate a certain size for these subgrids, which introduces constraints on the possible
global grid size. Adjusting the sizes and numbers of these subgrids, however, often provides a satisfactory
solution to these constraints. A significant challenge arises from the fact that signals within these subgrids
do not exhibit periodic patterns, contrary to the usual expectations for wavelet transforms. Considering
wavelets that account for neighboring values could offer a solution, but such values are not always accessible.
Focusing on ensuring vanishing moments across the analyzed interval, especially at non-periodic boundaries,
presents another strategy to address the challenges of non-periodicity. In practice, maintaining constant
boundary values during the transform facilitates the synchronization of subgrids, although the specifics of
this synchronization depend on the chosen computational scheme and its implementation. This method
simplifies the process, though it is not a strict requirement.

An important condition for our application is to ensure that the compression scheme is conservative,
meaning that the mass of the reconstructed signal is equal to the mass of the original signal. We ensure
this property by verifying that the details wear no mass and refer to it as mass conservation. Ensuring a
conservative scheme is identified as essential in most numerical schemes [118]. However, simply preserving
mass does not guarantee the accuracy of simulations; the induced error of the compression must also be
managed effectively [73]. Achieving mass conservation at the global grid level is, hence, imperative. It is
trivial to show that preserving the mass within a subgrid is a sufficient but not necessary condition to achive
mass conservation at the global level.

The final goal is to achieve high compression ratios. As we have explained in the previous section, the
MRA framework produces a set of approximations that are close to the original signal, and a set of details
that capture the discrepancies between the approximations and the original signal. The details are expected
to be small in most cases, which reduces the entropy of the data. This can be exploited to achieve effective
compression, as we will see in Section 7.3.3. The implication on the design choices is that we must ensure
that the details are as small as possible. This is often achieved in practice by ensuring filtering of polynomial
trends up to a given order, which is a direct consequence of the vanishing moments property of the wavelets.

In the next sections, we present two approaches: the first one is based on the LGT5/3 and CDF9/7
wavelet constructions, while the second one, which we will refer to as lifter Haar wavelets, is derived from
the Haar framework. We will first present them in the 1D case, and extend them to the multi-dimensional
case in Section 7.3.1.
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7.2.2 Notations and Definitions
Here, we assume that the signal is defined on the interval [0, 1] for the sake of simplicity. The extension to
other intervals is straightforward, and we will not discuss it here. Let f , defined on [0, 1], be the non-periodic
signal on which we want to apply the DWT and J be the sampling scale. It is important to note that our
formulation differs from the standard wavelet transform, which is typically applied to signals defined on the
entire real line or on a periodic interval. A lot of works have been done on wavelets on the interval (see, for
instance [72, 78, 21, 37]). We will use one of the simplest approach, the so called mirror wavelet described
in the book of Mallat [175].

We begin with 2J + 1 sampling points:

xJ,k = k2−J , 0 ≤ k ≤ 2J , J ≥ 0, (7.1)

where k corresponds to the index of the point in the grid xJ,k0≤k≤2J . We can note that for any scale J , the
first and last points are fixed:

xJ,0 = 0, xJ,2J = 1. (7.2)
For a given scale J , the signal is represented using 2J + 1 points. Let us point out that at the coarsest scale
J = 0 the signal is represented by its values at the two boundary points x = 0 and x = 1.

We now define the wavelet coefficients aj,k and dj,k to refer to the approximation and detail coefficients
at scale j, respectively. At the finest scale j = J , the approximation coefficients are the samples of the signal
f :

aJ,k = f(xJ,k), 0 ≤ k ≤ 2J . (7.3)
Then, the DWT allows to compute the approximation and detail coefficients at a coarser scale. If we adopt
a generic view of the DWT, the approximation and detail coefficients at scale j − 1 are found by applying
the DWT transform on the approximation coefficients at scale j.

aj−1,k = Tj,k,approx(aj,0, aj,1, . . . , aj,2j ), 0 ≤ k ≤ 2j−1 (7.4)

dj−1,k = Tj,k,detail(aj,0, aj,1, . . . , aj,2j ), 0 ≤ k < 2j−1 (7.5)
for 0 ≤ k ≤ 2j , where Tj,k,approx and Tj,k,detail are the transforms that compute the approximation and detail
coefficients at scale j − 1 from the approximation coefficients at scale j. However, if compactly supported
wavelets are used, the transform can often be expressed in a more elegant manner. The goal is find the T
transforms that satisfy a set of constraints. For our purposes, the constraints and goals have been stated in
the previous section.

Finally, let us introduce the matrix representation of the DWT, which is often used in the classical wavelet
theory. Firstly, the DWT can be expressed as a vector-to-vector application:

(u0, u1, . . . , u2j ) 7→ (v0, v1, . . . , v2j ), (7.6)

where u is the vector of approximation coefficients at scale j and v is the vector of approximation and detail
coefficients at scale j − 1. For example, we can represent u and v as:

u =


aj,0
aj,1
...

aj,2j

 (7.7)

and

v =



aj−1,0
dj−1,0
aj−1,1
dj−1,1

...
aj−1,2j−1−1
dj−1,2j−1−1
aj−1,2j−1


. (7.8)
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Classically, u and v have the same size, which lets us represent the transform as a matrix A such that:

v = Au. (7.9)

Then, if the transform is bijective, there exists a matrix A−1 such that:

u = A−1v. (7.10)

7.2.3 LGT5/3 and CDF9/7 Wavelets
LGT5/3 and CDF9/7 widely known wavelets that are extensively used in image and signal processing.
The LGT5/3 wavelets, attributed to Le Gall and Tabatabai, are also known as first-order 5/3 biorthogonal
wavelets [153, 84, 71], while the CDF9/7 wavelets are commonly referred to as the Cohen-Daubechies-
Feauveau wavelets [71]. In this section, we explain how we build wavelets derived from these constructions
for efficient CFD compression.

For constructing our DWT, we follow the lifting scheme introduced by Sweldens [258, 259], which provides
a flexible and efficient approach for wavelet construction. At any scale, the first and last coefficients are fixed
to the boundary values of the signal, with the intention of making the boundaries of the interval more easily
accessible in CFD implementations:

aj,0 = xJ,0 = f(0) and aj,2j = xJ,2J = f(1), 0 ≤ j ≤ J. (7.11)

Since these two points remain unchanged, they can be accessed more directly during the synchronization of
different subgrids. They are intentionally chosen to have even k indices for j ≥ 1 and will always correspond
to approximation coefficients. In our setting, at scale j ≥ 1, there are 2j−1 + 1 even indices and 2j−1 odd
indices, which correspond to the framework we set in the previous section, but differs from the usual wavelet
construction.

Now, let us introduce a linear interpolation expectation that will lead to vanishing moments. Firstly, we
expect the approximation coefficients to satisfy:

aj,k ≈ f(xj,k). (7.12)

If we expect the signal to be locally linear, we can also expect the odd samples to satisfy the following linear
interpolation:

aj,2k+1 ≈
aj,2k + aj,2(k+1)

2 , 0 ≤ k ≤ 2j−1 − 1. (7.13)

We can then define the detail coefficients at scale j − 1 as:

dj−1,k = aj,2k+1 −
aj,2k + aj,2(k+1)

2 , 0 ≤ k ≤ 2j−1 − 1, (7.14)

which will ensure near-zero detail coefficients if the signal is locally linear.
We now need to define the approximation coefficients aj−1,k at scale j − 1. We want these coefficients to

satisfy multiple properties. First, we want them to be close to the signal f at the sampling points xj−1,k,
to match the expectation we made in equation (7.12). Second, to achieve minimal memory intensity, we
want to use as few other coefficients as possible. One way to achieve this is to only use the approximation
coefficients at scale j and the detail coefficients at scale j − 1. For example, we can introduce coefficients
αj,k, and define:

aj−1,k = aj,2k + αj−1,k−1dj−1,k−1 + αj−1,kdj−1,k, 0 < k < 2j−1. (7.15)

This corresponds to the lifting part of the lifting scheme (because the coefficients aj−1,k are "lifted"). Let us
note that the first and last coefficients (with k = 0 and k = 2j−1) correspond to the fixed boundary values
and are not modified. This approach ensures that the approximation coefficients remain close to the signal,
as the detail coefficients are expected to be small. We have the relation:

aj−1,k = aj,2k +O(dj−1,k−1 + dj−1,k), (7.16)
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which, combined with equation (7.3), ensures that all the approximation coefficients remain "close" to the
signal as long as the detail coefficients are small. Several choices of coefficients αj,k are possible, but only
one satisfies the mass conservation property. The mass conservation property ensures that the mass of
the original sampled signal in [0, 1] exactly equals that of the wavelets associated with the approximation
coefficients at any scale. It can be expressed as:

f(0) + f(1)
2 +

2j−1−1∑
k=1

aj−1,k = f(0) + f(1)
4 + 1

2

2j−1∑
k=1

aj,k. (7.17)

This equation is essentially a trapezoidal quadrature formula. The 1
2 factor on the boundary values stems

directly from the shape of the wavelets. Appendix 11.2.5 provides a visual interpretation of this phenomenon.
This 1

2 factor does pose a practical challenge in the general case, since it could allow some mass to escape
from the subgrids. However, thanks to the fixed boundaries we imposed in equation (7.11), mass conservation
is guaranteed at the level of the subgrid, as we will show in Section 7.3.2 and Appendix 11.3.2. Another
way of stating the mass conservation property is to say that the details wear no mass. This implies that
any modification of the detail coefficients will not affect the mass of the reconstructed signal, which has
important implications for the compression scheme.

We can check that the only choice of coefficients αj,k that satisfies mass conservation is:

αj−1,k =
{

1
4 if 0 < k < 2j−1 − 1
1
2 if k = 0 or k = 2j−1 − 1.

(7.18)

Thanks to these coefficients, we can compute the approximation coefficients at scale j − 1.
Hence, to perform the DWT using the lifting scheme, we first compute the detail coefficients at scale

j−1 using equation (7.14), and then the approximation coefficients at scale j−1 using equation (7.15). The
inverse transform can be obtained by inverting these equations. First the even approximation coefficients at
scale j can by inverting equation (7.15):

aj,2k = aj−1,k − αj−1,k−1dj−1,k−1 − αj−1,kdj−1,k, 0 < k < 2j−1. (7.19)

Then, the odd approximation coefficients at scale j can be obtained by inverting equation (7.14):

aj,2k+1 = dj−1,k +
aj,2k + aj,2(k+1)

2 , 0 ≤ k ≤ 2j−1 − 1. (7.20)

We can see that the lifting scheme offers an efficient way to compute the DWT. Both the forward and inverse
transforms can be computed in a single pass over the coefficients, which is a significant advantage in terms
of memory access and computational complexity.

Another way to represent the same transform is the matrix form (see equations 7.9 and 7.10). For j = 3,
we obtain

A = 1
8



8 0 0 0 0 0 0 0 0

−4 8 −4 0 0 0 0 0 0

−2 4 5 2 −1 0 0 0 0

0 0 −4 8 −4 0 0 0 0

0 0 −1 2 6 2 −1 0 0

0 0 0 0 −4 8 −4 0 0

0 0 0 0 −1 2 5 4 −2

0 0 0 0 0 0 −4 8 −4

0 0 0 0 0 0 0 0 8



(7.21)



7.2. DESIGNING WAVELETS FOR CFD SIMULATIONS 107

and

A−1 = 1
8



8 0 0 0 0 0 0 0 0

4 6 4 −1 0 0 0 0 0

0 −4 8 −2 0 0 0 0 0

0 −2 4 6 4 −1 0 0 0

0 0 0 −2 8 −2 0 0 0

0 0 0 −1 4 6 4 −2 0

0 0 0 0 0 −2 8 −4 0

0 0 0 0 0 −1 4 6 4

0 0 0 0 0 0 0 0 8



. (7.22)

In the even rows of A (approximation coefficients), the wavelet low-pass filter coefficients are present.
Conversely, the odd rows (detail coefficients) contain the wavelet high-pass filter coefficients. The sum of the
coefficients in the even rows is 1, while the sum of the coefficients in the odd rows is 0, which is mandatory
for the mass conservation property. Notably, the filters at the boundaries of the interval only require one
coefficient, indicating their minimal support. In contrast, the filters in the middle of the interval have wider
(but compact) support, extending over multiple coefficients. Away from the boundaries, we observe the
filters corresponding to the LGT5/3 filter bank.

It is possible to increase the number of vanishing moments by using the CDF9/7 wavelets. With these
wavelets, the construction is similar. The contruction of the details become:

dj−1,k = sj,2k+1 −
−sj,2(k−1) + 9sj,2k + 9sj,2(k+1) − sj,2(k+2)

16 , 0 ≤ k ≤ 2j−1 − 1. (7.23)

To make it work for the edge values, we simply extend the coefficients by symmetry, which reduces the order
of the wavelets to 1 at the boundaries.

We get the following matrix representation for the CDF9/7 wavelets:

A = 1
64



64 0 0 0 0 0 0 0 0

−36 64 −32 0 4 0 0 0 0

−17 32 39 16 −7 0 1 0 0

4 0 −36 64 −36 0 4 0 0

1 0 −8 16 46 16 −8 0 1

0 0 4 0 −36 64 −36 0 4

0 0 1 0 −7 16 39 32 −17

0 0 0 0 4 0 −32 64 −36

0 0 0 0 0 0 0 0 64



(7.24)
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and

A−1 = 1
64



64 0 0 0 0 0 0 0 0

36 48 32 −7 −4 1 0 0 0

0 −32 64 −16 0 0 0 0 0

−4 −18 36 46 36 −8 −4 2 0

0 0 0 −16 64 −16 0 0 0

0 2 −4 −8 36 46 36 −18 −4

0 0 0 0 0 −16 64 −32 0

0 0 0 1 −4 −7 32 48 36

0 0 0 0 0 0 0 0 64



. (7.25)

We can see that the CDF9/7 wavelets have a larger support than the LGT5/3 wavelets, which is a direct
consequence of the higher order of vanishing moments. This is a disadvantage in terms of memory usage
and computational complexity, but also in terms of compression ratios when the signal includes a lot of
high-frequency components. Such components are often present in CFD simulations, where discontinuities
are common.

The choice between the LGT5/3 and the CDF9/7 wavelets is not straightforward, as both have their
advantages and disadvantages. The LGT5/3 wavelets is less memory intensive and requires less computation,
but the CDF9/7 wavelets can yield better compression ratios in smooth regions. However, although it can
be debated, we believe that the increase in the order of vanishing moments does not justify the additional
complexity of implementation and the additional memory usage. A more detailed discussion on the choice
of wavelets can be found in Section 7.4.

Overall, both the LGT5/3 and CDF9/7 wavelets appear to be a suitable choice for CFD simulations, as
they have vanishing moments, conserve mass, and are efficient to compute. However, one potential drawback
is the constraint on the size of the data grid, which must be a power of 2 plus 1. It is conceivable that this
could lead to an inefficient use of the hardware in practice, as most hardware is designed to work with
powers of 2. We did not find a way to circumvent this constraint while ensuring all the properties we stated
in Section 7.2.1. However, if we relieve the constraint of maintaining the boundary values constant, it is
possible to design biorthogonal wavelets that do not require the grid size to be a power of 2 plus 1. The next
section will present one such design, based on the Haar wavelets.

7.2.4 Lifted Haar Wavelets
We express our sincere thanks to Erwan Deriaz for his instrumental role in developing the wavelet design
featured in this section. The Haar wavelets, recognized for their simplicity, serve not only as a fundamental
tool for educational purposes but also demonstrate efficacy in practical applications. While the piecewise
constant Haar wavelets are limited to filtering polynomial trends at order 0 (constant), which insufficient for
appropriate data compression, we can enhance their capability by increasing their support. This section is
dedicated to outlining a DWT scheme based on Haar wavelets, with specific modifications to ensure mass
conservation and filtering of polynomial trends up to the second order.

We first modify the sampling points given in equation (7.1) to:

xJ,k = k2−J , 0 ≤ k < 2J , J ≥ 0. (7.26)

Contrary to the previous construction, the first and last points depend on the scale J :

xJ,0 = 2−J−1, xJ,2J−1 = 1− 2−J−1, J ≥ 0, (7.27)

which is why we cannot ensure constant boundary values anymore.
We propose the following construction to compute the coefficients at scale j − 1:

dj−1,k = aj,2k+1 − aj,2k, 0 ≤ k < 2j−1, j ≥ 1, (7.28)
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aj−1,k = aj,2k + 1
2dj−1,k, 0 ≤ k < 2j−1, j ≥ 1. (7.29)

It is close to the piecewise constant Haar construction, which does not allow to filter polynomial trends
greater than order 0 (constant), due the inability to use neighbor coefficients. It is, however, possible to
increase the filtering order by introducing a second lifting, this time on the detail coefficients:

d′j−1,k =


dj−1,0 + 3

4aj−1,0 − aj−1,1 + 1
4aj−1,2 if k = 0

dj−1,N−1 + 1
4aj−1,N−1 − aj−1,N−2 + 3

4aj−1,N−3 if k = N − 1
dj−1,k + 1

4 (aj−1,k−1 + aj−1,k+1) otherwise,
(7.30)

where N = 2j−1 (the number of coefficients at scale j − 1).
The matrix representation of this transform for j = 3 is:

A = 1
8



4 4 0 0 0 0 0 0
−5 11 −4 −4 1 1 0 0
0 0 4 4 0 0 0 0
1 1 −8 8 −1 −1 0 0
0 0 0 0 4 4 0 0
0 0 1 1 −8 8 −1 −1
0 0 0 0 0 0 4 4
0 0 3 3 −4 −4 −7 9


. (7.31)

and

A−1 = 1
8



11 5 1 −1 0 0 0 0
−4 4 0 0 0 0 0 0
−4 4 8 8 1 −1 3 −3
0 0 −4 4 0 0 0 0
1 −1 −1 1 8 8 −4 4
0 0 0 0 −4 4 0 0
0 0 0 0 −1 1 9 7
0 0 0 0 0 0 −4 4


. (7.32)

We can verify that polynomial trends are filtered out thanks to this construction by applying it to a
polynomial signal:


P (1)
P (2)
...

P (8)

 ·A =



5
2a+ 3

2b+ c
0

25
2 a+ 7

2b+ c
0

61
2 a+ 11

2 b+ c
0

113
2 a+ 15

2 b+ c
8a


, (7.33)

where P (x) = ax2 + bx+ c. We can see that all the polynomial trends are filtered out up to the second order
for all the detail coefficients (odd rows) appart from the last one, which only filters out the first order.

Thus, we have proposed three distinct wavelet designs, each with its own set of advantages and dis-
advantages. Excluding the initial and final coefficients, the CDF9/7 wavelets are capable of filtering out
polynomial trends up to the third order, lifted Haar wavelets up to the second order, and LGT5/3 wavelets
to the first order. The ability to filter higher-order polynomials should lead to higher compression ratios
for signals with a limited presence of high-frequency components, a topic we will delve into in the following
section. Additionally, the lifted Haar wavelets present a divergence in their design compared to the CDF9/7
and LGT5/3 wavelets. While the latter two require the grid size to be a power of 2 plus 1, ensuring boundary
preservation, lifted Haar wavelets operate with a grid size that is a strict power of 2 and do not maintain
boundary values. Nevertheless, all three wavelet designs uphold the principle of mass conservation, essential
for the accuracy of simulations. In the subsequent section, we aim to broaden the application of these three
wavelet designs to multi-dimensional data, proposing a comprehensive compression methodology built upon
these principles.
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7.3 Compression Scheme for multi-dimensional data

7.3.1 Multi-dimensional wavelet transform
The 1-dimensional wavelet transforms we presented are directly extendable to multi-dimensional data. The
idea is to apply the 1-dimensional wavelet transform to each line of the data independently for each dimension.
Let us showcase the 2-dimensional wavelet transform with the LGT5/3 wavelets. To have a visually appealing
representation of the 2-dimensional wavelet transform, let us modify the v vector of our LGT5/3 wavelet
transform (equation 7.8) as so:

v =



aj−1,0
aj−1,1

...
aj−1,2j−1

dj−1,0
dj−1,1

...
dj−1,2j−1−1


. (7.34)

This will group the approximation (low-pass) and detail (high-pass) coefficients on each side of the vector.

image

LL LH

HL HH

LL LH

HL HH
LH

HL HH

1st DWT 2nd DWT

Figure 7.3: Representation of the 2-dimensional wavelet transform. The L and H correspond to the low-pass
and high-pass filters on the corresponding axis.

Figure 7.3 shows the different parts of the 2-dimensional wavelet transform. The approximation coeffi-
cients are located in the upper-left corner of the image (LL), while the rest of the coefficients is divided into
the LH, HL, and HH parts, depending on the dimension and the type of filter. For instance, the LH part
corresponds to the low-pass filter on the x-axis and the high-pass filter on the y-axis. This representation is
possible because the 1-dimensional wavelet transform is commutative across dimensions, meaning that the
order in which we apply the wavelet transform to each dimension does not matter. In this view, only the LL
part is directly related to the original signal, while the other parts represent different types of details. It is
expected that most values in the details (LH, HL, HH) are small, which is the reason why the DWT should
be able to compress the data efficiently (more on this in Section 7.3.3).

Figure 7.4 shows the result of the application of 3 steps of the wavelet scheme to a 2-dimensional image.
We can recognize the original image in the approximation coefficients (upper-left corner of the image). We
can also recognize a sketchy version of the image in the different detail levels. In particular, we can see that
the outline of the cat is well distinguishable in the details. We can see that the sought property is reached:
the parts of the image that are near-linear result in small coefficients (very dark or very bright colors), while
the non-linear parts (outline) result in large coefficients.

This section has explained how the 1-dimensional wavelet transform can be extended to N dimensions.
The successive application of the DWTs is a bijection that should result in a near-sparse grid of coefficients.
To obtain compression, the DWT must be integrated in a compression scheme that allows to leverage the
sparsity of the coefficients. In the next section, we will introduce the notion of thresholding, which is a first
step towards achieving compression.
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(a) Original grayscale image. (b) Resulting grayscale image.

Figure 7.4: Transform of a 2-dimensional image (left) after the application of 3 steps of the wavelet scheme
(right) In the result (right), the approximation coefficients are located in the upper-left corner of the image.
The remaining coefficients represent details at different levels. Details colors are obtained with mod(x, 256),
where x is the detail value. The resulting color ranges from 0 (black) to 255 (white).

7.3.2 Thresholding
The idea of thresholding is to nullify the detail coefficients that are below a certain threshold. There are
multiple justifications to using this approach that we will discuss in this section. In this section, every
reference to a DWT will be in the context of the LGT5/3 wavelets. Discussions regarding the CDF9/7 and
lifted Haar wavelets will be presented in the next sections.

We explore two different scenarios as examples. The first scenario involves a function defined by the
equation below, which includes a discontinuity, making it particularly interesting for our study:

f(x, y) = ex−y sin(2π(x+ y))× step(y − x2),

where the step function is defined as:

step(x) =
{

1 if x ≥ 0,
2 if x < 0.

This function is shown in Figure 7.6a.
The second scenario involves data from a Saint-Venant (shallow water) simulation at time t = 1s, shown

in Figure 7.6d. The simulation starts with a 2-meter square of water in the center of a 1-meter deep pool.
More details about this simulation and its initial conditions will be provided in the next chapter (Section
8.3.1), along with Figures 8.7a, 8.7b, and 8.7d to illustrate the evolution over time. For our current discussion,
we consider the simulation data at t = 1s as a two-dimensional array representing the water height at each
grid point. The two grids are set to a size of 1025× 1025 points to match the requirements of our LGT5/3
wavelet scheme.

To discuss how the data are compressed, we analyze the histogram of the coefficients. Figures 7.5a and
7.5c show the histograms of the coefficients for the two scenarios. It provides insights into the distribution of
the coefficients and the potential for compression. If the distribution is uniform, the potential for compression
is low. If the distribution is skewed, the potential for compression is high.

Now let us introduce the histograms of the coefficients for the same scenarios, but after the application
of 3 steps of the wavelet scheme. Figures 7.6b and 7.6e show the grids of coefficients after the application of
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(a) (b)

(c) (d)

Figure 7.5: Intensity histograms of the coefficients for the two scenarios. The histograms are shown before
(left) and after (right) the application of 3 steps of the wavelet scheme. The x axis represents the intensity
of the coefficients, while the y axis represents the number of coefficients with the corresponding intensity.
The coefficients are grouped into 256 bins distributed uniformly between the minimum and maximum values
of the coefficients.
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3 steps of the wavelet scheme. Figures 7.5b and 7.5d show the corresponding histograms. We can see that
after the application of the wavelet scheme, the histograms become more skewed. In particular, most values
are concentrated around zero. Hence, the histograms suggest that the wavelet scheme has the potential to
compress the data efficiently.

A more definitive way to assess the potential for compression is to compute the entropy of the grids. The
entropy is a measure of the average information content of the data and is defined as:

H(X) = −
∑
i

p(xi) log2(p(xi)), (7.35)

where X is the random variable, p(xi) is the probability of the value xi, and the sum is over all possible
values of X. In practice, p(xi) is estimated from the frequency of the value xi in the data. Since we work
with floating-point numbers, there is one xi symbol per different floating-point number in the data. This
is likely to create artifacts. A more common approach is to group the floating-point values into bins and
compute the entropy of the resulting discrete distribution. The formula becomes:

H(X) = −
∑
b

p(binbmin ≤ X < binbmax) log2(p(binbmin ≤ X < binbmax)), (7.36)

where the sum is over all the bins, and binbmin and binbmax are the minimum and maximum values of the b-th
bin, respectively. X is the random variable representing the coefficients of the grid. The bins can be chosen
in different ways, but the most common approach is to use a uniform binning. For the following, we use 256
bins, which is coarse but sufficient for our purposes. We verified that increasing the number of bins changes
the entropy but not the conclusions.

The entropy of the grids provides a measure of the potential for compression. With grid cells assumed
to be independent, the source coding theorem sets a minimum on the bits needed for encoding:

Number of bits ≥ Entropy×Number of cells. (7.37)

Hence, there is a relationship between the entropy and the potential for compression. With 256 bins in use,
the highest entropy is log2(256) = 8 bits per cell. Let us note that in the case of data produced by successive
DWTs, grid cells are clearly not independent. Thus, a specific compression approach could achieve better
than this theoretical minimum by leveraging the spatial correlation between the cells.

Going back to the histograms, we can compute their correponding entropies thanks to formula 7.36. The
first image has an entropy of approximately 7.222 without the wavelet scheme and 1.291 after the application
of 3 steps of the wavelet scheme. The second image has an entropy of approximately 6.511 without the wavelet
scheme and 0.240 after the application of 3 steps of the wavelet scheme. Hence, applying the wavelet scheme,
which is bijective and does not result in a loss of information, has increased the compression potential of the
data. However, it is possible to further increase the compression ratio by allowing for a loss of information.

As we have stated in Section 7.2, the detail coefficients can be modified without affecting the mass of
the reconstructed signal. This provides leverage to achieve higher compression ratios. One can notice that
small details are responsible for a large part of the information content of the data, while having the least
impact on the reconstructed signal. The idea is then to nullify the small details to achieve compression. For
this we set a threshold and nullify the details that are below this threshold. What is expected is that for a
low threshold value, the increase in compression ratio and the loss are low, while for a high threshold value,
the increase in compression ratio is high, but the loss is also high. It is, hence, likely that there exists an
optimal threshold value that maximizes the compression ratio for a given acceptable loss.

There are multiple ways to implement this idea. The most straightforward way, known as hard thresh-
olding, is to set to zero all the details that are below the threshold. The rest of the coefficients are left
unchanged. Another way, known as soft thresholding, is to move all the details towards zero by a certain
amount (that can be assimilated to the threshold in hard thresholding). This second method avoids creating
a hole in the histogram, which can lead to artifacts in the reconstructed signal. However, both methods can
be used in practice.

It is also possible to set a different threshold depending on the scale of the details or on local properties
of the data. Applying the same threshold to all the details is referred to as global thresholding or VisuShrink.
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: The original functions (left), the functions after 3 steps of the wavelet scheme (center), and the
reconstructed functions (right). A hard threshold of 10−3 was used on the details before the reconstruction.

There exists several other approaches such as SureShrink, BayesShrink, and NeighShrink that set the thresh-
old depending on the local properties of the data [252, 89, 90, 66]. These methods often minimize a different
type of loss, such as the mean squared error or the mean absolute error [70]. However, we did not focus
on these methods in this study, with the idea that if our proofs of concept are successful, the thresholding
method can be refined in the future.

Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 7.22 1.29 1.29 −2.22e−16 −4.44e−16 3.55e−15

0.0001 7.22 1.29 0.47 6.00e−15 0 1.22e−4

0.001 7.22 1.29 0.35 6.44e−15 1.33e−15 1.36e−3

0.01 7.22 1.29 0.33 −2.55e−15 −1.24e−14 1.64e−2

0.1 7.22 1.29 0.28 6.44e−15 6.22e−15 2.01e−1

1.0 7.22 1.29 0.23 4.44e−15 −6.88e−15 9.17e−1

all 7.22 1.29 0.23 4.44e−15 −6.88e−15 7.41e−1

random 7.22 1.29 6.74 6.88e−15 −4.77e−15 7.56

Table 7.1: Entropy and mass deviation for different thresholding methods on the first function, LGT5/3
wavelets, and hard thresholding.
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Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 6.51 0.24 0.24 −2.22e−16 0 1.11e−15

0.0001 6.51 0.24 0.24 4.44e−16 4.44e−16 1.28e−4

0.001 6.51 0.24 0.23 4.44e−16 4.44e−16 1.11e−3

0.01 6.51 0.24 0.20 4.44e−16 4.44e−16 9.96e−3

0.1 6.51 0.24 0.20 4.44e−16 4.44e−16 1.76e−2

1.0 6.51 0.24 0.20 4.44e−16 4.44e−16 1.76e−2

all 6.51 0.24 0.20 4.44e−16 4.44e−16 1.76e−2

random 6.51 0.24 6.78 −3.33e−16 6.66e−16 7.98

Table 7.2: Entropy and mass deviation for different thresholding methods on the second function, LGT5/3
wavelets, and hard thresholding.

Tables 7.1 and 7.2 show the entropy and the loss for the LGT5/3 wavelets with hard thresholding. The
tables for the CDF9/7 and lifted Haar wavelets are shown in Appendix 11.3. The random row corresponds
to setting all the details to a random value following a normal distribution with no relation to the original
data. It is important to note that the random row does not correspond to an actual threshold, but rather
serves as an extreme case where the information of the details is completely lost.

The maximum error is computed as the maximum absolute difference between the original data and
the reconstructed data, while the average error is computed using two different methods. The first method
corresponds to the relative difference between the mass of the original data and the mass of the reconstructed
data:

Mass deviation =
∑
i,j freconstructed(xi, yj)∑

i,j f(xi, yj)
− 1. (7.38)

The second method is similar, but a weight of 1
2 is applied to the borders:

Mass deviation =
∑
i,j ωi,jfreconstructed(xi, yj)∑

i,j ωi,jf(xi, yj)
− 1, (7.39)

where ωi,j is a weight that is defined as:

ωi,j = pi · qj , (7.40)

pi =
{

1
2 if i = 0 or i = xmax,

1 otherwise,
(7.41)

qj =
{

1
2 if j = 0 or j = ymax,

1 otherwise,
(7.42)

where xmax and ymax are the maximum indices in the x and y directions, respectively. This second method
is used to verify that the mass conservation property, as formulated in equation 7.17, is respected. This
formulation is only valid for the LGT5/3 and CDF9/7 wavelets, as the lifted Haar wavelets are constructed
differently. In Appendix 11.3, we verify that the mass conservation property does not hold for the lifted
Haar wavelets with this formulation. Note that the corners use a weight of 1

4 , due to the fact that they are
shared by two borders.

Different conclusions can be drawn from the tables. The first function demonstrates the benefits of
performing the thresholding, as the entropy is reduced by a factor of approximately 4. The second function,
however, does not show the same benefits, as the entropy is not subsantially reduced. This is presumably
due to the highly smooth nature of the function, which is perfectly captured by the wavelet scheme. We can
see this from the fact that the entropy does not substantially change whether no thresholding is applied or
all the details are thresholding. The maximum error also remains relatively low, even when all the details
are thresholded.

All the computations are performed in double precision, the mantissa of which is 52 bits long (≈ 16
decimal digits). The relative error reamins of the order of machine precision, which indicates that mass
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conservation is achieved in practice. The slight deviations can reasonably be attributed to rounding errors.
The fact that, even with randomly set details, the mass deviation remains low further supports this claim.
Let us note that the rounding errors can be caused by the wavelet lifting scheme, which explains why even
no thresholding can lead to a small mass deviation.

In principle, the mass conservation for the LGT5/3 wavelets should be computed with regards to for-
mula 7.39. However, since the border values of the 1D wavelet transform remain unchanged, the formula 7.38
is equivalent to formula 7.39 . A proof of this is provided in Appendix 11.3.

Finally, the maximum error appears to be correlated with the threshold value. This is expected, as
the thresholding controls the amount of information that is lost. Setting an optimal threshold value is a
trade-off between the compression ratio and the loss. There are no generic methodological guidelines to set
the threshold value. In particular for our purposes, where the loss in one compression step can impact the
next simulation steps. However, we rely on the assumption that the threshold values can be set empirically
most of the time.

In summary, we have shown that the wavelet scheme can be combined with thresholding to achieve lower
entropy and presumably higher compression ratios. To achieve effective compression, the whole process must
be combined with a lossless compression method. In the next section, we will discuss about the practical
aspects of wavelet-based compression schemes.

7.3.3 Compression methodology

The application of wavelet transform coupled with thresholding has demonstrated its capacity to effectively
lower the entropy of data. Following the framework of Shannon, a reduction in entropy signifies a decrease
in information quantity, essential for achieving data compression. This section will explore the potential of
integrating the wavelet transform in a compression scheme, leveraging the reduced entropy to achieve high
compression ratios.

Since the entropy of the data has been reduced, simply using an existing entropy-based compression
algorithm, such as Huffman coding or arithmetic coding, would be sufficient to achieve compression. These
methods are generally not designed to handle floating-point numbers, but the DWTs and the thresholding
step have made the data more convenient to compress. Hence, we can directly use these methods on the
resulting data and expect high compression ratios.

After the thresholding step, the data are expected to be sparse, with most of the coefficients being zero.
This observation leads to the idea of using sparse storage formats instead of classical lossless compression
algorithms. Multiple sparse storage formats exist, such as the Compressed Sparse Row (CSR) format, the
Compressed Sparse Column (CSC) format, and the Coordinate (COO) format. These formats are designed
to store sparse matrices efficiently, and can be extended to store sparse tensors. It is important that these
sparse storage methods can constitute a compression method only because the thresholding step has made
the data sparse.

Wavelet type Original LGT5/3 CDF9/7 Haar
Thresholding function Hard Soft Hard Soft Hard Soft

Entropy 7.22 3.53e−1 3.53e−1 3.82e−1 3.81e−1 3.59e−1 3.58e−1

Max error 0 1.36e−3 4.20e−3 1.73e−3 5.08e−3 1.56e−3 6.08e−3

Sparsity 0% 96.8% 96.8% 96.1% 96.1% 96.7% 96.7%
Compresion ratio (COO) x0.76 x24.07 x24.07 x19.63 x19.63 x23.34 x23.34
Compresion ratio (zlib) x1.04 x29.95 x27.85 x24.46 x14.90 x28.62 x25.60
Compresion ratio (bz2) x1.04 x36.88 x34.72 x28.31 x21.99 x32.27 x30.17
Compresion ratio (lzma) x1.58 x42.79 x38.71 x31.62 x21.76 x34.76 x31.58

Table 7.3: Various metrics for the different compression methods after applying the DWT 3 times and
applying a threshold of 0.001 on the function 1. Each column corresponds to a different type of wavelet and
thresholding method. The first column corresponds to the original function. The best compression ratio for
a wavelet type and thresholding method is emphasized in bold.
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Wavelet type Original LGT5/3 CDF9/7 Haar
Thresholding function Hard Soft Hard Soft Hard Soft

Entropy 6.51 2.32e−1 2.28e−1 2.09e−1 2.08e−1 2.21e−1 2.16e−1

Max error 0 1.11e−3 2.71e−3 1.37e−3 2.16e−3 2.26e−3 2.67e−3

Sparsity 0% 97.9% 97.9% 98.2% 98.2% 98.1% 98.1%
Compresion ratio (COO) x0.76 x36.03 x36.03 x43.10 x43.10 x39.27 x39.27
Compresion ratio (zlib) x1.16 x47.34 x17.70 x57.15 x17.27 x51.96 x17.10
Compresion ratio (bz2) x1.15 x63.84 x29.74 x78.16 x31.36 x72.40 x30.78
Compresion ratio (lzma) x1.82 x77.12 x31.35 x95.00 x32.03 x85.86 x31.24

Table 7.4: Various metrics for the different compression methods after applying the DWT 3 times and
applying a threshold of 0.001 on the function 2. Each column corresponds to a different type of wavelet and
thresholding method. The first column corresponds to the original function. The best compression ratio for
a wavelet type and thresholding method is emphasized in bold.

Tables 7.3 and 7.4 present the compression ratios and the maximum error across various wavelet types
and thresholding techniques, leveraging four distinct lossless compression approaches: COO format, Deflate,
Burrows-Wheeler, and Lempel-Ziv-Markov chain algorithms. The latter 3 methods are run thanks to the
zlib, bzip2, and lzma libraries, respectively. The COO format is a sparse storage format that stores that
data as a list of tuples (i, j, v), where i and j are the indices of the non-zero values, and v is the value of the
non-zero value. For this experiment, we did not use actual COO storage, but computed the size according
to the number of non-zero values (assuming 64 bits for v and 2×10 bits for i and j). The Deflate algorithm,
on which zlib is based on, merges LZ77 with Huffman coding [311, 201]. The bzip2 implementation of the
Burrows-Wheeler transform alongside Huffman coding [292, 5]. Lastly, the LZMA algorithm, powered by
lzma, uses the Lempel-Ziv-Markov chain technique [216].

Regarding the entropy, this table lets us compare the achieved entropy reduction of all the wavelet types
and thresholding techniques. The LGT5/3 and lifted Haar wavelets have similar entropy reductions, while
the CDF9/7 wavelets appear to behave differently. The first function achieves less entropy reduction with the
CDF9/7 wavelets (compared to LGT5/3 and lifted Haar), while the second function achieves more entropy
reduction. This is explained by the clear discontinuity that is present in the first function that impacts more
details with the CDF9/7 wavelets, which have a larger support. The thresholding method (hard or soft)
does not appear to impact the entropy reduction significantly. However, using soft thresholding consistently
results in an increase of the maximum error. Hence, in the context of CFD simulations, where the error is
more important than the visual quality, hard thresholding should be preferred.

Finally, the compression ratios achieved in the different cases provide insights into the potential memory
gains that can be achieved in practice. The point of this study is not to compare the lossless compression
methods, but rather to show that they all achieve high compression ratios. It is also interesting to see that
the COO format, which is not a generic compression algorithm, appears to be competitive with the other
methods. This is because the sparsity of the data, which is the proportion of zero values, is particularly
high.

On the first function, the LGT5/3 wavelets appear to be more compressive than the CDF9/7 and lifted
Haar wavelets, while they are the least compressive on the second function. The second function demonstrate
the strength of the higher filtering order of the different wavelets. As it does not possess any clear disconti-
nuity, the best compression ratios are achieved with the CDF9/7 wavelets (third order filtering), followed by
the lifted Haar wavelets (second order filtering), and then the LGT5/3 wavelets (first order filtering). The
first function, however, demonstrates that the discontinuities are captured more efficiently by the LGT5/3
wavelets, as they achieve the best compression ratios.

Globally, the compression ratios achieved with hard thresholding are higher than those achieved with soft
thresholding. This is counter-intuitive, as soft thresholding appears to tend to achieve slightly higher entropy
reductions (which should lead to higher compression ratios). We believe that this is due to the floating-point
representation, which makes the near-zero region denser. Intuitively, two values above a given threshold are
more likely to be the same than two values below the threshold. Consequently hard thresholding appears to
be better for our purposes, as it consistently achieves higher compression ratios and lower maximum errors.

Overall, the compression ratios achieved thanks to this compression scheme are high, with minimal
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impact on the precision of the data. While various lossless compression algorithms could further compress
the output, this study focuses on showcasing the wavelet transform as an efficient compression tool for CFD
simulations. There is promising potential for the development of new lossless compression techniques tailored
for optimal performance in CFD simulations within this framework. In concluding this study, the ensuing
section will discuss the practical advantages and potential limitations of the proposed compression approach.

7.4 Discussions
The compression method discussed in this chapter shares its conceptual foundation with the JPEG2000
standard. Yet, our method diverges from this standard to better address the unique challenges of CFD
simulations. These challenges not only encompass the numerical properties outlined in Section 7.2.1 but also
the overall approach to compression, which can be tailored to match implementation-specific requirements.
Throughout this chapter, we have explored various wavelets and conducted targeted testing with the goal of
identifying the most effective strategies for practical application in CFD simulations.

In our evaluation, we focused on the maximum absolute error as a measure of loss, finding it to be
particularly suited for CFD simulations. Many numerical schemes in CFD guarantee a specific accuracy
level up to a certain error threshold. If the maximum error introduced by compression remains below this
threshold, the simulation is likely to retain its accuracy. This is in contrast to other metrics, such as the
mean squared error, which may overlook the significance of localized errors concentrated in small areas of
the simulation.

When comparing thresholding methods, hard thresholding demonstrated superior performance over soft
thresholding, delivering higher compression ratios and reduced maximum errors. Consequently, future dis-
cussions will concentrate on the application of hard thresholding. Additionally, our examination of various
wavelets revealed significant differences in their properties and impacts. The LGT5/3 and CDF9/7 wavelets
necessitate grid sizes that are either powers of 2 plus 1 or exact powers of 2, respectively. Given that most
computational hardware is optimized for grid sizes that are powers of 2, this requirement could notably
influence the efficiency of the wavelet compression scheme, in one way or another. Furthermore, in one-
dimensional cases, both LGT5/3 and CDF9/7 wavelets are designed to preserve edges, a feature that, when
applied in multi-dimensional simulations, means that edges (or faces in 3D) can be accessed with one fewer
DWT. Unfortunately, a similar property could not be achieved with lifted Haar wavelets, highlighting a
limitation in their design that could make them less efficient in future implementations that would leverage
this property.

The main difference between the LGT5/3 and CDF9/7 wavelets lies in their respective supports. The
CDF9/7 wavelets have a larger support and assure filtering up to the third order, a feature that the LGT5/3
wavelets, which guarantee filtering up to the first order, do not possess. However, this enhanced filtering
capability of the CDF9/7 does not necessarily translate into significantly improved compression ratios in
real-world applications. Moreover, the larger support of the CDF9/7 wavelets diminishes their efficiency
in capturing discontinuities. Given the prevalence of discontinuities in CFD data, this makes the LGT5/3
wavelets a more fitting choice for our purposes. However, it should be acknowledged that specific scenarios
could present optimal conditions for the CDF9/7 wavelets (or lifted Haar wavelets).

The significant advantage of adopting the wavelet compression approach lies in its ability to achieve
high compression ratios while having a minimal impact on the precision of the data. This is especially true
in three-dimensional simulations, where compression ratios are anticipated to increase cubically with the
grid size (per dimension), while a quadratic growth is expected for two-dimensional simulations. Therefore,
three-dimensional CFD simulations are expected to benefit from extremely high memory savings through
this compression method, offering a promising solution for managing the large volumes of data generated by
such simulations.

Nevertheless, the adoption of this compression method is not without its concerns, primarily due to the
potential adverse effects of loss introduced by thresholding. In the realm of CFD, evaluating the quality of
a simulation based solely on the error from a single compression cycle is inadequate. This is because the
cumulative effect of errors introduced by successive compression cycles can significantly impact subsequent
simulation steps, potentially leading to a detrimental feedback loop that undermines the integrity of the
entire simulation. Consequently, our method necessitates a careful investigation into identifying an optimal
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threshold value for a given simulation. Ideally, this value would as high as possible, given a constraint
imposed on the simulation accuracy.

Another aspect warranting careful consideration is the computational cost associated with the compres-
sion process. Specifically, for DWTs applied in a single dimension, a minimum of 2N memory accesses is
required, accommodating one read and one write operation for each coefficient. With successive applications
of DWTs, the initial DWT necessitates 2N memory accesses, followed by N accesses for the second DWT,
N/2 for the third, and so on, cumulatively leading to an asymptotic total of 4N memory accesses. When
DWTs are applied across multiple dimensions, this figure multiplies accordingly. For instance, in three-
dimensional applications, it is plausible for each coefficient to be accessed up to 12 times, representing a
considerable computational demand. While strategies to reduce the number of memory accesses in multidi-
mensional scenarios exist, they invariably complicate the data access pattern [260, 163]. This complexity can
adversely affect overall system performance, particularly in the context of GPU computing, where memory
access patterns are crucial for achieving optimal performance. Despite these challenges, the compelling com-
pression ratios achieved through this method justify its utilization, especially when the available memory is
significantly less than the demands of the simulation.

In the next chapter, we delve into the practical aspects of integrating wavelet compression into existing
CFD simulations. This chapter focuses on the numerical aspects of the integration, as well as practical
considerations for implementing the wavelet compression scheme on GPUs. The goal is to show that the
wavelet compression scheme is not only theoretically sound but also practically feasible, offering a viable
solution for managing the large volumes of data generated by CFD simulations.
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Chapter 8

Integrating wavelets into CFD
simulations

In the preceding chapter, the application of wavelets for compressing multi-dimensional data was examined.
It was observed that wavelets could achieve exceptionally high compression ratios with minimal impact on
the visual quality of the data. Additionally, careful design of the wavelet transform can ensure that the
mass-conservation property of the data is preserved, an important consideration in physical simulations.
However, the relationship between the visual quality of data and the accuracy of physical simulations is
not directly evident. This chapter aims to show that wavelet transforms can be utilized to CFD data while
minimally impacting the accuracy of simulations. The content and findings herein are based on the work
published at the CEMRACS 2022 edition [97].

As in the rest of this document, we consider the CFD data as a regular multi-dimensional grid of floating-
point values and associate a time step with a stencil operation. The goal of this work is to demonstrate how
the wavelet transform can be used in practice to compress CFD data. Even though the execution is not
distributed, we adopt the framework described in Section 3.3 to be able to extend the method to distributed
simulations in the future. We, hence, remain as general as possible to show that the principles of the method
are applicable to a wide range of CFD simulations.

We begin this study by providing implementation details of the compression algorithm and the simulation
framework in Section 8.1. We then perform a series of experiments on a simplistic 2D transport simulation
to evaluate the impact of the compression on the simulation in Section 8.2. Finally, in Section 8.3, we test
our method on a more realistic 2D Saint-Venant (shallow water) simulation to demonstrate the applicability
of the method to more complex simulations and evaluate the performance impact of the compression.

8.1 Description of the framework
The compression/decompression algorithms have been extensively discussed in the previous chapter. How-
ever, these algorithms alone do not provide a complete solution reaching effective memory gains. In this
section, we present the framework that we use to integrate the compression algorithm into a simulation, as
well as various technical details.

8.1.1 Workflow
To integrate the wavelet compression algorithm into a simulation, we define a framework that we describe
in this section. It is important to note that the used framework is designed for simplicity rather than
performance. The main goal of this work is to assess the numerical impact of the compression algorithm on
the simulation quality.

As we have done until now, we divide the simulation grid into subgrids. Each subgrid can be pro-
cessed individually and includes ghost cells that duplicate the values of the neighboring subgrids and require
synchronization between time steps.

121
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Figure 8.1: This schematic shows the synchronization process in 1 dimension. The logical space represents
the cells that require computation, while the ghost cells are used to store the values of the neighboring
subgrids. The ghost cells are updated by copying the corresponding values of the neighboring subgrids. One
value is shared between both subgrids and does not need to be updated. The yellow arrows show which
values are copied. In a real-case scenario, the data consist of floating-point values, rather than integers. In
multiple dimensions, the synchronization process is performed successively in each dimension.

In this work, the approach is slightly modified to account for the fact that the wavelet transform might not
be conservative at the boundaries of the space they are applied to. Section 7.3.2 discusses this concern and
shows that our LGT5/3 and CDF9/7 wavelet transforms are actually also conservative at the boundaries.
However, this was not clear at the time of the implementation. Hence, the edge values of the subgrids are
represented and computed twice, in a fashion depicted in Figure 8.1. On this figure, the value "3" is shared
between two subgrids and is never updated. The left subgrid is responsible for conserving half of its values,
while the right subgrid is responsible for conserving the other half (see equation 7.39), reaching a global
conservativeness of the scheme.
1 const directions = {(-1, 0) , (1, 0) , (0, -1), (0, 1) };
2
3 // Repeat until we reach tmax
4 for( float t=0;t<tmax;t+= dt) {
5 // For each subgrid
6 for (int i = 0; i < subgrids_number ; ++i) {
7 decompress ( subgrids [i], subgrids_compressed [i]); // Decompress the subgrid
8
9 // Write the ghost cells from all directions
10 for(int dir =0; dir <4; dir ++) {
11 float * target_interface = get_interface (i, directions [dir ]);
12 interface_to_subgrid <<<...>>>( subgrids [i], target_interface , directions [dir ]);
13 }
14
15 LBM_step ( subgrids [i], subgrid_buffer ); // Perform an LBM step
16 swap( subgrids [i], subgrid_buffer ); // subgrids [i] becomes the result and subgrid_buffer

is the new buffer
17
18 // Write the edge values
19 for(int dir =0; dir <4; dir ++) {
20 float * target_interface = get_interface (i, directions [dir ]);
21 subgrid_to_interface <<<...>>>( subgrids [i], target_interface , directions [dir ]);
22 }
23
24 compress ( subgrids [i], subgrids_compressed [i]); // Compress the subgrid
25 }
26 }

Code 8.1: Pseudo-code for running a simulation with the compression algorithm

Code 8.1 shows the overall process of the simulation. It relies on 3 main memory segments: the subgrids
(decompressed), the subgrids compressed, and the interfaces (masked by the use of get_interface). The
idea is go successively through each subgrid, decompress it, perform the LBM step, and compress it back. To
synchronize the subgrids, the subgrid_to_interface and interface_to_subgrid functions are interleaved
and store/retrieve the edge values of the subgrid in/from the interfaces. Note that the intermediate buffers
are necessary to store the state of the neighboring subgrids before the (lossy) compression. If the values
were taken from the neighbors after the compression (or decompression), the mass would not be conserved
anymore.

This approach has multiple flaws. One of them is that the use of the subgrids array is not necessary,
as the subgrids_compressed array could be used for "long-term" storage. Because of this, this algorithm
is unable to achieve effective compression, as the subgrids are stored in memory in an uncompressed form.
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However, this allows for a straightforward implementation of the algorithm and a clear demonstration of
the impact of the compression on the simulation quality. The next chapter is more focused on reaching
effective memory gains and includes an algorithm that is more elaborate and efficient. For the purpose of
the current chapter, it is acceptable to use a simple algorithm, as long as all the information of the simulation
is compressed once per time step. In the next section, we present the compression algorithms that we use in
our experiments.

8.1.2 Compression pipeline
We refer to Section 7.3.3 for a reminder of the general compression methodology we use in this work. Let
us simply recall that the compression pipeline consists of the following steps:

1. Perform the wavelet transform on the subgrid;

2. Apply a thresholding on the wavelet coefficients;

3. Perform a lossless compression on the resulting data.

These steps are applied independently on each "channel" of the data (conservative or kinetic variables in in
the CFD terminology). Hence, each variable is compressed independently.

In this section, the discussion is focused on two items. We begin by presenting the lossless compression
methods that we use in our experiments: the Compressed Sparse Row (CSR) format and the LZ4 compression
algorithm. We then discuss the implementation of the wavelet transform and the thresholding.

Lossless compression methods

The choice of the lossless compression method impacts both the compression ratio and the computational
cost of the compression. We consider two lossless compression methods: the Compressed Sparse Row (CSR)
format and the LZ4 compression algorithm. The first one, chosen for its simplicity, is a sparse matrix
representation that is well-suited for compressing sparse data. The second one, LZ4, is a fast and efficient
lossless compression algorithm that is widely used in data-intensive applications.

Sparse Matrix Representation The Compressed Sparse Row (CSR) format, also known as the Yale
format, is a widely used representation for sparse matrices. In this format, the non-zero elements of the
matrix are stored in 3 arrays. The first array, V , contains the non-zero elements of a m × n matrix. The
second array, COL, of the same size as V , contains the column indices of the non-zero elements. The third
array, ROW , of size m+ 1 contains the offset of the first non-zero element of each row. This representation
can be used as a lossless compression technique since we anticipate a large number of zero values in the
matrix. While the CSR format was not designed specifically for compression purposes, it is both well-known
and efficient. Additionally, its compressed size is proportional to the number of non-zero elements, making
it a consistent representation. With this compression method, the compression kernel is the dense-to-CSR
kernel, while the decompression kernel is the CSR-to-dense kernel.

LZ4 LZ4 is a widely used lossless compression algorithm known for its high compression ratios and fast pro-
cessing speeds on GPU. It has gained popularity due to its efficient CUDA implementation in the nvCOMP
library, which was developed by Nvidia [229]. LZ4 is a byte-oriented algorithm that is designed to be fast
and parallelizable. It was initially developed to perform well on CPUs and has since been optimized for use
on GPUs [250, 74]. The algorithm uses a block-based approach and compresses each block independently,
with a configurable chunk size. The chunk size determines the size of the input data that is processed at
once by the LZ4 algorithm. Usually, a larger chunk size implies a better compression ratio, but a slower
compression speed. LZ4 is commonly used in data-intensive applications such as scientific simulations and
big data analytics.

These two methods are used in our experiments to assess the impact of the lossless compression method.
Their working principles are very different. LZ4 is a general-purpose lossless compression algorithm that is
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designed to be fast and efficient, while the CSR format is a sparse matrix representation that is not specifically
designed for compression. In the context of this work, we use external libraries to perform the compression
and decompression. The LZ4 algorithm is used through the nvCOMP library, while the CSR format is
used through the cuSPARSE library. It is conceivable that the dense-to-CSR and/or CSR-to-dense kernels
from cuSPARSE are not well optimized because they are rarely part of the critical path of an application.
However, if our experiments show that the CSR format is competitive with LZ4 in terms of compression
ratio, we can consider implementing a custom CSR compression algorithm to improve the performance.

Regarding the wavelet transform and the thresholding, we need to provide a custom implementation, as
we designed a custom DWT scheme. In the next section, we present our idea for implementing an efficient
DWT on GPUs.

Optimized DWT on the GPU

In this section, we present challenges and solutions for implementing a 3D DWT on GPUs. This 3D DWT
can be modified to work on 2D data. We assume that the data are stored in a 3-dimensional array fi,j,k,
where i, j, and k are the indices along the x, y, and z axes, respectively. Performing the DWT on the y and
z axes is straightforward, as the lifting scheme can be performed directly on vectors of lines of the x axis.
On the x axis, however, a coalesced access leads to the values being stored on different threads because the
x dimension is contiguous in memory. A solution is to store each line (of the x axis) in the shared memory
of the block and then perform the DWT within the shared memory. With this method, one read and one
write need to be performed per coefficient in the global memory for the x axis, which is optimal. Code 8.2
shows the pseudo-code of the DWT on the x axis.
1 template <bool compress >
2 // subgrid is the input and output grid , compression_level is the number of wavelet transforms to

perform
3 __global__ void wavelet_x ( float *subgrid , int compression_level )
4 {
5 // Shared memory for storing the line
6 __shared__ float line[ MAX_LINE_SIZE ];
7
8 for (int yl = blockIdx .x; yl < grid_size_y_logical ; yl += gridDim .x)
9 {
10 int xl = threadIdx .x;
11
12 // True x and y (xl and yl are the logical coordinates )
13 int xt = xl + grid. overlap [0];
14 int yt = yl + grid. overlap [1];
15
16 if(xl < grid_size_x_logical )
17 {
18 // Load line from global memory
19 line[xl] = subgrid [yt * grid_size_x_true + xt ];
20 }
21
22 // Wait for all threads to load the line
23 __syncthreads ();
24
25 // wavelet transform
26 wavelet_x_on_line <compress >( line , compression_level );
27
28 __syncthreads ();
29
30 if(xl < grid_size_x_logical )
31 {
32 // Write the result to the global memory
33 subgrid [yt * grid_size_x_true + xt] = line[xl ];
34 }
35 }
36 }

Code 8.2: Pseudo-code of the DWT on the x axis.

The thresholding can be performed at the last step of the DWT on the x axis: if the detail is below a
certain threshold, it is written as a zero in the global memory.

These kernels, although simple, are efficient enough for our purpose and the global memory is accessed
in a coalesced way. We are aware that multi-dimensional DWTs can theoretically make better data reuse by
merging the computations of the different axes, but it is not clear whether it is possible to achieve effective
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gains on GPUs, due to the less regular memory access pattern. This is an interesting subject for future
research that would aim to improve the performance of our compression method.

Now that we have described the compression algorithm, as well as the workflow of the simulation, we
can run different experiments to assess the impact of the compression on the simulation quality. In the next
sections, we present the results of these experiments.

8.2 Evaluating the method on a simple 2D transport simulation

8.2.1 Description of the scheme

(a) t=0s (b) t=0.5s

Figure 8.2: This figure shows the initial state of the simulation (left) and the exact solution of the simulation
at t=0.5s for α = 0.9 and β = 0.9 (right). The original structure is displaced with a speed of (α, β). The
color represents the value of the function.

The first tested simulation is a 2D simplistic computation of the displacement of an arbitrary structure given
by the following rules: {

f_init(x, y) = 1 + e−30(x2+y2)

f(x, y, t) = f_init(x− αt, y − βt),
(8.1)

where f_init is the initial state of the simulation, f is the exact solution of the simulation, and α and β
are the speeds of the displacement along the x and y axes, respectively. Figure 8.2a shows f_init at t=0s.
Figure 8.2b shows the exact solution at t=0.5s for α = 0.9 and β = 0.9. To design a scheme whose exact
solution is the displacement of the structure, we use a Finite Volume (FV) approach.

The objective is to solve numerically the following system of conservation laws:

∂tW +∇ ·
(
W

(
α
β

))
= 0, (8.2)

s where the unknownW is a vector of m conservative variables (here, m = 1) depending of the space variable
X = (x, y) and the time variable t. As always throughout this work, we assume that X is in the square
]0, L[×]0, L[, but more complex shapes are possible.

For a given two-dimensional vector N = (Nx, Ny), we define the flux of the system of conservation laws
by

Q(W,N) = W (αNx + βNy), (8.3)
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with the four possible directions:

N0 =
(

1
0

)
, N1 =

(
−1
0

)
, N2 =

(
0
1

)
, N3 =

(
0
−1

)
. (8.4)

In this way:
Q(W,N0) = Qx(W ), Q(W,N1) = −Qx(W ),
Q(W,N2) = Qy(W ), Q(W,N3) = −Qy(W ).

To achieve the goal of having the initial structure displaced at a constant speed (α, β), we use the standard
upwind flux:

Q(WL,WR, N) = WL max(αNx + βNy, 0) +WR min(αNx + βNy, 0). (8.5)
The system of conservation laws (8.2) is then approximated by the following FV scheme, which allows

computing the value at time step n+ 1 from that of the time step n

Wn+1
i,j = Wn

i,j −
τ

∆x

3∑
k=0

Q(Wi,j ,Wi′,j′ , N
k), with

(
i′

j′

)
=
(
i
j

)
+Nk, (8.6)

where τ is the time step and ∆x is the space step. In this formula, the numerical flux Q(W,W ′, N) ap-
proximates the flux Q(W,N) at the interface between two cells. The numerical flux has to satisfy some
mathematical property in order to ensure a stable and accurate approximation. It is out of the scope of this
work to discuss this aspect. We refer (for instance) to [93, 157].

This scheme can be implemented as follows:
1 for(int i = 1; i < n_x - 1; i++) {
2 for(int j = 1; j < n_y - 1; j++) {
3 W_next [i][j] = W_now [i][j];
4 for(int dir = 0; dir < 4; dir ++) {
5 W_next [i][j] -= tau/dx * fluxnum ( W_now [i][j],
6 W_now [i+N[dir ][0]][ j+N[dir ][1]] ,
7 N[dir ]);
8 }
9 }
10 }

Code 8.3: Pseudo-code of the transport kernel.

Where fluxnum is a function implementing the numerical flux and N is the array of the normal vectors of
the cells defined in (8.4).

Note that indices i=0, j=0, i=nx-1, and j=ny-1 can be omitted as they are part of the ghost cells and
will be overwritten by the neighboring subgrids during the synchronization phase. If a single grid is used, a
modulo operation can be used to handle the edge cells. We recognize the algorithmic structure of a stencil
operation, where the stencil consists of the 4 neighboring cells and the cell itself.

8.2.2 Methodology
In this section, we present the methodology used for the experiments, as well as various technical details.

The 2D scheme is applied on each z-slice of the grid, resulting in a 3D simulation. The reason for this
choice is to have a simple simulation that can be easily visualized in 2D, while still being processed in 3D. The
values are, therefore, constant across the z-axis. Hence, to avoid unfair comparisons, the wavelet transform
is only applied on the x and y axes.

The simulation domain is discretized into a 128×128×128 grid, divided into 2×2×2 subgrids of (logical)
size 65 × 65 × 65. The logical size is the size of the subgrids that are processed for the LBM simulation
and does not include the ghost cells. The bordering values of the logical space are shared between multiple
subgrids. In Figure 8.1, the shared value is the cell "3". As these values are not synchronized, the same
computation must be performed once per subgrid. The reason for introducing this overlap is to keep the
mass-conservation property at the scale of the global grid (as explained in Section 8.1).

The benchmark program has been written in CUDA and compiled with the nvcc compiler and the -O3
-use_fast_math flags. We run the program on an NVIDIA Tesla V100 GPU with 16GB of memory.

We refer to the following program parameters:
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• the number of performed wavelet transforms (i.e. the compression level);

• the threshold value (value below which the coefficients are set to zero);

• the used lossless compression (LZ4 or CSR);

• in the case of LZ4, the chosen chunk size. A lower chunk size leads to a lower compression rate, but a
higher compression speed;

• the (scheme-wise) simulation time (related to the number of time steps and the grid size).

We set two measures of interest: the effective compression ratio and the quality of the simulation. The
effective compression ratio is the initial data size divided by the data size after the compression. The quality
of the simulation is measured by comparing the results of the simulation with the exact solution. It is
measured with the L2 error against the exact solution at a given time step with the formula:

L2_error = SizeX × SizeY × SizeZ
NX ×NY ×NZ

×
NX−1∑
i=0

NY−1∑
j=0

NZ−1∑
k=0

(f_sim(i, j, k)− f_exact(i, j, k))2. (8.7)

The central aim of this research is to assess the impact of various parameters on both the compression
ratio and the quality of the simulation. Section 8.2.3 details the compression ratios achieved at each time
step throughout the simulation process. Following this, Section 8.2.4 explores how different threshold values
influence the overall compression ratio. Finally, in Section 8.2.5, the simulation quality under varying
compression parameters is evaluated, providing a comprehensive analysis of how these factors interplay to
affect the outcomes of the simulation.

8.2.3 Compression ratio during the simulation
In this section, we show the compression ratios during the simulation with different lossless compression
methods. The tested compression methods include CSR (Figure 8.3a), LZ4 with a chunk size of 64 KB
(Figure 8.3b), LZ4 with a chunk size of 256 KB (Figure 8.3c), and LZ4 with a chunk size of 1 MB (Figure
8.3d). A threshold value of 0.01 is used, and α = 0.9, β = 0.9, CFL = 0.45 are chosen for the numerical
simulation. The compression ratio, which is defined as the size of the uncompressed data divided by the
size of the compressed data, is not constant during the simulation and tends to increase as the simulation
progresses. This trend becomes more pronounced as the compression level increases, indicating that the data
become more easily compressible as the simulation progresses. This is likely because each time step allows
for removing more and more details from the simulation. An expected observation is that the compression
ratio tends to increase with the compression level. Compression levels 5 and 6 are an exception to this trend
but we can reasonably exclude them from the analysis, as they have too few sampling points to perform a
reasonable DWT.

There are substantial differences between the CSR and the LZ4 compression methods. The CSR method
produces smooth compression ratios over the simulation, while the LZ4 method produces more erratic com-
pression ratios. For the CSR method, this is explained by the fact that the compression ratio is directly
dependent on the number of non-zero values which have no reason to brutally change from one time step
to another. For the LZ4 method, this is likely due to an inner mechanism of the LZ4 algorithm that makes
it underperform in some time steps. The obtained compression ratios are comparable for the CSR method
and the LZ4 method with a chunk size of 64 KB. However, the LZ4 method with chunk sizes of 256 KB and
1 MB both outperform the CSR method.

In terms of compression ratio, LZ4 with a chunk size of 1 MB is the best method. The CSR format is
not designed to be a compression method. It is, therefore, not surprising that it can be outperformed. On
the other hand, having a larger chunk size typically leads to increased compression ratios but at the cost of
increased computation time. Finding the right balance between compression ratio and computation time is
a challenge that we will address in the future.
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(a) CSR (b) LZ4, chunk = 64KB

(c) LZ4, chunk = 256KB (d) LZ4, chunk = 1MB

Figure 8.3: This figure shows the compression ratios at each time step of the simulation with different lossless
compression methods. The different curves (compression levels) represent the number of performed wavelet
transforms.
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8.2.4 Impact of the threshold value on the compression ratio

(a) CSR (b) LZ4, chunk = 64KB

(c) LZ4, chunk = 256KB (d) LZ4, chunk = 1MB

Figure 8.4: This figure shows the average compression ratio for different threshold values and lossless com-
pression methods. The compression level is the number of performed wavelet transforms.

In this section, we aim to determine the impact of the threshold value on the compression ratio. We keep
the previous simulation parameters: α = 0.9, β = 0.9, and CFL = 0.45. We test the following threshold
values: 0, 0.0025, 0.005, 0.01, 0.02, and 0.04. We show the results for 4 lossless compression methods: CSR
(Figure 8.4a), LZ4 with a chunk size of 64 KB (Figure 8.4b), LZ4 with a chunk size of 256 KB (Figure 8.4c),
and LZ4 with a chunk size of 1 MB (Figure 8.4d).

We observe that as the threshold value increases, the compression ratio generally increases as well.
This trend is more pronounced at higher compression levels. At compression level 1, the compression ratio
remains constant across non-zero threshold values, whereas at compression level 4, the compression ratio
always increases with increasing threshold value. Additionally, we note that, up to compression level 4,
the compression ratio tends to increase as the compression level increases. The four compression methods
exhibit similar trends, although they differ in scale. CSR and LZ4 with a chunk size of 64 KB show similar
performance, while LZ4 with a chunk size of 256 KB and 1 MB outperform the other two methods. With
the 1 MB chunk size, the average effective compression ratio always reaches more than 100x if the threshold
value and the compression level are greater than or equal to 0.0025 and 2, respectively.
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We find that setting a non-null threshold value is crucial for achieving a high compression ratio. Fur-
thermore, the first three compression levels have the most significant impact on the compression ratio in our
case. We also note that while LZ4 compression without thresholding can already achieve a high compression
ratio, the compression ratio significantly improves as the threshold value increases from 0 to 0.0025. This
outcome is expected for CSR compression, where the compression ratio is directly related to the number of
non-zero values. For LZ4 compression, thresholding the data increases the frequency of the "zero" symbol,
resulting in a higher compression ratio. Nonetheless, LZ4 can still achieve a high compression ratio even
without thresholding the data, with the compression ratio being greater than 2x for all chunk sizes. The 256
KB chunk size achieves an average compression rate of nearly 9x, while the 1 MB chunk size nearly achieves
a compression rate of more than 25x, both with no pre-processing (i.e., threshold value and compression
level of 0).

8.2.5 Quality of the simulation

Figure 8.5: L2 error (formula 8.7) for different threshold values at compression level 4 and t=0.5s, with
α = 0.9, β = 0.9, and CFL = 0.45.

The accuracy of the simulation is evaluated by comparing it with the exact solution. To measure the error,
we use the L2 norm, which is calculated at the end of the simulation when the time is 0.5 seconds. We plot
the global L2 error depending on different threshold values (Figure 8.5), and the results show that the error
tends to increase as the threshold value increases. This is expected, as the thresholding phase introduces an
error in the signal reconstruction. This increase is slow for threshold values below 0.02. For higher values
the L2 increases faster. This indicates that the compression error is negligible, compared to the numerical
scheme errors, for threshold values below 0.02.
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(a) threshold=0 (b) threshold=0.01

(c) threshold=0.02 (d) threshold=0.05

Figure 8.6: Distribution of the error over the domain at t = 0.5s and with a compression level of 4 for
different threshold values.
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We also plot the difference between the simulation result and the exact solution for each point in the
domain in (Figure 8.6). This plot confirms the above interpretation: the compression error starts to dominate
the scheme error for a threshold greater than 0.02.

It is clear that the adequate threshold value will vary depending on the specific application. This is a
real difficulty of the approach. However, one of the advantages is that the induced error can be controlled by
the user through the threshold value. This study shows that our lossy compression approach can be tuned
to have little impact on the simulation results.

8.3 Application to Saint-Venant equations
In this section, we use a more realistic simulation to evaluate the impact of the compression pipeline on
a computationally intensive simulation. It is important to note that the compression and decompression
kernels presented in this study are not intended to reach the highest level of optimization. Rather, the
purpose of evaluating the computational cost is to provide a reference point for the reader and to give an
estimate of the potential impact of our method on a real simulation. As such, the results should be considered
as an indicative measure of the performance and not as an absolute representation of the optimization level
achievable with further fine-tuning.

8.3.1 Description of the scheme
To evaluate the computational cost of the compression pipeline on a more computationally intensive sim-
ulation, we use a Godunov scheme to solve a shallow water model. The shallow water model is defined
by

W =

 h
hu
hv

 , Q(W,N) =

 h(uNx + vNy)
hu(uNx + vNy) + 1

2gh
2Nx

hv(uNx + vNy) + 1
2gh

2Ny

 , (8.8)

where h is the water level, (u, v) the horizontal velocity vector and g = 9.81m/s2 the gravitational accelera-
tion.

The velocity set is defined by

N0 =
(

1
0

)
, N1 =

(
−1
0

)
, N2 =

(
0
1

)
, N3 =

(
0
−1

)
. (8.9)

In the following simulations, we use the Godunov numerical flux, based on exact Riemann solvers (we
refer, for instance, to [157] for the details). At t = 0, there is a 0.5-meter square where the water level is
h = 2 meters high and the rest of the domain is at h = 1 meter (Figure 8.7a). We run the simulation on a
1025x1025 grid and perform 30390 time steps, which correspond to a simulation time of 10 seconds.

8.3.2 Computational cost
We use a compression level (number of DWTs) of 6 and a threshold value of 10−5. We only show the results
for the CSR lossless compression because the LZ4 compression provided poor compression ratios due to
the method we used to implement fast wavelets (more details on this in the following). The lossless CSR
compression is implemented using the cuSPARSE library.

Table 8.1 displays execution times of various kernels used for the Godunov simulation. Rows in the
table indicate the total time spent in a kernel. The total GPU time row displays the total GPU com-
putation time. The time_step row represents the execution time of a time step. The wav_... kernels
correspond to the DWT kernels which include wavelet compression and decompression operations along
the X and Y axes. The wav_y kernels are split into two parts and perform only one step of the DWT.
The wav_x kernels perform the entire DWT along the X-axis in one kernel. The dense_to_csr and
csr_to_dense kernels refer to the conversion between dense and compressed sparse row representations.
The cusparseParseDenseByRows_kernel is an internal cuSPARSE kernel, and the remaining internal cuS-
PARSE kernels are grouped in the other_cusparse_kernels row. Finally, the overhead row shows the
overhead percentage introduced by the compression method.
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(a) t=0s, original (b) t=0.5s, original (c) t=0.5s, degraded

(d) t=1s, original (e) t=1s, degraded

Figure 8.7: These plots show the results of the simulation with no compression (original) and with the DWT
(degraded, double precision). The threshold value is 10−5.

Kernel Execution time (s)
no compression only wavelets wavelets + CSR
single double single double single double

total GPU time 19.6138 125.281 51.5696 168.010 64.5597 188.879
time_step 19.6138 125.281 19.6739 126.217 19.6581 126.439
wav_x_compress ∅ ∅ 4.08561 5.39602 4.09886 5.39384
wav_step_y_compress_samples ∅ ∅ 5.24588 7.50239 5.25510 7.50315
wav_step_y_compress_details ∅ ∅ 6.66140 8.09396 6.67206 8.09803
wav_x_decompress ∅ ∅ 3.47536 4.85359 3.48760 4.84650
wav_step_y_decompress_samples ∅ ∅ 7.23108 8.42857 7.37205 8.55370
wav_step_y_decompress_details ∅ ∅ 5.19632 7.51815 5.21071 7.55852
dense_to_csr ∅ ∅ ∅ ∅ 10.9194 11.8537
csr_to_dense ∅ ∅ ∅ ∅ 0.51037 0.52552
cusparseParseDenseByRows_kernel ∅ ∅ ∅ ∅ 0.12544 6.32183
other_cusparse_kernels ∅ ∅ ∅ ∅ 1.25000 1.785477
overhead 0% 0% +162.12% +33.11% +228.41% +49.38%

Table 8.1: Execution times of the different kernels for the Godunov simulation in single and double precision.
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LZ4 compression was not tested on this simulation because it provides poor compression ratios. This
is because the optimized DWT kernels used in this study are different from the ones used in the previous
sections, where samples are grouped in a corner of the matrix and the details are stored in the remaining
cells. This is convenient for the LZ4 compression because the details tend to be contiguous in memory,
leading to a higher chance of finding matches in this area. In the optimized DWT kernels, samples are
distributed evenly in the matrix and the details are stored in the remaining cells, which makes it harder for
the LZ4 compression to find matches.

We measured 4.652 TFLOPS/s for the single precision simulation and 728.227 GFLOPS/s for the dou-
ble precision simulation by accessing the performance counters. The peak performance of the V100 GPU
according to the NVIDIA specification is 14 TFLOPS/s for single precision and 7 TFLOPS/s for double
precision. The observed gap between our measured values and the peak performance specified by NVIDIA
can be explained by the fact that some optimizations, such as the flush-to-zero, do not appear in the double
precision version. This could be due to the compute capability of the V100 GPU not supporting these
types of optimizations in double precision. We verified that the single precision version without the math
optimizations has a ratio of approximately 2:1 compared to the double precision version.

The compression pipeline demonstrates impressive compression rates, with an average compression rate
of x31.8 for the single precision simulation and x42.6 for the double precision simulation. The overhead
introduced by the compression pipeline is 228.41% for the single precision simulation and 49.38% for the
double precision simulation. The overhead introduced by the compression kernels is currently a bottleneck,
particularly for the single precision simulation. However, the double precision simulation shows that the
compression pipeline can be relevant, with a 50% overhead, which is acceptable given the extremely high
compression ratio of more than x40. It is noteworthy that the overhead could be reduced significantly by
investing efforts in optimizing the compression kernels. Our model suggests that the compression ratio can
be even higher in a 3D case, with an expected ratio of around 160 for the single precision simulation and
250 for the double precision simulation.

The quality of the result can be evaluated by comparing the original uncompressed results to those ob-
tained through DWT compression/decompression at each time step, as illustrated in Figure 8.7. While minor
details may be lost in the compressed version, the general structure remains intact. The level of compression
can be fine-tuned by adjusting the threshold value, but finding the optimal value can be challenging due to
the artifacts introduced during detail thresholding and subsequent compression.

Despite the current overhead, our preliminary results are highly encouraging, as they showcase the
potential of our compression pipeline for large-scale simulations. Future work will focus on further optimizing
the compression kernels and exploring methods for decompressing only a limited number of subgrids at once,
allowing for the surpassing of GPU memory limitations.

8.4 Discussions
This chapter explored using the discrete wavelet transform for high compression ratios in numerical sim-
ulations on regular grids. The algorithm allows a controlled loss of information while keeping the total
mass consistent in the simulation. Experiments showed that for a 1025x1025 grid, two-dimensional compres-
sion could achieve a ratio of about 200x on a basic transport equation. For simulations using the shallow
water equations, the compression ratio reached more than 40x, indicating the potential of the method for
larger-scale simulations on GPUs. Expectations are that compression ratios will be higher in 3D simulations
because they tend to increase with the number of dimensions.

The main challenge is the lossy nature of this compression. The study demonstrated that a minimal loss
of information is needed for high compression ratios, controlled by an adjustable threshold. It is likely that
most numerical schemes can tolerate a small threshold without significantly affecting the results, considering
the inherent numerical errors in these schemes.

The study also found that the compression/decompression process slows down a double precision shallow-
water simulation by less than 50%. This slowdown is the only additional cost of the method, which sig-
nificantly reduces memory needs. However, to achieve real memory savings, only a few subgrids should be
decompressed at a time, requiring a change in the current synchronization mechanism. The high compression
ratios suggest that consequent memory savings are possible with this method.
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This study focuses on situations where memory is limited. When the memory needed for a simulation
exceeds the total memory of the system, the usefulness of a compression method lies in its balance between
compression ratio and overhead. In cases where the required memory exceeds the available memory by a large
margin, our method appears to achieve satisfactory trade-offs. Additionally, the overhead can be significantly
lowered by optimizing the workflow, for example, by doing multiple time steps before compressing the
subgrids back to global memory. This approach relates to temporal blocking, discussed in Section 3.4.

In summary, the method is an excellent option when the required memory far exceeds what is available.
For situations where the memory gap is smaller, lighter methods may be preferred. Optimizing the compres-
sion kernels to lessen the overhead is possible, even if it means a lower compression ratio. This could involve
fewer DWTs and making use of shared memory, which is faster but limited in size. The next chapter will
look into a lighter compression method based on these principles, aiming for faster execution times with a
focus on compression throughput.
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Chapter 9

Designing a High-Performance
Compression Scheme for CFD
Simulations

This chapter is based on a reasearch article we have submitted to the International Journal for Numerical
Methods in Fluids. In the preceding chapter, we have successfully designed a wavelet-based compression
scheme for CFD data, focusing on the numerical aspects of the method. This previous work provided a
practical implementation of the wavelet design we have proposed in Chapter 7 and demonstrated that it
could be used to compress CFD data. The achieved compression ratios were very high, especially for a 2D
simulation that is supposedly less compressible than a 3D simulation (the DWT is assumed to compress
exponentially with the number of dimensions).

Achieving high compression ratios can always be an end in itself, if we consider that the required memory
is by far the most important bottleneck of a simulation. However, it is more reasonable to consider the
trade-off between the compression ratio and the compression overhead. This allows for a wide range of
compression methodologies, ranging from rapid, but less compressive, to slower, but more compressive. We
believe that the compression ratios achieved thanks to the DWT are high enough to make our approach
competitive even against more rapid (and less compressive) compression methods. Hence, in this final work,
we focus on providing a high-throughput compression scheme, based on the principles we have seen so far.
The goal is to demonstrate that it is possible to base a high-performance compression scheme on the DWT,
which goes against the common belief that the DWT is too slow for real-time applications (see Section 2.2.3).

9.1 Introduction
We recall that we consider fluid data to be regular grids of scalar values, which are updated at each time
step. As we have seen several times, a downside of using regular grids is that the required memory increases
tremendously with the grid size. Different methods exist to address this problem, as we have seen in
Chapter 2. We choose to use explicit compression methods for reasons we detailed in the latter chapter.

The adoption of compression in numerical simulations is generally driven by two main needs: overcoming
the memory capacity constraints of the hardware and accelerating simulations by utilizing computational
resources more efficiently. Figure 9.1, illustrates the various levels of memories within the context of GPU
programming and their typical bandwidths. Visualizing the memory setup in this manner helps to understand
the different possible bottleneck scenarios. If the bottleneck of an application is the shared memory accesses
(7514 GB/s on the figure), then little can be done to improve the performance, appart from using another
less memory-bound algorithm. If the bottleneck is the global memory accesses (732 GB/s on the figure),
then it is conceivable to expect gains by making better use of the shared memory. Finally, if the bottleneck
is the CPU-GPU memory transfers (26 GB/s on the figure), then it is possible to expect gains by reducing
the amount of data transferred between the CPU and the GPU. This latter case is the focus of our work.
We can see that the CPU-GPU throughput is extremely low compared to the inner GPU bandwidths,

137



138CHAPTER 9. DESIGNING A HIGH-PERFORMANCE COMPRESSION SCHEME FOR CFD SIMULATIONS

RAM
global memory

shared mem

core core ...

shared mem

core core ... ...

host GPU device

26 GB/s

732 GB/s

7514 GB/sCPU

Figure 9.1: Schematic representation of the memory setup of a GPU. The provided throughputs have been
measured with gpumembench [136] and nvbandwidth [198] on a P100 GPU. They are only indicative and
can vary depending on the used hardware/software. The bandwidth of the memory transfers between the
host and the GPU device is significantly lower that what can be achieved within the GPU. The main GPU
memory (DRAM) is slower than the shared memory (SRAM), but has a much larger capacity and can be
accessed by all the GPU cores. The shared memory is a block-level memory and can only be accessed by
the cores of the same block.

bringing the performance of the GPU to a halt if the data does not fit in the GPU memory. Hence,
introducing a compression methodology that allows for the simulation of larger grids on the GPU without
too much overhead will lead to an undeniable performance improvement. As such, we are satisfied if the
compression/decompression throughput is higher than the CPU-GPU throughput.

The work presented in the previous chapter focused on demonstrating the feasibility of using a lossy
wavelets compression to accurately simulate fluid dynamics. It has showed that the approach is relevant for
CFD simulations, but did not provide a satisfactory on-the-fly implementation of the compression scheme.
The idea of this new work is to provide a high-throughput implementation of the wavelet-based compression
scheme, which can be used in real-time simulations. The goal is to demonstrate that the DWT can be used
in a high-performance context.

In this study, we explain our compression method, discuss why certain design choices were made, and
assess its performance. Our tests demonstrate that our method allows for the simulation of grids that
would not fit in the GPU memory without compression. We also provide insights into the impact of the
compression on the overall simulation time. Depending on the configuration, we can expect the overall
scheme to be between 2 and 3 times slower (although this measure can be disputed in cases where the
scheme could not be run without compression). Given the significant reduction in memory requirements,
this trade-off is acceptable in many scenarios, especially in cases where CPU-GPU transfers of the whole
data are required to fit the simulation in the GPU memory. Overall, our method is a promising solution to
improve the memory efficiency of large-scale CFD simulations.

In Section 9.2, we begin by describing the compression scheme, focusing on obtaining high-performance on
GPUs. We then propose a methodology for reaching effective memory savings in CFD simulations. Building
on this, we present the results of our experiments in Section 9.3, where we evaluate the performance of the
compression scheme in a large-scale D3Q27 LBM simulation. Finally, we conclude with a discussion of the
results and potential future work in Section 9.4.
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9.2 Description of the Compression Scheme
This section provides details on our compression method. We first describe the compression scheme, focusing
on the wavelet-based approach in Section 9.2.1. Then we explain how the method is integrated into a CFD
simulation in Section 9.2.2.

9.2.1 Compression Scheme
In our novel approach, we propose to perform smaller local DWTs on the data and leverage the shared
memory of the GPU to store the data. As the shared memory is significantly faster than the global memory,
we expect this approach to yield substantial performance improvements. The shared memory differs from
global memory in different aspects. It is block-level memory with limited capacity (usually in the order of
tens of kilobytes per block) and is accessible only by cores within the same block. Shared memory is also
divided into several regions (banks) that can be accessed simultaneously by threads of a same warp (set of 32
threads). While exact coalesced access patterns are unnecessary, shared memory is prone to bank conflicts
when multiple threads access the same bank simultaneously, leading to potential slowdowns due to serialized
access. To leverage shared memory effectively, our parallelization strategy is designed to circumvent bank
conflicts and optimize memory throughput.

Our algorithm divides the global grid into smaller blocks, each sized to fit within the capacity limitations
of shared memory. Each CUDA block transfers data from global to shared memory, executes the DWT
in-place within shared memory, and writes the compressed results back to global memory. The chosen block
size is 33 × 17 × 17, consuming approximately 37.25 KB of shared memory for single-precision data, which
is within the capacity of most modern GPUs. The block sizes are intentionally set to powers of 2 plus
1 to accommodate the DWT scheme utilized. The 1-d DWT is applied consecutively along each axis of
the 3-d block within the shared memory, with each thread processing a different line of the block. Threads
employ the lifting scheme on their respective lines and synchronize between axes using the __syncthreads()
function, hence requiring at least two thread synchronizations overall.

Figure 9.2 provides a schematic of the shared memory layout in a 2-d slice of the 3-d block fetched from
global memory, demonstrating the execution of memory accesses for the DWT along the x and y axes. The
"step x" labels indicate the sequence of memory accesses in the lifting scheme implementation. Assuming a
bank number and a warp size of 4 for illustration, the principle remains applicable for any power of 2. Given
the block sizes are powers of 2 plus 1, the bank numbers are the same across each axis, with bank numbers
incrementing by 1 (modulo the total bank number) when transitioning to adjacent cells in the same row or
column. This layout ensures an even distribution of memory accesses across banks, crucial for minimizing
bank conflicts. Moreover, the indivual warp accesses (depicted by the red oval shapes) always access to
different banks, which guarantees no bank conflicts. The same principles apply to the z axis, which is not
shown for brevity.

Finally, the result of the DWT can be compressed using any lossless compression method. We choose to
use a COO (Coordinate) format to achieve lossless compression. This choice offers both high compression
ratios thanks to the sparsity of the data and relatively fast compression/decompression times. However, the
GPU code for performing the dense-to-COO (compression) and COO-to-dense (decompression) operations
is not trivial, as it involves irregular memory accesses and inter-thread communication. The dense-to-COO
is close in spirit to a parallel reduction or scan [41], while the COO-to-dense is close to a parallel scatter
operation. Our implementation of dense-to-COO is close to the idea for GPU parallel reduction provided
by Harris [109], with the notable change that the warp-level reduction primitives are now directly available
in the CUDA programming model. The idea is also similar to Code 3.5, that we used as an example in
Chapter 3. The warps start by scanning the non-near-zero coefficients across the block and counting them
by performing a warp-level reduction. Then, a block-level reduction is performed to compute the offset of
each warp for the final write to the COO format. The COO-to-dense operation is more direct, as it is a
simple scatter operation. The thresholding is performed during the dense-to-COO by integrating only the
coefficients above the threshold into the COO format.

This new compression scheme, which works with local wavelets, is expected to be faster than the first
version with global wavelets, as it minimizes the number of global memory accesses. The compression kernel
performs a single read from global memory on the decompressed data, followed by a single write on the
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Figure 9.2: Schematic representation of the shared memory layout in a 2-d slice of the 3-d block loaded
from the global memory. For the sake of visibility, a bank number and a warp size of 4 are assumed. Part
9.2a shows how the wavelets on the x axis are performed, while part 9.2b shows how the wavelets on the y
axis are performed. The parts where the 1-d DWT is performed are hightlighted with orange oval shapes.
The individual warp accesses are represented by the red oval shapes. Each cell in the shared memory is
represented by a square and its corresponding bank is written in the cell.

compressed data (and conversely for the decompression kernel). Data reuse is maximized by performing the
required memory accesses on the shared memory, which moves the bottleneck from DRAM (global) accesses
to faster SRAM (shared) accesses. The downside of this approach is that the compression is performed on
local blocks, which hurts the compression ratio. However, we will see in Section 9.3 that the compression
ratio is still acceptable in practice.

9.2.2 Methodology for CFD Data Compression
Our approach strategically partitions the computational grid into smaller, manageable subgrids, which lets
us process the data in a more flexible manner. This partitioning is an important aspect of our compression
scheme, as it is required to achieve actual memory savings. As depicted in Figure 9.3, the entire grid is
divided into subgrids, which are further segmented into blocks. These blocks are only used in the DWT step,
where they are loaded in the shared memory of a CUDA block to perform the DWT locally.

When decompressed, the subgrids use a classical row-major storage format, with each row stored con-
tiguously in memory. This implies that the blocks are not contiguous in the global memory, as they are
separated by the offsets between rows. Each partitioning serves a different purpose: subgrids allow for
partial decompression of the grid, while blocks facilitate the compression/decompression (DWT and COO)
operations.

LBM computations are performed directly on the decompressed subgrids, which are stored in the global
memory. These necessitate the values of the neighboring subgrids to be available. To achieve this, we
use a classical ghost cell approach, where the ghost cells duplicate the values of the neighboring subgrids.
To account for the fact that the neighboring subgrids are not necessarily directly available (due to being
compressed), we use interface buffers. These interface buffers let us have an uncompressed version of the
relevant edge values of all the grid. This lets us divide the subgrid synchronization into two phases: reading
from the interface buffers to update the ghost cells and writing to the interface buffers the results of the
LBM computations.



9.2. DESCRIPTION OF THE COMPRESSION SCHEME 141

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 8 Block 9 Block 10Block 11

Block 12Block 13Block 14Block 15

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 8 Block 9 Block 10Block 11

Block 12Block 13Block 14Block 15

Subgrid 1 Subgrid 2

In
te
rf
ac
e
B
uff

er
1 Interface

B
uffer

2

Write to buffer Read from buffer

Write to bufferRead from buffer

Ghost Cells Left to Right Transfer Right to Left Transfer

Figure 9.3: Illustration of the hierarchical grid subdivision in 2D. The grid is subdivided into subgrids, which
are further segmented into blocks. Each block is processed by a single CUDA block for the DWT and is sized
to fit within the shared memory of the GPU blocks. Subgrids represent contiguous memory segments in the
global memory (when decompressed), while blocks include offsets between rows. Synchronization between
subgrids is facilitated through interface buffers along each dimension/direction. Ghost cells are updated by
reading from these buffers and values are written back to the buffers after each LBM iteration. Blocks do not
need synchronization, as the LBM computations are performed directly on the global decompressed subgrid.
This hierarchical model is extendable to multiple dimensions.

To achieve effective memory gains, we only reserve a fixed amount of memory for two subgrids and all
the interface buffers. The idea is to process each subgrid consecutively, hence only allowing to have at most
two uncompressed subgrids in the global memory at a time. The same idea would work with a single subgrid
if we assumed in-place computation of the LBM step, but we do not make this assumption for the sake
of generality. The interface buffers are used in a duplicated, alternating fashion to ensure coherent data
accesses between different time steps. The rest of the memory is used for the compressed version of the
subgrids and is stored in a circular buffer. This buffer can be viewed as an infinite succession of compressed
subgrids s0,it, s1,it, . . . , sN−1,it, s0,it+1, s1,it+1, . . ., where si,it is the compressed subgrid i at iteration it and
N is the number of subgrids.

Figure 9.4 illustrates how these segments are used in the execution of a LBM step on subgrid 0 at iteration
it. Let us first notice that the circular buffer contains a window in which the compressed subgrids that are
still needed for the simulation are stored. The goal of this whole process is to advance this window by one
subgrid. The process begins with reading the compressed subgrid from the circular buffer and decompressing
it into a buffer. Prior to the execution of the LBM step, the ghost cells are updated using data from the
corresponding interface buffers. Post LBM step, the results are stored in the other interface buffer and the
processed subgrid is re-compressed and written to the current cursor of the circular buffer. This process is
then repeated for the next subgrid (or the next time step if there are no more subgrids), with the compressed
subgrids window slided to the right. This cyclical process of reading, updating, processing, and writing back
to the circular buffer ensures that the required memory remains below the GPU capacity (assuming a given
compression ratio). Overall, this process flow allows to reach effective memory savings, as only partial
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Figure 9.4: The figure illustrates the workflow for executing a Lattice-Boltzmann step on subgrid 0 at
iteration it. All the data shown in the figure are stored at all time in the GPU global memory (DRAM).
Initially, the subgrid is retrieved from the circular buffer in its compressed form and decompressed into a
subgrid buffer. Prior to the LBM step, ghost cells are updated (indicated by "Read interfaces" arrows).
Post-LBM step, the processed data are stored in a new buffer. Interface data for subsequent iterations are
stored ("Write interfaces" arrows), and the resultant subgrid is re-compressed and written to the circular
buffer. The GPU memory is strategically partitioned into three segments: the circular buffer for compressed
subgrids, subgrid buffers for decompressed data, and interface buffers. These subgrid and interface segments
are of fixed sizes, ensuring efficient reuse in each iteration. The design incorporates two sets of interface
buffers that alternate between iterations to represent current and subsequent iteration data. It is assumed
that s0,it, s1,it, . . . , sN−1,it does not overlap with s0,it+1, s1,it+1, . . . , sN−1,it+1 (i.e., the compressed size fits
within the circular buffer).

decompression of the data is performed at a time.
The integration of our compression methodology with an LBM simulation lets us bypass the need for

CPU-GPU data transfers, as long as the compressed data and the decompressed data (the subgrid and
interface buffers) fit in the GPU memory. By addressing these memory constraints, our approach enables
the execution of larger-scale simulations for a given hardware. In the next section, we present results to
demonstrate the effectiveness of this approach.

9.3 Results

9.3.1 Experimental Setup
To evaluate how our compression scheme influences the execution of an LBM simulation, we performed a
set of experiments. Our selection for this assessment is a D3Q27 LBM flow simulation featuring a sphere as
an obstacle. This scenario is a well-established challenge in fluid simulations, providing insights into various
flow regimes. Our D3Q27 LBM is a variant of the initial scheme of d’Humières [87].

Additionally, it is known to present local complex fluctuation mixed with large quiet regions, especially
in the presence of unsteady flows. These features are well adapted to wavelet compression. Additionally,
our investigation confirmed that this approach exhibits a memory-bound characteristic on GPUs, achieving
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a memory bandwidth of approximately 80% of the theoretical peak across all tested GPUs (excluding the
bounce-back condition). This observation underscores rapid execution of the scheme on GPUs, a feature
that poses challenges for employing compression, as it accentuates the overhead associated with compression
techniques.

The conservative variables of this LBM scheme are the density and the density-weighted velocity: W =
(ρ, ρux, ρuy, ρuz). We have thus 4 physical data by grid point. The physical data are represented at each
grid point by a larger set of so called kinetic data fi for 0 ≤ i < 27, hence the "D3Q27" terminology. The
mapping between fi and Wj is performed as described below. We refer to the (excellent) book of Krüger et
al. [139] for an introduction to the LBM.

The equilibrium distribution function feq,i provides the lattice velocity i at equilibrium, and is computed
using the following equation:

feq,i(W ) = Ciρ

(
1 + 3

c2
~ei · ~u+ 9

2c4 (~ei · ~u)2 − 3
2c2 ~u · ~u

)
, (9.1)

where Ci is the weight of the velocity ~ei and c is the speed of sound. The implementation is based on the
commonly used 27-velocity set: (0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1), (±1,±1, 0), (±1, 0,±1), (0,±1,±1),
and (±1,±1,±1), with corresponding weights: 8

27 (for the center), 2
27 (for the 6 "faces"), 1

54 (for the 12
"edges"), and 1

216 (for the 8 "corners") [309]. This allows us to compute W from the distribution function f
and vice versa using the following equations:

ρ =
26∑
i=0

fi =
26∑
i=0

feq,i,

ρ~u =
26∑
i=0

c~eifi =
26∑
i=0

c~eifeq,i.

(9.2)

Each step of the LBM algorithm starts by shifting the 27 kinetic data fi in the directions of the corresponding
27 lattice velocities ~ei. This step induces memory transfer between the grid points. In the second step, the
kinetic data are updated according to:

f = ωfeq + (1− ω)f, (9.3)
where ω is the relaxation parameter. This step is done locally at each grid point and is completely paral-
lelizable on the GPU.

Thus, a time step consists of the following operations:

1. read the kinetic data fi from the neighbors (shift phase). If the neighbor is in an obstacle, we consider
reading fi′ instead, where ei′ is the opposite velocity to ei in the lattice (bounce-back condition). This
boundary correction can break the coalescent memory access, as we shall see later;

2. compute the conservative data W from equation (9.2);

3. compute the equilibrium distribution function feq from W with equation (9.1);

4. write the new distribution function f according to (9.3)

We divide the domain into 4× 16× 4 subgrids, each of which being a grid of cells of size ∆x×∆y×∆z,
with ∆x = ∆y = ∆z. The initial condition is ρ = 1 everywhere, ~u = (0.0001, 0.03,−0.0001) outside the
obstacle, and ~u = (0, 0, 0) inside the obstacle. The time step ∆t is deduced from ∆x and the speed of sound
c (set to a dimensionless value of 1): ∆t = CFL∆x

c = ∆x in our case. The CFL number is set to one as is
always the case in the LBM. We set the relaxation parameter ω depending on ∆t so that the corresponding
Reynolds number is 300. The ω parameter is computed from the following equations:

ν = c2
(

1
ω
− 1

2

)
∆t, (9.4)

⇔ ω = 2
1 + 2 ν

c2∆t
, (9.5)
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while the viscosity ν is set such that the Reynolds number is 300:

Re = cL

ν
= 300, (9.6)

where L is the characteristic length of the obstacle; in our case, the diameter of the sphere. We use periodic
boundary conditions in all directions except when we show the vortices passing the obstacle. In this case,
we use a fixed boundary condition for the low y values, so that the incoming flow is constant.

We run tests with different NVIDIA GPUs: P100 (16GB), V100 (16GB), and A100 (40GB). The code is
written in CUDA and runs mostly on the GPU. We use custom CUDA events to measure the time spent and
verify that our measures are coherent with the output of nvprof. Our implementation allows for different
scenarios, such as with or without compression, with or without subgrids, different threshold values, and
different obstacles. The results can be saved thanks to a custom compressed file format and visualized thanks
to a custom python script based on the mayavi library [215].

9.3.2 Setting the Threshold
The objective of this experiment is to assess the impact of the threshold value on simulation execution. Flow
simulations were conducted at various threshold levels, with results recorded at tmax = 1.0s. The grid size
for these simulations was 231× 952× 238, with ∆x ≈ 0.01732.

Figure 9.5: Impact of the threshold on compression ratio and error in a D3Q27 LBM simulation. The figure
shows average compression ratios and errors across the domain for different threshold settings. Blue crosses
indicate the compression ratio, and red crosses denote error, measured as the Normalized Mean Squared
Error (NMSE) between reference density and density after lossy compression.

Figure 9.5 displays the results of the experiment, underscoring two main observations. The graph shows
the average compression ratio, depicted by blue crosses, which compares the size of compressed data to
uncompressed data at a specific timestep. It also presents the Normalized Mean Squared Error (NMSE)
between the reference density and the density after lossy compression, defined as:

NMSE =

√∑
i,j,k ∆x∆y∆z

(
fi,j,k − f̂i,j,k

)2

√∑
i,j,k ∆x∆y∆z (fi,j,k)2

, (9.7)
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where fi,j,k is the reference density and f̂i,j,k is the density after lossy compression.
This visual analysis permits a detailed examination of the effects of threshold variation on the simulation.

Distinct behavioral regimes are identifiable:

• In the range of [10−8, 2 · 10−8], increasing the threshold significantly improves the compression ratio
without altering the error, suggesting coefficients removed in this range likely correspond to noise.

• Between ]2 · 10−8, 10−6], there is a nearly linear increase in error, with a less pronounced rise in the
compression ratio. This indicates the beginning of an impact on the simulation by the removal of the
coefficients, yet without major disruption.

• Beyond ]10−6, 2 · 10−4], a sharp increase in compression ratio is observed alongside error stabilization,
implying that artifacts at this stage severely compromise simulation integrity, rendering the simulation
impractical.

The first two regimes are considered potentially beneficial for meaningful simulations. The initial regime
offers an optimal scenario, enhancing compression without affecting accuracy and eliminating superfluous
noise. The subsequent regime, though riskier, allows for increased compression at the risk of introducing
disruptive artifacts, necessitating thorough result analysis. The final regime, marked by excessive error, is
deemed unsuitable for productive simulation efforts.

Notably, threshold determination is influenced by specific problem parameters and poses a challenge due
to interactions between numerical and compression schemes. However, chosing a threshold value in the
first regime is likely to yield acceptable results, as it offers a balanced compromise between compression
efficiency and error minimization without evident artifacts. Hence, the threshold value is set to 2 · 10−8 for
the subsequent experiments, as it falls within the optimal range.

For simulations using different grid sizes than 231 × 952 × 238, the threshold value adjusts to ensure
analyzed frequencies align with identical physical scales:

τ = τ0
∆x
∆x0

, (9.8)

where ∆x0 is the baseline spatial step (≈ 0.01732) and τ0 is the predetermined threshold value (2 · 10−8).

9.3.3 Validation of the Scheme
We perform various tests to validate the scheme. We first verify that the scheme preserves the mass up
to machine precision. This property holds true as long as the domain is periodic and no fixed boundary
condition is used. It works, among other:

• with the direct implementation of the LBM scheme on the GPU (without compression);

• with the implementation with subgrids but no compression;

• with the implementation with subgrids and compression.

We, hence, have strong evidence that both the subgrid synchronization mechanism and the compression
scheme are correctly implemented.

To further validate the scheme, we show the visual results of the simulation for various configurations.
We set ω so that the corresponding Reynolds number is 300. Figures 9.6 and 9.7 show the results of the
simulation at tmax = 600s with a 165 × 680 × 170 grid. The first figure is the result of the simulation
without compression, while the second figure is the result of the simulation with compression. In both
cases, we observe the highly periodic flow that we would expect for a Reynolds number of 300 [126, 269].
Figure 9.8 shows the result of the simulation at tmax = 1000s with a 594× 2448× 612 grid. This simulation
is costly in terms of computations and took approximately 3 days to run on an A100. Only the subspace
x = [−1.25, 0.75], y = [1.9, 5], z = [−0.55, 1.45] is saved, corresponding to approximately 9GB of floating
point data in our case, which is close to the maximum size that can be visualized on a regular laptop. The
saved space captures two vortex rings, which consist of a similar flow pattern to the smaller simulation. These
visual results indicate that the compression scheme does not introduce significant errors and demonstrate the



146CHAPTER 9. DESIGNING A HIGH-PERFORMANCE COMPRESSION SCHEME FOR CFD SIMULATIONS

Figure 9.6: D3Q27 LBM simulation at tmax = 600s
(24777 iterations) with a 165 × 680 × 170 grid (≈
1.92GB) and no compression.

Figure 9.7: D3Q27 LBM simulation at tmax = 600s
(24777 iterations) with a 165 × 680 × 170 grid (≈
1.92GB) and lossy compression.

Figure 9.8: D3Q27 LBM simulation at tmax = 1000s
(148685 iterations) with a 594 × 2448 × 612 grid (≈
89.51GB).

Velocity magnitude ≤ 0.0307
Velocity magnitude = 0.032
Velocity magnitude ≥ 0.035

potential to simulate higher-precision simulations on GPUs. Let us note that this D3Q27 scheme is a worst
case scenario for the compression scheme, as the turbulences are known to originate from slight variations
in the flow, which can be disrupted by the compression scheme. To obtain these results, the threshold must
be particularly low, which severely impacts the compression ratio, as we will see in the next section.

9.3.4 Performance Evaluation
This section presents the results of our performance evaluation for the D3Q27 simulation, considering five
configurations: direct implementation with two fully decompressed grids (with and without bounceback
condition), implementation with subgrids and no compression, and implementation with subgrids and com-
pression (block-level wavelets or global wavelets). The block-level compression is the novel compression
scheme where the wavelets are performed locally in the shared memory, while the global compression is
the previous compression scheme where the wavelets are performed on the whole subgrids. In the following
experiments, the block-level performs 3 DWTs on the x axis and 2 DWTs on the y and z axes (to achieve
j = 2 on all axes for a block size of 33×17×17), while the global compression performs 2 DWTs on all axes.

For each configuration, we run the simulation with different grid sizes with tmax = 1.0s, except for the
compression with global wavelets, where tmax is lowered depending on the grid size because of how slow the
execution is. We verified that the number of performed iterations does not significantly impact processing
speeds.

Table 9.1 shows the average percentage of time spent in the different kernels for the different configura-
tions. It provides insights into the performance of the different configurations. We can see that the global
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Proportion of time spent in the kernels Compression ratio
(in percentage) (first time step)

GPU Configuration Numerical scheme Compression Decompression Synchronization Ratio
A100 No subgrids, no compression 100.00% 0.00% 0.00% 0.00% 1.00
A100 Subgrids, no compression 91.12% 0.00% 0.00% 8.88% 1.00
A100 Subgrids, block compression 51.04% 28.59% 17.78% 2.59% 206.57
A100 Subgrids, global compression 3.18% 81.20% 15.49% 0.13% 1206.12
V100 No subgrids, no compression 100.00% 0.00% 0.00% 0.00% 1.00
V100 Subgrids, no compression 87.96% 0.00% 0.00% 12.04% 1.00
V100 Subgrids, block compression 46.57% 25.92% 22.65% 4.86% 200.93
V100 Subgrids, global compression 4.83% 73.12% 21.68% 0.36% 539.41
P100 No subgrids, no compression 100.00% 0.00% 0.00% 0.00% 1.00
P100 Subgrids, no compression 87.70% 0.00% 0.00% 12.30% 1.00
P100 Subgrids, block compression 36.25% 37.75% 22.27% 3.73% 200.93
P100 Subgrids, global compression 6.18% 68.60% 24.73% 0.49% 539.41

Table 9.1: Average percentage of time spent in the different kernels on the different configurations.

compression, where the wavelets are performed on the whole subgrids, is significantly slower than the block-
level compression, where the wavelets are performed at the block level. With global compression, between
3% and 7% of the time is spent on average in the LBM computations. For the block-level wavelets, both the
A100 and the V100 spend approximately 50% of the time in the LBM computations, while the P100 spends
approximately 35% of the time. We hence, see that the global wavelets are drastically slower than the block-
level wavelets. The table also shows the compression ratio achieved on the first time step for the different
compression kernels. This metric highlights the fact that the global compression yields better compression
ratios than the block-level compression, with one less DWT level on the x axis. Both algorithms, hence,
provide a different trade-off between compression ratio and execution time. If the required compression ratio
becomes the bottleneck, the global compression kernels can be used, and the amount of performed DWTs
can be adjusted to reach the desired compression ratio.

Figure 9.9: Performance evaluation of the D3Q27 LBM simulation with different configurations. The x-axis
shows the total grid size (in GB) if decompressed, while the y-axis displays the processing speed (in GB/s).
Hardware (P100, V100, or A100) is represented by color, while the marker denotes the method used. The
markers represent the result for a single execution. The dashed colored lines represent the theoretical bounds
of each tested GPU based on their specifications, assuming no compression.

To normalize the performance between different configurations, we propose to compare the processing
speed of the different configurations in Figure 12.5. The x-axis represents the total grid size if decompressed,
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while the y-axis indicates processing speed if decompressed. The processing speed (S) is calculated using
Equation 9.9, considering grid size, number of iterations, and total time, with a factor of 2 for read-write
cycles per iteration.

S = 2× grid_size× num_iterations
total_time GB/s (9.9)

This figure helps to evaluate the impact of the method on simulation performance. Firstly, the executions
with no bounceback condition (dashes) achieve high processing speeds, typically about 80% of the theoret-
ical peak of the GPU. On the other hand, the same executions with the bounceback condition (dots) are
significantly slower, between 2 and 5 times slower, depending on the grid size and the GPU. This is explained
by the fact that the bounceback condition breaks the coalesced memory access, which is a well-known issue
when implementing the LBM on the GPU [199]. The executions with subgrids, but no compression (tri-
angles), use the same workflow we use for compression (see Section 9.2.2). We can see that this method is
able to run larger simulations. This is due to the used workflow, which does not require to store two fully
decompressed grids at the same time. We can also see that the processing speed is not systematically lower
than the version with no subgrids. This can be explained by the better granularity of the version with the
subgrids, where the subgrids that have no bounceback condition (due to not including the obstacle) operate
at the near-perfect speeds that we oberve for the version with no bounceback condition (dashes). This gain
can overcome the overhead of the subgrid synchronization.

Finally, the executions with subgrids and compression (crosses) show the impact of the compression on
performance. We can expect the simulations that integrate compression to be approximately 2 to 3 times
slower than the best case scenario without compression. This slowdown allows the simulation of grids of
size up to 13 times the capacity of the 40GB A100 and 8 times the capacity of the 16GB P100/V100 (up to
tmax = 1.0s). It is important to note that unless in-place computation is used, the grid size would normally
be at most half the capacity of the GPU, as the grid needs to be stored twice (once for the input and once
for the output). The implication of this observation is that for a given hardware, the effective grid size that
can be simulated is significantly increased by the use of compression.

The figure also shows the maximum bandwidth of PCIe gen 3 and SXM2 (NVLink), which are associated
with the V100 GPU. We can see that all the processing speeds are greater than the maximum PCIe (gen 3)
bandwidth of 32GB/s. The maximum PCIe gen 4 bandwidth (64GB/s) is also surpassed by the A100, which
is the only GPU that supports PCIe gen 4. This observation highlights the potential of the compression
scheme to reduce the requirements for PCIe data transfers, which is generally a bottleneck in multi-GPU
CFD simulations. No processing speed surpasses the maximum corresponding NVLink bandwidth (160GB/s
for P100, 300GB/s for V100, and 600GB/s for A100), which are particularly fast.

Figure 9.10 illustrates how the compression ratio changes over time across different simulation setups.
The compression ratio, calculated as the ratio between compressed and uncompressed data sizes, exhibits
notable fluctuations during the simulation. If the threshold were set constant across simulations, we would
expect setups with larger grid sizes to have higher compression ratios, as discontinuities would form a smaller
proportion of the grid as the grid size increases. However, since we normalize the threshold with equation
(9.8), this relationship is not as straightforward.

At the beginning of the simulation, when the grid values remain largely constant, all setups show a higher
compression ratio. This ratio then rapidly decreases to its minimum before fluctuating over time without
displaying significant abrupt changes, continuing to vary without settling into a stable state. The fluctuation
over time is influenced by the changing shapes of vortices throughout the simulation. The rapid decline at
the beginning is due to the emergence of shock waves from the obstacle at the start of the simulation. These
waves propagate through the domain, causing discontinuities that are captured by the wavelet transform,
leading to a drop in compression ratio. It is important to understand that these shock waves are numerical
artifacts rather than physical phenomena. They are caused by the abrupt change at the initial condition,
which is not representative of the physical reality. These artifacts are avoidable through methods such as
a gradual initialization process. As these shock waves vanish, the compression ratio stabilizes at a higher
level, fluctuating over time but remaining above the minimum.

In our implementation, the lowest compression ratio acts as a bottleneck that may render a simulation
unexecutable. This is particularly problematic as simulations often start with shock waves, resulting in
temporary drops in compression ratio. However, a more sophisticated implementation could identify such
scenarios and employ a slower yet more compressive scheme during the necessary time steps. For example,
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Figure 9.10: Compression ratio over time for the 3 tested grid sizes. The x-axis represents the time in
(simulated) seconds, while the y-axis displays the compression ratio.

the global compression scheme can reach extremely high compression ratios, as we have shown in a previous
work [97]. Alternatively, compressed subgrids could be stored on a storage device and retrieved when needed.

In conclusion, the results show that the compression scheme is able to run a simulation in a memory
constrained environment, introducing an acceptable overhead in comparison to the best possible scenario
using the PCIe bus. This compression overhead can even be adjusted downwards by performing multiple
LBM steps per compression/decompression cycle, but this would introduce challenges regarding the synchro-
nization of the LBM blocks. The observed compression ratios are high, typically between 5 and 10 for large
grids, which validate the usefulness of the method. The trade-off between the compression ratio and the
execution time is satisfactory, as the execution throughput is higher than the maximum PCIe bandwidths.
Thus, the proposed compression scheme is a viable option in GPU memory-constrained configurations, in
particular when the PCIe transfers are a bottleneck.

9.4 Conclusions
In this study, we have presented a novel approach to compressing large-scale CFD simulations on GPUs.
Wavelet-based compression methods have been widely used in the past, but their application to GPU CFD
simulations has been limited due to the memory intensity of the DWT. We have proposed a new method
that leverages the SRAM of the GPU to perform local DWT and COO compression. This approach has
been tested on a D3Q27 LBM simulation. The results show that it is possible to run simulations that would
not be executable with a single GPU, due to the memory requirements. The tested D3Q27 simulation has
an overall low execution time on GPUs, which makes it a less favorable candidate for compression. More
computationally intensive simulations would presumably yield even better results, as the overhead of the
compression would be less significant in comparison to the total execution time. Traditionally, compression
is rarely integrated into CFD simulations due to its presumably bad compression ratio/execution time trade-
off. However, our results show that it is possible to reach satistactory trade-off, which unlocks significant
potential for the execution of larger-scale simulations. Our method can be be improved in different ways.

First, we have implemented a pipeline where the LBM step is performed once per compression/decompres-
sion cycle. It is, however, possible to perform the LBM step multiple times per compression/decompression
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cycle. This would lower the overhead of the compression, as the compression would be performed less fre-
quently. This technique is known as temporal blocking and is a common technique in stencil computations.
It is normally used to improve the cache usage. Second, the used lossless compression algorithm has been
chosen for its simplicity and speed, but it is likely that other algorithms could provide better compression
ratios and/or execution times. In particular, for the tested D3Q27 scheme, where the sparsity of the data
is not as high as expected due to the low threshold required for accurate results. Further works are being
conducted to use better compression methods for near-sparse data. Third, the D3Q27 scheme is performed
on the global memory, which is an unnecessary bottleneck. It is likely that the performance of the scheme
could be improved by performing the LBM computations on the shared memory, but this introduces chal-
lenges regarding the synchronization of the LBM blocks. Finally, integrating our methodology into real-world
multi-GPU frameworks is a natural next step. Multi-GPU LBM simulations are often bottlenecked by data
accesses and transfers, both of which could be improved by our method.
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Conclusions

This thesis has systematically addressed the challenges of conducting large-scale CFD simulations on modern
HPC platforms, with a particular focus on GPUs. Through a series of detailed investigations, we have
presented novel strategies and optimizations that collectively aim to push the boundaries of current CFD
simulation capabilities, particularly in the context of memory management.

10.1 Summary of Contributions
Our work began with a foundational overview of the different methods used in fluid simulations and how
they translate to computational implementations. We have seen that the process of numerical discretization
often leads to stencil algorithms, which are highly parallelizable and well-suited to GPU architectures.
An important problem with the stencil approach is the memory requirements, which grows quadratically
(cubically in 3D) with the resolution of the simulation. The usual approach to relieve this memory pressure
is to use AMR, which reduces the memory footprint by breaking the regularity of the grid and focusing on
the regions of interest. We, however, use another approach where we use explicit data compression to reduce
the memory footprint.

In the context of HPC, it is not possible to focus solely on memory gains, as performance is also a critical
factor. This is why we have spent a significant amount of time studying common techniques used for achieving
high performance on GPUs with stencil computations. These techniques, summarized in Chapter 3, help
ensuring that the computational resources of the system are used efficiently, maximizing the performance
of the simulation. However, as the scale of the simulations grows, techniques for avoiding load imbalance
and ensuring efficient scheduling become increasingly important. This is why we have focused on task-based
runtime systems, which provide a flexible and efficient way to manage the computational resources of the
system. PaRSEC and StarPU are two task-based runtime systems on which we have focused our attention,
as they are widely used in the HPC community. In PaRSEC, we have developped a new feature on the PTG
DSL to allow for more flexibility in the definition of the tasks and showed that it can be used to express a
stencil computation in an elegant way with no visible cost on performance. In StarPU, we have developped
a generic stencil solver that is able to run on a distributed environment. Finally, we have developped a
new scheduler for StarPU, AutoHeteroprio, that is able to automatically adjust the priorities of the tasks
to ensure that the system is used efficiently. These contributions aim to provide a baseline for the seamless
integration of explicit compression within a distributed multi-GPU framework, thereby enabling the efficient
execution of large-scale CFD simulations.

The rest of the thesis is dedicated to the design and implementation of a high-performance compression
scheme for CFD simulations. In Chapter 7, we presented the preliminary work we performed to design
wavelets for CFD simulations. In this work, careful consideration was given to the specific requirements
of CFD simulations, such as the need for mass conservation and polynomial filtering. We then used these
wavelets to design a lossy compression scheme for CFD simulations and observed promising results in terms
of compression ratio and simulation accuracy. Finally, we conducted a last work to design a wavelet-based
compression scheme with a focus on performance. We have shown that by leveraging the shared memory of
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the GPU, our compression scheme can achieve satisfactory performance while maintaining a high compression
ratio.

10.2 Future Directions
The work presented in this thesis opens up several avenues for future research.

First, there are several areas of improvement for the wavelet-based compression scheme. The DWT itself
can be optimized to reduce the number of memory accesses and improve data locality. Currently, the DWT
is performed successively on each dimension, which not optimal in terms of data locality. We are aware that
multi-dimensional DWT algorithms can theoretically solve this issue, but we did not find any implementation
that would work in practice with the GPU architecture.

The lossless compression method can also be improved. The current high-performance COO implemen-
tation appears to be fast, but relies on the sparsity of the data. This posed a problem in our D3Q27
experiment, where the data was less sparse than expected, leading to a lower compression ratio. This is
probably due to the turbulent nature of the tested flow, which requires a low threshold to preserve the
accuracy of the simulation. There are several other lossless compression methods that would presumably be
less reliant on the sparsity of the data, such as entropy coding or dictionary-based methods. However, since
the lossless compression must be integrated in our compression kernel, we must be able to provide a fast
implementations, which we did not have time to do.

Another idea to improve performance is to pipeline the compression and the simulation. Currently, the
decompression kernels write the decompressed data to the global memory, where the simulation kernels read
and write them. Since the decompressed data appear at some point in the shared memory, it could be
possible to directly perform the time step within the shared memory and then immediately compress it
back to the global memory. This would significantly reduce the number of global memory accesses, because
only the compressed data would be accessed in the global memory. However, is it not evident to find a
new simulation design that would work with this idea. In particular, because of data access pattern, which
requires to access the data of the neighboring blocks, which are not necessarily available.

Finally, another major area of improvement would be a flexible implementation of a large-scale CFD
simulation that integrates the wavelet-based compression scheme. Currently, our StarPU multi-GPU imple-
mentation does not let the possibility of using compression, rendering it comparable to most state-of-the-art
CFD solvers. However, in a next work, we plan on integrating the compression scheme into the solver, and to
evaluate the performance impact of different strategies. We believe that a fully dynamic approach, where the
subgrids can be reshaped depending on runtime factors, would be the most promising approach. Contrary
to the more popular approaches, which rarely integrate compression, our approach would be able to perform
better load balancing because of the reduced cost of sending compressed data. The use of temporal blocking
would also be facilitate, as the increased synchronization cost would be offset by the reduced data transfer
cost.

In conclusion, the work presented in this thesis provides a solid foundation for the integration of wavelet-
based compression schemes into large-scale CFD simulations. The results obtained so far are promising, and
we believe that with further research and development, it will be possible to achieve significant improvements
in the performance and scalability of CFD simulations on modern HPC platforms.

10.3 Concluding Remarks
In this thesis, we have presented a series of novel strategies and optimizations that aim to push the boundaries
of current CFD simulation capabilities, particularly in the context of memory management. Our work has
focused on the design and implementation of a high-performance compression scheme for CFD simulations,
with the goal of reducing the memory footprint of large-scale simulations while maintaining high levels of
accuracy. We have shown that by leveraging the shared memory of the GPU, our compression scheme can
achieve satisfactory performance while maintaining a high compression ratio. We believe that the results
obtained so far are promising, and that with further research and development, it will be possible to achieve
significant improvements in the performance and scalability of CFD simulations on modern HPC platforms.
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Chapter 11

Appendix

11.1 Heteroprio
In this section, we provide additional details related to our work from Chapter 6. In Section 11.1.1, we
present an example of a DAG and the associated costs to illustrate the theoretical principle of Heteroprio.
In Section 11.1.2, we provide the manual priorities used for the results presented in Section 6.3.2.

11.1.1 Heteroprio execution example
To understand the theoretical principle of Heteroprio, let us consider the example DAG shown in Figure
11.1 and the associated costs of Table 11.1.

A1

B1

C1 A2

A5

C2

B2

A3

A4

B3

Figure 11.1: Example of a DAG with three task types (blue, red, and green).

There are three task types (A, B, and C). We assume that within a type, all tasks have the same costs.
Let us consider a case where there are 2 CPU workers and 1 GPU worker. For the sake of simplicity, let us
assume that the tasks are selected in a predefined order: CPU-1 pops a task if there is one available, then
GPU-1, and then CPU-2. In practice, this order is not known in advance. In a real StarPU execution, there
is a "prefetch" mechanism that ensures that a worker can start the job immediately after the dependencies
are satisfied.

Intuitively, "A" tasks seem to be better suited for CPUs, which execute them twice as fast, whereas "B"
tasks seem better suited for GPUs. The "C" tasks do not, seem to have particular affinities. In our model,
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````````````Task
Architecture CPU GPU

A 1s 2s
B 2s 1s
C 1s 1s

Table 11.1: Example execution times of for the two processing unit types (CPU/GPU) and the three task
types (A, B, and C).

whatever priorities we set, A1 is always executed by CPU-1. Also, C2 seemingly has great importance, since
it has three successors.

Let us test what happens under three different priority lists. In Table 11.2, we show three different test
cases.

````````````Case
Architecture CPU GPU

1 B-C-A A-C-B
2 A-C-B B-C-A
3 C-A-B B-C-A

Table 11.2: Example priorities for a configuration of two processing unit types (CPU/GPU) and three task
types (A, B, and C).

In case 1, B is the highest-priority task type on CPUs and A is the lowest one. On GPUs, the priorities
are reversed. For both processors, C is the median priority. In this first case, the slowest architectures are
intentionally promoted. For case 2 and case 3, we promote the fastest architectures. The difference between
the two is that the priorities in case 2 are mirrored compared to the ones in case 1, whereas in case 3, we
exchange the C and A types in the CPU. The idea of this swap is to favor the execution of C2 which has
numerous successors.
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Figure 11.2: Example executions for the 3 different priority settings using two CPU workers and one GPU
worker.

The three executions are schematized in Figure 11.2. In this model, the makespan of case 1 is lower (7s)
than the one of case 2 and case 3 (5s). Here, case 2 and case 3 are equivalent in terms of makespan. In
case 3, however, CPU-2 and GPU-1 are freed sooner (after 4s of execution) than in case 2, where they are
still working after 5s of execution. Case 3 can, therefore, be seen as potentially better. This emphasizes the
difficulty of finding heuristics automatically. Indeed, some tasks should be prioritized depending on their
execution time, but others should be prioritized because they have particular importance in the execution
graph (as C in our example).

11.1.2 Manual priority settings
For the results we provide in section 6.3.2, the non-automatic Heteroprio executions use manual priorities.
These priorities are selected from a careful benchmark for each application. We follow different strategies
for choosing them and we provide the different priorities that we test: Table 11.3 for POTRF, Table 11.4 for
GEMM, Table 11.5 for GEQRF, and Table 11.6 for PaStiX. For QrMumps and Scalfmm, we use the already
existing priorities set in the code.
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Name CPU Priorities Cuda priorities Slowdown factors
trsm syrk gemm

base portf - splgsy - trsm trsm - syrk – gemm 11.0 26.0 29.0
- syrk - gemm

inverted-CPU trsm - syrk - gemm trsm - syrk – gemm 11.0 26.0 29.0
- portf - splgsy

inverted-GPU portf - splgsy - gemm gemm - syrk – trsm 11.0 26.0 29.0
- syrk - trsm

low-factors portf - splgsy - trsm trsm - syrk – gemm 2.0 2.0 4.0
- syrk - gemm

high-factors portf - splgsy - trsm trsm - syrk – gemm 25.0 45.0 49.0
- syrk - gemm

Table 11.3: Tested priorities and slowdown factors for the POTRF operation (Chameleon’s Cholesky factor-
ization). Rows in bold are the priorities used in our benchmarks.

Name CPU Priorities Cuda priorities Slowdown factors
gemm

base plrnt - gemm gemm 29.0
inverted gemm - plrnt gemm 29.0

low-factors plrnt - gemm gemm 1.0
high-factors plrnt - gemm gemm 40.0

Table 11.4: Tested priorities and slowdown factors for the GEMM operation (Chameleon’s matrix/matrix
multiplication). Rows in bold are the priorities used in our benchmarks.

Name CPU Priorities Cuda priorities Slowdown factors
ormqr tpmqrt

base geqrt - tpqrt - plrnt - lacpy ormqr - tmpqrt 10.0 10.0
- laset - ormqr - tmpqrt

inverted_CPU ormqr - tmpqrt - geqrt - tpqrt ormqr - tmpqrt 10.0 10.0
- plrnt - lacpy - laset

inverted_others lacpy - laset - geqrt - tpqrt ormqr - tmpqrt 10.0 10.0
- plrnt - ormqr - tmpqrt

low-factors geqrt - tpqrt - plrnt - lacpy ormqr - tmpqrt 2.0 2.0
- laset - ormqr - tmpqrt

high-factors geqrt - tpqrt - plrnt - lacpy ormqr - tmpqrt 22.0 22.0
- laset - ormqr - tmpqrt

Table 11.5: Tested priorities and slowdown factors for the GEQRF operation (Chameleon’s QR factorization).
Rows in bold are the priorities used in our benchmarks.
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Name CPU Priorities Slowdown factors
cblk_gemm blok_trsm blok_gemm

base solve_blok_{trsm -
gemm} - cblk_{getrf1d
- gemm} - blok_{getrf -
trsm - gemm}

1.0 10.0 10.0

better_factors solve_blok_{trsm
- gemm} -
cblk_{getrf1d -
gemm} - blok_{getrf -
trsm - gemm}

4.0 2.0 3.0

inverted_groups blok_{getrf -
trsm - gemm} -
cblk_{getrf1d - gemm}
- solve_blok_{trsm -
gemm}

1.0 10.0 10.0

better_factors_higher solve_blok_{trsm -
gemm} - cblk_{getrf1d
- gemm} - blok_{getrf -
trsm - gemm}

5.0 3.0 4.0

low-factors blok_{getrf -
trsm - gemm} -
cblk_{getrf1d - gemm}
- solve_blok_{trsm -
gemm}

1.0 1.0 1.5

high-factors blok_{getrf -
trsm - gemm} -
cblk_{getrf1d - gemm}
- solve_blok_{trsm -
gemm}

5.0 15.0 15.0

Cuda priorities
base cblk_gemm - blok_{trsm

- gemm}
- - -

better_factors cblk_gemm -
blok_{trsm - gemm}

- - -

inverted_groups blok_{trsm - gemm} -
cblk_gemm

- - -

better_factors_higher cblk_gemm - blok_{trsm
- gemm}

- - -

low-factors blok_{trsm - gemm} -
cblk_gemm

- - -

high-factors blok_{trsm - gemm} -
cblk_gemm

- - -

Table 11.6: Tested priorities and slowdown factors for the PaStiX. Rows in bold are the priorities used in
our benchmarks.
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11.2 Wavelet properties
This section provides a general overview of common properties of wavelets that are relevant to signal pro-
cessing applications. More elaborate works can be found in the literature, such as the works of Mallat [255]
and Daubechies [84]. This sections aim to provide a more brief and applied overview of the properties of
wavelets.

11.2.1 Compact Support
Wavelet basis functions can be compactly supported, which means that these functions are nonzero only
within a limited interval or region. This characteristic offers several advantages in signal processing appli-
cations, such as reduced computational complexity, efficient representation of localized features, and precise
localization of signal components.

Mathematically, this property can be expressed as follows:

ψ(t) =
{

0 for t < a or t > b

nonzero function for a ≤ t ≤ b
(11.1)

The benefits of compact support include more efficient computations by limiting the operational range to
a finite interval, which is particularly advantageous in real-time applications. This confinement helps accu-
rately capture and localize transient signals and sharp features, essential for tasks like denoising and feature
extraction. In the context of data compression, especially in CFD, this property ensures that discontinuities
in the data affect a limited number of wavelet coefficients, leading to more efficient compression. Overall,
the more compact the support of the wavelet basis function, the better it can capture localized features and
provide a more efficient representation of the signal.

11.2.2 Symmetry
Symmetry is a property that some wavelet basis functions can exhibit, enhancing their effectiveness in certain
signal processing applications. Mathematically, the symmetry property of wavelets can be expressed as:

ψ(t) = ±ψ(−t) (11.2)

where ψ(t) represents the wavelet function. The sign (±) indicates that the wavelet function can be
positive or negative, depending on the required symmetry.

This property is significant as detailed in the work of Daubechies [84], particularly for its role in appli-
cations involving human visual perception, which tends to be more forgiving of symmetric errors.

However, the utility of symmetric wavelets is not universally applicable across all signal processing tasks.
Beyond visual applications, the benefits are generally limited and may introduce complexities, especially when
enforcing symmetry in signals that are confined to a limited interval, such as images. This enforcement can
lead to boundary artifacts or distortions.

In summary, while symmetry in wavelet basis functions can be advantageous in applications reliant on
visual processing due to the human visual system, it presents limited advantages and potential challenges
in other areas. Practitioners must evaluate the appropriateness of symmetric wavelets based on the specific
needs of their applications and the inherent properties of the signals involved.

11.2.3 Orthogonal and Biorthogonal Basis
The orthogonality property of wavelet basis functions is defined as follows:

〈ψm(t), ψn(t)〉 =
∫ ∞
−∞

ψm(t)ψn(t) dt = 0, (11.3)

where ψm(t) and ψn(t) represent two wavelet basis functions. The orthogonality property plays a crucial
role in the wavelet scheme for several reasons. Firstly, it ensures that the wavelet decomposition provides a
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faithful representation of the signal, as different wavelet basis functions do not interfere or overlap with each
other. This allows for a clean and accurate decomposition of the signal into different frequency bands.

Furthermore, the orthogonality property facilitates efficient signal reconstruction. Since the inner product
between different wavelet basis functions is zero, it implies that the contribution of each basis function
to the reconstructed signal can be isolated and reconstructed individually. This property enables perfect
reconstruction of the original signal from the wavelet coefficients. However, in some cases, strict orthogonality
between wavelet basis functions can be too restrictive. In practical applications, it is often more desirable
to use pairs of wavelets that are orthogonal within a pair but not necessarily orthogonal to each other. Such
pairs of wavelets are known as biorthogonal wavelets.

Biorthogonal wavelets offer a flexible and essential framework within wavelet schemes for signal process-
ing. Unlike strictly orthogonal wavelets, biorthogonal wavelet pairs satisfy specific biorthogonality conditions,
ensuring accurate and efficient signal decomposition and reconstruction. In the biorthogonal wavelet trans-
form, the signal undergoes a process of decomposition and reconstruction using analysis filters and synthesis
filters. The analysis filters, associated with the father wavelets φ and their corresponding approximation
coefficients (ak), capture the low-frequency components of the signal. On the other hand, the synthesis
filters, associated with the mother wavelets ψ and their detail coefficients (dk), capture the high-frequency
components. Mathematically, the original signal x can be expressed as a linear combination of the father
and mother wavelets:

x(t) =
N−1∑
k=0

akφk(t) +
N−1∑
k=0

dkψk(t), (11.4)

where N represents the number of wavelet pairs, ak represents the approximation coefficients, dk repre-
sents the detail coefficients, and φk(t) and ψk(t) denote the corresponding wavelet functions. The left sum
can be view as a coarse approximation of the original signal, while right sum captures the fine details. By
incorporating both father and mother wavelets, biorthogonal wavelets enable accurate signal analysis and
reconstruction, making them highly valuable in various signal processing applications.

Overall, biorthogonal wavelets represent a flexible and widely used approach in signal processing. The
distinction between the analysis and synthesis filters can be leveraged to optimize the wavelet transform for
specific applications. In particular, the approximation coefficient can be used again as input to an additional
wavelet transform, allowing for a hierarchical decomposition of the signal. This approach is known as
Multiresolution Analysis and is discussed in more detail in Chapter 7.

11.2.4 Vanishing Moments
Vanishing moments are a fundamental concept in wavelet theory that play a significant role in signal analysis
and processing. This property is closely related to the ability of a wavelet to filter out polynomial trends in a
signal. The nth moment of a wavelet ψ is defined as the integral of the function multiplied by a polynomial
of order n:

Mn(ψ) =
∫ ∞
−∞

p(t) · ψ(t) dt, (11.5)

where p(t) represents a polynomial of order n. When this moment equals zero, it signifies that ψ is
orthogonal to polynomials of order n. In other words, the wavelet can effectively filter out polynomial
trends of order n from the signal. The number of vanishing moments possessed by a wavelet determines the
maximum order of polynomials that can be filtered out.

A wavelet with n vanishing moments satisfies the following condition:∫ ∞
−∞

p(t) · ψ(t) dt = 0, for k = 0, 1, . . . , n− 1. (11.6)

For example, a wavelet with one vanishing moment can effectively remove constant components, while a
wavelet with two vanishing moments can eliminate linear trends. When a signal contains polynomial compo-
nents, the wavelet transform generates null detail coefficients, which can be discarded during reconstruction.
This enables the analysis to focus on the remaining non-polynomial features, such as abrupt changes, edges,
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textures, or singularities. In the context of data compression, which is our primary application, the vanishing
moments property allows to effectively filter out polynomial trends, leading to more efficient representation
of the signal. In principle, reaching higher orders of vanishing moments comes with a higher computational
cost. It is, therefore, essential to weigh the benefits of filtering out higher-order polynomial trends against
the computational complexity of the wavelet transform.

11.2.5 Mass Conservation
Throughout this work, we have emphasized the importance of mass conservation in the context of wavelet
transforms. In general, the wavelet theory focuses on the conservation of signal energy, ensuring that the
total energy of the signal is preserved during the wavelet decomposition and reconstruction. It is defined as
follows: ∑

i

|αi|2 =
∑
i

|βi|2 , (11.7)

However, this property is not particularly relevant for our purposes. What is relevant for our work is the
conservativeness of the overall scheme. This property is crucial in most numerical schemes that are based
on physical phenomena, as it ensures that the total mass of the system is preserved and is often required for
the stability of the scheme.

Depending on the shape of the wavelet, the mass conservation property can be expressed in different
ways. For the LGT 5/3 wavelets we built in Section 7.2.3, the mass conservation property is given by
equation 7.17. This equation sums all the wavelet coefficients apart from the first and last ones, which are
halved. Figure 11.3 provides a visual interpretation of this formula. The reason is basically that the first
and last wavelets are only half within the interval, and therefore, only half of their mass is considered in the
sum. Since the wavelets associated with the detail coefficients have a vanishing integral, the wavelet scheme
is conservative whatever change we make to the detail coefficients.

x

f(x)

f within the interval Interval borders
f out of the interval First and last wavelets
f approximated Approximated mass

Figure 11.3: Visual interpretation of the trapezoidal quadrature formula. For clarity, only the first and last
wavelets are represented as red dotted lines. The function f is depicted by the blue curve. It is approximated
by the sum of five wavelets (red line) on an interval (black dashed line). Notably, only half of the mass of the
first and last wavelets lies within the interval, leading to their halved weights in the trapezoidal quadrature
formula Equation 7.17.
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11.3 Wavelet Transform and Mass Conservation

11.3.1 Results for the CDF 9/7 and Haar wavelets

This section completes the results provided in Chapter 7 by providing the same results as in Section 7.3.2 but
for the CDF 9/7 and lifted Haar wavelets (Section 7.3.2 only presented the results for the LGT5/3 wavelets).
Table 11.7 and Table 11.8 present the results for the CDF 9/7 wavelets, while Table 11.9 and Table 11.10
present the results for the lifted Haar wavelets.

Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 7.22 1.29 1.29 3.11e−15 2.22e−16 6.22e−15

0.0001 7.22 1.29 0.40 6.44e−15 −8.66e−15 1.37e−4

0.001 7.22 1.29 0.38 6.22e−15 9.77e−15 1.73e−3

0.01 7.22 1.29 0.34 3.11e−15 2.66e−15 1.91e−2

0.1 7.22 1.29 0.28 7.11e−15 1.33e−15 1.79e−1

1.0 7.22 1.29 0.23 7.11e−15 −3.22e−15 9.82e−1

all 7.22 1.29 0.23 5.55e−15 −3.22e−15 7.31e−1

random 7.22 1.29 6.74 2.22e−15 −5.77e−15 8.67

Table 11.7: Entropy and mass deviation for different thresholding methods on the first function, CDF9/7
wavelets, and hard thresholding.

Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 6.51 0.21 0.21 −2.22e−16 0 1.78e−15

0.0001 6.51 0.21 0.21 6.66e−16 −2.22e−16 1.08e−4

0.001 6.51 0.21 0.21 1.11e−15 0 1.37e−3

0.01 6.51 0.21 0.20 6.66e−16 −2.22e−16 9.02e−3

0.1 6.51 0.21 0.20 6.66e−16 0 1.31e−2

1.0 6.51 0.21 0.20 6.66e−16 0 1.31e−2

all 6.51 0.21 0.20 6.66e−16 0 1.31e−2

random 6.51 0.21 6.78 2.22e−16 2.22e−16 9.04

Table 11.8: Entropy and mass deviation for different thresholding methods on the second function, CDF9/7
wavelets, and hard thresholding.

Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 7.22 1.29 1.29 6.22e−15 6.88e−15 4.44e−15

0.0001 7.22 1.29 0.36 6.66e−15 −6.28e−7 1.52e−4

0.001 7.22 1.29 0.36 6.44e−15 −1.19e−6 1.56e−3

0.01 7.22 1.29 0.34 6.66e−15 2.17e−5 2.96e−2

0.1 7.22 1.29 0.28 4.22e−15 −7.13e−4 2.69e−1

1.0 7.22 1.29 0.23 6.88e−15 −6.78e−4 9.33e−1

all 7.22 1.29 0.23 6.88e−15 −6.78e−4 8.15e−1

random 7.22 1.29 6.75 4.88e−15 −4.65e−1 1.50e1

Table 11.9: Entropy and mass deviation for different thresholding methods on the first function, Haar
wavelets, and hard thresholding.
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Thresholding Entropy Relative error Max error
Before DWT After DWT After threshold eq. 7.38 eq. 7.39

none 6.51 0.23 0.23 0 0 1.55e−15

0.0001 6.51 0.23 0.23 2.22e−16 −5.48e−9 1.79e−4

0.001 6.51 0.23 0.22 0 −2.90e−9 2.26e−3

0.01 6.51 0.23 0.20 2.22e−16 8.08e−9 1.10e−2

0.1 6.51 0.23 0.19 2.22e−16 8.08e−9 2.15e−2

1.0 6.51 0.23 0.19 2.22e−16 8.08e−9 2.15e−2

all 6.51 0.23 0.19 2.22e−16 8.08e−9 2.15e−2

random 6.51 0.23 6.78 0 1.30e−3 1.44e1

Table 11.10: Entropy and mass deviation for different thresholding methods on the second function, Haar
wavelets, and hard thresholding.

The observations made for the LGT 5/3 wavelets can also be made for these results, but we can add
some additional comments. To conduct the same experiment for the lifter Haar wavelets, we had to resize
the grid to 1024× 1024, as the scheme requires a power of two (while the LGT 5/3 and CDF 9/7 wavelets
require a power of two plus one). While the two ways of summing (with of without the 1/2 on the borders)
are mass-conserving for the LGT 5/3 and CDF 9/7 wavelets, they are not for the Haar wavelets. We, hence,
observe experimentally both ways of summing are inherently different and that the LGT 5/3 and CDF 9/7
wavelets are coincidentally mass-conserving for both ways of summing. Finally, we observe that the Haar
wavelets are only mass-conserving whithout the 1/2 on the borders (equation 7.38).

11.3.2 Proof of mass conservation for the LGT 5/3 and CDF 9/7 wavelets
In the following, we provide a proof of mass conservation with regards to equation 7.38 for the LGT 5/3 and
CDF 9/7 wavelets. It should be noted that the mass conservation with regards to equation 7.39, is already
already achieved because the wavelet coefficients (equation 7.18) have been chosen specifically to ensure this
property. We rely on the following notations/assumptions:

• For the sake of simpliciy, we assume a size of N for the grid on all dimensions (the proof can easily be
adapted to any size);

• The wavelet transform is an application T from RN to RN ;

• The wavelet transform exactly preserves the border values:

T (v1) = v1 and T (vN ) = vN , (11.8)

where v is a vector of size N ;

• There exists an inverse wavelet transform T−1 that does not necessarily ensure T−1(T (v)) = v.

• The deviation of each value i of the wavelet transform is defined as

δi = T−1(T (v))i − vi; (11.9)

• The inverse transform ensures

T−1(v1) = v1 and T−1(vN ) = vN (11.10)

and
N∑
i=1

ωiδi = 0, (11.11)

which is derived from equation 7.39, with ωi is 1
2 for i = 1 and i = N and 1 otherwise;
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• The mass conservation, as defined in equation 7.38, is ensured if

N∑
i=1

δi = 0. (11.12)

The goal of the proofs is to show that the mass conservation as defined in equation 11.12 is ensured.

Proof of mass conservation for one dimension without 1/2 on the borders By combining equa-
tion 11.8 and equation 11.10, we know that

T−1(T (v))1 = v1 and T−1(T (v))N = vN . (11.13)

Hence, equation 11.9 can be rewritten as

δ1 = T−1(T (v))1 − v1 = v1 − v1 = 0 and δN = T−1(T (v))N − vN = vN − vN = 0. (11.14)

Equation 11.11 can, therefore, be rewritten without the borders:

N−1∑
i=2

δi = 0, (11.15)

notably without the ωi coefficients which are equal to 1 for i 6= 1 and i 6= N . We can add δ1 and δN , which
we showed are equal to 0 in equation 11.14:

δ1 +
N−1∑
i=2

δi + δN = 0, (11.16)

which can be rewritten as
N∑
i=1

δi = 0, (11.17)

which is the mass conservation as defined in equation 11.12.

Proof of mass conservation for multi-d without 1/2 on the borders We will now reason with
tensors of dimension d rather than vectors. The proof for d = 1 (with a vector) has been provided in the
previous paragraph. Let us assume that mass conservation (as defined in equation 11.12) is ensured for
d = d′ and show this implies mass conservation for d = d′ + 1.

Let v(d′) be a tensor of dimension d′ and let V (d′+1) be a tensor of dimension d′ + 1. This tensor V (d′+1)

can be viewed as a vector of tensors v(d′). We refer to each of the v(d′) tensors as a slice of V (d′+1). We
assumed that conservation holds for v(d′), i.e.,∑

i1,i2,...,id′

δi1,i2,...,id′ = 0. (11.18)

This property holds for each slice of V (d′+1).
As we stated in Section 7.3.1, the multi-dimensional wavelet transform can be described as a succes-

sive application of one-dimensional wavelet transforms along each dimension. In our case, this means an
application along the first dimension, followed by an application along the second dimension, and so on
up to the d′-th dimension. The addition of the (d′ + 1)-th dimension involves performing the last wavelet
transform on each line of the d′ + 1-th dimension, which lets apply the same reasoning as in equation 11.13
and equation 11.14, namely that since the borders of the (d′ + 1)-th dimension are preserved, they do not
contribute to the mass deviation:

δi1,i2,...,id′ ,1 = 0 and δi1,i2,...,id′ ,N = 0. (11.19)
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Then, by summing equation 11.18 for each slice of the (d′ + 1)-th dimension apart from the borders, we
obtain

N,N,...,N,N−1∑
i1=1,i2=1,...,id′=1,id′+1=2

δbeforei1,i2,...,id′ ,id′+1
= 0, (11.20)

where δbeforei1,i2,...,id′ ,id′+1
is the deviation before the last wavelet transform. After applying the last wavelet

transform along the (d′ + 1)-th dimension, the sum of the masses does not change. This is because the
same arguments as in equation 11.15 (one-dimensional case) can be applied to each line of the (d′ + 1)-th
dimension. We can, hence, write

N,N,...,N,N−1∑
i1=1,i2=1,...,id′=1,id′+1=2

δi1,i2,...,id′ ,id′+1 = 0, (11.21)

where δi1,i2,...,id′ ,id′+1 is the deviation after the last wavelet transform.
Finally, by summing equation 11.19 and equation 11.21, we obtain

N,N,...,N,N∑
i1=1,i2=1,...,id′=1,id′+1=1

δi1,i2,...,id′ ,id′+1 = 0, (11.22)

which is the mass conservation as defined in equation 11.12 extended to multi-dimensional tensors.

In conclusion, we have shown that the mass conservation as defined in equation 11.12 is ensured for our
implementation of the LGT 5/3 and CDF 9/7 wavelets. The key to this result is the exact preservation
of the first and last value of the wavelet transform. Hence, more generally, we can state that any border-
preserving wavelet transform that ensures mass conservation as defined in equation 11.11 will also ensure
mass conservation as defined in equation 11.12. The lifted Haar wavelets that we used do not ensure border
preservation, which is why we observe experimentally that the ponderation given to the border values does
have an impact on the mass conservation (see tables 11.9 and 11.10).
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11.4 Using machine learning for symbolic regression
In this section, we delve into a collaborative work that has been submitted at the CEMRACS 2023 edition.
The team members that contributed to this work are Camilla Fiorini, Clément Flint, Louis Fostier, Emmanuel
Franck, Reyhaneh Hashemi, Victor Michel-Dansac, and Wassim Tenachi. In this work, we explored the use
of machine learning techniques for symbolic regression, focusing on the Sparse Identification of Nonlinear
Dynamical Systems (SINDy) framework. The collective goal was to correctly identify governing equations
from data, with a particular emphasis on complex systems that are challenging to describe analytically. In
that regard, the SINDy framework appeared as a promising approach, leveraging sparse regression to identify
symbolic expressions from data.

My personal interest in this work is slightly different from the main focus of the project. As a computer
scientist, I immediately identified the potential of machine learning techniques for floating-point optimiza-
tions. In high-performance applications, a frequent bottleneck is the computing power, usually limited by the
floating-point operations. Some routines are known to be relatively slow, such as the exponential function,
the logarithm, or the square root. More broadly, the results of some functions are difficult to compute due
to the lack of simple mathematical expressions. We can think of the Bessel functions, the hypergeometric
functions, or the elliptic integrals. The natural approach to implement these functions is to rely on numerical
methods, such as the Taylor series, the Chebyshev polynomials, or Newton-Raphson iterations. To optimize
these computations, classical approaches include the use of look-up tables or polynomial approximations.

This is where machine learning can bring a new perspective. By training a model on a set of inputs
and outputs, we can approximate the function with a neural network. We have realized that some complex
functions can be automatically approximated with simple expressions thanks to gradient-based optimization.
While this work has not been extended to floating-point optimizations yet, it is a promising direction that I
am eager to explore in the future.

This section is structured as follows. First, we provide an overview of symbolic regression and the SINDy
framework. Then, we introduce the Nested SINDy approach, which aims to increase the expressivity of the
SINDy framework through a nested structure. We present the results of our study, demonstrating the ability
of Nested SINDy to accurately find symbolic expressions for simple systems and sparse analytical represen-
tations for more complex systems. Finally, we discuss the challenges encountered during the optimization
process and suggest future research directions to enhance the methodology.

11.4.1 Symbolic regression
Symbolic regression (SR) consists in the inference of a free-form symbolic analytical function f : Rn1 −→ Rn2

that fits y = f(x) given data (x,y). It is distinct from regular numerical optimization procedures in
that it consists in a search in the space of functional forms themselves by optimizing the arrangement of
mathematical symbols (e.g., +, −, ×, /, sin, cos, exp, log, . . . ).

The rationale for employing SR can be broadly categorized into the following three core objectives.

1. SR can be used to produce models in the form of compact analytical expressions that are interpretable
and intelligible. This objective is particularly vital in natural sciences, such as physics [295], where the
capacity to explain phenomena is equally valuable as predictive prowess. This is typically probed by
assessing the capability of a system to recover the exact symbolic functional form from its associated
data. However, one should note that many SR approaches excelling in this metric are often bested in fit
accuracy when exact symbolic recovery is unsuccessful [141]. In other contexts where the compactness
and inherent intelligibility of expressions may not be as critical, significantly longer but more robustly
accurate expressions (> 103 mathematical symbols) are desirable as SR still offers key advantages in
such scenarios.

2. SR demonstrates the advantage of producing models that frequently exhibit superior generalization
properties when compared to neural networks [225, 127, 128, 291, 277].

3. Another noteworthy advantage is the ability to create models that demand significantly fewer com-
putational resources than extensive numerical models like neural networks. This efficiency becomes
especially relevant in multi-query scenarios such as control loops [128, 277], optimization or uncertainty
quantification, where models must be executed frequently, and thus computational efficiency is crucial.
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SR has traditionally been approached through genetic programming, where a population of candidate
mathematical expressions undergoes iterative refinement using operations inspired by natural evolution, such
as natural selection, crossover, and mutation. This approach includes well-known tools like Eureqa software
[237, 238], as well as more recent developments [285, 286, 253, 135]. Additionally, SR has been explored using
a diverse array of probabilistic methods [27, 55, 125, 172, 270]. For recent SR reviews, refer to [141, 174, 16].

The rise of neural networks and auto-differentiation1 has spurred significant efforts to incorporate these
techniques into SR, challenging the dominance of Eureqa-like approaches [141, 180, 177]. Numerous methods
for integrating neural networks into SR have been developed, ranging from advanced problem simplification
schemes [276, 275] to end-to-end supervised symbolic regression approaches in which neural networks are
trained in a supervised manner to map datasets to their corresponding symbolic functions [127, 39, 116,
40, 284, 144, 81, 183, 160, 161, 68]. Unsupervised approaches also exist, where recurrent neural networks
are trained through trial-and-error using reinforcement learning to generate analytical expressions that fit a
given dataset [207, 147, 146, 159, 307, 94, 112, 268, 186]. Furthermore, it should be noted that it has been a
major focus of the SR community to facilitate the incorporation of prior knowledge to constrain the search for
functional forms by leveraging domain-specific knowledge [262, 263, 264, 26, 208, 107, 132, 54, 184] and that
SINDy-like frameworks as the one proposed here can accommodate such prior knowledge, as demonstrated
in works like [211].

Supervised approaches offer rapid inference but lack a self-correction mechanism. If the generated ex-
pression is suboptimal, there are little means of correction. In contrast, unsupervised approaches enable
iterative correction based on fit quality. However, they often rely on reinforcement learning frameworks to
approximate gradients because direct optimization using auto-differentiation is infeasible due to the discrete
nature of the problem, which involves discrete symbolic choices.

However, other unsupervised methods include neuro-symbolic approaches, wherein mathematical symbols
are integrated into neural network frameworks. The goal being to sparsely fit the neural network to enable
interpretability, generalization or even recover a compact mathematical expression. Prominent examples
include SINDy [60], which is central to this study, and others such as [179, 244, 225, 282, 133, 203, 202].

SINDy-like approaches are the only type of unsupervised techniques capable of directly utilizing gradients
from data to iteratively refine function expressions as they effectively render the discrete symbolic optimiza-
tion problem continuous. Moreover, SINDy-like frameworks possess the advantage of being well-suited for
exact symbolic recovery by enabling the creation of concise, intelligible analytical expressions through the
promotion of sparse symbolic representations while yielding highly accurate and general expressions when
exact symbolic recovery is unsuccessful or impossible. However, a limitation of the current SINDy frame-
work is its inability to handle nested symbolic functions, which often results in suboptimal performances,
especially in more complex problems as evidenced by comparative benchmarks (see for instance [262]). This
is the primary motivation for our study, where we introduce a Nested SINDy approach.

11.4.2 The SINDy paradigm
In this section, we present the traditional SINDy approach, as introduced in [60].

Principle of the SINDy method

The Sparse Identification of Nonlinear Dynamical Systems (SINDy) approach extends previous work in SR,
introducing innovations in sparse regression. The SINDy approach seeks to deduce the governing equations
of a nonlinear dynamical system directly from observational data, doing so in a concise and sparse way. It
is based on the essential assumption that these governing equations can be succinctly expressed by only a
few significant terms, resulting in a sparse representation within the space of potential functions [60].

More specifically, the SINDy approach involves approximating a target function through a linear com-
bination of (potentially nonlinear) basis functions, contained in a so-called library or dictionary F . For
instance, F might include constant, polynomial, or trigonometric functions:

F =
{

x 7→ 1, x 7→ x, x 7→ x2, x 7→ x4, . . .
x 7→ sin(x), x 7→ cos(x), x 7→ sin(2x), x 7→ cos(πx), . . .

}
. (11.23)

1Leveraging the capabilities of deep learning libraries to meticulously track gradients associated with a set of parameters in
relation to a numerical process, regardless of its intricacy.
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In order to achieve expressiveness in the SINDy method, a large number of basis functions are selected.
This extensive selection, however, poses a risk to interpretability, which is mitigated by imposing a sparsity
constraint on the coefficients of the linear combination, as will be detailed in the subsequent section.

The SINDy method offers several key advantages. First, it utilizes underlying convex optimization algo-
rithms, which ensures its applicability to large-scale problems [60]. Additionally, the method inherently leads
to a sparse representation of the system. This sparsity generally results in a model that is more interpretable
and generalizable compared to denser models. Unlike the Dynamic Mode Decomposition (DMD) approach,
which requires prior assumptions about the structure of the system [223], SINDy automatically identifies
relevant terms in the dynamical system using gradient descent, without such assumptions.

Despite these benefits, the method is not without limitations. The choice of the library F is crucial
and requires a priori knowledge of the system. For instance, if the target function is a composition or a
multiplication of simple functions, the SINDy approach will fail to identify the correct expression unless this
specific composition/multiplication is in F . Furthermore, the training process to determine which functions
to retain in the dictionary is notably more sensitive to initial conditions than in other approaches.

The upcoming section aims to establish the mathematical framework and main notation associated with
the SINDy method, which will be used to introduce the Nested SINDy approach.

Mathematical framework and notation

For the sake of simplicity, we present the method in the case where the target function is from R to R, but
the approach can be extended to functions from Rn to Rm.

Given the data (xi, yi)i=1,...,N , we aim to find a function f such that f(xi) ≈ yi (which is nothing but a
regression problem) using the SINDy approach.

Let F = {f1, . . . , fl} be the aforementioned dictionary of basis functions. For instance, it could be the
one given by Equation 11.23. We denote by L(F) = Span(F) the set of linear combinations of these basis
functions, defined by

f ∈ L(F) ⇐⇒ ∃θ ∈ Rl such that f =
l∑
i=1

θifi. (11.24)

The regression problem can then be formulated as the following least squares problem:

min
f∈L(F)

‖Y − f(X)‖22,

where X = (x1, . . . , xN )T and Y = (y1, . . . , yN )T . This problem can itself be reformulated in matrix form,
using the definition of the vector space L(F):

min
θ∈Rl
‖Y − F(X)θ‖22 (11.25)

where F(X) = (fj(xi))i,j ∈MN,l(R).
Numerous algorithms exist to solve this problem while promoting sparsity. Without being exhaustive,

notable methods include the standard STLSQ (sequentially thresholded least squares) and the LARS (least-
angle regression) methods. Another approach involves adding a regularization term on the coefficients of
the linear combination to favor sparsity. The most popular is Lasso regularization, but others exist (SR3,
SCAD, MCP, . . . ). In this work, we focus on the Lasso approach. Introducing a Lasso regularization term
to promote sparsity, the optimization problem for the SINDy approach becomes, instead of Equation 11.25:

min
θ∈Rl
‖Y − F(X)θ‖22 + λ‖θ‖1, (11.26)

where λ > 0 is a hyperparameter, to be manually set when using the method. The values of λ will be reported
when using the method in the following sections. Specialized optimization algorithms, such as ADMM
(alternating direction method of multipliers), are effective in solving regression problems with regularization.
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11.4.3 The Nested SINDy approach
As mentioned in Section 11.4.2, one of the main limitations of the SINDy approach is the choice of the
nonlinear basis functions populating the dictionary F . For instance, if the unknown function happens to
be a composition or a multiplication of simple functions, we cannot find the correct expression unless this
specific composition/multiplication is in F . In this paper, we aim at relaxing this constraint by introducing
a way of multiplying and composing simple functions, without having to manually add these compositions
functions to the dictionary.

In the same spirit as the approach investigated in [179, 225], we will enlarge the set L(F). We will
proceed by analogy with a standard approach in machine learning, which involves considering models with
multi-layer neural networks rather than a single broad layer. Here, instead of considering a single layer of
nonlinear functions, we explore an augmented architecture, consisting of several such layers. We will refer
to this approach as Nested SINDy.

The cost to bear is the increased complexity of the optimization landscape. Indeed, the optimization
problem, used to be the linear least squares problem given by Equation 11.26. Now, it becomes a nonlinear
problem, since the matrix F(X) is replaced with a composition of nonlinear functions. The new optimization
problem (still with Lasso regularization) is formulated as follows:

min
θ

1
2‖y −N (x, θ)‖22 + λ‖θ‖1,

where N denotes our nested model, parameterized by θ. Consequently, the resolution of this nonlinear
optimization problem may be significantly more challenging than the original convex optimization problem.

The method then primarily depends on the choice of the architecture N . The goal is to introduce new
layers that achieve favorable trade-offs between expressivity and optimization complexity. In this work, we
propose two architectures, which are described in the following sections: the PR model (in Section 11.4.3)
and the PRP model (in Section 11.4.3). For the sake of clarity, we will refer to the basic SINDy layer, given
by a projection onto L(F) (Equation 11.24), as the radial layer.

The PR Model

The PR (Polynomial-Radial) model augments the basic SINDy framework by introducing a polynomial layer
that operates before the usual SINDy radial layer. This layer constructs a variety of monomials from the
input variable x, represented as follows:

fpoly(x) =
d∑
i=0

ωix
i, (11.27)

where d represents the maximum allowed polynomial degree and ωi are the weights. Note that ω0 is the
constant part of the layer, which corresponds to the bias in traditional neural networks. For inputs with
multiple variables, the layer extends to a multivariate polynomial, facilitating complex combinations of the
variables. For example, with two variables x and y, we obtain

fpoly(x, y) =
d∑
i=0

d∑
j=0

ωi,jx
iyj , (11.28)

with ω0,0 acting as the constant term of the polynomial, effectively substituting the bias. Another choice is
to limit the sum over i+ j to a maximum value d to reduce the number of terms in the polynomial, and thus
obtain bivariate polynomials up to degree d.

As an example, for one input variable, if F = {sin, cos} and d = 2, then the PR model can learn all
functions with expression

λ cos(a1 + b1x+ c1x
2) + µ sin(a2 + b2x+ c2x

2).

This is way more expressive than standard SINDy, where functions such as x 7→ cos(2x) or x 7→ sin(1 + x2)
would have to be manually added to the dictionary.
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This PR layer can also be seen as a pure polynomial layer combined with a linear layer. We, hence,
consider the PR model to have four layers: a polynomial layer, a linear layer, a radial layer, and a final
linear layer. The last two layers are identical to the standard SINDy model, while the first two layers are
new additions. Figure 11.4 illustrates this structure.
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y2

output

Input Polynomial Linear Radial Output

Figure 11.4: Structure of the PR model for d = 2 and 2 input variables.

The full expression of the model is:

fθ,PR(x) =
l∑

j=1
cjfj

(
d∑
i=0

ωi,jx
i

)
+B, (11.29)

where θ includes all the trainable parameters of the model. The functions fj are derived from the specified
function set F , while ωi,j are the weights of the polynomial layer, and cj and B are the weights and bias of
the final linear layer, respectively. The parameters ωi,j now depend on j since they are in the j-th radial
layer. It is important to note that the radial and polynomial layers are not associated with any adjustable
parameters.

The main advantage of the PR model is its enhanced expressivity, which facilitates the creation of linear
combinations both before and after the radial layer. The polynomial layer allows the model to identify more
complex functions and to integrate various inputs effectively in the case of multivariate data. Compared
with the traditional SINDy approach, the model benefits from a reduced need for an extensive dictionary
because it is capable of discovering linear combinations of the functions contained within the dictionary.
Observations from our experiments suggest that the training process of the model is capable of converging
to correct solutions even for non-trivial problems. This will be highlighted in Section 11.4.5.

The PRP Model

The PRP (Polynomial-Radial-Polynomial) model enhances the PR model by introducing an additional poly-
nomial layer following the radial layer. This structure significantly improves the ability of the model to
represent complex interactions within datasets. For example, the PRP model can express the function
f(x) = arctan(x) · sin(x), (assuming arctangent and sine are in the dictionary), while the PR model cannot,
as it is not a linear combination of the functions contained within the dictionary. In the PRP model, the
outputs of the radial layer are first processed through a linear layer. This linear layer, typically fixed in size
(set to 2 in our experiments), serves as an intermediate stage, transforming the outputs of the radial layer
into a new set of variables. These variables are then fed into a subsequent polynomial layer, which allows
for the formation of various monomial combinations of the outputs of the linear layers, such as squaring or
multiplying them.

The mathematical expression of the PRP model is given as:

fθ,PRP(x) =
∑

1≤|i|≤d

ωPRi1,i2,...,ilfθ1,PR(x)i1fθ2,PR(x)i2 . . . fθl,PR(x)il +B′, (11.30)
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where |i| = i1 + i2 + . . .+ il is the length of the multi-index (i1, . . . , il), θ includes all the trainable parameters
of the model, ωPRi1,i2,...,il are the weights of the final linear layer, B′ is the bias of the final linear layer, l is
the size of the output chosen for the intermediate linear layer (set to 2 in our experiments), and fθ1,PR(x),
fθ2,PR(x), . . . , fθl,PR(x) correspond to the output of the PR model given in Equation 11.29. The coefficients
θ1, θ2, . . . , θl correspond to the parameters of the PR models, which are the same as θ, except for the weights
of the final linear layer (cj and B in Equation 11.29). Figure 11.5 shows a graphical representation of this
model.
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Figure 11.5: Structure of the PRP model for l = 2, d = 2, and 2 input dimensions.

The addition of a second polynomial layer in the PRP model markedly increases the expressivity of the
model. It enables the model to capture more intricate relationships in the data, particularly beneficial for
complex datasets where simpler models may fall short. Therefore, the PRP model is especially good at
handling datasets with intricate variable interactions.

In summary, the PRP model, with its dual polynomial layers, offers a sophisticated extension of the
SINDy approach. It provides a powerful framework for modeling complex systems, capable of capturing
higher-order interactions and nonlinear relationships inherent in the data.

Downsides of the Nested SINDy approach

The Nested SINDy approach complexifies the optimization landscape, which destabilizes the training process.
We can reasonably assume that the addition of linear layers creates local minima because of their composition
with the nonlinear layers. Moreover, it adds a substantial amount of trainable parameters. This is because
the number of parameters in the linear layers is quadratic, whereas those in the SINDy approach grow
linearly with the number of functions in the dictionary. This deviates from the original SINDy approach,
which is oriented towards function discovery, and assumes that the dictionary can become arbitrarily large.
In the Nested SINDy approach, the number of functions in the dictionary should remain relatively small to
avoid an explosion in the learning time. The next section addresses some training-related issues.

11.4.4 Training the nested SINDy model
We experimented and combined various strategies to best overcome challenges associated with nonlinear
optimization. These strategies are given below, where we mention how we actually used them for training.
Values of the hyperparameters introduced in this section will be given in Section 11.4.5.

Adding a regularization term to enforce sparsity

In our framework, the Lasso regularization term is added to the loss function to enforce sparsity in the
model. We have tested different strategies to adapt the Lasso coefficient during training:

• A constant Lasso parameter throughout the training, which is the standard approach;
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• A varying Lasso coefficient, initially set to zero for the early epochs, and then taken oscillating around
some constant value, depending on the epoch. The intuition of this idea is that "shaking" the learning
landscape helps to go out of local minima, in a direction that is still relevant to one of the two objectives
(sparsity versus MSE);

• We also tried selecting neuron-dependent Lasso coefficients to promote specific functions or layers over
others in the radial layer.

However, the approach that gave the most consistent results across the tested cases was to change the weight
of the Lasso coefficient throughout the learning process. In the experiments, the Lasso coefficient is given by

λ(epoch) = λ0 · (1 + 0.4 · sin(epoch/10)),

where λ0 is the initial Lasso coefficient, and where the sine function is used to oscillate the coefficient between
0.6λ0 and 1.4λ0.

Pruning to enforce sparsity

To enhance model sparsity, a complementary approach to Lasso regularization is to prune the neural network
during training, reducing the number of parameters. In order to prune the neural network, we remove a
parameter θi from the set of parameters (θi)i if the following two conditions are met:

• The mean squared error is below a predefined threshold value MSEprune, and

• |θ| is below a threshold value εprune for a given number of epochs nprune.

Choosing the optimization algorithm

We tested training our network with fairly standard optimization algorithms implemented in PyTorch but
not specifically tailored to our problem: Adam, SGD, LBFGS. For instance, LBFGS [310] is uncommon in
neural network training, as it was designed for optimizing constants in equations. However, it works well in
our case, which is understandable given that our approach is close to classical regression problems. Moreover,
it would be interesting to implement a more specific optimization algorithm that takes into account the form
of our objective function (mean squared error plus regularization term), such as an ADMM (Alternating
Direction Method of Multipliers) algorithm coupled with a standard PyTorch optimizer. Another promising
avenue for SINDy-like approaches is the basin-hopping algorithm which combines LBFGS with global search
techniques in order to avoid local minima as proposed in [244].

Adding noise to the gradient of the loss function

During a training step, we can add random noise to the gradient just before updating weights. This can be
done at each training step, or only when the loss function does not vary sufficiently, e.g. when stuck in a
local minimum.

The noise amplitude has to be well-tuned. It depends on the learning rate lr of the optimizer, the values
of the parameters θ, and on the actual mean squared error LMSE:

∇θL← ∇θL+ ε(lr, LMSE, θ).

By making learning process less deterministic, we hope to more easily escape local minima. In the same
spirit, we could also directly add noise to the parameters when the loss function is stuck in a local minimum.

Initializing the network parameters

The training process is very sensitive to the weight initialization, given the presence of multiple local minima
in the objective function. For the moment, we have used a random normal initialization for the initial
parameters of the network. To allow reproducibility, we rely on a fixed seed for the random number generator.

For the tested cases, this approach was sufficient, as attempting a limited number of training runs with
different initializations was enough to find a good solution. However, for more complex problems, it would
be interesting to implement a more sophisticated initialization strategy, for instance, by using reinforcement
learning to discover important parameters and guide the initialization process accordingly.
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11.4.5 Application to function discovery
In this work, we only consider function discovery. However, it is important to note that the nested SINDy
approach can be extended to several other problems. In the following sections, we present four test cases, of
increasing complexity.

Case 1: trigonometric function involving composition using the PR block

In Section 11.4.2, we recalled that the standard SINDy method encounters difficulties when the target is
a function defined as the composition of several simpler functions, unless that specific composite function
is included in the dictionary. To demonstrate the capability of the proposed PR nested SINDy method in
such cases, the function f(x) = cos(x2) is considered over the interval [0, 3]. With a dataset comprising 104

data points and utilizing a single input dimension, the PR-nested SINDy model attempts to replicate this
function.

The architecture of the model is the PR model described in Section 11.4.3, with a maximum polynomial
degree of 2 (in this case: x2). The used dictionary of functions is:

F =
{
x 7→ x, x 7→ x2, arctan, sin, cos, exp, x 7→ log(|x|+ 10−5), x 7→ 1

1 + x2

}
.

We use a Lasso regularization coefficient of 0.1, a batch size of 1 000, and a pruning threshold of 10−3.
The computations are performed on a CPU and all launched training eventually converged to an equivalent
expression of the target function cos(x2). The training we use as a reference is shown in Figure 11.6
and converged to the expression −0.985 cos(x2 + 3.13). This expression is close to −1 cos(x2 + π), which
equivalent to cos(x2). It is worth noting that the final expression can be further trained with a classical
regression method to obtain a more accurate result.

In this example, the PR model successfully learns a composition of a function that is in the dictionary
(cosine) with a polynomial function (that appears in the polynomial layer). Since the exact formula has
been found, the generalization of the model is excellent. However, the learned function closely matches the
structure of the model, since it conveniently includes the composition of a polynomial and a cosine function.
In the next section, we attempt to learn the same function, but with an additional polynomial layer (PRP
model). As the added polynomial layer is unnecessary, it will show that our example does not heavily rely
on the structure of the model.

Case 2: trigonometric function involving composition using the PRP block

To further illustrate the capabilities of the introduced PRP-nested SINDy method, the same function f(x) =
cos(x2), considered over the interval [0, 3], is examined. This time, we employ a dataset comprising 1 000
data points and a single input dimension, the PRP-nested SINDy model is tasked with replicating this
function. The reason for using a smaller dataset is that that the added polynomial layer in the PRP model
significantly slows down the training process, due to the increased number of parameters.

The structure of the model is the PRP model described in Section 11.4.3, with a maximum polynomial
degree of 2 and l = 2, i.e., two intermediate variables after the radial layer. The used dictionary is the
following:

F =
{
x 7→ x, x 7→ x2, arctan, sin, cos, exp, x 7→

√
x, x 7→ e−x

2
, x 7→ log(1 + ex)

}
.

For this experiment, we use a Lasso regularization coefficient of 10−3, a batch size of 1 000, and a pruning
threshold of 0.05. This time, few training runs converged to the exact expression of the target function.
Approximately 1 out of 10 runs converged to an expression equivalent to the target function, while the
others converged to sparse, but incorrect, expressions. As a showcase, let us focus on a run that converged
to the expression sin(x2 + 1.57). This expression is close to sin(x2 + π/2), which is equivalent to cos(x2).
Figure 11.7 shows the comparison between the learned function and the target function.
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(a) Epoch 50: early model predictions versus target func-
tion, illustrating the initial learning phase.

(b) Epoch 100: model predictions show improved align-
ment with the target function as learning progresses.

(c) Epoch 150: further refined predictions, with the model
beginning to capture periodicity of the target function.

(d) Epoch 250: near-convergent model predictions closely
matching the target function.

Figure 11.6: Evolution of the learned function over successive training epochs. Each subfigure represents the
predictions of the model (in blue) against the target function (in orange) at epochs 50, 100, 150, and 250,
showcasing the progressive learning of the model and convergence towards the target function. We observe
that the first epochs learn on the interval [0, 3], while subsequent epochs are able to generalize.
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Figure 11.7: Comparison of the results from the PRP model (sin(x2+1.57)) with the target function (cos(x2))
over the interval [0, 3].

This test case demonstrates that cos(x2) can be learned both with the PR and PRP models. It is not
clear why the PRP model is less likely to converge to the exact expression. Our interpretation is that the
added polynomial layer in the PRP slows down the training process (both in terms of computation time and
numerical convergence), which increases the average required time to converge to the correct expression. It
could also be due to the fact that this additional layer make the problem "less convex" and, hence, less likely
to converge to the exact expression.

In the next test case, we consider a more complex 2D function, which involves the multiplication of two
trigonometric functions.

Case 3: Trigonometric Function Multiplication using the PRP Block

The following test case involves learning the two-dimensional function (x, y) 7→ 2 sin(x) cos(y) over the space
domain [−2, 2]2 using the PRP model. This example is particularly interesting as it highlights ability of our
approach to learn complex functions involving the multiplication of simple functions, whose product is not
included in the dictionary. It demonstrates an increase of expressivity compared to the SINDy approach,
which would not be capable of learning this function unless the product of sine and cosine functions was
explicitly included in the dictionary.

The used model is the same as the PRP model used in the previous test case, apart from the fact that
the input dimension is now two and the dictionary of functions is extended to include the following:

F =


x 7→

√
|x|+ 10−5, x 7→ x, sin, cos, tanh,

exp, x 7→ 1
1 + x2 , x 7→ log(|x|+ 10−5), x 7→ exp

(
1

1 + x2

)
, x 7→ log(1 + ex)

 .

This time, we were unable to find the exact expression of the target function. The sparsest expression
found is given by:

−0.77
(
1− 0.612 sin

(
0.032x2 − 0.162xy + 0.998x+ 0.035y2 − y − 0.14

))2+
2.01 (cos (0.039xy − 0.499x− 0.497y + 0.809))2 , (11.31)

corresponding to a sparsity of 43.75% (14 nonzero coefficients out of the original 32 parameters). A compar-
ison of this function with the target function is illustrated in Figure 11.8. The mean squared error (MSE)
between the target function and its approximation is 5.69× 10−2.
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(a) True model (2 sin(x) cos(y)) (b) Predicted model

Figure 11.8: Comparison of the true and predicted models: a visual representation of the target function
2 sin(x) cos(y) and its learned approximation by the PRP model over the specified domain.

It is worth underlining that the small coefficients in the formula are not negligible. For instance, removing
the term 0.039xy from the formula increases the MSE to 2.11× 10−1.

This example demonstrates the ability of our approach to find sparse expressions for data where the exact
function cannot be found. This is promising for real-world applications where the exact function is unknown
or too complex to be found. In the next test case, we aim to provide a concrete example where finding the
exact function is impossible and assess the relevance of our approach compared to existing methods.

Case 4: Perimeter of an ellipse

Calculating the perimeter of an ellipse is a well-studied topic for which the solution cannot be expressed in
terms of elementary functions. Let us first define an ellipse as the set of points (x, y) such that:

x2

a2 + y2

b2
= 1, (11.32)

which can be described with the parametric equations:{
x = a cos(θ),
y = b sin(θ).

(11.33)

The perimeter of an ellipse can then be expressed as:

P (a, b) = 4
∫ π

2

0

√
a2 cos2(θ) + b2 sin2(θ) dθ, (11.34)

because the differential arc length of our parametric equation is ds = −
√

((−a sin(θ))2 + (b cos(θ))2)dθ
and the four quadrants have the same length. Several approximations are known to approach the perimeter
of an ellipse, such as the one proposed by Ramanujan:

P (a, b) ≈ π(3(a+ b)−
√

(3a+ b)(a+ 3b)). (11.35)

Since any rescaled ellipse remains an ellipse, we assume without loss of generality that b = 1 for the rest
of this experiment. To assess the relevance of our Nested SINDy technique, we will compare its performance
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against the two reference solutions: Ramanujan’s approximation, and a linear interpolation between the two
endpoints of the interval [1, 30]. Indeed, using a linear interpolation makes sense for large values of a, since
P is equivalent to 4a when a→∞, as can be seen by inspecting Equation 11.34.

To find formulas that approximate the perimeter of an ellipse, we train two PRP models. The first one is
trained on the interval [1, 5] and the second one on the interval [1, 25]. We run 50 learning sessions for each
model and keep the model with the shortest associated formula. In its best run, the first model converged
to a basic quadratic polynomial:

Pquadratic(a) = 0.061(a+ 0.544)2 + 3.28a+ 2.72. (11.36)

However, other relatively sparse solutions were found, such as a model with 9 nonzero parameters:

P1(a) = 1.65a+ 0.553(0.485a+ 0.135 log(0.817|a2|) + 1)2 + 0.459 log(0.817|a2|) + 3.4, (11.37)

or one with 15 nonzero parameters:

P2(a) = 0.535a+ 0.966(0.394a+ 0.721 arctan(0.278a2 + 0.393) + 1
+ 0.111 exp(−0.063a4))2 + 0.978 arctan(0.278a2 + 0.393) + 1.36 + 0.15 exp(−0.063a4),

(11.38)

thus demonstrating the ability of the model to find a variety of approximations. The MSE obtained at the
end of the training are 2.26 × 10−3, 2.69 × 10−3, and 3.30 × 10−3 for the quadratic, P1, and P2 models,
respectively.

The second model converged to a more complex expression which is too long to be displayed here. In
this second model, 25 out of the 64 parameters are nonzero, corresponding to approximately 40% sparsity.
The MSE obtained at the end of the training is 1.97. This metric, as the previous ones, is biased because
the training is stopped at an arbitrary step and there is no final tuning step. We, hence, perform a final
tuning step, by writing the final expression of the model and performing a gradient descent to only minimize
the MSE. The later mentioned results include this final tuning step and show that the effective MSE can be
significantly reduced.

Figure 11.9: Relative error of the different approximations on the intervals [1, 5], [1, 25] and [1, 30]. The
closest approximations are denoted in bold.

We display the relative error of each approximation on different intervals in Figure 11.9. Table 11.11
reports the MSE of each approximation on the intervals [1, 5], [1, 25] and [1, 30]. Model 1 and model 2
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Table 11.11: Mean squared error of the different approximations on the intervals [1, 5], [1, 25] and [1, 30]

[1, 5] [1, 25] [1, 30]
Model 1 7.24× 10−4 1.05× 102 2.61× 102

Model 2 7.43× 10−3 3.66× 10−3 2.73× 10−1

Ramanujan 2.78× 10−6 9.84× 10−3 1.82× 10−2

Interpolation 4.70× 10−2 4.75× 10−1 5.46× 10−1

correspond to our two models (with model 1 corresponding to Equation 11.36), Ramanujan corresponds
to the approximation proposed by Ramanujan and Interpolation corresponds to the linear interpolation
between the two endpoints of the interval [1, 30]. The two models perform well on the interval they were
trained on. The first model performs better than the linear interpolation on [1, 5], but worse than the
Ramanujan approximation. The second model outperforms both the linear interpolation and the Ramanujan
approximation on [1, 25], but starts diverging on [1, 30].

Overall, this experiment provides insight into the ability of the Nested SINDy approach to discover an
approximation on a classical problem without knowledge other than the data points. It demonstrates that
this method can be used to discover an approximation of a complex function with little effort. The main
downside of this approach is the lack of guarantee regarding the convergence towards a sparse solution. The
initial choice of coefficients of the model appears to have a significant impact on the final solution.

11.4.6 Conclusion
In this study, we explored the capabilities and limitations of the Nested SINDy approach in discovering
symbolic representations of dynamical systems from data. Our investigation covered a range of test cases,
from simple trigonometric functions to more complex functions.

The Nested SINDy approach extends the original SINDy methodology by incorporating nested structures
and neural network architectures, allowing for the identification of complex symbolic expressions that are not
directly accessible to traditional methods. This capability is necessary in cases involving compositions and
multiplications of functions, where the Nested SINDy method accurately identifies symbolic representations
in simple cases, or finds sparse symbolic representations in more complex cases. Our results confirm that
Nested SINDy is a promising tool for symbolic regression and dynamical system discovery, with the potential
to uncover the underlying physics of complex systems from data.

Future work could focus on several areas to enhance the Nested SINDy framework. First, exploring
alternative optimization algorithms specifically designed for the unique challenges of nested symbolic regres-
sion could improve the efficiency and reliability of the method. Additionally, incorporating mechanisms for
automatic selection of the dictionary of basis functions based on preliminary data analysis might streamline
the model development process and improve the adaptability of the model for specific dynamical systems.
Furthermore, one could envision integrating a supervised learning component, as in [244], in which a model
is pre-trained to map the relationship between datasets and SINDy-like sparse patterns encoding analytical
expressions. This effectively enables the automatic formulation of high quality initial solutions that can then
be refined on a case-by-case basis.

For the moment, this work is not yet mature enough to be integrated into the research axes of this
thesis. However, it is evident that the approach used in this work has the potential to be a powerful tool
for floating-point optimization. In particular, finding sparse representations of complex functions could lead
to compact and efficient implementations of mathematical functions. We have several ideas to improve the
Nested SINDy approach and orient it towards floating-point optimization.



200 CHAPTER 11. APPENDIX



Chapter 12

French Summary

Cette thèse aborde les défis de l’optimisation des calculs de simulation de fluides sur des processeurs
graphiques (GPU) dans le cadre d’un environnement de calcul haute performance. L’accent est mis sur
la gestion sioux de la mémoire, qui est souvent un facteur limitant pour les simulations à grande échelle.
Dans le contexte actuel, la gestion de la mémoire est souvent mise de côté, en raison des capacités matérielles,
qui sont de plus en plus importantes. On suppose souvent que si les capacité mémoire du système sont dé-
passées, il suffit d’ajouter du matériel pour résoudre le problème.

Cependant, des défis pratiques sont souvent associés à l’ajout de matériel, tels que la consommation
d’énergie, le coût, la complexité de la configuration, et la maintenance. De plus, le fait de lancer de manière
abrupte un gros calcul sur un cluster crée souvent un goulot d’étranglement, car ce calcul réquisitionne d’un
seul coup toutes, ou une grande proportion des ressources disponibles. C’est paradoxal, car en général, les
clusters sont sous-utilisés, avec généralement moins de la moitié des processeurs actifs tandis que le reste
reste inactif. Ainsi, la recherche tend à s’orienter de plus en plus vers des approches qui ne se concentrent
pas uniquement sur le temps de calcul, mais également vers une utilisation plus judicieuse et équilibrée des
ressources de calcul.

Cette thèse s’inscrit dans ce courant de recherche, en proposant des approches novatrices pour l’optimisation
des calculs de simulation de fluides sur des processeurs graphiques. Notre objectif est de trouver des solutions
qui permettent de réduire l’empreinte mémoire des simulations de CFD, tout en maintenant des perfor-
mances élevées. En réduisant l’empreinte mémoire, nous pouvons améliorer de manière concrète l’utilisation
des ressources de calcul, en permettant par exemple de lancer plus de simulations en parallèle sur un cluster
donné.

Ce résumé est structuré de la manière suivante. La section 12.1 présente les fondements scientifiques
et l’état de l’art des simulations de CFD. Ensuite, la section 12.2 établit les défis et objectifs de la thèse
au regard de l’état de l’art actuel. Dans la section 12.3, nous discutons des différentes approches que nous
avons abordées pour optimiser les calculs de simulation de fluides. La section 12.4 présente une contribution
majeure de cette thèse, à savoir l’ordonnancement hétérogène automatique sur StarPU. Enfin, la section 12.5
présente une autre contribution majeure de cette thèse, à savoir l’utilisation de compression à la volée pour
réduire l’empreinte mémoire des simulations de CFD. Nous conclurons ce résumé dans les sections 12.6 et
12.7, où nous discuterons des perspectives futures et récapitulerons les contributions de cette thèse.

12.1 Fondements Scientifiques et État de l’Art

12.1.1 Équivalence entre la Simulation de Fluides et les Algorithmes de Stencil
Une façon très commune de simuler des écoulements de fluides est d’effectuer de la discrétisation numérique
pour résoudre les équations de Navier-Stokes. Cette discrétisation peut se faire à plusieurs niveaux: discréti-
sation de l’espace, du temps, etc. Ce qui nous intéresse le plus dans notre approache, c’est la discrétisation de
l’espace, qui est responsable de la plupart des besoins en mémoire. Il existe de nombreux schémas de discréti-
sation, tels que les schémas de volumes finis, les schémas de différences finies, les schémas de Galerkin, etc.

201
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Ces schémas sont souvent associés à des maillages structurés ou non structurés, qui peuvent être de différentes
natures: maillages cartésiens, maillages hexaédriques, maillages triangulaires, maillages tétraédriques, etc.

Dans notre aproche, nous nous concentrons sur les maillages cartésiens, qui sont pratiques en termes
de programmation car ils correspondent généralement à des grilles régulières de valeurs flottantes. Les
maillages cartésiens sont très utilisés en pratique par les numériciens, car ils sont simples à mettre en place
et à manipuler. Une approche classique qui se base souvent sur des maillages cartésiens est la méthode de
Lattice Boltzmann (LBM). Au cours de cette thèse, nous y ferons souvent référence, car c’est une méthode
qui est très utilisée en pratique et qui est souvent associée à un coût mémoire élevé.

(a) Une valeur par cellule. (b) 4 valeurs par cellule.

Figure 12.1: Exemples de types de stencils sur des maillages cartésiens. La figure 2.1a montre un stencil
quiprend en compte les 4 voisins (au sens de Von Neumann) d’une cellule. La figure 2.1b montre un exemple
avec les valeurs de 4 voisins et 4 valeurs par cellule. Les 4 valeurs par cellule peuvent correspondre à des
valeurs cinétiques du fluide, par exemple.

Cependant, notre approche n’est pas vraiment dépendante du schéma numérique utilisé, mais plutôt de
la structure en grille du maillage. En programmation, on regroupe généralement ce type d’algorithmes sous
le terme de d’algorithmes de "stencil" (rarement traduit par "pochoir" en français). Dans ces algorithmes,
chaque élément du maillage est mis à jour en fonction de ses voisins, en utilisant un "stencil" qui définit
les opérations à effectuer. On peut voir ça comme l’application d’une fonction ϕ de type f : Rn×m → Rm
sur chaque élément du maillage, où n est la taille du stencil (nombre de voisins lus) et m est le nombre de
valeurs dans une cellule du maillage (en général: les valeurs macroscopiques du fluide). Deux exemples de
stencils sont donnés dans la figure 12.1. Tant que le maillage utilisé est une grille régulière, l’approche stencil
peut être utilisée, ce qui en fait une approche très générale. Nous ferons donc systématiquement l’hypothèse
que notre simulation est implémentable en utilisant un algorithme de stencil, et nous concentrerons sur la
formulation "stencil".

12.1.2 Travaux Connexes
Il existe de nombreux travaux connexes qui abordent des problématiques similaires à celles que nous abordons
dans cette thèse. Tout d’abord, certains travaux sont dédiés à l’optimisation des calculs de simulation de
fluides sur des processeurs graphiques. Bien qu’ils ne soient pas directement utilisés dans cette thèse, ils ont
été une source d’inspiration pour s’assurer que nos travaux sont en phase avec les dernières avancées dans le
domaine.

Ensuite, il y a les travaux axés sur la gestion efficiente de la mémoire. Nous avons choisi de les regrouper
en trois catégories:
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• Optimisation "légères": Cette catégorie inclut les travaux portant sur des optimisations jugées
"légères". Une partie de ces travaux se concent sur des optimisations algorithmiques, tandis que d’autres
se basent sur des changements de précision flottante. Ces optimisations sont à la fois "légères" en temps
de calcul, mais aussi en termes de gain de mémoire. Dans le cas de calculs à précision flottante multiple,
le gain de mémoire est, en principe, compensé par une perte d’accuité numérique. Nous verrons au cours
de cette thèse que notre approche offre généralement un meilleur compromis entre gain de mémoire et
perte d’accuité numérique;

• Raffinement de Maillage Adaptatif (AMR): Bien que l’AMR s’éloigne de l’approche "stencil", il
est essentiel d’y faire référence car c’est une méthode très utilisée en pratique. Dans cette approche,
le maillage est raffiné localement en fonction de la complexité du problème, amenant à diviser l’espace
sous forme d’arbre (quadtree en 2D, octree en 3D). Dans son essence, cette approche est une façon
de mieux répartir les capacités de calcul et de mémoire, en les concentrant aux endroits où elles sont
les plus nécessaires. Il existe différentes limitations à cette approche, notamment le coût de gestion de
l’arbre, la difficulté de parallélisation, et la nécessité pour les numériciens de gérer les interfaces entre
les différents niveaux de raffinement;

• Compression (explicite) de Données: Enfin, certains travaux s’intéressent à la compression ex-
plicite de données. Notre approche s’inscrit dans cette catégorie, mais avec une approche novatrice qui
n’a pas été explorée dans la littérature. Notre méthode de compression est basée sur les ondelettes, un
outil mathématique bien connu pour sa capacité à compresser des signaux. Les ondelettes sont connues
pour offrir des taux de compression élevés, mais sont en général considérées comme trop coûteuses en
termes de calcul pour être utilisées comme un moyen de compression "à la volée". Nous avons cepen-
dant montré qu’en utilisant de manière appropriée les processeurs graphiques modernes, il est possible
d’obtenir des vitesses de compression satisfaisantes.

Au vu de la littérature actuelle, il est clair que notre approche est novatrice et qu’elle offre un compromis
intéressant entre gain de mémoire et perte d’accuité numérique. Dans la prochaine section, allons définir les
objectifs de cette thèse.

12.2 Objectifs de la Thèse

Cette thèse aborde les défis de l’optimisation des calculs de simulation de fluides sur des processeurs
graphiques, en se concentrant sur la gestion de la mémoire. Une partie des contributions est dédiée à
l’accélération des calculs de simulation de fluides sur processeur graphique. Bien que cet aspect soit sec-
ondaire par rapport à l’objectif principal de cette thèse, il est nécessaire de s’assurer que les calculs de
simulation de fluides sont effectués de manière efficace. Pour cela, nous nous focalisons sur le calcul distribué
de stencils, qui permet de faire des simulations de fluides à grande échelle.

Une façon moderne de distribuer les calculs est de faire appel à des bibliothèques de calcul distribué.
Deux outils puissants existent et sont très utilisés par la communauté calcul haute performance: StarPU et
PaRSEC. Ces deux moteurs sont basés sur la parallélisation à base de tâches. Nous avons effectué diverses
contributions avec ces deux moteurs, dans l’objectif de fournir une base solide pour intégrer nos travaux
dans des environnements de calcul haute performance.

Enfin, une partie importante de cette thèse est dédiée à la compression de données en tant que telle. Au
cours de divers travaux, nous avons utilisé les ondelettes pour créer un paradigme de compression adapté
aux simulations de fluides. L’objectif final est d’aboutir à un gain effectif de mémoire sans compromettre la
précision des simulations. La balance se fait entre trois aspects: le taux de compression, la perte d’accuité
numérique, et la vitesse de compression.

Dans la prochaine section, nous discuterons des différentes approches que nous avons abordées pour
optimiser les calculs de simulation de fluides.
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12.3 Optimisation des Calculs de Simulation de Fluides sur pro-
cesseur graphique

Au cours de cette thèse nous avons abordé plusieurs aspects de l’optimisation des calculs de simulation
de fluides sur processeur graphique Tout d’abord, nous nous sommes focalisés sur l’implémentation d’un
schéma de magnétohydrodynamique (MHD) sur processeur graphiques. Pour cela, nous nous sommes basés
sur les travaux de Baty et al. [29], qui se sont eux-même basés sur la méthode MHD-DC (MHD, Divergence-
Cleaning). En observant une convergence d’ordre 2, nous pouvons avoir confiance en le fait que notre
implémentation est correcte, et pouvons nous concentrer sur l’optimisation de la performance.

Figure 12.2: Ce schéma montre comment les "faces" peuvent être échangées entre les sous-grilles dans le cas
2D. La phase de copie horizontale est divisée en deux parties pour mieux afficher le processus. Pour des
raisons de clarté, toutes les copies de données nécessaires (flèches jaunes) ne sont pas affichées. Dans un
scénario réel, les données sont des vecteurs de valeurs flottantes, plutôt que des entiers, qui sont ici utilisés
pour marquer les différentes cellules.

Dans le cadre de cette thèse, nous pensons que la partie la plus importante de l’optimisation de simulations
de fluides est la gestion du passage à l’échelle. Ainsi, nous avons abordé la question de la distribution de
calculs de stencils sur des processeurs graphiques. Il existe de nombreux moteurs de calcul distribué, certains
spécialisés dans le calcul de stencils. Il n’est donc pas nécessairement pertinent d’en développer un nouveau
en se basant sur les mêmes paradigmes. Nous avons donc étudié certains moteurs de calcul de stencil et
remarqué que leur approche était généralement "rigide", c’est-à-dire qu’ils ne permettent pas de s’adapter
à des changements de besoins au fil de l’exécution. La figure 12.2 nous montre l’approche classique de
distribution de calculs de stencils avec 2 × 2 sous-grilles. L’idée est de diviser la grille en sous-grilles, et de
distribuer les calculs de manière équilibrée entre les différents processeurs. Les sous-grilles incluent des "bords
fantômes" qui permettent de répliquer les valeurs des cellules voisines et ainsi de garantir l’indépendance des
calculs. Ce paradigme, si appliqué tel quel, peut mener à des problèmes de famine de tâches, où certains
processeurs n’ont plus de travail à effectuer.

Il apparaît donc qu’utiliser des outils plus flexibles, tels que StarPU et PaRSEC, pourrait être une solution
plus adaptée. Concrètement, ces outils pourraient par exemple permettre de détecter des phénomènes
de famine de tâches, et de les résoudre en répartissant le travail de manière plus équilibrée. StarPU et
PaRSEC s’inscrivent dans une approche de parallélisation à base de tâches. Cette approche est généralement
appréciée des développeurs, car elle est relativement intuitive et généralement suffisante pour obtenir de
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bonnes performances.

Dans ce cadre, nous avons exploré le potentiel du modèle de programmation PTG (Parameterized Task
Graphs) offert par PaRSEC pour une implémentation efficace d’un schéma D2Q9. Nous avons étendu ce mod-
èle pour mieux gérer les calculs de stencils complexes en introduisant des flux paramétriques qui simplifient
l’écriture de la relation de dépendance entre les tâches. Cette innovation permet de réduire la complexité du
code et d’améliorer l’expressivité du modèle de programmation, facilitant ainsi le développement et la main-
tenance du code. En implémentant le schéma numérique, nous avons démontré que les performances sont
préservées, c’est-à-dire que l’utilisation de flux paramétriques est équivalent à une implémentation manuelle
des dépendances entre les tâches. Enfin, nous avons proposé une discussion sur la façon optimal d’effectuer
la synchronisation des sous-grilles. L’implémentation actuelle est limitée à une exécution sur un seul nœud,
mais une exécution multi-nœuds ne devrait pas poser de problèmes majeurs.

Enfin, nous avons implémenté un moteur générique de calcul de stencil basé sur StarPU. L’idée est de
fournir une base de code solide pour calculer des stencils dans différents contextes. Grâce au modèle de
StarPU, il est possible de distribuer les calculs de manière efficace sur différents types de processeurs (dont
graphiques). Nous avons validé notre implémentation (multi-GPU) en la comparant à une implémentation
(mono-GPU) du schéma de magnétohydrodynamique par Baty et al. [29]. Ce moteur est conçu pour être
facilement adaptable à différents types de stencils, et sera utilisé comme base pour des travaux futurs.

Bien que ce moteur pourrait être amélioré pour être plus compétitif, nous avons focalisé l’étude suiv-
ante sur améliorer l’ordonnancement des tâches dans StarPU. En effet, l’utilisation de StarPU abstrait de
nombreux aspects de la programmation parallèle, dont l’ordonnancement des tâches, qui est pourtant un
aspect critique pour obtenir de bonnes performances. Dans la prochaine section, nous discuterons de notre
contribution majeure dans ce domaine.

12.4 Ordonnancement Hétérogène Automatique sur StarPU

Cette section détaille l’introduction d’une stratégie d’ordonnancement avancée pour StarPU, un système
d’exécution orienté vers l’exécution optimisée de tâches sur des architectures hétérogènes. L’ordonnanceur
développé, nommé AutoHeteroprio, étend les fonctionnalités de Heteroprio, un ordonnanceur existant dans
StarPU spécialement conçu pour les machines hétérogènes.

Heteroprio est une des stratégies d’ordonnancement disponibles par défaut dans StarPU, qui est con-
nue pour ses performances élevées sur des architectures hétérogènes. Heteroprio, nécessite une assignation
manuelle des priorités aux différentes tâches pour fonctionner efficacement, ce qui peut s’avérer être une
charge considérable pour les développeurs. Cette assignation manuelle demande souvent une connaissance
approfondie de la dynamique des tâches et une série de tests de performance, rendant le processus laborieux
et sujet à erreurs.

Pour surmonter ces défis, nous proposons AutoHeteroprio, une version automatisée de Heteroprio. L’objectif
principal de cette étude est de simplifier l’utilisation de StarPU en automatisant l’assignation des priorités,
permettant ainsi aux développeurs de se concentrer davantage sur d’autres aspects de leurs applications sans
sacrifier la performance. AutoHeteroprio utilise des heuristiques pour calculer de manière dynamique les
priorités des tâches durant l’exécution, s’adaptant ainsi aux variations de l’environnement d’exécution et
aux spécificités des tâches. Ces heuristiques ont été développées en se basant sur des exécutions simulées de
faux programmes, permettant ainsi d’avoir une forme de "vérité terrain" pour guider les choix de conception.
Nous avons déterminé plusieurs métriques d’intérêt sur lesquelles se basent les heuristiques, telles que le
temps d’exécution (prédit), le taux d’utilisation du processeur, et le nombre de successeurs d’une tâche.
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Figure 12.3: Temps d’exécution pour le test testBlockedRotationCuda de ScalFMM sur les trois configurations
matérielles (k40m, p100 et v100). Les paramètres par défaut sont utilisés, avec 10 millions de particules.
L’échelle de l’axe des ordonnées est logarithmique. Les boîtes à moustaches montrent la distribution des 32
temps d’exécution (896 pour AutoHeteroprio) pour chaque ordonnanceur.
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Figure 12.4: Temps d’exécution pour le test testBlockedRotationCuda de ScalFMM sur les trois configurations
matérielles (k40m, p100 et v100). Une taille de block de 2000 est utilisée, avec une hauteur d’arbre de 7
et 60 millions de particules. L’échelle de l’axe des ordonnées est logarithmique. Les boîtes à moustaches
montrent la distribution des 32 temps d’exécution (896 pour AutoHeteroprio) pour chaque ordonnanceur.

Pour valider ces heuristiques, des tests extensifs ont été menés, mettant en évidence que AutoHeteroprio
peut souvent correspondre ou surpasser les performances de l’ordonnanceur Heteroprio (avec priorités définies
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manuellement), tout en éliminant la nécessité pour les développeurs de spéculer sur les priorités optimales sur
leurs tâches. Prenons par exemple l’application ScalFMM [10], qui est un code de calcul intensif en termes
de calculs de type N-corps. L’algorithme, basé sur la méthode multipôle rapide (FMM), est constitué d’un
calcul d’interactions entre particules de manière directe et indirecte, en utilisant une structure d’arbre. Cette
application est un cas favorable pour nous, car Heteroprio figure déjà parmi les meilleurs ordonnanceurs
pour cette application. Nous avons comparé les performances de différents ordonnanceurs sur ScalFMM,
en utilisant deux configurations logicielles différentes. La première configuration (figure 12.3) utilise les
paramètres par défaut de ScalFMM, tandis que la deuxième configuration (figure 12.4) utilise des paramètres
différents.

Il est intéressant de remarquer que dans ce cas favorable, AutoHeteroprio surpasse tous les autres ordon-
nanceurs, y compris Heteroprio (version non-automatisée). On peut par exemple s’intéresser aux résultats
du cas v100 du premier cas. Dans ce cas, on voit que Heteroprio est de manière constante plus lent que
AutoHeteroprio et DMDA (variation de HEFT), qui sont les meilleurs ordonnanceurs sur cette configura-
tion. Il est cependant légitime de dire que AutoHeteroprio est meilleur que DMDA, car DMDA inclut de
nombreuses valeurs extrêmes (élevées) qui montrent que ce dernier offre un ordonnancement moins "stable".

La capacité d’AutoHeteroprio à dépasser Heteroprio peut s’expliquer de deux façons différentes. Soit
les priorités calculées par AutoHeteroprio sont meilleures que celles définies manuellement, soit AutoHetero-
prio est capable d’adapter de manière pertinente les priorités en fonction de l’environnement d’exécution.
L’exemple du premier cas sur v100 pourrait par exemple s’expliquer par la lenteur d’un kernel GPU sur cette
configuration, qui n’est pas prise en compte par Heteroprio, dont les priorités sont pré-définies.

D’autre part, d’autres tests effectués montrent que le choix de l’heuristique a une importance relativement
limitée sur les performances, typiquement de l’ordre de quelques pourcents de temps d’exécution. Cela montre
que l’approche d’Heteroprio est moins dépendante du choix de priorités que ce que l’on pourrait penser.

Ainsi, nos travaux ont résolu une critique majeure que l’on pouvait faire à l’ordonanceur Heteroprio, à
savoir la nécessité de définir manuellement les priorités des tâches. En automatisant ce processus, nous avons
rendu l’utilisation de StarPU plus accessible aux développeurs, tout en conservant des performances élevées.

Cette section marque la fin de la discussion sur l’optimisation des calculs de simulation de fluides sur
processeur graphique. Dans la prochaine section, le thème de la compression de données sera abordé. Nous
y décrirons comment les ondelettes peuvent être utilisées pour compresser les données de simulation, et
comment cette approche peut être intégrée dans des simulations de fluides pour mener à des gains effectifs
de mémoire.

12.5 Intégration de compression de données grâce aux ondelettes
La Transformation en Ondelettes Discrètes (TOD) est un outil essentiel pour le traitement et l’analyse des
signaux dans de nombreux domaines, y compris la compression de données. Ce processus décompose un
signal en une série de coefficients, permettant de capturer des informations précises dans le temps et la
fréquence. Des travaux fondamentaux ont été menés par Haar, Gabor, Grossmann, Morlet, et Daubechies,
entre autres, jetant les bases théoriques et pratiques pour des applications comme la compression d’images
JPEG2000.

Pour intégrer la TOD dans de la simulation de fluides, il est nécessaire de concevoir des ondelettes qui
tiennent compte des besoins liés à la conservation des propriétés physiques, telles que la conservation de
la masse et la gestion des discontinuités. C’est pourquoi nous avons accordé une attention particulière à
la conception d’ondelettes biorthogonales qui répondent à ces exigences. Nous nous sommes intéressés à
trois types d’ondelettes: LGT5/3, CDF9/7, et une variation des ondelettes de Haar. Nous avons modifié
la conception de chaque ondelette pour atteindre différentes propriétés. Ces ondelettes possèdent chacune
des caractéristiques uniques, ce qui permet d’adapter le choix de la TOD en fonction de la situation. La
différence la plus notable entre ces ondelettes est le degré de filtrage qu’elles appliquent. Les ondelettes
LGT5/3 filtrent les polynômes de degré 1, les ondelettes de Haar (modifiées) filtrent les polynômes de degré
2, et les ondelettes CDF9/7 filtrent les polynômes de degré 3. Le degré du filtrage est corrélé avec le potentiel
de compression; plus le degré est élevé, plus la compression est (théoriquement) efficace.

Pour obtenir une compression effective, la TOD doit être combinée avec d’autres processus, tels que le
seuillage (mettre à zéro les coefficients proches de zéro) et une compression sans perte. Le résultat final est
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une méthodologie qui permet de compresser des données 2D d’un facteur de 10 à 100, tout en conservant
une précision relativement élevée. La question est de savoir si cette méthodologie est adaptée à la simulation
de fluides, notamment sur des simulations à grande échelle avec utilisation de processeurs graphiques. On
peut imaginer deux problèmes majeurs: le coût de la compression et la perte d’accuité numérique.

Dans une première étude, nous évaluons la perte de précision due à la compression à l’échelle de la
simulation. L’idée est de savoir si l’application répétée de cycles de compression/décompression peut mener
à une perte de précision significative, qui n’est pas décelable sur un seul cycle. Les résultats semblent
montrer qu’en pratique, on peut généralement trouver un seuil en dessous duquel la perte de précision est
acceptable. Ainsi, on peut avoir confiance en le fait que cette méthodologie peut être utilisée pour réduire
significativement les besoins en mémoire des simulations de fluides. Cependant, il reste à voir si le coût en
termes de temps de calcul est acceptable.

Dans une deuxième étude, nous avons évalué le coût de la compression en utilisant des processeurs
graphiques. Cette fois-ci, nous avons mis l’accent sur le débit de compression et sur les détails pratiques qui
permettent d’observer un gain réel de mémoire. Nous avons vu qu’en tirant profit de la mémoire partagée des
processeurs graphiques, il est possible de réduire significativement le nombre d’accès à la mémoire globale de
notre algorithme de compression. Notre algorithme se base sur des TODs faites directement sur la mémoire
globale, suivies d’une compression de type COO (format de matrice creuse) implémenté à la main.

Figure 12.5: Évaluation des performances d’une simulation D3Q27 avec différentes configurations. L’axe des
abscisses montre la taille totale de la grille (en GB) si elle était décompressée, tandis que l’axe des ordonnées
affiche la vitesse de traitement (en GB/s). Le matériel (P100, V100, ou A100) est représenté par la couleur,
tandis que le marqueur représente la méthode utilisée. Les marqueurs représentent le résultat pour une seule
exécution. Les lignes pointillées colorées représentent les limites théoriques de chaque GPU testé en fonction
de leurs spécifications, en supposant aucune compression.

La figure 12.5 montre les résultats de cette étude. On y évalue différentes méthodes: avec ou sans
sous-grilles, avec ou sans compression, et deux méthodes de compression différentes. La méthode block
correspond à notre nouvelle implémentation par blocs "shared", tandis que la méthode global correspond à une
implémentation "naïve" où chaque étape de la TOD est faite directement sur la mémoire globale. Le graphique
représente le débit de traitement en fonction de la taille de la grille (si complètement décompressée). Le débit
de traitement, mesuré en GB/s, est une mesure théorique du nombre d’accès mémoires nécessaires pour le
stencil, à supposer que l’on fait une lecture et une écriture par cellule. En principe, ce débit de traitement
doit nécessairement être inférieur à la bande passante mémoire de la carte graphique, et idéalement, il devrait
s’en rapprocher le plus possible. Or remarque entre autres que les débits de compression sont supérieurs
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aux débits des bus PCI-Express, ce qui signifie que la compression à la volée est plus rapide que de faire
transiter les données non compressées sur le bus PCI-Express. On a donc à la fois un intérêt en termes de
gains mémoire et en termes de temps de calcul, parce que la compression nous permet d’éviter le goulot
d’étranglement du bus PCI-Express.

En conclusion, nous avons montré que l’utilisation de la TOD pour compresser les données des simulations
de fluides est une approche viable pour réduire les besoins en mémoire dans le contexte de simulations
haute performance. Auparavant, la TOD était essentiellement utilisée pour du stockage de résultats ou
bien de manière implicite dans des algorithmes de résolution de systèmes linéaires. Nous avons montré
que les processeurs graphiques récents sont capables de gérer la compression à la volée de manière efficace,
permettant ainsi d’obtenir des gains de mémoire significatifs.

12.6 Perspectives Futures
Les travaux présentés dans cette thèse ouvrent plusieurs pistes pour des recherches futures.

Premièrement, il existe plusieurs domaines d’amélioration pour le schéma de compression basé sur les
ondelettes. La TOD elle-même peut être optimisée pour réduire le nombre d’accès à la mémoire et améliorer
la localité des données. Actuellement, la TOD est effectuée successivement sur chaque dimension, ce qui n’est
pas optimal en termes de localité des données. Nous sommes conscients que les algorithmes TOD multidi-
mensionnels pourraient théoriquement résoudre ce problème, mais nous n’avons pas trouvé d’implémentation
qui s’intégrerait correctement dans le paradigme de programmation des processeurs graphiques.

La méthode de compression sans perte peut également être améliorée. L’implémentation actuelle basée
sur le format COO semble rapide mais repose sur la sparsité des données. Cela a posé problème dans notre
dernière expérience, où les données étaient moins creuses que prévu, entraînant un taux de compression
plus faible. Cela est probablement dû à la nature turbulente du flux testé, qui nécessite un seuil bas pour
préserver la précision de la simulation. Il existe plusieurs autres méthodes de compression sans perte qui
seraient moins dépendantes de la sparsité des données, telles que le codage entropique ou les méthodes basées
sur des dictionnaires. Cependant, comme la compression sans perte doit être intégrée dans notre noyau de
compression, nous devons être capables de fournir des implémentations rapides, ce que nous n’avons pas eu
le temps de faire.

Une autre idée pour améliorer les performances est d’imbriquer la compression et la simulation dans un
même noyau. Actuellement, les noyaux de décompression écrivent les données décompressées dans la mémoire
globale, où les noyaux de simulation les lisent et les écrivent. Étant donné que les données décompressées
apparaissent à un moment donné dans la mémoire partagée, il pourrait être possible d’effectuer les calculs
physiques directement dans la mémoire partagée puis de compresser immédiatement les données pour les
renvoyer à la mémoire globale. Cela réduirait considérablement le nombre d’accès à la mémoire globale,
car seules les données compressées (moins volumineuses) donneraient lieu à des accès à la mémoire globale.
Cependant, il n’est pas évident de trouver une nouvelle conception de simulation qui fonctionnerait avec
cette idée, en particulier à cause du motif d’accès aux données, qui nécessite d’accéder aux données des blocs
voisins, qui ne sont pas nécessairement disponibles.

Enfin, un autre domaine majeur d’amélioration serait une mise en œuvre flexible d’une simulation de
fluides à grande échelle intégrant notre schéma de compression. Actuellement, notre implémentation multi-
GPU StarPU ne permet pas l’utilisation de la compression, la rendant comparable à la plupart des solveurs
stencil de pointe. Cependant, dans un travail futur, nous prévoyons d’intégrer le schéma de compression dans
le solveur et d’évaluer l’impact sur les performances de différentes stratégies. Nous pensons qu’une approche
entièrement dynamique, où les sous-grilles peuvent être remodelées en fonction des facteurs d’exécution, serait
la plus prometteuse. Contrairement aux approches plus populaires, qui intègrent rarement la compression,
notre approche pourrait être plus performante en termes d’équilibrage de charge en raison du coût réduit de
l’envoi de données compressées. L’utilisation de blocage temporel serait également facilitée, car le coût de
synchronisation accru serait compensé par la réduction du coût de transfert de données.

En conclusion, le travail présenté dans cette thèse fournit une base solide pour l’intégration de schémas
de compression dans des simulations de fluides à grande échelle. Les résultats obtenus jusqu’à présent sont
prometteurs, et nous croyons qu’avec des recherches et des développements supplémentaires, il sera possible
d’atteindre des améliorations significatives pour le passage à l’échelle de ce type d’algorithme.
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12.7 Remarques et Conclusion
Les travaux réalisés au cours de cette thèse ont mis en lumière des stratégies innovantes et efficaces pour
l’optimisation des simulations de dynamique des fluides sur des architectures parallèles et distribuées, en
mettant un accent particulier sur la compression des données. Grâce à l’adoption de la TOD et des techniques
de compression avancées, nous avons pu obtenir une réduction significative de l’empreinte mémoire sur des
simulations tout en préservant, dans une large mesure, l’intégrité et la précision des calculs.

Ces améliorations ouvrent la porte à des simulations plus vastes et plus complexes en optimisant l’utilisation
des ressources disponibles. Cette thèse propose donc non seulement des solutions techniques à des défis spéci-
fiques mais suggère également une manière plus durable et économiquement viable de mener des simulations
avancées.

Cependant, plusieurs défis demeurent et doivent être abordés dans des travaux futurs. L’intégration
de la compression dans le flot de travail de simulation en temps réel nécessite une attention particulière
pour équilibrer de manière optimale le compromis entre la compression, la perte de précision et le coût
en performances. De plus, les architectures de calcul évoluent rapidement, introduisant continuellement de
nouvelles optimisations matérielles qui peuvent être exploitées pour améliorer encore les performances et
l’efficacité des algorithmes proposés.

En résumé, bien que des progrès significatifs aient été réalisés, nous estimons qu’il est nécessaire d’adapter
et d’affiner les stratégies utilisées pour être capables de se comparer aux moteurs de simulation de fluides
les plus avancés. La voie est désormais tracée pour des innovations futures qui, espérons-le, continueront à
repousser les limites de ce qui est possible dans le domaine de la simulation numérique.





Clément FLINT

Compression de données efficace pour les
solveurs PDE haute performance

Résumé
Cette  thèse  se  concentre  sur l'optimisation  des  simulations  de  fluides dans  des
environnements à mémoire limitée via des ondelettes pour compresser les données,
réduisant  les  besoins  en  mémoire  tout  en  préservant  la  précision.  Des  ondelettes
biorthogonales  spécifiques  assurent  la  conservation  de  la  masse  et  un  filtrage
polynomial. Nous avons intégré ces méthodes dans les flux de travail des simulations,
développant  des stratégies  pour  les  processeurs  graphiques et  ajustant  les  taux de
compression  selon  les  besoins  en  mémoire.  Les  résultats  montrent  une  réduction
significative de l'empreinte mémoire pour un coût de calcul faible.  Des améliorations
potentielles  sont encore possible, ouvrant la voie à l’intégration dans des applications
industrielles et de recherche en mécanique des fluides.

Résumé en anglais
This thesis explores optimizing fluid simulations in memory-constrained environments
using advanced wavelet transforms to compress data, significantly reducing memory
needs while maintaining accuracy. Tailored biorthogonal wavelets like LGT5/3, CDF9/7,
and  modified  Haar  wavelets  ensure  mass  conservation  and  effective  polynomial
filtering.  We  integrated  these  methods  into  simulation  workflows  with  attention  to
performance, developing strategies for graphics processors and balancing compression
rates with performance trade-offs. Results demonstrate reduced memory footprints and
potential performance boosts in scenarios where PCIe bus bandwidth limits speed. This
research  could  significantly  benefit  industrial  and  research  applications  in  fluid
mechanics by managing large data efficiently,  improving performance, and reducing
energy consumption.
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