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Chapter 1

INTRODUCTION

1.1 Research Context

A modality is a specific format used to encode a particular type of information, such
as RGB, depth, thermal image, textual, audio, video, or physiological signals [1, 2]. The
integration of these heterogeneous modalities, known as multimodal fusion, has emerged
as a critical area of research due to its ability to produce more robust and informative
systems compared to those relying solely on unimodal data.

One practical example of the need for multimodality can be observed in video commu-
nication systems, where audio signals can be difficult to perceive and understand in the
presence of background noise. Integrating visual cues, such as lip movements from RGB
videos, with voice signals significantly improves speech recognition, particularly in noisy
environments, thereby enhancing the overall communication experience [3]. Similarly, the
fusion of RGB and depth video with vehicle state measurements, such as speed, has been
instrumental in advancing autonomous vehicle technologies. These multimodal systems
are capable of making more accurate real-time decisions, contributing to safer navigation
and better adaptability to diverse driving conditions [4]. Another compelling application
of multimodality is in the domain of content moderation on social media platforms. By
merging textual information with RGB images or videos, machine learning models can
effectively identify harmful or inappropriate content, thereby enhancing the safety and
integrity of online spaces [5]. Moreover, combining RGB-Depth video with audio data
can lead to a richer understanding of emotional stimuli and environmental context. This
approach has been employed to accurately gauge student engagement in educational set-
tings, providing educators with deeper insights into classroom dynamics and individual
student needs [6, 7, 8, 9, 10, 11, 12]. Biometric systems also benefit from multimodal
integration, such as combining facial recognition with voice signals to improve identity
verification. In noisy environments, visual data may be more reliable, while voice data
becomes more dependable in low-light conditions [13, 14, 15].
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Partie , Chapter 1 – Introduction

These examples highlight the critical role of multimodal integration in enhancing sys-
tem robustness across various domains. However, integrating multiple modalities—each
with distinct structures, constraints, and sampling rates—presents substantial challenges.
For instance, while videos are spatiotemporal sequences with frame rates of 24-60 frames
per second, audio is a 1D signal typically recorded at 8-48 kHz. These differences con-
tribute to the complexity of multimodal fusion [1].

1.2 Multimodal Fusion Architectures

To address these challenges, three main deep multimodal fusion architectures have
been proposed in the literature:

— Early fusion methods integrate raw or feature-level data from multiple modalities
at the initial stages of processing, facilitating early cross-modal interactions. Given
n input modalities x1, x2, ..., xn and a model I, the output y can be expressed as:

y = I(x1, x2, ..., xn). (1.1)

These techniques aim to optimally combine information during feature extraction,
enhancing the model’s ability to learn robust features. However, challenges include
high-dimensional feature spaces, temporal alignment issues due to varying modality
characteristics, and the risk of one modality dominating the others. Also, when
modalities have the same size (e.g: RGB-Depth maps), a simple concatenation of
features offers limited benefits, as it may not fully exploit interdependencies among
modalities [16]. Therefore, more advanced techniques, like attention mechanisms
or cross-modal transformers, have been developed to address these limitations and
better capture relationships between modalities, yet they remain computationally
costly.

— Late fusion aims to integrate multimodal feature maps at the decision level. In
this approach, multimodal data is processed separately in different branches as
unimodal data. During the final stage, feature maps computed by these branches
are mapped into a common feature space through fusion operations, such as con-
catenation, addition, averaging, or weighted voting, followed by a series of fully
connected layers or a classifier. Let x1, x2, ..., xn be the n input modalities and

16



1.2. Multimodal Fusion Architectures

I1, I2, ..., In be the models used for each modality, the output y can be written as:

y = P (I1(x1), I2(x2), ..., In(xn)), (1.2)

where P is the fusion operation as well as the following fully connected layers
or classifier. This fusion model offers greater flexibility and scalability. However,
because the model is trained to learn unimodal features separately, there is a
lack of cross-modal interaction, which may limit its ability to fully exploit the
interdependencies among different modalities [16].

— Hybrid fusion methods are sophisticated approaches that combine the advan-
tages of both early and late fusion strategies. They can adaptively create a joint
feature representation that aims to project features from different modalities into
a common latent space. This dynamic approach allows achieving superior perfor-
mance, enhancing both accuracy and robustness in multimodal systems [16, 17].

These architectures differ in the stage at which the modalities are combined within
the machine learning model as illustrated in figure 1.1.

Figure 1.1 – Types of fusion, (a) represents the early fusion, (b) late fusion and (c)
hybrid fusion (joint feature representation projects features from different modalities into
a common latent space). Red arrows represent the interconnections between models in
hybrid fusion.

While these architectures have proven to be effective in various multimodal tasks, their
application to short-duration temporal data remains an open research area. This thesis
explores how late fusion technique can be adapted to process short-duration signals more
efficiently, emphasizing accuracy while minimizing computational overhead.
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1.3 The Core Research Problem

Despite the advantages of multimodal systems, there remains a critical research gap:
the integration of short-duration time series (less than one second) within multimodal
frameworks is underexplored. Existing multimodal fusion methods often rely on compu-
tationally intensive models, unsuitable for real-time applications, or overly simplify the
problem by excluding temporal information, focusing solely on spatial features [17, 18].
These approaches limit the applicability of multimodal systems in real-world scenarios
that require efficient processing and rapid decision-making.

This thesis addresses the core research problem: how to effectively and efficiently inte-
grate short-duration temporal modalities in multimodal systems while maintaining high
performance, reducing computational complexity, and ensuring scalability. This research
problem is particularly relevant for applications such as biometric identification and stu-
dent engagement detection, where multimodal fusion of short time-series data can provide
significant performance improvements but is currently constrained by computational and
temporal limitations.

1.4 Research Objectives

To address the core research problem, this thesis focuses on the following objectives:

— Handling short-duration utterances: Develop methods to effectively process
short-duration utterances by multimodal systems, improving model robustness and
accuracy across both multimodal and unimodal settings.

— Efficiency and Practicality: Design computationally efficient models that main-
tain high performance while reducing complexity. The goal is to create models that
are suitable for real-world applications by utilizing low-cost sensors, such as micro-
phones, RGB-depth cameras, and oximeters.

— Temporal Information Integration: Improve the integration of temporal infor-
mation in multimodal frameworks by leveraging pre-trained unimodal models, such
as X-vectors, ResNet, to capture temporal or both spatial and temporal features
effectively [19, 20].
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1.5 Methodological Challenges in Multimodal Fusion

Integrating multimodal data, especially for short-duration time series, presents several
key challenges:

— Temporal and Spatial Complexity: Short-duration time series require precise, resource-
efficient, and time-efficient spatiotemporal feature extraction for modalities such
as RGB videos. However, these temporal dependencies are often underutilized in
conventional fusion techniques, leading to suboptimal performance.

— Heterogeneity of Modalities: Different modalities have varying structures and sam-
pling frequencies, making it difficult to fuse them effectively [1].

— Computational Efficiency: Many existing multimodal fusion models, particularly
those utilizing deep learning, are computationally intensive. This limits their prac-
ticality, especially in real-time applications that require rapid processing of data
from multiple modalities [17].

— Scalability and Interpretability: Beyond accuracy, models must be interpretable
and scalable for real-world datasets, which often contain noisy or missing data.
This makes the design of robust, efficient models a significant challenge.

1.6 Research Questions

In light of the challenges outlined above, this thesis seeks to address the following key
research questions:

1. What methods can be developed to enhance the accuracy of multimodal
integration while minimizing the number of trainable parameters?
— This question will be explored through the development of novel fusion meth-

ods aimed at combining information from different short duration temporal
modalities without excessively increasing model complexity.

2. What strategies are effective in detecting synthetic data manipulations,
such as deepfakes, using multimodal data?
— This will involve crafting robust detection mechanisms to identify and counter-

act sophisticated data manipulation techniques, such as deepfakes, by leverag-
ing cross-modal interactions between visual and auditory.

3. How to identify student engagement on short utterances using multi-
modal wearable sensors in educational settings?
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— This question focuses on exploring unsupervised learning methods that can
capture the complexities of real-world multimodal data.

These questions guide the exploration of how multimodal integration can be optimized
to handle the unique challenges posed by short-duration time series.

1.7 Contributions and Organization of the Document

This thesis contributes to the field of multimodal machine learning by addressing the
challenge of integrating short-duration temporal data. The dissertation is structured as
follows:

— Chapter 2 investigates how integrating multimodal information enhances bio-
metric recognition accuracy and confidence, particularly in the context of short
utterances. First, we focus on unimodal voice-based biometric identification us-
ing a well-known signal processing tool called the Wavelet Scattering Transform
(WST). We apply this method to improve accuracy for short utterances and to
reduce the number of trainable parameters by optimizing its hyperparameters.
Finally, we explore the advantages of multimodality by proposing a novel, low-
computational-cost multimodal late fusion approach that integrates audio and lip
depth videos, demonstrating how this integration improves both robustness and
accuracy.

— Chapter 3 proposes two robust multimodal deepfake detection methods that lever-
age both RGB visual and audio modalities. These methods are based on an inter-
pretable, novel shallow learning architecture and the deep learning model developed
in Chapter 2. The focus is on distinguishing real from fake videos, with particular
emphasis on the analysis of RGB lip videos and audio data, all while maintaining
a low computational cost.

— Chapter 4 explores a practical application of multimodality in real-world settings,
specifically in detecting student engagement through heart rate signals and facial
expression. We introduce a novel dataset that combines these modalities, taking
into account the complexities inherent in teaching sessions. Furthermore, we ex-
plore an unsupervised subject-based methodology to monitor student engagement,
developed in collaboration with a didactic researcher.

— Chapter 5 summarizes the key contributions, discusses limitations, and outlines
potential future research directions, particularly in extending the proposed meth-
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ods to new domains and applications.
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Chapter 2

FROM SUPERVISED UNIMODAL TO

MULTIMODAL BIOMETRICS

IDENTIFICATION

As discussed in the introduction, the integration of multimodal information improves
accuracy and increases confidence in the output by exploiting the strengths of each modal-
ity. In this chapter, we will explore this claim in the context of fully supervised biometric
recognition, from the unimodal part to the benefits of multimodality. We begin with
an introduction in Section 2.1, which summarises unimodal and multimodal biometric
identification. Next, Section 2.2 is dedicated to speaker identification based on Wavelet
Scattering Transform Depth Benefit. In the last Section 2.3, we delve into the benefit of
multimodality by inserting the lip depth video to the identification system.

2.1 Introduction

Biometrics recognition finds widespread applications in various fields such as security
systems, access control, and surveillance [21]. This technology capitalizes on the unique
traits inherent to each individual, encompassing:

— Physiological: face [21, 22], iris [21, 23], fingerprint [21], ears [24] or lips [25],
— Behavioral: lips movement [26] or voice [27].
Using voice to identify an individual is cheaper than other biometric methods such as

face [22] or iris [23] recognition, as the material to record an audio is less expensive than
cameras and it does not require a light source to operate as long as the extrinsic variations
are not severe (noise, reverberation or low sampling frequency). Speaker identification aims
to identify a person based on their voice [27]. Although it has been widely studied [27],
the acquisition of long and clear voice samples with a high sampling frequency can be
challenging [28, 29, 30].
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Deep embedding methods have gained popularity due to their robustness in speaker
identification task by feeding raw samples or hand crafted methods to a convolutional
neural network (CNN). Among these CNN methods, SincNet [28], x-vectors and its im-
provements [19, 31]. W. Ghezaiel et al. [29] proposed also an hybrid architecture based
on sparse method called Wavelet Scattering Transform (WST) [32, 33] and 2D-CNN net-
work called HWSTCNN, this architecture strengthens the capturing of texture (dominant
energy in patterns) for short utterances (i.e: audio signals under 3 seconds) by extracting
the WST coefficients up to the second order and fed them to a CNN network, this method
has shown its ability to increase identification performance under short utterances circum-
stances, in addition it reduced the number of parameters compared to other methods [28,
30]. Despite the superior performance of the HWSTCNN among other methods, there has
not been enough investigation on the deepness of the WST architecture to determine if it
can provide more discriminant features.

In Section 2.2, we explore the importance of the depth and the invariance scale i.e
frame length of WST [32, 33] in the speaker identification task on TIMIT dataset [34]
under the circumstances where we have short utterances (< 3 seconds) and low sampling
frequency 8 kHz.

On the other hand, the rapid advancement and the democratization of technology
has lead to the abundance of multimodal sensors. To extract this diversity of informa-
tion, multimodal deep learning has emerged as a powerful approach for various tasks by
combining information from different modalities, exploiting their complementary nature,
and enhancing overall performance [35, 26, 36, 37]. In the realm of speaker recognition
incorporating multiple features, such as lip movements, depth modality images, and voice,
can lead to improved accuracy and robustness in applications like security systems, access
control, and surveillance [26, 38, 25, 39, 40, 41]. Utilizing a combination of physiological
and behavioral features, including face [22], iris [23], fingerprints [21], voice [27] , and lip
movements, can benefit person identification [26, 25]. While each feature offers unique ad-
vantages and limitations, integrating them using multimodal deep learning methods can
lead to more reliable identification systems [26, 36]. Among these features, lip movements
serve as a vital behavioral feature for speaker recognition encompassing both physiological
(static) and behavioral (temporal) aspects [25].

Traditional methods, such as RGB images and videos, have been commonly used for
lip verification [26, 25, 42, 38]. However, they are susceptible to issues such as varying
lighting conditions, pose variations, and occlusions. In contrast, depth images offer sev-
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eral advantages over traditional RGB images. They are more robust against attempts to
deceive recognition systems using photographs and exhibit strong invariance to lighting
conditions, which can adversely affect RGB images in challenging environments [43].

One of the challenges in multimodal deep learning is effectively fusing the informa-
tion from different modalities [36]. Existing fusion techniques, such as early, late, and
hybrid fusion, have their inherent limitations, often resulting in suboptimal integration of
multimodal information [16, 35]. Our proposed attention-based fusion model effectively
addresses these limitations, enabling the model to better adapt to the varying degrees of
informativeness in different modalities and achieve improved performance.

Despite the significant strides made in multimodal deep learning, a clear research gap
persists when applied to speaker recognition. The existing methods heavily rely on long
speech utterances and RGB images for identification. This dependence often leads to
impractical and inconsistent outcomes, especially in scenarios where obtaining extended
utterances or ideal lighting conditions for RGB images is challenging. Additionally, these
methods face difficulties in robustly handling various types of noise, which are typical in
real-world situations. Our study directly addresses this gap by developing a novel approach
that utilizes ultra short voice utterances and depth videos of lip, ensuring practicality and
improved accuracy even in less than ideal conditions.

In Section 2.3, we introduce a fresh perspective on the application of multimodal deep
learning for speaker identification in the context of short duration utterances (i.e: at the
word level, under 1 second). The crux of our innovation is a distinctive encoding model
that processes time-series depth modality images of lip and ultra short voice utterances,
demonstrating superior performance on benchmark datasets despite the limited informa-
tion available. This is paired with an attention-based model that enhances identification
accuracy by effectively fusing multimodal data and focusing on the most informative
regions. Therefore, the main contributions and novelty of our work are listed as follows:

— We introduce a new encoding model for time series depth images of the lip and
ultra short voice utterances (at the word level, i.e: <1 second), which leverages
convolutional networks to capture both spatial and temporal features. Despite the
challenges posed by the limited information available in short utterances and depth
images, our encoding model demonstrates superior performance on benchmark
datasets.

— We propose an attention-based model for the fusion of multimodal data, effectively
combining information from different modalities such as lip and ultra short voice
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utterances, and depth images. The attention mechanism allows the model to con-
centrate on the most informative regions of the input data, enhancing the accuracy
of person identification.

— Our deep learning model is robust to various noises, such as ambient noise and
background music, thanks to depth modality, which effectively handles these chal-
lenges and makes the model suitable for real-world conditions. In contrast to many
state-of-the-art methods, our model effectively handles different types of noise and
achieves superior performance.

— We present a comprehensive evaluation of our proposed approach on benchmark
datasets, demonstrating its effectiveness in challenging scenarios with ultra short
voice utterances (less than 1 s) and depth videos. This showcases the potential of
our method in real-world applications, such as security systems and access control.

To summarize, our contributions in unimodal and multimodal biometrics field are:
— In Section 2.2, we explore the importance of the depth and the invariance scale

i.e frame length of WST [32] in an application on the speaker identification task
on TIMIT dataset [34], for both text dependent and independent tasks under
the conditions, shortness of the utterances and the small value of the sampling
frequency.

— In Section 2.3, we propose a novel method to encode depth lips times series and a
self attention-based model for the fusion of multimodal data, effectively combining
information from different modalities such as ultra short voice utterances and depth
lips videos.

The work presented in section 2.2 has been published at ANNPR Workshop 2022 [44],
while the section 2.3 was published on MDPI Sensors Journal [45].

2.2 Speaker Identification based on Wavelet Scatter-
ing Transform

2.2.1 Materials and methods

2.2.1.1 Datasets

TIMIT [34] corpus is an audio dataset sampled at 16 kHz (recording conditions),
with the primary aim of furnishing speech data for studies in acoustic-phonetics and for
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Table 2.1 – Energy absorbed at different scale for some invariance scale T and Ns the
total number of scatter coefficients for TIMIT audios sampled at 8 kHz.

||Sx||2
||x||2 % Depth
T ||Ns 1st 2nd 3rd 4th 5th

16ms||35 90.18 0.21 - - -
32ms||74 86.69 0.61 4.5e− 3 - -
64ms||152 82.79 1.21 2.08e− 2 2.13e− 4 -
128ms||308 71.04 3.39 6.1e− 2 1.4e− 3 1.38e− 5

assessing automatic speech recognition systems. It contains 630 speakers (192 females
and 438 males), each speaker reads 10 English sentences, where 2 sentences are common
to all speakers. For all our experiments, we consider only 462 speakers in the "TRAIN"
folder and we use only 8 sentences, where "SX" sentences (5 for each speaker) are destined
to training phase and "SI" (3 per each speaker) are intended for the testing phase. The
average duration of the ”SX” sentences is about 4 s and the duration of ”SI” sentences is
about of 2 − 6 s. Which makes a train/test ratio of 5 sentences/3 sentences.

2.2.1.2 Experimental setup

While S. Mallat proposed in [32, 33] to limit the depth of the WST (detailed in Annex
A) at the second depth for an invariance scale i.e frame length of 32 ms adapted to audio
applications, this was based on the fact that the majority energy absorbance is situated
at this scale. In this section, we explore the importance of the depth and the invariance
scale of WST [32] in an application on the speaker identification task on TIMIT dataset
[34], for both text dependent and independent tasks under the conditions, shortness of
the utterances and a small value of the sampling frequency (i.e: 8 kHz). We report the
WST energy absorbance at different invariance scale until their maximum depth on all
audios from TIMIT dataset [34] sampled at the well known frequencies in audio speaking
applications 8 kHz (telecommunications) in Table 2.1 and 16 kHz (recording instruments)
in Table 2.2.

To find the optimal values of depth and invariance scale of WST that are suited for
Speaker Identification (SI), we perform SI text-independent on 462 speakers from TIMIT
dataset and SI text-dependent on two speakers reading the same sentence. The method
is then fused with a CNN and compared to the three baselines [29, 30, 28].

2.2.1.2.1 Speaker identification text-independent
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Table 2.2 – Energy absorbed at different scale for some invariance scales T and Ns the
total number of scatter coefficients for TIMIT audios sampled at 16 kHz.

||Sx||2
||x||2 % Depth
T ||Ns 1st 2nd 3rd 4th 5th 6th

16ms||74 89.65 0.54 4.0e− 3 - - -
32ms||152 86.13 1.01 2.17e− 2 2.13e− 4 - -
64ms||308 82.18 1.6 5.05e− 2 1.4e− 3 1.32e− 5 -
128ms||620 70.47 3.72 0.11 4.4e− 3 1.11e− 4 9.34e− 7

2.2.1.2.1.1 Depth and invariance scale In order to extract the optimum depth
and invariance scale of WST for SI task, we work on SI text-independent task done on
462 speakers from TIMIT [34] sampled at 8 kHz and 16 kHz. Firstly, we preprocess the
audio files by removing the silent frames at the beginning and the end of an utterance (no
pre-emphasize was applied). Secondly, we apply the WST by using different invariance
scales 16, 32, 64, 128ms until their maximum depth. We omitted the WST of silent frames
for this experiment. The WST coefficients are log-normalized following the normalization
equations defined in [32] and Annex A. The resulted frames from 5 utterances beginning
with "SX" are used for the training phase and the last 3 utterances starting with "SI" are
used for the testing part. A multilayer perceptron (MLP) is used as a classifier with cross
entropy as a loss function. The batch size and the maximum epoch were set respectively
to 256 and 100. The optimizer used was ADAMAX with a learning rate 2.10−2.

2.2.1.2.1.2 Comparison to baselines To enhance the classification accuracy per
sentence, feeding WST coefficients to a neural network, inspired from x-vectors architec-
ture [19], is essential to have performance as the SOTA. At the input, the architecture
given in Fig. 2.1 receives WST coefficients of 230ms frame length and an overlapping of
58ms. At the testing phase, we average the probabilities resulted from each frames of
a given sentence to give the corresponding speaker. The experiment was conducted for
different depths for each invariance scale 16, 32, 64ms, in order to observe the effect of
WST depth under CNN fusion. The architecture was trained using cross-entropy loss, the
batch size was set to 256, the maximum epoch was set to 100. The optimizer used was
ADAMAX with a learning rate 5.10−3.

2.2.1.2.2 Speaker identification text-dependent We visually demonstrate the
benefit of depths > 2 in speaker identification text-dependent task. We choose two speak-
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Figure 2.1 – Fusion of 1D-CNN architecture with WST (Cout is the number of output
channels from a 1D temporal convolution, here it was set to 128, Cd is the number of
WST coefficients of depth≥ 2).

ers from TIMIT dataset reading the sentence "she had your dark suit in greasy wash
water all year" under a clean speaking record environment, then we apply the WST for
the optimal depth and invariance scales values found previously. To observe the impact of
depth, we plot the spectrum at each depth for each speaker. One can say; the magnitude
of the WST coefficients depends on the intensity of the speaker when he pronounces a
word, therefore for visualization reasons, we choose to normalize (max-normalization) our
data per scale in order to see which interference value is maximum for a speaker. The
color-bar scale was adjusted to clearly visualize the differences. The WST coefficients were
not log-normalized as in the previous part.

2.2.2 Results and Discussion

2.2.2.1 Speaker identification text-independent

2.2.2.1.1 Optimal invariance scale and depth To highlight the impact of the
WST invariance scale and its depth on TIMIT dataset, we used a different combination
of invariance scales (ms) and the number of depths to realize which structure best fits our
data i.e compromise between classification accuracy per sentence and the time execution.
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Figure 2.2 – Classification accuracy per sentence for different invariance scales when the
audios are sampled at 16 kHz (c) and at 8 kHz (a), and for different depths of the best
invariance scale 64ms sampled at 16 kHz (d) and at 8 kHz (b).

The Fig. 2.2 shows the maximum classification accuracy per sentence offered by a given
invariance scale at its optimal depth when the sampling frequency is 8 kHz (a) and 16 kHz
(c), the performance increases linearly for both sampling frequencies from 16ms to 64ms
then we do not observe higher improvement after 64ms. Based on our criterion i.e with
less time we get more performance, the optimal invariance scale is 64ms. From 16ms
to 64ms, when the conditions are more constraint, i.e 8 kHz sampling frequency, we
see a 18, 04% improvement in the classification accuracy per sentence, while for 16 kHz
sampling frequency the improvement was around 8, 87%. At 64ms, after each increasing of
depth, we get an average improvement of 3, 05% for 8 kHz (Fig. 2.2 (b)) and an average
improvement of 5, 24% for 16 kHz (Fig. 2.2 (d)) until a stabilisation at the depth 4.
These observations can be deduced theoretically from Eq. (38) in [33], where it affirms
that increasing invariance scale and depth create more invariant features.

2.2.2.1.2 WST + 1D-CNN From the results shown in Fig. 2.2, a fusion of WST
with a CNN is crucial to increase the classification accuracy. CNNs captures details from
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the first depth of WST and depths ≥ 2 gives information on large structures. In Fig.
2.3 we report the results of the WST + 1D-CNN (Fig. 2.1) applied for different depths
and invariance scales. The optimal invariance scale for WST + 1D-CNN that increases
the classification accuracy per sentence is 16ms instead of 64ms, this can be explained
by the locality of CNN and the temporal high resolution offered by 16ms. Depending
on the invariance scale used the optimal WST depth that improves the classification
accuracy per sentence differs, yet increasing it always leads to an improvement of the
classification accuracy per frame. To evaluate our architecture, a performance overview
and the number of learnable weights of the baselines and the WST + 1D-CNN are given
in the table 2.3. Compared to the baselines methods, the number of learnable weights
required by our architecture is less by 94%, yet it outperforms HWSTCNN under 8 kHz
sampling frequency condition by an improvement of 7, 57%, and makes the same order of
performance compared to the baselines under 16 kHz sampling frequency.

Table 2.3 – Classification accuracy per sentence of the best values of invariance scale and
depth of WST + 1D-CNN and baselines trained and tested on TIMIT sampled at 8 kHz
and 16 kHz (#param is the number of learnable weights in each architecture).

Architecture 8 kHz 16 kHz
CNN-raw (#param = 22.8M) 97.75% 98.91%
SincNet (#param = 22.7M) 97.54% 99.4%

HWSTCNN (#param = 18.1M) 85.93% 98.12%
WST + 1D-CNN (#param < 1M) 93.5% 98.12%

2.2.2.2 Speaker identification text-dependent

To understand visually the behavior of WST across depths, we performed a comparison
between the WST coefficients of two speakers reading the same sentence. Fig. 2.4 is
the spectrogram of the scatter coefficients of the first and the second orders of the two
speakers, the first depth presents two main peaks approximately located at 200 Hz which
represents the pitch contour, and the second one at around 425 Hz. At the second depth,
the invariant features are more enhanced compared to the first depth. At depths > 2
in Fig. 2.5 for a given word, the distribution along frequencies differs strongly from a
speaker to another, therefore going deeper generates more invariant features that their
distribution along frequencies depends on speaker’s identity.
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Figure 2.3 – The classification accuracy % per sentence (a-c) and the classification accu-
racy % per frame (b-d) for TIMIT sampled at 8 kHz (a-b) and 16 kHz (c-d) when using
WST + 1D-CNN for different depths of invariance scales < the optimal invariance scale
64ms.

Figure 2.4 – Spectrogram of the WST coefficients at the first depth (first speaker (a-1)
and the second speaker (b-1)) and the second depth (first speaker (a-2) and the second
speaker (b-2)) (x-axis time and y-axis is frequencies).
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Figure 2.5 – Spectrogram of the WST coefficients at the third depth (first speaker (a-3)
and the second speaker (b-3)) and the fourth depth (first speaker (a-4) and the second
speaker (b-4)) (x-axis time and y-axis is frequencies).

2.2.3 Conclusion and perspectives

In this section, we have shown the importance of WST depth and its invariance scale for
speaker identification. We have proved that instead of looking for energy concentration
at the first two depths of WST, we should go deeper to generate invariant features.
Experimental results on TIMIT have shown that the deeper WST can achieve dominant
results with limited data. An optimized method based on a compromise between the
classification accuracy per sentence and execution time has been successfully proposed
to select a priori the best scatter transform architecture for speaker identification text-
independent task. To enhance the classification accuracy per sentence and compete the
SOTA, we have proposed a fusion between CNN and WST and we have shown that
increasing the WST depth enhances the classification accuracy per frame. The resulted
optimal values of WST invariance scale and depth, were used to observe visually the
benefits in a speaker identification text-dependent task. These results show significant
promise for considerable improvement in speaker identification.

As a possible way to enhance the identification accuracy is the insertion of a new
modality to the system to add complementary informations to the audio modality. In
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the next Section 2.3, we will present our self attention-based fusion system that balances
between the audio and lips depth video modality applied on the person identification
under ultra short utterances circumstances at the word level (< 1 second).

2.3 Attention-based Fusion of Ultra-short Voice Ut-
terances and Depth Videos for Multimodal Per-
son Identification

2.3.1 Methodology

Drawing from the literature that explores various sources of information, such as those
from diverse modalities or spatiotemporal data, our primary goal is to recognize individ-
uals using depth visuals, dynamic lip movements, and brief audio utterances lasting less
than one second. To efficiently extract valuable information from our chosen modalities,
namely audio and depth, we have decided to employ a late fusion strategy. This approach
entails feeding each modality into a network specifically designed to handle the structure
of the respective information. The resulting feature vectors from both systems will then be
combined to make a decision regarding the speaker’s identity. In the following sections, we
will outline the CNN employed to extract features from each modality, based on existing
literature.

Transitioning from one modality to another, we must ensure that the network archi-
tecture is designed to optimally process the specific data structure. This allows us to
maximize the accuracy and efficiency of the speaker identification process. By adopting a
late fusion strategy, we can effectively combine the strengths of each individual modality
to improve overall performance.

As we delve further into this topic, we will discuss the details of the CNN used for
feature extraction in each modality. By drawing upon the work done in the literature, we
aim to create a robust and efficient system that can accurately identify speakers based on
their depth visuals, dynamic lip movements, and short audio utterances.

2.3.1.1 Voice Speaker identification

To identify a speaker from brief speech segments. We used the SOTA speaker verifica-
tion methods [19, 31, 28] and WST + 1D-CNN from our previous work 2.1. According to
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our in Fig. 2.3, the WST depth and invariance scale for the sampling frequency 16 kHz are
1 and 16ms respectively. For the purpose of time processing, we compare this architecture
with other pre-trained models from SpeechBrain [46] and Hugging Face [47], which were
originally trained on TIMIT [34] and VoxCeleb datasets [48]. We evaluated our architec-
ture shown in Fig. 2.1 in terms of overfitting, performance and time processing (with the
same PC capacities) and different models such as SincNet [28], Mel-Frequency Cepstrum
Coefficients [49] (MFCC) + x-vectors [19] and MFCC + ECAPA-TDNN [31] to find the
most suitable architecture for our KinectsDigits [36] and TCD-TIMIT [50] data. Since
we have different and many words in TCD-TIMIT [50], it is wiser to choose this dataset
for our preliminary comparison to select the customised audio architecture for our next
experiments with all datasets. For time reasons, we eliminate end-to-end networks such
as SincNet [28] as it requires high processing time.

Table 2.4 – Identification accuracy and the time processing of each method applied on 20
speakers TCD-TIMIT [50] re-sampled at 16 kHz.

Architecture Identification Accuracy (train/test) Time Processing
WST + 1D-CNN (our architecture Fig. 2.1) 99.21% /96.67% ∼ 45 min

MFCC + x-vectors [19] 99.25%/95.21% ∼ 3 min
MFCC + ECAPA-TDNN [31] 97.71%/95.84% ∼ 15min

The results presented in Table 2.4 demonstrate:
— The time limitations of our proposed method, WST + 1D-CNN, under ultra-short

utterances (less than 1 second), a result from the fact that the WST coefficients
are extracted using a MATLAB implementation, which is the only existing method
capable of capturing deeper feature representations of WST. However, this imple-
mentation is not optimized for speed, making it slower compared to extracting the
hand-crafted features MFCC [49] using Python,

— The ability of MFCC + x-vectors to handle dilemma identification accuracy, over-
fitting and time processing under ultra-short utterance circumstances. This archi-
tecture will be used for our future experiments and we will only use the name
x-vectors.

The performance differences between these models presented in Table 2.4 leads to
choose x-vectors [19] due to its short time processing. Furthermore, for the VoxCeleb2
dataset [48], we fine-tuned the x-vectors [19] architecture using ultra short utterances
(< 1s), after initially conducting transfer learning with x-vectors [19] pre-trained on both
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VoxCeleb1 and VoxCeleb2 [48, 47] datasets.
All audio samples from the three benchmark datasets were either originally sampled or

resampled at a 16 kHz frequency. Before inputting the audio signal into the x-vectors [19]
architecture, a MFCC [49] transform with a 25ms frame length and a 10ms overlap was
applied. The cepstrum coefficients were mean normalized across word duration instead
of the 3 seconds mentioned in the reference article [19], resulting in a feature vector
Xa ∈ R512. For training x-vectors [19] on ultra short utterances from VoxCeleb2 [48], a
batch size of 32 was used, along with the ADAMAX optimizer and a learning rate of
5.10−3.

2.3.1.2 Lip identification

In the realm of voice production, a robust correlation exists between lip movement
and the ensuing audio, as the lip serves to modulate the vibrations of the vocal cords,
particularly within the lower frequency portions of the audio spectrum. Literature has
demonstrated that these low-frequency components encompass both dynamic and visual
biometric elements [25]. Guided by this knowledge, we have devised a novel spatiotem-
poral architecture, which aims to extract not only spatial features, but also temporal
characteristics from the used data.

The 3D convolutionnal neural network is a popular architecture for feature extrac-
tion from videos [51]. However, this architecture demands a significant number of pa-
rameters and more time compared to 2D CNN. To address this challenge, we propose
projecting the 3D data (2D space + time) onto all possible 2D combinations, namely
(X, Y ), (X,T ), (T, Y ). Subsequently, each 2D combination undergoes mean normalization
as a distance calibration and is fed into a ResNet18 neural network pretrained on Ima-
geNet [20], as delineated in Figure 2.6.

For every view - (X, Y ), (X,T ), or (T, Y ) - the network produces a two-dimensional
output matrix, Yin ∈ R512×n, where n represents the quantity of frames along the ab-
sent dimension. The first pair of static parameters across this missing third dimension is
gleaned through an attentive statistic pooling technique [31].

The input Yin of this module passes by a tanh activation and 1D-Conv (same input-
output channels) layer to calibrate the channel weight (first line in Eq. 2.1), the output
score Yin1 ∈ R512×n is normalized across the missing dimension by using the softmax
function, the generated weights Wc,i (c = 1, .., 512 is the channel index and i = 1, .., n
is the frame index) are then used to compute the weighted mean µc and the standard
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deviation σc across the third axis.

This module describes importance to a frame (space or time) contingent on their
ability to augment feature invariance, ultimately yielding a vector Yout ∈ R1024 for each
view {(X, Y ), (X,T ), (T, Y )}.

Yin1 = Conv(k = 1) (tanh (Yin)) ∈ R512×n,

Wc,i = exp (Yin1(c, i))∑n
i=1 exp (Yin1(c, i))

,

µc =
n∑

i=1
Wc,iYin(c, i),

σc =
√√√√ n∑

i=1
Wc,i (Yin(c, i) − µc)2,

Yout = (µ1, . . . , µ512, σ1, . . . , σ512)T ∈ R1024.

(2.1)

To derive a holistic understanding of the video, the resultant vectors from the atten-
tive static pooling operation Yout(X,Y ) , Yout(T,Y ) , and Yout(X,T ) are projected onto the space
R512 through a 1D-convolution employing a kernel size of 1, followed by batch normal-
ization and the implementation of a tanh activation function. The projected vectors are
concatenated and averaged utilizing the self-attention module.

We introduce a self-attention module, built upon the foundation of the attentive static
pooling concept, with the distinct purpose of optimizing both channel and view character-
istics. The vector Zin ∈ R512×3, which arises from the concatenation of the three views, is
subjected to a tanh activation and a 1D-Conv layer with the same input-output channels
of 512, enabling channel weight calibration. Following this, the transposed output vector
Zin1 is passed through a tanh activation and a 1D-Conv layer with the same input-output
channels of 3, as illustrated by the second equation in Eq. 2.2. This final step allows for
the calibration of the weights of the views.

The output vector Zin2 is normalized across the views axis by using the softmax func-
tion, the generated scores W ′

c,i (c = 1, .., 512 is the channel index and i = 1, 2, 3 is the view
index) are then used to compute the weighted mean µ′

c across the views axis. Therefore,
the generated vector Zout ∈ R512 captures the comprehensive spatio-temporal information
of the video and shares identical dimension with the audio feature vector
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Zin1 = Conv(k = 1) (tanh (Zin)) ∈ R512×3,

ZT
in2 = Conv(k = 1)

(
tanh

(
ZT

in1

))
∈ R3×512,

W ′
c,i = exp (Zin2(c, i))∑3

i=1 exp (Zin2(c, i))
,

µ′
c =

3∑
i=1

W ′
c, iZin(c, i),

Zout = (µ′
1, . . . , µ′

512)
T ∈ R512.

(2.2)

To train this depth view fusion system, a batch size of 32 was used, along with the
ADAMAX optimizer and a learning rate of 10−2.

Figure 2.6 – Multi-view Video CNN architecture used on lip depth videos (The red dashed
line represent the extraction of the features vector from the view projection of the video).
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2.3.1.3 Fusion of Depth and Audio modalities

In our proposed method, we employ a late fusion architecture, as illustrated in figure
(2.7). This architecture utilizes distinct networks designed to handle the unique informa-
tion present in each modality, ensuring each modality’s specific characteristics are appro-
priately processed. For the audio component, we apply a 1D-convolution with a kernel
size of 1 to the x-vector outputs that are 1D vector in R512. This procedure is further
enhanced with batch normalization and a tanh activation function. For the depth video
(2D Spatial + Time) modality, we utilize a multi-view CNN (as shown in figure (2.6))
on the depth video to extract a feature vector Xd ∈ R512, encapsulating both visual and
dynamic lip movement information.

Following the individual processing of these modalities, the resultant vectors are routed
through our self-attention module (illustrated in figure (2.7)). This module calculates the
weighted sum of the two vectors as per Equation 2.2. Our approach is informed by the
insights of [36], underscoring the advantages of using weighted fusion. By utilizing this
strategy, we minimize potential redundancy or ambiguity associated with each modality,
reducing contradictions and significantly boosting the overall performance of our model.

Figure 2.7 – Architecture of late fusion of the two modalities (audio and depth video).
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2.3.2 Experimental results and Discussion

2.3.2.1 Data Collection

To evaluate our proposed methodology, we used three well-known benchmark datasets:
KinectsDigits [36], VoxCeleb2 [48], and TCD-TIMIT [50].

KinectsDigits [36] is a valuable resource for multimodal speaker recognition research.
The dataset, captured using Microsoft’s Kinect sensor, consists of RGB, Depth, and Audio
modalities. It features recordings of individuals lips articulating digits from 0 to 9 under
various environmental conditions. We only kept one situation to not have repeated words.
The videos have a resolution of 104 × 80 pixels, a frame rate of 30 fps, and a voice signal
sampling rate of 16 kHz.

VoxCeleb2 [48] is an essential resource for speaker recognition research, containing
RGB and Audio modalities from a diverse range of speakers. The dataset features over a
million utterances from thousands of speakers in various accents, languages, and speech
content. Videos in VoxCeleb2 have a 25 fps and a low resolution 224 × 224, while audio
signals are sampled at 16 kHz. As we have very low resolution, we suggested that the
depth estimation network [52] will give less details about the lip region as shown on figure
(2.8), therefore we only select randomly 1000 speakers from this dataset.

TCD-TIMIT [50] is a valuable resource for multimodal speech recognition research,
comprising continuous speech in both RGB and Audio modalities. The dataset features
individuals delivering sentences from the TIMIT corpus. Videos in the TCD-TIMIT
database have a resolution of 1920 × 1080 pixels, a frame rate of 29 fps, and a voice
signal sampling rate of 48 kHz. Only audio signals were re-sampled to 16 kHz.

While KinectsDigits [36] includes RGB, Depth, and Audio modalities, VoxCeleb2 [48]
and TCD-TIMIT [50] only provide RGB and Audio data. Our experimental approach
focused on the depth information of the speakers’ lip, present in KinectsDigits [36] but
not in the other two datasets. To ensure consistency across all datasets, we applied a
lip detection and depth estimation technique to the RGB videos of the three databases,
obtaining the same modalities for the three benchmarks. The following subsections outline
our lip detection and depth estimation strategies.

Depth estimation
The primary aim of this research is to demonstrate the synergistic value of depth and au-
dio data for multimodal person identification. However, most publicly accessible datasets
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suitable for this purpose only include RGB video and audio modalities. To address this
limitation, we utilize a pre-trained face depth estimation network (employing an Encoder-
Decoder architecture) [52] to generate pseudo depth map from full RGB facial images.
This method, trained on an extensive synthetic face dataset with varying head poses,
expressions, backgrounds, and image resolutions, outperforms state-of-the-art models on
real face depth datasets such as Pandora [53], Eurecom Kinect Face [54], and Biwi Kinect
Head Pose dataset [55]. Consequently, this model can produce depth modality for RGB
faces in datasets.

The depth estimation network was independently applied to each facial frame within
a given video for Voxceleb2 and TCD-TIMIT. For the KinectsDigits dataset, we retrained
the depth estimation network on Pandora [53] lip regions to enable a fair comparison
between estimated and actual depth in the person identification task. Although the re-
sulting depth estimation may be considered low-resolution due to some missing depth
information, it remains a valuable data source for our analysis, as evidenced in the results
section. The figure (2.8) presents a sample of real or estimated depth mouth crop frames
for the three benchmark datasets.

Lip extraction
In our approach to data preparation, we employed an existing method for lip detection
and applied it to two supplementary datasets, namely VoxCeleb2 [48] and TCD-TIMIT
[50]. The aim was to accurately identify and extract the lip region of speakers in RGB
videos for further analysis. To accomplish this, we utilized Google’s Mediapipe tool. By
leveraging the power of Mediapipe, we were able to identify the key landmarks associated
with the mouth region. This allowed us to isolate the lower part of the face on the depth
video and focus our attention on the lip.

Word segmentation
In our investigation of the ultra-short utterance problem, we segmented words from the
audio in both the VoxCeleb2 and TCD-TIMIT datasets (while KinectsDigits audio only
contained digit words from 0 to 9). We removed duplicate instances of the same word for
each speaker to concentrate on the text-independent speaker identification task. Subse-
quently, we interpolated the resulting timestamps on the video to extract the lip video
section corresponding to the spoken word. We utilized models from the Kaldi toolkit for
word segmentation, which are available for various languages. It is worth noting that for
some words, we obtained a single frame, which the spatiotemporal network processed as
3D data, just like longer videos.
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Figure 2.8 – General Informations on the three benchmarks used during the study (Fs
represents the frequency sampling before the re-sampling to 16 kHz, the audio curves are
full utterance or a part of a word spoken by a speaker in each dataset). Real depth refers
to the depth map obtained directly from a depth camera. In contrast, estimated depth
stands to depth map generated from RGB images using the method outlined in paragraph
2.3.2.1.

Table 2.5 presents pertinent information regarding each dataset and its usage, with an
80%|20% train|test split. Remarkably, up to 95% of the data has a duration of less than
1 second, demonstrating that the task is focused solely on short utterance identification.

Table 2.5 – Data characteristics after word segmentation.
Dataset/ Information #spk #avg/spk (min,max,mean) Fps Mouth crop (hx, hy)

Kinects Digits [36] 30 10 (35ms, 2.02 s, 600ms) 30 (104, 80)
TCD-TIMIT [50] 59 470 (35ms, 2.07 s, 610ms) 29 (300, 150)
VoxCeleb2 [48] 1000 815 (40ms, 1 s, 520ms) 25 (60, 60)

2.3.2.2 Results

This section addresses the experimental results of the proposed architecture in figure
(2.7) and its components applied on the three datasets. We investigate the performance of
our spatiotemporal fusion system, the importance of adding depth information to audio,

42



2.3. Attention-based Fusion of Ultra-short Voice Utterances and Depth Videos for Multimodal
Person Identification

and the complementary information added by each modality. To understand how the
fusion of modalities can improve the performance of the system, we first examine each
individual modality and their identification capabilities.

We begin our discussion by exploring the impact of depth video encoding. The fusion
of all three views, as depicted in figure (2.6), led to a noticeable improvement of ap-
proximately 2% in performance, as detailed in Table 2.7. This improvement validates the
significant advantage of integrating both spatial and temporal information into a single
modality. Furthermore, it is noteworthy to emphasize the critical role the self-attention
module played in these results. By finely balancing the spatial and temporal information,
this module effectively amplified the overall performance of the speaker identification
process.

To provide additional insights, we dove deeper into the contribution of each view to-
wards person identification based on the depth video of their lip. To achieve this, we
dissected the identification performance for each 2D view of the video using the architec-
ture illustrated in figure (2.6). The ensuing findings, presented in Table 2.6, allow for a
thorough analysis of the various views.

The analysis unveils that the (XY ) view, which encapsulates the spatial information
of the video, has a substantial edge over the other views. Its performance improvement
is quite significant: 5% for the KinectsDigits dataset trained on real or estimated depth,
9.27% for TCD-TIMIT, and 8.08% for VoxCeleb2. Following the (XY ) view, the hori-
zontal view (XT ), which covers the horizontal movements of the lip, shows remarkable
results on the real depth KinectsDigits dataset [36]. In fact, it surpasses the (TY ) view by
8.33%, indicating the importance of temporal dynamics. Furthermore, the performance
improvement from depth estimated video reveals an interesting prospect of considering
the valuable information provided by estimated depth.

Table 2.6 – Identification accuracy per each view of depth video. Real depth refers to the
depth map obtained directly from a depth camera. In contrast, estimated depth stands to
depth map generated from RGB images using the method outlined in paragraph 2.3.2.1.

View/ Dataset XY XT TY Spatio-temporal fusion
KinectsDigits (Real Depth) [36] 96.66% 91.66% 83.33% 98.33%

KinectsDigits (Estimated Depth) [36] 100% 100% 100% 100%
TCD-TIMIT (Estimated Depth) [50] 96.20% 83.33% 86.93% 98.58%
VoxCeleb2 (Estimated Depth) [48] 11.82% 8.62% 8.58% 17.49%

Diving into another critical aspect of our analysis, the audio component of videos, we
discover its pronounced significance in the sphere of speaker identification tasks. We used
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the x-vectors architecture, a powerful method for dealing with audio data. However, our
results, as depicted in Table 2.7, highlight a considerable drop in performance, primar-
ily attributed to the short duration of the voice samples. This brevity tends to trigger
substantial overfitting, depending on the specificities of the dataset.

We found that the audio-based identification performs rather well in controlled record-
ing environments, such as those present in the KinectsDigits [36] and TCD-TIMIT [50]
datasets, where the identification accuracy surges beyond 75%. Nonetheless, in scenarios
more reflective of real-world conditions, as is the case with the VoxCeleb2 [48] dataset, the
accuracy nosedives to nearly half of its initial value. Such a drastic dip in accuracy raises
concerns about the reliability of the system for accurate speaker recognition in practical
applications.

The combination of different modalities can, however, offer a solution to this prob-
lem. Integrating various modalities not only harnesses their individual strengths but also
supplements each other’s limitations. Particularly, an effective fusion of audio and depth
or estimated depth data can create a more robust and efficient system. Our results sup-
port this claim, as shown in Table 2.7, where we observed a marked enhancement in
performance when both modalities were utilized in unison.

Upon fusing the modalities, the performance of audio identification shot up by 20%,
while the real or estimated depth’s spatiotemporal encoding registered an average boost of
1.5%. These findings validate the significant potential of integrating the strengths of each
modality. The result is a more potent speaker identification system capable of adjusting
to diverse conditions and tackling the inherent challenges associated with short utterances
and noisy recording environments effectively.

Table 2.7 – Identification accuracy per each modality and their fusion for the three bench-
marks. Real depth refers to the depth map obtained directly from a depth camera. In
contrast, estimated depth stands to depth map generated from RGB images using the
method outlined in paragraph 2.3.2.1.

Modality/ Dataset Audio Depth Multimodal Fusion
KinectsDigits (Real Depth) [36] 75% 98.33% 100%

KinectsDigits (Estimated Depth) [36] 75% 100% 100%
TCD-TIMIT (Estimated Depth) [50] 89.25% 98.58% 99.76%
VoxCeleb2 (Estimated Depth) [48] 56.03% 17.49% 64.11%
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2.3.2.3 Discussion

These results not only emphasize the significant contribution of depth information to
the overall performance, but they also highlight the valuable supplementary information
provided by the audio component. By effectively combining these two modalities, it is
possible to develop more advanced and reliable systems that capitalize on the strengths
and complementary nature of both audio and depth information. Building on this obser-
vation, addressing the issue of speaker identification reliability requires considering both
audio and visual modalities. Fusing the information from these modalities results in a
more robust and effective system that can overcome limitations posed by short utterances
and variable recording environments. This multimodal approach significantly enhances
the performance of speaker identification systems, ensuring their effectiveness in various
real-world applications.

In speaker identification tasks, our spatiotemporal fusion method (illustrated in figure
(2.6)) is an efficient way to process depth videos, while deliberately avoiding the use of
resource-intensive 3D CNNs. The logic behind steering clear of 3D CNNs is based on their
inherent drawbacks, such as the high computational demand and memory requirements
which can impede their use in real-time applications or on devices with limited resources.
Furthermore, the greater number of parameters in 3D CNNs has potential implications for
longer training times and increased susceptibility to overfitting, especially when working
with datasets of limited size. In contrast, our chosen approach, which relies on a more
efficient spatiotemporal fusion method, has the advantage of pulling out distinctive fea-
tures from real or estimated depth videos, thus ensuring comparably strong performance
in speaker identification tasks without facing the challenges tied to the use of 3D CNNs,
such as high computational complexity and prolonged training periods.

This spatiotemporal fusion architecture consists of multiple 2D views, and an investi-
gation into the contribution of each view is required. For the real depth data, specifically
the KinectsDigits [36] dataset, the horizontal view of the mouth (XT ) outperforms the ver-
tical view (TY ). This could be attributed to the mouth’s greater horizontal length, which
enhances discriminant dynamic features. However, the (TY ) view exhibited more pro-
nounced and rapid overfitting, suggesting its susceptibility to overfitting in this context.
It is crucial to select an appropriate mouth crop resolution, as the speaker identification
performance can be significantly impacted by the resolution or depth estimation, as seen
in the VoxCeleb [48] dataset.

Considering the spatial view (XY ), it outperforms other fusions for both estimated
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and real depth. This could be due to visual features conveying the 3D shape of the human
face, while dynamic features only represent low frequencies of voice and behavior. The
limited context for temporal features in short utterances might also contribute to this
disparity. As depth resolution increases, the gap between the (XY ) view and other views
grows larger, suggesting the increasing importance of spatial information for distinguishing
speakers with improved resolution, leading to enhanced discriminative power for the (XY )
view.

Another key element of our discussion is the analysis of errors that occur during
the speaker identification process. Several noteworthy patterns emerge after examining
the errors made by our proposed model. The primary source of error, especially for the
audio modality, appears to be ultra short utterances. Shorter utterances provide limited
temporal context, and the brevity of these utterances can lead to the omission of certain
speaker-specific cues, thus causing the model to underperform in these cases. This issue
is compounded in the VoxCeleb2 dataset, where the utterances are notably brief and
the recording conditions are significantly more varied than in the other datasets, thus
challenging the model’s performance.

Additionally, another pattern we have noticed is the decrease in identification accu-
racy as the environmental noise increases, particularly with the VoxCeleb2 dataset. This
dataset features recordings in diverse and often challenging conditions, such as outdoor
recordings or instances with significant background noise. These factors can mask or dis-
tort speaker-specific cues, making it harder for the model to correctly identify the speaker.

In our examination of the depth video modality, we found that errors frequently
stemmed from the low resolution of the RGB videos, particularly noticeable in the Vox-
Celeb2 dataset. This resulted in less accurate depth estimation, which in turn affected the
precision of the spatial representation of lip movements, subsequently lowering identifi-
cation performance. It’s worth noting that the depth estimation algorithm is specifically
trained on facial features and thus performs optimally with high-resolution RGB videos,
as is the case with the KinectsDigits and TCD-TIMIT datasets. Therefore, when applied
to lower resolution videos like those in the VoxCeleb2 dataset, the depth estimation’s
accuracy diminishes. The lower resolution videos also struggle to capture the finer details
of lip movements, limiting the depth modality’s discriminatory ability and potentially
leading to identification errors.
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2.3.3 Conclusion

This study demonstrates the effectiveness of a multimodal approach for speaker iden-
tification, incorporating both audio and depth information to achieve more accurate and
reliable results. Through the examination of three benchmark datasets – KinectsDigits,
VoxCeleb2, and TCD-TIMIT – we have shown that the fusion of these modalities leads
to significant improvements in identification performance. The proposed spatiotemporal
architecture effectively extracts spatial and temporal features from depth information,
while the x-vectors architecture processes the audio modality.

Our findings highlight the importance of integrating multiple modalities to overcome
the limitations posed by short utterances and variable recording environments. By fusing
audio and depth data, we have achieved enhanced performance in a range of scenarios,
including clean recording environments and more realistic, constrained situations. The
results indicate that depth information plays a crucial role in performance enhancement,
with the addition of audio providing complementary benefits.

This research contributes to the advancement of speaker identification systems by
proposing a robust multimodal approach. In our future work, we aim to propose an archi-
tecture based on an early fusion, taking into account the high correlation between the lip
movement and the voice generated. This would potentially lead to further improvements
in performance and system reliability.

Future work can also extend this study by exploring the integration of other modalities
or refining the fusion techniques to further improve performance. Additionally, the appli-
cation of the proposed methodology to other related tasks, such as speaker verification or
emotion recognition, could provide valuable insights and contribute to the development
of more advanced and reliable systems in these domains.
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Chapter 3

TOWARD COMPREHENSIVE SHORT

UTTERANCES MANIPULATIONS

DETECTION IN AUDIO-VISUAL VIDEOS

In the previous chapter, we discussed the advantages of multimodality in the bio-
metrics fields. In this chapter, we will discuss the threat that has been evolving in the
recent years, the deepfake, in other words, the multimedia manipulations. This chapter
explores the need to integrate counterfeit detection mechanisms for robust security mea-
sures. Section 3.1 starts with an introduction about multimodal deepfake generation and
detection. Section 3.2 reviews existing literature in audio and visual deepfake detection,
emphasizing the limitations and computational challenges of current approaches. Section
3.3 elaborates on our hand-crafted methods for audio and visual deepfake detection, as
well as our multimodal deep learning model. Section 3.4 details the experimental design
and SOTA datasets used to evaluate our methods. Section 3.5 lists the results of all
the experiments that we conducted in this chapter to evaluate our methods. Section 3.6
presents a comprehensive analysis of our results, followed by Section 3.7 that concludes
the chapter and discusses future research directions.

3.1 Introduction

In an era defined by the rapid advancements in artificial intelligence and Generative
Adversarial Networks (GANs), the manipulation of multimedia content has become both
more sophisticated and more accessible [56, 57]. This growing accessibility not only un-
veils a new frontier of creative and practical possibilities but also precipitates a significant
challenge in the form of multimedia manipulations that are increasingly harder to detect.
Such manipulations have serious implications as they can mislead both human judgment
and automated systems, jeopardizing the integrity of information channels [58]. Exist-
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ing countermeasures for manipulations detection often hinge on resource-intensive deep
learning models, thus limiting their applicability in real-world scenarios with constrained
computational resources [18, 59, 60, 61].

The latest developments in deepfake technology have greatly influenced multimedia
manipulation, leading to the creation of various methods capable of generating highly
realistic synthetic media [62]. Notably, lip-syncing algorithms, which alter lip movements
in videos to align with specific audio tracks, have gained significant attention [63, 62].
These techniques create a convincing illusion that the person in the video is speaking
the provided audio. Previous research has indicated that detecting manipulations in the
lower part of the face, particularly the lips and mouth, is more challenging compared to
other facial features like the eyes, especially when using deep neural networks such as
XceptionNet [64, 65]. This is a critical aspect of our study, as many deepfake techniques
target the lower facial region to create deceptive effects [56]. The significance of the lip
area is further amplified in scenarios where the upper face is obscured, making other
facial features less reliable for verifying authenticity. By focusing on lip area manipulation
detection, our research tackles a vital component of deepfake techniques and seeks to offer
a robust solution for ensuring the authenticity of digital media.

Voice conversion represents a recent advancement in deepfake technology, enabling the
transformation of one person’s voice to closely mimic the vocal characteristics of another
[57, 66]. This technology can be combined with visual manipulations to create even more
convincing synthetic media [67, 57]. Additionally, text-to-speech synthesis has advanced
to the point where synthetic voices are becoming nearly indistinguishable from human
voices, facilitating the creation of highly realistic audio content from text inputs [68, 57,
66]. While these developments are impressive, they highlight the critical need for effective
detection mechanisms to ensure the authenticity of multimedia content in this new era of
synthetic media.

One critical and under-addressed area within this context is the detection of manipu-
lated short utterances in both visual video and audio content. The paucity of data in short
sequences exacerbates the challenge of reliable detection. Algorithms find it increasingly
difficult to discern patterns from limited information, creating an acute need for efficient
and effective models.

Against this backdrop, our work in this field introduces several key contributions:
— Novel Detection Method: Introduced a specialized shallow learning technique for

detecting deepfake content by analyzing the visual and auditory components of
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multimedia, specifically targeting the lower region of the face in videos.
— Focus on Ultra-short Segments: Optimized the detection method for ultra-short

video segments ranging from 200 ms to 600 ms, addressing a significant challenge
in existing methods.

— Multi-scale Audio Analysis: Employed a multi-scale analysis for audio features
using the wavelet scattering transform (WST), which effectively captures essential
frequency characteristics of audio signals.

— High-frequency Video Analysis: Developed a video feature extraction method based
on high-frequency spatial analysis using discrete cosine transforms (DCT), focusing
on the lip region for enhanced detection accuracy.

— Versatility: Designed the method to be versatile, applicable in both unimodal and
multimodal settings, leveraging visual and auditory cues for a comprehensive eval-
uation.

— Performance and Efficiency: Demonstrated that the proposed method not only ex-
cels in accuracy for ultra-short segments but also scales efficiently to longer video
lengths, making it suitable for real-world applications with constrained computa-
tional resources.

— Lastly, for environments endowed with substantial computational resources, we
introduce a state-of-the-art multimodal deep learning model [45], synthesizing both
audio and visual data for enhanced detection accuracy.

Moreover, the complexity of detection becomes increasingly arduous with shorter iter-
ation cycles in the generation of deepfakes. We, therefore, propose a testing strategy that
seeks to assess the robustness of our models, accounting for various types of manipulations
and different levels of compression in tampering methods.

The contribution of this work lies not only in the introduction of these novel meth-
ods but also in their potential to fill the gap between high computational requirements
and real-world applicability. Our hand-crafted methods, in particular, offer a viable alter-
native for real-world scenarios where the deployment of resource-intensive deep learning
algorithms is not feasible.

To rigorously validate our contributions, we perform extensive evaluations using mul-
tiple benchmark datasets, thereby confirming the efficacy and generalization ability of our
methods. Our results indicate that when computational resources are not a limitation,
our multimodal deep learning model performs exceptionally well, while the hand-crafted
methods demonstrate unparalleled performance in resource-constrained environments.
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The work presented was split into hand crafted and deep learning method, they were
respectively published in the journal Multimedia Tools and Applications [69] and in the
IMPROVE conference 2024 [70].

3.2 Related Works

Previous studies in deepfake detection have charted a range of technical methodologies
for analyzing audio and visual components, employing strategies that extend from detailed
low-level hand-crafted features to advanced high-level neural network architectures [60,
57].

In the realm of combating audio deepfakes, the use of Mel-Frequency Cepstral Coef-
ficients (MFCC) is widespread, analyzed through 2D neural network architectures such
as VGG16 and EfficientNet [59, 71, 18]. These methods are promising, yet they demand
significant computational resources and have not been examined when dealing with ultra-
short audio samples. In this chapter, we propose to explore shallow learning and deep
learning methods which require less resources.

A. Pianese et al. [72] employed a distinct approach for audio deepfake detection by
harnessing the Person of Interest (POI) concept, echoing the core ideas of speaker verifi-
cation systems [31]. Their strategy focuses on assessing the similarity between the voice
under scrutiny and a pre-existing reference collection of the claimed identity, employing
two unique non-supervised methods: centroid-based and maximum-similarity testing [72].
The primary challenge of this method is its reliance on a comprehensive reference set for
each identity analyzed. Our methodology aims to address this limitation by proposing
an alternative approach that minimizes the need for such extensive reference collections,
thereby enhancing the practicality and scalability of audio deepfake detection.

Visual-based deepfake detection methods have seen a diverse range of strategies. Some
leverage 3D networks for in-depth sequence analysis [60, 17]. Zhou et al. [17] proposed
a system that exploits the intrinsic synchronization between audio and visual elements,
particularly focusing on the lips’ movement and corresponding audio at the word level.
Employing a multimodal neural network, they experimented with three types of fusion
mechanisms based on attention mechanisms [17]. However, it’s noteworthy that [17] em-
ployed 3D networks for video feature extraction and attention mechanisms, processes that
are known for their high resource demands.

On the other side, alternative approaches to deepfake video detection primarily em-
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ploy image-based methods, placing a significant focus on facial features as discussed in
references [60, 18]. In other words, these methods involve the independent analysis of each
frame within the video input by the network, culminating in a conclusive decision through
hard or soft voting [60, 18]. While these techniques demand fewer resources compared to
their 3D counterparts, they lack the incorporation of temporal information essential for
thoroughly examining videos.

Building on these contributions, our work aims to address some of the identified lim-
itations. Firstly, our methodologies designed for audio-visual detection rely on shallow
learning and only the lips part of the face, demanding fewer resources and demonstrating
a comprehensible and interpretable nature. Our visual deepfake detection is based on se-
quence level, in other words, we exploit the temporal anomalies with less computational
cost. Secondly, based on our previous [45], we tune our architecture that dissects videos
into three distinct views: one spatial and two temporal. This approach is designed to
mitigate the computational costs associated with some of the existing methods, while still
maintaining high detection accuracy.

3.3 Methodology

In the following subsections, we elaborate on our approach, rooted in both novel hand-
crafted techniques and adapted deep learning strategies. The former serve as the primary
contributions of this study, tailored specifically for video manipulation detection. The lat-
ter, initially developed in our previous work [45], tackle challenges unique to this research
domain. Our methods operate effectively in both uni-modal and multi-modal settings.

3.3.1 Pre-processing: lips part selection

The primary objective of this research endeavor is to advance the field of manip-
ulation detection in videos, with a focus on several modalities including audio, visual,
and audio-lips correlation. Previous studies have indicated that the lower part of the
face—specifically the lip and mouth area—demonstrates reduced performance in manipu-
lation detection when compared to other facial features like the eyes. This is particularly
obvious when using deep neural networks such as XceptionNet for the classification of
manipulated content [64, 65].

To address this challenge, our methodology involves the precise isolation of the lip
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region from the talking face within the video frame. We employ an existing algorithm
designed for lip detection and tailor it to the datasets being studied. For this purpose, we
utilize Google’s Mediapipe tool [73], a comprehensive framework known for its proficiency
and speed in identifying facial landmarks. By leveraging the capabilities of Mediapipe, we
isolate key landmarks corresponding to the mouth and lips for further detailed analysis.

The ultimate goal of focusing on this specific region is to capture subtleties often
missed by manipulation-generating algorithms, such as the intricacies of teeth [74]. By
concentrating on these nuanced areas, our research aims to both improve existing methods
of manipulation detection in videos and provide insights into the limitations and potential
enhancements in the modeling of complex facial regions.

3.3.2 Rationale for Hand-crafted Techniques

3.3.2.1 Proposed Pipeline

The global view of the proposed method is depicted in Figure 3.1 and will be de-
tailed in this paragraph. After some standard pre-processing steps, we apply a dual-phase
method for deepfake detection. Initially, we extract features separately from the video’s
facial imagery and the corresponding audio. We then proceed to independently classify
the authenticity of both video and audio. Finally, we bring together these independent
classifications at a decision level, harnessing the temporal information inherent in both
modalities.

3.3.2.2 Hand-crafted Methodology

We detail our method, which is based on new hand-crafted techniques for extracting
features from both audio and video. This is shown in the proposed method module of our
pipeline in Figure 3.1.

Audio Feature Extraction Our approach aims to refrain from making assumptions
regarding the specific frequency domain impacted by deepfake alterations in the audio sig-
nal. As a result, we have chosen to employ a multi-scale analysis for the development of
our audio features. The literature presents various multi-scale decomposition methodolo-
gies, such as Mel Frequency Cepstrum Coefficients (MFCC) and Mel-Spectrograms, along
with the Wavelet Scattering Transform (WST). For the purposes of this study, we have
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Figure 3.1 – Proposed pipeline for short utterances manipulations detection in videos.

selectively employed the WST. The selection was based on WST’s proven efficacy in cap-
turing essential frequency characteristics of audio signals, which are crucial for identifying
the subtle alterations introduced by deepfake techniques.

Consider an audio signal x ∈ Rtx sampled at 16kHz and maximally normalized,
where tx ∈ N∗. We partition this signal into its positive xp ∈ Rtx and negative xn ∈ Rtx

components as follows:



xp = ReLU(x)

xn = ReLU(−x)

x = xp − xn

. (3.1)

Let us introduce Ψ, denoting the Wavelet Scattering Transform (WST) designed for
one-dimensional signals as presented in existing works [32, 33]. The fundamental idea
behind WST is the iterative application of the wavelet transform [75] coupled with a
modulus operation serving as a non-linear function and subsequently averaging the result
through a Gaussian filter. This transformation technique is subject to multiple hyper-
parameters, including the invariance scale (window length), the transform depth, and the
quality factors which determine the number of wavelets per octave. This WST is suited
for our purpose as it gives a frequency characterization of an audio.
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A preliminary assessment of disparities between an authentic audio and its cloned using
the audio deepfake generation method described in [66]. The two scattergrams (c-d) in the
figure 3.2 illustrate variations in the WST between the upper and lower samples of the two
audio sources, while the scattergrams (a-b) of the two signals without decomposition have
small dissimilarities. The two plots in (c-d) shows that the fake audio is characterized by
predominantly negative values with a positive value at 0Hz, whereas the authentic one
primarily consists of positive values and exhibits null values at 0Hz.

Figure 3.2 – (a) The difference between the WST of positive and negative sample of Real
audio. (b) The difference between the WST of positive and negative sample of the fake
audio represented in (a). (c) The WST of the same real signal. (d) The WST of the fake
signal. Only the zero-th and the first order WST are presented and the fake signal was
generated using the method described in [66] (i.e: the WST index refers to the mel-scaled
frequencies between 0 Hz and 8 kHz).

In line with the existing research on audio processing [32], we have set the window
length at 64ms and chosen four layers, which are adequate for better capturing invariant
features [44]. With this setup and a sampling frequency of 16kHz, we derive 153 WST
coefficients. Subsequently, we compute the WST Ψ of our signal x and both negative
xn and positive xp components. This results in the output matrices Xn,Xp,X ∈ RC×Tx ,
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where (C ∈ N∗) denotes the number of WST coefficients, ranging from zero order up to
the fourth order, here C = 153.

The core concept of our method hinges on using transformed matrices to calculate the
lower bounds of the Pearson correlation coefficient, focusing on the interactions between
Xp, Xn, X, and Xp −Xn. This approach is integral to our analysis, as it leverages only the
inherent elements of the audio signal, thus eliminating the need for external benchmarks.
Mathematically, the framework of our proposed method can be described as follows:

S(c) = min
(
ρ(Xn(c),Xp(c) − Xn(c)),

ρ(X(c),Xp(c) − Xn(c)),

ρ(Xp(c),Xp(c) − Xn(c))
)
, (3.2)

where c = 1, .., C is the channel index of the WST coefficients, S = (S(1), ...,S(C)) ∈ RC

is the features vector to detect a fake audio and ρ is the Pearson correlation coefficient
across temporal axis.

We employ the Pearson Correlation Coefficient to elucidate the interrelationships
among the distinct components of the audio signal. Analyzing the correlation patterns
between the positive and negative aspects of the WST coefficients allows us to detect in-
consistencies characteristic of deepfake manipulations. Such irregularities are indicative of
alterations, given that genuine audio signals typically demonstrate a stable and consistent
correlation pattern, which is often disrupted in manipulated audio.

Video Feature Extraction Following the exposition of our audio deepfake detection
methodology, we now introduce the algorithm we designed to discern the authenticity
of visual sequences. This method hinges on both the spatial and temporal attributes of
a video, focusing primarily on detecting any anomalies or inconsistencies in the motion
or appearance of a speaking subject in a video with a zero head pose. Given that deep-
fake generation algorithms exhibit difficulties in accurately replicating the high-frequency
characteristics inside the mouth area such as the teethes [76, 77], our method emphasizes
the high-frequency components of the video signal.

Let V ∈ Rtv×3×Nx×Ny be a video sequence depicting the lip movements of a subject
speaking without head pose. The video frames are converted to gray-scale for analysis. For
each temporal instance t = 1, ..., tv, we take the fourth-order spatial derivative of the frame
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V (t) ∈ RNx×Ny with respect to both x and y axes to yield ∂4V
∂x2∂y2 ∈ Rtv×3×Nx×Ny . This

operation effectively shifts the energy of the signal toward the high-frequency domain.
Subsequently, we apply the two-dimensional discrete cosine transform (DCT2), de-

noted as Φ, to ∂4V
∂x2∂y2 , resulting in the frequency representation of the rate of intensity

change across frames. Drawing inspiration from existing work [78], which leverages tem-
poral variations in Pearson correlation coefficient to identify talking regions, we compute
this coefficient for successive frames. Mathematically, the process can be described as
follows



Φ( ∂4V
∂x2∂y2 )(t) = (νi,j(t))1≤i≤Nx,1≤j≤Ny ∈ RNx×Ny

νi,j(t) = ∑Nx−1
p=0

∑Ny−1
q=0

∂4V
∂x2∂y2 (p, q, t) · cos

(
π

Nx

(
p+ 1

2

)
i
)

· cos
(

π
Ny

(
q + 1

2

)
j
)

ρ(t) = pearson(Φ( ∂4V
∂x2∂y2 )(t),Φ( ∂4V

∂x2∂y2 )(t− 1)) ∈ R, t = 2, ..., tv

, (3.3)

where Φ
(

∂4V
∂x2∂y2

)
(t) represents the high-frequency components obtained from the DCT2

transform Φ of the frame V (t), and ρ(t) denotes the Pearson correlation coefficient between
two successive frames V (t) and V (t+ 1). To perform an analysis over a specific duration
or the entire length of the video, we construct a scatter plot using the temporal mean µ

and the standard deviation σ of the ρ values.

3.3.3 Deep learning Methodology

In scenarios with abundant data, deep learning, especially CNNs, proves invaluable
due to its capability to autonomously discern and extract pivotal features, a feat often
surpassing the performance of hand-crafted methods. Building on [45] developed deep
learning model for biometric identification tasks, we have incorporated specific enhance-
ments to address the unique challenges presented by deepfake detection in audio-visual
data. These enhancements, detailed in the subsequent sections, refine the model’s archi-
tecture and functionality, where we have changed the number of classes to 2 (Real Audio
- Real Video and Fake Audio - Fake Video) or 4 (Real Audio - Real Video, Fake Audio -
Fake Video, Real Audio - Fake Video and Fake Audio - Real Video), ensuring optimized
performance for this application.

In our approach to deepfake detection, we opt for a late fusion technique inspired
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by the prior research in biometric tasks [45]. This architecture is presented in Fig. 3.4.
The decision to employ late fusion is motivated by several factors. Firstly, it offers a
more straightforward implementation compared to alternatives like early or hybrid fusion,
effectively balancing information derived from both audio and visual modalities.

Secondly, the networks used for feature extraction in each modality are already pre-
trained on expansive datasets. For audio, we use x-vectors pre-trained on the VoxCeleb
dataset [48], and for the visual aspect, we utilize ResNet18 pre-trained on ImageNet [79].
This allows us to concentrate solely on fine-tuning the fusion and classification layers,
streamlining the overall training process.

Additionally, by dividing the video into multiple views, XY representing the spatial
view, TY and XT incorporating the spatio-temporal respectively views across the y-axis
and x- axis, we enhance our detection capabilities. This multi-view framework permits
the identification of specific features such as jaw location thanks to the XY view, motion
jitters (a demonstration of this effect can be observed in Fig. 3.3) TY view, and common
artifacts that deepfake generators often struggle to simulate convincingly.

Figure 3.3 – Motion jitters problem illustration from the article [62]. Left and middle are
two deepfake generation methods, and the right image is taken from a real video. For each
video, the vertical cuts (the vertical red/green/blue line) are made in each frame along
time, and then show their concatenation at the bottom.

Lastly, the computational efficiency of a multi-view architecture makes it a more prac-
tical choice for feature extraction than using 3D CNNs, particularly in real-world appli-
cations.
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Figure 3.4 – Multi-view CNN late fusion architecture for audio-lips correlation [45]. For
multimodal deepfake detection, the number of classes are set to 2 or 4, in addition, we
only tune the fusion layers (all layers except 2D ResNet-18 and x-vectors).

3.4 Experimental Strategy and Materials

In this section, we detail the experimental procedures used to validate our methods
against existing state-of-the-art (SOTA) solutions [45, 72, 59, 60] for both audio and
visual deepfake detection. Our validation process includes experiments with two reputable
datasets which would be explained in the following.

3.4.1 Datasets

To evaluate our proposed methods, we introduce benchmark and reference datasets
that are widely accepted and commonly employed in the field of deepfake detection to
assess the effectiveness of our proposed methods. Note that this may not be an exhaustive
list.
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3.4.1.1 FakeAVCeleb

The FakeAVCeleb dataset serves as a comprehensive and developed resource for audio-
visual deepfake detection [80]. Originating from the frequently cited VoxCeleb2 multi-
modal corpus [48], FakeAVCeleb stands out for its frame rate of 25 fps and an average
video duration of approximately 7.8 seconds. Employing an array of state-of-the-art deep-
fake generation methods such as lip-syncing and face-swapping technologies [81, 82, 83,
84], the authors have fabricated videos that pose a realistic and formidable challenge in
discerning their authenticity.

To bolster its applicability, the dataset has been curated to offer ethnic and gender
diversity, thus paving the way for equitable and representative evaluation. Structurally, it
comprises four distinct categories of audio-visual data:

— A collection of 500 videos with real-audios and real-videos (RvRa),
— Another set of 500 videos where the audio has been cloned or generated from a

speech text while the visual content remains authentic (RvFa),
— A larger set of 9, 700 videos featuring real audio coupled with manipulated visual

content (FvRa),
— Finally, a comprehensive set of 10, 800 videos in which both the visual and audio

components are synthetic (FvFa).
The FakeAVCeleb dataset introduces three distinct classes of manipulated content,

alongside a dedicated category for wholly authentic videos. For testing our method, videos
from this dataset have been chunked into segments ranging from 200 ms, 600 ms to 1 s in
duration. Samples from this dataset are depicted in the Fig. 3.5 from the original article
[80].

Figure 3.5 – Samples from the 4 classes of FakeAVCeleb dataset [80].
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3.4.1.2 DeepfakeTIMIT

The DeepfakeTIMIT dataset emerges as an essential benchmark in the realm of deep-
fake detection, featuring an average video length of approximately 4.25 seconds. Originat-
ing from the VidTIMIT database [85], it employs GAN-based face-swapping techniques to
generate manipulated content [86, 87]. This corpus is bifurcated into two main categories:
the first contains 320 clips with manipulated visuals yet authentic audio (’Fake Video -
Real Audio’), while the second consists of 430 clips preserving both the original video
and audio (’Real Video - Real Audio’). Two samples representing fake and real frames are
depicted in Fig. 3.6.

Figure 3.6 – Two frames samples from DeepfakeTIMIT dataset ((a) Real, (b) Fake).

Our investigation is primarily aimed at the low-quality segment of the DeepfakeTIMIT
collection. This specific tier provides invaluable insights into the robustness of deepfake
detection methods when operating under suboptimal conditions. It thereby furnishes a
more nuanced understanding of algorithmic performance constraints, especially consid-
ering that diminished visual and auditory quality exacerbate the challenges of distin-
guishing authentic content from fabricated instances. For the purposes of our study, we
implemented a preprocessing step that involved the removal of silent segments from the
video clips in the dataset. This ensured that the subsequent segmentation into durations
ranging from 200 ms and 600 ms to 1 s resulted in utterances containing at least a word,
thereby guaranteeing meaningful audio-visual data for analysis.
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3.4.2 Experimental Strategy

3.4.2.1 Hand-crafted proposed methods

The first experiment (hand-crafted audio deepfake detection) assesses the
capability of our model in detecting deepfakes within short utterances. For this purpose,
we segmented the datasets into frames of 200 to 600 milliseconds, with a 50% overlap
between consecutive frames. This approach ensures that the dataset is both robust and
continuous, enabling a thorough analysis of the model’s performance.

The data was split into training, validation, and test sets using a 60-20-20% ratio,
which is a standard practice to ensure a balanced evaluation of the model. We utilized
a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel to clas-
sify the features extracted as described in Equation (3.2). The RBF kernel was chosen
for its effectiveness in handling non-linear patterns within the data. During the training
and validation phases, the regularization coefficient was carefully tuned to 0.01, optimiz-
ing the model’s performance by controlling the balance between model complexity and
classification accuracy.

The second experiment (hand-crafted visual deepfake detection) evaluates
the effectiveness of our model detailed in Eq. 3.3, in detecting deepfakes within the visual
channel of videos, both in short utterances and across entire video frames. Similar to
the approach used for audio signals, we segmented the video datasets into short frames
ranging from 200 to 600 milliseconds. This segmentation allows us to focus on brief visual
segments, which are particularly challenging in deepfake detection.

We applied the same cross-validation strategy as in the first experiment to ensure
consistent and rigorous evaluation of the model’s performance in the visual domain. By
maintaining this uniform approach, we were able to accurately assess the model’s ability
to detect visual manipulations in both short and extended video sequences.

3.4.2.2 Deep Learning proposed method

The third experiment (Comparison to the SOTA): we evaluate [45] network
(cf. Fig. 3.4), we exclusively consider audio RGB lips videos from the classes RvRa (Real
Video - Real Audio) and FvFa (Fake Video - Fake Audio) from FakeAvCeleb dataset
[80], labeled respectively as real and fake audiovisual. These sequences are split to frame
lengths ranging from 200 ms, 600 ms and 1 s with an overlap of 50%. We have ensured
that there was an equal partition between fake and real labels.
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The fourth experiment (Multi class detection) our emphasis is on evaluating
our network’s performance on short segments containing four distinct classes. The goal
is to determine whether the network’s performance remains consistent when at least one
real modality is present, in other words, there are four main labels:

— Fake Video - Fake Audio (FvFa),
— Fake Video - Real Audio (FvRa),
— Real Video - Fake Audio (RvFa),
— Real Video - Real Audio (RvRa).
For this purpose, we selected a dataset comprising equally distribution among four

subsets: FvFa, RvFa, FvRa and RvRa, token from FakeAVCeleb [80]. We then segmented
the lip portions of videos from these categories into frame lengths of 0.2 s, 0.6 s, and 1 s,
with a 50% overlap between consecutive frames. The dataset was further divided into
training and testing sets following an 80 − 20% split, and the classification layer was set
to 4 classes.

The fifth experiment (Investigation on the role of each view and modality)
to delve deeper into the impact of each view—namely, XY , XT , TY —and their fusion
(cf. Fig. 3.4), we conducted a dedicated experiment. For this evaluation, we considered
a balanced dataset consisting of 500 real videos (RvRa) and 500 fake videos (FvFa), seg-
mented into 1-second frame lengths with overlapping intervals. The data was partitioned
into training and testing sets at an 80 − 20% ratio, and the experiment was designed with
two distinct classes.

3.5 Experimental Results

3.5.1 Hand-crafted methods

Experiment 1: Our experimental framework, as detailed in Equation (3.2), is de-
signed to evaluate the effectiveness of our hand-crafted method for detecting deepfake
audio. We rigorously tested our approach using the FakeAVCeleb dataset [80], which
predominantly consists of synthesized audio samples that pose significant challenges for
detection algorithms. The results, shown in Table 3.1, indicate that our method not only
surpasses SOTA deep learning techniques in accurately identifying deepfakes within short
audio utterances but also maintains a high level of performance when applied to the full
duration of the audio as indicated in Table 3.2.
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Model Accuracy (%)
Whole audio 600 ms 200 ms

X-vectors + SVM [72, 61, 19] 99.75±0.04 96.13±0.12 85.38±0.18
ECAPA-TDNN + SVM [72] 99.65±0.05 88.81±0.07 75.01±0.05

Our Method + SVM 99.12±0.74 96.08±0.92 85.71±1.25

Table 3.1 – Performance of our method in Eq. (3.2) on short utterances and full audio
modality in FakeAVCeleb, compared to SOTA methods (the standard deviation values
are calculated from a 5-fold cross-validation).

Model Accuracy
MFCC + XceptionNet [59] 76.6%
Mel-Spectrograms + DST-Net [18] 97.51%
MFCC + DST-Net [18] 88.5%
X-vectors + SVM [72, 61, 19] 99.98%
ECAPA-TDNN + SVM [72] 99.97%
Our hand-crafted method 99.83%

Table 3.2 – Performance of our proposed method on the whole audio length modality of
FakeAVCeleb compared to the SOTA methods (Real: 500 videos from RvRa, Fake: 500
videos from FvFa). Bold entries indicate the best performance.

Experiment 2: We present the empirical evaluation of our visual deepfake detection
approach, formulated as per Eq. (3.3). The focus of this investigation is restricted to the
lip region of the subject, contingent upon the maintenance of a zero-degree head pose
throughout the recording session. Consequently, this evaluation is exclusively conducted
on the DeepfakeTIMIT dataset.

Our aim is to track the temporal behavior of the Pearson coefficient defined in Eq.
(3.3), then we decide the authenticity of the visual sequence. We considered 20 fake videos
from DeepfakeTIMIT and 20 real videos from VidTIMIT. We then split every video into
chunks of 600ms and an overlap of 50%, we obtain 279 fake and 279 real videos. To
imprint the temporal dynamics of our parameter in Eq. (3.3), we choose the mean and
the standard deviation.

Figure 3.7 provides a visual demonstration of our method’s effectiveness. The figure
presents a scatter plot that includes various measurements, such as the average and vari-
ation (standard deviation) of the Pearson coefficient. This visual arrangement effectively
separates real videos from fake ones. The top-left part of the plot illustrates the appli-
cation of the DCT coefficient to unaltered video frames. In contrast, the top-right part
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shows the results of applying the first spatial derivative to the video frames. Notably, the
bottom-left section of the plot underscores our method’s strong capability in distinguish-
ing real from fake videos. Based on this last observation, the authenticity of the video
can be done by setting a threshold on the inverse coefficient of variation C−1

v plotted at
the bottom right of the Figure 3.7. For various values of the threshold C−1

v ranging from
−1 to 10, we plot the receiver operating characteristic (ROC) curve (not shown) and the
optimal threshold to distinguish genuine and fake videos giving a maximum detection
accuracy 98.39% was found at 1.

Setting the threshold at 1 allowed us to achieve a remarkable detection accuracy
of 99.87% across the entire VidTIMIT and DeepfakeTIMIT video datasets. This result
strongly validates the effectiveness of our method in reliably distinguishing between au-
thentic and manipulated content. To further highlight the capability of our approach, we
conducted a performance comparison with SOTA methods, as detailed in Table 3.3 and
Table 3.4.

Model Accuracy
XceptionNet (Image level detection) [80] 65.98%

I3D (Sequence level detection) [60] 96.38%
Our hand-crafted method 99.87%

Table 3.3 – Performance of the SOTA and our proposed method on whole length visual
sequence from low-quality videos of DeepfakeTIMIT. Bold entries indicate the best per-
formance.

Type Model Accuracy (%)
Whole video 600 ms 200 ms

Deep Learning XceptionNet [59] 65.98 68.19 61.98
Multi-view video CNN [45] 98.43 99.39 99.88

Shallow Learning Our hand-crafted method 99.87 99.12 97.36

Table 3.4 – Comparison of SOTA performance with our proposed approach using visual
sequences from low-quality DeepfakeTIMIT videos over various time segments.

3.5.2 Audio - Visual late fusion deep learning method

Experiment 3: The system’s visual input consists of the lower facial region, selected
for its computational efficiency. The 2D decomposition allows for an economical extrac-
tion of spatiotemporal information from the video footage. Despite this optimization, our
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Figure 3.7 – Analysis of low-quality 20 fake and genuine videos split into 600ms with an
overlap of 50% using our method. Top-left: Mean and standard deviation without spatial
derivation. Top-right: After second-level spatial derivation. Bottom-left: After fourth-level
spatial derivation. Bottom-right: Temporal inverse coefficient of variation of videos from
DeepfakeTIMIT and VidTIMIT.

approach yields superior detection accuracy relative to current state-of-the-art models, as
indicated in Table 3.5.

Model
Accuracy (%)

200 ms 600 ms 1 s
XceptionNet (Soft-Voting) [60] 77.33 77.69 73.34
Multi-View CNN (Ours) [45] 93.19 97.68 98.55

Table 3.5 – Comparison of SOTA performance with our proposed approach [45] on various
time segments from FakeAVCeleb on balanced 1,000 samples (500 FvFa, 500 RvRa) subset,
the train-test split was set to 80% − 20%.

Experiment 4: The results displayed in Table 3.6 confirm a huge decrease in de-
tection accuracy compared to the scenario with only two classes, as outlined in Table
3.5. These observations indicate that the inclusion of a real modality tends to strongly
influence our network’s determination of a video’s authenticity. To deeply understand the
dominance of one modality over another, we carry out an experiment in the upcoming

67



Partie , Chapter 3 – Toward Comprehensive Short Utterances Manipulations Detection in
Audio-Visual Videos

subsection to pinpoint the modality where our network demonstrates lower detection ac-
curacy. Additionally, we explore the contribution of each view in improving the overall
performance.

Table 3.6 – Detection accuracy of Multi-view CNN on short videos from FakeAVCeleb
(train-test split 80% − 20% on 2, 000 videos of (500 FvFa, 500 FvRa, 500 RvFa and 500
RvRa), the classes number for classification is set to 4).

Window length Accuracy (train/test)
200ms 85.95%/74.04%
600ms 82.89%/82.00%

1 s 88.68%/85.96%

Experiment 5: The findings, presented in Table 3.7, illuminate the crucial roles
played by individual views and modalities in the system’s performance. Notably, the
temporal view (TY ), capable of accounting for issues like motion jitters, outshines the
spatial (XY ) and the spatiotemporal (XT ) views. The relatively poorer performance of
the spatial view equipped with a self-attention model can be explained by the focus on
the lower part of the face—a known challenging aspect for many state-of-the-art deepfake
detection methods, as cited in [65, 64].

When fusing all visual views, we observe a marked increase in detection accuracy,
thereby showcasing the model’s prowess in resolving the ambiguity or confusion that
could arise from individual views. Moreover, our results indicate that the audio modality
holds a distinct edge in detection accuracy, contributing to an overall performance lift of
7.86% when integrated with the visual modality.

Table 3.7 – Detection accuracy of Multi-view CNN on short videos from FakeAVCeleb
(train and test on 1, 000 videos of (500 FvFa, 500 RvRa) cutted into 1 s frame length with
an overlap 50%, the classes number for classification is set to 2).

Modality View Accuracy (train/test) Precision (train/test) Recall (train/test)
Visual XY 85.76%/80.22% 88.12%/82.17% 89.64%/79.96%
Visual XT 85.47%/83.04% 88.45%/87.68% 87.22%/84.93%
Visual TY 88.15%/88.21% 91.31%/88.93% 88.72%/92.76%
Visual XY T 94.88%/90.05% 96.21%/93.52% 95.23%/90.41%
Audio − 100%/100% 100%/100% 100%/100%

Audio + Visual XY T+ Audio 98.77%/97.91% 99.06%/97.96% 98.90%/98.72%
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3.6 Discussion

3.6.1 Hand-crafted methods

The methodology we have formulated for the detection of fake audio signals exhibits
numerous distinct advantages, with its performance and generalizability being particularly
noteworthy.

Unlike some methods that depend on a predefined set of reference speakers, as dis-
cussed in [72], our approach distinguishes itself by removing the need for these comparisons
and trainable parameters. This distinction is clearly demonstrated in Figure 3.8, which
shows the Pearson coefficients across WST channels for both authentic and fake audios
produced using Text-To-Speech (TTS) techniques [66].

Figure 3.8 – Pearson coefficient value (y-axis) described in Eq. 3.2 per each channel (x-
axis) (orange circles refers to the real audio and the blue star stands to the fake audio).

Moreover, our technique demonstrates a robust capacity to handle short audio utter-
ances, maintaining satisfactory performance which incrementally improves with the length
of the audio sample. This trend is particularly advantageous for scenarios commonly faced
in the real world, where audio clips are often brief.
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On the visual modality, the robustness of our visual-level deepfake detection method
is underscored by its efficacy under a range of challenging conditions. Specifically, the
technique exhibits high performance even when subjected to low-quality videos. What
sets our method apart is its unique focus on the lip region for detection—a region noto-
riously difficult for traditional deepfake detection methods to analyze. This focus doesn’t
merely serve to fill a gap in existing methodologies; it provides our system with a marked
advantage over SOTA deep learning-based approaches. Moreover, this is achieved with
very limited number of hyperparameters, which significantly reduces the computational
overhead and simplifies the implementation.

The crux of our method is its strategic utilization of high-frequency spatial energy
patterns. By pushing spatial energy towards these higher frequencies, our system is able
to significantly amplify the contrast between real and fake visual sequences, a fact that
is empirically supported by the results illustrated in Figure 3.7. This approach not only
serves to enhance detection capabilities but also fortifies our system’s adaptability. This
adaptability is further substantiated by the system’s performance metrics under scenarios
involving short utterances, ranging in length from 200ms to 600ms. Even under these
non-ideal conditions, the system was able to maintain a reasonable performance level.

However, it’s important to note that the scope of the current study did not extend
to evaluating the technique’s robustness against videos with varying luminosity or noise
levels. Given the demonstrated performance of the method, this remains a crucial avenue
for future research, to comprehensively assess the system’s applicability under a wider
array of real-world conditions. As long as the luminosity does not change temporally or
spatially in temporal or spatial frequency ranges which are discriminant between real and
fake this should not have impact on the performance of our method.

3.6.2 Audio-Visual late fusion deep learning method

Navigating the intricate landscape of fake video detection necessitates a methodologi-
cal framework that is both efficient and nuanced. In tuning our pre-existing model, cited
as [45], we have not only successfully adapted it for fake video detection but also advanced
our understanding of how different modalities contribute to the detection process. One
of the primary strengths of our architecture lies in its utilization of pre-trained networks:
ResNet-18 for ImageNet and x-vectors for VoxCeleb2. These well-established, data-rich
training sources confer upon our model a robust initial feature set. Moreover, we adopt a
computationally economical approach by using a 2D scheme for visual sequences and a 1D
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scheme for audio, thereby circumventing the need for more resource-intensive networks.
Our research goes beyond mere detection to dissect the relative contributions of each

sequence view: XY , XT , and TY . The temporal motion jitters, belonging to TY view,
emerges as the most accurate in detecting fake videos. This likely capitalizes on the
inherent difficulties that deepfake algorithms have in accurately reproducing the temporal
dynamics of human behavior. Conversely, the spatial view XY underperforms, which is
consistent with existing literature [65, 64] indicating that the lower facial region presents
substantial challenges for deepfake detection systems.

The fusion of these three views adds an additional layer of complexity, further refin-
ing our model’s detection capabilities. Such a fusion approach effectively exploits both
spatial and temporal information, without the need for resource-intensive 3D models. Im-
portantly, the incorporation of audio via x-vectors lends a significant boost to the model’s
performance. This may be attributed to the transfer learning advantages offered by Vox-
Celeb2, or it could point to a more fundamental characteristic of deepfake generation
algorithms—that they are currently more proficient in visual manipulation than in audio.

Despite these promising outcomes, the architecture’s performance is not without lim-
itations. Most notably, its efficacy diminishes when applied to short utterances. This
finding is significant and indicates a key area for future research: optimizing the model to
maintain high detection rates irrespective of video length.

3.7 Conclusion and perspectives

In this study, we have introduced a full-pipeline approach based on hand-craft method
and tuned our previous architecture [45] to detect short audiovisual deepfake content.

On the shallow learning side, we introduced a full-pipeline approach to detect fake
audio and video content, leveraging hand-crafted features for audio and distinctive visual
cues, particularly in the lip region. Our method demonstrates high interpretability and
computational efficiency, achieving robust performance on the FakeAVCeleb and Deep-
fakeTIMIT datasets. This unified strategy underscores the synergy between auditory and
visual elements, reflecting a comprehensive stance against the rising tide of deepfake tech-
nologies. The robustness of our approach is evident as it maintains performance metrics
across various conditions without requiring a reference dataset or a complex train-test
split, marking a significant advancement over existing deep learning methods.

On the deep learning side, we expanded upon the prior work in late fusion biometrics
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identification [45] to address the detection of deepfake videos using two distinct modal-
ities. The model has demonstrated superior performance compared to the SOTA on the
FakeAVCeleb dataset. Additionally, we have delved into the influence of three views in
video decomposition and the role of modalities in augmenting detection accuracy. Notably,
our findings highlight a substantial contribution from the audio modality in comparison
to its visual counterpart.

Our future perspective aims to enhance this integration by considering an hybrid fu-
sion that could further integrate the audiovisual features at multiple levels of extraction.
Such a multimodal system could benefit from the inherent strengths of each modality,
potentially leading to a more resilient detection mechanism against sophisticated deep-
fake manipulations. These efforts will contribute to the overarching goal of ensuring the
authenticity and trustworthiness of digital media.
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Chapter 4

UNSUPERVISED MULTIMODAL

STUDENT’S ENGAGEMENT DETECTION

Previously, we discussed the advantages of multimodality in deepfake detection on
ultra short utterances. In this chapter, we shift our focus to education, specifically in-
vestigating the merits of utilizing multimodal approaches to analyze student engagement
with the aim of gauging their engagement levels during classroom sessions in foreign lan-
guage classes, thereby assessing the effectiveness of teaching methods. Unlike the other
chapters, here our focus will be on the whole face and the heart rate signal of the student.
Section 4.1 starts with an introduction about multimodal student engagement recogni-
tion. Section 4.2 reviews existing literature in this domain, emphasizing the limitations of
current approaches and datests. Section 4.3 elaborates on our new dataset designed for
didactic purposes, the experimental design, and unsupervised hand-crafted methods to
detect significant moments during a class session. Section 4.5 presents the results of our
preliminary explored pipeline to detect the significant moment at the local time level cross
referenced with the observation notes of the didactic researcher. Section 4.5 presents a
comprehensive analysis of our results, followed by Section 4.6 that concludes the chapter
and discusses future research directions.

4.1 Introduction

The need for interdisciplinary research has never been greater in the field of foreign
language education and applied linguistics [88]. While researchers broadly agree that
interdisciplinary perspectives allowed the creation of “new knowledge frameworks” [89],
there is no denying that “Even today, it is not so simple to transcend these disciplinary
boundaries to build an interdisciplinary, collaborative, and relevant scientific approach”
(p. 5). While a fair amount of interdisciplinary research has already been carried out
in applied linguistics and psychology, there still is much to be done. For example, most
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research on learners’ emotions in Foreign Language (FL) classes is based on self-reported
data collected from learners after class through interviews, questionnaires and diaries.
Gregersen et al. [90] pointed out that these approaches cannot capture the dynamic and
fluctuating nature of emotions in the classroom. They argue that the field needs a new type
of study based on multimodal data collection, combining physiological data with ratings
of emotions while performing a task, and answering questions about the spikes and dips
in a subsequent interview [91]. Recent advances in technology have made it possible to
collect and analyze multiple data streams in real-time, enabling a more sophisticated
triangulation of learners’ dynamic emotions, experiences of flow, neural activities and
facial expressions [92, 93, 94]. While there is nothing wrong with self-reports, there is an
inherent limitation because not everybody is equally capable of verbalising what they feel
[95]. Individuals with low levels of emotional intelligence may give very broad indications
on the valence of their emotions (good/bad) while those with higher levels of emotional
intelligence detect their own emotions in more detail and nuance, and therefore provide
a much more accurate picture of their various interacting emotions. One way to mitigate
this source of variation, which could lower the quality of the self-reported data, is to
complement it with various physiological measures. We fully agree with the view that
multimodal approaches “will make it possible to model emotion in higher dimensionality,
and answer fundamental questions about how biological, mental, and contextual features
are related over time” [92].

The present study adopts such a cutting-edge multimodal approach combining Heart
Rate (HR) monitoring, Emotional Facial Expressions (EFE) analysis, classroom obser-
vations and self-report questionnaires on levels of enjoyment, anxiety and boredom of
three students over a period of several weeks. We argue that the use of sophisticated data
analysis techniques and advanced statistical methods can lead to a better understanding
of the dynamics of learner emotions while they perform tasks together in the classroom.
This multi-pronged approach could ultimately lead to the development a robust tool that
can provide real-time feedback on student emotions.

4.2 Related Works

The theoretical basis of the present study is Gobin et al. [96]. The authors argue that
an emotion arises in response to a particular emotional situation [97] that is more or less
significant. Individual responses to this event consist of three components:
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1. A component of physiological arousal (motivational dimension) that refers to phys-
iological responses, meaning all the body’s internal reactions;

2. A component that corresponds to motor expression and refers to the visible verbal
or non-verbal manifestations of emotion, with the most common expression being
"Emotional Facial Expressions" (EFE);

3. A final component called subjective feeling that reflects subjective awareness and
englobes the cognitive-experiential responses to emotion. It consists of all cognitive
processes related to the perception of the emotional situation, which the individual
can verbalize and explain.

4.2.1 Multidimensionality of emotions in FL courses

Research into the use of multimodal data for analysing learner’s emotions, particularly
in educational contexts, has evolved significantly since the 2000s. The idea of integrating
physiological and behavioral data to understand dynamic interactions between motivation,
emotions, and Willingness To Communicate (WTC) across educational environments is
not new [98] but technological developments have allowed researchers to use sophisticated
tools that are increasingly affordable to applied linguists. Here, we review some key studies.

D’Mello et al. [99] explored the use of multimodal data to monitor engagement and
learning in real-time. This research utilized a combination of EFE, body posture, and
interaction logs to understand how students engage during learning activities in various
environments, including classrooms and online platforms. The researchers used advanced
and expensive equipment which would be unaffordable to most researchers.

Another study, conducted by Tonguç and Ozkara [94], employed a cheaper facial recog-
nition tool with 67 students during basic information technology courses, using a camera
placed in each student’s computer. The materials used during the lecture were reflected
on students’ computer screens. EFE were analyzed and digitized to identify seven emo-
tions/feelings: disgust, sadness, happiness, fear, contempt, anger, and surprise based on
Ekman’s [100] theory of universal emotions. This approach has been strongly criticized for
being too static and essentialist. Feldman Barrett [95] and Gendron and Feldman Barrett
[101] have proposed an alternative approach, the theory of constructed emotions which
posits that emotions are shaped by the broader cultural context and the more specific
social context in which the emotion unfolds. They also reject the idea that emotions have
universal unique “fingerprints”, in other words, a smile does not automatically reflect
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happiness and a scowl does not always signify anger. The dynamic theory of constructed
emotions is particularly appropriate when studying multilingual and multicultural indi-
viduals performing tasks in a classroom.

Adopting a dynamic approach, Gregersen et al. [90] conducted a multimodal study
on three high-anxiety and three low-anxiety learners of Spanish FL (based on scores on
Horwitz’s et al.’s FL Classroom Anxiety Scale [102]. The authors combined physiological
data (heart rates), idiodynamic data (anxiety ratings), and interviews about the fluctua-
tions. Participants did a 3-minute oral presentation in Spanish. They wore heart monitors
and, immediately after the task, they provided 42 anxiety ratings on a scale from +5
to -5 while viewing their presentation on a computer. They then explained to the re-
searchers why the spikes and dips in anxiety had occurred. Increased heart rates were
positively correlated with anxiety ratings. The high anxiety participants reported difficul-
ties in vocabulary retrieval as the main cause for their anxiety. Low anxiety participants
used strategies to mitigate this. They had practised the presentation in the preparation
stage rather than attempting to memorize it. The study used various sources of data to
highlight the dynamic nature of a single emotion but ignored the fact that participants
may have experienced other emotions, which could also have affected heart rates.

The pioneering neurological study by Nozawa et al. [93] was the first to peer into
learners “black box”, namely their brain waves, as they were performing tasks in class.
The researchers focused on two intact English FL classes in Japan with two groups of four
learners each (totaling 16 students). They adopted a multimodal approach, examining the
interbrain synchronization among learners working in pairs and the similarity of the flow
state 1 dynamics during collaborative learning. Prefrontal neural activities were measured
using a wireless functional near-infrared spectroscopy device placed on the students’ heads.
Additionally, the researchers asked the learners to watch recorded videos of the classes
and to evaluate their own flow levels on a scale from 1 to 7 every two minutes. The study
required advanced technology and know-how to process the neurological data in a single
cortical area. The authors admit that the correlation between self-reports and interbrain
synchronization does not imply causation as there may be “hidden variables” (p. 10).

These studies highlight the diversity of methodologies and technologies used in the
multimodal analysis of learners’ emotions in the FL classroom. All relied on supervised

1. Csíkszentmihályi (1990) defined flow as “an optimal psychological and physiological state charac-
terized by intense concentration, a sense of harmony, a clear goal, a loss of the sense of time, a balance
between skill and challenge, a total absence of boredom and anxiety, and a profound enjoyment that
contributes to a more general sense of well-being”.
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learning approaches that require extensive annotation and labeled data, which can be
resource-intensive, time-consuming and expensive.

4.2.2 Anxiety, boredom, and enjoyment in FL classes

The introduction of positive psychology in the field of FL acquisition with the publi-
cation of MacIntyre and Gregersen [103] made researchers aware that there had been a
long-term exclusive focus on negative emotions in FL classrooms [104] and anxiety in par-
ticular. Its popularity among researchers had been boosted by Horwitz et al. [102], whose
33-item Foreign Language Classroom Anxiety Scale (FLCAS) covered physical symptoms
of anxiety, nervousness, and lack of confidence in the FL class. They defined FLCA as “a
distinct complex of self-perceptions, beliefs, feelings, and behaviours related to classroom
language learning, arising from a uniqueness in the language learning process” (p. 128).
The main cause of FLCA is the inability to project an accurate image of themselves in the
FL and the fear of coming across as clumsy and inauthentic [105]. FLCA grows gradually
through repeated anxious experiences in the FL classroom. As such, FLCA starts as being
a situation-specific state and gradually becomes more stable and trait-like [105].

A meta-analysis by Botes et al. [106] of 67 studies based on the FLCAS has shown that
FLCA is moderately negatively linked to FL performance and progress. High FLCA was
linked to lower general academic achievement and lower speaking, listening, reading, and
writing performance in the FL. Students suffering from high FLCA have a lower degree
of Willingness to Communicate (WTC) and may even prefer to hide and remain silent in
the classroom [107]. This withdrawal from classroom interactions slows their progress in
the FL.

Another negative emotion frequently present in FL classrooms is boredom [108]. Li
et al. [109] described it as being characterized “by negative valence, low arousal and
being achievement-related activity-focused” (p. 244). Boredom emerges when a classroom
activity or task is perceived as irrelevant and when learners feel helpless and fatigued
because the activity is either too easy or too difficult [110, 109]. Bored learners lose
their confidence and suffer from a perceived lack of control. This lowers their WTC and
undermines both their short-term and longer-term motivation, as well as their overall
engagement in the FL activities. Learners’ boredom can also originate in the teacher’s
inability to hide their own boredom [108]. Li et al. [109] developed a 32-item FLLB
scale consisting of 7 factors. The first factor was named Foreign Language Classroom
Boredom (FLCB) and consisted of 8 items, which has since been used independently in

77



Partie , Chapter 4 – Unsupervised Multimodal Student’s Engagement Detection

later research. Dewaele and Li [111] showed that teacher enthusiasm can counter learners’
FLLB, increase their enjoyment, and stimulate their engagement. Li [112] found enjoyment
and boredom to be strongly negatively correlated. Unsurprisingly, a negative relationship
exists between FLLB and FL achievement [113].

Researchers increasingly agree that positive emotions such as Foreign Language En-
joyment (FLE) should be part of a more holistic picture and they reject the deficit view
of FL learners [114]. The authors referred to Csikszentmihalyi [115] who noted that en-
joyment (and sometimes flow) emerges when a person manages to complete a challenging
task, reach a state of full concentration, perform a task with clear goals, and receiving
immediate feedback on the performance. Dewaele and MacIntyre [114] developed the 21-
item FLE scale, which was followed by a shorter 9-item psychometrically validated scale
[116]. While a majority of the longitudinal studies on FL emotions focused on change
over a period of weeks and months, a smaller number of studies have focused on fluctu-
ations over shorter time spans. Boudreau et al. [117], for example, used the idiodynamic
method to investigate second per second fluctuations in FLE and FLCA. Anglo-Canadian
participants completed a one-minute speaking task in French FL and then watched the
recording and reported their levels of both emotions for every second. Values were found
to vary considerably during that minute and were later commented on by participants who
pointed to linguistic difficulties or to fleeting moments of anxiety, enjoyment or boredom.
Elahi Shirvan and Talebzadeh [118] also used the idiodynamic approach to investigate the
fluctuations in FLE of 7 Iranian EFL university learners participating in conversations
on simple and more difficult topics. The results showed strong intra- and inter-individual
variation linked to the conversational topics. Adopting a multi-case study design, Elahi
Shirvan et al. [119] investigated fluctuations in FLE over different time spans, ranging from
seconds with the idiodynamic method, to minutes, weeks and months. The researchers
used low tech “Enjoymeters” (pieces of paper with thermometer-shaped figures ranging
from 0 to 10 indicating the level of FLE) to capture variation in FLE for periods of 5
minutes. Participants were two Iranian EFL students in the classroom. FLE among these
two students was found to fluctuate differently over different timespans. The variation was
found to be linked to unique social and personal factors, such as the ability to be creative,
the appropriate challenge, the opportunity for authentic communication in English with
peers, the teacher’s ability to be supportive, humorous and establishing a positive class-
room climate. Being laughed at by peers for making a mistake could cause a sudden drop
in FLE and a spike in anxiety. Bielak and Mystkowska-Wiertelak [120] also used the idio-
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dynamic methodology to investigate fluctuations in FLCA, FLE in 10 Polish EFL learners
working in pairs and group. Their interactions were video recorded and then viewed and
rated second per second for FLE and FLCA. In later stimulated-recall interviews, they
discussed the causes of the fluctuations and the emotion regulation strategies they de-
ployed to control them. The two emotions showed brief periods of stability followed by
highly idiosyncratic levels of fluctuation. Levels of FLCA were found to fluctuate more
than FLE but the triggers for the fluctuation in both emotions overlapped substantially.
Causes for FLCA included the awareness of having made specific errors, frustration at
the lack of linguistic sophistication, and ignoring task instructions. FLE was found to be
linked to the quality of the peer’s performance and a productive collaboration. Taking the
floor and deploying new knowledge caused peaks in both FLE and FLCA while yielding
the floor cause a dip in both emotions.

Dewaele and Pavelescu [121] used a multiple case study approach to investigate the
relationship between FLE, FLCA and WTC in two Romanian secondary school EFL
learners. Qualitative data including classroom observations and semi-structured interviews
on the emotional sources of fluctuation in participants’ WTC in the English classroom.
FLE and FLCA were found be influenced by a range of contextual factors including
seating arrangements, course material and conversation topic which shaped their WTC
in dynamic and unique ways.

The meta-analysis by Botes, Dewaele et al. [122] showed that FLE is strongly positively
correlated with WTC. Moderate positive relationships emerged between FLE and FL
academic performance.

A crucial awareness that emerged from previous research is that learner emotions
do not exist in isolation. Studies on large samples reveal positive correlations between
positive emotions, and between negative emotions, combined with negative correlations
between positive and negative emotions. This suggests that there is a strong probability
that students who are enjoying themselves are less likely to suffer from anxiety and bore-
dom. As the idiodynamic studies show, the emotions are constantly connected with each
other, with motivation and linked to the immediate classroom environment and the wider
social context [123, 124, 113]. The teacher is central in this context and his/her perceived
enthusiasm or happiness can cause a wave of positive emotional contagion [125, 126, 127].
A teacher who cannot hide his/her boredom will spread this negative emotion to students
[108]. The relationship with peers and with a specific partner in pair-work will also shape
individual learner emotions. Collaborating with someone who is very anxious or bored
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will drag down the enthusiasm of learners who actually enjoy the activity. On the other
hand, working with an empathic, friendly, funny partner might boost learners’ positive
emotions and lower their negative emotions. The task and activity itself will also shape
learners’ emotions, as they may -or may not- enjoy it and grow bored with it if it lasts
for too long [128].

To sum up, this short overview of the existing literature shows a field in rapid transition
because of the emergence of a holistic understanding of learner emotions and of their
dynamic nature, combined with technological innovations. Studies using the idiodynamic
method used material collected laboriously over a period of no more than a few minutes.
They also focused on no more than two emotions in order not to overwhelm participants.

Very few of these studies included a physiological measure. We thus argue that there
is an urgent need for multimodal studies focusing on a larger number of emotions tracked
for longer periods in real-world FL classroom environments using economical and efficient
techniques. The combination of non-intrusive, low-cost instruments with robust data pro-
cessing techniques, could lead to the development of a scalable and replicable system.

The current study thus proposes to analyze emotions of a small number of participants
over a period of several weeks. We adopted a design similar to that of Nozawa et al. [93]
with external technical or digital measurement instruments (pulse oximeter and camera
placed in the classroom) and self-perception data collected from students (enjoyment,
boredom, and anxiety questionnaires completed at the end of the data collection period).

Our two following research questions (RQ) are:

— RQ1: Do multimodal methods of data collection, i.e. measuring HR, EFEs and class
observations allow researchers to gain an overall view of the emotions experienced
by students in language classes?

— RQ2: Do the scores obtained through the FLE, FLB, and FLCA scales, along with
the learners’ responses to the open-ended questions, help to better understand and
interpret their physiological results (HR variation) and their EFE linked to the
class observations ?
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4.3 Materials and methods

4.3.1 Study design and participants

The project took place at the Center X (CeLFE) at the University of X. Participants
were preparing for the University Diploma in French Studies (DUEF) at the beginner
level, A2 according to the Common European Framework of Reference for Languages
(CEFR). The courses were held over four days in the second semester of the academic year,
from February to April 2023. Our study was conducted over 16 sessions of 2 hours and 40
minutes each (2 × 1 hour and 20 minutes). Three students, over 7 volunteers, participated
in all sessions: Mitch, a 21-year-old American; Zeynep, a 23-year-old Turkish student; and
Oksana, a 23-year-old Ukrainian student. Students voluntarily signed a consent form
authorizing the recording of their interactions and the use of their data for research
purposes, while excluding the direct public release of their data. Of the eleven students
in the class, seven provided consents; however, only those consistently present across the
majority of sessions (three students) were included in the recordings. A research team
member took comprehensive notes for all 16 sessions. During each session, both their HR
signals and EFE data were collected. Additionally, at the end of each session, participants
completed a questionnaire.

4.3.2 Instruments

Three instruments were used to tap into learners’ physiology, EFE and self-report of
FLE, FLB and FLCA.

4.3.2.1 Physiological reaction: measurement of HR variation

An electrocardiogram (ECG) measures ECG signals, which can be used to predict
numerous features such as heart rate (HR), interbeat interval, and HR variability [129]. For
our task, we selected an affordable wearable device called the “Fingertip Pulse Oximeter,”
with characteristics detailed in Annex B and Fig. 4.1. A pulse oximeter measures heart
rate by detecting pulsatil changes in blood volume using the photoplethysmogram (PPG)
signal. The device emits red and infrared light through the finger, and a photodetector on
the opposite side measures the transmitted light. The pulsatile component of blood flow
generates a PPG waveform, representing variations in blood volume with each heartbeat.
The heart rate is calculated by measuring the time interval between successive peaks in
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the PPG waveform, determining the number of heart beats per minute [130]. This method
is reliable and accurate for HR up to 155 bpm, suitable for non-strenuous activities [130,
131], Therefore, this instrument meets our needs as it is cost-effective and user-friendly.
Students can pair the oximeter with the ViHealth application via Bluetooth, and the
recordings are stored on the student’s phone in PDF format.

Figure 4.1 – Left: Oximeter used to record the heart rate beats of the students. Right:
ViHealth application that receive the data from the oximeter.

4.3.2.2 Expressive behavioural responses: EFE

To collect visual data for recognizing student EFE, we selected an affordable camera,
the Razer Kiyo Pro (C100), as illustrated in Fig. 4.2. At the start of each session, the
camera was positioned to ensure comprehensive coverage of all students’ faces in the
classroom. This device was configured to record RGB video at 30 fps with a resolution
of 1280 × 720 pixels, providing a clear visualization of each student’s facial expressions
when they faced the camera. However, this modality faced several challenges, including
varying lighting conditions, obstruction of student faces by the teacher passing in front,
and instances where students hid their faces or did not look directly at the camera. A
simple view of the teaching classroom can be seen in Fig. 4.2.

82



4.3. Materials and methods

Figure 4.2 – Camera used to record RGB videos (top left) and a sample of a teaching
session from NeuroCam dataset.

4.3.2.3 Cognitive-experiential responses: the enjoyment, boredom, and anx-
iety questionnaires

At the end of each of the 16 sessions, we administered the short version of the enjoy-
ment questionnaire [116] to the three volunteers retained for the study. This questionnaire
consists of nine items that assess enjoyment in the French FL class across three dimen-
sions: teacher enjoyment (e.g., "The French teacher is kind"), personal enjoyment (e.g.,
"I am proud of my progress in French"), and social enjoyment (e.g., "We support each
other in the French class"). Participants also filled out the 8-item subdimension Foreign
Language Classroom Boredom (FLCB) [109]. These items address lack of concentration,
fatigue, and restlessness, such as "My mind begins to wander in the French class." Finally,
participants filled out the 8-item short form of Foreign Language Classroom Anxiety scale
(S-FLCAS), employed by Dewaele and MacIntyre [114] and validated by Botes et al. [132].
These items refer to physical symptoms of anxiety, nervousness, and lack of self-confidence.
Two items refer to low anxiety, such as "I am not afraid of making mistakes in the French
class," and six items indicate high anxiety, such as "I become nervous and confused when
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I speak in my French class." Items were accompanied by a 5-point Likert scale (1. strongly
disagree, 2. disagree, 3. neither agree nor disagree, 4. agree, 5. strongly agree).

The closed items were complemented by two open-ended questions allowing students
to freely express their feelings and emotions in their own words. These two questions were
concrete, asking students to describe a specific situation in class where they felt really
good, a moment when they felt bad, and what they precisely felt at that moment. The
qualitative material gathered in this way allowed us “to hear the voices of participants, free
from the shackles of the Likert scale items." [133]. Dörnyei [134] encouraged researchers to
include open questions in questionnaires because they "can provide a far greater richness
than fully quantitative data." The two open-ended questions could be answered in French
or English. Thus, Oksana and Mitch responded in English, while Zeynep responded in
French. The quantitative part of the questionnaire was used for purely illustrative purposes
as no inferential statistics could be calculated. Combined with the answers to the open-
ended questions, they forced participants to think about the FLE, FLCA and FLCB in
the classroom and provided a basis for the interviews.

4.3.3 Preprocessing Methods

After detailing the recording instruments per each modality, we can notice that the
raw outputs from the instruments of HR and EFE modalities are not suitable for direct
data processing. In the following subsections, we will detail the preprocessing methods
applied on these outputs to extract the HR signal from the oximeter’s image output and
to track each student face in the RGB video.

4.3.3.1 HR signal extraction

The output of the oximeter devices in the ViHealth application is an image containing
two signals: the oxygen level percentage (O2) in the blood and the pulses representing the
heart rate (bpm), sampled at 30 Hz. An illustrative example of this output image is
depicted in Fig. 4.3. Our goal is to acquire the digital values from this image output to
extract patterns from the HR variation signal.

To extract the heart rate (HR) digital curve from the image section denoted as (g) in
Fig. 4.3, we employed a series of image processing techniques. First, we manually cropped
the section of the graph labeled "Fréquence du pouls (/min)" from the output image
(Fig. 4.3). Next, we used LeNet-5 [135] and image filters, such as Sobel, to identify and
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recognize all digits present in the cropped image, determining the center pixel positions
of these digits to understand the resolutions along both the x-axis and y-axis. Finally, we
applied threshold segmentation to isolate the pixels corresponding to the green-colored
areas representing the heart rate pulses. Since multiple y-values could correspond to a
single time instant, we used simple averaging across the y-axis to streamline the data.

Figure 4.3 – Example of the output image from our oximeter. (a) is the name of the
participant, (b) the date and the hour of the beginning of the measurement, (c) test
duration, (d) remarks, (e) the birthday date and the age, (f) the signal curve of the
oxygen level during the session (y-axis: oxygen level % and x-axis: time instant of the
session), (g) the heart rate variation of the student during the teaching session (y-axis:
heart rate bpm and x-axis: time instant of the session), (h) gender, (i) table representing
the statistics (max, mean, min) of the oxygen level % and the heart rate bpm, (j) the end
date and hour of the recording.

We should note that the sampling frequency rate depends on the recording time and
the image resolution. Therefore, the extracted signals had many sampling frequency rates.
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The approximation done by our preprocessing method can be found in Fig. 4.4.

Figure 4.4 – Heart Rate signal of a student during a session. The green curve corresponds
to the real and the blue one is its approximation using our method described in 4.3.3.1
(x-axis: time instant of the session, y-axis: the heart rate of the student (bpm)).

4.3.3.2 Face recognition and tracking

Our camera records an RGB video of the whole class at 1280 × 720 pixels. During the
recording sessions, we faced several constraints, such as varying distances between each
student and the camera depending on the session and the classroom, differing luminosity
conditions, students occasionally having extreme head poses and the teacher sometimes
passing in front of the camera. Therefore, we need a robust tool to track each student
face and store it into a video. For this purpose, we performed a downsampling on our
video sessions to 1 fps and stored all frames in a folder. For each frame, we extracted and
sorted all corresponding faces using the GhostFaceNet network [136] from a lightweight
face recognition Python module called DeepFace [137, 138, 139]. The indexing of frames
facilitated the tracking of individual faces, we specify that we did not use face verification
methods due to their poor performance under these constraints. After these steps and
to verify the absence of outliers i.e overlapping the faces, we manually verified the face
tracking results. We only retained faces with head poses that allowed us to predict the
student’s emotions.
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4.3.4 Data analysis

4.3.4.1 Proposed Pipeline for the HR and the EFE

To monitor student engagement, we combined physiological signals, specifically heart
rate (HR) variations, with behavioral signals, such as emotional facial expressions (EFE).
While previous studies [7, 6, 140, 141] have highlighted HR data as a reliable measure
of physiological states, relying solely on one modality may overlook important behavioral
cues that provide additional insight into engagement. EFE can capture cognitive and
emotional states that may not be fully reflected in HR data, offering complementary
information. By integrating both HR and EFE, we can leverage the strengths of each
modality, as they together offer a more holistic view of student engagement. To effectively
combine these two sources of information, we adopted a decision-level fusion approach,
where HR and EFE are processed independently to detect anomalies. The final decision
on engagement incorporates both modalities when available, but the method remains
robust even in the absence of one modality. This strategy ensures flexibility and improves
the accuracy of engagement detection by compensating for limitations in any single data
source, offering a more comprehensive and reliable system. The pipeline consists of two
separate sub-pipelines, each dedicated to processing a different modality independently.

Given the temporal nature of HR modality, the preprocessed HR data from each
session is segmented into equal frames of duration T with a 50% overlap. To capture
HR signal features for emotion recognition purposes, researchers have proposed various
methods [7] to reduce the amount of the data by projecting the signal onto a latent space,
primarily using statistical features. Let Xn n ∈ [1, N ], the extracted HR features vectors
are measured as the following:

— the mean of the raw signal µX = 1
N

ΣN
n=1Xn,

— the standard deviation σX =
√

1
N

ΣN
n=1(Xn − µX)2,

— the mean of the absolute value of the first difference δX = 1
N−1ΣN−1

n=1 |Xn+1 − Xn|,
representing the average speed of the heart during the sequence,

— the mean of the absolute value of the first difference of the normalized signal
∆X = δX/σX ,

— the mean of the absolute value of the second difference of the signal γX =
1

N−2ΣN−2
n=1 |Xn+2 − Xn|, representing the average absolute acceleration of the heart

during the sequence,
— the mean of the absolute value of the second difference of the normalized signal
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ΓX = γX

σX
.

Therefore, for each chunk of fixed duration T (with varying sampling frequency), we
obtain six feature vectors that define the student’s state based on their physiological signal.
For each student, the feature vectors from all sessions are clustered in an unsupervised
manner into two groups: normal moments, representing most of the time, and Significant
Moments (SM), indicating deviations from the norm. We called these significant moments
because they were identified as instances that did not align with the standard baseline of
physiological responses observed in the three students. We therefore wanted to understand
precisely what was happening for them at those specific moments by correlating them with
classroom observations and triangulating with the questionnaires. This subject-dependent
method introduces a personalized approach that accounts for individual variations in
health status and cultural background. Since resting heart rate (HR) can be influenced
by various factors, this method provides a more accurate and context-sensitive assessment
of each student’s physiological data [7].

Simultaneously, the video output from our RGB camera, initially recorded at 25 frames
per second (fps), was downsampled to 1 fps and preprocessed to track only the individual
corresponding to the HR measurements. The decision to downsample to 1 fps was driven
by the need to balance computational efficiency and the temporal resolution of EFE. Since
significant changes in facial expressions typically occur over a span of seconds rather than
milliseconds, capturing frames at 1 fps is sufficient to detect these variations without un-
necessary redundancy. This approach reduces the computational load while still providing
the necessary granularity to accurately track and analyze facial expressions in sync with
the HR data. For the EFE modality, we applied a Vision Transformer (ViT) designed
for image emotion recognition [142] on each frame of the student face across the video.
This transformer based architecture, depicted in Fig. 4.5 and adapted from [142], was
pre-trained on the FER-2013 dataset [143] and available on Hugging Face platform [144],
which recognizes seven emotions (angry, disgust, fear, happy, sad, surprise, and neutral)
with an accuracy of 90.92%. At the input, the architecture processes the student’s face
image, which has been resized to 224 × 224 pixels. This image gets projected into a 1D
high dimensional space thanks to a 2D convolutional layer with a kernel size of 16 × 16
and a stride of 16 × 16, producing 768 = 16 × 16 × 3 output channels. Consequently, this
operation divides the image into 224×224

16×16 = 196 patches, along with one position embed-
ding vector. The Transformer Encoder of L = 12 layers is composed with Multi-Head
Self-Attention (MSA) and Multilayer Perceptron (MLP) blocks as depicted in Fig. 4.5, it
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receives a patch embedding X ∈ R197×768 to capture the global relationships within the
image. At the last layer, depending on the features vectors, an emotion of 7 is attributed
to the image. The number of parameters is 86M .

Figure 4.5 – Architecture used for emotional facial expressions recognition taken from
[142]. L is set to 12 in the pre-trained model.

The resulting feature vectors are concatenated across all sessions and clustered simi-
larly to the HR signal data to identify SM based on facial expressions. But as we explained
earlier, the identification of these 7 emotions mainly allowed us to measure a deviation
from the average for each learner, since identifying emotions on learners’ faces doesn’t
really make sense according to Feldman Barrett’s theory of constructed emotions. What
matters is identifying the most frequent EFE for the learner and seeing when there is a
variation, called Significant Moments (SM), compared to this standard emotion for them.

Our entire pipeline for these two modalities is illustrated in Figure 4.6, where the
“decision level" fusion means that priority is given to HR data, as referenced in the
works [140, 145, 6]. When HR data is available, it takes precedence, otherwise, significant
moments are detected using EFE.
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Figure 4.6 – Our proposed pipeline method to detect significant moments during a teaching
session.

4.3.4.2 Experimental setup for the HR and EFE

In the following paragraph, we introduce the experimental setups on subject-dependent
to monitor students’ emotions using two modalities: HR signals and facial expressions.

For the HR signal, due to its temporal nature, we should establish a specific time
window T on which we can apply the HR statistical features ensuring a T value that
does not affect the emotional decision. According to the literature [6, 146] time interval
between an emotional stimulus and the subsequent physiological response varies due to
factors such as individual differences and signalling modality. This variability complicates
the task of defining a suitable window size for emotion recognition systems. Kreibig found
that the most common average time intervals for physiological responses were 60 s and 30
s in a survey of 134 publications [6, 146]. Other common average intervals were 0.5 s, 10 s,
120 s, 180 s and 300 s [6]. Therefore, for the HR signal processing, we choose to work on
window of duration T = 60 s, 90 s, 120 s, 150 s, 180 s and 210 s with a 50% overlapping (a
hyperparameter that can variate from a physiological signal to another [6]). We segment
the heart rate signal of each student in each session, into T with an overlap of 50%.
HR features vectors corresponding to each session are clustered, using Gaussian Mixture
Models (GMM) to identify the outliers which correspond to the significant moments. Fig.
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4.7 states the pipeline used to track a given student on all teaching sessions S1, ..., SM .
The final SM are those resulting of the union of all time duration windows.

Figure 4.7 – The pipeline designed for tracking the student engagement based on the HR
signal. T is the duration of the framing.

For the EFE analysis, in contrast to HR signal processing, where variable T chunk
durations are employed based on flexible guidelines [146], we focused on frame-level recog-
nition. This approach was selected due to the demonstrated reliability of using individual
facial images for emotion recognition tasks in deep learning models [147]. Each processed
facial image is passed through a Vision Transformer (ViT) architecture pre-trained for
emotion recognition [142]. The extracted feature vectors are then clustered using a Gaus-
sian Mixture Model (GMM) to identify the corresponding SM. The frame-level anal-
ysis allows for precise detection of dynamic and subtle emotional variations, ensuring
robust identification of significant behavioral patterns while maintaining computational
efficiency. This subject-dependent method offers a personalized approach that takes into
account individual differences in emotional state and cultural background. Given that
emotional facial expressions can be influenced by a range of factors, this approach enables
a more precise and context-aware evaluation of each student’s behavioral data.

4.3.4.3 The processing of data from the survey

The questionnaire yielded two types of data: both the scores obtained on items related
to enjoyment, boredom, and anxiety for each session, even though the number of sessions
for the three learners varies due to occasional absences. These scores are already a good
indicator of the students’ emotional state. These scores are supplemented by the students’
responses to open-ended questions, which provide an even more precise insight into the
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emotions experienced during the various classes. Sometimes, the self-reported data do not
quite match the scores for enjoyment, boredom, and anxiety. For example, during session
9, Mitch has a high enjoyment score (3.77/5) and a lower boredom score (2.875/5). Based
on these two scores, we can say that the dominant emotion for Mitch during this session
is enjoyment. However, in his responses to the two open-ended questions, he states: “I was
happy to finally start learning passé composé, but that’s about it otherwise. I don’t feel
much normally in class. Just bored. I didn’t feel anxious in class today. It was fine, but I
was a little bored. I prefer getting called on to stay engaged or my mind wanders and I stop
paying attention.” The dominant emotion in his comments is clearly boredom: thus, the
self-reported data diverge in this case. In other cases, on the contrary, the self-reported
data are completely convergent. The scores and the responses to the two open-ended
questions align completely. For instance, during session 6, Oksana has an enjoyment score
of 3.88, a boredom score of 2, and an anxiety score of 2.125, and she states: “Today was
a good day. I was happy to speak and happy to prepare the text for this class. I wasn’t
stressed today.”

While we sought convergences between the self-reported data, we also aimed to evalu-
ate the convergences between the three components, namely between the HR’s SM (Com-
ponent 1: C1), the EFE’s SM (Component 2: C2) and finally with the classroom obser-
vations (OBS). These observations are primarily descriptive; they were used to precisely
describe the course’s progression and to note the students’ activities during the different
phases of the class.

4.4 Results

4.4.1 Necessary clarifications about the experimental results

We first discuss the experimental results of the proposed pipelines presented in Fig.
4.7, applied to the dataset, in relation to the performance of the HR features in detecting
anomalous moments. Figures 4.8, 4.9 and 4.10 illustrate the HR feature space following
an unsupervised clustering via GMM applied to HR features extracted from 150-second
segments. In these figures, we can clearly observe the formation of two clusters for students
1 (Oksana) and 3 (Zeynep). However, student 2 (Mitch) presents a different pattern with
a small number of outliers appearing far from the dense area (norm).

To evaluate the cohesion and separation of the clusters resulting from the unsupervised
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Figure 4.8 – GMM applied on the HR features space for Oksana. µ, σ refer respectively
to the mean and the standard deviation of the HR signal, µv, µa refer respectively to the
mean of the speed and the absolute acceleration of the HR signal.

GMM, we use the mean of silhouette score metric over all samples [148]. Specifically, for
a sample i from the data, the silhouette score s(i) is calculated as follows:

s(i) = b(i) − a(i)
max(a(i), b(i)) (4.1)

where a(i) represents the average distance between i and all other points within the
same cluster, capturing the intra-cluster cohesion, and b(i) denotes the minimum average
distance between i and all points in any other cluster, representing the closest inter-cluster
separation. The silhouette score s(i) ranges between -1 and 1, with values close to 1 indi-
cating well-clustered samples, values near 0 suggesting boundary points between clusters,
and values below 0 indicating possible misclassification of i to its assigned cluster. Fig.
4.11 presents the silhouette scores for each GMM clustering applied to the three students.
Notably, it illustrates the dominance of HR acceleration µa and its normalized value µa

σ

in the clustering process, followed by µv and µv

σ
. suggesting that these four features play

a significant role in differentiating between the significant moment of the students and
their normal behavior. By focusing on these specific physiological parameters, it might be
possible to improve the accuracy of clustering or classification models that rely on HR sig-
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Figure 4.9 – GMM applied on the HR features space for Mitch. µ, σ refer respectively to
the mean and the standard deviation of the HR signal, µv, µa refer respectively to the
mean of the speed and the absolute acceleration of the HR signal.

nals to infer the significant moments of the student. This observation is further supported
by findings in emotion classification using physiological signals [149], which demonstrated
the superior contribution of these four features over the mean and the standard deviation
of HR signal.

4.4.2 Convergences between the cross-referenced results of
Components 1 and 2

Integrating HR signals (component 1) and EFE (component 2) could improve the
detection of students’ activity and emotional states. Figure 4.12 illustrates the percentage
of SM detected through the Intersection over Union (IoU) of HR signals and EFE for
the three students. This metric quantifies the overlap between the significant moments
identified by HR signals and those identified by EFE. It is important to note that only
the anomalies in EFE present during the periods of HR signal recording were considered.
For Mitch and Oksana, the IoU between the SM of HR signals and EFE is 21.05% and
20.24%, respectively. These moderate overlaps indicate some consistency between the HR
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Figure 4.10 – GMM applied on the HR features space for Zeynep. µ, σ refer respectively
to the mean and the standard deviation of the HR signal, µv, µa refer respectively to the
mean of the speed and the absolute acceleration of the HR signal.

Figure 4.11 – Silhouette scores for each student when using GMM clustering on HR chunks
of 2 minutes 30 seconds.
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data and EFE, although there may be variability in capturing the students’ moments
of activity. In contrast, Zeynep shows an IoU of 27.40%, the highest among the three
students, suggesting a stronger convergence between HR signals and EFE for identifying
moments of activity for this student. This comparison highlights that although there is
some level of agreement between the two modalities for all students, the extent of this
alignment varies, with Zeynep presenting the strongest correlation.

Figure 4.12 – Intersection over Union of HR (Component 1) and EFE (Component 2) SM
for each student.

4.4.3 Convergences between the cross-referenced results of
Components 1 (C1), 2 (C2) and their fusion and the obser-
vations of the courses (OBS)

The results presented in Table 4.1 illustrate the effectiveness of the HR signal-based
method for detecting students’ activity during teaching sessions. The table provides a
comparative analysis of the percentage of convergence between the results by our HR
signal-based method (C1) and the results obtained by our EFE based method (C2) and
finally by the students’ observations made during the 16 sessions by an expert in peda-
gogical methods (OBS).
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In addition, fusing both modalities (HR signal-based and EFE-based) through de-
cision fusion achieves the highest convergence rates with expert observations across all
students. This outcome highlights that integrating both physiological and behavioral fea-
tures enhances the accuracy of detecting students’ activities compared to using unimodal
approach.

The results from the questionnaires and the responses to the open-ended questions
(C3) provided a general understanding of the emotions felt by the students during the
classes, but they did not give precise indications about specific moments in the class.
This is why we were unable to statistically cross-reference the data between C1 and C3

or between C2 and C3, as C1 and C2 allowed us to identify specific SMs locally during
the class. The questionnaires and the responses to the open-ended questions helped us
understand the global emotional states of the students throughout the different classes,
which allowed us to better interpret the statistical results from C1 and C2, as we will see
in the part focusing on each student.

On the other hand, the OBS are very detailed and indicate the course progression
with precise time and duration indicators, using the same model as C1 and C2 with the
SMs. We were therefore able to cross-reference the data between C1 and OBS, between
C2 and OBS, and also between the multimodal decision fusion of C1 and C2, and OBS,
and these results are presented in Table 4.1 below.

In addition to measuring convergence, two additional metrics were introduced: semi-
convergence and divergence, to better evaluate the relationships between the different
data sets. Convergence measurement reflects full alignment between data sets, while semi-
convergence accounts for partial alignment, and divergence indicates complete misalign-
ment. These metrics were applied to assess the correspondence between the self-reported
data (C3), as well as C1, C2, and observational data (OBS), providing a more detailed
and nuanced understanding of the relationships among these data sources.

SMs were identified within the data from C1 and C2, with the aim to determine
whether these SMs corresponded to specific events documented during the course. In the
case of several students, certain SMs detected by C1 and/or C2 were found to coincide
with specific tasks the students were engaged in at that moment, which was classified
as a moment of convergence between the data sets. In other instances, SMs from C1

and/or C2 partially aligned with the student’s actions, but the time intervals did not fully
overlap; these cases were categorized as semi-convergence. Lastly, in situations where SMs
detected by C1 and/or C2 did not correspond to any observable activity or task in the class,

97



Partie , Chapter 4 – Unsupervised Multimodal Student’s Engagement Detection

indicating that the student was not engaged in a specific action, the instance was classified
as divergence. To answer the RQ1, for Oksana (Student 1), the agreement between the

Student C1 ∩OBS C2 ∩OBS Decision fusion ∩ OBS
Oksana 70% 55% 80%
Mitch 72.22% 62.5% 90%
Zeynep 54.54% 16.67% 63.62%

Table 4.1 – The convergences between: C1 (results obtained by our HR signal-based
method) and OBS (observation of the course progression and students ‘activities); and
between C2 (results obtained by our EFE based method) and OBS; the Multimodal De-
cision Fusion and OBS.

classroom observations (OBS) and the HR signal-based method (C1) is significant at
70%, indicating that the HR method is highly effective in objectively detecting when
the student is active in class. This convergence shows that the HR method provides a
reliable and objective measure of student activity compared to observational methods. In
contrast, the convergence between OBS and the EFE-based method (C2) is lower at 55%,
indicating that while the EFE method can reflect classroom activity to some extent, it
lacks the precision of the HR-based method. The fusion of these two modalities enhances
the accordance to 80%, an average improvement of 17.5% compared to unimodal methods,
highlighting the need for multimodal benefits in better detecting significant moments at
the local time level for this student.

Mitch (Student 2) exhibits a strong agreement of 72.22% between OBS and C1, rein-
forcing that the HR method provides a more objective and reliable measure of classroom
activity compared to the subjective or observation-based methods. The convergence be-
tween C2 and classroom observations is also relatively strong at 62.5%, but it is still lower
than the HR-based measure, highlighting the HR method’s superiority in offering a more
accurate, objective assessment. The fusion of these two modalities improves accuracy by
90%, representing an average increase of 22.64% over unimodal methods. This empha-
sizes the importance of multimodal approaches in more effectively detecting significant
moments at the local time level for this student.

For Zeynep (student 3), the HR signal-based method (C1) shows a moderate agreement
with classroom observations at 54.54%, suggesting that while the HR method objectively
captures Zeynep’s classroom activity, the complexity of her physiological responses may
not always align perfectly with direct observations. Nonetheless, the HR method remains
more objective than the EFE-based method (C2), which shows a much lower convergence
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of 16.67% with classroom observations. While the unimodal performance has decreased
for this student, the fusion of these two modalities still enhances accuracy by 63.62%,
representing an average increase of 28.02% over unimodal methods. This underscores the
importance of multimodal approaches in more effectively leveraging the complementary
information from the EFE and HR modalities, as well as in detecting significant moments
at the local time level for this student.

The data in Table 4.1 highlight the ability of our HR signal-based method to effectively
detect 3 students’ activity compared to the EFE. However, the fusion of these modalities
has led to better detection of significant moments at the local time level within the session,
shedding light on the need for multimodal benefits in this context. The substantial agree-
ment with students’ subjective experiences and the precise, direct classroom observations
validates the robustness of our approach. This cross-verification reinforces the credibility
of our HR signal-based method, demonstrating its applicability and potential to provide
objective and insightful data on student activity in educational contexts.

4.4.4 Detailed analysis of triangulated results with component
3: focus on each student

To answer the first part of RQ1 and RQ2, we will now focus on the three participants
during one particular session. As we explained previously, within component 3, the data
were not always convergent. As shown by the figure 4.13 of the average scores of the
three emotions for the three students, enjoyment is highest. However, the open-ended
questions reveal that the dominant emotion for the 14 sessions where Mitch was present
is boredom. For Oksana (present at 13 sessions) and Zeynep (present at 14 sessions),
enjoyment dominates in the responses to the questions, even though they sometimes
experience boredom and anxiety in the French FL class.

We will now examine in more detail one session for each student where the results
between the three components and the classroom observations were convergent or semi-
convergent. We selected session 14 for Mitch and Oksana where the emotion of enjoyment
was predominant for both, and they had moments of shared enjoyment. Session 15 was
selected for Zeynep who also reported very high enjoyment.

4.4.4.0.1 Emotional contagion between Mitch and Oksana The results con-
cerning Mitch during session 14 are convergent and semi-convergent across all compo-
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Figure 4.13 – Average scores of the three students for the three emotions across all sessions.

nents and classroom observations. During this session, the dominant emotion for him was
enjoyment (which is rare for him): the enjoyment score is higher (3.77) than the boredom
score (2.25) and the anxiety score (2). The boredom score during this session is much
lower than in the other thirteen sessions, where it hovers around 3 or 3.5. The responses
to the two open-ended questions are consistent with these scores, as Mitch wrote: "I felt
good throughout the whole class. They were engaging, and their teaching style is better,
and I like being able to read and write what I learn." He did not report any negative
emotions.

The convergence between the SMs of Component 1 is almost total because 3 out of
the 5 SMs correspond to Mitch’s very active participation in the class, as shown by the
observation of the class progression. He is very engaged in the different tasks and highly
motivated. The SMs correspond to the moment when he stood up to read a very personal
text about what the meaning of life is for him; during another SM, he worked with the
teacher. For the third SM, Mitch did a group activity with Oksana.

The convergence between the observation of the class proceedings and Component
2 (EFE) is not complete because, out of 18 SMs in the EFE, only 7 correspond to a
significant element concerning Mitch during the class. The convergence between the SMs
of component 1 and those of component 2 is also semi-convergent, as 4 SMs are shared
by both components, and only 2 out of the 4 SMs correspond to a significant element of
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what Mitch did during the session.
One of the factors that might explain the intense enjoyment Mitch felt during this

session is likely related to the fact that the class was led by two student interns from the
Master’s program in "Language Didactics" and that they did not use the Neurolinguistic
Approach (NLA) method which Guillaume, the French FL teacher for the course, relies
on. They conducted a class with the theme "Shitty Life." Mitch expressed the boredom he
often felt due to the repetitive structure of NLA with its different phases. However, this
boredom is mainly linked to the heterogeneity of the group of learners. Mitch, Oksana,
and Zeynep were bored during most of the other sessions because they found the tasks
too easy, too simple for them.

Oksana experienced very strong enjoyment during this same session 14. Her enjoyment
score is 4, while the boredom (2.25) and anxiety (2) scores are lower. She responded to
the open-ended questions by saying, "Today was an interesting class," and she did not
report any negative emotions. Regarding component 1 (HR), the SMs converge with the
observations of the class proceedings. Oksana was very active during these SMs and did
most of the tasks with Mitch. Regarding component 2 (EFE), only 5 out of the 12 SMs
correspond to significant elements of what she did in class. Six SMs overlap between
components 1 and 2, indicating that these results are semi-convergent. Among these 6
SMs, only 4 reflect Oksana’s active participation in the class. This semi-convergence means
that Oksana’s active participation in class is not always aligned with the SMs. It is clear
that her internal emotional reactions are not always visible through external observations
and that she is not always aware of them either. Therefore, there may be SMs that do not
match either her actions in class or what she has reported in the responses to open-ended
questions.

4.4.4.0.2 Zeynep, a strong emotional engagement The dominant emotion for
Zeynep during the 14 sessions she attended in the FL French course was clearly enjoyment.
Therefore, we selected session 15, where the results across different components were
convergent. Her enjoyment score for session 15 (3.88) is thus higher than those for boredom
(2.125) and anxiety (2.125). She responded very positively in French to the open-ended
questions in the questionnaire: "I am happy to learn new things. We talked a lot today. "
She did not report any negative emotions experienced.

Out of the 17 SMs from component 1 (HR), three correspond to significant elements
noted in the observations of the course’s progression concerning Zeynep. Indeed, at these
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moments, she was highly engaged in oral interactions during the oral phase of the NLA.
She was modeling a sentence related to the most important person to her when she was
a child. She spoke about her grandfather, with whom she grew up. This was, therefore, a
very emotionally intense moment for her. During the other two SMs, she was interacting
with other learners, particularly with Oksana. The SMs from components 1 and 2 almost
entirely converge, as 16 SMs from component 1 out of 17 are found in six SMs from
component 2 (EFE). However, only 4 SMs among these 16 correspond to a significant
activity by Zeynep during the class. This is why we can say that the results between these
two components are semi-convergent.

We speculate that the strong enjoyment Zeynep experienced is likely due to the emo-
tional contagion that emerged during her interactions with Oksana in the oral phase of
the NLA, as well as the fact that she was talking about emotionally significant topics for
her, which boosted her motivation and engagement in oral tasks.

4.5 Discussion

This study aimed to identify the emotions that students experience during a French FL
course over the progression of an entire semester in a university setting using a multimodal
approach.

Addressing RQ1, which concerns the relationship between scores obtained from class-
room obsevations and measures of physiological reactions (HR variation) and EFE, results
varied significantly for each of the three students, confirming the findings in previous re-
search [120, 118, 119, 90].

It is RQ2 that helps refine the initial results obtained from RQ1. Indeed, the con-
vergence between all data sources was generally strong. It seems that objective data
sometimes capture emotional states of which learners are not always aware, and thus may
not verbalize in self-perception reports. The classes lasted twice 1 hour and 30 minutes,
which are long periods during which emotions fluctuate greatly. Students interviewed after
the class may not remember everything that happened during those 3 hours. This is why
the measurement of their EFE and HR variation, as well as classroom observations, were
triangulated with their FLE and FLB scores and their responses to open-ended questions
to gain a more holistic and precise view of the emotions experienced over such a long
period.

The moments of convergence between all data and the three components of emotion
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are primarily related, to significant moments in the class that the student remembers and
that are often characterized by strong enjoyment linked to stimulating and collaborative
group activities. These findings align with those of Nozawa et al. [93], which demonstrated
positive emotional dynamics linked to pair-work.

It also seems that boredom, which is reflected in a decrease in student activity during
class, corresponds to the presence of fewer SMs identified in HR variation and EFE. This
supports the findings of Li et al. [150], which showed the very negative effects of boredom
on language learners’ motivation and their WTC.

Anxiety was detected in the AMs during oral activities performed in front of other
group members during the oral phase. This confirms the finding of Gregersen et al. [90]
and Dewaele and MacIntyre [114] that oral presentations highly anxiety-inducing in the
FL classroom.

The three students in this study found the activities related to the NLA method boring
and too repetitive because their level in French FL was much more advanced than that
of the other students in the group. Agrawal et al. [110] and Li [151] explained that bore-
dom occurs with repetitive, under-challenging tasks when learners feel that they do not
learn anything new. However, we observed that during oral activities and when discussing
emotionally intense topics (as in Unit 3 of the semester, which involved talking about
events that marked our lives through anecdotes and unforgettable moments that shaped
our past), the students were very engaged, and the results across the three components
of the study converged during these moments.

The multimodal datastream allowed us to capture moments of convergence between
the significant moments detected by physiological measurements and classroom observa-
tions, with learners’ self-reports through questionnaires helping us interpret these results.
These reflected episodes of positive emotional contagion between Oksana and Mitch dur-
ing oral task activities and between Oksana and Zeynep [126, 127]. They were highly
engaged together in the different tasks proposed by the teachers. This confirms the find-
ings in Dewaele and MacIntyre [114]and Bielak and Mystkowska-Wiertelak [120] that
working with a partner can be a powerful source of enjoyment and can create a sense of
solidarity and empathy. The ability to communicate with peers and overcoming the fear
of making mistakes in a positive environment is vital [119]. This positive emotional conta-
gion experienced within a small group can lead to significant engagement in the task and
even to a state of flow [93]. We could argue that where Nozawa et al. [93] caught evidence
of brain synchronization between partners, we found evidence of “heart synchronization”.
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Positive emotions can help sustain motivation [152]. More specifically, FLE and levels
of motivation flourish together [153, 154], while FLCA has the opposite relationship [153].

What matters to learners is that the activity allows them to collaborate with students
they enjoy working with and enables them to express genuine emotions and feelings [120].
However, the activity must be sufficiently stimulating and challenging for them to engage
with it. Any activity deemed too easy and repetitive risks being considered uninteresting,
leading to a drop in engagement.

The multimodal method developed in the present study for tracking student engage-
ment is both simple and easy to deploy, effectively addressing the complexities of classroom
environments. By using low-cost sensors to capture HR signals and EFE, we aimed to cre-
ate a dataset and to explore a pipeline capable of identifying significant moments based
on unsupervised clustering at the student level. In other words, we focused on considering
the individual context of each student by analyzing their physiological and behavioral
variations in relation to their baseline emotional state, rather than grouping all students
together and deriving the SM on each teaching session. This method is designed to be
accessible and reproducible. For the analysis of HR signals, based on literature [146, 6], we
selected time windows ranging from 60 to 210 seconds with a 50% overlap to capture the
temporal variations in physiological responses. We employed unsupervised GMM cluster-
ing for each student individually, taking into account cultural and gender differences to
reveal distinct emotions.

This approach not only improved the detection of SM but also enhanced the overall
robustness of our engagement tracking system. The silhouette scores used to evaluate the
cohesion and separation of clusters confirmed the effectiveness of our clustering strategy,
particularly highlighting the importance of HR acceleration and speed parameters in
distinguishing levels of engagement.

In contrast to the temporal processing of HR signals, the analysis of EFE focused on
image-level recognition. Using a pre-trained ViT for emotion recognition, we clustered the
resulting feature vectors with GMM to identify significant moments. This demonstrated
the feasibility of using advanced neural network architectures for real-time engagement
tracking in educational settings.

Overall, the proposed multimodal pipeline, combining HR signals and EFE, and cross-
referenced with questionnaires and classroom observations, would provide a comprehensive
framework for understanding students’ emotions . The experimental results highlight the
potential of multimodal pattern recognition to enhance our understanding of the emotions
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experienced by students during FL learning. Further research may consider lip emotion
recognition models which can be employed as a substitute for EFE and have the advantage
of maintaining participants’ anonymity.

However, this study is not without its limitations. Firstly, longitudinal research in a
naturalistic setting involving a large amount of multimodal data cannot be carried out on
large groups and all longitudinal research inevitably suffers from attrition over time [134].
Moreover, the use of multiple tools increases the risk of technological malfunction which
can lead to further loss of participants in the experiment [92]. However, small sample sizes
are the norm in research inspired by Complex Dynamic Systems Theory [155] where the
aim is to collect rich and detailed longitudinal data about unique individuals.

Secondly, utilizing HR signals allows us to track individual emotions continuously
throughout the session, even when visual cues might be obscured due to students’ head
poses or obstructions by the teacher. Additionally, these two modalities provide distinctly
different types of information: EFE reflect behavioural responses to emotional states,
while HR signals represent physiological reactions that offer more objective measures
for emotion recognition systems [140, 6]. However, EFE may be unreliable as individu-
als can consciously control these physical manifestations to hide their true emotions, a
phenomenon known as social masking [145, 6]. Therefore, while HR monitoring is more
intrusive, it is also more effective in accurately tracking student emotions. The integration
of these two modalities has proven to be more reliable in determining emotional states.

The study also involved a small number of students because implementing such a
protocol in the classroom presents various technical challenges and can sometimes disrupt
the learner. We should point out that, due to the lack of data, we opted for unsupervised
clustering to identify SM based on the two modalities stated previously. In a scenario
where data is abundant and live tracking of student emotions is preferred, we would
suggest isolating an initial session to establish a baseline for normal and SM for each
student, followed by using a sliding time window in subsequent sessions for real-time
emotion tracking. In a future study, it would also be interesting to show the videos to the
students and discuss with them some time after the class (as is the case in idiodynamic
studies), showing them the SM detected both from the HR signal and by the camera for
the EFE.
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4.6 Conclusion

The originality of the present study lies in its interdisciplinary approach and in the
development of new tools to capture fleeting emotions. To the best of our knowledge, no
previous study has integrated emotional facial expressions (EFE), heart rate (HR) signals,
classroom observations, and self-reports—over an extensive duration and across multiple
sessions, while considering the complexities inherent in real-world teaching environments.
The novelty of this multimodal approach, combined with the absence of comparable stud-
ies using all modalities in similar contexts, precludes direct comparisons with state-of-
the-art methods. Despite this limitation, our pilot study provide valuable insights into
student’s emotions and offer new perspectives for future research in this area.

The decision to combine applied linguistics, language and culture didactics, artificial
intelligence studies, computer engineering, automation, and signal processing allowed us to
expand the range of dependent variables and to shed light on the complex dynamic system
of language learners’ emotions at work in their classrooms. The rich stream of multimodal
data collected from authentic interactions between three learners in one intact classroom
over 16 sessions guaranteed ecological validity. The large quantity of data also allowed
us to zoom in on episodes of particular interest, namely peaks and drops in the various
emotions and especially moments of convergence between heart rates, facial expressions
and self-reported data. These moments could be interpreted in light of the tasks being
performed and the empathy with the partner.

To conclude, this pilot study provides researchers with new tools to capture the many
manifestations of dynamic FL learner emotions and represents a move away from exclusive
reliance on learners’ self-reports. The well-known phenomenon of emotional contagion
could thus be observed in real-time across modalities and its sources could be identified.
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Chapter 5

CONCLUSION AND PERSPECTIVES

5.1 Methodological Contributions to Multimodal
Pattern Recognition

In this dissertation, we advanced state-of-the-art methods in multimodal pattern recog-
nition for short utterance scenarios, spanning supervised to unsupervised methods applied
to real-life applications. The contributions of this thesis can be categorized into three main
fields: From Unimodal to Multimodal Supervised Biometrics Recognition, Supervised Mul-
timodal Deepfake Detection, and Unsupervised Multimodal Student Engagement Detection.

Initially, we focused on unimodal biometrics identification using voice-based methods.
Our study demonstrated the depth and invariance-scale importance of the sparse-based
method, WST, in generating invariant features. This approach significantly enhanced the
identification contrast between two speakers reading the same short sentence. In scenarios
involving a large number of speakers, we introduced a novel integration of WST with
x-vectors, resulting in an architecture with fewer trainable parameters yet competitive
identification accuracy compared to state-of-the-art methods.

To further validate the efficacy of integrating multiple modalities for improved identi-
fication accuracy, we proposed a multimodal late fusion approach combining depth videos
and audio signals. At the depth video level, we developed an efficient feature extraction
method that reduced computational costs compared to existing methods. This late fusion
method utilized 2D decomposition of spatiotemporal information, where each view was
processed using a pre-trained ResNet-18 on ImageNet with an added self-attention mod-
ule to balance features extracted from each view. For the audio modality, we employed
pre-trained x-vectors architecture on VoxCeleb 1 & 2 to compress the audio signal into a
single feature vector. This spatiotemporal architecture effectively extracted features from
both modalities, overcoming challenges posed by short utterances and varying recording
conditions. This research underscored the advantages of integrating depth information
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with audio, advocating for a robust multimodal approach in speaker identification.
The emergence of deepfake methods poses a significant challenge to biometrics recog-

nition systems. In Chapter 3, we fine-tuned our previous late fusion architecture by re-
training only the fusion layers, not the entire architecture. We investigated the role of
each view and modality in detecting deepfake generation methods’ weak points, noting
the superiority of the audio modality. Given the lack of interpretability and comprehen-
siveness of deep learning methods, we proposed a late fusion architecture at the decision
level, using two hand-crafted methods to separately detect audio authenticity by focusing
on the correlation between negative and positive samples. On the visual side, we employed
a temporal anomalies detection method concentrating on the lips region, which exhibits
significant variations across audio generation.

Building upon our findings in the biometrics identification field, we moved on to unsu-
pervised multimodal student engagement detection in Chapter 4. We explored the effec-
tiveness of multimodal data in tracking student engagement in classrooms using low-cost
sensors to capture heart rate (HR) signals and facial expressions. By focusing on student-
dependent clustering, we developed a reproducible dataset and a democratized pipeline for
identifying abnormal moments of disengagement, considering cultural differences. Facial
expressions analysis, using a pre-trained Vision Transformer (ViT) for emotion detection,
complemented HR signal processing. Cross-referencing with expert observations validated
this multimodal approach, demonstrating its potential for real-time monitoring of student
engagement to enhance educational outcomes through timely interventions.

5.2 Future Perspectives

This doctoral research emphasizes the integration of different modalities in various
applications, ranging from biometrics identification to student engagement. The proposed
methodologies, involving shallow and deep learning methods, were simple yet effective.
However, some limitations should be investigated in the future:

5.2.1 Biometrics Identification

Our multimodal and multi-view approach, which decomposes a video into three views
and uses late fusion at the features level, could be made more robust by integrating a self-
attention module at each extraction level. Additionally, our deepfake detection systems
have primarily focused on GAN-based methods, but the rise of diffusion models and other
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deepfake generation methods presents a potential threat. To address this challenge, one
may develop and implement a more generalized architecture.

5.2.2 Student Engagement Detection

The lack of sessions in our NeuroCam dataset can pose several limitations. Therefore,
acquiring a larger number of sessions and using a supervised method based on HR signals
and facial expressions could be more understandable and generalizable for each student.
Additionally, we focused less on facial expressions and more on heart rate variations at
the decision level due to the lower performance of deep learning models based on facial
expressions and the fact that heart rate signals are more reliable in these situations.
However, a more sophisticated model incorporating face-based emotion recognition could
be developed in the future, giving equal importance to both RGB facial data and heart
rate signals. Additionally, we only used SOTA handcrafted features developed for emotion
recognition and adapted them for student engagement detection, but one may propose
new features designed specifically for this purpose.

109



5.3 Publications

Journal Articles
— Abderrazzaq Moufidi, David Rousseau, and Pejman Rasti, "Attention-Based

Fusion of Ultrashort Voice Utterances and Depth Videos for Multimodal Person
Identification", Sensors, 23.13 (2023), p. 5890.

— Abderrazzaq Moufidi, David Rousseau, and Pejman Rasti, "Toward Compre-
hensive Short Utterances Manipulations Detection in Videos", Multimedia Tools
and Applications (2024): 1-14.

— Delphine Guedat-Bittighoffer, Abderrazzaq Moufidi, Jean-Marc Dewaele, David
Rousseau, Hugo Voyneau, Pejman Rasti, "Heart rates, facial expressions and self-
reports: A multimodal longitudinal approach of learners’ emotions in the Foreign
Language classroom" Computers and Education, (Submitted).

Proceedings
— Abderrazzaq Moufidi, David Rousseau, and Pejman Rasti, "Wavelet Scatter-

ing Transform Depth Benefit: An Application for Speaker Identification," IAPR
Workshop on Artificial Neural Networks in Pattern Recognition, Springer, 2022,
pp. 97–106.

— Abderrazzaq Moufidi, David Rousseau, and Pejman Rasti, "Multimodal Deep-
fake Detection for Short Videos," IMPROVE, 2024, pp. 67–73.

— Delphine Guedat-Bittighoffer, Abderrazzaq Moufidi, David Rousseau, and Pej-
man Rasti, "Regards interdisciplinaires croisés sur les émotions éprouvées par trois
apprenants de Français langue étrangère en contexte universitaire," Colloque Lan-
gage et éMOTions, 2024.

110



Appendix A

WAVELET SCATTERING TRANSFORM

In Chapter 2, the concept of WST [32] method is to apply iteratively the wavelet
transform ψ [75] and modulus as a non-linearity function (shift invariance) and an average
Gaussian filter ϕ.

An audio signal x is convoluted ⋆ with dilated wavelets ψλ that are generated from a
Morlet mother wavelet to produce a sparse representation (i.e: less coefficients):

ψλi
(t) = λiψ(λit), (A.1)

where λi = 2
j

Qi , j ∈ Z and Qi is the quality factor or the number of wavelets per octave
and i > 0 refers to the order index. ψλi

are centered at λi and have a bandwidth of λi

Qi
in

the frequency domain.
At the zero-order, the scattering coefficients are given by S0(x) = x ⋆ ϕ(t) (usually

null for voice signals). At the i−th order (i ≥ 1), the signal is down-sampled by using the
mean pooling at every scale, and the scattering coefficients are calculated as follows until
a fixed maximum order m

Six(t, λ1, ..., λi) = |||x ⋆ ψλ1 | ⋆ ...| ⋆ ψλi
| ⋆ ϕ(t). (A.2)

These coefficients (Six)i=1,..,m are often log-normalised (equation A.3) in order to re-
duce redundancy and increase translation invariance.

S̃1x (t, λ1) = log
(

S1x(t,λ1)
|x|⋆ϕ(t)+ϵ

)
∀i ≥ 2

S̃ix (t, λ1, . . . , λi) = log
(

Smx(t,λ1,...,λi)
Si−1x(t,λ1,...,λi−1)+ϵ

) (A.3)

where ϵ is a silence detection threshold.
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Appendix B

TECHNICAL DESCRIPTION OF THE

OXIMETER USED IN OUR EXPERIMENTS

In Chapter 4, to build our NeuroCam dataset for assessing student engagement in real-
world scenarios, we captured RGB video of the classroom and tracked each student’s heart
rate using a wearable device, fingertip oximeter model PC-60FW depicted in Fig. B.1,
it is from Pacific Medical Australia [156]. This fingertip oximeter is designed to measure
pulse rate and the oxygen saturation (SpO2) through the user’s finger. It is suitable for
spot-checking SpO2 and pulse rate in both adult and pediatric patients, making it ideal
for use in homes and medical clinics. It has the following characteristics.

B.1 Fingertip Pulse Oximeter Features:

— Special splash proof and drop resistant design
— Display of Oxygen Saturation (SpO2), Pulse Rate (PR), Perfusion Index (PI), pulse

bar and waveform
— Spot check and continuous pulse oximeter measurement modes
— Pulse rate analysis for spot check measurement
— Up to 12 groups SpO2 data storage
— Audible and visual alarm with low battery indication
— Automatic power on/off
— Four direction display
— Artefact removal and anti-motion
— Accurate and sensitive
— Wireless function (i.e., the oximeter is Bluetooth paired with ViHealth app on the

phone)
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Figure B.1 – Left: Oximeter used to record the heart rate beats of the students.
Right:ViHealth application that receive the data from the oximeter.

B.2 Fingertip Pulse Oximeter Specification:

Oxygen saturation (SpO2)
— Transducer: Dual-wavelength LED sensor
— Measuring range: 35 − 100%
— Measuring accuracy: ≤ 2% range from 70 − 100%
Pulse Rate
— Measuring range: 30 − 240 bpm
— Measuring accuracy: ±2bpm or ±2% (whichever is the greater)
Perfusion Index
— Display range: 0-20%
Default Alarm Limit
— SpO2 low limit: 90%
— Pulse rate high limit: 120 bpm
— Pulse rate low limit: 50 bpm
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Measuring Mode
— 30 seconds spot check mode : The measurement begins automatically once the

finger is correctly placed in the finger clip. The process lasts for 30 seconds with a
countdown displayed. At the end of the 30 seconds, the oxygen saturation (SpO2)
and pulse rate (PR) readings freeze, and the pulse rhythm analysis is displayed.
Once the finger is removed, the display clears, and the oximeter automatically shuts
down.

— Continuous mode : The measurement starts automatically when the finger is in-
serted properly into the finger clip. The measurement continues indefinitely, with
real-time updates of the oxygen saturation (SpO2) and pulse rate (PR) read-
ings, until the finger is removed, at which point the oximeter shuts down automat-
ically.

Dimensions, Weight and Power
— Dimensions: 56 × 34 × 30 mm (L×W ×H)
— Weight: 52 g
— Power: 2 × AAA alkaline battery
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Titre : Intégration multimodale basée sur l’apprentissage automatique pour l’identification bio-
métrique et la détection d’engagement à partir des durées courtes

Mot clés : Multimodalité, Wavelet Scattering Transform, x-vectors, Détection de Deepfake,

Détection d’engagement des élèves, Rythme Cardiaque

Résumé : Le progrès rapide et la démocrati-
sation de la technologie ont conduit à l’abon-
dance des capteurs. Par conséquent, l’inté-
gration de ces diverses modalités pourrait
présenter un avantage considérable pour de
nombreuses applications dans la vie réelle,
telles que la reconnaissance biométrique ou
la détection d’engagement des élèves. Dans
le domaine de la multimodalité, les chercheurs
ont établi des architectures variées de fu-
sion, allant des approches de fusion précoce,
hybride et tardive. Cependant, ces architec-
tures peuvent avoir des limites en ce qui
concerne des signaux temporels d’une du-
rée courte, ce qui nécessite un changement
de paradigme vers le développement de tech-
niques d’apprentissage automatique multimo-
dales qui promettent une précision et une effi-
cacité pour l’analyse de ces données courtes.
Dans cette thèse, nous nous appuyons sur
l’intégration de la multimodalité pour relever
les défis précédents, allant de l’identification
biométrique supervisée à la détection non su-
pervisée de l’engagement des étudiants. La
première contribution de ce doctorat porte sur
l’intégration de la Wavelet Scattering Trans-
form à plusieurs couches avec une architec-
ture profonde appelée x-vectors, grâce à la-
quelle nous avons amélioré la performance de
l’identification du locuteur dans des scénarios
impliquant des énoncés courts tout en rédui-
sant le nombre de paramètres nécessaires à
l’entraînement. En s’appuyant sur les avan-
tages de la multimodalité, on a proposé une
architecture de fusion tardive combinant des
vidéos de la profondeur des lèvres et des

signaux audios a permis d’améliorer la pré-
cision de l’identification dans le cas d’énon-
cés courts, en utilisant des méthodes effi-
caces et moins coûteuses pour extraire des
caractéristiques spatio-temporelles. Dans le
domaine des défis biométriques, il y a la me-
nace de l’émergence des "deepfakes". Ainsi,
nous nous sommes concentrés sur l’élabora-
tion d’une méthode de détection des "deep-
fakes" basée sur des méthodes mathéma-
tiques compréhensibles et sur une version fi-
nement ajustée de notre précédente fusion
tardive appliquée aux vidéos RVB des lèvres
et aux audios. En utilisant des méthodes
de détection d’anomalies conçues spécifique-
ment pour les modalités audio et visuelles,
l’étude a démontré des capacités de détection
robustes dans divers ensembles de données
et conditions, soulignant l’importance des ap-
proches multimodales pour contrer l’évolution
des techniques de deepfake. S’étendant aux
contextes éducatifs, la thèse explore la dé-
tection multimodale de l’engagement des étu-
diants dans une classe. En utilisant des cap-
teurs abordables pour acquérir les signaux du
rythme cardiaque et les expressions faciales,
l’étude a développé un ensemble de données
reproductibles et un plan pour identifier des
moments significatifs, tout en tenant compte
des nuances culturelles. L’analyse des expres-
sions faciales à l’aide de Vision Transformer
(ViT) fusionnée avec le traitement des signaux
de fréquence cardiaque, validée par des ob-
servations d’experts, a mis en évidence le po-
tentiel du suivi des élèves afin d’améliorer la
qualité d’enseignement.
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Abstract:
The rapid advancement and democrati-

zation of technology have led to an abun-
dance of sensors. Consequently, the integra-
tion of these diverse modalities presents an
advantage for numerous real-life applications,
such as biometrics recognition and engage-
ment detection. In the field of multimodality,
researchers have developed various fusion ar-
chitectures, ranging from early, hybrid, to late
fusion approaches. However, these architec-
tures may have limitations involving short ut-
terances and brief video segments, necessi-
tating a paradigm shift towards the develop-
ment of multimodal machine learning tech-
niques that promise precision and efficiency
for short-duration data analysis. In this the-
sis, we lean on integration of multimodality to
tackle these previous challenges ranging from
supervised biometrics identification to unsu-
pervised student engagement detection. This
PhD began with the first contribution on the
integration of multiscale Wavelet Scattering
Transform with x-vectors architecture, through
which we enhanced the accuracy of speaker
identification in scenarios involving short utter-
ances. Going through multimodality benefits,
a late fusion architecture combining lips depth
videos and audio signals further improved

identification accuracy under short utterances,
utilizing an effective and less computational
methods to extract spatiotemporal features. In
the realm of biometrics challenges, there is
the threat emergence of deepfakes. There-
fore, we focalized on elaborating a deepfake
detection methods based on, shallow learn-
ing and a fine-tuned architecture of our pre-
vious late fusion architecture applied on RGB
lips videos and audios. By employing hand-
crafted anomaly detection methods for both
audio and visual modalities, the study demon-
strated robust detection capabilities across
various datasets and conditions, emphasizing
the importance of multimodal approaches in
countering evolving deepfake techniques. Ex-
panding to educational contexts, the disserta-
tion explores multimodal student engagement
detection in classrooms. Using low-cost sen-
sors to capture Heart Rate signals and fa-
cial expressions, the study developed a repro-
ducible dataset and pipeline for identifying sig-
nificant moments, accounting for cultural nu-
ances. The analysis of facial expressions us-
ing Vision Transformer (ViT) fused with heart
rate signal processing, validated through ex-
pert observations, showcased the potential for
real-time monitoring to enhance educational
outcomes through timely interventions.
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