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Résumé

La sécurité nucléaire consiste à protéger la population et l’environnement contre les actes de malveil-
lance impliquant des substances radioactives. L’Agence Internationale de l’Énergie Atomique (AIEA)
exhorte les états à présenter une stratégie de sécurité nucléaire rapide, robuste et fiable, en réponse
aux tensions géopolitiques croissantes. En particulier, l’identification des matières nucléaires fissiles
est un élément fondamental de toute stratégie de sécurité nucléaire. Pour garantir la fiabilité de la
réponse à toute menace, la quantification et le contrôle des incertitudes présentes dans les méthodes
mathématiques sous-jacentes sont obligatoires. Cette thèse se place à l’intersection de l’identification
des matières fissiles et de la quantification des incertitudes. L’objectif général est de développer des
méthodes mathématiques et numériques adaptées à l’analyse du bruit neutronique dans les systèmes
sous-critiques de puissance nulle. Cette technique de mesure passive est, avec la spectroscopie gamma,
un aspect capital pour l’identification de matière fissile.
La méthodologie présentée dans ce manuscrit se base sur une résolution bayésienne d’un problème
inverse, dont les observations proviennent de l’étude des corrélations temporelles entre les neutrons
induits par fission. La résolution standard de ce problème est irréalisable telle quelle, en raison du
coût du code Monte-Carlo utilisé pour le transport des neutrons. Cette thèse présente un cadre dans
lequel le code Monte-Carlo est remplacé par divers méta-modèles, dont les incertitudes intrinsèques
sont introduites dans le problème inverse. La procédure de quantification des incertitudes englobe les
incertitudes épistémiques et aléatoriques dans un cadre commun. Cette stratégie peut être améliorée
à l’aide de plans d’expériences séquentiels conçus spécifiquement pour le problème inverse, ou avec
l’introduction de corrélations gamma qui aident à réduire les incertitudes résiduelles. Enfin, nous abor-
dons une approche connexe qui contourne la résolution du problème inverse par une paramétrisation
de la classe de distributions a posteriori à l’aide de distributions lambda généralisées.

Abstract

Nuclear security is the task of protecting the population and the environment against malicious acts
involving radioactive substances. The International Atomic Energy Agency (IAEA) exhorts states to
present a fast, robust, and reliable nuclear security strategy, in response to the increasing geopolitical
tensions. In particular, the identification of nuclear fissile matter is a foundational element of any
nuclear security strategy. To ensure the reliability of the response to any threat, the quantification and
control of the uncertainties embedded in the underlying mathematical methods are mandatory. This
thesis is located at the crossroads of fissile matter identification and uncertainty quantification. The
general objective is to develop mathematical and numerical methods adapted to the neutron noise
analysis in zero-power subcritical systems. This passive measurement technique is, along with gamma
spectroscopy, a focal point of fissile matter identification.
The methodology presented in this manuscript is based on a Bayesian resolution of an inverse problem,
whose observations come from the study of temporal correlations between fission-induced neutrons.
The standard resolution of this problem is intractable due to the cost of the Monte Carlo code for
neutron transport. This thesis presents a framework in which the computer model is replaced by
various surrogates, whose intrinsic uncertainties are fed into the inverse problem. The uncertainty quan-
tification procedure encompasses both epistemic and aleatoric uncertainties into a common framework.
This strategy can be improved with the help of sequential design strategies built specifically for the
inverse problem, or with the introduction of gamma correlations which helps in reducing the residual
uncertainties. Finally, we discuss a connex approach that circumvents the resolution of the inverse
problem with a parametrization of the class of posterior distributions with the help of generalized
lambda distributions.
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Résumé

Contexte général

Dans le cadre de la sécurité nucléaire à l’échelle d’un territoire, l’état se doit de
mettre en place des méthodes efficaces et robustes pour détecter et prévenir des
menaces éventuelles. Avec l’émergence et le développement des technologies nu-
cléaires, les dangers potentiels que représentent les matières nucléaires ont conduit
au développement de stratégies globales de sécurité nucléaire. Dans la définition
donnée par l’Agence Internationale de l’Énergie Atomique (AIEA), la sécurité nu-
cléaire regroupe l’ensemble des moyens et méthodes mis en œuvre afin de détecter,
prévenir et répondre aux menaces intentionnelles impliquant des matières nucléaires.
Bien que distincte de la sûreté nucléaire, la sécurité nucléaire a également pour but
final la protection de la population, de l’environnement et de la société en général.

Une stratégie de sécurité nucléaire repose sur un ensemble de méthodes logistiques,
expérimentales et méthodologiques. Cette thèse s’inscrit plus particulièrement dans
le cadre des méthodes de détection des matières nucléaires, qui représentent un des
piliers amont de la sécurité nucléaire. Les techniques mises en application pour
détecter une matière nucléaire sont nombreuses et peuvent êtres classées en deux
catégories. On distingue les mesures destructives, pour lesquelles l’échantillon de
matière est altéré, des mesures non-destructives. Parmi les mesures non-destructives,
on sépare les méthodes actives, où l’on envoie des radiations dans le matériau,
des mesures passives pour lesquelles on s’intéresse exclusivement aux émissions
spontanées de l’échantillon. Parmi les méthodes les plus utilisées, on peut citer
par exemple la spectroscopie gamma qui s’inscrit dans les mesures passives non-
destructives ou la radiographie qui est une mesure non-destructive active.

Dans cette thèse, nous nous concentrons spécifiquement sur les mesures de cor-
rélations neutroniques, qui font partie des méthodes de détection passive et sont
généralement complémentaires de la spectroscopie gamma. Le terme de corrélation
neutronique fait référence à la corrélation temporelle entre les instants de détection de
deux neutrons appartenant à une même chaîne de fission. Les mesures de corrélations
neutroniques reposent sur l’analyse de la distribution temporelle des neutrons captés
par un détecteur externe. En particulier pour les matériaux fissiles, la multiplicité
des neutrons produits lors des fissions entraîne un excès de variance dans les statis-
tiques de détection. Ces méthodes, dites de bruit neutronique, ont été abondamment
étudiées et permettent d’identifier des caractéristiques d’un matériau comme sa mul-
tiplication ou sa constante de décroissance prompte. Elles sont appliquées aussi bien
à des réacteurs de puissance, pour identifier des anomalies de fonctionnement, qu’à
des systèmes de faible puissance. On s’intéresse ici à ce second cas.



2

Objectifs et plan

Bien que connues et utilisées depuis les années soixante, les méthodes de bruit
neutronique souffrent d’un manque de quantification d’incertitudes. Pourtant, afin
de garantir l’efficacité d’une stratégie nationale de sécurité nucléaire, la maîtrise des
incertitudes doit faire partie intégrante du cadre analytique. Ce projet de thèse a donc
pour but de combler, au moins en partie, cette lacune méthodologique.

L’objectif global de ce projet de thèse est le suivant. On souhaite développer des
méthodes mathématiques et numériques robustes et fiables afin de quantifier les
incertitudes lors de l’identification de matières fissiles à l’aide de méthodes de bruit
neutronique. Plus particulièrement, le chemin choisi se base sur l’estimation bayési-
enne de certains paramètres nucléaires caractéristiques d’un matériau fissile lors
de la résolution d’un problème inverse. Afin d’accélérer la résolution de ce prob-
lème inverse, des méthodes d’apprentissage supervisé sont utilisées afin de fournir
des modèles prédictifs rapides et fiables, et dont les incertitudes sont connues et
maîtrisées.

Ce manuscrit se décompose en sept chapitres et est organisé comme suit. Tout
d’abord, le chapitre 1 présente un rappel méthodologique général sur les processus
markoviens et leurs applications à la neutronique aléatoire, la résolution bayésienne
de problèmes inverses et l’échantillonnage Monte-Carlo par chaînes de Markov.
Par la suite, le chapitre 2 se focalise sur le développement de méta-modèles à l’aide
de processus gaussiens, pouvant servir d’émulateurs fiables du modèle direct lors de
la résolution du problème inverse.
Dans le chapitre 3, nous étendons cette méthodologie à une nouvelle classe de méta-
modèles que sont les réseaux de neurones bayésiens.
Par la suite, dans le chapitre 4, nous développons des stratégies d’apprentissage actif
spécifiquement conçues dans le but d’améliorer nos méta-modèles dans le cadre de
la résolution d’un problème inverse donné.
Le chapitre 5 aborde l’utilisation de mesures de corrélations gamma qui sont l’analogue
des corrélations neutroniques pour les rayonnements gamma. On montre que ces
mesures peuvent servir à apporter une information supplémentaire et donc à réduire
les incertitudes en jeu.
Nous évoquons ensuite dans le chapitre 6 une stratégie alternative pour la résolution
du problème inverse qui se base sur l’apprentissage de la distribution a posteriori à
l’aide de distributions paramétriques.
Enfin, nous achevons ce manuscrit par une conclusion générale dans le chapitre 7
faisant un aperçu succinct des contributions de ce travail et des perspectives futures.

Dans la suite de ce résumé, nous discuterons plus en détail des contributions réalisées
pendant ce projet de thèse.

Quantification d’incertitudes par méta-modélisation

Problème inverse

L’objectif de ce projet de thèse est l’estimation de paramètres nucléaires et de leurs
incertitudes. D’un point de vue mathématique, cet objectif se traduit par la résolution
d’un problème inverse. À partir d’observations bruitées de corrélations neutroniques,
qui peuvent être obtenues par mesures expérimentales ou par simulations, on cherche
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à remonter aux paramètres nucléaires caractéristiques du matériau. Afin de quan-
tifier les incertitudes sous-jacentes, l’approche traditionnelle consiste à résoudre le
problème inverse par une approche bayésienne. Cependant, cette voie présente un
obstacle majeur : le modèle direct, qui fournit le lien entre paramètres nucléaires et
mesures de corrélations, est représenté par un code de calcul extrêmement coûteux.
Comme la résolution du problème inverse est soumise à des contraintes en temps, le
modèle direct ne peut pas être utilisé tel quel dans la résolution du problème inverse.

Pour cette raison, on cherche à remplacer le modèle direct par un émulateur, autrement
appelé méta-modèle. On souhaite que le méta-modèle fournisse des prédictions
proches du vrai modèle direct ainsi qu’une quantification des incertitudes intrin-
sèques.

Bases de données

La première étape de ce projet consiste en la création de méta-modèles pour le modèle
direct à l’aide de processus gaussiens (voir chapitre 2) ou de réseaux de neurones
bayésiens (voir chapitre 3).
Afin de créer ces émulateurs par apprentissage supervisé, on construit d’abord les
données à l’aide de simulations neutroniques Monte-Carlo avec le code MCNP6.
Partant d’une configuration de référence, nous modifions la géométrie et la source
aléatoirement afin de créer une nouvelle simulation. Le processus est itéré un grand
nombre de fois pour construire nos données numériques d’entraînement. Les deux
cas de référence sont respectivement l’étude d’une sphère de plutonium métallique
avec réflecteur en cuivre, issue de la littérature scientifique, et une modélisation du
réacteur SILENE, un réacteur cylindrique à nitrate d’uranyle.

Les quantités d’intérêt caractérisant les corrélations neutroniques sont le taux de
comptage moyen R, et les moments de Feynman asymptotiques d’ordre deux et trois
notés Y∞ et X∞, qui représentent respectivement les nombres moyens de doubles
et triples détections corrélées. Nous entendons par détection corrélée la détection
simultanée de plusieurs neutrons issus d’une même chaine de fission. Pour décrire le
matériau, nous nous basons sur le modèle ponctuel qui utilise le facteur de multipli-
cation prompt kp, l’efficacité de détection (de Feynman) εF, l’intensité de la source
S et le type de source xs, qui quantifie le ratio de fissions spontanées et de réactions
nucléaires (α, n) dans la source. Nous ajoutons à ces entrées des paramètres addi-
tionnels qui caractérisent notamment le spectre en énergie, la réflexion en bord de
géométrie et les absorptions parasitiques.

Pour déterminer les entrées de notre base de données, nous nous basons sur les
fonctionnalités classiques de MCNP comme le calcul de valeur propre pour kp et
les estimateurs de comptage pour les autres quantités. Les paramètres liés au terme
source (S et xs) peuvent être fixés manuellement dans les fichiers entrées de MCNP et
n’ont donc pas à être estimés.
Pour estimer les sorties (R, Y∞, X∞), nous avons à notre disposition deux estimateurs
possibles. L’estimateur de binning séquentiel est analogue à un traitement expérimen-
tal du fichier d’instants de détection, alors que l’estimateur par déclenchement utilise
les informations contenues dans la simulation MCNP pour filtrer les corrélations
accidentelles entre neutrons détectés. En effet, on sait lors d’une simulation à quelle
chaine de fission appartient un neutron et on peut donc utiliser cette information
pour filtrer les corrélations accidentelles. Cette seconde approche est utilisée pour la
création des bases de données d’entraînement. En revanche, pour créer les données
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d’observations expérimentales utilisées pour résoudre les problèmes inverses, nous
utilisons les estimateurs par binning séquentiel afin de reproduire des vraies données
expérimentales.

Avec cette méthode nous construisons donc deux bases de données numériques. La
première, dénommée BERP dataset se base sur le cas de la sphère de plutonium
métallique et contient 2132 données, et la seconde SILENE dataset se base sur la
géométrie du réacteur SILENE et contient 318 cas. Nous insistons sur la distinction
entre ces données d’entraînement, et les observations d’un problème inverse qui peu-
vent également être obtenues par simulation, mais qui sont liés à une configuration
spécifique d’une matière nucléaire.

Méta-modèles

Nous construisons par la suite des méta-modèles à l’aide de ces bases de données
numériques. Les premiers modèles développés sont centrés sur la régression par
processus gaussiens avec le modèle de corégionalisation. Ces modèles permettent de
tenir compte des corrélations entre sorties qui sont attendues dans notre cas. Nous
évaluons la performance de ces modèles à l’aide de plusieurs métriques quantifiant
la fiabilité des prédictions moyennes mais aussi de la quantification des incertitudes.
Les modèles sont améliorés ensuite par le biais de modélisations multi-fidélité et
hétéroscédastique.

Par ailleurs, nous développons des méta-modèles à l’aide de réseaux de neurones
bayésiens. Partant d’une architecture fixée, nous testons différentes méthodes d’inférence
telles que l’inférence variationnelle, le dropout Monte-Carlo et un échantillonnage
MCMC. Nous étudions également l’influence des différentes distributions a pri-
ori dans le réseau et tout particulièrement l’a priori sur les covariances de sortie.
Enfin nous modifions aussi l’architecture des réseaux afin d’inclure une modélisa-
tion hétéroscédastique et multi-fidélité permettant d’améliorer les performances des
modèles.

Avec de ces méta-modèles, on peut résoudre le problème inverse bayésien à l’aide
d’une vraisemblance incluant à la fois les erreurs épistémiques et aléatoriques. Dans
le cas des réseaux de neurones bayésiens, dont la distribution de sortie n’est pas
gaussienne, deux vraisemblances différentes sont étudiées. Dans la première, on
combine les moyennes et covariances prédictives fournies par chaque échantillon
des paramètres du réseau, pour revenir à une distribution gaussienne qu’on peut
inclure facilement dans la vraisemblance. Dans la seconde en revanche, on considère
une vraisemblance sous la forme d’une mixture de gaussiennes, qui est issue de
l’approximation Monte-Carlo de la loi prédictive du réseau de neurones bayésien.
Dans tous les cas, le problème inverse est résolu à l’aide d’échantillonnage MCMC
qui fournit une chaîne de Markov ergodique dont la distribution invariante est la
distribution a posteriori dans la vision bayésienne du problème inverse. Les diverses
méthodes présentées ici sont appliquées sur deux cas tests de référence. Le premier
représente une sphère de plutonium métallique entourée de réflecteurs en cuivre.
Pour ce cas test, les observations du problème inverse sont obtenues par simulation
numérique en utilisant les estimateurs par binning séquentiel de manière à reproduire
des données expérimentales. Le second cas test est tiré d’une campagne de mesures
sur le réacteur expérimental SILENE. Nous montrons que notre méthodologie permet
une quantification fiable des incertitudes liées aux observations et aux modèles
numériques utilisés.
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Design séquentiel

Dans le chapitre 4, nous nous penchons sur la création de plans d’expériences adaptés
à la résolution bayésienne d’un problème inverse. Les méthodes proposées dans ce
chapitre sont construites pour un problème inverse spécifique et ne cherchent donc
pas à fournir le meilleur modèle possible. Elles vont plutôt chercher à sélectionner
de nouveaux points d’entraînement de sorte à améliorer le modèle dans les régions
les plus pertinentes, c’est-à-dire dans les régions de grande densité a posteriori. Ces
stratégies peuvent être comprises comme un réglage fin d’un méta-modèle en vue de
la résolution d’un problème inverse spécifique.

Design CSQ

En partant des designs dits D-optimaux, nous développons une stratégie de design
séquentiel pour les problèmes inverses bayésiens. Cette méthode, dénommée CSQ
(pour Constraint Set Query), cherche un nouveau point d’entrainement de manière
à maximiser le déterminant de la covariance prédictive du méta-modèle, tout en
se restreignant à une boule centrée (pour la distance de Mahalanobis) autour du
maximum-a-posteriori. Cette première approche est facile à mettre en œuvre et
garantit que les nouveaux points d’entraînement sont dans des régions de haute
densité a posteriori.

Stratégie IP-SUR

Une deuxième méthode, intitulée IP-SUR (Inverse Problem SUR) et se fondant sur
la méthodologie SUR (Stepwise Uncertainty Reduction) est également présentée. Par
rapport à la stratégie CSQ, la stratégie IP-SUR présente des garanties théoriques de
convergence. En effet, on prouve que la métrique d’intérêt, qui est ici le détermi-
nant de la covariance prédictive, intégré sur la distribution a posteriori, converge
presque sûrement vers zéro quand le nombre de simulations tend vers l’infini. Par
ailleurs, nous proposons une méthode alternative se fondant sur l’utilisation d’une
vraisemblance tempérée par un exposant compris entre 0 et 1, de manière à lisser la
distribution a posteriori lors de la recherche du nouveau point d’entrainement. Cette
méthode présente les mêmes garanties théoriques que la méthode IP-SUR pour un
coût similaire.

Développements supplémentaires

Corrélations gamma

Dans le chapitre 5, nous étudions la possibilité d’utiliser l’information supplémen-
taire apportée par les corrélations gamma dans le problème inverse pour réduire les
incertitudes et l’étalement de la distribution a posteriori. Cette approche peut se faire
de deux manières. On peut utiliser des méta-modèles de plus grande dimension pour
traiter conjointement les corrélations neutron et gamma. Il est également possible
de résoudre successivement deux problèmes inverses, d’abord pour les corrélations
neutron, puis pour les corrélations gamma. La première approche est théoriquement
plus informative car elle tient compte de la structure de covariance complète des
corrélations neutron et gamma. Néanmoins elle ne produit pas initialement de bons
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résultats du fait du trop faible nombre de données numériques utilisées pour entraîner
le méta-modèle. C’est pourquoi nous cherchons à enrichir le méta-modèle à l’aide des
méthodes de design séquentiel précédemment introduites. Ces méthodes permettent
d’améliorer significativement le méta-modèle neutron/gamma mais les incertitudes
obtenues par cette approche conjointe restent plus importantes que dans le cas où les
corrélations sont traitées séquentiellement. Cela s’explique par une sous-estimation
des incertitudes lors de l’approche séquentielle, liée à l’absence de corrélations entre
observations neutron et gamma dans cette méthode. Dans ce chapitre, nous dé-
montrons donc le gain potentiel que peuvent apporter les corrélations gamma pour
réduire les incertitudes dans l’estimation des paramètres nucléaires.

Apprentissage des distributions a posteriori

Enfin, dans le chapitre 6, nous étudions une approche détournée pour résoudre
le problème inverse, en s’efforçant de modéliser la distribution a posteriori des
paramètres nucléaires du matériau étudié par une distribution paramétrique. Les
distributions lambda généralisées, corrélées par une copule gaussienne, sont utilisées
pour fournir une classe de distributions paramétriques suffisamment générales. Une
base de données est créée de manière à pouvoir entraîner un prédicteur, capable pour
un ensemble d’observations et une covariance de mesure, de fournir les paramètres
de la distribution a posteriori associée. Cette méthode alternative est largement plus
rapide, et permet de fournir instantanément une distribution a posteriori complète.
Les incertitudes fournies par ces distributions sont moins fiables que celles obtenues
par résolution bayésienne du problème inverse. Néanmoins, les exemples étudiés
semblent indiquer que les distributions paramétriques fournissent une surestimation
systématique des incertitudes, ce qui rend leur utilisation envisageable pour fournir
une estimation conservatrice des incertitudes en temps très court.

Conclusion

Cette thèse visait à quantifier les incertitudes associées à l’estimation de paramètres
nucléaires dans un matériau inconnu à partir de mesures de corrélations neutron-
iques. Pour répondre à cet objectif, nous avons développé des méta-modèles basés
sur des processus gaussiens et des réseaux de neurones bayésiens, utilisant des
bases de données numériques générées par simulation. Ces méta-modèles agissent
comme des émulateurs du modèle direct dans le cadre de la résolution bayésienne
de problèmes inverses, en tenant compte de l’observation bruitée des mesures de
corrélations neutroniques. Nous avons démontré la possibilité d’améliorer ces mod-
èles pour des problèmes inverses spécifiques en utilisant des plans d’expériences
adaptés pour la sélection optimale de nouveaux points d’entraînement. Par ailleurs,
l’intégration de mesures de corrélations gamma constitue une autre approche promet-
teuse pour réduire les incertitudes dans l’estimation des paramètres nucléaires. Enfin,
nous avons illustré la capacité à fournir une estimation instantanée et conservatrice
des incertitudes à partir de données d’observation, en utilisant des distributions
paramétriques.

Les travaux théoriques et appliqués présentés dans ce manuscrit ont abordé la prob-
lématique posée tout en identifiant de nouvelles opportunités de recherche dans
des domaines connexes. Une voie d’amélioration de cette étude réside dans une
paramétrisation optimale du problème inverse. Le cadre général de ce problème
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repose sur l’utilisation d’un modèle ponctuel auquel quelques paramètres supplé-
mentaires sont ajoutés pour une description plus précise des phénomènes physiques.
Toutefois, ces paramètres ont été choisis de manière empirique et il est possible
qu’une paramétrisation plus pertinente existe. De plus, d’autres approches alter-
natives pour résoudre le problème inverse n’ont pas été explorées ici, comme par
exemple l’utilisation de modèles génératifs conditionnels. Enfin, bien que nous ayons
démontré le potentiel de l’intégration des corrélations gamma dans l’estimation des
paramètres nucléaires, ces méthodes n’ont pas encore été appliquées à des données
réelles et se base sur une modélisation simpliste des processus physiques sous-jacents.
Une modélisation plus réaliste de ces phénomènes et l’application à des données
expérimentales serait nécessaire pour garantir la fiabilité de cette approche.
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Chapter 1

Introduction

1.1 General introduction

The International Atomic Energy Agency defines nuclear security as all the exper-
imental and theoretical methods seeking to safeguard people from malicious acts
involving radioactive substances. In a context of geopolitical instabilities, nuclear
security emerges as an increasingly pivotal aspect of national defense. The scope
of nuclear security is broad and diverse, though this work focuses on fissile matter
identification, using passive neutron and gamma correlation measurements.

A state must guarantee an efficient and fast response methodology for detecting and
identifying nuclear and radioactive materials. Robust mathematical and numerical
methods for the analysis of field measurements are one of the foundations that cement
the reliability of the national nuclear security program. The research presented in this
thesis is integral to the development and enhancement of these methods.

In a robust nuclear security architecture, field measurements are crucial in shaping
responses to potential threats. The specific context requires fast and reliable decision-
making, which is only possible if the field measurements and their conclusions on the
run are reliable. Additionally, the continuous improvement of the nuclear security
strategy may require a more complete analysis and benchmarking of the previously
encountered threats and exercises. For all these reasons, nuclear security must rely
on well-developed uncertainty quantification methods, spanning the entire spectrum
of the speed-accuracy trade-off inherent to computational methods.

This thesis addresses the problem of uncertainty quantification in passive neutron
multiplicity counting. This technique aims at identifying a fissile material based on
the temporal correlations of detected neutrons. Serving as a passive assay method, it
is complementary to gamma spectroscopy.

Neutron multiplicity counting allows for the determination of key parameters that
describe fissile material by solving an inverse problem. However, the uncertainty
quantification associated with these estimates is often overlooked. Given the ill-posed
nature of the underlying inverse problem, estimations may exhibit strong dependency
on observations, leading to significant discrepancies between estimates derived from
independent observation sets. In this context, robust uncertainty quantification
methods appear as an essential component of nuclear security.

The goal of this thesis is to develop a mathematical framework that ensures reliable
uncertainty quantification for the inverse problem associated with fissile material
identification. These methods are tailored to operate within constrained time budgets
to facilitate on-field decision-making. The limited computational budget may be
relaxed for post-analysis of previous measurement campaigns. Though the general
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focus is on nuclear security, the mathematical developments presented herein hold
potential applicability beyond nuclear security, extending to domains such as nuclear
safety, especially for criticality accidents, and nuclear safeguards, whose goal is to
prevent the diversion of nuclear material for hostile purposes.

This thesis is organized as follows: in Chapter 1, we begin with a general introduction
to neutron multiplicity counting and the mathematical concepts recurrent in this
work. In Chapter 2, we focus on the development of Gaussian process surrogate
models which help solve the inverse problem reliably and promptly. Then, the focus
is shifted to Bayesian Neural Networks as surrogate models which may provide
a more costly yet more reliable uncertainty quantification in Chapter 3. Then, in
Chapter 4 we develop a sequential design strategy to enrich the surrogate models for
a given inverse problem. Our next step is to introduce new information in the form of
gamma correlations, to further reduce the uncertainties in the estimation of nuclear
parameters in Chapter 5. Finally in Chapter 6, we develop an alternative strategy
that circumvents the need to solve the inverse problem by building a predictor
able to solve the inverse problem with a constrained time budget using parametric
probability distributions. A general conclusion in Chapter 7 summarizes the various
contributions of this thesis.

1.2 Identification of nuclear fissile material

Various experimental techniques have been used to identify a fissile material con-
taining a mixture of uranium and plutonium, and traces of other actinides or fission
products. They are usually split into two categories, destructive and non-destructive
methods. This thesis focuses on non-destructive assay techniques and specifically on
neutron multiplicity counting. Still, we provide here a brief overview of the different
methods used in nuclear material identification.

1.2.1 Destructive assay

The destructive assay techniques refer to experimental approaches in which the
material or a fraction of it, is altered, destroyed, or meddled with, instead of having
a passive surveillance of its characteristics. Among these techniques, one can think
of mass-spectrometric analysis, spectrophotometry, and other chemical analysis
methods.

Spectrometric analysis can be used to identify the contents of uranium and plutonium
in a sample by the isotopic dilution technique. The idea is to introduce a reference
volume of the sample in a solution of known isotopic compositions. The newly
obtained solutions have updated isotopic compositions which can be obtained by
mass spectrometry. The changes in composition are then used to estimate the isotopic
composition of the unknown sample [HPL08; Ing54].

When focusing solely on the plutonium or uranium content, the sample can be directly
dissolved in nitric acid (or a mixture of nitric and hydrofluoric acids for oxides) and
then analyzed using mass spectrometry.

Spectrophotometry studies the interaction between the material and external radia-
tions. For example, it is possible to measure the absorbance of a coordination complex
formed by uranium at specific wavelengths [KRA+09]. For high concentrations, it is
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also possible to study directly the absorbance of the dissolved uranium or plutonium
[DP16].

Numerous other methods have been used over the years based on the actinide to be
identified, like gravimetric methods [YHK22], or potentiometric titration [HWP78;
Kar+86]. However, since destructive assay techniques are outside the scope of this
thesis, no further details are provided and the author refers to the cited works for
interested readers.

1.2.2 Non-destructive assay by active methods

On the other hand, non-destructive techniques avoid invasion or alteration of the
material of interest. One can distinguish passive methods, where the information is
obtained from spontaneously emitted radiation from the object, and active methods,
in which the object is subject to external radiations, and the induced radiations it
produces are analyzed. Active methods complement the passive methods introduced
afterward, but they tend to be more difficult to set up for on-field measurements.

When a material is excited by incident X-ray (or gamma) radiations, ionization of the
atoms can produce an induced X-ray emission. This fluorescence is characteristic of
the element and can be used to analyze the content of the sample [MRH15; MDM06].
This method is known as X-ray fluorescence analysis (XRF).

It is also possible to use an external gamma source to measure the absorbance of an
unknown sample in a solution. The attenuation of the gamma radiation through the
solution can be linked to the concentration in uranium or plutonium [Con+58].

Uranium and plutonium can induce fission when hit by an incoming neutron, which
in turn produces high-energy neutrons and gamma rays. Thus, one can deliberately
subject an unknown sample to neutron irradiation and measure the neutron and
gamma response.

Identification of fissile material can also be done by X-ray radiography. If the material
is well-shielded, the X-ray may not have enough penetrating power, and in that
case, gamma radiography may provide more information (see for example [OI+16;
Hen+18; Kat+07])

1.2.3 Non-destructive assay by passive methods

1.2.3.1 Calorimetric measurements

Radioactive materials continuously emit radiation, among which α and β particles,
that have a much lower penetrating power than gamma rays. These particles de-
posit their energy by heating the material. From this consideration, calorimetric
measurements have been developed to monitor the heat production in radioactive
materials. Of course, one cannot hope to find an isotopic composition of the mate-
rial with calorimetric measurements, but it can provide information on the global
radioactive content of the sample. These measurements are most notably applied
to plutonium characterization since it has a much higher heat generation rate than
uranium [Bra+02; Bat15]. For this reason, this method is mostly linked to nuclear
safeguards considerations.
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1.2.3.2 Gamma spectroscopy

Passive gamma-ray spectroscopy is a frequently used experimental technique whose
goal is to identify spontaneous gamma-ray emissions caused by the radioactive decay
of nuclides. The energy of the gamma rays is specific to each nuclide. The intensity of
the peak in the detected gamma-ray spectrum can thus be used to identify nuclides
and their respective abundances [CK18; Wil06; Dew+16]. Gamma spectroscopy
can also provide information on the shielding by measuring the inherent gamma
attenuation in the object. The inference can be made difficult in cases where the
sample has a high content of fission products. Indeed, in this case, most of the
emitted gamma signals come from the fission products and the identification of the
specific uranium or plutonium can become tedious, though some methods have been
developed to overcome this difficulty [BC98]. Gamma spectroscopy is one of the most
commonly used techniques for nuclear material identification [Dew+16; Toh+16]. It
is a complementary approach to neutron coincidence counting.

1.2.3.3 Neutron coincidence counting

In a radioactive material, neutrons can be emitted by spontaneous fissions of the
nuclides (in 240Pu or 238U mainly), or they can be produced by nuclear reactions
between low atomic number atoms and the α particles emitted during radioactive
decay. These latter reactions often occur in the form of (α, n) reactions. Moreover,
neutrons can be multiplied by neutron-induced fission reactions, in which an incom-
ing neutron triggers the fission of a heavy nucleus, releasing more neutrons. Thus,
one could try to measure directly the spontaneous neutron rate to obtain information
on the content of the unknown sample. However, this cannot provide knowledge of
the isotopic composition. Besides, the (α, n) reactions are also strongly dependent on
the content of lighter atoms. As such, it is difficult to extract useful knowledge from
global neutron counting since most of the detected neutrons would come from the
(α, n) reactions.

However, one can filter out the neutrons created by the (α, n) source term. The
principle is the following. Neutrons are produced by batches in spontaneous and
induced fissions. They are correlated in time while the (α, n)-induced neutrons are
not. Assume a neutron is detected at time t, and a detector system counts neutrons in
the time interval [t, t + T]. In this window, one can distinguish two cases when a new
neutron is detected. Either it is correlated to the neutron detected at time t, meaning
that the two neutrons belong to the same fission chain, in which case we say we have
a true correlation, or it is not and we have an accidental correlation. True correlations
have a limited lifetime linked to the average lifetime of fission chains in the material.
To obtain only the true correlations, neutron coincidence counters generally open two
detection gates: the first one in the interval [t, t + T] counts both accidental and true
correlations, and the second one in the interval [t + t′, t + t′ + T], with t′ being a few
seconds, counts only the accidental correlations since most of the true correlations
have died out. Then, the number of true correlations can be obtained by subtracting
the second gate from the first.

Neutron coincidence counting may also refer to other methods such as the Rossi-α
and Feynman-α methods which will be extensively discussed in this thesis. These
experimental techniques are at the heart of passive non-destructive assay and are
complementary to gamma spectroscopy. They have been widely used for a whole
range of applications, and in particular for nuclear safeguards (see for example
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[Bru+96; BBC99; Cro+12; DF+17; PBJ19]). Coincidence counting is the main technique
of interest in this work. It is also worth mentioning that efforts have been made to
extend the framework of coincidence counting to gamma detections as well [Che+15;
DYL18]. This approach will also be further discussed in this thesis.

1.2.4 Neutron noise analysis

Neutron noise analysis studies the fluctuations of the neutron population, otherwise
known as neutron noise, inside a fissile material. More specifically, we distinguish
between neutron noise in power reactors where the noise can be traced back to defects
or vibrations in the core, and noise in zero-power systems which is a consequence of
the stochastic nuclear reactions in the system.

1.2.4.1 Neutron noise in power reactors

Power reactors are subject to random modifications of their properties during opera-
tions, such as variations in the coolant density, phase changes, temperature variations,
or mechanical vibrations. These perturbations induce changes in the macroscopic
cross-sections which then impact the neutron flux and population. The temporal
fluctuations of the neutron population are known as power reactor noise.

In power reactor noise, the underlying processes are very complex since they involve
stochastic processes whose evolutions are themselves governed by randomly fluc-
tuating quantities, which can be space and time-dependent [PA80]. Yet, the spectral
analysis of the reactor transfer function can be used to identify locations of vibrating
faulty control rods [Fry71; DP09]. Power noise can also be used to identify coolant
flow blockage [OV+06] or local changes in the void fraction in Boiling Water Reactors
(BWR) [And+75].

1.2.4.2 Neutron noise in zero-power systems

On the other hand, neutron noise in zero-power systems deals with fluctuations
caused by the inherently stochastic nature of the physical processes involved. Such
systems are at the core of this thesis. They can be for example experimental reactors
with low output power or spent fuel drums. The focus is more specifically on sub-
critical systems (with a source term). Neutron noise analysis in zero-power systems
has also been applied to supercritical systems during the start-up phase, at which
point the neutron population is still low enough for the stochasticity to play a decisive
role [Har65]. Other works focused on the probability of extinction of the branching
process describing the neutron population for such systems [Wil79; Tan24; WP15]. In
[Coo+16], the focus is on the uncertainty quantification of the estimated probability of
extinction. For pulsed experiments without external sources, the intrinsic source term
(either from 238U or 240Pu) is low and the burst time of the pulse can vary between
two successive experiments because of the predominant stochastic fluctuations at the
start-up. Numerous studies were conducted to estimate the behavior of the random
burst times [Wil16; ARH14; HM04; Han60].

In sub-critical systems, the Feynman-α and Rossi-α methods are the most standard
approaches for extracting information on the multiplicative system based on the study
of neutron fluctuations. These methods are more thoroughly presented afterward.
Other techniques, which will not be further discussed in this thesis have also been
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developed. In [Bab67], the distribution of the time intervals between two successive
neutron detections is studied. This distribution differs from a memoryless exponential
distribution in a multiplying medium, which occurs for standard non-multiplying
nuclear reactions. Another method focuses on the auto and cross power spectral
density, which are obtained by Fourier transform of the corresponding correlation
function of the detector signals [Coh60; Pak+18].

For the rest of the work presented here, the focus is specifically on neutron noise anal-
ysis in zero-power subcritical systems. The theory of neutron fluctuations, described
in terms of branching processes is further discussed in Section 1.4.

1.2.5 Neutron and gamma detection

We now turn our attention to the experimental means of neutron and gamma de-
tections. This section serves only as a brief introduction to the subject. For a more
expansive review of past and current methods, the author refers to [Peu00; CB91;
CAD13].

1.2.5.1 Proportional counters

Proportional counters are a type of detector, suitable for neutron and gamma detec-
tions. Their main characteristic is that their output signal is proportional to the energy
of the incident particle, which helps to probe the energy spectrum of the incoming
particles. They generally consist of cylindrical tubes containing an inert gas at a given
pressure (usually argon). When ionizing radiation enters the detector, it can ionize
the atoms in the gas, which produces pairs of electrons and ions. A voltage is applied
in the gas counter which separates the pairs. When too high voltage is applied,
the accelerated charged particles (electrons or α particles) can generate Townsend
avalanches, ionizing more atoms to produce additional particles and perpetuating
the process. This phenomenon amplifies the output signal significantly. However,
the voltage must be kept sufficiently low to produce only one avalanche per event
otherwise the output signal is not proportional to the incident particle energy. This
key calibration is at the basis of proportional counters.

The choice of the filler gas will govern the possible applications. For neutron detection,
proportional counters usually contain boron-trifluoride BF3 enriched in 10B or 3He
[BAS55]. Incident neutrons in the thermal range (energy below 0.025 eV) can react
with these fill gases respectively by (n, α) or (n, p) reactions. Both counters display
low sensitivity to gamma making them specific to neutron detection, but 3He detectors
tend to have higher efficiency while being more expensive.

Although they are widely used even today for neutron detection and counting, the
two aforementioned detectors are specific to thermal neutrons. Thus, if used to detect
high-energy neutrons, they need to be encapsulated in a moderator matrix (like
polyethylene or graphite) to slow down the neutrons before they can be detected,
otherwise, the detector efficiency is significantly lower. In this case, the knowledge of
the incident neutron spectrum is lost in the moderator and cannot be recovered. For
fast neutron detection, scintillation detectors are most often used.
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1.2.5.2 Scintillation detectors

Scintillation detectors are a class of detectors whose working principle is based on
the detection of a visible light pulse obtained after interaction between the incoming
radiation and a scintillation material. This pulse goes through a photomultiplier and
a photodiode to produce an output signal.

Scintillation detectors are more and more common as they have the great benefit of
being able to detect both neutrons and gammas. They can also detect both thermal
and fast neutrons [Lee+14; BA60]. The choice of the scintillation material impacts the
efficiency of the detection of the particle of interest. For example, liquid scintillation
detectors have been commonly used for β-decaying radionuclides [Hou18]. For
simultaneous neutron and gamma detections, anthracene and stilbene are commonly
chosen scintillation crystals. The pulse signals corresponding to neutron and gamma
detections can be distinguished by mean of Pulse Shape Discrimination (PSD) (see
for example[YWF15; Ber+15; KE05; Zai+12]). In the more recent advances in this
particular domain, learning methods have been applied to the PSD of the scintillation
signal [Dur+21; Gri+20].

1.2.5.3 Semiconductor detectors

Though scintillation detectors are suitable for detecting gamma radiations, the state-
of-the-art, in terms of gamma detection capabilities, are the semiconductor detectors
such as high-purity germanium (HPGe) detectors. When ionizing radiation reaches
the detector, it produces pairs of electrons and holes in the semiconductor, which are
translated into an electric signal. The number of pairs is proportional to the incident
energy. Since the production of electron-hole pairs requires less energy than the
ionization of atoms in a gas counter, many more pairs are produced from a single
radiation. Thus semiconductor detectors have a much higher resolution than gas
counters or scintillation counters.

The most commonly used detector is the HPGe detector, though some other detectors
have been used for more specific tasks such as cadmium telluride detectors [AMI17;
Sif+75]. Semiconductor detectors are among the most commonly used tools for
gamma spectroscopy. For a more detailed review, the author points to [DH88; Lut+07].

1.3 Stochastic processes in random neutronics

This section serves as an introduction to stochastic processes in countable state space.
We deal mainly with continuous-time stochastic processes, with a specific focus on
Markov processes, branching processes, and Poisson processes. The subjects tackled
in this section are then applied in the next section to study neutron and gamma
fluctuations in zero-power systems. This preliminary is based on comprehensive
works on the subject such as [MT93; AH+83; And12].

1.3.1 Continuous-time Markov processes

1.3.1.1 Introductory concepts

In everything that follows, we define a probability space (Ω,F ,P) where Ω is the
sample space, F is a σ-algebra and P is a probability measure.
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Definition 1.3.1 (Stochastic process). Let (S , Σ) be a measurable space. A stochastic
process is a collection of random variables (Xt)t∈T indexed by a set T with values in S .

Remark. A stochastic process (Xt)t∈T can be understood as a measurable function
X : T × Ω → S .

Definition 1.3.2 (Continuous-time stochastic process). A stochastic process is said to be
a continuous-time stochastic process if the index set T takes continuous values.

Definition 1.3.3. Let (Xt)t∈T be a continuous-time stochastic process. For ω ∈ Ω, the
function t : Xt(ω) is known as a realization or a sample path of this stochastic process.

Definition 1.3.4. The stochastic process is said to be continuous if the sample paths are
continuous, for all ω ∈ Ω. The stochastic process is said to be almost surely continuous if,
for almost all ω ∈ Ω, the sample paths are continuous. Similar definitions apply to left and
right continuous stochastic processes.

In most of this work, the index set is the set of positive real numbers R+.

Definition 1.3.5 (Markov processes). A continuous-time Markov process on a countable
state space S is a right-continuous stochastic process (Xt)t≥0 such that Xt ∈ S for any t ≥ 0,
and which verifies the Markov property, meaning that for n ≥ 1 and for any finite collection
of states (x1, ..., xn+1) ∈ Sn+1 and times 0 ≤ t1 < ... < tn+1, it verifies:

P (Xtn+1 = xn+1|Xt1 = x1, ..., Xtn = xn) = P (Xtn+1 = xn+1|Xtn = xn) . (1.1)

Definition 1.3.6. For a continuous-time Markov process (Xt)t≥0, any given t, s ≥ 0 and
i, j ∈ S , the transition probability pi,j(t, s) is defined by:

pi,j(t, s) = P (Xt+s = j|Xs = i) . (1.2)

If pi,j(t, s) does not depend on s for any i, j ∈ S and t ≥ 0, then the Markov process is said to
have a homogeneous transition probability and we write pi,j(t) = P (Xt+s = j|Xs = i) =
P (Xt = j|X0 = i). In this case, we say that the process is homogeneous in time.

A continuous-time Markov process with homogeneous transition probability is com-
pletely specified by the knowledge of pi,j(t) for every t ≥ 0, and i, j ∈ N.

In what follows, we consider a continuous-time Markov process (Nt)t≥0 on the state
space N with homogeneous transition probabilities.

Theorem 1.3.1. Consider a set of transition probabilities pi,j(t) for t ≥ 0 and i, j ∈ N. This
set can be the transition probabilities of a continuous-time Markov process homogeneous in
time if and only if it verifies the three following conditions for all t ≥ 0 and i, j ∈ N:

• pi,j(t) ≥ 0

•
+∞

∑
i=0

pi,j(t) = 1

• pi,j(t + s) =
+∞

∑
k=0

pi,k(s)pk,j(t).

Proof. We will not detail the full proof here but rather give some brief insights. The
first two conditions are obvious, probabilities must be positive and sum to 1.
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Consider a time-homogeneous Markov process (Nt)t≥0. Let t, s ≥ 0 and i, j ∈ N.
The probability P (Nt+s = i|N0 = j) can be written as a sum using the law of total
probability. Indeed, at time t, the events {Nt = k}k∈N form a partition of the sample
space and then:

P (Nt+s = i|N0 = j) =
+∞

∑
k=0

P (Nt+s = i|Nt = k, N0 = j)P (Nt = k|N0 = j)

=
+∞

∑
k=0

P (Nt+s = i|Nt = k)P (Nt = k|N0 = j) (1.3)

since P (Nt+s = i|Nt = k, N0 = j) = P (Nt+s = i|Nt = k).

Now if we consider such probabilities, and define a stochastic process (Nt)t≥0 with a
probability distribution P (Nt+s = j|Ns = i) = pi,j(t) for all i, j ∈ N and t, s ≥ 0, one
can check that the process is well-defined and verifies the Markov property (1.1).

Remark. The third condition is known as the Chapman-Kolmogorov equation.

Remark. Usually, we add a fourth condition limt→0+ pi,i(t) = 1 which guarantees the
process cannot jump an infinite number of times in a finite time interval. This is
especially important to describe physical processes.

Definition 1.3.7 (Transition rate matrix). The transition rate matrix of the continuous-time
Markov process is the function

Q : N × N −→ R

(i, j) 7−→ qi,j

which is defined for i ̸= j ∈ N as:

qi,j = lim
t→0+

pi,j(t)
t

=

(
dpi,j

dt

)
|t=0+

(1.4)

where we assume that the limit exists.

The transition rate matrix defines the rate at which the process transitions from a state i to a
state j.

1.3.1.2 Kolmogorov equations

Theorem 1.3.2 (Forward Kolmogorov equation). If (Nt)t≥0 is a continuous-time Markov
process homogeneous in time on the state space N with transition rate matrix Q, and if we
denote the transition probabilities by pi,j(t) = P (Nt = j|N0 = i) for i, j ∈ N and t ≥ 0,
then the evolution of the transition probabilities is governed by the following differential
equation:

dpi,j(t)
dt

= ∑
k ̸=j

qk,j pi,k(t)− pi,j(t) ∑
k ̸=j

qk,j. (1.5)

Proof. To prove this equation we set t ≥ 0 and i, j ∈ N and consider what is happen-
ing at t + s where s ≥ 0. From the Chapman-Kolmogorov equation:

pi,j(t + s) =
+∞

∑
k=0

pi,k(t)pk,j(s). (1.6)
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Subtracting pi,j(t) gives us:

pi,j(t + s)− pi,j(t) = pi,j(t)(pj,j(s)− 1) + ∑
k ̸=j

pi,k(t)pk,j(s). (1.7)

Rewriting pj,j(s) = 1 − ∑
k ̸=j

pj,k(s):

pi,j(t + s)− pi,j(s) = −pi,j(t) ∑
k ̸=j

pj,k(s) + ∑
k ̸=j

pi,k(t)pk,j(s). (1.8)

Dividing by s and going to the limit s → 0+, we can conclude that:

dpi,j(t)
dt

= ∑
k ̸=j

qk,j pi,k(t)− pi,j(t) ∑
k ̸=j

qk,j. (1.9)

Similarly, one can derive a backward equation.

Theorem 1.3.3 (Backward Kolmogorov equation). With the same notations, the transition
probabilities verify the Kolmogorov backward equation given by:

dpi,j(t)
dt

= ∑
k ̸=i

qi,k pk,j(t)− pi,j(t) ∑
k ̸=i

qi,k. (1.10)

Proof. The derivation is very similar to the previous equations. The only difference is
that pi,j(t + s) is expressed as:

pi,j(t + s) =
+∞

∑
k=0

pi,k(s)pk,j(t). (1.11)

The rest of the proof is straightforward.

Now, let us focus more specifically on Poisson processes, a particular example of
continuous-time Markov processes, often used to describe memoryless nuclear reac-
tions.

1.3.2 Poisson processes

Definition 1.3.8 (Counting process). A counting process is a non-decreasing continuous-
time stochastic process (Nt)t≥0 taking positive integer values. More formally, it verifies the
two following conditions:

• For any t ≥ 0, Nt ∈ N.

• For any 0 ≤ s ≤ t, Ns ≤ Nt.

Definition 1.3.9 (Homogeneous Poisson point process). A Poisson point process with
rate λ ∈ R+ is a counting process (Nt)t≥0 which verifies:

• N0 = 0.
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• It has independent increments, meaning that for any n ∈ N and for any collection 0 ≤
t1 < ... < tn, the random variables

(
Ntk+1 − Ntk

)
1≤k≤n−1 are mutually independent.

• For any t, s > 0, the random variable (Nt+s − Ns) follows a Poisson distribution with
mean λt.

In that case, we introduce the notation (Nt)t≥0 ∼ PP(λ).

Proposition 1.3.1. For homogeneous Poisson point processes, the jump instants are given by
exponential distributions.

Proof. Consider (Nt)t≥0 ∼ PP(λ) and for t ≥ 0, let Xt be the random variable
defining the time of a new event occurring, assuming one occurred at time t. Then
for s ≥ 0:

P (Xt ≤ s) = 1 − P (Xt > s) = 1 − P (Nt+s − Nt = 0) . (1.12)

By definition, Nt+s − Nt has the same law as Ns since N0 = 0 and Ns follows a Poisson
distribution with parameter λs meaning that:

P (Xt ≤ s) = 1 − P (Nt+s − Nt = 0) = 1 − e−λs (1.13)

which is the expression of the CDF of the exponential distribution with parameter λ.
One can then conclude that Xt ∼ E(λ), that is Xt follows an exponential distribution
with parameter λ.

It is possible to define a compound Poisson process in which the jump magnitudes
themselves are random.

Definition 1.3.10 (Homogeneous compound Poisson process). A compound Poisson
process with rate λ ∈ R+ and jump distribution ν is a stochastic process (Yt)t≥0 defined for
t ≥ 0 by:

Yt =
N(t)

∑
i=0

Ji (1.14)

where (N(t))t≥0 ∼ PP(λ) and the (Ji)i∈N are independent and identically distributed
random variables with distribution ν. In that case we write (Yt)t≥0 ∼ P(λ, ν).

Poisson processes in general describe nuclear reactions, which have the known
property of being memoryless. Compound Poisson processes are used specifically to
describe spontaneous fission neutron sources. The spontaneous fission occurs at a
random time given by a memoryless exponential distribution and produces a random
number of neutrons given by a known multiplicity distribution.

1.3.3 Branching processes

Galton-Watson processes, also named branching processes were first introduced
as discrete-time stochastic processes to model the survival of family names along
generations. Since then, they have been extended to continuous time and have been
widely used to model nuclear reactions and genetic evolution.

Intuitively, to model nuclear reactions, we would like our process to induce some re-
action at some random times. These reactions should follow exponential distributions
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to satisfy the memoryless property of nuclear reactions. Besides, each reaction gives
birth to multiple new particles, which can then be seen as independent sub-branches
following the same dynamics.

Such stochastic processes are known as Markov branching processes. They are the
focus of this section.

Definition 1.3.11 (Markov branching process). If (Nt)t≥0 is a continuous-time Markov
process and if for all t ≥ 0 the transition probabilities (pi,j(t))i,j∈N verify for all z ∈ R such
that |z| ≤ 1:

+∞

∑
j=0

pi,j(t)zj =

(
+∞

∑
j=0

p1,j(t)zj

)i

(1.15)

then (Nt)t≥0 is known as a Markov branching process or a continuous-time branching
process.

Equation (1.15) is known as the branching property. Intuitively, it states that the law
of the process {Nt|N0 = i} is the same as that of the sum of i independent processes
N(k)

t = {Nt|N0 = 1} with 1 ≤ k ≤ i. The process is Markovian and the branching
events produce independent branching chains.

Proposition 1.3.2. If (Nt)t≥0 is a Markov branching process, then there exists λ > 0 and a
discrete probability distribution f with probabilities ( fk)k∈N such that the transition rate qi,j
can be expressed for i, j ∈ N and i ̸= j as:

qi,j =

{
iλ f j+1−i if j ≥ i − 1
0 otherwise.

(1.16)

The probability distribution f is known as the offspring distribution and λ is the rate of the
branching reaction. The branching process is denoted by (Nt)t≥0 ∼ B( f , λ).

Proof. Let i, j ∈ N such that i ̸= j. We study the probability pi,j(dt) = P(Ndt =
j|N0 = i). The generating function of the random variable (Nt|N0 = i) is the left term

of (1.15). The right term corresponds to the branching property of Si =
i

∑
k=1

N(k)
t where

the (N(k)
t )1≤k≤i are independent random variables with the same law as (Nt|N0 = 1).

Thus, (Nt|N0 = i) has the same law as Si. One can then deduce:

pi,j(dt) = P(Ndt = j|N0 = i)

= ∑
n1+...+ni=j

i

∏
k=1

P(N(k)
dt = nk)

= ∑
n1+...+ni=j

i

∏
k=1

(p1,nk(0) + q1,nk dt + o(dt)) . (1.17)

One may notice that the term in the product is order 0 in dt only if nk = 1. Since
pi,j(dt) = qi,jdt + o(dt) by definition, one can keep only the terms of order 1 in dt.

We first consider the case j < i − 1. Since n1 + ... + ni = j in the sum, then necessarily
there exists at least k1, k2 such that nk1 ̸= 1 and nk2 ̸= 1. Thus the right term is O(dt2).
Since pi,j(dt) = qi,jdt + o(dt) this implies necessarily that qi,j = 0.

We now focus on the case j ≥ i − 1. At first order, since p1,nk(0) = δ1,nk , the sum
simplifies to i identical terms. Indeed, at the first order w.r.t. there exists 1 ≤ k0 ≤ i
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such that nk0 ̸= 1 and all the others nk = 1. Since n1 + ... + ni = j then nk0 = j + 1 − i
necessarily. From this, one can thus write:

qi,jdt + o(dt) = i(q1,j+1−i dt) + o(dt). (1.18)

Going to the limit dt → 0+ yields qi,j = iq1,j+1−i. To retrieve equation (1.16), one only
has to normalize the q1,k by defining:

fk =
q1,k

∑
p ̸=1

q1,p
for k ≥ 1

fk = 1 − ∑
p ̸=1

fp for k = 1
(1.19)

λ = ∑
k ̸=1

q1,k. (1.20)

From a qualitative point of view, λ is the rate at which the process induces branching
events, which are memoryless. Thus the interval between two branching events
follows an exponential distribution. On the other hand, the probability fk represents
the probability that the branching event produces k new branches, for k ≥ 0.

In what follows we consider a continuous-time branching process (Nt)t≥0 ∼ B( f , λ).

Definition 1.3.12. The probability-generating function (PGF) of the process (Nt)t≥0 is the
function gn0 defined for t ≥ 0, |z| ≤ 1 and n0 ∈ N by:

gn0(z, t) = En0

[
zNt
]

(1.21)

where En0 is the expectation conditioned by {N0 = n0}.

Proposition 1.3.3. The generating function g1 is governed by the differential equation:

∂g1

∂t
+ λg1(z, t) = λg f (g1(z, t)) (1.22)

where g f is the PGF of the offspring distribution defined for |z| ≤ 1 by g f (z) =
+∞
∑

n=0
fnzn.

Proof. This result is obtained by the backward Kolmogorov equation applied to the
transition probabilities p1,j(t) and summing over j ∈ N:

∂g1

∂t
+ λg1(z, t) = λ

+∞

∑
j=0

+∞

∑
k=0

fk pk,j(t)zj. (1.23)

Inverting the sum and using the branching property (1.15) we have:

∂g1

∂t
+ λg1(z, t) = λ

+∞

∑
k=0

fkg1(z, t)k = λg f (g1(z, t)) (1.24)

which concludes the proof.

Definition 1.3.13 (Multiplication factor). The multiplication factor is the quantity k
defined by k =

(
dg f
dz

)
z=1

. The process has three distinct regimes which are:
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• supercritical if k > 1.

• critical if k = 1.

• subcritical if k < 1.

The multiplication factor defines the overall behavior of the chain and whether or
not the trend is exponentially increasing, stable, or exponentially decreasing. This
multiplication factor finds its analog in neutron noise analysis with the prompt
multiplication factor which is introduced later in this chapter. We will provide a few
typical properties of the process based on the value of the multiplication factor, but
this is not meant to be a comprehensive study and we refer to more complete works
on the subject for in-depth results such as [AN04; Har+63].

Proposition 1.3.4. The mean M(t) = E [Nt|N0 = 1] of the process exists and is given by:

M(t) = eλ(k−1)t. (1.25)

Besides, if m2, f =

(
d2g f

dz2

)
z=1

< +∞, then the variance V(t) = V [Nt|N0 = 1] exists and

is given by:

V(t) =

{
λm2, f × t if k = 1(

m2, f
k−1 − 1

) (
e2λ(k−1)t − eλ(k−1)t

)
otherwise .

(1.26)

Proof. Let us differentiate equation (1.21) w.r.t. z and set z = 1 which yields:

dM
dt

= λ(k − 1)M(t). (1.27)

Solving this ordinary differential equation with the initial condition M(0) = 1 gives
us (1.25). We proceed similarly for V(t) by differentiating two times w.r.t. z and
defining M2(t) = E [Nt(Nt − 1)|N0 = 1]:

dM2

dt
= λ(k − 1)M2(t) + m2, f M(t)2. (1.28)

Solving this equation gives us:

M2(t) =

{
λm2, f × t if k = 1
m2, f
k−1

(
e2λ(k−1)t − eλ(k−1)t

)
otherwise

(1.29)

and we can conclude with the relation V(t) = M2(t) + M(t)− M(t)2.

This short introduction to Markov branching processes is meant to provide enough
notions to describe branching processes in neutron noise studies in a simplified
context, which is done in the next sections.

1.3.4 Neutron evolution as a branching process

Consider the specific case of neutron dynamics in a multiplying medium without a
source. We consider monoenergetic neutrons, in an infinite medium that can either
be captured with a corresponding reaction intensity λc or induce fissions with an
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intensity λ f . The random variable which describes the number of offspring neutrons
generated by a single fission is denoted by ν. For i ∈ N, the probabilities of the
offspring distribution are introduced as fi = P(ν = i). The mean is denoted by

ν =
+∞
∑

i=0
i fi.

Since the nuclear reactions are independent, the fission and absorption random
times are independent. These times are given by exponential distributions with
parameters λc and λ f . The minimum of these two random variables is thus given by
an exponential distribution with parameter λt = λc + λ f which represents the total
reaction intensity.

Let us denote by (Nt)t≥0 the evolution of the neutron population. This process is a
branching process due to the memorylessness of nuclear reactions. In this section, we
will leverage the theory of Markov branching processes by identifying the physical
parameters to the concepts introduced in the previous paragraph.

For that purpose, let us retrieve the Kolmogorov backward equation by calling on
physics intuition. For n ∈ N and t ≥ 0, pn(t) is the probability of having n neutrons
in the system, with initial condition N0 = 1. We want to write this probability as a
function of what happened in the infinitesimal interval [t, t + dt].

Consider that we have n events at t + dt and only one reaction can occur in [t, t + dt]
(we are neglecting terms in o(dt2)). Then, the possible events are the following:

• There were n neutrons at t and no reaction occurred.

• There were n + 1 neutrons at t and a capture reaction occurred.

• There were n − k neutrons at t for some k ≤ n − 1 and a fission occurred and
produced k neutrons.

This partition of the event space leads to the following equation with the law of total
probability:

pn(t + dt) = (1 − λcdt − λ f dt)pn(t) + λcdtpn+1(t) + λ f dt
n

∑
k=0

fk pn+1−k(t). (1.30)

Going to the limit dt → 0+, we have:

dpn

dt
+ λt pn(t) = λ f

n

∑
k=0

fk pn+1−k(t) + λc pn+1(t). (1.31)

Identifying the Kolmogorov equation to the intensity rates in (1.16), one can then
express the generating function g f as:

g f (z) =
λc

λt
+

λ f

λt

+∞

∑
k=1

fkzk (1.32)

This generating function is the generating function of the offspring distribution for
the case where we consider capture and fission reactions in the medium. It allows us
to define the multiplication factor.
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Definition 1.3.14 (Prompt multiplication). The prompt multiplication factor kp is defined
by:

kp =
νλ f

λc + λ f
. (1.33)

The process is said to be subcritical if kp < 1, critical if kp = 1, and supercritical if kp > 1.

Remark. Throughout this work the effects of delayed neutrons are neglected, thus the
denomination of prompt multiplication factor kp instead of effective multiplication
factor. The effects of delayed neutrons on neutron fluctuations and multiplicity
counting have been described in [PP07] for example.

Proposition 1.3.5. We introduce the prompt decay constant α = λt(kp − 1). Assuming one
initial neutron N0 = 1, the mean and variance of the neutron population is given by:

E [Nt|N0 = 1] = eαt (1.34)

V [Nt|N0 = 1] =

{
λ f ν2t if kp = 1(

ν2
kp/ν
kp−1 − 1

) (
e2αt − eαt) otherwise

(1.35)

where ν2 =
+∞
∑

i=0

i(i−1)
2 fi is the binomial moment of order 2 of the fission distribution.

Proof. This is easily derived from equations (1.25) and (1.26).

This simple introduction to stochastic processes in neutron noise analysis is useful to
grasp the main concepts and methods involved. In the next section, our focus is on a
more complex setting, in which we will introduce the number of detected neutrons
and study the influence of a neutron source. The general methodology though, is the
same as what was presented in this section. We derive Kolmogorov equations and
deduce a PDE for the generating function, which allows us to obtain the moments of
the distribution. At the end of the section, the main results for gamma correlations
are also introduced though they are not formally derived.

1.4 A study of neutron and gamma fluctuations

This section presents a study on the fluctuations of neutrons and gamma rays in a
low-power multiplying system. The neutron and gamma particles are modeled as
stochastic processes and our goal is to study the evolution of their population. We
will also derive the moments of the distribution of neutrons (and gammas) which are
quantities of interest in the rest of this thesis.

In the majority of this section, the focus is on neutrons. In the first paragraph, the
framework of the mathematical model is presented. Then the Kolmogorov forward
and backward equations are derived for the case of a single initial neutron, and the
influence of the source is then discussed. The derivation of the moments and the
multiplicity rates are then obtained for the neutrons, both with and without source
terms. Finally, the gamma multiplicity rates are derived in the last part and the
corresponding moments are obtained. Most of the work developed in this section
is adapted from [PP07]. The methodologies were initially developed by [Pal58] and
[Bel65].
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1.4.1 The point model framework

The neutron transport equation describes the evolution of the neutron flux ϕ. In the
presence of a single fissile nuclide, the general form of this equation is:(

1
v

∂

∂t
+ Ω⃗ · ∇⃗+ Σt (⃗r, Ω⃗, E, t)

)
ϕ(⃗r, Ω⃗, E, t) =

∫ E

0
dE′

∫
4π

dΩ⃗′Σs (⃗r, Ω⃗′ → Ω⃗, E′ → E, t)ϕ(⃗r, Ω⃗, E, t)

+
χ(E)
4π

∫ +∞

0
dE′

∫
4π

dΩ⃗′ν(E′)Σ f (⃗r, E′, t)ϕ(⃗r, Ω⃗, E, t)

(1.36)

where r⃗ is the position vector and Ω⃗ is the solid angle. Σs, Σ f , and Σt are respectively
the scattering, fission, and total macroscopic cross sections. ν(E′) is the average
number of neutrons produced by an induced fission with incident neutron energy
E′ and χ(E) is the density of the energy distribution of the neutrons produced by
induced fissions.

This equation is at the heart of reactor analysis and neutron studies in general. How-
ever, the integro-differential form of the equation, added to the large number of
unknowns makes it impossible to solve without approximations or simplifying as-
sumptions. Yet, an analytical description of neutron fluctuations in zero-power
systems is possible with the following assumptions, which were first introduced in
[Bel65] and [Pal58]. They make up the so-called point model theory.

Assumption 1. The medium is homogeneous and infinite. There is no leakage of neutrons.

Assumption 2. Neutrons all have the same energy. The dependence in E of the cross-sections
is removed.

Assumption 3. Only two reactions are considered: fission and capture. If a neutron is
captured, it is detected by the detector with some fixed probability.

These assumptions are widely used in neutron noise analysis. We will use them ex-
tensively in the rest of this chapter.

1.4.2 A single initial neutron

Our goal is now to derive the evolution of the neutron population and to obtain
quantities of interest, among which are the binomial and Feynman moments of the
distribution. We are working in the point model framework, with all the assumptions
described in the previous paragraph.

We start our study with a single initial neutron. The neutron population is defined
by a continuous-time discrete stochastic process (Nt)t≥0 where Nt ∈ N for t ≥ 0. We
suppose for now that N0 = 1. We also introduce another integer-valued stochastic
process (Dt)t≥0 which models the number of detected neutrons at time t.

We assume that the number of neutrons produced by induced fissions is given by
an integer-valued random variable ν and we define fi = P (ν = i) for i ∈ N. These
quantities are known.
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Definition 1.4.1. Let T ≥ 0. The detection system is modeled by a detector efficiency εC
given for t ≥ 0 by:

εC(t) =

{
ε if t ∈ [0, T]
0 if t > T.

(1.37)

Definition 1.4.2. The macroscopic cross sections for the fission and capture reactions are
denoted by Σ f and Σc. Let us also define the total cross section as Σt = Σc + Σ f (only capture
and fission reactions are considered). With our assumptions, these quantities are constant.

Definition 1.4.3. The reaction rates (for one neutron) λ f and λc for the fission and capture
reactions are defined by λ f = vΣ f and λc = vΣc where v is the average neutron velocity in
the medium. Similarly, the total reaction rate is λt = vΣt.

Remark. The quantity λ f dt is the probability for one neutron to induce fission in a
time interval dt. Similarly, λcdt is the probability that a neutron is captured in an
infinitesimal time dt.

1.4.2.1 Master equation with one neutron

In this section, we are interested in the number of detected neutrons at a given time T
depending on the number of neutrons in the medium at a previous instant t. Let us
introduce some notations.

Definition 1.4.4. We introduce the notation p(n, t|n′, t′) = P (Dt = n|Nt′ = n′) for t ≥
t′ ≥ 0 and n, n′ ∈ N. It is the probability of detecting n neutrons at t knowing that n′

neutrons were present in the system at t′ ≤ t. Similarly, let us introduce the notation
pn(t) = p(n, T|1, T − t).

Proposition 1.4.1. The probability p(n, T|1, t − dt) for n ∈ N and t ≤ T with an infinites-
imal time dt is given by:

p(n, T|1, t − dt) = (1 − λtdt)p(n, T|1, t) + λcdt (εC(t)δn,1 + (1 − εC(t))δn,0)

+ λ f dt
+∞

∑
i=0

fi p(n, T|i, t). (1.38)

Proof. We will consider a backward approach. Assuming that we still have one
neutron in the system at time t − dt with an infinitesimal time dt. How can we
estimate the probability p(n, T|1, t − dt)?

In the interval [t − dt, t], a single neutron at time t − dt can be captured in the interval
[t − dt, t] meaning that we have no neutrons left at time t. If this event is denoted as
Ct, the probability p(n, T|1, t − dt, Ct) is given by:

p(n, T|1, t − dt, Ct) =


εC(t) if n = 1
1 − εC(t) if n = 0
0 otherwise.

(1.39)

This probability can be rewritten using the Kronecker symbol δi,j = 1i=j:

p(n, T|1, t − dt, Ct) = εC(t)δn,1 + (1 − εC(t)) δn,0. (1.40)

The probability of the event Ct conditioned by {Nt−dt = 1} denoted as p(Ct|1, t − dt)
is given by p(Ct|1, t − dt) = λcdt.
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Then, we consider the case where no reaction occurs in the interval [t − dt, t]. This
event is denoted as Nt. Conditioned by that event, the probability p(n, T|1, t − dt,Nt)
is:

p(n, T|1, t − dt,Nt) = p(n, T|1, t). (1.41)

The neutron population is unchanged and the conditional probability only depends
on p(n, T|1, t). The probability of the event Nt conditioned by {Nt−dt = 1}, which is
denoted as p(Nt|1, t − dt) is expressed as:

p(Nt|1, t − dt) = (1 − λtdt) (1.42)

since it requires that no other reaction occurs in the time interval of length dt.

Finally, the initial neutron may induce a fission in the interval [t − dt, t]. This event
is denoted as Ft. In that case, we have i neutrons in the medium at time t with
probability fi. The events of having i neutrons present at time t are all mutually
independent such that the conditional probability p(n, T|1, t − dt,Ft) can be written
as:

p(n, T|1, t − dt,Ft) =
+∞

∑
i=0

fi p(n, T|i, t). (1.43)

Besides, the probability of the event Ft conditioned by {Nt−dt = 1}, which is denoted
as p(Ft|1, t − dt) is given by:

p(Ft|1, t − dt) = λ f dt. (1.44)

Finally, by remarking that the events Ct, Nt and Ft are mutually exclusive and form a
partition of the space of possible events, one can use the law of total probability to
obtain p(n, T|1, t − dt):

p(n, T|1, t − dt) = p(n, T|1, t, Ct)p(Ct|1, t − dt)
+ p(n, T|1, t,Nt)p(Nt|1, t − dt)
+ p(n, T|1, t,Ft)p(Ft|1, t − dt) (1.45)

which gives equation (1.38).

This backward equation can then be used to derive a differential equation for the
evolution of the probability pn(t).

Proposition 1.4.2. Let ν =
+∞
∑

i=0
i fi be the average number of neutrons produced by induced

fissions. The prompt multiplication factor is given in (1.33) by kp =
νλ f
λt

. The probability
pn(t) is governed by the differential equation:

λ−1
t

dpn

dt
+ pn(t) =

kp

ν

+∞

∑
i=0

fi pn,i(t) +
(

1 −
kp

ν

)
(εC(t)δn,1 + (1 − εC(t))δn,0) (1.46)

where pn,i(t) = ∑
n1+..+ni=n

pn1(t)...pni(t).
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Proof. Let t ≥ 0. Starting from equation (1.38) and applying to t′ = T − t yields:

pn(t + dt) = (1 − λtdt)pn(t) + λ f dt
+∞

∑
i=0

fi p(n, T|i, T − t)

− λcdt (εC(T − t)δn,1 + (1 − εC(T − t))δn,0) . (1.47)

Then, taking the limit dt −→ 0+, one can obtain the following differential equation:

dpn

dt
+ λt pn(t) = λ f

+∞

∑
i=0

fi p(n, T|i, T − t) + λc (εC(T − t)δn,1 + (1 − εC(T − t))δn,0) .

(1.48)
Let us introduce eC(t) = εC(T − t). Dividing by λt and replacing respectively λ f

λt
and

λc
λt

by kp
ν and

(
1 − kp

ν

)
one can obtain:

λ−1
t

dpn

dt
+ pn(t) =

kp

ν

+∞

∑
i=0

fi p(n, T|i, T − t) +
(

1 −
kp

ν

)
(eC(t)δn,1 + (1 − eC(t))δn,0) .

(1.49)
Finally, one can rewrite the expression of p(n, T|i, T − t) for i ≥ 0 by noticing that this
probability of detected n neutrons at T given that we have i neutrons in the medium
at time T − t can be obtained by summing on the number of detections nk induced
at time T by the k-th neutron present at time T − t. In other words, each one of the i
individual neutron at time T − t yields a number nk, for 1 ≤ k ≤ i of detections at
time T. To obtain n detections at T we need to have ∑i

k=0 nk = n.

Consequently, the probability p(n, T|i, T − t) can be written as:

p(n, T|i, T − t) = ∑
n1+...+ni=n

pn1(t)...pni(t). (1.50)

This equation is only valid for i ≥ 1. For i = 0, one can easily see that pn,0(t) = δn,0.
We extend the previous notation to this specific case.

Remark. We focus on the backward Kolmogorov equation here, but one can also
derive a forward equation with a similar approach.

The master equation cannot be solved as such, one needs to introduce a generating
function for the probabilities (pn(t))n∈N.

1.4.2.2 Equation for the generating function

The quantities of interest in our study are the moments of the distribution from which
the Feynman moments are derived. They can be derived from a partial differential
equation verified by the generating function.

Definition 1.4.5. For p ≥ 1, the detection distribution at T induced by a single neutron in the
medium at T − t is described by a stochastic process (Xt)t≥0 such that Xt = (DT|NT−t = 1)
for t ≥ 0. The moment of order p of the stochastic process (Xt)t≥0 is the function Mp(t)
defined for t ≥ 0 by:

Mp(t) = E
[
Xp

t
]
=

+∞

∑
n=0

pn(t)np. (1.51)
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Similarly, the binomial moment of order of the detection distribution described by the stochastic
process (Xt)t≥0 is the function mp(t) defined for t ≥ 0 by:

mp(t) = E

[(
Xt

p

)]
=

+∞

∑
n=0

pn(t)
(

n
p

)
. (1.52)

with the convention that (n
p) = 0 when n < p.

Definition 1.4.6. The probability-generating function (PGF) of the detection distribution
described by the stochastic process (Xt)t≥0 is the function

g : C × R+ −→ R

(z, t) 7−→ g(z, t)

defined for |z| ≤ 1 and t ≥ 0 by g(z, t) =
+∞
∑

n=0
pn(t)zn.

Proposition 1.4.3. The probability-generating function is linked to the binomial moments
(mp)p≥1 by:

mp(t) =
1
p!

(
∂pg
∂zp

)
z=1−

(1.53)

where the notations z = 1− refers to the left-limit at 1.

Proof. For any t ≥ 0, the PGF g(z, t) is a power series and since
+∞
∑

n=0
pn(t) = 1 by

definition, then we know that it has a radius of convergence R ≥ 1. It is thus C∞ on
(−1, 1) and all the derivatives have a left-limit in z = 1−. Consider p ≥ 1. Then we
have for |z| ≤ 1 and t ≥ 0:

∂pg
∂zp (z, t) =

+∞

∑
n=0

pn(t)

(
p

∏
k=0

(n − k)

)
pn(t)zn−p. (1.54)

Dividing by p! and taking the left-limit to 1, we thus obtain:

1
p!

∂pg
∂zp (1

−, t) =
+∞

∑
n=0

pn(t)

(
p

∏
k=0

(n − k)

)
pn(t) = E

[(
Xt

p

)]
= mp(t). (1.55)

Now we apply the master equation from (1.38) to the PGF.

Proposition 1.4.4. The probability-generating function g is governed by the following
equation for |z| ≤ 1:

λ−1
t

∂g
∂t

+ g(z) =
kp

ν

+∞

∑
i=0

fig(z)i +

(
1 −

kp

ν

)
(eC(t)(z − 1) + 1). (1.56)
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Proof. Let t ≥ 0 and |z| ≤ 1. Starting from equation (1.38), we multiply by zn and
sum over n which leads to:

λ−1
t

∂g
∂t

+ g(z) =
kp

ν

+∞

∑
n=0

+∞

∑
i=0

fi p(n, T|i, T − t) +
(

1 −
kp

ν

)
(eC(t)z + (1 − eC(t))

=
kp

ν

+∞

∑
n=0

+∞

∑
i=0

fi p(n, T|i, T − t) +
(

1 −
kp

ν

)
(eC(t)(z − 1) + 1). (1.57)

To further simplify this, one needs to remark that the PGF associated with the prob-
ability p(n, T|i, T − t) = ∑

n1+...+ni=n
pn1(t)...pni(t) is the i-th iterated Cauchy product

of the PGF pn(t). The Cauchy product between two series
+∞
∑

n=0
an and

+∞
∑

n=0
bn, denoted(

+∞
∑

n=0
an

)
⊗
(

+∞
∑

n=0
bn

)
is the series

+∞
∑

n=0
cn given by the coefficients (cn)n≥0 defined by:

cn =
n

∑
p=0

apbn−p. (1.58)

The Cauchy product is the discrete equivalent of the convolution product for integrals.

One can thus write the series
+∞
∑

n=0
p(n, T|i, T − t)zn has the i-th iterated Cauchy product

of
+∞
∑

n=0
pn(t)zn since the zni terms in the convolutions multiply up to zn.

+∞

∑
n=0

p(n, T|i, T − t)zn =

(
+∞

∑
n=0

pn(t))zn

)
⊗ ... ⊗

(
+∞

∑
n=0

pn(t))zn

)
. (1.59)

Then using Abel’s series theorem which states that if
+∞
∑

n=0
an and

+∞
∑

n=0
bn are convergent

series and if their Cauchy product
(

+∞
∑

n=0
an

)
⊗
(

+∞
∑

n=0
bn

)
=

+∞
∑

n=0
cn is also convergent,

then we have the equality:

+∞

∑
n=0

cn =

(
+∞

∑
n=0

an

)
×
(

+∞

∑
n=0

bn

)
. (1.60)

Using this result on equation (1.59), we can finally conclude that:

+∞

∑
n=0

p(n, T|i, T − t)zn =

(
+∞

∑
n=0

pn(t))zn

)i

= g(z, t)i (1.61)

which concludes the proof.

Definition 1.4.7. For i, n ≥ 1, we define the binomial moments of order n of the neutron
distribution induced by i initial neutrons as mn,i(t). Since the probabilities of this distribution
are given by (p(n, T|i, t))n∈N, to which correspond the PGF function (z, t) 7→ g(z, t)i, then
these moments are defined as:

mn,i(t) =
1
n!

(
∂ngi

∂zn

)
z=1

. (1.62)
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1.4.2.3 Binomial moments without source

From the general equation of the generating function, one can derive evolution
equations for each of the binomial moments.

Proposition 1.4.5. We introduce the binomial moments (νp)p≥1 of the fission multiplicity

distribution defined as νp =
+∞
∑

i=0
( i

p) fi. In particular, the average number of neutrons produced

by induced fissions is denoted by ν = ν1.

Moreover, we introduce the Feynman efficiency εF(t) =
(

ν
kp
− 1
)

εC(t), the reactivity

ρ =
kp−1

kp
and α = λ−1

t (1 − kp) the prompt reactivity constant. We recall that ρ < 0 since
we consider subcritical systems in which kp < 1. For t ≥ 0, the first three binomial moments
mp(t) verify the following differential equations:

α−1 dm1

dt
+ m1(t) = − εF(T − t)

ρν
(1.63)

α−1 dm2

dt
+ m2(t) = − ν2

ρν
m1(t)2 (1.64)

α−1 dm3

dt
+ m3(t) = − 1

ρν

(
ν3m1(t)3 + 2ν2m1(t)m2(t)

)
. (1.65)

Proof. Differentiating equation (1.56) with respect to z provides the following equa-
tion on m1(t):

λ−1
t

dm1(t)
dt

+ m1(t) =
kp

ν

+∞

∑
i=0

i fim1(t)g(z)i−1 +

(
1 −

kp

ν

)
eC(t). (1.66)

Noticing that g(1) = 1, the sum over i simplifies as:

λ−1
t

dm1(t)
dt

+ m1(t) = kpm1(t) +
(

1 −
kp

ν

)
eC(t). (1.67)

Dividing by (1 − kp) on both sides yields equation (1.63). The same approach is
applied for the two other moments by diving respectively two and three times
equation (1.56).

Remark. The initial conditions for the binomial moments are given by mp(0) = 0 for
any ≥ 1 since g(z, 0) = 1 for all |z| ≤ 1 because pn(0) = δn,0.

With equations (1.63), (1.64) and (1.65), and the initial conditions mp(0) = 0 for all
p ≥ 1, one can now solve the differential equations.

Proposition 1.4.6. The binomial moments m1(t) and m2(t) are given by the following
equations:

m1(t) =

{
− εF

ρν

(
1 − e−αt) if t ∈ [0, T]

− εF
ρν

(
1 − e−αt) eα(T−t) if t > T

(1.68)

m2(t) =


− ν2

ρν

(
− εF

ρν

)2 (
1 − e−2αt − 2αte−αt) if t ∈ [0, T]

− ν2
ρν

(
− εF

ρν

)2
eα(T−t)

×
(

1 − e−2αt − 2αte−αt + (1 − e−αt)2(eα(T−t) − 1)
)

if t > T.

(1.69)
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where we introduced the abuse of notation εF as the value of the function εF(t) for t ∈ [0, T],
i.e. when the detection gate is open.

Proof. One can simplify verify that the proposed expression follows the evolution
equations (1.63) and (1.64), the continuity at t = T and the initial conditions m1(0) =
m2(0) = 0.

The results presented here are focused on the binomial moments mp(t) and were
obtained with the help of the PGF. Similar results can be obtained using the moment

generating function (MGF) which is defined as G(z, t) =
+∞
∑

n=0
pn(t)ezn. The MGF

provides an easy derivation of the ordinary moments Mp(t) =
+∞
∑

n=0
pn(t)np since for

any p ≥ 0:
∂pG
∂zp (0, t) = Mp(t). (1.70)

The evolution equation for G can be obtained with the same approach as for the PGF,
and from here evolution equations for the ordinary moments can be obtained. This
approach is strictly equivalent and is simply another way to derive the Feynman
moments, based on the ordinary moments instead of the binomial moments.

It is also possible to provide a similar framework with the characteristic function g
defined for t ≥ 0 and z ∈ R by:

g(z, t) =
+∞

∑
n=0

pn(t)eizn. (1.71)

This characteristic function can be useful to work with the probabilities pn(t) since
they can be obtained from the Fourier transform of the characteristic function:

pn(t) =
1

2π

∫ π

−π
e−inzg(z, t)dz (1.72)

which can be obtained numerically by Fast Fourier Transform (FFT) [CCW16].

1.4.3 Including the source

Let us now consider a spontaneous fission source term.

Definition 1.4.8. The source is modeled as a homogeneous compound Poisson process
(St)t≥0 ∼ P (S, fs) where S is the intensity of the source (the average number of source
events per second) and fs is the distribution of the neutrons created by the source event. For
X ∼ fs and i ∈ N, the probabilities P (X = i) are denoted by fs,i. For p ≥ 1, the p-th
binomial moment of the source distribution fs is νp,s and it is defined by:

νp,s =
+∞

∑
i=0

(
i
p

)
fs,i. (1.73)

The average number of neutrons produced per fission is denoted by νs = ν1,s.

We recall that for i ∈ N and t ≥ 0, mn,i is the n-th binomial moment of the number of
detected neutrons given i initial neutrons and no source.
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Definition 1.4.9. Let us define (Xs,t)t≥0, a stochastic process that represents the number
of detected neutrons at T induced by a single source event at instant T − t for t ≥ 0. The
probability distribution of (Xs,t)t≥0 is given by:

ps,n(t) =
+∞

∑
i=0

fs,i p(n, T|i, T − t). (1.74)

For n ≥ 1, let us define the n-th binomial moment of (Xs,t)t≥0 denoted by ms,n(t) which is
given for t ≥ 0 by:

ms,n(t) =
+∞

∑
i=0

fs,imn,i(t) (1.75)

where the definition of mn,i(t) is (1.62).

In this section, we are interested in the average number of n-detections, which is
denoted by Γn(T).

Definition 1.4.10. The average number of n-detections induced by one source event is given
by:

Γn(T) =
∫ +∞

0
Sms,n(t)dt =

∫ +∞

0
S
+∞

∑
i=0

fs,imn,i(t)dt. (1.76)

Intuitively, ms,n(t) is the average number of n-detections recorded at T induced by
a single source event that occurred at T − t. Since Sdt source events occur in a time
step dt one can then sum over all the past source events. Since source events produce
independent branches, the average number of n-detections is just the integral of the
averages induced at every time step, thus Γn(T) =

∫ +∞
0 Sms,n(t)dt.

Definition 1.4.11. For n ≥ 2, the Feynman moment of order n, denoted by Yn(T) is defined
as:

Yn(T) =
n!Γn(T)
Γ1(T)

. (1.77)

Most of the time, only the second and third Feynman moments are investigated. Thus, it
is common practice to introduce the second moment as Y(T) and the third as X(T). Their
corresponding asymptotic values for T → +∞ are denoted Y∞ and X∞.

The exact expression of the second Feynman moment is derived in what follows. For
the third moment, since the analytical expression is much more cumbersome, we will
only express its asymptotic value X∞. Let us first derive Γ1(T).

Proposition 1.4.7. The average number of detections Γ1(T) is given by:

Γ1(T) = − εFνsS
ρν

T. (1.78)

Proof. We recall that Γ1(T) =
∫ +∞

0 Sms,1(t)dt. Besides, ms,1(t) can be computed
explicitly as:

ms,1(t) =
+∞

∑
i=0

fs,im1,i(t)

=

(
∂g
∂z

)
z=1

×
+∞

∑
i=0

fs,i × ig(1, t)i−1

= νsm1(t) (1.79)
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where we used the fact that g(1, t) = 1 for all t ≥ 0.
From here, we have Γ1(T) =

∫ +∞
0 Sνsm1(t)dt and we just need to integrate m1(t)

using equation (1.68) and the boundary condition mn(∞) = 0 for all n ≥ 1.∫ +∞

0
m1(t)dt =

∫ T

0
m1(t)dt +

∫ +∞

T
m1(t)dt

= − εF

ρν

(∫ T

0
(1 − e−αt)dt +

∫ +∞

T
eα(T−t)(1 − e−αt)dt

)
= − εF

ρν

(
T +

e−αT − 1
α

+
1 + e−αT

α

)
= − εF

ρν
T. (1.80)

Thus Γ1(T) = − εFνsS
ρν T.

Proposition 1.4.8. The average neutron count rate denoted by R does not depend on T and
is given by:

R = − εFνsS
ρν

. (1.81)

Proof. The proof is easily derived from equation (1.78).

Let us now introduce the Diven factors, which appear in the expression of the Feyn-
man moments.

Definition 1.4.12 (Diven factors). The Diven factor of order n, with n ≥ 2, for the induced
fission distribution, which is denoted by Dn is defined as:

Dn =
n!νn

νn . (1.82)

Similarly, we introduce a Diven factor Dn,s for the source distribution.

Dn,s =
n!νs,n

νs
n . (1.83)

Proposition 1.4.9. The second Feynman moment Y(T) is given by:

Y(T) =
εFD2

ρ2

(
1 − ρ

νsD2,s

νD2

)(
1 − 1 − e−αT

αT

)
. (1.84)

Proof. By definition Y(T) = 2Γ2(T)
Γ1(T)

where Γ1(T) is given by equation (1.78). Let us
first compute ms,2(t):

ms,2(t) =
+∞

∑
i=0

fs,im2,i(t)

=
+∞

∑
i=0

fs,i

2

(
i(i − 1)g(1, t)i−2

(
∂g
∂z

)2

z=1
+ ig(1, t)i−1

(
∂2g
∂z2

)
z=1

)
= ν2,sm1(t)2 + νsm2(t). (1.85)

From here, the integrals I1(T) =
∫ +∞

0 m1(t)2dt and I2(T) =
∫ +∞

0 m2(t)dt must be
computed.
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Starting with I1(T), we get:

I1(T) =
(

εF

ρν

)2 [∫ T

0
e2α(T−t)

(
1 − e−αT

)2
dt +

∫ T

0

(
1 − e−αT

)2
dt
]

= T
(

εF

ρν

)2 (
1 − 1 − e−αT

αT

)
(1.86)

I2(T) =− ν2ε2
F

(ρν)3

∫ T

0

(
1 − e−2αt − 2αte−αt) dt

− ν2ε2
F

(ρν)3

∫ +∞

T
eα(T−t)

(
1 − e−2αt − 2αte−αt + (1 − e−αt)2(eα(T−t) − 1)

)
dt

= T
(

ν2ε2
F

−(ρν)3

)(
1 − 1 − e−αT

αT

)
. (1.87)

From these two integrals, we can then conclude by introducing the Diven factors:

Y(T) =
εFD2

ρ2

(
1 − ρ

νsD2,s

νD2

)(
1 − 1 − e−αT

αT

)
. (1.88)

Proposition 1.4.10. The asymptotic second-order Feynman moment is given by:

Y∞ =
εFD2

ρ2

(
1 − ρ

νsD2,s

νD2

)
. (1.89)

Proof. Taking equation (1.84) and going to the limit T → +∞, the result is easily
obtained.

As can be seen from the derivation of Y(T), the computations involved quickly
become cumbersome for higher-order Feynman moments. Hence the emphasis is on
the asymptotic third Feynman X∞ instead of the full dependence on T.

Proposition 1.4.11. The asymptotic third Feynman moment X∞ is given by:

X∞ = 3
(

εFD2

ρ2

)(
1 − ρ

νsD2,s

νD2

)
+− εFD3

ρ3

(
1 − ρ

νs
2D3,s

ν2D3

)
. (1.90)

Proof. By definition X(T) = 6Γ3(T)
Γ1(T)

. Let us first write ms,3(t).

ms,3(t) =
+∞

∑
i=0

fs,im3,i(t)

= νsm3(t) + 2ν2,sm1(t)m2(t) + ν3,sm1(t)3. (1.91)
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The limits of the asymptotic moments are given by:

lim
t→+∞

m1(t) = m1,∞ = − εF

ρν
(1.92)

lim
t→+∞

m2(t) = m2,∞ =
ν2ε2

F
(−ρν)3 (1.93)

lim
t→+∞

m3(t) = m3,∞ =
ν3ε3

F
(−ρν)4 +

2ν2
2ε3

F
(−ρν)4 . (1.94)

For m1(t) and m2(t), the limits can be easily derived from equations (1.68) and (1.69).
For m3(t), one can obtain it by taking the limit in equation (1.65), which sets the
derivative to 0. From here we have:

X∞ =
6m3,∞

m1,∞
+

12ν2,sm2,∞

νs
+

6ν3,sm2
1,∞

νs

= 3
(

εFD2

ρ2

)(
1 − ρ

νsD2,s

νD2

)
− εFD3

ρ3

(
1 − ρ

νs
2D3,s

ν2D3

)
(1.95)

which concludes the proof.

We have now derived the expression for the second Feynman moment Y(T) and the
asymptotic third Feynman moment X∞. In this study, the source is assumed to be
a homogeneous compound Poisson process which models the spontaneous fission
source. In most situations, however, the source term is not just a spontaneous fission
term. Indeed, the (α, n) reactions can be predominant in nuclear materials, especially
if there is a large proportion of light atoms. In that case, one can still model the source
as a compound Poisson but we need to modify the jump probability distribution fs.

We introduce the parameter xs which defines the proportion of source events created
by spontaneous fissions.

Definition 1.4.13. Let Sα and S f be the respective intensities of (α, n) and spontaneous
fission reactions. The total source intensity is S = Sα + νsS f . We introduce the source
description parameter xs ∈ [0, 1] which is defined as the average ratio of neutrons produced
by spontaneous fission events over the total number of source neutrons.

xs =
νsS f

Sα + νsS f
. (1.96)

Proposition 1.4.12. To account for the (α, n) source term, we define a new compound Poisson
process (St)t≥0 ∼ P

(
S, f (C)s

)
where the probabilities of the distribution f (C)s are denoted by

( f (C)s,i )i∈N. These probabilities are linked to the probability distribution of the spontaneous
fission source by:  f (C)s,i =

S f
Sα+S f

fs,i if i ̸= 1

f (C)s,i =
S f fs,i+Sα

Sα+S f
if i = 1.

(1.97)

Proof. We consider the two events A = "the source event is an (α, n) reaction" and
B = "the source event is a spontaneous fission". They form a partition. Moreover,
P(A) = Sα

S f +Sα
and P(B) = S f

S f +Sα
.
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Consider X ∼ f (C)s and let i ∈ N. Since the (α, n) reactions only produce a single
neutron we have:

P (X = i) = P (X = i|A)P (A) + P (X = i|B)P (B)

=
Sα

S f + Sα
δi,1 +

S f

S f + Sα
fs,i. (1.98)

This gives us the probabilities in equation (1.97)

Remark. Nuclear fissions and (α, n) reactions are not the only reactions producing
neutrons in the material. We could consider a more general source term accounting
for the (α, xn) reactions (x being an arbitrary number of neutrons). However, these
reactions are negligible compared to (α, n) reactions. Similarly, we neglect the (n, 2n)
or (n, xn) reactions in our study and assume that the neutrons multiply only through
induced fissions. To model this, one would simply need to update the probability
distribution of the source process accordingly.

With this new source distribution, one can update the expression of the Feynman
moments to account for the source description parameter xs.

Proposition 1.4.13. With the new compound Poisson source process, the count rate and
asymptotic Feynman moments are updated. The new expressions are:

R = − εFS
ρν

νs

νs + xs − xsνs

Y∞ =
εFD2

ρ2

(
1 − ρxs

νsD2,s

νD2

)
X∞ = 3

(
εFD2

ρ2

)(
1 − ρxs

νsD2,s

νD2

)
− εFD3

ρ3

(
1 − ρxs

νs
2D3,s

ν2D3

)
.

(1.99)

(1.100)

(1.101)

Proof. The derivation is obtained by replacing the probabilities fs,i by f (C)s,i in equations
(1.81), (1.89) and (1.90). The derivation is then straightforward and is not further
detailed.

These equations are used numerous times throughout this work, they constitute the
low-fidelity model of the neutron correlation model.

In this study, the focus is on the Feynman moments though it is possible to consider a
different parametrization of the same problem. Many studies focus on the multiplicity
rates instead of the Feynman moments. The corresponding equations were originally
introduced in [Böh85].

Definition 1.4.14. In the Böhnel framework, the four parameters considered are the following.

• The leakage multiplication

ML =
1 − kp/ν

1 − kp
. (1.102)

• The leakage efficiency ϵL defined as the number of counts per leaking neutrons (or
non-fissioning neutrons)

εL =
kp/ν

1 − kp/ν
εF. (1.103)
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• The fission source S f in fissions.s−1.

• The alpha ratio αR defined as the number of (α, n) over spontaneous fission source
neutrons

αR =
Sα

νsS f
=

1
xs

− 1. (1.104)

Proposition 1.4.14 (Böhnel equations). The singles, doubles, and triples count rates are
denoted by R, D, and T and are given respectively by:

R = S f (εL ML)(νs(1 + αR) (1.105)

D = S f
(εL ML)

2

2

(
ν2,s + νs(1 + αR)ν2

(
ML − 1
ν − 1

))
(1.106)

T = S f
(εL ML)

3

6

(
ν3,s + (νs(1 + αR)ν3 + 3ν2,sν2)

(
ML − 1
ν − 1

)
+ 3νs(1 + αR)ν

2
2

(
ML − 1
ν − 1

)2
)

. (1.107)

1.4.4 Estimating the Feynman moments

1.4.4.1 Feynman and ordinary moments

To find estimators for the Feynman moments we now define the probability Pn,i(t)
which is the probability of having n counts at T assuming i neutrons were present at
time T − t. We also assume a compound Poisson source with intensity S and jump
distribution defined by (1.97) is present in the system between T − t and T. We also
define Pn(t) = Pn,1(t). We recall that the detector is only active in [0, T], though
detections in [0, T] can be induced by source events occurring for t < 0.

The proofs of the results are not all detailed in this section, since they are mostly
similar to the previous section with the probability pn(t).

Proposition 1.4.15. For t ≥ 0 and n ∈ N the probability Pn(t) is governed by the differential
equation:

dPn(t)
dt

+ SPn(t) = S

(
+∞

∑
i=0

fs,i

(
n

∑
j=0

pj,i(t)Pn−j(t)

))
. (1.108)

Similarly, we introduce the probability-generating function.

Definition 1.4.15. Let us introduce the probability-generating function gs associated with
the probabilities (Pn(t))n∈N which is the function

gs(z, t) : C × R+ −→ R

(z, t) 7−→ gs(z, t)

where gs(z, t) =
+∞
∑

n=0
Pn(t)zn for |z| ≤ 1 and t ≥ 0.
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Proposition 1.4.16. For t ≥ 0, the PGF of the probabilities (Pn(t))n∈N is given by:

gs(z, t) = exp

(
S
∫ t

0

(
+∞

∑
i=0

fs,ig(z, u)i − 1

)
du

)
(1.109)

Proof. The proof is similar to what has been done previously. We derive a partial
differential equation for gs by summing (1.108) over n. The PDE can then be solved
with the initial condition gs(z, t = 0) = 1.

Definition 1.4.16. For p ≥ 1, the asymptotic ordinary moment of order p, denoted by
Mp(T) is defined by:

Mp(T) = lim
t→+∞

+∞

∑
n=0

npPn(t). (1.110)

Definition 1.4.17. For p ≥ 1, the asymptotic central moment of order p, denoted by µp(T)
is defined by:

µp(T) = lim
t→+∞

+∞

∑
n=0

(n − M1(T))pPn(t). (1.111)

In particular, µ2(T) = M2(T)− M1(T)2 is the variance.

Definition 1.4.18. The binomial cumulant of order n denoted by κn(T) associated with the
probabilities (Pn(t))n∈N is defined by:

κn(T) =
1
n!

lim
t→∞

(
∂n log gs

∂zn

)
z=1

. (1.112)

Proposition 1.4.17. The binomial cumulant of order n is precisely the average number of
n-detections defined in (1.76):

κn(T) = Γn(T) =
∫ +∞

0
Sms,n(t)dt (1.113)

Proof. From the expression of gs given in (1.109), one can differentiate and invert
integral and derivative as well as derivative and sum (by the dominated convergence
theorem):

Γn(T) = S
∫ +∞

0

(
+∞

∑
i=0

fs,i

(
∂n log g(z, t)i

∂zn

)
z=1

)
dt

= S
∫ +∞

0

(
+∞

∑
i=0

fs,imn,i(t)

)
dt =

∫ +∞

0
Sms,n(t)dt (1.114)

Proposition 1.4.18. The second and third Feynman moments are linked to the ordinary
moments by:

Y(T) =
M2(T)
M1(T)

− M1(T)− 1 (1.115)

X(T) =
M3(T)
M1(T)

+ 2(M1(T)2 + 1)− 3
(

M2(T)
M1(T)

+ M2(T)− M1(T)
)

. (1.116)

Proof. The derivation of these relations is obtained directly from equation (1.76).



40 Chapter 1. Introduction

One can also derive a similar relation with the central moments µp(T).

Proposition 1.4.19. The second and third Feynman moments are linked to the central
moments by:

Y(T) =
(

µ2(T)
M1(T)

− 1
)

(1.117)

X(T) =
(

µ3(T)
M1(T)

− 1
)
− 3

(
µ2(T)
M1(T)

− 1
)

. (1.118)

Proof. The proof is similar to the previous one.

Equation (1.117) shows that the second Feynman moment can be interpreted as an
excess of variance compared to a Poisson process. Indeed, for a Poisson distribution,
the variance and mean are equal. However, with a multiplying medium, there is an
excess of variance and the ratio µ2(T)/M1(T) is thus greater than 1.

1.4.4.2 Sequential binning estimation

The equations (1.115) and (1.116) allow us to derive estimators for the Feynman
moments. Consider an experiment (real or numerical) in which neutron detection
instants are recorded. The experiment, which has a total duration of ttot is split into
Nw = ⌊ ttot

T ⌋ time windows of size T. For 1 ≤ w ≤ Nw, the number of detected
windows if the w-th window is denoted by nw.

Definition 1.4.19. For p ≥ 1, the estimator for the p-th ordinary moment is denoted by M̂p
and defined by:

M̂p =
1

Nw

Nw

∑
w=1

np
w (1.119)

Definition 1.4.20. The sequential binning estimators for the second and third Feynman
moments are defined by:

Ŷ =
M̂2

M̂1
− M̂1 − 1 (1.120)

X̂ =
M̂3

M̂1
+ 2(M̂1

2
+ 1)− 3

(
M̂2

M̂1
+ M̂2 − M̂1

)
(1.121)

These estimators have a significant variance which is highly dependent on the num-
ber of time windows available. However since our goal is to work with asymptotic
Feynman moments, we need to make sure that T is large enough for the Feynman
moments to reach their asymptotic values. There is a compromise to be made between
the variance of the estimators and the asymptotic time width selection. This com-
promise is highlighted in Figure 1.1, where the second and third Feynman moments
are estimated with (1.120) and (1.121) for various values of T, with detection instants
obtained with a neutronic Monte Carlo simulation.

1.4.4.3 Filtered triggered binning estimation

Consider now specifically the case of a numerical simulation. Neutrons are created
initially from a source event, and then create fission chains through branching fission
reactions. The fission chains are independent from one another.
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FIGURE 1.1: Evolution of the sequential binning estimators as a func-
tion of T.

A simultaneous detection of multiple neutrons is said to be truly correlated if the
detected neutrons all belong to the same fission chain, that is they are induced by the
same source event. By definition, the Feynman moments are linked to the number of
truly correlated detections Γn(T), or in other words they measure the average number
of correlated double and triple detections (divided by the average number of counts
Γ1(T)).

With numerical simulations, it is possible to know with certainty whether or not two
neutrons are truly correlated or not, based on the history number of the neutron in
the Monte Carlo simulation.

Consider the following procedure. We have a total of Nd detected neutrons. When
a neutron is detected, at time tk for 1 ≤ k ≤ Nd, we open a detection window of
size T and we keep in memory the history number as the triggering neutron. In this
window, we record only the neutrons which have the same history number. These
neutrons thus belong to the same fission chain as the triggering neutron. We denote
by nk,trig the number of such detections.

The procedure is described schematically in Figure 1.2. Consequently, nk,trig is the
number of double correlated detections, where the triggering neutron is part of the
doublet. Similarly, nk,trig(nk,trig − 1) is the number of triple correlated detections for
which the triggering neutron is part of the triplet. Thus the total numbers of double
and triple-correlated detections are given by:

N2C =
Nd

∑
k=1

nk,trig (1.122)

N3C =
1
2

Nd

∑
k=1

nk,trig(nk,trig − 1). (1.123)
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FIGURE 1.2: Illustration of the triggering of detection windows.

From this and recalling the definition of the Feynman moments (1.77), one can define
new estimators for the Feynman moments which filter out the noise introduced by
accidental correlations.

Definition 1.4.21. The filtered triggered binning Feynman estimators Ŷtrig and X̂trig for the
second and third Feynman moments are defined by:

Ŷtrig =
2N2C

Nd
(1.124)

X̂trig =
6N3C

Nd
. (1.125)

where N2C and N3C are defined in (1.122) and (1.123).

These estimators allow us to filter out most of the noise caused by the random arrivals
of independent neutrons in the same time window. The noise reduction is highlighted
in Figure 1.3, where the Feynman moments from the same numerical experiment as
in the previous section are estimated with the triggered binning estimators (1.124)
and (1.125).

1.4.5 Rossi-α method

In this section we present briefly the Rossi-α method which was first introduced
in [RG41]. This method is commonly used to estimate kinetic parameters of the
multiplying medium such as the prompt decay constant α.

The Rossi-α method is based on the distribution of time intervals between each
neutron detection. In a non-multiplying stationary system, the probability p(t) of
detecting a neutron in the infinitesimal time interval [t, t + dt], knowing that a first
neutron was detected at t = 0 should be given by the average count rate R. Assuming
the neutron source follows a Poisson process, the count distribution in any given
interval follows a discrete Poisson distribution with parameter λ = Adt with A a
constant to be determined. The probability of having a count in [t, t + dt] is then
1 − p(X = 0) where X is a random variable following the Poisson distribution
X ∼ P(Adt). Then the probability of a count in [t, t + dt] is :

p(t)dt = 1 − e−Adt = Adt (1.126)

In a stationary medium, the average of this law over a given time interval [0, T] is AT
which allows us to identify A to the average count rate A = R such that p(t)dt = Rdt.
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FIGURE 1.3: Evolution of the triggered binning estimators as a function
of T.

In a multiplying medium, new correlations are introduced to the branching processes.
Rossi showed that the probability of count could be written as :

p(t)dt = (R + Beαt)dt (1.127)

where α < 0 is the prompt decay constant. The Rossi-α method, also known as the
autocorrelation method, is based on the study of the autocorrelations of the detection
statistics.

Let us consider an experiment or a numerical simulation in which all the successive
neutron detection times (tk)1≤k≤n are recorded. Let τk = tk+1 − tk for 1 ≤ k ≤ n − 1.
Then the distribution of the τk should be given by equation (1.127). Hence it is
possible to identify the prompt decay constant by fitting the empirical distribution
of the τk with equation (1.127). In practice, one often uses a least squares fit with a
histogram distribution of the time intervals τk.

More recent works [Hua+20b; Bru+96] have suggested to use a modified equation
with two exponential terms, based on two-region kinetics instead of standard point
kinetics.

p(t)dt = (R + B1eα1t + B2eα2t)dt (1.128)

This approach is especially better suited for problems with reflector regions [Hua+20a].

1.4.6 Gamma noise theory

In all the previous discussions, we considered only neutron fluctuations. In this
thesis, we discuss the possibility of using gamma correlations to further reduce the
uncertainties in the fissile material characteristics.
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For that purpose, let us introduce some results of gamma noise theory. The main
results are derived in this section, but the proofs are not detailed. Most of the results
presented here are provided in full detail in [PP07].

We focus on the multiplicity count rates which are the most used quantities in gamma
multiplicity theory.

Definition 1.4.22 (Gamma multiplicity). We assume that the number of gammas produced
by induced fissions is given by an integer-valued random variable µ and we define f (γ)i =
P [µ = i] for i ∈ N. These quantities are known. We also define the factorial moments of the

distribution as µp =
+∞
∑

i=0
f (γ)i ( i

p) for p ≥ 1 and we denote the mean by µ = µ1. The same

quantities are introduced for spontaneous fissions multiplicities. The probabilities are denoted
by f (γ)s,i and the factorial moments by µs,p.

The singles, doubles and triples count rates for gamma detections are denoted re-
spectively by Rγ, Dγ, and Tγ. We also denote the gamma multiplication Mγ and the
gamma efficiency εγ.

Definition 1.4.23. For a given gamma detector, the gamma efficiency εγ is defined as the
average number of detected gammas over the total number of gammas absorbed by the detector.
The gamma multiplication Mγ is defined as:

Mγ =
µkp/ν

1 − kp
. (1.129)

Definition 1.4.24. We introduce the random variables µ and µs which are the gamma analogs
of ν and νs. They represent respectively the number of gammas produced per induced and
spontaneous fissions. We also define µ2 (resp. µ2,s) and µ3 (resp. µ3,s) the second and third
factorial moment of the distribution of gammas born from induced (resp. spontaneous) fissions,
and µ and µs which are the average number of gammas produced by induced and spontaneous
fissions.

Proposition 1.4.20. The multiplicity rates for the single, double, and triple detections,
denoted respectively by Rγ, Dγ, and Tγ, are given by:

Rγ = S f εγ (µs + αRνs + Mγνs(1 + αR)) (1.130)

Dγ =
ε2

γS f

2

[
µ2,s +

2νs(µs + αRνs)(1 + αR)

1 + αRνs
Mγ + ν2,s M2

γ + νs(1 + αR)g2

]
(1.131)

Tγ =
ε3

γS f

6

[
µ3,s + 3ν2,sg2 + νs(1 + αR)g3 +

(µs + αRνs)ν2,s M2
γ

1 + αRνs

+
3(µ2,s Mγ + µsg2 + αRνsg2)νs(1 + αR)

1 + αRνs
+ ν3,s M3

γ

]
.

(1.132)

where g2 and g3 represent the second and third factorial moments of the photon distribution
from a single neutron.

g2 =
ML − 1
ν − 1

(µ2 + 2µ νMγ + ν2M2
γ) (1.133)

g3 =
ML − 1
ν − 1

(
µ3 + 3µ2νMγ + 3µ(ν2M2

γ + νg2) + ν3M3
γ + 3ν2Mγg2

)
. (1.134)
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1.4.7 Multi-group framework

All the previous work was derived in the point model framework which serves as a
simplified model for an analytical derivation of the Feynman moments.

Yet, it is possible to work with multi-group approximations and still obtain an ex-
pression for the Feynman moments. In [PP21], a space-dependent model is derived
from the general transport equation. It highlights a systematic underestimation of
the factorial moments in the point model framework. This bias is quantified for a
spherical object and different values of xs.

A two-region formulation of the Feynman-α method is introduced in [And+12]. This
formalism is extended to the multi-group and multi-region case in [MD15] and
[SPE18]. In [EYY06], a space and energy-dependent formulation of the third moments
is proposed, based on the α-expansion introduced in [OI65].

All these recent works highlight the possible derivation of more complete models for
the Feynman moments. However, in this work, the point model itself is only used as
a low-fidelity approximation to improve surrogate models. Therefore, the focus is on
the simplest form of the Feynman moments expressions.

1.4.8 Simulations and computer codes

In neutronic analysis, computer codes can be divided into two main categories that
are stochastic and deterministic codes. Stochastic codes are designed to estimate
quantities of interest (neutron flux, power, population, ...) by creating many indepen-
dent simulations of neutrons, where the neutrons behave like random variables. Each
nuclear reactions occur with a given probability and averaging over a large number
of runs gives Monte Carlo estimators of the quantities of interest. These methods
are considered state-of-the-art, though they are computationally demanding. On the
other hand, deterministic codes try to solve the neutron transport equation (1.36)
using various approximations. As a result, these codes are often much faster than
MC simulations, though they may not be as accurate.

1.4.8.1 Analog Monte Carlo simulations

Various Monte Carlo codes have been developed with the increasing available com-
puting power. They differ in their functionalities though the general principle is
the same. Most of this work was accomplished with MCNP6 [Goo+12]. MCNP6 is
a general-purpose Monte Carlo neutronic code developed at Los Alamos National
Laboratory designed to solve the 3D transport problem for a multitude of particle
types.

Neutron noise analysis has also been investigated and developed with the code
TRIPOLI-4®[Bru+14] which is a multi-purpose Monte Carlo code developed at CEA
for both fission and fusion systems.

To improve the Monte Carlo estimators of the various quantities, all these codes use
several variance reduction techniques. As an example, simulated neutrons are not
simply deleted at each reaction but are given a weight coefficient which is taken
into account in the MC estimators. When a neutron induces fission, it produces
more neutrons. Instead of simulating those newly born neutrons, the weight of
the inducing neutron is increased. Many more variance reduction techniques are



46 Chapter 1. Introduction

implemented in Monte Carlo simulations and for a more detailed documentation, the
author refers to [HW03; KRR10; GF11].

However, when dealing with neutron noise analysis, our goal is to simulate the
true evolution of the neutron population since we are interested in the temporal
correlations of the detected neutrons. Thus, one cannot use such variance reduction
techniques. The Monte Carlo codes used are thus used for "analog" simulations, in
which all the variance reduction techniques are set aside.

To solve neutron correlation problems, one needs to mention MCNP-PoliMi [PPM03]
which is an extension of MCNP developed specifically for neutron correlation studies
by Politecnico di Milano and the University of Michigan.

1.4.8.2 Deterministic codes

Deterministic neutronic codes have also been used for neutron noise analysis. As an
example, in [Hum19], the Kolmogorov backward equation and the binomial moments
equation for a single initial neutron are solved iteratively based on a discrete ordinates
code, which provides a coupled system of equations. Similarly in [Mat12], the
Feynman moment is evaluated with a deterministic approach based on and compared
with experimental results. The main drawback of these approaches is that they do
not provide uncertainties in the predictive moments though some developments in
that sense have arisen [OMA17]. In this thesis, numerical simulations are consistently
performed with Monte Carlo simulations which remain state-of-the-art in neutronics
despite their generally higher computation times.

1.5 Inverse problems and uncertainty quantification

In this section, a general introduction to inverse problems is presented. For this work,
the formulation of inverse problems is as follows. Let X ⊂ Rp and Y ⊂ RD be
respectively the input and output space. Consider a function f known as the direct
model defined by:

f : X −→ Y
x 7−→ f (x).

The direct model f can be an analytical function though in most cases of interest, it is
given by a complex computer model or practical experiments.

Suppose we are provided with some observations (y(k))1≤k≤N for N ≥ 1. These
observations may arise from practical experiments or a complex computer code. Most
likely, they are direct realizations of f but rather noisy observations of f (xtrue) where
xtrue ∈ X are the true unknown inputs. We seek a good estimate x∗ of xtrue.

1.5.1 Ill-posed inverse problems

Because of the noise introduced in the observations y, we may not find a good
estimate x∗. It is also possible to obtain multiple solutions to our inverse problem.
Let us define formally the notion of ill-posed inverse problems, as first introduced by
Hadamard.
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Definition 1.5.1. An inverse problem is said to be ill-posed if it verifies at least one of the
three following conditions:

• The inverse problem has no solution.

• The solution exists but is not unique.

• At least a solution exists but it does not depend continuously on the observations.

Ill-posed inverse problems arise frequently in complex models with noisy observa-
tions. An example of an ill-posed inverse problem is the inverse heat transfer problem
[Web81; SJ60] which is based on the heat equation:

∂T
∂t

− DT
∂2T
∂x2 = 0 (1.135)

where T(x, t) is the temperature at time t ≥ 0 and position 0 ≤ x ≤ L, and DT is
the thermal diffusion coefficient. We consider temperature measurements inside the
material and we wish to get back to the boundary condition at x = 0 which are the
heat flux density and temperature T(x = 0, t). This problem is ill-posed and yet
the forward equation is analytically tractable and provides continuous solutions (for
sufficiently regular initial and boundary conditions).

To justify this, one can write the solution of the inverse heat problem based on Fourier
analysis as:

T0(x) =
∫ +∞

−∞
T̂(k, t)eikx+DTk2tdk (1.136)

where T̂(k, t) is the Fourier transform of T(x, t). For large t, this integral is only
tractable if the function T(x, t) is smooth, that is if T̂(k, t) = O(exp(−k−β)) with
β > 2. Thus the solution may not exist.

A standard approach to solve inverse problems is to solve a least-square minimization
problem.

x∗ ∈ argmin
N

∑
k=1

∥y(k) − f (x)∥2 (1.137)

where ∥ · ∥ is the standard Euclidean norm on RD. In this thesis, one of our goals is to
identify a fissile material based on observations of the neutron count rate R and the
second and third-order asymptotic Feynman moments Y∞ and X∞ (for neutrons). In a
first approach, we then consider y = (R, Y∞, X∞). Based on the point model equations
(1.99), (1.100) and (1.101), we introduce with the same notations x = (kp, εF, S, xs).

Let us prove that our inverse problem is ill-posed. Consider a fictitious material char-
acterized by xtrue = (0.90, 0.01, 105, 0.5). We generate N = 5 fictitious observations by
introducing random zero-mean Gaussian noise on the prediction f (xtrue) such that
for 1 ≤ k ≤ N:

y(k) = f (xtrue) + ε(k) (1.138)

where ε(k) ∼ N (0, C) where the covariance is chosen as:

C = diag
(

f (xtrue)× (0.012, 0.052, 0.202)
)

. (1.139)

We thus introduced a relative noise of respectively 1%, 5% and 20% for R, Y∞ and X∞.
Finally, we solve the inverse problem by least-square minimization to obtain x∗. The
process is iterated 5 times for various sets of noisy observations y. The least-square
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TABLE 1.1: Successive estimates of x∗.

kp εF S xs
Run 1 0.771 0.070 1.56 × 105 0.55
Run 2 0.778 0.054 1.95 × 105 0.31
Run 3 0.898 0.022 1.93 × 105 0.81
Run 4 0.821 0.060 1.35 × 105 0.55
Run 5 0.880 0.027 1.82 × 105 0.25

estimates obtained are shown in Table 1.1. The estimates differ largely from one run to
the other. Thus the estimation of x∗ by least-squares minimization is not robust. The
inverse problem is ill-posed. Besides, for this inverse problem, we chose an analytical
direct model though in the work developed in this thesis the direct models are never
analytical and lie in higher dimensions (either for the input or output space). In the
next sections, we further discuss the basic theory of inverse problems. For complete
references on the subject, one can for instance read [KS06; Tar05].

1.5.2 Linear inverse problems

Let us focus for now on linear inverse problems. Expanding on the notations from
the previous paragraph, we define A ∈ RD×p a matrix of rank p and we assume the
direct model f is given by:

f : X −→ Y
x 7−→ Ax.

Given some observations y = (y(k))1≤k≤N , the inverse problem can then be formu-
lated as:

x∗ ∈ argminx∈X

N

∑
k=1

∥y(k) − Ax∥2. (1.140)

This problem can be reformulated by considering the block matrix A = (A, ..., A) ∈
RDN×p and ỹ = (y(1)1 , ..., y(1)D , y(2)1 , ..., y(N)

D )T ∈ RDN and thus:

x∗ ∈ argminx∈X ∥ỹ − Ax∥2 (1.141)

where the norm is now the Euclidean norm on RDN .

Proposition 1.5.1. The inverse problem stated in equation (1.141) has the unique solution:

x∗ = (ATA)−1ATỹ. (1.142)

Proof. Consider the function g : X 7→ R defined for x ∈ X by g(x) = ∥ỹ − Ax∥2.
This function is differentiable and its gradient is given by:

dg
dx

(x) = 2
(

ATAx − ATỹ
)

. (1.143)

Since g is strictly convex its unique minimum is reached in x∗ which verifies dg
dx (x∗) =

0. Thus, the least-squares estimate is given by:

ATAx∗ = ATỹ. (1.144)
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Since rank(A) = p we know that rank(A) = p. This means that rank(ATA) = p and
since ATA is a square matrix of size p it is invertible. Thus the previous equation can
be inverted to retrieve x∗ = (ATA)−1ATỹ.

Linear inverse problems can thus be solved analytically provided the matrix A has
rank p. To study the sensitivity of the solution to the observations, let us look at the
singular value decomposition (SVD) of the matrix A, which gives A = UΣVT where
U and V are real orthogonal matrices of sizes DN × DN and p × p and Σ is a DN × p
matrix with non-negative diagonal coefficients, denoted as (σi)1≤i≤p.

Introducing the SVD in the expression of x∗ gives us:

x∗ = (VΣTΣVT)−1VΣTUT ỹ = V(ΣTΣ)−1ΣTUT ỹ. (1.145)

Now recall we assumed that the observations are obtained by an additive Gaussian
noise such that ỹ = Axtrue + ε where ε ∼ N (0, C) and C = IN ⊗ C with IN the
identity matrix of size N. Thus we then have:

x∗ = xtrue + V(ΣTΣ)−1ΣTUTε. (1.146)

To simplify, we assume the covariance is given by C = σ2
obsID, which leads to

C = σobsIDN . Introducing S = (ΣTΣ)−1ΣT, the covariance of the error is then given
by:

E
[
(x∗ − xtrue)(x∗ − xtrue)

T
]
= VSSTVT. (1.147)

Looking at the variance for the component 1 ≤ i ≤ p:

V [x∗ − xtrue]i =
p

∑
k=1

v2
i,k

σ2
k

. (1.148)

and summing over i, while recalling that V is orthogonal, we obtain:

p

∑
i=1

V [x∗ − xtrue]i = E
[
∥x∗ − xtrue∥2] = σ2

obs

p

∑
k=1

1
σ2

k
(1.149)

Thus the mean squared error can explode if any of the singular value σk is close to 0.
Even linear inverse problems, which have an exact analytical solution, can turn out
to be difficult to solve if they are ill-posed.

1.5.3 Tikhonov regularization

Regularization is a widely used tool to limit the sensitivity of the solution in ill-posed
inverse problems. The idea is to add a second penalizing term that removes the high
volatility of the estimates in cases where one singular value of the matrix A is close to
0.

For linear inverse problems, regularization is introduced by the mean of a matrix
R ∈ Rm×p with a given integer m ≥ 1. The regularized inverse problem is now
formulated for a x0 ∈ X as:

x∗ ∈ argminx∈X ∥ỹ − Ax∥2 + ∥R(x − x0)∥2
m (1.150)
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where ∥ · ∥m is a norm on Rm. In practice, the most commonly used approach is
known as Tikhonov regularization [Tik+43] and consists in choosing R = αIp for
some real α ≥ 0, x0 = 0 and ∥ · ∥m as the Euclidean norm which yields:

x∗ ∈ argminx∈X ∥ỹ − Ax∥2 + ∥αx∥2. (1.151)

The solution of this regularized inverse problem is given by:

x∗ = (ATA + α2Ip)
−1ATỹ. (1.152)

The newly added regularization term removes the possibility of large inverse singular
values in the inverted matrix. Many other approaches have been investigated to
regularize inverse problems. More details on the subject are available in [GHO99;
EHN96].

The choice of α is crucial since if α is too large, it does impact significantly the sought
solution.

As an example, we apply the same procedure as in Section 1.5.1, to provide new esti-
mates. As seen in Table 1.2, the estimates are now much more robust and consistent
around the true value. However, there is still some residual variability in the point
estimates because of the randomness of the noisy observations. This variability is
expected to be larger in regimes with few observational data. This is why our goal is

TABLE 1.2: Successive estimate of x∗ with Tikhonov regularization.

kp εF S xs
Run 1 0.840 0.057 1.23 × 105 0.46
Run 2 0.869 0.037 1.52 × 105 0.49
Run 3 0.855 0.045 1.38 × 105 0.51
Run 4 0.854 0.047 1.33 × 105 0.53
Run 5 0.863 0.041 1.44 × 105 0.50

to estimate the uncertainties in the resolution of the inverse problem, using a Bayesian
approach whose goal is to provide a complete probability distribution for the inputs
instead of point estimates.

1.5.4 Bayesian resolution

Our goal is not only to solve an inverse problem using neutron and gamma correla-
tions for fissile matter identification. Ultimately, the objective is to provide a robust
quantification of the underlying uncertainties. For that purpose, let us introduce
Bayesian formalism in the inverse problems. This will serve as an introduction for
non-expert readers. For a comprehensive review of Bayesian inverse problems, the
readers may turn to [Stu10; DS17].

1.5.4.1 General methodology

For that motive, most of this work will focus on a Bayesian resolution of the inverse
problems at stake. The Bayesian approach provides a full distribution of the possible x
given the available observations y. This can be used to provide a point estimate, which
is generally chosen as the most likely input point xm. However, having access to the
full distribution also allows the construction of credible regions for the various inputs,
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it gives access to the moments of the distribution, and the estimated uncertainties can
also be passed on to other models afterward.

The fundamental idea behind the Bayesian approach is to consider the inputs x as
random variables, upon which prior information is encoded with the so-called prior
distribution with density p(x). The prior density encodes the knowledge of the
inputs before the observations. It can be influenced by previous experiments or
results, simpler analytical models, or expert knowledge or it can be simply taken as
mostly non-informative. More details on the prior’s choice are discussed in a further
section.

Now, given some observations yN = (y(k))1≤k≤N for N ≥ 1, the goal is to estimate
the distribution of the inputs x conditioned by the knowledge of y. This distribution
whose density is denoted by p(x|yN) is known as the posterior distribution.

Based on the renowned Bayes’s theorem, the posterior is given up to a multiplicative
constant by:

p(x|yN) ∝ p(x)L(yN |x) (1.153)

where we introduced the likelihood L(yN |x) which is the probability of the observa-
tions given some known inputs x. The proportionality constant p(yN) is known as
the evidence:

p(yN) =
∫
X

p(x)L(yN |x)dx. (1.154)

In the particular case of iid Gaussian additive noise, where y(k) = f (xtrue) + ε(k) for
1 ≤ k ≤ N with some ε(k) ∼ N (0, C), then the likelihood is analytically tractable and
is given by:

L(yN |x) = |2πC|−1/2 exp

(
−1

2

N

∑
k=1

(
y(k) − f (x)

)T
C−1

(
y(k) − f (x)

))

= |2πC|−1/2 exp

(
−1

2

N

∑
k=1

∥y(k) − f (x)∥2
C

)
(1.155)

where we introduced the Mahanalobis norm which is defined for a vector a ∈ RD

and a positive definite matrix C ∈ RD×D as ∥a∥C =
√

aTC−1a.

Assuming the direct model f is available, the posterior distribution is known within
a multiplicative constant. It is therefore possible to sample the distribution using
Monte Carlo Markov chain methods (see Section 1.6).

1.5.4.2 Influence of the prior

In Bayesian statistics, the prior choice is a vast subject of study. Especially in low data
regimes, the prior can drastically influence the posterior distribution obtained.

When no expert knowledge or previous information is available, the prior is often a
non-informative distribution. However, even so, the prior choice is subjective to the
user. Consider for example some input x ∈ (0, a] for some a ≥ 0 with an associated
prior p(x). For a non-informative prior, one could try to choose a uniform prior on
(0, a] such that p(x) = a−1 for all x ∈ (0, a]. Now we reparametrize the problem such
that we work with the parameters θ = x−1 ∈ [a−1,+∞). The prior density on θ is not
uniform anymore and is given by p(θ) = 1

aθ2 .
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To circumvent the choice of a subjective prior, various studies have been conducted to
determine objective priors for a given problem. An example of such a prior is known
as Jeffreys’ prior [Jef46]. In particular, Jeffreys’ prior is invariant by reparametrization
of the inverse problem. The density of Jeffreys’ prior is given by:

p(x) ∝ |I(x)|1/2 (1.156)

where I(x) ∈ Rp×p is the Fisher information matrix defined by:

I(x)i,j = E

[(
∂

∂xi
log L(yN |x)

)(
∂

∂xj
log L(yN |x)

)]
(1.157)

for 1 ≤ i, j ≤ p.

Other studies have been conducted to study objective or reference priors [BB92;
BBS15]. For a more detailed overview of prior selection in Bayesian inference, the
author recommends more complete works on the subject such as [Ber79; KW96;
Gho11].

Overall in this work, the prior is considered to have little impact on the study as we
are provided with enough observations. As such, it is generally chosen as uniform
on a given compact region of the input space, unless explicitly mentioned otherwise.

1.5.4.3 Bernstein-von Mises regime

The Bayesian approach described in the previous sections is a powerful tool to quan-
tify uncertainties in an inverse problem using the posterior distribution. However,
what are the asymptotic guarantees that the posterior distribution is representative of
the true parameter uncertainties?

This question is partially answered by the Bernstein-von Mises theorem. However, be-
fore introducing the theorem itself, we need to recall a few definitions and properties
of estimators.

Consider an inverse problem given by a likelihood L(yN |x) for some x ∈ X and some
observations yN = (y(k))1≤k≤N . We also define the prior and posterior which have
respective densities p(x) and p(yN |x). We denote by xtrue the unknown true inputs.
We assume the direct model f is at least twice differentiable.

Proposition 1.5.2 (Cramér-Rao bounds). Consider N ≥ 1 observations yN = (y(k))1≤k≤N
of a random variable and let x̂N be an unbiased estimator for an unknown parameter xtrue ∈ X
given the observations. Then, under some regularity conditions detailed in [CRA99], the
covariance of the estimator is bounded (in the sense of matrices):

Cov (x̂N) ≥
1
N

I(x)−1 (1.158)

where I(x) ∈ Rp×p is the Fisher information matrix introduced in equation (1.157) and
where the notation A ≥ B for A, B ∈ Rp×p means that the matrix A − B is positive
semi-definite.

This bound is known as the Cramér-Rao bound [CRA99]. In particular, for 1 ≤ k ≤ p we
have the inequality:

V [(x̂N)k] ≥
1
N

E

[(
∂

∂xk
log L(yN |x)

)2
]−1

. (1.159)



1.5. Inverse problems and uncertainty quantification 53

Definition 1.5.2. The Maximum Likelihood estimator (MLE) x(MLE)
N is the estimator defined

by:
x(MLE)

N = argmaxx∈X L(yN |x). (1.160)

Proposition 1.5.3. For Gaussian likelihoods with iid observations, if the model is identifiable,
that is L(·|x1) ̸= L(·|x2) for x1 ̸= x2, then under some regularity conditions found in
[Leh99] the MLE estimator x(MLE)

N has the following properties:

• It is asymptotically unbiased E
[

x(MLE)
N

]
−−−−→
N→+∞

xtrue.

• The MLE is consistent, meaning that x(MLE)
N

p−−−−→
N→+∞

xtrue.

• The MLE estimator is said to be invariant. That is, for any function g defined on X ,
the MLE of g(x) is precisely g(x(MLE)

N ).

• The MLE has the asymptotic normality property. In other words:

√
N(x(MLE)

N − xtrue) ∼ N
(

0, I(xtrue)
−1
)

. (1.161)

It achieves the Cramér-Rao bound asymptotically.

Proof. The proof is not detailed here as this is not the core of the work developed in
this thesis. We refer to theorems 7.1.1 and 7.3.1 of [Leh99] for the complete proof.

The MLE is one of the most-used estimators in the frequentist approach, thanks to
its consistent and asymptotic properties. However, the Bayesian framework differs
from the frequentist viewpoint. Here we are interested in the full distribution of the
variables x. If we wish to provide a point estimate of the true point, this is generally
done with the maximum-a-posteriori estimator.

Definition 1.5.3. The maximum-a-posteriori (MAP), denoted by x(MAP)
N is an estimator

defined as:
x(MAP)

N ∈ argmaxx∈X p(x|yN). (1.162)

Now, the question that must be asked is whether or not the posterior distribution
obtained with Bayesian inference has a statistical meaning. We hope the posterior
distribution tends to concentrate around the true value xtrue as the number of obser-
vational data increases. Under certain regularity conditions, this is indeed the case.
This result is known as Doob’s theorem.

Theorem 1.5.1 (Doob’s convergence theorem). Let us denote by Π the prior measure
with density p(x) for x ∈ X . Assuming that the model is identifiable, which means that
L(·|x1) ̸= L(·|x2) for x1 ̸= x2, then there exists X∗ ⊂ X with Π(X∗) = 1 and such that
for all x∗ ∈ X∗, if the observations yN = (y(k))1≤k≤N are iid given by L(·|x∗) we have for
all ε > 0:

lim
N→+∞

P
(

x ∈ Vε(x∗)|(y(1), ..., y(N))
)
= 1 (1.163)

where Vε(x∗) = {x ∈ X s.t.∥x − x∗∥ ≤ ε}.

This convergence theorem states that as long as the model is identifiable and that as
long as the true parameter is not taken from a null set under the prior measure, then
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if the observations are iid the posterior collapses to the true value. The posterior is
said to be consistent in that case. The detailed proof is not provided here, the author
refers to [Vaa00; Mil18].

This result offers a strong guarantee for the consistency of Bayesian statistics even
though it may be irrelevant in certain cases (see [DF86]).

The asymptotic behavior of Bayesian statistics is supported by another result known
as the Bernstein-von Mises theorem, which states that under some conditions, the
posterior distribution approaches a normal distribution as N → +∞.

Theorem 1.5.2 (Bernstein-von Mises). Suppose that the observations are iid and that
the posterior density p(x|yN) is twice-differentiable on X for all N ∈ N∗. We introduce
the MAP estimator x(MAP)

N obtained from observations yN = (y(k))1≤k≤N drawn from the
likelihood L(·|xtrue). Under some regularity conditions detailed in [BS09], the posterior
distribution converges to a Gaussian distribution:

√
N
(

xtrue − x(MAP)
N

)
|yN

L−−−−→
N→+∞

N
(

0, I(xtrue)
−1
)

. (1.164)

The proof of this result can be found in many resources such as [BS09; GR11].

Remark. This theorem is also known as the Bayesian Central Limit Theorem (BCLT)
in the literature.

This result can be seen as a justification of Bayesian inference methods. Indeed, with
many observations, the credible regions obtained from the posterior distribution co-
incide with the confidence intervals obtained in a frequentist approach with the MLE.
Bernstein-von Mises theorem reconciles the Bayesian and frequentist frameworks.

Yet, this result can fall off for more peculiar cases, for example, if the observations
are not iid, or the model is misspecified. In that regard, recent developments on the
asymptotic properties of Bayesian statistics have been brought to light [KV12; Mil21].
From now on, the number of observations is assumed to be set to a given N. The
notation for the observations is simplified to y.

1.6 Monte Carlo Markov chain sampling

In a Bayesian framework, one often needs to evaluate a posterior distribution. For
the specific case of inverse problems, we would like to identify a set of parameters x
given some observations y = (y(k))1≤k≤N . The focus is on the posterior distribution
p(x|y) which quantifies the information brought up by the observations. From Bayes’
theorem, this posterior distribution is given by:

p(x|y) = p(x)L(y|x)∫
X p(x′)L(y|x′)dx′

. (1.165)

This expression is at the center of Bayesian statistics. The main obstacle in such a
Bayesian framework is that the integral is often intractable and difficult to compute,
especially for high-dimensional problems. Monte Carlo Markov Chain methods
aim at sampling the posterior distribution using only the numerator on the above
expression. The generic principle of MCMC methods is to build an ergodic Markov
chain, whose invariant distribution is precisely the posterior distribution [Tie94].
In the rest of this section, an introduction to some of the most common MCMC
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algorithms is described. This section only mentions the most well-known theoretical
results on the asymptotic behavior of Markov chains. It does not claim to serve as a
general reference in Markov chain theory. The author recommends [MT12; Dou+18;
Nor98; RR04] for a more complete review of Markov chain theory.

1.6.1 Preliminary concepts

1.6.1.1 Markov chains

Definition 1.6.1. Consider a discrete-time stochastic process (Xn)n∈N with values in the
countable state space S such that Xn ∈ S for all n ∈ N. The discrete-time stochastic
process (Xn)n∈N is a Markov chain on the countable state space S if it satisfies the Markov
property.

P(Xn = xn|Xn−1 = xn−1, ..., X0 = x0) = P(Xn = xn|Xn−1 = xn−1) (1.166)

for any n ≥ 1 and for any (x0, ..., xn) ∈ Sn.

Definition 1.6.2. An homogeneous discrete-time Markov chain on the countable set S is a
Markov chain which verifies for all n ≥ 1 and i, j ∈ S :

P(Xn = j|Xn−1 = i) = Pi,j. (1.167)

The transition probabilities from state i to state j are independent of n. The probabilities of
transition Pi,j can be represented as a transition matrix in finite state space. The knowledge of
the initial state X0 and the transition probabilities Pi,j are enough to describe the whole chain.

In this thesis, the Markov chains considered in the MCMC methods lie in a continuous
state space X ⊂ Rp. Let us focus then on the generalization of Markov chains to
continuous non-countable state spaces. The generalization of the transition matrix is
the transition kernel or transition density.

Definition 1.6.3. Consider a continuous state space X and B(X ) is the Borel set of X . The
function P : B(X )×X −→ [0, 1] is said to be a Markov kernel if it verifies the following
conditions:

• For all x ∈ X , the application px : A 7→ P(x, A) is a probability measure on
(X ,B(X )).

• For all A ∈ B(X ), the application pA : x 7→ P(x, A) is measurable.

The transition kernel is the continuous generalization of the transition probabilities Pi,j.

Definition 1.6.4. Let P be a Markov kernel on X × B(X ). The kernel is said to have a
kernel density p : X ×X → R+ if for x ∈ X and A ∈ B(X ):

P(x, A) =
∫

A
p(x, y)µ(dy) (1.168)

where µ is the Lebesgue measure on X .

Definition 1.6.5. Let (Xn)n∈N be discrete-time stochastic process on the continuous state
space X , and P a Markov kernel on X × B(X ). (Xn)n∈N is a time-homogeneous Markov
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chain on X with initial measure µ if it verifies the Markov property for continuous state
space:

P (Xn ∈ An, ..., X0 ∈ A0) =
∫

A0

...
∫

An−1

P(An, yn−1)P(dyn−1, yn−2)...P(dy1, y0)µ(dy0). (1.169)

In everything that follows, we define (Xn)n∈N as a time-homogeneous Markov chain
on the continuous state space X . Moreover, we consider that the chain starts at a
point x ∈ X such that the initial distribution is given by µ = δx where δx is the
Dirac distribution centered on x. The probability P (Xn ∈ An, ..., X0 ∈ A0) is denoted
Pn(An, x) in the rest of this work.

Definition 1.6.6. For x ∈ X , the probability measure conditioned by X0 = x is denoted as
Px and is such that for any A ∈ B(X ), Px(A) = P(A|X0 = x).

Proposition 1.6.1. Consider two Markov kernels P and Q defined on B(X ) × X . The
product kernel P ◦ Q : B(X )×X defined by:

P ◦ Q(A, x) =
∫
X

P(A, y)Q(dy, x) (1.170)

is also a Markov kernel. The product is not commutative though. Similarly, we define the
iterated kernel product Pn for n ≥ 1 by Pn = P ◦ ... ◦ P.

The associativity of Markov kernels allows us to define transitions over multiple
time steps. For a Markov chain with transition kernel P and such that Xn0 = x, the
distribution of the chain after n ≥ 1 transitions is given by the transition kernel
Pn(·, x).

1.6.1.2 Invariant measure and reversibility

Definition 1.6.7 (Invariant measure). A measure π on the measurable space (X ,B(X ))
is said to be invariant for the Markov kernel P if for any A ∈ B(X ):

π(A) =
∫
X

P(x, A)π(dx). (1.171)

Proposition 1.6.2. If π is a measure with density π(x) for x ∈ X , and the Markov kernel P
has density p, then the measure is invariant for the kernel P if and only if for x, y ∈ X :

π(y) =
∫
X

p(x, y)π(x)dx. (1.172)

Definition 1.6.8. Consider a Markov chain (Xn)n∈N with Markov kernel P and kernel
density p. The chain is said to follow the detailed balance condition if there exists a probability
distribution π such that for any x, x′ ∈ X we have:

π(x)p(x, x′) = π(x′)p(x′, x). (1.173)

Such a Markov chain is said to be reversible.

Theorem 1.6.1. Consider a reversible Markov chain (Xn)n∈N and π a probability distribu-
tion that verifies the detailed balance condition. Then π is an invariant probability measure
for the Markov chain.
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The detailed balance condition is extensively used in most MCMC algorithms since
it allows us to easily prove that the invariant distribution is the target distribution.
Many studies have looked at the necessary conditions for the existence of invariant
measures and invariant probability measures. In this work, we do not further dwell
on the subject as the Markov chain theory is used mainly for MCMC methods, in
which the invariant probability measure is found with the detailed balance property.

1.6.1.3 Irreducibility and recurrence

Definition 1.6.9 (Return time). Let A ∈ B(X ). The return time to A, denoted TA is the
random variable defined by:

TA =

{
+∞ if Xn /∈ A for all n ∈ N.
min {n ≥ 1 s.t. Xn ∈ A} otherwise.

(1.174)

Besides, for x ∈ X , we say that x leads to A if Px(TA < +∞) > 0. In other words, there is
a non-zero probability that the chain reaches A when starting from x.

Definition 1.6.10 (Number of visits). The number of visits to a set A ∈ B(X ) is the
random variable ηA defined by:

ηA =
+∞

∑
k=1

1{Xk∈A} (1.175)

which can be infinite.

Definition 1.6.11 (Irreducibility). Consider a σ-finite measure ϕ on the measurable space
(X ,B(X )). The Markov chain (Xn)n∈N is said to be ϕ-irreducible if for any A ∈ B(X )
such that ϕ(A) > 0, and for all x ∈ X :

Px (τA < +∞) > 0. (1.176)

More intuitively, the ϕ-irreducibility states that for any starting point x and any set A with
non-zero measure under ϕ, there is a non-zero probability that the chain will reach A in a
finite number of transitions.

Definition 1.6.12 (Recurrence). Consider a σ-finite measure ϕ on the measurable space
(X ,B(X )). The Markov chain (Xn)n∈N is said to be ϕ-recurrent if for any A ∈ B(X ) such
that ϕ(A) > 0, and for all x ∈ X :

Ex [ηA] = +∞. (1.177)

The chain is expected to visit any set with non-zero measure under ϕ an infinite number of
times, whatever the starting point.

Definition 1.6.13 (Periodicity). Let (Xn)n∈N be a Markov chain with invariant distribution
π. The chain is said to be periodic with period d if there exists d ≥ 2 and disjoint subsets
A1, ..., Ad ∈ B(X ) such that π(Ai) > 0 and for 1 ≤ i ≤ d − 1 and x ∈ Ai we have
P(x, Ai+1) = 1 and for x ∈ Ad, we have P(x, A1) = 1. If there is no such d ≥ 2, the chain
is said to be aperiodic.

Remark. We may refer to a chain as an irreducible chain without further emphasizing
the corresponding measure ϕ. The same goes for the recurrence. In most MCMC
methods, ϕ can be identified as Lebesgue measure µ on X .
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Definition 1.6.14. The total variation distance between two probability measures p and q is
defined as:

∥p(·)− q(·)∥TV = sup
A∈B(X )

|p(A)− q(A)|. (1.178)

This distance verifies the usual properties of a distance. It serves as a comparison
metric between probability distributions.

Let us now introduce the ergodic theorem for Markov chains in general state space.

Theorem 1.6.2. [Ergodic theorem for irreducible chains] Let (Xn)n∈N be an irreducible
recurrent aperiodic Markov chain with transition kernel P. If the chain admits an invariant
probability measure π then:

lim
n→+∞

∥Pn(x, ·)− π(·)∥TV = 0 (1.179)

for π-almost everywhere x ∈ X .

Furthermore, for any f ∈ L1(π), that is any function such that
∫
X | f (x)|π(dx) < +∞ we

have a strong law of large numbers for the Markov chain:

1
n

n

∑
i=0

f (Xi)
a.s.−−−−→

n→+∞

∫
X

f (x)π(dx). (1.180)

This theorem is one of the most important results of Markov chains theory. It states
that for any function f such that

∫
X | f (x)|π(dx) < +∞, the expectation of the

function can be approximated as an expectation over the Markov chain. This can be
used to compute moments of the probability distribution or credibility regions.

The main assumption of this theorem is the existence of the invariant probability
measure. In most MCMC algorithms, the existence is obtained with the detailed
balance condition.

The theorem is only valid π-almost everywhere since it may be possible to exhibit
a null set X0 ⊂ X (w.r.t. the measure π) such that the chain does not converge for
starting points x ∈ X0. A stronger condition is thus required.

Definition 1.6.15 (Harris recurrence). Once again, let ϕ be a σ-finite measure on the
measurable space (X ,B(X )). The Markov chain (Xn)n∈N is said to be Harris ϕ-recurrent if
for any A ∈ B(X ) such that ϕ(A) > 0, and for all x ∈ X :

Px (ηA = +∞) = 1. (1.181)

The ϕ-Harris recurrence guarantees almost surely that the chain will reach A in a finite
number of transitions.

The Harris recurrence is stronger than the standard ϕ-irreducibility but it allows to
generalize the previous result to all x ∈ X .

Theorem 1.6.3 (Ergodic theorem for Harris-recurrent chains [Har56]). Let (Xn)n∈N be
a Harris-recurrent and aperiodic Markov chain with transition kernel P. If the chain admits
an invariant probability measure π then:

lim
n→+∞

∥Pn(x, ·)− π(·)∥TV = 0 (1.182)

for all x ∈ X . Besides, the strong law of large numbers (1.180) holds.
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1.6.1.4 Convergence rates for ergodic Markov chains

Let us now discuss briefly the rates of convergence of Markov chains. The main
results discussed here are presented in [Twe75].

Definition 1.6.16 (Uniform ergodicity). A Markov chain (Xn)n∈N with transition kernel
P and invariant measure π is said to be uniformly ergodic if there exists M < +∞ and r < 1
such that for all x ∈ X :

∥Pn(x, ·)− π(·)∥TV ≤ Mrn. (1.183)

Definition 1.6.17. The set C ∈ B(X ) is said to be small if there exists a probability measure
ν, some m ∈ N and ε > 0 such that for all x ∈ X and A ∈ B(X ):

Pm(x, A) ≥ εν(A). (1.184)

Definition 1.6.18 (Doeblin’s condition). Let (Xn)n∈N be a Harris ϕ-recurrent Markov
chain on X . The chain is said to satisfy the minimization condition if X is a small set.

Theorem 1.6.4. If (Xn)n∈N is an aperiodic Markov chain that verifies Doeblin’s condition
then it is uniformly ergodic.

Uniform ergodicity is a strong convergence result but it is often difficult to verify that
the whole space X is a small set. A looser convergence rate is often introduced to
relax the convergence assumptions.

Definition 1.6.19 (Geometric ergodicity). A Markov chain (Xn)n∈N with transition
kernel P and invariant measure π is said to be geometrically ergodic if there exists M : X →
R ∪ {+∞} and r < 1 such that for all x ∈ X :

∥Pn(x, ·)− π(·)∥TV ≤ M(x)rn (1.185)

and M(x) < +∞ π-almost everywhere.

Definition 1.6.20 (Drift condition). A Markov chain (Xn)n∈N with transition kernel P is
said to satisfy a drift condition [Twe01] if there exists a function V : X → [1,+∞], a small
set C ∈ B(X ), b ∈ R and 0 < λ < 1 such that for all x ∈ C:∫

X
P(x, dy)V(y) ≤ λV(x) + b1C(x). (1.186)

The drift condition is a condition to reach geometric ergodicity.

Theorem 1.6.5. Let (Xn)n∈N be a ϕ-irreducible aperiodic Markov chain with invariant
distribution π. Suppose that the chain satisfies a drift condition for a small set C, some
0 < λ < 1, b ∈ R and some function V : X → [1,+∞] with at least one x ∈ X such that
V(x) < +∞, then the chain is geometrically ergodic.

The drift condition and Doeblin’s condition are the two main assumptions that
are used to derive uniform and geometric ergodicity respectively. In this work,
we will not detail the convergence properties of the Markov chains generated by
MCMC algorithms, though we show that Metropolis-Hastings does display geometric
ergodicity, which is a necessary condition for the Central Limit Theorem for Markov
chains.
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Theorem 1.6.6 (Central Limit Theorem for Markov chains). Consider (Xn)n∈N an
aperiodic Harris ϕ-recurrent Markov chain with invariant probability measure π. Suppose
the chain is geometrically ergodic and let f ∈ L1(π). If

∫
X f 2(x)π(dx) < +∞ then:

√
n

(
1
n

+∞

∑
i=1

f (Xi)− Eπ[ f ]

)
L−−−−→

n→+∞
N
(

0, σ2
f

)
(1.187)

with Eπ[ f ] =
∫
X f (x)π(dx) and σ2

f = V[ f (X0)] + 2
+∞
∑

i=1
Cov[ f (X0), f (Xi)] < +∞.

This central limit theorem provides an asymptotic variance for the estimator of Eπ[ f ].
This variance differs from the asymptotic variance in the standard CLT with iid
samples since there are correlations between successive samples.

In numerical works, it is possible to define a decorrelation time τ, which is the average
number of iterations required to effectively create independent samples.

Definition 1.6.21. For a Markov chain (Xn)n∈N, the decorrelation time τ is defined by:

τ = 1 + 2
+∞

∑
i=1

Corr(X0, Xi) (1.188)

where Corr(X, Y) = Cov(X,Y)√
V[X]V[Y]

for two random variables X and Y.

From the decorrelation time, one can define the effective sample size Leff of a finite Markov
chain (Xn)0≤n≤L as Leff =

L
τ . This effective sample size is the effective number of uncorrelated

samples in the chain.

The decorrelation time and effective sample size are important when estimating the
asymptotic properties of MCMC algorithms.

Having introduced the main theoretical results on discrete-time Markov chains, our
attention now shifts to several MCMC algorithms utilized throughout this work.

1.6.2 Metropolis-Hastings

Consider a target probability distribution π, whose density is known within a multi-
plicative constant. The Metropolis-Hastings (MH) algorithm [Met+53; Has70] aims at
sampling a Markov chain whose invariant distribution is precisely the target distri-
bution π. The MH algorithm only requires to have access to the target distribution
density, within a multiplicative constant. Since the posterior distribution in Bayesian
statistics can be expressed as the product of a prior and a likelihood, multiplied by an
intractable integral, MH seems particularly suited to such a problem.

1.6.2.1 Pseudo-code description

The algorithm works as follows. Starting from an initial point X0, a new candidate
point X̂ is sampled randomly from a proposal distribution with density q(x, y) de-
scribing the probability density from point x to y. Then, the candidate point is either

accepted with probability α(X0, X̂) = min
{

1, π(X̂)q(X̂|X0)

π(X0)q(X0|X̂)

}
, in which case we set

X1 = X̂ or it is rejected with probability 1 − α(X̂, X0) and then X1 = X0. The process
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is then iterated until we reach the number of samples desired. The full algorithm is
described in Algorithm 1.

Algorithm 1: Metropolis-Hastings pseudo-code
Result: Sampling of the target distribution π
Choose the chain starting point X0 and desired length K;
while Chain length < K do

Generate candidate X̂ from proposal distribution described by a kernel
density q;

Evaluate α(X̂, Xn);
Generate u ∼ U [0, 1] from a uniform distribution on [0, 1];
if α(X̂, Xn) > u then

Add X̂ to the chain Xn+1 = X̂;
else

Add Xn to the chain Xn+1 = Xn;
end

end

1.6.2.2 Reversibility and ergodicity

In what follows the proposal distribution is taken as a Gaussian distribution centered
on the current point and with covariance matrix Σ. The corresponding proposal
density is given by:

q(x, y) =
1√

2π|Σ|
exp

[
−1

2
(y − x)TΣ−1(y − x)

]
(1.189)

where aT is the transpose of vector a ∈ X and |Σ| is the determinant of Σ. For this
specific choice of proposal distribution, the Metropolis-Hastings algorithm is referred
to as the Random Walk Metropolis (RWM) algorithm. We further assume that the
target probability distribution has a density denoted by π(x) for x ∈ X .

Proposition 1.6.3. Let q be the density of the proposal distribution. The transition density
for the Metropolis-Hastings algorithm is given by:

p(x, y) = α(x, y)q(x, y) +
(

1 −
∫
X

α(x, u)q(x, u)du
)

1{x}(y) (1.190)

where α(x, y) = min
{

1, π(y)
π(x)

}
and 1{x}(y) is 1 if x = y and 0 otherwise.

For A ∈ B(X ) and x ∈ X , the Markov kernel associated with this density is:

P(x, A) =
∫

A
Q(x, dy)α(x, y) +

∫
A

δx(dy)
(

1 −
∫
X

α(x, u)Q(x, du)
)

dy (1.191)

where µ is the Lebesgue measure on X and δx is the Dirac measure centered on x.

Proposition 1.6.4. The Markov chain obtained by the Random Walk Metropolis algorithm
satisfies the detailed balance condition for the target distribution π. Besides, the chain is
π-irreducible and aperiodic which is sufficient to conclude that it is ergodic.
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Proof. Let x, y ∈ X . We want to show that π(x)q(x, y) = π(y)q(y, x). If x = y, the
detailed balance is trivially verified. Let us focus on the case x ̸= y. In this case, the
kernel density reduces to the left term in (1.190) and thus:

π(x)p(x, y) = min {π(x), π(y)} q(x, y) (1.192)

and since the proposal kernel is symmetric q(x, y) = q(y, x):

π(x)p(x, y) = min {π(x), π(y)} q(y, x) = π(y)p(y, x). (1.193)

We can conclude that the MH kernel verifies the detailed balance equation for the
target distribution π.

Since the proposal distribution is Gaussian there is a non-zero probability to reach
any state A ∈ X provided that µ(A) > 0 and thus the chain is µ-irreducible.

Finally, we need to prove the aperiodicity. A possible approach is to consider the
proposition from [RCC99] which states that the chain is aperiodic if the probability of
remaining in place is non-zero. That is if for all x ∈ X and for all n ∈ N:

P (Xn+1 = x|Xn = x) > 0. (1.194)

This probability can be written as:

P (Xn+1 = x|Xn = x) =
∫
X

q(x, y)(1 − α(x, y))dy (1.195)

and since the density π is continuous on X there exists a subset X0 ⊂ X with
µ(X0) > 0 such that α(x, y) < 1 for all y ∈ X0. This is enough to conclude that
P (Xn+1 = x|Xn = x) > 0.

Remark. This detailed balance is verified for any proposal kernel density even if
it is not symmetric, as long as the acceptance probability is modified to α(x, y) =

min
{

1, q(x,y)π(y)
q(y,x)π(x)

}
.

Moreover, one can also show that the Metropolis-Hastings kernel is uniformly ergodic
[JH00].

Proposition 1.6.5. The Metropolis-Hastings kernel defined in equation (1.191) verifies
Doeblin’s condition and is uniformly ergodic.

Proof. Let A ∈ B(X ) and x ∈ X . We will show that there exists ε > 0 and a measure
ν such that P(x, A) ≥ εν(A). Introducing µ the Lebesgue measure on Rp we have:

P(x, A) =
∫

A
Q(x, dy)α(x, y) +

∫
A

δx(dy)
(

1 −
∫
X

α(x, u)Q(x, du)
)

dy

≥
∫

A
q(x, y)α(x, y)µ(dy) ≥

∫
A

q(x, y)µ(dy). (1.196)

Since X is a compact set and the Gaussian density q is continuous it is bounded. We
introduce ε = minx,y∈X q(x, y). Since the Gaussian density is non-zero ε > 0 and:

P(x, A) ≥
∫

A
q(x, y)µ(dy) ≥ εµ(A). (1.197)
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The kernel verifies Doeblin’s condition, it is thus uniformly ergodic.

1.6.2.3 Optimal target rate

With Metropolis-Hastings sampling, the proposal distribution can affect the conver-
gence speed of the Markov distribution toward the invariant distribution. If the
proposal distribution is too narrow, the candidate points are close to the current
point and the sampling of the entire target distribution is slow. On the other hand, if
the candidate points are too far away from the current point, most of them will be
rejected.

The key feature that quantifies this phenomenon is the acceptance rate. In [RR98], an
optimal target acceptance rate has been derived from optimal scaling theory [GGR97]
for high dimensional target distributions, assuming the measure can be written as a
product measure of the marginal densities.

Proposition 1.6.6. Consider the Markov chain obtained by RWM (Xn)n∈N with proposal
distribution q ∼ N

(
0, σ2

dId
)

where Id is the identity matrix in dimension d ≥ 2. We
assume that its target invariant measure is given by a product density such that π(dx) =

p
∏
i=1

π(xi)µ(dxi) where µ is the Lebesgue measure on R. The chain converges weakly to the

Langevin diffusion process (Ut)t≥0 given by the Stochastic Differential Equation :

dUt =
√

h(l)dBt + h(l)
f ′(Ut)

2 f (Ut)
dt (1.198)

where l =
√

d − 1σd and h(l) = 2l2Φ
(
− l

√
E

2

)
where Φ is the Cumulative Distribution

Function (CDF) of the standard normal distribution and E = E f

[(
f ′(X)
f (X)

)2
]

. The quantity

h(l) is called the speed of the diffusion process and quantifies the speed of convergence of the
diffusion process. Let an(l) be the mean acceptance rate of the RWM defined by :

an(l) =
∫
X

∫
X

π(x)q(x, y)α(x, y)µ(dx)µ(dy). (1.199)

The speed of diffusion is maximized for l̂ = 2.38√
E

in the limit of high dimensional target
distributions we have:

lim
n→+∞

an(l) = a(l) =
h(l)
l2 (1.200)

and in particular a(l̂) ≃ 0.23.

This particular result stands in the limit of very high dimensional target distributions.
Nonetheless, it may serve as an empirical rule for tuning the scaling parameter in the
proposal distribution.

The theory on optimal scaling has been extended to non-iid target distributions
[Bed08]. In this work, the target acceptance rate of 0.23 is only used as an empirical
guideline and will not be further discussed.

1.6.3 Adaptive Metropolis

In the context of neutron noise analysis, the posterior distributions often lie on a
small support. In that case, a simple RWM tends to sample very slowly the posterior
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distribution since most of the candidate points are outside the support.

To bypass this difficulty, let us introduce the Adaptive Metropolis procedure (AM)
introduced in [HST01].

1.6.3.1 Global covariance adaptation

Consider once again a Gaussian proposal distribution qn ∼ N (Xn, Cn) which can
change at each iteration of the MCMC sampling. The purpose of the AM algorithm is
to update the proposal covariance Cn to sample candidate points closer to the true
target distribution. The proposal covariance is set to the empirical covariance of all
the previous points of the chain (with a scale factor sn) such that:

Cn =
sn

n − 1

n−1

∑
i=0

(Xi − Xn)
T (1.201)

where Xn = 1
n

n−1
∑

i=0
Xi. The proposal covariance can be obtained with a faster recursive

formula:

Cn =
n − 1

n
Cn−1 +

s
n

(
nXn−1XT

n−1 − (n + 1)XnXn + XnXT
n

)
. (1.202)

The main difficulty introduced by the AM algorithm is that the chain is not Markovian
anymore since Cn depends on all the previous states. This difficulty can be overcome
by considering (Xn, Cn) as a Markovian process. From this, the ergodicity of the chain
can be derived (see for example [AM06]).

1.6.3.2 Local covariance adaptation

A variant of the AM algorithm, known as Adaptive Proposal (AP) has been introduced
in [HST99]. The idea is to change the covariance by considering only a limited history
of the Markov chain instead of the full chain. Instead of estimating the empirical
covariance on all the points of the chain, it is evaluated on the last H points where
H ∈ N. Then the covariance is given by Cn = sd × Cov (Xn−H, ..., Xn−1). The
recursive formula in that case requires keeping in memory the point Xn−H.

Cn+1 = Cn +
sd

H

(
Xn+1XT

n+1 − Xn−HXT
n−H − (H + 1)

(
Xn+1 Xn+1

T − Xn Xn
T
))

.
(1.203)

The average Xn is calculated on the last H + 1 points.

Xn =
1

H + 1

H

∑
i=0

Xn−i. (1.204)

It is updated recursively with the following formula and needs to be kept in memory.
Similarly, Xn−H needs to be remembered.

Xn+1 = Xn +
Xn+1 − Xn−H

H + 1
. (1.205)
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The Markov chain generated by the AP algorithm is ergodic however the invariant
distribution slightly differs from the actual target distribution π. In [HST99], the
author showed that the bias does not alter the target distribution significantly.

1.6.4 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo [Bet17] is a sampling method based on Hamiltonian me-
chanics introduced in [Nea+11]. This method introduces auxiliary momentum vari-
ables r and extends the sampling space by introducing a joint density p(x, r). The
momentum variables are drawn from Gaussian distribution, usually with identity
covariance r ∼ N (0, I). The joint density is given by p(x, r) = exp (−H(x, r)) where
H is the Hamiltonian defined by :

H(x, r) =
1
2

rT M−1r − log π(x|Dtrain) (1.206)

where M is known as the mass matrix. Intuitively, the first term represents a potential
energy term and the second is a kinetic energy term. The exploration of the extended
space is a trade-off between the two. Hence the goal of the algorithm is to initialize
random momentum variables to explore various trajectories in the extended space,
based on the Hamilton equations.

dx
dt

=
∂H
∂r

= M−1r (1.207)

dr
dt

= −∂H
∂x

= −d log π(x|Dtrain)

dx
. (1.208)

where t is the time.

1.6.4.1 Leap frog integration

In HMC, Hamilton equations are discretized in the so-called Euler-Maruyama scheme,
or "leapfrog" integrator [Mao15]. Starting from some r0 and x0, and given a step size
h > 0 and a number of integration steps L, the discretized numerical scheme is the
following :

rn+ 1
2
= rn −

h
2

∂H
∂x

(xn) (1.209)

xn+1 = x + h
∂H
∂r

(rn+ 1
2
) (1.210)

rn+1 = rn+ 1
2
− h

2
∂H
∂x

(xn+1). (1.211)

The leapfrog integrator is symplectic, meaning it preserves the volume in the dual
space. However, though Hamilton equations include the conservation of the Hamil-
tonian H, the discretization loses this property. A corrective Metropolis-Hastings
step is added after the L integration steps of the leapfrog integrator. Standard HMC
is summarized in algorithm 2. Integrating along the trajectories allows to sample
points that are well decorrelated while maintaining a very high acceptance rate in
the Metropolis-Hastings step. HMC also remains very efficient in high-dimensional
space. However, the main drawback is the manual tuning required to reach such
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Algorithm 2: Hamiltonian Monte Carlo
Result: Sampling of the target posterior distribution π(x|y)
Initialize: Starting point x(0), chain length K, number of leapfrog integration
steps L and stepsize h;

while k < K do
Sample momentum variables r0 ∼ N (0, I);
Set x0 = x(k);
Evaluate the Hamiltonian H0 = H(x0, r0);
for n = 0 to L − 1 do

rn+ 1
2
= rn − h

2
∂H
∂x (xn);

xn+1 = x + h ∂H
∂r (rn+ 1

2
);

rn+1 = rn+ 1
2
− h

2
∂H
∂x (xn+1);

Set x̂ = xL and r̂ = rL and evaluate Ĥ = H(x̂, r̂) ;
Sample u ∼ U (0, 1) ;
if u ≤ min{1, exp(H0 − Ĥ)} then

Accept the candidate point x̂ and set x(k+1) = x̂;
else

Reject the candidate point x̂ and set x(k+1) = x(k);

high performance. Both the stepsize h and the number of leapfrog integration steps L
need to be tuned precisely to provide high performance.

1.6.4.2 No-U-Turn Sampler

To overcome this difficulty, the No-U-Turn-Sampler (NUTS) variant of HMC was
introduced in [HG+14]. NUTS-HMC automatically tunes the number of integration
steps and provides an adaptive scheme for the stepsize.

The description provided here is only succinct. The idea of the NUTS sampler is to
start from the initial point (x, r) and build a binary tree. In the first stage, one leapfrog
step is performed, randomly forward or backward (with the same probability). Then,
two forward or backward steps are taken, then four, and so on. The process builds a
binary tree that explores the Hamiltonian trajectory. The trajectory can be explored
backward in time or forward to ensure time reversibility, which is necessary to
guarantee the convergence of HMC toward the target distribution. The doubling
process can also be interrupted if the Hamiltonian of the candidate point becomes
too large compared to the current Hamiltonian.

1.6.4.3 Adaptive choice of path length

NUTS mainly addresses the problem of choosing the number of integration steps
in the leapfrog scheme. A variant has also been introduced to adaptively tune the
choice of step size.

The method is derived from Nesterov’s primal-dual method for accelerated optimiza-
tion of convex functions [Nes09]. The optimal step size is chosen to reach an optimal
acceptance probability which was proven to be around 0.65 [Bes+13]. This method is
known as dual averaging.
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1.6.4.4 Adaptive choice of mass matrix

The choice of the mass matrix M can impact the performance of the HMC (and NUTS)
sampling. Let us first explain the meaning behind the mass matrix. If we consider the
Cholesky decomposition M−1 = LT L, and introduce r̃ = Lr and x̃ = L−1x, Hamilton
equations then translate to:

dx̃
dt

= r̃ (1.212)

dr̃
dt

= −d log π(x̃|Dtrain)

dx̃
(1.213)

which corresponds to Hamilton equations with identity mass matrix, in the new
phase space (x̃, r̃). The mass matrix then effectively reshapes the parameter space.

HMC has proven to perform excellent results on standard normal target distributions,
even in very high dimensions. One idea is thus to reshape the target distribution to
effectively standardize it. The natural choice of the mass matrix is thus to choose:

M−1 = E
[
(X − E[X])(X − E[X])T

]
(1.214)

with X ∼ π.

Of course, customarily the target distribution is not Gaussian and cannot be reshaped
as a standard normal distribution. However, this choice of mass matrix still improves
the overall performance of HMC-NUTS. Likewise, it is possible to take a mass matrix
M(x) dependent on the phase space position. This changes the Hamilton equations
and the numerical integration scheme by adding a second term in ∂H

∂x . This variant is
known as Riemannian HMC [GC11].

1.6.4.5 Ergodicity

The ergodicity of HMC methods is not trivially established. The ergodic convergence
of HMC-NUTS has been studied extensively in [Dur+23]. This work is the foundation
for the following results.

Proposition 1.6.7. We introduce the stepsize h ∈ R+ in the HMC-NUTS procedure, and
the maximum tree size Km ∈ N. The mass matrix is denoted by M. If the potential energy,
denoted by U(x) for x ∈ X where X is a compact set, verifies the following assumptions:

• For any x, x′ ∈ X , there exists a constant L ∈ R+ such that:

∥M−1∇U(x)− M−1∇U(x′)| ≤ L∥x − x′∥. (1.215)

• The stepsize and the maximum tree size verify the inequality:(
1 + hL1/2 +

1
2
(hL1/2)2 +

1
4
(hL1/2)3

)2Km

− 1 <
1
4

. (1.216)

Then the Markov chain generated by HMC-NUTS is geometrically ergodic and verifies the
Markov chain CLT.

Proof. We are relying on Theorem 16 from [Dur+23]. The hypothesis H1 corresponds
to the first assumption in this proposition.
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To verify H5(h, Km) from [Dur+23], we rely on proposition 10 which states that
H5(h, Km) can be reached with H1 and H2(h, Km). The second assumption in our
proposition corresponds to H2(h, Km). Thus with our two assumptions, we are in the
conditions of Theorem 16. The HMC-NUTS kernel is thus Va-uniformly geometrically
ergodic for some a > 0 where Va = exp(a|x|), meaning that there exists 0 < ρ < 1
and C > 0 such that for any x ∈ X :

∥Pn(x, ·)− π∥Va ≤ CρnVa(x). (1.217)

Since X is a compact set, Va is bounded on X and thus there exists C′ > 0 such that:

∥Pn(x, ·)− π∥Va ≤ C′ρn. (1.218)

Finally, since Va is positive and bounded there exists 0 ≤ C− ≤ C+ such that for any
measure ν:

C−∥ν∥ ≤ ∥ν∥Va ≤ C+∥ν∥ (1.219)

which is enough to conclude that HMC-NUTS is uniformly ergodic.

HMC-NUTS has already been proven to be efficient in an extensive number of
numerical cases. This result, however, provides a theoretical justification for these
empirical works. In the rest of this thesis, we will not further develop the convergence
property of HMC and MCMC in general as this is not the main focus of this work.

1.7 On optimization problems

The main optimization algorithms used in this thesis are described in this section.
Consider a function

f : X −→ R

x 7−→ f (x)

where X ⊂ Rp. This function is assumed to be at least C1 on the domain X . The
objective is to find the global minimum x∗ of the function:

x∗ ∈ argminx∈X f (x). (1.220)

1.7.1 Newton and pseudo-Newton methods

One of the earliest and simplest optimization methods is Newton’s method. It is based
on the assumption that f ∈ C2(X ). In the vicinity of a given point x, the second-order
Taylor expansion is given by f (x + t) = f (x) +∇ f (x) · t + 1

2 tTH(x)t + o(t2) where
∇ f (x) is the gradient of f at point x, H(x) ∈ Rp×p is the Hessian matrix of f at point
x given by H(x)i,j =

∂ f
∂xi∂xj

(x) for 1 ≤ i, j ≤ p, and a · b is the standard Euclidean
scalar product. The Newton’s method works as follows. Consider an initial point
x0 ∈ X and then iteratively select the next point xk+1 ∈ X for k ≥ 0 to minimize the
second-order Taylor expansion. In practice, the new point xk+1 is given by:

xk+1 = xk − H(x)−1∇ f (x). (1.221)
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This method has numerous drawbacks. For example, it may converge only to saddle
points and require the function to be strongly convex to guarantee the convergence
toward a minimum. Besides, the Hessian of the function needs to be available and
invertible. Even when the Hessian is invertible, it still has a complexity of O(p3)
because of the matrix inversion.

To cope with these caveats, a wide range of methods have been derived from New-
ton’s method. They are referred to as quasi-Newton methods in the literature. Most
quasi-Newton methods are based on an approximate computation of the Hessian
matrix, either to reduce the computation time or because it is unavailable (or both). As
an example, let us describe the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
[Bro70; Fle70; Gol70; Sha70] which is extensively utilized in this thesis.

The algorithm starts with an initial point x0 and an initial Hessian approximation
H0. Then at each iteration, we first solve the system Hkdk = −∇ f (xk) to obtain the
direction of descent dk. Then, the magnitude lk of the step in direction dk is evaluated.
This is done by solving the one dimensional optimization lk = argminl∈R+ f (xk + ldk).
The new point is then given by xk+1 = xk + lkdk. Finally, a new estimation is computed
with the approximation:

gk = ∇ f (xk+1)−∇ f (xk) (1.222)

Hk+1 = Hk +
1

lkgT
k dk

gkgT
k − 1

dT
k Hkdk

HkdkdT
k HT

k . (1.223)

The algorithm is iterated until the gradient norm is below an arbitrary threshold η.
The BFGS algorithm also offers an easier computation of the Hessian inverses as
they can be obtained iteratively from equation (1.223) with the Sherman-Morrison
formula.

Many other methods have been developed and we will not mention them all here.
One of the main algorithms utilized in this thesis is derived from the BFGS algorithm
and is known as the Limited Memory BFSG (L-BFGS) [LN89; Byr+95] which relies
on an approximate resolution of the system Hkdk = −∇ f (xk) which is less memory
intensive and thus especially useful in higher dimensions. For this reason, this algo-
rithm is vastly used in the optimization step when training large machine-learning
models. Many more optimization techniques are found in the literature such as
conjugate gradient methods or the Levenberg-Marquardt algorithm. For more details
on the subject, the author refers to more complete work such as [Fle00; Wri06].

1.7.2 Simulated annealing and dual annealing

In this section, the focus is on the simulated annealing and dual annealing algorithms.
These two methods are tackled in detail in [VL+87] and [Xia+97]. They are stochastic
approaches designed for constrained and unconstrained global optimization of the
function f .

Let us first introduce simulated annealing. The principle of simulated annealing is to
explore randomly the domain, first by favoring exploration and then gradually shift-
ing the focus on optimization. The trade-off between exploration and optimization is
governed by a temperature parameter T, which is analogous to the temperature of a
system in Boltzmann distribution, which has the form p(E) ∝ exp

(
− E

kbT

)
. The sys-

tem wants to minimize the energy E but the temperature induces stochastic motions
allowing it to move around the global minimum. Simulated annealing is an iterative
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procedure in which the temperature parameter T starts high and gradually decreases
to reach the global minimum.

More formally, we consider a starting point x0 ∈ X . At each iteration n, a candidate
point x̂ is proposed. This candidate is accepted with probability pn(x̂) given by:

pn(x̂) = min
{

1, exp
(

f (xn)− f (x̂)
Tn

)}
(1.224)

where Tn is the current temperature.

The two main ingredients are the choice of the candidate point and the temperature
scheme. The choice of temperature evolution also has a crucial impact on the per-
formance of the algorithm and also on its guarantee of convergence. The choice of
a log-decreasing temperature such as Tn = C

log n can provide a guarantee that the
Markov chain reaches a neighborhood of the set of minima of the function f [Loc00;
BJS86]. That is, for any ε > 0, we have:

lim
n→+∞

P (xn ∈ Bε( f )) = 1 (1.225)

Bε( f ) =
{

x ∈ X s.t. f (x) ≤ min
x∈X

f (x) + ε.
}

(1.226)

The candidate point x̂ is chosen with a so-called proposal distribution Q(Xn, ·) which
can be for example Gaussian Q(x, y) = |2πΣ|−1/2 exp

(
− 1

2 (xn − y)TΣ−1(xn − y)
)

with some covariance matrix Σ. The choice of the proposal distribution can impact
the performance of the method. The most common approach is to use a Gaussian
distribution with a covariance proportional to the identity, in which case the algorithm
is known as Classical Simulated Annealing (CSA). This work utilizes the simulated
annealing from the scipy module, which uses a distorted Cauchy distribution. This
variant was introduced as Fast Simulated Annealing (FSA) in [SH87].

A generalized approach to CSA and FSA, introduced as dual annealing, is used in
scipy. This algorithm uses the FSA proposal distribution conjointly with an altered
acceptance probability [TS96]. This method has proven more efficient than CSA and
FSA in numerous cases.

1.8 Conclusion

This chapter introduces the general mathematical background and applicative con-
text underpinning the research conducted within this thesis. It states the critical role
of neutron multiplicity counting, in conjunction with gamma spectroscopy, as the
gold standard experimental technique for assessing unknown nuclear materials. The
nuclear security strategy thus requires a robust foundation of the underlying nu-
merical and mathematical methods for real-time field responses and comprehensive
experimental analysis. The main difficulty emerging is the resolution of an ill-posed
inverse problem, which depends on very noisy observations of temporal correlations
between fission-induced neutrons. The uncertainty quantification in this inverse
problem resolution is necessary to guarantee the robustness and reliability of the
nuclear safeguards strategy. This defines the overarching goal of this thesis.

How can one provide a fast and reliable uncertainty quantification methodology
for the inverse problem resolution in neutron multiplicity counting?
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An intuitive first response is to direct our effort toward a Bayesian resolution of the
inverse problem. This is the primary goal in the following chapters, though it comes
with secondary challenges.

Throughout this thesis, we strive to build surrogate models tailored for implemen-
tation within a Bayesian framework for resolving the inverse problem. The various
theoretical developments and numerical experiments conducted in this thesis are
presented in detail in the subsequent chapters. Each chapter delineates a distinct
contribution, prefaced by a theoretical exposition of the current state-of-the-art and
foundational concepts specific to the subject tackled.
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Chapter 2

Gaussian process surrogate
modeling

This chapter develops the work conducted to build efficient Gaussian process sur-
rogate models to solve the inverse problem posed by the observations of noisy
measurements of neutron correlations. Our goal is to use such models as emulators
of the direct model in the Bayesian resolution.

We begin with a theoretical introduction to Gaussian processes which were willingly
set aside in the previous chapter. Then, we focus on the motivation for GP surrogates
before diving into the database creation and the training of the various models.
Finally, we solve two inverse problems using the GP surrogates built in this chapter.

2.1 Theoretical overview

We start this chapter with a general introduction to Gaussian processes (GPs). Begin-
ning with the basics for scalar GP regression, we then focus on multi-output GPs. We
also discuss the sparse approximations that may be used for high-dimensional GP
models. The following theoretical overview is mainly based on [RW+06; Gra20].

2.1.1 Scalar Gaussian processes

2.1.1.1 Introductory concepts

Definition 2.1.1. A Gaussian process f is a stochastic process f : X × Ω −→ R such
that for any finite subset (x1, ..., xn) ∈ X n with n ≥ 1, the random vector f (x) =
( f (x1), ..., f (xn))T follows a multivariate normal distribution.
The distribution of a Gaussian process is completely determined by its mean function
m : X −→ R and its covariance function k : X ×X −→ R.
If f is a Gaussian process with mean function m and covariance function k, it is denoted by:

f ∼ GP
(
m(x), k(x, x′)

)
. (2.1)

Let x = (x1, ..., xn) ∈ X n. The distribution of f (x) is given by:

f (x) ∼ N (m(x), K(x)) (2.2)

where m(x) is the column vector defined by m(x) = (m(x1), ..., m(xn))T and K(x) is the
positive semi-definite matrix with elements k(xi, xj) for 1 ≤ i, j ≤ n.
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The Gaussian process formalizes the concept of probability distributions over func-
tions.

Unless stated otherwise, the input space throughout this chapter is X ⊂ Rp for p ≥ 1.
In everything that follows, we set a probability space (Ω,F , P).

Definition 2.1.2. Let f ∼ GP (m(x), k(x, x′)), for some mean and covariance functions.
For any element ω of the sample space Ω, the function fω defined by:

fω : X −→ R

x 7−→ f (x, ω)

is called a realization of the Gaussian process f .

2.1.1.2 Covariance kernels

The covariance function k (also known as the covariance kernel) defines the regularity
of the functions sampled from the Gaussian process. Different families of covariance
functions exist and are used depending on the expected shape and properties of the
function to be learned. A common choice is to use a stationary covariance function.

Definition 2.1.3. A covariance function is said to be stationary if it only depends on x − x′.
Furthermore, a stationary covariance function is said isotropic if it only depends on ∥x − x′∥
where ∥ · ∥ is the Euclidean norm on Rp. The notation r = ∥x − x′∥ is introduced in that
case.

We can extend continuity and differentiability to stochastic processes to study the
influence of covariance kernels on the regularity of the sampled functions. What
follows is taken mostly from [Adl10].

Definition 2.1.4 (Mean-square continuity). The Gaussian process f is said to be mean-
square continuous at x ∈ X if for any sequence (xk)k∈N such that ∥xk − x∥ −−−→

k→+∞
0, we

have E
[
| f (xk)− f (x)|2

]
−−−→
k→+∞

0. If f is mean-square continuous for every x ∈ X , it is

said to be mean-square continuous on X .

Definition 2.1.5 (Mean-square differentiability). Let f ∼ GP (m(x), k(x, x′)). Let
(ei)1≤i≤p be a basis of Rp and h > 0. For any x ∈ X , f is said to be mean-square
differentiable at x if for all 1 ≤ i ≤ p, the limit in mean-square of ∆ f (hei) exists for h → 0+

where:

∆ f (hei) =
f (x + hei)− f (x)

h
. (2.3)

In that case, the mean-square derivative of f at x is defined as:

∂ f
∂x

=

(
∂ f
∂x1

, ...,
∂ f
∂xp

)
(2.4)

where ∂ f
∂xi

= lim(m.s.)
h→0+ ∆ f (hei) is the mean-square limit of ∆ f (hei) when h → 0+.

If f is mean-square differentiable for every x ∈ X , it is simply said to be mean-square
differentiable on X .
The definition is extended to higher-order derivatives in the same manner as traditional
derivatives.
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The concept of mean-square continuity and differentiability extends the basic no-
tions of continuity and differentiability to stochastic processes. The continuity and
differentiability can directly be inferred from the covariance function.

Proposition 2.1.1. Let f ∼ GP (m(x), k(x, x′)) be a Gaussian process. If k is continuous
on X ×X , then f is mean-square continuous on X . Besides, if k is 2j times differentiable for
j ≥ 1, then f is j times mean-square differentiable.

Let us now provide examples of standard covariance kernels for regression tasks.

Definition 2.1.6. The isotropic squared exponential covariance function kSE, with variance
σ2 > 0 and correlation length l > 0, is a stationary isotropic covariance function defined for
r ≥ 0 by :

kSE(r) = σ2 exp
(
− r2

2l2

)
. (2.5)

The correlation length is the same for all dimensions here. The squared-exponential covariance
function is also known as the Radial Basis Function (RBF) kernel.

Definition 2.1.7. The anisotropic squared exponential covariance function kSE,an is a sta-
tionary covariance function defined for x, x′ ∈ X by :

kSE,an(x, x′) = σ2
p

∏
i=1

exp
(
−
(xi − x′i)

2

2l2
i

)
(2.6)

where li > 0 is the correlation length associated to the i-th input dimension, for 1 ≤ i ≤ p.
The correlation lengths are different for each input dimension which may allow more flexibility
at the cost of more hyperparameters.

Squared exponential covariance functions are infinitely differentiable. As a result,
the corresponding Gaussian processes produce smooth realizations. The Gaussian
process is infinitely mean-square differentiable. These covariance kernels are widely
used in the field of Gaussian process modeling. However, the realizations of a GP
with a squared exponential kernel may be too smooth, which in turn may hinder its
predictive capabilities [Ste12]. In that regard, Matérn kernels may offer an alternative.

Definition 2.1.8. The Matérn class of stationary isotropic covariance functions kMat,ν is
defined for r ≥ 0 by :

kMat,ν(r) = σ2 21−ν

Γ(ν)

(√
2νr
l

)ν

Kν

(√
2νr
l

)
(2.7)

where Kν is the modified Bessel function and Γ is the gamma function.
Similarly, for x, x′ ∈ X , one can define an anisotropic variant of the Matérn kernel:

kMat,ν,an(x, x′) = σ2 21−ν

Γ(ν)

p

∏
i=1

(√
2ν|xi − x′i |

li

)ν

Kν

(√
2ν|xi − x′i |

li

)
. (2.8)

The Matérn functions are a broad class of covariance functions parametrized by ν
which defines the regularity of the covariance kernel. When ν −→ +∞, the covariance
function approaches the squared exponential.

lim
ν→+∞

kMat,ν(r) = kSE(r) ∀r ∈ R+. (2.9)
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Proposition 2.1.2. A Gaussian process with covariance function kMat,ν or kMat,ν,an is j times
mean-square differentiable for j < ν. The larger ν, the smoother the Gaussian process.

Proposition 2.1.3. The Matérn covariances can be expressed as a product of an exponential
and a polynomial of order p for ν = p + 1/2.

kMat,p+1/2(r) = σ2 exp

(
−
√

2νr
l

)
Γ(p + 1)

Γ(2p + 1)

p

∑
i=0

(p + i)!
i!(p − i)!

(√
8νr
l

)p−i

. (2.10)

Because Matérn kernels can be simplified for half-integer, they are most used with
half-integer values of ν.

This work mainly focused on Matérn and squared exponential covariances, though
building well-suited covariance kernels is a vast field of research. The author refers
to [RW+06] for more examples of covariance kernels.

To illustrate the regularity of the Matérn and Squared Exponential covariance kernels,
Figure 2.1 displays sampled functions from Gaussian processes with zero-mean
function and various covariance functions. This figure shows that a lower ν leads to

FIGURE 2.1: Random realizations of a Gaussian process prior with
zero-mean and various covariance kernels.

sampled functions with more erratic behavior, while a larger ν produces smoother
realizations.

2.1.1.3 Predictive distributions

Let us consider a zero-mean Gaussian process f ∼ GP (0, k(x, x′)) for some covari-
ance function k and some training inputs X = (X1, ..., Xn)T ∈ X n and their associated
outputs f = ( f1, ..., fn)T ∈ Rn, for n ≥ 1. Similarly, let X∗ ∈ X n∗ be n∗ test inputs
for n∗ ≥ 1. Our task is to provide predictions for the yet-unknown outputs f∗. We
assume that they are modeled by the GP prior f such that f∗ = f (X∗). The results
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presented hereafter extend to GP with a non-zero mean function, but we impose the
zero-mean condition for simplicity’s sake.

Assuming a Gaussian process model for the observations, the GP model provides a
joint distribution for f (X, X∗):

f (X, X∗) =

(
f (X)
f (X∗)

)
∼ N

(
0,
(

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

))
. (2.11)

To obtain a predictive distribution, we condition this joint distribution by the knowl-
edge of f which are observations of the random variable f (X). For that purpose, we
make use of the Gaussian conditioning theorem.

Theorem 2.1.1. Let X and Y be Gaussian vectors such that :(
X
Y

)
∼ N

((
µX
µY

)(
KX KXY

KT
XY KY

))
. (2.12)

Then the conditional law Y|X has a Gaussian distribution given by :

Y|X ∼ N (µC, KC) (2.13)

with µC = µY + KT
XYK−1

X (f − µX) and KC = KY − KT
XYK−1

X KXY.

Based on this theorem, the predictive distribution for the outputs f∗ given X, X∗ and f
is :

f∗|f, X, X∗ ∼ N (µC, KC)

µC = K(X, X∗)
TK(X, X)−1f

KC = K(X∗, X∗)− K(X, X∗)
TK(X, X)−1K(X, X∗).

(2.14)

This conditional distribution provides a way to predict the mean outputs from given
input points X∗ and the corresponding variances. The main interest of Gaussian
process regression for our application is its ability to quantify the uncertainty of the
predictions.

For most situations, the available outputs, denoted by Y, often display noisy values
such that Y = f + ε with ε ∼ N (0, σ2In). In refers to the identity matrix of size n.
The noise is assumed Gaussian independent and identically distributed. Under the
GP model, the covariance function for the outputs Y is now given by:

Cov(Yp, Yq) = k(xp, xq) + σ2δp,q (2.15)

for 1 ≤ p, q ≤ n, where δ is the Kronecker symbol. Thus equation (2.14) holds if
K(X, X) is replaced by K(X, X) + σ2In. The noise parameter σ2 is known as the nugget
noise and helps in regularizing the GP predictions and avoiding overfitting.

2.1.1.4 Hyperparameter selection

A Gaussian process has to be trained to provide reasonable predictions for regression
or classification problems. The training phase involves optimizing the choice of the
hyperparameters in the covariance kernel based on the training data.

The common practice for selecting the hyperparameters is to find the values that
maximize the marginal likelihood p(Y|X). The marginal likelihood refers to the
probability of the measures Y, integrated over the latent functional space defined by
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the GP model. It is defined by :

p(Y|X) =
∫

Rn
p(Y|f, X)p(f|X)df (2.16)

where f|X ∼ N (0, K(X, X)) are the latent function values whose distribution is given
by the GP prior and Y|f ∼ N (f, σ2In), since we assume Gaussian likelihood. The
log-marginal likelihood is thus given by :

log p(Y|X) = −1
2

YTK−1
σ Y − 1

2
log |Kσ| −

n
2

log(2π) (2.17)

with Kσ = K(X, X) + σ2In, and |Kσ| being the determinant of the matrix Kσ.

The log-marginal likelihood can be optimized with standard optimization algorithms.
In this work, the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
for bound constraint (also known as L-BFGS-B) is used [Byr+95]. The optimization
algorithm is restarted 10 times with different initial hyperparameter values. The
optimal set of hyperparameters chosen is the one that provides the highest log-
marginal likelihood of the 10 iterations. This approach reduces the risk of being stuck
in a local optimum. Once the optimal set of hyperparameters is found, predictions
can be made using equations (2.14).

Another commonly used approach for hyperparameter selection is the leave-one-out
(LOO) cross-validation. The general idea is to train using the whole dataset except
the training point i for 1 ≤ i ≤ n. Similarly to the standard case, one can compute
a log-marginal likelihood. We denote by Y−i = (Y1, ..., Yi−1, Yi+1, ..., Yn) the set of all
training outputs except Yi and similarly we define X−i as the set of all training inputs
except Xi. Then the log-probability of the training output Yi is known and summing
over all i gives the LOO predictive error:

LCV(X, Y) =
N

∑
i=1

log p(Yi|X−i, Y−i). (2.18)

This expression can be computed analytically and maximizing it with regard to the
kernel hyperparameters yields a second criterion for hyperparameter selection. The
computational burden for LOO-CV can be reduced, as most of the covariance matrices
in the previous expression can be obtained from the covariance K(X, X). Overall both
the marginal likelihood and the LOO-CV have a similar computational budget. It
has been argued that LOO-CV could be more robust in cases where the model is
misspecified (see for example [Wah90]).

2.1.2 Multi-output Gaussian processes

In this section, we are extending the framework of GP surrogate models to higher
output dimensions. This extension is not straightforward as we must keep a positive
definite covariance structure for the global multi-output predictor. We present several
methods to build such a multi-output GP (MOGP).

Once again, we consider some training inputs X = (X1, ..., Xn)T ∈ Rn×p where
Xi ∈ X ⊂ Rp for 1 ≤ i ≤ n. The associated noisy training outputs are denoted by
Y = (Y1, ..., Yn)T ∈ Rn×D, where Yi = (Yi,j)1≤j≤D ∈ RD for 1 ≤ i ≤ n and D ≥ 2.
Our objective is to build a GP surrogate model fs such that for any input x ∈ X , the
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surrogate provides a predictive distribution in the form of :

fs(x) ∼ N
(

fs(x), Cs(x)
)

(2.19)

where fs(x) ∈ RD and Cs(x) ∈ S+
D(R), with S+

D(R) is the set of real-valued positive-
definite matrices of size D.

2.1.2.1 Naive approach

When building multi-output Gaussian process surrogate models, a simple proce-
dure is to build one GP for each output channel. One can merge them to obtain a
multi-output predictor yielding a diagonal predictive covariance, where the diagonal
elements are the predictive variances of the individual scalar GPs.

Consider D independent scalar GP surrogate models f (j)
s for 1 ≤ j ≤ D. The training

data associated to the surrogate f (j)
s is (X, Y·,j) where Y·,j = (Y1,j, ..., Yn,j)

T ∈ Rn. For
any input x ∈ X , the scalar GPs provide a predictive distribution:

f (j)
s (x) ∼ N

(
f (j)
s (x), σ2

j (x)
)

. (2.20)

A multi-output GP surrogate model can then be built by aggregating the prediction
of the individual scalar GPs such that:

fs(x) =
(

f (1)s (x), ..., f (D)
s (x)

)T

(2.21)

Cs(x) = diag
(
σ2

1 (x), ..., σ2
D(x)

)
. (2.22)

The main drawback of this method is clear: the correlations between the output
channels are lost in the process.

2.1.2.2 Linear Model of Coregionalization

One possible method to account for correlations across outputs is to create inde-
pendent scalar GPs and mix them afterward with a transition matrix. This is the
premise of the Linear Model of Coregionalization (LMC) [BCW07]. This method
allows correlations between the output channels while maintaining a positive definite
covariance structure. A brief description of this approach is presented in the next
paragraphs.

Let us consider Q ≥ 1 independent scalar GPs (uq)1≤q≤Q. For simplicity’s sake, only
zero-mean processes are considered:

uq ∼ GP
(
0, kq(x, x′)

)
. (2.23)

These are called latent Gaussian processes. Now let us consider a real mixing matrix
W ∈ RD×Q, whose elements are denoted by wjq for 1 ≤ q ≤ D and 1 ≤ q ≤ Q. Let

f (i)s be a scalar GP corresponding to the channel i for 1 ≤ j ≤ D, which we define for
x ∈ X by the relation:

f (j)
s (x) =

Q

∑
q=1

wjquq(x). (2.24)
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With this definition, the flattened output vector follows a multivariate normal distri-
bution.

f (1)s (X1)

...
f (1)s (Xn)

...
f (D)
s (X1)

...
f (D)
s (Xn)


∼ N

0,
Q

∑
q=1

w1qw1qKq(X) . . . w1qwDqKq(X)
...

. . .
...

wDqw1qKq(X) . . . wDqwDqKq(X)




where Kq(X) =
(
kq(Xi, Xj)

)
1≤i,j≤n is the covariance matrix of the inputs X = (Xi)1≤i≤n

for the covariance kernel kq. We may also write the full covariance matrix using the
Kronecker product ⊗.

Definition 2.1.9 (Kronecker product). Let A =∈ Rm×n and B ∈ Rp×q two real matrices.
The Kronecker product is the block matrix C = A ⊗ B ∈ Rpm×qn defined by :

C = A ⊗ B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (2.25)

where the aij are the elements of A for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

With this notation, the full covariance matrix can be written as:

KLMC(X, X) =
Q

∑
q=1

W·,qWT
·,q ⊗ Kq(X) (2.26)

where W·,q is the column vector formed by the q-th column of W.
From here, the standard methods from GP regression apply. In particular, the mix-
ing matrix W is considered a hyperparameter and is optimized by maximizing the
log-marginal likelihood. Its diagonal elements are set to one since they would be
redundant with the variance hyperparameters in kq.

With this method, it is possible to effectively build a multi-output Gaussian process
that accounts for correlations between the outputs. In the next section, we investigate
another approach based on convolved Gaussian processes.

2.1.2.3 Convolved GPs

Convolved Gaussian Processes [AL11] are built similarly to LMC models. For x ∈ X ,
the output for the channel 1 ≤ j ≤ D is built by the following relation:

f (j)
s (x) =

Q

∑
q=1

∫
Gj,q(x − z)uq(z)dz. (2.27)

The functions Gj,q represent filters in the convolution kernel. Let Gj,q is a Gaussian
filter with covariance P−1

j , a positive definite matrix. Then the density Gj,q(x) is the
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density of a Gaussian random variable N (0, P−1
j ) calculated at x with a multiplicative

constant Sj,q. Let kq be the squared exponential covariance function described in
Section 2.1.1.2, with variance Vq and inverse correlation lengths given by the diagonal
matrix Λq such that for x, x′ ∈ X :

kq(x, x′) = Vq exp
(
−1

2
(x − x′)TΛq(x − x′)

)
. (2.28)

The convolution product in (2.27) becomes tractable. Given some inputs x, x′ ∈ X
and 1 ≤ j, k ≤ D, the covariance between the channel outputs j and k is given by:

Cov( f (j)
s (x), f (k)s (x′)) =

Q

∑
q=1

Sj,qSk,qVq

(2π)p/2|Cq,j,k|1/2 exp
(
−1

2
(x − x′)TC−1

q,j,k(x − x′)
)
(2.29)

with Cq,j,k = P−1
j + P−1

k + Λ−1
q . One may write the full covariance matrix between

two inputs x, x′ ∈ X as:

KConv(x, x′) =
Q

∑
q=1

Vq

 S1,qS1,qK1,1,q(x, x′) . . . SD,qS1,qK1,D,q(x, x′)
...

. . .
...

SD,qS1,qKD,1,q(x, x′) . . . SD,qSD,qKD,D,q(x, x′)

 (2.30)

where Kj,k,q is given by :

Kj,k,q(x, x′) = (2π)−p/2|Cq,j,k|−1/2 exp
(
−1

2
(x − x′)TC−1

q,j,k(x − x′)
)

. (2.31)

If the matrices Pj are chosen diagonal, Kj,k,q can be understood as an equivalent RBF
kernel with correlation lengths given by the matrix Cq,j,k.
This covariance can also be seen as a sum of Kronecker products. Let us define
Sq = (Sj,q)1≤j≤D ∈ RD and Aq = SqST

q ∈ RD×D. For 1 ≤ q ≤ Q and 1 ≤ j, k ≤ D,
let Kj,k,q(X) be the matrix whose elements are Kj,k,q(Xr, Xs) as given in (2.31), for
1 ≤ r, s ≤ n. Then the covariance matrix over the whole training set is given by:

KConv(X) =
Q

∑
q=1

Vq

 S1,qS1,qK1,1,q(X) . . . SD,qS1,qK1,D,q(X)
...

. . .
...

SD,qS1,qKD,1,q(X) . . . SD,qSD,qKD,D,q(X)

 (2.32)

On top of this, a nugget noise may be added to account for noise in the measurements.

For convolved Gaussian processes, the number of hyperparameters to optimize is
much larger than for independent processes since the coefficients of the matrices
Pj, Λq and the scalar Sj,q have to be learned. The Gaussian filters are chosen with
diagonal covariance matrices Pj to ease the training process. This drastically reduces
the number of hyperparameters, and the Gaussian processes remain flexible enough
to account for correlations and to provide mean and covariance predictions.
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2.1.3 Sparse approximations

Gaussian process surrogate models provide a flexible and easily implemented frame-
work for non-linear regression, all the while having a native uncertainty quantifi-
cation method. However, they suffer from a large computational complexity for
large datasets due to the O(n3) complexity of the inverse covariance computation.
In a multi-output framework with D dimensions, this complexity even increases
to O(D3n3). To deal with this issue, numerous sparse approximations have been
considered. Hereafter, we introduce the method developed in [Tit09]. In this section,
we focus on scalar GPs to alleviate the notation, but the framework is easily extended
to multi-output cases.

For the most part, sparse methods aim at approximating the covariance matrix by
a lower rank approximation, which reduces the cost of the inversion. The approxi-
mations are based on inducing points which serve as intermediate points between
training and test points. In sparse GP methods, the predictive distribution is obtained
by conditioning on the inducing points instead of the true training points. One can
think of inducing points as a way to summarize the information brought by the
training data. The development of accelerated GP inference with sparse methods is
not new and various approaches have been introduced throughout the years, such
as [SB00; SG05; SWL03]. The general principle however remains the same and is
described hereafter.

Using the notations from Section 2.1.1, we know the predictive distribution p(f∗|X, f, X∗)
is obtained by conditioning the joint distribution p(f∗, f) by (X, f). Similarly, one can
introduce m ≥ 1 latent variables (Xm, fm) and obtain a predictive distribution by
marginalizing out the latent variables. To alleviate the notations, we remove X, X∗ in
the notation of the conditional distributions.

p(f∗|Y) =
∫

p(f∗|fm, f)p(f|fm, y)p(fm|y)dfdfm. (2.33)

Generally, sparse GP approximations are composed of two steps. First of all, we make
the assumption that f∗ and f are independent given fm which implies that p(f∗|fm, f) ≃
p(f∗|fm). All the information between training and predictive distribution transitions
by the inducing points.

Then, we approximate the distribution p(fm|y) by a variational distribution ϕ(fm).
The predictive distribution thus reduces to:

p(f∗|Y) ≃ q(f∗) =
∫

p(f∗|fm)ϕ(fm)dfm (2.34)

where ϕ(fm) ∼ N (µ, Σ).
Introducing the notations Km,m = K(Xm), K∗,∗ = K(X∗) and K∗,m = KT

m,∗ = K(X∗, Xm)
one can write the variational posterior as:

q(f∗) ∼ N
(

K∗,mK−1
m,mµ, K∗,∗ − K∗,mK−1

m,mKm,∗ + K∗,mK−1
m,mΣK−1

m,mKm,∗
)

. (2.35)

We also introduce Kn,n = K(X), Km,n = KT
n,m = K(Xm, X).

One key factor for the performance of sparse GPs is the location of the inducing
points. One may select them as a subset of the training data, though this method is
sub-optimal. In [Tit09], the inducing points optimal positions are learned, jointly with
the hyperparameters µ and Σ, by minimizing a lower bound on the Kullback-Leibler
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(KL) divergence [KL51] between the augmented variational posterior q(f, fm) and the
true augmented posterior p(f, fm|Y). The KL divergence is a standard dissimilarity
measure between two probability distributions. It is defined for two probability
distributions with density p and q by:

KL(p||q) =
∫
X

p(x) log
(

p(x)
q(x)

)
dx (2.36)

Using the relation p(f, fm|Y)p(Y) = p(f, fm, Y) we have:

KL (q(f, fm)∥p(f, fm|Y)) =
∫

q(f, fm) log
(

q(f, fm)p(Y)
p(f∗, fm, Y)

)
dfdfm

= log p(Y)−
∫

q(f, fm) log
(

p(f∗, fm, Y)
q(f, fm)

)
dfdfm. (2.37)

The second term on the right is the Evidence Lower Bound (ELBO), denoted by
FV(Xm, ϕ, σ2), where σ2 is the variance in the Gaussian likelihood p(Y|f). Minimizing
the KL w.r.t. ϕ (that is w.r.t. µ and Σ) and Xm is equivalent to maximizing the ELBO.
Using the relation q(f, fm) = ϕ(fm)p(f|fm), it can be written as:

FV(Xm, ϕ, σ2) =
∫

p(f|fm)ϕ(fm) log
(

p(Y|f)p(fm)

ϕ(fm)

)
dfdfm

=
∫

ϕ(fm) log
(

p(fm)Φ(Y, fm)

ϕ(fm)

)
dfm (2.38)

where Φ(Y, fm) = exp
(∫

p(f|fm) log p(Y|f)df
)
. We used the fact that p(Y|f, fm) =

p(Y|f). Finally, one can notice that:

FV(Xm, ϕ, σ2) = logZ − KL
(
ϕ(fm)∥ϕ′(fm)

)
(2.39)

where ϕ′ is the probability distribution whose density is given by ϕ′(fm) =
p(fm)Φ(y,fm)

Z
and Z =

∫
p(fm)Φ(y, fm)dfm is the normalization constant.

With a Gaussian likelihood with variance noise σ2, maximizing the ELBO yields
ϕ(fm) = ϕ′(fm) and:

FV(Xm, ϕ′, σ2) = logN
(

Y|0, σ2In + Kn,mK−1
m,mKm,n

)
− 1

2σ2 Tr
(

Kn,n − Kn,mK−1
m,mKm,n

)
(2.40)

where the notation N (x|µ, Σ) should be understood as the density at x of the distri-
bution N (µ, Σ).
As a final step, this expression can be maximized w.r.t. σ2 and Xm to obtain the optimal
nugget noise variance σ2 and inducing points location Xm. This sparse approximation,
commonly known as the sparse variational Gaussian process (SVGP) method, has
been extensively used since its first introduction. Yet, the optimal location of inducing
points is still a vivid field of research (see for example [UCJ21; Wu+21]). In this
thesis, sparse approximations are exclusively centered on SVGP. In cases where the
computational budget is sufficient, exact GP regression is used. However, we will see
that sparse GP may become necessary for some of the applications developed in this
thesis.
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2.2 Why use surrogate models?

In this section, we illustrate why surrogate models are needed for reliable uncertainty
quantification in inverse problem resolution. Let us consider a real-world problem of
a metallic plutonium sphere with an unknown composition. We would like to know
what is inside the material. The plutonium sphere is modeled with the Monte Carlo
code MCNP6 (see Section 1.4.8) to represent the BERP ball, which has been used in
numerous studies in neutron multiplicity counting. The simplified description of the
BERP ball is given in Section 2.5.2, and for a fully detailed description of the geometry
and material composition, we refer to Appendix A.

Let us consider some observations y = (y(k))1≤k≤N obtained from MCNP simulations,
with sequential binning estimators. We assume these observations are noisy with
a zero-mean Gaussian noise with covariance Cobs. The noise covariance can be
estimated using higher-order moments of the detection statistics or with a simple
empirical covariance estimator. More details are given in Section 2.3.2.2.
We model these observations with a simplified version of the point model fp, given
by equations (1.99), (1.100) and (1.101) and setting xs = 1 since we are considering a
spontaneous fission source in this case. We denote the simplified point model by:

fp : X −→ R3

(kp, εF, S) 7−→ (R, Y∞, X∞)

with X ⊂ R3. The direct model provides the link between inputs and observations
such that for 1 ≤ k ≤ N:

y(k) = fp(xtrue) + ε(k) with ε(k) ∼ N (0, Cobs) . (2.41)

We have a total of N = 20 observations available. As an example, five observations
are given in Table 2.1. We wish to solve the inverse problem by a Bayesian approach.

TABLE 2.1: Count rate and Feynman moment observations for the
copper-reflected BERP ball.

R Y∞ X∞

7319.7 0.389 0.424
7328.3 0.386 0.389
7308.4 0.395 0.410
7300.0 0.382 0.452
7381.8 0.418 0.514

The likelihood is Gaussian and analytical, and the prior is assumed to be uniform on
X = [0.7, 0.9]× [0.001, 0.05]× [1× 105, 2× 105]. The posterior distribution is sampled
by Metropolis-Hastings (with a Gaussian proposal with adaptive scaling factor) with
L = 2 × 106 samples. The autocorrelation and posterior distribution marginals are
displayed respectively in Figures 2.2 and 2.3.
These results highlight the main difficulty at stake in this inverse problem. One

can see that the true value lies outside of the support of the posterior distribution.
The posterior distribution that is obtained is not reliable. The reason is that we
assumed the observations followed the direct model fp. Since this model is only an
approximation, there may be a systematic bias between fp and the true direct model.
This bias is not considered in this approach.
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FIGURE 2.2: Autocorrelations of the MCMC samples.

FIGURE 2.3: 2D marginals of the posterior distribution with the direct
model fp.

We should also notice the peculiar shape of the posterior distribution here. The
support of the distribution is mainly in a one-dimensional manifold in the three-
dimensional space. As a result, the MCMC sampling is made more difficult since most
candidate points may be rejected if they are outside the support. This is highlighted
by the autocorrelation plot in Figure 2.2. One can see that the decorrelation time τ̂ is
significant with Metropolis-Hastings, with τ̂ ≃ 2 × 105, meaning that it takes around
2× 105 MCMC iterations to decorrelate two samples. The effective sample size is thus
Leff ≃ 10 in that case which is not sufficient. This is why Metropolis-Hastings is not
well-suited for the exploration and sampling of such posterior distributions, and other
methods will be explored (see sections 2.5.3.1 and 2.5.3.2 for example). Keep in mind
that our goal is to provide posterior distributions that quantify uncertainties from
both the model and the observations. Therefore, we may expect the distributions to
be broader, and thus the sampling could be somewhat easier in our next applications.
However, this could very well be counterbalanced by the higher dimension of our
input space X in the next applications (see Section 2.3.1).

We now move on to the data collection process, which is the first mandatory step for
building the needed surrogate models.

2.3 Collecting the data

In this section, the method used to build datasets for neutron correlations in zero-
power systems is described in detail. In this work, two neutron datasets were used.
The first is based on simulations of metallic plutonium spherical objects and the
second is built upon simulation results from cylindrical objects with liquid uranyl
nitrate.
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In the first paragraphs, let us describe the inputs used to extend the point model
framework and how they can be obtained in a neutronic Monte Carlo simulation with
MCNP6. Then we focus on the estimation of the Feynman moments and how one
can leverage the supplementary information of numerical simulations on neutron
histories to largely reduce the estimation noise. Finally, we provide a brief description
of the two datasets generated.

2.3.1 Extended feature space

First, we wish to generate a training dataset to build an efficient and reliable surrogate
model. The point model (see equations (1.99), (1.100) and (1.101)) provides us with an
approximation for the true direct model. It seems natural to consider the same inputs
and outputs. However, since the point model is not very accurate and can fail to
provide a reliable uncertainty quantification (see Figure 2.3) we choose to extend the
feature space X to a higher-dimensional space by increasing the number of features
considered. The strongest assumptions of the point model are that the neutrons
are monoenergetic, the medium is infinite, and there are only fission and capture
reactions. Intuitively, we would like to add new features to reduce the influence of
these assumptions.

Firstly let us introduce the feature Φ defined as the ratio of thermal over fast neutron
flux. We consider a two-energy group setting with a limit energy Elim = 1 keV. Then,
to account for other nuclear reactions we introduce a parasitic absorption efficiency
εA which is defined similarly to the Feynman efficiency εF as the average number of
parasitic absorptions over the average number of induced fissions. This quantity may
be related to a leakage efficiency εL in a setting where parasitic absorptions are con-
sidered. Finally, to account for the finiteness of the medium we introduce a neutronic
albedo J which is defined as the ratio of outward and inward neutron currents at the
outermost layer of the geometry. This parameter quantifies the reflective power of
the outer geometry bounds.

Overall, the dataset contains a total of seven features:

• kp is the prompt multiplication factor.

• εF is the Feynman efficiency defined as the number of neutron detections over
the number of induced fissions.

• S is the source intensity in events per second.

• xs is the source type and is defined as the ratio of source neutrons produced per
spontaneous fissions over the total number of source neutrons.

• Φ is the ratio of thermal over fast neutron flux.

• εA is the parasitic efficiency, which is the ratio of parasitic absorptions over
induced fissions.

• J is the neutronic albedo which is the ratio of inward over outward neutron
current in the outer layer of the geometry.

In the next paragraphs, we describe briefly how these quantities are obtained in the
Monte Carlo simulations in MCNP6.
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2.3.1.1 Eigenvalue calculation

The prompt multiplication factor kp is obtained via an eigenvalue calculation in
MCNP6. The eigenvalue problem is obtained by seeking a stationary solution to
the neutron transport equation. This is done by introducing a factor kp to reach an
equilibrium between the neutron production and destruction terms. The general
eigenvalue problem is:

Ω⃗ · ∇⃗ψ(⃗r, E, Ω⃗) + ∑
k

Nk (⃗r)σk(E)ψ(⃗r, E, Ω⃗)

=
1
kp

1
4π ∑

k
Nk (⃗r)

∫ +∞

0
dE′vt,k(E′)σf ,k(E′)χp,k(E′ → E)ϕ(⃗r, E′)

+ ∑
k

Nk (⃗r)
∫ +∞

0
dE′

∫
4π

d⃗Ω′σs,k(E′ → E, Ω⃗′ → Ω⃗)ψ(⃗r, E, Ω⃗) (2.42)

where Ω⃗ is the solid angle, r⃗ ∈ R3 is the position vector, E is the energy, ψ(⃗r, E, Ω⃗) is
the angular neutron flux, Nk (⃗r) is the concentration of the k-th nuclide at position r⃗,
vt,k(E) is the average number of emitted neutrons after a fission on a nuclide k with an
incident neutron energy E, σf ,k(E) is the microscopic fission cross section for nuclide k
and energy E, χp,k(E′ → E) is the energy spectrum of neutrons emitted per fission on
a nuclide k with incident neutron energy E′, Φ(⃗r, E) is the scalar neutron flux defined
as the angular flux integrated over the solid angle and σs,k(E′ → E, Ω⃗′ → Ω⃗) is the
microscopic cross section for a scattering reaction changing the neutron energy and
solid angle from E and Ω⃗ to E′ and Ω⃗′.
This eigenvalue problem is solved by a power iteration method [DH76]. The general
idea is to sample a fixed number nb of Monte Carlo batches. Starting from an arbi-
trary initial fission neutron distribution Q(n) at batch n, the Monte Carlo simulation
provides a new neutron distribution Q(n+1) at the end of the batch. This is iterated
until convergence and the multiplication factor is then found. The iterative updates
of the eigenvalue are given by:

k(n+1) = k(n) ×
∫

Q(n+1) (⃗r)d⃗r∫
Q(n) (⃗r)d⃗r

. (2.43)

The common practice is to start with a few inactive cycles in which the iterations
are only used to compute a better initial fission neutron distribution Q(0) without
recording the evolution of the eigenvalue.
The eigenvalues calculations performed in this work are done with 20 inactive cycles
and 200 active cycles of 105 neutrons each. MCNP6 provides the 95% confidence
interval for the estimated kp. The width of the 95% confidence interval may vary
depending on the calculations, but on average for the calculations considered, the
confidence interval has a width of roughly 100 pcm (where 1 pcm = 10−5, the
denomination pcm refers to "per cent mille").

2.3.1.2 Tally estimations for dataset features

Most of the other features are estimated through tally estimations in MCNP6. The
general principle is simple. When an event occurs in the region of interest (either
in the space, angle, or energy domain), the event is recorded and given a value
from a tally estimator. The choice of the tally estimator may vary depending on the
medium, or the reaction considered as some are more suited than others depending
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on the case. Overall, this produces a score for each event which is then averaged
over the whole Monte Carlo simulation to yield a mean quantity with its associated
confidence interval. Tally estimations are one of the key aspects of neutronic Monte
Carlo codes and are used to estimate neutron fluxes and currents, reaction rates, and
other quantities. In this work, they are used to provide estimates for εF, εA, Φ, and J.

2.3.1.3 Creating the MCNP input files

To produce a dataset, we start with a reference test case, either an experimental
configuration of the SILENE reactor facility or a subcritical experiment conducted
on a metallic plutonium sphere. These two reference cases are described in Section
2.5.2. Then, the compositions, geometries, and densities of the materials are changed
randomly to produce a new input file. Of course, we make sure to remain in sub-
critical cases. This means all dataset instances are obtained from randomly generated
problems while remaining similar to the test case of interest.

The parasitic absorptions are considered to be occurring only in the fissile region for
each case. The thermal over fast neutron flux Φ is measured outside the geometry
far from the object. This quantity provides information on the moderating power of
the unknown object. In practical experiments, it may be accessed by non-intrusive
neutron flux measurements.
We also added an outer layer of concrete modeling the room reflection, for which the
albedo J provides information.
The source type xs is a direct input in the MCNP files, used when defining the neutron
source. The spontaneous fission source is a volumic source uniformly spread in the
fissile region, while the (α, n) source is modeled as a point source.
To summarize, we provide an example of the MCNP input for the dataset instances
in Appendix C. These files are generated from a Python script that randomly samples
the various compositions, densities, and geometries of the MCNP simulation, as well
as the source term.
Thorough descriptions of the reference cases are found in the Appendix A.

2.3.1.4 Post-treatment of the PTRAC files

The careful reader may have noticed that we did not mention the source intensity
S in the previous section. Indeed, in MCNP calculations the source intensity is not
provided as for a single calculation only the number of neutrons to be sampled is
given by the user. The source intensity is introduced in a post-treatment step.

The MCNP simulations return a PTRAC file, also known as a time list file, in which
all the neutron detection instants and neutron history numbers are recorded. These
PTRAC files can then be used to obtain the Feynman moments (and the count rates)
using the sequential binning estimators (1.120) and (1.120), or the triggered binning
estimators (1.124) and (1.125). However, MCNP does not have a notion of a trans-
history timescale. Each neutron history has its own timescale starting at the neutron
birth instant with the source event. To mimic a real-life experiment, it is required to
introduce the global timescale, by sampling the source events.
As mentioned in 1.4.3, radioactive sources are modeled as Poisson processes. For
a source intensity S, let us then consider a compound Poisson process (St)t≥0 ∼
P(S, f (C)). As described in Section 1.3.2, the intervals between the jumps of a com-
pound Poisson process with intensity S are given by exponential distributions. Thus
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the k-th source event occurs at time tk = ∑k−1
i=0 (ti+1 − ti) with t0 = 0 and where

ti+1 − ti ∼ E(S) where E(S) refers to the exponential distribution with intensity S.
The source instants are thus sampled randomly from the distribution E(S).

2.3.1.5 Sensitivity analysis

Let us conclude this study with a qualitative analysis of the influence of each feature
on the predicted outputs (R, Y∞, X∞) using covariance-based sensitivity analysis
indices. Since this analysis is marginal in the grand scheme of this thesis, we are not
discussing sensitivity analysis theory in this section. For a comprehensive introduc-
tion, the reader may refer to [Sud08; DV+21].

Consider a scalar function f of a random variable x = (x1, ..., xp) ∈ X for p ≥ 1. The
model response can be decomposed into a sum of contributions such as:

f (x) = f0 +
p

∑
i=1

fi(xi) + ∑
1≤i,j≤p

fi,j(xi, xj) + ... = ∑
A∈Pp

fA(xA) (2.44)

where Pp is the set of subsets of {1, ..., p} and xA is the subvector of x where only the
components in A are kept.
This result is known as the Hoeffding decomposition. In the case of independent
inputs, the terms of the decomposition are orthogonal. The sensitivity analysis of the
model response f (x) can then be performed using an ANOVA (analysis of variance)
decomposition of f (x) such that:

Var[ f (x)] =
p

∑
i=1

Vi + ∑
1≤i,j≤p

Vi,j + ... = ∑
A∈Pp

VA (2.45)

where VA = Var [ fA(xA)] = ∑
B⊂A

(−1)|A|−|B|Var E [ f (x|xB)]. From this decomposition,

one can define the well-known Sobol indices [Sob93]. For A ∈ Pp, the Sobol index SA
associated to the subset A is defined by:

SA =
VA

Var [ f (x)]
. (2.46)

Common quantities of interest, in that case, are the first-order indices S{j} which

quantify the contribution of the input j by itself, and the total-order indices S(tot)
{j}

defined by:
S(tot)
{j} = 1 − ∑

A⊂{j}
SA (2.47)

where {j} is the complementary of {j}. The total indices quantify the contribution of
input j in association with all the other inputs. However, in this particular scenario, we
are dealing with dependent inputs as seen in Figure 2.5. The ANOVA decomposition
is only valid for independent inputs, in which case the elements of the Hoeffding
decomposition are orthogonal. For dependent inputs, however, it is possible to
introduce covariance-based indices linked to an ANCOVA (analysis of covariance)
decomposition:

Var[ f (x)] = ∑
A∈Pp

Cov [ fA(xA), f (x)] (2.48)
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where Cov [ fA(xA), f (x)] = VA + ∑
B ̸=A

Cov [ fA(xA), fB(xB)].

In [HG18], the authors introduce two indices S(C)
A and S(U)

A as:

S(C)
A =

∑
B ̸=A

Cov [ fA(xA), fB(xB)]

Var( f (x))
(2.49)

S(U)
A =

Var [ fA(xA)]

Var [ f (x)]
. (2.50)

S(C)
A quantifies the dependence w.r.t. the subset A induced by the correlation between

the inputs of A and other inputs. On the other hand, S(U)
A quantifies the contribution

of the input subset A by itself, which may be referred to as the structural contribution.

We will use these inputs for our analysis, although other approaches have been
developed for dependent inputs. Assume we have n independent input samples
X = (X(1), ..., X(n)). As is often done in the literature, we rely on a polynomial chaos
expansion (PCE) which serves as a surrogate model [Sud08; LGMS16; CLMM09]. We
are not describing the theory underlying PCE in this section and refer to the Appendix
F for more details. The only required knowledge for this section is that one can write
the model response as an infinite multivariate polynomial expansion and build a
surrogate model by truncating the expansion to a finite subset of the multivariate
indices T ⊂ Np:

f (x) = ∑
α∈Np

cαψα(x) ≃ ∑
α∈T

cαψα(x) (2.51)

where ψα(x) =
p

∏
i=1

ψαi(xi) is an orthogonal basis of tensorized polynomials. We

denote the truncated expansion as g(x) = ∑
α∈T

cαψα(x). The PCE expansion gives an

easy way to express the functions fA as for any subset A ∈ Pp:

fA(xA) ≃ gA(xA) = ∑
α∈TA

cαψα(x) (2.52)

where TA = {α ∈ T s.t. αk ̸= 0 for all k ∈ A} [SC13]. Then the dependent Sobol
indices can be estimated by:

S(U)
A ≃

n
∑

i=1

(
gA(X(i)

A )− yA

)2

n
∑

i=1

(
g(X(i))− y

)2
(2.53)

S(C)
A ≃

n
∑

i=1

(
g(X(i))− y

) (
g(X(i)

A )− yA

)
n
∑

i=1

(
g(X(i))− y

)2
− S(U)

A . (2.54)

To investigate the influence of each variable, we are evaluating the first-order Sobol
indices. They are calculated on the BERP dataset. Half of the points are used to tune
the PCE models, and the other half is used to evaluate the Sobol indices. The training
and test set contains 1094 instances each. The first order-Sobol indices S(U)

j and S(C)
j ,

as defined in (2.53) and (2.54), are shown in Table 2.2 for each variables. We also
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TABLE 2.2: First-order Sobol indices.

S(U)
j R Y∞ X∞

kp 5.13 × 10−1 8.33 × 10−1 9.22 × 10−1

εF 5.89 × 10−1 3.57 × 10−1 4.19 × 10−1

S 8.53 × 10−2 7.59 × 10−6 5.21 × 10−5

xs 1.04 × 10−2 7.87 × 10−3 4.60 × 10−3

εA 7.27 × 10−4 2.26 × 10−4 3.92 × 10−4

Φ 3.83 × 10−4 4.40 × 10−4 2.90 × 10−3

J 4.57 × 10−5 8.23 × 10−4 2.35 × 10−3

S(C)
j R Y∞ X∞

kp −1.16 × 10−1 −1.02 × 10−1 −1.86 × 10−1

εF −9.42 × 10−2 −1.15 × 10−1 −1.76 × 10−1

S 2.90 × 10−3 −4.11 × 10−5 −4.80 × 10−4

xs −1.40 × 10−3 1.09 × 10−3 3.29 × 10−3

εA 1.10 × 10−3 −1.03 × 10−4 6.14 × 10−4

Φ 6.94 × 10−3 −4.48 × 10−3 −5.59 × 10−3

J 6.07 × 10−4 −3.66 × 10−3 −6.48 × 10−3

highlight the confidence in the estimation of the indices in Figure 2.4, where we show
a box plot of the estimated structural indices S(U)

j . The uncertainties on the indices
estimations were obtained by bootstrapping. We did not plot the indices for kp and
εF for readability.
This analysis highlights the impact of the newly introduced inputs (εA, Φ, J) for

FIGURE 2.4: Box plot of the estimated structural indices S(U)
j for each

output channel.

each output considered. As expected, their impact is far less significant than that of
kp or εF, but they still contribute noteworthily. One may also notice the negligible
contribution of S for the Feynman moments Y∞ and X∞ which is in accord with the
point model equations.

2.3.2 Feynman moments estimation in MCNP

2.3.2.1 Estimation from the PTRAC files

Each simulation conducted with MCNP provides a PTRAC file and the corresponding
input x = (kp, εF, S, xs, εA, Φ, J) ∈ X ⊂ R7. To obtain the corresponding outputs, the
PTRAC file is post-processed to sample the instants of the source events and then,
the neutron detection instants and the associated history numbers are extracted.

From here, the count rate is evaluated as the number of detections over the total
time. The Feynman moments are estimated by filtered triggered binning with the
estimators introduced in (1.124) and (1.125). The triggered binning largely reduces
the variances of the Feynman moments estimators by leveraging the knowledge of
the history number of neutrons. When solving an inverse problem, we would like
to mimic real-world observations for the count rates and Feynman moments. Thus
the observations of the direct model would be obtained with sequential binning in
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that context since the history number is only available in numerical experiments.
However, when building the dataset used to train our surrogate models, it is possible
to leverage the additional knowledge brought by the numerical simulations to reduce
the noise in the estimations of the Feynman moments and thus improve the surrogate
models. This explains why we use triggered binning estimators in the dataset, and
sequential binning for the direct model observations.

2.3.2.2 Observation covariance estimation

Let us also mention briefly how one can estimate the covariance structure of the
outputs y = (R, Y∞, X∞).
A first approach if we have multiple iid observations y = (y(k))1≤k≤N from the same
calculation, is to estimate the noise covariance by the standard empirical covariance
estimator:

Ĉobs =
1

N − 1

N

∑
k=1

y(k)(y(k))T − y yT (2.55)

where y = 1
N

N
∑

k=1
y(k) is the empirical mean.

Another approach is to find the true covariance with triggered binning. Since the
Feynman moments and the count rates are linked to the ordinary moments of the
detection statistics (see equations (1.115) and (1.116)), the theoretical covariance is
known provided we have access to higher order ordinary moments (up to the order
6). However, using moments with order p > 3 is often impossible in practice because
of the extremely noisy estimates in the higher-order moment estimators. This method
is only suitable for numerical simulations for which we can filter out accidental
correlations. Let us consider M = (M1, M2, M3)T the vector containing the first three
moments. This vector is random and its covariance is given by:

Cov(M) =

 M2 − M2
1 M3 − M1M2 M4 − M1M3

M3 − M1M2 M4 − M2
2 M5 − M2M3

M4 − M1M3 M5 − M2M3 M6 − M2
3

 . (2.56)

The covariance of the estimators ŷ = (R̂, Ŷ∞, X̂∞)T is thus given by the delta method:

Cov(ŷ) ≃ ∇ψ(M̂1, M̂2, M̂3) ̂Cov(M)∇ψ(M̂1, M̂2, M̂3)
T (2.57)

where ψ is the function that maps the ordinary moments to (R, Y∞, X∞):

ψ : R3 −→ R3

(M1, M2, M3)
T 7−→ (R, Y∞, X∞)

T

and ̂Cov(M) is given by (2.56) replacing the moments Mp by their estimators M̂p.

Let us illustrate this in the BERP example. From the set of observations obtained by
sequential binning, the empirical covariance Ĉobsis given by:

Ĉobs =

 7.2 × 102 2.3 × 10−1 1.4 × 10−2

2.3 × 10−1 1.0 × 10−3 4.4 × 10−3

1.4 × 10−2 4.4 × 10−3 8.5 × 10−2

 . (2.58)
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Now, estimating the covariance with the higher-order moments with filtered triggered
binning yields:

Cov(ŷ) =

 3.0 × 101 2.1 × 10−3 4.8 × 10−2

2.1 × 10−3 4.7 × 10−5 1.3 × 10−4

1.4 × 10−2 1.3 × 10−4 1.0 × 10−3

 (2.59)

The true covariance matrix displays much lower variances overall, with a determinant
|Cov(ŷ)| ≃ 3.76 × 10−6 << |Ĉobs| = 4.18 × 10−2. The triggered binning removes the
noise introduced by accidental correlations. The only source of uncertainty comes
from the limited number of neutron histories available. In Ĉobs however, uncertainties
are also caused by accidental correlations. To reduce those uncertainties, we would
like to increase the ratio of true correlated detections over accidental correlations,
which amounts to having a larger kp.
In practical experiments, Cov(ŷ) is not available and we are working exclusively
with Ĉobs. However, the comparison |Cov(ŷ)| << |Ĉobs| can be used as a condition
to verify that enough neutron histories are used in MCNP runs.

2.3.3 Presentation of the datasets

Now that the methodology used to produce the datasets has been introduced, we
describe in detail the datasets themselves.

2.3.3.1 BERP dataset

The first dataset was generated on simulations with a metallic plutonium spherical
object with a copper reflector shell. This dataset is known hereafter as the BERP
dataset since it is based on a reference geometry extracted from the ICSBEP Handbook
[Bes+20], which describes a subcritical experiment on the BERP ball. The BERP ball is
a metallic plutonium sphere cast in Los Alamos National Laboratory in 1980 which
was extensively used for multiplicity and criticality experiments. The reference
geometry will serve as our first test case and is described in Section 2.5.2 hereafter.
More details are given in Appendix A.

Each data instance corresponds to a randomly generated MCNP geometry, obtained
from the reference case by changing the compositions, densities, and geometries of the
materials. The eigenvalue calculations were performed with 20 inactive cycles and 200
active cycles with 2 × 105 neutrons in each cycle. The other quantities were obtained
with tally measurements. The source intensity is chosen with a uniform distribution
on [1 × 105, 2 × 105] to mimic real-world measurements. As an illustration, the source
is approximately 1.3 × 105 events per second in the ICSBEP benchmark experiments.
The outputs were obtained with filtered triggered binning with an asymptotic time
window T∞ = 20 ms. This asymptotic time width is taken such that T∞ = 10

|α| where
α is the minimal fitted prompt decay constant obtained with Rossi-α method (see
Section 1.4.5) on the data instances.
The dataset contains 2132 instances, split into 1706 training points and 426 test points.
The marginal densities and correlation between features and outputs are highlighted
respectively in Figures 2.5 and 2.6. One can see that the outputs are highly correlated,
especially the second and third Feynman moments.
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FIGURE 2.5: Marginal densities and correlation plots for the inputs -
BERP dataset.

2.3.3.2 SILENE dataset

A second dataset was created to tackle a different case. The reference cases for this
new dataset are extracted from a measurement campaign on the SILENE reactor
facility, which was a liquid-fueled reactor designed for pulsed experiments as well as
subcritical multiplicity measurements [Bar93]. The detailed description of the core is
provided in Appendix A, and the applicative test cases are described succinctly in
Section 2.5.2.

The dataset is generated with the same procedure as the previous one, though fewer
data are available here, with a total of 318 data instances split into a training set of
255 data points and a test set with 63 instances. The dataset will be referred to as
the SILENE dataset throughout this thesis. The marginal densities and correlation
between features and outputs can be found in Figures E.1 and E.1 of Appendix E.
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FIGURE 2.6: Marginal densities and correlation plots for the outputs -
BERP dataset.

2.3.3.3 Preprocessing

Since the datasets presented in the previous section are meant to serve as training
data for the Gaussian process surrogate models, one could raise the question of the
suitability of GP models to describe such highly non-Gaussian data. This issue is
resolved by preprocessing the dataset.
A common preprocessing step to improve virtually any supervised learning model is
to standardize the dataset by setting the empirical mean to zero and the variance to
one with a linear transform. While this is good practice, from the look of the correla-
tions in our dataset we will not reach a Gaussian target with just linear transforms.
We thus focus on non-linear power transforms.

Let us discuss the two classes of power transforms considered in this work, which are
Box-Cox transforms [Sak92] and Yeo-Johnson transforms [YJ00]. Box-Cox transforms
are a class of non-linear transformations gλ parametrized by λ ∈ R and defined for
x > 0 by:

gλ(x) =

{
xλ−1

λ if λ ̸= 0
log x otherwise.

(2.60)

Consider some scalar data X = (X1, ..., Xn) ∈ Rn, and let Y(λ) = (Y(λ)
1 , ..., Y(λ)

n ) be
the transformed data. To make the data more Gaussian, the parameter λ must be
chosen appropriately. Thus, we suppose that the transformed data follows a Gaussian
distribution Y(λ) ∼ N

(
βTX, σ2)where (β, σ2) are parameters identified by MLE. This

leaves us only with λ which is also estimated by MLE.
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The same procedure applies to Yeo-Johnson transforms. Yeo-Johnson transforms are
a class of non-linear transformations hλ defined for x ∈ R by:

hλ(x) =


(x+1)λ−1

λ if x ≥ 0 and λ ̸= 0
log(x + 1) if x ≥ 0 and λ = 0
(1−x)2−λ−1

λ−2 if x < 0 and λ ̸= 2
− log(1 − x) if x < 0 and λ = 2.

(2.61)

They have the main advantage of applying to negative data while Box-Cox transforms
are restricted to positive data. In this work, Box-Cox transforms are generally used
except for models in which we are learning a bias between the true model and the
direct model (see Section 2.4.4.1), in which case the data may be negative.

2.4 Performance review of the surrogate models

In this section, we describe the various surrogate models used, how they are built
and trained, and their overall performance.

All the scalar GPs and latent scalar GPs are built with Matérn kernel with ν = 5/2, as
these provided the best results among standard covariance kernels.
The following naming conventions are adopted for the different GP models.

• GP-Ind: each output is a homoscedastic scalar GP.

• GP-LMC2: homoscedastic Linear Model of Coregionalization with 2 indepen-
dent latent Gaussian processes.

• GP-LMC3: homoscedastic Linear Model of Coregionalization with 3 indepen-
dent latent Gaussian processes.

• GP-Conv: homoscedastic convolved GPs with 2 independent latent Gaussian
processes.

The GP models are trained by maximization of the log-marginal likelihood using
the L-BFGS-B algorithm implemented in the scipy package. We wish to evaluate the
predictive performance of these models as well as the reliability of their uncertainty
quantification.

2.4.1 Performance metrics

2.4.1.1 Metrics for the predictive means

Our first focus is on the predictive capabilities of the GPs. Namely, we want the
predictive means to be accurate predictors. In a supervised learning framework
for regression problems, the most commonly used metrics to assess the model’s
performance are the Root Mean Squared Error (RMSE) and the Mean Absolute
Error (MAE). We focus here on the normalized version of these metrics, known
as the NRMSE and NMAE. If fs is a GP surrogate with predictive distribution
fs(x) ∼ N

(
fs(x), Cs(x)

)
, the NMAE and NRMSE are defined for the test set (X∗, Y∗)

by:
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NMAE =
1

n∗

n∗

∑
i=1

| fs(X∗,i)− Y∗,i|
Y∗

(2.62)

NRMSE =

√√√√ 1
n∗

n∗

∑
i=1

(
fs(X∗,i)− Y∗,i

Y∗

)2

. (2.63)

Let us also introduce the Q2 coefficient which is defined as:

Q2 = 1 −

n∗
∑

i=1
( fs(X∗,i)− Y∗,i)

2

n∗
∑

i=1

(
Y∗,i − Y∗

)2
(2.64)

where Y∗ = 1
n∗

n∗
∑

i=1
Y∗,i. The Q2 coefficient summarized the predictive performance

of the GP over the dataset by comparing the predictive mean squared error to the
variance of the dataset. The closer to 1 the better. This metric is useful for performance
diagnostics in GP regression as it provides a single scalar value that summarizes how
well the surrogate model fits our data.
Of course, the metrics presented here only give information on the predictive mean of
the trained GP. The GP surrogate model grants us more than just the predictive mean,
and the reliability of the predictive variance (or covariance) must also be investigated.

2.4.1.2 Coverage probabilities

To study the reliability of the uncertainty prediction by a GP surrogate, our main
focus is on the coverage probabilities. Let us first focus on the scalar case.

Definition 2.4.1. Consider a scalar GP fs with predictive distribution at x ∈ X given
by fs(x) ∼ N

(
fs(x), vs(x)

)
. Let α ∈ (0, 1) be some level of credibility. The predictive

credibility interval of level α at x ∈ X is defined by:

Iα(x) =
[

fs(x)− q 1+α
2

√
vs(x), fs(x) + q 1+α

2

√
vs(x)

]
(2.65)

The coverage probability of level α denoted by Cp(α) is defined by:

Cp(α) =
1

n∗

n∗

∑
i=1

1Iα(X∗,i) (Y∗,i) (2.66)

It represents the fraction of test points that effectively fall in the credible interval of level α.

For multi-output GP, the coverage probabilities are defined similarly but the Iα(x) are
not intervals but credibility regions in the multidimensional space. They are defined
with the help of the Mahalanobis distance.

Definition 2.4.2 (Mahalanobis norm). If C is a positive definite matrix C ∈ S+
D(R) and

a ∈ RD is a vector, the Mahalanobis norm of a w.r.t. the matrix C is defined by:

∥a∥C =
√

aTC−1a. (2.67)
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Definition 2.4.3. Given a multi-output GP fs, with predictive distribution at x ∈ X given
by fs(x) ∼ N

(
fs(x), Cs(x)

)
, the multi-dimensional credibility region of confidence level

α ∈ (0, 1) is defined by:

Iα(x) =
{

y ∈ RD s. t. ∥ fs(x)− y∥2
Cs(x) ≤ χα

}
(2.68)

where χα is the quantile of level α of the χ2 distribution with D degrees of freedom.

Throughout this thesis, the coverage probabilities will be the metric of choice to
measure the quality of the covariance prediction.

2.4.2 Performance review for the BERP dataset

In this section, we present the performance results of the GP surrogates applied to
the BERP dataset. On top of the NMAE, NRMSE, and Q2 which are shown in Table
2.3, the coverage probabilities for different levels of credibility α are also displayed
in Figure 2.7 for all the surrogate models. From these results, several conclusions

TABLE 2.3: Performance of the homoscedastic Gaussian processes
surrogate models on the test set - BERP dataset.

GP-Ind NMAE NRMSE Q2

R 0.008 0.011 0.9994
Y∞ 0.022 0.040 0.998
X∞ 0.069 0.243 0.983

GP-LMC2 NMAE NRMSE Q2

R 0.008 0.012 0.9993
Y∞ 0.027 0.055 0.995
X∞ 0.087 0.253 0.980

GP-LMC3 NMAE NRMSE Q2

R 0.008 0.013 0.9993
Y∞ 0.028 0.060 0.995
X∞ 0.094 0.292 0.973

GP-Conv NMAE NRMSE Q2

R 0.39 0.51 −0.01
Y∞ 0.066 0.17 0.96
X∞ 0.15 0.53 0.91

are highlighted, for both datasets. First of all, the convolved GPs are not suited to
our problem. The random realizations of convolved GPs are likely too smooth to
provide good predictors, due to the combination of Gaussian filters, RBF kernels,
and convolution products. One can also notice that the naive approach provides
the best overall performance when looking only at the predictive means. However,
when looking at coverage probabilities, it is clear that the predictive covariances
are much less reliable since this model assumes independence between the outputs.
Finally, both LMC models offer similar results: they provide reliable uncertainty
quantification and sound predictive errors for the mean.
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FIGURE 2.7: Coverage probabilities for the surrogate models - BERP
dataset.

2.4.3 Performance review for the SILENE dataset

The same metrics are evaluated for GP models built on the SILENE dataset. Fewer
data are available but the models tend to perform better than those trained on the
BERP dataset, as seen in Table 2.4. The explanation lies in the fact that the BERP
dataset spans up to higher kp values. The resulting Feynman moment distributions are
more heavy-tailed and the predictive error on outlier data (say for example X∞ > 50)
impacts the performance metrics. The presence of outlier data can be seen in Figure
2.6. This phenomenon is especially pronounced for the third Feynman moment which
is more sensitive to kp variations. This is why the difference in performance metrics
is more noticeable for X∞.

One can also highlight that the number of latent GPs in LMC models is more impactful
than in the previous case. The GP-LMC3 model has better mean predictions, but
displays over-estimated coverage probabilities compared to GP-LMC2, as can be
seen in Figure 2.8. The predictive covariances are generally less reliable, because of
the smaller number of data instances for this case. The coverage probabilities are
further from their theoretical expected value, and the models tend to overestimate the
uncertainties. This overestimation is especially significant for the naive multi-output
model GP-Ind which does not include correlations between outputs.

2.4.4 Improving the GP surrogates

In the previous section, we saw that LMC GP surrogate models display the best overall
performance regarding predictive power and uncertainty quantification. However,
there may still be some room for improvement. Namely, we highlight two possible
paths to improve our surrogate models in the next paragraphs. The first path relies
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TABLE 2.4: Performance of the homoscedastic Gaussian processes
surrogate models on the test set - SILENE dataset.

GP-Ind NMAE NRMSE Q2

R 0.008 0.010 0.9998
Y∞ 0.030 0.051 0.996
X∞ 0.078 0.171 0.992

GP-LMC2 NMAE NRMSE Q2

R 0.008 0.010 0.9998
Y∞ 0.035 0.044 0.996
X∞ 0.081 0.131 0.993

GP-LMC3 NMAE NRMSE Q2

R 0.007 0.009 0.9998
Y∞ 0.020 0.029 0.998
X∞ 0.069 0.115 0.995

GP-Conv NMAE NRMSE Q2

R 0.046 0.078 0.989
Y∞ 0.030 0.052 0.995
X∞ 0.086 1.65 −0.08

FIGURE 2.8: Coverage probabilities for the surrogate models - SILENE
dataset.

on multi-fidelity modeling and the second uses heteroscedastic noise modeling. Since
the GP model performance study offers a similar conclusion across both datasets, we
only present the results obtained for the BERP dataset, although the results for the
SILENE dataset are shown in Appendix E.
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2.4.4.1 Multi-fidelity models

When designing surrogate models of costly computer codes, it is often possible to
derive a cheaper code or analytical model known as the low-fidelity model. On
the other hand, the costly code is known as the high-fidelity model. An example
of a low-fidelity model is the diffusion approximation in neutron transport, which
simplifies the neutron transport equation to a simpler problem. It can serve as a
low-fidelity model, while the full neutron transport is the high-fidelity model. In this
work, the low-fidelity model is the analytical point model.
The knowledge of a low-fidelity model can be leveraged to improve surrogate model-
ing. Indeed, if one only has access to a few data points for the high-fidelity model,
it is possible to incorporate the low-fidelity model to improve predictions. The
low-fidelity model is generally easy to solve, or typically analytical.

Let f be the high-fidelity model, fp the low-fidelity model, and fs the GP surrogate.
A simple multi-fidelity model can be obtained by choosing the GP prior such that
the mean function is the low-fidelity model fs ∼ GP

(
fp(x), k(x, x′)

)
. This is similar

to learning the bias between fp and the true model f with a zero-mean GP z ∼
GP (0, k(x, x′)):

y = f (x) + ε = fp(x) + z(x) + ε (2.69)

with ε a Gaussian noise. In [KO01], the high-fidelity response is modeled similarly
with an additional multiplicative parameter in front of the low-fidelity response.

y = ρ fp(x) + z(x) + ε (2.70)

However, contrary to this work we are not using a Bayesian hierarchical model,
meaning that we are not considering a Bayesian approach for the hyperparameters
and the noise parameter. We are only interested in point estimates for the covariance
kernel hyperparameters and ρ. They are obtained by maximization of the marginal
likelihood.

We are focusing only on GP models built with the Linear Coregionalization Model,
with either two or three latent GPs, since they were producing the best results. We
study the performance of GP models using the low-fidelity point model. As a first
approach, we impose ρ = 1, which gives us the two models BL-LMC2-GP and BL-
LMC3-GP, where BL stands for "bias learning", and whose performance are shown
in Table 2.5. Similar models are investigated when ρ is not set. These are named

TABLE 2.5: Performance of the multi-fidelity GP with ρ = 1 - BERP
dataset.

BL-LMC2-GP NMAE NRMSE Q2

R 0.008 0.010 0.9994
Y∞ 0.022 0.033 0.998
X∞ 0.069 0.200 0.988

BL-LMC3-GP NMAE NRMSE Q2

R 0.008 0.011 0.9994
Y∞ 0.022 0.034 0.998
X∞ 0.069 0.186 0.990

respectively MF-LMC2-GP and MF-LMC3-GP, where MF stands for "multi-fidelity".
Their error metrics are displayed in Table 2.6. One can see that for both surrogate
models considered, bias learning yields overall better performance when fixing ρ = 1
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TABLE 2.6: Performance of the multi-fidelity GP with ρ ̸= 1 - BERP
dataset.

MF-LMC2-GP NMAE NRMSE Q2

R 0.014 0.018 0.9986
Y∞ 0.064 0.120 0.978
X∞ 0.106 0.259 0.981

MF-LMC3-GP NMAE NRMSE Q2

R 0.017 0.021 0.9979
Y∞ 0.080 0.157 0.962
X∞ 0.151 0.399 0.955

However when ρ is not fixed, the optimization step is made more difficult due to
the three additional parameters (for multi-output GPs), which can in turn impact the
performance of the surrogate model.
Including the low-fidelity model in the GP, regression improves its mean predictions.
Comparing to the results from Table 2.3, one can see that BL-LMC2-GP slightly
outperforms the model GP-Ind which was so far the best model for mean predictions
only. There is little difference between the models with 2 or 3 latent GPs. We thus
favor the simplest model of the two, which is BL-LMC2-GP.

All the results displayed in this section were obtained for the BERP dataset, but
similar results were obtained for the SILENE dataset. They can be found in Tables E.1
and E.2 in Appendix E.

Overall, bias learning models can provide improved mean prediction performance.
The coverage probabilities for these models are plotted in Figure 2.10 and are very
similar to the ones before for the LMC models. Now we introduce heteroscedasticity
in our models to improve the reliability of the uncertainty quantification.

2.4.4.2 Heteroscedastic GP

The surrogate models presented up to this point all share an assumption that has
not been verified. Indeed, it was assumed that the noise in the training data is not
input-dependent: in that case, the model is said to be homoscedastic. However, the
noise in the training data could very well be heteroscedastic, that is, input-dependent.

To test the validity of this assumption, let us look at the residuals of our surrogate
model predictors. More specifically, since the outputs (R, Y∞, X∞) are strongly depen-
dent on the input kp, let us look at the evolution of the residuals as a function of kp
for the test dataset, which is plotted in log scale in Figure 2.9. One can see that the
residuals tend to increase largely with kp which points toward a heteroscedastic be-
havior. The Breusch-Pagan-Koenker test [Koe81; PH83] provides a more quantitative
diagnostics. It is a χ2 test in which the squared residuals are modeled with a linear
regression w.r.t. the inputs.
The test statistics and p-values are exhibited in Table 2.7 for the BERP dataset. Similar
results are obtained for the SILENE dataset. Since the p-values are well below 0.05 for
all output channels, one can conclude that the null hypothesis of homoscedastic data
is rejected. Then the question is how can we construct heteroscedastic GP surrogate
models? Several approaches have been developed, for example in [Mar+12; BC09;
RBS10]. The procedure chosen in this work is to model the heteroscedastic noise with



2.4. Performance review of the surrogate models 103

FIGURE 2.9: Log squared residuals for R (left), Y∞ (center) and X∞
(right) as a function of kp, plotted for the test dataset and the surrogate

model GP-LMC2.

TABLE 2.7: Breusch-Pagan test statistics and p-value for the BERP
dataset.

R Y∞ X∞

p-value 1.1 × 10−5 3.1 × 10−6 5.0 × 10−7

Test statistic 34.9 38.0 42.1

an auxiliary GP as is done in [Ker+07]. We adapt this method to the multi-output
case. The methodology is summarized hereafter.

Let us first start by building a homoscedastic GP surrogate model f1 with the training
data (X, Y) Its predictive distribution is given by f1(x) ∼ N

(
f1(x), C1(x)

)
for any

x ∈ X . Then we draw ns sampled outputs ( fi,j)1≤j≤ns of this GP for every training

input Xi such that fi,j ∼ N
(

f1(Xi), C1(Xi),
)

and ns ∈ N. The heteroscedastic
covariances at each input point are estimated by:

Σ(Xi) =
1

2ns

ns

∑
j=1

(Yi − fi,j)
T(Yi − fi,j). (2.71)

From here, we have a dataset for the heteroscedastic covariance (X, Σ(X)) where
Σ(X) = (Σ(X1), ..., Σ(Xn)).
With this noise dataset, one can train an auxiliary GP model to predict the het-
eroscedastic covariance. However, let us pre-preprocess this dataset first. Instead
of learning the covariances Σ(Xi) we will try to learn the elements of the Cholesky
decomposition L(Xi) defined by L(Xi)

T L(Xi) = Σ(Xi). The diagonal elements of the
Choleksy triangular matrix are strictly positive if Σ(Xi) is positive-definite. Finally,
let us define the vectors r(Xi) ∈ RK with K = D(D+1)

2 , by the relations:

r(Xi)k =

{
log L(Xi)p,q for k = p(p−1)

2 + q if p = q
L(Xi)p,q for k = p(p−1)

2 + q if p > q.
(2.72)

for 1 ≤ k ≤ K and 1 ≤ q ≤ p ≤ D.
An auxiliary GP f2 is trained on the dataset (X, r(X)). Since we are not interested in
the correlation structure of r(X), the auxiliary GP is a naive multi-output GP, with
independent scalar GP for each output channel.
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This model can be understood as a GP with latent variables being the input-dependent
variables. Instead of having a fully Bayesian treatment and integrating out over the
distribution of these latent values, we use a most likely estimation and keep only the
most likely predictive covariances, which are the predictive means of the auxiliary
GP f2. Inspired by the scalar approach developed in [Ker+07] which describes the
optimization step as a procedure similar to the EM algorithm [Moo96], we iterate this
procedure until convergence.
A heteroscedastic GP fhet is then obtained such that for any input x ∈ X , the pre-
dictive distribution is given by fhet(x) ∼ N

(
f1(x), Σ(x)

)
where Σ(x) is obtained

from the mean prediction r(x) of f2, and then applying the inverse procedure: the
Cholesky matrix L(x) is rebuilt, and the heteroscedastic covariance is obtained as
Σ(x) = L(x)T L(x).

The metrics used to evaluate the performance of the heteroscedastic GP fhet are the
same as for homoscedastic GPs. This methodology is used to create a heteroscedastic
GP model which uses an LMC homoscedastic GP with 2 latent GP for f1. This new
model is denoted by HGP-LMC2. This model includes bias learning since it has
been proven beneficial in all cases. The performance of the mean predictions of the
heteroscedastic model is the same as its homoscedastic counterpart. The coverage
probabilities are not however, and they are plotted, along with those of the newly
introduced multi-fidelity models in Figure 2.10, for the BERP dataset. Overall, the
coverage probabilities are improved compared to the ones obtained in Figure 2.7. For

FIGURE 2.10: Coverage probabilities for the MF and BL models - BERP
dataset.

the SILENE dataset, the coverage probabilities for the heteroscedastic model, along
with those for the multi-fidelity models, are displayed in Figure E.3 in Appendix E.
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2.5 GP surrogate models and inverse problems

2.5.1 Global likelihood for epistemic and aleatoric uncertainties

Our final task is to solve the inverse problem with a Bayesian approach. However, our
goal is to provide a conservative posterior distribution that accounts for all sources
of uncertainties. This means that we need to include the uncertainty induced by the
noise in the observations (aleatoric uncertainty) as well as the uncertainty of the
model itself (epistemic uncertainty) since it is still is an approximation of the true
underlying physical processes.

Consider some observations denoted by y = (y(k))1≤k≤N . Let fs be a GP surro-
gate whose predictive distribution at any given point x ∈ X is given by fs(x) ∼
N
(

fs(x), Cs(x)
)

, where fs(x) ∈ RD is the predictive mean and Cs(x) ∈ S+
D(R) is

the positive semi-definite predictive covariance (see equation (2.14)).
The statistical model takes the form:

y(k) = fs(x) + ε
(k)
a + εe(x) (2.73)

where the ε
(k)
a are iid zero-mean Gaussian random variables ε

(k)
a ∼ N (0, Cobs) repre-

senting the aleatoric uncertainty and εe(x) ∼ N (0, Cs(x)) represents the epistemic
uncertainty. The random variables εe(x) and ε

(k)
a are assumed independent for all

1 ≤ k ≤ N.
Let us introduce the flattened vector of observations yflat and predictive means fs(x)flat
defined respectively by:

yflat = (y(1)1 , ...y(1)D , ..., y(N)
1 , ..., y(N)

D )T ∈ RDN (2.74)

fs(x)flat =
(

fs(x)1, ..., fs(x)D, ..., fs(x)1, ... fs(x)D

)T
∈ RDN . (2.75)

Intuitively, this statistical model assumes that our observations are connected through
the model-induced noise which is the same for each observation, but are independent
w.r.t. the observational noise which depends mostly on accidental correlations in the
detection system and is independent between two MCNP simulations. This statistical
model is at the heart of the inverse problem resolution proposed in this thesis.

Proposition 2.5.1. The likelihood L(y|x) for x ∈ X associated to the statistical model (2.73)
is given by:

L(y|x) = 1√
(2π)DN |Σ(x)|

exp
(
−1

2

(
yflat − fs(x)flat

)T
Σ(x)−1

(
yflat − fs(x)flat

))
(2.76)

where Σ(x) = UN ⊗ Cs(x) + IN ⊗ Cobs ∈ S+
DN(R) and UN is the square matrix of ones of

size N.

Proof. Let x ∈ X . Starting from the model (2.73), one can write in a more compact
form:

yflat|x = fs(x)flat + Ea + Ee(x) (2.77)

where Ea = (ε
(1)
a , ..., ε

(N)
a )T ∼ N (0, IN ⊗ Cobs) since the ε

(k)
a are mutually indepen-

dent. Furthermore, we introduced Ee(x) = (εe(x), ..., εe(x))T ∼ N (0,UN ⊗ Cs(x)).
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Since Ee(x) and Ea are independent, it follows that yflat|x ∼ N
(

fs(x)flat, Σ(x)
)

with

Σ(x) = UN ⊗ Cs(x) + IN ⊗ Cobs ∈ S+
DN(R).

The matrix Σ(x) expresses that observations are independent w.r.t. the observational
noise, but correlated by the model error. This likelihood can be further simplified.

Proposition 2.5.2. The likelihood L(y|x) is proportional to the following simplified likelihood:

L(y|x) = 1√
2π|NCs(x) + Cobs|

× exp

(
−1

2

(
y − fs(x)

)T
(

Cs(x) +
1
N

Cobs

)−1 (
y − fs(x)

))
(2.78)

where y = 1
N

N
∑

k=1
y(k)

Proof. The proof is left in Appendix B.1.

This likelihood is at the heart of all the MCMC inference methods used to solve the
inverse problem in the rest of this work.

2.5.2 Presentation of the test cases

2.5.2.1 BERP test case

For our first application, we are considering the multiplicity benchmark ICSBEP
[Bes+19] which contains numerous cases of sub-critical multiplicity measurements.
In particular, our focus of interest is the experiment ICSBEP_FUND-NCERC-PU-
HE3-MULT-003_EXP1, and specifically on the case of the copper-reflected BERP ball.
The BERP ball itself is composed of mostly metallic plutonium. The isotopic composi-
tion of the plutonium is dominated by the isotope 239Pu (93 wt %) with some 240Pu (7
wt%). The notation wt % refers to the weight percentage. The copper reflectors have
a thickness of 1.18 cm. The source is mostly spontaneous fissions, with some residual
(α, n) and a total source intensity of S = 132500 events.s−1. For a more comprehensive
description of the BERP ball characteristics and the experimental set-up, the author
refers to Appendix A.

The observations are obtained from time list files via MCNP simulations. The ge-
ometry of the MCNP model is slightly simplified compared to the true BERP ball.
However, the effective multiplication factor is close to the predicted value in the
ICSBEP Benchmark, with a difference of ∆kp = 270 pcm.
The total number of simulated neutrons is 2 × 106 for each MCNP run. We have a
total of N = 16 MCNP simulations, each with its own time list file.

The Feynman moments are evaluated by sequential binning of the time list files. Since
the values of the Feynman moments depend on the choice of the width T of the
detection window, one needs to select the value of T∞ carefully to guarantee that we
are estimating the asymptotic Feynman moments Y∞ and X∞. For that matter, we are
first conducting a Rossi-α analysis (see Section 1.4.5), which allows us to estimate the
prompt decay constant α. The Rossi curve is displayed in Figure 2.11. The estimated
value for the prompt decay constant is α ≃ −9.6 ms−1. The asymptotic time T∞ is
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FIGURE 2.11: Rossi curve - BERP test case.

thus chosen to be much greater than α−1, that is T∞ = 20
|α| ≃ 2 ms.

The set of observations is summarized in Table E.4 in Appendix E.

2.5.2.2 SILENE test case

Let us now focus on our second example, which is the study of subcritical config-
urations of the SILENE pulsed reactor. In this section, we are using observations
derived from real-world measurements on the SILENE facility. The measurements
were obtained for various configurations of fissile height h ∈ {5, 10, 15, 20, 25, 30}cm.
We are focusing on the cases h ∈ {15, 20, 25}cm.
The SILENE reactor is a cylindrical core filled with uranyl nitrate with around 95
wt% enrichment in 235U. The core has a center channel which is designed to shelter
instrumentation. In this case, the center channel contains a BF3 neutron gas counter.
The source is an (α, n) point source placed below the core. A precise description of
SILENE is provided in Appendix A.

Our observations are real-world measurements obtained during experimental cam-
paigns on SILENE. They come in the form of time list files which must be post-
processed to extract the Feynman moments, which is done with sequential binning.
The prompt decay constant is estimated with the Rossi-α method, as was done for the
BERP test case. The Rossi-α curves are displayed in Figure 2.12 for each configuration
studied. The corresponding estimations for α obtained by least-squares estimation
are shown in Table 2.8. We also provide the kp for each configuration, estimated by
an MCNP eigenvalue calculation.

TABLE 2.8: Prompt decay constants and multiplication estimation for
the different configurations.

h (cm) 15 20 25
α (ms−1) −0.43 −0.72 −1.46

kp 0.718 0.833 0.906
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FIGURE 2.12: Rossi-α curve for the SILENE experiment with h ∈
{15, 20, 25} cm of fissile solution height.

2.5.3 Posterior distribution sampling

Let us now solve the Bayesian inverse problems, using some direct model observa-
tions and the likelihood (2.78). In this section, we are considering two applications.
As a first application, we solve an inverse problem where the observations are ob-
tained from numerical simulations of an experiment from the ICSBEP benchmark.
For the second application, we focus on real-world measurements obtained from
subcritical multiplicity measurements in the SILENE reactor facility.

For each application, various GP surrogate models and MCMC methods are inves-
tigated. The observational data for the test cases are summarized in Table E.4 in
Appendix E which presents the observational means y and effective covariances
Ceff =

1
N Cobs.

2.5.3.1 Results for the BERP test case

To compare the various MCMC methods, let us first sample the posterior distribution
with the same surrogate model (GP-LMC2 in this case). The MCMC sampling is
performed on a local computer without parallelization.The autocorrelations for the
three first inputs (kp, εF, S) are shown in Figures 2.13, 2.14 and 2.15. The decorrelation
times and effective sample sizes over running times are shown for each MCMC
algorithm in Table 2.9. One can see that AM greatly reduces the decorrelation time

TABLE 2.9: Summary of the MCMC algorithms performance for the
model GP-LMC2.

MH AM NUTS
τ̂ 6900 690 280

Leff
t (min−1) 1.0 8.3 1.8

compared to MH, at a minimum cost. NUTS is even more efficient in reducing the
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correlation between samples, though it is more costly due to the leapfrog integration.
To conclude on MCMC methods, our guideline for the rest of this work is the fol-
lowing: when studying only neutron correlations, AM is preferred as it provides the
best compromise between run time and decorrelation. However, in Chapter 5 when
gamma correlations are introduced, increasing the inverse problem dimension, NUTS
is favored since it performs best in higher dimensions. Let us now visualize the pos-

FIGURE 2.13: Autocorrelation for the MH sampling with L = 1 × 106

MCMC samples and the GP-LMC2 model - BERP test case.

FIGURE 2.14: Autocorrelation for the AM sampling with L = 1 × 106

MCMC samples and the GP-LMC2 model - BERP test case.

FIGURE 2.15: Autocorrelation for the NUTS sampling with L = 1× 106

MCMC samples and the GP-LMC2 model - BERP test case.

terior distributions obtained with the various surrogate models tested. We focus on
GP-Ind, GP-LMC2, and GP-LMC3 since convolved GPs have been shown to display
poor predictive capabilities. We are not providing all the two-dimensional marginals
here for readability purposes. However, the reader may refer to Figure E.5 Appendix
E where the one-dimensional and two-dimensional marginals are all plotted. Then,
let us compare the posterior distributions obtained for different surrogate models
(sampled with AM). For each surrogate model, the corresponding marginals are
plotted respectively in Figures 2.16, 2.17 and 2.18. The posterior distributions appear
quite similar, though one may notice a few distinct features. Firstly, the GP-Ind seems
to provide a reasonable posterior distribution, though we know that its uncertainty
quantification is not as reasonable as the LMC models. Besides, the GM-LMC3 model
yields a more concentrated posterior, with a MAP that lies further away from the
ground truth. This may be explained by its slightly higher prediction errors when
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compared to GP-LMC2 (see Table 2.3). From these initial figures, GP-LMC2 appears
as the best model.

FIGURE 2.16: Posterior distribution marginals obtained by AM for the
BERP test case with GP-Ind.

FIGURE 2.17: Posterior distribution marginals obtained by AM for the
BERP test case with GP-LMC2.

FIGURE 2.18: Posterior distribution marginals obtained by AM for the
BERP test case with GP-LMC3.

Let us also add to that a three-dimensional scatter plot visualization of the MCMC
chain (for the (kp, εF, S) components), where the points are colorized based on their
(non-normalized) likelihood. This 3D visualization is displayed in Figure 2.19, for the
GP-LMC2 model. Finally, to highlight the improvement brought by heteroscedastic
GPs and bias learning, let us sample the posterior distribution for the BERP test
case, with the model BL-LMC2-GP with bias learning, and the heteroscedastic model
HGP-LMC2. The posteriors are displayed in Figures 2.20 and 2.21 respectively. The
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FIGURE 2.19: 3D scatter plot of the MCMC chain obtained for GP-
LMC2. The ground truth is plotted in red.

FIGURE 2.20: Posterior distribution marginals obtained by AM for the
BERP test case with BL-LMC2-GP.

posterior obtained with BL-LMC2-GP seems similar to the previous cases, though
one can notice a smaller spread in the direction of kp and a wider spread on S. This
may be a direct consequence of the better predictions for X∞ of the BL-LMC2-GP
model. Since kp is especially influential on X∞, the marginal over kp is more localized.
Overall, we expect this posterior distribution to be more accurate because of the better
predictive performances of the model. The heteroscedastic model however yields
a wider posterior distribution, with more uncertainties in the estimation of εF and
S especially. The reason behind this is not straightforward. Our guess is that the
covariance varies weakly w.r.t. the inputs, and this dependence is most visible at
extreme values of kp. We may gain some information with heteroscedastic modeling,
but the predictive covariances now depend on an auxiliary GP. Without enough data,
this auxiliary GP may provide less reliable covariance overall, despite the improved
coverage probabilities.
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FIGURE 2.21: Posterior distribution marginals obtained by AM for the
BERP test case with HGP-LMC2.

2.5.3.2 Results for the SILENE test case

Now let us focus on the SILENE test case, where the configurations of interest
are h ∈ {15, 20, 25} cm of fissile solution. For each configuration, the posterior
distribution is sampled by AM, with 2 × 106 samples, and with the BL-LMC2-GP
model. The marginals are plotted in Figures 2.22, 2.23 and 2.24. The posterior

FIGURE 2.22: Marginals of the posterior distribution obtained for
h = 15 cm of fissile solution height.

FIGURE 2.23: Marginals of the posterior distribution obtained for
h = 20 cm of fissile solution height.

distributions obtained can provide good predictions, even on a test case obtained
from real-world measurements. The configuration h = 25 cm seems to provide less
reliable predictions and uncertainties since the ground truth lies slightly outside
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FIGURE 2.24: Marginals of the posterior distribution obtained for
h = 25 cm of fissile solution height.

the posterior support. The two main explanations are the lack of data, which limits
the performance of the GP surrogate, and the fact that this test case is close to the
boundary of our dataset, with kp = 0.906. More data at high multiplication could
improve the model for that specific case. This also explains why we limited ourselves
to the configurations studied here. Indeed, for h > 25 cm or h < 15 cm, the lack of
data at high or low kp would make the inverse problem resolution difficult.

2.5.4 Conclusion

In this chapter, we have studied the use of Gaussian process surrogate models to solve
the inverse problem of interest, while quantifying epistemic and aleatoric uncertain-
ties. The best-performing GPs were built with the Linear Model of Coregionalization.
It enables accounting for correlations between outputs, which is especially important
in this work. We have shown that the surrogates presented excellent predictive
capabilities and reliable uncertainty quantification. Besides, we have been able to
further improve these models by using the point model equations as a low-fidelity
model, and by using heteroscedastic GP regression.

The surrogates were used as emulators of the direct problem in the Bayesian res-
olution of the inverse problem. This methodology was applied to two test cases.
The first one, adapted from an experiment of the ICSBEP campaign, was a metallic
plutonium sphere surrounded by copper reflectors. The second test case was the
study of the subcritical behavior of the SILENE facility and was based on real-world
measurements instead of numerical simulations.
The sampling of the posterior distribution is conducted via MCMC methods, the
most efficient of which was Adaptive Metropolis for this case. The sampling can be
performed in less than an hour with sufficient statistics, which makes our methodol-
ogy applicable for field measurement analysis. The posterior distributions obtained
provided reliable uncertainty quantification, and the improvement brought by the
low-fidelity inclusion in the surrogates was visible.

In the next chapter, we turn toward Bayesian Neural Networks, a class of surrogate
models that may be more flexible than Gaussian processes. Such models can provide
output distributions more general than Gaussian distributions and hence could relax
the Gaussian approximation made for GP surrogates.
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Chapter 3

Bayesian neural network surrogates

This chapter discusses the possibility of using Bayesian Neural Networks (BNN)
as surrogate models in the inverse problem at stake. We begin this chapter with a
general introduction to BNNs before delving into the construction of our models. We
subsequently discuss the resolution of inverse problems with BNN surrogates before
applying our developments to the SILENE and BERP test cases.

3.1 An overview of BNN

3.1.1 Artificial neural networks

Artificial neural networks are a class of mathematical models that have attracted
increasing attention over the last decades. They have been applied for example
to image recognition [LB+95], natural language processing [SP97] or to generative
tasks [Bal12; HS97]. In their simplest form, they consist of successive layers where
each layer is connected to the next. The output of one layer is obtained from its
inputs by linear matrix operations, often followed by a non-linear activation function.
One of the characteristics of ANN is the large number of tunable parameters which
turn them into highly polyvalent mathematical models. The range of applications
of ANN also depends on their architecture and the type of layers in the network.
Developments in the underlying architecture of neural networks led for instance
to the Large Language Models or the image recognition machines. In this work,
we focus mainly on simple dense fully connected layers, for supervised learning
applications, which are described hereafter.

Consider some inputs x ∈ X ⊂ Rp. Let us transform these with a simple matrix
operation such that we obtain z = wx + b ∈ Rj where w ∈ Rj×p is a real matrix,
known as the weight matrix, and b ∈ Rj is known as the bias vector, for some
j ≥ 1. Finally, we apply a non-linear transform in the form of a so-called univariate
activation function h. We obtain the final output y = h(z) = (h(zi))1≤i≤j ∈ Rj. This
mathematical model denoted by y = h(wx + b) is a fully-connected dense layer.
To build a neural network, we apply L ≥ 1 successive layers as follows:

z(l+1) = h(l+1)(w(l+1)z(l) + b(l+1)) for 0 ≤ l ≤ L (3.1)

where z(0) = x ∈ Rp are the inputs, z(L+1) = y ∈ RD are the model outputs, where
for 1 ≤ l ≤ L, the weight matrix, the bias vector and the activation function of the l-th
hidden layer are respectively w(l) ∈ Rjl×jl−1 , b(l) ∈ Rjl and h(l) with j0 = p. Similarly,
w(L+1) ∈ RD×jL , b(L+1) ∈ RD and h(L+1) are the weights, biases, and activation
function of the output layer.
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The output of the NN model is summarized as y = Nϕ(x) where ϕ = (w, b) is the set

of parameters of the network, where w =
(

w(1), ..., w(L+1)
)

and b =
(

b(1), ..., b(L+1)
)

.

A NN model can be used for either regression or classification tasks. It requires a
training set to tune the model parameters. Consider a dataset Dtrain = (X, Y) with
X = (X1, ..., Xn)T ∈ X n and Y = (Y1, ..., Yn)T ∈ Rn×D for n ≥ 1. The goal of the
training is to choose the network parameters ϕ = (w, b) that minimize a given loss
function L which has the form:

L(X, Y) =
n

∑
i=1

ℓ
(

Nϕ(Xi), Yi
)

. (3.2)

For regression, ℓ is usually the L2-norm for example, while for binary classification it
can be a binary cross-entropy loss function.
The training phase thus reduces to an optimization problem, which is usually solved
with stochastic gradient methods [KB14; DHS11], which can deal with large amounts
of data efficiently.

3.1.2 Bayesian extension

Artificial neural networks have two main drawbacks. First of all, their interpretation
is difficult. The neural network tends to act like a black box mainly because of the
very large number of parameters in the model. Besides artificial neural networks
do not provide uncertainty quantification in the predictions. The accuracy of the
predictions can only be estimated using a validation dataset but it is not possible to
obtain a confidence interval for each prediction.

For our task, we would like to quantify the epistemic uncertainty, that is, the uncer-
tainty of the model. This uncertainty mainly stems from a lack of data. For example,
in low-data regimes, the weights and biases obtained after optimization may depend
on the network initializations and various developments have been made to tackle
this issue [SMG13; MM15].
In this work, we would like to transform ANN into probabilistic models able to
provide a prediction as well as confidence in the prediction. For that purpose, we
studied Bayesian Neural Networks (BNNs) [Nea12; Mac92].

The idea behind BNNs is to apply Bayesian inference to all weights and biases.
Instead of optimizing the point values of the weights based on the training data, their
posterior distribution is obtained. New predictions can then be made by integrating
over the posterior distribution of the weights.
Let us dive into the BNN formalism more thoroughly. The outputs are assumed
scalar in the notations for clarity, but the method can be extended to vector outputs.
We assume some knowledge is available about ϕ, which is quantified by a prior
distribution density p(ϕ). The objective is to evaluate the posterior distribution
of the weights after training on the data set Dtrain = (X, Y). Once the posterior
distribution is evaluated, the predictions Y∗ = (Y∗,1, ..., Y∗,n∗)

T ∈ Rn∗×D for the inputs
X∗ = (X∗,1, ..., X∗,n∗)

T ∈ X n∗ , for x∗ ≥ 1, can be obtained by marginalizing over the
posterior distribution of the weights.

p(Y∗|Dtrain, X∗) =
∫

p(Y∗|X∗, ϕ)p(ϕ|Dtrain)dϕ (3.3)

where p(Y∗|X∗, ϕ) is the likelihood, for fixed network parameters, which is assumed
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Gaussian. For fixed ϕ, the BNN model output Y∗ for a given input X∗ ∈ X is thus
given by:

Y∗ = Nϕ(X∗) + ε (3.4)

where Nϕ is the deterministic function of the network for fixed weights and biases
ϕ. The quantity ε ∼ N (0, σ2) is added to model random noise since the network
function Nϕ is only an approximation of the true model. The regularization parameter
σ2 is treated similarly to the other network parameters. Our goal is thus to obtain
the posterior distribution p(ϕ, σ|Dtrain). Keep in mind that the regularization term in
our application will be a vectorial noise term containing a full covariance, instead of
a simpler scalar term as it is here. However, for the sake of simplicity, we keep the
notation σ for now. The implementation of the covariance regularization is discussed
in Section 3.2.3

The main difficulty is the posterior distribution p(ϕ, σ|Dtrain) which is often very
complex and makes the integral in (3.3) intractable. If samples (ϕm, σm)1≤m≤M of the
network parameters and regularization parameter can be obtained, the predictive
distribution can be obtained by Monte Carlo:

p(Y∗|Dtrain, X∗) ≃
1
M

M

∑
m=1

1√
2πσ2

m
exp

(
− 1

2σ2
m

n∗

∑
i=1

(Y∗,i − Nϕm(X∗;i))
2

)
. (3.5)

The mean and variance for a single prediction Y∗ can also be obtained.

E[Y∗] ≃
1
M

M

∑
m=1

Nϕm(X∗) (3.6)

V[Y∗] ≃
1
M

M

∑
m=1

Nϕm(X∗)
2 +

1
M

M

∑
m=1

σ2
m −

(
1
M

M

∑
m=1

Nϕm(X∗)

)2

. (3.7)

Hence, the objective is to be able to sample from the posterior distribution p(ϕ, σ|Dtrain).
Various approaches have been considered to obtain the posterior, and we will discuss
them in the next section.

3.1.3 Inference with BNN models

In this section, we introduce the various methods developed to evaluate the predictive
distribution of the BNN, which is given by the intractable integral in equation (3.3).
In what follows, we include the regularization parameter σ in the definition of ϕ to
alleviate the notations.

We do not claim to provide a comprehensive review of all possible inference methods
for BNNs. Amongst the main methods that are not covered in this thesis, we may
think of Laplace approximations [RBB18], ensemble methods [LPB17], or Stochastic
Gradient MCMC [WT11; CFG14; Zha+19].

3.1.3.1 MCMC sampling of the weights posterior

One of the most common approaches for sampling the posterior p(ϕ|Dtrain), which is
usually considered to be the reference, is to use MCMC sampling. Since the number
of network parameters is often very large, this method can be very computationally
intensive and is not always tractable. However, the models considered in this work
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only contain a few thousand parameters at most and the posterior distribution
p(ϕ|Dtrain) can be sampled by MCMC methods.

The state-of-the-art is to use HMC-NUTS which is highly efficient in high dimensions,
especially compared to simpler methods like Metropolis-Hastings sampling. We
recall that thinning the resulting MCMC chain is necessary to obtain uncorrelated
samples.
With MCMC, one can thus obtain a set of M ≥ 1 uncorrelated samples (ϕm)1≤m≤M
taken from p(ϕ|Dtrain). The predictive distribution of the BNN can then be approxi-
mated by a Monte Carlo estimation (3.5).

3.1.3.2 Variational inference and Bayes-by-backprop

Another approach, known as variational inference [HVC93; Gra11; BKM17; JJ00], is to
approximate the posterior p(ϕ|Dtrain) using a class of parametric distributions qβ(ϕ)
with the appropriate choice of parameter β. This approximate distribution is known
as the variational distribution. The integral can then be approximated by a Monte
Carlo estimation using samples (ϕm)1≤m≤M from the variational distribution qβ(ϕ).
The quality of the approximation is dependent on the choice of the variational dis-
tribution. How can we choose the best parameter β so that qβ(ϕ) is close to the true
posterior p(ϕ|Dtrain)?

Various strategies have been considered but the most common approach is to choose
the β minimizing a dissimilarity measure between the two distributions. Evaluat-
ing such a distance is not always trivial, especially considering that p(ϕ|Dtrain) is
inaccessible. One way to overcome this obstacle is to consider the Kullback-Leibler
divergence [KL51]. We recall its definition for two probability distributions with
density p and q:

KL(p||q) =
∫
X

p(x) log
(

p(x)
q(x)

)
dx (3.8)

This metric is not formally a distance since it is not symmetric. However, it defines a
dissimilarity measure between probability distributions.
In variational inference, the KL divergence is often chosen as a metric to tune the
variational distribution. The best parameter β̂ is chosen as:

β̂ ∈ argminβ KL
(
qβ(·)||p(·|Dtrain)

)
. (3.9)

Though we now have a metric to compare probability distributions, our problem
remains. This optimization problem can not be solved since the KL divergence cannot
be computed without knowing the posterior.
Let us rephrase the KL divergence using the fact that p(ϕ|Dtrain) =

L(Dtrain|ϕ)p(ϕ)
p(Dtrain)

. Sim-
ilarly to what is done for sparse GP approximations, minimizing the KL divergence
is equivalent to maximizing the evidence lower bound (ELBO) defined by:

ELBO = Eqβ
[log L(Dtrain|ϕ)]− KL

(
qβ(·)||p(·)

)
(3.10)

where L(Dtrain|ϕ) is the likelihood of the training data, given fixed network parame-
ters ϕ. This likelihood is given by:

L(Dtrain|ϕ) = p(Y|X, ϕ) = exp

(
− 1

2σ2

n

∑
i=1

(Yi − Nϕ(Xi))
2

)
. (3.11)
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The ELBO consists of a data term and a regularization term KL
(
qβ(·)||p(·)

)
. The best

variational distribution is a compromise between data fit and similarity to the prior.
With the right choice of prior p(ϕ) and variational distribution qβ(ϕ), the KL di-
vergence between p(ϕ) and qβ(ϕ) is analytically tractable. The first term can also
be evaluated by a Monte Carlo approximation since it is possible to obtain samples
(ϕm)1≤m≤M from the variational distribution qβ(ϕ):

Eqβ
[log L(Dtrain|ϕ)] ≃ 1

M

M

∑
m=1

log (L(Dtrain|ϕm)) . (3.12)

The inference strategy for BNN can thus be reduced to an optimization problem.
However, one difficulty remains. This optimization problem could be solved with a
stochastic gradient descent since the objective function is expressed as a sum over all
the data points. But can we obtain the gradient of this objective function with respect
to the variational parameter β? This is not straightforward since the objective function
itself is a Monte Carlo approximation of an expectation with respect to qβ(ϕ).

Let us consider the data term of the ELBO. We would like to evaluate the gradient of
this term with respect to β to fit our variational distribution. Though the ELBO can
be computed by Monte Carlo approximation, the evaluation of its gradient is not so
trivial.
In [Blu+15; KSW15], the following "parametrization trick" derived from the varia-
tional Gaussian trick from [OA09] was introduced to overcome this obstacle.

Proposition 3.1.1 (Reparametrization trick). Let ϕ be a random variable with distribution
given by the density qβ(ϕ) and let g(ϕ, β) be a function differentiable with respect to β.
Assume that ϕ = t(β, θ) where t is a deterministic function and θ is a random variable with
density q(θ) and such that q(θ)dθ = qβ(ϕ)dϕ.

∂

∂β
Eqβ(ϕ) [g(ϕ, β)] = Eq(θ)

[
∂g(ϕ, β)

∂ϕ

∂ϕ

∂β
+

∂g(ϕ, β)

∂β

]
(3.13)

How is this reparametrization trick used in practice? For most cases, the variational
distribution is chosen to be Gaussian such that qβ ∼ N (µ, σ2) and β = (µ, σ2). Thus
ϕ can be written as ϕ = µ + σt where t ∼ N (0, 1). The gradient of the ELBO can
thus be computed by an unbiased Monte Carlo estimator derived from equation
(3.13). This strategy has been widely applied to variational models, for example with
stochastic variational inference [Hof+13] where it helps in reducing the variance of the
gradient estimators. However, it is constrained by the existence of a transformation
ϕ = t(β, θ). This usually restricts the user to certain variational families such as
Gaussian distributions, though some recent developments have tried to generalize
the reparametrization to more general distributions [FMM18].

3.1.3.3 Monte Carlo Dropout

Dropout was introduced in [Hin+12]. It is a regularization technique used in standard
neural networks to prevent overfitting. In standard dropout, a fraction of the neurons
in each layer are deactivated at each epoch during the training phase. The probability
p of a neuron being turned off is set by the user. Monte Carlo Dropout (MCD), which
was introduced in [GG16], is founded on the same principle. This paper highlights
the connection between dropout layers and variational deep Gaussian processes. We
briefly describe MCD hereafter.
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Let us first consider a fully connected neural network with L layers, with Kl neurons
in layer l. In each layer l, the neurons can be dropped out with probability pl ∈ (0, 1).
Suppose we have some training data Dtrain = (X, Y), with X = (X1, ..., Xn)T ∈ X n and
Y = (Y1, ..., Yn)T ∈ Rn×D The network parameters are denoted ϕ as in the previous
sections. Assuming a square loss, the objective function of the network is :

L(X, Y) =
n

∑
i=1

∥Yi − Nϕ(Xi)∥2
2 + R(ϕ) (3.14)

where Nϕ(Xi) is the feed-forward prediction of the network for the input point Xi and
the network parameters ϕ. The term R(ϕ) refers to a regularization term. Usually
it is a L2-regularization on the weights matrices w(l) ∈ Rjl×jl−1 and the bias vector
b(l) ∈ Rjl .
It is possible to show that this formulation is equivalent to a variational deep Gaussian
process with latent variables w =

(
w(1), ..., w(L+1)

)
where w(l) = M(l)diag(z(l)1 , ..., z(l)jl

)

where M(l) is a variational matrix parameter, and the z(l)j are Bernouilli variables with
probability pl . We are not detailing the proof of this result here. Deep GPs are not
the focus of this thesis, but the interested reader can refer to [DL13] for the general
description of such models.

Therefore, Monte Carlo dropout can be understood as a variational approximation
of deep Gaussian processes, which makes it possible to quantify uncertainties. The
uncertainties on a given prediction can be obtained by repeated feed-forward calls to
the network, where for each call, a fraction of the neurons are deactivated. For a given
input X, assuming a total of M calls to the network, with each having parameters ϕm
and returning an output Nϕm(X) for 1 ≤ m ≤ M, the predictive mean and variances
are simply obtained by (3.6) and (3.7). This is easily generalized to a multi-output
setting.
This method allows for uncertainty quantification in neural networks. However one
can wonder about the reliability of the uncertainties provided. Indeed, the underlying
variational distribution may not be well suited to approximate the true posterior
distribution in a Bayesian setting. The limits of Monte Carlo Dropout have been
pointed out in [Liu+21; PF18], in which over-confident predictions are obtained for
out-of-data instances.

3.2 Probabilistic modeling with BNNs

In the previous section, we described the general theory behind Bayesian Neural
Networks, and especially the various methods that can be employed to provide
an output predictive distribution. In this section, we focus on the construction of
surrogate models with BNNs.

3.2.1 Network architecture

We consider a network composed of fully-connected dense layers. Each layer contains
Kn = 50 neurons, and we are considering a model with L = 2 hidden layers. There
is no need for a deep architecture in this work since the direct model that we seek
to model is rather simple and low-dimensional. Some details on the ablation study
leading to this final architecture are given in Appendix D.
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The weight matrices are denoted by w(1) ∈ RKn×p, w(2) ∈ RKn×Kn and w(3) ∈ RD×Kn .
Similarly, the bias vectors are b(1) ∈ RKn , b(2) ∈ RKn and b(3) ∈ RD. The activation
functions are sigmoid for every layer except the final layer in which a linear function
is used.
For an input x ∈ X , the values of the neurons in the l-th layer, for 1 ≤ l ≤ L + 1, is
denoted by z(l) = h(l)

(
w(l)z(l−1) + b(l)

)
where we write z(0) = x and z(L+1) = Nϕ(x)

is the model output, and where h(l) is the activation function associated with the l-th
layer. The network has a total of 3112 parameters.

3.2.2 Loss function

Consider an input x ∈ X . We want the BNN to provide a multivariate normal distri-
bution Yϕ,C(x) ∼ N

(
Nϕ(x), C

)
where (ϕ, C) are themselves randomly distributed

according to a posterior p(ϕ, C|Dtrain). Let us first begin with a homoscedastic ap-
proach in which the covariance C does not depend on x.
Let (X, Y) be our training dataset. For a given set of network parameters ϕ and a
covariance C, we define the loss function Lϕ,C(X, Y) as:

Lϕ,C(X, Y) =
(
(2π)D|C|

)−n/2
exp

(
−1

2

n

∑
i=1

(
Yi − Nϕ(Xi)

)T C−1 (Yi − Nϕ(Xi)
))

.

(3.15)
This loss imposes a Gaussian distribution output. We wish to estimate the posterior
distribution of ϕ and C given this likelihood.
Of course, imposing a Gaussian distribution is an approximation. However, com-
pared to a Gaussian process, this BNN model integrates over the whole posterior
p(ϕ, C|Dtrain). If we consider a Monte Carlo approximation of the integral in (3.3),
the predictive distribution of the BNN is thus a mixture of multivariate Gaussian
distributions with means ϕm and covariances Cm, where ϕm and Cm are sampled
from p(ϕ, C|Dtrain), for 1 ≤ m ≤ M.

3.2.3 Choice of the priors

The choice of the priors can largely impact the performance of a BNN. In this section,
we describe the choices made for the prior distributions of the weights, biases, and
covariances.

3.2.3.1 Weights and biases priors

The priors on the network weights were first chosen as independent identically
distributed zero-mean Gaussian priors p(w) ∼ N

(
0, σ2

w
)
. The same is done for the

biases with a prior p(b) ∼ N
(
0, σ2

b

)
. This choice is mainly motivated by simplicity

in this work. An additional idea is to initialize the prior means to the values obtained
for a point neural network. This alternate approach appears beneficial for larger
networks only. For the architecture chosen, zero-mean priors provide better predictive
performances. The results are highlighted in Appendix D. The choice and influence of
the priors in BNN is still a vivid field of research [For+21; For22; GY20]. The optimal
selection of the variance is not obvious and was obtained by a grid-search approach,
looking for values σ2

w, σ2
b ∈ {0.1, 0.5, 1.0, 2.0, 5.0, 10.0}. The best estimates for the prior

were found to be σ2
w = 5.0 and σ2

b = 5.0.
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3.2.3.2 Covariance priors

For a given set of parameters, we want our BNN models to output a multivariate
normal distribution with some covariance C ∈ SD(R)+. We need to define some
prior distribution p(C) for the covariance C.
A naive guess would be to choose a diagonal covariance and select priors on the
diagonal elements ci,i for 1 ≤ i ≤ D. However, as can be seen from the datasets in
Figure 2.6, the outputs are strongly correlated. Their covariance structure cannot be
fully described by a diagonal output covariance.

Instead, we focus on two classes of priors for positive-definite matrices, namely the
Inverse-Wishart distribution [ANS14] and the Lewandowski-Kurowicka-Joe (LKJ)
prior [HW13; LKJ09].

Definition 3.2.1. Let M ∈ SD(R)+ be a positive definite matrix known as the scale matrix
and let µ > D − 1 be a real number, defined as the degrees of freedom. For C ∈ SD(R)+, the
Inverse-Wishart distribution is a probability distribution defined by the density:

f (C) =
|M|µ/2

2µD/2ΓD(µ/2)
|C|−(µ+D+1)/2 exp

(
−1

2
Tr(MC−1)

)
. (3.16)

When a random variable C has the Inverse-Wishart distribution with scale matrix M and
degrees of freedom µ > D − 1, we write C ∼ IW(M, µ).

If C ∼ IW(M, µ), then C−1 follows a Wishart distribution. The Wishart distribution
is the multivariate equivalent of the χ2 distribution. Indeed, considering indepen-
dent Gaussian vectors (Xi)1≤i≤µ with distribution Xi ∼ N (0, M) then the matrix

C =
µ

∑
i=1

XiXT
i follows a Wishart distribution C ∼ W (M, µ). The inverse-Wishart

distribution is extensively used in Bayesian statistics as a covariance prior since it
is the conjugate prior to the multivariate Gaussian for the estimation of covariance
matrices (see for example [DP02]).
Now let us define the LKJ distribution, which is the other covariance prior investi-
gated in this work.

Definition 3.2.2. Let η > 0 be a real, known as the concentration. Let SD,c(R)+ be the
subset of SD(R)+ comprising matrices with unit diagonals, otherwise known as correlation
matrices. For Σ ∈ SD,c(R)+, the LKJ prior is defined by the density function:

f (Σ) = K × |Σ|η (3.17)

where K is a normalization constant. When a random variable Σ has the LKJ distribution
with concentration η, we write Σ ∼ LKJ (η).

The LKJ prior is defined only over correlation matrices, thus one also needs to
introduce a diagonal matrix S = diag(σ1, ..., σD), to obtain a covariance matrix C =
SΣS. In this work, we chose to sample the diagonal vector σ from a Half-Cauchy
distribution truncated at zero σ ∼ HC(0).
To investigate the influence of the covariance prior, we studied the LKJ prior with
some grid-search for η ∈ {0.5, 0.8, 1.0, 1.5, 3.0} and σ ∼ HC(0). The optimal choice of
the concentration η obtained with the grid-search approach is η = 0.8. Since lower
values of η tend to favor correlations in the matrix, this value is in agreement with
our intuition, since we expect the covariance to display correlations as the outputs



3.2. Probabilistic modeling with BNNs 123

are strongly correlated. However, the value of η remains close to 1 to keep a rather
non-informative prior for the predictive covariance.

Then, we study the Inverse-Wishart prior C ∼ IW(M, µ) for µ ∈ {3, 5, 8, 10}. The
scale matrix M is taken to be close to the expected covariance matrix in the output. It
is taken as the empirical covariance of the outputs evaluated over the whole training
dataset, which is for the BERP dataset:

M =

1.12 × 108 6.43 × 103 5.09 × 104

6.43 × 103 4.94 × 10−1 4.39 × 100

5.09 × 104 4.39 × 100 4.77 × 101

 . (3.18)

The optimal choice found for the degrees of freedom was µ = 10 for our problem.
The interpretation µ is less straightforward than for the concentration parameter in
LKJ priors.

3.2.4 Performance review

Let us now describe the overall performance of the BNN models studied. The main
metrics of interest are the same as for GP surrogates (see Section 2.4.1). All models
have the same architecture but differ in their inference strategy. The following models
are considered:

• LKJ-BNN: HMC-NUTS inference with LKJ prior for the covariance.

• IW-BNN: HMC-NUTS inference with Inverse-Wishart prior for the covariance.

• VI-BNN: BNN model with variational inference.

• MCD-BNN: BNN model with Monte Carlo Dropout inference.

The performance metrics are displayed in Table 3.1. Monte Carlo dropout does
not appear as a reliable inference method for our BNN surrogate as it struggles to
provide satisfying predictions for all outputs. On the other hand, the predictive mean
capabilities of all the other methods are mostly similar, or slightly superior to the GP
models presented in the previous chapter. The emphasis is on the LKJ-BNN model
which offers the best mean predictions.

Now let us look at the coverage probabilities for each of the models. Since the ap-
proximated output distribution is a Gaussian mixture when using a Monte Carlo
estimation for the integral in (3.3), one cannot directly use the coverage probabilities
introduced in definition 2.4.3 to measure the reliability of the predictive covariances.
However, it is possible to take the mean of the samples (either obtained by variational
inference or MCMC) and compute coverage probabilities with the mean of the predic-
tive means and covariances. One justification for looking at these averaged quantities
is that BNN surrogates will be used in the inverse problem by averaging their predic-
tion so that we fall back to a Gaussian output distribution (see Section 3.3.1). These
parameter-averaged coverage probabilities are presented in Figure 3.1. All the BNN
models tend to consistently overestimate the uncertainties. In particular, IW-BNN
provides the worst coverage probabilities, despite having good predictive mean met-
rics. On the other hand, LKJ-BNN displays the best coverage probabilities while still
having satisfying mean predictive performance. Now, one can also study the number
of samples required to effectively represent the posterior distribution p(ϕ|Dtrain). To
inquire about this aspect, let us vary the number M of samples (ϕm)1≤m≤M used
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TABLE 3.1: Performance of the homoscedastic BNN - BERP dataset.

MCD-BNN NMAE NRMSE Q2

R 0.3836 0.5457 0.4581
Y∞ 0.4742 0.8391 0.3688
X∞ 0.7629 2.5679 0.072

VI-BNN NMAE NRMSE Q2

R 0.0079 0.0128 0.9997
Y∞ 0.0196 0.0365 0.9987
X∞ 0.0606 0.1965 0.9946

LKJ-BNN NMAE NRMSE Q2

R 0.0084 0.0133 0.9997
Y∞ 0.0201 0.0362 0.9988
X∞ 0.0600 0.176 0.9956

IW-BNN NMAE NRMSE Q2

R 0.0076 0.0126 0.9997
Y∞ 0.0205 0.0417 0.9984
X∞ 0.0723 0.2811 0.9889

FIGURE 3.1: Coverage probabilities for the various parameter-
averaged models - BERP dataset.

to compute the coverage probabilities. For a given model (IW-BNN in this case),
we compute the coverage probabilities 100 times where each iteration is done for a
different subset of samples, with size W ∈ {5, 10, 30, 100, 300, 1000}. For each value
of W, we obtain a mean and confidence interval for the coverage probabilities. These
are plotted in Figure 3.2. One can see that the coverage probabilities do not spread
exceedingly even at a low number of samples. This is explained by the relatively
low epistemic error since the BERP dataset contains sufficient data. The predictive
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FIGURE 3.2: Mean and 95% confidence interval for the coverage prob-
abilities evaluated by averaging predictive means and variances over

a varying number of BNN samples - BERP dataset.

distribution (3.3) of the BNN is computed with a Monte Carlo estimation, thus there
is a trade-off between the number of samples and the accuracy of the predictive
distribution. From this study, one can imagine that keeping only W ≃ 100 samples
should be enough to obtain reliable uncertainty quantification.

Let us now turn our attention to models trained with the SILENE dataset, which
has fewer data. We will not provide all the performance metrics here, as they can
be found in Appendix E. However, we would like to highlight the difference in
epistemic uncertainty in the models. Let us look once more at the mean and deviation
of the coverage probabilities when averaging over the posterior samples. For the
SILENE dataset, we obtain the results shown in Figure 3.3. These were obtained
with the LKJ-BNN model as well. The spread of the coverage probabilities is much
more important for the SILENE dataset. Even with W = 1000 posterior samples, the
deviation is non-negligible and is close to that of the BERP models with W = 100.
To use BNN surrogate models for the SILENE test case, more posterior samples are
required.

Now that we have already obtained some initial BNN surrogates, we will discuss the
possibility of improving them with either multi-fidelity modeling or heteroscedastic-
ity modeling (or both).
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FIGURE 3.3: Mean and 95% confidence interval for the coverage prob-
abilities evaluated by averaging predictive means and variances over

a varying number of BNN samples - SILENE dataset.

3.2.5 Improving the BNN

3.2.5.1 Heteroscedastic covariance estimation

As a first improvement, we are looking at heteroscedastic modeling of the predictive
covariance, such that for a given set of parameters ϕ and an input x ∈ X , the network
outputs a predictive distribution N

(
Nϕ(x), Cϕ(x)

)
. For this, we decided to modify

the architecture of the network. Starting from the inputs, we keep two dense fully-
connected layers of 50 neurons. Then, the network is split into two paths. One path
is dedicated to the mean prediction, while the other is focused on the covariance
prediction. The mean path is composed of an additional hidden layer of Kµ = 50
neurons, while the covariance path is made of one layer of Kσ = 50 neurons. This
new model is named HBNN. We keep a common network part since we expect to
have common information between the predictive means and covariances. With
this architecture, the total number of model parameters is extended to 5963. The
architecture is illustrated in Figure 3.4. The neuron values in the mean layer are given
by:

z(µ,1) = h(µ,1)
(

w(µ,1)z(L) + b(µ,1)
)

(3.19)

with L = 2, and the mean output is:

Nϕ(x) = h(µ,2)
(

w(µ,2)z(µ,1) + b(µ,2)
)

. (3.20)

Similarly to what was done for heteroscedastic GP regression in the previous chapter,
we do not learn directly the covariance Cϕ(x) for a given input x ∈ X but instead we
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FIGURE 3.4: Simplified architecture of the heteroscedastic BNN.

focus on the Cholesky decomposition Cϕ(x) = Lϕ(x)TLϕ(x) and we apply the log to
the diagonal elements of Lϕ(x).
More formally, let us introduce the vector σϕ(x) ∈ RD(D+1)/2 linked to the predictive
covariance by: σϕ(x)j+ i(i−1)

2
= log Lϕ(x)i,j if i = j

σϕ(x)j+ i(i−1)
2

= Lϕ(x)i,j if i > j
(3.21)

for 1 ≤ j ≤ i ≤ D. The notations for the covariance layer are similar to the mean
layer, and the predictive covariance is obtained by:

z(σ,1) = h(σ,1)
(

w(σ,1)z(L) + b(σ,1)
)

(3.22)

σϕ(x) = h(σ,2)
(

w(σ,2)z(σ,1) + b(σ,2)
)

. (3.23)

The training and inference procedures for this new model are very similar. The
posterior distribution of the network parameters is obtained by MCMC sampling
with HMC-NUTS.

3.2.5.2 Multi-fidelity BNN

We then focus on including a low-fidelity model, namely the point model defined
by (1.99), (1.100) and (1.101), to our BNN models. Using the inputs of the model,
the predicted point model outputs are evaluated, assuming the nuclear data for the
Diven factors and mean neutron multiplicity are known.

Denoting by fp : R4 −→ R3 the point model, we modify the architecture of the network
as follows. We introduce a new weight matrix w(pm) ∈ RD×D and define the model
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mean output as:

Nϕ(x) = h(µ,2)
(

w(µ,2)z(µ,1) + b(µ,2)
)
+ w(pm) fp(x). (3.24)

The notation fp(x) is abusive since fp is defined over R4 and not R7. It must be
understood as fp(x) = fp(x1, x2, x3, x4). This new model, which also comes with a
heteroscedastic architecture, is named BL-HBNN.

3.2.5.3 Mixed GP-BNN models

Since GP surrogate models are readily available for the problem investigated, one
could try to leverage the information brought by these models to improve the BNN
surrogate models.

The predictive means and covariances of the GP surrogates can be introduced in the
network as was done in the previous section for the point model. Consider a GP
surrogate model with predictive distribution fs(x) ∼ N

(
fs(x), Cs(x)

)
for x ∈ X .

Let us also define the vector σs(x) associated with the predictive covariance Cs(x)
of the GP which is defined in the same way as σϕ(x) in (3.21). Keeping the same
notations as in Section 3.2.5.1, we define a new model GP-HBNN by:

Nϕ(x) = h(µ,2)
(

w(µ,2)z(µ,1)(x) + b(µ,2)
)
+ w(µ,GP) fs(x) (3.25)

σϕ(x) = h(σ,2)
(

w(σ,2)z(σ,1)(x) + b(σ,2)
)
+ w(σ,GP)σs(x) (3.26)

where w(µ,GP) and w(σ,GP) are two newly introduced weight matrices of respective
size D × D and D(D+1)

2 × D(D+1)
2 .

To include the GP information, it is also possible to use a Gauss-Hermite quadrature
as was done in [KCG24] to sample the posterior distribution from the GP instead of
feeding only its mean and covariance to the BNN. However, this method leads to an
augmented dataset and also increases the number of network parameters. It was not
viable for our problem. Indeed, the BNN surrogates are then used in the subsequent
MCMC sampling, and we must keep fast prediction times, which was not the case
with this approach.

3.2.5.4 Performance of the improved models

What are the improvements brought by the heteroscedasticity modeling and the
multi-fidelity approaches? The error metrics for the predictive means are shown in
Table 3.2. Looking at the predictive means one can highlight the BL-HBNN model
which has very low predictive errors. The GP-HBNN model also provides excellent
predictive performance for R and Y∞ but seems to fall short for X∞.

Now let us shift our focus to the coverage probabilities. One can obtain coverage
probabilities by averaging the predictive means Nϕm(x) and covariances Cϕm(x)
obtained over the set of samples (ϕm)1≤m≤M. The averaged coverage probabilities
are plotted in Figure 3.5. From this Figure, one can see that the heteroscedastic model
HBNN does not yield excellent coverage probabilities on its own. However, adding
the point model largely improves the coverage probabilities. Moreover, we see that
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TABLE 3.2: Performance of the heteroscedastic BNN models - BERP
dataset.

HBNN NMAE NRMSE Q2

R 0.0085 0.0143 0.9996
Y∞ 0.0206 0.0392 0.9986
X∞ 0.0645 0.2169 0.9934

BL-HBNN NMAE NRMSE Q2

R 0.0074 0.0122 0.9997
Y∞ 0.0202 0.0372 0.9988
X∞ 0.0644 0.2071 0.9940

GP-HBNN NMAE NRMSE Q2

R 0.0057 0.0097 0.9998
Y∞ 0.0182 0.0439 0.9983
X∞ 0.090 0.4628 0.9699

FIGURE 3.5: Averaged coverage probabilities for the multi-fidelity and
heteroscedastic BNN models.

the GP-HBNN also benefits from the added information from the GP predictions, as
it provides more reliable uncertainties than HBNN.

From Figure 3.5 and Table 3.2, we conclude that our best BNN surrogate is BL-HBNN.
It comes with a cost as it comes with approximately twice the number of parameters
of simpler models such as LKJ-BNN.
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3.3 Inverse problems with BNN surrogates

In this section, we will see how one can include the BNN surrogate models in the
resolution of a Bayesian inverse problem. Two approaches are studied: we begin by
providing the predictive averaged quantities to the MCMC sampler, which represents
a simplification of the true predictive distribution at the cost of a loss of information.
Then, in a second approach, we consider a more accurate likelihood which uses the
whole BNN predictive distribution seen as a Gaussian mixture.
The notations are the same as in Chapter 2. The observations are y = (y(k))1≤k≤N and
have a Gaussian observational noise with covariance Cobs.

3.3.1 Predictive-averaged BNN likelihood

Consider a BNN surrogate model, for which we have access to M samples of the
network parameters (ϕm)1≤m≤M. We assume here that we have a heteroscedastic
BNN model such that the predictive distribution obtained for one set of parameters
ϕm and an input x ∈ X is fNN(x) ∼ N

(
Nϕm(x), Cϕm(x)

)
. The predictive distribution

of the BNN can be approximated by Monte Carlo which yields (3.5). Instead of
working with this distribution, one can average the predictive means and covariances
over the samples, which outputs once more a Gaussian distribution fNN(x):

fNN(x) ∼ N
(

Nϕ(x), Cϕ(x)
)

(3.27)

where Nϕ(x) = 1
M

M
∑

m=1
Nϕm(x) and Cϕ(x) = 1

M

M
∑

m=1
Cϕm(x). We can then use the

following statistical model:

y(k)|x = fNN(x) + ε(k) (3.28)

where ε(k) ∼ N (0, Cobs) are the iid random variables corresponding to the observa-
tional noise.
This model is the same as for the Gaussian process surrogate models. The correspond-
ing likelihood, denoted by L(y|x) is thus given by:

L(y|x) = 1√
(2π)D|NCϕ(x) + Cobs|

× exp

(
−1

2

(
y − Nϕ(x)

)T
(

Cϕ(x) +
1
N

Cobs

)−1 (
y − Nϕ(x)

))
. (3.29)

3.3.2 Gaussian mixture likelihood

Instead of working with the averaged predictive quantities, one could try to use
the full BNN output distribution to reflect more accurately the uncertainties in the
inverse problem.
This time, we assume that the observations are given by the Monte Carlo approxima-
tion of the predictive distribution (3.3).

y(k)|x = Y|x + ε(k) (3.30)
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where ε(k) are the same as in the previous section, and where for a given input x ∈ X :

p(Y|Dtrain, x) ≃ 1
M

M

∑
m=1

exp
(
− 1

2 (Y − Nϕm(x))TCϕm(x)−1(Y − Nϕm(x))
)√

(2π)D|Cϕm(x)|
. (3.31)

From this statistical model, one can derive a likelihood for the inverse problem with
observations y.

Proposition 3.3.1. The likelihood of the observations y is given by:

L(y|x) = 1
M

M

∑
m=1

N
(

yflat|Nϕm(x), C(m)
tot (x)

)
(3.32)

where we introduced:

yflat = (y(1)1 , ...y(1)D , ..., y(N)
1 , ..., y(N)

D )T ∈ RDN (3.33)

Nϕm(x) =
(

Nϕm(x), ..., Nϕm(x)
)T ∈ RDN . (3.34)

and where C(m)
tot (x) = UN ⊗ Cϕm(x) + IN ⊗ Cobs ∈ S+

DN(R). The notation N (x|µ, Σ)
refers to the density of the multivariate Gaussian distribution with mean µ and covariance Σ.

Proof. We introduce the flattened vector of the noise terms, defined by E =
(

ε(1), ..., ε(N)
)T

∈
RDN . Since the ε(k) are iid, we have E ∼ N (0, IN ⊗ Cobs).
Let us first write the distribution of Y = (Y, ..., Y) ∈ RDN . The distribution of Y is
given by the likelihood:

p(Y|Dtrain, x) =
1
M

M

∑
m=1

N
(
Y|Nϕm(x),UN ⊗ Cϕm(x)

)
. (3.35)

We know that yflat = Y + E . Since Y and E are independent random variables with
known densities, their sum has a density given by the convolution product:

p(y|Dtrain, x) =
∫

p(Y|Dtrain, x)N (yflat − Y|0, IN ⊗ Cobs) dY

=
1
M

M

∑
m=1

∫
N
(
Y|Nϕm(x),UN ⊗ Cϕm(x)

)
N (yflat − Y|0, IN ⊗ Cobs) dY

=
1
M

M

∑
m=1

N
(

yflat|Nϕm(x), C(m)
tot (x)

)
(3.36)

where we used the fact that the convolution of Gaussian densities is a Gaussian
density with mean (resp. covariance) being the sum of the elements means (resp.
covariances).

With this likelihood, one can solve the inverse problem whilst using the full extent of
the predictive capabilities of BNN surrogate models. Of course, this comes with a
cost since the likelihood is much more computationally expensive than that of GP
surrogate models or BNN models with the averaged likelihood (3.29). Such a method
is not necessarily suited for applications where the computational budget is limited
but may be of service when time is not as much of a constraint.
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3.4 Applications

Let us consider our application cases and investigate the benefits of BNN surrogate
models compared to GP models.

3.4.1 ICSBEP Benchmark

Consider first the BERP test case. The context is the same as in Chapter 2.
To have an idea of the required number M of network samples (ϕm)1≤m≤M to properly
represent the BNN posterior, we may consider the analysis shown in Figure 3.2.
From these results, it seems reasonable to keep only W = 100 samples for the
predictions. For the test cases, we generated Markov chains with MCMC with a
length of L = 3 × 105 because of the more computationally demanding likelihood
involved.

To study the two likelihoods proposed in this chapter, we consider two posterior
distributions obtained with the same model (LKJ-BNN in this case). The first one,
shown in Figure 3.6 is obtained from the averaged likelihood (3.29). The second one is
obtained from the Gaussian mixture likelihood (3.32) and is displayed in Figure 3.7.

FIGURE 3.6: Posterior distribution marginals for the averaged likeli-
hood (3.29) and the model LKJ-BNN with W = 100 - BERP test case.

FIGURE 3.7: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model LKJ-BNN with W = 100 - BERP

test case.

The first thing that stands out is the large overestimation of the uncertainties displayed
by the averaged likelihood sampling. Compared to the distributions obtained in
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Chapter 2 with GP surrogates, Figure 3.6 displays a much broader distribution. On
the other hand, the mixture likelihood leads to a distribution closer to the ones
obtained in the previous chapter, though the distribution is narrower.
We then show the two same posterior distributions, but this time the surrogate model
used is the heteroscedastic model BL-HBNN. The posteriors are plotted in Figures
3.8 and 3.9.
Once again the averaged likelihood seems quite inaccurate when compared to the

FIGURE 3.8: Posterior distribution marginals obtained with the aver-
aged likelihood (3.29) and the model BL-HBNN with W = 100 - BERP

test case.

FIGURE 3.9: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BL-HBNN with W = 100 - BERP

test case.

posterior distributions obtained with the GP surrogates. However, for the mixture
likelihood, the posterior distribution is broader than for the homoscedastic models.
There are two possible explanations for this phenomenon. Either, the homoscedastic
models fail to capture some of the uncertainties, or the heteroscedastic model is not
well-trained and displays too much epistemic uncertainty compared to the other
models. To investigate this problem, we looked at the histogram plot of the log
variances of the marginal posterior distributions of the network parameters. This
can be seen in Figure 3.10. One can see that the log variances tend to be higher for
the heteroscedastic model which points towards a larger epistemic uncertainty. The
good news is that this uncertainty may be reduced by feeding additional data to the
training set Dtrain of the model.

Finally, to conclude this study we explore the influence of the number of samples
W. To that end, we sample the posteriors with the simpler BNN-LKJ model with
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FIGURE 3.10: Histogram plot of the log-variance of the marginal pos-
terior distribution of each network parameter. Comparison between

the models LKJ-BNN (blue) and BL-HBNN (orange).

W = 10 and W = 1000 with the mixture likelihood. The posteriors obtained are
shown in Figures 3.11 and 3.12. One can see that the distributions look very similar

FIGURE 3.11: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BNN-LKJ with W = 10 - BERP

test case.

FIGURE 3.12: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BNN-LKJ with W = 1000 - BERP

test case.
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which may be explained by the large number of data instances for this particular
test case. The epistemic uncertainty in the model is small, which means that the
posterior distribution over the network parameters is likely to be very narrow. A few
samples are enough to represent the distribution accurately. This is corroborated by
the previous analysis of the coverage probabilities variability in Figure 3.2.

3.4.2 SILENE test case

Let us conduct a similar study for the SILENE test case. We focus only on the con-
figuration with h = 20 cm of fissile solution height. We expect this study to uncover
more dependence especially with respect to W since the models were trained with a
smaller dataset. Theoretically, they should thus have a larger epistemic uncertainty.
This can be highlighted by looking at the log variances of the marginal posteriors
on the network parameters. Specifically, we plot in Figure 3.13 the log variances of
the LKJ-BNN models trained with the SILENE and BERP datasets respectively. As
expected, the log variances are in general higher with the SILENE model since fewer
data are available. Our first point of focus, compared to the previous test case, is that

FIGURE 3.13: Histogram plot of the log-variance of the marginal
posterior distribution of each weight. Comparison between the models
LKJ-BNN trained on the SILENE (blue) and BERP (orange) datasets.

the averaged likelihood requires a lot of samples W. In practice, for W < 1000, the
likelihood is too volatile and its high variability prevents sampling with MCMC.
Even with W = 1000 samples, one can see in Figure 3.14, that the posterior distribu-
tion is very inaccurate. The MCMC sampling struggles to explore the distribution. We
conclude that this averaged likelihood is not suited for problems with large epistemic
uncertainty.

We then investigate the influence of W by considering the posteriors obtained with
LKJ-BNN with varying choices of W, with the mixture likelihood. The posterior
distributions obtained respectively for W = 100 and W = 1000 are shown in Figures
3.15 and 3.16. For the same reason as before, we need to take at least W > 100 to
limit the volatility of the likelihood. Compared to the BERP case, one can see the
stronger influence of W. For W = 100, the distribution is more spread out (especially
for the source intensity S).
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FIGURE 3.14: Posterior distribution marginals obtained with the av-
eraged likelihood (3.29) and the model BNN-LKJ with W = 1000 -

SILENE test case.

FIGURE 3.15: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BNN-LKJ with W = 100 - SILENE

test case.

FIGURE 3.16: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BNN-LKJ with W = 1000 - SI-

LENE test case.

Finally, we compare the homoscedastic and heteroscedastic models. The posterior
marginals obtained with BL-HBNN are shown in Figure 3.17 for the mixture likeli-
hood with W = 100 samples. This posterior distribution is noticeably narrower than
that of Figure 3.15. This fact, combined with the more accurate coverage probabilities
of the BL-HBNN model seen in Figure 3.5, demonstrates the improvement brought
by the heteroscedasticity modeling. We expect the posterior distribution in Figure
3.17 to be more reliable than the one obtained with the LKJ-BNN model, which



3.5. Conclusion 137

FIGURE 3.17: Posterior distribution marginals obtained with the mix-
ture likelihood (3.32) and the model BL-HBNN with W = 100 - SI-

LENE test case.

overestimates the uncertainties.

3.5 Conclusion

The BNN surrogates presented in this chapter offer performance comparable to
the GP surrogates of Chapter 2. Some small differences may be noted, such as
the slight improvements in the coverage probabilities. However, BNNs are more
computationally intensive. This fact combined with the cost of the Gaussian mixture
likelihood makes the sampling of the posterior distribution significantly slower. As an
example, the running times for Adaptive Metropolis sampling for a total of L = 106

samples with respectively GP-LMC3 and BNN-LKJ were 8 and 15 minutes. This
computational cost is further amplified for more elaborate models such as BL-HBNN,
where the same sampling takes around 55 minutes.

As a general rule, we would advocate for GP surrogates, especially for cases where the
posterior distributions must be obtained rapidly. BNN surrogates however may be of
interest to provide an additional method to verify the suitability of GPs to a particular
problem. They may also be helpful to provide more reliable estimations, at the cost of
longer running times. In particular, for our problem, we believe that heteroscedastic
BNNs, such as the model BL-HBNN, are better at modeling the input-dependent
covariance than their GP counterpart. The posterior distributions 3.9 and 3.17 are
thought to be more reliable than those obtained with GP surrogates or homoscedastic
BNNs.

To conclude on this subject, we would recommend the following practice. GP sur-
rogate models should be used whenever the problem at stake is subject to time
constraints. If not, however, BNN surrogate models can serve as reliable alternatives,
being superior to GPs for capturing heteroscedasticity for example. One should keep
in mind that their construction may be more strenuous to make the most out of the
data and low-fidelity models available.





139

Chapter 4

Sequential designs for Bayesian
inverse problems

In this chapter, we will discuss optimal sequential design strategies in the specific case
of Bayesian inverse problems. This is motivated by the need for fine-tuning surrogate
models for a given inverse problem. An introduction to optimal design strategies is
presented in the foreword of this chapter. We then propose two sequential design
strategies and apply them to various test cases.

4.1 Overview of optimal design strategies

For high-dimensional problems or in few-data regimes, optimal design strategies seek
to provide a set of rules to select design points to maximize the model performance.
Throughout this chapter, our guideline is to improve a preexisting surrogate, acting as
an emulator for a complex computer code. This problem was first tackled in [Cur+88].
Optimal design strategies have found many applications in Bayesian optimization
[Sha+15], importance sampling [DSD13], reliability analysis [LJ08] or in Bayesian
model calibration [SPW23]. Sequential design is a subset of optimal design methods
in which new design points are added iteratively based on the current state of the
surrogate model [Rob52; Wan+14].

4.1.1 Space-filling designs

Space-filling designs are a subclass of optimal designs whose goal is to provide a set
of design points forming a good coverage of the whole space. Such designs may be
helpful as an initial design set to ensure that the surrogate model performs well on
the whole design space. They serve a purpose similar to that of quasi-Monte Carlo
methods [Caf98].

4.1.1.1 Latin hypercube

Consider some measurable function f on [0, 1]p. Let U be a random variable with
uniform distribution on [0, 1]p. Suppose that E

[
f (U)2] < +∞. If we want to estimate

E [ f (U)], the naive approach is to draw n iid samples (ui)1≤i≤n from U and compute

the unbiased estimator f̂n = 1
n

n
∑

i=1
f (ui). The variance of the estimator is given by

V
[

f̂n

]
= 1

n V [ f (U)]. The Latin hypercube sampling [Hus+11] is a method designed
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to sample n points si which yield an estimator f̂n,lhs with a lower variance than that
of the naive approach with iid samples.

Definition 4.1.1. Consider the p-dimensional hypercube [0, 1]p. Let n be the number of
samples to be obtained. A Latin hypercube is given by the matrix L ∈ Rn×p such that each
column L·,j is a permutation of the vector ( n+1

2 − k)1≤k≤n.
A Latin hypercube sample of size n of the hypercube [0, 1]p, denoted by a matrix S ∈ Rn×p

can be obtained from a Latin hypercube L by the relation di,j = 1
n

(
li,j + ui,j +

n−1
2

)
for

1 ≤ i ≤ n and 1 ≤ j ≤ p where the ui,j are independent random samples of a uniform
distribution on [0, 1].

In [Ste87], it was shown that the empirical variance estimated from a Latin hypercube
sample is lower than that of the standard empirical variance estimator f̂n, assuming
f is monotonic w.r.t. each variable (see Theorem 3.1 in [HD03]).

Proposition 4.1.1. Consider a measurable function f on the hypercube [0, 1]p, which is
supposed monotonic w.r.t. each input variable. Let U be a random variable with uniform
distribution on [0, 1]p. We assume that E

[
f (U)2] < +∞. Let u = (u1, ..., un) be a sample

of size n from the distribution U and let s = (s1, .., sn) be a Latin hypercube sample on [0, 1]p.

The corresponding estimators are denoted f̂n = 1
n

n
∑

i=1
f (ui) and f̂n,lhs =

1
n

n
∑

i=1
f (si). We have

the following results on the empirical variance.

V
[

f̂n,lhs

]
= V

[
f̂n

]
− 1

n

p

∑
j=1

V
[
E
[

f (x)|xj
]]

+ o
(

1
n

)
. (4.1)

The second term in (4.1) quantifies the sensitivity of the function f to the j-th dimen-
sion. This property of LHS designs, along with their simplicity, makes them attractive
designs when constructing an initial design set for a surrogate model. It is one of the
possible approaches which can be easily set up.

4.1.1.2 Minimax and maximin distance

Consider a distance d on the space of interest X . We are interested in building a
design set S = {X1, ..., Xn} ⊂ X n with a finite number n of design points. In [JMY90],
two possible strategies were introduced as minimax and maximin design sets.

Definition 4.1.2. Consider a fixed number of design points n and let us denote the distance
between a design set S = {X1, ..., Xn} ⊂ X n and a given point X ∈ X as d(X,S) =
minX′∈S d(X, X′). A minimax design set S∗ is a design set which verifies:

max
X∈X

d(X,S∗) = min
S

max
X∈X

d(X,S) (4.2)

or in other words, S∗ is a design set that minimizes the maximal distance between a point
X ∈ X and itself.

A minimax design set can be an alternative to a Latin Hypercube sampling to provide
good coverage of the design space X .

Johnson [JMY90] also introduced maximin designs which aim at maximizing the
minimal distance between points of the set itself.
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Definition 4.1.3. A maximin design set S∗ is a design set which verifies:

min
X,X′∈S∗

d(X, X′) = max
S

min
X,X′∈S

d(X, X′). (4.3)

A maximin design guarantees that the design points are widely spread out and can
thus also provide a good starting design for a surrogate model.

The space-filling designs introduced in this section are amongst the most commonly
used strategies for building an initial training dataset, though many other approaches
have been introduced. The focus of this thesis is not on space-filling designs however,
and the author refers to more comprehensive works on the subject such as [Nie92;
San+03; FLS05].

4.1.2 Criterion-based sequential designs

Space-filling designs are widely used to produce an initial design set for a computer
model. However, their goal is mainly to provide good coverage of the design space.
Goal-oriented designs have been introduced to generate designs suited for specific
tasks, whether it is Bayesian optimization, calibration, reliability analysis, or any other
application. Contrary to space-filling designs, they are built with a given objective in
mind and thus generally outperform them for that specific objective.

In what follows, we give a brief overview of some sequential design strategies.
Throughout the rest of this chapter, the direct model f is assumed to be a complex
computer code, and we assume that we only have access to an emulator in the form
of a GP surrogate.

Let us assume that our surrogate is given by a multi-output zero-mean Gaussian
process surrogate fs. We suppose that we are given a training dataset (X, Y) of n
instances such that the predictive distribution obtained after conditioning is given by
(2.14) and written as f (n)s (x) ∼ N (mn(x), kn(x)) for any x ∈ X . Our objective is to
find a new design point Xn+1 which is optimal in some sense.

4.1.2.1 D-optimal designs

Among the many interesting properties of a GP model, one can show that the pre-
dictive mean mn(x), also known as the kriging predictor, is the best linear unbiased
predictor (BLUP) which minimizes the mean squared error. In [SSW89], design crite-
ria are introduced as functions of the mean squared error (MSE), which boils down to
the predictive variance for GP surrogates:

MSEn(x) = E

[(
f (n)s (x)− mn(x)

)2
]
= kn(x). (4.4)

Suppose that we can obtain a new data point (Xn+1, Yn+1), which is used to update
the GP. How should we choose Xn+1? This is the fundamental question behind
sequential design.

A common criterion in optimal design theory is to minimize the determinant of
the Fisher information matrix. This is known as a D-optimal design strategy. This
strategy has been extensively used over the years in experimental design [CN80;
He09; Rus+09] and has more recently been adapted to computer experiments [AZ10].
With a multi-output GP model, the Fisher matrix is the inverse of the predictive
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covariance such that the new design point Xn+1 in a D-optimal design strategy is
chosen as:

Xn+1 ∈ argminX∈X |MSEn(X)|−1 = argmaxX∈X |kn(X)|. (4.5)

For GP surrogate models, D-optimal designs coincide with maximal entropy designs,
whose goal is to select design points that maximize the expected information gain
[SW87]. Other strategies are designed to minimize the trace of the inverse Fisher
matrix (A-optimal), or the maximum MSE (G-optimal). Due to the strong correlations
in the predictive covariances, D-optimal appears to be better suited for our purpose.

4.1.2.2 I-optimal designs

Other approaches that have attracted increasing interest are based on the Integrated
Mean Squared Prediction Error (IMSPE) instead of the MSE [Pic+10; MW92; Bat+96].
The IMSPE was first considered in [SSW89] and is defined as:

IMSPEn =
∫
X

MSEn(x)dx. (4.6)

The advantage of this strategy is that we shift our focus to the whole space and thus it
provides a more global view. More generally one can introduce a weight function w
to the IMSPE, s.t.

∫
X w(x)dx = 1. For Bayesian inverse problems, the weight function

is often chosen as the prior density. In that case, IMSPE-based strategies can avoid
the pitfall of selecting design points with low prior density. Designs that minimize
the IMSPE are known as I-optimal designs.

In the specific context of multi-output GP surrogates, we generalize the IMSPE to:

IMSPEn =
∫
X
|kn(x)|dx. (4.7)

The I-optimal sequential design strategy is thus obtained by:

Xn+1 ∈ argminX∈X

∫
X
|kn+1(x|X)|dx (4.8)

where kn+1(x|X) is the updated predictive covariance obtained by conditioning the
GP on the new data instance (X, Y) where Y is the yet unknown output of the black-
box function. With GP models, this new predictive covariance kn+1( · |X) is analytical
and only depends on the design point X.

4.1.2.3 Bayes risk minimization

Most of the literature on sequential design for computer experiments is not centered
around Bayesian inverse problems. However, [SN17] introduced a sequential design
strategy based on the minimization of the Bayes risk of the likelihood estimation.
This approach is described in the next paragraphs.

To alleviate the notations, we consider for this section a scalar GP surrogate denoted by
fs modeling a black-box function f . The method generalizes to multi-output GP. Let
X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be respectively the training inputs and outputs
on which the GP is conditioned for n ≥ 1. The GP obtained after conditioning on
(X, Y) is denoted by f (n)s and has predictive distribution f (n)s (x) ∼ N (mn(x), kn(x))
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for x ∈ X .
Now consider a Bayesian inverse problem for which we have noisy observations
(y(k))1≤k≤N for N ≥ 1 which are governed by a Gaussian likelihood defined for x ∈ X
by:

L(y|x, f ) =
N

∏
k=1

exp
(
− 1

2σ2

(
y(k) − f (x)

)2
)

(4.9)

with σ2 being the observational variance of the iid noise, and f is the unknown direct
model. This likelihood supposes that we know f .
With the GP surrogate, we can build an estimator for the likelihood, which we denote
by L̃n and which depends only on the training data (X, Y). To obtain an estimator for
the likelihood, we would like to minimize a loss function between L̃n and the true
likelihood L(y|·, f ). Since f is not available, one can replace it with the surrogate f (n)s

which yields a random likelihood L(y|·, f (n)s ) since f (n)s is a Gaussian process. Taking
as a loss function the prior-weighted L2-norm, an estimate L̃n of the likelihood can be
obtained by minimizing the average loss which after inverting the integrals yields
the Bayes risk:

rn =
∫
X

p(x)E
f (n)s

(
L(y|x, f (n)s )− L̃n(y|x)

)2
dx (4.10)

where p(x) is the prior density. The best estimator L∗
n is chosen as the estimator which

minimizes the Bayes risk (4.10). Since the observations y are fixed, this amounts
to minimizing the integrand. Coincidentally, the best estimator L∗

n is exactly the
likelihood (2.76) that is used throughout this thesis (see [SN17] for more details).
With L∗

n, it is possible to show that the Bayes risk reduces to:

r∗n =
∫
X

p(x)Var
f (n)s

[
L(y|x, f (n)s )

]
dx. (4.11)

Now let us consider a new design point Xn+1 ∈ X and its output Yn+1 ∈ R. The
model response Yn+1 is assumed to be given by the predictive distribution of the
GP surrogate at stage n such that Yn+1 ∼ f (n)s (Xn+1). The Bayes risk at iteration
n + 1, denoted by rn+1(Xn+1, Yn+1), is thus a random variable. The sequential design
strategy introduced in [SN17] proposes to sample the new design point Xn+1 as
the point that minimizes the expectation of the Bayes risk over the whole range of
possible model response Yn+1:

Xn+1 ∈ argminX EYn+1 [rn+1(Xn+1, Yn+1)] (4.12)

EYn+1 [rn+1(Xn+1, Yn+1)] =
∫
X

EYn+1

[
Var

f (n+1)
s

[
L
(

y|x, f (n+1)
s

)]]
p(x)dx (4.13)

where f (n+1)
s is the updated GP obtained by conditioning on (Xn+1, Yn+1). In this

chapter, our new developments will be compared to this approach.

4.1.3 Stepwise uncertainty reduction methods

We now present the Stepwise Uncertainty Reduction (SUR) paradigm, a theoretical
framework common to a large number of sequential design strategies, which was first
introduced in [VVW09] and extensively discussed in [Bec+12; BBG19; Pic14; Pic15;
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Che+14; VVW09]. What follows is a theoretical overview of SUR methods based on
the aforementioned works.

4.1.3.1 Theoretical overview

Let F be a functional space, and M the set of Gaussian measures on F. From now
on, let us focus on the space of continuous real-valued functions. Let (Ω,F , P) be a
probability space, and X ⊂ Rp compact. In everything that follows, we will consider
Gaussian processes with continuous sample paths, defined on X × Ω. Such Gaussian
processes can be understood as random elements of F [VTC87; Bog98].

Proposition 4.1.2. For any Gaussian measure ν ∈ M, there exists a Gaussian process with
continuous sample paths whose probability distribution is ν [VZ+08]. The corresponding
mean and covariance functions are denoted mν : X −→ R and kν : X × X −→ R. On the
other hand, the probability distribution P f of any given Gaussian process fs : X × Ω is a
Gaussian measure on F, and thus P f ∈ M.

Let us consider a functional H : M −→ R+ which will serve as the metric of uncertainty
that we would like to minimize.

Definition 4.1.4. Let fs be a Gaussian process and consider that to any design point X ∈ X
corresponds a random output given by Y = fs(X). A sequential design is a collection
(Xn)n≥1 such that for all n ≥ 2, Xn is Fn−1-measurable, with Fn−1 the σ-algebra generated
by the collection (X1, Y1, ..., Xn−1, Yn−1).

Let fs be a Gaussian process and (Xn)n≥1 a sequential design with corresponding
values (Yn)n≥1. It can be shown that for any n ≥ 1, there exists a Gaussian measure
denoted as P f

n , which is the probability distribution of fs conditioned by Fn. More
simply put, conditioning a GP with respect to a finite number of observations still
yields a GP. The corresponding mean and covariance function are denoted by mn and
kn. The Gaussian measure P f

n can thus be interpreted as a random element of M, and
H(P f

n ) is a positive real-valued random variable.

The goal of the SUR method is to find a sequential design (Xn)n≥1 which guarantees
the almost-sure convergence of the metric of uncertainty towards 0.

H(P f
n )

a.s.−−−−→
n→+∞

0. (4.14)

Prior works on the subject have introduced the supermartingale property for the
functional H which is defined as follows.

Definition 4.1.5. Consider a metric H : M −→ R+. The metric H is said to have the
supermartingale property if and only if, for any Gaussian process fs, the sequence H(P f

n ) is a
Fn-supermartingale or in other words for any X ∈ X :

En,X

[
H(P f

n+1)
]
≤ H(P f

n ) (4.15)

where En,X denotes the conditional expectation with respect to Fn with Xn+1 = X

To study sequential designs and their convergence, a few more results and definitions
must be introduced.
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Proposition 4.1.3. [BBG19] proved that there exists a measurable mapping

(X × R)n × M −→ M

(X1, Y1, ..., Xn, Yn, ν) 7−→ ν|(X1, Y1, ..., Xn, Yn)

such that for any Gaussian process fs with probability measure ν ∈ M and any sequential
design (X1, Y1, ..., Xn, Yn), the measure ν|(X1, Y1, ..., Xn, Yn) is the probability distribution
of fs given Fn = σ(X1, Y1, ..., Xn, Yn).

Definition 4.1.6. If H has the supermartingale property, for X ∈ X let us introduce
the functional JX : M −→ R+ which is the expectation of the metric of uncertainty when
conditioning the GP with respect to a new data point (X, Y) and given by:

JX(ν) = EY [H (ν|(X, Y))] (4.16)

for ν ∈ M and where Y ∼ N (mν(X), kν(X)) and EY refers to the expectation with respect
to the random output Y.

Definition 4.1.7. For H with the supermartingale property, we introduce a functional
G : M −→ R+ defined for ν ∈ M by

G(ν) = sup
X∈X

(H(ν)−JX(ν)) . (4.17)

The sets of zeros of H and G are denoted respectively by ZH and ZG . The inclusion ZH ⊂ ZG
is always true. Indeed, if H(ν) = 0 then JX(ν) = 0 for any X ∈ X which means that
G(ν) = 0.

This functional G plays an important role in the convergence results obtained for the
sequential designs in the SUR paradigm later in this chapter.

Let us conclude this introduction with the SUR strategy itself, which is given itera-
tively, for any functional H by the minimization of the expected metric of uncertainty
at the next iteration.

Definition 4.1.8. A SUR sequential design for the functional H is defined as a sequential
design such that for all n ≥ n0 with n0 a given integer:

Xn+1 ∈ argminX∈X

{
En,X

[
H(P f

n+1)
]}

. (4.18)

From now on, the following notations are introduced:

Hn = H(P f
n ) (4.19)

Jn(X) = EY

[
H(P f

n |(X, Y)
]
= En,X

[
H(P f

n+1)
]

. (4.20)

4.1.3.2 Standard metrics of uncertainty

The SUR framework has found numerous applications in different fields due to its
very general formulation. The two main obstacles when developing a SUR sequential
design strategy are the choice of the metric of uncertainty and the tractability of the
minimization step (4.18). We provide a brief overview of the potential applications of
this paradigm in this section.



146 Chapter 4. Sequential designs for Bayesian inverse problems

In excursion problems, one would like to estimate an excursion set, which is a subset
of the state space such that a given black-box function f exceeds a given threshold.
Introducing some notations, let T ∈ R be a given threshold, let f be the real-valued
black-box function, and let ST( f ) be the corresponding excursion set defined as:

ST( f ) = {x ∈ X s.t. f (x) ≥ T} . (4.21)

SUR strategies have been developed for such excursion problems. A method intro-
duced in [Che+14] considers the functional H defined for any Gaussian measure
ν ∈ M by:

H(ν) =
∫
X

pν(x)(1 − pν(x))dx (4.22)

where pν(x) =
∫
X 1 f (x)≥T ν(d f ). This quantity pν(x) can be understood as the

probability that the GP model associated with the Gaussian measure ν exceeds the
threshold at x. This metric is known as the integrated Bernoulli variance. Other
approaches have been considered such as the variance of excursion volume functional
[Bec+12] defined by:

H(ν) =
∫
(α( f )− αν)

2 ν(d f ) (4.23)

where α( f ) = µ(ST( f )), µ is the Lebesgue measure, and αν =
∫

α( f )ν(d f ).

SUR strategies have also been investigated for Bayesian optimization problems in
which the goal is to minimize a black-box function with the help of a GP surrogate.
Calls to the black-box function are obtained as a compromise between exploration
of the state space to reduce the GP uncertainty and exploitation of the promising
points inferred from the GP predictions. For Bayesian optimization problems, the
efficient global optimization algorithm (EGO) [JSW98; SLA12] can be interpreted
as a SUR sequential design. The goal of Bayesian optimization is to minimize a
costly black-box function f by building a GP surrogate model. For such problems,
the EGO algorithm was introduced in [JSW98]. It is based on the maximization
of the expected improvement. For a given x ∈ X , the expected improvement is
EI(x) = E

[
min(Y1, ..., Yn)− f (n)s (x)

]
which can be computed explicitly since the

predictive distribution is Gaussian. The next point can thus be chosen as follows:

Xn+1 ∈ argminX∈X E
[
min(Y1, ..., Yn)− f (n)s (X)

]
. (4.24)

Though the derivation is not so straightforward, it was shown in [BBG19] that the
EGO algorithm falls under the SUR paradigm with an appropriate functional.

The same can be said about the knowledge gradient policy which is another method
used in Bayesian optimization, when noise is present in the black-box function
evaluations [FPD08; SFP11; FPD09]. The knowledge-gradient criterion selects the
design point that maximizes the quantity KG(x) defined for x ∈ X by:

KG(X) = En,X

[
max
x∈X

mn+1(x)
]
− max

x∈X
mn(x). (4.25)

This criterion is equivalent to the SUR criterion associated with the functional:

H(ν) =
∫

max
x∈X

f (x)ν(d f )− max
x∈X

mν(x) (4.26)

where mν is the predictive mean of the GP associated with the measure ν.
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In this section, we only provided a few examples of SUR designs, though many others
have been developed in recent years (see for example [AL+22; Str+22; BBV11]). More
than a simple reformulation, the SUR paradigm allows to derive convergence results
which can then apply to a wide variety of problems.

4.1.3.3 Convergence of sequential designs

Let us finish this introduction with the main result used for the proof of convergence
of SUR strategies.

In [Bog98; VTC87] the convergence of Gaussian measures is defined as follows:

Definition 4.1.9. For any sequence of Gaussian measures (νn)n≥0, we say that the sequence
(νn)n≥0 converges towards the limit measure ν∞ ∈ M when (mνn)n≥0 converges uniformly
in X towards mν∞ , and (kνn)n≥1 converges uniformly in X ×X towards kν∞ .

It was proven in [BBG19] that for any sequential design (Xn)n≥1 and for any Gaussian
process fs with continuous sample paths, the Gaussian measure P f

n converges towards
a limit measure P f

∞ ∈ M. The following convergence theorem was derived in the
same work.

Theorem 4.1.1 (Convergence of SUR designs). Let H be a non-negative uncertainty
functional on M with the supermartingale property, and let G defined by (4.17). Consider
(Xn)n≥1 a SUR sequential design for H. If ZH = ZG and H(P f

n )
a.s.−−−−→

n→+∞
H(P f

∞) and

G(P f
n )

a.s.−−−−→
n→+∞

G(P f
∞), then Hn = H(P f

n )
a.s.−−−−→

n→+∞
0.

This theorem is one of the strengths of the SUR paradigm. This framework provides
a simple unified methodology to build sequential design strategies and exhibits
a convergence theorem that relies only on a few assumptions. In addition, this
theorem extends to quasi-SUR sequential designs, as stated by [BBG19]. (Xn)n∈N is a
quasi-SUR sequential design if there exists a sequence (εn)n∈N of non-negative real
numbers such that εn −−−−→

n→+∞
0, and if there exists n0 ∈ N such that (Xn)n∈N verifies

Jn(Xn+1) ≤ infx∈X Jn(x) + εn for all n ≥ n0.
This remark is crucial for numerical applications since there is often no guarantee
that the true global minimum is reached in the optimization step for a SUR strategy.
The convergence theorem for the quasi-SUR designs is more flexible in that regard
and ensures convergence even for numerical applications.

4.2 Sequential designs for Bayesian inverse problems

Before diving into the heart of this chapter, let us emphasize the following notation
conventions. In everything that follows, we consider a GP surrogate model fs. Unless
stated explicitly otherwise, fs is a multi-output GP. We denote by f (n)s the GP obtained
by conditioning on the data (X, Y), where X = (X1, ..., Xn) ∈ X n and Y = (Y1, ..., Yn) ∈
Rn×D for some n ≥ 1. The predictive distribution of the GP for any x ∈ X is given
by f (n)s (x) ∼ N (mn(x), kn(x)) where mn(x) ∈ RD and kn(x) is a D × D positive
semi-definite matrix.
We also introduce the predictive covariance between two input points x, x′ ∈ X
as kn(x, x′) which is also obtained from the standard predictive equations (2.14).
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Specifically, kn(x, x′) is a D × D matrix, and for 1 ≤ i, j ≤ D, kn(x, x′)i,j is the
covariance between the i-th output at x and the j-th output at x′.

Keeping the notations of chapter 2, our goal is to solve an inverse problem and
obtain the posterior distribution p(x|y) where y = (y(k))1≤k≤N for N ≥ 1. We insist
on the fact that N is fixed throughout this chapter. The observations, as per usual,
are noisy with iid observational noise with zero-mean and covariance Cobs. The
likelihood of the observations is given by (2.78) and is denoted by Ln(y|x) for x ∈ X .
The dependence in n occurs via the surrogate model f (n)s . Similarly, the posterior
distribution associated with this likelihood is denoted by pn(x|y).
During this chapter, our goal is to develop sequential design strategies to select a new
design point Xn+1 ∈ X to improve the surrogate model, in the context of a Bayesian
inverse problem. Two different strategies are proposed in this chapter. Our first
approach to this problem is adapted from D-optimal designs, while the second one is
derived from SUR strategies.

4.2.1 Constraint set query (CSQ)

Intuitively, when adding a new point to the dataset, we would like this point to
yield the greatest improvement to the surrogate model. In this case, one could try
to choose the points whose predictive variances are the highest, or equivalently in
a multi-output context, where the determinant of the predictive covariance is the
highest. This is equivalent to a D-optimal design.
However, such points may lie well outside the posterior distribution p(x|y) of the
inverse problem and thus may not bring any improvement when solving the inverse
problem. Our method aims to look at new data points that are both expected to yield
a good improvement to the surrogate, but which also lie in regions of high posterior
density.

Consider a multi-output GP surrogate trained with n ≥ 1 data points. Its predictive
covariance at input point x is denoted kn(x). Intuitively, one could adapt the D-
optimal strategy by choosing our next training point Xn+1 ∈ X as the maximizer of
the determinant of the covariance on a well-chosen subset B ⊂ X .

Xn+1 ∈ argmaxx∈B |kn(x)|. (4.27)

How can we choose B? As a first strategy, one could impose the sampled points to be
near the maximum-a-posteriori (MAP) defined by:

x(n)m ∈ argmaxx∈X pn(x|y). (4.28)

Then for any h ∈ R+ we define the subset Bh such as:

Bh =
{

x ∈ X | log pn(x(n)m |y)− log pn(x|y) ≤ h
}

. (4.29)

Note that the MAP needs not be unique for Bh to be defined. To get an intuition of
the influence of h, let us look at the acceptance probability α(x1, x2) for a jump from
point x1 to x2 in the context of Metropolis-Hastings sampling:

α(x1, x2) = min
{

1,
pn(x2|y)
pn(x1|y)

}
. (4.30)
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Then Bh =
{

x ∈ X | log α(x(n)m , x) ≥ −h
}

=
{

x ∈ X |α(x(n)m , x) ≥ e−h
}

. Thus, e−h

for h ∈ R+ represents the lowest possible acceptance probability of a Metropolis-
Hastings jump from the MAP to x ∈ Bh. Depending on the choice of h, the new query
point Xn+1 will be chosen quite close to the MAP (if h is close to 0) or is allowed to
spread far from the MAP (if h is large).

This constraint set query (CSQ) method constitutes the first simple approach for
sequential design in the context of Bayesian inverse problems. This method can be
understood as a D-optimal sequential design strategy restricted to a subset of the
domain.

4.2.2 IP-SUR methods for scalar GP surrogates

In this section, we develop our inverse problem SUR (IP-SUR) strategy, for scalar GP
surrogates. For this section only, we have training outputs Y = (Y1, ..., Yn) ∈ Rn. This
strategy is extended to multi-output Gaussian processes in Section 4.2.3.

4.2.2.1 IP-SUR criterion

Consider a GP surrogate model fs, conditioned on n pairs input-output. The Gaussian
measure obtained after conditioning w.r.t. the training data (X, Y) is P f

n and the
associated mean and covariance functions are mn : X −→ R and kn : X ×X −→ R. Let
X be a new design point and Y the corresponding random output. At stage n + 1,
we condition the GP with the new datapoint (X, Y) which updates the predictive
distribution. For x, x1, x2 ∈ X , the updated mean and covariance functions of the
newly conditioned GP are:

mn+1(x|X, Y) = mn(x) +
kn(X, x)
kn(X)

(Y − mn(X)) (4.31)

kn+1(x1, x2|X) = kn(x1, x2)−
kn(X, x1)kn(X, x2)

kn(X)
. (4.32)

We consider N ≥ 1 observations y = (y(k))1≤k≤N of the unknown direct model which
are noisy with a zero-mean Gaussian noise with variance σ2

m.

To develop a SUR strategy, the first step is to provide an uncertainty functional H
defined over Gaussian measures. Before doing so, we introduce a few notations and
definitions.

Definition 4.2.1. For any Gaussian measure ν ∈ M, we introduce the posterior probability
distribution pν( · |y). Its density pν(x|y) at x ∈ X is proportional to the product of the
prior density and the global likelihood defined in (2.76), where the surrogate model fs is a GP
with probability measure ν. The existence of a GP with continuous sample paths stems from
proposition 4.1.2.

When considering the Gaussian measure P f
n , the posterior distribution is simply

denoted by pn( · |y). We also write explicitly the dependence of the matrix Σ(x) used
in (2.76) w.r.t. n. The new notation used in this chapter is Σn(x) which is defined for
a scalar inverse problem by:

Σn(x) = σ2
mIN + kn(x)UN . (4.33)
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Our first task is to define a metric of uncertainty.

Definition 4.2.2. For scalar GP surrogates, the IP-SUR functional, denoted by H, is defined
for any Gaussian measure ν ∈ M by:

H(ν) =
∫
X

kν(x)pν(x|y)dx. (4.34)

This functional is adapted from IMSPE designs where the posterior density is used as
a weight function. It is a relevant uncertainty functional for our task.

Considering the SUR framework, we would like to express the quantity Hn = H(P f
n )

defined by:

Hn =
∫
X

kn(x)pn(x|y)dx. (4.35)

More importantly, for X ∈ X , we want to express the quantity Jn(X) :

Jn(X) = En,X

[
H(P f

n+1)
]
= EY [Hn+1(X, Y)] (4.36)

Hn+1(X, Y) = H
(

P f
n |(X, Y)

)
=
∫
X

kn+1(x|X)pn+1(x|y, X, Y)dx (4.37)

where pn+1(x|y, X, Y) ∝ Ln+1(y|x, X, Y)p(x) is the updated posterior density and
Ln+1(y|x, X, Y) is the updated likelihood given by:

Ln+1(y|x, X, Y) = ((2π)N |Σn+1(x|X)|)−1/2 exp
[
−1

2
∥y − mn+1(x|X, Y)∥2

Σn+1

]
(4.38)

Σn+1(x|X) = Σn(x)− λn(x, X)uuT (4.39)

with u = (1, ..., 1)T ∈ RN , mn+1(x|X, Y) = mn+1(x|X, Y)u and:

λn(x, X) =
kn(X, x)2

kn(X)
. (4.40)

We also point out that we remove the dependency of Σn+1(x|X) w.r.t. x and X in the
Mahalanobis norm ∥ · ∥Σn+1 . The same is done for any other matrix, to simplify the
notations.

In practice we would like to write a SUR criterion for this functional H. However,
using H leads to two caveats. First, the SUR criterion is not tractable. The reason lies
in the normalization constant of the posterior distribution Cn defined by:

Cn =
∫
X

p(x)Ln(y|x)dx. (4.41)

At iteration n + 1, this normalization constant depends on Y and complicates the
computation of Jn(X).

Additionnally, for similar reasons, we cannot prove that H has the supermartingale
property, which means that we cannot use Theorem 4.1.1 to show the convergence of
Hn.

To overcome these difficulties, we introduce the functional D defined for any Gaussian
measure ν as:

D(ν) =
∫
X

kν(x)p(x)Lν(y|x)dx. (4.42)
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One can notice that Dn = D(P f
n ) =

Hn
Cn

. We modify our objective and now we seek to
write a SUR criterion for the functional D and show that under this design, we have
the convergence of Hn to zero almost surely.

We introduce the notation:

Fn(X) = En,X

[
D(P f

n+1)
]
= EY [Dn+1(X, Y)] (4.43)

where:
Dn+1(X, Y) =

∫
X

kn+1(x|X)Ln+1(y|x, X, Y)p(x)dx. (4.44)

The SUR criterion corresponding to this new functional D is given by:

Xn+1 ∈ argminX∈X Fn(X). (4.45)

From now on, this design is referred to as the IP-SUR design.

We can claim that the IP-SUR strategy is interesting if we can solve the following two
problems. First, we need to make sure the quantity Fn(X) can be evaluated (up to a
multiplicative constant) to solve (4.45). Otherwise, a suitable approximation must
be used as is done in [ZLR19] for an expected improvement criterion for example.
Second, we need to show the convergence of the metric of uncertainty.

Let us begin with the first task. For X ∈ X , we would like to compute Fn(X). Since
in our work, we have access to an ergodic Markov chain for the posterior distribution
pn( · |y), we want to write Fn(X) as an expectation w.r.t. this posterior and use the
ergodicity of the Markov chain to evaluate it.

Proposition 4.2.1. For X ∈ X , the quantity Fn(X) is given by:

Fn(X) =
∫
X

kn+1(x|X)Ln(y|x)p(x)dx =
∫
X
(kn(x)− λn(x, X)) Ln(y|x)p(x)dx.

(4.46)

Proof. Let X ∈ X . By inverting the two integrals, we write Fn(X) as:

Fn(X) = EY

[∫
X

kn+1(x|X)Ln+1(y|x, X, Y)p(x)dx
]

=
∫
X

∫
R

kn+1(x|X)p(x)Ln+1(y|x, X, Y)pn(Y|X)dYdx (4.47)

where pn(Y|X) is the Gaussian density of the distribution Y ∼ N (mn(X), kn(X)).
One can notice that pn(Y|X) = pn(Y|X, x) since this distribution does not depend on
x. Thus we have:

Fn(X) =
∫
X

∫
R

kn+1(x|X)p(x)Ln+1(y|x, X, Y)pn(Y|X, x)dYdx

=
∫
X

p(x)kn+1(x|X)
∫

R
pn(Y, y|X, x)dYdx (4.48)

where pn(Y, y|X, x) is the joint density of Y and y given X and x. Finally, the integral
on Y leaves only the conditional density of y given X and x, which is the likelihood:

Fn(X) =
∫
X

p(x)kn+1(x|X)Ln(y|X, x)dx. (4.49)
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One can notice that Fn(X) = Cn ×
∫
X kn+1(x|X)pn(x|y)dx where Cn is defined by

(4.41). Since Cn does not depend on X, the SUR criterion (4.45) is equivalent to:

Xn+1 ∈ argminX∈X F̂n(X) (4.50)

F̂n(X) =
∫
X

kn+1(x|X)pn(x|y)dx. (4.51)

Assuming we have access to an ergodic Markov chain (X̂l)1≤l≤L for L ≥ 1 and with

invariant distribution given by the posterior pn( · |y), then F̂n(X) can be evaluated
for all X ∈ X by:

F̂n(X) ≃ 1
L

L

∑
l=1

kn+1(Xl |X). (4.52)

The IP-SUR criterion is thus tractable since we can evaluate the objective function

F̂n(X) to minimize. In the next paragraphs, we discuss the convergence property of
the IP-SUR design.

4.2.2.2 Supermartingale property and almost-sure convergence

In this section, some results on the convergence of the functional H are highlighted.
The theoretical foundation of this work can be found in [BBG19].

As a first step, the supermartingale property is shown for the auxiliary functional D.
This lemma is then used to derive the main convergence theorem.

Lemma 4.2.1. The functional D : M −→ R+ defined by (4.42) has the supermartingale
property. In other words, for any sequential design (Xn)n∈N, there exists n0 ∈ N such that
for all n ≥ n0, and for all X ∈ X

En,X

[
D(P f

n+1)
]
≤ D(P f

n ). (4.53)

Proof. Let us prove the supermartingale property. Let fs be a GP and (Xn)n∈N be a
sequential design. Let X ∈ X . We can write:

Dn − Fn(X) =
∫
X
(kn(x)− kn+1(x|X)) Ln(y|x)p(x)dx. (4.54)

The supermartingale property stems directly from this equation since kn(x)− kn+1(x|X) =
λn(x, X) ≥ 0 for all x ∈ X . Thus Dn − Fn(X) ≥ 0.

Lemma 4.2.2. If Cn =
∫
X Ln(y|x)p(x)dx, then the sequence (Cn)n∈N converges almost

surely and its limit is positive and given by:

C∞ =
∫
X

L∞(y|x)p(x)dx (4.55)

where L∞(y|x) is defined for x ∈ X by:

L∞(y|x) = ((2π)N |Σ∞(x)|)−1/2 exp
[
−1

2
∥y − m∞(x)∥2

Σ∞

]
(4.56)
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with m∞ and k∞ being the respective limits of the GP mean function (mn)n∈N and covariance
function (kn)n∈N and Σ∞(x) = k∞(x)uuT + σ2

mIN for x ∈ X .

Proof. Let us first prove the convergence of the mean functions (mn)n∈N. From
proposition 2.9 in [BBG19], for any sequential design and any Gaussian process, the
probability distribution of the GP given Fn = σ(X1, Y1, ..., Xn, Yn), which is denoted
by P f

n , converges almost surely to a limit Gaussian measure P f
∞ ∈ M. Since the

convergence of Gaussian measures is defined as the uniform convergence of the
mean functions (mn)n∈N and covariance functions (kn)n∈N we can then define m∞ =
limn→+∞ mn which is the mean function of the GP whose probability distribution
is P f

∞. Furthermore, since mn and kn are continuous and (mn)n∈N (resp. (kn)n∈N)
converges uniformly to m∞ (resp. k∞), then m∞ and k∞ are continuous.
From here we show that Σn(x) a.s.−−−−→

n→+∞
Σ∞(x) = k∞(x)uuT + σ2

mIN with k∞(x) ≥ 0.

By continuity of all the other matrix operations, we have Ln(y|x)
a.s.−−−−→

n→+∞
L∞(y|x)

with:

L∞(y|x) = ((2π)N |Σ∞(x)|)−1/2 exp
[
−1

2
∥y − m∞(x)∥2

Σ∞

]
. (4.57)

To conclude, we need to notice that L∞ is continuous (with respect to x) since m∞ and
k∞ are continuous. It is thus bounded on the compact set X and we can make use of
the dominated convergence theorem to conclude:

lim
n→+∞

∫
X

Ln(y|x)p(x)dx =
∫
X

lim
n→+∞

Ln(y|x)p(x)dx =
∫
X

L∞(y|x)p(x)dx = C∞.

(4.58)
Besides, since L∞(y|x)p(x) > 0 for all x ∈ X and X is a compact, 0 < C∞ < +∞
almost-surely.

Then, let us investigate the convergence of the functional H. The theorem 4.1.1 is our
main tool to prove the convergence of H. We also use the fact that D(ν) = Cν ×H(ν)
with Cν =

∫
X Lν(y|x)p(x)dx.

Theorem 4.2.1. Consider the functional D defined in (4.42) and a SUR sequential design
(Xn)n∈N associated with this functional and given by (4.50). Then, the sequence (Dn)n≥1

where Dn = D(P f
n ) converges almost surely to 0:

Dn
a.s.−−−−→

n→+∞
0.

Besides, if H is the functional defined by (4.34), the same convergence holds for the sequence
(Hn)n≥1 where Hn = H(P f

n ):
Hn

a.s.−−−−→
n→+∞

0.

Proof. This proof is divided into two parts. First, we show that Dn = D(P f
n )

a.s.−−−−→
n→+∞

0

using the supermartingale property and the convergence theorem from [BBG19].
Then, we show the convergence for Hn using lemma 4.2.2.
Let us first show that Dn

a.s.−−−−→
n→+∞

0. Consider a Gaussian process fs and a SUR

sequential design (Xn)n∈N given by the strategy (4.45) defined for the functional D.
Let us verify the conditions of theorem 4.1.1 for the functional D. We introduce the
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functional G which is defined for ν ∈ M by:

G(ν) = sup
X∈X

(D(ν)− EY [D(ν|(X, Y))]) . (4.59)

If P f
n is the probability of fs given Fn = σ(X1, Y1, .., Xn, Yn), then there exists an

F∞-measurable random element P f
∞ ∈ M such that P f

n
a.s.−−−−→

n→+∞
P f

∞, with F∞ =

σ
(⋃

n≥1 Fn
)
, and such that P f

∞ is the conditional probability of fs given F∞. The
associated mean and covariance functions are introduced as m∞ and k∞. Since the
functions mn are continuous and the sequence (mn)n∈N converge uniformly toward
the limit mean function m∞, then m∞ is also continuous. The same reasoning holds
for k∞.
From here, the convergence of D(P f

n )
a.s.−−−−→

n→+∞
D(P f

∞) and G(P f
n )

a.s.−−−−→
n→+∞

G(P f
∞) is

obtained by dominated convergence on the compact X and by continuity of the mean
and variance of the Gaussian posterior measure.
Now, let us show that ZD = ZG , where ZD and ZG are the set of zeros of the func-
tionals D and G. The first inclusion ZD ⊂ ZG is trivial since 0 ≤ G(ν) ≤ D(ν) for all
ν ∈M. Now, let P f ∈ ZG . It is a Gaussian measure associated to a GP fs. We want to
show that D(P f ) = 0. We will prove this result for the posterior measure P f

n for all
n ≥ 0 to be able to re-use the previous notations, though we are only interested in the
case n = 0. In particular P f = P f

0 .

Let us introduce Fn(X) = En,X

[
D(P f

n+1)
]
= EY

[
D
(

P f
n |(X, Y)

)]
. From this, G(P f

n ) =

Dn − infX∈X Fn(X) = 0. Then, with the supermartingale property of D, it follows
that for all X ∈ X :

0 ≤ Dn − Fn(X) ≤ Dn − inf
X′∈X

Fn(X′) = 0 (4.60)

thus Dn − Fn(X) = 0 for all X ∈ X .
Using equation (4.54), if Dn − Fn(X) = 0, then for almost all x ∈ X , we have
kn(x, X) = 0, since Ln(y|x) > 0. In other words, the set CX = {x ∈ X |kn(x, X) ̸= 0}
has Lebesgue measure zero, for all X ∈ X .
Let us proceed by contradiction. We suppose that there exists X1 ⊂ X such that
µ(X1) > 0 and for x ∈ X1, we have kn(x) > 0. Let x ∈ X1. Taking X = x, we have
kn(x, X) = kn(x) > 0. Thus by continuity of kn, there exists an open set X2 ⊂ X such
that µ(X2) > 0 and for all x ∈ X2, kn(x, X) > 0. We have our contradiction since
X2 ⊂ CX and µ(CX) = 0. We can conclude that ZD = ZG .
All the assumptions of the theorem 4.1.1 are verified, and the almost sure convergence
of Dn is proven.
Now consider (Cn)n∈N the sequence of normalizing constants, defined by Cn =∫
X Ln(y|x)p(x)dx. From lemma 4.2.2 and using the same notations, limn→+∞ Cn =

C∞ =
∫
X L∞(y|x)p(x)dx which is positive almost-surely. Since Dn

a.s.−−−−→
n→+∞

0 and

Hn = Dn
Cn

, we can conclude that:

Hn
a.s.−−−−→

n→+∞
0. (4.61)
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4.2.3 IP-SUR methods for multi-output GP surrogates

The results presented in the previous section naturally extend to multi-output Gaus-
sian processes. The proofs however are postponed to Appendix B. They are very
similar to the scalar case. We extend all the notations from the scalar case. The
observational covariance is denoted by Cobs. Let us introduce the total covariance
Σn(x) for x ∈ X .

Σn(x) = UN ⊗ kn(x) + IN ⊗ Cobs ∈ RDN×DN (4.62)

where ⊗ is the Kronecker product for matrices.
When conditioning by an input-output pair (X, Y), the mean and covariance functions
are updated as follows.

mn+1(x|X, Y) = mn(x) + kn(X, x)kn(x)−1(Y − mn(X)) (4.63)

kn+1(x1, x2|X) = kn(x1, x2)− kn(x1, X)kn(X)−1k(X, x2) (4.64)

|kn+1(x|X)| = |kn(x)| × |ID − kn(x)−1kn(x, X)kn(X)−1kn(x, X)T| (4.65)

|Σn(x)| = |Cobs|N−1|Nkn(x) + Cobs|. (4.66)

4.2.3.1 Derivation of the SUR criteria

In this multi-output framework, the metric of uncertainty H : M −→ R+ is slightly
different.

Definition 4.2.3. The IP-SUR functional H for the multi-output case is defined for any
Gaussian measure ν ∈ M by:

H(ν) =
∫
X
|kν(x)|pν(x|y)dx. (4.67)

Once again, we introduce the functional D defined for any ν ∈ M by:

D(ν) =
∫
X
|kν(x)|Lν(y|x)p(x)dx (4.68)

and we work with D to derive the SUR criterion.

We wish to evaluate the quantity Fn(X) = En,X

[
D(P f

n+1)
]
. We recall the global

likelihood from (2.76):

Ln(y|x) = ((2π)DN |Σn(x)|)−1/2 exp
[
−1

2
∥y − mn(x)∥2

Σn

]
(4.69)

where the bold notation denotes the flattened vectors:

y − mn(x) =

 y(1) − mn(x)
...

y(N) − mn(x)

 ∈ RDN . (4.70)

For practical applications, we recall that the likelihood can be simplified to yield
(2.78).
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Proposition 4.2.2. The SUR criterion for the metric D defined in (4.68) is given by:

Xn+1 ∈ argminX∈X Fn(X) (4.71)

where Fn(X) = En,X

[
D(P f

n+1)
]

for all X ∈ X . This SUR criterion is equivalent to the
criterion:

Xn+1 ∈ argminX∈X F̂n(X) (4.72)

where the quantity F̂n(X) is given for X ∈ X by:

F̂n(X) =
∫
X
|kn+1(x|X)|pn(x|y)dx. (4.73)

Proof. The proof is given in Appendix B.2.1.

In this criterion, the quantity F̂n(X) can be evaluated using the ergodic theorem for a
Markov chain (X̂l)1≤l≤L with target distribution pn( · |y):

F̂n(X) ≃ 1
L

L

∑
l=1

|kn+1(X̂l |X)|. (4.74)

Our next objective is to show that the convergence result obtained for the scalar case
extends to this multi-output framework.

4.2.3.2 Almost sure convergence

The derivation of the almost-sure convergence of Hn is similar to the scalar case. The
following lemma is used as an intermediate result:

Lemma 4.2.3. The functional D : M −→ R+ defined by (4.68) has the supermartingale
property. In other words, for any sequential design (Xn)n∈N, there exists n0 ∈ N such that
for all n ≥ n0, and for all X ∈ X

En,X

[
D(P f

n+1)
]
≤ D(P f

n ). (4.75)

Proof. The proof is given in Appendix B.2.2.

With this lemma, we extend the convergence theorem to multi-output GP.

Theorem 4.2.2. Consider the functional H defined in (4.67) and a SUR sequential design
(Xn)n∈N for the functional D defined in (4.68). Then, the sequence (Dn)n≥1 where Dn =

D(P f
n ) converges almost surely to 0:

Dn
a.s.−−−−→

n→+∞
0.

Besides, we have the same convergence for the sequence (Hn)n≥1 where Hn = H(P f
n ):

Hn
a.s.−−−−→

n→+∞
0.

Proof. The proof is the same as for the scalar case.
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We can then finally conclude that the IP-SUR strategy proposed in this chapter does
extend to multi-output GP surrogate models, which are at the core of this thesis.

4.2.4 Tempered SUR strategy

In this section, we introduce a variant of the IP-SUR strategy relying on a tempered
likelihood [Nea01; HZ02]. This strategy, named TIP-SUR (Tempered IP-SUR) is based
on a temperature coefficient β ∈ [0, 1] which smoothes the likelihood.

Definition 4.2.4. For β ∈ [0, 1], the TIP-SUR functional Hβ is defined for any ν ∈M by:

Hβ(ν) =
1

Cν,β

∫
X
|kν(x)| (Lν(y|x))β p(x)dx (4.76)

Cν,β =
∫
X
(Lν(y|x))β p(x)dx. (4.77)

The TIP-SUR functional serves as an intermediate between the IP-SUR functional
defined in equation (4.67) (for β = 1) and the IMSPE criteria defined in (4.7) (for
β = 0). We expect this method to be efficient when dealing with highly peaked
likelihood, since the tempering parameter β tends to smooth out the distribution.
Once again, the functional Hβ cannot be used directly to derive a tractable SUR
design, and we introduce the functional Dβ defined for any Gaussian measure ν ∈M
by:

Dβ(ν) =
∫
X
|kν(x)| (Lν(y|x))β p(x)dx. (4.78)

Similarly, we introduce the conditional expectation:

Fn,β(X) = En,X

[
Dβ(P f

n+1)
]

. (4.79)

Proposition 4.2.3. The TIP-SUR criterion associated to the metric Dβ can be simplified to:

Xn+1 ∈ argminX∈X Fn,β(X) (4.80)

Fn,β(X) =
∫
X
|kn+1(x|X)| fβ(x, X)Iβ(x, X) (Ln(y|x))β p(x)dx. (4.81)

where we define:

fβ(x, X) =
|Σn(x)|β/2

|Σn+1(x|X)|β/2 exp
(
−β

2
∥y − mn(x)∥2

(Σ−1
n+1−Σ−1

n )
−1

)
(4.82)

Cn,β =
∫
X
(Ln(y|x))β p(x)dx (4.83)

Iβ(x, X) =
(
|kn(X)||Aβ|

)−1/2 exp
(

1
2

B2
β A−1

β Bβ

)
(4.84)

Aβ = kn(X)−1
(
ID + βNkn(X, x)M−1

n+1kn(x, X)kn(X)−1
)

(4.85)

Bβ = βNkn(X)−1kn(X, x)M−1
n+1(y − mn(x)). (4.86)
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Proof. The proof is similar to the IP-SUR case. We can simplify the expressions of
|Aβ| and Bβ A−1

β Bβ by writing:

kn(x, X)Aβkn(X, x) = λn(x, X) + βNλn(x, X)Mn+1
−1λn(x, X)

= λn(x, X)M−1
n+1 (Mn − N(1 − β)λn(x, X)) (4.87)

which leads to:

|Aβ| = |kn(X)|−1 |Mn − N(1 − β)λn(x, X)|
|Mn+1|

. (4.88)

The inverse of Aβ can be written as:

A−1
β = kn(X)− Nβkn(X, x)

(
Mn+1 + Nβkn(x, X)kn(X)−1kn(X, x)

)−1
kn(x, X)

= kn(X)− Nβkn(X, x) (Mn − N(1 − β)λn(x, X))−1 kn(x, X). (4.89)

We cannot further simplify this expression contrary to the IP-SUR case. However,
this criterion is still tractable.

The TIP-SUR criterion necessitates an ergodic Markov chain whose invariant distri-

bution is a tempered posterior whose density is pn,β( · |y) = (Ln(y|x))β p(x)
Cn,β

.

Proposition 4.2.4. Let β ∈ (0, 1) and (Xn)n≥1 be a SUR sequential design for the criterion
(4.80). Then, the sequence (Dn,β)n≥0 where Dn,β = Dβ(P f

n ) converges almost surely to zero:

Dn,β
a.s.−−−−→

n→+∞
0.

The same convergence holds for the sequence (Hn,β)n≥0 with Hn,β = Hβ(P f
n ):

Hn,β
a.s.−−−−→

n→+∞
0.

Proof. The proof is given in Appendix B.3.

4.3 Applications

In the following applications, we apply the CSQ and IP-SUR strategies to various test
cases. The methodology is similar for each test case. The sequential design strategy
is iterated a fixed number of times up to n = 10. At each step, an MCMC chain
is sampled to obtain the posterior distribution pn(x|y), with the current GP model
f (n)s . Then, the KL divergence of each distribution pn(x|y) with the distribution
p∞(x|y) obtained by MCMC with a GP model trained on a large number of data
points n∞ = 1000 is quantified.

κn = KL (pn∥p∞) =
∫
X

pn(y|x) log
(

pn(x|y)
p∞(x|y)

)
dx. (4.90)
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To estimate this KL, the ergodicity of the Markov chain is used once again, in combi-
nation with the kernel density estimates for the posterior densities:

κn ≃ 1
L

L

∑
l=1

rn(X̂l) with rn(x) = log
(

pn(x|y)
p∞(x|y)

)
for x ∈ X . (4.91)

This procedure is run 100 times to produce uncertainties on the KL.

Two other metrics are introduced. Namely, we are looking at the differential entropy
Sn and the predictive variance integrated over the posterior, i.e. H(P f

n ). The entropy
is also easily obtained by the ergodic theorem:

Sn = −
∫
X

pn(x|y) log pn(x|y)dx (4.92)

Sn ≃ − 1
L

L

∑
l=1

log pn(X̂l |y). (4.93)

4.3.1 Description of the test cases

4.3.1.1 Banana posterior distribution

In this first test case, the target posterior distribution has a banana shape as displayed
in Figure 4.1. This posterior distribution is similar to the one introduced in [SPW23]

FIGURE 4.1: Banana-shaped target posterior distribution.

and is described by the following analytical direct model:

fb : Xb −→ R2

(x1, x2) 7−→ (x1, x2 + 0.03x2
1)
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where Xb = [−20, 20]× [−10, 10] ⊂ R2. For a single observation y = (y1, y2), the
posterior has the density:

pb(x|y) ∝ exp
(
−1

2
(x1 − y1)

2

100
− 1

2
(
x2 + 0.03x2

1 − y2
)2
)

. (4.94)

The observations y = (y(k))1≤k≤N are generated with N = 5 and such that for
1 ≤ k ≤ N we have y(k) ∼ N (µ, Cobs) with µ = (0, 3) and:

Cobs =

(
100 0
0 1

)
. (4.95)

The evolution of the metrics for the banana-shaped posterior is plotted in Figure 4.3.

4.3.1.2 Bimodal posterior distribution

In this second test case, the target posterior is bimodal as plotted in Figure 4.2. The
corresponding direct model is fm defined as:

fm : Xm −→ R2

(x1, x2) 7−→ (x2 − x2
1, x2 − x1)

where Xm = [−6, 6] × [−4, 8] ⊂ R2. For a single observation y = (y1, y2), the
posterior has the density:

pb(x|y) ∝ exp

(
−
√

0.2
10

(x2 − x2
1 − y1)

2 −
√

0.75
10

(
x2 + 0.03x2

1 − y2
)2
)

. (4.96)

The observations y = (y(k))1≤k≤N are generated with N = 10 and such that for
1 ≤ k ≤ N we have y(k) ∼ N (µ, Cobs) with µ = (0, 2) and:

Cobs =

(
5√
0.2

0
0 5√

0.75

)
. (4.97)

The metrics for the bimodal posterior are plotted in Figure 4.4.

4.3.1.3 Application to the point model

Our final test case is derived from our applicative context. Namely, we consider the
point model:

fpm : R4 −→ R3

(kp, εF, S, xs) 7−→ (R, Y∞, X∞)

where (R, Y∞, X∞) are given by (1.99), (1.100) and (1.101). We consider this model
instead of the extended one introduced in chapter 2, to limit ourselves to a low-
dimensional problem to make the strategies more tractable. Let y = (y(k))1≤k≤N be a
set of observations generated from the point model with xtrue = (0.8, 0.04, 130000, 0.4)
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FIGURE 4.2: Bimodal target posterior distribution.

and:

Cobs =

 1.50 × 102 1.05 × 10−1 7.50 × 10−1

1.05 × 10−1 1.20 × 10−4 1.20 × 10−3

7.50 × 10−1 1.20 × 10−3 1.20 × 10−2

 (4.98)

We consider the design space X ⊂ R4 given by the prior support:

X = [0.7, 0.9]× [0.01, 0.10]× [1 × 105, 2 × 105]× [0.0, 1.0]. (4.99)

The number of MCMC samples is L = 2 × 105 iterations per run for that specific test
case. The metrics are shown in Figure 4.5.

4.3.2 Results

Both the IP-SUR and the CSQ methods require to solve an optimization problem with
a non-convex function. The optimization problem is solved with a dual annealing
approach [Xia+97]. The IP-SUR strategy and the CSQ method are applied iteratively
10 times to produce new design points. For the CSQ strategy, the hyperparameter
h introduced in (4.29) is set to h = 3. The influence of h is discussed afterward. The
evolutions of the metrics are plotted in Figures 4.3, 4.4 and 4.5 for both sequential
design strategies and for the naive strategy where the design points are chosen with
a uniform distribution on the prior domain. The empirical 95 % confidence interval
for each metric and strategy is also displayed.

Both the CSQ and SUR strategies perform largely better than the naive strategy.
The naive strategy samples design points randomly in the parameter space and
thus targets away from the posterior distribution. The performance metrics are still
decreasing but at a much slower rate than for the CSQ and SUR strategies, especially
in higher dimensions. These two design plans tend to perform similarly on the
two-dimensional test cases but the IP-SUR strategy is superior for the neutronic test
case, for which all the metrics are considerably improved.
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FIGURE 4.3: Performance metrics - Banana test case.

FIGURE 4.4: Performance metrics - Bimodal test case.

FIGURE 4.5: Performance metrics - Neutronic test case.

Based on these results, one could argue that the CSQ strategy can be situationally
better as it is easier to set up while providing similar performance in the end. How-
ever, two counter-arguments can be pointed out. First of all, the IP-SUR strategy does
exhibit a guarantee for the convergence of the integrated variance, which offers a
strong theoretical foundation. Besides, though the acquisition function in the IP-SUR
strategy is more computationally intensive, the method does not rely on the prior
setting of an arbitrary hyperparameter. The influence of the hyperparameter h is
discussed in the next section.

4.3.3 Influence of the hyperparameter in CSQ

The CSQ strategy depends on a hyperparameter h ≥ 0 introduced in the definition
of the subset B(n)

h in (4.29). There is no rule to select the optimal value of this
hyperparameter. From an intuitive point of view, we want it to be large enough to
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allow design points to be away from the MAP but not too large to keep only those
relevant to the inverse problem. The optimal value may vary largely between two
different posterior distributions.

To assess the influence of the hyperparameter h, the CSQ strategy is applied for
various values of h on the two test cases. Arbitrarily, the values of h are selected in
h ∈ {1, 2, 3}. The metrics obtained for the banana-shaped and bimodal posterior
distributions are shown in Figures 4.6 and 4.7 respectively. One can see that for

FIGURE 4.6: Influence of h - Banana test case.

FIGURE 4.7: Influence of h - Bimodal test case.

h = 1, the design is significantly worsened. We recall that all the previous test cases
were conducted with h = 3 which provides the best results among the selected values.
However, the optimal choice of h is likely dependent on the application and cannot
be found easily. For this reason, the IP-SUR strategy presented in this work seems
superior as it does not carry the burden of the selection of a hyperparameter.

4.3.4 Comparison to standard strategies

As an example, we consider the standard I-optimal and D-optimal strategies intro-
duced at the beginning of this chapter. These two strategies are compared to the
IP-SUR strategy, on the bimodal test case for 5 iterations. Though the surrogate
models may be largely improved with these designs, most improvements may be
irrelevant to the inverse problem. We can further emphasize that point by looking at
the posterior distributions obtained for the GP models with the new design points of
each strategy. One of the marginals of such posteriors is displayed in Figure 4.8 for
the previously mentioned strategies. From this analysis, we highlight the inadequacy
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FIGURE 4.8: Design points obtained with various strategies. The
posterior density p∞(·|y) is also displayed.

of the standard D-optimal and I-optimal designs and we can conclude that our meth-
ods are significantly better than standard optimal design strategies in the context of
Bayesian inverse problems.

4.3.5 Comparison to a Bayes risk minimization strategy

Until now, our sequential design strategies were only compared to a naive strategy in
which the design points are chosen uniformly on the state space. The main question is
now, how do they compare to state-of-the-art strategies in Bayesian inverse problems?
To answer that, we compare our methods to the one introduced briefly in Section
4.1.2.3. The loss function used for the criteria can be estimated with MCMC and
we refer to [SN17] for more details on the methods involved. Applying the same
procedure as before, CSQ and IP-SUR strategies are compared to this strategy. The
results are displayed in Figures 4.9, 4.10 and 4.11 for each test case. The two methods
offer overall similar performance with regard to the metrics investigated, though the
IP-SUR method seems more reliable for the bimodal case. Besides, it is backed by a
convergence guarantee which is not the case for the method of Sinsbeck et al.. For the
latter, the supermartingale property seems unreachable.
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FIGURE 4.9: Comparison with Sinsbeck et al. - Banana test case.

FIGURE 4.10: Comparison with Sinsbeck et al. - Bimodal test case.

FIGURE 4.11: Comparison with Sinsbeck et al. - Neutronic test case.

4.3.6 An application for tempered IP-SUR

We also investigate the feasibility and performance of the TIP-SUR strategy. The
focus is only on the point model test case here. The same methodology is applied
to obtain various metrics of uncertainties, with different values of β ∈ {0.2, 0.5, 0.8}.
These values are chosen arbitrarily. We also test a more subtle strategy in which we
introduce a dependence of β w.r.t. n and we gradually increase the values of βn from
low values, starting at β1 = 0.1 to 1 such that limn→+∞ βn = 1. The following scheme
is applied:

βn = 1.0 − 0.9n. (4.100)

In Figure 4.12, we plot KL (pn ( · |y) ∥p∞ ( · |y)) for each strategy. This figure does
not allow us to conclude on the superiority of either IP-SUR or TIP-SUR strategies.
The evolution of the KL is very similar for each case and is within the confidence
interval. Further studies may be required to exhibit cases where the TIP-SUR strategy
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FIGURE 4.12: KL divergence obtained for the TIP-SUR strategy for
various choices of β on the point model test case. Only the 95% confi-

dence interval for β = 1 is shown.

could be superior to the IP-SUR design.

4.4 Conclusion

In this chapter, we derived two sequential design strategies for Gaussian process
surrogate models in Bayesian inverse problems. The first one, known as the Con-
straint Set Query (CSQ) method, can be understood as a D-optimal design strategy
constrained to a ball for the Mahalanobis distance and centered around the MAP.

The second strategy named IP-SUR, is an adaptation of the Stepwise Uncertainty
Reduction (SUR) paradigm to the case of Bayesian inverse problems. The functional
serving as a metric of uncertainty is a posterior-weighted IMSPE. We proved that
this strategy is tractable for both scalar and multi-output GP models, provided we
have access to an ergodic Markov chain whose stationary distribution is the posterior
distribution. Moreover, it comes with a guarantee of convergence for the metric of
interest, which is otherwise not trivially acquired for sequential design strategies.
Both strategies have shown increased performance in the various applications pre-
sented compared to standard D-optimal, I-optimal, and naive designs. They are also
comparable to the Bayes risk minimization strategy from [SN17].

Finally, we also showed that both the prior-weighted IMSPE and the IP-SUR strategies
can be interpreted as specific cases of a broader strategy, named tempered IP-SUR
(TIP-SUR). The metric of uncertainty for the TIP-SUR is a likelihood-weighted IMSPE
with a temperature exponent β ∈ [0, 1] on the likelihood. It comes with the same
convergence guarantee as IP-SUR and could be advantageous for posteriors with thin
support, though further analysis is required to confirm this intuition.
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Chapter 5

Joint analysis of neutron and
gamma correlations

In this chapter, we discuss the possibility of improving our uncertainty estimates by
including the gamma correlations in our study. For that purpose, we need to adapt
the inverse problem resolution introduced in previous chapters. The inclusion of
gamma correlations follows a similar methodology, though it comes with its own
challenges which are discussed in detail throughout this chapter.

In the first section of this chapter, we describe how to study gamma noise in zero-
power systems with MCNP. We then describe how to include gamma correlations
in our inverse problem and present the newly developed surrogate models. Finally,
we make use of the sequential design strategies developed in the previous chapter to
improve these models. We conclude by applying the methodology developed to the
SILENE test case.

5.1 Gamma correlations in MCNP

In this section, we focus on the data collection process for gamma noise measurements.
This is conducted within MCNP (see Section 1.4.8), with a similar approach to what
was done for the study of neutron correlations.

5.1.1 PTRAC files for gamma correlations

Our first task is to generate Monte Carlo simulations including both neutron and
gamma reactions. Then we would like to obtain a time list file containing the instants
of detections of gamma rays, as was done for neutron correlations.

MCNP has the capability of performing particle transport for both neutrons and
gammas at the same time. There is no exterior gamma source in the medium, all the
gammas come from fissions and other nuclear reactions (mainly (n, γ) reactions). The
gamma detector is not modeled. Instead, we record all gamma captures occurring in
the fissile region. This is an oversimplification that will yield very high efficiency and
is unattainable in practical experiments. However, our goal in this chapter is not to
provide the highest quality model, but rather it is to prove the feasibility and potential
gain in bringing gamma correlations into fissile matter identification techniques. For
a robust benchmarking of the methodology on real-world applications, it would be
necessary to consider a more realistic model in which a gamma detector is modeled
via MCNP.
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To build a dataset for our gamma surrogate models, we apply the same methodology
as described in Chapter 2: starting from a reference configuration, the geometry of
the problem (and the source) is randomly modified to provide a new data instance.
However, we would like to obtain a dataset recording both neutron and gamma
observations here. Since MCNP does not provide PTRAC files for both neutron
and gamma reactions from one simulation, each instance requires two identical
simulations, in which the random seed is kept identical, and where we record either
the neutron detections or the gamma detections.

One of the first difficulties we ran into was the sheer number of gamma events
occurring in the simulations. The average number of gammas produced by induced
fissions in MCNP is µ = 5.1. Each fission produces much more gammas than neutrons.
On top of that, a large number of (n, γ) reactions occur in the medium, leading to a
large source term. The number of gamma events is thus generally far greater than that
of neutrons. To give an idea of the amount of data collected, for a single simulation
the neutron PTRAC file has a size of 10 MB while the gamma file has a size of 1.2 GB.
Of course, the size of the PTRAC files varies depending on the simulation, it is larger
for larger multiplication factor kp. However, the amount of gamma events limits the
number of particles sampled in the MCNP simulations to keep reasonably small files.
Thus the total number of neutrons sampled in each simulation is 5 × 105. For the
dataset presented in Chapter 2, we used 1 × 106 neutrons per simulation. One can
thus expect slightly more noisy neutron observations.

5.1.2 Gamma Feynman moments

FIGURE 5.1: Second and third Feynman moments obtained by sequen-
tial binning.
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Once the PTRAC files are available, one can post-process them to obtain the Feynman
moments for the gammas. Similarly to what was done for the neutrons, we can
estimate the second and third Feynman moments, denoted respectively by Y(γ)

∞ and
X(γ)

∞ , using either sequential or filtered triggered binning. Filtered binning is used
for the training cases, while sequential binning is used to obtain the direct model
observations which are used for the inverse problem resolution (see sections 1.4.4.2
and 1.4.4.3).
An example of the Feynman curves obtained by sequential binning is displayed in
Figure 5.1. One may notice the longer asymptotic time T∞ ≃ 30ms compared to the
neutron moments, which may be caused by the different reactions involved and the
greater multiplicity.

5.1.3 Comparison to the point model equations

Before delving into the inverse problem resolution, we would like to compare our
data to the point model equations for the gammas which are given in (1.130), (1.131)
and (1.132). We recall that these equations refer to the singles, doubles, and triples
detection rates (denoted respectively by R(γ), Dγ, and Tγ) and not the Feynman
moments. These can be obtained from the PTRAC files using analogs of the estimators
(1.122) and (1.123). The prediction errors of the point model equations are quantified
in terms of NMAE and NRMSE over the whole dataset. They are summarized in
Table 5.1.

TABLE 5.1: Prediction errors for the gamma point model equations.

R(γ) Dγ Tγ

NMAE 0.12 0.52 0.87
NRMSE 0.14 0.61 1.35

The gamma point model has poor predictive capabilities. Many possible factors could
explain these large errors. Firstly, the nuclear data multiplicity for the gammas is
not well-known. The mean values µ and µs are provided by MCNP in our work.
However, we do not have access to the factorial moments. We assumed that the
gamma Diven factors are roughly constant (this is the case for neutrons), and then
used the gamma Diven factors calculated in [PP05]. The uncertainties on those
parameters are thus considerable. Moreover, we are very far away from the idealized
conditions of the point model framework, which should also hinder its predictive
capabilities. Our current version of MCNP may not be well-suited to study gamma
correlations because of the unknown behavior of the gamma multiplicity data. An
alternative could be the MCNP-PoliMi code [PPM03], which was developed for
neutron noise analysis and thus better describes the neutron and gamma multiplicity
data.

Consequently, the point model for the gamma correlations seems particularly incom-
patible with the data obtained. However, it may still be used as a mean function of a
GP surrogate model. Even though it displays poor predictive capabilities, it is still
more informative than a constant mean function.
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5.2 Neutron and gamma inverse problem

In this section, we discuss the possibility of including gamma noise measurements in
our inverse problem resolution, with two different approaches.

5.2.1 Sequential approach

Our first method uses the Bayesian framework to leverage the additional knowledge
brought by gamma correlations. Indeed, the prior distribution provides an easy
way to incorporate new data in a Bayesian model. Throughout this thesis, we only
considered non-informative priors. We did not focus on objective or reference priors
since we generally have enough observations to keep the prior choice relatively
unimportant.
However, now that we have additional information in the form of gamma correlations,
the prior can be used to incorporate this new knowledge. This has led us to propose
a sequential approach for the neutron/gamma inverse problem, which is described
hereafter.

Consider some neutron observations y = (y(k))1≤k≤N and some gamma observations
y(γ) = (y(k,γ))1≤k≤Nγ

for N, Nγ ≥ 1. Throughout this chapter, the neutron obser-

vations are as usual (R, Y∞, X∞) and the gamma observations are (R(γ), Y(γ)
∞ , X(γ)

∞ ).
We assume that the observations are related to some input x and x(γ). However, x
and x(γ) are not necessarily in the same design space. As an example x(γ) includes
the gamma efficiency εγ while x do not. Thus x and x(γ) live in two different input
spaces X and X (γ). Here the inputs of interest for x are the same as in previous
chapters, such that x = (kp, ε, S, xs, εA, Φ, J) and X ⊂ R7. For x(γ), based on the point
model equations for the gamma correlations (1.130), (1.131) and (1.132), we choose
x(γ) = (kp, S, xs, Mγ, εγ) and X (γ) ⊂ R5.

In this chapter, we focus on Gaussian process surrogate models. We assume that
GP surrogates are available for both the neutron and the gamma model. They are
denoted respectively by f (n)s and f (γ)s . They replace the unknown direct models such
that the observations are:

y(k) = f (n)s (x) + ε
(n)
k for 1 ≤ k ≤ N (5.1)

y(k,γ) = f (γ)s (x(γ)) + ε
(γ)
k for 1 ≤ k ≤ Nγ (5.2)

where ε
(n)
k ∼ N

(
0, C(n)

obs

)
and ε

(γ)
k ∼ N

(
0, C(γ)

obs

)
are the iid random variables for

the observational noise. For x ∈ X and x(γ) ∈ X (γ), we also introduce a neutron
likelihood L(n) (y|x) and a gamma likelihood L(γ)

(
y(γ)|x(γ)

)
which are defined with

the general likelihood (2.76) introduced in Chapter 2.

To solve our inverse problem, we proceed as follows. Starting from a prior distri-
bution with density p(x) for x ∈ X , we solve the Bayesian inverse problem for the
neutron correlations only, using the likelihood L(n) (y|x). We thus obtain a posterior
distribution with density p(n) (x|y) for x ∈ X . Since the posterior is obtained by
MCMC sampling, its density is derived from the Markov chain by a Gaussian kernel
density estimation.
Then, this posterior distribution is used as a prior in a second inverse problem where
we introduce the gamma observations. However, because the neutron and gamma
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models have different input spaces the priors must be adjusted accordingly. One can
notice that x and x(γ) share three parameters: kp, S and xs. Thus we define a prior on
the parameters (kp, S, xs) with the marginals of the posterior distribution p(n) ( · |y).
Then we affect a uniform prior for the two missing inputs (Mγ, εγ). For x(γ) ∈ X (γ),
the prior density for the gamma inverse problem, which is denoted by p(γ)(x(γ)) is
then given by:

p(γ)(x(γ)) = p(Mγ, εγ)
∫

εF ,εA,Φ,J
p(kp, εF, S, xs, εA, Φ, J|y)dεFdεAdΦdJ (5.3)

where p(Mγ, εγ) denotes the uniform prior density on a given subset of R2 for the
inputs Mγ and εγ. One could also derive a posterior distribution for the intersection
of x and x(γ) in a similar fashion.
With this new prior distribution for the gamma inverse problem, we can compute a
second posterior distribution p(seq) whose density is given, for x(γ) ∈ X (γ) by:

p(seq)(x(γ)) ∝ p(γ)(x(γ))L(γ)
(

y(γ)|x(γ)
)

. (5.4)

We highlight that this methodology is applicable in the reversed order, in which the
gamma inverse problem is first solved before adding the neutron observations.
This final posterior distribution thus regroups the knowledge of neutron and gamma
correlations. It requires surrogate models for both the neutron and gamma direct mod-
els. However, it has one main drawback: it treats the gamma and neutron problem
sequentially and thus does not account for any correlations between the phenomena.
This is a simplification since we expect the gamma and neutron models to be strongly
correlated. The observations y and y(γ) should not be treated independently from
one another. This is why we describe a second approach in the next section.

5.2.2 Joint resolution

To account for correlations between neutron and gamma observations, one could try
to solve the joint inverse problem encompassing both types of observations.
We introduce the notations x(n,γ) = (kp, εF, S, xs, εA, Φ, J, Mγ, εγ) ∈ X (n,γ) ⊂ R9 and
p(x(n,γ)) the uniform prior density on X (n,γ). Let Nn,γ be the number of observations
for the joint inverse problem. If we have Nn,γ = N = Nγ, the observations are
denoted by y(n,γ) = (y, y(γ))T ∈ RNn,γ×6. If not, we consider Nn,γ = gcd (N, Nγ) and
we can come back to the previous case by forming batches of observations with size
N/Nn,γ for the neutrons and Nγ/Nn,γ for the gammas. We then average over each
batch and divide Cobs by N/Nn,γ and C(γ)

obs by Nγ/Nn,γ.

Consider a GP surrogate model f (n,γ)
s serving as an emulator for the joint direct model.

The observations are given by the following statistical model:

y(n,γ)
k = f (n,γ)

s

(
x(n,γ)

)
+ ε

(n,γ)
k (5.5)

for 1 ≤ k ≤ Nn,γ and where ε
(n,γ)
k ∼ N

(
0, C(n,γ)

obs

)
where C(n,γ)

obs is obtained by the

empirical covariance estimator applied to y(n,γ).
With this surrogate model, one can then define a likelihood L(n,γ)

(
y(n,γ)|x(n,γ)

)
for

x(n,γ) ∈ X (n,γ) with (2.76). Finally, we obtain a posterior distribution p(n,γ)( · |y(n,γ))
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which accounts for the correlations between neutron and gamma observations and
whose density is given for x(n,γ) ∈ X (n,γ) by:

p(n,γ)(x(n,γ)|y(n,γ)) ∝ L(n,γ)
(

y(n,γ)|x(n,γ)
)

p(x(n,γ)). (5.6)

Though this posterior distribution is theoretically more accurate, it requires a surro-
gate model of higher dimension, able to emulate both neutron and gamma correla-
tions. The higher dimension for both the input and output spaces may hinder the
predictive capabilities of this model, which would, in turn, make this approach less
reliable.

5.2.3 Gamma surrogate models

In this chapter, we will investigate both of the approaches developed in the previ-
ous paragraphs. Consequently, we require a gamma surrogate model f (γ)s (GSM)
and a joint surrogate model f (n,γ)

s (JSM) able to predict both neutron and gamma
correlations. We will describe briefly these two new models in this section.

Starting with the gamma model, we are using our new dataset of 232 instances
to build a multi-output GP model. The model is based upon the Linear Model of
Coregionalization described in Chapter 2, with 2 latent scalar GPs. The scalar GPs
have anisotropic Matérn kernels with ν = 5/2. This GP is built using the bias learning
approach used previously for the neutron models.
The joint GP model is also an LMC model with 4 latent GPs, each having anisotropic
Matérn kernels. However, due to the higher dimension, both for the input and output
spaces, exact GP inference is too computationally expensive in this case. Indeed, we
recall that the exact inference requires the inversion of a matrix of size Dn where D is
the output dimension, and n = 190 is the number of training data. This amounts to a
complexity O((Dn)3) which makes the inference intractable.
Hence there is a need for sparse approximations to accelerate both training and
inference. Sparse GP approximations were introduced in Section 2.1.3. The sparse
variational Gaussian process (SVGP) approach, introduced in [Tit09], is used in this
work. Our numerical developments are based on the GPyTorch package developed
for Python [Gar+18].

The error metrics for the predictive means are shown in Table 5.2. One can see that the
NSM and GSM models perform well. The errors on the gamma tend to be smaller
due to the higher number of events in gamma correlations. However, the joint model
JSM exhibits inferior predictive capabilities than these models. This can be explained
by the higher dimensionality of the task for the JSM model, as well as by the sparse
approximation. We also remind the reader that the dataset used in this chapter is not
the same as the SILENE dataset from Chapter 2. Because we were limited by the
size of the PTRAC files, this dataset is built with fewer simulated neutrons and the
training data are thus more noisy than in Chapter 2. The performance of the NSM
model is not to be compared with the performance of the models in Chapter 2.

We also looked at the coverage probabilities for all the models. They are plotted in
Figure 5.2. Since the test set has only 42 instances, the coverage probabilities cannot
be very accurate, but one can still notice that all models provide reasonable coverage
probabilities. While the JSM model does show some tendency to overestimate
uncertainty, it maintains satisfactory coverage probabilities, which is particularly
noteworthy given its higher output dimension.
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TABLE 5.2: Error metrics for the neutron model (NSM), gamma model
(GSM) and joint model (JSM).

NSM NMAE NRMSE Q2

R 0.008 0.011 0.9997
Y∞ 0.027 0.038 0.9983
X∞ 0.051 0.153 0.9919

GSM NMAE NRMSE Q2

R(γ) 0.004 0.006 0.9999
Y(γ)

∞ 0.022 0.031 0.9953
X(γ)

∞ 0.080 0.169 0.9773

JSM NMAE NRMSE Q2

R 0.012 0.016 0.9990
Y∞ 0.046 0.092 0.9854
X∞ 0.089 0.158 0.9937

JSM NMAE NRMSE Q2

R(γ) 0.012 0.018 0.9992
Y(γ)

∞ 0.016 0.023 0.9992
X(γ)

∞ 0.025 0.047 0.9992

FIGURE 5.2: Coverage probabilities evaluated on the test set for NSM,
GSM and JSM.

5.2.4 A first application

Our objective is now to apply the two proposed methods to a test case. In this chapter,
we focus on the SILENE test case. More specifically, we will consider only the case
with a fissile height of h = 20 cm. Since we do not have access to experimental gamma
measurements, the gamma observations y(γ) are obtained from numerical simulations
with MCNP. We have a total of Nγ = 16 independent gamma observations. On the
other hand, the neutron observations y are derived from the experimental time list
files as was done previously.

As usual, the posterior distributions are obtained by MCMC sampling. The AM
algorithm is used for the sequential approach, in which the two inverse problems are
solved one after the other. However, for the joint posterior distribution p(n,γ)( · |y(n,γ)),
we favor HMC-NUTS due to the higher dimension of the problem, for which it is
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more suited.
To highlight the gain in information brought by the gamma correlations, we plot in
Figure 5.3 the two-dimensional marginals for the inputs (kp, S) for the distributions

p(seq)( · |y(n,γ)), p(n,γ)
(
· |y(n,γ)

)
and p(n) ( · |y). As one can see from this figure, the

FIGURE 5.3: Two-dimensional marginals w.r.t. (kp, S) of the posterior
distributions obtained for the neutron inverse problem (left), the se-

quential approach (center) and the joint approach (right).

distribution is significantly narrower when we add the gamma correlations with the
sequential approach. However, the joint approach yields a wider distribution, that
lies further away from the ground truth. Looking back at the model performance
in Table 5.2 and Figure 5.2, the joint model does have poorer prediction capabilities,
which may impact the accuracy of the inverse problem resolution. However, we hope
to resolve this limitation by efficiently adding more data points, with the help of the
sequential design strategies derived in Chapter 4.

5.3 Sequential design strategy for the JGP model

5.3.1 SUR or CSQ design?

In Chapter 4, we presented two sequential design strategies specifically suited for
Bayesian inverse problems. The IP-SUR strategy has a guarantee of convergence but
is overall more costly than the CSQ strategy because it requires MCMC sampling
at each iteration. We recommend using preferably CSQ designs when the cost of a
call to the black-box code is of the same order of magnitude as the running times
of the MCMC samplings. However, if the computer code has much longer running
times than the generation of the Markov chain, we would advocate for adopting the
IP-SUR strategy.
In this particular example, one iteration of the CSQ strategy, including the design
point selection detailed later in this chapter, the MCMC simulations, and the GP
update, took roughly 1 hour. On the other hand, one iteration of the IP-SUR strategy
amounts to almost 3 hours of run time. For that reason, we will focus on the CSQ
strategy in this application.
However, we expect both strategies to be difficult to apply to very high-dimensional
problems. In our work, the input space has a rather small dimension and we can get
away with both methods. For other applications in higher-dimensional spaces, we
recommend screening the variables in the problem as much as possible to reduce the
dimensionality.
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5.3.2 Dealing with uncontrolled inputs

One of the obstacles encountered while adapting the sequential design strategies to
our case is the lack of control over the inputs x. Indeed, in a neutronic Monte Carlo
simulation, kp is not a quantity that can be controlled. For simple geometries, one can
expect how the kp might evolve when changing the geometry of the problem, but we
have no complete control over it. Similarly, εF is an output of the MC code. How can
we apply our strategies to actively improve the surrogate models in that context?

We propose the following approach. Consider x∗ ∈ X (n,γ) the target design point
recommended by the sequential design strategy (either CSQ or IP-SUR). Let us
introduce a cost function L(x, x∗) defined for x ∈ X (n,γ) by:

L(x, x∗) =
p

∑
j=1

ωj
(
xj − x∗,j

)2 (5.7)

where the ωj ≥ 0 are weight factors such that
p
∑

j=1
ωj = 1 and where p = 9 is the

dimension of the input space. Ideally, we would like to reach x = x∗ which translates
to L(x, x∗) = 0. Since we do not have complete control over kp and εF, reaching
x = x∗ appears difficult, though we can try to minimize L.
The weights (ωj)1≤j≤p should be defined to account for the influence of the variables.
Our first attempt was to define arbitrary weights based on our knowledge of the
problem. While this may work, we refined our method by using sensitivity analysis
to better select the weights. Recalling the sensitivity analysis from Chapter 2, one
may define them using the calculated Sobol indices. Intuitively, one could increase
the contributions of the outputs whose observational variances are low, since the
inverse problem is more sensitive to these outputs. As an example, we choose the
non-normalized weights ωj defined by:

ωj =
D

∑
i=1

sj,i
y2

i
σ2

i
(5.8)

where sj,i is the uncorrelated first-order Sobol index associated to the j-th input and
to the i-th output, σ2

i is the observational variance of the i-th output, for 1 ≤ i ≤ D,

and y2 = 1
N(n,γ)

Nn,γ

∑
k=1

(
y(n,γ)

k

)2
. We then normalize the weights ωj to have ∑

p
j=1 ωj = 1.

With this empirical approach, we hope to put more weight on the outputs R and R(γ)

which exhibit low relative variance.

Due to the addition of Mγ and εγ, a new sensitivity analysis study is needed. It is
performed with the same method as in Chapter 2. However, we are dealing with a
higher-dimensional model with only limited data. In Chapter 2, the dataset was split
into a training set used to build the PCE models, and a test set used to estimate the
Sobol indices. However, here we do not have enough data for those two tasks. We
thus decided to create new synthetic data by fitting a Gaussian copula to the data.
Knowing the marginal distributions of the dataset inputs X and the fitted copula, we
can then sample new synthetic data which can be used to evaluate the Sobol indices.
With this approach, the test set is not required and all the data can be used to build
the PCE models. We still keep 10% of the data as a validation set to measure the
performance of the PCE models (namely the NMAE and NRMSE). An introduction
to copulas is presented in the following chapter. Since we want the weights ωj of



176 Chapter 5. Joint analysis of neutron and gamma correlations

FIGURE 5.4: Marginal distributions and correlations in the original
dataset.

the most influential parameters in priority, we decided to focus only on the most
influential parameters. The inputs of interest in this sensitivity analysis study are
thus restricted to (kp, εF, S, xs, Mγ, εγ). In Figure 5.4, we represented the marginal
distributions and correlations between the inputs in the original dataset. The same
plot is given for a synthetic dataset of n = 1000 samples in Figure 5.5. One can see
that the correlation structure is rather close to Figure 5.4 and the copula fit appears to
be efficient.
The Sobol indices obtained are shown in Table 5.3. These results highlight the im-
portance of the newly introduced Mγ and εγ, especially in relation to the gamma
correlations.

TABLE 5.3: First-order Sobol indices.

S(U)
j R Y∞ X∞ R(γ) Y(γ)

∞ X(γ)
∞

kp 4.3 × 10−1 5.7 × 10−1 6.6 × 10−1 4.1 × 10−4 2.6 × 10−1 2.9 × 10−1

εF 6.8 × 10−1 3.9 × 10−1 7.4 × 10−1 1.9 × 10−6 2.1 × 10−5 2.7 × 10−6

S 5.7 × 10−2 1.1 × 10−4 7.2 × 10−4 4.9 × 10−2 4.4 × 10−5 2.2 × 10−5

xs 6.5 × 10−2 3.2 × 10−3 1.5 × 10−3 5.0 × 10−2 2.5 × 10−3 8.7 × 10−4

Mγ 5.3 × 10−2 2.6 × 10−2 1.9 × 10−1 1.8 × 10−1 1.2 × 10−1 3.5 × 10−1

εγ 7.2 × 10−2 7.9 × 10−3 2.2 × 10−2 4.8 × 10−1 5.3 × 10−1 4.7 × 10−1
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FIGURE 5.5: Marginal distributions and correlations in the synthetic
dataset.

5.3.3 Updated surrogate models

Using the CSQ method, we update the joint model by adding 20 new design points.
Each new simulation is conducted with a total of 5 × 105 simulated neutrons. The
optimization step in CSQ is performed with dual annealing. We present in Table
5.4 the mean relative error between the target design points and the design points
obtained.

TABLE 5.4: Mean relative error between the target optimal design
points given by CSQ and the actual points found with MCNP.

kp εF Mγ εγ

Rel. error (%) 3.6 71 63 40

The lack of control in the selection of the inputs is significant, with some parameters
such as εF and Mγ displaying a relative error superior to 50%. However, we manage
to get a satisfying precision on kp which appears as one of the main contributors to
the joint inverse problem.

The new metrics for the improved joint model are shown in Table 5.5. The coverage
probabilities can be seen in Figure 5.6.
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TABLE 5.5: Error metrics for the previous JSM and the updated JSM.

JSM NMAE NRMSE Q2

R 0.012 0.016 0.9990
Y∞ 0.046 0.092 0.9854
X∞ 0.089 0.158 0.9937

JSM NMAE NRMSE Q2

R(γ) 0.012 0.018 0.9992
Y(γ)

∞ 0.016 0.023 0.9992
X(γ)

∞ 0.025 0.047 0.9992

Updated JSM NMAE NRMSE Q2

R 0.007 0.009 0.9997
Y∞ 0.035 0.045 0.9965
X∞ 0.096 0.317 0.9337

Updated JSM NMAE NRMSE Q2

R(γ) 0.009 0.013 0.9996
Y(γ)

∞ 0.016 0.023 0.9992
X(γ)

∞ 0.030 0.058 0.9988

FIGURE 5.6: Coverages probabilities for the JSM and updated JSM
models.

To highlight the reduction in the epistemic uncertainty in the model, we also com-
pared the mean determinant of the predictive covariances over the test set (MCD).
For a surrogate model with predictive distribution fs(x) ∼ N

(
fs(x), Cs(x)

)
, this

quantity is defined by:

MCD =
1

N∗

N∗

∑
i=1

|Cs(X∗,i)|. (5.9)

The ratio of these quantities, obtained for the previous joint model and the updated
model is MCDold

MCDnew
≃ 2.3. The determinant of the predictive covariances is reduced by a

factor of more than 2. Besides, thanks to the CSQ strategy, this uncertainty reduction
is likely more prominent in regions of high posterior density.

5.3.4 Improved posterior distribution

Using the newly enriched joint GP model, we can sample a new joint posterior
distribution with HMC-NUTS and L = 1 × 105 samples. The marginal distribution
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for (kp, S) is displayed in Figure 5.7 along with the ones obtained for the sequential
approach and with neutron correlations only. The drastic improvement of the joint

FIGURE 5.7: Two-dimensional marginals w.r.t. (kp, S) for the neutron
inverse problem (left), the sequential approach (center) and the joint

approach with the updated JSM (right).

surrogate model is visible compared to Figure 5.3. However, the posterior distribution
remains more spread out than the one obtained with the sequential approach. More
design points are needed to further improve the joint surrogate model. As of now,
the sequential approach appears to be more efficient in reducing the uncertainties.
However, sequential design strategies coupled with a larger training set could make
the joint model viable. The sequential designs are also hindered by the lack of control
over the inputs in the design space and possibly by the sparse approximation in the
JSM model. Developments in this direction would greatly benefit this approach.

5.4 Conclusion

In this chapter, we explored gamma correlations and their potential to diminish
uncertainties in the inverse problem. We have seen that they can provide additional
information, thus mitigating the uncertainties in the estimation of unknown nuclear
parameters. However, using gamma correlations increases the dimensionality of the
problem which makes the design of the surrogate models more complex. To circum-
vent this issue, one can instead look at two successive inverse problems though this
approach ignores the correlations between gamma and neutron observations. If we
wish to treat the joint inverse problem, we need to carefully choose the design points.
Specifically, we highlighted the improvements brought by the sequential design
strategies discussed in the previous chapter, by applying them to this joint inverse
problem. Nonetheless, the joint approach still yields wider posterior distributions
that are likely linked to a lack of training data for the joint surrogate model. Further
analyses are needed in that regard.

The use of gamma correlations in the identification of fissile matter is promising
but requires further development to ensure the approach’s robustness. Notably, this
chapter did not address uncertainties in nuclear data. The evaluation of neutron mul-
tiplicity data has seen significant improvements in recent years, for example with the
developments of new fission models such as FREYA [VRV15]. The gamma multiplic-
ity on the other hand has received less attention, necessitating further development to
achieve a comprehensive and reliable uncertainty quantification framework for sce-
narios involving gamma correlations. Moreover, gamma correlations are particularly
sensitive to data uncertainties due to the higher number of detection events. Conse-
quently, gamma observations tend to exhibit seemingly lower noise levels, though
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uncertainties may be concealed within the nuclear data. Furthermore, this study
relied exclusively on numerical simulations. Therefore, validating the robustness
of our approach using real-world gamma measurements is essential for ensuring
dependable uncertainty quantification.
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Chapter 6

Inverse problem learning

In this chapter, the objective is to develop a framework to circumvent the large com-
putational cost of MCMC when solving an inverse problem. In that regard, one could
think of learning the posterior distribution of nuclear parameters directly for a given
set of observations and the observation noise covariance matrix. To build a predictive
model that provides such a posterior distribution, two preliminary requirements
must be met.
First of all, the posterior distributions should be approximated by parametric distri-
butions such that one only has to predict the distribution parameters. The predictive
model output is thus reduced to a finite dimensional prediction making it much
more reasonable. Then, the predictive model must be trained on a dataset representa-
tive of the applicative cases. These two steps are discussed throughout this chapter.
We emphasize that this work is motivated by the need for immediate estimation of
the nuclear parameters, even if it is detrimental to the quality and reliability of the
estimation and uncertainty quantification.

6.1 Quantile-parametrized distributions

6.1.1 Generalized lambda distributions

Let us first discuss the scalar case, where the posterior distribution is one-dimensional.
The most simple approach would be to consider that the posterior follows a given
class of distributions, for example, a Gaussian such that p(x|y) ∼ N

(
µ, σ2) and

then fit the parameters of the Gaussian accordingly with a method of moments for
instance. To reflect various shapes of posterior distributions, the class of distributions
considered must be broader than just Gaussian distributions and that is why our
focus is on quantile distributions, which are distributions defined by their quantile
functions.

Definition 6.1.1. Consider a real-valued random variable X with cumulative distribution
function FX. The quantile function of X denoted by Q : (0, 1) → R is defined for p ∈ (0, 1)
by:

Q(p) = inf {x ∈ R s.t. FX(x) ≥ p} (6.1)

Definition 6.1.2. Let X be a random variable with quantile function Q. If the quantile
function Q is differentiable, then the quantile density function q exists and is defined as the
derivative of the quantile function Q. For p ∈ (0, 1):

q(p) = Q′(p) (6.2)
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Proposition 6.1.1. Let X be a random variable with quantile function Q and with density f .
Then the quantile density function q exists and its given for p ∈ (0, 1) by:

q(p) =
1

f (Q(p))
(6.3)

The Lambda Tukey distribution was first introduced in [HJ+47] and is defined as
follows.

Definition 6.1.3. Let λ ∈ R be a shape parameter and t ∈ R and s ∈ R+ be respectively
location and scale parameters. The Tukey Lambda distribution denoted T (λ, t, s) is the
distribution defined by its quantile function Qλ,t,s such that for p ∈ (0, 1):

Qλ,t,s(p) =

{
t + s

λ

(
pλ − (1 − p)λ

)
, if λ ̸= 0

t + s log
(

p
1−p

)
, if λ = 0

(6.4)

Proposition 6.1.2. The quantile density function of the Tukey lambda distribution T (λ, t, s)
is given for p ∈ (0, 1) by:

q(p) = s
(

pλ−1 + (1 − p)λ−1
)

(6.5)

The Tukey Lambda distribution can reflect many common distributions such as
Cauchy, uniform, logistic, or Gaussian distributions. The probability density function
of the Tukey lambda distribution cannot be obtained analytically but can easily be
obtained numerically. A plot of the pdf for different values of the shape parameter λ
is displayed in Figure 6.1 for a standard Tukey distribution (s = 1 and t = 0).

FIGURE 6.1: Density plots for different shape parameters of Tukey
Lambda distributions, with t = 0 and s = 1.
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However, all the Tukey lambda distributions are symmetric. To broaden the possible
distributions, variants of Tukey lambda distributions have been introduced for exam-
ple in [RS74]. In this work, the focus is on the generalized lambda distribution (GLD)
class introduced in [Fre+88].

Definition 6.1.4. Generalized lambda distributions are a class of distributions defined by
two shape parameters λ1 ̸= 0, λ2 ̸= 0 as well as a location parameter t ∈ R and a scale
parameter s ∈ R+. The generalized lambda distribution with parameters (λ1, λ2, t, s)
denoted G(λ1, λ2, t, s) is defined implicitly for by its quantile function Qλ1,λ2,t,s such that for
p ∈ (0, 1):

Qλ1,λ2,t,s(p) = t + s
(

pλ1

λ1
− (1 − p)λ2

λ2

)
(6.6)

The generalized lambda distributions (GLD) can describe a wider variety of dis-
tributions since they are not restricted to symmetric distributions. They are often
used to model unknown distributions with only a handful of parameters [CSW12;
ARRE08]. For instance, in [ZS20], GLDs are used as response distributions of stochas-
tic simulators, and their parameters are modeled by polynomial chaos expansion in
[ZS21].

An example of the pdf of some GLDs is displayed in Figure 6.2. The pdf plots are
non-symmetrical and are thus more adapted to model unknown distributions.

FIGURE 6.2: Density plots for different shape parameters of GLD
distributions, with t = 0 and s = 1.

6.1.2 Multivariate quantile distributions and copula

Now let us consider a D-dimensional posterior distribution. How can we generalize
the GLDs to such higher dimensional space, while enclosing correlations between the
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dependent variables? To answer this question, we need to provide a brief introduction
to copulas.

Definition 6.1.5. Consider a D-dimensional real-valued random variable X, with D > 1.
The cumulative distribution function FX (CDF) is extended in this multivariate setting. It is
defined, for x = (x1, ..., xD) ∈ RD by:

FX(x) = P (X1 ≤ x1, ..., XD ≤ xD) . (6.7)

Definition 6.1.6 (Copula). A copula in a D-dimensional space is a cumulative distribu-
tion function C defined on the hypercube [0, 1]D with uniform marginals. In other words,
C : [0, 1]D → [0, 1] is a copula if and only if it verifies the following properties:

• For any p ∈ [0, 1]D and for any 1 ≤ i ≤ D the function Ci : x 7→ C(p1, ..., x, ..., pD)
where the i-th component of p is replaced by x ∈ [0, 1] is non-decreasing.

• The marginals of C are uniform, meaning that for u ∈ [0, 1]D and 1 ≤ i ≤ D,
C(1, ..., 1, ui, 1, ..., 1) = ui.

• The probability of U being in the rectangle [a1, b1]× ... × [aD, bD] where ai ≤ bi for all

1 ≤ i ≤ D is non negative and thus
2
∑

i1=1

2
∑

i2=1
...

2
∑

iD=1
(−1)i1+...+iD C (z1,i1 , ..., zD,iD) ≥ 0

where zj,ij = aj if ij = 1 and zj,ij = bj if ij = 2.

One of the main theorems on copula theory was derived in [Skl59].

Theorem 6.1.1 (Sklar’s theorem). Let F be a D-dimensional CDF with marginal CDFs
Fi for 1 ≤ i ≤ D. Then there exists a copula C such that for any 1 ≤ i ≤ D and for any
xi ∈ [−∞,+∞] we have:

F(x1, ..., xD) = C (F1(x1), ..., Fd(xD)) . (6.8)

Moreover, if all the marginal CDFs Fi are continuous, the copula C is unique.
Similarly, for any copula C, the function F defined by equation (6.8) is a cumulative distribu-
tion function with marginal CDFs Fi.

This theorem is of utmost importance for this work, since our objective is to extend
GLD to multivariate distributions. Using Sklar’s theorem, one can see that it is
possible to build a multivariate CDF with marginals given by GLDs and entirely
defined by the choice of a copula.

Definition 6.1.7. Consider a copula C which is differentiable with respect to xi for all
1 ≤ i ≤ D, and consider differentiable marginal CDFs Fi. Then, the copula density c is
defined for (x1, ..., xD) ∈ RD as:

c(x1, ..., xD) =
∂DC

∂x1...∂xD
(x1, ..., xD). (6.9)

Sklar’s theorem provides a link between the density f of the random variable with CDF being
F, and the associated copula density c:

f (x1, ..., xD) = c(x1, ..., xD)
D

∏
i=1

pi(xi) (6.10)

where pi(xi) =
dFi
dxi

(xi).
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Definition 6.1.8 (Gaussian copula). Let Σ be a correlation matrix of size D. The Gaussian
copula with correlation matrix Σ is defined by:

CΣ(x1, ..., xD) = ΦΣ (Q(x1), ..., Q(xD)) (6.11)

where Q is the quantile function of the standard normal distribution N (0, 1) and ΦΣ is the
CDF of the multivariate normal distribution N (0, Σ) with mean 0 and covariance matrix Σ.
The density of the Gaussian copula is given by:

c(x1, ..., xD) = |Σ|−1/2 exp
(
−1

2
Q(x)T(Σ−1 − ID)Q(x)

)
(6.12)

where Q(x) = (Q(x1), ..., Q(xD)) and ID is the identity matrix of size D.

The Gaussian copula is introduced in this work to create a correlation structure
between univariate quantile-parametrized distributions, as is done in [PLS23] for
instance. With the help of scalar quantile-parametrized distributions and Gaussian
copula, one can create a large class of multivariate distributions. In this chapter,
we seek to use these distributions to approach the true posterior distribution of an
inverse problem. The inverse problem resolution can then be reduced to a prediction
task for a finite number of parameters, which greatly simplifies the resolution and
avoids the need for computationally intensive MCMC sampling

To illustrate the use of Gaussian copulas, we plot in Figures 6.3 through 6.5 examples
of bivariate GLDs built with GLD marginals and a Gaussian copula.

FIGURE 6.3: 2D density and marginal densities of a bivariate GLD with
correlation c = 0 and marginals G(−4, 0.1, 0, 1) and G(0.5,−0.2, 0, 1).

6.2 Learning a posterior

6.2.1 Dataset creation

Consider an inverse problem for which we have a noise covariance given by Cobs and
some observations y = (y(1), ..., y(N)) ∈ RN×D for N ≥ 1. This inverse problem boils
down to a single-observation case, with an effective covariance Ceff =

1
N Cobs, and the

mean observation y = 1
N

N
∑

k=1
y(k) (see proposition 2.5.2).

To solve this inverse problem, one may sample the posterior distribution p(x|y)
with MCMC sampling to yield a Markov chain whose invariant distribution is the
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FIGURE 6.4: 2D density and marginal densities of a bivariate GLD with
correlation c = 0.9 and marginals G(−1,−5, 0, 1) and G(−2, 0.5, 0, 1).

FIGURE 6.5: 2D density and marginal densities of a bivariate
GLD with correlation c = −0.99 and marginals G(−4,−1, 0, 1) and

G(−1,−5, 0, 1).

posterior. This approach is the gold standard and was used multiple times in the rest
of this work.

Now consider a class of probability distribution (pλ)λ∈Rm for m ≥ 1. One could try
to approximate the posterior distribution with the right choice of λ, as is done in
variational inference strategies. The natural metric when comparing two probability
distributions is the KL divergence, and thus the optimal choice of parameters is given
by:

λ∗(y, Ceff) ∈ argminλ∈Rm KL (p( · |y)∥pλ) . (6.13)

This optimal λ∗(y, Ceff) is of course dependent on the inverse problem considered.
To solve the inverse problem for any set of observations and noise covariance matrix,
our approach aims at learning the function λ(y, Ceff) for any y ∈ RD and any Ceff ∈
SD(R)+.

To learn this function, a dataset is needed for supervised learning methods. This
dataset is built by creating some observation and covariance (y, Ceff) and then solving
the optimization problem (6.13) for this particular value. Repeating this process
yields a dataset that can then be used for predictive models.
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6.2.2 KL minimization

How do we solve the optimization problem (6.13) in practice? Consider a given
mean observation y and an effective noise covariance Ceff. First of all, we need to
obtain the true posterior distribution p(x|y, Ceff) with the help of MCMC sampling,
which provides an ergodic Markov chain (Xl)1≤l≤L whose invariant distribution is
p(x|y, Ceff).
From here, for any λ ∈ Rm, KL (p(·|y, Ceff)∥pλ) can be evaluated. Based on the
ergodic theorem 1.6.2, the KL divergence can be approximated with the estimator:

KL (p(·|y, Ceff)∥pλ) ≃
1
L

L

∑
l=1

log
(

p(Xl |y, Ceff)

pλ(Xl)

)
. (6.14)

When solving the optimization problem, numerous performance factors must be
taken into account. The approximation (6.14) requires a large number of MCMC
samples, or more specifically a large number of decorrelated samples since this
estimator follows the assumption of theorem 1.6.6. As a criteria, if τ is the estimated
decorrelation time, our objective is to have at least L ≥ 100τ to guarantee a good KL
approximation. However, since the computation of (6.14) scales with a larger number
of samples, the MCMC chain is thinned out by a factor τ to only keep decorrelated
samples.
Finally, the optimization problem can be quite difficult since the KL can be particularly
sensitive to a small change in λ, and the target function is not convex. Thus, a global
optimization algorithm is required. We focus on dual annealing, which is available in
the scipy package.

6.3 Applications

6.3.1 A scalar inverse problem

We start with a simple scalar inverse problem. We consider the analytical direct model
f : R −→ R defined by f (x) = 0.04x3 for x ∈ R. We consider an inverse problem in
which we have N = 4 noisy observations y = (y(k))1≤k≤N given by:

y(k) = f (xtrue) + ε(k). (6.15)

Here we chose xtrue = −2.5 and the ε(k) are iid standard Gaussian random variables
with distribution N (0, 1).

To mimic our general methodology, we are not using the direct model in its an-
alytical form, but rather use an emulator built with a Gaussian process model
fs ∼ GP (0, k(x, x′)) with k a Matérn 5/2 covariance function. The GP surrogate is
conditioned on n = 50 training instances (X, Y) where the inputs X are sampled from
a uniform distribution on [−5, 5] and where Yi = f (Xi) + ηi with ηi ∼ N

(
0, 0.12) for

1 ≤ i ≤ n.

The next step is to generate a dataset of size M = 120 of inverse problem reso-
lutions, for varying observations and observational noise. Observations of the in-
verse problem are generated randomly by sampling uniformly in the image space
Y = f (X ) = [−5, 5]. Naturally, in cases where the direct model is inaccessible, the
exact image space is unknown. We discuss this obstacle in the next section. The new
noisy observations are denoted by z = (z(j))1≤j≤M and are sampled uniformly in
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Y . Each observation z(j) is associated with an observational standard deviation σ(j)

which is sampled uniformly in [0.1, 2].
Then, for each pair (z(j), σ(j)) we solve an inverse problem with a Bayesian resolu-
tion with MCMC to obtain the corresponding posterior distribution p( · |z(j), σ(j)).
Finally, the optimization problem (6.13) is solved (with dual annealing) to provide
the parameters λ(j) of the GLD approximating the true posterior distribution, for the
observation z(j) and standard deviation σ(j). This gives us a dataset ((z, σ), λ) on
which a predictor can be trained. We chose to use a simple fully-connected neural
network with L2 loss function in this case.

The GLDs have four parameters in this scalar case which makes both the optimization
problems and the MCMC relatively easy. The mean KL over the test set is KL ≃ 1.9.
In Figure 6.6, we compare the predicted GLD distributions with the posterior distri-
butions obtained via MCMC for some test data taken from the dataset (z, σ). Overall,

FIGURE 6.6: Comparison between the GLD densities (red) and poste-
rior densities obtained via MCMC with KDE (blue) for 6 test instances.
The MAP of the MCMC posterior is represented as a vertical dotted

line.

the GLD densities are close to the posterior densities obtained with MCNP. The GLD
densities tend to be smoother and are not able to model non-smooth target densities.
They are also unable to model multi-modal distributions. However, we know from
the previous chapters that the posterior distributions arising in the context of neutron
noise analysis are smooth and unimodal. The reader may also notice that the estima-
tion of the MAP with GLDs may lead to some misestimations. This is especially the
case for non-informative densities such as the bottom center plot in Figure 6.6.

When applied to this toy inverse problem, the predictor provides a GLD predictive
distribution which is displayed in Figure 6.7 along with the posterior obtained by
MCMC. The predictive GLD appears close to the posterior density obtained by
MCMC, though the GLD distribution is wider and the MAP is displaced slightly
to the left. This first application to a simple scalar inverse problem serves as an
introductory example of the methodology. In the next section, we seek to apply this
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FIGURE 6.7: Comparison between the predictive GLD density (red)
and the true posterior density (red) obtained for the observations given

in (6.15).

procedure to neutron correlation measurements, for the SILENE and BERP test cases.

6.3.2 A multivariate inverse problem

We now shift our attention toward the resolution of a multivariate inverse problem.
The general principle is similar and we use the same notations: we need to generate
a set of M observations (z, σ) from which posterior distributions p( · |z(j), σ(j)) are
obtained with MCMC for 1 ≤ j ≤ M. These distributions are then used to find
the optimal parameters λ(j) of the GLD representations leading to a new dataset
((z, σ), λ) which in turn is utilized to train a predictor.

Let us proceed step by step. To create the dataset (z, σ) we need to provide credible
observations and covariances. We will make use of the data available in our two
datasets (see Chapter 2). To provide reasonable observations we fit a Gaussian copula
to the output data as was done in Chapter 5 for the input dataset. Once the copula is
fitted, it is possible to generate synthetic output data. An example of the correlations
and marginals of a synthetic dataset with M = 1000 data instances is shown in Figure
6.8. This synthetic dataset resembles the original dataset which was displayed in
Figure 2.6. For precaution, we need to filter out values that are sampled outside the
bounds of the original dataset to avoid overly confident synthetic data. The next
phase is to create realistic observational covariances. This step is more complex and
will be based on empirical evidence. From the observations gathered throughout this
thesis, one can derive some knowledge of the correlations and standard deviations
for the outputs. Generally, the count rate has low variance. For the BERP test case, the
relative standard deviations for R, Y∞, and X∞ are around 0.5%, 3%, and 9%. In the
inverse problem likelihood, the variances are divided by the number of observations.
Thus, the range of covariances in the dataset needs to be wide enough to encompass
scenarios with both few and many observations. The correlations between outputs
also vary depending on the test cases. Similarly, the correlation coefficients are
sampled with sufficiently large bounds to include a variety of cases, while keeping
the matrix positive-definite.
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FIGURE 6.8: Marginal densities and correlation plots for the synthetic
data.

We can now build the dataset ((z, σ), λ). However, the optimization problem and the
subsequent predictive tasks are much more difficult than in the scalar case presented
in the previous section. We cannot hope to use the surrogate models developed in
Chapters 2 and 3. The dimension of the input space would demand too many param-
eters in the multivariate GLDs (49 parameters to be exact). Thus, we limit our study
to a three-dimensional input space, which includes only the parameters (kp, εF, S).
Even in such a low dimension, the parametrization of the posterior distributions with
GLDs and Gaussian copulas necessitates m = 15 parameters.

The predictive task consists in providing the 15 parameters λ given z ∈ R3 and
σ ∈ S3(R)+. This task requires sufficient training data. Thus, the generation of the
Markov chains for the posteriors p( · |(z(j), σ(j))) and the subsequent optimization
problems to obtain the λ(j) are parallelized on 40 cores.
In the optimization process, we reduce the number of parameters to optimize by
choosing the position parameters as the MAP estimates of the posterior distributions.
This choice is supported by the position parameter being precisely the mode of a
GLD. Moreover, the optimization bounds are defined to pre-select copulas with
large correlations as is the case for the expected shape of the posterior distributions.
Additionally, the shape parameters are chosen to be negative. Indeed, the support of
the posterior distribution is infinite though the density rapidly drops toward zero

Two examples of the predicted multivariate GLDs estimated on test instances are
shown in Figures 6.9 and 6.10 along with the true posterior sampled by MCMC.

The methodology described in this section is applied separately to the BERP and
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FIGURE 6.9: Comparison of the 2D marginals for the MCMC posterior
distribution (top) and the predictive multivariate GLD (bottom) on a

test instance.

FIGURE 6.10: Another example of true posterior (top) compared to
the predicted GLD (bottom).

SILENE test cases. Two distinct datasets ((z, σ), λ) are built. We detail these examples
in the next two sections.

6.3.2.1 An application to SILENE

We apply our methodology to the various configurations of the SILENE reactor. The
GLD predictor is trained over 280 instances. The mean KL between predictive GLDs
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and MCMC posterior distributions over the test set is KL = 7.2.
We then use the observational data from the SILENE experiments to predict a multi-
variate GLD approaching the true posterior distribution. The observational data are
given by the experimental measurements summarized in Table E.4 in Appendix E.
The marginals of the predicted multivariate GLDs for respectively h = 15 cm, h = 20
cm, and h = 25 cm of fissile solution are exhibited in Figures 6.11, 6.12 and 6.13. The
MCMC posterior distributions have been presented in Figures 2.22 through 2.24.

FIGURE 6.11: Predictive GLD for the SILENE test case with h = 15 cm
of fissile solution.

FIGURE 6.12: Predictive GLD for the SILENE test case with h = 20 cm
of fissile solution.

FIGURE 6.13: Predictive GLD for the SILENE test case with h = 25 cm
of fissile solution.

Though the multivariate GLD distributions differ from the true posterior distributions
obtained by MCMC, they still provide acceptable uncertainty quantification.
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One must also note that the multivariate GLDs extend outside the physical space.
For example, we have non-negligible densities in regions of εF < 0 which is phys-
ically inaccessible. The predictive GLDs can thus be truncated to respect physical
constraints.

To further investigate the capabilities of the multivariate GLDs, we provide simi-
lar distributions by multiplying only the effective covariance Ceff by a factor seff ∈
{1/4, 1, 4} which amounts to multiplying or dividing by two the number of obser-
vations available. The predictive distributions obtained are displayed in Figure 6.14.
We observe some changes in the spread of the GLDs, though the variations are not

FIGURE 6.14: 2D marginal densities of the predictive GLDs obtained
with seff ∈ {1/4, 1, 4} for the SILENE h = 20 cm configuration.

as noticeable as with MCMC sampling. The main explanation is the larger model
uncertainty in the underlying GP used to build the training set since only the three
inputs (kp, εF, S) were considered. Thus, reducing the observational variance does
not necessarily lead to a drastic reduction of the global uncertainty.
Overall, the multivariate GLDs offer an immediate uncertainty quantification, though
not as reliable as the Bayesian resolution of the inverse problem. Let us look at the
BERP case now.
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6.3.2.2 An application to the BERP case

Newt, we want to compare the posterior distributions obtained in Chapter 2 with
GP surrogates, to the predictive multivariate GLD provided by our predictor for the
BERP test case. The methodology is the same as for the SILENE test case. The mean
KL obtained on the test set is KL = 8.4. The training set contains 287 instances and
the test set 40 instances.The 2D marginals of the predictive multivariate GLD are
displayed in Figure 6.15.

FIGURE 6.15: 2D marginals of the predictive multivariate GLD ob-
tained with the BERP observational data (see E.4).

The multivariate GLD appears more conservative than the true posterior obtained
with MCMC sampling (see for example Figure 2.20). Although the predicted uncer-
tainties are not as reliable as the standard Bayesian resolution of the inverse, this
method offers an interesting addition to our methodological toolkit, especially for
very constrained predictions.

6.3.3 GLDs as prior distributions

The previous GLDs can be used to provide initial estimates of posterior distributions.
However, as we have seen in the previous section, the distributions display some
inaccuracy. These predictive GLDs are usable mostly for initial estimates under
stringent time constraints. However, they may be suited to serve as prior distributions
in the Bayesian inverse problem. In this section, we explore this possibility.

The main difficulty is that predictive multivariate GLDs require some knowledge
of the observations y. These observations are already used in the likelihood of the
inverse problem during the Bayesian resolution. If we wish to use multivariate GLDs
as prior, we could split a fraction of our observations and feed it to the GLD predictor,
while the rest is kept for the Bayesian resolution of the inverse problem. The main
question is whether or not this is beneficial in reducing the uncertainties of the nuclear
parameters.

Let us highlight this methodology on the SILENE test case, with h = 20 cm. Starting
from the initial set of observations y, half of the observations are used to predict
a multivariate GLD which serves as a prior distribution. The other half is used
as inverse problem observations. We sample the posterior distribution with AM
with L = 5 × 105 samples. The prior distribution for (kp, εF, S) is given by the
multivariate GLD and is uniform on the other parameters. The marginal densities
of the distribution are plotted in Figure 6.16 along with the distribution obtained in
Chapter 2. The two distributions exhibit strong differences. Using the GLD prior
largely reduces the spread of the posterior distribution. The question that arises with
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FIGURE 6.16: Comparison of marginal densities of the posterior dis-
tributions obtained with the multivariate GLD prior (top) and with a

uniform prior (bottom).

this method is whether or not the uncertainties are reliable with this approach. The
large disparities between the distributions advise caution. The GLD prior may be
too restrictive to keep reliable uncertainty quantification. For this reason, one may
temper the GLD prior with an exponent β ∈ [0, 1] (as was done in Chapter 4 for
the TIP-SUR strategy). An example of the posterior distribution obtained with a
tempering parameter β = 0.3 is displayed in Figure 6.17. The tempered prior limits

FIGURE 6.17: Marginal densities of the posterior distribution obtained
with a GLD prior and a tempering parameter β = 0.3.

the contribution of the multivariate GLD and thus interpolates between the GLD
prior and the uniform prior. The difficulty resides in ensuring the reliability of the
posterior distribution.

Therefore, using multivariate GLD priors in the neutron correlations inverse problem
may be beneficial, but further analyses are required to ensure the prior is not too
restrictive and hinders the reliability of the uncertainty quantification procedure.
Specific work on the matter is needed, especially in regimes with few observational
data where the choice of the prior bears more importance.
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6.4 Conclusion

In this chapter, we studied multivariate GLDs built with marginal GLDs with a
parametric Gaussian copula. They can be used to provide initial estimates for the
posterior distributions in a low-dimensional inverse problem. For our application,
this may be useful to deliver instantly a point estimate of the nuclear parameters with
some notion of uncertainty quantification. Evidently, this approach is not as reliable
as the standard resolution of the inverse problem with MCMC but its strengths
are dual. Firstly, the multivariate GLD allows for an immediate resolution of the
inverse problem, where MCMC sampling requires at least a few minutes. This can be
especially useful for field measurements to provide an immediate determination of
the nuclear parameters along with their uncertainties. Furthermore, the predicted
multivariate GLDs can then serve as prior distributions in the Bayesian inverse
problems, effectively reducing the uncertainties, especially in a setting with few
observations. Therefore, this methodology is aimed mainly at field measurements in
time-constrained operations, when the estimation of nuclear parameters is required
immediately.

Similar methodologies could have been used to learn the posterior distribution and
circumvent the MCMC sampling involved in the Bayesian resolution of the inverse
problem. Most notably, methods involving conditional generative models may be
of interest for this particular application. we mention for example Conditional
Variational Autoencoders (CVAE) [KW13; TD20; Goh+19], conditional diffusion
models [Son+20; Son+23] or conditional Generative Adversarial Networks (CGAN)
[Ray+22; PRO22]. However, we expect conditional generative models to be slower
than the multivariate GLD approach presented in this chapter, which takes only a
few seconds. They may serve as an intermediate step between MCMC resolutions
and multivariate GLD predictions on the speed-accuracy trade-off.
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Conclusion

7.1 Main contributions

The objective of this thesis was to develop a methodology for the determination
and uncertainty quantification of nuclear parameters with passive neutron noise
measurements. This task was restricted by the necessity for a robust and conservative
UQ methodology with a constrained computational budget. In our framework, the
direct model, which is the forward mapping of material characteristics to neutron
correlation measurements, is modeled by a complex computer code such as a Monte
Carlo neutronic code. This project focuses on the inverse problem. Provided some
noisy observations of neutron correlations, we wish to determine the corresponding
material characteristics and their uncertainties. A Bayesian resolution of the inverse
problem appears as the most natural path toward this objective. In this paradigm,
one seeks to estimate the posterior distribution of the material characteristics x
given the observations y. However, the Bayesian resolution of an inverse problem
often involves MCMC sampling which requires a large number of calls to the direct
model. Because the direct model is a complex computer code, this approach is not
computationally tractable as such.

In that context, we investigated uncertainty quantification methods based on sur-
rogate models. The purpose was to build emulators of the direct models able to
provide fast and reliable predictions, as well as predictive uncertainties. Our initial
attempt was centered around Gaussian process models. Several GP models were
proposed and all the models were trained with two simulated datasets of neutron
correlation measurements obtained with the neutronic Monte Carlo code MCNP. In
particular, we highlighted that GP models built with a Coregionalization structure
reliably predict uncertainties for the correlated quantities at stake in our problem.
Furthermore, these models can benefit from multi-fidelity and heteroscedastic noise
modeling to further improve the reliability of the uncertainty quantification. The low
computational cost for inference with the newly developed GP emulators makes them
usable in an MCMC sampling strategy. To solve the inverse problem, we account for
the epistemic and aleatoric uncertainties to provide a conservative quantification of
the uncertainties. The MCMC sampling can be performed in less than an hour on a
laptop and provides a posterior distribution that comprises all possible quantities of
interest, such as the variance, the maximum-a-posteriori, or higher-order moments.

To diversify our models, we explored a comparable methodology utilizing Bayesian
Neural Network surrogates instead of GP-based surrogates. Such models are more
complex than GPs but their predictive distribution is less restrictive. The output
distribution of a BNN model is intractable. It must be approximated which results
in a Gaussian mixture output distribution. We have seen that this distribution can
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be implemented directly in the likelihood during the inverse problem resolution.
We also explored various architectures including heteroscedastic and multi-fidelity
models. Overall, BNN models are an interesting addition to our toolkit but are
prohibitive for cases with a limited computational budget. They are better suited for
post-experiment analysis and from our experience, they may provide better modeling
of the heteroscedastic structure of the data.

We then developed two sequential design strategies specifically tailored for Bayesian
inverse problems. The goal of these methods is to select new design points to improve
the surrogate models, given the observations of an inverse problem. They can be
understood as a fine-tuning of the models for a specific inverse problem. While most
sequential design strategies target design points where the uncertainty of the model
is large, our methods are built upon a trade-off between high model uncertainty and
high posterior density. The first proposed approach, known as Constraint Set Query
(CSQ) selects design points with the highest predictive covariance determinant in a
subset of the design space close to the maximum-a-posteriori. We then offer a second
method, denoted by IP-SUR (Inverse Problem Stepwise Uncertainty Reduction),
which is based on the SUR paradigm and uses a metric of uncertainty derived from
I-optimal designs. We highlighted in numerous applications that they perform better
than more standard strategies. Their applicability depends on the cost of a call to the
direct model. While CSQ is simpler and does not require an intermediate MCMC
sampling, it is not supported by theoretical results and relies on a hyperparameter
whose tuning is purely empirical. On the other hand, the IP-SUR strategy (and its
variant TIP-SUR), comes with a theoretical guarantee of convergence for the metric
of interest and does not rely on hyperparameters, but requires intermediate MCMC
sampling.

To further reduce the uncertainties in the nuclear parameters, we questioned the
possibility of including gamma correlations in the inverse problem. This extension
of our work was dictated by recent developments in the joint neutron and gamma
detection systems using scintillation detectors. The inclusion of gamma correlations
can be done in two ways. Either we solve sequentially two inverse problems using
the first posterior distribution as a prior in the second problem. Or, we group neutron
and gamma correlations into a single joint model and solve only one inverse problem.
While the latter is supposedly better, it is hindered by the higher dimensionality of the
problem. We tried to leverage the sequential design strategies developed to improve
the joint model and while it did bring significant improvements to the model, the
joint approach is still not as reliable as the sequential approach.

Finally, to accelerate the resolution of the inverse problem, we investigated a more
direct approach, modeling the posterior distributions using parametric distributions.
Generalized lambda distributions with Gaussian copulas were used to parametrize
the posterior distributions. The goal was to create a predictor providing the corre-
sponding parameters, given some observations of the direct model (and the obser-
vational covariance). Though this resolution is not as reliable as the MCMC-based
resolution, it still provides in a few seconds an approximate distribution, which can
be used to provide a first estimate of the uncertainties. Furthermore, this distribu-
tion could also serve as a prior in the Bayesian resolution to improve the resulting
posterior in low-data regimes, though further studies are required in that area.
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7.2 Perspectives and future work

This thesis is far from covering all the scientific inquiries raised by the subject and
there are still many opportunities for further research. We highlight some of the
possible developments brought into perspective by our work.

One aspect that has not been thoroughly studied in this thesis is the choice of ad-
ditional input parameters. We chose to add three parameters (εA, Φ, J) to quantify
the parasitic absorptions, neutron energy spectrum, and the reflection. However,
the optimal parametrization of the problem remains unknown, and more relevant
parameters may be found.

We also extensively discussed the use of IP-SUR designs to improve a surrogate
model in the context of a Bayesian inverse problem. Furthermore, the TIP-SUR de-
sign strategy was introduced as a natural extension of the IP-SUR design. However,
there is still work to be done on the applicability of these methods and especially to
fully understand in which case TIP-SUR might outperform IP-SUR. The temperature
parameter β also appears as a crucial input to the TIP-SUR strategy. A robust selec-
tion strategy for β may be interesting to overcome the troublesome user-dependent
selection.

Incorporating gamma correlations into the inverse problem has proven beneficial
in this thesis. However, this aspect of our work was focused solely on gamma mea-
surements obtained through Monte Carlo simulations. These simulations were quite
simplistic and were not fully representative of real experimental conditions. An
application to real-world gamma measurements is required to guarantee the robust-
ness of this method. Additionally, further investigation into the impact of gamma
multiplicity data is necessary to confirm the reliability of this methodology and ad-
dress all sources of uncertainty. Another potential improvement lies in the study of
cross-correlations between neutrons and gammas, that is, the simultaneous detections
of neutrons and gammas. This aspect was purposefully left aside in this thesis but
could be the subject of future developments. Implementing this enhancement would
require a detection system capable of recording and discriminating between neutrons
and gammas.

Finally, further work may focus on conditional generative models to directly solve
the inverse problem. These models have the potential to bypass the computational
expense of MCMC sampling, offering near-instantaneous responses for on-field
measurements. Several conditional generative models have already been discussed
in the literature such as conditional GANs, diffusion models, or VAE. Investigating
the reliability of these methods in accurately predicting nuclear parameters and their
uncertainties presents an intriguing direction for future studies.

7.3 Contributions

Paper publications

• Paul Lartaud, Philippe Humbert, and Josselin Garnier. “Multi-output Gaussian
processes for inverse uncertainty quantification in neutron noise analysis”. In:
Nuclear Science and Engineering 197.8 (2023), pp. 1928–1951

• Paul Lartaud, Philippe Humbert, and Josselin Garnier. “Sequential design
for surrogate modeling in Bayesian inverse problems”. In: arXiv preprint
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arXiv:2402.16520 (2024)

Proceedings

• Paul Lartaud, Philippe Humbert, and Josselin Garnier. “Uncertainty quantifica-
tion in neutron noise analysis using Monte Carlo Markov chain methods: an
application to nuclear waste drum assay”. In: Proceedings of the International
Conference on Physics of Reactors. 2022, pp. 2674–2683

• Paul Lartaud, Philippe Humbert, and Josselin Garnier. “Bayesian Inverse
Problem and Uncertainty Quantification in the Joint Analysis of Neutron and
Gamma Corrrelations”. In: Proceedings of the International Conference on Physics
of Reactors. 2024, pp. 541–550

Conference presentations

• PHYSOR 2022, Pittsburgh (United States), 2022: Uncertainty Quantification
in Neutron Noise Analysis using Monte Carlo Markov Chain Methods: an
Application to Nuclear Waste Drum Assay (presentation).

• Mascot-Num 2022, Clermont-Ferrand (France), 2022: Supervised learning and
Monte Carlo Markov Chain methods for inverse problem resolution in random
neutronics (poster).

• Mascot-Num 2023, Le Croisic (France), 2023: Surrogate modeling and uncer-
tainty quantification for inverse problems in stochastic neutronics (poster).

• ISNET-9 meeting, Saint-Louis (United States), 2023: Multi-output Gaussian
processes for inverse uncertainty quantification in random neutronics (presen-
tation).

• UNCECOMP 2023, Athens (Greece), 2023: Multi-output Gaussian processes for
inverse uncertainty quantification in random neutronics (presentation).

• SIAM-UQ 2024, Trieste (Italy), 2024: Sequential design for Bayesian inverse
problems (presentation).

• Mascot-Num 2024, Hyères (France), 2024: I-optimal sequential design for
Bayesian inverse problems with Gaussian process surrogate models (presenta-
tion).

• PHYSOR 2024, San Francisco (United States), 2024: Inverse UQ in the joint
analysis of neutron and gamma correlations for fissile matter identification
(presentation).
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Appendix A

Descriptive review of the
benchmark and test cases

A.1 ICSBEP Benchmark

The first test case is an experimental configuration studied in the context of the
International Criticality Safety Benchmark Evaluation Project (ICSBEP). This project,
started by the US Department of Energy, became an international cooperation project
of the Nuclear Energy Agency (NEA) in 1995. The goal of the project was to compile
criticality safety experiments into one single benchmark. The complete benchmark
contains almost 5000 different configurations, with various multiplications, fuels,
shielding materials, and detectors.

The test case of interest is the experiment FUND-NCERC-PU-HE3-MULT-003. This
experiment regroups 17 subcritical configurations of an α-phase metallic plutonium
sphere surrounded by a varying thickness of copper or polyethylene, acting as the
reflector material. The particular case of interest is "Experiment 1" of the benchmark,
that is the configuration with only one layer of copper reflector. In the next para-
graphs, we offer a comprehensive description of each element of the experimental
configuration.

The object of interest is the metallic plutonium sphere. This sphere, known as the
BERP ball, was cast in 1980 at Los Alamos National Laboratory. It is an α-phase
plutonium sphere with an external diameter of 7.5876 cm, and an estimated density
of 19.6039 g.cm−3. The sphere is surrounded by SS-304 stainless steel cladding with
a thickness of 0.03048 cm. The BERP ball contains mainly 239Pu and 240Pu with
some traces of other isotopes. The isotopic composition (in 1980 at the time of the
experiment) is given in Table A.1.

TABLE A.1: Isotopic composition of the BERP ball in 1980.

Element 238Pu 239Pu 240Pu 241Pu 242Pu 241Am Impurities
wt. % 0.020 93.73 5.96 0.268 0.028 0.00056 0.004

A close-up photograph of the BERP ball is shown in Figure A.1. The copper reflector
used in the experimental configuration also consists of two shells of Copper C101
which can be locked together. This alloy has a density 8.94 g.cm−3. The chemical
composition of the copper reflector is given in Table A.2. Only the main elements
composing the alloy are shown here.

The detectors are two NOMAD detectors. They consist of polyethylene matrices in
which 15 3He proportional counters are embedded. The tubes have a diameter of



222 Appendix A. Descriptive review of the benchmark and test cases

FIGURE A.1: Close-up view of the BERP ball with its surrounding
copper reflector [Bes+20].

TABLE A.2: Simplified chemical composition of the copper reflector.

Element Cu Ag S Ni Fe O Sb
wt. % 99.99 0.00090 0.00023 0.00020 0.00020 0.00020 0.00020

2.46 cm and a height of 38.1 cm. They are filled with a mixture of 3He with CO2
acting as a quench gas, with a pressure of 10.13 bars. The detectors have three rows
of proportional counters, with respectively 7, 6, and 2 tubes at the front, middle and
back rows. The polyethylene has a density of 1.27 g.cm−3. The detectors are not
modeled as such in our simplified MCNP model, but rather they are modeled by
a single cylindrical 3He counter surrounded by a polyethylene block, such that the
active volume of the detector and moderator are preserved.

The source term in this experiment originates from spontaneous fissions in the pluto-
nium sphere, as well as (α, n) reactions in the alloys. The spontaneous fission and
(α, n) reaction rates were computed with the code SOURCES 4C. The total source
intensity obtained was S = 132582 events per second, with a ratio of spontaneous
fission with xs ≃ 0.989.

The experimental configuration is the following: the BERP ball is located at the center
of the experiment on a steel cart with a total height of 80 cm, on top of an aluminum
support plate. The two NOMAD detectors are placed on either side of the sphere.
The distance between the front of the detectors and the center of the sphere is 47.0 cm.
A schematic view of the experiment is presented in Figure A.3, and a photograph can
be seen in Figure A.2.
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FIGURE A.2: Side view of the ICSBEP experiment [Bes+20].

FIGURE A.3: Schematic view of the ICSBEP experiment [Bes+20].

A.2 SILENE reactor facility

The SILENE facility was an experimental reactor designed for pulsed experiments and
subcritical multiplicity measurements. The reactor was designed to study criticality
accidents occurring with fissile solutions. It was operated between 1974 and 2014.

The core is a cylindrical tank of 36 cm outer diameter filled with highly enriched (93
wt. % in 235U) uranyl nitrate. A control rod is located at the center of the core to avoid
the initial power excursion when the fissile solution is pumped into the core. The
core is placed in a large room with thick concrete walls. A photograph of the SILENE
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core with steel reflectors is shown in Figure A.4.

FIGURE A.4: Photograph of the SILENE core with steel reflectors.

The reactor had three main operation modes. It was mainly used for pulsed experi-
ments in which the center control rod is rapidly removed from the core to create a
power excursion up to 1000 MW. It was also possible to slowly remove the rod with
an additional source to mimic the free evolution of a criticality accident. Finally, the
reactor could also be operated in steady-state mode, with slow adjustments of the
control rod.

The internal control rod is either a boron rod with a reactivity worth of 5.8$ or a
cadmium rod with a reactivity worth of 4.1$. The rod is inserted in a canal of 7 cm of
internal diameter at the center of the core.

An external neutron source is often added below the core. The source is a 100 mCi
Am-Be source. The objective of the external neutron source is to limit the variance of
the burst time due to stochastic fluctuations at low neutron populations.
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Further details on the material compositions are given in Table A.3 for the fissile
solution and in Table A.4 for the detector.

TABLE A.3: Isotopic composition of the uranyl nitrate fissile solution.

Isotope 1H 14N 16O 235U 238U
wt. % 62.51 1.59 35.72 0.17 0.11

TABLE A.4: Isotopic composition of the neutron detection gas.

Isotope 10B 11B 19F
wt. % 23.75 1.25 75.00

A schematic view of the SILENE core is presented in Figure A.5. The dotted region
below the core represents the location of the Am-Be source.

FIGURE A.5: Upper view (left) and side view (right) of the SILENE
core as modeled in MCNP. The fissile solution is displayed in yellow,

the steel in grey, and the detector in cyan.
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Appendix B

Additional proofs

B.1 Proof of proposition 2.5.2

Proposition 2.5.2. The likelihood L(y|x) is proportional to the following simplified likelihood:

L(y|x) = 1√
2π|NCs(x) + Cobs|

× exp

(
−1

2
(y − fs(x))T

(
Cs(x) +

1
N

Cobs

)−1 (
y − fs(x)

))
(2.78)

where y = 1
N

N
∑

k=1
y(k)

Proof. Let x ∈ X . Consider first the total covariance matrix Σ(x) = UN ⊗ Cs(x) +
IN ⊗ Cobs. Its inverse is given by:

Btot(x) = IN ⊗ C−1
obs −UN ⊗

[
(NCs(x) + Cobs)

−1Cs(x)C−1
obs

]
. (B.1)

It is easy to verify that Ctot(x)Btot(x) = Btot(x)Ctot(x) = IDN .
For concision sake, the inverse is written as:

Σ(x)−1 = UN ⊗ B1 + IN ⊗ B2 (B.2)

with B1 and B2 defined with equation (B.1) Similarly, its determinant is given by:

|Ctot(x)| = |Cobs|N−1|NCs(x) + Cobs|. (B.3)

Consider now the eigenvalues (λj)1≤j≤N of UN such that λ1 = N and λj = 0 for
j ≥ 2. We are interested in an orthonormal basis of eigenvectors (ej)1≤j≤N where ej is
associated to the eigenvalue λj for 1 ≤ j ≤ N. In particular, if u = (1, ...., 1)T ∈ RN ,
then UNu = Nu and we have e1 = 1√

N
u.

Let us introduce yd = (y(1)d , ..., y(N)
d )T ∈ RN . Writing it on the basis (ej)1≤j≤N leads to

yd =
N
∑

j=1
cd,jej. For 1 ≤ j ≤ D, we denote by cj = (c1,j, ..., cD,j)

T ∈ RD. We can write in

a more concise form:

yflat =
N

∑
j=1

ej ⊗ cj (B.4)

fs(x)flat =
√

Ne1 ⊗ fs(x). (B.5)
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One can notice that c1 = (c1,1, ..., cD,1)
T =

√
Ny.

Finally, to conclude the proof we need to keep only the terms depending on x in
the exponential, the rest is absorbed in the multiplicative constant. In the vector(

yflat − fs(x)flat

)
this means that we keep only the first component in the basis of the

(ej)1≤j≤N . Thus we have:

L(y|x) ∝ exp
(
−N

2

(
e1 ⊗ (y − fs(x))

)T
Σ(x)−1

(
e1 ⊗ (y − fs(x))

))
= exp

(
−N

2

(
eT

1 ⊗ (y − fs(x))T
) (

e1 ⊗ (y − fs(x)) + Ne1 ⊗ B1(y − fs(x))
))

= exp
(
−N

2
(y − fs(x))T

(
C−1

obs − (Cobs + NCs(x))−1NCs(x)C−1
obs

)
(y − fs(x))

)
= exp

(
−N

2
(y − fs(x))T (Cobs + NCs(x))−1 (y − fs(x))

)
= exp

(
−1

2
(y − fs(x))T

(
1
N

Cobs + Cs(x)
)−1

(y − fs(x))

)
. (B.6)

which concludes the proof.

B.2 IP-SUR strategy for MOGP

B.2.1 Derivation of the SUR criteria

Proposition 4.2.4. The SUR criterion for the metric D defined in (4.68) is given by:

Xn+1 ∈ argminX∈X Fn(X) (4.71)

where Fn(X) = En,X

[
D(P f

n+1)
]

for all X ∈ X . This SUR criterion is equivalent to the
criterion:

Xn+1 ∈ argminX∈X F̂n(X) (4.72)

where the quantity F̂n(X) is given for X ∈ X by:

F̂n(X) =
∫
X
|kn+1(x|X)|pn(x|y)dx. (4.73)

Proof. The proof is very similar to the scalar case. The quantity of interest for a SUR
design applied to the functional D is Fn(X) = EY [Dn+1(X, Y)] where Dn+1(X, Y) =
D(P f

n+1). Using the result EY [Ln+1(y|x, X, Y)] = Ln(y|x) from the proof of proposi-
tion 4.2.1 we obtain:

Fn(X) =
∫

RD

∫
X

Ln+1(y|x, X, Y)p(x)|kn+1(x|X)|N (Y|mn(X), kn(X)) dYdx

=
∫
X

Ln(y|x)p(x)|kn+1(x|X)|dx. (B.7)

Adding multiplicative constants does not change the SUR criterion, and thus one

can rewrite the strategy using F̂n(X) = Fn(X)
Cn

=
∫
X |kn+1(x|X)|pn(x|y)dx which

concludes the proof.
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B.2.2 Proof of the supermartingale property 4.2.3 for D

Lemma 4.2.3. The functional D : M −→ R+ defined by (4.68) has the supermartingale
property. In other words, for any sequential design (Xn)n∈N, there exists n0 ∈ N such that
for all n ≥ n0, and for all X ∈ X

En,X

[
D(P f

n+1)
]
≤ D(P f

n ). (4.75)

Proof. Let X ∈ X . We would like to show that Fn(X) ≤ Dn for all n ≥ 1, where
Fn(X) = En,X

[
D(P f

n )
]
= EY [Dn+1(X, Y)]. Let X ∈ X and n ≥ 1. Using (4.73), we

show that:

Dn − Fn(X) =
∫
X
(|kn(x)| − |kn+1(x|X)|) Ln(y|x)p(x)dx (B.8)

The supermartingale property derives naturally from this expression since we have
|kn+1(x|X)| ≤ |kn(x)| for all x ∈ X .

B.3 TIP-SUR strategy for MOGP

Proposition 4.2.6. Let β ∈ (0, 1) and (Xn)n≥1 be a SUR sequential design for the criterion
(4.80). Then, the sequence (Dn,β)n≥0 where Dn,β = Dβ(P f

n ) converges almost surely to zero:

Dn,β
a.s.−−−−→

n→+∞
0.

The same convergence holds for the sequence (Hn,β)n≥0 with Hn,β = Hβ(P f
n ):

Hn,β
a.s.−−−−→

n→+∞
0.

Proof. To prove the almost-sure convergence of Hβ, we follow an analogous proce-
dure to the one used in the IP-SUR case. Let β ∈ (0, 1). We introduce the functional
Dβ defined for ν ∈ M by:

Dβ(ν) =
∫
X
|kν(x)| (Lν(y|x))β p(x)dx = Cν,βHβ(ν). (B.9)

We then show the convergence for the functional Dβ and use an equivalent of the
lemma 4.2.2 to prove the convergence for Hβ.

Introducing Cn,β =
∫
X (Ln(y|x))β p(x)dx, the convergence of the sequence (Cn,β)n∈N

is guaranteed with the same argument as for the IP-SUR case, and thus Cn,β → C∞,β >
0.

To verify the assumptions of theorem 4.1.1, the only difficult task is to obtain the
supermartingale property for Dβ. The other assumptions are verified with the same
reasoning as with the IP-SUR case. In what follows, we thus focus on the proof of
the supermartingale property for the functional Dβ, which is the last requirement to
complete this proof.

Let X ∈ X . Our goal is to show that Fn,β(X)− Dn,β ≤ 0 where Fn,β(X) was introduced

in (4.81) and Dn,β = Dβ(P f
n ) =

∫
X |kn(x)| (Ln(y|x))β p(x)dx.



230 Appendix B. Additional proofs

Using (4.81) we obtain:

Fn,β(X) =
∫
X
|kn+1(x|X)| fβ(x, X)Iβ(x, X) (Ln(y|x))β p(x)dx. (B.10)

We begin by showing that |Aβ|−1/2|kn(X)| |Σn(x)β/2|
|Σn+1(x|X)|β/2 ≤ 1. Using (4.88), one can

write:

|Aβ|−1/2|kn(X)| |Σn(x)β/2|
|Σn+1(x|X)|β/2 =

|Mn+1|
1−β

2 |Mn|β/2

|Mn,β|1/2 (B.11)

where we define Mn,β = Mn − N(1 − β)λn(x, X). One can notice that Mn,β =
βMn + (1 − β)Mn+1.
Using the log-concavity, we have:

|Mn,β| = |βMn + (1 − β)Mn+1| ≥ |Mn|β|Mn+1|1−β. (B.12)

Taking the square root we obtain:

|A|−1/2|kn(X)| |Σn(x)|β/2

|Σn+1(x|X)|β/2 ≤ 1. (B.13)

Then we want to show that BT
β A−1

β Bβ ≤ ∥y − mn(x)∥2
(Σ−1

n+1−Σ−1
n )

−1 . Using the inverse

of Aβ in (4.89), we write:

BT
β A−1

β Bβ = (βN)2 (y − mn(x))T M−1
n+1

×
(

λn(x, X)− Nβλn(x, X)M−1
n,βλn(x, X)

)
M−1

n+1 (y − mn(x))

= (βN)2 (y − mn(x))T M−1
n+1λn(x, X)M−1

n,β

×
(
Mn,β − βNλn(x, X)

)
M−1

n+1 (y − mn(x))

= (βN)2 (y − mn(x))T M−1
n+1λn(x, X)M−1

n,β (y − mn(x)) . (B.14)

We can then see that:

βM−1
n,β = β(βMn + (1 − β)Mn+1)

−1

= M−1
n

(
ID +

(1 − β)

β
M−1

n Mn+1

)−1

(B.15)

which leads to:

∥y − mn(x)∥2
(Σ−1

n+1−Σ−1
n )

−1 − BT
β A−1

β Bβ = N2 (y − mn(x))T M−1
n+1

× λn(x, X)
(

M−1
n − βM−1

n,β

)
(y − mn(x)) .

(B.16)

Let us now define Σn,β(x, X) = IN ⊗ C−1
obs + UN ⊗ (kn(x) − βλn(x, X)). One can

easily show that:

Σn,β(x, X)−1 = IN ⊗ C−1
obs −UN ⊗

(
M−1

n,β(kn(x)− βλn)C−1
obs

)
(B.17)

Σn+1(x|X)−1 − Σn,β(x, X) = (1 − β)UN ⊗
(

M−1
n+1λnM−1

n,β

)
. (B.18)
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One can thus write (B.16) as:

∥y − mn(x)∥2
(Σ−1

n+1−Σ−1
n )

−1 = BT
β A−1

β Bβ + β2 (y − mn(x))T

(
(Σ−1

n+1 − Σ−1
n )− β

1 − β
(Σ−1

n+1 − Σ−1
n,β)

)
(y − mn(x)) . (B.19)

We conclude this proof by showing that the matrix Nβ = (Σ−1
n+1 − Σ−1

n )− β
1−β (Σ

−1
n+1 −

Σ−1
n,β) is symmetric positive definite. We know it is symmetric since it is a sum of

symmetric matrices. We define the partial ordering on the symmetric matrices as
such. If P and Q are square matrices of the same size, we write P ≽ Q is P − Q is
positive semi-definite. If we further have P and Q invertible we have Q−1 ≽ P−1.
In our case, we know that Σn ≽ Σn,β ≽ Σn+1 and thus Σ−1

n+1 ≽ Σ−1
n,β ≽ Σ−1

n . We need

to distinguish between two cases. If β ≤ 1
2 one can write:

Nβ =

(
1 − β

1 − β

)
Σ−1

n+1 +
β

1 − β
Σ−1

n,β − Σ−1
n

≽
(

1 − β

1 − β
+

β

1 − β

)
Σ−1

n,β − Σ−1
n

= Σ−1
n,β − Σ−1

n ≽ 0. (B.20)

On the other hand, if β > 1
2 then β

1−β > 1, and the previous inequalities do not hold.
However, one can write:

Nβ =

(
1 − β

1 − β

)
Σ−1

n+1 +
β

1 − β
Σ−1

n,β − Σ−1
n

≽
(

1 − β

1 − β

)
Σ−1

n+1 −
(

1 − β

1 − β

)
Σ−1

n

=

(
1 − β

1 − β

)(
Σ−1

n+1 − Σ−1
n

)
≽ 0. (B.21)

We can finally conclude that Nβ is positive semi-definite, which leads to:

exp
(
−1

2

(
∥y − mn(x)∥2

(Σ−1
n+1−Σ−1

n )
−1 − BT

β A−1
β Bβ

))
≤ 1. (B.22)

Injecting the inequalities (B.13) and (B.22) into the expression of Fn,β(X) yields the
supermartingale property for the functional Dβ which is enough to conclude the
proof.
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Appendix C

MCNP input files

C.1 BERP ball training instance

c ************************ BLOCK 1 : CELL CARD *********************************
1 105 -0.0000001 -21 imp:n=1
2 101 -15.87 21 -22 imp:n=1
3 107 -1.00 22 -23 imp:n=1
4 103 -0.00175 -31 35 -36 imp:n=1
5 104 -0.93 -32 33 -34 #(-31 35 -36) imp:n=1
8 105 -0.001205 (41 -42 43 -44 45 -46) #(-32 33 -34) #(-24) #(-51) imp:n=1
9 106 -2.30 #(41 -42 43 -44 45 -46) (11 -12 13 -14 15 -16) imp:n=1
1001 105 -0.001205 23 -24 imp:n=1
1002 105 -0.001205 -51 imp:n=1
10 0 #(11 -12 13 -14 15 -16) imp:n=0
c ************************ BLOCK 2 : SURFACE CARD ******************************
11 PX -50
12 PX 550
13 PY -50
14 PY 550
15 PZ -50
16 PZ 250
21 S 200 250 100 4.307
22 S 200 250 100 6.322
23 S 200 250 100 8.173
24 S 200 250 100 8.673
31 C/Z 300 250 18.12
32 C/Z 300 250 22.65
33 PZ 30.0
34 PZ 170.0
35 PZ 35.0
36 PZ 165.0
41 PX -37.69
42 PX 537.69
43 PY -37.69
44 PY 537.69
45 PZ -37.69
46 PZ 237.69
51 S 225 350 200 10.0
c ************************ BLOCK 3 : DATA CARD *********************************
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SDEF par=D1 POS=FPAR D2 RAD=FPAR D3 ERG = 20
SI1 L SF N
SP1 W 0.67 0.32
DS2 L 200 250 100 200 250 100
DS3 S D5 D6
SI5 4.307 6.322
SI6 4.307 6.322
MODE N
TOTNU NO
PHYS:N 100 99
MPHYS OFF
PTRAC FILE=ASC EVENT=TER FILTER=4,ICL TYPE=N WRITE=ALL MAX=10000000
NPS 1000000
RAND SEED=120090
f1:n 41 -42 43 -44 45 -46 T
c Detector flux tally
f4:n 4
fm4 -1. 103 -2
c Pu flux tally
f14:n 2
fm14 -1. 101 -6
c Abs flux tally
f24:n 3
fm24 -1. 107 -2
c Prox flux tally
f34:n 1001
c Air flux tally
f44:n 1002
*C1 90 0
E4 0.001 20
E14 0.001 20
E24 0.001 20
E34 0.001 20
E44 0.001 20
c ************************ BLOCK 4 : MATERIAL CARD *********************************
c --- WG Plutonium (4-7% Pu-240) - Porosity 20%
m101 94238.80c 0.000100

94239.80c 0.936559
94240.80c 0.059677
94241.80c 0.001981
94242.80c 0.000296
95241.80c 0.001387

c --- He-3 detector (14 atm)
m103 2003.80c 1.000000
c --- Non-borated polyethylene
m104 1001.80c 0.666662

6000.80c 0.333338
mt104 poly.20t
c --- Air
m105 6000.80c 0.000150

7014.80c 0.784431
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8016.80c 0.210748
18036.80c 0.000016
18038.80c 0.000003
18040.80c 0.004652

c ---Concrete reflector (2.30 g/cm3)
m106 1001.80c 0.305330
6000.80c 0.002880
8016.80c 0.500407
11023.80c 0.009212
12024.80c 0.000573
12025.80c 0.000072
12026.80c 0.000079
13027.80c 0.010298
14028.80c 0.139261
14029.80c 0.007099
14030.80c 0.004682
19039.80c 0.003337
19041.80c 0.000241
20040.80c 0.014467
20042.80c 0.000096
20043.80c 0.000020
20044.80c 0.000311
26054.80c 0.000094
26056.80c 0.001473
26057.80c 0.000034
26058.80c 0.000004

mt106 fe56.22t
al27.22t

c --- Borated polyethylene
m107 1001.80c 0.627759

5010.80c 0.009244
5011.80c 0.037445
6000.80c 0.325552

mt107 poly.20t
PRINT 115 117 118

C.2 SILENE with gamma correlations with h = 20 cm

c------------- CELLS ---------------
c Vide exterieur
c
100 0 #(401 -402 403 -404 405 -406) imp:n=0
c
c Cuve en acier inox
c
110 11 -7.9 (100 -110 -220) imp:n=1
120 11 -7.9 (130 -140 -230) imp:n=1
130 11 -7.9 (110 -130 -210 200) imp:n=1
140 11 -7.9 (70 -130 -230 220) imp:n=1
142 11 -7.9 (70 -80 -220) imp:n=1
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c
c Solution fissile
c
150 20 -1.161 (110 -120 -220 210) imp:n=1
c
c Air canal
c
160 31 -1.293E-3 (124 -130 -200) imp:n=1
162 31 -1.293E-3 (110 -124 -200 198) imp:n=1
c
c Air au dessus de la solution
c
170 31 -1.293E-3 (120 -130 -220 210) imp:n=1
c
c Gainage cuivre du detecteur
c
180 41 -8.96 (110 -112 -198) imp:n=1
190 41 -8.96 (122 -124 -198) imp:n=1
200 41 -8.96 (112 -122 -198 196) imp:n=1
c
c Gaz BF3
c
210 51 -6.2505E-4 (112 -122 -196) imp:n=1
c
c Source AmBe
c
220 31 -1.293E-3 (92 -94 -240) imp:n=1
c
c Air sous la cuve (pour positionner AmBe)
c
230 31 -1.293E-3 (80 -100 -220) imp:n=1
c
c Beton des murs
c
240 61 -2.30 #(301 -302 303 -304 305 -306) (401 -402 403 -404 405 -406) imp:n=1
c
c Air autour de Silene
c
250 31 -1.293E-3 (301 -302 303 -304 305 -306) #(-230 70 -140) imp:n=1
c

c ---------------SURACES -----------------
c
70 PZ -65.40
80 PZ -65.00
c 90 PZ -2.50
92 PZ -2.31
94 PZ -0.40
100 PZ 0.00
110 PZ 3.60
112 PZ 3.65
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120 PZ 23.60 $ H = 200mm
122 PZ 43.65
124 PZ 43.70
130 PZ 100.60
140 PZ 103.60
c
196 CZ 2.45
198 CZ 2.50
200 CZ 3.45
210 CZ 3.80
220 CZ 18.00
230 CZ 18.4
240 C/Z 0. 5. 0.9
c
301 PX -48
302 PX 48
303 PY -48
304 PY 48
305 PZ -100
306 PZ 200
c
401 PX -60
402 PX 60
403 PY -60
404 PY 60
405 PZ -110
406 PZ 210

c ----------MATERIALS ---------------------
c Acier
m11 26054.70c 0.00352220

26056.70c 0.05463520
26057.70c 0.00134020
26058.70c 0.00019700
6000.70c 0.00011745

24050.70c 0.00067720
24052.70c 0.01281600
24053.70c 0.00146500
24054.70c 0.00040080
28058.70c 0.00597000
28060.70c 0.00230700
28061.70c 0.00010570
28062.70c 0.00032580
28064.70c 0.00009690
28064.70c 0.00167428

c
c Solution fissile
c
m20 1001.70c 6.258E-2 $ H1

7014.70c 1.569E-3 $ N14
8016.70c 3.576E-2 $ 016
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92234.70c 1.060E-6 $ U234
92235.70c 1.686E-4 $ U235
92236.70c 4.350E-7 $ U236
92238.70c 1.10E-5 $ U238

c
mt20 lwtr.01t
c
c Air
c
m31 8016.70c 1.0805E-5

8017.70c 4.3240E-9
7014.70c 4.3092E-5
7015.70c 1.5800E-7

c
c Cuivre
c
m41 29063.70c 0.6917 $ Cu63

29065.70c 0.3083 $ Cu65
c
c BF3
c
m51 5010.70c 0.2375 $ B10

5011.70c 0.0125 $ B11
9019.70c 0.7500 $ F19

c
c ---Concrete reflector (2.30 g/cm3)

m61 1001.80c 0.305330
6000.80c 0.002880

8016.80c 0.500407
11023.80c 0.009212
12024.80c 0.000573
12025.80c 0.000072
12026.80c 0.000079
13027.80c 0.010298

14028.80c 0.139261
14029.80c 0.007099
14030.80c 0.004682
19039.80c 0.003337
19041.80c 0.000241
20040.80c 0.014467
20042.80c 0.000096
20043.80c 0.000020
20044.80c 0.000311
26054.80c 0.000094
26056.80c 0.001473
26057.80c 0.000034
26058.80c 0.000004
mt61 fe56.22t

al27.22t
c
c --------------------- CALCUL --------------------
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c
SDEF CEL=150 PAR=D1 AXS=0 0 1 RAD=D2 EXT=D3 ERG=D4
SI1 L SF N
SP1 W 0.4 0.6
SI2 3.85 17.5
SP2 -21 2
SI3 3.65 33.55
SP4 -3 0.988 2.249
F4:N 170
E4 1E-7 20
RAND SEED=8739
MODE N P
TOTNU NO
PHYS:N 100 99
MPHYS OFF
PTRAC FILE=ASC EVENT=TER FILTER=240,ICL TYPE=P WRITE=ALL MAX=10000000
NPS 500000
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Appendix D

On the BNN architecture

In this appendix, we detail some of the numerical results that led to the choice of
network architecture. Throughout this chapter, we tackle only the homoscedastic
model LKJ-BNN. The models were trained on the BERP dataset.

D.1 Depth and width of the network

We first look at the number of hidden layers and neurons per layer of our model.
In every case, the network is fully connected with sigmoid or tanh activation in
the hidden layers and a linear activation in the output layer. We test the various
metrics for different architectures. The architectures are summarized by the vector
(7, K(1)

n , ..., K(L)
n , 3) describing the number of neurons in each layer. All the models

are homoscedastic with a LKJ prior on the covariance. The posterior distribution of
the weights is sampled with HMC-NUTS to produce 5 × 103 samples. The metrics
obtained are shown in Tables D.1, D.2 and D.3 for the various output channels.

TABLE D.1: Performance metrics for the output R for various architec-
tures with sigmoid (left) or tanh (right) activation - BERP dataset.

sigmoid NMAE NRMSE Q2

(7, 10, 10, 3) 0.0074 0.0121 0.9997
(7, 30, 30, 3) 0.0072 0.0119 0.9997
(7, 50, 50, 3) 0.0071 0.0117 0.9998
(7, 100, 100, 3) 0.0132 0.0244 0.9989
(7, 10, 10, 10, 3) 0.0126 0.0129 0.9995
(7, 50, 50, 50, 3) 0.1534 0.2214 0.9281

tanh NMAE NRMSE Q2

(7, 10, 10, 3) 0.0094 0.0148 0.9996
(7, 30, 30, 3) 0.0088 0.0141 0.9996
(7, 50, 50, 3) 0.0323 0.0559 0.9943
(7, 100, 100, 3) 0.0589 0.0979 0.9825
(7, 10, 10, 10, 3) 0.0083 0.0126 0.9997
(7, 50, 50, 50, 3) 0.0880 0.1497 0.9592

TABLE D.2: Performance metrics for the output Y∞ for various archi-
tectures with sigmoid (left) or tanh (right) activation - BERP dataset.

sigmoid NMAE NRMSE Q2

(7, 10, 10, 3) 0.0211 0.0446 0.9982
(7, 30, 30, 3) 0.0204 0.0398 0.9986
(7, 50, 50, 3) 0.0219 0.0440 0.9983
(7, 100, 100, 3) 0.0279 0.0609 0.9967
(7, 10, 10, 10, 3) 0.0337 0.0446 0.9971
(7, 50, 50, 50, 3) 0.1646 0.2362 0.9181

tanh NMAE NRMSE Q2

(7, 10, 10, 3) 0.0207 0.0424 0.9983
(7, 30, 30, 3) 0.0236 0.0504 0.9977
(7, 50, 50, 3) 0.0556 0.1176 0.9875
(7, 100, 100, 3) 0.0862 0.1711 0.9737
(7, 10, 10, 10, 3) 0.0246 0.0593 0.9968
(7, 50, 50, 50, 3) 0.1392 0.3038 0.9172

These results justify using sigmoid activation functions which tend to provide better
predictions. Moreover, the best compromise between network complexity and pre-
dictive power appears to be the two hidden layers configuration with Kn = 50. This
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TABLE D.3: Performance metrics for the output X∞ for various archi-
tectures with sigmoid (left) or tanh (right) activation - BERP dataset.

sigmoid NMAE NRMSE Q2

(7, 10, 10, 3) 0.0828 0.3928 0.9783
(7, 30, 30, 3) 0.0752 0.3513 0.9826
(7, 50, 50, 3) 0.0679 0.3089 0.9866
(7, 100, 100, 3) 0.0916 0.3692 0.9808
(7, 10, 10, 10, 3) 0.0651 0.1074 0.9951
(7, 50, 50, 50, 3) 0.3319 0.6335 0.8288

tanh NMAE NRMSE Q2

(7, 10, 10, 3) 0.0903 0.4254 0.9745
(7, 30, 30, 3) 0.0763 0.3472 0.9830
(7, 50, 50, 3) 0.1405 0.5423 0.9586
(7, 100, 100, 3) 0.2180 0.7373 0.9234
(7, 10, 10, 10, 3) 0.1080 0.5420 0.9586
(7, 50, 50, 50, 3) 0.3859 1.3210 0.7543

study was only conducted for the case of the BNN with LKJ prior for the covariance,
yet we assume that the conclusion extends to the other models.

D.2 Prior variances selection

In this section we consider zero-mean Gaussian iid priors p(w) ∼ N
(
0, σ2

w
)

for
the weights and p(b) ∼ N

(
0, σ2

b

)
for the biases. We wish to select the best pos-

sible values for σb and σw. This is done by a grid-search approach with σb, σw ∈
{0.3, 1.0, 3.0, 5.0, 10.0}. The architecture is fixed to two hidden layers with sigmoid
activation functions and Kn = 50 per layer. We evaluate the NMAE on the test set by
averaging the predictive means obtained by various network parameters samples ϕ.
The results are highlighted in Tables D.4, D.5 and D.6.

TABLE D.4: NMAE for the output R with various values of σw and σb
with a fixed architecture and zero-mean iid Gaussian priors - BERP

dataset.

σb

σw 0.3 1.0 3.0 5.0 10.0

0.3 0.0075 0.0075 0.0081 0.0078 0.0079
1.0 0.0074 0.0075 0.0074 0.0075 0.0076
3.0 0.0075 0.0077 0.0073 0.0075 0.0078
5.0 0.0072 0.0074 0.0071 0.0072 0.0077
10.0 0.0075 0.0075 0.0077 0.0076 0.0076

TABLE D.5: NMAE for the output Y∞ with various values of σw and
σb with a fixed architecture and zero-mean iid Gaussian priors - BERP

dataset.

σb

σw 0.3 1.0 3.0 5.0 10.0

0.3 0.020 0.022 0.022 0.022 0.023
1.0 0.021 0.021 0.021 0.020 0.021
3.0 0.020 0.021 0.021 0.021 0.021
5.0 0.020 0.022 0.021 0.020 0.019
10.0 0.020 0.021 0.021 0.020 0.022

The prior variances do not have a significant impact on the predictive errors. The
best metrics obtained for each output are highlighted in bold in the tables. From this
analysis, the choice of σw = σb = 5.0 appears appropriate.
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TABLE D.6: NMAE for the output X∞ with various values of σw and
σb with a fixed architecture and zero-mean iid Gaussian priors - BERP

dataset.

σb

σw 0.3 1.0 3.0 5.0 10.0

0.3 0.078 0.081 0.089 0.085 0.082
1.0 0.085 0.079 0.081 0.073 0.065
3.0 0.077 0.073 0.079 0.081 0.075
5.0 0.080 0.086 0.081 0.069 0.075
10.0 0.078 0.074 0.073 0.074 0.085

D.3 Prior means selection

In this section, we focus on the selection of the prior means for the weights and biases.
A naive approach is to select zero-mean priors, as was done in the previous section
for the architecture selection. Another possibility studied in this section is to train
a standard ANN and use the point values obtained for the weights and biases as
prior means. This methodology is conducted, the ANNs are trained with the Adam
algorithm, and the results are presented in Tables D.7, D.8 and D.9 for each output
channel.

TABLE D.7: NMAE for the output R for various architectures of the
LKJ-BNN network with NN initialization or zero-mean initialization,

and σw = σb = 5.0, η = 0.8 - BERP dataset.

R µ = 0 NN initialization
(7, 10, 10, 3) 0.0075 0.0076
(7, 30, 30, 3) 0.0072 0.0071
(7, 50, 50, 3) 0.0074 0.0077
(7, 100, 100, 3) 0.0132 0.0142
(7, 10, 10, 10, 3) 0.0126 0.0169
(7, 50, 50, 50, 3) 0.1535 0.0075

TABLE D.8: NMAE for the output Y∞ for various architectures of the
LKJ-BNN network with NN initialization or zero-mean initialization,

and σw = σb = 5.0, η = 0.8 - BERP dataset.

R µ = 0 NN initialization
(7, 10, 10, 3) 0.0211 0.0216
(7, 30, 30, 3) 0.0205 0.0209
(7, 50, 50, 3) 0.0220 0.0222
(7, 100, 100, 3) 0.0272 0.0297
(7, 10, 10, 10, 3) 0.0339 0.0409
(7, 50, 50, 50, 3) 0.1646 0.0198

From this study, one can conclude that initializing the prior means with a point
network is beneficial only for larger architectures, which were not ultimately chosen
in this work. For this reason, we kept zero-mean priors throughout this thesis.
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TABLE D.9: NMAE for the output X∞ for various architectures of the
LKJ-BNN network with NN initialization or zero-mean initialization,

and σw = σb = 5.0, η = 0.8 - BERP dataset.

X∞ µ = 0 NN initialization
(7, 10, 10, 3) 0.0859 0.0902
(7, 30, 30, 3) 0.0771 0.0749
(7, 50, 50, 3) 0.0737 0.0801
(7, 100, 100, 3) 0.0916 0.0954
(7, 10, 10, 10, 3) 0.0651 0.1287
(7, 50, 50, 50, 3) 0.3319 0.0712
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Appendix E

Additional numerical results

In this appendix, we present some additional numerical results which are not directly
included in the main text.

E.1 SILENE dataset

FIGURE E.1: Marginal densities and correlation plots for the inputs -
SILENE dataset.
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Figures E.1 and E.2 exhibit the correlations and marginal distributions of the inputs
and outputs of the SILENE dataset.

FIGURE E.2: Marginal densities and correlation plots for the outputs -
SILENE dataset.

E.2 Model performance

In this section, the performance metrics for the surrogate models trained on the
SILENE dataset are provided. The conclusions are similar to the BERP dataset. The
multi-fidelity approach improves the surrogate models. The preferred models are the
ones with ρ = 1.

TABLE E.1: Performance of the multi-fidelity GP with ρ = 1 - SILENE
dataset.

BL-GP-LMC2 NMAE NRMSE Q2

R 0.008 0.011 0.9997
Y∞ 0.022 0.043 0.997
X∞ 0.072 0.201 0.986

BL-GP-LMC3 NMAE NRMSE Q2

R 0.008 0.011 0.9997
Y∞ 0.027 0.038 0.998
X∞ 0.051 0.153 0.992
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TABLE E.2: Performance of the multi-fidelity GP with ρ ̸= 1 - SILENE
dataset.

MF-GP-LMC2 NMAE NRMSE Q2

R 0.023 0.034 0.9970
Y∞ 0.031 0.055 0.995
X∞ 0.105 0.278 0.974

MF-GP-LMC3 NMAE NRMSE Q2

R 0.023 0.034 0.9970
Y∞ 0.021 0.040 0.997
X∞ 0.087 0.226 0.983

FIGURE E.3: Coverage probabilities for the multi-fidelity and het-
eroscedastic GP surrogate models - Silene dataset.

E.3 BNN surrogates performance for the SILENE dataset

We highlight the performance of the BNN surrogate models trained on the SILENE
dataset. The performance metrics for the mean predictions are displayed in Table E.3
and the coverage probabilities are shown in Figure E.4. The heteroscedastic model
appears to be the best-performing, although it tends to underestimate slightly the
uncertainties. The coverage probabilities evaluated on the SILENE dataset are more
difficult to exploit because the test set is quite small. The discrepancies with the
theoretical quantiles may be linked either to the surrogate models or simply to a lack
of data. The evaluation of the models’ performance may not be as reliable as for the
BERP dataset.
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TABLE E.3: Performance of the BNN surrogates - SILENE dataset.

HMC - LKJ prior NMAE NRMSE Q2

R 0.0104 0.0161 0.9996
Y∞ 0.0594 0.08000 0.9906
X∞ 0.1343 0.2521 0.9729

HBNN NMAE NRMSE Q2

R 0.0085 0.0143 0.9996
Y∞ 0.0206 0.0392 0.9986
X∞ 0.0645 0.2169 0.9934

BL-HBNN NMAE NRMSE Q2

R 0.0344 0.0459 0.9969
Y∞ 0.0348 0.0443 0.9971
X∞ 0.0593 0.0882 0.9967

GP-HBNN NMAE NRMSE Q2

R 0.0103 0.0155 0.9997
Y∞ 0.0407 0.0551 0.9955
X∞ 0.0947 0.1825 0.9858

FIGURE E.4: Averaged coverage probabilities for the multi-fidelity
and heteroscedastic BNN models - SILENE dataset.

E.4 Inverse problem observations

Table E.4 summarizes the observational data used for the Bayesian resolution of
the inverse problems in the various test cases. We provide only the observational

mean y = 1
N

N
∑

k=1
y(k) and the effective covariance Ceff =

1
N Cobs which appears in the
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simplified likelihood 2.78. The observational noise covariance is obtained by the
standard empirical covariance. We recall that the observational data are obtained
from an experimental campaign for the SILENE case, and numerical simulations for
the BERP case. They are extracted from time list files with the sequential binning
estimators (for the Feynman moments).

TABLE E.4: Summary of the observational data for the BERP and
SILENE test cases.

y Ceff

SILENE h = 15 cm

 3.6 × 102

2.2 × 10−2

1.2 × 10−2

  6.5 × 10−2 −2.6 × 10−5 7.6 × 10−4

−2.6 × 10−5 8.3 × 10−6 2.7 × 10−6

7.6 × 10−4 2.7 × 10−6 1.5 × 10−4


SILENE h = 20 cm

 6.1 × 102

6.8 × 10−2

2.5 × 10−2

  3.2 × 10−1 1.3 × 10−4 −2.3 × 10−4

1.3 × 10−4 1.1 × 10−5 6.3 × 10−6

−2.3 × 10−4 6.3 × 10−6 2.8 × 10−4


SILENE h = 25 cm

 1.1 × 103

2.5 × 10−1

2.3 × 10−1

  1.2 × 100 5.0 × 10−4 4.4 × 10−3

5.0 × 10−4 2.1 × 10−5 2.3 × 10−5

4.4 × 10−3 2.3 × 10−5 7.9 × 10−4


BERP

 7.3 × 103

3.9 × 10−1

4.5 × 10−1

  2.7 × 101 −2.1 × 10−3 7.2 × 10−3

−2.1 × 10−3 4.4 × 10−6 1.0 × 10−5

7.2 × 10−3 1.0 × 10−5 5.7 × 10−5



E.5 Posterior distribution sampling

In Figure E.5 we provide the full set of 2D and 1D marginals of the posterior distri-
bution for the BERP test case. The surrogate model used was BL-GP-LMC2. The
marginal densities are estimated with Gaussian KDE.
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FIGURE E.5: 1D and 2D marginals obtained on the BERP test case with
BL-GP-LMC2.
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Appendix F

An introduction to Polynomial
Chaos Expansions

This appendix presents a brief overview of Polynomial Chaos Expansion (PCE) and
its use for surrogate modeling and sensitivity analysis. It is inspired by [Gar23] to
which we refer for further details.

F.1 PCE for scalar inputs

Polynomial chaos expansion is a regression technique commonly used to build
surrogate models. It consists of expressing a random variable as a polynomial
function of the uncertain inputs [Wie38]. In this appendix, we provide an introduction
to polynomial chaos expansion (PCE), which is used in Section 2.3.1.5 to perform
sensitivity analysis on the extended input space of the neutron correlation inverse
problem.

This appendix is organized as follows. To begin with we introduce the general results
on orthogonal polynomials. After that, we focus on scalar PCE and then extend the
framework to multi-output regression. Finally, we conclude this appendix by looking
specifically at PCE for sensitivity analysis studies.

F.1.1 Orthogonal polynomials

Polynomial chaos expansion is based on the concept of orthogonal polynomial fami-
lies. In this section, we provide a brief description of orthogonal polynomial families
and some of their properties.

Definition F.1.1. Let µ be a positive measure on R. A family of polynomials (Pn)n∈N is said
to be orthogonal for the measure µ is deg(Pn) = n for all n ∈ N and there exists (cn)n∈N

such that : ∫
R

Pn(x)Pm(x)dµ(x) = cnδn,m (F.1)

where δ is the Kronecker symbol. If cn = 1 for all n ∈ N, the family is said to be orthonormal.

There exists a wide variety of orthogonal polynomial families. We are not covering
them all in this appendix. However, we introduce Legendre and Hermite polynomials,
which are the two most frequently encountered.
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Definition F.1.2. The family of Legendre polynomials (Len)n∈N is a family of polynomials
that are implicitly defined by the following differential equation:

(1 − x2)
d2Len

dx2 − 2x
dLen

dx
+ n(n + 1)Len(x) = 0 (F.2)

for x ∈ [−1, 1] and n ∈ N.
The family of Legendre polynomials is orthogonal for the uniform measure on [−1, 1].

Definition F.1.3. The family of Hermite polynomials (Hen)n∈N is defined for x ∈ R by:

Hen(x) = (−1)ne
x2
2

dn

dxn e−
x2
2 . (F.3)

The family of Hermite polynomials is orthogonal for the measure of density 1√
2π

e−
x2
2 which is

the density of the standard normal distribution.

Using these orthogonal families, it is possible to show that any function f ∈ L2(µ)
can be well-approximated by a polynomial development on an orthogonal family
w.r.t. the measure µ.

Theorem F.1.1. Let (Pn)n∈R be a family of orthogonal polynomials for a given measure µ.
Let f be a function in the Hilbert space L2(µ). The orthogonal projection of f on the set of
polynomials with degree smaller or equal n, denoted by Πn is given by:

Πn f =
n

∑
k=0

⟨ f , Pk⟩L2(µ)

⟨Pk, Pk⟩L2(µ)
Pk. (F.4)

Besides the orthogonal projection converges towards f in L2(µ) when n −→ +∞.

∥Πn f − f ∥2
L2(µ) =

+∞

∑
k=n+1

⟨ f , Pk⟩2
L2(µ)

⟨Pk, Pk⟩L2(µ)
−−−−→
n−→+∞

0. (F.5)

From this theorem, one can see that it is possible to build a surrogate model of the
function f using a finite polynomial development on the orthogonal basis. This is the
building block of polynomial chaos expansion.

F.1.2 Wiener polynomial expansion

Let us consider a random variable X representing the uncertain inputs. For now, the
random variable is assumed to follow a standard normal distribution X ∼ N (0, 1).
Let µ be the measure associated with the standard normal distribution density. Now
let us consider that the output is of the form Y = f (X) for f : R → R with f ∈ L2(µ).
Based on theorem F.1.1, the function f can be represented as a finite development on
the family of Hermite polynomials, which are orthogonal for the measure µ. For a
fixed order M ≥ 1, the output is thus approximated by:

YM =
M

∑
k=0

ykHek(X). (F.6)

This approximation is efficient and one can even show that YM is the best approxi-
mation of Y by a polynomial function of degree lower or equal to M. Based on the
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orthogonal projection theorem, the coefficients of the development are given by:

yk =
⟨ f , Hek⟩L2(µ)

⟨Hek, Hek⟩L2(µ)
=
E[YHek(X)]

E[Hek(X)2]
. (F.7)

F.2 Extension to multi-dimensional inputs

Definition F.2.1. The input space X is now considered multi-dimensional X ⊂ Rp. A
multivariate polynomial is a function P : Rp → R defined for any element x = (x1, ..., xp) ∈
X by:

P(x) = ∑
α∈Np

cαxα (F.8)

where α = (α1, ..., αp) is a multi-index, xα =
p

∏
i=1

xαi
i and where there are only a finite number

of non-zero coefficients cα. The degree of this polynomial is defined by:

deg(P) = max{|α|, cα ̸= 0}. (F.9)

Definition F.2.2. A family of multivariate polynomials {Pα, α ∈ Np} is said to be weakly
orthogonal for the measure µ if for any polynomial Q such that deg(Q) < |α| :

⟨Pα, Q⟩L2(µ) = 0. (F.10)

Definition F.2.3. A family of multivariate polynomials {Pα, α ∈ Np} is said to be strongly
orthogonal for the measure µ if for any α ̸= β :

⟨Pα, Pβ⟩L2(µ) = 0. (F.11)

In the case where the inputs are independent, meaning that the measure on X ⊂ Rp

is the product of the marginal measures (µi)1≤i≤p:

dµ(x) = dµ1(x1)...dµp(xp) (F.12)

then it is possible to build a strongly orthogonal polynomial family based on families
of polynomials orthogonal to each marginal measure µi [Ern+12].

Theorem F.2.1. If the measure µ verifies dµ(x) = dµ1(x1)...dµp(xp) where the µi are
the marginal measures, and if for 1 ≤ i ≤ p , {P(i)

αi , αi ∈ N} is an orthogonal family of
polynomials for the measure µi, then the family {Pα, α ∈ Np} is strongly orthogonal for the
measure µ where Pα is defined by :

Pα(x) =
p

∏
i=1

P(i)
αi (xi). (F.13)

The Wiener polynomial expansion shown in equation (F.6) is suited for one-dimensional
input variables X. Now let us consider multi-dimensional inputs. Let X = (Xi)1≤i≤p
be a random variable, where the Xi are independent and have marginal densities
µi. Let (P(i)

αi )αi∈N be a family of polynomials orthogonal for the measure µi. Let us
consider the output Y = f (X) where f : Rp → R and E

[
f (X)2] < +∞.

Then the tensorized polynomials defined by Pα(x) =
p

∏
i=1

P(i)
αi (xi) form a strongly
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orthogonal family of multivariate polynomials. It is thus possible to write the output
Y with a polynomial function :

Y = ∑
α∈Np

yαPα(X). (F.14)

The strong orthogonal property simplifies the expression of the coefficients, which
can be obtained by orthogonal projection :

yα =
E [ f (X)Pα(X)]

E [Pα(X)2]
. (F.15)

In the same way that the polynomial expansion is truncated to a given order, one has
to select only the multi-indices in a given finite subset D ⊂ Np.

The first intuition that comes to mind is to limit the development up to a certain
degree of the multivariate polynomial αm such that Dαm = {α ∈ Np, |α| ≤ αm}.
However, when the dimension increases, the number of multi-indices kept dramati-
cally explodes, since Card(Dαm) =

(p+αm)!
p!αm]!

. As an illustration, for p = 7 and αm = 10,

Card(Dαm) = 19448.

Hence, the number of multi-indices must be reduced. One of the most common
techniques (see [BS10]) is to consider that the most impactful polynomials are the
univariate polynomials of high degrees and the multivariate of low degrees. This
assumption usually corresponds to a function depending mainly on one of the inputs.
This assumption is reflected by considering the subset Aαm,r defined for r ∈ (0, 1] by :

Aαm,r =

α ∈ Np,

(
p

∑
i=1

αr
i

)1/r

≤ αm

 . (F.16)

When r = 1, Aαm,1 = Dαm and for r < 1 the subset Aαm,r filters out the multivariate
polynomials of high degree, which reduces the number of coefficients to estimate.
Based on this subset, it is possible to build a surrogate model by truncating the
development in equation (F.14) to the subset Aαm,r:

Y ≃ Yαm,r = ∑
α∈Aαm ,r

yαPα(X). (F.17)

F.3 Estimation of the coefficients

To obtain our surrogate model, one only has to estimate the coefficients yα in equation
(F.17) for the multi-dimensional case. Two methods are usually considered.

F.3.1 Monte Carlo estimation

The coefficients can be expressed using the orthogonal projection of the truncated
polynomial development of Y as shown in equation (F.15).
The expected values appearing in this equation are unknown and the first method to
find the coefficients is to obtain them with a Monte Carlo estimation.
Assuming we have n independent samples X = (X(k))1≤k≤n following the law µ, the
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coefficients can be estimated by :

ŷα =
1

nE [Pα(X)2]

n

∑
k=1

Pα(X(k)) f (X(k)). (F.18)

F.3.2 Regression

The coefficients can also be estimated by regression. More specifically, let us consider
the truncationAαm,r and let J = Card(Aαm,r). Then the approximated surrogate model
is given by equation (F.14). The objective is to find the coefficients that minimize the
error between Yαm,r and the true output Y = f (X). This is a minimization problem.
Let P = (Pα)α∈Aαm ,r be the column vector of size J containing all the polynomials. The
coefficients ŷ = (ŷα)α∈Aαm ,r verifying this are given by :

ŷ = argminc∈RJ E

[(
cTP(X)− f (X)

)2
]

. (F.19)

Once again, the true mean is unknown but can be approximated assuming we have n
independent samples X = (X(k))1≤k≤n:

ŷ ≃ argminc∈RJ
1
n

n

∑
k=1

[(
cTP(X(k))− f (X(k))

)2
]

. (F.20)

This minimization problem can be solved directly in matrix form. Let us introduce
the matrix A ∈ Mn,J(R) defined by Ak,j = Pj(X(k)) for 1 ≤ j ≤ J and 1 ≤ k ≤ n, and
the vector F ∈ Rn defined by Fk = f (X(k)) for 1 ≤ k ≤ n. The vector of coefficients ŷ
is given by the product of the pseudo-inverse of A with the vector F:

ŷ = (ATA)−1ATF. (F.21)

The estimation of the coefficients with the regression method is theoretically better
since, by definition, they minimize the squared error. One can show that the error
is a compromise between bias and variance of the estimation. The variance of the
estimation can be reduced by increasing the size n of the training set. However,
this does not change the bias, which is caused by the truncation of the polynomial
development. To reduce the bias, one has to increase the polynomial order. At high
order, however, the matrix A can become singular and can be required to use a
regularization technique such as Tikhonov regularization.

F.3.3 Choice of the truncation

To choose an appropriate subset for the indices of the multivariate polynomials, one
should have a metric to quantify the error. Considering the mean squared error, the
metric to investigate is :

E = E

[(
ŷTP(X)− f (X)

)2
∣∣∣∣ ŷ
]

. (F.22)

This error is estimated on a validation set X∗ = (X(k)
∗ )1≤k≤n∗ , independent from the

training set X = (X(k))1≤k≤n.
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This error can also be estimated with a Leave-One-Out (LOO) cross-validation proce-
dure. The idea is to estimate the coefficients with the whole training set, except the
k-th value which is used to estimate an error. This method is iterated over the whole
set, and the estimated error is the average error on the left-out case.

ELOO =
1
n

N

∑
k=1

(
ŷT
−kP(X(k))− f (X(k))

)2
(F.23)

where ŷ−k is the vector of coefficients estimated with the whole training set except
the k-th value.
This procedure is time-consuming since the training phase is done N times. However,
the LOO error can be simplified :

ELOO =
1
n

n

∑
k=1

(
ŷTP(X(k))− f (X(k))

1 − q(k)

)2

(F.24)

where q(k) = (A(ATA)−1AT)k,k ∈ [0, 1]. This error can be seen in the mean-squared
error estimated on the training set, weighted by the term (1 − q(k))−1.

F.4 PCE in sensitivity analysis

In this section, we will see why PCE is widely used for sensitivity analysis. Recalling
the introduction to sensitivity analysis in Section 2.3.1.5, Sobol indices are amongst
the most-used sensitivity indices due to their interpretability and overall simplicity.
Of course, Sobol’s framework also comes with some limitations, which will not be
further discussed here. Let us also assume that the inputs are independent here so
that we can focus on standard Sobol indices. Keep in mind that what follows can still
be generalized to Sobol indices for dependent inputs.
Suppose we have some surrogate model g of a black-box function f built with PCE,
such that for x ∈ Rp:

f (x) ≃ g(x) = ∑
α∈A

cαPα(x) (F.25)

where (Pα)α∈Np is the family of tensorized polynomials associated with the PCE
coefficients cα, and where A ⊂ Np is the truncation set.
Suppose we want to compute a Sobol index SA for some subset A ⊂ {1, ..., p} which
is defined by:

SA =
VA

Var [ f (x)]
(F.26)

where VA = Var [E ( f (x)|xA)] as defined in Hoeffding decomposition (2.44) and xA
is the subvector of x where only the components in A are kept.

One can see clearly that the PCE model has the same form as the Hoeffding decompo-
sition of the function f . Of course, the PCE decomposition is only an approximation
due to the truncation. Provided the surrogate model is well-trained, the Sobol index
SA can be computed analytically by:

SA =

∑
α∈Z∗

A

|cα|2

∑
α∈Np,α ̸=0

|cα|2
≃

∑
α∈A∩Z∗

A

|cα|2

∑
α∈A,α ̸=0

|cα|2
(F.27)
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where Z∗
A =

{
k ∈ Np|k j = 0 if j /∈ A and k j ̸= 0 if j ∈ A

}
.

This is the strength of PCE for sensitivity analysis, it removes the need for Monte
Carlo estimation of the Sobol indices.
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méthodes mathématiques et numériques adaptées
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les incertitudes résiduelles. Enfin, nous abordons une
approche connexe qui contourne la résolution du
problème inverse par une paramétrisation de la classe
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