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Références et organisation générale du manuscrit

Cette habilitation à diriger des recherches présente une synthèse de mes travaux de recherches
effectués à l’Institut de Mathématiques de Toulouse, depuis 2016.
Mes travaux s’intéressent à l’étude de différents processus stochastiques trouvant leurs mo-
tivations dans des questions aussi variées que l’étude des communautés écologiques et leur
structuration; la modélisation de l’inhibition dans la répartition des occurrences temporelles
de certains phénomènes, et l’estimation de mesures de risques via des algorithmes stochas-
tiques. Si ces questions ont l’air éloignées (et elles le sont), elles m’ont permis d’apprendre
une large variété de techniques probabilistes et de les appliquer afin d’apporter des réponses
aux problématiques initiales.

Ce manuscrit est composé de 4 chapitres regroupant chacun un ensemble de travaux sur
une thématique précise et des perspectives de recherche associées.

Une partie importante de mes travaux de recherche se situe à l’interface entre les mathé-
matiques et l’écologie. Au cours de ma thèse, je me suis focalisée sur les interactions de type
proies-prédateurs et sur la façon dont la sélection naturelle modifie la structure des commu-
nautés en agissant sur les phénotypes des proies et prédateurs qui définissent la force de leurs
interactions. Si ces questions sont toujours présentes dans mes recherches, j’ai depuis étudié
d’autres types de d’interactions.
Le chapitre 1, concerne la question de l’évolution des préférences sexuelles dans des popu-
lations naturelles. Je me suis particulièrement intéressée à des phénomènes d’attachement
préférentiel (assortative mating et disassortative mating) dans des populations ayant une
reproduction sexuée et à l’impact de l’évolution de ces stratégies sur la structure des com-
munautés. Les travaux suivants seront présentés dans ce chapitre :

• [CCLS18]A stochastic model for speciation by mating preference, C. Coron, M.C., H.
Leman et C. Smadi. Journal of Mathematical Biology, 76:1421-1463 (2018)

• [CCL+21] Emergence of homogamy in a two-loci stochastic population model , C.
Coron, M.C., F. Laroche, H. Leman and C. Smadi. ALEA, (Volume 18, 2021).

• [CCL+23] Origin and persistence of polymorphism in loci targed by dissassortative
preference: a general model , C. Coron, M.C., H. Leman, V. Llaurens, C. Smadi.
Journal of Mathematical Biology, 86(1):4 (2023)
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Le deuxième chapitre regroupe des questions sur lesquelles je travaille ou que je souhait-
erai étudier par la suite sur différents modèles motivés par la biologie en générale. Plus
particulièrement:

• un modèle de coévolution de communautés proies-prédateurs avec des phénotypes "ap-
pariés" et mutations rapides, sur lequel je travaille avec Pete Czuppon (WWU Münster)
et Raphaël Forien (INRAE Avignon).

• un modèle d’évolution d’une infection virale dans des cellules en expansion dans la
continuité de l’article [CCF22], utilisant des processus de croissance-frangmentation
aléatoires,

• des questions sur l’impact de la stochasticité dans les modèles de génétique des pop-
ulations et plus particulièrement la mesure de l’écart entre les modèles en taille de
population infinie et leurs versions incluant un tirage aléatoire à chaque reproduction,
avec Sepideh Mirrahimi (IMAG), Sylvain Gandon (CEFE) d’une part et Thomas Aubier
(EDB) d’autre part.

Le troisième chapitre 3 regroupe des résultats sur l’étude de processus de Hawkes non
linéaires incluant de l’inhibition. La question centrale de ces travaux est de mieux appréhender
le rôle de l’inhibition dans la stabilité de ces processus. Ces questions ont été l’occasion de
pour moi de co-diriger deux thèses, celle de Laetitia Colombani avec Patrick Cattiaux et celle
d’Anthony Muraro avec Pascal Maillard. Je présenterai à la fin de ce chapitre des perspectives
de travail qui forment une partie du programme du projet ANR HAPPY (JCJC, 2024-2028)
dont je suis la porteuse.

• [CGMT20] Renewal in Hawkes processes with self-excitation and inhibition , M.C., C.
Graham, L. Marsalle and V.C. Tran. Advances in Applied Probability (Volume 52,
Issue 3, 2020)

• [CCC22] Limit Theorems for Hawkes processes including inhibition , P. Cattiaux, L.
Colombani, M.C. Stochastic Processes and their Applications 149:404-426 (2022)

• [CMM24a] Complete characterization of stability of a two-parameter discrete-time Hawkes
process with inhibition, M.C., P. Maillard, A. Muraro. Journal of Applied Probability,
published online, 2024:1-22

• [CMM24b] Stability of discrete-time Hawkes process with inhibition: towards a general
condition, M.C., P. Maillard, A. Muraro. Arxiv preprint 2409.01660.

Le quatrième chapitre s’articule autour de différents résultats sur des algorithmes stochas-
tiques de type Robbins Monro. Tout d’abord, je présenterai des résultats théoriques sur des
algorithmes permettant l’estimation conjointe du quantile et du super-quantile d’une distri-
bution de probabilité. Ensuite, je détaillerai une application de ces méthodes à un problème
d’optimisation stochastique et des perspectives sur l’utilisation de ces algorithmes en analyse
de sensibilité. Ce chapitre est basé sur les travaux suivants
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• [BCG21] Stochastic approximation algorithms for superquantile estimation , B. Bercu,
M.C. and S. Gadat. Electron. J. Probab., 26:1-29 (2021)

• [CG21] Non asymptotic controls on a recursive superquantile approximation, M.C., S.
Gadat. Electron. J. Statist. 15(2): 4718-4769 (2021).

• [CGH24] CV@R penalized portfolio optimization with biased stochastic mirror descent,
M.C., S. Gadat, L. Huang. to appear in Mathematical Finance (2024).

Pour conclure, je voudrais dire quelques mots sur les travaux suivants que j’ai choisi de
ne pas présenter en détail afin de limiter la taille de ce manuscrit et de préserver la cohérence
thématique des travaux présentés. Beaucoup de ces travaux proviennent de collaborations
interdisciplinaires avec des biologistes, écologues ou médecins. Cette interdisciplinarité est
une part de mon travail qui m’apporte au moins autant de plaisir qu’elle nécessite de temps
pour apprendre à échanger entre chercheurs de formations différentes.

• [GCA+19] Multiparametric analysis of CD8+ T cell compartment phenotype in chronic
lymphocytic leukemia reveals a signature associated with progression toward therapy ,
P. Gonnord, M.C., A. Abreu, M. Peres, L. Ysebaert, S. Gadat, S. Valitutti. OncoIm-
munology, (2019)

• [CGGR19] Cytometry inference through adaptive atomic deconvolution, M.C., S. Ga-
dat, P. Gonnord et L. Risser. Journal of Nonparametric Statistics 2019, Vol. 31, No.
2, pp506-547

• [CEM21] Survival criterion for a population subject to selection and mutations ; Ap-
plication to temporally piecewise constant environments , M.C., C. Etchegaray and S.
Mirrahimi. non linear Analysis: Real Worls Applications (Volume 59, June 2021)

• [CCF22] Slow-fast model and therapy optimization for oncolytic treatment of tumours,
P. Cordelier, M.C., J. Fehrenbach. Bulletin of Mathematical Biology, 2022 May 10;84(6):64

• [CCC23] Asymptotic deviation bounds for cumulative processes , P. Cattiaux, L. Colom-
bani, M.C. Stochastic Processes and Their Applications (2023) 163:85–103

• [NCL21] Implication of drift and rapid evolution on negative niche construction ,
Phuong Linh Nguyen, M.C., N. Loeuille. Soumis.

• [BCF+23] Influence of sex-limited mimicry on extinction risk in Aculeata: a theoretical
approach, M. Boutin, M.C., C. Fontaine, A. Perrard, V. Llaurens. Peer Community
Journal, Volume 3 (2023), article no. e113.

Enfin, les articles suivants, écrits au cours de ma thèse ne seront pas présentés.

• [CHLM16] Stochastic eco-evolutionary model of a prey-predator community, M.C., N.
Loeuille, C. Hauzy et S. Méléard. Journal of Mathematical Biology, (2016), 72(3)
pp573-622

• [Cos16] A piecewise deterministic model for prey-predator communities, M.C. Annals
of Applied Probability 2016, Vol. 26, No. 6, 3491-3530



12 Introduction



13

Chapter 1

Stochastic models for Ecology I
Evolution of mating preferences and their

consequences on communities

An important part of my research aims at constructing probabilistic models and associated
mathematical techniques in order to understand the evolutionary dynamics of complex eco-
logical or biological systems. For these questions I work both in collaboration with biologists,
ecologists or doctors in order to understand the question of interest and to build adequate
models, and with mathematicians aiming at deriving theoretical properties of the previous
models (or of simplified versions). My work focuses mainly on individual-based models and
their scaling limits, as they allow to observe the impact of basic mechanisms on the population
at different scales.

In this first chapter, I present a series of three works in collaboration with Camille Coron,
Hélène Leman and Charline Smadi and two ecologists Fabien Laroche and Violaine Llaurens,
dedicated to the evolution of mating preferences in communities.

1.1 Introduction - Mating preferences and evolution

Evolution, from a darwinian perspective, is based on three mechanisms: heredity whereby
characteristic of individuals are transferred to the offspring, mutations which generates indi-
vidual variations and natural selection. Natural selection acts on individuals through their
ability to reproduce and survive in their environment. It also creates a constant feedback
loop between individuals and their environment.

Sexual selection plays an important role in evolutionary theory [JR09]. Originally, the
existence of sexual selection was the main hypothesis to explain the survival of rare or dis-
advantageous phenotypes, such as bulky or colourful ornamental features. Today, these
mechanisms are more widely studied, as their role in evolution seems to be more important,
particularly for trait selection and species diversification [Lan81, Ros17].
Mate choice is a process that leads to a bias in reproductive investment towards individuals
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with certain traits, known as ’mating cues’. These selection biases can be expressed before
or after reproduction and involve more diverse mechanisms than just mate discrimination,
such as mechanical constraints, molecular mechanisms, temporal synchrony (flowering dates,
different migrations) or spatial synchrony.
Mate choice also comes at a high cost for the individual, generating direct selection on sexual
preferences and limiting their evolution. For example, choosing breeding partners can lead to
a loss of fitness, as many reproductive opportunities are lost. In addition, the implementa-
tion of choice mechanisms requires physiological, morphological or behavioural changes that
generate metabolic costs (e.g. incompleteness) [Ros17]. However, despite these costs, sexual
preferences are maintained in many species, suggesting the existence of direct or indirect
positive effects.

This chapter focuses mainly on the issue of assortative and disassortative mating prefer-
ences, i.e. when individuals prefer to mate with similar (or different) individuals, and their
implications for community structure. In the first section, we examine the conditions under
which assortative mating preferences at a neutral locus can lead to sympatric speciation,
the process by which new species evolve from a single ancestral species while sharing the
same space and resources. We then consider how assortative mating can arise in a random
mating community when the mating cue is evolutionarily neutral. In the third section, we
consider disassortative mating behaviour and study the emergence of phenotypic diversity at
loci targeted by preference. In these different works, we mainly study evolution through the
question of invasion of a given mutant individual. This view corresponds to a single step of
evolution in the adaptive dynamics framework introduced by Geritz, Metz et al, Dieckmann
and Law [MGM+96, DL96]. In this framework, the time scale of demographic dynamics is
much faster than the time scale of mutations. As a consequence, when a mutation occurs, the
single mutant individual evolves in a resident population at its demographic equilibria. Math-
ematically, we use the approach developed by Champagnat [Cha06] which is well adapted
for the study of scaling limits of birth and death processes in a large population with rare
mutations. The main idea is to split the dynamics into different phases: first the study of
the population in a large population limit without mutation allows to define the resident
equilibrium state by comparison with a dynamical system. Then once a mutant appears,
its population can be compared with a (multi-type) branching process as long as it reaches
either 0 or a macroscopic fraction of the population. Finally, in the case where the mutant
population become macroscopic, the large population approximation changes and leads to
a different equilibrium, see Figure 1.1. These approximations require first to have a slow
mutation rate with respect to the scaling parameter of the population size so that only a
single mutant type present and second to have a good knowledge of the limiting behaviour
of systems of ODE that describe the dynamics in large population.

1.2 The effect of assortative mating on speciation

In this section, I present the work [CCLS18] in collaboration with Camille Coron, Hélène
Leman and Charline Smadi that introduces and studies rigorously a stochastic model for
speciation by assortative mating. Assortative mating, or mating preference, is a form of sexual
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Figure 1.1: A typical example of the different phases of a mutant invasion

selection where individuals with similar genotypes have a higher reproductive success when
they mate among themselves than with individuals with different genotypes. As presented
in [Rit07, MMOD12], this form of selection plays a very important role in speciation.

A simple model on two similar patches

We consider a population of haploid individuals characterized by their genotype at a given
locus and by their position in space divided in two patches. More precisely, each individual
carries an allele belonging to the genetic type space A := {A, a}, and lives in a patch i in
I = {1, 2}. We denote by E = A× I the type space, by (eα,i, (α, i) ∈ E) the canonical basis
of RE , and by ᾱ the complement of α in A. The current state of the population is then given
by n = (nα,i, (α, i) ∈ E) where nα,i the current number of α-individuals in the patch i.

The dynamics in time is modeled by a multi-type birth-and-death process with compe-
tition taking values in NE . We assume that the alleles are ecologically neutral in the sense
that individuals with different genotypes are not characterized by different adaptations to
the environment or by different resource preferences. However, individuals reproduce sexu-
ally according to mating preferences that depend on their genotype: two individuals with
the same genotype have a higher probability of mating successfully. In addition, individuals
can migrate from one patch to another, at a rate that depends on the number of individuals
carrying the other genotype and living in the same patch.

The birth rate is computed as follows: at a rate B > 0 any individual encounters an-
other individual uniformly at random in its patch. Hence the probability of encountering an
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individual of genotype α in the patch i is
nα,i

nα,i + nᾱ,i
,

Then, the probability that this encounter leads to a successful mating with a viable offspring
is bβ/B ≤ 1 if the two individual carry the same genoytpe and b/B < 1 otherwise. The
parameter b > 0 scales the individual birth rate while the parameter β > 1 represents
the "mating preference" and can be interpreted as follows: two mating individuals have a
probability β times larger to give birth to a viable offspring if they carry the same allele
α. This modelling of mating preferences (that are directly determined by the genome of
each individual) is biologically relevant, considering [HTPW97] or [HS05] for instance. As a
consequence, the birth rate of an α-individual in the patch i writes

λα,i(n) = b

(
nα,iβ

nα,i

nα,i + nᾱ,i
+ 1

2nα,i
nᾱ,i

nα,i + nᾱ,i
+ 1

2nᾱ,i
nα,i

nα,i + nᾱ,i

)

= bnα,i
βnα,i + nᾱ,i

nα,i + nᾱ,i
. (1.1)

In the same way, the death rate of α-individuals in the patch i includes the effect of a natural
death rate d and of logistic competition c

dK
α,i(n) =

(
d+ c

K
(nα,i + nᾱ,i)

)
nα,i, (1.2)

where K is an integer accounting for the quantity of available resources or space. This
parameter is related to the concept of carrying capacity, which is the maximum population
size that the environment can sustain indefinitely, and is consequently a scaling parameter for
the size of the community. The individual intrinsic death rate d is assumed to be non-negative
and less than b:

0 ≤ d < b. (1.3)

The death rate definition (1.2) implies that all the individuals are ecologically equivalent:
the competition pressure c > 0 does not depend on the alleles α and α′ carried by the two
individuals involved in an event of competition for food or space.
Last, the migration of α-individuals from patch ī = I \ {i} to patch i occurs at a rate

ρα,̄i→i(n) = p

(
1−

nα,̄i

nα,̄i + nᾱ,̄i

)
nα,̄i = p

nα,̄inᾱ,̄i

nα,̄i + nᾱ,̄i

, (1.4)

with p > 0 (see Figure 1.2). The individual migration rate of α-individuals is proportional
to the frequency of ᾱ-individuals in the patch. It reflects the fact that individuals prefer to
be in an environment with a majority of individuals of their own type. In particular, if all
the individuals living in a patch are of the same type, there is no more migration outside
this patch. This particular form of mating success dependent dispersal has also been studied
by [PK97] for a continuous space. In natural populations, [CBGB+10] study the dispersal
behaviour of the banded damselflies Calopteryx spendens that display a lek mating system.
They observe that females move to find a suitable mate, and that they disperse less when the
sex-ratio is male biased. This is in agreement with our hypothesis that individuals migration
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rate is a decreasing function of the frequency of suitable mates. More generally, correlations
between male dispersal and mating success have been empirically observed (see the articles
by [Sch88] or [HWE+07] for instance).

Figure 1.2: Migrations of A- and a-individuals between the patches.

Remark 1.2.1. In contrast with our model, most papers about sexual preferences (see for
instance the works by [GB98, MGG02, BS06, Ser10]) use generational models with infinite
population size, and study the evolution through time of the frequency of each genotype. As a
consequence, they express the population dynamics in terms of a table describing the frequen-
cies of mating at each generation.

The community is therefore represented at all time t ≥ 0 by a stochastic process with
values in RE :

(NK(t), t ≥ 0) = (NK
α,i(t), (α, i) ∈ E , t ≥ 0),

whose transitions are, for n ∈ NE and (α, i) ∈ E :

n −→ n + eα,i at rate λα,i(n),
−→ n− eα,i at rate dK

α,i(n),
−→ n + eα,i − eα,̄i at rate ρī→i(n).

From the standard results of Ethier and Kurtz (Chapiter 11, [EK86]) we know that as
soon as the initial population sizes (NK

α,i(0), (α, i) ∈ E) are of order K, then the rescaled
stochastic process

(ZK(t), t ≥ 0) = (ZK
α,i(t), (α, i) ∈ E , t ≥ 0) =

(
NK(t)
K

, t ≥ 0
)
,

converges in law as K → ∞ uniformly on bounded time intervals to the solution of the
dynamical system

d
dtzA,1(t) = zA,1

[
b

βzA,1+za,1
zA,1+za,1

− d− c(zA,1 + za,1)− p za,1
zA,1+za,1

]
+ p

zA,2za,2
zA,2+za,2

d
dtza,1(t) = za,1

[
b

βza,1+zA,1
zA,1+za,1

− d− c(zA,1 + za,1)− p zA,1
zA,1+za,1

]
+ p

zA,2za,2
zA,2+za,2

d
dtzA,2(t) = zA,2

[
b

βzA,2+za,2
zA,2+za,2

− d− c(zA,2 + za,2)− p za,2
zA,2+za,2

]
+ p

zA,1za,1
zA,1+za,1

d
dtza,2(t) = za,2

[
b

βza,2+zA,2
zA,2+za,2

− d− c(zA,2 + za,2)− p zA,2
zA,2+za,2

]
+ p

zA,1za,1
zA,1+za,1

.

(1.5)
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A detailed study of the long time behaviour of solutions of (1.5) is provided in [CCLS18]. We
are particularly interested in conditions that ensure the convergence of the solution of (1.5)
to a speciation equilibrium, i.e. an equilibrium where one patch is filled with individuals A
and the other with a..

Let us introduce the parameter
ζ := βb− d

c
, (1.6)

that corresponds to the equilibrium of the α-population size for the dynamical system (1.5),
in a patch with no ᾱ-individuals and no migration (p = 0); and define the subset of RE

+

D := {z ∈ RE
+, zA,1 − za,1 > 0, za,2 − zA,2 > 0}. (1.7)

Theorem 1.2.2. There exists an explicit p0 > 0 such that for all p < p0, any solution to (1.5)
starting from D converges to the equilibrium (ζ, 0, 0, ζ).
Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ) when changing
initial conditions.

This result classify the trajectories except for initial conditions on the lines zA,1 = za,1
and za,2 = zA,2. Notice that the limit reached depends on which genotype is in the majority
in each patch, since the subset D is invariant under the dynamical system (1.5). Secondly,
when p = 0, the results of Theorem 1.2.2 can be proven easily since the two patches are
independent from each other. The difficulty is thus to prove the result when p > 0. Our
strategy first relies on proving that trajectories enter an invariant set in which populations
on each patch are lower and upper bounded. From this set, we find a Lyapunov function
for the dynamics. Our argument allows us to deduce an explicit constant p0 under which we
have convergence to an equilibrium with reproductive isolation between patches. However,
we are not able to deduce a rigorous result for all p. Indeed, when p increases, there are more
mixing between the two patches which it difficult to construct the invariant set. Nevertheless
numerical simulations suggest that the result stays true.

Let us now introduce our main result on the probability and the time needed for the
stochastic process NK to reach a neighborhood of the equilibria (ζ, 0, 0, ζ).

Theorem 1.2.3. Assume that ZK(0) converges in probability to a deterministic vector z0

belonging to D, with (z0
a,1, z

0
A,2) ̸= (0, 0). Introduce the following bounded set depending on

ε > 0:
Bε := [(ζ − ε)K, (ζ + ε)K]× {0} × {0} × [(ζ − ε)K, (ζ + ε)K],

and TK
Bε

, is the hitting time of the set Bε by the population process NK .
Then there exist three positive constants ε0, C0 and m, and a positive constant V depending
on (m, ε0) such that if p < p0 and ε ≤ ε0,

lim
K→∞

P
(∣∣∣∣∣ TK

Bε

logK −
1

b(β − 1)

∣∣∣∣∣ ≤ C0ε, NK
(
TK

Bε
+ t
)
∈ Bmε ∀0 ≤ t ≤ eV K

)
= 1 . (1.8)

NK .
Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ).
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This theorem gives the order of magnitude of the time to reproductive isolation between
the two patches, as a function of the scaling factor K. This isolation time is infinite when
considering the dynamical system (1.5) for which K is equal to infinity. Note that the time
needed to reach the reproductive isolation is inversely proportional to β − 1 suggesting, as
studied previously, that the system behaves differently when β = 1. Moreover, the time does
not depend on the parameter p, scaling migrations. Intuitively, this can be understood as
follows: the time needed to reach a neighborhood of the state (ζ, 0, 0, ζ) is of order 1, and
from this neighborhood the time needed for the complete extinction of the a-individuals in
the patch 1 and the A-individuals in the patch 2 is much longer, it is of order logK. During
this second phase, the migrations between the two patches are already balanced, which entails
the independence with respect to p. Furthermore, the constant does not depend on d and
c since there is no ecological difference between the two types and the two patches: during
the second phase, the natural birth rate of the a-individuals in the patch 1 is approximately
b since the patch 1 is almost entirely filled with A-individuals,and their natural death rate
can be approximated by d+ cζ = bβ where the term cζ comes from the competition exerted
by the A-individuals. Thus, their natural growth rate is approximately b − bβ which only
depends on the birth parameters.

Note that Theorem 1.2.3 gives not only an estimation of the time to reach a neighborhood
of the limit, but also it proves that the dynamics of the population process stays a long time
in the neighborhood of equilibria (ζ, 0, 0, ζ) after this time.

Generalizations

The methods used above are actually robust to different generalizations of the model.

Ecological differences between patches We assumed that the patches were ecologically
equivalent in the sense that the birth, death and competition rates b, d and c, respectively,
did not depend on the label of the patch i ∈ I. In fact we could make these parameters
depend on the patch, and denote them bi, di and ci, i ∈ I. In the same way, the sexual
preference βi and the migration rate pi could depend on the label of the patch i ∈ I. As a
consequence, the dynamical system (1.5) becomes



d
dtzA,1(t) = zA,1

[
b1

β1zA,1+za,1
zA,1+za,1

− d1 − c1(zA,1 + za,1)− p1
za,1

zA,1+za,1

]
+ p2

zA,2za,2
zA,2+za,2

d
dtza,1(t) = za,1

[
b1

β1za,1+zA,1
zA,1+za,1

− d1 − c1(zA,1 + za,1)− p1
zA,1

zA,1+za,1

]
+ p2

zA,2za,2
zA,2+za,2

d
dtzA,2(t) = zA,2

[
b2

β2zA,2+za,2
zA,2+za,2

− d2 − c2(zA,2 + za,2)− p2
za,2

zA,2+za,2

]
+ p1

zA,1za,1
zA,1+za,1

d
dtza,2(t) = za,2

[
b2

β2za,2+zA,2
zA,2+za,2

− d2 − c2(zA,2 + za,2)− p2
zA,2

zA,2+za,2

]
+ p1

zA,1za,1
zA,1+za,1

.

(1.9)

We can prove similar results to those of Theorems 1.2.2 and 1.2.3 under the assumption that
(p1, p2) satisfies

picī(2ciζi + pī) < ci(bi(βi − 1) + pi)(bī(βī + 1)− 2dī − pī), for i ∈ I.
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Migration The migration rates under consideration increase when the genetic diversity
increases. Indeed, let us consider

H
(i)
T := 1−

( nA,i

nA,i + na,i

)2

+
(

na,i

nA,i + na,i

)2
 ,

as a measure of the genetic diversity in the patch i ∈ I. Note that H(i)
T ∈ [0, 1/2] is known

as the "total gene diversity" in the patch i (see [Nei75] for instance) and is widely used as a
measure of diversity. When we express the migration rates in terms of this measure, we get

ρα,̄i→i(n) = p
nA,ina,i

nA,i + na,i
= p

2(nA,i + na,i)H(i)
T .

Hence we can consider that the migration helps the speciation. In our work, we prove that the
convergence result hold if consider a symmetrical and bounded migration rate. This amounts
to consider a migration written as

ρα,̄i→i(n) = p(nA,̄i, na,̄i),

and to assume

p(nA,̄i, na,̄i) = p(na,̄i, nA,̄i) and p(nA,̄i, na,̄i)
nA,̄i + na,̄i

nA,̄ina,̄i

< p0,

where p0 has been defined in Theorem 1.2.2. Note that the second condition on the function
p imposes that as one of the population sizes goes to 0, then so does the migration rate. In
particular, this condition ensures that the points given by (ζ, 0, 0, ζ) and (ζ, 0, ζ, 0) are still
equilibria of the system. Theorems 1.2.2 and 1.2.3 still hold with this new definition for the
migration rate.

Number of patches Finally, we restricted our attention to the case of two patches, but
we can consider an arbitrary number N ∈ N of patches. We assume that all the patches
are ecologically equivalent but that the migrant individuals have a probability of migrating
to another patch that depends on the geometry of the system. Moreover, we allow the
individuals to migrate outside the N patches. In other words, for α ∈ A, i ≤ N , j ≤ N + 1
and n ∈ (NA)N ,

ρα,i→j(n) = pij
nA,ina,i

nA,i + na,i
,

where the "patch" N + 1 denotes the outside of the system.
We give an explicit condition on migration rates to obtain a similar behaviour of the popu-
lation.

1.3 Emergence of assortative mating

We now address the question of emergence of assortative mating: if a mutant starts to mate
preferentially with individuals of its own type, while the other individuals still choose their
mate uniformly at random, can this mutant invade the population? In this section, I present
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the work of [CCL+21] in collaboration with Camille Coron, Fabien Laroche, Hélène Leman
and Charline Smadi which shows that a key feature to answering this question is how the
assortative mating mutation affects the total reproduction rate of individuals.

Very similarly as in the previous work, we consider a population of individuals that
reproduce sexually and compete with each other for a common resource. Individuals are
haploid and are characterized by their genotype at two loci located on different chromosomes
describing the genetic architecture for preference. Locus 1 presents two alleles, denoted by
A and a, and codes for phenotypes. Locus 2 presents two alleles denoted by P and p, and
codes for assortative mating relatively to the first locus (similar models were introduced in
population genetics, see for example [Gre92, SB14]).

The genotype of each individual belongs to the set G := {AP,Ap, aP, ap} and the state of
the population is characterized at each time t by a vector in N4 giving the respective numbers
of individuals carrying each of these four genotypes. The dynamics of this population is
modeled by a multi-type birth-and-death process

(NK(t), t ≥ 0) := (NK
AP (t), NK

Ap(t), NK
aP (t), NK

ap(t), t ≥ 0),

with values in N4, integrating competition, Mendelian reproduction and assortative mating.
As in the previous section, K is a scaling parameter of the total population size, quantifying
the environment’s carrying capacity. We will be interested in the behaviour of the system for
large but finite K.
Let us now precise the dynamics. When the population is in a state n = (nAP , nAp, naP , nap),
the death rate of an individual with genotype i ∈ G is equal to

di(n) = ni

(
d+ c

K
n

)
. (1.10)

where n = nAP + nAp + naP + nap is the total population size, and the parameters d ∈ R+

and c > 0 model the natural death rate and the logistic competition.
The reproduction rates are more complex to compute. We assume that all individuals

try to reproduce at the same rate. To this aim, they choose a mate, uniformly at random
among the other individuals of the population. Next, individuals carrying allele p reproduce
indifferently with their chosen partner, while individuals carrying allele P reproduce with a
higher probability with individuals carrying the same allele at locus 1. Note that reproduction
is not completely symmetric: only the genotype of the individual initiating the reproduction
determines the presence or not of assortative mating. When the population is in state n, the
rate bi(n) at which an individual with genotype i ∈ G is born, is equal to

bAP (n) = b

[
nAP + 1

n

(
β1nAP

(
nAP + nAp

2

)
−β2

(
nAP

(
naP + nap

4

)
+ nAp

naP

4

))
+ ∆aP

2n

]
bAp(n) = b

[
nAp + 1

n

(
β1nAp

nAP

2 − β2

(
nAp

naP

4 + nAP
nap

4

))
− ∆aP

2n

]
(1.11)

baP (n) = b

[
naP + 1

n

(
β1naP

(
naP + nap

2

)
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−β2

(
naP

(
nAP + nAp

4

)
+ nap

nAP

4

))
− ∆aP

2n

]
bap(n) = b

[
nap + 1

n

(
β1nap

naP

2 − β2

(
nap

nAP

4 + naP
nAp

4

))
+ ∆aP

2n

]
,

where
∆aP := naPnAp − nAPnap.

The parameter b(1 + β1) with b > 0 and β1 ≥ 0 is the rate at which any individual (called
first parent) reproduces, the second parent being chosen uniformly in the population. Each
reproduction leads to the birth of a new individual with probability 1/(1 +β1) when the first
parent carries allele p, with probability 1 if the first parent carries allele P and both parents
carry the same allele at locus 1, and with probability (1 − β2)/(1 + β1) if the first parent
carries allele P and the two parents carry different alleles at locus 1. The parameters β1 and
β2 respectively quantify benefits and penalties for homogamous individuals.

We will make the following assumptions on the parameters:

b > d, β1 ≥ 0, 0 ≤ β2 ≤ 1. (1.12)

The first assumption ensures that a population of individuals mating uniformly at random
is not doomed to a rapid extinction because of a natural death rate larger than the birth
rate under uniform random mating. The second (resp. third) assumption means that choosy
individuals have a higher (resp. smaller) probability to give birth when mating with an indi-
vidual with the same (resp. different) trait (A or a).

The goal of our main theorem is to study a step in Darwinian evolution that consists
in the progressive invasion of the new allele P and loss of initial allele p in the population.
The proof of this theorem relies on the study of three phases in the population dynamics
trajectories: mutant survival or extinction, mean-field phase, and resident allele extinction
(see Figure 1.1).

We assume that before the first mutation, all individuals mate uniformly at random (no
sexual preference, all individuals carry allele p). In a large population approximation, the
dynamics of Ap and ap individuals is in that case well approximated by the dynamical system:{

żAp = zAp(b− d− c(zAp + zap))
żap = zap(b− d− c(zAp + zap)).

This system admits an infinity of equilibria:

• (zAp, zap) = (0, 0), which is unstable

• (zAp, zap) = (ρ(b− d)/c, (1− ρ)(b− d)/c) for all ρ ∈ [0, 1], which are not hyperbolic.

We assume that at the time t = 0 of the first mutation, the resident population is at
equilibrium. This can be translated by(

NK
Ap(0)
K

,
NK

ap(0)
K

)
→

K→∞

(
ρA
b− d
c

, (1− ρA)b− d
c

)
,
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in probability with ρA > 1/2. The mutant carries an allele α ∈ A and(
NK

αP (0), NK
ᾱP (0)

)
= (1, 0).

Our first goal is to determine the conditions under which the mutant population has a
positive probability of surviving and invading this resident population. The classical approach
developed by [Cha06] relies on a coupling of the mutant population with a branching process.
This coupling requires to control the dynamics of the resident population during the invasion
phase, that is as long as the size of the mutant population is negligible with respect to
the carrying capacity K. Note that here the study of the resident population process is
more involved than in the previous references on similar questions (see for instance [Cha06,
CM11, BS17]) because the initial state of the population is not a globally asymptotically
stable equilibrium, since alleles A and a are initially neutral, therefore, results based on large
deviation for globally stable equilibria of dynamical systems [DE97] are not available. As a
consequence, the fluctuations around the initial state may be substantial and may be strongly
influenced by the presence of mutants, even in a small number.

In order to state rigorously our results, let us introduce different stopping times. The first
one gives the first time when the genetic proportions in the p-population deviate considerably
from their starting values: for any ε > 0,

Uε := inf
{
t ≥ 0,

∣∣∣∣∣N
K
Ap(t)

NK
p (t) −

NK
Ap(0)

NK
p (0)

∣∣∣∣∣ > ε

}
. (1.13)

The second one concerns the total p-population size: for any ε > 0,

Rε := inf
{
t ≥ 0,

∣∣∣∣∣NK
p (t)
K

− b− d
c

∣∣∣∣∣ > ε

}
. (1.14)

The last one handle the size of the mutant population: for any ε ≥ 0,

TP
ε := inf

{
t > 0, NK

P (t) = ⌊εK⌋
}
, (1.15)

where ⌊x⌋ is the integer part of x. Note that these stopping times depend on the scaling
parameter K, however, to avoid cumbersome notations, we drop the K dependency.

Using tools from stochastic calculus and Lyapunov type arguments, we obtain a strong
control of the size and proportions in the resident population. This requires an assumption
on the parameters, written as λ ̸= 0, which translates the fact that the mutant population is
not critical (further details will be given below).

Proposition 1.3.1. Assume λ ̸= 0. There exist two constants B0 and ε0, independent from
K, such that for any ε ≤ ε0,

lim inf
K→∞

P
(
TP

ε ∧ TP
0 < RB0ε ∧ Uε1/6

)
≥ 1− C(A0)ε1/12,

where C(B0) is a positive constant, independent from K.
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Meanwhile, we compare the dynamics of the mutant population with a bi-type branching
process N̄ = (N̄A, N̄a) admitting the following transition rates:

(N̄A, N̄a)→ (N̄A + 1, N̄a) at rate β̄AAN̄A + β̄aAN̄a

(N̄A, N̄a)→ (N̄A, N̄a + 1) at rate β̄AaN̄A + β̄aaN̄a

(N̄A, N̄a)→ (N̄A − 1, N̄a) at rate bN̄A

(N̄A, N̄a)→ (N̄A, N̄a − 1) at rate bN̄a,

(1.16)

where for α ∈ A, ᾱ ∈ A \ {α},

β̄αα := b

2

(
1 + (β1 + 1)ρα −

β2
2 ρᾱ

)
, β̄αᾱ := b

2

(
1− β2

2

)
ρᾱ, (1.17)

and

ρA := lim
K→∞

NK
Ap(0)

NK
p (0) = 1− ρa. (1.18)

are the initial proportions in the resident population. The rates of this branching process
have been obtained by considering the dynamics of (NK

AP , N
K
aP ) described by (1.10) and (1.11)

when (NK
Ap, N

K
ap) = (KρA

b−d
c ,K(1 − ρA) b−d

c ), NK = K b−d
c and the second order terms in

NK
AP and NK

aP are neglected. We denote the extinction probabilities of the process N̄ by

qα := P(∃t <∞, N̄(t) = 0|N̄(0) = eα), (1.19)

α ∈ A, eA = (1, 0) and ea = (0, 1), meaning that the process starts with only one individual
of type A or a. Classical results of branching process theory (see [AN72]) ensure that these
extinction probabilities correspond to the smallest solution to the system of equations

uA(sA, sa) := b(1− sA) + β̄AA(s2
A − sA) + β̄Aa(sAsa − sA) = 0 (1.20)

ua(sA, sa) := b(1− sa) + β̄aa(s2
a − sa) + β̄aA(sAsa − sa) = 0.

Moreover, the branching process N̄ is supercritical (i.e. qA and qa are not equal to one) if
and only if its mean matrix

J :=
(
β̄AA − b β̄Aa

β̄aA β̄aa − b

)
, (1.21)

has a positive eigenvalue that can be written as

β1 > β2 or ρA(1− ρA) < β1(β2 + 2)
2(β1 + β2)(β1 + 2) . (1.22)

We denote by λ the maximal eigenvalue of (1.21), which is thus positive when (1.22) holds
and will be of interest to quantify the time before invasion. Notice that J can be written
as b times a matrix only depending on (ρA, β1, β2). As a consequence, λ can be written
λ = bλ̃(ρA, β1, β2).
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If the mutant population invades and its size reaches order K, the population dynamics
enters a second phase during which it is well approximated by a deterministic large population
limit. More precisely, if we define the rescaled process

(ZK(t), t ≥ 0) :=
(
NK

AP (t)
K

,
NK

Ap(t)
K

,
NK

aP (t)
K

,
NK

ap(t)
K

, t ≥ 0
)
,

then it will be close to the solution of the dynamical system

żi = bi(z)− (d+ cz)zi, i ∈ G, (1.23)

where z = zAP +zAp +zaP +zap is the total size of the population and the functions (bi, i ∈ G)
have been defined in Equation (1.11). This dynamical system has a unique solution starting
from any point of R4

+, as the vector field is locally Lipschitz, and the solutions do not explode
in finite time [Chi06]. We denote by

(z(z0)(t), t ≥ 0) = (zAP (t), zAp(t), zaP (t), zap(t), t ≥ 0),

this unique solution starting from z(0) = z0 ∈ R4
+.

Let us stress that again unlike in [Cha06, CM11, BS17] but similarly as in the previous section,
the dynamical system arising as the limit of the rescaled population after the invasion phase
admits many (stable and unstable) fixed points and we need to identify precisely the four
dimensional zone reached by the rescaled population process after the invasion phase in order
to determine the convergence point of the dynamical system. We prove that starting from
on initial condition with a majority of A (or a) in the P and in the p populations (which will
actually be our case) the dynamical system converges to the equilibrium ((1+β1)bd/c, 0, 0, 0)
(or (0, (1 + β1)bd/c, 0, 0)). This corresponds to invasion and fixation of the mutant and ex-
tinction of the other phenotypes.
To conclude, it remains to control the phase where the aP , Ap and ap populations are negli-
gible with respect to K and the mean field approximation stops being a good approximation.
We will again compare the dynamics of the small population sizes with these of branching
processes (now subcritical). The birth and death rates of these branching processes will
provide the time to extinction of these small populations.

Combining all these steps, we are able to describe the invasion/extinction dynamics of
the mutant population, that is the subject of the main result of this paper. Let us introduce
some last notations: a set of interest for the rescaled process ZK , for any µ > 0

Sµ :=
[
b(1 + β1)− d

c
− µ, b(1 + β1)− d

c
+ µ

]
× {0} × {0} × {0}, (1.24)

a stopping time describing the time at which ZK reaches this set,

TSµ := inf{t ≥ 0,ZK(t) ∈ Sµ}. (1.25)

Recall that we defined in (1.15) the first time when the rescaled P -mutant population size
reaches any threshold (from below or above): for any ε ≥ 0,

TP
ε := inf

{
t > 0, NK

P (t) = ⌊εK⌋
}
,
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Theorem 1.3.2. Assume that λ ̸= 0,(
ZK

Ap(0), ZK
ap(0)

)
→

K→∞

(
ρA
b− d
c

, (1− ρA)b− d
c

)
,

in probability with ρA > 1/2 and that for some α ∈ A(
NK

αP (0), NK
ᾱP (0)

)
= (1, 0).

Then there exists a Bernoulli random variable B with parameter 1 − qα such that for any
0 < µ < (b(1 + β1)− d)/c:

lim
K→∞

(
TSµ ∧ TP

0
logK ,1{TSµ <T P

0 }

)
= B ×

(
1

bλ̃(ρA, β1, β2)
+ 2
bβ1

, 1
)
, (1.26)

where the convergence holds in probability.
Moreover,

1{T P
0 <TSµ }

∣∣∣∣∣
∣∣∣∣∣NK(TP

0 )
K

− (0, ρA, 0, 1− ρA)b− d
c

∣∣∣∣∣
∣∣∣∣∣
1
−→

K→∞
0 in probability, (1.27)

where ∥ · ∥1 stands for the L1−norm.

Notice that if condition (1.22) does not hold, qα = 1, and the convergence in (1.26) is
an almost sure convergence to (0, 0) meaning that the mutant population dies out in a time
smaller than logK. In this case, the allelic proportions in the resident population do not
vary.
Condition (1.22) gives two possible sufficient conditions for the mutant population to invade
with positive probability. The first one imposes that the trade-off between the advantage
for homogamous reproduction (β1) and the loss for heterogamous reproduction (β2) has to
be favourable enough. The second condition requires a low level of initial allelic diversity at
locus 1 (alleles A and a). In particular, even if the advantage for homogamy is very low, very
asymmetrical initial conditions (ρA close to 0 or 1) will ensure the invasion of the mutation
with positive probability. As expected, these conditions are the same as the conditions for
the approximating branching process N̄ defined in (1.16) to be supercritical. In fact, the
random variable B will be the indicator of survival of a version of N̄ coupled with the mutant
process.

Let us emphasize that our result ensures that when the mutant population invades (what-
ever allele a or A the first mutant carries), then the final population is monomorphic, and
all individuals carry the allele a or A that was in the majority in the resident p−population.
Only the mutant invasion probability depends on the allele a or A carried by the first P
individual.

We were not able to obtain an explicit formula in general for the extinction probability
qα of the assortative mating mutation, solutions of (1.20). Results obtained with the help
of the software Mathematica show a complex dependency with respect to the parameters.
We performed numerical simulations of the extinction probabilities (qA, qa) using Newton
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approximation scheme starting from (0, 0). We computed the values of qA as a function
of ρA for different values of β1 and β2. Using the symmetry of our model, we have that
qa(ρA) = qA(1 − ρA). We observe on Figure 1.3 that qA is a continuous function of ρA but
that it is not differentiable near criticality.
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Figure 1.3: Values of qA as a function of ρA for different values of β1 and β2. On the left,
β2 is fixed to 0.7 and β1 varies. On the right β1 is fixed to 0.2 and β2 varies. In both cases
b = 1.

1.4 Dissassortative mating and structure of communities

In the two previous sections, we studied assortative mating as a driving force in selection
mechanism. Here we are studying an opposite mechanism involved in maintaining diversity.
Selective mechanisms favouring the emergence and persistence of polymorphism within pop-
ulations are rare. Stochastic fluctuations in population densities generally limit the levels
and duration of polymorphism in natural populations. Classical population genetics studies
of the relative effects of genetic drift and selection regimes on the level of polymorphism.
Kimura and Crow [KC64] have highlighted the fact that heterozygote advantage is a power-
ful balancing selection mechanism that allows high levels of polymorphism to persist within
loci [LGT78]. This heterozygote advantage is often associated with mismatched pair prefer-
ences, with individuals tending to reproduce with partners with a phenotype different from
their own. This peculiar mating behaviour is promoted when heterozygous offspring benefit
from enhanced fitness, because disassortative pairs are then more likely to produce a fitter
progeny [MBJ+21]. This mate preference generates powerful sexual selection promoting poly-
morphism within the populations by enhancing the reproductive success of rare phenotypes.
In this section I present a work [CCL+23] in collaboration with Camille Coron, Hélène Le-
man, Violaine Llaurens and Charline Smadi that develops a unified theoretical framework to
explore how polymorphism at targeted loci can be generated and maintained by either disas-
sortative mating choice or balancing selection due to, for example, heterozygote advantage.

The individual based model We consider a population of haploid individuals charac-
terized by a single locus A: although disassortative mating can occur in both haploid and
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diploid species and may have complex genetic control, we rely on this simplified model to
provide analytical predictions on the selective pressure acting on the level of polymorphism.
Individuals reproduce sexually: they encounter mating partners uniformly at random and
each mating event leads to the birth of a new offspring, with a probability that depends on
the genotypes of both parents at locus A. We assume that crosses between individuals car-
rying different alleles at locus A (disassortative matings) have a greater reproductive success
than crosses between individuals sharing the same A-allele (assortative matings). Because
we use an haploid model, this difference in reproductive success among the different pairs of
parents may account for disassortative sexual preferences, but is also akin to models where
the survival probability of an offspring produced by parents with different alleles at the A
locus is higher (i.e. heterozygote advantage benefiting the offspring).

We assume k possible alleles at locus A in the population (denoted 1, 2, ..., k) and no
mutation. We then consider Mendelian segregation of alleles during the crosses, so that the
haploid offspring inherits one allele from one of its parents, chosen uniformly at random.
All individuals have the same natural death rate d, and may also die from competition
with other individuals, at a rate proportional to a competition parameter c > 0 and to the
population density. The population is characterized at each time t by the respective density
of individuals carrying each allele. We use an infinite population size assumption (as in
[SLL18]): we then model the dynamics of this population using a deterministic dynamical
system, that can be obtained as the large-population limit of a stochastic birth-and-death
process. Let us then denote by zi(t) the density represented by allele i in the population at
time t ≥ 0. Then, the vector of functions (z1(t), z2(t), ..., zk(t))t≥0 is the unique solution of
the following differential equations

żi(t) = zi(t)

 k∑
j=1

βipij + βjpji

2
zj(t)
z(t) − d− cz(t)

 , i ∈ {1, ..., k}, t ≥ 0 (1.28)

starting from (z1(0), ..., zk(0)) ∈ Rk
+, where for each t > 0, z(t) =

∑k
i=1 zi(t) is the total

population density at time t. The parameter βi for i ∈ {1, ..., k} is the rate at which an
individual of type i (called first parent) mates, the second parent being chosen uniformly in
the population. Each reproduction leads to the birth of a new individual with probability pij ,
where i is the allele carried by the first parent and j the allele carried by the second parent.
The parameters pij therefore depend on both parents and model compatibility between them
(with respect to either mate choice or offspring fitness), whereas the parameters βi depend
only on the genotype of the "first" parent and measures the rate at which a given genotype
initiates reproduction. Note in particular that one can have one-sided incompatibilities, for
which pij = 0 but pji > 0.

We introduce the parameter

b := inf
1≤i,j≤k

βipij + βjpji

2 ,

later called birth rate, and assume that b > 0, implying the impossibility of having strict
genetic incompatibilities between some pair of alleles. Introducing incompatibilities may
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however be possible and further studies could be performed using similar computations. For
(i, j) ∈ {1, ..., k}2, we also introduce

sij := βipij + βjpji

2b − 1,

For each i, j ∈ {1, .., k} the parameter sij may thus be interpreted as the selective advantage
of a pair of parents with genotypes i and j respectively. Note that by construction sij = sji

is positive or null. We highlight that the condition sij = 0 does not correspond to a strict
reproductive incompatibility of the pair (i, j) but to case where the pair (i, j) has the minimal
birth rate in the population.
We may rewrite (1.28) as

żi(t) = zi(t)

b k∑
j=1

(1 + sij)zj(t)
z(t) − d− cz(t)

 . (1.29)

To maintain the population, we then always assume that

b ≥ d > 0. (1.30)

Conditions for maintaining allelic polymorphism We first give conditions on the
selective advantage of each pair of genotypes under which allelic diversity is maintained.
Mathematically speaking, this diversity is preserved when the system (1.29) admits a positive
equilibrium, and when the population converges towards this equilibrium. Our conditions
depend on the matrix M of selective advantages:

M :=


s11 s12 s13 ... s1k

s12 s22 s23 ... s2k

... ... ... ... ...

s1k s2k ... sk−1,k skk

 , (1.31)

and we say that a vector is positive (> 0) if all its coordinates are positive.

Proposition 1.4.1. Assume that det(M) ̸= 0 and

M−11 > 0, where 1 =

 1
...

1

 . (1.32)

The System (1.29) admits a unique positive equilibrium

Z∗ := 1
c

(
b+ b

1TM−11 − d
)

M−11
1TM−11 , (1.33)

where 1T is the transpose of vector 1.
Furthermore, starting from any positive initial allelic distribution, the population will converge
to this equilibrium if and only if the matrix M has exactly 1 positive eigenvalue and k − 1
negative eigenvalues.
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This proposition gives a condition on the selective advantage parameters sij under which
allelic diversity will be maintained. However, in the case where the matrix M has 2 or more
positive eigenvalues, we cannot characterize the limiting allelic composition of the popula-
tion. Note that the condition in Proposition 1.4.1 depends neither on the birth rate b, nor
on the death rate d, nor on the competition term c, but only on the disassortative advantage
parameters sij , ultimately modulating the reproductive success associated with the different
allelic pairs (this is true because we assume that b > d). Note that given a matrix M of selec-
tive advantages, Condition (1.32) can be easily verified numerically. Therefore, considering
a specific model for the distribution of selective advantages, one might explore how many
different alleles can be maintained in the long term (see Section 1.4.1 for an example).

From our general model, we indeed retrieve classical conditions for the maintenance of
a large number of alleles at overdominant loci: we confirm that a large number of alleles
can be maintained within a population when the advantages associated with the different
dissassortative pairs (akin to the different heterozygote advantages in diploid models exploring
overdominance) are close to each other. Our disassortative advantage sij corresponds to the
fitness of the genotype AiAj denoted by Wij in [LGT78].

Investigating the origin of polymorphism using successive introductions of mu-
tants To investigate the impact of the order of appearance of the mutations on the level
of polymorphism, we assume that new alleles can arise in a population where one or sev-
eral alleles already coexist. We thus refer to the new arising allele as a mutant and to the
pre-existing alleles as resident alleles. We consider that mutations are rare enough so that
the resident population reaches its equilibrium between two mutational events. We therefore
aim at studying the fate of successive and non-simultaneous mutations in the population.
We search for conditions on the mating success of the mutant allele when paired with the
different resident alleles, such that the mutant allele can successfully invade and persist in
the population.

We thus consider a population with k alleles whose disassortative advantage matrix is
denoted by M as previously. We assume that M satisfies the conditions of Proposition 1.4.1,
that ensure that the k alleles remain in the population for all times, as long as no mutation
appears.
A mutant is characterized by new disassortative advantages ST = (sk+1,1, sk+1,2, ..., sk+1,k)
and σ = sk+1,k+1. We obtain that the condition for a mutant to invade is

STM−11 > 1. (1.34)

Once the mutant invades the population, it can modify the evolutionary fate of the resident
alleles. We thus investigate the effect of the mutant invasion on the number of alternative
alleles maintained. We are able to give a necessary and sufficient condition under which a
mutant invasion leads to a population with k + 1 alleles maintained, i.e. to an increased
allelic diversity. Let us consider the new selective matrix

M̄ =
(
M S

ST σ

)
,
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where S is the transpose of the line vector ST , characterizing the population with k+1 alleles.
Proposition 1.4.1 tells us that there exists a (k + 1)-alleles equilibrium if M̄−11 > 0. If the
mutant satisfies the invasion condition (1.34), the associated (k + 1)-type equilibrium is also
globally asymptotically stable whenever it exists (see [CCL+23] for details).

In the general case, we do not know the long time behaviour of the population when the
equilibrium with all k+ 1 alleles does not exist; however it can be detailed in the simple case
of two resident alleles or it can be studied using numerical simulations.

1.4.1 Investigating the levels of allelic differentiation maintained within a
population

In natural populations, dissassortative advantage is likely to be shaped by the level of genetic
differentiation associated with the different allelic pairs. In this second part of our study,
we thus explicitly consider the effect of genetic differentiation on parameters describing the
selective advantages, by assuming that the advantage associated with a disassortative pair
is defined as an increasing function of the genetic distance between the two alleles. We
specifically test different shapes of this function, and investigate their impact on the level of
polymorphism maintained at locus A.

Modelling the link between genetic distance among alleles and their disassorta-
tive mating success To investigate the levels of differentiation among alleles that can be
maintained within a population, we now consider an extension of the previous model: we as-
sume that allelic dissimilarity has a positive effect on the selective advantages of the different
disassortative mating pairs.
In this framework, the set of possible alleles is {0, 1}L, where L is the number of sites where
mutations can occur in a locus A (fig. 1.4). This hypothesis is relevant for modelling actual
loci targeted by disassortative mate choice, such as the MHC in vertebrates [SMP+19].
We assume that the genetic distance between alleles carried by the parents modifies the re-
productive success of disassortative pairs (fig. 1.4). We assume that the distance d(x, y)
between two alleles x = (x1, ..., xL) ∈ {0, 1}L and y = (y1, ..., yL) ∈ {0, 1}L is defined by
d(x, y) =

∑L
i=1 1xi ̸=yi

. The higher the distance between x and y, the higher the reproductive
success of pairs of individuals with respective alleles x and y. We introduce an increasing
non-negative function f on R+, such that sxy = f(d(x, y)), where we recall that sxy ≥ 0 is
the selective advantage associated to pairs of parents with alleles x and y respectively and
that it quantifies the probability for this pair of individuals to mate and produce a viable
progeny. Here, we assume that the function f is a power function (f(x) = xα with α > 0).
In particular the selection coefficient increases with the genetic distance, and the power α
modulates this relationship.

Role of α We first examine the stability of two specific final population states, chosen as
the two most extreme levels of polymorphism: (1) a final population with all possible alleles
maintained, and (2) a final population with only the two most differentiated alleles main-
tained.
Whatever the number of possible sites L at locus A, we find that the equilibrium with all
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Figure 1.4: Mutation sizes and their effects on the disassortative advantage. Panel
(a): The locus A contains L sites where mutations can occur. We model either point mu-
tations, whereby one mutation leads to a change at a single site or other mutation kernels,
where a mutation event can simultaneously affect several sites within the locus A. Panel (b):
the number of sites differing between alleles in a parental pair will influence the disassortative
advantage in reproduction for this pair. The parameter α then determines the shape of the
function, i.e. how much the distance between alleles enhances the reproductive success of the
pair. Note that in our model, we thus distinguished the size of the mutation (i.e. number of
differing sites) from the effect of the mutations on fitness (i.e. the effect of genetic distance
between alleles on the reproductive success).

possible alleles maintained in the population always exists. Indeed, each allele has the same
number of alleles at distances 1, 2, · · · , L and thus the condition M−11 > 0 reduces to a single
vector of conditions that is always satisfied. However, using numerical simulations, we show
that this equilibrium is only locally and globally stable when α < 1. In fact, according to the
Proposition 1.4.1, the global stability depends on the sign of the second largest eigenvalues
of the matrix M , which is easy to compute numerically, even if it cannot be studied by the-
oretical arguments.
We then explore the conditions leading to a final population composed of two alleles at max-
imal genetic distance L, i.e. A1 = (0, · · · , 0) and A2 = (1, · · · , 1). The selective advantage
enjoyed in crosses between parents carrying these two alleles is s = f(L). We then investigate
whether a third allele might invade this population and modify the distribution of alleles.
We introduce a third allele A3 ∈ {0, 1}L \ {A1, A2}. This allele is at distance x from A1 and
L − x from A2 for some x ∈ {1, · · ·L − 1}. Using the monotonicity of f , we deduce that
the invasion condition of the mutant A3 and the condition for existence and stability of a
population with the three alleles can be reduced to

f(L) < f(x) + f(L− x).

As a consequence, for α ≥ 1 the population with the two most differentiated alleles cannot
be invaded by any new allele.

These highly-contrasted case-studies illustrate a phase transition in stability that occurs
when α = 1 enlightening the role of the form of the genotype-to-reproductive advantage
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function f in stability patterns. When α < 1, all alleles can be maintained simultaneously,
while for α ≥ 1 a population with the two most differentiated alleles corresponds to an
evolutionary stable equilibrium.

Emergence of allelic diversity We aim at exploring how allelic diversity might emerge
from multiple rounds of mutant invasions. We first assume that each mutation affects only
one site within the locus A, which is then shifted towards the opposite value. More precisely,
when an offspring is born, it is either identical to one of its parents, or it differs from one of its
parental alleles at exactly one site.We observe two different evolutionary outcomes depending
on the shape of the genotype-to-reproductive advantage function f , determined by the value
of α, as detailed below.

Case α < 1. From the results above, we already know that for α < 1:

1. Any resident population with two alleles A1 and A2 can be invaded by any new mutant
B at distance 1 of either A1 or A2 and will lead to a population with 3 alleles.

2. The population with all possible alleles maintained exists and is stable.

However, we have no theoretical evidence that successive introductions of mutants will actu-
ally lead to the population maintaining a large number of alleles each having another allele
at distance 1. We thus numerically explore the successive invasions of mutations.
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Figure 1.5: Evolution of the number of alleles maintained in the population, as-
suming point mutations and convex shape of the function determining the fitness
of allelic pairs (α ≤ 1). From an initial population with two alleles, we numerically in-
duce successive mutations and track their invasion success through time. Panel (a) shows
the distribution of alleles in the population through time. Each color corresponds to a given
allele and the height of the bar is the number of individuals carrying each allele within the
population at a each time. Panel (b) gives number of alleles maintained at equilibrium after
each mutation until the total number of alleles is reached. Each line corresponds to a different
numerical simulation (n = 6). Here L = 6 and α = 0.6 such that there are 26 = 64 possible
alleles.
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Figure 1.5 illustrates the contrasted evolutionary fates followed by the introduced mu-
tants: the mutant can either go extinct rapidly if its fitness is negative, or it can invade the
population. If it invades, it either co-exists with all resident alleles or triggers the loss of one
or several resident alleles. The right panel (Fig. 1.5A) explicitly shows the allelic turn-over
through time, suggesting that the number of alleles can be high but may also strongly vary
through time in natural populations. Note that the different alleles do not have the same
frequency in the population, even when the number of alleles maintained is large.

Figure 1.5B then highlights that, after a sufficiently large number of mutations, all possible
alleles are maintained in the population. We furthermore observe that when the number of
coexisting alleles reaches a sufficiently high level, any new mutant invades and increases the
allelic diversity.

Genotype-to-reproductive advantage function where disassortative advantage is
always enhanced when differentiation between allele increases (α ≥ 1) . For α ≥ 1
we have shown that only two alleles can coexist in the population through time, meaning
that any mutant invasion leads to the extinction of one out of the two resident alleles. We
assume that the initial population is composed of two alleles A1 and A2 at distance x. When
a mutant A3 arises, it is at distance 1 of its parental allele (say A1 by symmetry) and at
distance x+ 1 or x− 1 of the other parental allele A2. This particular property arises from
the choice of the mutation kernel (see the section below on the influence of the mutation
kernel).

When assuming that the mutant is at distance x−1 from A2, the invasion condition reads
1 + (x − 1)α − xα > 0, and is thus never true for α ≥ 1. Therefore, a mutant allele closer
to the resident allele A2 than to the resident allele A1 can never invade the population. In
contrast, when assuming that the mutant is at distance x + 1 from A2, then the invasion
condition reads 1 + (x + 1)α − xα > 0 and is always true, since x 7→ xα is increasing for
α > 0. We can deduce that, when the mutant allele invades, the allele A1 is eliminated from
the population. The resulting population is then composed of the two most differentiated
alleles A2 and A3 at distance x + 1. In case of successive emergence of new alleles by point
mutations, we thus observe increasing distances between the pairs of alleles maintained in
the evolving population. This result goes further than the global stability of the population
formed of the two most differentiated alleles: it proves that starting from any initial couple
of alleles, the successive mutations always increase the genetic distances between the two
surviving alleles. As a consequence, after a sufficient number of mutations, the population
will be composed of two alleles at distance L.

Note that this general result may be modified if mutations can affect several sites at once.
In [CCL+21] we develop an example showing that, with a mutation kernel allowing large
mutations, coexistence of more than two alleles can be observed, even if α ≥ 1.

Perspectives

In this work we have developed a unified framework for modelling the evolution of mating
patterns in populations and the consequences for the community structure. Many questions
remain open from our work. A first question would be to consider that mating preference
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acts on a cue locus rather than in a self-referencing manner, and to study the conditions for
invasion of such a preference. A second question would be to consider that mating preference
acts on a locus targeted by selection. There is much work in the population genetics literature
on this second question, but the model used considers the evolution of genotype frequencies
in an infinite population (see among others [SB14][MBJ+21][OSN08]) where we consider the
demographic dynamics. Incorporating stochastic population size dynamics should alter evo-
lutionary trajectories by introducing drift, which can have a large effect on small populations.
Barton and Otto [BO05] showed that genetic drift causes a delay in the fixation of beneficial
mutations. The question of its effect in the context of mating preferences is an interesting
line of research that I am starting to work on with Thomas Aubier (EDB, CNRS, Toulouse).
This question is also closely related to the work presented in the next chapter, section 2.3.
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Chapter 2

Stochastic models for Ecology II
Recent perspectives on different models

The goal of this section is to present questions motivated by ecology or biology that I would
like to study in the next years. It is based both on published or submitted works and on on
going discussions with colleagues.

2.1 Matching types prey-predators models

In a wide range continuity of my PhD work , I am studying with Raphaël Forien and Pete
Czuppon a matching type prey-predator system with polynomial mutation. The main mo-
tivation for this work is to study the co-evolutionary dynamics of predator-prey or host-
parasite systems that are often described as Red Queen dynamics. The Red Queen dynam-
ics, or arm race describe a persisting co-adaptation of prey and predator species to survive
[MLC92, DML95]. This phenomenon is usually associated with oscillations in genotype or
phenotype due to selection that favors rare types. These co-evolutionary oscillations are
predicted theoretically, e.g. [SST20], but are difficult to validate empirically, though some
evidence in host-parasite and host-pathogen systems exists [LFDE13, PGY+18]. To be more
precise, we want to explore under what conditions, the prey-predator interaction could me-
diate the existence of changes in the types of most present prey and predator phenotypes.
In order to have the most simple model as possible, we chose to focus on a matching type
interaction [DJN14], that is to consider two types of preys and two types of predators denoted
by 0 or 1, and suppose that predator 1 feeds only on prey 1 and similarly for predator 0. We
also assume that the types of preys and predators are neutral with respect to the environment
that means that natural birth and death rate as well as logistic competition are the same
independently of the phenotype.

Individual based model and scaling We model the community as a multi-type birth
and death process with interaction and mutations. For t ≥ 0 and i ∈ {0, 1}, let NK

i (t)
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(resp. HK
i (t)) denote the number of preys (resp. predators) of type i alive at time t. The

parameter K scales the total size of the population as in the previous chapter. In order
to handle different scalings that might exist between the prey and the predator populations
(think for example to trees insect interactions), we assume that there exists a parameter
m > 0 such that the prey population scales as K and the predator population as Km.

Each prey of type i ∈ {0, 1} produces a new offspring at rate b > 0 and dies at rate

d+ c

K
[NK

0 (t) +NK
1 (t)] + p

Km
HK

i (t),

where d > 0 denotes the natural death rate, c > 0 the competition and p > 0 the predation
rate. Each new prey is either of the same type as its parent (with probability 1− vK), or of
the other type (with probability vK), for some vK ∈ (0, 1).

Each predator of type j ∈ {0, 1} produces a new offspring at rate

β + ρ

K
NK

j (t),

that includes natural birth at rate β > 0 and the positive effect from predation at rate ρ > 0.
Each predator dies at rate δ+ γ

KmHK(t), composed of a natural death rate δ > 0 and a logistic
competition rate γ > 0. Moreover, each new predator inherits the type of its parent with
probability 1− ϑK , or mutates to the other type with probability ϑK , for some ϑK ∈ (0, 1).

We denote by (ZK(t), t ≥ 0) the pure jump Markov process taking values in N4 that
describes the behaviour of the total population:

ZK(t) = (NK
0 (t), NK

1 (t), HK
0 (t), HK

1 (t)).

These assumptions imply that the typical size of the prey (resp. predator) population is K
(resp Km). We will therefore say that a prey (resp. predator) population is at a macroscopic
level when it is of order K (resp. Km), and is at a microscopic level otherwise.

A first limit of interest corresponds to the large population limit with K → ∞ and
vanishing mutations µK , ϑK → 0. The rescaled stochastic process

(ZK
sc(t), t ≥ 0) =

(
NK

0 (t)
K

,
NK

1 (t)
K

,
HK

0 (t)
Km

,
HK

1 (t)
Km

)
, (2.1)

then converges in law to the solution of the dynamical system

dn0(t)
dt

= n0(t)(b− d− c(n0(t) + n1(t))− ph0(t))

dn1(t)
dt

= n1(t)(b− d− c(n0(t) + n1(t))− ph1(t))

dh0(t)
dt

= h0(t)(β − δ − γ(h0(t) + h1(t)) + ρn0(t))

dh1(t)
dt

= h1(t)(β − δ − γ(h0(t) + h1(t)) + ρn1(t))

. (2.2)

One difficulty in our analysis arises from the perfect symmetry of the ODE system that
consequently contains an infinite number of equilibria:

• the null equilibria
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• non matching equilibria (n̄, 0, 0, h̄) and (0, n̄, h̄, 0), where n̄ = (b− d)/c,h̄ = (β − δ)/γ

• an infinite line of equilibria with two preys or two predators (αn̄, (1−α)n̄, 0, 0), or two
predators (0, 0, αh̄, (1− α)h̄) for α ∈ [0, 1],

• matching-type equilibria (n̂, 0, ĥ, 0) and (0, n̂, 0, ĥ) with

n̂ =
n̄− p

c h̄

1 + pρ
cγ

, ĥ =
h̄+ ρ

γ n̄

1 + pρ
cγ

. (2.3)

• an unique four type equilibrium z∗ = (n∗, n∗, h∗, h∗) where

n∗ =
2n̄− p

c h̄

4 + pρ
cγ

, h∗ =
2h̄+ ρ

γ n̄

4 + pρ
cγ

. (2.4)

Note that depending on the parameters, these equilibria might not lie in (R+)4.
In order to observe long time changes in the phenotypic composition of the community,

we consider a polynomial mutation scale very different from the adaptive dynamics setting:

vK = 1
Kv

, ϑK = 1
Kmϑ

,

with v and ϑ are in (0, 1). This scaling corresponds to rapid mutations since when a population
is macroscopic, the number of mutations stemming from this population will be of the order
of K1−v or Km(v−1) growing to ∞ as K →∞. Such a scaling has been introduced by Durett
and Mayberry [DM11] and further developed by [BCS19, CMT21, CKS21] notably and allows
to follow the dynamics of populations with different sizes: macroscopic populations (of size of
order K for preys or Km for predators) will be compared to solutions of differential equations,
while microscopic population (of size of order smaller than K for preys or Km for predators)
will be studied using comparisons with branching processes. In order to give some intuition
on the dynamics during invasion, let consider a branching birth and death process Ut with
growth rate r = b− d and initial condition Ka. It is well known that Ute

−rt is a martingale,
such that

E(Ut) = ertE(U0) = ertKa.

As a consequence, on the log(K) time scale

E(Ut log(K)) = ert log(K)Ka = Ka+rt.

We see here that in expectation, log(E(Ut log(K))) evolves linearly with times, and actually a
similar convergence holds in probability for the stochastic process log(Ut log(K) + 1)/log(K)
[CMT21].

The main idea is thus to study the dynamics of the population through the logarithmic
exponents defined as

XK
i (t) := log(1 +NK

i (t))
log(K) , Y K

i (t) := log(1 +HK
i (t))

m log(K) , i ∈ {0, 1}. (2.5)
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This means that XK
i (t) ≥ 0 and Y K

i (t) ≥ 0 are such that

NK
i (t) = KXK

i (t) − 1, HK
i (t) = KmY K

i (t) − 1.

We prove, in our case that the logarithmic exponents ((XK
i (t log(K)), Y K

i (t logK))i∈{0,1}, t ∈
[0, T ]) converge in probability toward a deterministic piecewise linear limit ((xi(t), yi(t))i∈{0,1}, t ∈
[0, T ]) taking values in (0, 1]4. Population with exponent 1 corresponds to the macroscopic
population and will still be compared with solutions of ODE systems, while smaller exponents
corresponds to microscopic population and will grow or decay linearly with time depending
on their fitness (or growth rate) in the resident equilibrium. The limiting process can the be
constructed recursively on time intervals corresponding to successive invasions of microscopic
populations. An invasion lasts the time for a microscopic growing population to reach a
macroscopic size or in the limit, for its logarithmic exponent to reach 1.

Rapid overview of the different cases I will not present in detail all the patterns that
can be observed nor the proofs that are (not always direct) adaptations of previous works
[CM11][BCS19], but I’ll focus on two cases for which we can prove that the invasion time
accumulate in finite time.

Case A - In the first case, all equilibria presented above are positive. This corresponds to
choosing β − δ > 0 and h̄ < cn̄/p. Let us denote by z̄0,1 = (n̄, 0, 0, h̄) and z̄1,0 = (0, n̄, h̄, 0)
the two equilibria featuring a prey population and a non-matching predator population.
Similarly, let ẑ0 = (n̂, 0, ĥ, 0) and ẑ1 = (0, n̂, 0, ĥ) denote the two equilibria consisting of a
prey population and the matching predator population.
We observe that in this case, the successive invasions will lead to cyclic dynamics of the
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equilibrium with the successive states

ẑ0 −→ z̄1,0
↑ ↓
z̄0,1 ←− ẑ1

Indeed, when the non matching type coexists at the macroscopic level, the matching preda-

t

xi(t), yi(t)

1

1− v
1− ϑ

x1(t)
x0(t)

y1(t)
y0(t)

s1 s2 s3 s4 s5

Figure 2.1: A trajectory of the limiting exponents in case A. Solid lines corresponds to
the exponents of the prey populations while dashed lines are for predators. The colors are
associated with types.

tor invades because its prey is abundant while the second prey decays since its predator is
abundant. On the contrary, when the matching prey-predator types have macroscopic size,
then the second prey can invade since it does no suffer predation and the associated predator
decays due to competition with the resident predator.

The situation is illustrated in figure 2.1. The associated slopes depend on whether the
resident equilibrium is composed of matching or non-matching predator-prey types. These
cycles look like red queen dynamics, but we can show that the limiting process accumulates
to 1 in finite time, suggesting that logistic competition prevents these cycles from continuing
ad infinitum.

Case B - In a second case, we assume β − δ > 0 and cn̄/p < h̄ < 2cn̄/p which corresponds
to the case where the matching type equilibrium is negative but not the other ones. Here,
when two predators and a prey coexists at a macroscopic level, the associated deterministic
dynamics drives prey to extinction and the two predator types coexists at some proportion.
We then observe successive invasion of preys whose type corresponds to the less abundant
predators (see figure 2.2).

Note here, that after each prey invasion, the number of prey remains microscopic and the
proportions of predators change. We can also prove that these invasion accumulate in finite
time on the deterministic model.

Perspectives A main unresolved question here is what happen to the stochastic system
after accumulation time, that is when all the exponents are close to 1. In both cases A and B
presented above the four type equilibrium z∗ exists and is globally asymptotically stable from
positive initial condition, therefore we might expect that the four exponents remain equal to
1 and the associated population sizes remain close to z∗. However the mathematical proof
requires to control the evolution of the four types dynamical system (2.2) from an initial
condition of the form (Kn̄,K1−η,K1−η,Kh̄)and to prove that they reach a neighbourhood
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t
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Figure 2.2: Case B. The above Figure represents a typical trajectory of the limiting process
(x0, x1, y0, y1) in case B. The three graphs on the second line are the solutions of the dynamical
system associated with the macroscopic populations at time s1, s2, s3. A prey can only invade
if the proportion of its matching predator is less than αc that is greater than 1/2 in this case.

of z∗ in a time of order η log(K) for small values of η. This question is difficult, in particular
because standard Lyapunov functions associated to Lotka-Volterra system are degenerated
due to the symmetry of (2.2). We conclude this section with a numerical simulation of the
deterministic system with mutations for a large K.
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2.2 Oncological viruses

In this section I will present a joint work with Jérôme Fehrenbach (IMT) and Pierre Cordelier
[CCF22] who is an oncologist at the CRCT Toulouse.
An oncolytic virus (OV) is a virus that has the potential to selectively kill tumour cells.
The key phenomenon is that this virus replicates inside the tumour cell and upon lysis (cell
destruction), a large number of virus copies are released to infect other cells. The action of
OVs was reported as early as the mid-twentieth century [KR07], and the first OV for the
treatment of head and neck cancer was approved in China in 2005 and then by the FDA and
EMA in 2015 for herpes simplex virus (HSV)-based virotherapy for melanoma. More than
80 clinical trials were included in the review [SHK+17]. However, many questions remain
about the optimal parameters for an OV to achieve its goal, and the design and testing of
OVs is an active area of research. With Jérôme Fehrenbach, we consider an ODE system for
the population of uninfected and infected cancer cells and of free viruses, close to previous
models [BCJ+08, BKL+10, Wod03], and explore optimal strategies for virus injection that
allow to control the proliferation of the cancer. We focus on the case where the virus dynamics
is faster than the cell dynamics and model the treatment as a large injection of viruses at
different times.

Let us specify the model. Let z(t) be the amount of free virus. We differentiate the cancer
cells according to whether they are infected by viruses or not, and denote by x(t) the number
of cancer cells not infected by viruses, and y(t) the number of cancer cells infected by viruses.

Tumor
cells
x(t)

Infected
tumor
cells
y(t)

Free 
viruses z(t)

Infection

Lysis : release of free 
viruses

Growth, 
logistic

competition

+

Figure 2.3: Schematic representation of the dynamics of the OV system.

We assume that uninfected cancer cells grow according to a logistic law, with a growth
rate of µ and a carrying capacity of 1. The unit for tumour cells is thus equal to the carrying
capacity. These cells then become infected tumour cells at a rate proportional to the amount
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of free virus, and we denote the infection rate by λ. Note that in our model the logistic
growth is only limited by the number x of non-infected cancer cells and not by the total
number x + y of (infected and non-infected) cancer cells. This choice amounts to assuming
that the growth limitation is mainly due to resource consumption, since in our model the
infected cells y do not grow and cannot consume resources.
We assume that infected tumour cells y(t) are lysed at a rate γ. Finally, free virus is used
to infect cancer cells at a rate proportional to the number of cells. The unit for measuring
free virus has been chosen so that the amount of virus needed to infect one cell is 1, so a
proportion λx(t) of virus disappears due to new infections. Free virus is released into the
system when an infected cell is lysed, and the parameter N scales the amount released by
each lysed infected cell. We also assume that viruses are cleared by the immune system and
spread at a rate δ. In the following we will assume that the dynamics of the viruses is fast
compared to the dynamics of the tumour cells, which is modeled by the parameter ϵ.

d

dt
xϵ(t) = −λxϵ(t)zϵ(t) + µxϵ(t)(1− xϵ(t)),

d

dt
yϵ(t) = λxϵ(t)zϵ(t)− γyϵ(t),

ϵ
d

dt
zϵ(t) = −λxϵ(t)zϵ(t) +Nγyϵ(t)− δzϵ(t).

(2.6)

We expect that as ϵ → 0, the virus’ dynamics would be infinitely faster and the system can
be described by a two species system where the virus population is always at equilibrium

z0(t) = Nγy0(t)
λx0(t) + δ

. (2.7)

By replacing in the other equations one obtains the following two species model:
d

dt
x0(t) = −λNγx0(t)y0(t)

λx0(t) + δ
+ µx0(t)(1− x0(t)),

d

dt
y0(t) = λNγx0(t)y0(t)

λx0(t) + δ
− γy0(t).

(2.8)

Treatment modelling The treatment amounts to add to the system a quantity V of
viruses at the time t0. A protocol composed of successive administrations of virus is described
by the administration of different quantities V0, V1, . . . Vk at the instants t0, t1, . . . tk.

For the slow-fast system (2.6), the treatment is modeled by adding a source term in the
equation for zϵ that is a Dirac in time at t = t0.

ϵ
d

dt
zϵ(t) = −λxϵ(t)zϵ(t) +Nγyϵ(t)− δzϵ(t) +Dt=t0V,

The main issue in this part is that the amount of virus at initial time explodes as ϵ→ 0
such that standard results do not apply. We have do deal with a singular perturbation (i.e.
of order 1/ϵ) of a singular system. The strategy here consist in proving that this burst
induces in the limit system an instantaneous change in the amount of cancer cells, while
the quantity of viruses rapidly decreases towards its equilibrium value. This phenomenon is
called a boundary layer [LL54].
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Theorem 2.2.1. Let (x̄ϵ, ȳϵz̄ϵ) be the solution of the slow-fast system (2.6) starting from
(x(t0), y(t0), z(t0) + V

ϵ ) and (xQ
0 , y

Q
0 , z

Q
0 ) the solutions of (2.8)-(2.7) with initial condition

(x(t0)−Q, y(t0) +Q). Assume that the positive constant Q is defined as

Q = V − δ
∫ ∞

0
Z0(s)ds, (2.9)

and solves the implicit equation

Q+ x0(t0) exp(β(Q− V )) = x0(t0), (2.10)

then, the difference
|(x̄ϵ, ȳϵ, z̄ϵ)− (xQ

0 , y
Q
0 , z

Q
0 )|

vanishes as ϵ→ 0 uniformly on any time interval [t, T ] with T > t > t0.

We then explored numerically different treatment strategies

• The first possible objective is to cure completely the cancer, which amounts to reach the
equilibrium (0, 0). A more realistic objective [BKL+10] would be to reach the region
{x ≤ η} where η is a small constant (say η = 10−8) so that x ≤ η in our continuous
modelling amounts to saying that the number of tumour cells is below 1, or the number
of tumour cells is so small that an alternative therapy such as tumour resection should
have a great probability of success.

• The second possible objective is to reach the endemic equilibrium (when it is stable), or
the limit cycle that loops around the endemic equilibrium (when it is unstable). This
amounts to control the volume of the tumour, so that it stays at a reasonable load.
This strategy is adapted when the tumour load at the endemic equilibrium (x∗, y∗) is
bearable, which means that x∗ is small.

Perspectives From a mathematical point of view the model as coupled ODE is not com-
pletely convincing since we are interested in the case where both viruses or cells can be scarce,
therefore a question is the construction of a stochastic process. A natural way to model the
dynamics would be to consider that the cancer cells divide according to a linear branching
process and can be infected by viruses that change their reproduction behaviour. Moreover,
the viruses can proliferate inside a cancer cell driving it to burst. Stochastic models for growth
fragmentation of infected cells have been developed by [Kim97, Ban08, Ban09] and studied
in the recent years by [MS24, MS21] including complex pattern in the dependence of the
division rate with the infection level or death of infected cells. A main question in extending
these models for oncolytic virus is to take interactions into account as the death of infected
cells increases the chance of new infections which would correspond to the appearance of
"migrant" cells with low levels of infection.

2.3 Perspectives on impact of drift in some population genet-
ics models

Recently, I started a project with Alphonse Emakoua (IMAG Montpellier), Sylvain Gandon
(CEFE Montpellier) and Sepideh Mirrahimi (IMAG, IMT) on multi-drug resistance, which
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is a challenging issue for public health. Our work is motivated by the question of how to
develop new ways of using our arsenal of antibiotics to slow the spread of resistance and
maintain the efficacy of treatments. One promising strategy is the cyclical use of different
types of antibiotics. Mathematical models have been proposed to explore the effectiveness
of this strategy [BPM10, BPMGI17, BLL04, BLL97], but most of these papers exclude the
possibility of multiple resistance and neglect the effect of demographic stochasticity. These
two factors, however, have critical evolutionary consequences: (1) the emergence of multiple
resistance can undermine the efficiency of antibiotics, (2) in certain treatment strategies,
stochasticity can lead to the extinction of resistant genotypes and extend the efficacy of
drugs. We aim to develop a model that takes these factors into account in order to better
characterize the consequences of different treatment strategies and to identify those that will
allow sustainable control of infections.

We first built an individual-based epidemiological model of the form SIS (Susceptible-
Infected-Susceptible) including Mendelian reproduction. We assume that resistance can be
observed at two different loci, each with two alleles A/a and B/b. Both alleles A and B

encode resistance and have a selective advantage. The numerical simulation shows that for
a fixed but large population size, the invasion of the advantageous allele is slower in the
stochastic model than in its deterministic large population limit. This is due to randomness
interfering with advantageous alleles and creating negative linkage disequilibrium. Such a
phenomenon has been described in a much simpler model by Hill Robertson and Barton and
Otto [BO05], where the population size is fixed over time. To understand this lag, [MG21]
recently emphasized the crucial role of linkage disequilibrium in the dynamics of multiple
resistance.

A first step in this work is to specify the approximations of [BO05] that give expression
to the "quasi linkage equilibrium"[Nag77, Nag93] in a two-locus diallelic model including
genetic drift. The authors consider a deterministic and discrete-time genetic population
model in which they include genetic drift by sampling N individuals in each generation. Their
model is a discrete-time Markov process describing the evolution over time of the different
allele frequencies in a fixed-size population model. They then consider an approximation
under weak selection and large population size, extending the "quasilinkage equilibrium" to
a stochastic setting.

Our aim is to go one step further in the extension to describe and express the delay
with the deterministic case (N → ∞), and to detail on what time scale the quasilinkage
equilibrium approximation holds. The computations are complex and require expanding the
dynamics both in terms of the small selection parameter and the population size, and in
terms of the deviation of the sampling from the mean behaviour. In a second step, we want
to specify the role of epistasis, i.e. the additive effect of several beneficial mutations, and
then adapt their method to cases where N varies in time, as might be the case during an
infection phase with periodic treatment.
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Chapter 3

Hawkes processes with inhibition

3.1 Introduction

Hawkes processes, originally introduced by [Haw71], model the successive arrival of events in
time and the cascading influence of each event on the randomized upcoming events. They
have been used in a wide variety of contexts: to model the occurrence of earthquakes and
their aftershocks, to describe the spiking times of neurones [RBRGTM14, CCDRB15, L1̈7],
to model sells actions in finance [BM14, Haw18] or successive calls to insurance policies
[BRBH21] or more recently for epidemiology or ecology.

A Hawkes process, denoted below as (Nt)t≥0, is defined by its conditional intensity, which
describes the instantaneous rate of occurrence of an event conditionally on the past. This
conditional intensity at time t, Λt, is defined in terms of a stochastic integral of the past
trajectory of the process, which can be written as

Λt = Φ
(∫ t−

0
h(t− s)dNs

)
. (3.1)

In the equation (3.1), the non-negative (and possibly non-linear) function Φ : R → R+
accounts for the integration of the process with respect to its past trajectory, while h :
[0,∞) → R models the temporal self-interaction between events and is often called the
reproduction function. We can include an initial condition to the definition which accounts
for the event occurring on (−∞, 0), but I will restrict my presentation here to the case of an
empty initial condition and consider only positive times.

The original framework corresponds to the linear Hawkes process with a purely excitatory
kernel h ≥ 0 and Φ(x) = λ + x, λ > 0. Here, λ can be seen as the baseline arrival rate of
‘ancestral’ events, which generate clusters of ‘descendant’ events through a time-continuous
Galton-Watson process with reproduction function h [HO74]. Many generalizations of the
linear case have been introduced recently to account for the variety of applications, e.g. possi-
bly multivariate Hawkes processes with complex time interaction patterns or inhomogeneous
connectivity within a very large population of individuals [LV14, LTMB+18, CSSBW17] or
non-poissonian arrival of ancestors [WFS16, RY23].
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The main question I have been interested in is understanding the effects of inhibition
that arise when considering a reproduction function h that takes negative values. The first
two articles [CGMT20] and [CCC22] introduce and study a renewal structure for Hawkes
processes in order to obtain information about the long time behaviour of these Hawkes
processes, while the third and fourth [CMM24a, CMM24b] study a discrete version of the
inhibited Hawkes process.

3.1.1 A brief recap on linear Hawkes processes

Let me start by recalling well known properties of the linear Hawkes process (see [LLT21] for
an easy introduction or [DVJ06] for a more thorough reading).

Construction from a Poisson point measure Let Q be a two-dimensional Poisson point
process on (0,+∞) × (0,+∞) with unit intensity. The Hawkes process N is the solution of
the stochastic differential equation

Nt =
∫

(0,t]×(0,+∞)
δu1θ≤Λ(u)Q(du, dθ)

Λ(u) = λ+
∫

(0,u)
h(u− s)N(ds), u > 0,

(3.2)

where λ > 0 is an immigration rate, h : (0,+∞)→ R is a non negative measurable function.
This construction holds in a very general framework including the nonlinear case. The classi-
cal proof based on a Picard fixed point argument [DFH16] requires that h ∈ L1 (see [BM96]
for the non empty past case).

Figure 3.1: Construction of the intensity by thinning of a Poisson a point measure.

The above construction can be interpreted as a thinning of the Poisson point measure in
the case where the intensity remains bounded. This construction is illustrated on Figure 3.1,
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and gave rise to the thinning algorithm proposed by Ogata [Oga78].

Cluster interpretation A quite famous property of linear Hawkes processes is their inter-
pretation as Poissonian clusters. The general theory of cluster point processes (see [DVJ06])
allows to construct point processes as superposition of independent copies of a given point
process. The cluster point process is then fully described by a point process of "centres"
corresponding to the arrival of the independent copies of "satellites" processes. In the case
of the linear Hawkes process, Hawkes and Oakes [HO74] provided a construction based on
centres distributed as a Poisson point process with rate λ and satellites being all the points
generated by these ancestors that can be seen as a time inhomogeneous linear birth and death
process.

A way to fully understand this construction, is to come back to the thinning construction
(3.2). Let us denote by (Tn)n≥1 the sequence of times in a linear Hawkes process, and
associate (θn)n≥1 the sequence of "weights" corresponding to these times through the Poisson
measure Q and distributed as independent uniform on [0,Λ(Tn)]. Each time Tn represents
the birth time (or arrival time) of the nth individual. We define recursively the cumulative
impact of each birth on the intensity as λ

(0)
t = λ, t ≥ 0
λ

(n)
t = λ

(n−1)
t + h(t− Tn), t ≥ Tn.

We then have

Λh(u) =
∑
n≥1

λ(n−1)
u 1u∈[Tn−1,Tn),

with the convention T0 = 0.

To construct the genealogy, we say that n−th individual

• is a ancestor if θn ≤ λ(0)
Tn− = λ,

• is a descendant of the individual born at Ti (with 1 ≤ i < n) if θn ∈ (λ(i−1)
Tn− , λ

(i)
Tn−).

This construction is illustrated in Figure 3.2. We see here well that ancestors arises from
a Poisson point process with intensity λ, and that the number of descendant of a given
individual is a Poisson random variable with parameter ||h||1. The birth dates of descendant of
an individual born at Ti are then given by Ti+T where T is drawn according to h(t−Ti)/||h||1.
Considering only the genealogy, each ancestor give then birth to a Galton Watson tree of
individuals with reproduction law P(||h||1) independently from the other. We see from this
construction that if ||h||1 < 1, the Galton Watson trees generated by ancestors are sub-critical
and thus almost surely finite. This assumption ensures the existence of a stationary version
of the Hawkes process (see [BM96], [HO74]).

A main interest of this construction is that it allows to split the contribution of the different
time arrival into independent clusters with same law, whose impact may off course superpose
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Figure 3.2: Branching interpretation of a linear Hawkes process. Genealogical trees appear
in green.

through time. This construction has been used notably by [BT07] to obtain large deviation
results but also by [RBR07] to derive deviation inequalities. These deviation inequalities are
important to built and study Bayesian estimators for Hawkes processes [DRR20, HRBR15,
SRR24]. Note that an important issue is that the cluster superposition only holds in the
linear case, and finding alternative tools to derive deviation inequalities in non linear setting
was the motivation of our work [CGMT20] on Hawkes processes.

Limit theorem for the linear Hawkes process Let us now focus on the subcritical case
||h||1 < 1, which ensures that a stationary Hawkes process is well defined [BM96]. The limit
behaviour of the number of events in [0, t] is well understood. Let us first remark that thanks
to the linearity,

E(Nt) = E
(∫ t

0
Λsds

)
= λt+

∫ t

0
h(t− s)E(Ns)ds.

As a consequence, E(Nt) satisfies a Volterra renewal equation [Fel91, Bru17], which admits
an explicit solution

E(Nt) = λt+
∫ t

0
λsH(t− s)ds,

where H(t) =
∑∞

n=1 h
∗n(t) and h∗n is the nth convolution of h

h∗n(t) =
∫
h(t− s)h∗(n−1)(s)ds.

In the limit t→∞, we deduce that the expected number of events on [0, t] satisfies

E(Nt)
t

−→
t→∞

λ

1− ∥ h ∥1
.
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From this result, we can derive a law of large number

Nt

t
−→
t→∞

λ

1− ∥ h ∥1
:= µ a.s. , (3.3)

and a Central limit theorem
Nt − µt√

t
=⇒
t→∞

N (0, σ2) with σ2 = λ

(1− ∥ h ∥1)3 ,

where the convergence hold in law (see e.g. [DVJ06]). Bacry et al. [BDHM13] have obtained
additionally a functional Central limit theorem in the multivariate case and a large deviation
principle was proved in [BT07] (see also [Zhu13, GZ21]).

Outside the linear case, according to the general seminal paper by Brémaud and Massoulié
[BM96], if Φ is L-Lipschitz and L ∥ h ∥L1(du)< 1, there exists a unique stationary version of
the Hawkes process and

Nt

t
−→
t→∞

µ = Es[Nh([0, 1])] a.s. , (3.4)

where Es denotes the expectation with respect to the stationary ergodic distribution.
In [Zhu13], Zhu proved a functional CLT at equilibrium but obtaining an explicit expression
for µ and the limiting variance can rapidly become a difficult task since few is known on the
stationary distribution.

3.2 A renewal structure for inhibited Hawkes processes

As presented above, the linear Hawkes process only models an excitatory behaviour as oc-
currences increases the probability of future occurrences. A main interest for multiple appli-
cations, and notably in neuroscience is to add a possible inhibition, reducing the probability
of future events. To model such inhibitory behaviour, a possibility is to assume that the
function h is signed. The negative values then reduce the intensity and correspond to the
inhibition. In this case, the activation function Φ cannot be chosen as a linear function since
the intensity should remain nonnegative and we will focus on the case where Φ(x) = (λ+x)+
with (y)+ = max(y, 0) which corresponds to a simple extension of the linear case.
In order to underline the dependence in the function h, we will denote by Nh the Hawkes
process solution of the stochastic differential equation

Nh
t =

∫
(0,t)×(0,+∞)

δu1θ≤Λh(u)Q(du, dθ)

Λh(u) =
(
λ+

∫
(0,u)

h(u− s)Nh(ds)
)+

, u > 0,
(3.5)

where λ > 0 is an immigration rate, h : (0,+∞)→ R is a signed measurable function. Note
that when h is positive, this definition is the same as (3.2).

3.2.1 Couplings with linear Hawkes processes

A first question is to couple the nonlinear Hawkes process with a linear one in order to obtain
upper and lower bounds. The intuition being that since inhibition reduces the intensity, an
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inhibited Hawkes process should have less points than a non inhibited one. We obtained in
[CGMT20] the following upper bound.

Proposition 3.2.1. Let Q be a (Ft)t≥0 - two-dimensional Poisson point process on (0,+∞)×
(0,+∞) with unit intensity. If Nh and Nh+ are two solutions of (3.5) associated respectively
with the signed function h and the positive function h+ = max(h(.), 0), then, in the sense of
measures, Nh ≤ Nh+, meaning that for all 0 ≤ s ≤ t < +∞, Nh([s, t]) ≤ Nh+([s, t]) almost
surely.

Figure 3.3: Coupling of two trajectories of Nh and Nh+ constructed with the same Poisson
point measure Q.

The proof of the upper bound consists in showing that the intensity Λh and Λh+ of the
Hawkes process associated with h and h+ respectively satisfy

Λh
t ≤ Λh+

t , a.s.

This order relationship can actually be generalized to any positive function larger than h,
but here the choice of h+ corresponds to the smallest upper bound. Note however that the
result does not hold with a signed function g such that h ≤ g.

The question of the lower bound is more delicate and we only obtain a partial result in
[CCC22].

Proposition 3.2.2.
Let h be a function with finite support included in [0, L]. Let λ > 0 and define g = −λ1[0,L].
One can find a coupling of two Hawkes processes Nh and Ng, respectively associated with the
reproduction functions h and g, such that for any t ≥ 0:

Nh
t ≥ N

g
t a.s.
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Figure 3.4: Coupling of two trajectories of Nh and Nh+ constructed with the same Poisson
point measure Q.

Note that this comparison result is weaker than the upper bound via h+, since we do
not have Nh([s, t]) ≥ Ng([s, t]) for all s ≤ t, but only for s = 0. On Figure 3.4, we can
observe that the intensity are not ordered any more which explains why a strong coupling is
not possible.

3.2.2 A renewal structure for finite memory cases

Our main contribution in [CGMT20] is to introduce a renewal structure for nonlinear Hawkes
processes whose construction relies both on the coupling with a linear process and the clus-
ter construction of the later. This renewal structure, introduced for compactly supported
reproduction functions, has been extended to other settings by [Gra21, SRR24]. Alternative
constructions have also been proposed in [CSSBW17, Raa19].

We focus on the case where h is a signed function with compact support included in [0, L]
(i.e. h(t) = 0, ∀t > L) and such that ||h+||1 < 1. We can rewrite

Λh(t) =
(
λ+

∫ t

0
h(t− s)Nh(ds)

)
+

=
(
λ+

∫ t

t−L
h(t− s)Nh(ds)

)
+
.

This translates that Nh|(t,+∞) depends on Nh|(0,t] only through the events occurring in (t−
L, t].To formalize this idea, let us define the shift operator St for counting measures on R

St : N 7→ StN ≜ N(·+ t) ∈ N (R) ,
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and built an auxiliary process Y = (Yt)t≥0 defined by

Yt = (StN
h)|(−L,0] = Nh|(t−L,t](·+ t) .

The measure Yt corresponds to the point process Nh on the time window (t − L, t], shifted
back to (−L, 0].

We prove that (Yt)t≥0 is a strong (Ft)t≥0-Markov process with initial condition Y0 =
N0|(−L,0] and sample paths in the Skorohod space D(R+,N ((−L, 0])). Furthermore, we
obtain that if T is a stopping time such that Nh|(T −L,T ] = ∅, then Nh|(T,+∞) is independent
of Nh|(−∞,T ] and behaves as Nh started from ∅ and translated by T .

We therefore define the first hitting time of ∅ ∈ N ((−L, 0]) for Y , given by

τ = inf{t > 0 : Yt− ̸= ∅, Yt = ∅} = inf{t > 0 : Nh[t− L, t) ̸= 0, Nh(t− L, t] = 0} . (3.6)

In order to prove the existence of a renewal structure, we need to justify that τ is almost
surely finite. Using results from the queuing theory [Asm03, Tak62], we obtain that τ admits
exponential moments.

Proposition 3.2.3. Under our assumptions, the stopping time τ given by (3.6) satisfies

∀α < min(λ, ∥h
+∥1 − log(∥h+∥1)− 1

L(h+) ) , Em(eατ ) < +∞ .

In particular τ is finite, Pm-a.s., and Em(τ) < +∞.

The proof relies on the coupling described in Proposition 3.2.1 ensuring that the stopping
time τ+ associated with Nh+ is always larger than τ . Then, from the cluster construction,
we can interpret τ+ as the time where a serving queue empties. This specific queue measures
the length of survival of the ancestral line of each ancestors in the cluster decomposition
of the linear Hawkes Nh+ . More precisely the customers are the ancestors and are arrive
according to a Poisson point process with parameter λ while their service length is the length
of the Galton Watson tree of descendants they generate. As a consequence, when the queue
empties, all the h(t− Ti) are null, where Ti are the time of clients arrivals.

The strong Markov property of Y yields a sequence of regeneration times (τk)k≥0 that are
the successive visits of Y to the positive recurrent state ∅, defined as follows

τ0 = 0, ,
τk = inf{t > τk−1 : Yt− ̸= ∅, Yt = ∅} , k ≥ 1 . (Successive return times at ∅)

We finally provide an ergodic theorem for Y .

a) The τk for k ≥ 0 are finite stopping times, a.s.

b) The cycles (Yτk−1+t)t∈[0,τk−τk−1) for k ≥ 0.are i.i.d. and distributed as (Yt)t∈[0,τ) under
P∅. In particular their durations (τk − τk−1)k≥1 are distributed as τ under P∅, and
limk→+∞ τk = +∞ a.s.

In particular, this proves the existence of an invariant measure for Yt.
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Theorem 3.2.4. With our assumptions, the strong Markov process (Yt)t≥0 admits a unique
invariant law πA defined for every Borel nonnegative function f on N ((−A, 0]) by

πAf = 1
E∅(τ)E∅

(∫ τ

0
f(Yt) dt

)
.

Moreover πA{∅} = 1/(λE∅(τ)).

We exploited this renewal structure in order to obtain different results on the long time
behaviour of functionals of the nonlinear Hawkes process. In the next section, I will focus on
the PhD work of Laetitia Colombani which uses this renewal structure to study the limiting
behaviour of the counting process associated with the Hawkes process (3.2) t 7→ Nh

t =
Nh([0, t]) (see [CCC22]).

Interpretation as a cumulative process Let me precise the renewal structure introduced
above in the case where we are only interested to the counting process Nt. Recall that the
jump time of the Hawkes process are denoted by (Tn)n≥1. The renewal process introduced
above allows to define recursively

τ1 = inf{t > T1, N
h((t− L), t]) = 0},

that is the first time after T1 such that there has been no jump during a time L. We also set

S0 = 0 and S1 = τ1.

Let us now define
W1 = Nh([T 1, S1]) = Nh([0, S1]),

the number of jumps of the process in this first time window.
Recursively let i ∈ N∗ such that (τ1,W1), ...(τi,Wi) are well defined (and a.s. finite). Let
Si =

∑i
k=1 τk and define the first time in the i+ 1th window T i+1

1 = TW1+...+Wi+1, then

τi+1 = inf{t > T i+1
1 , Nh((t− L, t]) = 0} − Si, (3.7)

Notice that there is at least one jump in [Si, Si + τi+1]. We finally introduce the number of
jumps in the (i+ 1)’th window as

Wi+1 = Nh([U i+1
1 , Si + τi+1) = Nh([Si, Si + τi+1]), (3.8)

and rename the associated jump times as:

T i+1
j = TW1+...+Wi+j , ∀j ∈ {1, ...,Wi+1}.

By construction and using the renewal property shown above, the (τi,Wi)i are i.i.d. ran-
dom variables. Moreover, the time between the beginning of a window and the first point of
this window (T i

1 − Si−1)follows an exponential law with parameter λ.
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3.2.3 Limiting results

Using the above decomposition, we can now rewrite

Nh
t =

∞∑
i=1

1Ti≤t =
∞∑

i=1

Wi∑
j=1

1
T j

i ≤t
.

We introduce the renewal process associated to the Si’s

Mh
t :=

∞∑
i=1

1Si≤t .

and now obtain that

Nh
t =

Mh
t∑

i=1
Wi +Rh

t , (3.9)

where the remaining term Rh
t ≤ WMh

t +1, the Wi’s being i.i.d.. The first term in (3.9)

N̂h
t =

∑Mh
t

i=1 Wi is an example of a cumulative processes as it can be called in the literature.

A Law of large numbers and a central limit theorem for general cumulative processes can
be found in [Asm03]. In order to use these results and extend them to Nh

t /t the key is to
control moments for the (τi,Wi) and the rest term. We obtain in [CCC22]:

Theorem 3.2.5. Consider the Hawkes process Nh given by (3.2). Then we have the follow-
ing:

Nh
t

t
a.s.−→

t→∞

E[W1]
E(τ1) ,

and furthermore
√
t

(
Nh

t

t
− E[W1]

E(τ1)

)
=⇒
t→∞

N (0, σ2) ,

with

σ2 =
Var

(
W1 − τ1

E[W1]
E(τ1)

)
E(τ1) .

Thanks to our comparison results and to (3.3) we have

λ

1 + λL(h) ≤
E[W1]
E(τ1) ≤

λ

1− ||h+||1
.

Exacts computations for moments of τ and W are difficult and we only achieved to get
information when looking at functions h of the form h = −λ1[r,r+A].

Further results. To go further than the central limit theorem, large deviation principle
for cumulative processes is studied in [LMZ11] in the special case

Wi = F (τi),

for some non-negative, bounded and continuous function F (see the references in [LMZ11]
for some previous results in still more specific cases). These results do not directly apply
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for Hawkes processes, and we had to establish a more general large deviation principle in
[CCC23] which I will not detail here.
In [CGMT20] we also provide limit theorem for functionals of the form

1
T

∫ T

0
f(StN

h)|(−L,0]dt,

where f is a real measurable locally bounded function of the trajectory. These results gen-
eralize the deviation inequalities of [RBR07] and are important for statistical purposes (see
notably recent results of [SRR24]).

3.3 Stability of a discrete time Hawkes process with inhibition
and finite memory

In this section, I detail results that have been obtained during the PhD thesis of Anthony
Muraro, co-supervised with Pascal Maillard.

Our main question was to enhance sufficient conditions on h providing the existence
of a stationary version of Hawkes process. For signed h, Brémaud and Massoulié [BM96]
proved that a stable version of the process exists if ∥h∥1 < 1. Using the coupling argument
in Proposition 3.2.1, we obtained in [CGMT20], that it is sufficient to have ∥h+∥1 < 1.
Unfortunately, this sufficient criterion does not take into account the effect of inhibition,
captured by the negative part of h.

3.3.1 The discrete time Hawkes process

We choose to consider a simplified, discrete analogue of the Hawkes process with finite mem-
ory. Namely we study an auto-regressive process (X̃n)n≥1 with initial condition (X̃0, . . . , X̃−p+1)
such that conditionally on the past Fn−1 = σ(X−p+1, · · ·Xn−1)

X̃n ∼ P
(
ϕ
(
a1X̃n−1 + · · ·+ apX̃n−p + λ

))
, (3.10)

where P(ρ) denotes the Poisson distribution with parameter ρ, and a1, . . . , ap are real num-
bers.

Existing results for the linear case

The case where all parameters a1, · · · , ap are nonnegative is well understood. The pro-
cess (X̃n) is an Integer-Valued GARCH process (INGARCH(0, p) process, see [FLO06] and
[LZLS23]), also known in the literature as an Auto-regressive Conditional Poisson process
(ACP(p) see [Hei03])Its long time behaviour depends on

∑p
i=1 ai. Namely,

• If
p∑

i=1
ai < 1, it has already been established that this process admits a stationary

version. This result cans be understood as a subcritical condition for the branching
interpretation of the INGARCH processes [Kir16], in which

∑p
i=1 ai is the mean number

of offspring generated by a living individual.

• If
p∑

i=1
ai > 1, then X̃n grows exponentially in n almost surely.
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A first result for the non-linear version

Similarly as for continuous time Hawkes process, the use of a finite memory p allows to
construct an auxiliary Markov chain

Xn := (X̃n, X̃n−1, . . . , X̃n−p+1) ∈ Np. (3.11)

In order to study the recurrence of this Markov chain, we use drift criteria, initially introduced
by Foster [Fos53], and extensively studied and popularized by Meyn and Tweedie [MT09].
The main challenge of this approach is to construct a Lyapunov function, that is a function
V taking values in [1,∞]

∀x ∈ Np, ∆V (x) := Ex[V (X1)− V (X0)] ≤ −εV (x) +K1C(x). (3.12)

where K is a finite constant, and C a subset of Np. In our case where X is aperiodic and
irreducible in a weak sense, proving regodicity also requires that the set C is a small set, i.e.
that there exists x0 ∈ Np and n ∈ N satisfying :

inf
x∈C

Pn(x, x0) > 0.

We refer notably to [DMPS18] for further details and results well adapted to the case of
discrete state spaces.

Using a linear function V , we obtain the following sufficient condition

Theorem 3.3.1. If (a1)+ + · · · + (ap)+ < 1, then (Xn) is a geometrically ergodic Markov
chain.

The condition in Theorem 3.3.1 is an analogue of the sufficient condition for the existence
of a continuous-time Hawkes process given in [CGMT20] and the previous section. However,
this sufficient condition is quite restrictive because it is limited to parameters strictly less
than 1. It is natural to inquire whether, in the case where one of the parameters is greater
than 1, one can offset the others parameters sufficiently negatively to obtain stability. This
question appears to be quite challenging to resolve, therefore, we confine ourselves in the
following to the specific case of p = 2 or 3.

3.3.2 Two parameter discrete time Hawkes process

In the case of p = 2, our model of interest can be written as :

conditioned on X̃n−2, X̃n−1: X̃n ∼ P
((
aX̃n−1 + bX̃n−2 + λ

)
+

)
, (3.13)

with a, b ∈ R and X̃0, X̃1 ∈ N.
In [CMM24a], we study the behaviour of the associated Markov Chain Xn = (X̃n, X̃n−1)

and provide a complete classification. Let us define the function

bc(a) =


1 a ≤ 0
1− a a ∈ (0, 2)
−a2

4 a ≥ 2
,
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and define the following sets (see Figure 3.5):

R =
{

(a, b) ∈ R2 : b < bc(a)
}
, (3.14)

T =
{

(a, b) ∈ R2 : b > bc(a)
}
. (3.15)

Our main result is the following

Theorem 3.3.2. • If (a, b) ∈ R, then the sequence (Xn)n≥0 is geometrically ergodic

• if (a, b) ∈ T , then (Xn)n≥0 is transient.

We stress out that the condition for ergodicity is not symmetrical in a and b. More
precisely, for any a ∈ R, the Markov chain (Xn) can be ergodic provided that b is chosen
small enough, but the converse is not true as soon as b > 1. This induces that inhibition has
a stronger regulating effect when it occurs after an excitation, rather than before.

Figure 3.5: The partition of the parameter space described in Theorem 3.3.2. The green
region corresponds to R, while the red region corresponds to T . The smaller figures are
typical trajectories of the Markov chain (Xn)n≥0 for each region of the parameter space. In
the all the simulations, we chose λ = 1.

The proof of recurrence relies on finding adequate Lyapunov functions. Depending on
the parameters (a, b), we use, a linear function V (i, j) = αi + βj + 1 , a quadratic function
V (i, j) = αi2 + βj2 + γij + 1 or V (i, j) = i

j+1 + 1 a function of the angle.

For transience, we exhibit trajectories that grow to infinity. In the case b > 1 and a < 0,
let us remark than starting from a state (i, 0), the parameter of the Poisson random variable
for the next step is ai + λ < 0 if i is large enough since a < 0. As a consequence, the chain
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goes to (0, i) and then to (j, 0) where j ∼ P(bi+ λ). Using the concentration of the Poisson
random variable, j ≥ bi > i with large probability since b > 1.
For the other cases, we use a comparison with the naturally associated linear and deterministic
recursive sequence un+1 = aun + bun−1 +λ. For these choice of parameters, its characteristic
polynomial X2− aX − b admits an eigenvalue larger than 1, which induces that the solution
un diverges.

3.3.3 Three-parameter discrete-time Hawkes process

In the case where p = 3, we relabel similarly the parameters as a1 = a, a2 = b and a3 = c.
The discrete time process (X̃n)n≥1 is now defined with initial condition (X̃0, X̃−1, X̃−2) as
n ≥ 1:

conditioned on X̃n−3, X̃n−2, X̃n−1: X̃n ∼ P
((
aX̃n−1 + bX̃n−2 + cX̃n−3 + λ

)
+

)
. (3.16)

In that case, we did not obtain a complete characterization but we complete in [CMM24b]
the results of Theorem 3.3.1 by considering cases where the three parameters have different
signs and one of them is larger than 1 .

Link with the linear recurrent equation As in the case of two parameters, due to the
concentration property of the Poisson distribution, we expect that as long as the parameter
of the Poisson random variable in the definition of (X̃n)n≥0 remains positive, the process
behaves similarly to the deterministic sequence (ũn)n≥0, which is defined as follows:

ũn = aũn−1 + bũn−2 + cũn−3 + λ. (3.17)

It is a well-known fact that the roots of the polynomial

P (X) := X3 − aX2 − bX − c, (3.18)

plays a significant role in the identification of sequences that satisfy the recurrence (3.17).
More precisely, the stability of the linear recurrence (ũn)n≥0 (in the sense that sequences
satisfying recurrence (3.17) remain bounded for all n ∈ N) is characterized by the condition :

max{|ζ|, P (ζ) = 0} < 1. (3.19)

In our study, we used the discriminant of the polynomial P which can be easily computed
from the coefficients as:

Disc(P ) := a2b2 + 4b3 − 4a3c− 18abc− 27c2. (3.20)

The sign of Disc(P ) determines the number of roots of P that are complex. For a degree 3
polynomial, on the one hand, if Disc(P ) < 0, the polynomial P has an unique simple real
root, and two complex conjugate roots. On the other hand, if Disc(P ) ≥ 0, all the roots
of P are real numbers, and they are simple when Disc(P ) > 0. For more details about the
discriminant, we refer the reader to chapter 12 of [GKZ94].
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Returning to our comparison involving deterministic sequences (ũn)n≥0 satisfying (3.17),
when Disc(P ) < 0, since the polynomial P has 2 complex roots, we know that the solutions
(ũn)n≥0 will exhibit oscillatory behaviour, potentially diverging under stronger conditions.
Consequently, (ũn)n≥0 will eventually become negative. This is where the positive part in
the definition of (X̃n)n≥0 comes into play : by truncating the parameter value of the Poisson
random variable to 0, we can expect a stabilizing effect on the asymptotic behaviour of this
process.

Transience results We start by considering cases where b or c are larger than 1. We derive
sufficient conditions that guarantee that the process (X̃n)n≥0 will diverge in the sense that
almost surely,

X̃n + X̃n+1 + X̃n+2 −→
n→+∞

+∞.

In terms of the Markov chain Xn = (X̃n, X̃n+1, X̃n+2) we prove:

Theorem 3.3.3. If a, b, c ∈ R satisfy one of the following condition

1. a, b < 0 and c > 1, or

2. b > 1 and ab+ c < 0

then the Markov chain (Xn) is transient.

Theorem 3.3.3 states that when b or c is greater than 1, and the other parameters are
negative, (Xn)n≥0 is transient. To rephrase, there is no inhibition, no matter how strong,
that yields a stable process as long as b or c is greater than 1.

Recurrence results We prove that for a > 1, it is possible to choose, b and c sufficiently
negative, for the process Xn to be ergodic.

Theorem 3.3.4. Let a > 1. If b < 0 and c < 0 are such that Disc(P ) < 0, then (Xn)n≥0 is
a geometrically ergodic Markov chain.

Theorem 3.3.4 states that for any given excitation a > 1, there exist sufficiently strong
inhibitions b, c < 0 such that the parameters of the process (X̃n)n≥0 satisfy the assumptions
of Theorem 3.3.4. This completes the results of Theorem 3.3.3 and implies that the order
of parameters is important, introducing an asymmetry in their roles, which is a non trivial
property of the process (X̃n)n≥0 given its initial definition.

Conjecture and numerical illustrations The proof of Theorem 3.3.4 is based on a
Lyapunov argument. Under assumptions a > 1, b < 0, c < 0 such that Disc(P ) < 0, we
proved that there exists a Lyapunov function for the Markov chain (Xn), and in a second
time, we identified a small set. The construction of the Lyapunov function requires c < 0
while b < 0 is used to construct an appropriate small set. Based on the numerical experiments,
we believe that it is possible to slightly relax the assumptions of Theorem 3.3.4 allowing b ≤ 1.
Note that furthermore if b > 1 (but Disc(P ) < 0) then using properties of the discriminant,
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Figure 3.6: Plot (in red) of the proportion of excursions that have exploded relative to the
total number of excursions, for some b ∈ [0, 4]. For clarity, we put a green dot when b = 1.
Clopper-Pearson type confidence intervals (with α = 0.01) around the calculated values have
also been plotted in blue. It is noteworthy that the positive proportions exhibit remarkably
low values : even within the context where b > 1, the number of excursions that have exploded
remains very small compared to the overall number of excursions.

it is possible to prove that ab+ c < 0. Theorem 3.3.3 ii) then ensures that the Markov chain
(Xn) is transient.

In all the following simulations we chose the initial condition (X−2, X−1, X0) = (0, 0, 0)
and λ = 1. The state (0,0,0) is of notable interest since it is an accessible state: for any
values of a, b, c, it is always possible to reach this state from any other state in 3 steps. We
illustrate the fact that the stopping time τ0 := inf{n ≥ 1 | Xn = (0, 0, 0)}, satisfiesP(0,0,0)(τ0 = +∞) = 0 if b ≤ 1,

P(0,0,0)(τ0 = +∞) > 0 if b > 1.

We estimate the probability that an excursion starting from (0, 0, 0) explodes from Monte
Carlo estimator based on 106 repetitions and provide confidence intervals using Clopper-
Pearson intervals which are exact confidence intervals for binomial proportion p [Thu14].

3.4 Perspectives

The research prospects arising from this part of my work are numerous and are for the most
part the subject of the ANR JCJC HAPPY that I coordinate. In particular, there are still
many interesting questions concerning the study of the renewal renewal and, in particular,
the connection between the moments of the variables τ and W and the parameters λ and
h of the Hawkes process. Similar questions arise in a multivariate setting, since inhibition
plays an important role in the regulation of activity in complex networks. Another difficulty
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(and a long-standing issue) is to understand the interplay between inhibition and the size
and geometry of the network.

From a statistical point of view, while the question of estimating the parameters of non-
linear Hawkes processes has been thoroughly investigated in univariate and in multivariate
settings from a Bayesian perspective [SRR22] as well as in parametric cases [BHS21], little
theoretical work exists to test for the presence or absence of inhibition or for specific non-
linearity [DLP22]. This is crucial for understanding the structure of interacting networks and
the associated patterns of regulation.

I’m going to detail here two directions that seem to me to be the most advanced.

3.4.1 On the discrete model

Let me recall the discrete Hawkes process (X̃n)n≥1 defined as

X̃n ∼ P
(
ϕ
(
a1X̃n−1 + · · ·+ apX̃n−p + λ

))
,

conditionally on the past {Xn−p, · · ·Xn−1}.

Larger memories The generalization of the Lyapunov techniques used for the discrete
model (3.16) for p = 2 and p = 3 remains an open and difficult question. For example, a
better understanding of the eigenvalues of the polynomial Xp + a1X

p−1 + · · · + ap seems
necessary, even if we have not yet succeeded in finding necessary and sufficient conditions on
these eigenvalues to ensure the recurrence of the Markov chain transience.

Critical cases A second interesting question concerns the critical cases. As we have seen
for example when p = 2, the critical boundary is composed of different zones depending on
the signs of the coefficients. This should be a general observation in higher dimensions. The
simplest case of interest is the case where all coefficients are positive and

∑p
i=1 ai = 1. In

this setting, we observed in dimension p = 2 that

Yn(t) =
X⌊nt⌋ + bX⌊nt⌋−1

n
,

converges as n→∞ in distribution to the solution Yt of

dYt = λ+ 1√
1 + b

√
YtdWt,

where W is a standard Brownian motion. We expect to generalize this result to larger
memories. Note also that a similar convergence has recently been proved by [HX24] for the
continuous-time Hawkes process.

The question of what happens for critical cases with a negative parameter remains open
and may lead to different limiting objects.

Link with truncated Galton Watson tree A third question that has long intrigued
me is how to couple a nonlinear Hawkes process with a linear one without breaking the
underlying branching structure. More specifically, I expect that an appropriate coupling
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would prune the branching structure of the linear process. This would allow to obtain more
precise information about the long-term stability conditions of the Hawkes process. The
discrete case seems to be easier to deal with, although it leads to consider Galton-Watson
trees in a random environment, where the environment depends on the past of the process.
Connections with Polya’s urns or the elephant walk are worth looking at.

3.4.2 More generally on non linear Hawkes

In my previous work I have mainly considered the case where inhibition is modeled by using a
negative function h and the non-linear function Φ = (.)+. An alternative model for inhibition
has been proposed in [DLP22] adding a multiplicative weight in (0, 1) to the basal intensity.
In their article, the authors consider a mean-field case, motivated by applications in neuro-
science, with two types of neurons A and B. In the large population limit, they obtain two
coupled inhomogeneous Poisson processes NA and NB, for which the intensity of the type A
neurons is given by

λA(t) =
(
µ+

∫ t

0
hA(t− s)dNA(s)

)
ΦBA

(∫ t

0
g(t− s)dNB(s)

)
.

Here ΦBA : R+ → [0, 1] encodes the inhibition of the population B with respect to A. The
interest of this model is to preserve positivity and order relations.

Together with Céline Duval, Eric Luçon and Eva Löcherbach, we want to use this frame-
work to study the refractory behaviour of neurons, i.e. the fact that spikes of the same neuron
cannot follow each other too quickly. To this end, we consider a mean-field model in which
each particle exerts exictation on other particles and additionally an auto-inhibition in a
multiplicative way. This amounts to looking at a family of K Hawkes processes (Ni(t))1≤i≤K

whose intensities write

Λi(t) =

µ+
K∑

j=1

1
K

∫ t

0
g(t− s)dNj(s)

Φ
(∫ t

0
f(t− s)dNi(s)

)
.

In the limit K → ∞, some stochatsicity remains and we have to consider a nonlinear
stochastic differential equation for the intensity, as is the case for the closely related models
[FL16, LM22]. Our main questions are the existence of the limiting object as well as its long
time behaviour.
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Chapter 4

Stochastic algorithms for quantile and
superquantile estimation. Application to financial

data.

In this final section, I present a body of work on the recursive estimation of quantiles and
superquantiles of random variables that summarizes the results obtained with Bernard Bercu,
Sébastien Gadat and Lorick Huang in three articles [BCG21, CG21, CGH24]. At the end of
this section I also present research perspectives related to these works.

4.1 Introduction

Estimating quantiles has a longstanding history in statistics and probability. Except in
parametric models where explicit formula are available, the estimation of quantiles is a real
issue. The most common way to estimate quantiles is to use order statistics, but this method
has a significant numerical cost (see among others [Bah66, Gho71]). Another strategy is
to use stochastic approximation algorithms, following the pioneering work of Robbins and
Monro [RM51].

Let us describe precisely the framework we are studying. Let X be an integrable contin-
uous real valued random variable with strictly increasing cumulative distribution function F
and probability density function f . For any α ∈]0, 1[, the quantile θα of order α of F satisfies

F (θα) = P(X ≤ θα) = α,

whereas the superquantile ϑα of order α is defined by

ϑα = E[X |X ≥ θα] =
E[X1{X≥θα}]
P(X ≥ θα) =

E[X1{X≥θα}]
1− α .

Both the quantile and the superquantile provide information on the tail of the distribution of
the random variable X. In a financial context, quantiles and superquantiles are called value
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at risk (V@R) and conditional value at risk (CV@R) and have become increasingly popular
as measures of risk [RU00, RU02]. I will come back to this interpretation in Section 4.3.

Our first aim is to estimate quantiles and superquantiles simultaneously using the Robbins-
Monro algorithm and to provide results on the convergence rate of these algorithms.

A brief reminder on Robbins Monro algorithm We recall that the Robbins Monro
algorithm [RM51] was developed in order to find roots of a function that can be written as
an expectation. More precisely, we are looking for λ∗ that solves

0 = h(λ) = E[H(X,λ)].

Given a sequence of i.i.d random variables (Xn)n≥1 with same law as X, the Robbins Monro
algorithm constructs a sequence (λn)n≥0 by

λn+1 = λn − γn+1H(λn, Xn+1),

where (γn)n≥1 is a sequence of step-sizes satisfying
∑
γn = +∞ and

∑
γ2

n < ∞ in the
standard framework [Duf97]. These assumptions on the step sizes sequence are most of the
time required to ensure almost sure convergence of the algorithm.
In many cases, it is useful to write the recursive equation as a drift-martingale decomposition.
Let (Fn)n≥0 be the associated filtration, we can write

λn+1 = λn − γn+1E[H(λn, Xn+1)|Fn]− γn+1 (H(λn, Xn+1)− E[H(λn, Xn+1)|Fn])
= λn − γn+1h(λn) + γn+1∆Mn+1,

where ∆Mn is a sequence of martingale increments

∆Mn+1 = h(λn)−H(λn, Xn+1).

When h is a gradient, this expression corresponds to a stochastic gradient descent.
Note furthermore that since the objective point is λ∗ such that h(λ∗) = 0 we can use a

Taylor expansion to obtain a linearized algorithm

λn+1 − λ∗ = λn − λ∗ − γn+1 [h(λn)− h(λ∗)] + γn+1∆Mn+1,

= (λn − λ∗)(1− γn+1h
′(λα)) + γn+1∆Mn+1 + rests terms,

Such recursion will be the main ingredient to obtain asymptotic information on the algorithm.
An interesting case corresponds to h′(λ∗) > 0 that creates a contraction. In the context of
a gradient descent this amounts to consider a convex function having nice properties for
optimization.

Application to the quantile and superquantile estimation A standard application
of this recursive method is the estimation of a quantile θα (or of more general geometric
medians). Indeed, the quantile θα solves the following equation in θ

E[1X≤θ]− α = E[1X≤θ − α] = 0.
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The Robbins Monro algorithm associated to the function θ 7→ E[1X≤θ − α] then constructs
a sequence (θn)n≥0 as

θn+1 = θn − an
(
1Xn+1≤θn − α

)
.

For superquantile approximation, different approaches have been proposed. The more naive
one consists in considering that ϑα solves the following equation in ϑ

E[X1{X≥θα}]
1− α − ϑ = 0,

and built the associated Robbins Monro algorithm. Note however that this strategy requires
to know the quantile θα.

As a consequence, an alternative is to estimate simultaneously (θα, ϑα) which leads to
construct a sequence (θn, ϑn)n≥0 as a bi-dimensional Robbins Monro algorithm:

θn+1 = θn − an
(
1Xn+1≤θn − α

)
ϑn+1 = ϑn + bn

(
Xn+1
1− α1Xn+1>θn − ϑn

)
Alternatively, [BFP09] used a different approach proposed by [RU00, BTT86] with a

different update function. Let us define the function

L(θ, x) = θ +
(
x− θ
1− α

)
1x>θ,

and remark that E[L(θα, X)] = E[X1{X≥θα}]
1−α . As a consequence the couple (θα, ϑα) solves

E[L(θα, X)]− ϑα = 0.

A main interest for using the function L in the Robbins Monro algorithm, is that θ 7→
E(L(θ,X)) is convex. The algorithm proposed in [BFP09] is then given by (θn, ϑ̃n)n≥1 where

ϑ̃n+1 = ϑ̃n + bn(L(θn, Xn+1)− ϑ̃n)

= ϑ̃n + bn

(
θn + (Xn+1 − θn)

(1− α) 1Xn+1>θn − ϑ̃n

)
,

The authors then use the Ruppert-Polyak averaging procedure, introduced in the seminal
contributions [Rup88, PJ92], to obtain a central limit theorem for their stochastic algorithm.
Note that in their work, the author used a single step sequence an = bn where we aim at
considering a two time scale algorithm which offers more flexibility than the one-time-scale
algorithm [Bor97, GPS18, KT04, MP06].

Existing results The almost sure convergence limn→∞ θn = θα was established by Rob-
bins and Monro [RM51], Robbins and Siegmund [RS71]. Moreover, the asymptotic normality
is due to Sacks, see Theorem 1 in [Sac58] and requires the additional assumption that the
probability density function f is differentiable with bounded derivative in every neighbour-
hood of the quantile θα. More precisely, if the step-size is given by an = a1/n where a1 > 0
and 2a1f(θα) > 1, we have the asymptotic normality

√
n
(
θn − θα

)
=⇒ N

(
0, a

2
1α(1− α)

2a1f(θα)− 1
)
.



68 4. Stochastic algorithms and application to financial data

One can observe that in the special case where the value f(θα) > 0 is known, it is possible
to minimize the previous limiting variance by choosing a1 = 1/f(θα) which leads to an
asymptotic variance α(1−α)

f2(θα) .

Besides the classical choice an = a1/n where a1 > 0, slower step-size an = a1/n
a where a1 > 0

and 1/2 < a < 1 have been studied in depth. Chung [Chu54] and Fabian [Fab68] obtained
that the asymptotic normality still holds, and more precisely, if f(θα) > 0, they showed that

√
na
(
θn − θα

)
=⇒ N

(
0, a1α(1− α)

2f(θα)
)
.

Further results such as law of iterated logarithm (LIL) or quadratic strong law (QSL) are
available for the quantile recursive estimation. These results refine the convergence in the
Central Limit Theorem by ensuring almost sure existence of lim sup

(
n

2 log log n

)1/2
(θn−θα) for

the LIL and of lim 1
log n

∑n
k=1(θn−θα)2 for the QSL [GK75, Ker77, LR79, Pel98]. Consistently

with a CLT, the limiting value obtained in the above limits equals the limiting variance. Note
that the scaling given here correspond to the case of a step sequence a1/n and can be adapted
for slower step sizes.

Concerning the superquantile estimation, [BFP09] proved, in the special case of the one-
time-scale stochastic algorithm where an = bn, the almost sure convergences

lim
n→

θn = θα and lim
n→

ϑ̃n = ϑα a.s.

and established the joint asymptotic normality of the averaged version [PJ92, Rup88] of their
one-time-scale stochastic algorithm

θn = 1
n

n∑
k=1

θk and ϑn = 1
n

n∑
k=1

ϑ̃k.

as
√
n

(
θn − θα

ϑn − θα

)
=⇒ N

(
0,Σ

)
where the asymptotic covariance matrix Σ is explicitly calculated.

4.2 Different coupled algorithms

In [BCG21] and [CG21], we study different algorithms for the superquantile recursive ap-
proximation. Namely we focus on the classical algorithm

θn+1 = θn − an
(
1Xn+1≤θn − α

)
ϑn+1 = ϑn + bn

(
Xn+1
1− α1Xn+1>θn − ϑn

) , (4.1)

and on its convexified counterpart

ϑ̃n+1 = ϑ̃n + bn

(
θn + (Xn+1 − θn)

(1− α) 1Xn+1>θn − ϑ̃n

)
. (4.2)
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We also introduce a third version for which we expect to benefit from the acceleration of the
Cesaro averaging procedure θ̄n, to obtain a better recursion on the superquantile estimation.
We thus introduce: 

θn+1 = θn − an
(
1Xn+1≤θn − α

)
θ̄n+1 = 1

n

n+1∑
k=1

θk

ϑ̂n+1 = ϑ̂n + bn

(
Xn+1
1− α1Xn+1>θ̄n

− ϑ̂n

) . (4.3)

In our work, we study these three algorithms with different step-size sequences of the
form

an = a1n
−a, bn = b1n

−b, with 1
2 < a, b ≤ 1. (4.4)

This corresponds to the standard framework of Robbins-Monro algorithms. We emphasize
that the case where an = bn was studied in [BFP09] and that we specifically consider the
case of two time scale algorithms, similarly to [MP06], or even three time scales in (4.3).
Our goal is to compare the performance of these different algorithms. Our first approach
uses asymptotic variances as a criterion, while our second considers a finite horizon measure
given by the mean squared error.

We will assume throughout this section that the density f of interest is bounded, with
f(θα) > 0 and that θ 7−→ (1 + |θ|)|f ′(θ)| is a bounded function. We further assume that X
has a moment of order strictly larger than 2:

∃p > 2 :
∫
xpf(x)dx <∞.

4.2.1 Asymptotic results

We introduce two key functions in order to better understand the algorithms introduced in
Equations (4.1) and (4.2). Let hα(θ) and lα(θ) be the functions defined, for all θ ∈ R, by:

hα(θ) = 1
1− αE[X1{X>θ}] and lα(θ) = E[L(θ,X)] = θ + 1

1− αE[(X − θ)1{X>θ}].

We shall observe that

hα(θα) = ϑα and lα(θα) = ϑα = min
θ∈R

lα(θ). (4.5)

We can write the drift-martingale decomposition

ϑn+1 = ϑn + bn(hα(θn)− ϑn) + bnεn+1,

= ϑn(1− bn) + bnhα(θn) + bnεn+1, (4.6)

and

ϑ̂n+1 = ϑ̂n + bn(lα(θn)− ϑ̂n) + bnξn+1,

= ϑ̂n(1− bn) + bnlα(θn) + bnξn+1, . (4.7)
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where εn and ξn are sequence of martingales increments such that E[ε2
n+1|Fn] = σ2

α(θn) and
E[ξ2

n+1|Fn] = τ2
α(θn) where for all θ ∈ R:

σ2
α(θ) = 1

(1− α)2 Var(X1{X>θ}) and τ2
α(θ) = 1

(1− α)2 Var((X − θ)1{X>θ}).

Using the convergence of θn to θα, σ2
α(θα) and τ2

α(θα) are good candidates for the limiting
variances of our recursive sequences. Note that from their definition

τ2
α(θα) = σ2

α(θα)− αθα

(1− α)(2ϑα − θα),

such that for all θα ≥ 0, τ2
α(θα) ≤ σ2

α(θα).

Central limit theorem There are two classical ways to obtain a central limit theo-
rem, either use a martingale approach [Sac58, MP06], or through a diffusion approximation
[BMP90, GPS18]. The limiting behaviour of (θn, ϑn), and (θn, ϑ̃n) derives from Theorem 1
in [MP06] and relies on a CLT for martingales.

Theorem 4.2.1. Assume that the step-size sequences (an)n≥0 and (bn)n≥0 defined in (4.4)
satisfy 1/2 < a < b ≤ 1 with b1 > 1/2 if b = 1. Then, the recursive sequences (ϑn)n≥0 and
(ϑ̃n)n≥0 share the same joint asymptotic normality

√
nb
(
ϑn − ϑα

)
=⇒ N (0,Γϑα) ,

where the asymptotic variance is given by

Γϑα =


b2

1τ
2
α(θα)

2b1 − 1 if b = 1,

b1τ
2
α(θα)
2 if b < 1.

Note that in the case where 1/2 < b < a < 1, the CLT still holds but the variance for (ϑn)
increases to b2

1σ2
α(θα)

2b1−1 while it does not change for (ϑ̃n).

The limiting behaviour of (4.3) is obtained in [CG21] using a diffusion approximation as
developed by [BMP90, GPS18]. The main idea behind the proof is to consider the evolution of
the rescaled algorithm (

√
n(θ̄n−θα),

√
n(ϑ̂n−ϑα)) and prove that it is closed to a discretization

of an Ornstein-Uhlenbeck process. The limiting variance in the CLT then appears as the
variance of the invariant law of the diffusion.

Theorem 4.2.2. Under our assumptions

i) If b ∈ (1/2, 1), then:

√
nb
(
ϑ̂n − ϑα

) L=⇒
n→+∞

N
(

0, b1σ
2
α(θα)
2

)
.
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ii) If b = 1, and b1 > 1/2 then:

√
n

(
θ̄n − θα

ϑ̂n − ϑα

)
L=⇒

n→+∞
N (0, S2),

where:

S2 =

 α(1−α)
f(θα)2

α
f(θα)(ϑα − θα)

α
f(θα)(ϑα − θα) b2

1
(2b1−1)σ

2
α(θα)− 2b1

2b1−1
αθα(ϑα−θα)

(1−α)

 .
In the case where b < 1 and ϑα and θα are positive, the asymptotic variance obtained in

Theorem 4.2.2 ii) is larger than Γϑα .
The discussion in the case where b = 1 is more interesting. For a fixed value of b1 we observe
that

S2
22 < Γϑα ⇐⇒ b1 <

2ϑα − 2θα

2ϑα − θα
= 1− θα

2ϑα − θα
.

Therefore if the distribution f satisfies that ϑα
θα
> 3

2 , there exists b1 such that the asymptotic
variance of ϑ̂n is smaller that the one of ϑn and ϑ̃n.

LIL and QSL Further results can be obtained using the recursive drift martingale decom-
position and the standard proof scheme of [GK75]. Let me say a few words on the strategy
in the case of (ϑ̃n). We deduce from (4.7) and the fact that lα(θα) = ϑα

ϑ̂n+1 − ϑα = (ϑ̂n − ϑα)(1− bn) + bn(lα(θn)− lα(θα)) + bnξn+1.

and then by recursion that for all n ≥ 2:

ϑ̃n+1 = 1
Pn

(
ϑ̃1 +Nn+1 + Ln+1

)
, (4.8)

where Pn =
∏n

k=1(1− bk)−1, and

Nn+1 =
n∑

k=1
Pkbkξk+1, Ln+1 =

n∑
k=1

Pkbk(lα(θk)− lα(θα)). (4.9)

Our results derive from a sharp control of Pn as well as LIL and QSL for martingales [Sto70,
Ber04]. The drift terms are then controlled with a Taylor expansion using the convexity of
lα. A different strategy is needed for ϑn since the associated function hα is not convex and
we introduce a modified sequence ϑn + δnθn (with an appropriate δn stemming from spectral
analysis) in order to come back to a convex case. For precise results and proofs, I refer to
the main article [BCG21].

4.2.2 Non asymptotic results

In this part we aim at studying the finite horizon performance of the three scales algorithm
(4.3). We obtain non asymptotic controls of the mean squared error E[(θn−θα)2], E[(θ̄n−θα)2]
and E[(ϑ̂n − ϑα)2] based on adequate linearizations of the algorithm.
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For the quantile recursion Our results for the quantile estimation sequence (θn) are
based on the article [GP23] in which the Robbins Monro algorithm for quantile is seen as a
gradient descent. More precisely we shall remark that:

θn+1 = θn − an(F (θn)− F (θα)) + an∆Mn+1

= θn − anΦ′(θn) + an∆Mn+1,

where the function Φ equals

Φ(θ) :=
∫ θ

θα

∫ u

θα

f(s)dsdu.

and the martingale increment is defined by

∆Mn+1 := F (θn)− 1Xn+1≤θn .

Following the roadmap of [GP23] we define the Lyapunov function

Vq(θ) := Φ(θ)q exp(Φ(θ)), ∀q ∈ N. (4.10)

and obtain a recursion on Vq(θn) using a Taylor expansion. We obtain that

Theorem 4.2.3. If an = a1n
−a with a ∈ (0, 1), then for any integer q ≥ 1, we have

∃Kq ≥ 0 ∀n ∈ N E|θn − θα|2q ≤ Kqa
q
n.

We then consider the averaged estimator θ̄n = 1
n

∑n
k=1 θk and write a drift-martingale

decomposition

θ̄n+1 − θα = n

n+ 1(θ̄n − θα) + 1
n+ 1(θn+1 − θα)

=
(

1− 1
n+ 1

)
(θ̄n − θα) + 1

n+ 1
(
θn − θα − an(F (θn)− F (θα)) + an∆Mn+1

)
=
(

1− 1
n+ 1

)
(θ̄n − θα) + 1

n+ 1
(
(θn − θα)(1− anf(θα)) + an∆Mn+1 + anRn

)
.

where the last line derives from the linear approximation of F around θα

F (θn)− F (θα) = f(θα)(θn − θα) +
∫ θn

θα

[f(u)− f(θα)]du.

As a consequence we see that we have to study the two dimensional vector Zn = (θn−θα, θ̄n−
θα)T

Zn+1 = AnZn + an

(
∆Mn+1
1

n+1∆Mn+1

)
+ an

(
Rn
1

n+1Rn

)
, (4.11)

where An translates the linearization of the algorithm around (θα, θα) at step n:

An =
(

1− anf(θα) 0
1−anf(θα)

n+1 1− 1
n+1

)
.

and Rn is a rest term. We then consider a change of variable to diagonalize matrix An and
use the contraction produced by the eigenvalue (1− 1

n+1) to obtain the following result.
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Theorem 4.2.4. Consider a step sequence an = a1n
−a with a ∈ (1/2, 1), then, there exists

a positive constant Γa such that

E[(θ̄n − θα)2] ≤ α(1− α)
f(θα)2n

+ κ′α(1− α)
f(θα)3 n−(2−a)∧( 1

2 +a) + Γan
−(3−a)∧( 3

2 +a) ∀n ≥ 1,

where κ′ is an explicit constant.

Note that the optimal choice of a corresponds to a = 3/4 and in this case

E[(θ̄n − θα)2] ≤ α(1− α)
f(θα)2n

+ 8κα(1− α)
7f(θα)3 n−5/4 + Γ3/4n

−9/4, ∀n ≥ 1.

Our computations precise the computations of the second order term with respect to Corollary
6 in [GP23]. We observe that in our case, if the second order term involved the local curvature
given by the Cramer-Rao lower bound f(θα)−2, this curvature is also involved in the second
order term with a larger power (3 instead of 2), that is of course compensated by n−5/4.

For the superquantile A similar strategy for the superquantile recursion (4.6) leads to

ϑn+1 = ϑn(1− bn) + bn

1− αθαf(θα)(θ̄n − θα) + bnεn+1 + bnR̂n

Therefore, we can write a three dimensional linearizationθn+1 − θα

θ̄n+1 − θα

ϑ̂n+1 − ϑα

 = Bn

θn − θα

θ̄n − θα

ϑ̂n − ϑα

+

 an∆Mn+1
an

n+1∆Mn+1
bnεn+1

+

 anRn
an

n+1Rn

bnR̃n


where

Bn :=


1− anf(θα) 0 0

1−anf(θα)
n+1 1− 1

n+1 0
0 − θαf(θα)

1−α bn 1− bn

 . (4.12)

Here an additional difficulty arise if we want to consider step sequences bn close to 1/(n+ 1),
since in that case, the matrix Bn cannot be diagonalized. However performing an approxi-
mated change of basis, we obtain the following non asymptotic bounds.

Theorem 4.2.5. Assume that the step sequence satisfy (4.4), then

i) If b ∈ (1/2, 1), then a large enough constant Γ exists such that

∀n ≥ 1 , E[(ϑ̂n − ϑα)2] ≤ σ2
α(θα)

2 bn + Γn− b+1
2 .

ii) If b = 1 and b1 > (1+a
2 ) ∧ (5

2 − a), then a large enough constant Γ exists such that:

∀n ≥ 1 , E[(ϑ̂n − ϑα)2] ≤ Cα,b1

n
+ Γn−(1+ a

2 )∧(2−a),

where

Cα,b1 = 4b2
1α(1− α)

(2b1 − 1)2f(θα)2

[
1 +

√
1 + σ2

α(θα)f(θα)2(2b1 − 1)
4α(1− α)

]2

.

Note that our non-asymptotic results achieve the optimal rate of convergence, and that
except for ii) in Theorem 4.2.5 the first order constant matches the asymptotic variance
obtained in Theorem 4.2.2. The degraded constant in that last case is due a technical issue
in diagonalizing the matrix Bn, it might be improved through another method.
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4.3 CV@R penalized portfolio optimization with biased stochas-
tic mirror descent

I present here a work in collaboration with Lorick Huang and Sébastien Gadat in which
we consider an application of these algorithms in a financial setting. The main question is:
given a portfolio of financial assets, what is the best way to allocate resources in order to
maximize profits while complying with risk management constraint? Without any constraint,
it is likely that the asset with the highest expected return would be favored, leading to a
trivial optimization problem. However, ethical issues arise when this latter return has a high
variability, since even though some gains are expected in the long run, large losses may occur
in between the gains. Consequently, banking regulations have been introduced, involving
different metrics to measure risk, and policies have been developed that use one metric or
another, leading to different investment optimization problems and strategies.

We focus on portfolio optimization under a conditional value-at-risk (CV@R) constraint
(which corresponds to the superquantile studied above). Such a question has already been
studied in previous works, notably by Rockafellar and Uryasev [RU00], who develop a Monte
Carlo strategy to approximate the CV@R of the portfolio (see also [KPU01, RU02, RR14]).
In these works, the authors use the approximation of V@R and CV@R with an empirical
batch sum to feed an optimization algorithm via classical tools of convex analysis. In our
work we aim to infer the CV@R and the optimization strategy simultaneously. Furthermore,
we consider a setting where the observations used to feed the algorithm can be corrupted
either from observation or from a numerical strategy, inducing some bias that will impact the
estimation procedure.

4.3.1 The optimization problem

We consider the relative return of a portfolio with m assets (A1(t), · · ·Am(t))t≥0, defined
by the random vector Z = (Z1, . . . , Zm), where Zi = Ai(T )

Ai(0) − 1 is a relative return at fixed
horizon T of the asset Ai. Note that here T is supposed to be fixed and will disappear from
notations.
An investment strategy corresponds to an allocation of the initial capital u = (u1, . . . , um)
that belongs to the m− 1 dimensional simplex denoted by ∆m and defined as:

∆m :=
{
u ∈ Rm

+ :
m∑

i=1
ui = 1

}
.

We are interested in a constrained optimization of the mean return of defined as the mean of
the portfolio modeled by the random variable ⟨Z, u⟩ defined by:

⟨Z, u⟩ =
m∑

i=1
uiZi.

The risk measure depends on a level α for which the α-quantile is negative. To underline this
change with respect to the previous section we use the notation V@Rα(α) for the α quantile.
CV@Rα (noted ϑα above) is the mean value of the loss when ⟨Z, u⟩ is below V@Rα, namely:

CV@Rα(u) = E[−⟨Z, u⟩ | ⟨Z, u⟩ ≤ V@Rα(u)].



4.3. CV@R penalized portfolio optimization with biased stochastic mirror descent 75

With our convention this risk measure is positive.
Then, for any fixed positive level M , the optimization problem of u 7−→ E[⟨Z, u⟩] with

CV@Rα constraints we are interested in writes

PM = arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi] : CV@Rα(u) ≤M
}
.

In our work we consider an equivalent unconstrained penalized optimization problem deriving
from a Lagrangian formulation. For any λ > 0, we search for the solution u∗

λ of the following
(convex) optimization problem:

Qλ := arg min
u∈∆m

{
−

m∑
i=1

uiP[Zi] + λCV@Rα(u)
}
.

We will use, as presented above, the convex representation of CV@Rα introduced by [RU00,
KPU01] and write similarly as in (4.5) that

CV@Rα(u) = min
θ∈R

ψα(u, θ),

where ψ is the convex coercive Lipschitz continuous and differentiable function defined by

ψα(u, θ) = θ + 1
1− αE [⌊⟨Z, u⟩ − θ⌋+] , (4.13)

where ⌊x⌋+ = max(0, x).
As a consequence, we can rewrite the optimization problem as searching for x∗

λ = (u∗
λ, θ

∗
λ)

of
Qλ = arg min

(u,θ)∈∆m×R
{pλ(u, θ)} , (4.14)

where the key function pλ is defined by:

pλ(u, θ) = −
m∑

i=1
uiE[Zi] + λψα(θ, u). (4.15)

Note that by construction θ∗
λ = CV@Rα(u∗

λ).
To solve the minimization problem (4.14) we are led to use stochastic approximation

theory, since the (convex) function pλ is written as an expectation. However, there are
specific difficulties. First, we have to deal with minimization over the simplex ∆m. Second,
the random variables Z involved in pλ cannot generally be simulated exactly, so it will be
necessary to control the bias coming from the stochastic simulation as well as its impact on
the optimization strategy. Finally, note that although pλ is differentiable, it is the expectation
of a non-differentiable function of (u, θ) that will require special attention in the following
algorithms.

4.3.2 The biased stochastic gradient descent

To handle the minimization on the simplex ∆m we chose to use the Mirror descent (MD)
introduced by Nemirovski [NY83]. It allows to handle constrained optimization problems
especially without adding some supplementary projection step by “pushing” the frontiers of
the simplex at an infinite distance from any point strictly inside ∆m.
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Deterministic mirror descent To explain the main idea, let me come back to a deter-
ministic setting. Recall that when we consider the question of minimizing a convex smooth
f , the deterministic gradient descent writes :

xk+1 = xk − ηk∇f(xk),

it is equivalent to the proximal problem that consists in minimizing at each step the first
order Taylor expansion of the function penalized by the L2 norm :

xk+1 = argminx

{
⟨x,∇f(xk)⟩+ 1

2ηk
||x− xk||2

}
.

The mirror descent considers a different penalization using a Bregman divergence function
D [BT03] by

xk+1 = argminx

{
⟨x,∇f(xk)⟩+ 1

ηk
D(x, xk)

}
.

The choice of divergence used depends on the geometry of the problem and must allow the
minimization problem to be solved explicitly so that it can be solved algorithmically without
too much difficulty. In our setting a natural choice is to consider the Bregman divergence
associated to the strongly convex negative entropy on ∆m and the L2 norm on R namely

DΦ(u, v) = Φ(u)− Φ(v)− ⟨∇Φ(v), u− v⟩.

where
Φ(u, θ) =

m∑
i=1

ui log(ui) + θ2

2 .

Coming back to our optimization problem (4.14) and denote by x = (u, θ), then the
deterministic mirror descent writes

xk+1 = arg min
x∈∆m×R

{
⟨∇pλ(xk), x⟩+ 1

ηk+1
DΦ(x, xk)

}
.

that can be solved explicitly as

xk+1 =
(
uk+1

θk+1

)
with


uk+1 = uke−ηk+1∂upλ(uk,θk)

∥uke−ηk+1∂upλ(uk,θk)∥1

θk+1 = θk − ηk+1∂θpλ(uk, θk)
, (4.16)

where the first equation has to be understood within a m dimensional vector structure.
Following the work of [BT03, NY83], it can be shown (see Proposition1 in [LNS12]) that

an averaged version of the sequence (xk)k≥1 defined by

χ̃n =
(

n∑
k=0

ηk

)−1 n∑
k=0

ηkxk,

satisfies the next error bound

pλ(χ̃n)− pλ(x⋆
λ) ≤

{∆0
Φ}2 + L2

n∑
k=1

η2
k

2
n∑

k=1
ηk

,

where {∆0
Φ}2 = (θ0−V@Rα(u⋆

λ))2

2 + logm and L = arg maxx∈∆m×R{∥∇pλ(x)∥}.
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Our stochastic biased mirror descent We denote by ∂u and ∂θ the partial derivatives
with respect to u and θ, and using that pλ is the expectation of a convex function, we then
verify that:

∂upλ(u, θ) = −E[Z] +
λE[Z1⟨Z,u⟩≥θ]

1− α , (4.17)

and
∂θpλ(u, θ) = λ

[
1− 1

1− αE[1⟨Z,u⟩≥θ]
]
. (4.18)

We assume that we observe a sequence of mutually independent random variables (Ẑk)k≥0
that are also sampled independently from the previous positions of the algorithm. The
expressions (4.17) and (4.18) lead to a natural (possibly biased) stochastic approximation of
∇pλ with the help of the sequence (Ẑk)k≥0. Assuming that the algorithm is at step k at
position (Uk, θk), we introduce the stochastic approximation of the sub-gradients:

ĝk+1,1 = −Ẑk+1 + λ
1−α Ẑ

k+11⟨Ẑk+1,Uk⟩≥θk

ĝk+1,2 = λ
[
1− 1

1−α1⟨Ẑk+1,Uk⟩≥θk

] . (4.19)

The method we propose is then defined in Algorithm 1.

Data: Step-size sequence (ηk)k∈N and U0 ∈ R, θ0 ∈ R; α ∈ (0, 1)
Result: Two sequences: Xk = (Uk, θk)k≥0
for k = 0, . . . , do

Simulate the random Zk+1 satisfying (4.20) and (4.21);
Compute a stochastic approximation ĝk+1 of ∇pλ(Uk, θk) with

ĝk+1,1 = −Ẑk+1 + λ
1−α Ẑ

k+11⟨Ẑk+1,Uk⟩≥θk

ĝk+1,2 = λ
[
1− 1

1−α1⟨Ẑk+1,Uk⟩≥θk

] .

Update the algorithm
Xk+1 = arg minx∈x∈∆m×R

{
⟨ĝk+1, x−Xk⟩+ 1

ηk+1
DΦ(x,Xk)

}
using (4.16)

Xk+1 = (Uk+1, θk+1),

U
k+1 = Uke

−ηk+1ĝk+1,1

∥Uke
−ηk+1ĝk+1,1 ∥1

θk+1 = θk − ηk+1ĝk+1,2
.

Algorithm 1: Biased SMD

Assumptions and convergence We now describe the necessary assumptions on the se-
quence (Ẑk)k≥0 to build a consistent SMD algorithm. We introduce two sequences (δk+1)k≥0
and (υk+1)k≥0 that translate the fact that we may observe some biased realizations of the
assets Z at step k, the perfect simulation framework being translated by δk+1 = υk+1 = 0 for
all integer k.
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Assumption (H1) Assumptions on the biased simulations
Let L(Ẑk+1) and L(Z) denote the distributions of Ẑk+1 and Z respectively. We assume that
the sequence (Ẑk)k≥0 satisfies both:

W1(L(Ẑk+1),L(Z)) ≤ δk+1, (4.20)

and

∀u ∈∆m, ∀θ ∈ R,
∥∥∥E [⟨Z, u⟩1⟨Z,u⟩≥θ − ⟨Ẑk+1, u⟩1⟨Ẑk+1,u⟩≥θ | Fk

]∥∥∥ ≤ υk+1. (4.21)

where W1 stands for the Wasserstein-1 distance.
We emphasize that both (δk+1)k≥0 and (υk+1)k≥0 might heavily depend on m the dimen-

sion of the vector Z. A specific example will be detailed below.

The next result states the asymptotic almost sure convergence of the sequence (Xk)k≥0
constructed in Algorithm 1.

Theorem 4.3.1 (Almost sure convergence of the biased SMD). Assume that
∑

k≥0 ηk+1 =
+∞ and

∑
k≥0 η

2
k+1 < +∞, and that the bias sequences (δk+1)k≥0 and (υk+1)k≥0 satisfy∑

k≥0
ηk+1(

√
δk+1 + υk+1) < +∞,

then the Cesaro average X̄η
k =

(∑k
i=0 ηi

)−1 (∑k
i=0 ηiXi

)
is almost surely convergent and

pλ(X̄η
k ) −→ min(pλ) a.s.

The proof of this theorem follows the standard scheme developed by [NY83] that relies on
standard results that are valid for any Bregman divergence DΦ and on Robbins- Siegmund
theorem.

Our work also provides conditions for the convergence of the non averaged sequence
Xk. In that case, we follow the roadmap of [Ben99] that introduces the asymptotic pseudo-
trajectories for stochastic algorithms, and [MS18] that adapts these tools to the mirror de-
scent.

Non asymptotic results Obtaining non asymptotic guaranties on the convergence speed
of the algorithm requires to control the sequence of E(DΦ(x∗, Xk) for which we obtain a
recursion inequality of the form

E(DΦ(x∗, Xk+1) ≤ E(DΦ(x∗, Xk)(1 + ak+1) + bk+1,

where ak+1 = 2ηk+1
(
2
√
δk+1 + δk+1 + λυk+1

1−α

)
and bk+1 = C

(
η2

k+1 + ak+1/2
)
.

For sake of conciseness, I will only state here a result in finite time horizon. Namely,
let us consider the specific case of the SMD with a constant step-size sequence stopped at
iteration n, that is

ηk+1 = η > 0, ∀ 0 ≤ k ≤ n.
ηk+1 = 0, ∀ k > n.
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We will also assume a constant upper bound of the bias in the simulation of the random
variables Ẑk: we denote by ω its resulting impact in the SMD. More precisely we consider
fixed values of δk+1 and υk+1 such that:

2
√
δk+1 + δk+1 + λυk+1

1− α = ω > 0, ∀1 ≤ k ≤ n.

This is legitimate since we can reduce this bias with the use of an arbitrarily small discretiza-
tion step-size, which of course harms the computational cost.

Proposition 4.3.2. For a given n ∈ N, if (η, ω) are chosen such that η = ∆0
Φ

2
√

n+1 and ω =
1√

n+1∆0
Φ

with {∆0
Φ}2 = (θ0−V@Rα(u⋆

λ))2

2 + logm, then there exists C > 0 large enough such
that:

E
[
pλ

(
X̄η

n

)]
− pλ(x⋆

λ) ≤ C |θ0 −V@Rα(u⋆
λ)|+

√
logm√

n+ 1
.

Therefore, these values may be seen as purely theoretical as we do not exactly know the
value of ∆0

Φ. Note that the choice: η = 1/2
√
n+ 1 and ω = 1/

√
n+ 1 yields:

E
[
pλ

(
X̄η

n

)]
− pλ(x⋆

λ) ≤ C |θ0 −V@Rα(u⋆
λ)|2 + logm√

n+ 1
.

This degrades the dependency on the size of the portfolio but keeps the appropriate speed in
terms of n the number of iterations.

4.3.3 Approximation of a portfolio

Model for the portfolio dynamics We consider the situation where Z contains m = m′+
1 assets: a family S = (S1, . . . Sm′) of m′ = m− 1 geometric Brownian motions that encode
some risky assets in the portfolio. We refer to Pitman and Yor [Pit82] and to Gulisashvili and
Stein [GS10] for several details on these classical processes used (among others) for portfolio
modelling.
We assume in addition that one of the asset Y is risk-less, which allows to model debt
obligations, or treasury bonds. In mathematical terms, we consider a stochastic rate r,
modeled by a Cox-Ingersoll-Ross (shortened as CIR below) [CIR85] process and we use this
rate for the growth ratio of Y . Recall that the CIR follows a diffusion process given by:

drt = a(b− rt)dt+ σ0
√
rtdB0(t), (4.22)

where (B0(t))t≥0 stands for a standard real Brownian motion. The parameter b stands for
the long-time mean of the short rate while a quantifies the strength of the mean-reversion
effect. The volatility σ0 is multiplied by √rt. We assume that the CIR parameters satisfy

ab > σ2
0 and a > 2

√
2σ0,

ensuring the positivity of rt, a control of the L2 moment of the weak error rate as well as
exponential integrability of the integral of the CIR for all time t. We refer to [Gla03] for
further details.
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The assets Zt = (Yt, S
1
t , . . . , S

m′
t ) are then described by the following system of stochastic

differential equations:

∀t ≥ 0

dYt = rtYtdt,

dSi
t = µiS

i
tdt+ σiS

i
tdBi(t), ∀i ∈ {1, . . . ,m′},

(4.23)

where B = (B0, B1, . . . , Bm′) refers to a multivariate Brownian motion with correlated com-
ponents. For the sake of simplicity, these components are assumed to satisfy:

E[Bi(t)Bj(t)] = ρi,jt.

The correlation matrix is the symmetric definite positive matrix, denoted by Σ = (ρi,j)1≤(i,j)≤m.

Simulation Let us now present our discretization scheme on a discrete grid (kh){1≤k≤N}
of [0, T ]. The step h should be chosen in order to satisfy the requirement on the biased
simulations (4.20)-(4.21).

Geometric Brownian motion can be exactly simulated from independent Gaussian ran-
dom variables with variances

√
T W (T ) = (W0(T ),W1(T ), . . . ,Wm′(T )) Using the Cholewski

decomposition for the matrix Σ as LLT = Σ we then perform B(T ) = LW (T ). Finally for
i ∈ {1, · · ·m′} we set

Si
T = Si

0 exp
((

µiT −
(σi)2

2

)
+ σiB

i(T )
)
.

The main difficulty comes from discretizing the CIR process, as the coefficients in the SDE
are not uniformly elliptic and bounded, as assumed in the seminal works of Bally and Talay
[BT96]. Besides, a classical explicit Euler scheme generates positivity issues (because of the
square root). However, many authors, notably Alfonsi [Alf05, Alf10] proposed implicit Euler
schemes and provided weak and strong error rates in the previously mentioned works. The
drift-implicit Euler scheme on a discrete time grid (kh)0≤k≤N can be written by considering
the SDE satisfied by yt = √rt which leads to

ŷ(k+1)h = ŷkh +
(

4ab− σ2
0

8ŷ(k+1)h
− a

2 ŷ(k+1)h

)
h+ σ0

2 ∆B(k)
0 ,

where ∆B(k)
0 = B0((k + 1)h)−B0(kh). This implicit scheme can be solved explicitly on R+

from iteration k to iteration k+ 1, which ensures the positivity of the scheme (r̂kh)0≤k≤N . In
particular, the update from kh to (k + 1)h is given by:

r̂(k+1)h = ŷ2
(k+1)h =


√
r̂kh + σ0

2 ∆B(k)
0

2(1 + ah
2 )

+

√√√√√(√r̂kh + σ0
2 ∆B(k)

0

)2

4(1 + ah
2 )2 + (4ab− σ2

0)h
8(1 + ah

2 )


2

. (4.24)

We then use the integral representation Yt = Y0 exp
(∫ t

0 rsds
)

and propose to approximate Yt

with a Riemann integral approximation between 0 and t:

Îh := 1
N

N∑
k=1

r̂kh.
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This leads to the definition of our approximation:

Ŷ
(h)

t := Y0 exp(Îh) = Y0 exp
(

1
N

N∑
k=1

r̂kh

)
. (4.25)

Control of the discretization Using results from [Alf13] proved in [DNS12] providing an
upper bound of the weak error associated to the implicit Euler scheme(4.24) we obtain the
control of (4.20) and (4.21) as a function of h .

Proposition 4.3.3. Using the above discretization scheme presented above,

• a constant C exists (dependent on the CIR parameters) such that:

W1(L(Ẑ1),L(Z1)) =W1(L(Ŷ (h)
1 ),L(Y1)) ≤ C

√
h.

• for any e > 0, there exists a constant Ke independent of h and m such that:
∥∥∥E [⟨Z1, w⟩1⟨Z1,w⟩≥θ − ⟨Ẑ1, w⟩1⟨Ẑ1,w⟩≥θ

]∥∥∥
2
≤ Ke

√
me

{σ+}2m2

4e2 h
1
6 −e.

We finally aggregate the optimization procedure described in Algorithm 1 with our sam-
pling scheme and address the problem of adapting the step size of the discretization scheme
to the step size of the SMD approximation. We focus on the case of constant step at finite
time horizon n as in Proposition 4.3.2. Recall that we assume a constant step-size sequence η
and discretization step-size h which impacts the choixe of ω. Corollary 4.3.2 combined with
Propositions 4.3.3 induce that h should be chosen as:

h1/4 + h
1
6 −e ∼ n−1/2,

which entails that we could choose a discretization step-size close to n−3.

4.4 Perspectives

4.4.1 Deviations inequalities for the quantile and superquantile

A first natural question would be to obtain deviation inequalities for the Robbins-Monro
algorithms (4.1) on the form

P(|θn − θα| > ϵn) ≤ e−τn ,

and similarly for ϑn. One idea would be to follow the proof scheme developed by [Woo72], who
used characteristic and moment generating functions to derive large deviations for stochastic
gradient descent. A major problem here arises from the fact that the gradient descent for
the quantile is convex but not strongly convex, so one may need to use the same Lyapunov
function as for non-asymptotic bounds (4.10). A first step in this direction is the recent
work of [CKW23], who obtained deviation inequalities for the averaged algorithm θ̄n, but
the rates obtained do not seem optimal and to my knowledge there are no results for the
superquantiles.
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A second interesting research direction arises from a discussion with Sebastien Gadat,
Xavier Gendre and Thierry Klein on the application of stochastic mirror descent to the joint
estimation of indices for sensibility analysis. In the context of sensitivity analysis, where one
observes a real output Y written as

Y = g(X1, · · ·Xp),

where (Xi)1≤i≤p are independent real-valued random variables, various indices such as the
Sobol indices [Sob01] or the Cramer von Mises indices [GKL18] have been defined to assess
the relative importance of one or a set of input variables. These indices, often associated
with an analog of a Hoeffding decomposition of variance, are positive and sum to 1. For
example, considering Sobol indices associated with a random variable Y with finite variance,
the Hoeffding decomposition of the variance gives

Var(Y ) =
∑

u⊂{1,...,p}\∅
Vu, (4.26)

with
Vu =

∑
v⊂u\∅

(−1)|u|−|v|Var(E[Y |Xi, i ∈ v]). (4.27)

The Sobol indices with respect to (Xi)i∈u are then defined by

Su = Vu

V ar(Y ) ,

where u = {1, . . . , p} \ u. Hence dividing both side of (4.26) by Var(Y ) we get

1 =
∑

u⊂{1,...,p}\∅
Su. (4.28)

This last equation motivates us to construct a stochastic mirror descent on the simplex to
estimate simultaneously all the 2p − 1 Sobol indices S = (Su, u ⊂ {1, . . . , p} \ ∅) at once.

Some words on our strategy We will rather focus on closed Sobol indices which are
conditioned sobol indices defined as

Scl
u = Var(E[Y |Xi, i ∈ u])

V ar(Y ) .

Closed Sobol indices are linked to Sobol indices through a linear relationship

S = MScl,

where the square matrix M of size q = 2p − 1 is triangular with diagonal terms equal to 1.
More precisely ∀u, v ⊂ {1, · · · , p} \ ∅

Mu,v = (−1)|u|−|v|1v⊂u.
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The Pick-Freaze trick considers two independent copies (X ′
1, . . . , X

′
p) and (X1, . . . , Xp) and

built for any u ⊂ {1, . . . , p} \ ∅
Y u = g(Xu

1 , . . . , X
u
p ),

with Xu
i = Xi if i ∈ u and Xu

i = X ′
i if i /∈ u. As a consequence

Var(E[Y |Xi, i ∈ u]) = Cov(Y, Y u).

and thus
Scl

u = Cov(Y, Y u)
Var(Y ) . (4.29)

This allows to define Monte Carlo estimators which are widely studied [Sob01, SRA+08,
GJK+16].

Since the indices writes as an expectation, we aim at considering an alternative method
based on Robbins Monro algorithm. For any single index Scl

u , we can built a function Ψu(xu)
minimal in Scl

u :
Ψu(x) = 1

2E[((Y − E[Y ])xu − (Y u − E[Y ]))2].

Now the function from Rq to R defined for x = (xu)u⊂{1,...,p}\∅ by

Ψa(x) =
∑

u⊂{1,...,p}\∅
auΨu(xu) (4.30)

where a = (au)u⊂{1,...,p}\∅ is a probability distribution with positive weights. The function
Ψa is minimized for x = Scl, and we can write

Scl = argmins∈Rq

Ψa(s),
∑

u∈{1,··· ,p}\∅
[Ms]u = 1

 .

Our goal is then to study the SMD associated with this minimization problem on the
simplex, to give bounds on the convergence rate, and to compare this method with existing
methods that estimate the indices one by one. There will be several other questions related
to more general problems, such as the optimal choice of weights (au) (which may change with
time), or obtaining a central limit theorem for the SMD. These questions are related to the
ANR-PRCE-24 GATSBII coordinated by Thierry Klein.
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