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Parameterized Complexity and New Efficient Enumerative Schemes
for RCPSP

Abstract: Most scheduling problems are strongly NP -hard and have required intricate heuristics
to be solved in practice. While yielding results short term, such heuristics rarely help to identify
what fundamentally makes these problems difficult. Such analysis would uncover the similarities
between seemingly different problems and facilitate strategy transfers. This would also prove useful
whenever one would like to enrich a problem - for example by adding precedence relations or going
from equal-length tasks to tasks of arbitrary time length.
One way to gather such knowledge is to go beyond classical complexity theory and consider pa-
rameterized complexity theory. Given a problem P we choose parameter k as some property of the
input like the number of machines or the width of the precedence graph (if there is one). Depending
on problem P and parameter k either we design algorithms which are fixed-parameter tractable with
respect to k (i.e. which operate in time f(k) × poly(n) with f an arbitrary computable function),
or we show that P remains hard even when k is small (typically via a reduction from a well-known
difficult parameterized problem in the same manner as an NP -hardness proof). Then the set of
parameters for which problem P is fixed-parameter tractable can be interpreted as a footprint. By
comparing it to the set of working parameters from another NP -hard problem P ′, one could in-
fer whether P is ’equivalent’ to P ′, ’strictly harder’ than P ′, or if both problems are difficult for
different reasons.
In this thesis we study the parameterized complexity of the Resource-Constrained Project Schedul-
ing Problem (RCPSP) and its subproblems, possibly enhanced with job time windows and prece-
dence delays. With precedence delays we consider parameter `max - i.e. the maximum delay value
appearing in the input - in the case of minimum delays, exact delays and the lesser studied maxi-
mum delays. For all delay types we show that scheduling unit-time jobs on a single machine with
a single available delay value is hard even with small `max. This suggests that another property of
the problem has to be bounded in order to deal with precedence delays.
This motivates the integration of job time windows to problems featuring precedence delays in
order to broaden available parameter choices. We consider two parameters which have shown
recent success in the literature. Namely slack σ - i.e. the maximum difference between the time
window length of a job and its processing time - and pathwidth µ - i.e. the maximum number of job
time windows which can include the same time unit. We also introduce a new parameter, the proper
level q, which is defined as the maximum number of job time windows which can strictly include
on both ends another job time window. We obtain several fixed-parameter tractable algorithms and
set multiple hardness results with to respect to these parameters, both with or without precedence
delays. We also consider various other scheduling parameters in order to give a more complete view
of the parameterized landscape of RCPSP and its subproblems.

Keywords: complexity, parameterized, RCPSP, scheduling, algorithm design



Complexité Paramétrée et Nouveaux Schémas Enumeratifs Efficaces
pour le RCPSP

Résumé : La plupart des problèmes d’ordonnancement sont fortement NP -difficiles et nécessitent
des heuristiques élaborées pour être résolus en pratique. Bien que fournissant des résultats au court
terme, ces approches expliquent rarement ce qui rend ces problèmes fondamentalement difficiles.
Avoir cet éclairage pourrait mettre à jour des similitudes entre des problèmes apparemment distincts
et faciliter les transferts de stratégie. Cela serait également utile dès lors que l’on souhaite enrichir
un problème - par exemple en y ajoutant des relations de précédence, ou en passant de tâches de
même durée à des tâches de durées arbitraires.
Pour acquérir une telle expertise, il est possible d’aller au-delà de la théorie classique de la com-
plexité, et de se tourner vers la complexité paramétrée. Etant donné un problème P on choisit un
paramètre k reflétant une propriété de l’instance en entrée, comme son nombre de machines ou,
s’il y a des relations de précédence, la largeur du graphe sous-jacent. En fonction du problème
P et du paramètre k, soit on développe des algorithmes dits fixed-parameter tractable (i.e. qui
opèrent en temps f(k) × poly(n) avec f une fonction arbitraire), soit on montre que le problème
reste difficile lorsque le paramètre est petit (typiquement via une réduction depuis un problème
paramétré reconnu comme difficile, à la manière d’une preuve de NP -difficulté). L’ensemble des
paramètres pour lesquels le problème P est fixed-parameter tractable peut alors être interprétée
comme un ”phénotype”: en le comparant à celui d’un autre problème P ′, on peut déduire si les
deux problèmes ont l’air équivalents, si l’un est une généralisation de l’autre, ou s’ils sont difficiles
pour des raisons distinctes.
Dans cette thèse, nous étudions la complexité paramétrée du problème d’ordonnancement de projet
sous contrainte de ressources (RCPSP) et de ses sous-problèmes, possiblement augmentés de délais
de précédence et de fenêtres temporelles pour les tâches. Pour les délais de précédence nous étudions
le paramètre `max - i.e. le valeur maximum de délai pouvant apparaître dans l’entrée - dans le cas
de délais minimum, exact et maximum. Pour ces trois types de délais nous montrons que, même à
petit `max, ordonnancer des tâches de durée unitaire sur une unique reste difficile, et ce même pour
des durées de délai toutes identiques. Cela suggère de limiter une propriété supplémentaire dans le
cas de problèmes avec délais de précédence.
A ce titre, nous proposons l’ajout de fenêtres temporelles pour les tâches afin d’élargir le panel
de paramètres disponibles. Cela nous permet de considérer deux paramètres ayant récemment
rencontré du succès dans la littérature : d’une part la marge σ - i.e. la différence maximum entre
la taille de fenêtre d’une tâche et la durée de celle-ci -, d’autre part la largeur de chemin µ -
i.e. le nombre maximum de fenêtres pouvant se chevaucher le long d’une même unité de temps.
Nous introduisons également un nouveau paramètre, que nous appelons le niveau propre q, et qui
indique le nombre maximum de fenêtres pouvant inclure strictement une même autre fenêtre le
long de ses deux bornes. Vis-à-vis de ces paramètres nous proposons plusieurs algorithmes fixed-
parameter tractable, et les complétons avec des preuves de difficulté paramétrée. Nous considérons
également d’autres suggestions de paramètres pour proposer une vue d’ensemble plus complète de
la complexité paramétrée du RCPSP et de ses sous-problèmes.

Mots clés : complexité, paramétré, RCPSP, ordonnancement, algorithmique



Résumé Long

Introduction
Cette thèse a pour but d’étudier le problème d’ordonnancement de projet sous
contrainte de ressources (RCPSP), ses sous-problèmes et ses variantes dans le
contexte de la complexité paramétrée. Étant donné un ensemble de tâches
soumises à des contraintes de précédence et de ressources, l’objectif du RCPSP
est de minimiser la date d’achèvement de l’ensemble du projet. Chaque tâche
peut nécessiter une certaine quantité de différentes ressources, correspondant à
des moyens de production renouvelables tels que la main-d’œuvre ou les ma-
chines dans une usine. Par exemple, si l’une des tâches consiste à peindre une
voiture, elle peut nécessiter une machine spécifique et un employé capable de la
faire fonctionner.

Bien que ce RCPSP soit un problème d’ordonnancement fondamental avec
un large éventail d’applications, en pratique il est souvent difficile de trouver des
ordonnancements optimaux pour plus d’une centaine de tâches dans un délai
raisonnable. Cette difficulté peut être expliquée dans le contexte de la théorie
de la complexité. En effet, de nombreux sous problèmes du RCPSP sont NP -
difficiles au sens fort. Par exemple le cas où il n’y a qu’un seul type de ressource,
des machines parallèles identiques et pas de contraintes de précédence. Ou
encore celui des problèmes d’atelier (job-shops, flow-shops) où les tâches sont
pré-affectées aux machines et où les précédences sont réduites à des chaînes.
Ces sous-problèmes sont incomparables et sont donc très probablement difficiles
pour des raisons différentes. Cependant, la théorie de la complexité classique
n’offre pas les outils nécessaires pour distinguer plus finement les problèmes
fortement NP -difficiles entre eux.

La théorie de la complexité paramétrée offre, en revanche, des moyens plus
précis pour caractériser la difficulté des problèmes NP -difficiles. Étant donné un
problème P, on fixe un paramètre k choisi parmi les propriétés de la donnée du
problème, comme le nombre de machines ou la largeur du graphe de précédence
(s’il y en a un). En fonction du problème P et du paramètre k, on peut alors soit
concevoir des algorithmes qui sont dits fixed-parameter tractable (FPT) par rap-
port à k (c’est-à-dire qui fonctionnent en temps f(k)·poly(n) avec f une fonction
calculable arbitraire), soit montrer que P reste difficile même lorsque k est petit
(typiquement via une réduction à partir d’un problème paramétré difficile bien
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connu comme k-CLIQUE ou k-COLORING). L’ensemble des paramètres pour
lesquels le problème P est FPT peut alors être interprété comme son portrait.
En le comparant à l’ensemble des paramètres ”fonctionnels” d’un autre prob-
lème NP -difficile P ′, on peut déduire si P est ”équivalent” à P ′, ”strictement
plus difficile” que P ′, ou si les deux problèmes sont difficiles pour des raisons
différentes.

Alors que la complexité paramétrée est largement utilisée dans la théorie des
graphes depuis plus de quarante ans, ce n’est que récemment qu’elle a fait l’objet
d’un intérêt croissant dans le domaine de l’ordonnancement. Au cours des dix
dernières années, la plupart des approches permettant d’obtenir des algorithmes
FPT nécessitaient de limiter le nombre de types de tâches d’une manière ou
d’une autre, tandis que les paramètres structurels tels que la largeur w du graphe
de précédence ont souvent conduit à des résultats négatifs [vBBB+16, BGNS22].
Dans [MvB18] Mnich et van Bevern ont dressé une liste de quinze problèmes
ouverts de complexité paramétrée dans le domaine de l’ordonnancement.

Juste avant cette thèse, plusieurs algorithmes FPT [MK21, BdWH21] ont été
conçus avec un nouveau paramètre sur des sous-problèmes de RCPSP augmentés
de fenêtres temporelles - avec pour chaque tâche j une date de disponibilité
rj et une date d’échéance d̄j . Ce paramètre, appelé pathwidth µ, est défini
comme le nombre maximum de fenêtres de temps qui se chevauchent à tout
moment - moins un, et peut être interprété comme la largeur de chemin du
graphe d’intervalles sous-jacent. Les résultats obtenus pour une seule machine
ne nécessitent notamment pas de limiter les durées des tâches.

A noter que Bodlaender et van der Wegen avaient introduit un an auparavant
[BvdW20] un paramètre similaire, mais avec des fenêtres temporelles définies
pour les chaînes de tâches et non les tâches individuelles. De plus ils consid-
éraient des délais de précédence entre les tâches consécutives dans une chaîne.

Nous nous sommes donc attachés à réaliser une étude systématique de la
complexité paramétrée des problèmes d’ordonnancements sous-problèmes du
RCPSP, en y ajoutant au besoin fenêtres de temps et délais de précédence,
pour différents paramètres. Notre approche est double. Tout d’abord, étant
donné un problème P, nous déterminons pour quels paramètres P est FPT
et pour lesquels il ne l’est probablement pas. Cela définit une cartographie
des paramètres qui pourrait être considérée comme le ”portrait” de P et être
comparée à la carte de paramètres d’autres problèmes d’ordonnancement. Deux-
ièmement, étant donné un paramètre k, nous déterminons quels problèmes d’or-
donnancement sont FPT par rapport à k et lesquels ne le sont pas. Cela définit
une frontière de complexité qui aide à identifier la ”force” de ce paramètre. Le
document est organisé selon cette dernière approche, un chapitre étant consacré
à chacun des paramètres principalement étudiés : la valeur maximale de délai de
précédence `max, la largeur de chemin µ, la marge de manœuvre σ et le niveau
propre du graphe d’intervalles q.
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Contexte
Dans le chapitre 2, nous donnons un aperçu du contexte dans lequel s’inscrit
cette thèse. Tout d’abord, nous introduisons formellement le RCPSP, nous
présentons les résultats existants sur ce problème dans la théorie classique de la
complexité, et nous discutons de leurs limites.

Ensuite, nous prenons le temps de définir les notions de complexité paramétrée
qui sont utilisées dans ce travail. Nous donnons les définitions des classes
paramétrées et montrons comment relier les résultats de différents paramètres
par des réductions et des relations de paramètres.

Enfin, nous donnons un aperçu général de la complexité paramétrée dans
le domaine de l’ordonnancement. Nous montrons que de nombreux problèmes
d’ordonnancement restent difficiles lorsque le nombre de type de tâches n’est
pas limité. Nous notons que la grande majorité des algorithmes FPT récents
limitent le nombre de types de tâches et/ou de types de machines, en particulier
dans le cadre des problèmes à haute multiplicité.

Le Paramètre Délai Maximum
Dans le chapitre 3, nous considérons les problèmes à délais de précédence et
prenons pour paramètre le plus grand délai `max indiqué dans l’entrée. Nous
prouvons de nombreux résultats négatifs.

Tout d’abord, nous étudions les délais exacts ou maximaux sur une seule
machine avec des chaînes de tâches unitaires. En présence de fenêtres tem-
porelles, nous avons montré que le problème était para-NP -difficile avec l’un
ou l’autre type de délais, même avec une seule valeur de délai. En l’absence
de fenêtre temporelles, si le problème est toujours W [1] difficile avec des délais
exacts, nous montrons qu’il peut être résolu en temps linéaire avec des délais
maximaux arbitraires.

Ensuite, avec des délais minimaux, nous démontrons plusieurs autres résul-
tats négatifs. Pour l’ordonnancement sur une seule machine avec des tâches uni-
taires et une précédence générale, nous montrons que le problème est
XNLP−difficile par rapport à `max combiné à la largeur du graphe de précé-
dence w. Nous montrons ensuite que le problème est W [2]−difficile avec des
chaînes de précédence si des délais supplémentaires de longueur zéro sont au-
torisés. Pour le paramètre `max seul, ce résultat a été renforcé en montrant que
le problème à fenêtre de temps et machines parallèles est para-NP−difficile. Ce
dernier résultat fait partie de notre publication IPEC 2022 [MHMK22a].

Nos résultats montrent que la limitation de la valeur maximale du délai
`max n’est pas suffisante pour obtenir des algorithmes FPT pour la plupart des
sous-problèmes d’ordonnancement de RCPSP avec des délais de précédence.
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Le Paramètre Largeur de Chemin
Dans le chapitre 4, nous examinons la largeur de chemin µ pour lequel des ré-
sultats positifs avaient été déjà trouvés dans la littérature récente. Nous l’avons
confirmé en trouvant un nouvel algorithme FPT pour l’ordonnancement de
tâches avec des fenêtres temporelles et des contraintes de précédence sur une
seule machine. Ce résultat a été présenté à MAPSP 2022 [HMMK22].

Cependant, lorsque l’on ajoute des délais de précédence, nous montrons que
le problème devient para-NP -difficile quel que soit le type de délai, même avec
des travaux unitaires et un graphe de précédence réduit à des chaînes. Ce travail
a été présenté pour la première fois à ROADEF 2022. Il permet d’établir que
la largeur de chemin µ seule en tant que paramètre n’était pas adaptée pour
traiter les problèmes avec délais.

Cependant, lorsqu’on le combine avec la valeur maximale de délais `max,
nous avons proposé un algorithme FPT avec un graphe de précédence quel-
conque et des tâches unitaires sur machines parallèles. Le résultat négatif et
l’algorithme FPT ont été inclus dans notre publication IPEC 2022 [MHMK22a].
Cela a motivé l’intégration des fenêtres de temps aux problèmes comportant des
délais de précédence afin d’élargir les choix de paramètres disponibles.

Le Paramètre Marge
Le chapitre 5 est consacré à la marge maximale d’une tâche, notée σ, un autre
paramètre basé sur les fenêtres temporelles. Ce paramètre représente le nombre
maximal de positions que peut prendre une tâche dans sa fenêtre de temps -
moins un. Sur une seule machine ou un nombre fixe de processeurs parallèles
identiques, nous avons montré que σ était plus fort que la largeur de chemin
µ. Cela a permis de déduire plusieurs résultats FPT concernant σ à partir des
progrès récents réalisés avec la largeur de chemin µ.

Dans le reste du chapitre, nous nous sommes concentrés sur l’ordonnance-
ment sur une seule machine avec des fenêtres temporelles et des délais de précé-
dence. Nous tirons des conclusions similaires à celles de la largeur de chemin µ.
Avec la marge σ seule, nous avons montré que l’ordonnancement sur une seule
machine était para-NP difficile pour les trois types de délais de précédence,
même en se limitant aux tâches couplées (i.e. un graphe de précédence réduit
à des arcs disjoints) de durées unitaires et une seule valeur de délai. Ensuite,
lorsqu’il est combiné avec `max, le problème sur une seule machine devient FPT
même avec un graphe de précedence général et des tâches de durée quelconque
- alors qu’il reste ouvert en ce qui concerne le paramètre µ+ `max. Le contenu
de ce chapitre fait l’objet d’un article en préparation, destiné à une soumission
à la revue Discrete Applied Mathematics dans un proche avenir.
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Le Paramètre Niveau Propre
Au chapitre 6, nous proposons un nouveau paramètre basé sur les fenêtres tem-
porelles des tâches. Nous l’appelons le niveau propre q et nous montrons qu’il
est plus faible que la largeur de chemin µ. Cela implique que la plupart des
problèmes que nous avons étudiés sont para-NP -difficiles pour ce paramètre q.

Néanmoins, nous avons réussi à obtenir un algorithme FPT pour l’ordon-
nancement de tâches avec contraintes de précédence et fenêtres de temps sur
une seule machine. L’algorithme repose sur la dominance d’ordonnancements
avec une structure très particulière, et la programmation dynamique. Ceci a
conduit à notre publication dans ISCO 2024 [MHMK24a].

Par la suite nous montrons quelques résultats négatifs supplémentaires con-
cernant ce paramètre q en présence de machines parallèles et de tâches unitaires
- un problème pourtant connu pour être FPT par rapport à µ [MK21].

Autres Résultats Paramétrés
Enfin, dans le chapitre 7, nous présentons plusieurs autres résultats paramétrés
obtenus au cours de cette thèse.

Nous discutons en premier lieu de la possibilité d’algorithmes de kernelisation
pour les problèmes d’ordonnancement avec fenêtres de temps. Nous montrons
qu’un noyau polynomial par rapport à la largeur de chemin µ a peu de chance
d’exister, même dans le cas d’une seule machine.

Afin d’explorer plus avant les conditions d’existence d’un noyau polyno-
mial, nous proposons un nouveau paramètre, la couverture par sommets vc. Ce
paramètre, plus fort que µ, nous permet de définir un noyau polynomial pour le
problème à une machine - combiné avec le temps de traitement maximum pmax

dans un premier temps, puis seul.
Malheureusement, nous montrons un résultat négatif dans le cas de tâches

préaffectées à des sous-ensembles de machines parallèles identiques. Nous mon-
trons que le problème devient W [1]-difficile paramétré par vc. Il est donc peu
probable de trouver un algorithme de kernelisation pour ce problème avec vc
comme paramètre. Ces résultats sur la kernelisation font l’objet d’une soumis-
sion à la conférence IPEC 2024.

Ensuite, nous avons considéré d’autres paramètres structurels très utilisés
dans la théorie des graphes, comme la largeur arborescente ou la twin-width, et
nous étudions leur utilisation potentielle dans les problèmes d’ordonnancement
avec des fenêtres de temps. Nous montrons que la plupart des paramètres définis
sur le graphe d’intervalles induit par les fenêtres de temps ne parvient pas à
distinguer les cas faciles des difficiles. Ils sont soit trop ”optimistes” comme la
twin-width, soit trop ”pessimistes” comme le pathwidth µ.

Enfin, nous proposons une notion de paramètre moyen qui pourrait mieux
rendre compte de la complexité effective en temps et en espace de nombreux
algorithmes paramétrés existants pour les problèmes d’ordonnancement.
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Conclusion et Perspectives
Le travail effectué dans cette thèse a permis d’obtenir une cartographie précise
de la complexité paramétrée des sous-problèmes d’ordonnancement du problème
RCPSP. Nous résumons les résultats obtenus dans la Figure 1.

Bien entendu de nombreuses pistes restent à explorer suite à ce travail. Tout
d’abord, on peut s’inspirer du cadre MIMO développé pour les porblèmes à
haute multiplicité, et définir davantage de métathéorèmes pour les problèmes
d’ordonnancement. Pour chaque paramètre, l’objectif serait de caractériser les
propriétés des tâches qui sont essentielles pour obtenir un résultat FPT.

En ce qui concerne la largeur de chemin µ, nous avons un algorithme FPT
soit sur une seule machine avec des tâches de durée quelconques, soit sur plusieurs
machines avec des tâches de durées unitaires. Cela poserait donc le nombre de
machines et la durée des tâches comme des caractéristiques essentielles vis-à-
vis de ce paramètre. En revanche, nous estimons que l’ajout de contraintes
de précédence et de ressources renouvelables avec des demandes non unitaires
n’a aucun impact sur un résultat FPT impliquant le paramètre µ. Ainsi, nous
conjecturons que le RCPSP avec des tâches unitaires est FPT paramétré par µ.

À plus long terme, le but ultime serait de trouver un analogue au théorème de
Courcelle pour les problèmes d’ordonnancement, par exemple en ce qui concerne
la largeur de chemin µ pour les problèmes comportant des fenêtres temporelles
pour les tâches. Cela pourrait s’avérer délicat, sachant que les problèmes d’or-
donnancement sont notoirement hétérogènes dans les machines utilisées et dans
les propriétés des tâches. Il s’agit d’un frein notoire dans l’optique de réutiliser
de manière directe une grande partie du travail effectué en théorie paramétrée
des graphes.

Une autre question théorique concerne les algorithmes de kernelisation pour
les problèmes d’ordonnancement avec des paramètres structurels, comme nous
l’avons fait pour la couverture par sommets vc dans le chapitre 7. De nombreux
algorithmes FPT ont été trouvés avec la largeur de chemin µ, la marge σ et le
niveau propre q au cours des cinq dernières années, alors qu’à notre connais-
sance aucun algorithme de kernelisation n’a été conçu par rapport à l’un de ces
paramètres. Le principal défi reste de trouver des règles de réduction appro-
priées qui nous permettraient de supprimer un nombre important de tâches de
l’instance d’origine. Même si nos récents progrès avec la couverture par som-
mets vc sont encourageants, nous nous attendons à ce que les règles de réduction
souhaitées soient plus complexes et conduisent au mieux à des noyaux de taille
exponentielle.

Par ailleurs, nous observons que les résultats paramétrés dans le domaine de
l’ordonnancement ont été essentiellement théoriques. Alors que le premier ob-
jectif est d’identifier les problèmes FPT sans accorder beaucoup d’attention à la
complexité temporelle, certains des algorithmes proposés ont déjà une chance de
rivaliser avec l’état de l’art. En particulier, nos algorithmes FPT sur une seule
machine concernant la largeur de chemin µ ou le niveau propre q pourraient
être considérés d’emblée dans certains contextes, au vu de leur dépendance
temporelle assez faible à la fois sur la taille de l’entrée et le paramètre - respec-
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tivement quadratique et mono-exponentielle. Il est cependant à noter que les
valeurs de ces paramètres ont tendance à être élevées dans les cas généraux. Par
exemple, avec des fenêtres de temps tirées aléatoirement de manière uniforme,
les deux paramètres ont une valeur moyenne au moins proportionnelle à la taille
de l’entrée, ce qui est loin d’être idéal dans un cadre paramétré. Néanmoins,
il est possible d’identifier des instances pratiques spécifiques dans lesquels nos
paramètres pourraient être performants.

On peut également noter que dans la littérature, de nombreux algorithmes
approchés ou schémas d’approximation ont été proposés pour les problèmes
d’ordonnancement. Il est donc naturel d’envisager une étude d’algorithmes
paramétrés approchés, qui pourraient permettre, pour certains paramètres,
d’avoir un compromis entre complexité et optimalité. Cette direction est un
champ encore très ouvert avec très peu de résultats jusqu’à présent.

Enfin, avec le développement rapide de la complexité paramétrée dans le
domaine de l’ordonnancement, il est devenu de plus en plus difficile de rester à
jour et de suivre tous les progrès réalisés dans ce domaine. Ainsi, les nouveaux
arrivants bénéficieraient grandement d’une archive publique rassemblant tous
les résultats de complexité paramétrée en ordonnancement. C’est dans cette
optique que nous prévoyons de contribuer au Scheduling Zoo [BKD10] dans un
avenir proche.



Chap. Paramètre Problème Résultat

3 `max

1|chains(`), pj = 1, rj , d̄j |?
Para-NP -difficile avec délais

exacts ou maximaux.
1|chains(`), pj = 1|Cmax < D W [1]-difficile avec délais exacts.

1|chains(`i,j), pj = 1|Cmax < D O(n) avec délais maximaux.

1|chains(0, `), pj = 1, rj |Cmax < D

1|chains(0, `), pj = 1, d̄j |?
NP -difficile avec délais

maximaux.

1|prec(`), pj = 1|Cmax < D
XNLP -difficile(`max + w)

avec délais minimaux.

1|chains(0, `), pj = 1|Cmax < D
W [2]-difficile(`max +#chaînes)

avec délais minimaux.

P |chains(0, `), pj = 1, rj , dj |?
Para-NP -difficile(` = 1)
avec délais minimaux.

4
µ

1|prec, rj , d̄j |Cmax
FPT en temps

O(µ2 · 4µ · n+ n2).

1|chains(`ij), pj = 1, rj , d̄j |?
Para-NP -difficile pour les

trois types de délais.
µ+ `max P |prec(`i,j), pj = 1, rj , d̄j |? FPT pour délais minimaux.

5
σ

Single machine µ ≤ 2σ

Pm µ ≤ 2(σ + 1) ·m− 1

- Plusieurs FPT inférés.

1|(1, `, 1), rj , d̄j |?
Para-NP -difficile pour les

trois types de délais.

σ + `max 1|prec(`i,j), rj , d̄j |?
FPT pour les trois types de

délais combinés.

6 q

- q ≤ µ

P2|rj , d̄j |?
1|(1, `, 1), rj , d̄j |?

Para-NP -difficulté inférée.

1|prec, rj , d̄j |Cmax
FPT en temps

O(max(1, q2 · 4q) ·N + n2).

P |prec, pj = 1, rj , d̄j |?
Para-NP -difficile(q +D).

W [2]-difficile(q + w).

7

µ 1|rj , d̄j |?
Pas de noyau polynomial

(sauf si NP ⊆ coNP/poly).

vc
1|prec, rj , d̄j |?

Noyau polynomial avec
(vc+ pmax) et vc.

P |Mj , rj , d̄j |? W [1]-difficile.
tww,

pthin, cw
1|rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?
Para-NP -difficile.

µavg,
σavg, qavg

- plusieurs FPT inférés.

Figure 1: Résumé des résultats de la thèse.
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Chapter 1

Introduction

1.1 Motivation
This thesis aims at studying the Resource-Constrained Project Scheduling Prob-
lem (RCPSP), its subproblems and its variants in the context of parameterized
complexity. Given a set of jobs subject to precedence constraints, the goal of
RCPSP is to minimize the completion of the whole project. Each job can require
some amount of several resources, which are renewable means of production like
workforce or machines in a factory. For example if one of the jobs is to paint a
car then it may involve a specific machine and an employee who can operate it.

While this RCPSP is a cornerstone scheduling problem with a wide of range
of applications, in practice it is often tough to find optimal schedules for more
than a hundred jobs within a reasonable time. Such difficulty can be explained
in the context of computational complexity theory. In the identical parallel ma-
chine setting, i.e. when restricted to a single resource type, several subproblems
of RCPSP are known to be strongly-NP -hard. This is the case for all subprob-
lems given in Figure 1.1, which are most likely difficult for different reasons.
However the classical branch of complexity theory does not offer the tools to
distinguish between strongly-NP -hard problems in this manner.

P ||Cmax

P2|chains|Cmax

P |opposing forest, pj = 1|Cmax P3|chains, pj = 1, sizej |Cmax

P |pj = 1, sizej |Cmax

P5|sizej |Cmax

RCPSP

Figure 1.1: Some strongly NP -hard subproblems of RCPSP.

19



1.2. SUMMARY 20

In contrast parameterized complexity theory gives more refined ways to char-
acterize the difficulty of NP -hard problems. Given a problem P we choose pa-
rameter k as some property of the input like the number of machines or the
width of the precedence graph (if there is one). Depending on problem P and
parameter k either we design algorithms which are fixed-parameter tractable
with respect to k (i.e. which operate in time f(k) · poly(n) with f an arbi-
trary computable function) and n the input size, or we show that P remains
hard even when k is small (typically via a reduction from a well-known difficult
parameterized problem like k-CLIQUE or k-COLORING). Then the set of pa-
rameters for which problem P is fixed-parameter tractable can be interpreted as
a footprint. By comparing it to the set of ’working’ parameters from another
NP -hard problem P ′, one could infer whether P is ’equivalent’ to P ′, ’strictly
harder’ than P ′, or if both problems are difficult for different reasons.

While parameterized complexity has been extensively used in graph theory
for forty years, it has seen increasing interest in scheduling only recently. In
the past ten years most of the successful approaches have required to bound the
number of job types in some way, while structural parameters like the width w
of the precedence graph have often led to negative results [vBBB+16, BGNS22].
In [MvB18] Mnich and van Bevern listed fifteen open parameterized complexity
problems in scheduling.

Right before this thesis several fixed-parameter tractable algorithms [MK21,
BdWH21] were designed with a new parameter on subproblems of RCPSP aug-
mented with job time windows - with a release date rj and a deadline d̄j . This
parameter, called pathwidth µ, is defined as the maximum number of overlap-
ping job time windows at any time, and can be interpreted as the pathwidth of
the underlying interval graph. The obtained single machine results notably do
not require to bound the processing time values. The year before in [BvdW20]
Bodlaender and van der Wegen introduced a parameter with a similar definition
but with time windows defined along job chains, and possibly a delay between
consecutive jobs in a chain. This suggested further consideration of other po-
tential parameters based on time windows and/or precedence delays.

1.2 Summary
In this work we study the parameterized complexity of RCPSP and its subprob-
lems, possibly enhanced with job time windows and/or precedence delays. Our
approach is two-fold. First given a problem P we find for which parameters P
is fixed-parameter tractable and for which it is probably not. This defines a
parameter map which could be viewed as the ’footprint’ of P and be compared
to the parameter map of other scheduling problems. Second given a parameter
k we determine which problems are fixed-parameter tractable with respect to k
and which are not. This defines a complexity frontier which helps to identify
the ’strength’ of this parameter. More details are given in Subsection 2.2.3.

This document is organized based on the latter approach with a chapter
dedicated to each of our mainly studied parameters: maximum delay value
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`max, pathwidth µ, slack σ and proper level q. For these parameters we give
their associated state of the art in the introduction of their respective chapter
and we provide a problem map at the end of it.

In Chapter 2 we give an overview of the background behind this thesis. First
we introduce RCPSP formally, present the existing results on this problem in
classical complexity theory and discuss their limitations. Then we take some
time to define the parameterized complexity notions which are used in this work.
We give the definitions of the parameterized classes and show how to connect
results from different parameters via reductions and parameter relations. Finally
we give a general survey of parameterized complexity in scheduling. We show
that a lot of scheduling problems remain difficult when the diversity of jobs
properties is not limited in some way. We note that a vast majority of the recent
fixed-parameter tractable algorithms bound the number of job types and/or
machine types in some way, especially in the high-multiplicity setting.

Chapter 3 is dedicated to scheduling problems with precedence delays. We
explore what happens when such delays are added to several subproblems of
RCPSP. We do so via parameter `max, which is the maximum delay value that
can appear in the precedence graph given in the input. We show that even
when the values of the precedence delays are bounded these subproblems become
much harder. We study three types of precedence delays: exact, maximum and
minimum. We start by setting several results with exact and maximum delays,
some of them being closely related to bin packing and bandwidth results in
the literature. Then we focus on minimum precedence delays with unit-time
jobs. We prove that single machine scheduling with general precedence and
equal-length minimum precedence delays is hard even with bounded `max and
bounded precedence graph width w. Next we adapt this reduction to the special
case of precedence chains when extra minimum precedence delays of length zero
are allowed. We end this chapter by strengthening the latter result in the
identical parallel machine setting.

In Chapter 4 we introduce job time windows and we set pathwidth µ as our
parameter, which is the maximum number of overlapping job time windows at
any given time. This parameter has often been used successfully in the litera-
ture [BdWH21, MK21, HMK23, TCH+23]. We give a fixed-parameter tractable
algorithm on single machine scheduling with job time windows and precedence
constraints. However adding precedence delays makes the problem NP -hard
with fixed pathwidth, even with unit-time jobs and precedence constraints re-
stricted to chains. We prove that this is the case for all three precedence delay
types. Then we show that this problem becomes fixed-parameter tractable again
when combining µ and `max in the identical parallel machine setting with unit-
time jobs.

Chapter 5 is dedicated to slack σ which is another parameter previously
considered in the literature when dealing with job time windows - albeit to a
lesser extent [BdWH21, HMK23]. We show that σ is a strictly stronger param-
eter than pathwidth µ in the single machine setting and the identical parallel
machine setting with a fixed number of machines. Despite this, we show that
single machine scheduling with equal-length precedence delays is NP -hard with
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fixed slack, even with unit-time jobs grouped into coupled tasks. Like with
pathwidth we prove that this is the case for all three precedence delay types.
Then with parameter σ + `max we give a fixed-parameter tractable algorithm
on single machine scheduling with job time windows and general precedence
constraints and precedence delays of any type.

In Chapter 6 we introduce a new parameter, which we call proper level
q. We show that q is a smaller parameter than pathwidth µ and yet can still
yield fixed-parameter tractable algorithms on scheduling problems with job time
windows. We describe such an algorithm on single machine scheduling with job
time windows and precedence constraints. This leads to a natural extension of
the well-known Earliest Deadline rule [War59]. Next we argue that proper level
q is a strictly smaller parameter than pathwidth µ. We do so by setting hardness
results on identical parallel machine scheduling with unit-time jobs and general
precedence constraints, which is known to be fixed-parameter tractable with
respect to µ [MK21].

In Chapter 7 we present several other parameterized results obtained during
this thesis and give input on their potential uses in scheduling problems with job
time windows. First we consider kernelization algorithms. After showing that a
polynomial kernel is unlikely to exist on single machine scheduling with respect
to pathwidth µ, we introduce the vertex cover vc of the integral graph defined by
the job time window overlaps as a parameter. We propose a polynomial kernel
with respect to vc on single machine scheduling with job time windows, which is
uncommon on scheduling problems with a parameter that does not bound the
number of job types in some way. Then we examine other parameters based on
this time window interval graph like twin-width. We show how they compare to
parameters µ and q. We argue that most of these parameters are unlikely to yield
any new fixed-parameter tractable results on scheduling problems and share
some intuition behind our reasoning. At last we propose a notion of average
parameters which may reflect better the effective time and space complexity
of multiple existing fixed-parameter algorithms. We illustrate this concept on
parameters µ, σ and q.

In Chapter 8 we give closing thoughts and several perspectives induced by
this work. We claim that we successfully clarified the parameterized landscape
of several subproblems of RCPSP when enhanced with job time windows and/or
precedence delays. We conclude by suggesting several ways to pursue the work
done in this thesis.

Finally Annex A gathers additional information to help navigate the work
done in this thesis. First we list the publications produced as part of this
thesis. Then we give a non-exhaustive list of the notations used throughout this
work, as well as concise definitions of the complexity classes and the parameters
mentioned in this thesis. Eventually we offer a figure index for problem maps
and parameter maps.



Chapter 2

Background
In this chapter we depict the overall scientific background behind this thesis.
Section 2.1 introduces RCPSP and its known classical complexity results, both
with and without job time windows and/or precedence delays. Then in Sec-
tion 2.2 we present the parameterized complexity notions which will be used
throughout this work. Next in Section 2.3 we summarize the current state of
parameterized complexity in scheduling. We end this chapter with some con-
cluding remarks in Section 2.4.

2.1 RCPSP in Classical Complexity Theory
In this section we give an overview of the literature available on RCPSP.

2.1.1 Base RCPSP
We begin by defining the base problem formally:

RCPSP
Input: A set J of jobs, a deadline D, a partial order prec on J ,

a set R of renewable resources, for each resource ρ ∈ R the
available amount Rρ, and for each j ∈ J a processing time
pj ∈ N and the amount resj,ρ ≤ Rρ of resource ρ ∈ R that
it uses during its execution.

Question: Is there a feasible schedule τ : J → N0 with makespan lower
than or equal to D? I.e. can you set a starting time τ(j) ∈ N0

for each job j ∈ J such that:
1. for every relation i→ j in prec job i finishes before job

j starts, i.e. τ(i) + pi ≤ τ(j),
2. at any time t at most Rρ units of each resource ρ are

used, i.e.
∑

{j∈J ,τ(j)≤t<τ(j)+pj} resj,ρ ≤ Rρ,

3. makespan Cmax = maxj∈J (τ(j) + pj) is lower than or
equal to D?

23
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1|pj = 1|Cmax

1||Cmax

1|chains|Cmax

1|prec|Cmax

P2|pj = 1, sizej ∈ {1, 2}|Cmax

P5|pj = 1, sizej |Cmax

Pm|pj = 1, sizej |Cmax

Pm|pj = p, sizej |Cmax

P2|chains, pj = 1, sizej |Cmax

P2|prec, pj = p, sizej |Cmax

P2|prec, pj = p|Cmax

Pm|tree, pj = 1|Cmax

P |tree, pj = 1|Cmax

P |tree, pj = p|Cmax

Pm|opposing forest, pj = 1|Cmax

Pm|opposing forest, pj = p|Cmax

P2||Cmax

P5||Cmax

P2|chains|Cmax

P ||Cmax
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Figure 2.1: Subproblems of RCPSP.

As we mentioned in the introduction RCPSP has numerous incomparable
strongly NP -hard subproblems, which illustrates the complex nature of this
problem. In fact in [Uet02] Uetz showed that it cannot even be approximated in
polynomial time with a factor of n1−ε for any constant ε > 0. In [HBS18] Habibi
et al. counted more than two hundred articles in the field of RCPSP between
1980 and 2017. The main families of algorithmic techniques were compiled
by Artigues et al. in [ADN13]. They range from formulations to resource
flow networks and mixed-integer linear programs, lower bound computations
from critical paths, resolution via constrained programming and/or branch-and-
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bound, to heuristics typically using list scheduling, local search neighborhoods,
column generation or metaheuristics like tabu search.

While numerous extensions and variants of RCPSP have been considered
by the literature (see [HBS18]), in this work we focus on the base definition
which minimizes makespan Cmax. We also study the associated decision prob-
lems, noted either (Cmax < D) or ? as the objective, from which the minimum
makespan can be determined by a binary search on the objective threshold.

In the light of the difficulty behind RCPSP, it is decisive to determine the
frontiers of polynomial-time solvability among its subproblems. We give a prob-
lem mapping in Figure 2.1 which discriminates between the polynomial-time
solvable subproblems of RCPSP in blue and the NP -hard ones in orange. We
denote (P → P ′) if P is a subproblem of P ′.

Since the problem is already strongly NP -hard with a single resource [GJ78],
attempts at finding a polynomial-time algorithm often to bound the resource
amounts and the job processing times. The identical parallel machine envi-
ronment is a common way to simulate a single resource. With arbitrary pro-
cessing times and unit resource amounts only the single machine case has a
polynomial-time algorithm O(n2) [Law73] whereas the two machine case is NP -
hard [LRKB77] and even strongly NP -hard with chains of precedence relations
[DLY91].

As a consequence most approaches considered unit-time or equal process-
ing times. In the absence of precedence relations the problem with arbitrary
resource amounts can be solved in linear time on a fixed number of machines
[BDW86]. Such resource amounts on a single resource are denoted by sizej and
specify the number of machines required to process job j. Note that having a
fixed number of machines is crucial, as the problem becomes strongly NP -hard
with an unbounded number of machines [Llo81].

Still considering unit-time or equal processing times but with the addition
of precedence relations the problem is already strongly NP -hard with three
machines, either with general precedence and resource amounts in {1, 2} [Llo81]
or with chains and arbitrary resource amounts [BL96]. Nevertheless with unit
resource amounts the problem can be solved in polynomial time on multiple
machines, either on an unbounded number of machines with tree-like precedence
[Hu61] or on a fixed number of machines with an opposing forest (i.e. composed
of at least one intree and one outtree) [GJTY83]. With both an opposing forest
and an unbounded number of machines the problem becomes strongly NP -hard
[GJTY83], so the complexity frontier is tight.

2.1.2 Extensions to Job Time Windows and Precedence
Delays

In the light of the previous subsection, the range of polynomial-time solvable
subproblems of RCPSP is rather limited. This worsens when generalizing the
base problem in hopes of expanding the scope of applicable problems. In this
work we study two such extensions: job time windows and precedence delays.
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Figure 2.2: Subproblems of RCPSP enhanced with job time windows.

Time windows are a combination of a release rj and a deadline d̄j . A job
j can only be started at its release date or later and must be completed by its
deadline. This defines a time window within which the job must be processed.
Figure 2.2 gives the updated problem map. Then the single machine case be-
comes strongly NP -hard even with two distinct processing times greater than
one (e.g 2 and 3) [EdW14]. With unit processing times the two machine case
with general precedence can still be solved in quadratic time [GJ77]. However
with an unbounded number of machines the problem with tree-like precedence
becomes strongly NP -hard [GJ77]. Baptiste et al. showed that precedence
constraints can be restricted to chains to retrieve polynomial-time solvability
[BBKT04].

Now let us consider subproblems of RCPSP enhanced with precedence de-
lays. Recall that given a precedence relation from job i to job j, the latter
cannot start before the former is completed. A precedence delay builds upon
such a relation and add an extra time constraint to it. We distinguish three
types: exact, minimum and maximum. Then job j must start exactly, at least
and at most `i,j time units after job i is completed respectively. Figures 2.3,
2.4 and 2.5 display the respective updated problem map. Note that the type of
delay greatly impacts which problems remain polynomial-time solvable.

Among precedence delays the exact ones are definitely the most restrictive.
Indeed scheduling chains of unit jobs on a single machine is NP -hard even with
chains given in unary and with the same exact delay value on every relation (see
Section 3.2). As such most results with exact precedence delays were obtained
in the context of coupled task scheduling - see the recent survey by Khatami
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Figure 2.3: Subproblems of RCPSP enhanced with exact precedence delays.

et al. [KSC20]. The problem becomes notoriously difficult with either job time
windows or a precedence graph Gc which specifies whenever two coupled tasks
are allowed to interleave each other [BG19]. On a fixed number of machines
Khatami et al. found a rare case where the problem can be solved in polynomial
time, in the form of identical coupled tasks with jobs of equal length [KOS23].

With minimum precedence delays the single machine problem with identical
coupled (unit) tasks remains strongly NP -hard in the presence of job time
windows (see Section 5.3). However with either release dates or deadlines alone
Bruno et al. showed that the problem can be solved efficiently even when
the precedence graph is an outforest or an inforest respectively [BJS80]. Still
Engels proved that the problem becomes difficult again with chains with either
two distinct delay values or processing times one and two [Eng00].

Finally maximum precedence delays have been the least studied type. The
single machine case with a single delay value is actually equivalent to the DI-
RECTED BANDWIDTH problem (see Section 3.2). Such a connection infers
that unlike the minimum delay type the problem is NP -hard with tree-like
precedence [GGJK78]. With coupled tasks or chains problems become quickly
difficult in the presence of release dates and/or deadlines. However in their
absence we have a straightforward linear time method even with arbitrary max-
imum precedence delays (see Section 3.2). This confirms that each precedence
delay type sets its own set of restrictions and therefore must be studied individ-
ually.

In conclusion whether we consider base RCPSP or enhancements with job
time windows and/or precedence delays, the vast majority of the subproblems
are strongly NP -hard and thus unlikely to admit a polynomial time algorithm.
In the face of such limitations, we view the parameterized complexity framework
as an opportunity to expand the scope of tractable problems.
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2.2 Basics of Parameterized Complexity Theory
In this section we formally introduce several definitions and notions from pa-
rameterized complexity theory. The given definitions are based on book [FG98]
by Flum and Grohe, book [CFK+15] by Cygan et al. and paper [BGNS22] by
Bodlaender et al..

Definition 1. A parameterized problem is a language L ⊆ Σ∗×N where Σ is a
fixed, finite alphabet. For an instance (I, k) ∈ Σ∗×N, k is called the parameter.

Given a problem P and a parameter k, we will denote (P, k) the correspond-
ing parameterized problem.

2.2.1 Toolkit for Positive Results
We start with the common ways to characterize that a parameterized problem
is tractable.

The FPT and XP Classes

First we define the FPT class the following way:

Definition 2. A problem P is called fixed-parameter tractable (FPT ) parame-
terized by k if the corresponding parameterized problem can be solved by a deter-
ministic algorithm in time f(k) · |I|c where f is a (nondecreasing) computable
function and c is a constant independent of both parameter k and instance size
|I|.

The complexity class containing all fixed-parameter tractable problems is
called FPT .

When this is the case then we write that P is FPT (k) as a shorthand
notation. Note that asking f to be nondecreasing is a convenient hypothesis
which changes little to the theory. Indeed one can replace f with f̂ : k 7→
(max0≤i≤kf(i)), which is also computable. So for the rest of this document
such computable functions will be assumed to be nondecreasing.

The main benefit of a FPT algorithm is that the super-polynomial compo-
nent of the time complexity only depends on the parameter and thus is indepen-
dent from the instance size. Essentially the difficulty of the problem is enclosed
in parameter k. This contrasts with the XP class given below.

Definition 3. A problem P is called slice-wise polynomial (XP ) parameterized
by k if the corresponding parameterized problem can be solved by a deterministic
algorithm in time f(k) · |I|g(k) where f and g are computable functions.

The complexity class containing all slice-wise polynomial problems is called
XP .

In other words each fixed value of k can be interpreted as a slice of instances,
and an XP algorithm operates in polynomial time in each of these slices. How-
ever unlike with FPT the degree of the polynomial in the instance size depends
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on the value of k. While this gives a looser notion of tractability, it is a common
first step when studying any parameterized problem.

Parameterized Reductions

Next we define what a parameterized reduction is:

Definition 4. Let P be a decision (resp. optimization) problem and let k, k′

be two parameters. A parameterized reduction from (P, k) to (P ′, k′) is an
algorithm that, given an instance (I, k) of the first problem, outputs an instance
(I ′, k′) of the second problem such that:

1. (I, k) is a positive (resp. optimal) instance if and only (I ′, k′) is a positive
(resp. optimal) instance,

2. k′ ≤ g(k) for some computable function g,

3. the running time is f(k) · poly(|I|) for some computable function f .

This is reminiscent of usual polynomial-time reductions, with an added con-
straint on the value of the parameter in the destination problem. This extra
restriction guarantees the transfer of positive results between different parame-
terized problems:

Claim 5. [CFK+15] Suppose we have a parameterized reduction from (P, k) to
(P ′, k′). If (P ′, k′) is FPT (resp. XP ) then (P, k) is also FPT (resp. XP ).

Kernelization Algorithms

Finally we introduce kernelization algorithms:

Definition 6. A kernelization algorithm, or simply a kernel, for a parameter-
ized problem (P, k) is an algorithm A that, given an instance (I, k), works in
polynomial time and returns an equivalent instance (I ′, k′) such that |I ′| and k′

are both bounded by g(k) for some computable function g.

Then, given such a kernelization algorithm, one can solve parameterized
problem (P, k) in time poly(|I|)+ g′(k) for some computable function g′. While
this seems stronger than being FPT , it turns out that both notions are equiv-
alent:

Claim 7. [CFK+15] A parameterized problem (P, k) is FPT if and only if it
admits a kernelization algorithm.

Despite this, note that in practice kernels are usually harder to find than
FPT algorithms.

2.2.2 Toolkit for Negative Results
Next we present the common ways to characterize that a parameterized problem
is not tractable.
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The para-NP Class

The para-NP Class has the following definition:

Definition 8. A problem P is in class para-NP with respect to parameter k if
the corresponding parameterized problem can be solved by a nondeterministic
algorithm in time f(k) · |I|c where f is a computable function and c is a constant
independent of both parameter k and instance size |I|.

As the name suggests, para-NP is the literal parameterized version of the
NP class. In fact the following equivalences hold:

Claim 9. [FG98]

(i) (FPT = para-NP ) if and only if (P = NP ).

(ii) A problem P is para-NP -hard parameterized by k if and only if it is
NP -hard for a fixed value of k.

The latter result motivates the notation ”para-NP -hard(k = a)” that we use
to mention that a problem is NP -hard when k is fixed with a value a. It also has
notable implications relatively to the XP class. Indeed proving a parameterized
problem (P, k) to be para-NP -hard means that at least one slice of instances is
NP -hard. Assuming (P 6= NP ) this rules out any XP algorithm (and thus any
FPT algorithm) for (P, k). However in practice a lot of parameterized problems
are in XP while still not believed to be tractable (i.e. not FPT ). This calls for
more elaborated ways to track intractability.

The W -hierarchy

The W -hierarchy is defined via layers of restrictions of the WEIGHTED CIR-
CUIT SATISFIABILITY problem. All these layers are believed to be non-FPT
and of (strictly) increasing difficulty. We direct the reader to [CFK+15] for the
full definition. Instead we rely on some commonly used complete problems for
these classes.

WEIGHTED t-NORMALIZED SATISFIABILITY is a variant of the SAT
problem which takes as input a t-normalized boolean formula and asks whether
there exists an affectation of the variable with exactly k of them set to true
which makes the formula true. t-normalized formulas are defined recursively.
0-normalized formulas are single literals. Then for t ≥ 1, t-normalized formulas
are a conjunction of disjunctions of an arbitrary number of (t − 1)-normalized
formulas. This problem is complete with respect to the corresponding level of
the W -hierarchy:

Claim 10. [FG98] For every integer t ≥ 2, WEIGHTED t-NORMALIZED
SATISFIABILITY is W [t]-complete.

Note that parameterized reductions can be used to transfer negative results
between different parameterized problems:
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Claim 11. [CFK+15] Suppose we have a parameterized reduction from (P, k)
to (P ′, k′). If (P, k) is para-NP -hard (resp. W [t]-hard for some t) then (P ′, k′)
is also para-NP -hard (resp. W [t]-hard for the same t).

Below are the most commonly used complete problems in the parameterized
reductions of this paper:

Claim 12. [FG98, CFK+15]

• k-CLIQUE and k-INDEPENDENT SET are W [1]-complete.

• k-DOMINANT SET is W [2]-complete.

• k-COLORING is para-NP -complete.

Then, assuming FPT 6= W [1] - i.e. a stronger hypothesis than (P 6= NP ) -
proving a parameterized problem to be W [t]-hard for some t rules out any FPT
algorithm.

The XNLP Class

We define the XNLP class introduced by Elberfeld et al. in [EST15]:

Definition 13. A problem P is in class XNLP with respect to parameter k if
the corresponding parameterized problem can be solved by a nondeterministic
algorithm in time f(k) · |I|c and space g(k) · log(|I|) where f, g are computable
functions and c is a constant independent of both parameter k and instance size
|I|.

In [BGNS22] several parameterized problems (including a parallel machine
scheduling one) were proved to be XNLP -complete. The next result sets
XNLP as a middle ground between the W -hierarchy and para-NP :

Claim 14. [BGNS22]

(i) ∀t ∈ N,W [t] ⊆ XNLP ⊆ para-NP . In particular any XNLP -hard
problem is W [t]-hard for all t ∈ N.

(ii) XNLP ⊆ XP .

Note that unlike with para-NP a parameterized problem can be XNLP -
hard while still being in XP . And assuming FPT 6= W [1], a problem being
XNLP -hard rules out any FPT algorithm. Also note that with class XNLP
parameterized reductions require an additional space constraint.

Refined Run Time Lower Bounds

Now if we wish to go beyond parameterized class memberships and set sharper
run time lower bounds, we need a stronger assumption.
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Definition 15 (Exponential Time Hypothesis (ETH)). There is a positive real
δ such that the 3-SAT problem with n variables and m clauses cannot be solved
in time 2δn · (n+m)O(1).

In other words such a hypothesis rules out any sub-exponential deterministic
algorithm for 3-SAT and any other NP -hard problem.

Note that this is indeed stronger than the assumptions previously mentioned
in this section.

Claim 16. [CFK+15]
ETH =⇒ (FPT 6= W [1]) =⇒ (P 6= NP ).

An assumption like ETH is often necessary to obtain lower bounds essen-
tially matching the best known algorithms. In short the accuracy of our desired
negative result must be in accordance to the strength of our complexity assump-
tion.

Kernel Size Lower Bounds

While a kernelization algorithm operates in polynomial time of the instance size,
the resulting kernel size can still be super-polynomial in the parameter. Thus a
distinction can be made depending on the size of the resulting kernel.

Definition 17. A polynomial kernel is a kernelization algorithm which outputs
kernels of size polynomial in the parameter value of the original instance.

In [BJK14] Bodlaender et al. proposed a technique called cross-composition
in order to negate the existence of such polynomial kernels. In this work it is
only used once, at the end of Chapter 4. The full definition will be given there.
Assuming (NP 6⊆ coNP/poly), cross-composition rules out any polynomial ker-
nel for the given parameterized problem:
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Claim 18. [BJK14] Suppose that an NP -hard problem cross-composes into
a parameterized problem (P, k). Then, assuming (NP 6⊆ coNP/poly), (P, k)
admits no polynomial kernel.

Note that as expected the required hypothesis is stronger than (P 6= NP ):

Claim 19. [CFK+15]
(NP 6⊆ coNP/poly) =⇒ (P 6= NP ).

2.2.3 Problems on a Set Parameter and Parameters on a
Set Problem

Throughout this document we support that parameterized complexity is inher-
ently bi-dimensional, in that both the problem and parameter choice are equally
important in the search for FPT algorithms. To foster this idea we propose two
natural approaches: choosing a parameter then going over a range of problems,
or setting a problem then considering various parameters for it.

In the first approach we set a parameter k then determine which problems
are FPT (k). We provide problem maps of our mainly studied parameters at
the end of Chapters 3 to 6. We denote (P → P ′) if P is a subproblem of P ′.
Such an edge is labeled by the properties added when going from P to P ′. A
problem P is in a blue box if it can be solved in polynomial time. The box
is green if P is FPT (k) and red if P is non-FPT with respect to k - under
some assumption like P 6= NP . Finally the box is orange if P is NP -hard
and its parameterized complexity with respect to k is open. Such maps notably
display the problem frontiers associated to a given parameter k. These help to
emphasize which properties do not fit well with parameter k, and in turn find
the settings in which this parameter is the most relevant.

In the second approach we set a problem P then determine for which pa-
rameters P is FPT . We introduce a natural way to relate different parameters
on a set problem P:

Definition 20. Let P be a problem and let k, k′ be two parameters.

(i) We say that k is weaker than k′ on problem P if there is a parameter-
ized reduction from (P, k′) to (P, k). Alternatively we also say that k′ is
stronger than k on problem P.

(ii) We say that k and k′ are equivalent on problem P if k is weaker than k′

and k′ is weaker than k.

This induces a partial order relation which can be determined and visualized
for any problem P. Throughout this document we provide such parameters
maps for several scheduling problems. For example take Figure 2.7 which gives
the parameter map of a parallel machine scheduling problem with precedence
constraints and job time windows. We denote (k → k′) if k is weaker than k′

on problem P. A parameter k is green if P is FPT (k). Conversely k is red if P
is non-FPT with respect to k - under some assumption like P 6= NP . Finally
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k is black if the parameterized complexity of P with respect to k is open. Such
maps notably help to visualize the parameter frontiers on a given problem P
and find the weakest parameters k for which P is FPT (k).

On top of evaluating the relative strength of each parameter on problem
P, such maps allow us to transfer complexity results easily between different
parameters:

Claim 21. Let P be a problem and let k, k′ be two parameters.

(i) Suppose that k is weaker than k′ on problem P. If (P, k′) is FPT (resp.
XP ) then (P, k) is also FPT (resp. XP ). And if (P, k) is para-NP -hard
(resp. W [t]-hard for some t) then (P, k′) is also para-NP -hard (resp.
W [t]-hard for the same t).

(ii) Suppose that k and k′ are equivalent on problem P. Then (P, k) is FPT
(resp. XP , para-NP -hard, W [t]-hard for some t) if and only if (P, k′) is
FPT (resp. XP , para-NP -hard, W [t]-hard for the same t).

Proof. Consequence of Claims 5 and 11.
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(3) para-NP -hard(pmax = 3) when m = 1 [EdW14].
(4) para-NP -hard(σ = 2) [CEH+04].
(5) FPT [TCH+23].
(6) FPT . Derived from [HMK23].
(7) FPT . Derived from the PTAS of P |rj |Lmax in time O(n+ f(1/ε)) from [Mas03].

Figure 2.7: Parameter map of P |rj , d̄j |?.

This concludes the description of the parameterized complexity notions used
in this work.
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2.3 State of the Art
In this section we give an overview of the parameterized scheduling results ob-
tained in the literature - except for the parameters that we discuss in the fol-
lowing chapters in detail. The state of the art concerning maximum delay value
`max, pathwidth µ, slack σ and proper level q will be presented in the introduc-
tion of their respective chapter.

2.3.1 Scheduling with no Job Type Bounding
The first scheduling problem studied in the context of parameterized complexity
was a parallel machine scheduling problem with unit-time jobs - denoted by
P |prec, pj = 1|Cmax < D in Graham’s notation. The problem was shown to
be NP -hard when D = 3 in 1978 by Lenstra et al. [LRK78] by Lenstra et
al. and W [2]-hard parameterized by the number of machines m in [BF95] by
Bodlaender and Fellows.

Dealing with precedence constraints, a natural parameter is the width w of
the precedence graph, which measures the maximum number of incomparable
jobs with respect to the partial order defined by the precedence constraints.
However Bodlaender et al. recently proved this problem XNLP -complete pa-
rameterized by m+w [BGNS22]. This gives no hope of finding a fixed-parameter
tractable algorithm for this problem with these parameters.

In [vBBB+16] van Bevern et al. considered some variants of this problem
with respect to w. They showed that with two machines and processing times
one and two, or with three machines and job sizes one and two - i.e. the number
of parallel machines required to process the job -, the problem is still W [2]-
hard(w). They also showed that P2|chains|Cmax is NP -hard with three chains
(i.e. w = 3).

In response they introduced a non-structural parameter called the allowed
lag λ, which is the maximum difference between the starting time of a job and
its earliest possible starting time according to precedence constraints. While
problem P |prec, pj = 1|Cmax is para-NP -hard(λ = 1) from the same reduction
as in [LRK78], a FPT algorithm for RCPSP is proposed with parameter w+λ.
This could infer that in RCPSP the more difficult part is related to precedence
constraints and time windows rather than the complexity of resource constraints.

When there are time windows and no precedence relations scheduling prob-
lems remain difficult when jobs are not unit-time. For example in [EdW14]
Elffers and de Weerdt proved that 1|pj ∈ {p, q}, rj , d̄j |? is strongly NP -hard for
any p > q > 1 fixed (e.g. p = 3 and q = 2).

In the unrelated parallel machine setting Lenstra et al. showed that job
time windows are not even needed to make problem R||Cmax < D para-NP -
hard(pmax = 3) and para-NP -hard(D = 2) [LST90]. Even though this problem
becomes FPT (pmax) when the parallel machines are identical, it can be shown
W [1]-hard(m) even when job processing times are given in unary. This is a
corollary of [JKMS13] where Jansen et al. showed that UNARY BIN PACKING
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is W [1]-hard parameterized by the number of bins. This result also implies that
P |pj = 1, sizej |Cmax < D is W [1]-hard parameterized by D.

More recently in [CJZ18] Chen et al. gave several lower bounds for exact and
approximate resolution of P ||Cmax. They showed that under ETH the existing
exact and approximation algorithms for P ||Cmax are essentially the best possible
For example while there is an exact algorithm for Pm||Cmax in time 2O(m·

√
|I|)

by O’Neil [O’N11], they showed that for any positive real δ there is no exact
algorithm for this problem in time 2O(m1/2−δ·

√
|I|) (unless ETH fails).

When delays are added on top of precedence relations there is little hope
to find a FPT algorithm without bounding the delay values. In [BvdW20]
Bodlaender and van der Wegen considered chains of unit-time jobs with chain
time windows and exact or minimum precedence delays given in unary. They
studied two parameters: the number of chains c - which is equivalent to width
w - and thickness th which is the maximum number of overlapping chain time
windows (note that th ≤ c). On a single machine we denote this problem
1|chains(`i,j), pj = 1, rC , dC |?. With exact delays although it is W [t]-hard(th)
for all t and W [2]-hard(c) they showed that it is XP (c) even when delays are
given in binary. On parallel identical machines with exact or minimum delays
they showed that the problem is both W [2]-hard(c) and XP (th).

2.3.2 Partial Job Type Bounding
Recent approaches suggest making use of general frameworks based on mixed-
integer programming (MIP). If a scheduling problem can be translated into a
mixed-integer linear (resp. convex) program with a number of integer variables
bounded by some parameter, then a result by Lenstra [LJ83] (resp. by Dadush
et al. [DPV11]) guarantees the existence of a FPT algorithm with respect to
this parameter. This can be typically achieved when the number of distinct
properties between the jobs is limited in some way, for example by bounding
the maximum processing time pmax or the number of distinct processing times
#pj . This was first done by Mnich and Wiese who showed that P ||Cmax is
FPT (pmax) and R||Cmax is FPT (m+#pj) [MW15].

On a single machine Mnich and Wiese also studied two problems with job
rejection in the same paper. First we have a problem with preemption denoted
by 1|pmtn, rj , reject|max(

∑
j selected fj(Cj)) where fj is a non-increasing profit

function for job j. The considered parameters were the number of selected jobs
and #pj . While they showed that this problem is respectively W [1]-hard and
para-NP -hard with respect to each parameter individually, they gave a FPT
algorithm when both are combined.

Second they analyzed problem 1|reject|(
∑

j rejected ej +
∑

j wjCj) where ej
is the rejection cost of job j. The considered parameters were the number of
rejected jobs, #pj and the number of distinct weights #wj . While this problem
is proved W [1]-hard parameterized by the number of rejected jobs, they showed
that it is FPT with respect to any pair of these three parameters.

Hermelin et al. obtained similar results on problem 1||
∑

wjCj with param-
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eters #dj ,#pj and #wj [HKPS21]. While this problem was proved para-NP -
hard(#d = 1) by Karp [Kar72], W [1]-hard(#pj) and W [1]-hard(#wj) by Heeger
and Hermelin [HH24], Hermelin et al. showed that it is FPT with respect to
any pair of these three parameters.

On multiple machines several frameworks were proposed to generalize the
existing approaches. In the unrelated parallel machine setting Chen et al. pro-
posed the rank ρ of the processing time matrix as a parameter [CMYZ17]. They
noted that case ρ = 1 corresponds to the uniform machine environment Q, where
each machine i has a speed si. So parameter ρ serves as a possible generalization
to the unrelated parallel machine environment R. While R||Cmax was shown
the be APX-hard even when ρ = 3 Chen et al. proposed a FPT algorithm
parameterized by (pmax + ρ) in time 22

O(ρ·log(pmax))

+ nO(1). They also showed
that under ETH there is no algorithm for R||Cmax in time 22

o(ρ·log(pmax)) .
In [KZ20] Kouteckỳ and Zink considered a couple other objective functions

and the number of job types d as an extra parameter. They showed that R||X
with X ∈ {Cmax, `2 − norm,

∑
wjCj} is W [1]-hard(d) even when ρ = 2 and

processing times are given in unary. In machine environment Q they proved
that the problem remains W [1]-hard(d) on objectives Cmax and `2, even when
processing times and machine speeds are given in unary. In contrast a FPT
algorithm with respect to d is proposed in the identical parallel machine setting.

On another note the N -fold integer programming framework introduced in
[KK18b] by Knop and Kouteckỳ has shown great success. Given n, r, s, t ∈ N
an N -fold IP is of the form max{cTx,Ax = b, ` ≤ x ≤ u, x ∈ Znt} where
A ∈ Z(r+sn)×nt consists of n arbitrary matrices A(i) ∈ Zr×t on a horizontal
line, and n arbitrary matrices B(j) ∈ Zs×t on a diagonal line.

The authors were able to obtain multiple FPT results on machine envi-
ronments Q,R and objectives Cmax,

∑
wjCj . First they showed that Q||Cmax

is FPT (pmax) and R||Cmax is FPT (pmax + κ). Then the latter result was
adapted to the weighted objective with parameters (pmax + wmax + κ) and
(#pj + #wj + m) successively. They complete their analysis by showing that
bounding the number of machines alone is unlikely to lead to a FPT algorithm.
This was done by proving both P ||Cmax and P ||

∑
wjCj to be W [1]-hard(m),

even when processing times and weights are given in unary.
The same problems were studied more recently by Fisher et al. in [FGM22].

They proposed several run time improvements on the makespan objective and,
under ETH or (P 6= NP ), gave lower bounds for Q||Cmax. They also provided
FPT (d+pmax) algorithms for multiple variants - namely Q|rj |Cmax, Q|d̄j |Cmax,
Q||Cmin and Q||

∑
wjCj .

2.3.3 The High-Multiplicity Setting
The high-multiplicity setting is a continuation of the job type bounding ap-
proaches presented in the previous section. Instead of describing the properties
of the n jobs (resp. m machines) individually in the input, we characterize
d job types (resp. κ machine types) and give the number of elements associ-
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ated to each type. Then the size of the instance mainly depends on the num-
ber of job types rather the total number of jobs. In parameterized scheduling
this setting was considered for the first time by Brauner et al. on problem
1|HM(n), FSE|Cmax, where FSE stands for ”Forbidden Start and End in-
stants” in [GRB16]. They showed that this problem is FPT parameterized by
the number of forbidden instants.

Recent work studied connections with the CUTTING STOCK problem,
which is the high-multiplicity version of the BIN PACKING problem. With this
analogy Goemans and Rothvoß considered problem R|HM(m,n), r

(i)
j , d̄

(i)
j , c(i)|X

where c(i) is the cost for using a machine of type i and objective X aims at min-
imizing the total machine cost. They showed that this problem is XP (d +
κ) [GR20]. On more traditional problems Kouteckỳ and Zink used a BIN
PACKING variant to obtain several para-NP -hardness results with parame-
ter d = 7. The concerned problems are Q|HM(n)|Cmax, Q|HM(n)|`2 and
R|HM(n)|

∑
wjCj . When processing times are given in unary they showed

that R|HM(n)|X is XP (d) for all three objectives X ∈ {Cmax, `2,
∑

wjCj}
[KZ20].

In [KKL+19] Knop et al. proposed a high-multiplicity variant of N -fold in-
teger programming, which they called the Multitype Integer Monoid Optimiza-
tion (MIMO) framework. They separated scheduling objectives into two kinds
Clin and Cpoly where Clin = {Cmax, Cmin, Fmax, Lmax,

∑
wjUj} and Cpoly =

{
∑

wjCj ,
∑

wjFj ,
∑

wjTj , `
C
p -norm}. They showed that any scheduling prob-

lem expressible in the MIMO framework is FPT parameterized by (d + pmax)
and (d+m) with a single-exponential dependency on the parameter for any
objective from Clin ∪ Cpoly and, if processing times are given in unary, FPT
parameterized by (d+ κ) with a double-exponential dependency on the param-
eter for any objective from Clin. As an example they successfully applied their
method to a problem on unrelated machines with time windows - denoted by
R|HM(m,n), r

(i)
j , d̄

(i)
j |X where X is any objective in Clin ∪ Cpoly.

Since then several run time improvements were proposed on specific problems
under the high-multiplicity setting. In [BJ22] Brinkop and Jansen considered
high multiplicity scheduling on uniform machines with three objectives: Cmax,
Cmin and Cenvy which aims at minimizing the difference between the maximum
completion time and the minimum completion time. They gave an algorithm on
objectives Cmax and Cmin which runs in time (pmax)

O(d2) ·poly(|I|). Then they
showed that with objective Cenvy the problem is FPT when maximum speed
smax is combined with d and pmax as a parameter. They also investigated
the restricted assignment setting, which can be written as R|HM(m,n), p

(i)
j ∈

{pj ,∞}|X. On objectives Cmax and Cmin they proposed a FPT algorithm with
run time (d · pmax)

O(d3) · poly(|I|).
More recently in [JKZ24] Jansen et al. went back to problem Q|HM(m,n)|X

with the same three objectives Cmax, Cmin and Cenvy. They gave several run
time improvements with parameter (d+pmax) for all three objectives and proved
multiple lower bounds on objective Cmax under ETH. They also proposed an
approximation scheme with additive error at most εpmax in time (mpmax)

O( 1
ε )



2.4. CONCLUDING REMARKS 40

and gave a matching lower bound under ETH. Finally while it is still un-
known whether makespan minimization in high-multiplicity scheduling on iden-
tical parallel machines is FPT (d), they showed that it is equivalent to whether
high-multiplicity scheduling on uniform machines is FPT (d+ κ).

2.4 Concluding Remarks
This concludes the parameterized state of art of RCPSP and this opening chap-
ter. We began by introducing RCPSP and its known classical complexity results,
both with and without job time windows and/or precedence delays. Then we
presented the parameterized complexity notions which are used throughout this
work. Finally we summarized the current state of parameterized complexity in
scheduling.

While scheduling and parameterized complexity have their respective well-
established community, the intersection between the two has been developing
only recently. As a result several scheduling frameworks are left to be explored
in the context of parameterized complexity theory. Indeed while numerous
FPT algorithms were found in high-multiplicity scheduling, settings with (little
to) no job type bounding have been trailing behind, especially when it comes to
investigating new structural parameters. We intend to fill this gap for scheduling
problems with job time windows and/or precedence delays.



Chapter 3

Results with Maximum
Delay Value `max

3.1 Introduction
In this chapter we investigate the inclusion of precedence delays in several sub-
problems of RCPSP. Such delays specify a time value on top of existing prece-
dence relations. Given two jobs i, j and a precedence constraint i→ j forcing j
to be started after i is completed, we can add a minimum - resp. exact, maxi-
mum - delay ` to ask that j must be started at least - resp. exactly, at most -
` time units after i is completed.

Precedence delays are a special case of the time lags defined by Brucker et
al. in [BHH99]. Indeed time lags are not necessarily tied to a precedence rela-
tion and thus are more general. Other connex notions include communications
delays - for which the delay is only applied when i and j are scheduled on differ-
ent machines - and sequence-dependent setup times, the delay values of which
depend on the order of the jobs (see for example [BdWH21] by Baart et al.).

Among the three precedence delay types studied in this work the exact ones
have been the most explored, especially in the context of coupled task schedul-
ing (i.e. when prec is only composed of isolated edges). This is not surprising
considering that the parameterized problem is already difficult when the prece-
dence graph is only composed of chains (see Section 3.2). The coupled task
properties are usually denoted by a triple (aj , `j , bj) where aj (resp. bj) is the
processing time of the first task (resp. second task) and `j is the precedence
delay in between. Explanations for the notations of the particular cases are
available in Annex A.2. A comprehensive overview of the classical complexity
results in the literature was given by Khatami et al. in [KSC20] and Chen
and Zhang in [CZ21]. In [Bap10] Baptiste showed that 1|(p, `, p)|Cmax can be
solved in time O(f(`) · log(n)), lowering the dependency in the input size at
the expense of an exponential blowout with respect to `. Then in [KOS23]
Khatami et al. extended the method to show that Pm|(a, `, b)|Cmax is FPT

41
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parameterized by `. In [BG19] Bessy and Giroudeau explored the inclusion of
a compatibility graph Gc which dictates when two coupled tasks are allowed to
interleave. They showed that 1|(aj , `j , bj), Gc|Cmax < D is NP -hard even when
Gc is a star, and that it is FPT parameterized by maxj(aj + `j + bj) plus the
vertex cover of Gc. When minimizing the number of tardy jobs they showed
that 1|(1, `, 1), Gc|

∑
Uj is W [1]-hard parameterized by

∑
Uj but becomes FPT

when `max is fixed.
Minimum precedence delays allow more problems to be solved efficiently.

While scheduling unit-time jobs on a single machine was proved strongly NP -
hard on general precedence relations with a single delay value by Leung et al.
[LVW84], Bruno et al. showed that the problem can be solved in polynomial
time when restricting prec to an inforest and adding deadlines [BJS80] (or re-
stricting prec to an outforest and adding release dates). Still in [Eng00] Engels
proved that variants like 1|chains(0, `), pj = 1|Cmax < D and 1|chains(`), pj ∈
{1, 2}|Cmax < D remain difficult to solve - respectively strongly NP -hard and
para-NP -hard with respect to ` (with ` = 2).

Maximum precedence delays have been the least studied precedence delay
type. However it is worth noting that 1|prec(`), pj = 1|Cmax < D equivalent
to the DIRECTED BANDWIDTH graph problem which was first studied by
Garey et al. [GGJK78]. They showed that the problem is strongly NP -hard
with trees of indegree one and outdegree at most two. In the case of polytrees -
i.e. directed acyclic graphs whose underlying undirected graph is a tree - Bod-
laender showed that the problem is W [t]-hard for all t ∈ N when the underlying
undirected graph is a caterpillar with hair length at most one [Bod21]. While
k-BANDWIDTH was recently proved XNLP -complete by [BGNS22], it is open
whether k-DIRECTED BANDWIDTH is also XNLP -complete.

While this work focuses on job time windows, in [BvdW20] Bodlaender and
van der Wegen obtained several interesting results when time windows are de-
fined on the precedence chains instead. With exact or minimum precedence
delays they showed that 1|chains(`i,j), pj = 1, rC , d̄C |? is NP -hard even when
delays are given in unary. In the parallel-machine setting with delays given in
unary they also gave an XP algorithm parameterized by thickness th - i.e. the
maximum number of chain time windows which can include a time unit.

The vast majority of these results suggests that restricting the delays is often
not enough in itself to make the problem easy enough. The results presented in
this chapter will reinforce this intuition in the context of job time windows - or
with no time windows at all.

This chapter is organized as follows. In Section 3.2 we set several results
with exact and maximum delays, some of them being closely related to bin
packing and bandwidth results in the literature. Then in Section 3.3 we focus
on minimum precedence delays with unit-time jobs and prove multiple negative
results. Finally in Section 3.4 we summarize the results obtained in this chapter
and give our concluding remarks.
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3.2 Results with Exact and Maximum delays
In this section we show a number of results with exact and maximum delays.
Most of them are inferred from the literature in a straightforward way.

First we adapt the classical reduction idea from strongly NP -hard problem
3-PARTITION, which was first proposed in [GJ79]. Fill jobs delimited the
partitions and each integer was represented by a job of matching processing
time. Here we reduce from UNARY 3-PARTITION and represent each integer
by a chain of unit-time jobs of matching length.

Claim 22. With exact or maximum delays 1|chains(`), pj = 1, rj , d̄j |? is para-NP -
hard parameterized by ` (with ` = 0) even with chains given in unary.

Proof. We reduce from UNARY 3-PARTITION. Given number of partitions B,
target sum T and positive integers (aj)1≤j≤3B all given in unary we proceed
in a similar fashion as in [BvdW20] (where time windows were defined on the
chains instead of the jobs individually). We set D = B(T +1)− 1 and a fill job
at time units i(T + 1), 1 ≤ i ≤ B − 1. The fill jobs leave exactly B intervals of
length T to schedule the other jobs. Then each integer aj is represented by a
chain of unit-time jobs of length aj with delay 0 everywhere. The ith job in the
chain has release date (i− 1) and deadline (D − aj + i). Then the equivalence
between this scheduling instance and the UNARY 3-PARTITION instance is
straightforward.

In the case of exact delays the parameterized problem remains difficult in
the absence of job deadlines or release dates.

Claim 23. With exact delays 1|chains(`), pj = 1|Cmax < D is W [1]-hard
parameterized by ` even with chains given in unary.

Proof. We reduce from the k-UNARY BIN PACKING problem, which was
proved W [1]-hard in [JKMS13]. Given bin capacity T , positive integers (aj)1≤j≤n

given in unary and parameter k - i.e. the number of bins - we set D = kT and
` = k − 1. Each integer aj is represented by a chain of unit-time jobs of length
aj with delay ` everywhere. Then all jobs from a chain have the same time
position modulo k. So the ith bin is represented by all time positions modulo k
within interval [0, D−1]. Then the equivalence between our scheduling instance
and the k-BIN PACKING instance is straightforward.

Note that this is not the case with maximum delays. In fact having chains
with arbitrary delay values does not hinder polynomiality.

Claim 24. With maximum delays 1|chains(`i,j), pj = 1|Cmax < D can be solved
in time O(n).

Proof. Chains can be scheduled one after the other with delay 0 everywhere in
the schedule. So one can simply add up the chain lengths then check if this sum
is lower than or equal to D.
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However adding either job deadlines or release dates is enough to reach NP -
hardness when at least two delay values are available.

Claim 25. With maximum delays 1|chains(0, `), pj = 1, rj |Cmax < D and
1|chains(0, `), pj = 1, d̄j |? are NP -hard.

Proof. We consider the problem with release dates first. We reduce from
UNARY 3-PARTITION. Given number of partitions B, target sum T and pos-
itive integers (aj)1≤j≤3B all given in unary we set D = B(T +1) and a chain of
fill jobs (fi)1≤i≤B with delay ` everywhere. The ith fill job fi has release date
(i − 1)(T + 1), 1 ≤ i ≤ B. Then each integer aj is represented by a chain of
unit-time jobs of length aj with delay 0 everywhere. The ith job in the chain
has release date i.

We show that in every feasible schedule all fill jobs fi are scheduled at
their release date (i − 1)(T + 1). We start with f1. By contradiction suppose
f1 was scheduled later than time 0 in some feasible schedule. Then all other
jobs have a release date greater than 0. So we would have B(T + 1) jobs
scheduled in B(T + 1) − 1 time positions, which contradicts the feasibility of
the schedule. Thus f1 must be scheduled at its release date, and so is every
fill job fi by induction on i according to the maximum delays. This leaves
exactly B intervals of length T to schedule the other jobs. Then the equivalence
between this scheduling instance and the UNARY 3-PARTITION instance is
straightforward.

The problem with deadlines is proved NP -hard the same way by setting
each job deadline to D minus the release date it was given in the reduction
above.

The parameterized complexity of problems 1|chains(0, `), pj = 1, rj |Cmax <
D and 1|chains(0, `), pj = 1, d̄j |? is open, and so is their classical complexity
when restricted to a single delay value.

3.3 Hardness Results with Minimum Delays
In this section we prove several hardness results with minimum delays. In
Subsection 3.3.1 we show that single machine scheduling with general precedence
and equal-length minimum precedence delays is hard even with bounded `max

and bounded precedence graph width w. Next in Subsection 3.3.2 we adapt
this reduction to the special case of precedence chains when extra minimum
precedence delays of length zero are allowed. Finally in Subsection 3.3.3 we
strengthen the latter result in the identical parallel machine setting.

3.3.1 On a Single Machine With General Precedence
In this subsection we consider single machine scheduling of unit jobs with general
precedence and equal delays of length `. We prove the following negative result:



3.3. HARDNESS RESULTS WITH MINIMUM DELAYS 45

Theorem 26. 1|prec(`), pj = 1|Cmax < D with minimum delays is XNLP -
hard parameterized by `+ w.

We reduce from P |prec, pj = 1|Cmax < D parameterized by m + w, which
was proved XNLP -complete in [BGNS22]. Let I = 〈J , prec,m,D〉 be an in-
stance of P |prec, pj = 1|Cmax < D with J = (Jj)1≤j≤|J |. We build an instance
I ′ = 〈J ′, prec′, D′〉 of 1|prec(`), pj = 1|Cmax < D which will be feasible if and
only if I is feasible.

We propose to linearize the parallel machine instance. Each time unit in
the parallel machine setting is represented as a time segment with length the
number of available machines. By setting minimum delay value ` as the number
of machines, this guarantees that two jobs Ji, Jj related by precedence cannot
be scheduled in the same time segment of length ` - i.e. not at the same time
in the parallel machine setting.

Now this alone would not represent a parallel machine setting faithfully.
Indeed if Ji → Jj in the parallel machine setting then Jj can be scheduled
on any machine in the time unit after the completion of job Ji. If the time
segments are too close from each other in our single machine representation then
the precedence delays could forbid some time units in the next time segment.
One way to fix this is to separate the time segments by at least m time units
and add fill jobs in between.

Definition 27.
Given I = 〈J , prec,m,D〉 an instance of P |prec, pj = 1|Cmax < D we define
I ′ = 〈J ′, prec′, D′〉 instance of 1|prec(`), pj = 1|Cmax < D. We set ` = m and
D′ = (2D−1) · (m+1)+1. We define the set of jobs J ′ as J plus the following
jobs:

• skeleton jobs ai, 0 ≤ i ≤ 2D − 1,

• fill jobs bi,j, 0 ≤ i ≤ D − 2, 0 ≤ j ≤ m− 1.

We set precedence graph prec′ as prec with minimum delay ` on every prece-
dence relation, plus the following relations:

• ai
≥`−−→ ai+1, 0 ≤ i ≤ 2D − 1,

• a2i
≥`−−→ bi,j

≥`−−→ a2i+3, 0 ≤ i ≤ D − 2, 0 ≤ j ≤ m− 1.

Note that among the added jobs you cannot find more than (m+1) of them
which are not related to each other by prec′. So the width w′ of precedence
graph prec′ is bounded by the width w of prec plus (m+ 1).

Lemma 28. In any feasible schedule τ ′ of I ′:

(i) τ ′(ai) = i · (m+ 1) for all 0 ≤ i ≤ 2D − 1,

(ii) (2i+ 1) · (m+ 1) < τ ′(bi,j) < (2i+ 2) · (m+ 1) for all 0 ≤ i ≤ D − 2 and
0 ≤ j ≤ m− 1.
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Figure 3.1: Illustration of skeleton jobs and fill jobs.

Proof. (i) Let 0 ≤ i ≤ 2D − 1. If job ai is scheduled earlier than i · (m + 1)
in τ ′ then job a0 would have to be scheduled at a time earlier than 0, which is
not possible. And if ai is scheduled later than i · (m+ 1) then job a2D−1 would
have to be scheduled at a time later than 2D · (m+ 1)−m, i.e. at deadline D′

or later. So necessarily τ ′(ai) = i · (m+ 1).
(ii) Let 0 ≤ i ≤ D−2 and consider fill job bi,j for any j. The result is directly

inferred from point (i) and the fact that a2i (resp. a2i+3) is a predecessor (resp.
successor) of bi,j .

Proposition 29. Instance I is feasible if and only if instance I ′ is feasible.

Proof. Let us name the machines from 1 to m arbitrarily.
( ⇐= ) Let τ ′ be a feasible schedule of I ′. By Lemma 28 skeleton jobs and

fill jobs fully occupy times 0, D′ − 1 and time intervals of the form [(2i + 1) ·
(m+ 1), (2i+ 2) · (m+ 1)] with 0 ≤ i ≤ D − 2. So given a job Jj from J , τ ′(j)
is necessarily of the form 2i · (m + 1) + k with 0 ≤ i ≤ D − 1 and 1 ≤ k ≤ m.
We propose schedule τ on instance I where job Jj would then be scheduled at
time i on machine k. Since τ ′ is feasible this guarantees that there is at most
one job per couple (time unit, machine). Plus if we had Ji

≥`−−→ Jj in I ′ then, in
schedule τ ′, Jj was scheduled at a later time segment of length m than Ji. So,
in schedule τ , Jj is scheduled at a later date than Ji and precedence relation
Ji → Jj is met. Thus τ is feasible.

( =⇒ ) Let τ be a feasible schedule of I. We propose schedule τ ′ defined the
following way:
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• for every job Jj in J if it was scheduled on machine i then we set τ ′(j) =
2τ(j) · (m+ 1) + i,

• τ ′(ai) = i · (m+ 1) for all 0 ≤ i ≤ 2D − 1,

• τ ′(bi,j) = (2i+1) ·(m+1)+(j+1) for all 0 ≤ i ≤ D−2 and 0 ≤ j ≤ m−1.

We show that τ ′ is feasible. First note that skeleton jobs and fill jobs do not
interfere with each other or with the jobs from J . Now since τ is feasible there
is at most one job Jj per couple (time unit, machine). Plus every job Jj is
scheduled earlier than D in τ , so it is scheduled earlier than 2(D−1) · (m+1)+
m+ 1 = D′ − 1 in τ ′.

Now only precedence relations are left. The concerned skeletons jobs and
fill jobs are placed at least m + 1 = ` + 1 time units from each other, so no
issue with them. Now given two jobs Ji, Jj from J such that Ji → Jj they are
respectively scheduled in time segments [2τ(i) · (m+1)+ 1, 2τ(i) · (m+1)+m]
and [2τ(j) ·(m+1)+1, 2τ(j) ·(m+1)+m]. So their relative position is preserved
and they are at least m+2 = `+2 time units from each other. So the precedence
constraint - minimum delay included - is fulfilled. Thus τ ′ is feasible.

This concludes the XNLP -hardness proof of the corresponding parameter-
ized problem.

3.3.2 On a Single Machine with Chains
In this subsection we restrict to chains of precedence and add delays of value 0
as an option. We show that this parameterized problem remains hard:

Theorem 30. With minimum delays 1|chains(0, `), pj = 1|Cmax < D is W [2]-
hard parameterized by `+#chains.

We reduce from the instances of P |prec, pj = 1|Cmax < D which were used
in [BF95] to prove that the problem is W[2]-hard parameterized by m - via
a reduction from k-DOMINATING SET. Given G = (V,E) they gave I an
instance of P |prec, pj = 1|Cmax < D which is feasible if and only there exists a
dominating set of size at most k in G. Below is the definition of instance I:

Definition 31. [BF95] Given G = (V,E) we define I = 〈J , prec,m,D〉 in-
stance of P |prec, pj = 1|Cmax < D the following way. Let n = |V | and
c = n2 + 1. We set the number of machines m = 2k + 1 and deadline
D = (kn) · c+ 2n. The set J of jobs contains:

• floor jobs ai, 1 ≤ i ≤ D,

• floor gadgets bj for any j of the form n− 1 + αc+ in with 1 ≤ i ≤ n and
0 ≤ α ≤ kn− 1,

• selector path jobs ci,j, 1 ≤ i ≤ k, 1 ≤ j ≤ D − n,
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• selector gadgets di,j, 1 ≤ i ≤ k for any j of the form n− 1 + αc+ i′n− j′

with 1 ≤ i′ < j′ ≤ n such that {vi′ , vj′} /∈ E.

We define precedence graph prec as the following relations:

• ai → ai+1, 1 ≤ i ≤ D − 1,

• aj−1 → bj → aj+1 for every floor gadget bj,

• ci,j → ci,j+1, 1 ≤ i ≤ k, 1 ≤ j ≤ D − n− 1,

• ci,j−1 → di,j → ci,j+1 for every selector gadget di,j.

Proposition 32. [BF95] I is feasible if and only there exists a dominating set
of size at most k in G.

We build I ′ an instance of 1|chains(0, `), pj = 1|Cmax < D which will be
feasible if and only if I is feasible. As in Section 3.3.1 we represent the parallel-
machine by a series of time intervals corresponding to the number of available
machines at each time unit, plus enough consecutive fill jobs in between them
to convert precedence delays as ”jump to later time intervals” constraints and
nothing more. Note that in instance I, without the floor and selector gadgets
the precedence graph would be a union of chains. So we show how to replicate
such gadgets with chains and two distinct delay values - 0 and ` = m.

On the one hand the purpose of floor gadgets is to have m − 2 available
machines at specific time units instead of m− 1 everywhere else. So we propose
to replicate this effect with two chains. First as in Section 3.3.1 a chain of
”skeleton” jobs will help delimit the time intervals. Then a second chain will
cover every other time interval with fill jobs. We highlight the time units with
m− 2 available machines in I:

Definition 33. Let β ∈ [0, D − 1]. We say that β is critical if it is of the form
n− 1 + αc+ in with 1 ≤ i ≤ n and 0 ≤ α ≤ kn− 1.

Figure 3.2 (resp. 3.3) illustrates how a noncritical (resp. critical) time unit
in instance I is simulated in instance I ′.

On the other hand selector gadgets will simply be integrated to their respec-
tive selector path with a delay of length ` on one side and one of length 0 on
the other side. Then a selector gadget and its corresponding selector path can
be scheduled in the same time interval in instance I ′ while nearly keeping the
same selector path neighbors in the precedence relations. This will be enough
to simulate accurately their scheduling possibilities in instance I.

Instance I ′ is defined the following way:

Definition 34. Given G = (V,E) and instance I = 〈J , prec,m,D〉 defined in
Definition 31 we define I ′ = 〈J ′, prec′, `,D′〉 instance of 1|chains(0, `), pj =
1|Cmax < D the following way. Let n = |V | and c = n2 + 1. Let m = 2k + 1
and D = (kn) · c+2n. We set ` = m and D′ = (2m+2) ·D+ kn2 +1. The set
J ′ of jobs contains:
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uβ
uβ +m+ 1

uβ+1
uβ+1 +m+ 1

(. . .)
≥ ` ≥ ` ≥ `

(. . .)

(. . .)
≥ `

(. . .)

m− 1

2m+ 2

Skeleton jobs

Fill jobs

Figure 3.2: Illustration of skeleton jobs and fill jobs in the case of a noncritical
time unit β. The precedence relations with no label have minimum delay 0.

• skeleton jobs e2β , e2β+1, 0 ≤ β ≤ D − 1 plus an extra job e′2β+1 if β is
critical, and a final skeleton job e2D,

• fill jobs fβ,j, 0 ≤ β ≤ D − 1, 0 ≤ j ≤ m plus an extra job f ′
β,m if β is

critical,

• selector path jobs c′i,j and selector gadgets d′i,j replicas of the jobs ci,j , di,j
given in Definition 31.

We define precedence graph prec′ as the following relations:

•

{
e2β

≥`−−→ e′2β+1

≥0−−→ e2β+1
≥`−−→ e2β+2 if β is critical,

e2β
≥`−−→ e2β+1

≥`−−→ e2β+2 otherwise

}
, 0 ≤ β ≤ D−1,

• fβ,j
≥0−−→ fβ,j+1, 0 ≤ β ≤ D − 1, 0 ≤ j ≤ m− 2,

•

{
fβ,m−1

≥`−−→ f ′
β,m

≥0−−→ fβ,m if β is critical,
fβ,m−1

≥`−−→ fβ,m otherwise

}
, 0 ≤ β ≤ D − 1,

• fβ,m
≥0−−→ fβ+1,0, 0 ≤ β ≤ D − 2,

•

{
d′i,j−1

≥`−−→ c′i,j if d′i,j−1 exists,
c′i,j−1

≥`−−→ c′i,j otherwise

}
, 1 ≤ i ≤ k, 1 ≤ j ≤ D − n− 1,

• c′i,j
≥0−−→ d′i,j

≥`−−→ c′i,j+1when d′i,j exists, 1 ≤ i ≤ k, 1 ≤ j ≤ D − n− 1.

We check that our parameters ` and #chains are respectively bounded by
a function of m in instance I ′. ` is equal to m so we are good with `. Plus
there are exactly k+2 = m+3

2 chains in I ′: k chains with selector path job and
selector gadget replicas, one with the skeleton jobs and one with the fill jobs.
So we are also good with #chains.
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uβ
uβ +m+ 1

uβ+1
uβ+1 +m+ 1

(. . .)
≥ ` ≥ ` ≥ `
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(. . .)
≥ `

(. . .)

m− 2

2m+ 3

Skeleton jobs

Fill jobs

Figure 3.3: Illustration of skeleton jobs and fill jobs in the case of a critical
time unit β. The precedence relations with no label have minimum delay 0.

Note that while most time units in I take a time span of length 2m + 2 to
be represented in I ′, critical time units require one more fill job - and thus one
additional time unit. So for better readability in the upcoming proofs we define
the sequence (uβ)0≤β≤D−1 of starting times for skeleton jobs (e2β)0≤β≤D−1.

Definition 35. Let β ∈ [0, D]. If β ≤ n− 1 then we define uβ = (2m+ 2) · β.
Else let α be the highest α′ ∈ [0, kn] such that n−1+αc ≤ β. Let i be the highest
i′ ∈ [0, n] such that n−1+αc+in < β. Then we define uβ = (2m+2)·β+αn+i.

It is especially useful to remember that uβ+1 − uβ is equal to (2m+ 3) if β
is critical and (2m+2) otherwise. Now we show that skeleton jobs and fill jobs
work as intended:

Lemma 36. In any feasible schedule of instance I ′ skeleton job e2D−2 must
be scheduled at time D′ − 1. The other skeleton jobs and the fill jobs must be
scheduled at - and fully cover - time units:{

[uβ , uβ +m+ 2], uβ + 2m+ 1, uβ + 2m+ 2 if β is critical,
[uβ , uβ +m+ 1], uβ + 2m+ 1 otherwise

}
, 0 ≤ β < D.

Proof. Let τ ′ be a feasible schedule of I ′. First we show that for all 0 ≤ β ≤ D
skeleton job e2β is scheduled at time uβ . The definition of prec′ infers that
τ ′(e2β+2) − τ ′(e2β) is at least (2m + 3) if β is critical and (2m + 2) otherwise.
Then by direct induction on β it means that e2β must be scheduled at time
uβ or later. By contradiction if one of these skeleton jobs is scheduled strictly
later, by direct induction on β job e2β would be scheduled later than uD =
(2m + 2) · D + kn2 + 1 = D′ − 1 - contradicting the feasibility of τ ′. Thus
skeleton jobs of the form e2β are scheduled at time uβ .

Next we infer the starting time of the remaining skeleton jobs. Let 0 ≤
β ≤ D − 1. If β is critical then the precedence delays in prec′ imply that
τ ′(e′2β+1) = uβ +m+1 and τ ′(e2β+1) = uβ +m+2. Otherwise they imply that
τ ′(e2β+1) = uβ +m+ 1.

Finally we infer the starting time of all fill jobs in a similar fashion: we show
that the wanted times are the minimal ones, and that scheduling any of our jobs
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strictly later would make the last job in the chain to be scheduled later than
D′−1. We get that jobs fβ,0 to fβ,m−1 cover time interval [uβ+1, uβ+m]. If β
is critical then τ ′(f ′

β,m) = uβ + 2m+ 1 and τ ′(fβ,m) = uβ + 2m+ 2. Otherwise
τ ′(fβ,m) = uβ + 2m+ 1.

This means that within each time interval [uβ , uβ+1) only the time units in
[uβ +m+ 3, uβ + 2m] are available if β is critical and in [uβ +m+ 2, uβ + 2m]
otherwise. This successfully leaves m− 2 available time units if β is critical and
m− 1 of them otherwise.

Proposition 37. Instance I is feasible if and only if instance I ′ is feasible.

Proof. Name the machines from 1 to m arbitrarily.
( ⇐= ) Let τ ′ be a feasible schedule of I ′. By Lemma 36 all selector paths

c′i,j and selector gadgets d′i,j are scheduled in time intervals of the form [uβ+m+
3, uβ+2m] when β ∈ [0, D−1] is critical and in [uβ+m+2, uβ+2m] otherwise.
So their starting time is of the form uβ′ + 2m − j′ for some β′ ∈ [0, D − 1],
j′ ∈ [1,m− 2] if β′ is critical and j′ ∈ [1,m− 1] otherwise.

We propose schedule τ of instance I where every original job ci,j or di,j is
scheduled at time β′ on machine j′. And all floor jobs/gadgets are scheduled at
their only acceptable time unit. Since τ ′ is feasible there are at most m−2 jobs
scheduled at any critical time and at most m− 1 jobs at any other time unit in
τ . Plus prec restricted to selector paths and gadgets is included in prec′, so all
precedence constraints are met in τ . We conclude that τ is feasible.

( =⇒ ) Let τ be a feasible schedule of I. Without loss of generality we
can assume that, in schedule τ , a selector gadget di,j is always performed by
a machine of higher index than the corresponding selector path job ci,j . We
propose schedule τ ′ of instance I ′ where if job ci,j (resp. di,j) is scheduled at
time β on machine j′ in τ then replica c′i,j (resp. d′i,j) is scheduled at time
uβ + 2m − j′. And all skeleton/fill jobs are scheduled at their only acceptable
time unit accordingly to the proof of Lemma 36.

Since τ is feasible all replicas c′i,j , d
′
i,j are scheduled at different times and

they do not conflict with skeleton/fill jobs. Then according to prec only the
precedence constraints of the form c′i,j

≥0−−→ d′i,j remain to be checked. Such
precedence relations were taken care of by our hypothesis on schedule τ at the
beginning. We conclude that τ ′ is feasible.

By combining Propositions 32 and 37 this concludes the W [2]-hardness proof
of the corresponding parameterized problem.

3.3.3 On Parallel Machines with Chains
On parallel machines with job time windows we show that the problem becomes
para-NP -hard parameterized by `max (with `max = 1) .

Theorem 38. With minimum delays P |chains(`i,j), pj = 1, rj , d̄j |? is para-NP-
hard parameterized by maximum delay `max.
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We reduce from 3-COLORING. (Note that the same base idea will be reused
in the reductions of Subsection 4.3.2.) Given G = (V,E) with n nodes and m
edges, we build an instance I of P |chains(0, `), pj = 1, rj , d̄j |? which represents
the color choice of each node by a chain. Then I will be feasible if and only if
G admits a valid 3-coloring. A full example is given in Figure 3.5.

Definition 39 (Vertex chain C′i with with `max = 1). We segment time into
m+2 segments: a color choice segment [0, 6n), m edge check segments of length
6 along [6n, 6(n+m)) and a closing segment [6(n+m), 6(n+ 2m)). We define
C′i as a chain of 3(2n+m−2i−1)+deg(vi)+1 jobs, where deg(vi) is the degree
of node vi in G. These jobs will fulfill two roles:

• Propagators Oi
j,k: The position of job Oi

i,0 between 0, 1 and 2 will give
the color choice of node vi. The other 3(2n+m− 2i) jobs Oi

j,k (i ≤ j ≤
2n + m − i − 1, 0 ≤ k ≤ 2) and Oi

2n+m−i−1,0 will propagate this color
choice along the whole chain while keeping the maximum delay value at 1.
Job Oi

j,k will have time window [6j + 2k, 6j + 2k + 3).

• Edge jobs J i
j : The deg(vi) jobs J i

n+j will represent the color choice of node
vi in every edge ej where node vi is in (0 ≤ j ≤ m − 1). Job J i

n+j will
have time window [6(n+ j) + 1, 6(n+ j) + 4).

Then these jobs form chain C′i with the following precedence relations:

• For j ∈ [0, n+ 2m− 2], j = n+ j′ such that node vi is part of edge ej′

(i.e. in the edge check segment associated to an edge ej′ containing node
vi):

Oi
j,0

≥0−−→ J i
j

≥0−−→ Oi
j,1

≥1−−→ Oi
j,2

≥1−−→ Oi
j+1,0

• For every other j ∈ [0, n+ 2m− 2]:

Oi
j,0

≥1−−→ Oi
j,1

≥1−−→ Oi
j,2

≥1−−→ Oi
j+1,0

Now we only have access to minimum delays. So we must ensure that the
color choice is faithfully propagated. We intend to do so by forcing all vertex
chain delays to be equal to their minimum value in any feasible schedule. This
is done via the addition of the following gadget chains:

Definition 40 (Gadget chain C′i,1 (resp. C′i,2)). Gadget chain C′i,1 is defined in
parallel with vertex chain C′i, with 3(2n + m − 2i − 1) + 1 propagators Oi,1

j,k of
time window [6j + 2k, 6j + 2k + 3). For every j ∈ [0, n + 2m − 2] we have the
following precedence relations:

Oi,1
j,0

≥1−−→ Oi,1
j,1

≥1−−→ Oi,1
j,2

≥1−−→ Oi,1
j+1,0

Gadget chain C′i,2 is defined the same way with 3(2n + m − 2i − 1) + 1

propagators Oi,2
j,k.
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6i 6(i+ 1) 6(2n+m− (i+ 1))

6(2n+m− i)

Vertex chain C′i
(. . . . . . . . .)

Gadget chain C′i,1
(. . . . . . . . .)

Gadget chain C′i,2
(. . . . . . . . .)

Fill jobs x
x

x
x

x x x
x

x
x

Coloring matchings 0 1 2 0 1 2

Color choice Closing segment

Figure 3.4: A toy situation with three machines and the three chains related to
a node in the P |chains(`i,j), pj = 1, rj , dj |? reduction with minimum delays. In
any feasible schedule featuring these chains, for k ∈ {0, 1, 2} exactly one chain
starts at time 6i+k, and then this chain has to end at time 6(n+2m−(i+1))+k.

Then Figure 3.4 illustrates how such gadget chains are expected to operate.
In the color choice segment they fill the positions that correspond to discarded
colors. Then, according to the minimum precedence delays that we put, the
chain starting at the rightmost time in the color choice segment has no choice
but to end at the rightmost available time in the closing segment. In turn this
forces the chain starting at the middle time to end at the middle time in the
closing segment. Eventually this forces the chain starting at the leftmost time
to end at the leftmost time in the closing segment.

Now this toy situation only has exactly three available machines in both the
color choice and the closing segment intervals in which the reasoning is done.
Therefore fill jobs are added in these segments so that this reasoning can be
applied successively to nodes v0, v1 etc.. Note that the number of fill jobs per
time unit is nontrivial since we must take into account the propagators from
other vertex/gadget chains.

Furthermore in the edge check segments we use fill jobs in conjunction with
the edge jobs in order to make the schedule invalid if an edge features two jobs
with the same color in the corresponding 3-coloring candidate.

The fill jobs in instance I are defined below. We recommend following along
using the example given in Figure 3.5.
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Definition 41 (Fill jobs).

(1) Color choice segment [0, 6n)
Let i ∈ [0, n− 1]. In time segment [6i, 6(i+ 1)):

– At time 6i: set M − 1− 2i fill jobs.
– At time 6i+ 1: set M − 1− i fill jobs.
– At time 6i+ 2: set M − 2− 2i fill jobs.

(2) Edge check segments [6n, 6(n+m))

Let j ∈ [0,m− 1]. In time segment [6(n+ j), 6(n+ j + 1)):

– At time 6(n+ j) + 1: set M − n− 1 fill jobs.
– At time 6(n+ j) + 3: set M − n− 1 fill jobs.

(3) Closing segment [6(n+m), 6(2n+m))

Let i ∈ [0, n− 1]. In time segment [6(n+ 2m− (i+ 1)), 6(n+ 2m− i)):

– At time 6(n+ 2m− (i+ 1)): set M − 2− 2i fill jobs.
– At time 6(n+ 2m− (i+ 1)) + 1: set M − 1− i fill jobs.
– At time 6(n+ 2m− (i+ 1)) + 2: set M − 1− 2i fill jobs.

Now we show that vertex chains and gadget chains work as intended. First
we get the following lemma when considering each chain individually:

Lemma 42. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at
time 6i+ k with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time
r(J) + k or later, where r(J) is the release date of job J .

Proof. First the result is proved for vertex chains C′i. Suppose we have a feasible
schedule where vertex chain C′i starts at time 6i+ l with l ∈ {0, 1, 2}.

• Propagators Oi
j,k: by Definition 39 there is always either a unit-time min-

imum delay or a job J i
j between two consecutive jobs Oi

j,k in vertex chain
C′i. Thus if the first job Oi

i,0 is scheduled at time 6i + l = r(Oi
i,0) + l (or

later), then we know that the next propagator Oi
i,1 is scheduled at time

(6i+ l) + 2 = r(Oi
i,1) + l or later, and so on. By induction on the couple

(j, k) with i ≤ j ≤ n+m− 1 and 0 ≤ k ≤ 2, we get that all the jobs Oi
j,k

in vertex chain C′i are scheduled at time (6i + l) + 2 × (3(j − i) + k) =
6j + 2k + l = r(Oi

j,k) + l or later.

• Edge jobs J i
j : let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej

such that vi ∈ ej (if there are any). Let p ∈ [0, deg(vi)− 1]. According to
Definition 39 job J i

jp
is scheduled right before job Oi

jp,0
with a minimum

delay of length zero between them. Therefore according to our previous
point about jobs Oi

j,k, job J i
jp

is scheduled at time (r(Oi
jp,0

) + l) + 1 =

r(J i
jp
) + l or later.
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Gadget chain C′i,1 (resp. C′i,2) only features propagators. By Definition 40
there is always a unit-time minimum delay between two consecutive jobs Oi,1

j,k

(resp. Oi,2
j,k), so the result can be proven the same way as in the first item of the

proof for vertex chains.

Figure 3.5: An instance of P |chains(`i,j), pj = 1, rj , dj |? with minimum de-
lays and M = 2n + 1 = 7 machines representing a graph coloring. We have
G = (V,E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). This schedule
corresponds to the coloring (0, 2, 1).

Then we investigate the interaction between vertex chain C′i and gadget
chains C′i,1, C′i,2. We show that gadgets produce the desired effect:

Lemma 43. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at
time 6i+ k with k ∈ {0, 1, 2}, then all jobs J in this chain have to be scheduled
at time r(J) + k, where r(J) is the release date of job J .
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Proof. We prove by induction on i ∈ [0, n− 1) that for all 0 ≤ j ≤ i exactly one
chain starts at each time 6j, 6j+1, 6j+2 and all jobs J in a chain C′j , C′j,1, C′j,2
that starts at time 6j + k have to be scheduled at time r(J) + k.

• According to Definition 41 on time windows [0, 6) and [6(2n+m−1), 6(2n+
m)), the chain triplet C′0, C′0,1, C′0,2 is in the situation described in Figure
3.4 . Thus at least one chain must start at time 2 which means by Lemma
42 that this chain has to end at time 6(2n + m − 1) + 2. Then time
6(2n+m− 1)+ 2 is blocked, so by the same lemma another chain cannot
start at time 2. Thus the two other chains have to start at the two
remaining time positions 0 and 1, one per chain. By Lemma 42 the chain
that starts at time 1 ends at time 6(2n+m− 1)+ 1 (or later but the only
other time position possible 6(2n+m−1)+2 is already blocked). So time
position 6(2n + m − 1) + 1 is now blocked, which forces the chain that
starts at time 0 to end at time 6(2n+m− 1).

• Let i ∈ [0, n − 1). Assume the induction hypothesis to be true for chain
triplets of index j with 0 ≤ j ≤ i− 1. By Definition 39 we know that only
these chain triplets have propagators that might interfere in time windows
[6i, 6(i+1)) and [6(2n+m−(i+1)), 6(2n+m−i)). By induction hypothesis
we know that these propagators are fixed, and we deduce that the number
of fixed jobs (propagators from other chains plus fill jobs) at the relevant
time positions is the following:

(1) Color choice segment, part [6i, 6(i+ 1)):
∗ At time 6i: M − 1 − 2i fill jobs and 2i propagators from other

chains which add up to M − 1 jobs.
∗ At time 6i + 1: set M − 1 − i fill jobs and i propagators from

other chains which add up to M − 1 jobs.
∗ At time 6i+ 2: set M − 2− 2i fill jobs and 2i propagators from

other chains which add up to M − 2 jobs.
(2) Closing segment, part [6(n+ 2m− (i+ 1)), 6(n+ 2m− i)):

∗ At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs and 2i
propagators from other chains which add up to M − 2 jobs.

∗ At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs and i
propagators from other chains which add up to M − 1 jobs.

∗ At time 6(n+ 2m− (i+ 1)) + 2: set M − 1− 2i fill jobs and 2i
propagators from other chains which add up to M − 1 jobs.

Thus we are again in the situation described in Figure 3.4 and we can prove
the result for the triplet C′i, C′i,1, C′i,2 the same way as in the initialization.

This concludes the proof of the lemma for all chains.

Now we are able to prove the following equivalence:
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Proposition 44. G is 3-colorable if and only if there exists a feasible schedule
for this instance of P |chains(`i,j), pj = 1, rj , dj |?.

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G
where vertex vi has color ci. We propose a schedule τ where for all 0 ≤ i ≤
n− 1, chain C′i starts at time 6i+ ci and gadget chains C′i,1, C′i,2 start in the two
remaining time positions 6i+ l1, 6i+ l2 in [3i, 3(i+ 1)) (with l1 6= l2). Plus we
require all delays to match their minimum value.

Then, according to Definition 39, Definition 40 and going from left to right
as we did in the proof of Lemma 42, we know that propagators Oi

j,k, Oi,1
j,k and

Oi,2
j,k are respectively scheduled at times 6j+2k+ci, 6j+2k+ l1 and 6j+2k+ l2.

In the same way we know that in every edge ej ∈ E where node vi appears,
edge job J i

n+j of vertex chain C′i is scheduled at time 6(n + j) + 1 + ci. Thus
for all jobs J in our proposed schedule, if its chain starts at time 6i + l with
l ∈ {0, 1, 2} then it is scheduled at time r(J) + l.

We show that there are never more than M = 2n+ 1 jobs scheduled at any
time position. According to the previous paragraph we can infer that for every
chain triplet two propagators are scheduled at every even time position and one
propagator at every odd time position in time segment [6i, 6(2n+m−(i+1))+3).
Recall that only the chains C′j , C′j,1, C′j,2 with j ≤ i are present in the two time
segments [0, 6n), 6(n + 2m − (i + 1)) related to node vi. With Definition 41
we count the number of propagators plus the number of fill jobs at every time
position and show that it is always no more than M − 1:

(1) Color choice segment [0, 6n)

Let i ∈ [0, n− 1]. In time segment [6i, 6(i+ 1)):

– At time 6i: M − 1− 2i fill jobs and 2i propagators which add up to
M − 1 jobs.

– At time 6i + 1: set M − 1 − i fill jobs and i propagators which add
up to M − 1 jobs.

– At time 6i+2: set M − 2− 2i fill jobs and 2i propagators which add
up to M − 2 jobs.

– At times 6i+ 3, 6i+ 4, 6i+ 5: respectively i, 2i, i propagators.

(2) Edge check segments [6n, 6(n+m))

Let j ∈ [0,m− 1]. In time segment [6(n+ j), 6(n+ j + 1)):

– At time 6(n + j) + 1: M − n − 1 fill jobs and n propagators which
add up to M − 1 jobs.

– At time 6(n + j) + 3: M − n − 1 fill jobs and n propagators which
add up to M − 1 jobs.

– At times 6(n+ j), 6(n+ j)+2, 6(n+ j)+4, 6(n+ j)+5: respectively
2n, 2n, 2n, i propagators.
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(3) Closing segment [6(n+m), 6(2n+m))

Let i ∈ [0, n− 1]. In time segment [6(n+ 2m− (i+ 1)), 6(n+ 2m− i)):

– At time 6(n+2m−(i+1)): set M−2−2i fill jobs and 2i propagators
which add up to M − 2 jobs.

– At time 6(n+2m−(i+1))+1: set M−1−i fill jobs and i propagators
which add up to M − 1 jobs.

– At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs and 2i
propagators which add up to M − 1 jobs.

– At times 6(n+2m− (i+1))+3, 6(n+2m− (i+1))+4, 6(n+2m−
(i+ 1)) + 5: respectively i, 2i, i, propagators.

Thus only the two edge jobs J i1
n+j , J

i2
n+j from an edge ej = {vi1 , vi2} could

invalidate the schedule if both jobs were scheduled at the same time. This
would mean that 6(n + j) + 1 + ci1 = 6(n + j) + 1 + ci2 and thus ci1 = ci2 ,
which is impossible since we started from a valid 3-coloring. Therefore at most
2n+ 1 = M jobs are scheduled at any time position.

( ⇐= ) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let
si ∈ {0, 1, 2} be such that 6i+ si is the starting time of chain C′i (recall that it
can only be an odd time because of the fill jobs defined in Definition 41). We
show that (s0, . . . , sn−1) is a 3-coloring of G. By contradiction suppose there
is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then according to Lemma
43 jobs J i1

n+j and J i2
n+j are scheduled at the same time 6(n+ j) + si1 . However

according to Definition 41 and Lemma 43 fill jobs and propagators add up to
M − 1 in all three positions 6(n+ j) + 1, 6(n+ j) + 2, 6(n+ j) + 3.

Thus adding both edge jobs there are M + 1 jobs scheduled at one of these
three time positions, which would make the schedule not feasible. This leads to
a contradiction. Thus (s0, . . . , sn−1) is indeed a 3-coloring of G.

This proves that P |chains(`min
i,j ), pj = 1, rj , dj |? with `max = 1 is NP-hard,

which concludes the para-NP-hardness proof of the corresponding parameterized
problem.
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3.4 Summary & Concluding Remarks
Param. Sect. Problem / Setting Result

`max

3.2

1|chains(`), pj = 1, rj , d̄j |?
para-NP -hard with exact

or maximum delays.
1|chains(`), pj = 1|Cmax < D W [1]-hard with exact delays.

1|chains(`i,j), pj = 1|Cmax < D O(n) with maximum delays.

1|chains(0, `), pj = 1, rj |Cmax < D
1|chains(0, `), pj = 1, d̄j |?

NP -hard with maximum
delays.

3.3

1|prec(`), pj = 1|Cmax < D
XNLP -hard(`max + w)
with minimum delays.

1|chains(0, `), pj = 1|Cmax < D
W [2]-hard(`max+#chains)

with minimum delays.

P |chains(0, `), pj = 1, rj , dj |?
para-NP -hard(` = 1)
with minimum delays.

Figure 3.6: Summary of the results obtained in Chapter 3.

In this chapter we investigated the parameterized complexity of the sub-
problems of RCPSP enhanced with bounded precedence delays. We studied
three delay types: exact, maximum and minimum. For all these delay types we
established that the addition of precedence delays, even of bounded value `max,
makes the problem difficult even on a single machine with chains of unit jobs.
This suggests considering other parameters, either by themselves or paired with
`max.

Considering parameter `max alone a lot of parameterized scheduling prob-
lems are left open, especially in the coupled task setting. Indeed all our re-
ductions involving bounded delays heavily rely on the fact that the chains of
jobs can be of arbitrary length. While a couple FPT algorithms have been
proposed in the exact delay case by Khatami et al. on a fixed number of par-
allel machines [KOS23] and Bessy and Giroudeau on a single machine with a
compatibility graph Gc [BG19], the parameterized complexity of coupled task
scheduling with minimum or maximum delays has been trailing behind.
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3.4.1 Problem Map with Parameter `max and Minimum
Delays

1|(1, `, 1)|Cmax < D

1|chains(`), pj = 1|Cmax < D

1|chains(`), pj ∈ {1, 2}|Cmax < D `

1|chains(0, `), pj = 1|Cmax < D `

1|inforest(`), pj = 1|Cmax < D 1|outforest(`), pj = 1|Cmax < D

1|prec(`), pj = 1|Cmax < D `

1|inforest(`), pj = 1, d̄j |? 1|outforest(`), pj = 1, rj |Cmax < D

1|inforest(`), pj = 1, rj , d̄j |? 1|outforest(`), pj = 1, rj , d̄j |?

1|prec(`), pj = 1, rj , d̄j |? `

1|(1, `, 1), rj , d̄j |?

P |(1, `j , 1), rj , d̄j |?

1|chains(`), pj = 1, rj , d̄j |?

1|chains(0, `), pj = 1, rj , d̄j |? `

P |chains(`i,j), pj = 1, rj , d̄j |? `max
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strongly NP -hard [BK99] strongly NP -hard [BK99]

XNLP -hard(`+ w)
[Section 3.3.1]

W[2]-hard(`+#chains) [Section 3.3.2]
strongly NP -hard [Eng00]para-NP -hard(` = 2) [Eng00]

para-NP -hard(`max = 1)
[Section 3.3.3]

Figure 3.7: Problem map of parameter `max with minimum delays.
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3.4.2 Problem Map with Parameter `max and Exact Delays

1|(1, `, 1)|Cmax < D

1|(a, `, b)|Cmax < D `

Pm|(1, `, 1)|Cmax < D

Pm|(p, `, p)|Cmax < D

Pm|(a, `, b)|Cmax < D `

1|chains(`), pj = 1|Cmax < D `

1|(aj , `j , bj), Gc|Cmax < D

1|(1, `, 1), Gc|
∑

Uj

1|(aj , `j , bj), Gc|
∑

Uj

1|(1, `, 1), rj , d̄j |?

P |(1, `j , 1), rj , d̄j |?1|chains(`), pj = 1, rj , d̄j |? `
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O(n) [OP97]

O(f(`) · log(n)) [Bap10]

NP -hard even when Gc is a
star (i.e. vc(Gc) = 1).

FPT ((aj+`j+bj)max+vc(Gc))
[BG19]

W[1]-hard(
∑

Uj) [BG19]

FPT (
∑

Uj) when
`max is fixed [BG19]

strongly NP -hard even with
unary delays [Section 5.3]

O(n · log(n)) [KOS23]

O(f(`)·log(n)+·n·log(n))
[KOS23]

W[1]-hard even with chains
given in unary [Section 3.2]

para-NP -hard(` = 0)
even with chains given in

unary [Section 3.2]

Figure 3.8: Problem map of parameter `max with exact delays.
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3.4.3 Problem Map with Parameter `max and Maximum
Delays

1|(1, `, 1)|Cmax < D

1|chains(`), pj = 1|Cmax < D

1|chains(`i,j), pj = 1|Cmax < D

1|tree(`), pj = 1|Cmax < D

1|polytree(`), pj = 1|Cmax < D `

1|chains(0, `), pj = 1, d̄j |?

1|chains(0, `), pj = 1, rj |Cmax < D

1|(1, `, 1), rj , d̄j |?

P |(1, `j , 1), rj , d̄j |?

1|chains(`), pj = 1, rj , d̄j |? `

1|chains(0, `), pj = 1, rj , d̄j |?

`

P |chains(`i,j), pj = 1, rj , d̄j |? `max
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Figure 3.9: Problem map of parameter `max with maximum delays.



Chapter 4

Results with Pathwidth µ

4.1 Introduction
Pathwidth µ is the maximum number of job time windows which can overlap
at any time t. This corresponds to the pathwidth pw (plus one) of the interval
graph given by the job time window intersections. Hence the name. However
our interpretation is closer to clique number ω, which is the size of the maximum
clique in a graph. While both notions are equivalent in interval graphs (ω =
pw + 1) the clique number interpretation might make it easier to understand
the relevance of parameter µ in the context of scheduling.

Indeed µ bounds the number of job candidates within any interval with no
intermediate release dates or deadlines. So by considering these intervals indi-
vidually, one can go over all possible job subsets which could be scheduled in
each one of them. This suggests a dynamic programming approach, which has
been successful in several occasions over the past few years. The first results with
pathwidth µ were from [MK21] by Munier, where P |prec, pj = 1, rj , d̄j |Cmax and
P |prec, pj = 1, rj , d̄j |Lmax were proved FPT . Since then dynamic programming
FPT algorithms have been given on P |prec, rj , d̄j |? parameterized by µ+ pmax

by Tarhan et al. [TCH+23] and P |Mj(type), prec, rj , d̄j |Lmax parameterized
by µ + min(pmax, σ) by Hanen and Munier [HMK23]. Note that both results
require the addition of a parameter which bounds the impact of having arbi-
trary processing times. This is not surprising given that P2|rj , d̄j |? was proved
para-NP -hard parameterized by µ when µ = 4 by Hanen and Munier [HMK23].
This is also highlighted in Figure 4.1 which illustrates the parameterized land-
scape of P |prec, rj , d̄j |?. However in the context of single-machine scheduling
parameter µ seems to have more potential. Indeed in [BdWH21] Baart et al.
showed that 1|rj , sjk, reject, d̄j |

∑
j /∈R(vj − wjTj) has a FPTAS parameterized

by µ. As the Section 4.2 will confirm, it appears that parameter µ is enough to
schedule jobs of arbitrary length on a single machine efficiently.

Note that pathwidth µ can be considered in problems where release dates
and deadlines are not explicitly given in the input. This was the case in [KT21]
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(3) para-NP -hard(µ = 4) when m = 2 [HMK23].
(4) FPT [TCH+23].
(5) FPT . Derived from [HMK23] (see Section 5.2).

Figure 4.1: Parameterized landscape of P |prec, rj , d̄j |?.

where Munier and Tang studied problem P̄ |prec, pj = 1, cij = 1|Cmax < D.
Precedence graph prec and makespan upper bound D served as a basis to infer
a release date and a deadline for each job. Then they showed that their problem
was FPT parameterized by the pathwidth of the resulting time window graph.

While this work focuses on job time windows, in [BvdW20] Bodlaender and
van der Wegen obtained several interesting results on problem 1|chains(`i,j), pj =
1, rC , d̄C |? with a similar parameter called thickness th. Its definition is near
identical, except time windows are defined on the precedence chains instead of
individual jobs. With exact or minimum precedence delays they showed that
1|chains(`i,j), pj = 1, rC , d̄C |? is NP -hard even when delays are given in unary.
In the parallel-machine setting with delays given in unary they also gave an
XP algorithm parameterized by the thickness - i.e. the maximum number of
chain time windows which can include a time unit. This only reinforces our
intuition that an extra property other than the delay values must be bounded
when hoping to find a FPT algorithm.

In this chapter we focus on scheduling problems with release dates and dead-
lines explicitly given in the input. In Section 4.2 we propose a FPT algorithm
on single machine scheduling and show that it works even in the presence of
precedence relations. Then in Section 4.3 we prove that the problem becomes
para-NP -hard when these relations are enhanced with delay values, even with
chains of unit jobs. In Section 4.4 we pair µ with maximum delay value `max

and show that scheduling unit jobs then becomes FPT even on identical parallel
machines with general precedence. Ultimately in Section 4.5 we summarize the
results obtained in this chapter and give our concluding remarks.
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4.2 A FPT Algorithm on a Single Machine
In this section we show that 1|rj , d̄j |Cmax and 1|prec, rj , d̄j |Cmax are FPT
parameterized by µ. This result was first presented during the MAPSP 2022
conference [HMMK22]. We begin with simpler problem 1|rj , d̄j |Cmax.

Theorem 45. 1|rj , d̄j |Cmax can be solved in time O(µ · log(µ) ·4µ ·n+n · log(n))
and space O((µ+ log(D)) · 2µ · n).

We gather all the distinct values of release dates and deadlines. After sort-
ing them in nondecreasing order we get sequence (uk)1≤k≤K where K ≤ 2n.
We segment time into the K − 1 intervals [uk, uk+1). We propose a dynamic
programming algorithm where we consider these intervals in order. At stage
k we decide which jobs start within interval [uk, uk+1). A job which has been
scheduled must be remembered so that it is scheduled exactly once. Once we
are past its deadline it can be forgotten. So in each state we will only remember
the jobs which are already scheduled but with a deadline greater than uk+1.

Definition 46. For all k in [1,K − 1] we define:

• Zk = {j ∈ J |d̄j ≤ uk+1},

• Γk = {j ∈ J |(rj ≤ uk) ∧ (uk+1 ≤ d̄j)}.

First we show that the following schedules are dominant on 1|rj , d̄j |Cmax:

Lemma 47. Given a feasible schedule τ on an instance of 1|rj , d̄j |Cmax one
can build a feasible schedule τ ′ = γ′

1 . . . γ
′
K−1 with a makespan lower than or

equal to the makespan of τ and such that for all k in [1,K − 1]:

(i) γ′
k is a sequence of jobs which all belong to Γk,

(ii) all the jobs in sequence γ′
k start within interval [uk, uk+1),

(iii) the jobs in γ′
k are scheduled in nondecreasing order of their deadlines.

Proof. We prove this result by induction on k. Let k ∈ [1,K − 1]. Suppose the
result holds for all k′ < k. Let γk be the sequence of jobs which start within
interval [uk, uk+1) in τ .

First note that τ is feasible and all jobs have a positive processing time. So
for every job j in γk, the starting time of which is in [uk, uk+1), has release date
at most uk and deadline at least uk+1. Therefore all jobs in γk fulfill points (i)
and (ii).

Now we intend to define sequence γ′
k as a reordering of the jobs in γk. let

j be a job with highest deadline in γk. We have γk = S′jS. If S is not empty,
we reorder to the sequence S′Sj by pushing the jobs in sequence S by pj time
units to the left and insert j right after. This does not change the makespan.
Plus for all jobs i in S we have d̄i ≤ d̄j , so j can be inserted as desired. Now in
the resulting sequence S′Sj all jobs in S′S are entirely processed within time
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interval [uk, uk+1). So they can be sorted in-place in nondecreasing order of
their deadlines without impacting feasibility.

We set γ′
k as the resulting reordering of the jobs in γk. Then point (i) is valid

according to our second paragraph, as well as point (ii) by the definition of γk.
Finally the jobs in γ′

k are clearly in nondecreasing order of their deadlines, so
point (iii) is cleared. Then points (i) to (iii) hold for all j ≤ k. This concludes
the induction.

This reduces the optimal makespan to a subset of feasible schedules. We
give such schedules the following name:

Definition 48. A schedule τ is called time-interval-ordered if it is feasible,
active and satisfies the properties described in Lemma 47.

If we build a prefix to such a schedule up to stage k, we show that the set
of scheduled jobs can be partitioned between Zk and Lk subset of (Γk − Zk).

Lemma 49. Let τ = γ1 . . . γK−1 be a time-interval-ordered schedule on an
instance I of 1|rj , d̄j |Cmax.

Then for every k in [1,K − 1] schedule γ1 . . . γk is a time-interval-ordered
schedule on job subset Zk ∪ Lk where Lk = (

⋃
1≤h≤k set(γh)) ∩ (Γk − Zk).

Proof. Feasibility, activeness and Lemma 47 are stable properties by prefix op-
eration. What is left to show is that the set of jobs featured in partial schedule
γ1 . . . γk is indeed Zk ∪ Lk.

(⊆) Let ` ∈ [1, k] and j ∈ set(γ`). If j ∈ Zk then we are done. Else it means
that d̄j ≥ uk+1. And since j ∈ set(γ`) we know that rj ≤ u` ≤ uk. So j ∈ Γk

and thus j ∈ Lk.
(⊇) By definition Lk is included in

⋃
1≤h≤k set(γh). Now let j ∈ Zk. By

contradiction suppose that j is not in schedule γ1 . . . γk. Since τ is a feasible
schedule on the whole instance there is some ` ∈ [k + 1,K − 1] such that
j is scheduled in γ`. Then we would have j ∈ Γk, which would mean that
d̄j ≥ u`+1 > uk+1. So j /∈ Zk, which would lead to a contradiction. Thus
j ∈

⋃
1≤h≤k set(γh).

So each dynamic programming state can be described as a couple (k, Lk)
where k represents interval [uk, uk+1) and Lk is the subset of jobs in (Γk − Zk)
which are already scheduled. Then a time-interval-ordered schedule γ1 . . . γK−1

can be represented as a state path (1, L1)→ (. . .)→ (1, LK−1) where every Lk

is a subset of (Γk −Zk). Given two consecutive states (k, Lk) and (k+1, Lk+1)
we show that the set of added jobs γk+1 can be retrieved from sets Lk, Lk+1

and Γk+1.

Lemma 50. Let τ = γ1 . . . γK−1 be a time-interval-ordered schedule on an
instance I of 1|rj , d̄j |Cmax. Let (1, L1) → (. . .) → (K − 1, LK−1) be the corre-
sponding state path accordingly to Lemma 49. Then for every k in [1,K − 2]:

γk+1 = (Zk+1 ∪ Lk+1)− (Zk ∪ Lk) = [(Zk+1 ∩ Γk+1) ∪ Lk+1]− Lk.
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Proof. The first equality is a consequence of Lemma 49. We show that the
second equality holds.

(⊆) Let j ∈ (Zk+1 ∪ Lk+1) − (Zk ∪ Lk). If j ∈ Lk+1 then it is not in Lk,
so j ∈ (Lk+1 − Lk). If j ∈ Zk+1 then it is not in Zk, so its deadline is exactly
uk+2. Hence its release date is lower than or equal to uk+1, which means that
j ∈ Γk+1. And since j is also not in Lk: j ∈ ((Zk+1 ∩ Γk+1)− Lk).

(⊇) Let j ∈ [(Zk+1 ∩ Γk+1) ∪ Lk+1] − Lk. We show that j /∈ Zk. Suppose
j ∈ (Zk+1 ∩ Γk+1). By the definition of Γk+1: d̄ ≥ uk+2 > uk+1. So j /∈ Zk.
Now suppose j ∈ Lk+1. By Lemma 49 Lk+1 is a subset of Γk+1 − Zk+1. So
j /∈ Zk+1, which means that d̄j > uk+2 > uk+1. So j /∈ Zk.

Finally in order to find the optimal makespan of our instance, we show that
we only need to consider time-interval-ordered schedules which are optimal on
every prefix γ1 . . . γk.

Lemma 51. Let τ = γ1 . . . γK−1 be a time-interval-ordered schedule with op-
timal makespan on an instance I of 1|rj , d̄j |Cmax. Then one can build a
time-interval-ordered schedule τ ′ = γ′

1 . . . γ
′
K−1 also with optimal makespan and

such that for all k ∈ [1,K − 1] schedule γ′
1 . . . γ

′
k has optimal makespan among

the schedules of state (k, Lk).

Proof. This is proved by downward induction on k ∈ [1,K − 1]. Suppose that
for all j > k schedule γ1 . . . γj is optimal among the schedules associated with
the same state - which is true in base case k = K − 1. Let τk be a schedule
associated to the same state as schedule γ1 . . . γk and with optimal makespan.
By Lemma 47 there is τ ′k = γ′

1 . . . γ
′
k time-interval-ordered schedule with the

same makespan as τk. We propose schedule τ ′ = γ′
1 . . . γ

′
kγk+1 . . . γK−1, which

is also time-interval-ordered and for which the result holds for all j ≥ k. This
concludes the induction.

This motivates the procedure given in Algorithm 1. Set dummy final value
uK+1 =∞ and final state (K, ∅). For k = 1 to K−1 use the optimal makespan
from states (k, Lk) and extend them to the states (k + 1, Lk+1).

Each of these state pairs is treated by Algorithm 2, which operates accord-
ingly to Lemma 50. Once the unique set of jobs which start within time interval
[uk, uk+1) is retrieved, they are appended in nondecreasing order of their dead-
line and in an active manner (i.e. as soon as possible). Eventually either the
schedule computed by Algorithm 2 is invalid, or it gives an optimal makespan
candidate for the successor state. At the end of the procedure the optimal
makespan of the whole instance is given by the value of state (K, ∅).

Before we analyze the time complexity our dynamic programming algorithm
we bound the size of states and successors:

Lemma 52. ∀k ∈ [1,K − 1], |Γk| ≤ µ. Plus every state has at most 2µ

successors.

Proof. By the definition of Γ all its tasks must include time rj in their time
window. So by the definition of pathwidth µ this bounds the size of Γ by µ.
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Algorithm 1 main() (
. Solving 1|rj , d̄j |Cmax.

1: preprocessing() . Compute sequence (uk)1≤k≤K . Compute job sets Γk.
2: uK+1 ←∞ ; ΓK ← ∅
3: Create table T with K columns (1 to K) and 2|Γk| slots in each column k.
4: Initialize T with ∞ everywhere.
5: T [1, ∅]← 0
6: for k = 1 to K − 1 do
7: for each (Lk, Lk+1) ⊆ (Γk − Zk)× (Γk+1 − Zk+1) do
8: T [k + 1, Lk+1]← min(T [k + 1, Lk+1], extend(k, Lk, Lk+1))
9: return T [K, ∅]

Algorithm 2 extend(k, Lk, Lk+1)
. Input: k ∈ [1,K − 1], Lk ⊆ Γk, Lk+1 ⊆ Γk+1.
. Goal: start from an optimal schedule of the form γ1 . . . γk and attempt to extend it to
a feasible schedule of the form γ1 . . . γk+1.
. By Lemma 47 all the added jobs must start at uk or later.

1: Cmax← max(uk, T [k, γk])
2: if Cmax =∞ then return ∞

. Ensure that all jobs in Lk with a deadline higher than uk+2 are still in Lk+1.
3: if (Lk − Zk+1) 6⊆ Lk+1 then return ∞

. Add jobs accordingly to Lemma 47 and 50.
4: add← [(Zk+1 ∩ Γk+1) ∪ Lk+1]− Lk

5: sort(add, nondecreasing d̄j)
6: for j in add (in order) do
7: Cmax← Cmax+ pj
8: if Cmax > d̄j then return ∞

. Ensure that all the added jobs start earlier than uk+1.
9: last← last job in add.

10: if Cmax− plast ≥ uk+1 then return ∞
11: return Cmax

Now given a state (k, Lk) ∈ [1,K − 1]× (Γk−Zk) his successors are of the form
(k + 1, Lk+1) where Lk+1 is a subset of (Γk+1 − Zk+1). Thus state (k, Lk) has
at most 2µ successors.

Now that the number of states and successors have been bounded we com-
pute the time and space complexity of the proposed dynamic programming
algorithm. In the preprocessing phase of Algorithm 1 sequence (uk)1≤k≤K−1

and sets Γk are computed. This takes time O(n · log(n)) and space O(µ · n).
Now by Lemma 52 the number of states associated to each interval [uk, uk+1) is
bounded by 2µ, and for each one at most 2µ candidate successors are explored.
For each couple ((k, Lk), (k + 1, Lk+1)) considered in Algorithm 1 line 7, Algo-
rithm 2 adds at most µ jobs to the schedule represented by state (k, Lk). By
Lemma 50 they can be retrieved from sets Lk and Lk+1 (line 4) and appended
accordingly to Lemma 47 (lines 5 to 12) in time O(µ · log(µ)).

Then either some deadline is invalidated or the jobs are successfully added
and a new candidate makespan value is proposed to the successor. So the main
loop of Algorithm 1 takes time O(µ · log(µ) · 4µ · n). Now we consider space
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complexity. For each state (k, Lk) we must remember index k, some encoding
of set Lk and the minimum makespan currently found. By Corollary 52 this
requires space O(µ + log(D)) where D = maxj∈J (d̄j). Finally once the whole
state graph has been computed, a feasible schedule with optimal makespan can
be retrieved by starting from the final state and going backwards in the state
graph. This leads the time and space complexity given in Theorem 45.

Note that if only the optimal value is wanted and not a schedule, it is possible
to reduce the space complexity to O((µ+ log(D)) ·2µ). Indeed only the optimal
makespan of the states associated to stage k must be remembered at any time in
order to find the optimal makespan of all states associated to stage k + 1. And
when all the states associated to stage k have interacted with their successors,
the space they take can be freed and used for the states associated to stage k+2.
Finally instead of a preprocessing phase sequence (uk)1≤k≤K−1 and sets Γk are
only computed whenever needed and forgotten once all the states associated to
the corresponding job have interacted with all their successors.

Now it is possible to extend instances of problem 1|rj , d̄j |Lmax. Due dates
dj are given on top of deadlines d̄j and we aim to minimize maximum lateness
Lmax = maxj∈J (Cj − dj). We perform a binary search by solving a series
of decision problems with our makespan algorithm. Deadlines are updated ac-
cordingly to the current maximum lateness threshold in the binary search. This
means that the processing phase must be done before each step. Finally note
that we require deadlines to be given in the input on top of due dates. Indeed
the value of pathwidth µ may change at each step of the search, but it can only
go down if the instance given in the input is feasible (thus checked in the first
step of the binary search). So such initial deadlines allow us to bound the value
of the parameter in every step by its initial value.
Corollary 53. 1|rj , d̄j |Lmax can be solved in time O(µ · log(µ) ·4µ ·n · log(D)+
n · log(n) · log(D)) where D = maxj d̄j.

Note that precedence relations may be added to the instance with little
extra cost. But because we have both time windows constraints and precedence
relations in our problem, first we must ensure that the time constraints are
compatible with partial order prec (which we denote → here).
Definition 54. An instance I = 〈J , prec, pj , rj , d̄j〉 of 1|prec, rj , d̄j |Cmax is
called prec-consistent when:

∀(i, j) ∈ J 2, (i→ j) =⇒ [(ri + pi ≤ rj) ∧ (d̄i ≤ d̄j − pj)].

Given an instance of 1|prec, rj , d̄j |Cmax which is not prec-consistent, its
release times and deadlines can be adjusted in time O(n2) to fulfill this property
by using path algorithms. Note that by doing so we only remove time window
sections which are inaccessible according to precedence relations. So feasibility
and the optimal makespan value are unchanged. Once we get a prec-consistent
instance equivalent to the original instance, the following property holds.
Lemma 55. On any prec-consistent instance of 1|prec, rj , d̄j |Cmax sorting jobs
by nondecreasing deadlines is a topological sorting of prec.
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Proof. Direct consequence of Definition 54.

This means that in every schedule γ1 . . . γK−1 from Lemma 47 there is no
inner precedence conflict in any γk (1 ≤ k ≤ K − 1). It also means that
there is no precedence conflict from any job in γk+1 to any job in Zk. Let
(1, L1) → (. . .) → (1, LK−1) be the corresponding state path. By Lemma 49
this implies that some precedence conflict could only be from some job in γk+1

to some job in Lk. Since both set sizes are bounded by µ according to Lemma
52, precedence checks can be completed in time O(µ2) every time we attempt
to extend a state (k, Lk) to some potential successor (k + 1, Lk+1).

Corollary 56. 1|prec, rj , d̄j |Cmax can be solved in time O(µ2 · 4µ · n + n2).
1|prec, rj , d̄j |Lmax can be solved in time O(µ2 ·4µ ·n · log(D)+n2 · log(D)) where
D = maxj d̄j..

4.3 Hardness Results with Precedence Delays
In the light of the results obtained in the previous section and in the literature
[MK21, KT21, TCH+23, HMK23] parameter µ can lead to FPT algorithms
while featuring precedence relations and putting no restriction on them. As a
result we thought of delay values to the precedence relations and investigate
when the problems would remain FPT parameterized by µ. Unfortunately we
show that parameter µ becomes ineffective in the presence of precedence delays,
even on single machine scheduling with time windows and restricted precedence
constraints (chains, coupled tasks).

In this section we focus on 1|chains(`ij), pj = 1, rj , d̄j |?. We show that
this problem is para-NP-hard parameterized by µ for each of the three delay
types (exact, minimum, maximum). This result was first presented during the
ROADEF 2022 conference [Mal22] in the case of exact/minimum delays. Unlike
with previous parameterized reductions, we do need to reduce from a parame-
terized problem:

Claim 57. [FG98] If a (nontrivial) problem P is NP-hard with a fixed value of
some parameter k, then the parameterized problem (P, k) is para-NP-hard.

As a result for all three delay types we show that 1|chains(`ij), pj = 1, rj , d̄j |?
is NP-hard with a fixed value of µ. All reductions start from the (strongly) NP-
hard 3-COLORING graph problem [Kar72]. Let G = (V,E) be the input graph
(with no self-loops). Let v0, . . . , vn−1 be the vertices in V and e0, . . . , em−1 be
the edges in E. Let n = |V | and m = |E|. The colors are named 0, 1 and 2.

Note that by restricting further to coupled tasks (i.e. chains of length 2) and
a single available delay value the problem remains para-NP -hard parameterized
by µ. The corresponding reductions are given in Section 5.3. They use the same
base ideas as the reductions in this section but with more sophisticated gadgets.
So we strongly recommend that you read this section before you tackle Section
5.3.
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4.3.1 With Exact Delays
We start by proving the result with exact delays.

Theorem 58. 1|chains(`ij), pj = 1, rj , d̄j |? with exact delays is para-NP-hard
parameterized by pathwidth µ.

We build an instance Iex of 1|chains(`ij), pj = 1, rj , d̄j |? where µ = 2. An
example is given in Figure 4.2. We have n vertex chains Ci with deg(vi)+1 jobs
in chain Ci, 0 ≤ i ≤ n − 1 with deg(vi) the degree of node vi in G. We define
vertex chain Ci the following way:

Definition 59 (Vertex chain Ci). We segment time into m + 1 segments: a
color choice segment [0, 3n) and m edge check selection segments of length 3
along [3n, 3(n+m)). We describe the chain from left to right:

1. Color choice segment [0, 3n)

• The first job of chain Ci has time window [3i, 3(i+ 1)).
(a) If vi appears in no edge of G: end the chain.
(b) Else: set 3(n− i)− 1 as the current exact delay after this job.

2. Edge check segment [3(n+ j), 3(n+ j + 1)), 0 ≤ j ≤ m− 1

For j in [0,m− 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.

(a) Vertex chain Ci with i /∈ {i1, i2}
• Add 3 to the current exact delay after the currently latest job of

chain Ci.
(b) Vertex chain Ci with i = i1 or i = i2

• Set a job with time window [3(n+ j), 3(n+ j + 1))

i. If ej is the last edge where vi appears: end the chain.
ii. Else: set 2 as the current exact delay after this job.

Remark 60. The created instance has pathwidth 2. In the color choice segment:
for i ∈ [0, n−1] there is exactly one job to be scheduled in time window [3i, 3(i+
1)): the first job of vertex chain Ci. In the edge check segments: for j ∈ [0,m−1]
if edge ej = {vi1 , vi2} then there are exactly two jobs to be scheduled in time
window [3(n+ j), 3(n+ j + 1)): one from vertex chain Ci1 and one from vertex
chain Ci2 . Thus there are indeed at most two overlapping time windows at any
given time.

Let i ∈ [0, n − 1]. Vertex chain Ci has three possible starting times in
[3i, 3(i+ 1)) which corresponds to the three color choices of node vi. Then this
color choice is propagated to every edge check segment [3(n+ j), 3(n+ j + 1))
where node vi is a part of edge ej , j ∈ [0,m− 1]. The following lemma ensures
that the color choices are faithfully propagated.
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0 3n 3(n+m)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Vertex chain C0

Vertex chain C1

Vertex chain C2

Color matchings

Color choice of the n nodes Edge
{v0, v1}

Edge
{v0, v2}

Figure 4.2: An instance of 1|chains(`ij), pj = 1, rj , dj |? with exact delays rep-
resenting a graph coloring. We have G = (V,E) with V = {v0, v1, v2} and
E = ({v0, v1}, {v0, v2}). This schedule corresponds to coloring (0, 2, 1).

Lemma 61. Let 0 ≤ i ≤ n− 1. In any feasible schedule of Iex, if vertex chain
Ci starts at time 3i + k with k ∈ {0, 1, 2}, then all jobs J in this chain are
scheduled at time r(J) + k, where r(J) is the release date of job J .

Proof. Suppose we have a feasible schedule where vertex chain Ci starts at time
3i+ k with k ∈ {0, 1, 2}.

• If vertex vi is part of no edge in the graph:
Then by Definition 59 vertex chain Ci only has one job. It is scheduled at
time 3i+ k, which is indeed the release date of this job plus k.

• If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej . We prove by induction on l ∈ [0, deg(vi)−1] that the job of vertex
chain Ci which has time window [3(n + jl), 3(n + jl + 1)) is scheduled at
time 3(n+ jl) + k.

– Consider the job of vertex chain Ci which has time window [3(n +
j0), 3(n+j0+1)). By Definition 59 this job is the successor of the first
job in the chain and the exact delay between them is 3(n−i)−1+3j0.
Thus if the first job of the chain is scheduled at time 3i+k, then this
following job is scheduled at time (3i+k)+1+(3(n− i)− 1+3j0) =
3(n+ j0) + k, which is indeed the release date of this job plus k.

– Let l ∈ [1, deg(vi) − 1]. Suppose the job of vertex chain Ci which
has time window [3(n + jl−1), 3(n + jl−1 + 1)) is scheduled at time
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3(n+jl−1)+k. Then by Definition 59 there is an exact delay 2+3(jl−
jl−1 − 1) before the next job of the chain. Thus the next job of the
chain is scheduled at time (3(n+jl−1)+k)+1+(2+3(jl−jl−1−1)) =
3(n+ jl) + k, which is indeed the release date of this job plus k.

This proves the lemma for all the jobs of vertex chain Ci in an edge check
segment.

Then for each edge ej = {vi1 , vi2}, i1 < i2, the color choices of vi1 and vi2
are confronted in edge check segment [3(n+j), 3(n+j+1)). If both nodes chose
the same color then both jobs in this edge check segment would be scheduled
at the same time, which would invalidate our schedule in this single-machine
instance. Conversely if we start from a valid coloring, then there will never be
two jobs scheduled at the same time in an edge check segment. This is the key
ingredient behind the reduction.

Proposition 62. G is 3-colorable if and only if there exists a feasible schedule
for Iex.

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G
where vertex vi has color ci. We propose the schedule where for all 0 ≤ i ≤
n − 1, chain Ci starts at time 3i + ci. Then in every edge ej ∈ E where vertex
vi appears, we schedule the job of chain Ci which is in edge check segment
[3(n+ j), 3(n+ j + 1)) at time 3(n+ j) + ci.

We show that the jobs in different chains do not interfere with each other.
Since the time windows do not overlap in the color choice segment, only the
edge check segments remain to be checked. Let ej = {vi1 , vi2} be an edge in
E. By definition of the vertex chains, only chains Ci1 and Ci2 have a job to be
scheduled in time window [3(n + j), 3(n + j + 1)). In our schedule the job of
chain Ci1 is scheduled at time 3(n + j) + ci1 and the job of chain Ci2 at time
3(n + j) + ci2 . Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have
ci1 6= ci2 . Thus both jobs are scheduled at different times and the jobs in edge
check segment [3(n + j), 3(n + j + 1)) do not interfere with each other. Thus
the proposed schedule is feasible.

( ⇐= ) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let
si ∈ {0, 1, 2} be such that 3i+ si is the starting time of chain Ci. We show that
(s0, . . . , sn−1) is a 3-coloring of G. By contradiction suppose there is an edge
ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then by Lemma 61 the jobs of chains
i1 and i2 that must be scheduled in edge check segment [3(n+ j), 3(n+ j + 1))
are scheduled at the same time 3(n+ j)+ si1 . Thus the schedule is not feasible,
which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a 3-coloring of
G.

This proves that 1|chains(`ij), pj = 1, rj , d̄j |? with exact delays is NP-hard
when µ = 2, which concludes the para-NP-hardness proof of the corresponding
parameterized problem.



4.3. HARDNESS RESULTS WITH PRECEDENCE DELAYS 74

4.3.2 With Minimum Delays
We adapt the reduction to instances with minimum delays:

Theorem 63. 1|chains(`ij), pj = 1, rj , d̄j |? with minimum delays is para-NP-
hard parameterized by pathwidth µ.

We build an instance Imin of 1|chains(`ij), pj = 1, rj , d̄j |? with µ = 3. We
begin in a similar way: for each node we have a vertex chain C′i with three
possible starting times, each corresponding to a color choice, then we want to
propagate this color choice. However now that the delays are not exact anymore,
the color choice cannot be propagated properly as previously. More constraints
are needed in order to deal with the extra flexibility coming from the minimum
delays.

One way is to add a closing segment [3(n +m), 3(2n +m)) at the end and
two gadget chains C′i,1, C′i,2 per node, each composed of two jobs. As shown in
4.3 the gadget chains will fill the two gaps at the start and at the end of each
vertex chain.

Definition 64 (Vertex chain C′i). We segment time into m+2 segments: a color
selection segment [0, 3n), m edge check selection segments along [3n, 3(n+m))
and a closing segment [3(n +m), 3(2n +m)). We describe the chain from left
to right:

1. Color selection segment [0, 3n)

• The first job of chain C′i has time window [3i, 3(i+ 1)).
• Set 3(n− i)− 1 as the current minimum delay after this job.

2. Edge check segment [3(n+ j), 3(n+ j + 1)), 0 ≤ j ≤ m− 1

For j in [0,m− 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.

(a) Vertex chain C′i with i /∈ {i1, i2}
• Add 3 to the current minimum delay after the currently latest

job of chain C′i
(b) Vertex chain C′i with i = i1 or i = i2

• Set a job with time window [3(n+ j), 3(n+ j + 1))

• Set 2 as the current minimum delay after this job

3. Closing segment [3(n+m), 3(2n+m))

• Add 3i to the current minimum delay of the currently latest job of
chain C′i.

• Set a job with time window [3(n + i + m), 3(n + i + 1 + m)) as the
last job of vertex chain C′i.
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Figure 4.3: An instance of 1|chains(`ij), pj = 1, rj , dj |? with minimum delays
representing a graph coloring. We have G = (V,E) with V = {v0, v1, v2} and
E = ({v0, v1}, {v0, v2}). This schedule corresponds to coloring (0, 2, 1).

Definition 65 (Gadget chains C′i,1, C′i,2). For both gadget chains C′i,1, C′i,2 relative
to vertex vi, the first job must be scheduled in time window [3i, 3(i + 1)), the
second one in time window [3(n + m + i), 3(n + m + i + 1)), and there is a
minimum delay 3(n+m)− 1 between them.

Remark 66. The created instance has indeed pathwidth 2: gadget chains add
two more time windows at the beginning and the end of each vertex chain, so
there are at most three time windows overlapping at any time.

A full example is given in Figure 4.3. For our proof the goal is to show that
adding these gadget chains is enough to get an analogue result to Lemma 61.
Note that if we only consider the n vertex chains like in the reduction of Section
4.3.1, we only get this weaker result:

Lemma 67. Let 0 ≤ i ≤ n − 1. In any feasible schedule of Imin, if a chain
starts at time 3i+k with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled
at time rJ + k or later.
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Proof. For gadget chains C′i,1, C′i,2 this comes from the minimum delay 3(n +
m)− 1 between their two jobs. For vertex chain C′i: suppose we have a feasible
schedule where vertex chain C′i starts at time 3i+ k with k ∈ {0, 1, 2}.

• If vertex vi is part of no edge in the graph:
Then by 64 vertex chain C′i only has two jobs and there is a minimum
delay 3(n − i) − 1 + 3m + 3i = 3(n +m) − 1 between them. Thus if the
first job is scheduled at time 3i+ k, then the job in the closing segment is
scheduled at time (3i+ k) + 1+ (3(n+m)− 1) = 3(n+m+ i) + k, which
is indeed the release date of this job plus k.

• If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej . We prove the lemma for all the jobs of vertex chain C′i in an edge
check segment by induction on l ∈ [0, deg(vi)− 1] the same way as in 61.
Then only the job of the chain in the closing segment is left. By 64 there
is a minimum delay 2 + 3(m − 1 − jdeg(vi)−1) + 3i between this job and
the one in edge check segment [3(n + jdeg(vi)−1), 3(n + jdeg(vi)−1 + 1)).
Since we know from the induction that the latter job is scheduled at time
3(n+ jdeg(vi)−1)+ k or later, this means that the job of vertex chain C′i in
the closing segment is scheduled at time (3(n+ jdeg(vi)−1) + k) + 1+ (2+
3(m− 1− jdeg(vi)−1)+ 3i) = 3(n+m+ i)+ k or later, which is indeed the
release date of this job plus k.

By taking into account the constraints added by the gadget chains at the
beginning and at the end of each vertex chain, we are able to prove the needed
key property.

Lemma 68. In any feasible schedule of Imin, if a vertex chain C′i starts at time
3i+ k with k ∈ {0, 1, 2}, then all jobs J in vertex chain C′i which are in an edge
check segment have to be scheduled at time rJ + k.

Proof. Consider a feasible schedule. Let 0 ≤ i ≤ n−1. Three jobs are scheduled
in time window [3i, 3(i+1)): the first job of vertex chain C′i and the first job of
the two gadget chains relative to it. Let 3i + k (resp. 3i + k′1, 3i + k′2) be the
starting time of the first job of vertex chain C′i (resp. gadget chains C′i,1, C′i,2).
We have k, k′1 and k′2 in {0, 1, 2} and since we have a feasible schedule the three
values are different from each other. Thus one chain starts at time 3i + 2. By
Lemma 67 and the time window [3(n+m+ i), 3(n+m+ i+1)) of the last job,
this means that this last job must be exactly scheduled at time 3(n+m+ i)+2.
Now consider the chain which starts at time 3i + 1. By Lemma 67 its last job
must be scheduled at time 3(n +m + i) + 1 or 3(n +m + i) + 2. However the
later time position is already taken by the chain starting at time 3i+ 2, which
means that this last job must be exactly scheduled at time 3(n + m + i) + 1.
Finally by the same reasoning we get that the chain starting at time 3i must
have its last job scheduled at time 3(n+m+ i).
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This means that whatever the starting time 3i+ k is for vertex chain C′i, its
last job must be scheduled at time 3(n + m + i) + k. So all the delays in the
chain must be equal to their minimum and thus by Lemma 67 all the jobs J in
the vertex chain must be scheduled at time r(J) + k.

Now in any feasible schedule we proved that we have the same guarantee on
the position of the edge check jobs as we had with Lemma 61 in the exact delay
case. Thus we are able to propagate the color choices accurately and complete
the reduction the same way.

Proposition 69. G is 3-colorable if and only if there exists a feasible schedule
for Imin.

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G
where vertex vi has color ci. We propose a schedule where for all 0 ≤ i ≤ n− 1,
vertex chain C′i starts at time 3i+ ci and gadget chains C′i,1, C′i,2 start in the two
remaining time positions 3i + k1, 3i + k2 in [3i, 3(i + 1)) (with k1 6= k2). Plus
we require all delays to match their minimum value.

Then, according to Definition 64 and going from left to right as we did in the
proof of Lemma 67, we know that in every edge ej ∈ E where node vi appears,
the job of vertex chain C′i which is in edge check segment [3(n+ j), 3(n+ j+1))
is scheduled at time 3(n + j) + ci, and the last job of C′i is scheduled at time
3(n+m+ i) + ci. Plus from Definition 65 we know that the last job of gadget
chain C′i,1 (resp. C′i,2) is scheduled 3(n+mi) + k1 (resp. 3(n+m+ i) + k2).

We show that the jobs in different chains do not interfere with each other.
For the color choice segment we know that vertex chain C′i and gadget chains
C′i,1, C′i,2 start respectively at times 3i+ ci, 3i+k1, and 3i+k2 with ci, k1 and k2
in {0, 1, 2} and different from each other. For the closing segment we determined
that vertex chain C′i and gadget chains C′i,1, C′i,2 end respectively at times 3(n+
m+ i) + ci, 3(n+m+ i) + k1, and 3(n+m+ i) + k2, again with ci, k1 and k2
in {0, 1, 2} and different from each other. Thus only the edge check segments
remain to be checked. Let ej = {vi1 , vi2} be an edge in E. By definition of
the vertex chains, only vertex chains C′i1 and C′i2 have a job to be scheduled in
time window [3(n + j), 3(n + j + 1)). In our schedule the job of chain Ci1 is
scheduled at time 3(n+ j) + ci1 and the job of chain Ci2 at time 3(n+ j) + ci2 .
Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have ci1 6= ci2 . Thus
both jobs are scheduled at different times and the jobs in edge check segment
[3(n + j), 3(n + j + 1)) do not interfere with each other. Thus the proposed
schedule is feasible.

(⇐= ) Suppose we have a feasible schedule. We reuse the same coloring as
in the proof of Proposition 62: for all 0 ≤ i ≤ n−1, let si ∈ {0, 1, 2} be such that
3i+si is the starting time of chain C′i. We show that (s0, . . . , sn−1) is a 3-coloring
of G. Considering any edge ej = {vi1 , vi2} ∈ E, Lemma 68 ensures that the job
of vertex chain C′i1 (resp. C′i2) in edge check segment [3(n+ j), 3(n+ j + 1)) is
scheduled at time 3(n+ j) + si1 (resp. 3(n+ j) + si2), with si1 (resp. si2) the
starting time of vertex chain C′i1 (resp. C′i2). Since this is a feasible schedule we
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have: 3(n + j) + si1 6= 3(n + j) + si2 , which means: si1 6= si2 . Thus the two
nodes of edge ej have indeed different colors.

This proves that 1|chains(`ij), pj = 1, rj , d̄j |? with minimum delays is NP-
hard when µ = 3, which concludes the para-NP-hardness proof of the corre-
sponding parameterized problem.

4.3.3 With Maximum Delays
We adapt the reduction to instances featuring maximum delays:

Theorem 70. 1|chains(`ij), pj = 1, rj , d̄j |? with maximum delays is para-NP-
hard parameterized by pathwidth µ.

We build an instance Imax of 1|chains(`ij), pj = 1, rj , d̄j |? with µ = 3. We
define Imax as the instance Imin from the previous reduction, except we have
maximum delays instead of minimum ones. It turns out that gadget chains
C′i,1, C′i,2 work in a symmetric way. Indeed in both the minimum and maximum
delay cases they block the first and last task of each vertex chain in the same
fashion. This allows us to keep the key property behind the reduction.

Lemma 71. In any feasible schedule of Imax, if a vertex chain C′i starts at time
3i+ k with k ∈ {0, 1, 2}, then all jobs J in vertex chain C′i which are in an edge
check segment have to be scheduled at time rJ + k.

Proof. (sketch) This is proved the same way as Lemma 68.

Now in any feasible schedule we proved that we have the same guarantee on
the position of the edge check jobs as we had with Lemma 61 in the exact delay
case. Thus we are able to propagate the color choices accurately and complete
the reduction the same way.

Proposition 72. G is 3-colorable if and only if there exists a feasible schedule
for Imin.

Proof. (sketch) This is proved the same way as Proposition 69.

This proves that 1|chains(`ij), pj = 1, rj , d̄j |? with maximum delays is NP-
hard when µ = 3, which concludes the para-NP-hardness proof of the corre-
sponding parameterized problem.

4.4 Combining with Maximum Delay Value `max

In this section we combine pathwidth µ with maximum delay value `max as a
parameter. We show that this makes the problem from the previous section
FPT even on multiple parallel machines and general precedence.

Theorem 73. With minimum delays P |prec(`i,j), pj = 1, rj , dj |? is FPT pa-
rameterized by µ+ `max.
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Let us consider the sorted list xk, k ∈ {0, . . . ,K} of the release times and
deadlines in non decreasing order. We define a sub-sequence uα, α ∈ {0, . . . , κ−
1} of this sequence so that two consecutive terms - except the last one - are
separated by at least `max. So we set u0 = x0, then uα+1 = xk with k the
minimum value in {1, . . . ,K} such that uα+1 − uα ≥ `max. Lastly we set
uκ = xK .

Let us consider the instance with minimum delays described in Figure 4.4.
For this instance we get the sequence x0 = 0, x1 = 2, x2 = 4, x3 = 6, x5 = 9
and x6 = 11 with K = 6. The associated pathwidth µ = 3 is reached in the
interval [4, 6) crossed by intervals of jobs 3, 6, 7, 8. We also have `max = 3, so
we get: u0 = x0 = 0, u1 = x2 = 4, u2 = x5 = 9 and u3 = x6 = 11.

We set X0 = ∅ and for any α ∈ {1, . . . κ} we define Xα = {i ∈ T , [ri, di) ∩
[uα−1, uα) 6= ∅} the set of jobs that could be scheduled in interval [uα−1, uα).
The idea of sequence (u0, . . . , uκ) is that the number of jobs in each Xα is
bounded by µ · `max (see Lemma 75). We also define Zα, α ∈ {0, . . . , κ} the set
of jobs with a deadline not greater than uα, i.e. Zα = {i ∈ T , di ≤ uα}. In our
example we have: Z0 = ∅, Z1 = {1, 2, 4, 5}, Z2 = Z1∪{3, 6, 7, 8, 9} and Z3 = T .

We define a dynamic programming scheme for our problem. The stages of
the scheme are {0, . . . , κ}. For each stage α ∈ {0, . . . , κ} we denote Nα the set
of states of stage α. A state s ∈ Nα represents the minimum information from
a feasible schedule spanning in [0, uα) that is necessary to extend this schedule
in interval [uα, uκ).

Hence a state s ∈ Nα with α ∈ {1, . . . , κ− 1} is a tuple s = (β, Y ), where:

• Y ⊆ Xα − Zα is a subset of jobs such that Y ∪ Zα represents the set of
jobs scheduled in [0, uα).

• β is a complete schedule (i.e a set of jobs with their starting time) of the
last `max time units before time uα- i.e in interval [uα − `max, uα). We
denote J(β) the set of jobs scheduled in β. β is called a border schedule.
Only such a schedule can influence the earliest starting times of the jobs
not scheduled yet.

For α = κ we set Nκ = {sκ} with sκ = (•, ∅) where • is an empty schedule.
Moreover Xκ−Zκ = ∅ and so Nκ can be reduced to only one element. Similarly,
we set N0 = {s0} with s0 = (•, ∅) since X0 = ∅ and no job may be executed in
interval [u0, u0) = ∅.

As an example let us consider a feasible schedule τ pictured by Figure 4.5 for
m = 2 identical machines associated to the instance given by Figure 4.4. The
associates states are: s0 = (•, ∅), s1 = (β1, {3}), s2 = (β2, ∅) and s3 = (•, ∅).

Now assume that s = (β, Y ) ∈ Nα with α ∈ {0, . . . , κ}. The boolean function
ExistSched(s) is set to true if and only if there exists a (partial) feasible schedule
of jobs from Y ∪ Zα in time interval [u0, uα) that ends with schedule β.

We can now establish the recurrence equation for this function:

1. ExistSched(s0) = true; indeed, s0 = (•, ∅) and Z0 = ∅, thus no job has to
be scheduled.
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Figure 4.4: A precedence graph with minimum delays. Each precedence arc
e = (i, j) is labeled by the minimum delay `ij . Each node i is labelled by its
time window [ridi).
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Figure 4.5: A feasible schedule σ associated with the example given in Figure
4.4 for m = 2 machines

2. Let us now consider α ∈ {1, . . . κ}. If ExistSched(s) = true then there
exists a feasible schedule in [0, uα) which can be decomposed into a feasible
schedule in [0, uα−1) associated with a state s′ ∈ Nα−1 and a schedule in
the interval [uα−1, uα) consistent with s and s′. The existence of such a
schedule is denoted by the function Sched(s, s′).

We now bound the complexity of computing Sched(s, s′) from a tuple of states
(s′, s) ∈ Nα−1 ×Nα.

Let s = (β, Y ) and s′ = (β′, Y ′). Then boolean Sched(s′, s) is true if and
only if there exists a schedule of Y ∪ Zα − Y ′ − Zα−1 in the interval [uα−1, uα)
that is consistent with the border schedule β′ and ends with the border schedule
β.

Lemma 74. For any α ∈ {1, . . . , κ} and (s′, s) ∈ Nα−1 × Nα, the time com-
plexity of Sched(s′, s) is O(µ2 · `2max · (µ · `max)!).

To prove this lemma, two more technical lemmas are needed. These lemmas
bound the total number of candidate jobs in time interval [uα−1, uα) for α ∈
{1, . . . κ}:
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Lemma 75. ∀α ∈ {0, . . . , κ}, |Xα| ≤ µ · `max.

Proof. We simply observe that, by the definition of uα, there are at most `max−1
release date/deadline values between uα−1 and uα. Thus by the definition of µ
the inequality holds.

Lemma 76. For any α ∈ {1, . . . , κ− 1}, |Nα| ≤ 2µ·`max · (`max + 1)µ·`max .

Proof. The total number of schedules from a set V = J(β) is bounded by
(`max + 1)|V |. Thus, by Lemma 75, it is bounded by (`max + 1)µ·`max . And
because the number of sets V ⊆ Xα is bounded by 2|Xα| ≤ 2µ·`max , the lemma
holds.

Now we are able to prove Lemma 74:

Proof. The problem is to schedule jobs from S = Y ∪ Zα − (Y ′ ∪ Zα−1) in
the interval [uα−1, uα) so that the schedule is consistent with the two border
schedules β′ and β This can be done in several steps:

1. adjusting the release times of jobs of S with respect to the border schedule
β′: if j is a successor of i ∈ J(β′) then rj = max(rj , β

′(i) + 1 + `i,j), and
propagate to precedence constraints in S.

2. adjusting the deadlines of jobs of S with respect to the border schedule
β: if i is a predecessor of j ∈ J(β) then di = min(di, β(j) − `i,j), and
propagate to precedence constraints in S

3. if a contradiction is detected at this step (a job j for which rj ≥ d̄j),
Sched(s′, s) = false.

4. Otherwise we can enumerate all active schedules (i.e. schedules in which
no job can be scheduled earlier provided the other jobs are not delayed)
of S − J(β) and verify that one of them spans in [uα−1, uα − `max)

The time complexity of the two first steps is O(|S|2). For the last step it
is known that any active schedule can be generated by list scheduling using a
permutation of jobs [Sch70]. Thus the enumeration of active schedules can be
done by a brute force algorithm that enumerates all permutations of jobs and
then performs a list scheduling algorithm to check whether the schedule spans
in the interval [uα−1, uα − `max).

At most m jobs are executed at each instant, and the number of iterations is
bounded by |S|. For each iteration, we must check that all the precedence con-
straints (and associated minimum delays) are fulfilled, and thus one execution
of this priority list has a complexity bounded by O(|S|2).

The total number of permutations is |S−J(β)|!. Thus the overall complexity
is bounded by O(|S|2 · |S − J(β)|!). And since S ⊆ Xα, by Lemma 75 we get
that |S| ≤ µ · `max and the lemma holds.
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Finally we formalize the recurrence equation that yields a FPT algorithm
when we have minimum delays: if s ∈ Nα,

ExistSched(s) =
∨

s′∈Nα−1

Sched(s′, s) ∧ ExistSched(s′) (4.1)

Proposition 77. The answer to an instance I of P |prec(`ij), pj = 1, rj , d̄j |?
with minimum delays is ”yes” if and only if ExistSched(sκ) is true. Moreover
the time complexity of the computation of ExistSched(sκ) is:

O[(2`max + 2)2µ·`max · µ2 · `2max · (µ · `max)! · n+ n · log(n)].

Proof. If ExistSched(sκ) = true, then a sequence of states s0, s1, . . . sκ with
sα ∈ Nα for α ∈ {0, . . . , κ} and Sched(sα−1, sα) = true for all α ∈ {1, . . . , κ}
can be built. And conversely such a sequence induces a feasible schedule.

Now, the number of calls of the function Sched necessary to compute the
recurrence equation (4.1) is proportional to

∑κ
α=1 |Nα−1| · |Nα|. By Lemma 76,

this value is bounded by κ ·22µ·`max ·(`max+1)2µ·`max . Since κ ≤ 2n, by Lemma
74 we get the theorem.
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4.5 Summary & Concluding Remarks
Parameter Section Problem / Setting Result

µ

4.2 1|prec, rj , d̄j |Cmax
FPT in time

O(µ2 · 4µ · n+ n2).

4.3 1|chains(`ij), pj = 1, rj , d̄j |?
para-NP -hard for all three

delay types.
µ+ `max 4.4 P |prec(`i,j), pj = 1, rj , d̄j |? FPT with minimum delays.

Figure 4.6: Summary of the results obtained in this chapter.

In this chapter we uncovered several capabilities and limitations of pathwidth
µ as a parameter for scheduling problems. We proposed a FPT algorithm on
single machine scheduling and showed that it worked even in the presence of
precedence relations. However when these relations are enhanced with delay
values, we proved that the problem becomes para-NP -hard even with chains of
unit jobs. Luckily when pairing µ with maximum delay value `max we showed
that scheduling unit jobs becomes FPT even on identical parallel machines with
general precedence. This confirmed the benefit of adding job time windows to
scheduling problems featuring precedence delays.

Despite this success on multiple machines with unit jobs, we note several
limitations of parameter µ when upgrading to jobs of arbitrary duration. Even
though we gave a FPT algorithm on a single machine in the absence of prece-
dence delays, Hanen and Munier showed that the problem became para-NP -
hard with respect to µ on two or more machines [HMK23]. Plus with precedence
delays it is open whether the single machine case remains FPT parameterized
by µ+`max with jobs of arbitrary duration. This suggests considering a stronger
parameter which could cover both settings and provide them with FPT algo-
rithms.
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4.5.1 Problem Map with Parameter µ

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |? µ

1|rj , d̄j |? µ

1|prec, rj , d̄j |? µ

P |prec, pj = 1, rj , d̄j |? µ

P2|rj , d̄j |? µ

P2|prec, rj , d̄j |? µ

P |prec, rj , d̄j |? µ

1|(1, `, 1), rj , d̄j |? µ

P |prec(`ij), pj = 1, rj , d̄j |? µ
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O(n2 · log(n)) [Sim78]

strongly NP -hard
[LRKB77]

O(n3 · log(log(n)))
[Sim83]

O(n · log(n)) [Sim78]

O(n9) [BBKT04]

O(µ2·4µ·n+n2)
[Section 4.2]

O(n3) [GJ77]

strongly NP -hard
[BGJ77]

O(16µ · n4) [MK21]

para-NP -hard(µ = 4)
[Section 5.3]

para-NP -hard(µ = 3)
[HMK23]

Figure 4.7: Problem map of parameter µ.
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4.5.2 Problem Map with Parameter µ+ pmax

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |? µ

1|rj , d̄j |? µ

1|prec, rj , d̄j |? µ

P |prec, pj = 1, rj , d̄j |? µ

P2|rj , d̄j |? µ+ pmax

P2|prec, rj , d̄j |? µ+ pmax

P |prec, rj , d̄j |? µ+ pmax

P |Mj(type), prec, rj , d̄j |? µ+ pmax

1|(1, `, 1), rj , d̄j |? µ+ pmax

P |prec(`ij), pj = 1, rj , d̄j |? µ+ pmax

P |prec(`ij), rj , d̄j |? µ+ pmax

P |Mj(type), prec(`ij), rj , d̄j |? µ+ pmax
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O(n2 · log(n)) [Sim78]
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[LRKB77]
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[Sim83]

O(n · log(n)) [Sim78]

O(n9) [BBKT04]

O(µ2·4µ·n+n2)
[Section 4.2]

O(n3) [GJ77]

strongly NP -hard
[BGJ77]

O(16µ · n4) [MK21]

para-NP -hard(µ = 4)
[Section 4.3]

para-NP -hard(µ = 3)
[HMK23]

O(√µ·24µ·p2µmax·n3)
[TCH+23]

O(4µ · p2µ2

max · (µ+ 1)2µ
2 ·

[n4 + µµ2 · µ! · n]) [HMK23]

Figure 4.8: Problem map of parameter µ+ pmax.
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4.5.3 Problem Map with Parameter µ+ `max

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |? µ

1|rj , d̄j |? µ

1|prec, rj , d̄j |? µ

P |prec, pj = 1, rj , d̄j |? µ

P2|rj , d̄j |? µ+ `max

P2|prec, rj , d̄j |? µ+ `max

P |prec, rj , d̄j |? µ+ `max

1|(1, `, 1), rj , d̄j |? µ+ `max

1|prec(`i,j), pj = 1, rj , d̄j |? µ+ `max

P |prec(`i,j), pj = 1, rj , d̄j |? µ+ `max

P |prec(`i,j), rj , d̄j |? µ+ `max

1|prec(`i,j), rj , d̄j |? µ+ `max
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O(n9) [BBKT04]

O(µ2·4µ·n+n2)
[Section 4.2]

O(n3) [GJ77]

strongly NP -hard
[BGJ77]

O(16µ · n4) [MK21]

para-NP -hard(µ = 4)
[Section 5.3]

O(µ2`2max ·(µ`max)!·(2+2`max)
2µ`max ·n

+n · log(n)) with minimum delays
[Section 4.4]

para-NP -hard(µ = 3)
[HMK23]

Figure 4.9: Problem map of parameter µ+ `max.



Chapter 5

Results with Slack σ

5.1 Introduction
Slack σ is the maximum difference between the time window length of a job
and their processing time. In other words it is the maximum number of pos-
sible starting times for any job (minus one). While this parameter has rarely
been considered in the literature, its use in dynamic programming approaches
has been successful. For problem 1|rj , si,j , reject, d̄j |

∑
j /∈R(wjTj − vj) Baart

et al. proposed a FPT algorithm in time O(σµ22µ · n2) [BdWH21]. In the
parallel-machine setting with identical machines Hanen and Munier showed
that P |Mj(type), prec, rj , d̄j |Lmax is FPT parameterized by µ+min(pmax, σ)
[HMK23].

With a precedence graph and no job time windows van Bevern et al. pro-
posed a variant called the allowed lag λ, which is the maximum difference be-
tween a job starting time in the schedule and their earliest possible starting time
according to precedence constraints [vBBB+16]. While P |prec, pj = 1|Cmax is
NP -hard when λ = 1 (see [LRK78]), they showed that RCPSP is FPT param-
eterized by w + λ.

In this chapter we consider the use of parameter σ on single machine prob-
lems with job time windows and precedence delays. We first analyze in Section
5.2 the relation between slack σ and pathwidth µ. Then we consider prob-
lem 1|prec(`i,j), rj , d̄j |Cmax with minimum, maximum and/or exact precedence
delays. In Section 5.3 we show that for all three delay types the problem is
para-NP -hard with respect to slack σ even with chains of unit-time tasks of
length two with the same delay value on every precedence relation. Then in
Section 5.4 we propose a FPT dynamic programming algorithm with param-
eters σ and `max combined on single machine scheduling with general delay
precedence. Finally in Section 5.5 we summarize the results obtained in this
chapter and give our concluding remarks.

87
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5.2 Relations with Pathwidth µ

Existing FPT results suggest that the slack needs to be paired with some width
parameter. However the value of pathwidth µ is bounded by slack σ in the
following settings:

Result 78. (i) If a single machine scheduling instance with job time windows
is feasible, then µ ≤ 2σ.

(ii) If a parallel machine scheduling instance with identical machines and job
time windows is feasible, then µ ≤ 2(σ + 1) ·m− 1.

Proof. (i) Let j be a job. By the definition of slack σ: rj ≥ dj − pj − σ and
dj ≤ rj + pj + σ. Let t be a time unit. If t is part of interval [rj , dj) then
rj ≤ t < dj . Then by using both inequalities on the definition of slack σ we get:
rj > t− pj − σ and dj ≤ t+ pj + σ.

This means that whenever job j is scheduled, pj consecutive time units will
be taken by j in time interval [t−σ− pj +1, t+σ+ pj). Thus at least one time
unit will be taken by j in time interval [t−σ, t+σ+1). Since we only have one
machine, this means that at most 2σ + 1 jobs j can have t be a part of their
time window [rj , dj) in any feasible schedule of this instance. This yields the
wanted inequality: µ ≤ 2σ.

(ii) By using the same argument with m identical parallel machines, given
a time unit t at most 2(σ + 1) · m jobs j can have t be a part of their time
window [rj , dj) in any feasible schedule of this instance. This yields the wanted
inequality: µ ≤ 2(σ + 1) ·m− 1.

Both inequalities can be checked in time O(n · log(n)) by computing param-
eters µ and σ. This means that several FPT results from the literature did not
need to mention pathwidth µ in their parameter:

Corollary 79.

(i) 1|rj , si,j , reject, d̄j |
∑

j /∈R(wjTj − vj) is FPT parameterized by σ.

(ii) Pm|prec, rj , d̄j |Lmax is FPT parameterized by σ.

(iii) With minimum delays Pm|prec(`i,j), pj = 1, rj , d̄j |Lmax is FPT parame-
terized by σ + `max.

Proof. Consequences of Result 78 from [BdWH21, HMK23, MHMK22a] respec-
tively.

Knowing that P2|rj , d̄j |? (and thus Pm|prec, rj , d̄j |Lmax) is para-NP -hard
parameterized by pathwidth µ [HMK23], point (ii) notably shows that σ is a
strictly stronger parameter than µ in this setting.
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D

(1) para-NP -hard(#rj+#d̄j = 4) when m = 1 [GJ79].
(2) para-NP -hard(pmax = 2) when m = 2 [vBBB+16].
(3) para-NP -hard(µ = 3) when m = 2 [HMK23].
(4) FPT [TCH+23].
(5) FPT . Derived from [HMK23] (see Section 5.2).

Figure 5.1: Parameterized landscape of Pm|prec, rj , d̄j |?.

5.3 Hardness Results
In this section, with slack σ as our parameter, we prove para-NP-hardness of
problem Pmin (resp. Pmax,Pex), which is problem 1|(1, `, 1), rj , d̄j |? with min-
imum (resp. maximum, exact) delays.

Theorem 80. Problems Pmin,Pmax and Pex are para-NP-hard parameterized
by slack σ.

The proof of the theorem is developed in the next subsections. In subsection
5.3.1 we show that with minimum or maximum delays, considering coupled
tasks is equivalent to allowing chains of length lower than or equal to two.
Then we give in subsection 5.3.2 the main ideas behind the reductions. The
next subsection gives the detailed reduction and proofs for minimum delays,
then the reductions for maximum and exact delays before describing the sketch
of the proof of Theorem 80.

5.3.1 Problem Relaxation
We show that adding isolated tasks to coupled task instances does not im-
pact the problem difficulty for minimum and maximum delays.We do so while
preserving the slack value. With minimum delays we define P ′

min as problem
1|chains(`, length ≤ 1), pj = 1, rj , d̄j |?.

Lemma 81. P ′
min can be reduced to Pmin while keeping the same slack.

Proof. Given an instance I of problem Pmin, we build an instance I ′ of problem
P ′
min by coupling a new task to every isolated task in I. Let D be the maximum

deadline in instance I. We put our new tasks in time segment [D, 2D). For each
isolated task j in I, we set a coupled task (j, `, j′) in I ′ where rj′ = rj +D and
d̄j′ = d̄j +D. Then I ′ has indeed the same slack as I.

We show that I is feasible if and only if I ′ is feasible. I ′ is the same as I but
with extra tasks, so the indirect implication is straightforward. Now suppose I
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has a feasible schedule S. We propose schedule S′ which mimics S on the jobs
that were in I, and for all isolated tasks j extra task j′ is scheduled at time
S(j) + D. We show that S′ is valid. Time segment [0, D) is a replica of valid
schedule S, so no problem there. Next in time segment [D, 2D) we only have
the extra tasks from the isolated tasks in I. As a result it is a copy of time
segment [0, D) but with potentially less tasks. So a problem could only come
from one of the added delays. But the offset D between a former isolated task
and its extra task is larger than delay `, so there is no issue in time segment
[D, 2D) either. Thus S′ is a valid schedule of I ′.

With maximum delays we also add extra tasks to be coupled with the isolated
tasks. Except we need an extra assumption on the job time windows to com-
plete the reduction. We define P ′

max = 1|chains(`, length ≤ 1), pj = 1, rj , d̄j |?
restricted to instances where for every job j there is an integer k such that time
window [rj , d̄j) is included in interval Θk = [k`, (k+1)`). We then say that job
j is ”in” Θk.

Lemma 82. P ′
max can be reduced to Pmax while keeping the same slack.

Proof. Given an instance I of problem P ′
max, let D be the maximum deadline

in instance I. We define L = max(` + 1, D). We build an instance I ′ of
problem Pmax with time span L′ = 2L and where all coupled tasks will have
the same delay `′ = 2`. For every integer k in [0, L

` ) we associate interval
Θk = [k`, (k + 1)`) in I with interval Θ′

k = [k`′, (k + 1)`′) as follows.
Let j be a job of I in Θk. So, rj = k` + ρj , d̄j = k` + δj . Instance I ′ also

contains job j, with r′j = k`′ + ρj , d̄
′
j = k`′ + δj , so that its time window is

included in [k`′, k`′ + l). Moreover, if j is an isolated task, we define a new task
j′ to make (j, `′, j′) a coupled task in I ′. The time window of j′ is the one of j
with an offset `: r′j′ = r′j + `, d̄′j′ = d̄′j + `. It is thus included in the right part
[k`′ + l, (k + 1)`′) of interval Θ′

k.
We show that I is feasible if and only if I ′ is feasible. Suppose I has a

feasible schedule S. We propose schedule S′ which mimics S on the jobs that
were in I. If S(j) = k` + t, 0 ≤ t < ` then we set S′(j) = k`′ + t. And for any
isolated task j of I, its associated new task j′ is scheduled at time S′(j) + `.

We show that S′ is valid. Consider the machine constraint: as in S′ the
interval [k`′, k`′+`) is a copy of interval [k`, (k+1)`) in S the machine constraint
is still satisfied. The new tasks of Θ′

k can only interfere with other new tasks.
Their schedule is a copy of S′ for jobs of Θ′

k so no resource conflict can occur
either. Consider now the precedence constraints. Let (i, `, j) be a coupled
task of I with i in Θk. Notice that, due to maximum delay `, j is either in
Θk or in Θk+1. So either S′(j) − S′(i) − 1 = S(j) − S(i) − 1 ≤ ` ≤ `′ or
S′(j) − S′(i) − 1 = S(j) − S(i) − 1 + ` ≤ 2` = `′. If now j is an isolated task
of I in I ′ its successor j′ is scheduled at S′(j) + ` ≤ S′(j) + 1 + `′, so that the
precedence constraint is met.

Now suppose I ′ has a feasible schedule S′. We propose schedule S which
mimics S′ on the jobs that were in I. If S′(j) = k`′ + t(j), 0 ≤ t(j) < `′ with j
a task from I then we set S(j) = k`+ t(j). We show that S′ is valid. Schedule
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S is a copy of schedule S′ in interval [k`′, k`′ + `). So no resource conflict can
occur. If (i, l, j) is a coupled task with i, j ∈ Θk then S(j) − S(i) − 1 ≤ `. If
i ∈ Θk, j ∈ Θk+1 then S′(j) − S′(i) − 1 = (k + 1)`′ + t(j) − k`′ − t(i) − 1 =
`′ + t(j)− t(i)− 1 ≤ `′, so that S(j)− S(i)− 1 = `+ t(j)− t(i)− 1 ≤ `. Thus
S is a valid schedule of I.

5.3.2 General Framework
In this subsection we describe the scheduling gadgets which will be used, then
we explain how we intend to piece them together in our reductions.

Main gadgets

Definition 83. A switch is a sequence (aj)j of tasks with the following property:
in any feasible schedule if the first task a0 is scheduled at its deadline minus
one, then all the tasks in the switch must be scheduled at their deadline minus
one. And if the last task is scheduled at its release date, then all the tasks in the
switch must be scheduled at their release date.

A switch is called OFF when all its tasks are scheduled at their release date.
And it is called ON when all its tasks are scheduled at their deadline minus one.

The purpose of a switch is to propagate some binary piece of information
throughout the scheduling instance. A switch can be extended in two ways:

1. delay propagation: tasks aj and aj+1 have the same time window length
and are coupled with a delay equal to the release date of aj+1 minus the
release date of aj minus one. With minimum or exact delays we propagate
information from left to right while with maximum delays we propagate
from right to left - see Figure 5.2.

sj min delay
sj+1 sj+1 max delay

sj

Figure 5.2: Illustration of delay propagation with minimum (resp. maximum)
delays.

2. overlap propagation: the time windows of tasks aj and aj+1 overlap
by exactly one time unit - see Figure 5.3.

sj

sj+1

Figure 5.3: Illustration of overlap propagation.
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. . .

. . .

X

sj

sj+1

Other
tasks

Switch

Figure 5.4: Example of overlap propagation with time windows of length more
than two.

In the case of overlap propagation when time windows of length longer than
two are desired then the intermediate time units can be blocked by fill tasks
- marked with a ”X” symbol - or tasks from other switches. In particular the
situation given in Figure 5.4 will often be encountered in the reductions. With
the purple switch and the fill task, there are three tasks to be scheduled in a
window of length three. Thus in any valid schedule task aj can only be scheduled
at its release date or its deadline minus one.

Lemma 84. Any sequence (aj)j of tasks defined as a succession of overlap
and/or delay propagation is a switch.

Proof. This is proved by induction on j. Sequence (ai)0≤i≤j has a single task, so
it is trivially a switch. Now suppose that sequence (ai)0≤i≤j forms a switch for
some j ≥ 0. Consider the connection between tasks aj and aj+1. In the case of
overlap propagation when task aj is scheduled at its deadline minus one it blocks
the release date of task aj+1. Assuming all but the last time slot are blocked by
other tasks, aj+1 can only be scheduled its deadline minus one. Conversely if
aj+1 is scheduled at its release date then aj can only be scheduled at its release
date. So the whole switch (ai)0≤i≤j is OFF and all the corresponding tasks are
scheduled at their release date.

In the case of delay propagation suppose a0 is scheduled at its deadline minus
one. Since (ai)0≤i≤j is a switch it means that it is ON, and thus all its tasks
are scheduled at their deadline minus one - including aj . Now aj and aj+1 have
the same time window length. So in the case of minimum or exact delays the
delay ”pushes” task aj+1 and only leaves its deadline minus one as a possibility.
In the case of maximum delays the delays ”pulls” task aj+1 and also forces it to
be scheduled at its deadline minus one. Conversely suppose aj+1 is scheduled
at its release date. Then the precedence delay has the reverse effect and forces
aj to be scheduled at its release date. Thus switch (ai)0≤i≤j is OFF and all its
tasks are scheduled at their release date.

This proves that (ai)0≤i≤j+1 is a switch, which concludes the induction.

Definition 85. A redirect is a coupled task (τ, `, τ ′) with the following property
if ` is a minimum or exact delay (resp. a maximum delay): in any feasible
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. . .

. . .

. . .

. . .

. . .

X

Switch 1
(OFF)

Redirect

Switch 2
(ON)

Figure 5.5: Example of a redirect which fits Lemma 86.

schedule if τ (resp. τ ′) is not scheduled at its release date then τ ′ (resp. τ) can
only be scheduled at its deadline minus one.

Lemma 86. Let (τ, `, τ ′) be a coupled task such that: (a) τ and τ ′ have the
same time window length, (b) ` = rτ ′ − rτ − 1 and (c) τ or τ ′ (or both) can
only be scheduled at their release date or their deadline minus one. Then this
coupled task is a redirect.

Proof. Consider first the case where ` is a minimum or exact delay. Suppose
the left half τ can only be scheduled at its release date or its deadline minus
one. If τ is not scheduled at its release date in some feasible schedule then it
can only be scheduled at its deadline minus one. By points (a) and (b) τ ′ must
also be scheduled at its deadline minus one.

Now suppose the right half τ ′ can only be scheduled at its release date or
its deadline minus one. If τ ′ is not scheduled at its deadline minus one in some
feasible schedule then it can only be scheduled at its release date. By points (a)
and (b) τ must also be scheduled at its release date. In case of maximum delay,
if τ ′ is not scheduled at its release date, then either it must be right shifted,
which will pull τ to the right, or τ cannot be scheduled at its release date, so is
right shifted.

As the name suggests a redirect will help propagate a binary piece of infor-
mation the other way around. Typically it will be the interface between two
switches. We give an example with minimum delays in Figure 5.5. When Switch
1 is OFF then the left redirect half cannot be scheduled at its release date. So
the right redirect half must be scheduled at its deadline minus one, which forces
Switch 2 must be ON. And when the Switch 2 is OFF then the right redirect
half cannot be scheduled at its deadline minus one. So the left redirect half
must be scheduled at its release date, which forces Switch 1 to be ON.

If we want to connect two distant switches then an extra switch can be
appended to the redirect in order to cover this distance without increasing the
delay value in the redirect. Such a combination will be called a bridge.
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Definition 87. A bridge is a combination (an overlap propagation) of a switch
and a redirect. It is OFF when all its tasks are scheduled at their release date.
And it is ON when all its tasks are scheduled at their deadline minus one.

In the example given in Figure 5.5 the combination of the redirect and Switch
2 form a bridge.

Reduction baseline

For all three delay types our para-NP-hardness results will be proved with a
reduction from the 3-COLORING graph problem. Let G = (V,E) with V =
[0, n) and E = (ej)0≤j<m ⊆ V × V . Without loss of generality we suppose that
there is no self loop in E.

When building our scheduling instance we segment time into n color choice
zones plus m edge check zones. In each color choice zone the color of some
node i is chosen in {0, 1, 2}. And in each edge check zone, for some edge ej =
{i1, i2}, i1 < i2 we verify that nodes i1 and i2 did not choose the same color.

In terms of tasks we will have:

• n color choice tasks Ci, i ∈ [0, n): task Ci represents the color choice of
node i. Ci has three possible starting times and each one corresponds to
a color choice.

• 3n color switches Ci,k, i ∈ [0, n), k ∈ {0, 1, 2}: if color k is chosen for node
i, then color switch Ci,k will be ON and it will propagate this piece of
information in the edge check zones.

• 2n color choice bridges Bi,k, i ∈ [0, n), k ∈ {0, 2}. In the color choice zone
associated to each node i ∈ [0, n): bridge Bi,0 (resp. Bi,2) will ”connect”
color switch Ci,0 (resp. Ci,2) with color choice 0 (resp. 2) for color choice
task Ci.

• 3m edge check bridges Bi,k, i ∈ [0,m), k ∈ {0, 1, 2}. In the edge check
zone associated to each edge ej = {i1, i2}, j ∈ [0,m): for each k ∈ {0, 1, 2}
bridge Bn+j,k will ”connect” color switches Ci1,k and Ci2,k so that both
cannot be ON at the same time.

• some fill tasks - marked with an ”X” - to set the bridges.

5.3.3 Reduction with Minimum Delays
We build Imin a scheduling instance of P ′

min where all coupled tasks have the
same minimum delay ` = β− 2 with β = 18n. Then, we prove that it is feasible
if and only if G is 3-colorable.

Color choice zones are set within time interval [0, 3β) while edge check zones
are set within time interval [3β, (3 + 6m + 1)β). Given j in [0,m) and k in
{0, 1, 2} we define bj,k = 3 + 6j + 2k in order to describe concisely the part of
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the (j + 1)th edge check zone where color k is checked for edge ej . Then this
segment can be written as [bj,k · β, (bj,k +2) · β). The time windows of all tasks
in Imin are given below:

Definition 88 (Imin).
For each i in [0, n):

• Color choice task Ci with i ∈ [0, n). It has release date β + 18i+ 6 and a
time window of length three.

• Color switch Ci,k with i ∈ [0, n), k ∈ {0, 1, 2}. It contains 3 + 6m − k
coupled tasks. Given b ∈ [k, 3 + 6m) the left half of the (b − k + 1)th

coupled task has release date b · β + 18i + 6k + 2 and a time window of
length two. The right half has the same time window with an offset β− 1.
At the beginning of Ci,0 we also add an isolated task with release date
18i+ 1 and a time window of length two.

• Other tasks in the (i+ 1)th color choice zone - see Figure 5.6

– Bridge Bi,0 (resp. Bi,2). The left half of its redirect has release date
18i+1 (resp. β+18i+7) and a time window of length five. The right
half has the same time window with an offset β−1. The bridge switch
has a single task with release date β + 18i+ 4 (resp. 2β + 18i+ 10)
and a time window of length three (resp. five).

– Six fill tasks: two with a time window of length three to set the
redirects (release date β + 18i + 1 and 2β + 18i + 7) and four with
a time window of length one to set the bridge switches (release date
β + 18i+ 5, 2β + 18i+ 11, 2β + 18i+ 12 and 2β + 18i+ 13).

For each couple (ej , k) in E × {0, 1, 2} with ej = {i1, i2}, i1 < i2:

• Tasks in the (j + 1)th edge check zone - see Figure 5.7
Bridge Bn+j,k and 6(i2−i1)+1 fill tasks to set the bridge defined as follows
in each time subsection:
In subsection (i1, k):

– one task from the bridge switch with release date bj,k ·β+18i1+6k+3
and a time window of length four.

– two fill tasks with a time window of length one (release date bj,k ·β+
18i1 + 6k + 4 and bj,k · β + 18i1 + 6k + 5) to set this switch task.

In the 3(i2 − i1)− 1 subsections (i′, k′) between (i1, k) and (i2, k):

– two bridge switch tasks: the first (resp. second) has release date
bj,k · β+18i′ +6k′ (resp. bj,k · β+18i′ +6k′ +4) and a time window
of length five (resp. three).
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– two fill tasks : the first (resp. second) has a time window of length
three (resp. one) and release date bj,k · β + 18i′ + 6k′ + 1 (resp.
bj,k · β + 18i′ + 6k′ + 5) to set the first (resp. second) bridge switch
task.

In subsection (i2, k):

– the bridge redirect: its left half with release date bj,k · β + 18i2 + 6k
and a time window of length five. Its right half has the same time
window with an offset β − 1.

– one fill task with a time window of length three to set the redirect
(release date bj,k · β + 18i2 + 6k + 1).

Remark 89. Note that all tasks have a time window of length five of less, so
we have slack σ = 4.

We show that all the switches and bridges in Imin work as intended.

Lemma 90. (i) Let (i, k) ∈ [0, n)× {0, 1, 2}. Then Ci,k in Imin is a switch.
(ii) Let (i, k) ∈ [0, n)× {0, 2}. Then Bi,k in Imin is a bridge.
(iii) Let (j, k) ∈ [0,m)× {0, 1, 2}. Then Bn+j,k in Imin is a bridge.

Proof. (i) Ci,k is a succession of delay propagation and overlap propagation of
tasks with time windows of length two. So by Lemma 84 it is a switch.

(ii) The switch in Bi,k is a succession of delay propagation and overlap
propagation. With help from Figure 5.6 it can be easily checked that for all
these tasks their intermediate time units are blocked either by fill tasks with a
time window of length one or by a combination of one fill task and two tasks
from a color switch within a segment of length three. By Lemma 84 it is indeed
a switch.

The coupled task (redirect) in Bi,k overlaps the left extremity of the switch
and its right half can only be scheduled at its release date or its deadline minus
one. Then this coupled task meets all conditions from Lemma 86, which confirms
that it is a redirect.

(iii) This is similar to point (ii) except the coupled task overlaps the right
extremity of the switch and it is the left half which can only be scheduled at its
release date or its deadline minus one. Figure 5.7 can be used as reference.

Now we show that our scheduling instance simulates a coloring. First each
node must choose a color. As such in Imin each of the three possibilities of
color choice Ci forces the corresponding color switch to be ON. See Figure 5.6
to visualize the local connecting process.

Lemma 91. Let i ∈ [0, n), k ∈ {0, 1, 2}. In any feasible schedule S, if color
choice task Ci is scheduled at:

(0) r(Ci) then color switch Ci,0 must be ON,
(1) r(Ci) + 1 then color switch Ci,2 must be ON,
(2) r(Ci) + 2 then color switch Ci,1 must be ON.
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(cont.)
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Figure 5.6: The (i+ 1)th color choice zone in the reduction to problem P ′
min.
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Proof. Case (2) is straightforward. Ci blocks the release date of the leftmost
task in Ci,1, so the latter must be scheduled at its deadline minus one. Thus by
Lemma 90 Ci,1 must be ON.

In case (1) the left half of the redirect in bridge Bi,2 must be scheduled later
than its release date. Then the right half can only be scheduled at its deadline
minus one, which blocks the release date of the only task in this bridge switch.
So it can also only be right shifted, which blocks the release date of the leftmost
task in color switch Ci,2. This forces this task to be right shifted, which means
that switch Ci,2 must be ON.

Finally case (0) is proved the same way as case (1) via the only switch task
in bridge Bi,0, the bridge redirect and the leftmost task in color switch Ci,0.

Finally given an edge ej = {i1, i2} and a color k both nodes i1, i2 must not
choose color k at the same time. So we must show that color switches Ci1,k and
Ci2,k cannot be both ON in a feasible schedule.

Lemma 92. Let ej = {i1, i2} be an edge in E and k ∈ {0, 1, 2} be a color. If
any feasible schedule if Ci1,k is ON then Ci2,k is not ON. And if Ci2,k is ON
then Ci1,k is not ON.

Proof. Consider a feasible schedule. By contradiction suppose that both color
switches Ci1,k and Ci2,k are ON. Since Ci1,k is ON some task in Ci1,k blocks
the leftmost switch task of bridge Bn+j,k, so this bridge switch must be ON.
This blocks the release date of the left half of the bridge redirect, which forces
its right half to be scheduled at its deadline minus one. This corresponds to the
deadline minus one of some task in color switch Ci2,k. Since the latter is ON we
have two tasks scheduled at the same time, which contradicts that the schedule
is feasible.

So in any feasible schedule by Lemma 91 each node must choose a color by
having one of its three color switches be ON. Then by Lemma 92 both nodes
in an edge cannot choose the same color by both having ON the color switch
corresponding to the same color. This is enough to simulate a graph 3-coloring.

Proposition 93. G is 3-colorable if and only if there exists a feasible schedule
for Imin.

Proof.
(⇐= ) Suppose there exists a feasible schedule s for instance Imin. Let s be the
starting times of such a schedule. We propose a 3-coloring (c(i))0≤i<n based on
the starting times of color choice tasks Ci. For i in [0, n) , we set

c(i) =

 0 if s(Ci) = rCi

2 if s(Ci) = rCi + 1
1 if s(Ci) = rCi + 2

By contradiction suppose that (c(i))0≤i<n is not a valid 3-coloring. Then there
is an edge ej = {i1, i2} such that c(i1) = c(i2) = k with k a color in {0, 1, 2}.
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Figure 5.7: The (j+1)th edge check zone corresponding to (edge, checked color)
couple (ej , k) in the reduction to P ′

min. The middle part describes the tasks in all
subsections (i′, k′) in between subsections (i1, k) and (i2, k) in the same section
of length β.
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Say we have i1 < i2 without loss of generality. Then by Lemma 91 both color
choice switches Ci1,k and Ci2,k are ON in feasible schedule s, which contradicts
Lemma 92.
( =⇒ ) Suppose there exists a valid 3-coloring (c(i))0≤i<n for graph G. We
propose the following schedule s based on this 3-coloring:

• For i ∈ [0, n) color choice task Ci is scheduled at time r(Ci) if c(i) = 0,
r(Ci) + 1 if c(i) = 2, r(Ci) + 2 if c(i) = 1,

• For i ∈ [0, n) and k ∈ {0, 1, 2} color switch Ci,k is ON if c(i) = k and OFF
otherwise.

• Fill tasks with a time window of length three are scheduled at their release
date if the overlapping color switch is ON and at their deadline minus one
if the color switch is OFF.

• For i ∈ [0, n) bridge Bi,0 is OFF if c(i) = 0 and ON otherwise. Bridge
Bi,2 is ON if c(i) = 2 and OFF otherwise.

• For j ∈ [0,m), ej = {i1, i2}, i1 < i2 and k ∈ {0, 1, 2} bridge Bn+j,k is ON
if c(i1) = k and OFF otherwise.

We show that schedule s is feasible. All switches and bridges are either ON
or OFF so all delays are met and there is no conflict with any mechanism taken
in isolation. Plus the time windows used by the color switches are disjoint from
each other so two color switches cannot interfere with each other. The same
holds for color choice tasks, bridges and fill tasks. So a conflict could only come
from the interaction between two mechanisms of different kinds.

First consider fill tasks. Their time windows do not overlap color choice
tasks. Plus these time windows do not overlap with any release date or deadline
minus one of any bridge task while all bridges are either ON or OFF. Finally
only fill tasks with a time window of length three might interfere with a color
switch. When the overlapping color switch is ON the fill task is at its release
date, so no conflict. And when it is OFF then the fill task is at its deadline
minus one, so no conflict either.

Now consider color choice tasks. Let i ∈ [0, n). If c(i) = 1 then color switch
Ci,1 is ON and bridge Bi,2 is OFF, so no conflict there. If c(i) = 2 then bridge
Bi,2 is ON, so no conflict there either. And if c(i) = 0 then bridge Bi,0 is OFF,
so no conflict there either.

Finally consider the interactions between color switches and bridges. Let
i ∈ [0, n). In the (i + 1)th color choice zone bridge Bi,0 is always ON except
when c(i) = 0, in which case it is OFF and color switch Ci,0 is ON. So no conflict
here. And bridge Bi,2 is always OFF except when c(i) = 2, in which case it is
ON and color switch Ci,2 is also ON. So no conflict in the color choice zones.
Let j ∈ [0, n), ej = {i1, i2}, i1 < i2. Let k ∈ {0, 1, 2}. In the (j + 1)th edge
check zone bridge Bn+j,k is either ON or OFF, so it never interferes with color
switches Ci′,k′ between subsections (i1, k) and (i2, k). And it is always OFF
except when c(i1) = k, in which case it is ON and color switch Ci1,k is also ON.
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So the only conflict would be between bridge Bn+j,k and color switch Ci2,k, in
particular only when they are both ON. However Bn+j,k is ON only when Ci1,k

is ON too. So we would have c(i1) = c(i2) = k which would contradict that
(c(i))0≤i<n is a valid 3-coloring. So there is no conflict involving bridge Bn+j,k.

Thus s is a feasible schedule for Imin.

5.3.4 Reduction with Maximum Delays
Similar mechanisms are used to build Imax a scheduling instance of P ′

max where
all coupled tasks have the same maximum delay ` = β with β = 18n. We define
instance Imax.

Unlike the minimum delay case, color choice information is propagated from
right to left. As such edge check zones are set within time interval [0, (3+6m+
1)β) while color choice zones are set within time interval [(3 + 6m + 1)β, (3 +
6m + 4)β). Given j in [0,m) and k in {0, 1, 2} we define bj,k = 1 + 6j + 2k in
order to describe concisely the part of the (j+1)th edge check zone where color k
is checked for edge ej . Then this segment can be written as [bj,k ·β, (bj,k+2) ·β).
The time windows of all tasks in Imax are given below:

Definition 94 (Imax).
For each i in [0, n):

• Color choice task Ci with i ∈ [0, n). It has deadline (3+6m+2)·β+18i+10
and a time window of length three.

• Color switch Ci,k with i ∈ [0, n), k ∈ {0, 1, 2}. It contains 3 + 6m − k
coupled tasks. Given b ∈ [k, 3 + 6m) the right half of the (b − k + 1)th

coupled task has deadline (3 + 6m + 3 − b) · β + 18i + 6k + 5 and a time
window of length two. The left half has the same time window with an
offset −(β + 1).
At the beginning of Ci,0 we also add an isolated task with deadline (3 +
6m+ 3− b) · β + 18i+ 4 and a time window of length two.

• Other tasks in the (i+ 1)th color choice zone - see Figure 5.8

– Bridge Bi,0 (resp. Bi,2). The right half of its redirect has deadline
(3+6m+3) ·β+18i+7 (resp. (3+6m+2) ·β+18i+13) and a time
window of length five. The left half has the same time window with
an offset −(β+1). The bridge switch has a single task with deadline
(3 + 6m+ 2) · β + 18i+ 8 (resp. (3 + 6m+ 1) · β + 18i+ 14) and a
time window of length three (resp. five).

– Six fill tasks: two with a time window of length three to set the
redirects (deadline (3+6m+2)·β+18i+5 and (3+6m+1)·β+18i+11)
and four with a time window of length one to set the bridge switches
(deadline (3 + 6m + 2) · β + 18i + 7 and (3 + 6m + 1) · β + 18i + α
with α ∈ {13, 14, 15}).
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Figure 5.8: The (i+ 1)th color choice zone in the reduction to problem P ′
max.
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Figure 5.9: The (j+1)th edge check zone corresponding to (edge, checked color)
couple (ej , k) in the reduction to P ′

max. The middle part describes the tasks
in all subsections (i′, k′) in between subsections (i1, k) and (i2, k) in the same
section of length β.
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For each couple (ej , k) in E × {0, 1, 2} with ej = {i1, i2}, i1 < i2:

• Tasks in the (j + 1)th edge check zone - see Figure 5.9
Bridge Bn+j,k and 6(i2 − i1) + 1 fill tasks to set the bridge.
In subsection (i2, k):

– the bridge redirect: its right half with deadline (bj,k+1)·β+18i2+6k+6
and a time window of length five. Its left half has the same time
window with an offset −(β + 1).

– one fill task with a time window of length three to set the redirect
(deadline (bj,k + 1) · β + 18i2 + 6k + 5).

– one task from the bridge switch with deadline (bj,k+1)·β+18i2+6k+2
and a time window of length four.

– one fill task with a time window of length one with deadline (bj,k +
1) · β + 18i2 + 6k + 1 to set this switch task.

In the 3(i2 − i1)− 1 subsections (i′, k′) between (i1, k) and (i2, k):

– two bridge switch tasks: the first (resp. second) has deadline (bj,k +
1) · β +18i′ +6k′ +6 (resp. (bj,k +1) · β +18i′ +6k′ +2) and a time
window of length five (resp. three).

– two fill tasks : the first (resp. second) has a time window of length
three (resp. one) and deadline (bj,k + 1) · β + 18i′ + 6k′ + 5 (resp.
(bj,k + 1) · β + 18i′ + 6k′ + 1) to set the first (resp. second) bridge
switch task in this subsection.

In subsection (i1, k):

– one fill task with a time window of length one with deadline (bj,k +
1) · β + 18i1 + 6k + 6 to set the last bridge switch task.

5.3.5 Reduction with Exact Delays
Similarly we build Iex a scheduling instance of Pex where all coupled tasks have
the same minimum delay ` = β − 2 with β = 18n. We define instance Iex then
prove that it is feasible if and only if G is 3-colorable.

This time no problem relaxation was proved, so all tasks must be coupled. As
such we need a bit more room in each zone to set extra tasks without hindering
the base mechanisms. Color choice zones are set within time interval [0, 4β)
while edge check zones are set within time interval [4β, (4 + 9m + 1)β). Given
j in [0,m) and k in {0, 1, 2} we define bj,k = 4 + 9j + 2k in order to describe
concisely the part of the (j + 1)th edge check zone where color k is checked for
edge ej . Then this segment can be written as [bj,k · β, (bj,k + 3) · β).

Definition 95 (Iex). All the tasks are coupled tasks with a delay ` = β− 2 and
an offset β − 1 between both halves. We describe the left half of each coupled
task below:

For each i in [0, n):
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Figure 5.10: The (i+ 1)th color choice zone in the reduction to problem Pex.
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• Color choice task Ci with i ∈ [0, n). The left half has release date 2β+18i+6
and a time window of length three.

• Color switch Ci,k with i ∈ [0, n), k ∈ {0, 1, 2}. It contains 2 + 9m coupled
tasks. Given b ∈ [2, 4 + 9m) the left half of the (b− 1)th coupled task has
release date b · β + 18i+ 6k + 2 and a time window of length two.

• Other tasks in the (i+ 1)th color choice zone - see Figure 5.10

– Bridge Bi,0 (resp. Bi,2). The left half of its redirect has release date
β + 18i + 3 (resp. β + 18i + 8) and a time window of length three
(resp. five). The bridge switch has a single coupled task with left half
release date β + 18i+ 4 (resp. 2β + 18i+ 10) and a time window of
length three (resp. four).

– Seven fill coupled tasks with time windows of length one (left half with
release date β + 18i+ α with α ∈ {5, 7, 10, 11, 12, 14, 15}.

For each couple (ej , k) in E × {0, 1, 2} with ej = {i1, i2}, i1 < i2:

• Other tasks in the (j + 1)th edge check zone - see Figure 5.11
Bridge Bn+j,k and 3(i2 − i1) + 1 fill coupled tasks to set the bridge.
In subsection (i1, k):

– one coupled task from the bridge switch with left half release date
(bj,k + 1) · β + 18i1 + 6k + 4 and a time window of length three.

– one fill coupled task with a time window of length one (left half release
date (bj,k + 1) · β + 18i1 + 6k + 5) to set this switch task.

In the 3(i2 − i1)− 1 subsections (i′, k′) between (i1, k) and (i2, k):

– two bridge switch coupled tasks: the first (resp. second) has left half
release date (bj,k+1) ·β+18i′+6k′ (resp. (bj,k+1) ·β+18i′+6k′+5)
and a time window of length six (resp. two). Except the subsection
right before (i2, k) which only has the first coupled task.

– one fill coupled task with a time window of length four and left half
release date (bj,k +1) · β +18i′ +6k′ +1 to set the first bridge switch
task in this subsection.

In subsection (i2, k):

– the bridge redirect: its left half with release date (bj,k +1) ·β+18i2+
6k − 1 and a time window of length six. Its right half has the same
time window with an offset β − 1.

– two fill coupled tasks with a time window of length four (resp. two)
with left half release date bj,k ·β+18i2 +6k+1 (resp. (bj,k +1) ·β+
18i2 + 6k) to set the redirect.
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Figure 5.11: The (j + 1)th edge check zone corresponding to (edge, checked
color) couple (ej , k) in the reduction to Pex.
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Remark 96. Note that all tasks have a time window of length six of less, so
we have slack σ = 5.

Compared to the previous reductions the most notable change is the intro-
duction of two new gadgets to set bridges Bn+j,k in every edge check zone. First
the bridge redirect is set by blocking all intermediate time slots of its left half
by setting four tasks to be scheduled within an interval of length four. Second
the intermediate time slots of every bridge switch task with time window length
six are blocked with a fill coupled task. When the associated color switch is
OFF then it is scheduled at its deadline minus one and all four time slots are
occupied. When the color switch is ON then it is scheduled at its release date
and these four time slots are blocked again. Thus Bn+j,k is indeed a bridge and
the rest of the proofs unfolds similarly to the minimum delays case.

5.4 Combining with Maximum Delay Value `max

In the previous section problem 1|prec(`i,j), rj , d̄j |? was shown to be para-NP -
hard with parameter σ alone, even with unit jobs and a precedence graph only
composed of isolated edges. Plus in [BvdW20] the authors noted that with exact
(or maximum) delays and chain precedence this problem is also NP -hard when
`max = 0 - i.e para-NP -hard parameterized by `max - using a straightforward
reduction from 3-PARTITION. Here we show that this problem becomes FPT
when both parameters are combined.

Theorem 97. 1|prec(`i,j), rj , d̄j |? with all three precedence delay types combined
is FPT parameterized by σ + `max.

We consider here an instance I of the decision problem 1|prec(`i,j), rj , d̄j |?
assuming a general precedence graph, precedence delays of all three types in the
instance and any processing time of jobs. Stage α of the dynamic programming
scheme corresponds to the αth task to be scheduled in order from left to right.
In a state u of stage α the following items are stored:

(a) the αth task to be scheduled, denoted by j(u);

(b) its completion time c(u) = Cj(u);

(c) the set A(u) of scheduled tasks i for which d̄i > c(u);

(d) a schedule S(u) of time interval [c(u)−`max, c(u)), describing all jobs that
complete in this interval and their completion times.

Definition 98. A state u is valid if there exists a feasible schedule of all jobs of
A(u) ∪ {j(u)} ∪ {i, d̄i ≤ c(u)} that coincides in its last time interval with S(u).
We denote by Vα the set of valid states of stage α and by Nα the subset of jobs
j(u) for which there exists a valid state u of stage α.
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We now define the transitions between consecutive stages, which correspond
to the edges of a multi-stage graph GI . Let u be a valid state of stage α − 1.
To build a valid successor v of stage α we:

• choose j(v) such that j(v) is unscheduled, has no predecessor, or any
predecessor k of j(v) is completed before c(u) in u: k ∈ A(u) or d̄k ≤ c(u);

• choose a completion time c(v) for j(v) within the time interval of j(v)
satisfying precedence constraints and resource requirements;

• check that a job k with d̄k ≤ c(v) does not remain unscheduled (otherwise
v is discarded);

• then A(v) and S(v) can be deduced from j(v), A(u) and S(u).

Definition 99. Our dynamic programming algorithm builds the graph
stage by stage, starting from an initial state with an empty schedule. At each
stage α− 1 we consider each state u and generate only valid successors of u in
stage α. Once a successor v is generated by appending a task, the algorithm
checks whether the state has already been created, and if not it appends v to the
list of states of stage α. The instance is feasible if and only if there is a valid
state of stage n.

Let us now analyze the complexity of this algorithm, by bounding the num-
ber of nodes and arcs and the construction of successors of a state. We first
assume that a preprocessing is done in O(n · log(n)) that sorts the release times
and deadlines by nondecreasing order. Then for each date the set of available
tasks is computed. There are O(σ · n) of them with a nonempty set of tasks.
All these sets can be computed in time O(σ ·n) by going through the previously
computed list of ordered release date and deadline values. Finally we also as-
sume that for each deadline t, the set of the at most µ + 1 tasks that crosses
time unit t− 1 has been preprocessed in time O(µ · n).

5.4.1 Number of Tasks Crossing a Time Interval
We first prove the following lemma which bounds the number of tasks that are
relevant to a time interval in a feasible instance.

Lemma 100. Consider a feasible instance of 1|prec(`i,j), rj , d̄j |?. Given a time
interval of length T , the number of tasks whose time window intersect with this
interval is bounded by 2µ+ T .

Proof. Let [t, t + T ) be this interval. If T = 1 then the result holds by the
definition of pathwidth µ. Now suppose T ≥ 2. Given a task j whose time
window [rj , d̄j) intersects [t, t+ T ), at least one time unit in [t, t+ T ) must be
included in [rj , d̄j).

• If time t or time t+ T − 1is included in [rj , d̄j):
by the definition of pathwidth µ the number of such tasks is bounded by
µ+ 1.
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• Otherwise, if a time t′ ∈ (t, t+ T − 1) is included in [rj , d̄j):
the whole time window of task j must be included in time interval [t +
1, t + T − 2]. By the pigeonhole principle the number of such tasks is
bounded by the length of the interval, which is T − 2, if the instance is
feasible.

In total the number of such tasks is bounded by (µ+1)+(µ+1)+(T −2) =
2µ+ T .

We now show that in a feasible instance the number of valid couples (α, j)
is in O((µ+ σ) · n).

Lemma 101.
∑

1≤α≤n |Nα| ≤ [2µ+ σ + 1] · n.

Proof. We show that each task appears in at most 2µ+ 1+ σ stages. We do so
by bounding the indices α where a task j can appear.

• Lower bound: let Yj be the set of tasks with a deadline not greater than
rj . Then in any feasible schedule all these tasks must be scheduled before
j. This means that α must be greater than |Yj |.

• Upper bound: let i be a task scheduled before j in some feasible schedule.
Then i must be completed before the latest starting time of j, which is
bounded by rj + σ. Now, if i 6∈ Yj then d̄i must be greater than rj .
This means that the time window of task i intersects with time interval
[rj , rj + σ) of length σ. By Lemma 100 the number of such task i not
included in Yj is bounded by 2µ+ σ. Thus in any feasible schedule task j
must appear in a stage α not greater than |Yj |+ 2µ+ σ + 1.

Hence a task j can appear in at most 2µ+ σ+1 different stages α. This means
that each task is included in at most 2µ+ σ+1 different sets Nα. This bounds
the sum of their sizes by the wanted value.

Then we use Lemma 101 to bound the total number of states:

Proposition 102. The number of valid states of stage α satisfies:

|Vα| ≤ |Nα| · f(σ, `max)

where f(σ, `max) = (σ + 1) · 22σ+1 · (4σ + `max)
`max+1. The total number of

states is bounded by (5σ + 1) · f(σ, `max) · n.

Proof. First we prove the first part of the proposition part by part:

(a) By definition of Nα the number of possible tasks j(u) of a state u of stage
α is bounded by |Nα|.

(b) For a given j(u), by definition of slack σ there are at most σ + 1 possible
completion times for j(u).
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(c) If a job i is in A(u), it was scheduled before j(u) but time slot c(u) is part
of [ri, d̄i).By the definition of pathwidth µ there can only be at most µ+1
of such jobs. This bounds the number of possible sets A(u) by 2µ+1.

(d) A partial schedule of length `max is stored. Thus once c(u) is set (from
parts (a) and (b)), by Lemma 100 there are at most 2µ + `max different
tasks which can appear in these partial schedules. For each of these tasks
there are at most `max+1 choices: either not be part of the partial schedule
or have its completion time at one of the `max times in this interval. Thus
the number of such partial schedules is bounded by (2µ+ `max)

`max+1.

Now if we add them up with all stages α, we get the same expression, except
with (

∑
1≤α≤n |Nα|) as a factor instead of |Nα|. By Lemma 101 this sum is

bounded by (2µ + σ + 1) · n. Thus the total number of states is bounded by
[2µ + σ + 1] · (σ + 1) · 2µ+1 · (2µ + `max)

`max+1 · n. Finally applying Result 78
to the three occurrences of µ in this expression achieves the proof.

5.4.2 Successor Generation
We show that the outdegree of any node in GI is bounded and establish the
complexity of generating successors of a state.

Lemma 103. If u is a valid state of stage α− 1.

• There are at most µ+1 jobs that can be chosen as j(v) for a valid successor
v of u. The set of these jobs can be computed in O(µ · log(µ)).

• There are at most σ + 1 possible values of c(v) once j(v) is chosen.

• Checking whether the choice (j(v), c(v)) is consistent with time windows
and precedence constraints induced by u and that v is a valid state can be
done in O((`max + σ) log(σ)).

• Comparing v to already created states can be done in O(log(|Vα|)).

So, the generation of all valid successors of a valid state u of stage α − 1 is in
O
(
log(|Vα|) · σ2(`max + σ) · log(σ)

)
.

Proof. Let us consider the least deadline d̄ĵ of an unscheduled job ĵ . To com-
pute d̄ĵ it is sufficient to search within the sorted deadlines of jobs starting from
the one next to c(u) (which can be stored with u). We can search sequentially
the next deadlines from c(u) and for each such task k decide whether it is un-
scheduled (checking if rk ≥ c(u) (it is unscheduled) or if it is in A(u)). Checking
if a job is in A(u) can be done in O(log(µ)) with appropriate data structure. At
most µ+ 1 jobs will be checked before finding an unscheduled job if any (since
all scheduled jobs have a time window crossing c(u)).

Once ĵ is found, if another candidate i was chosen instead to extend u, then
it would be completed before ĵ in a valid schedule. Thus ri < d̄ĵ . Plus by the
definition of ĵ we also have d̄ĵ ≤ d̄i. This means that time d̄ĵ − 1 is included
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in the time window of all candidates i. By the definition of pathwidth µ this
bounds the number of candidates to extend u by µ+1. Our pre-processing then
gives the set of candidates.

Assume we have chosen a j(v) among these candidates There are then at
most σ + 1 possible completion times for j(v). Let us choose c(v) among these
possibilities. Notice that we can scan the possible interval by storing at each
step the next and previous deadline of c(v). We now have to check the remaining
wanted properties.

1. j(v) is unscheduled. As mentioned previously this costs O(log(µ)).

2. d̄j(v) − pj(v) ≥ max(rj(v), c(v)).

3. All jobs i with d̄i ≤ c(v) have been scheduled: we just have to check the
deadlines from c(v) by decreasing order to c(u), and check whether all such
jobs i are in A(u). At most µ + 1 such jobs have been already scheduled
since then c(u) is in their time window, so the check will take at most
O(µlog(µ)).

4. We must check that all predecessors of j(v) have been scheduled. If a
predecessor k of j(v) was unscheduled then according to the previous check
it would satisfy d̄k > c(v). We can assume that deadlines and release times
are consistent with the precedence constraints with delays. So we would
have rk ≤ rj(v) < c(v) < d̄k ≤ d̄j(v). Scanning the deadlines from c(v)
to d̄j(v) we can check whether the corresponding jobs are predecessors
(with minimal and exact delays) of j(v) and belong to A(v). according to
Lemma 100 there are at most 2(µ+1)+σ such tasks. The time complexity
of this check is O((2(µ+ 1) + σ)log(µ)).

5. We must satisfy precedence constraints on j(v). Notice that if k completes
before c(u)− `max, either the constraints cannot be satisfied for exact and
maximum delay, or does not impact the starting time of j(v) for minimum
delay.
So we can consider the list of jobs k in S(u), check (in O(1)) whether k
is a predecessor of j and compute tk = Ck + p(k) + `k,j(v). If the delay
is exact we should check whether c(v) = tk, if the delay is minimum we
should have c(v) ≥ tk and if the delay is maximum c(v) ≤ tk. In case of
maximum or exact delay we check we considered all the predecessors of
j(v). All this can be checked in O(`max + 1).

6. Finally, checking whether a state v has already been created suppose that
all states in Vα are stored in an appropriate data structure, using an
encoding of the state. It should be done in O(log(|Vα|)).

Then bounding µ with 2σ using Result 78 achieves the proof.

We now establish that the algorithm is fixed parameter tractable.
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Proposition 104. The proposed dynamic programming algorithm is correct and
is FPT with respect to parameters σ and `max. Its time complexity is:

O∗((σ + `max)
6 · log2(σ + `max) · 22σ+1 · (4σ + `max)

`max+1).

Proof. Correctness is ensured by the definition of valid states and by Lemma 103.
Now considering the time complexity, from Proposition 102 we know that |Vα| ≤
|Nα|f(σ, `max). And the algorithm generates successors of all sates of a stage.
We can then, according to Lemma 103, state that the time complexity of the
dynamic programming algorithm is in:

O∗

(
σ2 · (`max + σ) · log(σ) · (

n∑
α=1

|Vα−1|log(|Vα|))

)
.

But log(|Vα|) ≤ log(|Nα|) + log(f(σ, `max)). We deduce that:

n∑
α=1

|Vα−1|log(|Vα|) ≤

f(σ, `max) ·

(
(

n∑
α=1

|Nα−1|log(|Nα|)) + log(f(σ, `max)) · (
n∑

α=1

|Nα−1|)

)

Now,
∑n

α=1 |Nα−1|log(|Nα|) ≤ (
∑n

α=1 |Nα|)2 And we know from Lemma 101
that this is bounded by (5σ + 1)2 · n2. So we get the overall time complexity
O(h(σ, `max) · n2) by setting h(σ, `max) =(
σ2 · (`max + σ) · log(σ)

)
· f(σ, `max) · [(5σ + 1)2 + (5σ + 1) · log(f(σ, `max))].

Now log(f(σ, `max)) is in O((σ + `max) · log(σ + `max)), so that:

h(σ, `max) ≤ ∆ · (σ + `max)
6 · log2(σ + `max) · 22σ+1 · (4σ + `max)

`max+1

where ∆ is a constant. Notice that the bounding done here is quite raw, since
the aim is not to have the most accurate complexity but only to prove that the
algorithm is FPT .
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Figure 5.12: Parameterized landscape of 1|prec(`ij), rj , d̄j |?.
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5.5 Summary & Concluding Remarks
Parameter Section Problem / Setting Result

σ

5.2
Single machine µ ≤ 2σ

Pm µ ≤ 2(σ + 1) ·m− 1

- Several inferred FPT results.

5.3 1|(1, `, 1), rj , d̄j |?
para-NP -hard for all three

delay types.

σ + `max 5.4 1|prec(`i,j), rj , d̄j |?
FPT with all three delay

types combined.

Figure 5.13: Summary of the results obtained in this chapter.

In this chapter we considered slack σ as a parameter for scheduling problems
featuring job time windows. We showed that pathwidth µ can be bounded by
slack σ on a single machine or on the parallel machine setting with a fixed
number of machines. This sets σ as a stronger parameter in these settings.
As a consequence we infer several FPT results, notably on a fixed number of
machines with arbitrary values. Despite this, we showed that this parameter
cannot handle precedence delays on its own. Indeed for all three delay types
we proved that scheduling coupled unit tasks with time windows on a single
machine is para-NP -hard with respect to slack σ, even when all coupled tasks
shared the same delay value. Fortunately when pairing σ with maximum delay
value `max we were able to find a FPT algorithm, even with general precedence
and all three delay types combined.

While this covers settings for which no FPT algorithm with respect to path-
width µ was available, asking to bounding slack σ might significantly limit the
range of scheduling instances for which these algorithms are applicable in prac-
tice. This suggests completing the landscape with weaker but more specialized
parameters, i.e. which would only yield FPT results on a smaller selection of
settings and in return perform substantially faster on them.
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5.5.1 Problem Map with Parameter σ

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?

1|rj , d̄j |? σ

1|prec, rj , d̄j |? σ

P |prec, pj = 1, rj , d̄j |? σ

Pm|prec, rj , d̄j |? σ

P |prec, rj , d̄j |? σ

1|(1, `, 1), rj , d̄j |? σ
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O(n9) [BBKT04]

O(σ2 ·16σ ·n+n2)
[Section 5.1]
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para-NP -hard(σ = 1)
[LRK78]

para-NP -hard(σ = 4)
[Section 5.3]

FPT [HMK23]

Figure 5.14: Problem map of parameter σ.
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5.5.2 Problem Map with Parameter σ + `max

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?

1|rj , d̄j |? σ

1|prec, rj , d̄j |? σ

P |prec, pj = 1, rj , d̄j |? σPm|prec, rj , d̄j |? σ

P |prec, rj , d̄j |? σ + `max

1|(1, `, 1), rj , d̄j |? σ + `max

1|prec(`i,j), pj = 1, rj , d̄j |? σ + `max

Pm|prec(`i,j), pj = 1, rj , d̄j |? σ + `max

P |prec(`i,j), pj = 1, rj , d̄j |? σ + `max
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Figure 5.15: Problem map of parameter σ + `max.





Chapter 6

Results with Proper Level q

6.1 Introduction
Despite the recent success of slack σ in single-machine scheduling [BdWH21]
and pathwidth µ in parallel-machine scheduling [BdWH21, HMK23, KT21,
MHMK22a] such parameters can overestimate the instance difficulty at times.
Indeed a single job with large time window length is enough to get an unbounded
slack. In the case of pathwidth µ we give an example in Figure 6.1 with two
instances of decision problem 1|rj , d̄j |?. In the left instance all jobs have the
same release date and deadline, so this is an easy particular case which can be
solved in linear time by adding up the processing times. Yet this instance has
the same pathwidth as the right one, which simulates a PARTITION problem
by using a fill job right in the middle. Note that both instances yield the same
time window overlap graph - the complete graph Kn. So in order to distinguish
them one would have to track time window interactions beyond their overlaps.

µ = n, q = 0 µ = n, q = n− 1

Figure 6.1: Two instances of 1|rj , d̄j |? with the same pathwidth µ but different
q-proper levels q.

Instead of time window overlaps like with pathwidth µ, we propose to track
whenever a time window [rj , d̄j) strictly includes another time window [ri, d̄i)
on both ends. This chapter is organized as follows. In Section 6.2 we define
proper level q formally and show that it is weaker than previously considered

119
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parameters. We then provide in Section 6.3 a FPT algorithm on single machine
scheduling problem with job time windows and precedence relations. In contrast
in Section 6.4 we show that the problem becomes para-NP -hard on parallel
processors even with unit jobs. Ultimately in Section 6.5 we summarize the
results obtained in this chapter and give our concluding remarks.

6.2 Definition & Direct Implications
The base idea is to only consider job time window overlaps which make the job
ordering unclear. This typically happens when a time window [rj , d̄j) strictly
includes another time window [ri, d̄i) on both ends. When this is the case we say
that job j surrounds job i. Such time window interactions were considered in the
past [EFM85, EFMR83, GWY01], albeit never in the context of parameterized
complexity. We define parameter q as the maximum number of jobs j which
can surround a job i.

Definition 105. (Proper set Πi) Let i ∈ [1, n]. We say that a job j ∈ [1, n]
surrounds job i when rj < ri and d̄i < d̄j. In other words j surrounds i when
time window [ri, d̄i) is strictly included by time window [rj , d̄j) on both ends.
We define Πi = {j ∈ [1, n], j surrounds i}.

(Proper level) We define parameter q = maxi∈[1,n]|Πi|. In other words q is
the maximum number of jobs j which can surround a job i.

This definition of q is inspired by Proskurowski and Telle in [PT99] where
they defined interval graph classes based on their q-proper level. This is applied
to the interval graph given by the job time windows.

Going back to Figure 6.1 the q-proper level effectively distinguishes between
both instances: a low value for the easy instance on the left and a high value
for the hard instance on the right. As the right instance suggests parameter q
can be interpreted as the maximum size of any PARTITION subproblem which
is encoded in the scheduling instance.

Finally note that parameter q is weaker than pathwidth µ:

Claim 106. In any scheduling instance featuring job time windows we have:

q ≤ µ.

Proof. Given a scheduling instance with q-proper level q, there is some job i
such that q other jobs surround i. This means that time slot ri is included in
[ri, d̄i) as well as the time window of all the jobs which surround i. So we have:
q ≤ µ.

This implies the following negative results:

Corollary 107. P2|rj , d̄j |? and 1|(1, `, 1), rj , d̄j |? are para-NP -hard parame-
terized by q.

Proof. The former is derived from [HMK23]. The latter is derived from Section
5.3.
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6.3 A FPT Algorithm on a Single Machine
We show that problem 1|prec, rj , d̄j |Cmax is FPT parameterized by q.

Theorem 108. Any prec-consistent instance of 1|prec, rj , d̄j |Cmax can be solved
in time O(max(1, q2 · 4q) ·N + n2) and space O((q + log(D)) · 2q ·N) where N
is the number of summits (i.e. jobs which surround no other job).

Since we have both time windows constraints and precedence relations in
our problem, we must ensure that the time constraints are compatible with the
partial order→. We reuse the prec-consistency which was introduced in Section
4.2 (see Definition 54). As a reminder we only remove time window parts which
are made inaccessible according to precedence relations. So feasibility and the
optimal makespan value are unchanged.

Given an instance of 1|prec, rj , d̄j |Cmax which is not prec-consistent, its
release times and deadlines can be adjusted in time O(n2) to fulfill this property
by using path algorithms. While prec-consistency might look inconspicuous it
is crucial to the dominance rule given in the next subsection. Without it one
can build artificial counterexamples like the one in Figure 6.2.

i
j

Figure 6.2: A non prec-consistent counterexample to the (wED) rule given in
Definition 111.

Consider a prec-consistent instance. For the remainder of this section we
suppose that the jobs have been renamed in [1, n] in lexicographic nondecreasing
order of (deadline, release date). So when we write ”i < j” it means that:
(d̄i < d̄j) ∨ [(d̄i = d̄j) ∧ (ri ≤ rj)]. Finally like in [EFM85] we highlight the
following subset of jobs:

Definition 109. We say that a job j ∈ [1, n] is a summit when j surrounds no
job. In other words: for all jobs i in [1, n] j is not in Πi. The summits are
denoted s1 < . . . < sN with N the number of summits.

An example of a prec-consistent instance on 1|prec, rj , d̄j |Cmax is given in
Figure 6.3. Jobs 1,2 and 3 surround no other job, so they are the summits of
this instance. Summits fulfill the following properties:

Lemma 110. (i) Every job either is a summit or surrounds a summit.

(ii) If si < sk < j and j ∈ Πsi then j ∈ Πsk .

Proof. (i) Let j be a job which is not a summit. Then j must surround at least
one job j1. Then either j1 is a summit or it surrounds some job j2. After k
non-summit steps we would have rj < rj1 < . . . < rjk and d̄jk < · · · < d̄j1 < d̄j .
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i 1 2 3 4 5

pi 2 2 3 4 1
ri 0 3 6 0 5
d̄i 6 8 11 13 14
Πi ∅ {4} {4, 5} ∅ ∅
|Πi| 0 1 2 0 0

1 2

4

3

5

1
2

3
4

5

0 3 5 6 8 11 1314

Figure 6.3: An example on 1|prec, rj , d̄j |Cmax with five jobs and q-proper level
two.
Thus all these jobs are distinct from each other and it eventually ends with
some job jK which is a summit. Then we also have rj < rjK and d̄jK < d̄j , so
j surrounds summit jK .

(ii) Let si < sk < j such that j ∈ Πsi . sk is a summit so sk /∈ Πsi . And
since si < sk we necessarily have rsi ≤ rsk . So rj < rsi ≤ rsk . Now sk < j
implies that d̄sk ≤ d̄j . If d̄sk = d̄j then we would have j < sk which leads to a
contradiction. So d̄sk < d̄j and thus j ∈ Πsk .

6.3.1 The Weak Earliest Deadline rule
In this subsection we define the weak earliest deadline (wED) rule and establish
the dominance of schedules following this rule. Then we show that such opti-
mal schedules can be further modified to get optimal schedules with a stronger
structure based on the summits of the instance.

Motivation

It is worth noting that scheduling rules have already been successfully used in
some subproblems of 1|prec, rj , d̄j |Cmax [Law73]. One of the most well-known
examples is the earliest deadline rule [War59] - which will be denoted (ED).
Given an instance of problem 1|d̄j |Cmax the (ED) rule says the following: sched-
ule jobs actively in nondecreasing order of their deadline. This gives the min-
imum makespan in time O(n · log(n)). The same can be achieved on problem
1|rj |Cmax with the earliest release date rule [Bak84] - which will be denoted
(ERD).

However given an instance of 1|prec, rj , d̄j |Cmax such strategies become more
difficult to pull off. Indeed both (ED) and (ERD) rules can still work but only
when release dates and deadlines follow the same order. If there is at least one
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job couple (i, j) such that rj < ri and d̄i < d̄j - i.e. job j surrounds job i - then
both rules become wrong. Fittingly when this happens we have q ≥ 1.

In response we propose a variant of the (ED) rule. We call it the weak
earliest deadline rule and denote it (wED). It says the following: schedule jobs
in nondecreasing order of their deadline, except when some job surrounds other
jobs. Given each job i ∈ [1, n] the only allowed exceptions are the jobs j which
either surround i or surround a job k with a deadline d̄k ≤ d̄i and scheduled
between j and i. For each job i we show that under the (wED) rule the number
of such jobs j is bounded by our parameter q. This will be enough to define
a dynamic programming algorithm with a number of states of the form f(q) ·
poly(n).

Definition and dominance

First we define the (wED) rule formally:

Definition 111. A feasible schedule τ on an instance I follows the (wED)
rule when: ∀(i, j) ∈ [1, n]2, if i < j then either i is scheduled before j (i.e.
τ(i) < τ(j)) or j surrounds i (i.e. j ∈ Πi) or there exists h < i such that
τ(j) < τ(h) < τ(i).

On problem 1|prec, rj , d̄j |Cmax we show that the schedules following the
(wED) rule are dominant.

Lemma 112. Given a feasible schedule τ on a prec-consistent instance I of
problem 1|prec, rj , d̄j |Cmax, one can build a feasible schedule with a makespan
lower than or equal to the makespan of τ and which follows the (wED) rule.

Proof. Let τ be a feasible schedule. If τ follows the (wED) rule then we are
done. If not then let (i, j) be a job couple such that i < j, j /∈ Πi and all jobs
between j and i in τ are higher than i. Then in τ we have ”jSi” where j and all
jobs in sequence S are higher than i. Within the same time interval we propose
job reordering ”ijS” the following way: push sequence ”jS” to the right by pi
time units then insert i right before. Indeed i < j and j /∈ Πi so necessarily we
have ri ≤ rj . Plus j and all jobs in S are greater than i. Since our instance is
prec-consistent it means that there is no precedence relation from any of these
jobs to i. Thus i can be inserted as desired. Now again j and all jobs in sequence
S are greater than i. So their deadlines are non lower than d̄i and they can be
pushed as desired. Note that job couple (i, j) and all couples (i, s) with s in
sequence S are (wED)-valid, now that i is scheduled before them. Thus the
resulting schedule is feasible, has the same makespan as τ , and has at least
one less (wED)-invalidating job couple with (i, j) becoming (wED)-valid and
no job couple becoming (wED)-invalidating. This procedure can be repeated
a maximum of n(n−1)

2 times until we get a feasible schedule which follows the
(wED) rule.
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A summit-based decomposition

Upon closer inspection the (wED)-following schedules have the following in-
teresting structural properties, which will serve as the basis of our dynamic
programming approach in the next section:

Lemma 113. Any schedule on a prec-consistent instance I of 1|prec, rj , d̄j |Cmax

which is feasible and follows the (wED) rule is of the form T1s1 . . . TNsNTN+1

where:

(i) 1 = s1 < . . . < sN are the summits of the instance,

(ii) for all k in [1, N ] and i < sk we have τ(i) < τ(sk),

(iii) for all k in [1, N ] if j > sk and τ(j) < τ(sk) then j ∈ Πsk ,

(iv) a. every job in sequence T1 is in set Πs1 ,
b. for all k in [2, N ] every job in sequence Tk is in set Πsk−1

∪Πsk , and
c. every job in sequence TN+1 is in set ΠsN .

Proof. Let τ be a feasible schedule which follows the (wED) rule. We start by
proving point (ii). Let k ∈ [1, N ] and i < sk. We show that τ(i) < τ(sk). By
the (wED) rule either τ(i) < τ(sk), or sk ∈ Πi, or there is some h < i such
that τ(sk) < τ(h) < τ(i). sk is a summit so by its definition the second case
is not possible. Now by contradiction suppose that the third case is true. Take
h as the lowest job such that τ(sk) < τ(h) < τ(i). Then couple (h, sk) must
follow the (wED) rule while τ(sk) < τ(h) and there is no h′ < h such that
τ(sk) < τ(h′) < τ(h) by minimality of h. Then it means that sk is in Πh, which
contradicts that sk is a summit. Thus by the (wED) rule this only leaves us
with τ(i) < τ(sk).

Next we prove point (iii). Let k ∈ [1, N ] and j > sk such that τ(j) < τ(sk).
Then by the (wED) rule either j ∈ Πsk or there is h < sk such that τ(j) <
τ(h) < τ(sk). In the first case we are done, so suppose we are in the second
phase. Take h minimum. Then by the (wED) rule j ∈ Πh. But according to
Lemma 110 (i) either h is a summit or it surrounds a summit. In the first case
Lemma 110 (ii) would show that j ∈ Πsk and we are done. In the second case
we have a summit si < h such that rj < rh < rsi and d̄si < d̄h < d̄j . Then
j ∈ Πsi and again Lemma 110 (ii) can be used to show that j ∈ Πsk .

Now consider two consecutive summits sk and sk+1. sk is lower than sk+1.
So by point (ii) we know that sk is scheduled before sk+1 in τ . This means
that τ is of the form T1s1 . . . TNsNTN+1 where all the jobs in sequences Tk are
non-summits. Finally note job 1 has the lowest deadline and the lowest release
date among the jobs with the same deadline. So job 1 is always a summit and
s1 = 1. This proves point (i).

Finally we prove point (iv). Let k ∈ [1, N + 1] and j be a job in sequence
Tk.

a. If k = 1 then s1 = 1, so j > s1 and τ(j) < τ(s1). Thus by point (iii)
j ∈ Πs1 .
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c. If k = N +1: job j is not a summit so by Lemma 110 (i) it surrounds one
summit s`. But necessarily s` ≤ sN . If ` = N then we are done. Else we
know that τ(sN ) < τ(j) so by point (ii) j > sN . Then s` < sN < j with
j surrounding s`. By Lemma 110 (ii) j also surrounds sN .

b. If k ∈ [2, N ]: again job j is not a summit so by Lemma 110 (i) it surrounds
one summit s`. If ` ≤ k − 1 then the same reasoning as in point c. can
be applied to show that j ∈ Πsk−1

. Now suppose ` ≥ k. Then we have
sk ≤ s` < j and τ(j) < τ(sk). Thus by point (iii) j ∈ Πsk .

Then in any (wED)-following schedule every job lower than a summit sk
must be scheduled before sk. And among the jobs higher than sk only those in
Πsk can be scheduled before sk. With the next section methodology it would
already lead to an FPT dynamic programming algorithm with O((2q)! · 4q ·N)
states. However this number can be decreased to O(2q ·N) by restricting further
the set of dominant schedules. We do so by fixing the job order in each Tk. As a
result we get the dominance proposed in [EFMR83] for problem 1|rj , d̄j |Cmax,
except we must deal with precedence constraints and restrict ourselves to prec-
consistent instances. Such schedules will be called summit-ordered.

Definition 114. A schedule on a prec-consistent instance I of 1|prec, rj , d̄j |Cmax

is called summit-ordered when it is feasible and of the form T1s1 . . . TNsNTN+1

where properties (i), (ii), (iii) of Lemma 113 are satisfied and moreover the fol-
lowing property holds:

(iv) a. all jobs in sequence T1 are in Πs1 and scheduled in nondecreasing
order of their release date.

b. for all k in [1, N − 1] Tk+1 = CkAk+1Bk+1 where:
∗ all jobs in sequence Ck are in Πsk , not in Πsk+1

and scheduled
in nondecreasing order of their deadline,

∗ all jobs in sequence Ak+1 are in Πsk ∩ Πsk+1
and scheduled in

any order (say in their lexicographic order),
∗ all jobs in sequence Bk+1 are in Πsk+1

, not in Πsk and scheduled
in nondecreasing order of their release date.

c. all jobs in sequence TN+1 are in ΠsN and scheduled in nondecreasing
order of their deadline.

For example consider the instance given in Figure 6.3. A feasible schedule
with job order ”12453” (if it exists) would be summit-ordered with C2 = ∅,
A3 = {4} and B3 = {5}, while one with job order ”12543” would not be. We
conclude this section with one final dominance result:

Proposition 115. On problem 1|prec, rj , d̄j |Cmax the summit-ordered schedules
are dominant.
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Proof. Let τ be a feasible schedule. From Lemmas 112 and 113 one can build
τ̄ of the form T1s1 . . . TNsNTN+1 with a makespan lower or equal to τ which
follows the (wED) rule and verify points (i), (ii) and (iii). In order to prove
point (iv) we propose a reordering of each sequence Tk with k ∈ [1, N + 1].

Let k ∈ [1, N − 1]. Consider sequence ”skTk+1sk+1”. First we want to
reorder each sequence Tk+1 into a form CkAk+1Bk+1. Given the jobs in Tk+1,
Ck groups those in Πsk and not in Πsk+1

, Ak+1 groups those common to both
proper sets, and Bk+1 groups those in Πsk+1

and not in Πsk . If Tk+1 is not
of this form then we first check the jobs from Ck. If there is a job from Ck

scheduled after a job of Ak+1 ∪ Bk+1, let c be the leftmost of them. Then we
have ”skCSc” in schedule τ̄ where the jobs in C are from Ck and the jobs in S
are from Ak+1 ∪Bk+1. We propose to reorder into ”skCcS” the following way:
push sequence S to the right by pc units then insert c right before S. Indeed
all jobs from S are in Πsk+1

so their deadlines are higher than τ(sk+1) and they
could be pushed to the right as desired. Plus c is in Πsk so its release date is
lower than τ(sk) and it could be inserted as desired. So the only obstacle would
be a precedence relation between some job α in S to job c. On the one hand
α is in Πsk+1

so it is greater than sk+1. On the other hand c is not in Πsk+1

and is scheduled before sk+1 in τ̄ . By Lemma 113 (iii) this means that c is
lower than sk+1 and thus c < α. Recall that our instance is prec-consistent,
so it means that there cannot be a precedence relation from α to c. Thus the
proposed reordering ”skCcS” is allowed and does not increase the makespan of
our schedule. Repeating this at most |Ck| times allows us to get all jobs from
Ck on the left side of interval [τ(sk)+psk , τ(sk+1)). Then one can show that all
jobs from Bk+1 can be grouped on the right side of interval [τ(sk)+psk , τ(sk+1))
with symmetric arguments.

Now let k ∈ [1, N ]. We show that the jobs in Ck can be reordered in
nondecreasing order of their deadline. Notice that jobs in Ck ⊂ Πsk have release
time lower than rsk . So they can be scheduled without idle time after sk. If two
consecutive jobs i, j of Ck satisfy d̄i > d̄j , we cannot have i→ j as our instance
is prec-consistent. So i, j can be swapped without modifying the feasibility nor
the makespan of the schedule. Iterating such swaps leads to the desired order.
Similarly one can show that all jobs from Bk can be reordered in nondecreasing
order of their release dates with symmetric arguments.

6.3.2 The Algorithm
In this subsection we propose a dynamic programming algorithm which explores
active summit-ordered schedules - ”active” meaning that there is no unnecessary
waiting time.

Core concept

Assume that we have built a partial summit-ordered schedule until sk. To
extend this schedule to other jobs, we need to keep track of the information
which ensures that each job is scheduled exactly once. By the definition of
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summit-ordered schedules we only need to recall the jobs greater than each
summit sk and scheduled before them. To this purpose we define the following
set:

Definition 116. (Lingering set Λk) We define Λk = (
⋃

1≤h≤k Πsh)∩ [sk+1, n].

Then a summit-ordered schedule T1s1 . . . TNsNTN+1 can be represented as a
state path (s1, L1)→ (. . .)→ (sN , LN ) where every Lk is a subset of Λk. Such
a path decomposition is motivated by the following lemma:

Lemma 117. Let τ = T1s1 . . . TNsNTN+1 be an active summit-ordered schedule
on an instance I of 1|prec, rj , d̄j |Cmax. Then for every k in [1, N ] schedule
T1s1 . . . Tksk is a feasible active schedule on job subset [1, sk] ∪ Lk where Lk =
(
⋃

1≤h≤k Th) ∩ [sk + 1, n].

Proof. Feasibility and activeness are stable properties by prefix operation. What
is left to show is that the set of jobs featured in partial schedule T1s1 . . . Tksk is
indeed [1, sk] ∪ Lk.

(⊆) Since we have a summit-ordered schedule, by Definition 114 (i) s1, . . . , sk
are all lower or equal to sk, so they are all included in [1, sk]. Now given ` ∈ [1, k]
and a job j ∈ T`: if j ≤ sk then j ∈ [1, sk], else we have j ∈ [sk + 1, n] and
j ∈

⋃
1≤h≤k Th, so j ∈ Lk.

(⊇) By definition Lk is included in
⋃

1≤h≤k Th. Now let j ∈ [1, sk]. Since we
have a summit-ordered schedule, by Definition 114 (ii) all jobs lower than sk are
scheduled before sk in τ . Thus either j = s` or j ∈ T` for some ` in [1, k].

Then the corresponding schedule can be retrieved solely from the sets Lk:

Lemma 118. Let τ = T1s1 . . . TNsNTN+1 be an active summit-ordered schedule
on an instance I of 1|prec, rj , d̄j |Cmax. Let (s1, L1)→ (. . .)→ (sN , LN ) be the
corresponding state path. Then for every k in [1, N ]:

a. B1 = L1,

b. for every k in [2, N − 1]:

– Ck = {j ∈ Πsk , j /∈ Lk ∪Πsk+1
},

– Ak+1 = {j ∈ Πsk ∩Πsk+1
∩ Lk+1, j /∈ Lk},

– Bk+1 = {j ∈ Πsk+1
∩ Lk+1, j /∈ Πsk ∪ Lk},

c. CN = {j ∈ ΠsN , j /∈ LN}.

Proof. This directly comes from Definition 114 (iv) and Lemma 117.

Finally in order to find the optimal makespan of our instance, we show that
we only need to consider summit-ordered schedules which are optimal on every
prefix T1s1 . . . Tksk:
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Figure 6.4: State graph associated to the example given in Figure 6.3. The
value of each arc is the makespan of the scheduling candidate computed by
extend(k, Lk, Lk+1). The red path corresponds to active schedule ”14235”,
which gives the optimal makespan.

Lemma 119. Let τ = T1s1 . . . TNsNTN+1 be an active summit-ordered sched-
ule with optimal makespan on an instance I of 1|prec, rj , d̄j |Cmax. Then one
can build an active summit-ordered schedule τ ′ = T ′

1s1 . . . T
′
NsNT ′

N+1 also with
optimal makespan and such that for all k ∈ [1, N ] schedule T ′

1s1 . . . T
′
ksk has

optimal makespan among the schedules of state (sk,
⋃

1≤h≤k T
′
h ∩ [sk + 1, n]).

Proof. This is proved by downward induction on k. Suppose that for all j > k
schedule T1s1 . . . Tjsj is optimal among the schedules associated to the same
state - which is true in base case k = N . Let τk be a schedule associated to
the same state as schedule T1s1 . . . Tksk and with optimal makespan. Then by
Proposition 115 one can build τ ′k = T ′

1s1 . . . T
′
ksk with the corresponding proper-

ties and the same makespan as τk. We propose τ ′ = τ ′k ·Tk+1sk+1 . . . TNsNTN+1,
for which the result holds for all j ≥ k. This concludes the induction.

This motivates the procedure given in Algorithm 3. Set dummy summits s0,
sN+1 with processing time 0, an initial state (s0, ∅) and a final state (sN+1, ∅).
For k = 0 to N use the optimal makespan from states (sk, Lk) and extend them
to the states (sk+1, Lk+1). Each of these state pairs is treated by Algorithm
4, which operates accordingly to Lemma 118. Once the unique set of jobs
to be scheduled between summits sk and sk+1 is retrieved, the corresponding
dominating job ordering is determined. Then these jobs are appended in order
and in an active manner (i.e. as soon as possible). Eventually either the schedule
computed by Algorithm 4 is invalid, or it is an optimal makespan candidate for
the successor state. At the end of the procedure the optimal makespan is given
by the value of state (sN+1, ∅).
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Algorithm 3 main() (
. Solving 1|prec, rj d̄j |Cmax.

1: preprocessing() . Check prec-consistency. Compute proper sets and lingering sets.
2: rs0 , ps0 , d̄s0 , psN+1 ← 0 ; rsN+1 ← maxi∈[1,n](ri) ; d̄sN+1 ←∞
3: Πs0 ,Λ0,ΠsN+1 ,ΛN+1 ← ∅
4: Create table T with N + 2 columns and 2|Λk| slots in each column k.
5: Initialize T with ∞ everywhere.
6: T [0][0]← 0
7: for k = 0 to N do
8: for each (Lk, Lk+1) ⊆ Λk × Λk+1 do
9: T [k + 1, Lk+1]← min(T [k + 1, Lk+1], extend(k, Lk, Lk+1))

10: return T [N + 1, ∅]

The state graph corresponding to the Figure 6.3 example is given in Figure
6.4. We have Λ1 = ∅,Λ2 = {4} and Λ3 = {4, 5}. The optimal makespan is
obtained with summit-ordered active schedule ”14235”, which corresponds to
state path (s0, ∅)→ (1, ∅)→ (2, {4})→ (3, {4})→ (s4, ∅).

State bounding

Now we bound the size of lingering sets Λk. It turns out that only the proper
set of summit sk is needed to obtain Λk:

Lemma 120. ∀k ∈ [1, N ], Λk = Πsk .

Proof. Let k ∈ [[n]]. By definition every job j in Πsk is greater than sk. So j is
in Λk. Now let ` ∈ Λk. We show that ` ∈ Πsk . By the definition of Λk there is
j ∈ [1, k] such that ` ∈ Πsj . If j = k then we are done. Else we have sj < sk < `
with ` ∈ Πsj . Then by Lemma 110 (ii) ` ∈ Πsk .

This bounds the size of Λk and the number of successors (sk+1, Lk+1) for
each state by parameter q.

Corollary 121. ∀k ∈ [1, N ], |Λk| ≤ q. Plus every state has at most 2q succes-
sors.

Proof. Let k ∈ [1, N ]. By the definition of proper level q a proper set has size
at most q. By Lemma 120 so does lingering set Λk. Now consider some state
(sk, Lk). A successor of this state is of the form (sk+1, Lk+1) where Lk+1 is
a subset of Λk+1. So the bound on the size of Λk+1 bounds the number of
successors of state (sk, Lk) by 2q.

Complexity

Now that the number of states and successors have been bounded we compute
the time and space complexity of the proposed dynamic programming algorithm.
In the preprocessing phase of Algorithm 3 prec-consistency is checked then
proper sets and lingering sets are computed. This takes time O(n2) and space
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Algorithm 4 extend(k, Lk, Lk+1)
. Input: k ∈ [0, N ], Lk ⊆ Λk, Lk+1 ⊆ Λk+1.
. Goal: start from an optimal schedule on job subset [1, sk] ∪ Lk and attempt to extend
it to job subset [1, sk+1] ∪ Lk+1.

1: Cmax← T [k, Lk]
2: if [1, sk] ∪ Lk 6⊆ [1, sk+1] ∪ Lk+1 or Cmax =∞ then return ∞

. Add jobs between summits sk and sk+1 accordingly to Lemma 118.
3: C ← list({j ∈ Πsk , j /∈ Lk ∪Πsk+1}) . Ck

4: sort(C, nondecreasing d̄j)
5: A← list({j ∈ Πsk ∩Πsk+1 ∩ Lk+1, j /∈ Lk}) . Ak+1

6: B ← list({j ∈ Πsk+1 ∩ Lk+1, j /∈ Πsk ∪ Lk}) . Bk+1

7: sort(B, nondecreasing rj)
8: add← C ·A ·B · [sk+1]
9: if prec_invalid(Lk, add) then return ∞

10: for j in add (in order) do
11: Cmax← max(Cmax, rj) + pj
12: if Cmax > d̄j then return ∞
13: return Cmax

O(q ·N). Now by Corollary 121 the number of states associated to each summit
is bounded by 2q, and for each of these states at most 2q candidate successors
are explored. For each couple ((sk, Lk), (sk+1, Lk+1)) considered in Algorithm
3 line 8, Algorithm 4 adds at most 2q + 1 jobs to the schedule represented by
state (sk, Lk). By Lemma 118 these jobs can be retrieved from sets Lk and
Lk+1 (lines 3, 5 and 6) and appended accordingly to Definition 114 (lines 4, 7,
8 and 10 to 12) in time O(q · log(q)).

Now only the precedence checks related to the added jobs in Tk+1∪{sk+1} are
left (Algorithm 4 line 9). Since we build a summit-ordered schedule, following
Definition 114 (iv), there is no invalidating precedence constraint from one job
in Tk+1 ∪ {sk+1} to another. So an invalidating one would necessarily go from
a job i in Tk+1 ∪ {sk+1} to a job j in

⋃
1≤h≤k Th ∪ {sh}. Since our instance is

prec-consistent j must be greater than i, which is itself greater than or equal
to sk+1 and thus greater than sk. So j ∈ Lk. By Corollary 121 this leaves at
most 2q+1 possible jobs at the start of the potentially invalidating precedence
constraint and at most q possible jobs at the end of it. So the precedence checks
take time O(q2) for any couple ((sk, Lk), (sk+1, Lk+1)).

Then either some deadline/precedence constraint is invalidated or the jobs
are successfully added and a new candidate makespan value is proposed to the
successor. So the main loop of Algorithm 3 takes time O(q2 · 4q · N). Now
we consider space complexity. For each state (i, L) we must remember index
i, some encoding of set L and the minimum makespan currently found. By
Corollary 121 this requires space O(q + log(D)) where D = maxi∈[1,n](d̄i).
Finally once the whole state graph has been computed, a feasible schedule with
optimal makespan can be retrieved by starting from the final state and going
backwards in the state graph. This leads to the time and space complexity given
in Theorem 108.

Note that precedence relations only intervene during the precedence checks
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Figure 6.5: Parameterized landscape of 1|prec, rj , d̄j |?.

between each couple ((sk, Lk), (sk+1, Lk+1)) in line 9 of Algorithm 4. So if
our instance has no precedence relations then each of these couples take time
O(q · log(q)) to process instead of time O(q2).

Corollary 122. Any instance of problem 1|rj , d̄j |Cmax can be solved in time
O(max(1, q · log(q) · 4q) ·N + n2) and space O((q + log(D)) · 2q ·N).

Finally note that if only the optimal value is wanted and not a schedule, it is
possible to reduce the space complexity to O((q+ log(D)) · 2q). Indeed only the
optimal makespan of the states associated to summit sh must be remembered
at any time in order to find the optimal makespan of all states associated to
summit sh+1. And when all the states associated to sh have interacted with their
successors, the space they take can be freed and used for the states associated
to sh+2. Finally instead of a preprocessing phase proper sets and lingering sets
are only computed whenever needed and forgotten once all the states associated
to the corresponding job have interacted with all their successors.

Minimizing Lmax

We conclude this subsection by extending the method to instances of problem
1|prec, rj |Lmax. Deadlines are replaced with due dates and we aim to minimize
the maximum lateness of the instance. We run the dynamic programming al-
gorithm for the makespan in order to get an initial value for Lmax. This could
be as far as D′ = [maxi∈[1,n](ri) +

∑
i∈[1,n] pi] from the optimal value. Then

we perform a binary search by solving a series of decision problems. We use
deadlines instead of due dates and update them accordingly to the current step
of the binary search. Each of these steps is solved by one run of our makespan
algorithm.

Note that the value of parameter q is the same in every step of the search.
Indeed when changing the Lmax threshold all deadlines are shifted by the same
amount of the time, so no relation of the form ”d̄i < d̄j” is ever changed.
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This also means that prec-consistency, proper sets and lingering sets remain
unchanged and thus do not need to be computed again at every step.

Corollary 123. Any prec-consistent instance of 1|prec, rj |Lmax can be solved
in time O(max(1, q2 · 4q) ·N · log(D′) + n2) and space O((q+ log(D′)) · 2q ·N).

6.4 Negative Parallel Machine Results
In this section we show that P |prec, pj = 1, rj , d̄j |? is para-NP -hard parame-
terized by q in two ways: first when paired with makespan threshold D (which
is the maximum deadline here), then when combined with precedence graph
width w. Both proofs adapt previous parameterized reductions from Lenstra
and Rinnooy-Kan [LRK78] and Bodlaender and Fellows [BF95] respectively.

6.4.1 With Parameter q +D

We show that P |prec, pj = 1, rj , d̄j |? is para-NP -hard parameterized by q+D.

Theorem 124. P |prec, pj = 1, rj , d̄j |? is NP -hard when q +D = 3.

We adapt the reduction from CLIQUE proposed by Lenstra and Rinnooy-
Kan in [LRK78]. Let G = (V,E) be a graph with v = |V | and e = |E|. Let k be
the clique size objective. Then Lenstra and Rinnooy-Kan defined an instance
of problem P |prec, pj = 1|Cmax < D the following way:

Definition 125. [LRK78] Set a = k(k−1)
2 , a′ = e − a and k′ = v − k. Then

scheduling instance I has m = (1 +max(k, a + k′, a′)) machines, n = 3m jobs
and makespan threshold D = 3. Jobs are split into v vertex jobs Ji, i ∈ V , e
edge jobs J{i,j}, {i, j} ∈ E and 3m − v − e fill jobs: m − k of them at time 0,
m−(a+k′) of them at time 1 and m−a′ of them at time 2. Precedence relations
are used to set the desired number of fill jobs in each time unit. Plus for each
edge {i, j} ∈ E we have precedence from vertex jobs Ji, Jj to edge job J{i,j}.

Then if there is a clique of size k in G we schedule the corresponding k vertex
jobs at time 0, the a edge jobs associated to this clique and the k′ remaining
vertex jobs at time 1, and the l′ remaining edge jobs at time 2. The resulting
schedule is feasible. Conversely if there is no clique of size k in G at most a− 1
edge jobs can be scheduled before time 2. So at least a′+1 edge jobs have to be
scheduled at time 2 which, combined with the m− a′ fill jobs set at that time,
exceeds the number of machines. Thus there is no feasible schedule for I. This
concludes the reduction and the proof that P |prec, pj = 1|Cmax < D is strongly
NP -hard when D = 3.

Note that in any feasible schedule considered in the proof, vertex jobs are
scheduled at time 0 or 1 while edge jobs are scheduled at time 1 or 2. So job
time windows can be added accordingly without hindering feasibility.

Definition 126. Instance I ′ of problem P |prec, pj = 1, rj , d̄j |? is defined with
help from the instance I of Definition 125. We have the set of jobs, we keep
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the precedence relations between vertex jobs and vertex jobs, but we remove the
those between fill jobs. Instead we use time windows to set the fill jobs: m− k
of them with time window [0, 1), m − (a + k′) of them with time window [1, 2)
and m− a′ of them with time window [2, 3). All vertex jobs have time window
[0, 2) and all edge jobs have time window [1, 3).

The resulting instance I ′ is prec-consistent and equivalent to base instance
I. Note that all time windows have length 1 or 2, so no time window can strictly
include another on both ends. Thus in instance I ′ we have q = 0. This concludes
the reduction and the proof that P |prec, pj = 1, rj , d̄j |? is strongly NP -hard
when q +D = 3.

6.4.2 With Parameter q + w

Here we consider parameter q + w and we show that P |prec, pj = 1, rj , d̄j |? is
W [2]-hard.

Theorem 127. P |prec, pj = 1, rj , d̄j |? is W [2]-hard parameterized by q + w.

We adapt the reduction from k-DOMINATING SET proposed by Bodlaen-
der and Fellows in [BF95]. Let G = (V,E) be a graph with V = {u0, , . . . , uv−1},
v = |V | and e = |E|. Let k be the dominating set size objective.

Before introducing the reduction, we first define some values and state their
properties that will be used later. We define c = 2v2 + 1. For any 0 ≤ α ≤
(k + 1)v and 0 ≤ l1, l2 ≤ v − 1 we define:

λ(α, l1, l2) = (v − 1 + α · c+ l1 · (2v)− l2) (6.1)

Then the following properties can be stated:

Lemma 128. ∀l1, l2, l′1, l′2 ∈ {0, . . . , v − 1} :

• λ(α+ 1, l1, l2)− λ(α, l′1, l
′
2) ≥ v + 2 for any α ∈ {0, . . . , (k + 1)v − 1},

• λ(α, l1 + 1, l′2)− λ(α, l1, l2) ≥ v + 1 for any α ∈ {0, . . . , (k + 1)v}.

Proof. For a fixed α, the minimum value of λ(α+1, l1, l2) is obtained with l1 = 0
and l2 = v−1, and the maximum value of λ(α, l′1, l′2) is obtained with l′1 = v−1
and l′2 = 0. So we get:

λ(α+ 1, l1, l2)− λ(α, l′1, l
′
2) ≥ [v − 1 + (α+ 1) · c− (v − 1)]

− [v − 1 + α · c+ (v − 1) · (2v)]
= c− (2v2 − v − 1)
= v + 2

Similarly for fixed α, l1:
λ(α, l1 + 1, l2)− λ(α, l1, l

′
2) ≥ [v − 1 + α · c+ (l1 + 1)(2v)− (v − 1)]

− [v − 1 + α · c+ l1(2v)]
= 2v − (v − 1)
= v + 1
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Then we define an instance I of P |prec, pj = 1, rj , d̄j |? the following way:

Definition 129. Instance I = 〈m, prec, rj , d̄j , D〉 has m = 2k + 1 machines
and makespan threshold D = λ((k + 1) · v, 1, v − 1) = (k + 1) · v · c + 2v. Let
D′ = D − v.

We have k + 1 job chains of length D′: one floor chain (fj)j and k selector
chains (si,j)i,j with 1 ≤ i ≤ k and 0 ≤ j ≤ D′ − 1. The floor chain aims at
ticking time with not much flexibility. The starting time of the first job in each
selector chain will be used to select a node in the dominating set. The jobs
constituting these chains are respectively called floor jobs fj and selector jobs
si,j, and they have time window [j, j + v).

On top of these chains we add the following jobs:

• floor gadgets: one job f ′
j ”parallel” to each floor job fj with j = λ(α, l, 0)

or j = λ(α, l, 0) + v for some 0 ≤ l ≤ v − 1 and 0 ≤ α ≤ (k + 1)v − 1.
Precedence relations (fj−1, f

′
j) and (f ′

j , fj+1) are in prec. Plus floor gadget
f ′
j has the same time window as floor job fj.

• selector gadgets: for vertex indices 0 ≤ l1, l2 ≤ v − 1 such that l1 6= l2
and (ul1 , ul2) /∈ E: two jobs s′i,j , s

′
i,j+v associated to each selector job

s′i,j with 1 ≤ i ≤ k and j of the form λ(α, l1, l2) where 1 ≤ α ≤ (k +
1)v. Precedence relations (si,j−1, s

′
i,j), (s′i,j , si,j+1), (si,j+v−1, s

′
i,j+v) and

(s′i,j+v, si,j+v+1) are in prec. Plus selector gadget s′i,j has the same time
window [j, j + v) as selector job si,j, while selector gadget s′i,j+v has the
time window [j + v, j + 2v).

Note that according to Lemma 128 the time windows of two different floor
gadgets never intersect (i.e. λ(α, l + 1, 0) > λ(α, l, 0) + v).

Lemma 130. If graph G has a dominating set of size k then instance I has a
feasible schedule.

Proof. Given {uγ1 , . . . , uγk
} a dominating set of graph G, we propose schedule

τ where floor jobs/gadgets fj , f
′
j are scheduled at time j and for each i ∈ [1, k]

selector jobs/gadgets si,j , s′i,j are scheduled at time γi+j. Hence here the nodes
in the dominating set define the starting time of the first job of the selector
chains and the other jobs are performed in sequence without idle time.

We show that schedule τ is feasible. Clearly all precedence constraints are
met in τ . Now we show that no more than m = 2k+1 jobs are scheduled at any
time T . When T is not of the form λ(α, l, 0) nor λ(α, l, 0)+v where 0 ≤ l ≤ v−1
and 0 ≤ α ≤ (k+1)v−1, there is at most one floor job, no floor gadget, at most
k selector jobs and at most k selector gadgets scheduled at the same time, due
to precedence constraints on the chains and with gadgets, so no issue there.

Now consider any time T = λ(α, l, 0), or T = λ(α, l, 0) + v of this form.
Then the floor gadget f ′

T is scheduled at that time. Plus for each i ∈ [1, k] at
most one selector gadget associated to the ith selector chain can be scheduled at
time T and, if it exists, it is s′i,T−γi

. We show that at least one these k selector
gadget possibilities does not exist.
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• If ul is in the dominating set then l = γi0 for some i0 ∈ [1, k]. If T =
λ(α, l, 0), then by definition the selector gadget s′i0,λ(α,l,γi0 )

, which can be
rewritten as s′i0,T−γi0

, cannot exist (since l = γi0). if T = λ(α, l, 0) + v,
similarly, selector gadget s′i0,λ(α,l,γi0

)+v cannot exist.

• Otherwise vertex ul is adjacent to some vertex uγi from the dominating set,
with i ∈ [1, k]. If T = λ(α, l, 0), then selector gadget s′i,T−γi

= s′i,λ(α,l,γi)

where (ul, uγi
) ∈ E, and thus it cannot exist according to the definition.

If T = λ(α, l, 0) + v, then selector gadget s′i,T−γi
= s′i,λ(α,l,γi)+v would

exist although (ul, uγi
) ∈ E, a contradiction. So no selector gadget from

the ith chain is scheduled at time T .

Thus in both cases at most k − 1 selector gadgets can be scheduled at the
considered time T . So the number of machines is never exceeded anywhere and
schedule τ is feasible.

Conversely given a feasible schedule of instance I we show how to infer a
dominating set of graph G. Again we use the position of the selector chains,
albeit not from their start. We need to consider some time interval of length c
where all chains are scheduled in an active manner. This was ensured by setting
a sufficient number of such available disjoint ranges.

Lemma 131. If instance I has a feasible schedule then graph G has a dominating
set of size k.

Proof. Let τ be a feasible schedule of instance I. Given α ∈ [1, (k+1)v− 1] the
αth range refers to time interval [(−1+α·c), (−1+(α+1)·c)), which corresponds
to [λ(α, 0, 0) − v, λ(α + 1, 0, 0) − v). We say that the αth range is polluted by
a chain when there exists a time unit in this range to which no job from this
chain is scheduled. For instance the αth range is polluted by ith selector chain,
when there exists a time unit T in this range such that for all 0 ≤ j ≤ D′ − 1
selector job si,j is not scheduled at time T .

Since each of the k + 1 chains in I have length D′ = D − v, they can only
pollute at most v−1 ranges each, and so at most (k+1)v− (k+1) ranges total.
can be polluted. Because the total number of ranges is (k+1)v−1, at least one
of them is not polluted, say the αth

0 range [(−1 + α0 · c), (−1 + (α0 + 1) · c)).
Due to precedence relations all floor gadgets f ′

j (resp. selector gadgets
s′i,j , s

′
i,j+v) executed in range α0 are executed at the same time as their as-

sociated floor job fj (resp. selector job si,j .
Then by the feasibility of τ and the precedence relations, exactly one job

from each chain is scheduled at time T0 = (−1+α0 · c). Let j0, . . . , jk be indices
such that fT0−j0 is the floor job scheduled at time T0 and, given i ∈ [1, k],
si,T0−ji is the selector job of the ith job which is scheduled at time T0. Then
we set γi = (ji − j0) if ji ≥ j0 and (v + ji − j0) otherwise. Since ji and j0 can
differ by at most v − 1, we have γi ∈ [0, v − 1].

We claim that {uγ1
, . . . , uγk

} is a dominating set of graph G. Let l ∈ [0, v−1].
We show that either vertex ul is part of the proposed set, or it is adjacent to one
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of the elements in the proposed set. Consider time units (T0+ l · (2v)+j0+v) =
λ(α0, l, 0) + j0 and λ(α0, l, 0) + j0 − v which are both in range α0. Among the
jobs scheduled at these times we have job floor fλ(α0,l,0), floor gadget f ′

λ(α0,l,0)

(resp. job floor fλ(α0,l−1,0)+v, floor gadget f ′
λ(α0,l−1,0)+v) and k selector jobs,

one per selector chain. So at most k − 1 selector gadgets can be scheduled at
each of these times due to the 2k + 1 machines. Consequently there is i ∈ [1, k]
such that selector gadget s′i,λ(α0,l,0)+j0−ji

does not exist. And similarly there is
i′ ∈ [1, k] such that s′i′,λ(α0,l,0)+j0−ji′−v does not exist either.

• If ji ≥ j0 then s′i,λ(α0,l,0)+j0−ji
= s′i,λ(α0,l,γi)

. This selector gadget does
not exist, so either l = γi or (vl, vγi

) ∈ E.

• If ji < j0 then s′i′,λ(α0,l,0)+j0−ji′−v = s′i′,λ(α0,l,γi′ )
. This selector gadget

does not exist, so either l = γi′ or (vl, vγi′ ) ∈ E.

So in both cases we confirm that vertex vl is either part of {uγ1
, . . . , uγk

} or adja-
cent to one of these vertices. Therefore the proposed set is indeed a dominating
set of size k in graph G.

This concludes the reduction and the proof of Theorem 127. This confirms
that contrary to pathwidth µ a FPT algorithm with respect to proper level q
is unlikely on problem P |prec, pj = 1, rj , d̄j |?.
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6.5 Summary & Concluding Remarks
Parameter Section Problem / Setting Result

q

6.2
- q ≤ µ

P2|rj , d̄j |?
1|(1, `, 1), rj , d̄j |?

Inferred
para-NP -hardness results.

6.3 1|prec, rj , d̄j |Cmax
FPT in time

O(max(1, q2 · 4q) ·N + n2).

6.4 P |prec, pj = 1, rj , d̄j |?
para-NP -hard(q +D).
W [2]-hard(q + w).

Figure 6.6: Summary of the results obtained in this chapter.

In this chapter we introduced a new scheduling parameter called the proper
level q. It refined the count of overlapping time windows from pathwidth µ
to only situations where such overlaps simulated a PARTITION subproblem
and thus were believed to be truly problematic. As such we identified q as
a weaker parameter than pathwidth µ (in general) and slack σ (on a single
machine and on a fixed number of identical parallel machines). Nevertheless we
gave a FPT algorithm on single machine scheduling with job time windows and
precedence relations, which was a direct improvement of the FPT result with
respect to pathwidth µ given in Chapter 4. When upgrading to the identical
parallel setting we showed that, unlike with pathwidth µ, scheduling unit jobs
with time windows and general precedence is para-NP -hard with respect to q.

Unlike the single machine case, it is clear that the nature of the precedence
relations impacts the parameterized complexity of parallel machine scheduling
with unit jobs with respect to proper level q. While we showed hardness with
general precedence and Baptiste et al. solved the problem in polynomial time
for chains [BBKT04], the case of tree-like precedence is left open. Such a result
would definitely unveil deeper connections between precedence relations and job
time windows in the parallel machine setting.
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6.5.1 Problem Map with Parameter q

1|pj = 1, rj , d̄j |?

1|prec, pj = 1, rj , d̄j |?

1|pj = p, rj , d̄j |?

P2|prec, pj = 1, rj , d̄j |?

P |pj = 1, rj , d̄j |?

P |chains, pj = 1, rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?

1|rj , d̄j |? q

1|prec, rj , d̄j |? q

P |prec, pj = 1, rj , d̄j |? q

P2|rj , d̄j |? q
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O(n2 · log(n)) [Sim78]

strongly NP -hard
[LRKB77]

O(n3 · log(log(n)))
[Sim83]

O(n · log(n)) [Sim78]

O(n9) [BBKT04]

O(q2 ·4q ·n+n2)
[Section 6.3]

O(n3) [GJ77]

strongly NP -hard
[BGJ77]

para-NP -hard(q = 0)
[LRK78]

para-NP -hard
[Section 6.1]

para-NP -hard
[Section 6.1]

Figure 6.7: Problem map of parameter q.



Chapter 7

Miscellaneous
Parameterized Results

In this chapter we present several other parameterized results obtained during
this thesis and give input on their potential uses in scheduling problems with
job time windows. Section 7.1 gives a first insight on the existence of poly-
nomial kernels for the single machine scheduling problem with job time win-
dows. We first establish that a polynomial kernel is unlikely to be found with
pathwidth µ. In contrast we provide a polynomial kernel when the problem is
parameterized by the vertex cover of the time windows comparability graph.
Section 7.2 considers other width parameters based on job time window interval
graph G[rj ,dj), notably the twin-width tww. Although this parameter has led to
multiple FPT results on graph problems, here we present some negative results
on single machine scheduling and parallel machine scheduling with unit jobs.
Finally in Section 7.3 we introduce a notion of average parameter. Since most
of the considered parameters are a maximum value and can be made artificially
high from a single outlier, the associated average parameter is expected to re-
flect better the actual difficulty of the given instance. We investigate conditions
under which such average parameters can lead to FPT algorithms. We end
by summarizing the results obtained in this chapter and giving our concluding
remarks in Section 7.4.

7.1 Kernelization Algorithms
It is well known that whenever a problem Q is FPT with respect to some
parameter k, there is a corresponding kernelization algorithm with respect to k
[FG98]. Given a parameterized instance I of Q with parameter value k(I), a
kernelization is a polynomial-time algorithm which outputs an instance I ′ of Q
with parameter value k(I ′) such that I ′ is equivalent to I and the size of the
parameterized instance |I ′|+ k(I ′) is bounded by f(k(I)) for some computable
function f . Such an instance I ′ is called a kernel. The kernel is called polynomial

139



7.1. KERNELIZATION ALGORITHMS 140

if f is a polynomial function. There is a general way to infer a kernelization from
any FPT algorithm. However, having a kernelization which actively builds the
kernel from the input generally gives more information on the nature and shape
of the set of kernels in problem Q.

While such kernelizations have already been found for some scheduling prob-
lems [BJ22, JKZ24, KK22], they were done in the context of high-multiplicity
scheduling with the number of job types among the parameters. This avoids
dealing with an unbounded number of job types. Considering other structural
parameters, we need to reduce the instance size - i.e. both the number of jobs
and the data values - to a function of the parameter. To our knowledge, no such
kernelization algorithm has been produced in the literature.

In this section we consider the single machine scheduling problem with job
time windows and precedence constraints - denoted by 1|prec, rj , d̄j |?. We will
show that with pathwidth µ this problem is unlikely to have a polynomial kernel.
As a result we propose a new structural based on job time window interval graph
G[rj ,dj) for which this will be the case:

Definition 132. A vertex cover of a graph G = (V,E) is a subset of V which
covers all edges in E - i.e. given any edge in E at least one of its nodes is in
the vertex cover. Parameter vc is defined as the minimum size of any vertex
cover in G[rj ,dj).

Throughout this section we use the following example to illustrate our algo-
rithms. We consider a set of 23 jobs indexed in {1, . . . , 23}:

• For i ∈ {1, . . . , 20}, ri = 10 · (i−1) and d̄i = 10 · i. We have pi = 2 if i = 1
or i = 20 and pi = 5 otherwise.

• Jobs 21, 22, 23 have processing time 10, release times and deadlines r21 =
r22 = 0, d̄21 = d̄21 = 100, and r23 = 90, d̄23 = 200.

• We have a unique precedence constraint (22, 23).

Now in this example the graph G[rj ,dj) is composed of a triangle 21−22−23,
plus edges between 21, 22 and all jobs {1, . . . , 10}, and edges between 23 and all
jobs {10, . . . , 20}. Observe that jobs {1, . . . , 20} define an independent set. So
in our example we have vc = 3, corresponding to the vertex cover defined by
the three nodes {21, 22, 23}. Also note that the maximum clique size is 4 - and
thus µ = 3 - e.g. with jobs 21, 22, 23, 10, the time windows of which overlap at
time 90.

As with other common graph parameters like treewidth or pathwidth, it is
NP -complete to compute vc(G) for general graphs [GJ79]. However a vertex
cover of size vc(G) can be computed in linear time when restricted to interval
graphs (see e.g. [MRR92] by Marathe et al.), so parameter vc can be computed
in linear time. This opens up potential uses in FPT algorithms. Bessy and
Giroudeau considered this parameter in the context of coupled-task scheduling
with a compatibility graph Gc = (J , E) [BG19]. They showed that computing
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the minimum makespan is FPT parameterized by vc(Gc) plus the maximum
length of a coupled task.

Parameter vc is closely related to pathwidth µ as shown by the following
proposition:

Proposition 133. In any scheduling instance featuring job time windows we
have: µ ≤ vc

Proof. In an instance with pathwidth µ the job time window interval graph
admits a clique of size µ+ 1. This forces at µ jobs to be included in any vertex
cover of this graph.

This means that any problem FPT for parameter µ is also FPT for vc. We
can thus derive the following result from one of our previous works [HMMK22],
which provides two FPT algorithms for two problems parameterized by µ:

Corollary 134. 1|prec, rj , d̄j |Lmax and P |prec, pj = 1, rj , d̄j |Lmax are FPT
parameterized by vc.

This section is organized as follows. First we prove that under usual param-
eterized complexity assumptions, the problem cannot have a polynomial kernel
for parameter µ. In contrast in the second subsection we propose a first polyno-
mial kernel for parameters vc and the maximum processing time of a job pmax

combined. Then in the third subsection we provide an additional reduction rule
allowing for a second polynomial kernel with parameter vc only. Eventually in
the fourth subsection we prove that unlike the single machine case, the vertex
cover parameter is not sufficient to derive any FPT algorithm - and thus a
kernelization algorithm - in the case of parallel machines with processing set
restrictions (a setting notably mentioned by Leung in [LL08]).

7.1.1 A Kernel Lower Bound with Parameter µ

In this subsection we use the cross-composition technique developed in [BJK14]
to show that our single machine problem, although FPT parameterized by
pathwidth µ, does not admit a polynomial kernel under usual parameterized
complexity assumptions.

Theorem 135. Unless NP ⊆ coNP/poly there is no polynomial kernel for
1|rj , d̄j |? parameterized by pathwidth µ.

We consider here a special case of cross-composition where the equivalence
relation mentioned in the original definition of [BJK14] decides whether a string
is a valid instance of a decision problem or not.

Definition 136. Let Σ be an alphabet and let L ⊂ Σ∗ and C ⊂ Σ∗ with L ⊂ C
be two languages over Σ. Let Q ⊂ Σ∗×N be a parameterized problem. L cross-
composes into Q if there is an algorithm which, given t strings x1, x2, . . . , xt in
C computes an instance (x, k) ∈ Σ∗ × N in time polynomial in (Σt

i=1|xi|) such
that:
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1. deciding whether a given x ∈ Σ∗ is in C can be done in O(|x|O(1)),

2. (x, k) ∈ Q⇐⇒ xi ∈ L for some 1 ≤ i ≤ t,

3. k is bounded by a polynomial in max
1≤i≤t

|xi|+ log(t).

We consider here that L will be the set of feasible instances of the PAR-
TITION problem, whereas C will be the set of instances of the PARTITION
problem, which is defined as follows:

Definition 137. An instance of PARTITION is defined by a set A of n integers
a(1), . . . , a(n) and an integer B such that

∑n
i=1 a(i) = 2B. The instance is

feasible if there exists a subset X ⊂ A such that
∑

a(i)∈X a(i) = B.

Consider t instances of the PARTITION problem. We denote nk the number
of integers of the instance Ik, by ak(i) the ith integer of instance Ik, and by Bk

its threshold.
From these t instances we build an instance J (I1, . . . , It) of 1|ri, d̄i|? pa-

rameterized by µ - i.e. our single machine problem with an empty prece-
dence relation. We first set T = 2 · (max1≤i≤t Bi), and for all 1 ≤ k ≤ t:
Dk = (T+1)·k+2·(

∑k
i=1(Bi+1)). We notably have: Dk−Dk−1 = 2Bk+T+3.

We define a job u with processing time T and time window ru = 0, d̄u = Dt.
Then all jobs associated to instance Ik will have their time window between
Dk−1 and Dk. To each instance Ik are associated three unit-time fill jobs.
These jobs are delimiters for the other jobs schedule and must be performed at
their release date in any feasible schedule:

fk,1 fk,2 fk,3
ri Dk−1 +Bk Dk−1 + 2Bk + 1 Dk − 1
d̄i Dk−1 +Bk + 1 Dk−1 + 2Bk + 2 Dk

For each integer ak(i), a job of processing time ak(i), release time Dk−1

and deadline Dk−1 + 4Bk + 2 (= Dk − T − 1 + 2Bk). Figure 7.1 shows the
cross-composition for two instances.

Lemma 138. The instance J (I1, . . . , It) is a cross-composition.

Proof. The polynomiality of the construction is straightforward. Let us now
compute the value of the parameter µ. As each instance Ik has all its associated
jobs within the interval [Dk−1, Dk), which interferes with at most one fill job
and the job u at a given time, so that the pathwidth of the instance is µ =
1 + max

1≤k≤t
nk. As the size of Ik is a function of nk our parameter satisfies the

cross-composition condition.
We finally have to verify that the instance J (I1, . . . , It) is feasible if and

only if one of the PARTITION instance is feasible.
⇐= Assume that the PARTITION instance Ik is feasible. Let Xk be the

subset of values such that
∑

ak(i)∈Xk
ak(i) = Bk. We build a feasible schedule by

scheduling job u at time Dk −T − 1, the tasks of Xk in sequence in the interval
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D0 D1

. . .

. . .

D2

a1(i)

u

T = 2 ·B2

a2(i)

B1 B1 2 ·B1

B2 B2 2 ·B2 = T

Figure 7.1: Cross-composition from two instances I1, I2 of PARTITION.

[Dk−1, Dk−1 + Bk), and the other tasks ak(j) are performed in sequence in
interval [Dk−1 +Bk + 1, Dk−1 + 2Bk + 1). The jobs al(i) of the other instance
are all performed in any order in the interval [Dl−1 + 2Bl + 2, Dl−1 + 4Bl + 2).
Job u does not interfere with any other job, so the schedule is feasible.

=⇒ Let us observe that in any feasible schedule, there is a k such that job
u is performed at time Dk − 1 − T between fk,2 and fk,3. Indeed, the size of
the interval between two other fill jobs is always strictly less than T . Now the
other jobs ak(i) cannot be scheduled in interval [Dk − 1− T,Dk) that perform
u and a fill job. So they can only be executed before fk,1 or between fk,1 and
fk,2. If all jobs are executed this defines a partition of this instance: Xk is the
set of jobs performed before fk,1.

It is well known that the PARTITION problem is NP -hard [GJ79]. From
Theorem 9 of [BJK14], we immediately derive the following result:

Corollary 139. Unless NP ⊆ coNP/poly there is no polynomial kernel for
1|ri, d̄i|? parameterized by pathwidth µ.

7.1.2 A Polynomial Kernel with Parameter vc+ pmax

In this subsection we propose a polynomial kernel of 1|prec, rj , d̄j |? with respect
to parameters vc plus pmax = maxi∈J pi with size O(log(vc3 · pmax) · vc2).

Theorem 140. With respect to parameter vc + pmax problem 1|prec, rj , d̄j |?
has a polynomial kernel in time O(n2 · log(n)). The resulting kernel has size
O(log(vc3 · pmax) · vc2).

Let I be an instance of 1|prec, rj , d̄j |?. Let V = (vi)1≤i≤vc be a vertex
cover of G[rj ,dj) with minimum size vc. Let (uα)α be the increasing sequence
of release date/deadline values of the jobs from V. We denote vcα the number
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of jobs of vertex cover V such that [uα, uα+1) is included in their time window
: vcα = |{j ∈ V, rj ≤ uα and uα+1 ≤ d̄j}|

For our example, we get V = {21, 22, 23}, u0 = 0, u1 = 90, u2 = 100, u3 =
200, and vc0 = 2, vc1 = 3, vc2 = 1.

First note that the jobs outside the vertex cover have limited time window
possibilities :

Proposition 141. Given a vertex cover V of G[rj ,dj) the jobs in J −V form a
sequence (wj)1≤j≤|J−V| such that d̄wj ≤ rwj+1 for all 1 ≤ j < |J − V|.

Proof. By the definition of V all job pairs in J − V must have an empty time
window intersection. So we get sequence (wj)1≤j≤|J−V| by ordering the jobs in
J − V by increasing release dates.

Definition 142. Let wj , wj+1 be two consecutive jobs of J −V. In any schedule
of these two jobs we call gap the time interval [swj

+ pwj
, swj+1

). We call
delimiters of the gap the two jobs wj , wj+1. By extension we call gap gj the
tuple wj , wj+1. The maximum capacity of the gap is obtained by left shifting
wj and right shifting wj+1 and thus equals d̄wj+1 − pwj+1 − rwj − pwj . In some
interval [uα, uα+1) a gap gj is an inner gap if in any schedule it is included in
the interval [uα, uα+1), so if rwj

≥ uα and d̄wj+1
≤ uα+1. Other gaps are called

border gaps.

Proposition 141 implies that the existence of a feasible schedule relies on
the feasibility of inserting jobs of V into gaps defined by the sequence of jobs
of J − V. When placing ourselves in some interval [uα, uα+1) - i.e. where no
release date/deadline from the vertex cover is interfering - this is reminiscent
of the multiple knapsack problem [GRR19] except the gap capacities can be
adjusted from both ends with the schedule of their delimiters, and doing so
impacts the capacity of the neighboring gaps. As the number of knapsacks can
be bounded by the number of items in multiple knapsack, such analogy suggests
that only a bounded number of gaps is enough to keep the equivalence with the
original instance. We first prove that some gaps remain unused in dominant
schedules in each interval [uα, uα+1).

Lemma 143. If the instance I is feasible then there is a schedule where any
job i ∈ V with ri ≤ uα, d̄i ≥ uα+1 is scheduled either in a border gap or in one
of the 3vcα highest maximum capacity inner gaps of the interval [uα, uα+1).

Proof. If there are less than 3vcα inner gaps, the lemma is obvious. Assume
there are more than 3vcα inner gaps. The key idea of the proof is that if a
gap wj , wj+1 is at maximum capacity, this may reduce its two neighbors gaps
wj−1, wj and wj+1, wj+2 but does not impact the size of the farther gaps. So by
considering 3vcα gaps we can have vcα gaps among them at maximum capacity.

Let g1, . . . , g3·vcα be the 3·vcα inner gaps with the highest maximum capacity.
Let τ be a feasible schedule on instance I. Then in interval [uα, uα+1) at most
vcα gaps included in [uα, uα+1) are filled by jobs from vertex cover V. Let
g′1, . . . , g

′
k be these gaps (k ≤ vcα). We show that the jobs scheduled in these
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gaps can be scheduled in gaps g1, . . . , g3·vcα instead while keeping feasibility.
We do so by mapping each gap g′i to some gap gj with larger or equal maximum
capacity.

If a gap g′i is already one of the 3 · vcα gaps with the highest maximum
capacity then we assign it to itself. Then for all other gaps g′i we assign a
gap gj which is a neighbor of no other assigned gap gj′ . This allows us to
use gap gj at its maximum capacity, which is necessarily higher than or equal
to equal to the capacity used by schedule τ in gap g′i. Since each gap has at
most two neighbors, at any iteration of this process there can only be at most
3(k − 1) < 3 · vcα gaps g1, . . . , g3·vcα which are either already assigned or a
neighbor of an already assigned gap. So for each gap g′i used in schedule τ a
suitable gap gj can be found in time O(vcα). Plus prec-consistency ensures that
within every interval [uα, uα+1) there is no precedence relation between a job
from the vertex cover and an inner job from J − V. So the jobs in τ can move
to their assigned gaps without invalidating any precedence constraint. Thus
the schedules which only use the (at most) 3 · vcα inner gaps with the highest
maximum capacity in each interval [uα, uα+1) are dominant.

We now need to provide reduction rules that will reduce the set of jobs and
the values of release times and deadlines by keeping only useful gaps.

To this purpose, we first define a basic transformation of the instance, called
a Left Shift and Replace, that will be used in the next reduction rule.

Definition 144. Let I be an instance of our problem,wi, wi+1 and wj , wj+1 two
gaps with i+ 1 < j. We call Left Shift and Replace and denote LSR(I, i, j) the
following modified instance, illustrated by figure 7.2, in which the time interval
between d̄wi+1

and rwj
is reduced to a single time unit occupied by a substitute

job, by applying a negative offset to all release times and deadlines greater than
or equal to rwj

. Formally:

1. remove all jobs wk with i+ 1 < k < j,

2. add a new substitute job w′ with pw′ = 1, rw′ = d̄wi+1 and d̄w′ = rw′ + 1,

3. apply an offset of −(rwj
− d̄w′) to all release times and deadlines of jobs

wk with k ≥ j and jobs x ∈ V such that rx ≥ rwj
.

A Left Shift and Replace is said to be valid if: I is feasible ⇐⇒ LSR(I, i, j) is
feasible.

Observe that the gaps introduced by the substitute jobs w′ are gaps wi+1, w
′

and w′, wj . Notice that r′w = d̄wi+1
, so that the maximum capacity of the

gap wi+1, w
′ is less than the maximum capacity of the gap wi+1, wi+2 in the

original instance. Similarly, the maximum capacity of gap w′, wj is less than the
maximum capacity of wj−1, wj in the original instance, since the time window
of wj is left shifted in instance LSR(I, i, j) so that its release time equals the
deadline of w′. Lemma 145 states conditions for which LSR(I, i, j) is valid.
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Lemma 145. Let I be an instance such that there exists a feasible schedule for
which no job of V is scheduled in the gaps whose delimiters are in wi+1, . . . , wj

which are all inner gaps in an interval [uα, uα+1). Then LSR(I, i, j) is valid.

Proof. Let s be a feasible schedule of I with the property stated in the Lemma.
We can easily build a schedule s′ of LSR(I, i, j) by applying an offset −(rwj

−
d̄w′) to all starting times after rwj (i.e. s′(k) = s(k)− (rwj − d̄w′) if s(k) > rwj ).
Then, if s(k) ≤ rw′ , then s′(k) = s(k). The schedule is feasible. As we assumed
that the jobs of the vertex cover were not scheduled in the removed gaps, they
are scheduled in the gaps to the left or to the right of w′ in instance LSR(I, i, j).
These gaps have the same length after the offset.

Conversely if we have a feasible schedule s′ of LSR(I, i, j), then to build
a schedule s of the original instance we just apply an offset (rwj − d̄w′) to all
starting times ≥ d̄w′ . Then the removed jobs wi+2 to wj−1 are scheduled at
their release times in sequence. Indeed, the gaps wi+1, wi+2 has then the same
length as wi+1, w

′ in the modified instance, and the same argument hold for gap
wj−1, wj . As we assumed prec-consistent deadlines, if the time window of wk

is included in [uα, uα+1) there cannot be a precedence constraint between wk

and a job x of V with rx ≤ uα and d̄x ≥ uα+1. So no precedence constraint is
violated.

We can now define our first reduction rule.

Reduction Rule 1. For each α : if there are more than 3vcα inner gaps in
[uα, uα+1), select the 3vcα ones with highest maximum capacity. We denote S
the set of selected gaps to which we add the border gaps. While there are two
non consecutive gaps wi, wi+1, wj , wj+1 in S without a substitute job, update
the instance: I ← LSR(I, i, j).

Figure 7.2 shows the reduction process.

Applying the reduction to our example would give the following result. In
time interval [u2, u3) = [100, 200), vc2 = 1, and the three maximum capacity
inner gaps are (17, 18), (18, 19) with maximum capacity 10, and (19, 20) with
maximum capacity 13. The border gap is (10, 11) So, jobs 12 to 16 can be
removed and replaced by substitute job b with release date 110 and deadline 111.
The release times and deadlines of jobs 17, 18, 19, 20, 23 decrease by 160−111 =
49.

In time interval [u1, u2) no job can be removed, jobs 10, 11 are still in the
instance. In time interval [u0, u1) = [0, 90), vc0 = 2, we have 10 jobs in J − V,
delimiting 9 gaps fully in interval [0, 90). Gap (1, 2) has maximum capacity
13 (by left shifting job 1 and right shifting job 2) while the other gaps have
maximum capacity 10. So we can select only the 6 = 3 · vc0 first gaps, add the
border gap (9, 10) and remove job 8. Substitute job a replaces 8 with release
time 70 and deadline 71. Then release times and deadlines greater than 80
decrease by 80− 71 = 9. This leads to the following reduced instance:
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(. . .)

Gap gi Gap gj

Gap gi Gap gj

Vertex
cover V

J − V

Vertex
cover V

J − V

Figure 7.2: Job removal process between two consecutive non-neighboring cho-
sen gaps gi and gj .

i 1 2 3 4 5 6 7 a 9 10 11 b 17 18 19 20 21 22 23
pi 2 5 5 5 5 5 5 1 5 5 5 1 5 5 5 2 10 10 10
ri 0 10 20 30 40 50 60 70 71 81 91 101 102 112 122 132 0 0 81
d̄i 10 20 30 40 50 60 70 71 81 91 101 102 112 122 132 142 81 81 142

Lemma 146. In each interval [uα, uα+1) of a prec-consistent instance reduction
1 is a valid. After its application, the number of jobs wj from J − V can be
reduced down to O(vc2).
Proof. Lemma 143 establishes that if I is a feasible instance,there exists a sched-
ule such that no job of V is scheduled in a non selected gap. And Lemma 145
indicates that if there are two non consecutive selected gaps, then the Left Shift
and Replace rule is valid. So that iterating on α and on LSR reduction keeps
the equivalence between instances, so that reduction rule is valid.

Let us now count the number of jobs. The number of substitute jobs intro-
duced in interval [uα, uα+1) is at most 3vcα − 1, plus two delimiters of the left
and right non inner gap in the interval [uα, uα+1) By adding the two delimiters
of the at most 3 ·vcα gaps, we successfully bound the number of jobs from J −V
in each interval [uα, uα+1) by 9·vcα+1. As there are at most 2vc possible values
of α, the lemma holds.

Now the values of the release times and deadlines are still not related to our
parameters. We define reduction rule 2 that allows to further reduce release
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times and deadlines so that their values depend only on vc and pmax. Let I
be an instance of the problem, and let (vβ)β∈{1,...,y} be the sorted sequence of
release dates and deadlines of jobs in J . Notice that in each interval [vβ , vβ+1)
at most vc+1 jobs could be performed (the jobs of V and the only job wj (if any)
whose time window crosses this interval). We propose the following reduction
rule:

Reduction Rule 2. If vβ+1−vβ > (vc+1)·pmax, then set t = vβ+(vc+1)·pmax.
Apply an offset of −(vβ+1 − t) to all release times and deadlines ≥ vβ+1.

Figure 7.3 shows the reduction principle. Notice that it cannot be applied
to our example.

Lemma 147. Reduction rule 2 is valid.

Proof. If vβ+1 − vβ > (vc + 1) · pmax then if there is a feasible schedule, we
know that the load of interval [vβ , vβ+1) is at most (vc+1) ·pmax. As no release
time or deadline is strictly included in the interval we can assume that there is
a feasible schedule where the jobs are left shifted in this interval, so that the
interval [vβ +(vc+1) ·pmax, vβ+1) is empty. So, by left shifting every start time
release date and deadline above vβ+1 we build a feasible schedule of the new
instance. And conversely we just have to apply an offset of (vβ+1 − t) to all
dates above vβ+1 to get a feasible schedule of the original instance.

This gives a polynomial kernel with respect to parameter vc+ pmax.

Proposition 148. With respect to parameter vc+ pmax problem 1|prec, rj , d̄j |?
has a polynomial kernel in time O(n2 · log(n)). The resulting kernel has size
O(log(vc3 · pmax) · vc2) and O(vc2) jobs.

Proof. Consider the instance I ′ build from instance I after applying iteratively
all our reduction rules. To build I ′, we begin by ensuring that the instance
is prec-consistent in time O(n2). Then a vertex cover of minimum size vc
is computed in time O(|G[rj ,dj)|) = O(vc2) [MRR92]. After that the sequence
(uα)α of interval bounds is computed in time O(vc·log(vc)). Finally Lemma 146
can be applied to remove all butO(vc2) jobs from J−V. This gives an equivalent
instance Î with O(vc2) release times and deadlines. Now according to reduction
rule 2, after iterative application of the rule the distance between two consecutive
release dates or deadlines vβ is O(vc · pmax). So the maximum deadline of any
job is O(vc3 · pmax). Thus the encoding of each release dates/deadline in I ′ is
O(log(vc3 · pmax)).

7.1.3 A Polynomial Kernel with Parameter vc

In this subsection we give an additional reduction rule which allows us to reduce
the size of the kernel down to a polynomial in vc.

Theorem 149. Problem 1|prec, rj , d̄j |? has a polynomial kernel with respect to
parameter vc. The resulting kernel has size O(vc8).
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≤ (vc+ 1) · pmax

Vertex
cover V

J − V

Figure 7.3: Illustration of the bounds between the release dates and deadlines
of the jobs in J − V.

Note that in our previous kernel, pmax is only needed to bound the size of
the time values. This dependency can be lifted by using the following theorem:

Theorem 150. [FT87] Let w = (w1, . . . , wd) be a vector of rational numbers
and let N be a positive integer. Then in time O(d8 · (d+ log(N))) one can build
a vector w′ = (w′

1, . . . , w
′
d) of positive integers such that:

• w′
i ≤ 24d

3 ·Nd(d+2) for all 1 ≤ i ≤ d,

• The sign of w ·x equals the sign of w′ ·x for every x = (x1, . . . , xd) vector
of integers such that

∑n
i=1 |xi| ≤ N − 1.

Given an instance I of 1|prec, rj , d̄j |? and let κ(I) be the (vc + pmax)-
kernel obtained with Proposition 148. Let ñ be the number of its jobs. Then
the number of time values we want to compress is 3ñ, which is bounded by
O(vc2) by Proposition 148. So the idea is to formulate problem 1|prec, rj , d̄j |?
into an integer program such that the value N needed to express all the con-
straints is bounded by a function of vc. Then we will set d = 3ñ, w =
(p1, r1, d̄1, . . . , pñ, rñ, d̄ñ) and apply the theorem to get an equivalent instance
with time values w′ = (p′1, r

′
1, d̄

′
1, . . . , p

′
ñ, r

′
ñ, d̄

′
ñ) all bounded by a function of vc.

We consider the following integer program with positional variables:

xi,j =

{
1 if job j is the ith job in the schedule,
0 otherwise.

Linear program BIP (I) is defined as follows:
One job per position

∑n
j=1 xi,j = 1 for all 1 ≤ i ≤ n.

One position per job
∑n

i=1 xi,j = 1 for all 1 ≤ j ≤ n.

Time windows
∑n

j=1 rj · xi1,j +
∑i2

i=i1

∑n
j=1 pj · xi,j ≤

∑n
j=1 d̄j · xi2,j

for all 1 ≤ i1 ≤ i2 ≤ n.

Precedence constraint
∑i0

i=1(xi,j1 − xi,j2) ≥ 0 for all 1 ≤ i0 ≤ n, (j1, j2) ∈ A.

This binary program was proved equivalent to the associated scheduling
instance in [LQ92].
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Lemma 151. [LQ92] An instance I of 1|prec, rj , d̄j |? is feasible if and only if
binary integer program BIP (I) has a solution.

We now intend to meet the conditions of Theorem 150 by providing bounds
on the variables.

Lemma 152. In any solution of BIP (I) at most n + 2 variables are equal to
one in each constraint.

Proof. At most n variables equal one for the two first set of constraints (one job
per position and one position per job). Now, considering the time window con-
straint, it sums up with release time coefficient the variables of jobs in position
i1 (so only 1 variable equals one), similarly the third term of the sum considers
the deadlines of jobs in position i2, so only one of them equals one, whereas
the intermediate sum considers all positions between i1 and i2, so at most n
variables equal one. This gives our (n + 2) bound. Finally for the precedence
constraints, only two variables might be equal to 1 in the sum.

Then we get a kernel of size polynomial in vc by pairing Lemma 151 with
Theorem 150. This gives the following reduction rule:

Reduction Rule 3. Let I be an instance I and κ(I) be the instance obtained
after applying iteratively reductions 1 and 2. Let ñ be the number of jobs in
κ(I). Then we set vector w = (p1, r1, d̄1, . . . , pñ, rñ, d̄ñ) from the time values of
κ(I) and apply Theorem 150 with d = 3ñ and N = ñ+ 3.

Applying our three reduction rules leads to a polynomial kernel with respect
to vc.

Proposition 153. With respect to parameter vc problem 1|prec, rj , d̄j |? has a
polynomial kernel in time O(n2 · log(n) + (vc2)8 · (vc2 + log(vc2))) = O(n18).
The resulting kernel has size O(vc8) and O(vc2) jobs.

Proof. Let I be an instance of 1|prec, rj , d̄j |?. First we build the (vc + pmax)-
kernel κ(I) = 〈prec, pj , rj , d̄j〉 obtained in time O(vc ·n · log(n)) by Proposition
148. Let I ′ be the instance build from κ(I) by the reduction rule 3.

We know that the new coefficients are not greater than 24d
3 ·Nd(d+2). Sub-

stituting d by 3ñ and N by ñ + 3 yields vector w′ = (p′1, r
′
1, d̄

′
1, . . . , p

′
ñ, r

′
ñ, d̄

′
ñ)

with components not greater than 2O(ñ3). Since ñ = O(vc2), the size of each
encoded component is O(vc6). And since we have O(vc2) jobs in I ′ we get the
announced space bound for it.

Similarly the complexity O(d8 · (d + log(N))) yields complexity O((vc2)8 ·
(vc2 + log(vc2))). Use these values to define I ′ = 〈prec, p′j , r′j , d̄′j〉 instance of
1|prec, rj , d̄j |?. We show that κ(I) is feasible if and only if I ′ is feasible. Lemma
152 ensures that bound N = ñ + 3 of all the positive values of variables in
each inequality was enough to make integer programs BIP (κ(I)) and BIP (I ′)
equivalent according to Theorem 150. Plus by Lemma 151 we know that κ(I)
(resp. I ′) is feasible if and only if BIP (κ(I)) (resp. BIP (I ′)) has a solution.
So I ′ is indeed equivalent to κ(I), which is itself equivalent to I according to
Proposition 148.
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7.1.4 A Negative Result on Identical Parallel Processors
with Processing Set Restrictions

While we can have polynomial-size kernels on problem 1|prec, rj , d̄j |? with pa-
rameter vc, in this subsection we show that this becomes unlikely in the re-
stricted assignment setting for parallel processors.

Theorem 154. P |Mj , rj , d̄j |? is W [1]-hard parameterized by vc.

Proof. We reduce from k-INDEPENDENT SET. Let G = (V,E) be a graph
and k be a positive integer. k-INDEPENDENT SET is feasible if there exists a
subset or vertices S ⊆ V called independent set with |S| = k such that any two
nodes of S are not linked by an edge. Let n = |V | and V = v1, . . . , vn. We order
the edges (ej)0≤j<|E| from E arbitrarily. We define instance I of our scheduling
problem assuming n machines named 1, . . . , n and two types of jobs:

• k vertex selectors with processing time |E| and time window [0, |E|). They
can be processed in any of the n machines. They correspond to the k
vertices chosen as an independent set candidate.

• |E| edge check jobs, one per edge ej = {vi1 , vi2} in E. It has processing
time 1, time window [j, j + 1) and can only be processed in machines i1
and i2. It ensures that the corresponding edge does invalidate that the
chosen set of vertices is independent.

Notice that in the comparability graph of the time windows of this instance, the
vertex selectors define a complete subgraph, whereas the edge check jobs define
an independent set. Hence in this graph the minimal vertex cover is the set of
vertex selectors, so that parameter vc = k.

We show that G has an independent set of size k if and only if I is feasible.
Given an independent set S = {u1, . . . , uk} of G of size k we assign the k vertex
selectors to the corresponding machines. Since it is an independent set all edge
check jobs have at least one available machine to be scheduled at.

Now suppose we have a feasible schedule of I. Let i1, . . . , ik be the machines
at which the k vertex selectors were scheduled. We claim that {vi1 , . . . , vik} is
an independent set of G. By contradiction suppose there are two indices `, `′

and some edge ej such that ej = {vi` , vi`′}. Then the corresponding edge check
job would clash with either vertex selector and make the schedule invalid. This
leads to a contradiction, which confirms that (vi1 , . . . , vik) is an independent set
of G.

This shows that P |Mj , rj , d̄j |? is unlikely to be FPT parameterized by vc
and thus unlikely to have kernelizations with respect to vc. It is open whether
P |rj , d̄j |? is FPT parameterized by vc for any number of machines greater than
one. We are also looking for kernelization algorithms with other structural
parameters like pathwidth µ, slack σ and proper level q.
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7.2 Twin-Width tww and Other Width Parame-
ters

In this section we consider other width parameters on job time window interval
graph G[rj ,dj). Note that in interval graphs several parameters are equivalent
to the pathwidth:
Claim 155. [BM93] Let G be an interval graph. Then: pathwidth(G) =
treewidth(G) = maximum_clique_size(G)− 1 = chromatic_number(G)− 1.

In what follows we consider twin-width tww, proper thinness pthin and
clique-width cw. Twin-width is a newly introduced width parameter in graph
theory [BKTW21]. It is defined by means of contraction sequences. Given a
graph G = (V,E) edges can be either black or in red in a contraction sequence,
and they are all black initially. When contracting two nodes u and v into a
node z, we have an edge between z and every neighbor w of either u or v. Edge
{w, z} is black if w was a neighbor of both u and v and both {w, u} and {w, v}
were black. Otherwise this edge is red. The contraction sequence ends when
the graph is reduced down to a single node. Then twin-width is defined the
following way:
Definition 156. Given a graph G twin-width tww(G) is defined as the minimum
value d such that there exists a contraction sequence of G with red degree at most
d throughout the whole sequence.

Note that contracting two twins - i.e. two nodes with the same neighborhood
- does not create any extra red edge. This is the intuition behind the name twin-
width. For example in the complete graph Kn all pairs of nodes are twins. So
contracting any pair of nodes adds no red edges and gives complete graph Kn−1

as a result. This means that complete graph has twin-width 0.
Despite being bounded by most commonly studied width parameters like

pathwidth, treewidth or clique-width, FO model checking on graphs is FPT
parameterized by tww(G) - assuming that a corresponding contraction sequence
was previously computed [BKTW21]. Unfortunately computing twin-width and
a corresponding contraction sequence proves to be difficult in the first place.
Indeed Bergé et al. showed that it is NP -complete to decide whether a graph
G has twin-width at most 4 [BBD22].

It is worth noting that interval graphs can have unbounded twin-width while
proper interval graphs have twin-width at most 2 [BGK+24]. This suggests that
twin-width could help classify interval graphs in a similar way as proper level q.
In fact we show that both parameters are closely related in the context of job
time window interval graphs. In this work we define parameter tww as the twin-
width job time window interval graph G[rj ,dj). We show that tww is bounded
by a function of q. As an intermediate we use the notion of proper k-thinness:
Definition 157 (Proper thinness). [BdE19]

Let G = (V,E) be a graph. Let k be a positive integer. G is called (proper)
k-thin if there is an ordering v1, . . . , vn of V and a partition of V into k classes
V 1, . . . , V k such that for each triple (r, s, t) ∈ [1, n]3 with r < s < t:
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(i) (k-thin) if vr, vs belong to the same class and {vt, vr} ∈ E then {vt, vs} ∈ E
[MORC07],

(ii) (proper) if vs, vt belong to the same class and {vr, vt} ∈ E then
{vr, vs} ∈ E.

The proper thinness pthin(G) of a graph G is defined as the smallest integer k
such that G is proper k-thin.

Proper intervals graphs are proper 1-thin while the proper thinness of in-
terval graphs can be unbounded. (Proper) k-thin graphs were recently shown
to have twin-width at most 9k [BHJ24]. We show that q-proper graphs have
bounded proper thinness.

Result 158. q-proper graphs are proper (q + 1)-thin.

Proof. q-proper graphs are (q + 1)-nested interval graphs - i.e. there are no
chains of (q + 2) intervals nested in each other [KOŠ19]. Then by Proposition
11 in [BdE19] we conclude that q-proper graphs are proper (q + 1)-thin.

This infers that q-proper graphs have bounded twin-width.

Corollary 159. tww ≤ 9(q + 1).

Thus this would set both tww and pthin = pthin(G[rj ,dj)) as legitimate
weaker alternatives whenever a problem is FPT parameterized by q. Unfortu-
nately the following result suggests that both parameters are too weak to yield
fixed-parameter-tractable algorithms on our studied scheduling problems.

Result 160. 1|rj , d̄j |? and P |tree, pj = 1, rj , d̄j |? are para-NP -hard parame-
terized by tww, pthin and cw (with tww = 0, pthin = 1, cw = 2).

Proof. For 1|rj , d̄j |? a straightforward reduction from PARTITION yields a
complete graph as the job time window interval graph G[rj ,dj), which has twin-
width 0, proper thinness 1 and clique-width 2. For P |tree, pj = 1, rj , d̄j |? we
reduce from NP -hard problem P |intree, pj = 1, rj |Cmax < D [BGJ77] and set
d̄j = D for all jobs j. Then all job time windows overlap at time D − 1, so
G[rj ,dj) is also a complete graph.

A possible interpretation is given by Figure 7.4. While both proposed in-
stances have G[rj ,dj) be the complete graph, the left instance is easy to solve
while the right instance simulates a PARTITION problem. So a parameter
which only considers whether intervals overlap does not completely discrimi-
nate between easy and hard scheduling instances. For example pathwidth µ is
too pessimistic while twin-width tww is too optimistic. Like proper level q a
more accurate parameter based on G[rj ,dj) must look deeper into the nature of
interval overlaps.

Now it is worth noting that the twin-width of a directed acyclic graph is
at most linear in its width w and a corresponding contraction sequence can
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tww = 0, q = 0, µ = n tww = 0, q = n− 1, µ = n

Figure 7.4: Two instances of 1|rj , d̄j |? with the same twin-width tww and path-
width µ but different q-proper levels q.

be computed in time O(w · n2) [BH21]. So tww(prec) could considered as
a weaker parameter variant of w the width of precedence graph prec. One
could consider replacing w with tww(prec) in existing FPT results and see if
such problems remain FPT . While most results with parameter w alone are
already negative - P |prec, pj = 1|Cmax < D is XNLP -hard [BGNS22] while
P2|prec, pj ∈ {1, 2}|Cmax < D and P3|prec, pj = 1, sizej ∈ {1, 2}|Cmax < D
are W [2]-hard [vBBB+16] - RCPSP was shown to be FPT when w is combined
with λ the maximum allowed difference between the starting time of each job
and their earliest possible starting time according to precedence relations. So
one could consider whether RCPSP is FPT parameterized by tww(prec) + λ.

7.3 Average Parameters
In this section we introduce a notion of average parameters. All the mainly
studied parameters - `max, µ, σ, q - are defined as the maximum within a set
of values. While this is enough to get an upper bound on the complexity of
the associated algorithms, a single outlier value can increase the value of these
parameters dramatically while having little impact on the complexity of the
algorithms. In order to describe the difficulty of every instance more accurately,
we propose a joint parameter which takes into account the whole set of values
from which the parameter is computed.

Definition 161. Let I be an instance of a parameterized problem (P, k). Sup-
pose there is a subset NI of elements such that |NI | = poly(|I|), and a function
f : NI 7→ N0 such that k = maxj∈NI

f(j). Then we define:

kavg = log(
1

|NI |
∑
j∈NI

2f(j)).

For example consider the FPT algorithm of problem 1|prec, rj , d̄j |Cmax pa-
rameterized by q given in Section 6.3. We set NI as the set of summits in in-
stance I. Then |NI | ≤ n. And if function f returns the size of the corresponding
proper set then we have q = maxj∈NI

f(j). In the proposed dynamic program-
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ming algorithm the number of states is equal to 2+
∑

j∈NI
2f(j). While it can be

bounded by O(2q · |NI |) parameter qavg gives a better estimate Θ(2qavg · |NI |).
Note that, as expected, the average parameter is always smaller than the

original one. However choosing this notion of ”average parameter” guarantees
the following lower bound on kavg:

Lemma 162. k − log(|NI |) ≤ kavg ≤ k.

Proof. The lower bound is obtained by only keeping one j with maximum value
f(j) in the sum defining kavg. The upper bound is obtained by bounding all
elements in the sum by 2k.

This lower bound allows us to get FPT results with the average parameter
when a FPT algorithm has a single-exponential dependency on the original
parameter.

Proposition 163. If a problem P can be solved in time ak · poly(|I|) with
a ∈ R+∗ then P is FPT parameterized by kavg.

Proof. By Lemma 162: k − log(|NI |) ≤ kavg. So:

ak ≤ akavg+log(|NI |)

≤ akavg · |NI |log(a)

≤ akavg · poly(|I|).

Thus P can be solved in time [akavg · poly(|I|)] · poly(|I|) = akavg · poly(|I|).

In the side of theory it shows that problem P remains FPT with a slightly
smaller parameter. In practice given some real-world instance computing kavg
instead of k gives a better guess at whether the FPT algorithm can be effi-
cient. We propose examples of applications with three of the mainly studied
parameters in this work: slack σ, pathwidth µ and proper level q.

With slack σ we simply set NI as the set of jobs and function f mapping
every job j to value d̄j−rj−pj . Then we have |NI | = n and σ = maxj∈NI

f(j).
In [BdWH21] Baart et al. showed that 1|rj , sjk, reject, d̄j |

∑
j /∈R(wjTj−vj) can

be solved in time O(σ3 ·4σ ·n2). So Proposition 163 implies the following result:

Corollary 164. 1|rj , sjk, reject, d̄j |
∑

j /∈R(wjTj−vj) is FPT parameterized by
σavg.

With pathwidth µ we set NI as the set of intervals delimited by the non-
decreasing sequence of release date and deadline values. Then |NI | ≤ 2n. And
if function f gives the number of time windows intersecting each of these in-
tervals, we indeed have µ = maxj∈NI

f(j). Since Munier showed that problem
P |prec, pj = 1, rj , d̄j |Lmax has a FPT algorithm in time O(16µ · n4) [MK21],
Proposition 163 implies the following result:

Corollary 165. P |prec, pj = 1, rj , d̄j |Lmax is FPT parameterized by µavg.
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Finally with proper level q we set NI as the set of summits. Then |NI | ≤ n.
And if function f returns the size of the corresponding proper set then we do
have q = maxj∈NI

f(j). In [MHMK24a] we showed that 1|prec, rj |Lmax has a
FPT algorithm with a single-exponential dependency in q. So Proposition 163
implies the following result:

Corollary 166. 1|prec, rj |Lmax is FPT parameterized by qavg.
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7.4 Summary & Concluding Remarks
Parameter Section Problem / Setting Result

µ

7.1

1|rj , d̄j |? No polynomial kernel
(unless NP ⊆ coNP/poly).

vc
1|prec, rj , d̄j |?

Polynomial kernel with
both (vc+ pmax) and vc.

P |Mj , rj , d̄j |? W [1]-hard.
tww,

pthin, cw
7.2 1|rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?
para-NP -hard.

µavg,
σavg, qavg

7.3 - Several inferred FPT results.

Figure 7.5: Summary of the results obtained in this chapter.

In this chapter we presented the remaining results obtained in this thesis.
First we discussed kernelization algorithms and showed that even on a single
machine a polynomial kernel is unlikely with pathwidth µ as a parameter. In re-
sponse we introduced a stronger parameter called the vertex cover vc, for which
we give a polynomial kernel. Next we considered other structural parameters
based on interval graph G[rj ,dj). We argued that most of them are not best
suited to deal with scheduling problems featuring job time windows. Finally we
introduced a notion of average parameter which can preserve FPT results with
a single-exponential time dependency on the original parameter.

Further research would primarily look for new kernelization algorithms with
other structural parameters like pathwidth µ or proper level q. The main chal-
lenge remains to find suitable reduction rules which would allow us to delete
a significant number of jobs from the original scheduling instance. Despite the
recent progress with vertex cover vc, we expect the wanted reduction rules to
be more intricate and lead to kernels of exponential size at best. Still pursuing
new parameter ideas based on interval graph G[rj ,dj) could certainly foster this
search for reduction rules. Such parameters would take inspiration from proper
level q and use information beyond the base graph structure in their definition.





Chapter 8

Conclusion

8.1 Summary of our Results
In this work we explored the parameterized complexity of RCPSP and its sub-
problems enhanced with job time windows and/or precedence delays. We sum-
marize the obtained results in Figure 8.1.

In Chapter 3 we considered bounding the values of the precedence delays
which can be set on the edges of the precedence graph given in the input. This
corresponds to parameter `max, with which we proved a number of (mainly
negative) results. We started with the exact and maximum delay types on
single machine scheduling with chains of unit jobs. In the presence of job time
windows we showed that the problem was para-NP -hard with either delay type,
even with a single delay value. Without time windows we noted that the problem
was still W [1]-hard with exact delays while it could be solved in linear time with
arbitrary maximum delays.

Next with minimum delays we gave several more negative results. On single
machine scheduling with unit jobs and general precedence we proved XNLP -
hardness with respect to `max and precedence graph width w combined. Then
we showed that the problem was still W [2]-hard with chains of precedence if
extra delays of length zero were allowed. With parameter `max alone this was
strengthened to para-NP -hardness on parallel machines with job time windows.
This last result was part of our IPEC 2022 publication [MHMK22a]. In short
our results show that bounding the maximum delay value `max is not enough to
obtain FPT algorithms on most scheduling subproblems of RCPSP enhanced
with precedence delays.

In Chapter 4 we examined pathwidth µ which had been a successful pa-
rameter in the recent literature. We confirmed this by finding a new FPT
algorithm on single machine scheduling with job time windows and precedence
constraints. This result was presented at MAPSP 2022 [HMMK22]. However
when precedence delays were added, the problem became para-NP -hard no
matter the delay type even with unit jobs and chains of precedence. This was

159
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Parameter Sect. Problem / Setting Result

`max

3.2

1|chains(`), pj = 1, rj , d̄j |?
para-NP -hard with exact

or maximum delays.
1|chains(`), pj = 1|Cmax < D W [1]-hard with exact delays.

1|chains(`i,j), pj = 1|Cmax < D O(n) with maximum delays.

1|chains(0, `), pj = 1, rj |Cmax < D
1|chains(0, `), pj = 1, d̄j |?

NP -hard with maximum
delays.

3.3

1|prec(`), pj = 1|Cmax < D
XNLP -hard(`max + w)
with minimum delays.

1|chains(0, `), pj = 1|Cmax < D
W [2]-hard(`max+#chains)

with minimum delays.

P |chains(0, `), pj = 1, rj , dj |?
para-NP -hard(` = 1)
with minimum delays.

µ

4.2 1|prec, rj , d̄j |Cmax
FPT in time

O(µ2 · 4µ · n+ n2).

4.3 1|chains(`ij), pj = 1, rj , d̄j |?
para-NP -hard for all three

delay types.
µ+ `max 4.4 P |prec(`i,j), pj = 1, rj , d̄j |? FPT with minimum delays.

σ

5.2
Single machine µ ≤ 2σ

Pm µ ≤ 2(σ + 1) ·m− 1

- Several inferred FPT results.

5.3 1|(1, `, 1), rj , d̄j |?
para-NP -hard for all three

delay types.

σ + `max 5.4 1|prec(`i,j), rj , d̄j |?
FPT with all three delay

types combined.

q

6.2
- q ≤ µ

P2|rj , d̄j |?
1|(1, `, 1), rj , d̄j |?

Inferred
para-NP -hardness results.

6.3 1|prec, rj , d̄j |Cmax
FPT in time

O(max(1, q2 · 4q) ·N + n2).

6.4 P |prec, pj = 1, rj , d̄j |?
para-NP -hard(q +D).
W [2]-hard(q + w).

µ

7.1

1|rj , d̄j |? No polynomial kernel
(unless NP ⊆ coNP/poly).

vc
1|prec, rj , d̄j |?

Polynomial kernel with
both (vc+ pmax) and vc.

P |Mj , rj , d̄j |? W [1]-hard.
tww,

pthin, cw
7.2 1|rj , d̄j |?

P |tree, pj = 1, rj , d̄j |?
para-NP -hard.

µavg,
σavg, qavg

7.3 - Several inferred FPT results.

Figure 8.1: Summary of the results obtained in this thesis.
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first presented at ROADEF 2022 and it established that pathwidth µ alone
as a parameter was not suited to deal with precedence delays. However when
combined with maximum delay value `max we proposed a FPT algorithm on
parallel machines with general precedence - as long as we have unit processing
times. Both the negative result and the FPT algorithm were included in our
IPEC 2022 publication [MHMK22a]. This motivated the integration of job time
windows to problems featuring precedence delays in order to broaden available
parameter choices.

Chapter 5 was dedicated to slack σ, another parameter based on job time
windows. On a single machine or a fixed number of identical parallel processors
we showed that σ was stronger than pathwidth µ. This inferred several FPT
results with respect to σ from the recent advances made with pathwidth µ. In
the rest of the chapter we focused on single machine scheduling with both time
windows and precedence delays. We drew similar conclusions to pathwidth µ.
With slack σ alone we showed that single machine scheduling was para-NP -hard
for all three precedence delay types even when restricted to coupled unit tasks
with the same intermediate delay value. Then when combined with `max the
problem became FPT even with general precedence and arbitrary processing
times - whereas this is open with respect to parameter µ+ `max. The contents
of this chapter are intended to be submitted to Discrete Applied Mathematics
in the near future.

In Chapter 6 we proposed a new parameter based on job time windows. We
called it the proper level q and we showed that it was weaker than pathwidth µ.
This implied that most of our studied problems were para-NP -hard with respect
to q. Nevertheless we managed to obtain a FPT algorithm on single machine
scheduling with job time windows and precedence constraints. This led to our
publication in ISCO 2024 [MHMK24a]. We closed this chapter with a couple
additional negative results with respect to q on parallel machine scheduling with
unit jobs - a problem known to be FPT with respect to µ [MK21].

Finally in Chapter 7 we presented several other parameterized results ob-
tained during this thesis. We began by discussing the possibility of kernelization
algorithms for scheduling problems with job time windows. We showed that a
polynomial kernel with respect to pathwidth µ was unlikely to exist even on the
single machine case. In response we proposed vertex cover vc, a stronger pa-
rameter with which we managed to secure a polynomial kernel - combined with
maximum processing time pmax to begin with, then alone. When upgrading
to identical parallel machines subject to the restricted assignment setting we
showed that the problem became W [1]-hard parameterized by vc. This made it
unlikely to find any kernelization algorithm on this problem with respect to vc.
These kernel results are subject to a submission to IPEC 2024.

Next we considered other notorious structural parameters in graph theory
like treewidth or twin-width and gave input on their potential uses in scheduling
problems with job time windows. We argued that most of the parameters defined
on our time window interval graph failed to distinguish between easy and hard
scheduling instances. As a consequence they were either too ’optimistic’ like the
twin-width or too pessimistic like pathwidth µ. Lastly we proposed a notion
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of average parameter which could capture better the effective time and space
complexity of many existing FPT algorithms. We showed that when the time
complexity of such an algorithm only had a single-exponential dependency on
a given parameter, the FPT result could be transferred to our corresponding
average parameter.

8.2 Further Work
In this final section we give several ideas to utilize and extend the work done in
this thesis.

First one can take inspiration from the MIMO framework developed by Knop
et al. in the high-multiplicity setting [KKL+19] and set more metatheorems for
scheduling problems. For each parameter the goal would be to characterize
which job properties are pivotal in getting a FPT result. Recall that any
scheduling problem expressible in the MIMO framework has a FPT algorithm
with respect to the number of job types d either combined with the number of
machines m or the maximum processing times m. Coincidentally with respect
to pathwidth µ we have a FPT algorithm either on a single machine with
arbitrary processing times or on multiple machines with unit jobs. In contrast it
is believed that adding precedence constraints and renewable resources with non-
unit amount requirements has no impact on any FPT result involving parameter
µ. As such we conjecture that RCPSP with job time windows and unit jobs is
FPT parameterized by µ.

In the long run the best case scenario would be to find an analogue to Cour-
celle’s theorem on scheduling problems, for example with respect to pathwidth µ
on problems featuring job time windows. This could prove tricky, knowing that
scheduling problems can be notoriously heterogeneous in their featured machine
environment and job properties. Indeed this prevents us from reusing a lot of
the work done in parameterized graph theory in a straightforward way, notably
when attempting to define a suitable logic in which scheduling problems can be
expressed.

Another theoretical matter concerns kernelization algorithms on scheduling
problems with structural parameters, as we did with vertex cover vc in Chapter
7. For instance numerous FPT algorithms were found with pathwidth µ, slack
σ and proper level q in the last five years, whereas to our knowledge no kerneliza-
tion algorithm has been designed with respect to any of these parameters. The
main challenge remains to find suitable reduction rules which would allow us to
delete a significant number of jobs from the original scheduling instance. Even
though our recent progress with vertex cover vc is encouraging, we expect the
wanted reduction rules to be more intricate and lead to kernels of exponential
size at best.

On another note we observe that the parameterized results in scheduling
have been mostly theoretical. While the first objective is to identify the FPT
problems without much attention on the time complexity, some of the proposed
algorithms already have a chance to compete with the state of the art. In
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this thesis our FPT algorithms with respect to pathwidth µ or proper level q
could be considered right away in some settings, as they have a rather low time
dependency on both the input size and the parameter - respectively quadratic
and single-exponential. In the literature Tarhan et al. showed that an existing
branch-and-bound method could be adapted to a FPT algorithm with respect
to parameter µ+pmax on parallel-machine scheduling with precedence relations
and job time windows [TCH+23]. They then initiated some computational
experiments on random instances. One catch is that the values of parameters µ
and q tend to be high on general instances. For example with job time windows
drawn uniformly both parameters have an expected value at least proportional
to the input size, which is less than ideal in a parameterized setting. Nevertheless
one can identify specific settings in which our parameters could perform well.
For instance pathwidth µ often has a low value when the time window lengths
are small compared to makespan threshold D, while proper level q is small
typically when all time windows have nearly the same length.

Similarly we note that parameterized studies on scheduling problems have
aimed at exact resolution significantly more often than approximations. In
the case where FPT algorithms are either unlikely, difficult to find or simply
too time consuming, such parameterized approximations would provide a com-
promise between optimality and performance. For instance while Baart found
a FPT algorithm with respect to slack σ on a single machine problem with
sequence-dependent setup times and rejection, they also proposed a parame-
terized FPTAS with respect to weaker parameter µ [BdWH21]. This area of
research is largely open on scheduling problems and looks promising.

Lastly with the recent rapid development of parameterized complexity in
scheduling, it has become increasingly difficult to stay up to date and track all
progress in the field. As such, newcomers would greatly benefit from a publicly
available archive gathering all parameterized complexity results in scheduling.
With this goal in mind, we plan to contribute to the Scheduling Zoo [BKD10]
in the near future. The project consists of a searchable bibliography in the
area of scheduling problems. It is publicly available via a webpage hosted by
LIP6. It notoriously features reduction rules, which defines a partial order on
the problems and makes it able to find results for generalizations or particular
cases. Right now the Scheduling Zoo only features a limited number of isolated
parameterized results. We intend to update the bibliography with all recent
parameterized complexity results. In collaboration with C. Dürr we also plan to
update the reduction rule system in order to make it capable of inferring results
from parameterized problems defined on different parameters.
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Extra

A.1 Associated Publications
In this section we list the publications produced as part of this thesis.

International Conferences with Program committees and
Proceedings

• [MHMK24a] ISCO 2024
– Presented in Tenerife, Canary Islands, Spain in May 2024.
– Title: A new structural parameter on single machine scheduling with

release dates and deadlines
– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Section 6.3.
• [MHMK22a] IPEC 2022

– Presented in Potsdam, Germany in September 2022.
– Title: Parameterized complexity of a parallel machine scheduling

problem
– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Subsection 3.3.3 and Section 4.4.

Other International Conferences
• [HMMK22] MAPSP 2022

– Presented in Oropa (Biella), Italy in June 2022.
– Title: Parameterized complexity of a single machine scheduling prob-

lem with precedence, release dates and deadlines
– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Section 4.2.

165

https://link.springer.com/chapter/10.1007/978-3-031-60924-4_16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.21
https://mapsp2022.polito.it/Proceedings.pdf#page=131
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National Conferences
• [MHMK24b] ROADEF 2024

– Presented in Amiens, France in March 2024.
– Title: Parameterized complexity: a two-dimensional approach to

study scheduling problems
– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

• [Mal22] ROADEF 2022
– Presented in Lyon, France in February 2022.
– Title: Parameterized complexity of a single machine scheduling prob-

lem

– These results correspond to Section 4.3.

Pending Submissions
• INFORMS Journal on Computing Reviewing in progress

– Title: Kernelization algorithms on single machine scheduling with
time windows

– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Section 7.1.

In Preparation
• Discrete Applied Mathematics Writing in progress

– Title: Scheduling with precedence constraints, time windows and
bounded proper level

– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Chapter 6.
• Theoretical Computer Science Writing in progress

– Title: Parameterized analysis of single machine scheduling with time
windows and precedence delays

– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Section 5.3.
• Journal of Combinatorial Optimization Writing in progress

– Title: Single machine scheduling with precedence delays, time win-
dows and bounded maximum delay

– Co-authors: Claire Hanen, Alix Munier-Kordon (LIP6)

– These results correspond to Subsection 3.3.1, Subsection 3.3.2 and
Section 5.4.

https://roadef2024.sciencesconf.org/511128/document
https://roadef2022.sciencesconf.org/378987
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A.2 Notations and Definitions
In this section we give a non-exhaustive list of the notations used throughout
this work. We also give concise definitions of the complexity classes and the
parameters mentioned in this thesis.

A.2.1 Scheduling
General

P Generic notation for the currently studied scheduling problem.
I Generic notation for the currently studied scheduling instance.
J Generic notation for the set of jobs in the current instance.
τ Generic notation for a schedule τ : J 7→ N0.
n Generic notation for the number of jobs.
m Generic notation for the number of machines.
pj Processing time of job j.
Cj Completion time of job j in a given schedule τ . Denoted by

C
(τ)
j if schedule τ must be specified.

Formula: τ(j) + pj .
Uj Throughput associated to job j. Uj = 1 if j is completed by its

due date (i.e. Cj ≤ dj), otherwise Uj = 0. Denoted by U
(τ)
j if

schedule τ must be specified.
Setting: due dates dj .

Tj Tardiness of job j. Denoted by T
(τ)
j if schedule τ must be spec-

ified.
Setting: due dates dj .
Formula: max(0, Cj − dj).

Fj Flow time of job j (i.e. the difference between its completion
time and its release date). Denoted by F

(τ)
j if schedule τ must

be specified.
Setting: release dates rj .
Formula: (Cj − rj).

G[rj ,dj) Interval graph of the job time windows. The vertices are the in-
tervals and there is an edge between two intervals if they overlap.
Setting: job time windows [rj , d̄j).

active Property of a schedule τ . Jobs are scheduled without any un-
necessary downtime anywhere (i.e. as early as possible).



A.2. NOTATIONS AND DEFINITIONS 168

Scheduling problems are denoted as an extended version of the three field
notation α|β|γ proposed by Graham et al. in [GLLK79]. Field α gives the
machine environment, field β describes the job properties and field γ is the
objective function to be minimized among valid schedules.

Field α: Machine Environment

1 Single machine.
P Identical parallel machines.
Pm Identical parallel machines with a fixed number of machines.
P̄ Identical parallel machines with an unlimited number of ma-

chines.
Q Uniform parallel machines. Each machine i has a speed value

si. Job j is processed by machine i in time pj

si
.

R Unrelated parallel machines. Jobs can have machine dependent
processing times. p

(i)
j denotes the processing time of job j on

machine i.

Field β: Job Properties

Mj Restricted assignment setting. This corresponds to a parallel
machine setting where each job j is assigned a set Mj of
machines on which it is allowed to be scheduled.
Setting: machine environment P , Q or R.

prec General precedence graph on the set of jobs. If (i, j) ∈ prec
then job j cannot start before job i is completed.

chains The precedence graph is a collection of disjoint chains.
intree The precedence graph is a tree with maximum outdegree 1.
outtree The precedence graph is a tree with maximum indegree 1.
tree The precedence graph is either an intree or an outtree.
opposing forest The precedence graph is a collection of intrees and outtrees.
prec(`i,j) General precedence graph with a delay value on each rela-

tion. If i ≥`i,j−−−→ j (resp. i
=`i,j−−−→ j, i ≤`i,j−−−→ j) then job j must

start at least (resp. exactly, at most) `i,j time units after job
i is completed.

prec(`) All precedence delays in prec have the same value ` ∈ N.
prec(0, `) All precedence delays in prec have value either 0 or `.
(aj , `j , bj) Coupled task scheduling. Jobs are grouped into pairs. In the

jth coupled task the first (resp. second) job has processing
time aj (resp. bj) and there is a precedence delay `j between
both jobs.
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(aj , `, bj) All coupled tasks have the same precedence delay value `.
(a, `, b) All coupled tasks have identical precedence delay value ` and

task processing times a, b.
(p, `, p) All coupled task delays have value ` and all tasks have pro-

cessing time p.
(1, `j , 1) Coupled task scheduling with unit-time jobs.
Gc Comparability graph. The nodes are the coupled tasks of

the instance. There is an edge between two coupled tasks if
they are allowed to interleave each other.
Setting: Coupled task scheduling.

HM(m,n) High-multiplicity setting. Instead of describing the proper-
ties of the n jobs (resp. m machines) individually in the
input, d job types (resp. κ machine types) are characterized
and the number of elements associated to each type is given.

HM(m) High-multiplicity setting but only on the set of machines.
HM(n) High-multiplicity setting but only on the set of jobs.
pmtn Jobs can be interrupted and resumed at a later date.
pj = 1 All jobs have a unit-time processing time.
pj = p All jobs have the same processing time p ∈ N.
pj ∈ {p, q} All jobs have processing time either p or q.
p
(i)
j ∈ {pj ,∞} Alternative notation of restricted assignment setting Mj .

rj Release date. Job j only becomes available at this date.
dj Due date.

Setting: due date dependent objectives like Lmax and
∑

Tj .
d̄j Deadline. Job j must be completed by this date.
rC Chain release date. The first job of the chain only becomes

available at this date.
Setting: chains

d̄C Chain deadline. The last job of the chain must be completed
by this date.
Setting: chains

sizej Job size. Job j requires sizej machines/resource amount to
be processed.
Setting: machine environment P or a problem with a renew-
able resource like RCPSP restricted to a single resource.

cij Communication delay. If (i, j) ∈ prec and i, j are scheduled
on different machines, then job j must start at least cij time
units after job i is completed.
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si,j Sequence-dependent setup time. If job j is scheduled right
after job i on some machine, then j can only be started at
least si,j time units after i is completed.

reject Jobs can be rejected - i.e. removed from the schedule - usu-
ally with some penalty on the objective.

Field γ: Objective Function

? Decision problem.
Cmax Makespan (i.e. the maximum completion time).

Formula: minτvalid schedule [maxj∈JC
(τ)
j ].

Cmax < D Decision problem associated to the makespan. Its threshold D
is given in the input.

Cmin Minimum completion time.
Formula: maxτvalid schedule [minj∈JC

(τ)
j ].

Cenvy Envy (i.e. the difference between the maximum and minimum
completion times).
Formula: minτvalid schedule [(maxj∈JC

(τ)
j )− (minj∈JC

(τ)
j )].

Lmax Maximum lateness.
Setting: due dates dj .
Formula: minτvalid schedule [maxj∈J (C

(τ)
j − dj)].∑

Uj Throughput (i.e. the number of jobs on time).
Setting: due dates dj .
Formula: maxτvalid schedule [

∑
j∈J U

(τ)
j ].∑

Cj Total completion time.
Formula: minτvalid schedule [

∑
j∈J C

(τ)
j ].∑

wjCj Weighted total completion time.
Formula: minτvalid schedule [

∑
j∈J (wjC

(τ)
j )].∑

wjTj Weighted total tardiness.
Setting: due dates dj .
Formula: minτvalid schedule [

∑
j∈J (wjT

(τ)
j )].∑

wjFj Weighted total flow time.
Setting: release dates rj .
Formula: minτvalid schedule [

∑
j∈J (wjF

(τ)
j )].

`2 `2-norm of the load vector. The load Li of machine i is the total
amount of time this machine spends processing jobs.
Setting: machine environment P , Q or R.
Formula: minτvalid schedule

√∑
i machine(L

(τ)
i )2.
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`Cp `p-norm of the completion time vector (p ∈ N).
Formula: minτvalid schedule [(

∑
j∈J (C

(τ)
j )p)

1
p ].

A.2.2 Parameterized Complexity
poly(|I|) Some polynomial in the instance size.
FPT Parameterized complexity class which stands for fixed-parameter

tractable. A problem is FPT parameterized by k if it can be
solved deterministically in time f(k) · poly(|I|) for some com-
putable function f .

FPT (k) Shorthand notation to say that a problem is fixed-parameter
tractable parameterized by k.

XP Parameterized complexity class. A problem is XP parameter-
ized by k if it can be solved deterministically in time f(k)·|I|g(k)
for some computable functions f, g.

XP (k) Shorthand notation to say that a problem is XP parameterized
by k.

para-NP Parameterized complexity class. A problem is para-NP param-
eterized by k if it can be solved nondeterministically in time
f(k) · poly(|I|) for some computable function f . A problem is
para-NP -hard with respect to k if and only if it is NP -hard for
some fixed value of k. If so, then unless P = NP this problem
is not FPT parameterized by k.

para-NP -
hard(k = a)

Shorthand notation to say that a problem is NP -hard when k
is fixed with a value a.

W [t] tth level of the W-hierarchy (t ∈ N). See Section 2.2.
W [t]-hard(k) Shorthand notation to say that a problem is W [t]-hard param-

eterized by k.
XNLP Parameterized complexity class. A problem is XNLP param-

eterized by k if it can be solved nondeterministically in time
f(k) · poly(|I|) and space g(k) · log(|I|) for some computable
functions f, g.

A.2.3 Parameters
m Number of machines.

Setting: machine environment P , Q or R.
D Makespan threshold. It can also be interpreted as a global dead-

line on the instance.
pmax Maximum processing time.
`max Maximum precedence delay value.
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smax Maximum machine speed.
Setting: machine environment Q.

smax/smin Ratio between the maximum and minimum machine speeds.
Setting: machine environment Q.

wmax Maximum job weight.
Setting: Any weighted objective function like

∑
wjCj .

#pj Number of distinct processing times.
#rj Number of distinct release dates.
#d̄j Number of distinct deadlines.
#dj Number of distinct due dates.
#`i,j Number of distinct precedence delay values.
#wj Number of distinct job weights.

Setting: Any weighted objective function like
∑

wjCj .
#rejected Number of rejected jobs.

Setting: reject

#selected Number of selected jobs.
Setting: reject

d Number of job types.
κ Number of machine types.
ρ Rank of the matrix (p

(i)
j )i,j defined by the processing time values

on unrelated parallel machines.
Setting: machine environment R.

w Width of precedence graph prec (i.e. the maximum size of any
antichain in prec).
Setting: prec
Formula: maxS⊆A|S|
where A = {S ⊆ J |∀i, j ∈ S, (i, j) /∈ prec}.

λ Allowed lag (i.e. the maximum difference between the starting
time of a job and its earliest possible starting time according to
precedence constraints. The latter is obtained with the length
of the longest path in prec ending with the job.)
Setting: prec

th Thickness (i.e. the maximum number of chain time windows
which can include a time unit).
Setting: chains, chain release dates rC and chain deadlines d̄C .
Formula: max0≤t≤D|{C chain in prec, rC ≤ t < d̄C}|.
where D = maxC chain in prec(d̄C).
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µ Pathwidth of interval graph G[rj ,dj) (i.e. the maximum number
of overlapping job time windows).
Setting: release dates rj and deadlines d̄j .
Formula: max0≤t≤D|{j ∈ J , rj ≤ t < d̄j}|.
where D = maxj∈J (d̄j).

σ Slack (i.e. the maximum difference between the time window
length of a job and its processing time).
Setting: release dates rj and deadlines d̄j .
Formula: maxj∈J (d̄j − rj − pj).

q Proper level of interval graph G[rj ,dj) (i.e. the maximum number
of job time windows which can strictly include a time window
on both ends).
Setting: release dates rj and deadlines d̄j .
Formula: maxj∈J |{i ∈ J , (ri < rj) ∧ (d̄j < d̄i)}|.

vc Minimum size of any vertex cover in interval graph G[rj ,dj). See
Section 7.1.
Setting: release dates rj and deadlines d̄j .

tww Twin-width of interval graph G[rj ,dj). See Section 7.2.
Setting: release dates rj and deadlines d̄j .

pthin Proper thinness of interval graph G[rj ,dj). See Section 7.2.
Setting: release dates rj and deadlines d̄j .

cw Clique-width of interval graph G[rj ,dj). See Section 7.2.
Setting: release dates rj and deadlines d̄j .

µavg Average parameter associated to pathwidth µ. See Section 7.3.
σavg Average parameter associated to slack σ. See Section 7.3.
qavg Average parameter associated to proper level q. See Section 7.3.

A.2.4 Non-Scheduling Problems Mentioned
Classical Problems

3-COLORING
Input: A graph G = (V,E).
Question: Is there a valid 3-coloring of G?

I.e. can you color the nodes in V with three colors so that
no two adjacent vertices are of the same color?

DIRECTED BANDWIDTH
Input: A directed acyclic graph G = (V,E), a positive integer b.
Question: Is the directed bandwidth of G at most b?

I.e. is there an injection f : V 7→ N such that for every edge
(u, v) ∈ E we have f(u) < f(v) and f(v)− f(u) ≤ b?
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PARTITION
Input: A positive integer T , 2n positive integers aj which sum up to

2T .
Question: Is there a partition in two parts of n integers such that every

part sums up to T?

3-PARTITION
Input: Two positive integers B and T , 3B positive integers aj such

that T
4 < aj <

T
2 and which sum up to BT .

Question: Is there a partition in B parts of 3 integers such that every
part sums up to T?

CUTTING STOCK
Input: d item types of sizes s = (s1, . . . , sd) ∈ Nd and multiplicities

n = (n1, . . . , nk) ∈ Nd,
κ bin types of capacities a = (a1, . . . , aκ) ∈ Nκ and costs
c = (c1, . . . , cκ) ∈ Nκ.

Question: A vector x = (x1, . . . , xκ) ∈ Nκ of how many bins to buy of
each size, and a packing of items to those bins, such that the
total cost c · x is minimized.

Parameterized Problems
k-BIN PACKING
Input: A positive integer T , n positive integers aj , a positive inte-

ger k.
Parameter: k
Question: Can the n integers aj be put into at most k bins of capacity

T?

k-COLORING
Input: A graph G = (V,E), a positive integer k.
Parameter: k
Question: Is there a valid k-coloring of G?

I.e. can you color the nodes in V with k colors so that no
two adjacent vertices are of the same color?

k-CLIQUE
Input: A graph G = (V,E), a positive integer k.
Parameter: k
Question: Is there a clique of size at least k in G?
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k-INDEPENDENT SET
Input: A graph G = (V,E), a positive integer k.
Parameter: k
Question: Is there an independent set of size at least k in G?

I.e. are there at least k nodes in V such that there is no
edge between them?

k-DOMINATING SET
Input: A graph G = (V,E), a positive integer k.
Parameter: k
Question: Is there a dominating set of size at most k in G?

I.e. is there a subset S of at most k nodes in V such that
every node in V is either in S or adjacent to a node in S?

k-BANDWIDTH
Input: A graph G = (V,E), a positive integer k.
Parameter: k
Question: Is the bandwidth of G at most k?

I.e. is there an injection f : V 7→ N such that for every arc
(u, v) in E we have |f(v)− f(u)| ≤ k?

k-DIRECTED BANDWIDTH
Input: A directed acyclic graph G = (V,E), a positive integer k.
Parameter: k
Question: Is the directed bandwidth of G at most k?

I.e. is there an injection f : V 7→ N such that for every
edge (u, v) ∈ E we have f(u) < f(v) and f(v)− f(u) ≤ k?
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A.3 Figure Index

Problem Maps of Studied Parameters

Chapter Figure Parameter

3
3.7 `max, min. delays
3.8 `max, exact delays
3.9 `max, max. delays

4
4.7 µ

4.8 µ+ pmax

4.9 µ+ `max

5 5.14 σ

5.15 σ + `max

6 6.7 q

Figure A.1: Problem maps of the studied parameters.

Parameter Maps of Studied Scheduling Problems

Chapter Figure Problem

2 2.7 P |rj , d̄j |?

4 4.1 P |prec, rj , d̄j |?

5 5.1 Pm|prec, rj , d̄j |?
5.12 1|prec(`ij), rj , d̄j |?

6 6.5 1|prec, rj , d̄j |?

Figure A.2: Parameter maps of some studied scheduling problems.
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