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Énora Belz, Étienne Dagorn, Madeg Le Guernic, Thao Nguyen, Jimmy Merlet,
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Résumé

Les marchés des matières premières constituent une composante primordiale dans

la dynamique de l’économie mondiale, et leurs fluctuations ont des répercussions

majeures. Une meilleure compréhension des déterminants de l’offre et de la demande

des matières premières permet de clarifier non seulement la nature des fluctuations

de leurs prix, mais également les facteurs qui les régissent. Une telle analyse est

essentielle pour élaborer des politiques visant à atteindre des objectifs économiques,

sociaux et environnementaux tels que la croissance durable, la stabilité de l’inflation,

la réduction de la pauvreté, la sécurité alimentaire et la lutte contre le réchauffement

climatique.

L’historique des prix des matières premières a été marqué par certains

événements majeurs. En 1973, la flambée des prix des matières premières est

attribuée à l’embargo pétrolier décrété par l’Organisation des pays exportateurs

de pétrole (OPEP) à l’encontre des États-Unis et des pays européens pendant la

guerre du Kippour. Cette situation a entrâıné des pénuries et une hausse des prix

de l’énergie qui s’est répercutée, par effet domino, sur les prix des autres matières

premières. En 1974, à la suite de la levée de l’embargo, les prix de l’énergie ont

progressivement baissé et retrouvé leur niveau d’avant-crise. En 1979, la révolution

iranienne a entrâıné une rupture des exportations de pétrole au Moyen-Orient, ce

qui a considérablement alimenté la spirale inflationniste sur le marché de l’énergie.

Ces deux crises énergétiques des années 1970 sont principalement dues à des chocs

négatifs d’offre.

Au début des années 2000, les prix des matières premières, qui étaient jusqu’alors

relativement bas, ont progressivement commencé à augmenter. Cet épisode corre-

spond à un choc positif induit par la demande. L’énergie, les céréales, les biocar-

burants et les autres matières premières non énergétiques ont atteint des niveaux

record extraordinaires à la mi-2008. L’éclatement de la crise financière mondiale

au second semestre 2008 a entrâıné une récession sans précédent qui s’est accom-
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pagnée d’un ralentissement de la demande de matières premières. Néanmoins, un

rebond des prix a été observé en 2011 pour de nombreuses matières premières, dont

les prix ont atteint, voire dépassé, les niveaux d’avant la crise. Cette observation

trouve plusieurs explications: une reprise de la demande mondiale essentiellement

tirée par les pays émergents, une politique monétaire expansionniste de la Réserve

fédérale américaine, ainsi que des activités de spéculation et des stratégies d’aversion

à l’inflation sur les valeurs refuges.

Deux autres phénomènes plus récents illustrent les effets d’un environnement

incertain sur les prix des matières premières. Le premier concerne l’apparition de

l’épidémie de Covid-19, qui a poussé les gouvernements à prendre des mesures pro-

tectionnistes telles que le confinement et la fermeture des frontières. Ces mesures ont

créé des perturbations dans les châınes d’approvisionnement de nombreux secteurs

d’activité. L’épisode du Covid-19 s’est tout d’abord caractérisé par un choc de de-

mande transitoire, avec une chute drastique du prix du pétrole en fin mars 2020,

puis par un choc d’offre, se traduisant par des pénuries et des contraintes de capacité

pour répondre à la reprise de la demande. En conséquence, une spirale inflation-

niste s’en est suivie danss divers secteurs d’activité. Le deuxième phénomène est

le déclenchement du conflit russo-ukrainien en fin février 2022. Cet événement est

d’autant plus marquant qu’il implique deux des plus grands exportateurs de céréales

et d’énergies fossiles. En effet, la conjonction de l’embargo européen sur les impor-

tations d’énergies fossiles russes et du blocus militaire russe sur les exportations

de céréales ukrainiennes a conduit à de nouvelles perturbations sur les marchés et

à des schémas commerciaux plus coûteux. Ces perturbations ont également mis

en évidence l’interdépendance des marchés des matières premières: les prix élevés

de l’énergie ont fait augmenter les coûts de production d’autres matières premières

(comme les engrais), entrâınant une hausse généralisée des prix. Cette hausse des

prix des matières premières intensifie la menace d’une inflation élevée et durable.

Les économies européennes sont particulièrement exposées en raison de leur forte

dépendance vis-à-vis du pétrole et du gaz naturel russes. Le débat sur la recherche

de sources d’énergie alternatives est relancé.

Au-delà de ces facteurs fondamentaux de l’offre et de la demande qui régissent

la dynamique des prix, un facteur beaucoup plus controversé dans la littérature

émerge: la financiarisation. Elle traduit la prédominance des instruments financiers

dans les échanges de matières premières depuis le début des années 2000. Le volume

des transactions sur ces instruments financiers dépasse largement celui observé sur
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le marché physique (Domanski et Heath, 2007; Redrado et al., 2009; Silvennoinen

et Thorp, 2013).

Le changement climatique et la transition écologique ajoutent une nouvelle di-

mension aux incertitudes qui pèsent sur les marchés des matières premières. En

effet, le changement climatique et les phénomènes météorologiques extrêmes plus

fréquents sont susceptibles d’affecter la production de toutes les matières premières.

En 2021, des conditions météorologiques extrêmes ont créé des perturbations dans la

production de nombreuses matières premières: la sécheresse a réduit la production

hydroélectrique dans plusieurs pays, dont le Brésil, la Chine et les États-Unis; le

gel et les ouragans ont également perturbé la production de pétrole brut et de gaz

naturel aux États-Unis; les inondations ont interrompu la production et le transport

du charbon et de certains métaux en Australie; et la sécheresse au Brésil a réduit

la production de café à des niveaux historiquement bas. Ce constat montre que les

phénomènes climatiques ne se limitent pas qu’aux marchés agricoles.

Le contexte ci-dessus aborde les fluctuations des prix des matières premières

comme un concept résultant principalement des chocs d’offre et de demande.

Cependant, la nature de ces fluctuations peut être associée à des phénomènes de

volatilité ou à des phénomènes d’incertitude intrinsèques aux marchés. En général,

la littérature sur les fluctuations des prix fait davantage référence aux phénomènes

de volatilité (Nazlioglu et al., 2013; Liu et al., 2013; Gozgor et al., 2016; Diebold

et al., 2017). L’aspect de l’incertitude reste moins exploré en raison de la difficulté

réelle à le définir et à le quantifier.

Cette thèse a pour objectif de mettre l’accent sur l’incertitude des prix des

matières premières tout en mettant en lumière quelques facteurs qui influencent son

évolution au travers de la diffusion de l’incertitude entre les marchés et de l’impact

des politiques économiques, energétiques et environnementales. Contrairement à la

volatilité, l’incertitude mesure les variations non anticipées des prix des matières

premières (Balli et al., 2019). Pour développer notre mesure de l’incertitude des

prix des matières premières, nous nous référons aux travaux de Jurado et al. (2015),

qui ont initié une méthodologie basée sur la prévision pour construire une mesure de

l’incertitude macroéconomique expliquant avec précision les fluctuations observées

de l’activité réelle. Cette nouvelle perspective d’analyse des fluctuations des prix

ouvre la voie à des outils d’évaluation et de prise de décision pour les investisseurs

et les autorités publiques.

Cette thèse propose trois études portant sur les facteurs qui influencent
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la dynamique de l’incertitude des prix des matières premières. Sur le plan

méthodologique, elle mobilise les outils de la macroéconomie des séries temporelles

et de Machine Learning.

Le chapitre 1 est entièrement tiré des travaux de Cadoret et al. (2022).1 Il

vise deux objectifs principaux: premièrement, estimer avec précision une mesure de

l’incertitude des prix au niveau agrégé pour quatre catégories de marchés de matières

premières (énergie, agriculture, industrie et métaux précieux); deuxièmement, ex-

plorer a posteriori le mécanisme de transmission de l’incertitude des prix entre les

marchés. La question de l’incertitude est revenue sur le devant de la scène à la

suite de la crise financière mondiale de 2007-2009, qui a révélé divers mécanismes

de diffusion entre les marchés des matières premières. Ce chapitre adopte une ap-

proche basée sur la prévision des prix pour construire une mesure de l’incertitude

des prix sur les marchés des matières premières. Ainsi, nous apportons une contri-

bution à la littérature sur les fluctuations des prix de deux manières à deux niveaux:

premièrement, nous développons des mesures individuelles de l’incertitude des prix

pour de nombreux marchés de matières premières, qui sont basées sur la volatilité de

l’erreur de prévision des prix. Ces mesures sont utilisées pour calculer une mesure

globale de l’incertitude des prix pour chaque secteur des matières premières. Con-

trairement à la volatilité, nos mesures d’incertitude se révèlent être des indicateurs

avancés des crises économiques. Deuxièmement, nous examinons la transmission

intersectorielle des chocs d’incertitude des prix et les mécanismes sous-jacents.

Les résultats de notre étude empirique indiquent une transmission bidirection-

nelle de l’incertitude entre les marchés de l’énergie, de l’agriculture et de l’industrie.

Parallèlement, le marché des métaux précieux est insensible aux chocs d’incertitude

provenant des autres marchés, renforçant ainsi son caractère de valeur refuge

lors d’événements économiques défavorables. De plus, nous constatons que la

transmission de l’incertitude ne dépend pas seulement de liens spécifiques entre les

marchés, mais également d’un facteur macroéconomique latent commun qui régit

le mécanisme des mouvements conjoints excessifs (Pindyck et Rotemberg, 1990).

Un autre résultat intéressant de ce chapitre révèle que l’incertitude industrielle

apparâıt comme le facteur commun de diffusion de l’incertitude entre les marchés

de matières premières. Afin d’examiner cette conclusion de manière approfondie,

une analyse comparative est réalisée entre notre indicateur d’incertitude industrielle

1Cette contribution scientifique a été publiée dans Applied Economics (2022), pp. 1-25.
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et l’incertitude macro-financière développée par Jurado et al. (2015). Il en résulte

que l’incertitude industrielle peut être considérée comme un proxy de l’incertitude

macro-financière, tant du point de vue de leur dynamique évolutive que de leurs

contributions respectives aux chocs sur les marchés des matières premières.

Motivés par la conclusion du chapitre précédent sur l’importance du facteur

macro-financier sur les marchés des matières premières, nous poursuivons notre

analyse au niveau désagrégé des marchés du pétrole et du cuivre pour explorer un

second facteur de l’incertitude des prix dans un cadre empirique très élaboré dans

la littérature.

Le chapitre 2 vise à évaluer comment l’incertitude de la politique économique

influence la dynamique d’incertitude des prix des matières premières.2 Nous nous

concentrons spécifiquement sur les marchés du pétrole et du cuivre, car le cadre

empirique s’y prête mieux. De plus, comme indiqué dans le premier chapitre, le

pétrole et le cuivre sont respectivement les matières premières les plus représentatives

des secteurs de l’énergie et de l’industrie. Alors que la plupart des études de la

littérature soutiennent que les fluctuations des prix des matières premières sont

principalement dues aux chocs d’offre et de demande (Kilian, 2009; Pedersen, 2019;

Cross et al., 2020), l’impact de l’incertitude de la politique économique a été moins

exploré malgré l’intérêt croissant pour ce sujet au cours de la dernière décennie. En

nous appuyant sur les travaux de Baker et al. (2016), qui ont développé un indice

d’incertitude de la politique économique des États-Unis (EPU) basé sur le contenu

informationnel de la presse, notre contribution consiste à analyser les implications

de cet indicateur sur l’incertitude des prix du pétrole et du cuivre.3

Nos résultats montrent qu’un choc positif sur l’EPU contribue à une augmenta-

tion significative de l’incertitude sur les prix du pétrole et du cuivre, avec un impact

plus élevé et plus persistant sur le marché du pétrole. De plus, notre modèle nous

permet également de valider une hypothèse découlant du premier chapitre, selon

laquelle l’incertitude sur le prix du cuivre se propage au marché du pétrole. De

plus, les contributions relatives des chocs de l’EPU aux incertitudes du pétrole et

2Une version plus sommaire de ce chapitre a été publiée dans Economics Bulletin (2023).
3L’EPU de Baker et al. (2016) est un indice composite qui englobe des sous-indices catégoriels

liés aux thématiques abordées dans les articles de journaux aux États-Unis, tels que: la politique
monétaire, la politique fiscale, les dépenses publiques, les soins de santé, la sécurité nationale, les
programmes de droits, la réglementation, la réglementation financière, la politique commerciale, la
dette souveraine et les crises monétaires.
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du cuivre sont respectivement de 11% et de 6% à court terme. En ce qui concerne les

facteurs traditionnels, nous constatons qu’un choc négatif de l’offre de pétrole tend à

augmenter l’incertitude du prix du pétrole, tandis qu’un choc positif de la demande

réduit l’incertitude du prix du pétrole. De manière similaire, en analysant le marché

du cuivre, nous observons que l’incertitude sur le prix du cuivre est principalement

influencée par la demande globale, avec un effet à long terme.

Dans le chapitre suivant, nous nous intéressons plus particulièrement à l’aspect

réglementaire de la politique énergétique et environnementale mise en œuvre dans

l’Union européenne (UE). Étant donné que l’UE est l’un des plus grands importa-

teurs mondiaux d’énergies fossiles, ce chapitre se concentre sur les effets potentiels

d’une telle politique sur la dynamique de l’incertitude des prix des énergies fossiles

(pétrole, gaz et charbon).

Le chapitre 3 pose la question de savoir si la politique énergétique et environ-

nementale européenne influence la dynamique de l’incertitude des prix des énergies

fossiles. Jusqu’à présent, cette idée n’a pas fait l’objet d’une étude empirique.

Notre analyse s’articule autour de deux points principaux. Premièrement, nous

nous appuyons sur des études qui développent des indicateurs de politique environ-

nementale et climatique basés sur les articles de presse (Noailly et al., 2021, 2022;

Gavriilidis, 2021). À cet effet, nous proposons: (i) un indicateur basé sur la presse

européenne à deux volets: l’incertitude sur l’environnement global et la diffusion de

la réglementation énergétique et environnementale dans la presse; (ii) un indicateur

structurel basé sur les textes de lois, plus spécifique à la politique énergétique et en-

vironnementale européenne, qui met l’accent sur le cycle législatif. Deuxièmement, à

la suite de nombreux travaux empiriques (Baker et al., 2016; Lemoine, 2017; Dorsey,

2019; Sen et von Schickfus, 2020), nous analysons les impacts des indicateurs con-

struits sur la dynamique de l’incertitude des prix des énergies fossiles.

Nos principaux résultats suggèrent qu’un accroissement de l’indicateur basé sur

la presse a un effet mixte significatif sur les incertitudes des prix du pétrole et du

charbon. Nous observons notamment un effet positif résultant de l’incertitude sur

l’environnement global, se traduisant par une légère augmentation à court terme des

incertitudes sur les prix dans ces marchés. Cette légère hausse est suivie d’un effet

négatif issu du volet réglementaire sur les incertitudes des prix. Ainsi, cet effet mixte

reflète le fait que l’efficacité de la politique énergétique et environnementale sur la

dynamique des prix n’est pas altérée en situation d’incertitude concernant le contexte

global. Cependant, nous observons que le marché du gaz est davantage dominé par
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le second effet, car la dynamique baissière de l’incertitude du prix est plus précoce

et durable que sur les autres marchés. De manière similaire, une augmentation de

l’indicateur basé sur les textes de lois entrâıne une décroissance significative des

incertitudes des prix du pétrole et du charbon. De plus, l’effet négatif s’opère à

court terme sur le marché du pétrole, tandis qu’il est plus persistant sur le marché

du charbon. Ce résultat souligne que l’indicateur composite basé sur les textes de

lois joue un rôle stabilisateur significatif sur ces marchés, mais pas sur celui du gaz.

Cependant, une analyse plus approfondie révèle que l’incertitude sur le prix du gaz

ne se contracte de manière substantielle qu’à la suite de réglementations spécifiques

à l’environnement. Une analyse complémentaire a été réalisée sur les effets de nos

indicateurs sur le niveau des prix. Nous relevons que seul l’indicateur basé sur

la presse contribue à réduire significativement les prix sur tous les marchés. Cela

supposerait que les marchés anticipent la réglementation et s’ajustent à la baisse en

conséquence. En conclusion, ce chapitre repose sur l’idée selon laquelle la politique

européenne à faibles émissions carbone exerce des pressions différentes en termes de

maturité sur les incertitudes des prix des énergies fossiles.
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General Introduction

”Uncertainty is an amorphous concept. It reflects uncertainty in the minds of con-

sumers, managers, and policymakers about possible futures. It is also a broad con-

cept, including uncertainty over the path of macro phenomena like GDP growth,

micro phenomena like the growth rate of firms, and noneconomic events like war

and climate change.”

Nicholas Bloom, Fluctuations in Uncertainty,

Journal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic PerspectivesJournal of Economic Perspectives, 2014

This thesis deals with uncertainty as a particular aspect of price fluctuations in

commodity markets, as well as their underlying drivers. In this introduction, we

provide an overview of the historical evolution of commodity prices and develop-

ments in the sources and measures of uncertainty shocks, and finally we present the

dissertation outline.

1 Context

The evolution of commodity prices on international markets is a key issue since it can

affect most countries’ economies in one way or another. Fluctuations in commodity

prices are especially relevant for the global economy, which has periodically expe-

rienced episodes of commodity booms and busts characterized by broad and sharp

co-movements of commodity prices. There have been a number of major events in

the history of commodity price dynamics. In 1973, the spike in commodity prices

was driven by the Organization of the Petroleum Exporting Countries’ (OPEC) oil

embargo on the United States (US) and European countries during the Yom Kippur

War. This situation led to energy shortages and a subsequent rise in energy prices,
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GENERAL INTRODUCTION

which spread to a few other commodity prices. In 1974, the embargo was lifted and

energy prices started to decline progressively to reach their pre-embargo level. In

1979, the Iranian revolution triggered interruptions in Middle Eastern oil exports,

causing a widespread panic which drove prices far higher than would be expected

under normal circumstances. Both 1970s energy crisis events are attributed to neg-

ative supply-driven shock. Subsequently, commodity prices remained at a relatively

low level, until prices witnessed a resumption of a significant upward trend in the

early 2000s. This episode is known as a positive demand-driven shock, with energy,

grains, biofuels and non-energy commodities all reaching extraordinarily high record

levels in mid-2008. Unfortunately, with the eruption of the global financial crisis in

the second half of 2008, which caused an unprecedented recession, the demise of the

commodity boom was inevitable following the collapse of major commodity prices.

Nevertheless, a rebound in prices was markedly observed by 2011, with many com-

modities matching and even exceeding their pre-crisis price peaks. There are several

explanations for this last observation: a recovery in global demand mainly driven

by emerging markets, an expansionary monetary policy by the US Federal Reserve

(FED) and speculative activities and inflation-adverse strategies on safe haven as-

sets.

In the first quarter of 2020, the Covid-19 outbreak gave a clear illustration of

price fluctuations in an unstable environment. Indeed, governments’ responses, such

as lockdowns and cross-border closures, strongly contributed to supply chain dis-

ruptions across all industries, including mining. Initially, the pandemic triggered

a sharp fall in global demand for commodities, especially crude oil, however, com-

modity prices rapidly recovered with the rebound in demand, but supply was slow

to respond due to capacity constraints and supply bottlenecks. This led to short-

ages of goods and services and higher prices for the items that were available. This

situation fueled the jump in inflation to the point that predicting future inflation

can be difficult since current readings only reflect where prices have been trending

rather than where they are headed.

Far from being transitory, the spiral of price increases has been accentuated by

the Russo-Ukrainian War that started in February 2022. The implementation of

economic sanctions against Russia has mainly affected the post-Covid macroeco-

nomic recovery. In particular, agriculture and energy markets have displayed an

unprecedented spike in prices. Russia is one of the world’s largest exporters of oil,

natural gas, steel, nickel aluminum, and wheat. Likewise, Ukraine is the key pro-

2
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ducer of corn, wheat, sunflower seeds, sugar beet, barley, soybeans and rapeseed.

The war led to further disruptions in commodity markets and more costly patterns

of trade, with a major diversion of trade in energy, as Ukraine could not export

grain and some countries banned imports of Russian energy. The disruption also

demonstrated how highly interrelated commodity markets are, with, for example,

energy prices pushing up the production costs of other commodities (such as fertil-

izers), which fuelled a broad-based increase in commodity prices. The increase in

prices had a major economic and humanitarian impact, especially for energy and

food-importing economies. Higher commodity prices intensify the threat of long-

lasting high inflation which increases the risk of stagflation and social unrest. Other

sectors such as automotive, transport, and chemicals are likely more vulnerable.

The exposure to imported inflation and trade disruptions varies across regions. For

instance, European economies are more at risk due to their high dependence on Rus-

sian oil and natural gas. Hence, the war may have accelerated the energy transition

as countries seek to reduce their reliance on fossil fuels.

Figure 1 provides an illustration of the above description on the historical price

evolution of a panel of 4 groups of commodities.

Figure 1: Evolution of commodity price indices on international markets.

Source: World Bank.

Note: This figure reports the historical evolution of commodity price indices (2010=100). Four groups are plotted:

energy (including crude oil, natural gas, and coal), agriculture (including food, and beverages, and raw materials),

metals and minerals (aluminum, steel, copper, iron ore, lead, nickel, tin and zinc), and precious metals (gold, silver,

platinum).

3

https://www.worldbank.org/en/research/commodity-markets


GENERAL INTRODUCTION

Generally, the economic literature highlights three major explanations for long-

lasting commodity price fluctuations.

First, the level of global growth is a prominent indicator of the demand for

commodities. In the early 2000s, the advent of emerging countries (such as China

and India) in world trade substantially boosted the global demand for commodities

to meet their industrial and urbanization needs.

Second, the stance of the monetary policy – more specifically, a lax or accom-

modative monetary policy with low real interest rates (e.g. the case of the US Federal

Reserve Bank in 2001-2004 and in 2008) – tends to reduce the cost of holding inven-

tories because stockpiling commodities becomes cheaper. Such a policy therefore

contributes to increasing the demand for commodities. Especially, Frankel (2008)

underscores that, for a given expected price path, a decrease in interest rates reduces

the carrying cost of speculative positions, making it easier to bet on assets such as

commodities. Moreover, under certain conditions, this will put upward pressure on

futures prices, and by arbitrage, also on spot prices. It should be noted that the

1970s commodity price boom was due to the relatively steady demand during the

negative supply shock. In contrast, the 2000s commodity price boom was triggered

by the lagging supply response to a persistent positive demand shock. As a result,

supply-demand adjustments represent the fundamental determinants of commodity

price fluctuations in the short run (during the 1970s) and in the long run (during

the 2000s).

Third is the financialization of commodity markets. This last explanation does

not find any consensus in the literature and is a subject of contention. Indeed, a

strand of the literature underscores the preeminence of financial activity on com-

modity markets since the 2000s. One explanation is that the low interest-rate en-

vironment in the early 2000s led investment funds and non-commercial traders to

explore other assets with higher returns. This new strategy of portfolio diversifica-

tion increases exposures in the commodity futures market (Domanski and Heath,

2007, Redrado et al., 2009, Silvennoinen and Thorp, 2013, Christou et al., 2017,

Ding et al., 2021). The volume of transactions on the commodity futures market

rose subsequently from around US$10 billion in 2000 to US$450 billion by mid-2011

to the point of outperforming the physical market. In 2008, some argued that finan-

cialization was one of the main sources of the subprime crisis and pointed out that

the speculative bubbles it generated in the context of financial liberalization started

in 1980. This is the reason why, in 2010, the US dedicated part of the Dodd-Franck

4
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Act to regulate the financial derivatives market.4 The Commodity Futures Trad-

ing Commission (CFTC) was established to protect futures markets from excessive

speculation that can cause unreasonable and unwarranted price fluctuations. In

particular, the commission pays attention to cross-manipulation and excessive posi-

tions. The cross-manipulation reflects the ability of an investor to retrieve a profit

by simultaneously taking a position on spot and derivatives markets to generate

demand distortion by feeding scarcity (e.g. the Hunt brothers’ attempt to corner

the silver market in 1980). An excessive position limits the weight-of-money effect,

allowing an investor to have an exclusive influence on the asset price by betting a

large amount of money. Figure 2 gives an overview of the volume of transactions

between oil futures and physical markets. We notice that the share of the total crude

oil production in the cumulative volume of NYMEX WTI and ICE Brent futures

contracts fell from 70% to less than 10% over the period 1995-2018. The remarkable

gap between both markets is a sufficient proof that commodity futures indubitably

play a role in commodity price fluctuations, and to some extent support the rise of

commodity prices above fundamental values.

In addition to changes in these structural factors, markets are also exposed to

climate change. Climate change and the transition to more climate-friendly sources

of energy add another dimension to the uncertainties that roil commodity markets.

The frequent extreme weather events are likely to affect the production of all com-

modities. For instance, agriculture commodity prices have become highly volatile

since periods of drought or excess rains imply a potential drop in crop produc-

tion. In what was perhaps a harbinger, extreme weather disrupted the production

of many other commodities in 2021: droughts reduced hydroelectric generation in

several countries including Brazil, China, and the United States; freezing weather

and hurricanes disrupted crude oil and natural gas production in the United States;

floods interrupted the production and transport of coal and some metals in Aus-

tralia; and drought in Brazil reduced its coffee production to historic lows. Many of

these climatic phenomena have been observed since the beginning of the 2000s and

are tending to increase over time, as highlighted by the special report of the United

Nations Intergovernmental Panel on Climate Change (IPCC, 2018).5

4See the Dodd-Franck Wall Street Reform and Consumer Protection Act.
5Special Report on Global Warming of 1.5°C, IPCC (2018).
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Figure 2: Volume of transactions in oil futures and physical markets.

Source: Bloomberg

Previously, we presented the context that governs commodity price fluctuations

through four structural factors: commodity demand, monetary policy, financial-

ization, and climate change. However, price fluctuation also appears as a general

concept. Both volatility and uncertainty are components of price fluctuations. The

issue of volatility has already been widely addressed in the literature and in this the-

sis, we will focus on the uncertainty component. In the next section, we will review

the sources and the measurement of uncertainty, which is crucial for establishing the

distinction between volatility and uncertainty in commodity prices.

2 Uncertainty: sources and measurement

It is worth noting that this thesis deals with the notion of price uncertainty in com-

modity markets. In fact, commodity price uncertainty relies on a wide literature

that does not reach a consensus on an objective methodology to measure uncer-

tainty. Therefore, the bulk of uncertainty proxies has emerged according to newly

developed methodologies. Ferrara et al. (2018) divide uncertainty measures into dif-

ferent categories: financial uncertainty, macroeconomic uncertainty, economic policy
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uncertainty, and global uncertainty. In the following paragraphs, we propose to dis-

cuss these measures and approaches.

2.1 Financial uncertainty

To date, the common measure of financial market uncertainty has been based on

volatility. For instance, Bloom (2009) considers the implied volatility index (VIX)

as a reliable measure of financial uncertainty. Indeed, since the 1990s, the Chicago

Board Options Exchange (CBOE) has developed the VIX index to measure 30-day

option-implied volatility in the S&P 500 index. Based on high-frequency historical

data, a high level of the VIX reflects high volatility in financial markets, which

refers to periods of crisis. In general, authors highlight the VIX as a ”fear index”

representing agents’ volatility expectations in the equity market (Whaley, 2000,

2009). A sudden upward trend of this index is interpreted as a signal of growing

uncertainty. Thus, the dynamics of the VIX index have been corroborated by major

events, including the 1998 Russian financial crisis, the 09/11 US terrorist attack,

the Iraq War in 2003, the Lehman Brothers’ collapse in 2008, and more recently the

COVID-19 pandemic in 2020 and the Russo-Ukrainian War in 2022.

Other derivative measures have been developed to capture financial market un-

certainty. One such case is the variance risk premium (Zhou, 2018) which represents

the gap between an ex-ante risk-neutral expectation and an ex-post observation of

the return variance, known as the realized variance. The risk-neutral expectation of

the variance (or the implied variance) is measured by the VIX index since it proxies

stock market expectations. According to Bollerslev et al. (2009), the realized vari-

ance describes the volatility of the S&P 500 index using high-frequency returns. A

positive variance risk premium means that traders value the price of options more

for market participants to hedge against a future riskier economic environment char-

acterized by unexpected market volatility (Carr and Wu, 2009, Feunou et al., 2018).

However, some authors (Rosenberg and Engle, 2002, Bekaert and Hoerova, 2016)

argue that the variance risk premium only indicates risk aversion and not uncer-

tainty (i.e. expected stock market volatility). Using machine learning techniques

on Wall-Street journal articles, Manela and Moreira (2017) endeavor to construct a

VIX index back to the 19th century. By doing so, the idea is to integrate business

press information to get rid of timing constraints in the traditional VIX index.

Another point concerns measures of uncertainty at a micro-level based on the

7
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standard deviation of companies’ stock returns. While Bloom (2009) computes

the cross-sectional standard deviation of US firm-level stock returns, Gilchrist et al.

(2014) propose an idiosyncratic uncertainty index using daily stock return data from

a large panel of non-financial firms. Corporate bond spreads are also identified as

an indicator of financial market tensions (Bachmann et al., 2013). This measure

states the difference between the yield of medium-grade corporate bonds (rated

Baa) and the 30-year Treasury yield. An increase in the gap is assumed to reflect

greater tension in financial markets as investors demand a higher yield because of

uncertainty about the financial health of corporates.

2.2 Macroeconomic uncertainty

Several methodologies have been used to characterize macroeconomic uncertainty,

such as confidence indices, forecast dispersion, yield spread, and forecast errors.

First, confidence indices are mostly survey-based and are considered proxies of

uncertainty (Leduc and Liu, 2016). Relying on the Federal Reserve’s Business Out-

look Survey Bachmann et al. (2013), they elaborate a measure of forecast disper-

sion which provides qualitative information about firms’ business conditions and

their expectations. The Organization for Economic Cooperation and Development

(OECD) has also developed a business confidence index that takes the pulse of the

future economic state. This index indicates if producers are either optimistic or

pessimistic about future economic conditions. Likewise, the OECD constructs a

consumer confidence index whose level determines households’ future behavior in

terms of consumption and savings given their sentiment on the ongoing economic

environment.

Second, forecast disagreement suggests that predicting macroeconomic variables

is somehow tricky. Indeed, even if professional forecasters have access to the same

dataset, there are discrepancies in interpretation and hence in forecasts. The lack of

a minimum consensus among forecasters obscures the prediction of macroeconomic

variables (Zarnowitz and Lambros, 1987). Thus, there is a long-run relationship

between uncertainty and forecast disagreement (Bomberger, 1996, Giordani and

Söderlind, 2003). Istrefi and Mouabbi (2018) use a Consensus Economics survey

for some advanced economies to construct a subjective measure of interest rate

uncertainty. Their measure is defined as the sum of the variance of disagreement
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among professional forecasters and the conditional variance of mean forecast errors

exploiting the difference between expected and observed interest rates.

Third, yield spread (i.e. the slope of the treasury yield curve) is the gap be-

tween long-term and short-term interest rates. It is a leading indicator of economic

downturns when the spread is close to zero or negative (Estrella and Mishkin, 1998,

Rudebusch and Williams, 2009, Bauer et al., 2018a,b).

Fourth, forecast errors have gained a lot of importance in quantifying macroe-

conomic uncertainty (Scotti, 2016). In this context, uncertainty deriving from a set

of macroeconomic variables is calculated as the square root of the weighted aver-

age of the squared difference between the realization and the median expectation

(Rossi and Sekhposyan, 2015, Jurado et al., 2015, Ismailov and Rossi, 2018). In

addition, a time-varying volatility approach has been explored in modelling macroe-

conomic uncertainty. This methodology aims to rely on the volatility of forecast

errors as a proxy of uncertainty (Fernández-Villaverde et al., 2011, Bali et al., 2014,

Fernández-Villaverde et al., 2015, Chan, 2017).

2.3 Economic policy uncertainty

In order to highlight the wealth of words environment, researchers propose recent

developments in textual analysis to elaborate new measures of uncertainty. In par-

ticular, Baker et al. (2016) paved the way by developing news-based Economic

Policy Uncertainty (EPU) indices for many countries. The authors started their

run-up investigation with the US to construct policy-related economic uncertainty

using archives of 10 leading newspapers since 1985. More precisely, they selected

articles that included terms related to the economy (”economy” or ”economic”),

policy (”white house”, ”congress”, ”regulation”, ”legislation”, ”federal reserve” or

”deficit”) and uncertainty (”uncertainty” or ”uncertain”). To clearly identify ar-

ticles describing the EPU, a meticulous manual process was engaged by research

assistants across a pool of 12,000 articles. Finally, only articles pertaining to the

following policy categories were labeled: fiscal policy, monetary policy, national se-

curity, regulation, healthcare, entitlement programs, sovereign debt, currency crisis

and trade policy. Azqueta-Gavaldón (2017) replicated the US EPU of Baker et al.

(2016) using an unsupervised machine learning approach, which proved to be less

costly and more flexible. Following this thread, Larsen (2021) identified components

of uncertainty by applying machine learning techniques to Norwegian newspapers.
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In the same vein, other studies suggest a world EPU as the weighted average on

national EPU indices (Davis, 2016, Ahir et al., 2022). Caldara and Iacoviello (2022)

initiated a geopolitical risk index based on international newspapers discussing mil-

itary conflicts, war and terrorism threats and acts.

2.4 Global uncertainty

We can conclude from the analysis of the above measures of uncertainty that they

are all unidimensional. Therefore, two possible methods could be used to combine

various indices to yield a global uncertainty measure. First, a principal component

analysis (PCA) that determines a common component to positively correlated in-

dividual measures of uncertainty. For instance, Haddow et al. (2013) and Larsen

(2021) have respectively used this methodology to develop global uncertainty indices

for the UK and Norway. Second, Himounet (2022) conducted the same analysis to

identify a global measure of uncertainty for the US. He relied on a dynamic factor

model (DFM) by Doz et al. (2012) that consists of disentangling two orthogonal

components across variables: idiosyncratic and common (or latent) factors. Charles

et al. (2018) used the DFM framework to construct a global uncertainty index for

the US based on six individual uncertainty measures: the VIX, the economic policy

uncertainty index developed by Baker et al. (2016), the macroeconomic uncertainty

index proposed by Jurado et al. (2015), the measure of dispersion constructed by

Bachmann et al. (2013), the corporate bond spreads, and the financial uncertainty

index proposed by Ludvigson et al. (2021).

In summary, this section reviews different approaches to constructing an uncer-

tainty measure according to its source. Thus, three major sources of uncertainty can

be identified: financial, macroeconomic and economic policy. However, uncertainty

in commodity markets remains less explored in the literature although major com-

modities are strongly related to the global business cycle. This research perspective

requires a particularly in-depth analysis of commodity markets. Therefore, our dis-

sertation builds on the idea developed in the renowned investigations of Joëts et al.

(2017) and Joëts et al. (2018), emphasizing macroeconomic uncertainty, in addition

to supply and demand shocks, as another key channel through which economic fun-

damentals impact commodity prices. By way of illustration, the figure 3 below is

extracted from the work of Joëts et al. (2017) and it depicts the evolution of price

uncertainty in energy (oil and gas) and industry (aluminum and copper) markets
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at the 1-month horizon (blue line), along with the evolution of the corresponding

prices (black line) and volatility (green line). The horizontal red line represents a

10% significance threshold for commodity-related uncertainty series. The authors

point out that the coincidence between the vertical gray bands and commodity

price uncertainty illustrates the transmission from macroeconomic uncertainty to

commodity market uncertainty, as both events occur in the same period. Other-

wise, each market reports some specific individual characteristics between periods

of volatility and heightened uncertainty. Nonetheless, we note a common significant

spike of price uncertainty (while volatility is below the horizontal red line) in oil,

copper and aluminum markets during the global financial crisis in 2008. Over this

period, the uncertainty and volatility nexus is more apparent in the oil and cop-

per markets. Therefore, the macroeconomic uncertainty-induced commodity price

uncertainty leads to the resurgence of volatility changes.

Figure 3: Uncertainty versus Volatility in prices of oil, gas, copper and alu-

minum.

Source: Joëts et al. (2017)

Notes: This figure plots both uncertainty (blue line) and volatility (green line) scaled on the left axis along with

prices (black line) scaled on the right axis for energy (oil and gas) and industrial metals (copper and aluminum).

The horizontal bar indicates a 10% significance for price uncertainty. Grey bands represent recessionary episodes.
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This thesis focuses on the insight of price uncertainty in commodity markets.

In accordance with Joëts et al. (2017) and Joëts et al. (2018), we rely on the

predictability-based approach of Jurado et al. (2015) as a suitable measurement

of commodity price uncertainty. Then, we conduct empirical investigations on de-

terminants of commodity price uncertainty. We summarize the main parts of this

work in the following paragraphs.

3 Thesis outline

This thesis intends to contribute empirically to the ongoing discussion about price

uncertainty in commodity markets and its drivers. In addition, it aims to provide

further insightful policy recommendations. The thesis is structured in three chap-

ters, each of which corresponds to a research question related to a specific driver

of commodity price uncertainty. It should be noted that, although the chapters

are self-contained and can be read individually, they are also related to each other.

Specifically, while the first chapter discusses the macro-financial driver, the second

chapter analyzes the economic policy driver of uncertainty among commodity mar-

kets. The third chapter pays particular attention to one aspect of the last factor,

that of energy and environment policy and the implications for fossil energy markets.

3.1 Chapter 1: Uncertainty diffusion across commodity

markets

This chapter is entirely drawn from Cadoret et al. (2022). It has two main objec-

tives: first, to accurately estimate a measure of price uncertainty at the aggregate

level for four categories of commodity markets (energy, agriculture, industry, and

precious metals), and; second to explore the transmission mechanism of uncertainty

between markets. Recently, much of the salient literature that has emerged analyzes

commodity price fluctuations in terms of volatility and their comovements in terms

of connectedness or spillover effects (Du et al., 2011, Arouri et al., 2011, Silven-

noinen and Thorp, 2013, Mensi et al., 2013, Diebold et al., 2017, Barbaglia et al.,

2020). In general, the major findings of these studies highlight volatility transmission

between the energy, metals, agricultural commodities and stock market due to the

reinforcement of financial integration since the early 2000s. Yet, more interesting are

commodity price fluctuations that arise during periods of uncertainty in economic
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and political events. This justifies the rationale behind the use of commodity price

uncertainty instead of commodity price volatility, especially since uncertainty mea-

sures the unexpected variation in commodity price, while volatility is the expected

variation of commodity price (Balli et al., 2019). The question of uncertainty has

returned to the chessboard with the 2007-2009 global financial crisis that raised the

question of whether economic and financial uncertainty may explain unpredictable

components of commodity prices. Therefore, this chapter lays the groundwork for

the predictability-based approach that we use to construct price uncertainty in com-

modity markets. In this chapter, we contribute to the literature on commodity price

fluctuations in two ways: first, we develop individual measures of price uncertainty

in numerous commodity markets based on the volatility of price forecasting error.

Then, these are used to compute an aggregate measure of price uncertainty by sec-

tor of commodities. Our estimated commodity price uncertainties show evidence

of being leading indicators of uncertainty rather than volatility in commodity mar-

kets; second, we look at the intersectoral diffusion of uncertainty shocks and the

underlying mechanisms.

To achieve our goals, we consider a dataset of monthly commodity prices col-

lected from the World Bank website. We classify commodities into four main groups:

energy (oil, gas, coal), agriculture (cocoa, maize, lumber, coffee, cotton, soybeans,

sugar, and wheat), industry (aluminum, lead, tin, copper, nickel, zinc, and iron), and

precious metals (gold, silver, platinum). From these data, we construct a monthly

price uncertainty measure at a given horizon for each market using a moving aver-

age stochastic volatility (MASV) model on price forecasting error over the period

January 1995 to December 2018. We then construct an aggregate measure of price

uncertainty per group of commodities. Finally, we perform an analysis of the un-

certainty diffusion between groups of commodities based on generalized impulse

response functions (GIRFs) of a vector autoregressive (VAR) model.

The results of our empirical investigation indicate a two-way uncertainty trans-

mission between each pairwise market combination of energy, agriculture and indus-

try. Meanwhile, the precious metals market is insensitive to other markets’ uncer-

tainty shocks, confirming its well-identified safe haven property, especially during

unfavorable economic events. In addition, we notice that the uncertainty trans-

fer does not only depend on specific links across markets but also on a common

latent macroeconomic factor that drives the ”excess comovement” mechanism as

pointed out previously Pindyck and Rotemberg (1990). Another interesting finding
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of this chapter is the identification of industry uncertainty as a common receiver

factor of uncertainty, which ensures the uncertainty diffusion channel between het-

erogeneous commodity markets. To extensively examine this finding, a comparative

analysis was conducted between our constructed industry uncertainty and the fa-

mous macro-financial uncertainty developed by Jurado et al. (2015). As a result,

it appears that industry uncertainty is a proxy for macro-financial uncertainty with

respect to the evolutionary dynamics and contributions to other commodity market

shocks.

Highly motivated by the contribution of this chapter, which concludes on the

macro-financial driver of uncertainty in commodity markets, we take our investiga-

tion to a disaggregated level of oil and copper markets to explore a second driver

of commodity price uncertainty in an empirical framework widely developed in the

literature.

3.2 Chapter 2: Uncertainty in oil and copper prices: Does

the Economic Policy Uncertainty matter?

This chapter is an extended version of Minlend (2022) and aims to assess whether

economic policy uncertainty could serve as a driver of commodity price uncertainty

in a supply-demand identification model. We restricted our study to the oil and

copper markets because the empirical framework suits them better. Moreover, as

reported in the first chapter, oil and copper are the most representative commodities

in the energy and industry sectors. The bulk of studies in the literature argue that

demand and supply shocks, known as macroeconomic fundamentals, are responsible

for great fluctuations in commodity prices (Kilian, 2009, Pedersen, 2019, Cross et al.,

2020). However, the literature has not sufficiently examined the impact of economic

policy uncertainty, which has attracted interest during the last decade. According to

Baker et al. (2016), the EPU describes economic policy uncertainty as: ”uncertainty

about who will make economic policy decisions, what economic policy actions will be

undertaken and when, and the economic effects of policy actions (or inactions) – in-

cluding uncertainties related to the economic ramifications of ’non-economic’ policy

matters, e.g. military actions.” Relying on this definition, authors have developed

a news-based methodology to construct a monthly measure of EPU for the United

States (US) from a list of newspaper articles discussing topics on Economy (E),

Policy (P) and Uncertainty (U). The robustness of their analysis has been acknowl-
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edged through the popular use of their measure in many research studies. As far

as we are concerned, our specific contribution is to appraise the implications of the

EPU on the oil and copper markets in an endogenous empirical framework.6

Our empirical strategy relies on a structural vector autoregressive (SVAR) model

with recursive short-run restrictions for each commodity market. The model spec-

ification includes each market’s specific variable (commodity supply) and common

variables (aggregate demand, EPU, copper price uncertainty, and oil price uncer-

tainty). Due to differences in data availability, the estimation covers the period from

March 1985 to March 2020 for the oil market, and from January 1997 to August

2018 for the copper market.

Our results indicate that a positive EPU shock significantly increases price uncer-

tainty in both the oil and copper markets. The effect is more marked and persistent

in the oil market. Our model also implicitly validates a hypothesis stemming from

the conclusion of the first chapter about the spillover effect of copper price uncer-

tainty on the oil market. Furthermore, the highest share of EPU shocks to forecast-

ing shocks in oil price uncertainty and copper price uncertainty is about 11% and 6%

at a 3-month horizon, respectively. Regarding the effects of traditional factors, we

note that a negative oil supply shock tends to increase oil price uncertainty, whereas

a positive demand shock reduces oil price uncertainty. Likewise, when analyzing

the copper market, we observe that copper price uncertainty is mainly driven by

aggregate demand with a long-lasting effect.

In the next chapter, we are specifically interested in a particular aspect of eco-

nomic policy, namely the energy and environment policy implemented in the Euro-

pean Union (EU). The EU is one of the world’s largest importers of fossil energy,

as reported by the Eurostat database on fossil energy import dependency in 2020:

96.96% for oil, 83.6% for gas, and 34.8% for coal. Based on this observation, this

chapter endeavors to tackle the potential effects of such a policy on fossil energy

price dynamics.

6The news-based EPU of Baker et al. (2016) is a composite indicator that encompasses cate-
gorical sub-indices related to topics discussed in newspapers, such as monetary policy, fiscal policy,
taxation, government spending, healthcare, national security, entitlement programs, regulation,
financial regulation, trade policy, sovereign debt and currency crises.
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3.3 Chapter 3: Does the European Low-Carbon Policy im-

pact price uncertainty in fossil energy markets?

This chapter questions whether European energy-related environmental policy in-

fluences price uncertainty in fossil energy markets. So far, this insightful idea has

not been fully tested empirically. However, to the best of our knowledge, what

might come close to our perspective are a few studies pointing out a significant

correlation between the OECD’s environmental policy stringency indicator (as well

as other proxies of environmental policies) and energy prices indices at the coun-

try or industry levels (Sato et al., 2015, Garsous and Kozluk, 2017). In the same

vein, Dlugosch and Kozluk (2017) extend this analysis to business investment by

linking part of the variation in energy prices to environmental policies. They find

evidence that the negative effects of rising energy prices on investment can largely

be attributed to tightening upstream environmental policies through their impact

on energy prices. According to these studies, the underlying mechanism could be

that a large share of the manufacturing sector’s CO2 emissions is indirect, via en-

ergy consumption. Consequently, fluctuations in energy prices will reflect, inter alia,

both market-based upstream policies (e.g. carbon tax) and control regulations (e.g.

air pollution norms) relevant to energy, and the firm’s exposure to a tightening of

climate mitigation policies will to a large extent be via the higher energy prices

paid. As far as we are concerned, our analysis on the nexus between European

energy-related environmental policy and price uncertainty in fossil energy markets

revolves around two main points, each contributing to a particular strand of the

literature. First, we build on studies that develop news-based indicators about US

environmental policy (Noailly et al., 2021, 2022) and US climate policy (Gavriilidis,

2021). Next, we propose two composite indicators: (i) a news-based composite in-

dicator with two underlying factors: uncertainty on the global environment and the

regulations on energy and environment as reflected in the press, and (ii) a struc-

tural law-based composite indicator that is more specific to European energy and

environmental policy, which emphasizes the legislative cycle. Second, following nu-

merous empirical studies (Baker et al., 2016, Lemoine, 2017, Dorsey, 2019, Sen and

von Schickfus, 2020), we investigate the impacts of our constructed indices on price

uncertainty dynamics in fossil energy markets.

To construct our monthly indices, this chapter required a textual analysis

methodology relying on an unsupervised machine learning algorithm called Latent
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Dirichlet Allocation (LDA) developed by Blei et al. (2003). Applied separately

to both news and law datasets, this method yields two indices, accordingly. A

side-by-side analysis of the news-based and law-based indices shows periods of

comovements during salient events in the history of EU energy and environmental

policy. In addition, the cross-correlation function identifies a short-run significant

unidirectional relation from the law-based index to the news-based index. We then

estimate a 5-factor Bayesian vector autoregressive (BVAR) model to evaluate the

effects on price uncertainty in fossil energy markets. In our modeling, we include

five variables: law-based index, news-based index, oil price uncertainty, gas price

uncertainty, and coal price uncertainty. The estimation spans the period from

March 1997 to May 2021.

Our main results suggest that an increase in the news-based composite indica-

tor has a significant mixed effect on oil and coal price uncertainty. In particular,

there is a positive effect from the global environment uncertainty component, which

translates into a slight short-term increase in price uncertainty in these markets.

This increase is followed by a negative effect of the regulatory component on price

uncertainty. In this sense, this mixed effect reflects the fact that the effectiveness

of energy and environmental policy on price dynamics remains unchanged in a sit-

uation of uncertainty about the overall context. However, we observe that the gas

market is dominated by the second effect because the downward dynamics of price

uncertainty is more premature and lasting than in other markets. By analogy, an

increase in the law-based composite indicator leads to a significant decrease in oil

and gas price uncertainty. While the negative effect is more persistent in the coal

market, it is shorter in the oil market. This result indicates that the law-based com-

posite indicator plays a significant stabilizing role in these markets, but not in the

gas market. However, a more comprehensive analysis shows that gas price uncer-

tainty contracts substantially after environmental regulations. Moreover, following

supplementary analysis at the price level, in contrast to the price uncertainty level,

our overall finding shows that only the news-based index contributes to reducing

prices across markets. This result supposes that markets anticipate regulations and

consequently adjust the prices down. In conclusion, this chapter considers the idea

that European low-carbon policy exerts different pressures in terms of maturity on

price uncertainty in fossil energy markets.

This dissertation is structured as follows: for each chapter, the body of the

chapter is first presented, followed by a dedicated appendix. Then, the dissertation
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proceeds to the next chapter until the general conclusion. Each chapter and each

appendix contains a reference section with the related bibliography.
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CHAPTER 1

Summary

While numerous studies investigate volatility transmission across commodity mar-

kets, particularly oil and agricultural markets, uncertainty diffusion across com-

modity markets remains absent from the literature. This circumstance is primarily

related to the lack of appropriate measures of commodity price uncertainty, which

differs from volatility. This chapter focuses on measuring commodity price un-

certainty and how it is transferred from one commodity market to another. Our

contributions are twofold. (i) We construct an aggregate predictability-based mea-

sure of uncertainty for each group of commodity markets and different maturities,

and (ii) we analyze uncertainty diffusion across different commodity markets us-

ing a vector autoregressive model. Our findings clearly demonstrate a bi-causal

uncertainty transfer between agriculture, energy, and industrial markets, excluding

precious metals markets. Additionally, the industrial commodity market is assumed

to be the transmission channel of commodity uncertainty spread, given its close link

with global economic activity. Notably, we validate the efficacy of using industrial

uncertainty as a proxy for macroeconomic uncertainty. Finally, our confirmation of

precious metals’ insensitivity to other markets’ shocks reinforces its nature as a safe

haven.

Classification JEL: Q02, C32, E32.

Keywords: Commodity uncertainty, vector autoregressive model, macroeconomic

uncertainty.
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1 Introduction

The new landscape of commodity markets shaped by the financialization phe-

nomenon is characterized by high price volatility.2 Given the centrality of

commodities in human activity, this ubiquitous volatility changes economic agents’

behavior and has consequences on economic activity. Additionally, the pandemic,

which affected the global economic context, led to the resurgence of an already

uncertain environment on international markets; particularly in the commodity

markets that are of interest to this chapter. Kyle and Xiong (2001) and the United

Nations Conference on Trade and Development in 2009 detail the implications of the

rising use of commodities assets amid higher volatility and the correlation between

commodity prices. This suggests that countries’ commodity-based financial indices

are linked, and commodity price sensitivity is subject to international market condi-

tions, exhibiting a contagious phenomenon. In a deeper way, the financialization of

commodities since 2004 has led to more integrated markets, including the synergy

of energy, industrial, agriculture, and precious metals commodities. According to

Diebold et al. (2017), energy market has higher degree of financialization so that its

shocks are transmitted to other commodity groups. The degree of integration has

considerably increased between energy, metals and agriculture commodity markets

(Tang and Xiong, 2012, Nazlioglu et al., 2013, Yang et al., 2021). However, the

linkages including spillover effects and transmission mechanism among commodity

prices are more complex and require further explorations.

This chapter considers uncertainty shocks as an important driving factor of the

dynamic connectedness between commodity markets. Uncertainty shocks on com-

modity and stock markets are diverse and can arise from the economic uncertainty

(Güngör and Taştan, 2021, Huang et al., 2021, Wen et al., 2022), health crisis (Jeris

and Nath, 2021) or geopolitical events (Gong and Xu, 2022, Wang et al., 2022). In

recent years, this last source of uncertainty shocks appears to be crucial in commod-

ity interconnections since geopolitical threatens are more frequent and tend to occur

in areas rich in energy and mineral resources. For instance, the war between Ukraine

and Russia is a clear illustration. In fact, Russia being one of the world’s largest

producers of energy and food grains, the incident causes the prices of crude oil (as

2Commodity financialization is defined as the increase in the volume of transactions on financial
instruments, such as ”Futures” contracts on commodity markets. For more details about see
Silvennoinen and Thorp (2013), Chari and Christiano (2017).
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well as its by-products), natural gas, wheat and safe-havens assets (such as gold

and silver) to rise sharply. Moreover, geopolitical tensions often imply adjustments

and shifts in government policies, which generate broad implications for investors’

sentiment on both commodity and financial markets (Asai et al., 2020). Thereby, as-

sets pricing take into account investors’ inflation expectations under time-frequency

dynamics of volatility spillovers among commodity markets (Aybar et al., 2020).

Therefore, extreme events resulting from geopolitical risk favor investor panic un-

der uncertainty, that afterwards drive anomalous market volatility and ultimately

affects the long-term stability of commodity markets (Tiwari et al., 2021). Commod-

ity markets are inherently volatile because they are purely governed by expectations

wherein agents are unable to determine the market equilibrium in advance. Given

that economic activity is highly dependent on commodities, this context leads to

reexamining the sufficiency of the common reliance on commodity price volatility

when analyzing economic recessions.

Existing research investigates the concepts of volatility and uncertainty in an

interchangeable manner, and volatility-based uncertainty measures have recently

emerged (such as the Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) models, implied volatility index). Since Jurado et al. (2015) proposed

a definition of uncertainty as the volatility of an unpredictable disturbance on some

macroeconomic and financial factors, this subsequently created a major distinction

in modeling volatility and uncertainty in various empirical works. Likewise, relying

on this distinction when investigating the oil market, Joëts et al. (2018) conclude

that volatility and uncertainty in prices are not alike. Diebold and Kilian (2001)

proposed a predictability approach on economic variables that contributes more to

uncovering agents’ decision-making process than examining a simple dispersion de-

gree on some interest variables. Since volatility and uncertainty are conceptually

different, it might be erroneous to claim that volatility spillover is roughly equivalent

to uncertainty diffusion. Commodity price volatility may or may not generate un-

certainty, which could have macroeconomic implications. This assertion is not only

related to the clarification regarding the distinction between volatility and uncer-

tainty, but also confirmed by the empirical literature, which has widely investigated

price volatility spillovers among commodity markets; oil and agriculture markets in

particular (Busse et al., 2010, Zhang et al., 2010, Serra, 2011, Serra et al., 2011,

Hassouneh et al., 2012, Kristoufek et al., 2012).

This chapter aims at exploring a new insight of commodity markets’ instability.
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We focus on the diffusion of unpredictable shocks (such as COVID-19 outbreak or

Ukraine-Russia war), involving markets’ disturbances. Therefore, this chapter goes

beyond the empirical literature on volatility in two ways: First, we propose a prac-

tical measure of commodity price uncertainty based on predictability, as opposed to

volatility. For that purpose, we develop a price uncertainty aggregate measure for

21 commodity markets using a moving average stochastic volatility model on price

forecasting error.3 By employing this perspective, we note that unlike the volatility

measure, which relies on a backward-looking approach, the uncertainty measure in-

cludes agents’ anticipation through forecasting based on financial or economic events

(Joëts et al., 2017). In this sense, measuring uncertainty looks forward at financial

or economic disturbances. Second, we emphasize the transmission mechanism of un-

certainty shocks across different commodity markets by examining impulse response

functions through a multivariate time-series model. We also present macroeconomic

perspectives of uncertainty transmission mechanisms across markets.

Our investigation uncovers two notable findings. (i) The predictability-based un-

certainty indicator outperforms the volatility indicator when considering the 2007-

2008 financial crisis, suggesting that reasoning in terms of uncertainty, rather than

volatility, could present a tool for investors for gauging economic expectations. (ii)

A bi-causal effect is evident between agriculture, energy, and industrial markets’ un-

certainties, with the exception of precious metals markets. Moreover, we show that

industry uncertainty could serve as a proxy for macroeconomic uncertainty, as it

functions similarly to global demand uncertainty that ensures uncertainty diffusion

across heterogeneous markets. The latter aspect is more observable in the energy

market during economic turmoil than in other markets. In the same vein, one might

argue that industry uncertainty as a proxy for macroeconomic uncertainty, captures

the geopolitical uncertainty. It is notable that these results can be considered orig-

inal, as such an aggregate measure of uncertainty in commodity markets has not

yet been explored, including the resultant cross-market uncertainty transmission.

Our outcomes shed light on some implications for both investors and policymakers.

On the one hand, this chapter provides investors an at-hand instrument to appraise

price uncertainty in various commodity markets, which may give perspective for

the development of hedging strategies to rule out, as much as possible, uncertainty

3The aggregate measure of uncertainty is computed using weights provided by World Bank
data.
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spillover effects across commodity markets. On the other hand, when formulat-

ing effective macroeconomic policies, policymakers should consider heterogeneous

uncertainty transfer effects between markets. Notably, actions to promote energy

and agriculture security in an economic cooperation framework could help reducing,

at the country level, uncertainty spillover effects on markets with strong diffusion

(energy, agriculture, and industry).

The remainder of the chapter is organized into five sections. Section 2 presents

discussion of volatility versus uncertainty. Section 3 describes the construction of

our aggregate uncertainty index for commodity markets. Section 4 presents the em-

pirical strategy and results on commodity uncertainty shock transmission. Section

5 examines industry uncertainty as a potential proxy of macroeconomic uncertainty,

presenting a vehicle through which the latter could spill over into other markets.

Section 6 concludes the chapter.

2 Discussion on volatility versus uncertainty

This section presents some background on the concepts of volatility (or risk) and

uncertainty in the economic literature for preliminary orientation.

2.1 Theoretical debate

From the microeconomic perspective, it is necessary to reference Knight (1921), the

first author to highlight the distinction between risk (commonly volatility) and un-

certainty, which then entered the lexicon of economics and decision theory. The

difference between risk and uncertainty is generally interpreted as being related to

whether agents can be assumed to function as if they possess well-defined proba-

bilities for possible outcomes. If so, the situation is one of risk; if not, it is one

of uncertainty. While the distinction between risk and uncertainty, so defined, is

often encountered in the literature, until recently its role enables some economists

(particularly those working in the neoclassical tradition) to rule out uncertainty

(Hirshleifer, 1970). Indeed, the main reasons for doing so are found in the modern

theory of choice wherein subjective probabilities are derived from agents’ orderings

over lotteries; therefore, most economists have more willingness to do this with the

assumption of consistent choice.

In the neoclassical macroeconomics literature, the debate on risk-uncertainty
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has resurfaced. In his famous critique, Lucas (1976) points out in a risk-uncertainty

environment a discretionary regime of the monetary policy makes it difficult for pri-

vate agents to understand the policymakers’ incentives and form their expectations

accordingly. In that sense, agents’ behavior adapts to economic policies structural

changes. Keynes also sets out exactly the distinction commonly assigned to Knight

(1921). Whatever the merits of this contention, it has acquired considerable cur-

rency in recent years, leading to renewed interest in the risk-uncertainty distinction.

LeRoy and Singell (1987) argue that the common interpretation of Knight’s risk-

uncertainty distinction concerning whether agents possess subjective probabilities

constitutes a misreading of Knight. On the contrary, Knight clearly shared the

modern view that agents can always be assumed to act as if they possess subjec-

tive probabilities, even in the case of uncertainty. Knight’s theory refers to risk

situations where insurance markets exist and uncertainty situations where they do

not. In that sense, uncertainty means a situation in which insurance markets col-

lapse because of moral hazard and adverse selection. This latter view of uncertainty

suggests a striking anticipation of the modern treatment of market failure. The

economic outlook we can cast on this distinction is relative to entrepreneurship,

as highlighted by LeRoy and Singell (1987). According to these authors, Knight’s

risk, uncertainty, and profit are properly read as an analysis of the consequences of

entrepreneurship being uninsurable for economic institutions and economic theory.

The central assumption of Knight’s risk, uncertainty, and profit is the presence or

absence of insurance markets and not necessarily the applicability or inapplicability

of probabilistic calculus, as clearly established.

The macroeconomic perspective presents a similar interpretation to the Knigh-

tian risk approach in the sense that volatility (risk) measures the extent to which

a macroeconomic aggregate fluctuates around its expected long-term value. Hence,

economic uncertainty can be defined as a circumstance wherein the economic future

is unreadable, agents’ behavior becomes unpredictable, and projects become unreli-

able. Based on this definition, uncertainty is related to a lack of reliable forecasting

of interest variables. Therefore, following this reasoning, volatility cannot always be

accompanied by uncertainty, as part of the volatility can be captured using modern

forecasting models (Joëts et al., 2018).

31



CHAPTER 1

2.2 Empirical debate

To the best of our knowledge, the literature predominantly focuses on volatility and

uncertainty measurement.

Uncertainty has a crucial role in many studies in terms of sources, measurement,

potential effect on agents’ behavior (Dixit, 1989), and economic activity (Bloom

et al., 2007, Bloom, 2009, Bachmann et al., 2013, Jurado et al., 2015).4 Among

studies regarding the real implications of uncertainty, Bloom (2009) and Bloom et al.

(2018) were the first to highlight uncertainty as the main driver of business cycle

fluctuations and point out during the United States (US) recession that uncertainty

goes up by almost 50% on average. Likewise, these uncertainty shocks lead to a

significant temporary fall in output and productivity.

Uncertainty is tough to quantify since it is an intrinsically unobservable con-

cept to be measured. The literature on uncertainty is primarily based on proxies

due to the challenging nature of accurately measuring uncertainty. Therefore, two

approaches of observable and unobservable (latent) uncertainty measures are used.

Observable measures are primarily volatility-based and rely on proxies using time-

series variations of observable economic and financial indicators. Among others, we

note cross-sectional dispersion of firms, industry earnings, or productivity (Bloom,

2009, Bloom et al., 2018)), and the implied volatility index also known as VIX

(Bloom, 2009).5 In the same vein, several measures have also been developed, in-

cluding the variance risk premium (Zhou, 2018, Bali and Zhou, 2016), consumers’

perceived uncertainty from survey data (Leduc and Liu, 2016), and the volatility

of fiscal instruments estimated under time-varying volatility (Fernández-Villaverde

et al., 2015).6 Additionally, there are previous newspapers-based uncertainty mea-

sures, such as economic policy uncertainty (Brogaard and Detzel, 2015, Baker et al.,

4Bloom (2014) and Baker et al. (2014) provide large reviews of literature regarding uncertainty
shocks.

5The VIX is a stock market-based option-implied volatility that can be decomposed into two
components, a proxy of the risk aversion and expected stock market volatility. VIX represents
the option-implied expected volatility of the S&P500 index with a horizon of 30 calendar days
(22 trading days). It is an implied or ”risk-neutral” volatility, as opposed to actual or physical
expected volatility. If we consider a discrete state economy, physical volatility will intuitively use
actual state probabilities to arrive at the physical expected volatility, whereas risk-neutral volatility
would make use of probabilities adjusted for the pricing of risk.

6Several Studies of uncertainty shocks use either VAR models or Dynamic Stochastic General
Equilibrium (DSGE) models (Bloom et al., 2018, Leduc and Liu, 2016).
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2016, Azqueta-Gavaldón, 2017) and the geopolitical risk (Caldara and Iacoviello,

2020).

Latent or unobservable measures rely on the approach proposed by Jurado et al.

(2015) for which fluctuations in observable economic indicators may vary for several

reasons that are not imputed to uncertainty; hence, they define uncertainty as the

volatility of an unforecastable component of a large group of macroeconomic and

financial indicators. This latter approach provides predictability-based uncertainty

measures (Scotti, 2016, Jurado et al., 2015, Rossi and Sekhposyan, 2015, Ludvigson

et al., 2015, Bachmann et al., 2013) that are forecast-dependent.

All the measures presented above consider at least three sources of uncertainty

that include macroeconomics, financial markets, and economic policy. Among stud-

ies investigating the impact of each source of uncertainty on the economic activity,

Jurado et al. (2015) find that macroeconomic uncertainty shock has a sustained

and adverse effect on industrial production and employment, as opposed to implied

volatility or economic policy-based uncertainty. Other studies investigate the possi-

bility of an aggregate measure of uncertainty based on several proxies: Haddow et al.

(2013) use principal component analysis to extract an uncertainty index based on

four indicators (financial and survey data), and Charles et al. (2018) use a dynamic

factor model (Doz et al., 2012) to construct an uncertainty composite index (UCI).

The former study is implemented for the UK in the 1985-2013 period. The latter

study, conducted for the US, includes economic policy uncertainty source along with

six uncertainty proxies used in the literature, including two macroeconomic and fi-

nancial uncertainty factors based on unpredictability proposed by Jurado et al.

(2015) and Ludvigson et al. (2015),a measure of microeconomic uncertainty with

the forecast disagreement index proposed by Bachmann et al. (2013), the ”former”

implied volatility index, corporate bond spreads, and an index of economic pol-

icy uncertainty proposed by Baker et al. (2016).7 Charles et al. (2018) compared

the sensitivity of macroeconomic variables (S&P500 stock market index, inflation,

nominal wage, manufacturing production, employment, hours worked, and federal

fund rate) to the UCI and six other individual standard proxies of uncertainty from

VAR models. Following their results, an increase in the UCI leads to a significant

drop in all macroeconomic variables, and only uncertainty measures based on pre-

7Baker et al. (2016) construct an economic policy-related uncertainty measure based on news-
paper analysis and its impact on financial and macroeconomic variables.
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dictability and corporate bond spreads are important, but not dominant, sources of

macroeconomic variables’ volatility.

Finally, the previous literature presents different sources and measures of uncer-

tainty. In this chapter, we are interested in the macroeconomic side of uncertainty

in commodity markets. To this end, it is beneficial to use Jurado et al. (2015)’s

idea of predictability and the appropriate methodology corresponding to commod-

ity markets’ characteristics. The following section presents the construction of the

aggregate uncertainty index in commodity markets.

3 Commodity markets’ aggregate uncertainty in-

dex

3.1 Data description

Our sample consists of 21 world commodity markets classified into four main groups

of energy, industry, agriculture, and precious metals. Commodity price data for all

markets are extracted on a monthly frequency from the World Bank website. The

period ranges from January 1995 to December 2018 (see Table A.1 in Appendix

A.1).8

Figure A.1 (in Appendix A.3) illustrates the evolution of agricultural commodity

prices. An upward trend occurs in the early 2000s for most agricultural markets

(cocoa, maize, lumber, coffee, soybeans, sugar, cotton, and wheat). Figure A.2 (in

Appendix A.3) presents the price dynamic of industrial commodities (aluminum,

lead, tin, copper, nickel, zinc, and iron). These markets also experienced a significant

upward trend in the early 2000s. Historically, China’s entry into the World Trade

Organization could justify this price increase. During that period, driven by the

industrial production above 10%, a world growth cycle led to economic growth of

4.5%. Conversely, during the 2008 economic crisis, most industrial commodities

experienced a considerable drop in prices before a slight rebound after the crisis.

Oil, gas, and coal represent our energy markets. At first glance, Figure A.3 (in

Appendix A.3) presents a bullish trend from the 2000s before slight drops in 2008, in

8World Bank Commodity Markets: Commodity-prices-pinksheets. The data are seasonally ad-
justed using a deterministic log-additive decomposition method with values close to those obtained
with seasonal-trend decomposition using LOESS.
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late 2014, and early 2015 for oil and gas. The fall in coal price was more premature

in 2011-2012. Finally, gold, platinum, and silver markets represent the precious

metals markets. Figure A.4 (in Appendix A.3) shows gold and platinum series with

a steady upward trend in the early 2000s. These prices slow down after 2011. Note

that these markets have particular specificities related to their components that

are safe havens. Due to the stationarity issue, we log-differentiate the seasonally

adjusted series at the first order to obtain returns. These data are used to obtain

the uncertainty index, as described in the following subsection.

3.2 Methodology

The predictability-based uncertainty of Jurado et al. (2015) is defined as the condi-

tional volatility of an unpredictable disturbance. In the same vein, we construct our

aggregate uncertainty measure in commodity markets using the data described and

based on the concept of predictability. Following Joëts et al. (2017), we compute

the uncertainty measure of each market in three steps as follows:

(i) A fixed rolling window estimation of a AR(1) process for each stationary

series of commodity price returns. Formally, let’s consider Comt denoting the time

series of the individual commodity price returns.

(ii) The previous step allows, for each rolling window estimation, to extract a

one-step ahead out-of-sample forecast E(Comt+1|It) defined as the expectation of

the commodity price returns with respect to the information available at time t.

Also, the associated forecast error wt+1 is given by:

wt+1 = Comt+1 − E(Comt+1|It) (1.1)

(iii) Estimation of the stochastic conditional volatility of the forecast error.9 Un-

like recent empirical studies using AR terms and exogenous predictors to construct

oil price uncertainty (Nguyen et al., 2019, Cross et al., 2020), in this chapter, we

choose a large number of markets and for homogeneity and methodological conve-

nience, we specify the forecasting model for each commodity market with the AR(1)

9In this chapter, we use one-month horizon uncertainty. For interested readers, an uncertainty
for each market and different forecast horizon h is available upon request.
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process.10 Note that this final step, referencing Chan and Jeliazkov (2009) and Chan

and Hsiao (2014), relies on a moving average stochastic volatility (MASV) model

that accounts for the volatility specifications over time and clustering phenomena

that remain a characteristic of commodity markets. More specifically, it assumes

that the forecast error wt can be defined by the following equation:

wt = µ+ vt (1.2)

where µ is a constant and represents the mean of the forecast error. The variable vt

is assumed to be serially dependent and follows the MA (q) of the form:

vt = εt + ψ1εt−1 + .....+ ψqεt−q (1.3)

ht = µh + ϕh(ht−1 − µh) + ςt (1.4)

where εt ∼ N(0, eht) and ςt ∼ N(0, σ2
h) are independent of each other.11 The variable

ht is the log-volatility of εt and is assumed to follow an AR (1) process, µh is the level

of the log-variance and | ϕh |< 1 represents the persistence of the log-variance. Note

that this variance is not allowed to vary unrestrictedly with time. The feature of

this model fundamentally differs from GARCH-type models where the time-varying

volatility is assumed to follow a deterministic, rather than stochastic, evolution. The

stochastic volatility model is thus conveniently expressed in hierarchical form and is

center-parameterized. According to Chan and Hsiao (2014), under the assumption

of moving average extension, the conditional variance of the series wt is given by:

V (wt|µ, ψ, h) = eht + ψ2
1e
ht−1 + ......+ ψ2

qe
ht−q (1.5)

The estimates of this stochastic volatility make it possible to capture both mov-

ing average and log-volatility effects, as shown in equations (1.3) and (1.4), respec-

10The forecasting model could also be improved for each individual market as proposed later in
the chapter 2.

11ε0 = ε1 = ..... = ε−q+1 = 0. The roots of the characteristic polynomial associated with the

coefficients of the MA process, ψ = (ψ1, . . . .., ψq)
′
are outside the unit circle, which ensures the

stability of the model.
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tively.12 From equation (1.5), an aggregate index of uncertainty for each group of

commodity markets (agriculture, industry, energy, and precious metals) is obtained

by computing a simple weighted average of individual price uncertainties noted as

V (wt|µ, ψ, ht) = Ui,h. Formally, we note Um,h our aggregate uncertainty index de-

fined as follows:

Um,h =
n∑
i=1

αiUi,h (1.6)

where m indicates a given group of commodity markets, i an individual commodity

market that belongs to group m, and h the horizon. Notice that αi represents the

weight of the individual market i.13

For each group of commodity markets, Figure 1.1 presents the one-month com-

modity price uncertainty (blue line) we computed above in comparison to GARCH

(1,1) volatility measure (red line), and VIX (green line). Simultaneous presentation

of these measures allows us to emphasize the relevance of our predictability-based

measure of uncertainty with respect to other indicators based on volatility. Table

A.2 (in Appendix A.1) gives an overview of variables’ labels and description.14

12See Chan and Jeliazkov (2009) and Chan and Hsiao (2013) The MATLAB code used to estimate
the MASV model is freely available from Joshua Chan’s website. For each variable, we obtain 20000
loops or draws from the posterior distribution using the Gibbs sampler after a burn-in period of
1000.

13Markets weights are available on the World Bank Commodity Markets website: Commodity-
pricespinksheets.

14GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity model. For
each group of commodity markets, we compute a GARCH (1,1) volatility measure of commodity
price returns. In turn, the VIX represents implied volatility.
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Figure 1.1: Uncertainty versus Volatility.

Note: These figures depict one-month uncertainty, labeled AGRIU1, INDUSTU1, ENERGYU1, and PMU1 for

agriculture, industry, energy, and precious metals markets (blue line scaled on the left axis), respectively (Table 2,

in Appendix A). The volatility is based on the estimation of a GARCH(1,1) on market groups (red line scaled on

the left axis) labeled GARCHAGRI, GARCHINDUST, GARCHENERGY, and GARCHPM. The VIX is the green

line scaled on the right axis.

The vertical gray bands correspond to heightened uncertainty episodes that are

generally associated with economic turmoil, such as the great recession of 2008. We

consider a given period to correspond to an episode of heightened uncertainty for a

commodity market when the measure of uncertainty exceeds the horizontal bar that

represents 1.65 standard deviation above the unconditional mean of the commodity

price uncertainty. During these periods of heightened uncertainty, different measures

of uncertainty and volatility have reached a peak; however, the upward slope before

the peak began earlier for our measure of uncertainty compared to other measures.

This indicates that the predictability-based measure of uncertainty captures the

slope a few months earlier economic turmoil episodes, whereas volatility-based mea-

sures, such as VIX and GARCH, react a few months later. For instance, analyzing

the recent financial crisis, which lasted 19 months (December 2007-June 2009, repre-

sented by the gray band) according to the NBER recession dates disclosure, market

price volatility (red line) is accompanied by uncertainty (blue line). Agriculture, in-
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dustry, and to a lesser extent, energy markets’ uncertainties start an upward trend

around June 2007 (three months before the crisis), before VIX and GARCH volatil-

ity indices (July and August 2008, respectively), reaching their peak in October 2008

at almost the same time as VIX, but two months prior to GARCH. Furthermore, the

timing gap is also observable in the precious metals market where the uncertainty

upward dynamic begins earlier, reaching a peak in July 2008, along with implied

volatility in October 2008, and GARCH in March 2009. Therefore, compared with

volatility, predictability-based uncertainty can be considered a leading indicator that

reflects investors’ expectations and a forthcoming economic turmoil signal at a sig-

nificant level. This early warning signal of global economic recession indicates the

potential negative effects of uncertainty in agricultural, energy, and metals markets

on economic activity for a given forecasting horizon, as highlighted by Jurado et al.

(2015), Joëts et al. (2017), and Triantafyllou et al. (2019). Moreover, for reasons

already discussed in section 1 and emphasized in section 2, it is less surprising that

volatility measures seem more unstable before 2008; thereby, it permits the expo-

sure of a clear distinction between patterns of episodes of volatility and uncertainty.

While periods of significant uncertainty amplify volatility, periods of high volatility

are not necessarily accompanied by heightened uncertainty. Having constructed un-

certainty indices, the next consideration is whether interactions between markets’

uncertainties exist.15

4 Uncertainty diffusion within commodity mar-

kets

4.1 Empirical strategy

Thus far, the commodity markets analysis has captured the diffusion of volatility, but

not uncertainty. Some studies have highlighted volatility diffusion within commodi-

ties using either conditional variance or implied volatility measures. For instance,

Nazlioglu et al. (2013) conduct an empirical analysis to examine the volatility trans-

mission of oil to common agricultural commodity prices (wheat, corn, soybeans, and

sugar). They specified a GARCH model for each market and performed a variance

15Table A.4 (in appendix A.1) displays the descriptive statistics of uncertainty variables.
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causality test analysis for the 2005 pre-crisis and post-crisis period, demonstrating

the spillover effects of oil market volatility on the agricultural markets during the

2005 post-crisis period except for sugar. Gozgor et al. (2016) replicate this analysis

on the same commodity markets using a GJR-GARCH approach, finding a higher

correlation of oil market volatility with the four agricultural markets. Liu et al.

(2013) analyze short and long run volatility transmission between crude oil implied

volatility and other important volatility indices, including stock market volatility

(VIX), the euro/dollar exchange rate volatility index, and the gold price volatility

index. They argued that only short run relationships exist among these indices, and

oil market volatility is influenced by the other indices in terms of volatility expecta-

tions in the oil market becoming sensitive to other markets’ volatility shocks when

global economic activity is extremely unstable.

This chapter endeavors to fill the literature gap on the issue of uncertainty dif-

fusion between commodity markets. For this purpose, we propose to assess the

transmission of one-month (very short term) aggregate uncertainty across markets.

Table A.3 (in Appendix A.1) presents the markets’ uncertainties correlation matrix

and the level of significance. Positive relationships notably arise from the inter-

connections among markets. For instance, industry and precious metals record the

highest correlation coefficient of 72%. To conduct our analysis, we rely on a vector

autoregressive (VAR) modeling, which allows us to capture each variable’s response

to any change in another variable. This property is suitable to capture uncertainty

diffusion across commodity markets once a measure of uncertainty is available. The

reduced form of the VAR model is defined as follows:

Ut = C + Φ1Ut−1 + .......+ ΦpUt−p +Dm + Vt (1.7)

where Ut corresponds to a vector of four endogenous variables of uncertainty for

each commodity markets’ group; namely, the one-month uncertainty in agriculture,

energy, industry, and precious metals markets. However, the way we manage the

variables’ classification order will be presented later. C is a vector of constants,

and Φp is the matrix of autoregressive coefficients corresponding to a lag p of the

system.16 Vt is the vector of orthogonal error terms. Dm represents time dummies

16The lag length criteria retained is two, following standard information criteria. We use different
lag specifications to test the robustness of our results. The qualitative results of our study are not
affected by the choice of the lag specification.
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specific to each group of markets and structural breaks that are identified by the

Zivot-Andrews unit root test (see Table A.5, in Appendix A.1).17

To assess the uncertainty diffusion across commodity markets, we use General-

ized Impulse Response Functions (GIRFs) to avoid ordering uncertainty variables.

Indeed, it seems to be difficult to intuitively determine which uncertainty variable is

more exogenous than others to establish the ordering in the Cholesky factorization;

therefore, we reference Koop et al. (1996)’s GIRFs using the following equation:

GIRF u (h, It−1, Vt) = E [Ut+h|It−1, Vt]− E [Ut+h|It−1] (1.8)

where It−1 is the information set at time t − 1 and Vt is a realization of exogenous

shocks (that comes from the vector of the orthogonal error terms). The response

of each variable in Ut at the horizon h is computed by simulating the evolution

of the model conditionally to the initial condition It−1 and to a given realization

Vt. Having described the estimation strategy and the way we capture uncertainty

diffusion among markets, we will present the results in the next section.

4.2 Results discussion

In the following GIRFs, a given uncertainty shock in one commodity market is

helpful for evaluating how this uncertainty can be transferred to other markets.

The explanation of the aggregate uncertainty diffusion mechanism between markets

relies on prior identification of main components in each commodity group. We

consider the main factors or drivers of aggregate uncertainty in each commodity

group as those that register the highest weight. For instance, the crude oil market

accounts for 84% of the total share of the aggregate energy market uncertainty and

is considered as its leading component.

Figure 1.2 presents the transmission of industry uncertainty shock to other mar-

kets. The industrial market is strongly represented by copper (38% of the total

share), which is one of the most important nonferrous metals in the modern indus-

try.18 Uncertainty in the industrial market is transmitted to energy and agriculture

17The test reveals that our uncertainty variables are all stationary at a 5% significance level.
Moreover, structural break dates identified by the test are 08/2012 for agriculture, 05/2010 for
industry, 06/2009 and 08/2014 for energy, 09/2011 for precious metals.

18Although aluminum and iron have considerable weights, we insist on copper and its prominent
role in the industry sector.
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markets for two and six months, respectively. Concerning industrial and energy

markets, it is necessary to highlight the close link between industrial commodities

and global demand to understand the diffusion of the industry uncertainty to the

energy market. Copper is the most used for industrial purposes, for infrastructure

renewal, construction projects, and telecommunications. Thus, copper is considered

a leading indicator of global economic health. More than any other base metal, cop-

per is closely tied to manufacturing, electrical engineering, industrial production,

information technology, construction, and the medical sector. In general, rising cop-

per prices indicate strong demand and a global economic strength, whereas lower

copper prices indicate a weaker economy; therefore, the diffusion of uncertainty from

industry to the energy market is primarily conveyed through the demand channel.

For instance, it appears that the 2008 economic crisis generated overall uncertainty

in the industrial market, and in the copper market in particular, which was also

reflected in the energy market. Copper is one of the main components of renewable

energy systems, which uses more metal than traditional energy sources. Concerning

industrial and agricultural markets, diffusion of uncertainty between these markets

is also linked with global demand. Joëts et al. (2017) argue that beyond traditional

supply and demand shocks, the macroeconomic uncertainty constitutes another key

channel through which economic fundamentals may impact commodity prices.

Figure 1.2: Responses to one-month industry uncertainty shock.

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),

ENERGYU1 (one-month energy market uncertainty), and PMU1 (one-month precious metals market uncertainty).
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Figure 1.3 illustrates the uncertainty transmission from the energy market to

agriculture, industry, and precious metals markets. A positive and significant impact

of energy uncertainty on agriculture and industry occurs for four and five months,

respectively. It is sufficient to say that the spread of uncertainty occurs in the short-

run from energy to both agricultural and industrial markets. Knowing that the oil

market accounts for 84% of the energy market, thus has the same proportion in

energy market uncertainty construction, oil market uncertainty is considered to be

the main driver of this sector.

The energy market was strongly influenced by the discovery of coal in the 18th

century (1797), which became a primary energy source until the advent of oil in the

19th century (1859). With oil exploration and the establishment of the oil industry

that has developed making derivatives, oil has become the dominant component of

the global energy market. Among many other natural resources, oil remains an ob-

ject of covetousness among states to the point of generating geopolitical and strate-

gic interests. This circumstance was compounded by the wars in Kuwait (1990),

Afghanistan (2001), and Iraq (2002-2003). Due to the wars, a sharp increase in oil

prices was followed by uncertainty that was linked to a rise in the precautionary de-

mand with the establishment of reserves. During the recession of 2008-2009, there

was a downward trend of prices, as in most sectors of the economy. Historically,

there have been oil shortages with price spikes and high volatility in 1996, 2001,

and 2005, but these have not led to much uncertainty (Kilian, 2010). Nazlioglu

et al. (2013) investigate the transmission of volatility from oil to agricultural mar-

kets (corn, soybeans, and wheat) revealing a dynamic transfer of volatility after the

food crisis in 2005. Following the food price crisis, a risk transmission dimension of

the dynamic interrelationships between energy and agricultural markets emerged,

as the latter are increasingly used as inputs in the former for biofuel production.

Indeed, several studies analyze the link between oil and agricultural prices in terms

of biofuels; for instance, Busse et al. (2010), Zhang et al. (2010), Serra (2011), Serra

et al. (2011), Hassouneh et al. (2012), and Kristoufek et al. (2012). The common

conclusion of these empirical investigations is that there is at least a direct short-

run volatility transmission between oil and some agricultural commodities. Notably,

according to our global uncertainty diffusion analysis, we also found a similar re-

lationship, wherein uncertainty on the energy market spills over to the agriculture

market and vice-versa, since oil derivatives are obtained from several crops’ agri-
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cultural commodities.19 Uncertainty in the energy market is transmitted onto the

industrial market for up to five months. It is notable that energy costs are high for

copper extraction, smelting, and refining processes. Copper and oil demonstrate a

positive correlation at 84% since 2002. Ji and Fan (2012) find that there is signifi-

cant volatility spillover effect from oil to nonenergy commodities of industrial metals

(copper, aluminum, and nickel). According to this study, the dynamic correlation

strengthened after the 2008 crisis, indicating that the consistency of market price

trends was affected by the economic recession; therefore, if oil price fluctuates in the

long run, so too does copper price. Likewise, both commodities are the main sources

of uncertainty in the energy and industry markets and are strongly correlated to the

same fundamental economic factors.

Figure 1.3: Responses to one-month energy uncertainty shock.

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),

ENERGYU1 (one-month energy market uncertainty), PMU1 (one-month precious metals market uncertainty), and

MACROU1 (one-month macroeconomic uncertainty).

Figure 1.4 presents the responses of various markets’ uncertainties to agriculture

uncertainty shocks. The impact is significant for industrial and energy markets. This

finding indicates that an increase in agriculture uncertainty leads to an increase of

19The reverse causality of uncertainty diffusion from agricultural to energy markets is confirmed
in Figure 1.4.
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uncertainty in the energy and industry markets, which reach a peak after two and

five months, respectively. Regarding the agricultural and energy markets, unlike

studies based on volatility, which only demonstrate the one-way effect of volatility

spillover from oil to some agricultural markets, our findings determine a two-way

uncertainty diffusion between the two markets, particularly during crisis periods.

Figure 1.4: Responses to one-month agriculture uncertainty shock.

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),

ENERGYU1 (one-month energy market uncertainty), and PMU1 (one-month precious metals market uncertainty).

Figure 1.5 depicts the precious metals uncertainty effect on other commodity

markets. According to this graph, precious metals do not affect any other commod-

ity market except the industrial commodity market, where the effect is persistent,

vanishing within 36 months after the initial shock. This is not surprising since the

correlation between both sectors’ uncertainties is high and significant. Regarding

the industry-precious metals relationship, the price of copper has historically been

highly correlated with the price of gold, Chinese economy, world trade, and more

commonly, with oil price. Also, the close connection between industrial and precious

metals volatility may be related to the increasing importance of different metals in

financial markets and their competitive role as hedging tools during market turmoil,

such as gold and silver in traditional precious metals, and copper in industrial met-

als (Sakemoto, 2018, Baur and Smales, 2020, Sikiru and Salisu, 2021). Note that

from Figure 1.2 to 1.4, precious metals remain insensitive to all other market shocks.

This is less surprising, as long as they are considered safe havens used by investors
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with high-risk aversion as hedging strategies. This market is strongly dominated by

gold (78% of the total share) and has a countercyclical pattern.

Biatkowski et al. (2015), use a Markovian regime-change model with an Aug-

mented Dickey-Fuller (ADF) test to calculate the fundamental value of gold and

capture the explosive trajectories of the price of gold, finding the most significant

historical boom to be in the early 1980s. The explanation is related to the fact that

there is an increase in inflation caused by the oil crisis between 1979 and 1982, cou-

pled with US accommodative monetary policy and expansive budget. This spiral has

led financial market participants to turn to precious metals. It is also notable that

commodity prices increased, and the influx of funds into gold-listed indices likely

contributed to this price dynamic. Uncertainty in the precious metals market in the

1980s also coincides with the 1981-1982 recession. The fight against inflation by a

contraction of the money supply initiated by Volker, the then president of the Fed,

in response to Reagan’s decision to oppose a return to the gold-standard monetary

system, led to the crisis from 1981 to 1982. The uncertainty on the silver (19% of

the total share) is more related to the different political crises between the United

States, Iran, and Afghanistan. The price of silver rose sharply following the Hunt

Brothers’ affair, which made a fortune in the oil and silver financial markets between

1970 and 1990 (Bredin et al., 2022); however, the crisis of 2008 did not extend to

the precious metals markets. While gold and silver prices rose slightly, platinum

(3% of the total share) more easily accommodated to the industrial metals cycle.

This suggests that agents’ anticipation of this price increase as uncertainty in these

markets has remained very low. In contrast to the recent financial crisis of 2008, the

spillover mechanism of the 1981-1982 crisis is linked to the precious metals markets

through Federal inflation targeting and interest rate policy.
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Figure 1.5: Responses to one-month precious metals uncertainty shock.

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),

ENERGYU1 (one-month energy market uncertainty), and PMU1 (one-month precious metals market uncertainty).

The results demonstrate a reciprocal effect in uncertainty diffusion between com-

modity markets other than the precious metals market; however, the industrial mar-

ket is the only one that reacts in a persistent way to precious metals uncertainty

shocks. Therefore, industrial uncertainty has links with all other commodity markets

that must be addressed, particularly in terms of interactions between heterogeneous

markets.20

5 Analysis of industry and macroeconomic uncer-

tainties

Our findings present the uncertainty in commodity markets and the role of demand

in the interaction between different markets. Figure 1.6 presents the comovement

between industry market uncertainty, macroeconomic uncertainty, and the VIX,

revealing that the evolution of industrial and macroeconomic uncertainties have

been strongly linked since 2005, due to the intensification of international trade and

commodity financialization.

20Table A.6 in Appendix A.1 reports the variance decomposition of industry uncertainty shocks.

47



CHAPTER 1

Figure 1.6: Macroeconomic uncertainty, VIX, and industry uncertainty.

Note: On the left axis, this figure depicts both macroeconomic (red line) and industry (blue line) uncertainty, labeled

MACROU1 and INDUSTU1, respectively. The VIX (green line) represents the implied volatility index scaled on

the right axis.

This section is geared toward interpreting industry uncertainty diffusion. First,

we present the impact of macroeconomic uncertainty and stock market volatility on

commodity markets to compare with industrial uncertainty. Second, we examine

industry and macroeconomic uncertainty contributions in agriculture and energy

markets during the financial crisis of 2008. This helps to determine whether industry

uncertainty could be considered a proxy for the macroeconomic uncertainty.

5.1 Comparative impact of the predictability and volatility-

based uncertainty measure on commodity markets

This section presents the comparative impact of the predictability-based uncertainty

measure and the volatility-based measure on commodity markets. This is accom-

plished by removing industry uncertainty and adding the volatility (VIX) or macroe-

conomic uncertainty variables into the previously estimated VAR model to analyze

their effects on commodity market uncertainty. The macroeconomic uncertainty

constructed by Jurado et al. (2015) relies on 132 macroeconomic variables and 147
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financial variables extracted from the FRED-MD monthly database.21 Both macroe-

conomic and financial indicators are unbalanced to avoid the over-representation of

financial variables and prioritize macroeconomic variables.22 Jurado et al. (2015)

emphasize that macroeconomic uncertainty proxy fluctuates countercyclically with

global economic activity and business cycles.23

Figures A.5 and A.6 (in Appendix A.3) show the effect of one-month VIX and

one-month macroeconomic uncertainty on commodity markets, respectively. The

response of energy and agriculture uncertainties following a VIX index shock is very

low compared to that obtained with macroeconomic uncertainty. The magnitude is

larger when the shock comes from the one-month macroeconomic uncertainty than

from the implied volatility index. While the effect of macroeconomic uncertainty on

energy uncertainty is more protracted (seven months), the response of energy market

uncertainty after the VIX shock is more transient (two months). This confirms that

the effect of the predictability-based uncertainty measure, whether related to over-

all economic activity (macroeconomic uncertainty) or individual sectors (commodity

markets), is more persistent than the common implied volatility index. While agri-

culture uncertainty is slightly more sensitive to macroeconomic uncertainty shock

(five months), the effect of the volatility shock in the agriculture market is not signif-

icant. This is especially true as financial markets, with dynamics that are replicated

by the implied volatility, have a closer link with energy than with agriculture. To

stick with the previous results, we recall that the effect of the industry uncertainty

on the agriculture market reaches a peak within five months, whereas the effect on

the energy market occurs within two months after the initial shock (Figure 1.2). We

also observe that the timing effect of the industry uncertainty on commodity mar-

kets follows the pattern of the macroeconomic uncertainty on the agriculture market.

Consequently, given that industry uncertainty affects both agriculture and energy

markets, as does macroeconomic uncertainty, there appears to be a correlation that

we will further investigate through the historical decomposition.

21This includes: real output and income, employment and hours, real retail, manufacturing and
trade sales, consumer spending, housing starts, inventory sales ratios, orders and unfilled orders,
compensation and labor costs, capacity utilization indices, price indices, bond and stock market
indices, and foreign exchange rate measures.

22A brief overview of the technical construction of macroeconomic uncertainty is presented in
Appendix A.2.

23The implied volatility measure (VIX) is available on Bloomberg or Yahoo Finance website.
Macroeconomic uncertainty is free to access on Ludvigson homepage: macroeconomic-uncertainty.
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5.2 Historical decomposition of agriculture and energy mar-

kets shocks in terms of industry and macroeconomic

uncertainty

We strongly established throughout this study that industry uncertainty is a special

vehicle of global demand uncertainty to commodity markets. Central to this insight,

the role of industrial metals in the global economic activity fluctuations must be ex-

plored. For centuries, and more particularly over the past two decades, demand has

gradually connected with the industrial sector. From then on, the increase in sen-

sitivity of industry uncertainty to other markets’ shocks also clearly reflects global

demand uncertainty to the same shocks. Based on economic intuition, this reasoning

helps to overcome the issue of explaining the diffusion of uncertainty across hetero-

geneous markets. The historical decomposition analysis is an alternative method

of variance decomposition that considers the different contributions of structural

shocks to system components in the historical variation of a variable (Burbidge and

Harrison, 1985). The purpose here is to compare the magnitude of the relative shares

of macroeconomic and industrial uncertainties in agricultural and energy markets.

This allows a better understanding of our proxy thesis.

We rely on Figure 1.6, presenting higher comovements between industry and

macroeconomic uncertainty from January 2005 to December 2009, to scrutinize the

historical decomposition from January 2008 to December 2009 with a focus on the

2008 financial crisis period. Figures 7 and 8 illustrate the relative contributions of

uncertainty shocks in various markets to the decomposition of the agriculture and

energy sectors. Agriculture contribution accounts for a large portion of its historical

decomposition for the given period. This is primarily due to specific agriculture

factors that have an indirect relationship with the economy. In fact, agricultural

commodities often face weather conditions (seasonality) and producers often hold

harvest stocks to smooth the supply chain until the following season. Moreover,

crops’ quality depends on how much they are protected from health disasters, such

as plagues and insects that damage plants. Beyond those factors, due to perma-

nent storage activity, the agricultural market is more resilient to economic shock;

therefore, the contributions of other markets’ uncertainty are limited in agriculture

due to its low sensitivity. This insight holds for both industry and macroeconomic

uncertainty shares in the agriculture market. The historical decomposition of en-

ergy, industry, and macroeconomic uncertainties’ shares become more observable
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in relatively equivalent proportions for the second part of the 2008 financial crisis.

In addition, with regard to energy, the contributions of both macroeconomic and

industry uncertainties are, on average, more or less equal over the given period and

follow the same trend, particularly in the second half of the crisis (from September

2008 to June 2009). This is less surprising, as unlike the agricultural market, which

has an indirect link with economic activity and is less affected by exogenous shock,

the energy market remains very sensitive. Likewise, due to the low-income elasticity

of demand for agricultural commodities, these markets are less sensitive to global

economic recession. Since it is established that the energy sector is sensitive to eco-

nomic activity shock, using industry uncertainty as a proxy of the global demand

uncertainty presents a viable method of shock replication.

Figure 1.7: Historical decomposition of the energy and agriculture markets

with respect to industry uncertainty.

Note: Total stochastic (the demeaned one-month agriculture and energy uncertainty), AGRIU1 (one-month agricul-

ture uncertainty contribution), ENERGYU1 (one-month energy uncertainty contribution), INDUSTU1 (one-month

industry uncertainty contribution), and PMU1 (one-month precious metals uncertainty contribution).
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Figure 1.8: Historical decomposition of the energy and agriculture markets

with respect to macroeconomic uncertainty.

Note: Total stochastic (the demeaned one-month agriculture and energy uncertainty), AGRIU1 (one-month agricul-

ture uncertainty contribution), ENERGYU1 (one-month energy uncertainty contribution), MACROU1 (one-month

macroeconomic uncertainty contribution), and PMU1 (one-month precious metals uncertainty contribution).

In summary, our analysis demonstrates that industry uncertainty is a valid proxy

for macroeconomic uncertainty. For practical purposes, we can argue, in addition

to being an indicator of the macroeconomic uncertainty, our measure of industry

uncertainty has the advantage of being easier to compute, as it uses only prices and

not several factors as in Jurado et al. (2015).

6 Conclusion

This chapter endeavored to analyze uncertainty transmission between various com-

modity markets. To conduct our analysis, we construct an aggregate uncertainty

measure for each commodity market category (agriculture, industry, energy, and

precious metals). To assess the extent to which market uncertainty diffusion is pos-

sible, we estimate a standard VAR model that considers market-specific characteris-

tics linked to structural breaks by incorporating dummy variables and GIRFs. Our

results demonstrate a bi-causal relationship among agriculture, energy, and industry

markets; however, the precious metals market does not react to any market uncer-

tainty exogenous shock, due to their well-identified safe haven role during economic

turmoil. Moreover, the industrial market is simultaneously sensitive to agriculture,

energy, and precious metals market shocks; thus, we assert that industrial commod-

ity uncertainty is an indicator of macroeconomic uncertainty, and has a predominant

role in uncertainty diffusion across commodity markets. Additionally, we compared

52



Uncertainty diffusion across commodity markets

the contributions of industry and the macroeconomic uncertainty shocks in agricul-

ture and energy markets. Unlike the agriculture market, we particularly observe

during the 2008 crisis that the contribution of the industry uncertainty is almost

the same as that of the macroeconomic uncertainty in the energy market. It is also

noteworthy that we clearly differ from studies on commodity volatility not only on

the assessment of prices disturbances but also the diffusion mechanisms through the

resulting findings.

Regarding the context of the COVID-induced economic uncertainty, our anal-

ysis may also shed light. In fact, beyond endogenous uncertainty diffusion across

markets, the COVID-19 outbreak as an exogenous shock, has affected global eco-

nomic activity by crippling many interconnected business sectors. For instance, oil

price fell by two- thirds in January 2020, combined with a 24% decrease after the

OPEC+ agreement failure (in March 2020). Agricultural price decline has been on

the order of 9% since January 2020. The industrial red metal (copper) slowdown

reached $4,684 a ton in mid-March 2020, its annual lowest value. This context cre-

ates a global uncertainty environment that lowers economic activity and reinforces

uncertainty diffusion across markets. Thereby, uncertainty over several agricultural

commodities that are experiencing a fall in prices has large negative repercussions

on oil and oil derivatives prices and vice-versa. Furthermore, copper uncertainty is

tied to its price plunge, reflecting a slowdown in economic activity. The contagion

effect that arises from this crisis could generate uncertainty within markets; thus,

the consolidation of the uncertainty diffusion analysis across markets. Once more,

the illustration of the health crisis’ effects on specific markets indicates that the

global demand channel driven by industry is the means through which uncertainty

diffuses to agriculture and energy markets. Therefore, an exogenous shock such as

the health crisis does not alter the mechanism. On the contrary, it passes through

an induced-macroeconomic shock. In the same vein, the Russia-Ukraine conflict as a

geopolitical event involving high macroeconomic uncertainty, has triggered turmoil

in the financial markets and drastically increased uncertainty about the recovery of

the global economy. The conflict threatens to squeeze energy and other commodity

markets. Russia is among top 5 producers of oil, natural gas, steel, nickel aluminum,

and wheat. On its side, Ukraine is the key producer of corn, wheat, sunflowers, sugar

beet, barley, soybeans and rapeseed. Higher commodity prices intensify the threat

of high long-lasting inflation which increases the risk of stagflation and social unrest.

Other sectors such as automotive, transport, and chemicals are likely more vulnera-
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ble. The exposure to imported inflation and trade disruptions varies across regions.

For instance, European economies are more at risk due to its high dependence on

Russian oil and natural gas.

This chapter has policy implications for investors and authorities. From the in-

vestors’ perspective, they have at disposal a reliable instrument to appreciate price

uncertainty in global commodity markets as well as the macroeconomic mechanisms

of diffusion. More specifically, an appropriate portfolio diversification strategy for

risk-averse investors might consist of mitigating the uncertainty spillover effects with

a combination of precious metals and one of other assets’ groups. From the author-

ities’ perspective, we could draw both short and long-term challenges: Short-term

challenges would involve policymakers to cushion price increases that could create

an inflationary spiral in order to protect households with low income. Long-term

challenges would consist of promoting a supply diversification strategy to reduce the

dependence for net importers. For instance, while northern countries are more con-

cerned by energy security, southern countries are betting for food security. Hence,

governments could rely on trade and storage policies to insulate their domestic mar-

kets from external commodity shocks. This fosters price stability through trans-

action costs. Moreover, regional trade agreements might prevent the exposure to

global commodity markets’ linkages.

Finally, this chapter is not devoid of possible improvements since they might

set path to future research works, such as the economic policy driver of commodity

price uncertainty.
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APPENDIX A

A.1 Tables

Table A.1: Commodity monthly prices data from January 1995 to December

2018.

Markets Description Units Weights Source

Energy

Oil Average oil price $/bbl 0.84 World Bank

Gas Average gas price $/mmbtu 0.05 World Bank

Coal Average coal price $/mt 0.11 World Bank

Precious Metals

Gold Gold spot price $/troy oz 0.78 World Bank

Platinum Platinum spot price $/troy oz 0.03 World Bank

Silver Silver spot price $/troy oz 0.19 World Bank

Agriculture

Cocoa Cocoa spot price $/kg 0.10 World Bank

Coffee Average coffee price $/kg 0.12 World Bank

Maize Maize spot price $/mt 0.14 World Bank

Cotton Cotton spot price $/kg 0.06 World Bank

Lumber Average Logs price $/cubic meter 0.26 World Bank

Soybeans Soybeans spot price $/mt 0.12 World Bank

Sugar Sugar spot price $/kg 0.12 World Bank

Wheat Average wheat price $/mt 0.08 World Bank

Industry

Aluminum Aluminum spot price $/mt 0.27 World Bank

Copper Copper spot price $/mt 0.38 World Bank

Lead Lead spot price $/mt 0.02 World Bank

Nickel Nickel spot price $/mt 0.08 World Bank

Tin Tin spot price $/mt 0.02 World Bank

Zinc Zinc spot price $/mt 0.04 World Bank

Iron Iron spot price $/mt 0.19 World Bank

Source: World Bank.
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Table A.2: Variables description.

Variables Labels Description

Agriculture AGRIU1 one-month agriculture uncertainty

Industry INDUSTU1 one-month industry uncertainty

Energy ENERGYU1 one-month energy uncertainty

Precious Metals PMU1 one-month precious metals uncertainty

Volatility VIX one-month implied volatility index

Uncertainty MACROU1 one-month macroeconomic uncertainty

Table A.3: Market uncertainty - Correlation matrix.

AGRIU1 INDUSTU1 ENERGYU1 PMU1 VIX MACROU1

AGRIU1 1.000
(0.000)

INDUSTU1 0.550 1.000
(0.000)

ENERGYU1 0.349 0.349 1.000
(0.000) (0.000)

PMU1 0.487 0.728 0.222 1.000
(0.000) (0.000) (0.000)

VIX 0.631 0.263 0.460 0.222 1.000
(0.000) (0.000) (0.000) (0.000)

MACROU1 0.662 0.703 0.644 0.583 0.566 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),
ENERGYU1 (one-month energy market uncertainty), PMU1 (one-month precious metals market uncertainty), VIX
(implied volatility), and MACROU1 (one-month macroeconomic uncertainty). The probability values are in parenthe-
sis.
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Table A.4: Market uncertainty - Descriptive statistics.

AGRIU1 INDUSTU1 ENERGYU1 PMU1 VIX MACROU1

Mean 0.717 0.446 0.473 0.629 0.333 0.654

Median 0.713 0.407 0.452 0.603 0.306 0.632

Max 1.000 1.000 1.000 1.000 1.000 1.074

Min 0.598 0.291 0.251 0.344 0.159 0.554

Std dev 0.074 0.132 0.131 0.155 0.130 0.089

Jarque-Berra 0.000 0.000 0.000 0.000 0.000 0.000

Obs 288 288 288 288 288 288

Note: AGRIU1 (one-month agriculture market uncertainty), INDUSTU1 (one-month industry market uncertainty),
ENERGYU1 (one-month energy market uncertainty), PMU1 (one-month precious metals market uncertainty), VIX
(implied volatility), and MACROU1 (one-month macroeconomic uncertainty). The probability values are in parenthe-
sis.

Table A.5: Zivot-Andrews unit root test with structural breaks.

One-month uncertainty Pvalue Break dates

Agriculture 0.013 08/2012

Industry 0.001 05/2010

Energy 0.041 06/2009, 08/2014

Precious Metals 0.002 09/2011
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Table A.6: FEVD (Forecast Error Variance Decomposition of industry).

Period AGRIU1 ENERGYU1 INDUSTU1 PMU1

2 0.33 0.08 99.48 0.11

4 1.64 0.39 96.87 1.1

6 2.91 0.62 93.16 3.31

8 3.68 0.68 88.90 6.74

10 6.18 0.65 84.36 11.04

12 3.86 0.61 79.80 15.73

14 3.60 0.57 75.45 20.08

16 3.29 0.55 71.43 24.73

18 3.04 0.54 67.79 28.63

20 2.86 0.56 64.54 32.04

22 2.75 0.60 61.66 34.99

24 2.71 0.65 59.10 37.54

Note: AGRIU1 (1-month agriculture market uncertainty), INDUSTU1 (1-
month industry market uncertainty), ENERGYU1 (1-month energy market
uncertainty), PMU1 (1-month precious metals market uncertainty).

A.2 A brief technical construction of the macroe-

conomic uncertainty index

Like commodity market uncertainty, Jurado et al. (2015)’s macroeconomic uncer-

tainty is linked to predictability but differs in its estimation methodology. To present

the empirical approach, we denote yjt a single time series in a set of variables

Yt(yjt ∈ Yt = (y1t, ...., yNyt)), the h-period uncertainty in that series is defined

as the conditional volatility Uj
y
t (h) of the purely unforecastable component of the

future value of the series.

Uy
jt(h) =

√
E
[
(Yjt+h − E (Yjt+h|Jt)))2 |Jt

]
(A.1)

where j = 1, . . . . . . ., Ny and E(.|Jt) is the conditional expectation of the variable.

The variable Jt is the set of information available at date t. The uncertainty linked

to the variable Yjt+h is therefore defined as the expectation of the squared error
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forecast. If we consider j individual measures of uncertainty, then we can proceed

to an equally weighted aggregation (wj being the weight) of the latter and obtain

the following expression of macroeconomic uncertainty:

Uy
t (h) = p lim

Ny→∞

Ny∑
i=1

wjU
y
jt(h) ≡ Ew

[
Uy
jt(h)

]
(A.2)

Jurado et al. (2015) propose the estimation of equations (A.1) and (A.2) in

three steps. The first step is to substitute the conditional expectation E(Yjt+h|Jt),
in equation (A.1), by a forecast in order to compute forecast errors. To do so, they

used a factors model with large N predictors Xit , j = 1, . . . . . . ., N that takes the

approximated form:

Xit = ΛF
′

i Ft + eXit + Vt (A.3)

where Ft is a rf × 1 is a vector of latent common factors, ΛFi is the vector

latent factor loadings and eXit is the vector of idiosyncratic errors that co,siders

some cross-sectional correlations. The second step is defining the h-step ahead fore-

cast V y
jt+h = Yjt+h − E(Yjt+h|Jt), and estimating the associated conditional volatil-

ity, notably E
[(
V y
t+h

)2 |Jt] with h ≥ 1. In the final step, macroeconomic uncer-

tainty Uy
t (h) is constructed from individual uncertainty measures, Uy

jt(h) through

an equally weighted average.
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A.3 Figures

Figure A.1: Agriculture markets (monthly seasonally adjusted prices).

Source: World Bank from January 1995 to December 2018.

Figure A.2: Industry markets (monthly seasonally adjusted prices).

Source: World Bank from January 1995 to December 2018.
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Figure A.3: Energy markets (monthly seasonally adjusted prices).

Source: World Bank from January 1995 to December 2018.

Figure A.4: Precious metals markets (monthly seasonally adjusted prices).

Source: World Bank from January 1995 to December 2018.
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Figure A.5: One-month macroeconomic uncertainty effect on commodity mar-

kets uncertainty.

Note: AGRIU1 (one-month agriculture market uncertainty), ENERGYU1 (one-month energy market uncertainty),

PMU1 (one-month precious metals market uncertainty), and MACROU1 (one-month macroeconomic uncertainty).

Figure A.6: One-month VIX effect on commodity markets uncertainty.

Note: AGRIU1 (1-month agriculture market uncertainty), ENERGYU1 (1-month energy market uncertainty),

PMU1 (1-month precious metals market uncertainty), VIX (1-month implied volatility index).
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CHAPTER 2

Summary

Disentangling demand and supply shocks has been widely explored in the literature

in order to explain commodity price dynamics, especially in crude oil and copper

markets. Meanwhile, the literature on the role of Economic Policy Uncertainty

(EPU) in predicting commodity price and volatility has also emerged. However,

in commodity markets, investors are more concerned with price uncertainty and

how it interacts with macroeconomic factors (supply, demand and economic policy

changes). Therefore, this chapter aims to investigate the endogenous relationship

between oil and copper price uncertainty and the EPU. Our empirical framework

relies on a structural vector autoregressive (SVAR) approach with short-run restric-

tions. Our main finding is that both oil and copper price uncertainty display a

significant increase to EPU shocks. The impact is stronger and more persistent in

the oil market.

Keywords: Commodity markets, commodity price uncertainty; Oil shocks; Eco-

nomic Policy Uncertainty, structural VAR.

Classification JEL: Q02, E44, E60, C32.
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1 Introduction

For decades, commodity markets have been of primary importance for the sustain-

ability of global economic activity. In addition to the interconnections across markets

highlighted in chapter 1, this chapter pays particular attention to investigating the

dynamics of price uncertainty in oil and copper markets. The oil market is widely

explored because of energy needs and energy transition purposes. Likewise, the cop-

per market plays an important role because it contributes to a significant part of

the industry sector.

The global economic engine is sputtering as it struggles to move forward under

the heavy burden of the war in Ukraine, mass supply chain disruptions, questions

about energy and food security, the consequences of the COVID-19 pandemic, and

the highest inflation in 40 years. In this atmosphere of high uncertainty, the oil mar-

ket has undergone major distortions that require policymakers to react, involving

changes in government policy direction. Baker et al. (2016) developed an indicator

of Economic Policy Uncertainty (EPU) based on the coverage frequency of press

articles discussing major topics related to the economy, policy and uncertainty. Ac-

cording to its authors, the EPU refers to the risk of changes to existing policies that

define the parameters of the decision-making process for economic agents, such as

consumers, investors, firms and banks. High policy uncertainty affects the economy

and delays agents’ decisions on spending, investment and employment. The authors

also point out that, at the macro level, innovations in policy uncertainty foreshadow

declines in output, investment and employment in the United States (US). In ad-

dition, as long as global prices, which affect relative prices, continue to impact

macroeconomic variables (inflation, consumption, production, investment and wel-

fare), policymakers should draw interest by providing an appropriate and timely

response. In the same vein, in the last decade we witnessed the advent of numerous

empirical studies investigating the relationship between the EPU, macroeconomic

aggregates, and financial and commodity markets. For instance, Bloom (2009) high-

lights that both political and economic shocks to business cycles result in economic

uncertainty.

This chapter stems from two empirical strands of the literature. The first divides

sources of oil price shocks into supply, aggregate demand and oil-specific shocks, and

identifies their effects on economic activity (Kilian, 2009, Wang et al., 2013, Peder-

sen, 2019, Cross et al., 2020). This literature identifies drivers in commodity price
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dynamics, especially in the oil and copper markets. However, the aforementioned

literature is insufficient since it does explicitly highlight the EPU as a determinant

of commodity price. This is where the second strand of the literature comes into

play: it encompasses a group of studies that indicate the exogenous effect of the

EPU on stock-commodity markets (Kang and Ratti, 2013, Brogaard and Detzel,

2015, Bekiros et al., 2016, Dakhlaoui and Aloui, 2016, Ahmed and Sarkodie, 2021).

More recent studies give an extension to the relationship between dynamic stock-

commodity market correlations and the EPU (Fang et al., 2017, 2018, Badshah

et al., 2019).

This chapter aims to model endogenously oil and copper price uncertainties

while considering the EPU, amid supply and demand factors, using a structural

vector autoregressive (SVAR) model. In particular, this study relies on a more

refined measure of price uncertainty for each market, following the predictability-

based approach of Ludvigson et al. (2015) and Jurado et al. (2015) described in

chapter 1. This measure helps more reliable decision-making in commodity markets.

Therefore, reasoning in terms of price uncertainty and embedding the EPU provide

a new insight into identifying shocks in the oil and copper markets.

Using a structural vector autoregressive (SVAR) framework, our analysis shows

that oil and copper price uncertainty exhibits a positive and significant response to

EPU shocks. In particular, oil and copper price uncertainty reacts instantaneously

and a few months after a shock in the EPU with news on policymakers’ ongoing

economic decisions. The effect is larger and more persistent in the oil market. In

addition, the EPU’s greatest contribution to oil and copper price uncertainty shocks

is recorded in the short run at about 11% and 6% on average, respectively. It

should be noted that aggregate demand appears to be the main driver of copper

price uncertainty since it accounts for 33% in the long run. Reciprocally, when

analyzing the reverse channel of causality, we find that an oil price uncertainty shock

significantly increases the EPU. Moreover, the contribution of oil price uncertainty

to EPU shocks amounts to 17% on average, whereas copper price uncertainty is only

8%, all in the short run. Finally, the oil price uncertainty shock drops the aggregate

demand, as does copper price uncertainty. Once more, it confirms that the oil and

copper markets are closely linked to economic activity, so any sudden unfavorable

or unexpected shift in the oil or copper price results in sluggish economic activity.

The remainder of the chapter is organized as follows: Section 2 reviews the

studies related to the current research on drivers. Section 3 shows the methodology.
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Sections 4 and 5 report data and empirical results, respectively. Finally, the last

section concludes the chapter with some policy recommendations.

2 Literature review on oil and copper price

drivers

As mentioned in section 1, we rely on two strands of the literature to analyze the

drivers of oil and copper prices. The first focuses on demand and supply shocks,

and the second on the EPU.

2.1 Demand and supply shocks

Numerous empirical studies on the underlying drivers of commodity prices are avail-

able for the oil and copper markets. Oil market insights explain the real price of

oil and the effects of oil price shocks on macroeconomic aggregates. Kilian (2009)

and Kilian and Murphy (2014) propose a structural vector autoregressive frame-

work in the oil market to identify oil price drivers. They find out three main sources

of oil price fluctuations: (i) aggregate demand shock (unexpected demand associ-

ated with the business cycle), (ii) supply shock (unexpected changes of oil being

extracted from the ground), and (ii) storage demand shock (unexpected demand for

above-ground oil inventories arising from expectations about demand and supply).

Likewise, when analyzing storage demand, Kilian (2009) points out that shifts in

oil inventories capture unobservable shifts in expectations about future oil supply

and demand. However, a relevant issue to be ascertained is whether the behavior of

economic agents drives inventory fluctuations. When buyers strive to look forward

or anticipate the oil market’s future conditions, they adopt speculative actions. In

addition, if agents face heightened oil price uncertainty, they react by increasing

their precautionary demand. On the one side, Alquist and Kilian (2010) highlight

that this precautionary demand increases the real price of oil, whereas Cross et al.

(2020) find that precautionary demand is the primary driver of the real price of oil.

This seems to be true as long as agents increase their oil inventory holdings under oil

market uncertainty to hedge against potential shortages. On the other side, Kilian

and Murphy (2014) argue that speculative demand also increases future oil prices,

because speculators buy vast oil inventories that signal to producers to expect the
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price to rise. In a domino effect, producers also increase their oil stocks to benefit

from the anticipated upturn in the oil price. According to Cross et al. (2020), these

identified components of storage demand have a different effect on US macroeco-

nomic aggregates. For instance, they find that precautionary demand shocks reduce

the real GDP, whereas speculative demand shocks increase CPI inflation.

Following the thread in chapter 1, Kilian’s setting in the oil market serves as a

basis for many empirical studies dealing with interrelationships between oil price and

other commodity prices. As Kilian (2009) argues, the effects of oil price shocks on

economic variables are more consistent when the decomposition of oil price changes

is considered, and researchers started to be aware of this. The link between oil and

agricultural markets (corn, sorghum, barley), which were often analyzed in terms of

volatility spillover from oil prices to several agricultural prices, is now embedded from

a supply-demand shock perspective. For instance, Wang et al. (2014) investigate the

decomposed oil price shock effects on agricultural prices. This new approach helps

to differentiate the effect of oil price shock sources. This seems to be beneficial, as

their findings indicate that after the food crisis in 2006-2008, the contributions of oil-

specific factors were higher than the aggregate demand contributions in agricultural

price variations. Similarly, Vu et al. (2019) explore the reverse effect of agricultural

price shocks on the oil price in the US. They discover that agricultural price shocks

have different effects on the oil price. In fact, corn use in ethanol (biofuel) plays

a prominent role in the impact of corn demand shocks on the oil price. They also

identify two main channels through which the impact is noticeable: (i) the indirect

cost-push effect (higher corn price induces higher ethanol (or biofuel) price, and

(ii) the direct biofuel effect (the expansion of biofuel may trigger the fossil fuel-

dependency of the economy).

In the same vein, other empirical studies, such as Uddin et al. (2018), examine the

effect of the oil price on metal returns (copper, gold, palladium, platinum, silver)

using a non-linear model. They show evidence of the positive effect of demand

and supply shocks and the negative effect of risk shocks on precious metal returns.

Furthermore, only the influence of risk shocks on metal returns is strongly regime-

dependent. The copper market has not escaped the framework of modeling price

dynamics. To explain copper price dynamics, Pedersen (2019) emphasizes copper

price variations in terms of demand, supply, and specific demand shocks and their

effects on Chilean macroeconomic aggregates. They indicate that (i) demand shock

increases inflation and thus the monetary policy rate; (ii) supply shock lowers growth
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but does not have an effect on inflation or the monetary policy rate; and (iii) specific

copper demand shock depreciates the foreign exchange rate, increasing inflation and

in the end also a higher monetary policy interest rate.

This part mainly puts into perspective the importance of price fluctuation sources

on the oil market and, by extension, the implications for other commodity markets.

However, the above commodity setting presents shortcomings. Among others, it

does not take into account the EPU as a factor that could affect commodity price

dynamics.

2.2 Economic Policy Uncertainty and commodity markets

As stated in section 1, the EPU index developed by Baker et al. (2016) captures

events associated with uncertainty about US economic policy in the press. Therefore,

its value is proportional to the share of newspaper articles that discuss economic

policy uncertainty in a given month. In fact, in addition to the high-frequency

coverage of information in the press, newspapers report on conjunctural events on

various topics related to risk or uncertainty. For instance, Baker et al. (2016), when

describing the EPU in newspapers consider the concept of uncertainty encompassing

that of risk. In this sense, this view is appealing since it reinforces the idea of

equivalence to a certain extent. The authors clearly assert that the EPU reflects:

”uncertainty about who will make economic policy decisions, what economic policy

actions will be undertaken and when, and the economic effects of policy actions (or

inactions) – including uncertainties related to the economic ramifications of ‘non-

economic’ policy matters, e.g. military actions. Our measures capture both near-

term concerns (e.g. how to fund entitlement programs), as reflected in newspaper

articles.”. However, commodity markets are closely linked to financial markets,

which fluctuate with policy challenges and investor behavior. These latter need to

be considered when investing in commodity markets. Therefore, in the aftermath,

we present studies that explore the EPU-commodity price nexus.

Most of the literature has widely explored the effect of the EPU on stock market

returns (Pástor and Veronesi, 2013). Some of them highlight the negative effect

of the EPU on stock market returns, which contributes to increasing stock market

volatility (Arouri et al., 2016, Liu et al., 2017). Other findings indicate the exis-

tence of a linear and non-linear causal relationship between the EPU, oil, and the

currency market after the gold financial crisis (Albulescu et al., 2019). At the world
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level, Antonakakis et al. (2014) stressed that the EPU affects the global oil price

through a spillover effect across countries, including the US and China. Likewise,

Yin and Han (2014) and Ahmed and Sarkodie (2021) emphasize the time-varying

relationship between the EPU and commodity markets to predict volatility in com-

modity returns. Moreover, Zhu et al. (2020) show evidence that EPU shocks have

a significant negative effect on agricultural future returns in bearish markets and a

significant positive effect on metal future returns in bullish markets. Reciprocally,

the literature also provides insights into the role of commodity prices in predicting

the pattern of the EPU (Wang et al., 2015). For instance, Lin and Bai (2021) reveal

that oil prices and EPU nexus matter for both oil-exporting and importing coun-

tries. Their results report that oil price shocks have a larger effect on the EPU index

of oil exporters than on that of oil importers. In contrast, the causal link between

the EPU and commodity prices is not always proven. In particular, several studies

find a non-significant effect of the EPU on commodity markets returns (Andreasson

et al., 2016, Reboredo and Uddin, 2016).

To sum up, this section sheds light on drivers in the commodity markets under

consideration and how the EPU interacts with commodity markets. In addition,

this chapter contributes to the literature insofar as we endogenously investigate

the interdependence between the EPU and commodity price uncertainty. In other

words, the novelty lies in two points: (i) we reason in terms of commodity price

uncertainty (instead of price), and (ii) we explore reciprocally the role of the EPU

in commodity markets. The next section is devoted to the methodology.

3 Methodology

This section is subdivided into two parts: the construction of commodity price

uncertainty in the oil and copper markets and the specification of the SVAR model.

3.1 Measuring commodity price uncertainty

In this chapter, the construction of commodity price uncertainty is developed from

the monthly inflation-adjusted commodity price obtained as the nominal price over

the US CPI (also called real commodity price), and references the predictability-

based approach of Jurado et al. (2015). As announced in chapter 1, we refine the

measurement using a more flexible predictability model to better highlight specific
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events across markets. For each commodity market, the computation process in-

volves three steps:

(i) A fixed rolling window estimation of a seasonal autoregressive integrated

moving average (SARIMA) model on the commodity price. Let’s consider that

Comt denotes the time series of the real commodity price. To help tackle the non-

stationary issue of the real commodity price, we introduce an integration operator

∆d where d is the order of differencing used. The general form of a SARIMA

(p, d, q)(P,D,Q) model is given as follows:

Φ(L)pϕ(Ls)P∆d∆D
s opt = Θ(L)qθ(Ls)Q∆d∆D

s ϵt (2.1)

D takes on a similar meaning to d, but instead applies to seasonal lags of order

s. Therefore, ∆D
s is the differencing operator for seasonal lags in the times series

of the commodity price. Φ(L)p and Θ(L)q represent the including-constant lag

polynomials of the non-seasonal AR and MA part of the model, respectively. By

analogy, ϕ(Ls)P and θ(Ls)Q correspond to including-constant lag polynomials of the

AR and MA seasonal part of the model.2

(ii) The previous step allows, for each rolling window estimation, the extraction

of a one-step ahead out-of-sample forecast E(Comt+1|It) defined as the expectation

of the commodity price with respect to the information available at time t. The

associated forecast error wt+1 is given by:

wt+1 = Comt+1 − E(Comt+1|It) (2.2)

(iii) The estimation of the stochastic volatility of the series of the one-step ahead

forecast error. The estimation of the moving average stochastic volatility model

references the works of Chan and Jeliazkov (2009) and Chan and Hsiao (2013).

Commodity prices generally exhibit clustering phenomena amid volatility, which

justifies this particular modelling method. The series of the one-step ahead forecast

error wt is defined by the following equation:

wt = µ+ vt (2.3)

2The model determines the optimal order of the SARIMA model (according to Akaike (1974)
and Schwarz (1978) information criteria) to perform valuable forecasts. In our case, we chose a
SARIMA (2,1,2) with a common seasonal autoregressive and moving average component of order
12 for the oil market, and an ARIMA (3,1,3) for the copper market.
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where µ represents the mean of the forecast error and vt is the vector of errors that

are serially dependent and assumed to follow a MA(q) process of the form:

vt = εt + ψ1εt−1 + .....+ ψqεt−q (2.4)

θt = µθ + ϕθ(θt−1 − µθ) + ςt (2.5)

where εt ∼ N(0, eθt) and ςt ∼ N(0, σ2
θ) are independent of each other. The variable

θt is the log-volatility of εt and is assumed to follow an AR (1) process, µθ is the level

of the log-variance and | ϕθ |< 1 represents the persistence of the log-variance. Note

that this variance is not allowed to vary unrestrictedly with time. The feature of

this model fundamentally differs from GARCH-type models where the time-varying

volatility is assumed to follow a deterministic, rather than stochastic, evolution. The

stochastic volatility model is thus conveniently expressed in hierarchical form and is

center-parameterized. According to Chan and Hsiao (2013), under the assumption

of a moving average extension, the conditional variance of the series wt is given by:

V (wt|µ, ψ, θ) = eθt + ψ2
1e
θt−1 + ......+ ψ2

qe
θt−q (2.6)

Equations (2.4) and (2.5) capture the moving average and log-volatility, respectively.

Equation (2.6) that derives from the latter provides the estimation of the stochas-

tic volatility process so that the series of the one-period ahead commodity price

uncertainty (Comut) satisfies the condition Comut = V (wt|µ, ψ, θ).3

3.2 Structural VAR model

The famous critique of Sims (1980) over developing sophisticated econometric mod-

els identified by non-justified exclusionary restrictions has given a path to consider

more economic theory-based empirical analysis. Due to this new econometric frame-

work, some relevant questions (demand and supply shocks in the business cycle,

monetary policy concerns, the recessionary effect of oil price shocks, etc.) have

started to be accurately addressed. As previously highlighted, the main contri-

3See Chan and Jeliazkov (2009) and Chan and Hsiao (2013) for deeper details on the model. The
Matlab code required for the estimation of the moving average stochastic volatility is available from
Joshua Chan’s homepage. For each variable, we obtain 20000 loops or draws from the posterior
distribution using Gibbs sampler after a burn-in period of 1000. This methodology also helps to
compute price uncertainty at 3, 6 and 12 months horizon.
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bution of the SVAR model is to investigate hypotheses from the economic theory

among the endogenous variables. Generally, the short-run identification process is

captured through a common SVAR AB model. This holds as long as we handle

the AB model as equivalent to the A model when restricting the B matrix to an

identity matrix. This model requires imposing exclusive restrictions on short-run

relationships among variables. These restrictions are set towards structural shocks’

identification.

The identifying assumptions in the recursive SVAR approach require knowledge

of how certain variables react in an instantaneous way to certain shocks. Sometimes,

because some variables are ”sluggish” or information about them is only available

with a lag, we can be pretty confident about these restrictions. However, they are

pure guesswork. Therefore, the economic theory could give very little guidance. In

fact, the economic theory usually tells us a lot more about what will happen in the

long run, rather than exactly what will happen today. For instance, the theory tells

us that whatever positive aggregate demand shocks do in the short run, in the long

run, they have no effect on the output and a positive effect on the price. In this

chapter, we endeavor to give caution to short-run recursive restrictions.

Following Kilian (2009), let’s consider the vector Yt of the endogenous variables in

any commodity market given by: Yt = (∆com sup, agg dem, epu, cop unc, oil unc).4

For each commodity market, the terms in parenthesis represent the logarithm of com-

modity supply, the aggregate demand (Kilian’s index for global economic activity),

the logarithm of the EPU, the copper price uncertainty, and the oil price uncertainty,

respectively. The operator ∆ indicates the first-order difference. Accordingly, we

estimate two 5-factor SVAR models with each market’s specific variable (commodity

supply) and common variables (aggregate demand, EPU, copper price uncertainty,

and oil price uncertainty).5 The specification of the SVAR is defined as follows:

ΓYt = B(L)Yt + εt (2.7)

where Γ is the vector of contemporaneous interconnections among variables.

B(L) is the lag polynomial of endogenous variables. We assume that E(εtε
′
t) = Πk,

4The three-factor benchmark oil market is replicated in Appendix B.2.
5The optimal lag length is obtained from FPE and AIC information criteria and is set to 3 for

both oil and copper markets (see tables B.1 and B.2 in Appendix B.1). Our results are robust to
higher lag order to handle autocorrelation and heteroskedasticity issues in the model.
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where Πk is a k-dimensional diagonal matrix that restricts the structural shocks

hitting the system to mutually uncorrelated innovations and k is the number of

variables in the vector. The reduced form of the structural representation is given

by:

Yt = B∗(L)Yt + ut (2.8)

The lag polynomial is pre-multiplied by Γ−1 to obtain: B∗(L) = Γ−1B(L). The

relationship between the reduced form errors ut and the structural innovations εt

is: ut = Γ−1εt. Thus, the variance-covariance matrix of the structural innovations

Πk =
∑

ε = Γ
∑

u Γ. In other words,
∑

ε = E(εtεt
′) and

∑
u = E(utu

′
t).

Following Kilian (2009) and Wang et al. (2013), we first determine the structural

innovations by imposing short-run exclusive restrictions on the lower triangular ma-

trix Γ−1 as follows:
u∆com sup
t

uagg demt

ueput

ucop unct

uoil unct

 =


γ11 0 0 0 0

γ21 γ22 0 0 0

γ31 γ32 γ33 0 0

γ41 γ42 γ43 γ44 0

γ51 γ52 γ53 γ54 γ55




εcom sup shock
t

εagg dem shock
t

εepu shockt

εcop unc shockt

εoil unc shockt

 (2.9)

The Γ−1 matrix specification is subject to discussion regarding economic theory.

The benchmark model of Kilian (2009) has already set a breach to understand short-

term interdependences in the oil market. Other studies (Peersman and Van Robays,

2009, 2012, Cunado and de Gracia, 2014, Wei, 2019) also evoke some assumptions

that govern short-term relations in the oil market. Note that the global oil market

scheme holds for the copper market, given that both commodities interact with

the same macroeconomic factors (Pindyck and Rotemberg, 1990, Pedersen, 2019).

Hence, we revisit the stylized facts in the oil market while inserting the copper price

uncertainty as follows:

(i) An oil supply shock is an exogenous shift in oil production. In the oil market,

the monopolistic structure embodied by OPEC implies the oil supply is exogenously

controlled by a small group of large producers. Besides, the oil supply adjustment

to oil price shocks only occurs in the long run due to OPEC’s quotas, geopolitical

events, military conflicts and intensive capital requirements. In such an environment,

oil production witnesses a sharp decrease that leads to an increase in oil prices. In

contrast, the recent shale revolution drives oil production expansion and reduces the
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oil price. We assume the aggregate demand, the EPU and the copper and oil price

uncertainties do not contemporaneously affect oil supply. This implies that the last

four elements of the first row of Γ−1 are zeros.

(ii) An aggregate demand shock represents a sudden boost in global real economic

activity. Real economic activity reacts more contemporaneously to oil supply shock

but with a lag to commodity price shocks (Hamilton, 1983) as well as the EPU and

the copper and oil price uncertainties. This assumption implies that the last three

elements of the second row of Γ−1 are set to zeros.

(iii) The EPU shock indicates the news-based effects of policymakers’ economic

decisions. We suppose that oil supply shock and aggregate demand shock instan-

taneously impact the EPU. However, the copper price uncertainty only affects the

EPU with a delay. Thus, the last two elements of the third row of Γ−1 are equal to

zero.

(iv) According to chapter 1, copper price uncertainty refers to the disaggregated

measure of industry uncertainty which serves as a proxy for macroeconomic un-

certainty. In this sense, we assume that a copper price uncertainty shock has a

contemporaneous effect on oil price uncertainty. Thus, copper price uncertainty is

predetermined relative to oil price uncertainty, implying γ45.

(v) Finally, the oil price uncertainty shock reflects an unpredictable shift in the oil

price. Therefore, we assume that oil supply, aggregate demand, EPU, and copper

price uncertainty have contemporaneous relationships with oil price uncertainty.

Likewise, γ51, γ52, γ53, γ54 ̸= 0.

4 Data

4.1 Commodity prices: measure of oil and copper price un-

certainties

As mentioned in chapter 1, we collected monthly nominal price data of crude oil and

copper over the period 1960-2020 from the World Bank website.6 These markets

represent the main components of the energy and industrial metals sectors. While

Brent crude oil (followed by the WTI crude oil) has long been established as the

most commonly used worldwide benchmark for pricing sweet crude oil, sour crude

6Commodity-prices-pinksheets.
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oil, which represents a large share of Middle Eastern crude oil exports, has been

less considered. Therefore, in this study, the crude oil price is given by the equally-

weighted average of the Brent, WTI, and Dubai crude oil prices. Meanwhile, our

database provides a unique international price for copper. Thereafter, the commod-

ity prices are deflated by the monthly US Consumer Price Index (US CPI is assumed

to be a proxy of world CPI) to obtain the real prices.7 The advantage of using real

prices is to check for inflationary shocks of monetary policies on commodity prices.

This helps isolate the specific effects of commodity price shocks from the common

monetary factor shock.8

4.2 Macroeconomic factors

The traditional factors that determine the commodity price are supply and demand.

However, economic policy is somehow neglected. Given that this chapter aims to

identify factors of price uncertainty, we collect supply-demand variables and the

EPU index of Baker et al. (2016).

The monthly world crude oil production including lease condensate production

data (in millions of barrels pumped per day averaged by month) are obtained from

the Energy Information Administration (EIA) of the US Department of Energy.9

The monthly world copper production data (in millions of metric tons) are extracted

from the Bloomberg’s World Bureau of Metals Statistics.

The demand factor is assumed to represent global economic activity. Most empir-

ical studies often use either real gross domestic production (Hamilton, 1983, Rotem-

berg and Woodford, 1996) or industrial output (Papapetrou, 2001) to capture global

economic activity. However, Kilian (2009) and Baumeister and Hamilton (2019)

have separately developed an index of world industrial production, which is still far

from reaching a consensus. This is due to the trickiness of accurately measuring

global economic activity or worldwide industrial production. Kilian (2009) argues

that there are at least three reasons for the weakness of the world economic activity

measure based on GDP: (i) first, the unavailability of data at a regular frequency

7The US Consumer Price Index for all urban consumer data is extracted from the FRED of
St Louis (CPI-FRED). Its base is 1982-1984=100 which means that the computed real prices are
stated in terms of average prices over the 1982-1984 period.

8Figure B.1 reports the commodity price uncertainty per market.
9Energy-International-Association
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of small industrialized and emerging countries compared to developed countries, (ii)

second, the economic dynamics of each country over time changes its weighting or

contribution in the world output, and (iii) third, the divergence of economies’ back-

bones in terms of value added: On the one side, emerging countries are industrial

commodity-dependent, while on the other side, industrialized countries rely on in-

dustrial services. Therefore, Kilian (2009) proposes an index (updated version in

2018) that reflects the changes in global demand for industrial commodities based

on ocean freight rate. The author measures the growth rates of a panel of single

voyage bulk dry cargo (grain, oilseeds, coal, ore, iron, fertilizer, and scrap metal)

ocean shipping freight rates. In this chapter, the global demand is represented by

Kilian’s index.10

We use the US EPU index developed by Baker et al. (2016).11 This news-based

index is composite and covers a range of US economic policies such as monetary

policy, fiscal policy, taxation, government spending, healthcare, national security,

entitlement programs, regulation, financial regulation, trade policy, sovereign debt,

and currency crises. However, this chapter does not go through each policy sub-

category and is limited to the aggregate US EPU index.

This chapter deals with restrictions on data availability. Namely, according to

our data source, the copper supply variable is available from January 1995 to August

2018. Given that each market’s analysis is independent of one another, we choose to

specify different period ranges among markets. Therefore, the oil market analysis,

being mostly data unconstrained, covers the period 1985:3-2020:3. Similarly, the

sample in the copper market is limited to 1997:1-2018:8.12

4.3 Preliminary analysis

A prefatory insight into our data consists of three steps: a simplistic graphical

evolution of the EPU and commodity price uncertainty nexus, descriptive statistics,

and some stationarity tests.

First, figure 2.1 lays out the historical evolution of price uncertainty in the oil

and copper markets (blue line), together with the evolution of corresponding prices

(red line) and the EPU (green line). The vertical gray bands are identified as

10Data available on Kilian-global-real-economic-activity
11Data available on US-EPU-index
12Figure B.2 (in Appendix B.3) plots the time-varying macroeconomic factors.
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periods where heightened commodity price uncertainty coincides with sociopolitical

or economic disturbances. From the oil market, we note that the general trend is for

the uncertainty index to display clear spikes around significant events, such as the

OPEC disbandment in 1986 and the Persian Gulf War in 1990. While the former

led to a drop in the oil price by $7 per barrel, the latter raised the oil price from

$34 to $77 per barrel. Moreover, the conjunction of the Libyan War in 2011 and

the Iranian oil embargo in 2012 resulted in a slight but limited increase in oil price

uncertainty. As stressed by Barsky and Kilian (2004), an explanation for the surge of

oil price uncertainty during war episodes lies in the rise of the precautionary demand

for oil. It is worth noting that the oil market also witnessed a significant increase

in price uncertainty following the 2007-2009 great recession, the 2014-2016 oil price

plunge, and on the onset of the 2020 Covid-19 outbreak followed by the collapse

of the OPEC+ agreement on oil production cuts. These disturbances fuelled the

downward dynamics of the oil price as the supply glut failed to boost demand as

expected. According to this graph, we observe that the EPU relates to heightened

oil price uncertainty episodes during three major events: the Persian Gulf War,

the great recession, and the Covid-19 outbreak. Furthermore, the EPU reached an

unprecedented peak in the early stages of the pandemic in March 2020. Table B.1

reports a significant linear correlation coefficient between the EPU and oil price

uncertainty of around 13%. Regarding the copper market, we notice that copper

price uncertainty records higher levels during events associated with global economic

activity. For instance, the economic booms of the late 1980s and early 2000s led to

sharp spikes in the copper price as well as price uncertainty in the copper market.

However, like in the oil market, the great recession event triggered an unexpected

slowdown in prices while keeping the level of uncertainty high. Except during the

2007-2009 recession period, the comovement between the EPU and copper price

uncertainty is less apparent. Moreover, table B.2 does not report any significant

linear correlation between both variables.

Second, table 2.1 displays the descriptive statistics of the aggregate demand

index, the EPU, and price uncertainty for each commodity market. Series are not

normally distributed given the Jarque and Bera (1980) statistics. We reject the

null hypothesis of normal distribution for all the variables suggesting that price

uncertainty is asymmetric and fat-tail distributed (non-zero skewness and positive

excess kurtosis).

Third, table 2.2 presents the unit root tests performed with zero, intercept, trend,
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and both intercept and trend options. We report the statistics that fit best with the

data characteristics. ADF, PP, KPSS, P and ZA denote the statistics of Dickey and

Fuller (1979), Phillips and Perron (1988), Kwiatkowski et al. (1992), Perron (1994),

and Zivot and Andrews (1992), respectively. The optimal lag length of the ADF and

Perron test is chosen based on the Schwarz information criterion (SIC) (Schwarz,

1978), and the bandwidth of the PP unit root test and KPSS stationarity test are

determined based on the Newey-West criterion (Newey and West, 1994). The null

hypothesis of the ADF, PP, P and ZA tests is a unit root and that of the KPSS test

is stationarity. According to unit root tests, the aggregate demand, the EPU, and

commodity price uncertainty are stationary in level and in first difference. Only oil

and copper supply variables are non-stationary in level and need to be transformed

in first difference to comply with stationarity tests.13

13It is worth noting, that we also consider the seasonality issue in some variables before the
estimation.
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Figure 2.1: Uncertainty in oil and copper prices and economic policy uncertainty (EPU).

Note: This figure depicts for each commodity market a 1-month price uncertainty measure (on the right axis) along with real price and EPU (on the left axis). The gray

bands represent specific events affecting each market and global economic events. For scaling convenience, we apply min-max normalization of the series.
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Table 2.1: Descriptive statistics of variables.

Variables Mean Std.Dev Max Min Skewness Kurtosis Jarque-Berra

Kilian index 0.129 53.868 190.728 -159.644 0.892 4.217 121.969***

EPU 103.738 52.722 503.012 32.266 2.685 15.643 3388.661***

Oil price uncertainty 0.127 0.109 1.000 0.000 2.440 14.828 4250.633***

Copper price uncertainty 0.240 0.196 1.000 0.000 1.185 4.165 181.157***

Note: The Jarque-Bera (1980) statistic tests for the null hypothesis of Gaussian distribution. *, **, *** denote the rejection of the
standard null hypothesis at 10%, 5% and 1% significance levels.

Table 2.2: Unit root tests.

ADF PP KPSS P ZA

level first diff level first diff level first diff level first diff level

Kilian index -4.551*** -18.823*** -3.814*** -18.135*** 0.137 0.040 -5.202*** -19.990*** -5.458***

EPU -6.608*** -17.763*** -6.498*** -31.497*** 0.165 0.265 -9.997*** -21.042*** -6.226***

Oil supply -0.824 -25.934*** -0.278 -28.899*** 2.886*** 0.091 -2.603 -26.449*** -4.144*

Oil price uncertainty -6.126*** -14.978*** -4.419*** -9.083*** 0.102 0.023 -8.224*** -17.479*** -6.526***

Copper supply -0.328 -5.196*** -1.368 -46.713*** 1.961*** 0.035 -1.943 -26.672*** -4.306*

Copper price uncertainty -3.722*** -7.603*** -2.840* -7.534*** 0.353 0.032 -4.848*** -8.445*** -5.339**

Note: ADF, PP, KPSS, P and ZA denote the statistics of ?, Phillips and Perron (1988), Kwiatkowski et al. (1992), Perron (1994), Zivot and
Andrews (1992) unit root test, respectively. The optimal lag length of the ADF and the Perron test is chosen based on the Schwarz (1978)
information criterion (SIC), and the bandwidth of the PP unit root test and KPSS stationarity test are determined based on the Newey and West
(1994) criterion. It should be noted that the P and ZA tests account for significant structural break points in both intercept and trend. The null
hypothesis of the ADF, PP, P and ZA tests is a unit root and that of the KPSS test is stationarity. *, **, *** denote the rejection of the null
hypothesis at 10%, 5% and 1% significance levels, respectively.
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5 Empirical results

The outcomes of the model are presented as impulse response functions (IRFs) in

each commodity market. It is recalled that the purpose of IRFs is to track the

responses of variables in the system to a one-unit specific shock. In other words,

we expect to know how the dynamic endogenous system responds to some external

change at the time of the shock and over subsequent points in time. In our case,

the IRFs indicate the impact of an upward unanticipated one-unit standard devia-

tion change in the impulse variable on the response variable over the next several

periods.14 Next, we will successively comment on our findings in the oil and copper

markets.

5.1 Oil market results

From figure 2.2, we can highlight the main findings.15 First, the EPU shock has a

positive and significant effect on oil price uncertainty in the medium term after the

initial shock. In fact, economic policy disturbances account not only for potential

geopolitical risks (commercial wars, military conflicts, etc), but also for the duration

of deadlines on making economic policy decisions by governments, which could give

rise to speculative actions. In this context, the oil price dynamics are mostly gov-

erned by uncertainty. To some extent, this finding goes to several empirical studies,

which highlight the positive effect of the EPU on the volatility of oil market returns

(Ahmed and Sarkodie, 2021).

Second, a negative oil supply shock indicating an unexpected decrease in global

oil supply contributes to increasing oil price uncertainty at an upward point in the

short run following the initial shock. Afterwards, this positive effect is slightly

reduced in the long run. The dynamics of oil price uncertainty in response to a

negative oil supply shock highlights the role of expectations in the crude oil market.

Indeed, investors appear to be more concerned by the uncertainty of future supply

conditions than perceiving the exogenous drop in oil supply as a turmoil event

(geopolitical tensions, trade wars and OPEC’s monopoly power) that could affect

14IRFs are bounded with 95% confidence intervals obtained using the Monte Carlo simulation
method.

15We also report on the recursive restrictions matrix of structural shock responses in table B.5
(in Appendix B.1). Note that the results displayed by this matrix hold for the optimal lag order
identified by the information criteria.
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the global value chain. In addition to the well-known effect of rising prices resulting

from insufficient supply (Kilian, 2009), this implies that the uncertainty driven by

agents acting in the oil market is strongly reflected in the oil price.

Third, a positive aggregate demand shock leads to a significant decrease in oil

price uncertainty in the medium run following the initial shock, the impact being

less persistent than that of an oil supply shock. This could be interpreted as a near-

term unexpected demand shock. One possible explanation is that if an aggregate

demand shock occurs, sharp spikes in oil prices are more likely to generate volatility

but not uncertainty because demand shocks are more predictable in the short-run;

thus, the effect on oil price uncertainty is limited.

Fourth, we observe the transmission of copper price uncertainty shocks onto the

oil market. This result confirms at the micro level what we observed at the macro

level in chapter 1.

Figure 2.3 provides the reverse effect of the oil price uncertainty shock on other

variables. We note a long-lasting positive and significant effect (up to 10 months) of

oil price uncertainty on the EPU. This finding emphasizes the high and persistent

sensibility of the policymakers’ economic decisions to oil price fluctuations. Be-

sides, aggregate demand shrinks after an oil price uncertainty shock (Bloom, 2009,

Colombo, 2013, Jurado et al., 2015, Baker et al., 2016, Henzel and Rengel, 2017,

Meinen and Roehe, 2017). In particular, this result is in line with Triantafyllou et al.

(2019), who investigate the impact of commodity price volatility-based uncertainty

on the US economic activity. The authors highlight that uncertainty in energy,

agriculture and metals depresses US economic activity and acts as a harbinger for

US recessions. As an early warning signal of unfavorable economic conditions, a

prior shock of oil price uncertainty reveals a downward trend in global activity in

subsequent months. In our case, the negative effect lies within 12 months.

Table B.6 (in Appendix B.1) reports the Forecast Error Variance Decomposition

(FEVD) estimates of oil price uncertainty. It provides evidence that oil price uncer-

tainty contributes to about 60% of its own shocks in the short run, reaching 75% in

the long run. Meanwhile, it is also notable that the highest contribution of EPU to

the oil uncertainty variance is recorded for about 11% on average in the short run,

decreasing to 6% in the long run. Finally, EPU shocks are solely more important

in the oil price uncertainty variance during the first quarter. Likewise, the oil price

uncertainty shocks account for 17% in the short run to the EPU variance (see table

B.7 in Appendix B.1).
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Figure 2.2: Responses of oil price uncertainty.

Note: These figures depict the responses of oil price uncertainty.

Figure 2.3: Responses to oil price uncertainty shocks.

Note: These figures depict the responses of other variables to oil price uncertainty shocks.
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5.2 Copper market results

By analogy, we analyze the underlying dynamics in the copper market.16 From

figure 2.4, at first glance, we notice that the EPU displays a positive and significant

effect on copper uncertainty, which lasts in the medium term after the initial shock.

Unlike the oil market, the effect is weaker and shorter but remains significant. It

is noteworthy that disturbances arising from major copper mining producers (e.g.

Chile, Peru) would penalize countries that are highly copper-dependent for their

industries. Such unfavorable conditions could lead to increased uncertainty in the

copper price, thus drastically hitting global real economic activity. Afterwards, the

comovement of copper uncertainty with the aggregate demand is reinforced over

time. Hence, aggregate demand shocks are more reliable to explain copper price

uncertainty fluctuations (Pedersen, 2019). The copper market, as a leading indicator

of real economic activity, reacts almost contemporaneously to changes in global

demand. If the copper price drops due to canceled or delayed copper orders, it is a

signal a recession is at hand. Conversely, if the copper price rises when the orders

increase, industrial jobs benefit from the healthy state of the economy. On both

sides, copper price uncertainty increases in response to sudden unexpected changes

in aggregate demand. In the same vein, international trade is at play inasmuch

as China (the world’s largest copper importer) pushes Chile (the world’s largest

copper producer) to be on the lookout to face this highly intensive demand. The

aforementioned explanation holds for short and long-run restrictions frameworks.

Figure 2.5, in turn, displays how other variables react to copper price uncertainty

shock. We point out the negative impact of copper price uncertainty on copper

supply, real economic activity and the EPU. Since the effect on supply and demand

seems to be less surprising, that on the EPU needs to be clarified. The negative

effect on the EPU diminishes over time. As we rely on Bakas and Triantafyllou

(2018), one explanation is that once the copper price uncertainty shock takes place,

the future state of the economic policy becomes less foggy as a result. In particular,

this result suggests that there might exist a memory effect of economic policies,

which makes them easily predictable by economic agents after the occurrence of

macroeconomic uncertainty.

16The recursive matrix is reported in the table B.8 (in Appendix B.1)
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Figure 2.4: Responses of copper price uncertainty.

Note: This graph illustrates the copper price uncertainty responses.

Figure 2.5: Responses to copper price uncertainty shock.

Note: This graph illustrates the copper price uncertainty responses.
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The variance decomposition estimates of copper price uncertainty (Table B.9,

in Appendix B.1) show that EPU shock accounts for only 6% in the short run and

fades as the horizon recedes, whereas the aggregate demand contribution increases

with the horizon to reach 33% in the long run. Regarding this finding, the copper

uncertainty and the aggregate demand display a long-run pattern. In the same vein,

table B.10 (in Appendix B.1) indicates that the share of the copper price uncertainty

shocks in the EPU variance is about 8% in the short run.

6 Concluding remarks and policy implications

We investigated price uncertainty drivers in the oil and copper markets. Following

the benchmark framework in the oil market developed by Kilian (2009), we pro-

posed to address the oil price uncertainty shocks along with the EPU factor. To

successfully carry out this study, we called on an SVAR model with short-run ex-

clusive restrictions to obtain recursive impulse response functions. This approach

seemed more appropriate to capture the endogenous relationships between the oil-

copper price uncertainty changes with global factors (aggregate demand and supply

shocks) and the non-market EPU factor. This chapter uncovered that oil-copper

price uncertainties interact positively with the EPU. In other words, an exogenous

EPU shock magnifies the effects of each market’s price uncertainty. While the EPU

recorded almost similar contributions with oil supply and aggregate demand com-

ponents in the variance of oil price uncertainty, copper uncertainty is mainly driven

by aggregate demand shocks. Likewise, oil and copper price uncertainty had a neg-

ative impact on aggregate demand. The various negative shocks could stem from

the lack of economic decisions synchronization. The political wrestling driven by

selfish interests to garner areas of influence is counterproductive. Thus, on the one

hand, political authorities have to be aware of the consequences of their actions on

international commodity markets and should promote actions on a multi-level oil

reserve management system. On the other hand, investors’ incentives for diversi-

fication and hedging strategies across commodity markets could help mitigate the

effects of the EPU. In conclusion, a further insight that might be great of interest

is to consider a specific aspect of the EPU in identifying price shocks in commodity

markets.
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B.1 Tables

Table B.1: Correlation matrix in the oil market.

1. 2. 3. 4.

1. Oil supply 1.000

(0.000)

2. Aggregate demand 0.016 1.000

(0.691)

3. EPU -0.173 -0.172 1.000

(0.000) (0.000)

4. Oil price uncertainty 0.360 0.341 0.133 1.000

(0.000) (0.000) (0.006)

Note: The table gives the value of the linear correlation coefficient and the
probability values (in parenthesis).

Table B.2: Correlation matrix in the copper market.

1. 2. 3. 4.

1. Copper supply 1.000

(0.000)

2. Aggregate demand -0.233 1.000

(0.000)

3. EPU 0.082 -0.172 1.000

(0.000) (0.000)

4. Copper price uncertainty 0.304 0.495 -0.033 1.000

(0.000) (0.000) (0.492)

Note: The table gives the value of the linear correlation coefficient and the pro-
bability values (in parenthesis).
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Table B.3: Lag length information criteria in the oil market.

Lag LogL LR FPE AIC SC HQ

0 -403.15 - 5.01e-06 1.98 2.03 2.00

1 1861.42 4463.03 9.27e-11 -8.91 -8.61 -8.79

2 2138.05 538.47 2.73e-11 -10.13 -9.59* -9.92*

3 2164.10 50.06* 2.71e-11* -10.14* -9.35 -9.83

4 2181.40 32.83 2.82e-11 -10.10 -9.07 -9.69

5 2199.93 34.70 2.91e-11 -10.07 -8.80 -9.56

6 2210.66 19.83 3.12e-11 -10.00 -8.48 -9.40

7 2225.01 26.20 3.29e-11 -9.95 -8.19 -9.25

8 2238.03 23.42 3.49e-11 -9.89 -7.88 -9.10

Note: The table illustrates the optimal lag order according to various informa-
tion criterion.

Table B.4: Lag length information criteria in the copper market.

Lag LogL LR FPE AIC SC HQ

0 -514.77 - 3.75e-05 3.99 4.06 4.02

1 451.44 2864.78 5.75e-10 -7.08 -6.67 -6.92

2 1134.55 350.71 1.70e-10 -8.30 -7.55* -8.00*

3 1161.62 50.81 1.68e-10* -8.32* -7.22 -7.87

4 1183.94 41.02 1.71e-10 -8.29 -6.86 -7.72

5 1204.17 36.41 1.78e-10* -8.26 -6.48 -7.54

6 1218.19 24.70 1.94e-10 -8.17 -6.05 -7.32

7 1240.06 37.68* 2.00e-10 -8.15 -5.68 -7.16

8 1257.37 29.16 2.13e-10 -8.09 -5.28 -6.96

Note: The table illustrates the optimal lag order according to various informa-
tion criterion.
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Table B.5: Recursive coefficients in the oil market.

C∗
oil(L) =


0.008(0.000) 0 0 0 0
13.275(0.543) 447.407(0.000) 0 0 0
−0.306(0.000) −0.593(0.000) 1.103(0.000) 0 0
−0.252(0.002) 1.451(0.000) −0.066(0.129) 0.900(0.000) 0
−0.098(0.000) 0.401(0.000) −0.034(0.053) 0.266(0.000) 0.253(0.000)


Note: P-values at 10%, 5% and 1% significance levels are in parenthesis.

Table B.6: Forecast error variance decomposition of oil price uncertainty.

FH Oil supply Aggregate demand EPU Copper uncertainty Oil uncertainty

1 12.21 11.36 11.98 6.72 57.73

2 10.30 11.14 11.73 6.45 60.38

3 8.34 11.27 9.58 6.72 64.09

4 6.86 11.33 8.40 6.81 66.60

5 5.98 11.19 7.66 6.66 68.51

6 5.41 10.88 7.15 6.44 70.12

7 5.03 10.47 6.78 6.22 71.50

8 4.76 10.03 6.51 6.04 72.66

9 4.57 9.60 6.32 5.90 73.61

10 4.43 9.22 6.17 5.81 74.37

11 4.34 8.92 6.05 5.75 74.94

12 4.26 8.73 5.97 5.72 75.32

Note: FH= Forecast horizon. Data are in percentage.
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Table B.7: Forecast error variance decomposition of EPU in the oil market.

FH Oil supply Aggregate demand EPU Copper uncertainty Oil uncertainty

1 2.52 3.60 71.68 3.49 18.71

2 2.63 4.89 71.51 3.41 17.56

3 2.50 6.23 72.76 2.97 15.54

4 2.92 7.32 73.00 2.70 14.05

5 3.18 8.40 72.89 2.51 13.02

6 3.33 9.44 72.52 2.38 12.33

7 3.40 10.37 72.06 2.29 11.88

8 3.45 11.17 71.55 2.22 11.61

9 3.47 11.85 71.04 2.18 11.46

10 3.50 12.41 70.57 2.14 11.38

11 3.50 12.88 70.14 2.12 11.36

12 3.50 13.26 69.77 2.10 11.37

Note: FH = Forecast Horizon. Data are in percentage.

Table B.8: Recursive coefficients in the copper market.

C∗
cop(L) =


0.011(0.000) 0 0 0 0
113.483(0.002) 489.796(0.000) 0 0 0
−0.386(0.002) 0.176(0.006) 1.042(0.000) 0 0
0.085(0.508) 1.649(0.000) 0.061(0.432) 1.259(0.000) 0
0.032(0.428) 0.523(0.000) 0.077(0.001) 0.366(0.000) 0.148(0.000)


Note: P-values at 10%, 5% and 1% significance levels are in parenthesis.
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Table B.9: Forecast error variance decomposition of copper price uncertainty.

FH Copper supply Aggregate demand EPU Copper uncertainty Oil uncertainty

1 3.16 19.64 7.83 69.23 0.14

2 3.56 22.40 6.42 67.55 0.07

3 3.42 24.35 5.64 66.46 0.13

4 2.86 25.29 5.32 66.02 0.51

5 2.43 26.03 5.05 65.51 0.98

6 2.10 26.83 4.78 64.91 1.38

7 1.82 27.76 4.48 64.27 1.67

8 1.60 28.81 4.18 63.57 1.84

9 1.41 29.97 3.88 62.82 1.92

10 1.24 31.22 3.60 62.01 1.93

11 1.11 32.53 3.33 61.16 1.87

12 0.99 33.86 3.09 60.28 1.78

Note: FH = Forecast Horizon. Data are in percentage.

Table B.10: Forecast error variance decomposition of EPU in the copper mar-

ket.

FH Copper supply Aggregate demand EPU Copper uncertainty Oil uncertainty

1 6.28 5.72 61.48 5.46 21.06

2 8.24 5.44 57.12 8.25 20.95

3 10.24 4.82 55.55 10.20 19.19

4 10.32 4.93 56.38 10.59 17.78

5 10.53 5.28 56.93 10.58 16.68

6 10.73 5.72 57.21 10.50 15.84

7 10.86 6.18 57.24 10.39 15.33

8 10.87 6.66 57.13 10.24 15.10

9 10.84 7.10 56.89 10.10 15.07

10 10.78 7.49 56.58 9.98 15.517

11 10.70 7.82 56.26 9.89 15.33

12 10.63 8.07 55.98 9.81 15.51

Note: FH = Forecast Horizon. Data are in percentage.
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B.2 Resolving the benchmark oil market

As we expect to propose a common global framework for our commodity markets, we

first replicate the results of Kilian (2009) in a three-factor SVAR benchmark model

(with oil supply, aggregate demand and real oil price) as endogenous variables.

Variables are ordered as listed above. Contemporaneous effects among variables

(with P-values at 10%, 5% and 1% significance levels in parenthesis) are given by:

Γ−1 =

69.023(0.000) 0 0

2.708(0.351) 0.075(0.000) 0

−0.767(0.792) −0.008(0.005) 10.765(0.000)


From Figure B.3 (in Appendix B.3), we observe that short-run restrictions on oil

price dynamics result in negative and not significant response of oil price to oil supply

shocks. Nevertheless, oil price shock reacts in a positive, significant and persistent

way to aggregate demand shocks and oil-specific demand shocks. The response to

aggregate demand shocks seem to vanish over time from the initial shock whereas

that of oil-specific shocks is more persistent. The first three aspects (effects of supply

shock, aggregate demand shock, oil-specific demand shocks) are consistent with the

results of Kilian (2009), Kilian and Park (2009). Indeed, following earlier empirical

studies, Wang et al. (2014) explains this non-significance of oil supply shocks on

the oil price is due to the fact that global oil production is driven by offsetting

flows between oil-producing countries around the world. For instance, when the oil

disruption effect occurs in a region it could trigger an oil expansion effect somewhere

else so that the global effect on price remains unchanged. Although the first decade

of the 2000s was dominated by OPEC’s leadership attitude to reduce oil production

coupled with geopolitical tensions (Venezuela strike in 2002, second Gulf War in

2003), the oil production has been less by reserves and exploration fields. In the

same vein, the finding of Kilian (2008) holds as supply shocks play a lower impact

in predicting the real price of oil. On the other side, the aggregate demand shock

has a positive impact at 5% level the oil price showing once more that business

cycle fluctuations play a major role in oil price changes. The oil-specific shocks in

the short-run still have a predominant effect in forecasting oil real price. However,

oil-specific shocks could be identified in a workhorse model developed by Kilian and

Murphy (2014) and Cross et al. (2020).
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B.3 Figures

Figure B.1: Uncertainty in commodity prices.

Note: These figures depict for each market a one-month price uncertainty measure along with major macroeconomic or specific events (represented by the grey bands

across each commodity market). For convenience, we use min-max normalization to obtain the same interval values for each uncertainty variable so that the lowest and

the largest value equals 0 and 1, respectively.
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Figure B.2: Macroeconomic variables in oil and copper markets.

Note: These figures depict oil supply (in thousand barrels metrics), copper supply (in thousand tons metrics), the EPU and the aggregate demand variables.
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Figure B.3: Oil price dynamics in the benchmark oil market.

Note: These figures depict oil real price responses to supply, aggregate demand, oil specific demand and price uncertainty shocks.
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CHAPTER 3

Summary

This chapter aims to appraise the potential effects of an energy-related environ-

mental policy on price uncertainty in fossil energy markets. For this purpose, we

propose text-as-data methods relying on unsupervised machine-learning algorithms

applied to European Union (EU) laws and newspapers. These are used to construct

two monthly indices over the reference period 1997-2021: (i) a news-based index

that reflects two underlying components: uncertainty about the global context and

regulations on energy and environment as they are relayed in the press, and (ii) a

law-based index that reflects structural changes in European energy and environ-

mental regulations. The main findings suggest that both indices display, to some

extent, a common evolutionary pattern around salient events in the history of EU

energy and environmental policy. Moreover, the news-based index appears to be

more volatile and is wider than the law-based index. The support for this carbon

phase-out policy leads to further examine the extent to which each index relates

to price uncertainty dynamics in fossil energy markets (oil, gas, and coal). As a

result, we uncover that an increase in the news-based index displays a dual effect

on price uncertainty across markets. Notably, a slight positive short-run effect fol-

lowed by a permanent dampening effect. Each effect, as described, is considered as

a result of the news-based underlying components, namely uncertainty about the

global context and the regulations, respectively. Similarly, we find a significant and

negative short-run and persistent impacts of law-based index shocks on price uncer-

tainty across markets. Thus, stabilizing price uncertainty dynamics by regulations

is a way to gauge the efficacy and resilience of European energy and environmental

policy.

Keywords: Energy and Environment Policy; News and media; Text-mining; Un-

supervised machine learning; Commodity markets, Structural VAR.

Classification JEL: Q58, C55, C80, D80, Q02, C32.
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1 Introduction

Developments in economic policies are of increasingly great interest when analyzing

price fluctuations in commodity markets. In line with chapter 2 which explores the

empirical evidence of economic policy uncertainty, this chapter addresses the central

issue of the European energy-related environmental policy (also called low-carbon

policy) and its implications for fossil energy markets.

Global warming has become a major concern for governments around the world.

To address it, countries have entered into national, regional and international agree-

ments involving more responsible energy transition policies. For instance, the Eu-

ropean Union (EU) identifies climate change as one of the biggest challenges of the

forthcoming decades. This objective stems from the fact that the EU is willing to

play a crucial role in negotiations and the implementation of the Kyoto Protocol

and its latest version, the Paris Agreement (Oberthür and Roche Kelly, 2008). To

fulfill this position, environment and climate policy has become more embedded into

EU sectoral policies including energy, as confirmed by the Energy Union framework

(Biermann et al., 2009, Jordan et al., 2011, Maltby, 2013). Therefore, major de-

velopments in EU energy policy are required (Damro et al., 2008, Solorio, 2011).

The awareness of European authorities about climate and environmental concerns

results in legislation on the bulk of related laws, which are subsequently relayed in

the newspapers. The salience of energy and environmental policy on the political

agenda tends to fluctuate over time, leading numerous economic players (producers

and consumers) to shift their incentives towards green energy securities.

The cycle of energy and environmental policy is subject to periods of increasing

stringency and sudden rollbacks. In particular, in early 2017, Trump’s adminis-

tration initiated the US withdrawal from the Paris Agreement. In 2018, France

also revoked the fuel tax after the Yellow Vest protests. China and Australia also

backpedaled their respective coal regulations. Such changes trigger a surge in un-

certainty about the future state of regulations. Policymakers often face the dilemma

of balancing competing long-run environmental goals and short-run economic and

electoral priorities. Moreover, lobbies, legislative battles, protests and legal chal-

lenges constitute, among others, barriers to the establishment and implementation

of regulations. Hence, such unpredictable swings induce uncertainty in energy and

environmental policy, making it difficult to foresee how the regulatory framework

will unfold in the future. Both regulation and uncertainty about regulation on en-
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ergy and the environment influence the transition to a low-carbon economy. Indeed,

agents’ decision-making to postpone or withdraw investments relies on policy as-

sumptions under uncertainty. In the same vein, the European Investment Bank

(EIB, 2021) highlights in a survey that 43% of European institutional investors con-

sider uncertainty about regulation as a hindrance to undertaking climate-related

investment.

The novelty of this chapter is to explore the nexus between energy-related envi-

ronmental regulations and price uncertainty in fossil energy markets. To this end,

using textual analysis, we propose a quantitative assessment of energy and environ-

mental policy through newspapers and law publication activity by the EU Com-

mission. The procedure involves the use of two distinct datasets on news and laws,

respectively. Unlike the seminal EPU index developed by Baker et al. (2016), our

news dataset focuses on a broader perspective to capture both uncertainty about

the global context and energy and environmental regulations as discussed in the

European press. At the same time, our law dataset lists the legal acts frequently

published by the EU Commission. In other words, while the press highlights the

uncertain environment regarding international conditions and the way the regula-

tions are embedded in newspapers, laws solely describe the evolution of the adoption

and/or implementation of legal acts. The former is more susceptible to being volatile

since newspapers cover high-frequency information. The latter is relatively stable

and displays a seasonal pattern. In general, regulations are introduced as a pack-

age of proposals with multifaceted aspects, such as the Green Deal or regulations on

pollutants used by industries and households. Each index is an aggregation of topic-

specific indices, allowing the multidimensionality of energy-related environmental

policy to be addressed. The composite indicator is available on a monthly basis. As

stated by Brunel and Levinson (2020), the construction of a meaningful aggregate

index in empirical works is a very tricky and challenging task. Thanks to machine

learning techniques, we have the opportunity to disentangle latent information from

a rich amount of text and elaborate subclusters to build up topic-specific indices. In

the end, this process helps us track the salience of energy and environmental policy.

Our indices of energy-related environmental policy provide complementary in-

sights into existing quantitative environmental policy measures. First, in contrast

with one of the pioneering works of Noailly et al. (2021) constructing a news-based

index of US environmental policy, our news-based index describes the global context

of the evolution of environmental policy as reported in European newspapers. News-
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papers have the advantage of giving additional information about the regulatory

context, namely details on sentiment, controversies, and implementation processes

(Noailly et al., 2022). Second, our law-based index approach appears to be original

since it captures the legislative cycle of energy and environmental regulations in the

EU. The latter provides a different way of considering the regulatory framework

in addition to (Botta and Koźluk, 2014), who developed an OECD environmental

policy stringency index computed on an annual basis at a country level.

The dynamics of energy and environmental regulations strengthen the reduction

of fossil energy in favor of healthy alternatives; this is not without any consequence

on fossil energy markets. In addition, one might argue that the EU, as one of the

world’s largest importers of fuels for its industrial production system, could generate

exogenous shocks on fossil energy markets by taking substantial actions on energy-

related environmental regulations.

Following the standard empirical approach in the literature, we use a Bayesian

Vector Autoregressive (BVAR) model to investigate the implications of energy-

related environmental policy on the price uncertainty dynamics in fossil energy

markets (namely oil, gas, and coal markets). Our findings show that shocks on the

news-based composite indicator display a two-way pattern on oil and coal price un-

certainty: (i) a slight upward trend occurring in the short run, which is attributable

to either uncertainty about the global context or announcement effects; and (ii) a

persistent detrimental effect that follows to stabilize the price uncertainty dynamics

is attributable to the regulations. It is worth noting that the downward momentum

of gas price uncertainty begins earlier and sets in permanently after the shocks in

the news-based index. Likewise, we observe a negative and significant impact of

increases in the law-based composite indicator on oil and coal price uncertainty.

The impact is particularly long-lasting in the coal market. Furthermore, we ob-

serve that the bearish effect on gas price uncertainty is unveiled when analyzing

environment-specific regulation shocks. To sum up, we draw from these outcomes

that the news and law-based energy-related environmental policy indices contribute,

at various time horizons, to cushioning the dynamics of price uncertainty across fos-

sil energy markets. Additionally, we assess the effects of our indices on markets’

prices. As a result, we find that the news-based index solely plummets prices as

markets foreshadow regulations.

The rest of the chapter is organized as follows. Section 2 reviews the related

literature. Section 3 describes the methodology of the textual analysis. Section
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4 provides the construction of news and law-based indices, respectively. Section 5

explores how both indices relate to fossil energy markets and section 6 concludes

the chapter.

2 Related literature

The significance of this study is owed to two main strands of the literature. First,

this work builds on the growing interest in the textual analysis of news in economic

analysis to construct meaningful indicators (Gentzkow and Shapiro, 2010). For in-

stance, Baker et al. (2016) developed a methodology to build a news-based index

of economic policy uncertainty (EPU) from 10 leading newspapers in the United

States (US). Similarly, Bybee et al. (2020) used a topic modeling approach to unveil

specific topics from a set of 80,000 articles published in the Wall Street Journal

over the period 1987-2017. They discovered that news topics track a wide range

of economic activity measures and are also powerful incremental predictors of eco-

nomic outcomes, namely for output and employment in recession times. Beyond the

aforementioned macroeconomic developments of the textual analysis, less attention

is given to environmental economics Baylis (2020), Dugoua et al. (2022). Only a

few research papers in the financial literature have reviewed some aspects of envi-

ronmental concerns, such as pollution news Hamilton (1995), Dasgupta et al. (2001)

or the impact of investors’ Twitter sentiment on renewable energy stocks (Reboredo

and Ugolini, 2018, Song et al., 2019). Relatedly, studies using text-mining meth-

ods to measure climate risks and perceptions in newspapers have emerged (Sautner

et al., 2020, Kölbel et al., 2020, Engle et al., 2020). This literature has so far solely

reported the salience of the climate change and environmental issues nexus to public

attention. In addition, this work also emphasizes the regulatory actions of public au-

thorities to mitigate concerns about the energy-environment-climate triptych. Thus,

a sophisticated methodology is mobilized to identify and classify relevant documents

using automated text-mining techniques.

Second, this chapter is related to the literature addressing the effects of eco-

nomic policies on various economic variables. In environmental economics, both

theoretical and empirical studies have investigated this issue. Theoretical models

mainly focus on uncertainty arising from environmental and climate shocks. This

uncertainty tends to raise precautionary savings and capital adjustments (e.g. away
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from capital prone to climate shocks). As a result, the works of Bakkensen and Bar-

rage (2018) and Cai and Lontzek (2019) point out a possible drop in productivity,

growth and welfare. According to the theory-supported economic mechanism, firms

postpone investments when the regulatory framework becomes uncertain. Such a

wait-and-see behavior is first characterized by pent-up investment which induces

a subsequent investment boom, reinforcing the cycle of economic activity (Stokey,

2016). Another handful of theoretical papers underscores, in relation to uncertainty

about environmental policy, firms’ investment strategies in relation to pollution con-

trols (Viscusi, 1983), assets portfolios (Bretschger and Soretz, 2021) and risk level

(Blyth et al., 2007, Fuss et al., 2008). In the same vein, corresponding empirical

studies in environmental economics are taken from the seminal literature on the im-

pact of policy uncertainty on investment. A major contribution is the work of Baker

et al. (2016) to construct a monthly news-based EPU index. At the micro-level,

these authors show evidence that the EPU is associated with lower investments and

higher volatility for firms most exposed to policy uncertainty. At the macro level,

the EPU shrinks industrial production and employment. In other words, empirical

investigations into environmental economics mostly rely on event studies explor-

ing how uncertainty about environmental policy affects investments. Sen and von

Schickfus (2020) conducted an analysis of the effect of German climate policy on

firms’ fossil energy utilities. They uncovered that such a policy exposes energy-

sector assets at risk of becoming stranded so that investors would expect financial

compensation to avoid the abrupt devaluation of firms. Moreover, some research

papers involving the US experience regarding unexpected shifts in climate policy

report spikes in coal prices and inventories (Lemoine, 2017) as well as compliance

costs across states (Dorsey, 2019). Regarding the precedent, central to the insight of

the existing literature is the impact of environmental policy uncertainty on invest-

ment. However, to the best of my knowledge, no study has explored the implications

of energy-related environmental policy on fossil energy markets. Yet, this idea is

crucial when considering a transition to a low-carbon economy.

3 Topic modelling

The textual analysis methodology used to construct both news and law-based in-

dices consists of a hands-off unsupervised machine learning algorithm called Latent

119



CHAPTER 3

Dirichlet Allocation (LDA) developed by Blei et al. (2003). The language of text

collections refers to entities such as ”words”, ”documents”, and ”corpora”. This is

helpful to keep in mind since it helps to guide intuition, particularly when further

introducing latent variables which aim to capture abstract notions such as topics.

Formally, we define these entities as follows:

➣ A word is a basic unit of discrete data, defined as an item of a vocabulary V

indexed by 1, ..., V . Note that words are represented using unit-basis vectors

that have a single component equal to one and all other components equal

to zero. Thus, using superscripts to denote components, the vth word in the

vocabulary is represented by a V -vector w such that wv = 1 and wu = 0 for

u ̸= v.

➣ A document is a sequence of N words denoted by w = (w1, w2, ...., wN), where

wn is the nth word in the sequence.

➣ A corpus is a collection of M documents denoted by D = (d1, d2, ...., dM).

LDA is considered a probabilistic model that looks for high-probability assign-

ments in documents and similarities across them in the corpus. The algorithmic

process aims to uncover latent (hidden or unknown) structures in the corpus. The

latent thematic structure, expressed as per-word topics and per-document topic

proportion assignments, is represented by hidden variables that LDA points onto

the corpus. The nature of LDA describes an imaginary random process based on

probabilistic sampling rules, from which we assume documents come from. Nev-

ertheless, while we only observe words within documents, we need to infer hidden

structures by applying statistical inference techniques. Besides, it is clearly an un-

supervised algorithm because it learns these two latent distributions of the model

without prior information regarding their themes. This process helps to answer the

question: Which hidden structure or topic model is most likely to have generated

these documents? In doing so, one can capture the posterior distribution of the

hidden structure given to the observed documents.

One way to understand LDA is to consider that the model recovers two unknown

distributions by obtaining parameters that maximize the probability of each word

appearing in each document given the total number of topics K. The probability of

each word wi appearing in a document is then given by the formula:
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P (wi) =
K∑
k=1

P (wi|zi = k)P (zi = k) (3.1)

where zi is a latent variable that indicates the topic from which the ith word was

drawn. P (wi|zi = k) is the probability of word wi being drawn from topic k, and

P (zi = k) is the probability of drawing a word from topic k in the current document.

More precisely, P (w|z) refers to which words are important to a topic, while P (z)

indicates which of these words are important to a document.

An alternative way to get the algorithm is to have a look at the generative process

defined as follows:

1) For every topic k ∈1, ..., K

➣ Draw each topic βk ∼ Dirichlet(η) as a multinomial distribution over

the vocabulary V

2) For every document d

➣ Draw a distribution over words such as N ∼ Poisson(ξ)

➣ Draw a distribution over topics θd ∼ Dirichlet(α) (i.e. per-document

topic proportion)

➣ For each word w within a document d

➣ Draw a topic assignment zd,n ∼Multinomial(θd) where zd,n ∈1, ..., K
(i.e. per-word topic assignment).

➣ Draw a word wd,n ∼Multinomial(βzd,n), where wd,n ∈1, ..., V

α and η denote the smoothing hyperparameters of topics within the documents

and words within topics, respectively. These parameters are likely to be adjusted

in the model. The joint distribution of all hidden variables βk (topics), θD (per-

document topic proportions), zD (word topic assignments), and observed variables

wD (words in documents) is expressed as follows:

P (βk, θD, zD, wD|α, η) =
K∏
k=1

P (βk|η)
D∏
d=1

P (θd|α)
N∏
n=1

P (zd,n|θd)P (wd,n|zd,n, βd,k)

(3.2)
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The aforementioned underlying process of the LDA could always be graphically

expressed by the figure 3.1 below:

Figure 3.1: LDA generative probabilistic process.

Note: This picture depicts graphical aspect of the LDA model on plate notation. While the shades nodes represent

observed variables, unshaded ones correspond to the hidden random variables. Edges illustrate the conditional

dependencies between unshaded nodes. Rectangles (also called plates) denote a replication process (source: LDA-

Process).

The graphical representation is roughly equivalent to the joint probability

distribution in the equation (3.2).
∏K

k=1 P (βk|η) represents distributions over

words for all K topics.
∏D

d=1 P (θd|α) indicates the per-document topic pro-

portion across the corpus D of all documents. Finally, for unique N words,∏N
n=1 P (zd,n|θd)P (wd,n|zd,n, βd,k) represents the probability of assigning the nth

word to a given document. This probability is the product of the two-stage

probability selection process: (i) the probability of assigning a given document

to topic k (P (zd,n|θd), and (ii) the probability of nominating the nth word to a

document selected in step i (P (wd,n|zd,n, βd,k)). This last stage is characterized by

the probability of matching a word from the collection of words wd = w1, ..., wn

to a document given a word-to-topic assignment zd,n and the per-corpus topic

distribution βd,k = β1,1, ..., βD,K .

Figure 3.2 is an illustration of LDA hyperparameters. High levels of η indicate

the probability distribution of words to topics being more even, while a low level

of η represents fewer words having a much higher probability of defining that topic

than the rest. Similarly, high levels of α indicate documents containing a similar
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topic distribution per document while low levels of α represent a more disperse

distribution.

Figure 3.2: LDA hyperparameters.

Source: Azqueta-Gavaldón (2017).

The maximization of P (wi|zi = k) and P (zi = k) from the equation (3.1) to

approximate the posterior distribution P (z|w) requires either sampling methods

or variational methods. In this chapter, we use an advanced type of variational

method called online variational Bayes (Hoffman et al., 2010) which is deemed to

be faster and more suitable for large databases.2 Eventually, the coherence score

Cv of the model is chosen as a relevant criterion to estimate the optimal number of

topics K.3 Given that the model runs on two datasets separately, the optimal K

is set to 14 for the laws dataset and 29 for the news dataset. Thereafter, we apply

the algorithmic process on both news and laws datasets to construct meaningful

composite indicators, accordingly.

4 Construction of news and laws-based indices

The handful construction of indices lies in three main points. The first step of the

construction process of each index consists of searching documents related to the

given topic using a simple keyword approach as in Baker et al. (2016) and Basaglia

et al. (2021). In the second step, we use text pre-processing techniques and convert

each document into numerical vectors of n-grams (known as the generalized form of a

2See more details on the methodology in Appendix C.1.
3Further elements are reported in Appendix C.2.
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bag of words). Then, we derive a term-frequency inverse-document frequency matrix

(tf-idf) adjusted for words with low and high occurrence. The last step calls on the

methodology proposed by Azqueta-Gavaldón (2017) to run an unsupervised machine

learning algorithm in order to classify documents into specific subcategories. The

unsupervised nature of the algorithm categorizes documents into topics without

the need for previous knowledge of the themes covered in the documents. The

algorithm used is called ”Latent Dirichlet Allocation” (LDA) and was developed

by Blei et al. (2003). It is a generative probabilistic method that recovers two

distributions, namely words-to-topic and topic-per-document distributions. The

main advantage of this topic modeling algorithm is that the researcher is not required

to come up with individual lists of keywords for each topic, but can apply this method

to uncover the structural patterns of any text endogenously. However, one of the

caveats of this method is that each topic represents a set of most probable words to

be interpreted by the researcher.

4.1 Developing a news-based index

4.1.1 News data

The starting point of the experiment is to download a set of 65,807 articles from

the archives of 694 European newspapers from January 1997 to April 2022. These

are available on the retrieval tool of Nexis, an online database with extensive me-

dia articles coverage. Articles are selected from the query using a ’naive’ dictio-

nary approach, as in Baker et al. (2016) and Basaglia et al. (2021), which consists

of searching articles simultaneously containing keywords such as ”regulation”, ”en-

ergy”, ”environment”, ”climate”, ”policy”, ”risk and/or ”uncertainty”. More specif-

ically, this keyword-based retrieval method detects two components of the news con-

tent, namely global uncertainty and regulations. In addition, narrowing the search

for articles with keywords avoids, as much as possible, including a myriad of articles

dealing with contexts that are not applicable to energy or environmental regula-

tions (type-I error). Besides, we admit that this strategy is not restrictive enough

to avoid missing out on potentially relevant articles by imposing too much structure

(type-II error). Therefore, we should strike a balance to be more representative.

Since we rely on an unsupervised algorithm, we intend to end up with energy and

environmental regulation-related articles recording the highest weight in our sample.

Next, we apply text pre-processing steps to our corpus of 65,807 articles, namely
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filtering stop-words (words that do not reveal informative details about the corpus of

documents), removing numbers, punctuation and html tags, lowercasing and lemma-

tizing all words (i.e. taking into account the morphological analysis of the words).4

Afterwards, we convert articles into numerical vectors of uni-bi-trigram frequencies

using a ’bag-of-words’ method. A matrix is then constructed as a term-frequency

inverse document frequency (tf-idf) in which words with high and low occurrences

are under-weighted because they appear less informative than other words.5

Finally, we train our set and its corresponding tf-idf matrix as inputs to the LDA

algorithm to assign words and documents into topics, accordingly.

4.1.2 Descriptive statistics

Based on the methodology presented in the section 3, here we lend credence to our

LDA classifier algorithm with a number of descriptive statistics such as the optimal

number of topics K according to the coherence score Cv and representative words

per topic. Regarding these criteria, the best model fits with K = 29 and Cv ≃ 0.48.

Table 3.1 displays dominant topics and their corresponding excerpts of most rep-

resentative words across articles in the sample. We pay attention to articles the

LDA classifier identifies as preeminently talking about energy and environmental

regulations from a probability distribution. The algorithm analyzes important text

features to determine whether an article falls into a specific topic. Thereby, we label

topics according to the words they encompass. For instance, energy and climate

issues are illustrated by words such as ’energy’, ’emission’, ’nuclear’, ’power’, ’cli-

mate’, ’change’, ’carbon’, ’renewable’, ’green’ and ’target’. It is worth noting that

uncertainty features mostly arise from a massive interest given to a topic. There-

fore, the number of articles per topic in the sample derived from the LDA classifier

provides a signal of the importance of a topic under discussion. The idea is to point

out the effect of the mimetic behavior of mass newspapers on reporting a topic that

intrinsically generates uncertainty. One another point is to consider the global con-

text characterized by exogenous events-induced uncertainty such as political unrest,

military conflicts (e.g. the Russo-Ukrainian war), economic or even health crisis

(e.g. COVID-19).

Regarding table 3.1 reporting unveiled topics provided by the LDA algorithm,

4The list of stopwords is reported in Appendix C.3.
5An overview on N-Gram models and the tf-idf matrix is illustrated in Appendix C.4.
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each topic is labeled according to the semantic that governs its most representative

words. Else, documents in the sample are classified according to the dominant

topic. Amidst, one can target topics (as well as documents in proportion to the

entire sample) related to energy and environmental regulations.

Figure 3.3 illustrates the news-based index, which represents the share of articles

assigned to energy-related environmental regulations and the global context over

all articles in the sample per month. Scaling by the total number of articles is a

way to appraise the importance of discussions about energy-related environmental

regulations in newspapers. The news-based composite indicator results from the

combination of 10 topics defined as subcategories (i.e. topics 4, 5, 6, 8, 11, 14, 15,

25, 27, 29) representing almost 44% of the initial sample. The composite index

is then normalized to an average value of 100 and 1 standard deviation. We also

annotate significant peaks which capture meaningful increases in the prevalence of

uncertainty amid ongoing debates on energy and environmental regulations.

From figure 3.3, we find out that, in the early 2000s, the news-based index was

punctuated by several bursts, notably around the Kyoto Protocol adoption and

the Bonn climate change conference. Indeed, the EU authorities established a new

challenge of fighting against climate change generated by greenhouse gas emissions,

in particular CO2 from anthropological activities. In order to limit Earth’s aver-

age surface temperature, the EU favored the advent of a ’carbon market’ in 2005

to penalize major industrial sectors with the highest CO2 emissions. The target

of the initiative was to ensure a gradual transition from ”damageable” fossil ener-

gies to ’healthy’ renewable energies. In 2008, the European leaders put in place a

”climate-energy package”. This program was initially targeted for 2020 before it

was postponed in 2014 to 2030. Its contribution was threefold: (i) the reduction of

greenhouse gas emissions by 20%, (ii) the improvement of energy efficiency by 20%,

and (iii) the increase to 20% of the share of renewable energies in the final energy

consumption. The success of the 3x20 program was relative because it came up

against several economic events including the great recession and the sovereign debt

crisis. As in times of crisis, authorities are less concerned with energy-related envi-

ronmental policy. Therefore, the index plummeted over the 2009-2012 period. Also,

we observe along the historical evolution of the index, consecutive major events such

as the Paris Agreement in 2015 and the Green Deal in 2019. The purpose of the EU

Green Deal is to put an end to net greenhouse gas emissions by 2050. The target

is to reduce them by at least 55% by 2030 in comparison with values from 1990.
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Thereby, Europe would become the first “climate neutral” continent, i.e. it would

achieve ”carbon neutrality”. The plan is based in particular on the phasing out

of fossil energies, electric mobility, technological innovation, the circular economy,

building renovation and sustainable agriculture. Since 2020, the world has faced

various energy uncertainty-inducing exogenous events, namely the UK’s exit condi-

tions from the EU, the COVID outbreak, and the Russo-Ukrainian crisis. The latter

obliged the EU to put ”energy sovereignty” back at the top of its list of concerns

by promoting independence from all Russian fossil fuels well before 2030 (given that

Russia supplies 49% of coal imports, 38% of natural gas and 25% of oil in the EU).
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Table 3.1: LDA topics and most representative words.

Topic Label Top-10 words (λ = 0.5) Percent

T.1 Unknown say, time, block, minister, publish, people, labour, get, go, government 1.39%

T.2 European security state, country, European, policy, agreement, member, law, foreign, security,
take

6.18%

T.3 Economic crisis bank, euro, market, financial, debt, government, fund, crisis, economic, risk 5.43%

T.4 Coal and steel steel, industry, government, coal, plant, Chinese, car, fuel, make, job 1.26%

T.5 Energy supply company, gas, oil, energy, price, market, group, supply, business, project 5.09%

T.6 Conflicts Russia, Ukraine, war, military, country, sanction, people, force, time,
Ukrainian

1.94%

T.7 Agriculture food, use, make, say, farmer, people, farm, water, work, many 6.30%

T.8 Energy emission climate, world, change, global, country, emission, power, nuclear, energy, make 8.60%

T.9 US politics Trump, time, president, block, state, republican, publish, minister, go, say 0.58%

T.10 Vacation travel, flight, airline, airport, passenger, time, fly, go, holiday, people 0.78%

T.11 Health report vaccine, time, report, country, covid, people, coronavirus, case, death, British 0.57%

T.12 UK politics time, say, parliament, government, vote, Brexit, prime minister, deal, block,
minister

1.46%

T.13 Investment business, economy, work, economic, investment, sector, job, company, need,
government

5.78%

T.14 Energy taxation government, energy, tax, cost, price, nuclear, pay, power, say, go 3.62%

T.15 Environment time, woman, government, fire, block, people, say, publish, minister, flood 0.36%

T.16 Brexit border debate Brexit, people, government, border, make, leave, country, migrant, work, trade 2.20%
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Topic Label Top-10 words (λ = 0.5) Percent

T.17 Unknown go, get, make, take, time, last, first, people, come, play 1.43%

T.18 Unknown people, make, work, go, many, take, get, life, see, think 6.06%

T.19 Brexit trade debate deal, Brexit, time, trade, leave, say, agreement, talk, leader, government 3.36%

T.20 Politics government, Croatia, country, state, company, project, public, report, minister,
increase

1.19%

T.21 Entitlement programs service, community, education, people, chief, executive, covid, officer, child,
school

0.26%

T.22 Financial indices market, month, price, rate, rise, time, block, publish, government, minister 3.37%

T.23 Monetary policy growth, economy, rate, price, inflation, economic, increase, risk, expect, market 6.35%

T.24 Stock market cent, point, market, fall, rise, share, index, stock, high, today 2.18%

T.25 Energy-climate policy energy, emission, climate, change, carbon, renewable, government, green, tar-
get, policy

12.21%

T.26 Unknown time, block, publish, British, minister, say, gmt, government, people, get 0.87%

T.27 Elections party, election, vote, make, government, political, people, country, leave, policy 8.71%

T.28 Royal family family, make, royal, take, tell, go, day, last, say, work 0.80%

T.29 Health crisis case, covid, people, coronavirus, health, time, government, country, day, week 1.69%

Note: The relevance of a term (w) per topic (k) is given by (w|k) = P (w|k) + (1 − λ)P (w|k)/P (w). λ ∈ [0, 1], P (w) is the frequency of a word in the corpus (see
Sievert and Shirley (2014)).
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Figure 3.3: News-based index.

130



Does the European Low-Carbon Policy impact price uncertainty in fossil energy
markets?

4.2 Developing a law-based index

4.2.1 Laws data

Following the thread in the subsection 4.1, this part focuses on the EU laws

database.6 First, data collection criteria rely on all laws that contain the words

”energy”, ”environment” and ”policy”. Second, we extend the sample to laws

whose titles are closest semantically to the above three words, such as ”propellant,

”climate” and ”regulation”. As a result, the set of laws under consideration

gathers 7,657 daily legal acts recorded from January 1997 to May 2021. These

are in majority parliament preparatory documents, consolidated texts, treaties,

international agreements, and case laws. Authors of regulatory acts are mainly

the European Commission, the European Parliament, the European Economic

and Social Committee, the Council of the European Union, and the European

Commission of Regions. Ultimately, before performing the LDA model, the corpus

of documents is filtered to remove stopwords, punctuation, numbers, and other

special characters. Then, words are lemmatized and converted to lowercase.

4.2.2 Descriptive statistics

The initial model provides an optimal number of topics K = 14. Once the key

parameter K is set, we can then run the final model while adjusting hyperparam-

eters α and η to improve the average coherence score as well as the performance

of the model. The final model records a Cv ≃ 0.45.7 Afterwards, we retrieve the

distribution of words by topic, as well as the distribution of topics by documents.

Once the topics have been identified, it is up to the researcher to label and de-

termine the dominant topic for each document. The construction of each topic’s

monthly time series goes through the proportion of each dominant topic per month.

In other words, we compute for each topic the number of documents it contributes

to the most divided by the total number of documents delivered per month. Finally,

all series are standardized to mean 100 and 1 standard deviation along the period

covered.

Table 3.2 reports the most representative words for the optimal number of topics

provided by the model. Figure 3.4 shows the evolution of the European law-based

6EUR-LEX
7Details about the computation of model’s performance criteria are reported in Appendix C.2.
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index of energy and environmental policy from January 1997 to May 2021. It is

constructed from the table 3.2 as the sum of the monthly normalized time-series

of topics 6, 7 and 11 that are assigned to energy and environment concerns (i.e.

regulations on energy and climate, energy efficiency and environment, respectively).

The latter account for about 30% of the entire sample. These topics are considered

law-based subcategories and reflect components behind each law-based index fluc-

tuation. The law-based index exhibits sudden spikes and falls around events that

litter the legislation cycles on energy and environmental challenges. For instance,

the Kyoto Protocol, adopted and entered into force in 1999 (alongside the Euro area

establishment), gave priority to a coordinated resolution of major environmental is-

sues. The early 2000s saw an institutional crisis, namely on the approval of the EU

constitution in France and the Netherlands. In 2007, the Treaty of Lisbon was de-

signed to make the EU more democratic, efficient and transparent and thereby able

to tackle global challenges such as climate change, security and sustainable develop-

ment. This process was hindered by a major financial crisis (2008) that hit the world

economy. By the end of 2015, despite an influx of war refugees to the EU needing

international protection, the United Nations Conference held in Paris (including 195

countries) concluded a new agreement on climate change. This agreement, with the

EU playing a pivotal role, comprised an action plan to limit global warming to 2C

compared to pre-industrial levels. In 2019, public concern about the climate crisis

increased, driven by a growing and active international youth movement. A new

commission took office with its sights firmly set on making Europe climate-neutral

by 2050 through a new growth strategy: the European Green Deal.
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Table 3.2: LDA topics and most representative words for the EU.

Topic Label Top-10 words (λ = 0.5) Percent

T.1 Development program program, support, development, country, policy, project, state, action, fund,
include

18.35%

T.2 Payment regulation state, regulation, payment, refer, aid, provide, case, apply, amount, period 4.87%

T.3 Labour and Capital increase, rate, market, high, growth, sector, investment, labour, GDP, public 6.41%

T.4 Investment efficiency market, state, service, policy, public, new, level, investment, cost, sector 11.70%

T.5 Unknown law, report, state, public, implementation, progress, continue, policy, system,
area

7.20%

T.6 Energy and Climate energy, policy, climate, development, research, change, environmental, sus-
tainable, action, transport

15.88%

T.7 Energy efficiency energy, emission, state, cost, directive, option, impact, measure, product, re-
port

8.88%

T.8 Industry product, free, material, service, exceed, party, include, year, manufacture, head 6.63%

T.9 Financial regulation appropriation, regulation, financial, expenditure, payment, Europe, program,
result, chapter, commitment

2.65%

T.10 Unknown system, vehicle, directive, requirement, type, annex, regulation, technical, state,
body

1.95%

T.11 Environment directive, state, water, measure, environmental, aid, regulation, include, infor-
mation, area

4.93%

T.12 Trade and transport agreement, party, service, trade, state, transport, cooperation, include, provi-
sion, international

5.64%

T.13 Tax strategy country, tax, trade, policy, increase, state, measure, economic, market, com-
mittee

3.92%

T.14 Agriculture regulation test, animal, substance, chemical, control, method, product, state, concentra-
tion, health

0.98%

Note: The term per topic (w|k) = P (w|k) + (1− λ)P (w|k)/P (w), λ ∈ [0, 1], P (w) is the frequency of a word in the corpus (see Sievert and Shirley (2014)).
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Figure 3.4: Law-based index of European energy and environmental policy.
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Consequently, the assessment of our composite indicators (news and law-based

indicators) is to show whether they capture significant events throughout the history

of EU energy and environmental regulations. The historical back-testing of indices

provides continuous tracking of the evolution of energy-related environmental pol-

icy in news and laws. At first glance, the news-based index is more likely to reflect

uncertainty about the global context in which policy actions are undertaken. The

latter does not only present points of time commitment but also might implicitly

take into account the long-lasting dynamics of the policy process (e.g. announce-

ments, delays, revisions and failures) on markets. All these characteristics make

the news-based index more volatile with two upsurge periods of environment and

climate concerns followed by energy security concerns. Moreover, as we stressed

above, the measurement of the news-based index also emphasizes the global context

in which regulations evolve. In contrast, the law-based index does not display any

trend, it remains dominated by several prominent peaks nested to the adoption of

international and regional agreements on climate change (Kyoto Protocol in 1997,

Paris Agreement in 2016, and European Green Deal in 2019). Nevertheless, accord-

ing to the calendar of legislative sessions, the index depicts a seasonal pattern that

hides in-between events which potentially appear under-weighted.

4.3 News versus Laws

Another important aspect is to analyze how both indices evolve together.8 To this

end, each index is transformed into its 3-month moving average to clearly exhibit

a momentum with less volatility. Figure 3.5 scales the monthly evolution of the

news-based index along with the law-based index. We observe that there is a dy-

namic correlation across the indices highlighted by episodes of high and low corre-

lation. Therefore, this graphical analysis helps to visualize and to identify periods

of common trends. Starting in the early 2000s, it appears, among others, that the

relationship is likely significant during phases of action on global warming commit-

ments, energy transition, and environmental taxation. In the same vein, a deeper

description of the relationship between both time series could be explored with

cross-correlation analysis. Indeed, the cross-correlation function (CCF) is helpful

for identifying which variable is leading and which is lagging. For instance, figure

8Data on law and news-based indices and subcategories are available upon request.
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3.6 illustrates the prediction power between news and law-based indices over time.

The result shows that the law-based index has a significant positive prediction on the

news-based index in the short run.9 This is less surprising as it suggests that laws

are quickly integrated into the news as soon as they are voted. At that moment, this

mechanism could be perceived by markets as more regulations. This pass-through

fades over time, and this justifies the significant negative correlation observed in the

medium term. Thereby, by analogy, the markets’ perception of regulatory relief is

reinforced.10

9Additionally, cross-correlation scatter plots are available in Appendix C.5.
10In line with this cross-correlation analysis, the dynamic inference of both indices is briefly

reported in Appendix C.5 stemming from our empirical model developed in the next section.
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Figure 3.5: Law vs News indices, a pairwise 3-month moving average.

Note: This graph represents the common evolution of law-based index (blue line) and news-based index (orange line). Shaded areas are set as periods of major

comovements.
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Figure 3.6: Cross-correlation function between law and news-based indices.

Notes: This figure presents the lag-leading relation between news and law-based indices. The vertical axis scales
the correlation values. Likewise, the horizontal axis shows the time delay factor. When it displays negative values,
then lags of the law-based index are predictors of the news-based index and vice-versa. The blue dotted line is set
for a 95% confidence interval.

Once these indices are constructed and analyzed, we rely on an empirical frame-

work to test their effects on price uncertainty dynamics in the fossil energy markets.

5 Low-carbon policy and fossil energy markets

5.1 Econometric framework: model specification and iden-

tification

This part is devoted to exploring the assumption on the relationship between energy

and environmental policy and fossil fuel (oil, gas and coal) price uncertainty in a

structural vector autoregressive (VAR) framework to keep in line with the litera-

ture approach. The monthly data for each fossil fuel price uncertainty is obtained

following the methodology described in chapter 1. Thus, our VAR model includes

five variables: the law-based index, the news-based index, and each market’s price

uncertainty.

Prior to the VAR model estimation, unit root tests are performed for each vari-
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able.11 Accordingly, we notice that none of these variables simultaneously pass all

the unit root tests. For convenience, we consider the first difference transforma-

tion of the logarithm of law and news-based indices along with the market’s price

uncertainty.

The VAR is run at a monthly frequency. The estimation period is 1997:4-2021:5.

A VAR model of a finite order p, referred to as VAR(p) model, is expressed as:

Yt = a0 + A1Yt−1 + ....+ ApYt−p + ϵt, ϵt ∼ N (0,Σ) (3.3)

where Yt is an M × 1 vector of endogenous variables (M being the number of

variables), a0 is an M × 1 intercept vector, Aj (j = 1, ...., p) are M ×M coefficient

matrices, and ε is an M × 1 vector of exogenous Gaussian shocks with zero mean

and variance-covariance matrix Σ.

We rely on a Bayesian hierarchical modeling approach to estimate the VAR

model (Giannone et al., 2015).12 In general, Bayesian estimation techniques are

used to tackle over-dimensionality due to the number of coefficients M +M2p rising

quadratically with the number of variables and linearly in the lag order. How-

ever, Bayesian methods are also useful when dealing with short sample periods to

overcome ”overfitting” issues. According to AIC and FPE information criteria, the

preliminary estimation of the VAR model sets the optimal lag length to 6.

The BVAR specification requires a prior specification and hierarchical prior se-

lection procedure. The flexibility of prior setup in the Bayesian framework permits

the accommodation of a wide range of economic issues. Following Giannone et al.

(2015), prior hyperparameters in a data-based fashion are treated as additional pa-

rameters to be estimated. In that sense, hyperparameters are assigned their own

hyperpriors as stated by Bayes’s law below:

P (γ|Y ) ∝ P (Y |θ, γ)P (θ|γ)P (γ) (3.4)

P (Y |γ) =
∫
P (Y |θ, γ)P (θ|γ)dθ (3.5)

where Y = (Yp+1, ..., YT )
′
, θ represents the autoregressive and variance parame-

11Table C.3 in Appendix C.6 reports the unit root tests.
12For further information on BVAR estimation and inference, we highly recommend interested

readers to works of Gelman et al. (2013), Koop et al. (2010) and Kilian and Lütkepohl (2017).
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ters of the VAR model, γ is the set of hyperparameters and P (Y |γ) is the marginal

likelihood (ML). Using the Normal-inverse Wishart (NIW) family for conjugate prior

distributions, the equation (3.3) could be approached assuming A = (a0, A1, ..., Ap)
′

and β = vec(A). Therefore, the conjugate prior setup is given as follows:

β|Σ ∼ N (b,Σ⊗ Ω) (3.6)

Σ ∼ IW (Ψ, d) (3.7)

where b, Ω, Ψ and d are lower-dimensional vectors of hyperparameters γ. The

common practice in the literature is to consider three specific priors: the Minnesota

prior (Litterman, 1980) as a baseline where all variables follow random walk pro-

cesses, the sum-of-coefficients prior and the single-unit-root prior (Sims and Zha,

1998).

The prior for β is defined as a Minnesota-type and is characterized by the fol-

lowing moments:

E[(As)ij|Σ] =

{
1 if i = j and s = 1,

0 otherwise.

cov[(As)ij, (Ar)kl|Σ] =

{
λ2 1

sα
Σik

ψj/(d−M−1)
if l = j and r = s,

0 otherwise.

Formally, i corresponds to the dependent variable in the ith equation, j to the

independent variable in that equation, and l to the lag number. The key hyperpa-

rameter λ controls the tightness of the prior. The variance decay with the lag order

depends on the degree of shrinkage among distant observations measured by α. Fi-

nally, ψj representing the jth variable of the matrix Ψ adjusts the prior’s standard

deviation on lags of variables other than the dependent variable.

In accordance with the Bayesian macroeconomic literature, we set λ = 0.2 leav-

ing α, ψ on their default values (see Kuschnig and Vashold (2021)). We use the

Metropolis-Hastings algorithm as a Markov chain Monte Carlo (MCMC) method

for the sampling approach in order to define the posterior hyperparameter space.
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Lastly, draws of β and Σ from their respective marginal posterior likelihood are

obtained after simulating 50,000 draws with 10% burn-in.13

In the end, the dynamics of our VAR system are given by impulse response

functions (IRFs) that underlie the structural shock inference and are identified using

Cholesky decomposition with the following variable ordering: law-based index, news-

based index, oil price uncertainty, gas price uncertainty and coal price uncertainty.14

5.2 Main results

As a central tool for structural analysis, IRFs are the cornerstone of inference with

VAR models. They represent the propagation of shocks hitting the system of vari-

ables. Similarly, the proper identification scheme of the model conditions a mean-

ingful interpretation.

Figure 3.7 illustrates the dynamics of fossil energy price uncertainty following the

shocks on law and news-based indices at 84% and 68% confidence levels, respectively.

Note that a shock in the law-based index indicates an unprecedented increase in laws

on energy-related environmental policy voted at the European level. Similarly, a

shock in the news-based index stands for an unanticipated spike in news on energy-

related environmental policy as discussed in the European press.

Overall, we find that each market’s price uncertainty displays specific reactions

to shocks in law and news-based indices. In particular, an increase in the law-

based index has a negative and significant effect on price uncertainty in oil and coal

markets. Especially, the dampening effect is more persistent in the coal market.

However, there is no apparent significant response to the law-based index shock

on gas price uncertainty. It should be noted that European legislation on energy-

related environmental issues is oriented toward green transition. In this sense, the

pathway to a greener economy appears as a long-run perspective that substantially

affects price uncertainty dynamics, which is considered to be conjuncture-driven.

Nonetheless, several lessons could be drawn from these findings. First, according to

our results, the perception of the law-based index in the oil and coal markets recalls

the concept of ”divine coincidence” whereby a green (environmental) policy does

13The model indicates an accepted draws rate of 34.5%. In the Appendix C.5, we report hyper-
parameters’ posterior distributions and the convergence diagnostic of Geweke (1992).

14The economic intuition behind the order of markets’ variables lies in that oil is predetermined
relative to gas and coal, respectively.
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not come at the cost of higher energy prices, and therefore higher price uncertainty

Panetta (2022). This outcome contrasts with negative narratives underscoring that

green policies contribute to rising fossil fuel prices as investment in fossil fuels de-

clines due to lower expected demand Dlugosch and Kozluk (2017). Nonetheless, the

European authorities need to legislate more on low energy intensity, energy security,

and transition funding. Second, though coal is clearly identified as the most pol-

luting fossil fuel, it still faces strong demand for power generation in the EU. The

stringency of coal’s phase-out plans contributed to a coal diversification strategy in

order to reduce adverse effects of the coal price uncertainty.

By analyzing the effects of the news-based index shocks on market price un-

certainty, some patterns are highlighted in accordance with the news-based index

components. First, we uncover that an increase in the news-based index triggers

a short-run slight and significant rebound in price uncertainty in oil and coal mar-

kets. This upward effect arises from uncertainty about the global context. Actu-

ally, sometimes news tends to amplify information about proactive regulations that

might generate unexpected market reactions after legal act announcements. From

this point of view, our result is in line with what we would expect from a positive

shock in the news-based EPU index on price uncertainty as discussed in chapter 2.

Afterwards, the positive tendency is reversed by a persistent negative effect on price

uncertainty in these markets due to the regulations component. In contrast, we note

that the long-lasting shrinking incidence starts earlier for the gas market. Hence,

we can conclude that the news-based index exerts a prevailing stabilizing effect on

price uncertainty across markets.

In a deeper way, we explore in detail the responses of each market’s price un-

certainty to law-based sub-index shocks in figure 3.8. We recall that the law-based

sub-indices refer to tracking regulations on energy efficiency, climate, and the en-

vironment. In general, this figure reports that coal price uncertainty is negatively

associated with all law-based sub-index shocks, whereas oil and gas price uncer-

tainty mostly reacts to the specific environment sub-index. Therefore, compared to

our finding in figure 3.7, it is highly recommended to give priority to environmen-

tal regulations that considerably reduce unpredictable price fluctuations in the gas

market.

Altogether, this part sheds light on the potential effects of two major aspects of

the European low-carbon policy on price uncertainty in fossil energy markets. The

main outcomes of our investigation emphasize that the law-based structural index
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reduces price uncertainty in the oil and coal markets in a more conspicuous and

protracted manner. It is also the case in the gas market when considering a shock in

the law-based environmental regulations sub-index. Likewise, the news-based index

points out a dual effect (positive or negative) on price uncertainty relative to its

components. We find out that the negative effect outweighs in the long run, which

shows that regulatory efficacy could withstand uncertainty.
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Figure 3.7: Responses of fossil energy price uncertainty to shocks in news and law-based indices.

Notes: This figure reports impulse response functions for fossil energy price uncertainty to positive shocks in law and news-based indices (i.e. one standard deviation).
The SVAR is estimated with Bayesian methods and shocks are identified using Cholesky decomposition with variables ordered as follows: ∆(log(Laws)), ∆(log(News)),
Oil price uncertainty, Gas price uncertainty, Coal price uncertainty. Gray bands represent 84% and 68% confidence intervals.
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Figure 3.8: Responses of fossil energy price uncertainty to shocks in law-based sub-indices.

Notes: This figure reports impulse response functions for fossil energy price uncertainty to positive shocks in law-based sub-categories (i.e. one standard deviation). The
SVAR is estimated with Bayesian methods for each sub-category and shocks are identified using Cholesky decomposition with variables ordered as follows: ∆(log(laws
sub-category)), Oil price uncertainty, Gas price uncertainty, Coal price uncertainty. Bands represent 84% and 68% confidence intervals.
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5.3 Complementary results

As the construction of price uncertainty arises from prices and is defined as its

unanticipated component, another relevant point of this part consists of analyz-

ing market price inference in our model.15 For this purpose, we re-estimate our

model by replacing price uncertainty with price level. Figure 3.9 reveals, on the

one side, a non-significant drop in prices across markets after a positive shock in-

crease in the law-based index. This observation brings to the point that, although

law-based low-carbon regulations may have an effect on price uncertainty, this does

not mechanically lead to a significant impact on the price level. On the other side,

news-based index shocks contribute to a drop in prices within markets. For each

market, the burst begins earlier than that of price uncertainty and becomes estab-

lished over time. One interesting explanation is to consider that markets anticipate

regulations, therefore prices adjust downward beforehand.

Furthermore, our findings on low-carbon policy effects could also be interpreted

as a means to mitigate the energy price-core inflation nexus which tends to be

particularly high due to the current economic situation. This inflation has been

caused by years of loose monetary policies and profligate spending after the 2008

crisis and to combat Covid-19, and by the recent Russo-Ukrainian War-induced

energy crisis. Having a look at the last phenomenon, we observe that energy prices

account for a large share of inflation in European net energy importer economies.

Therefore, these most advanced countries face worsening terms of trade and the

exposure of their energy-intensive industries. Among the two complex channels

through which changes in energy prices affect inflation, a distinction is made between

first- and second-round effects. The first-round effect refers to the increase in the cost

of living and purchasing power as transport and heating, for instance, become more

expensive. The second-round effect translates into higher production costs, including

for non-energy goods and services, which firms try to pass on to consumers. The

larger the second-round effects, the more hawkish central banks are against inflation.

However, when governments interfere with pricing mechanisms (i.e. measures on

price caps and subsidies) to shield consumers and companies from rising energy costs,

it only deepens the problems in the long run as it increases energy consumption in

a situation where there is a need to curb it, and subsidies increase liquidity in the

15Data of monthly nominal prices from the World Bank website: Commodity-prices-pink-sheets.
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system and have the potential to fuel inflation Nakhle (2022). Beyond these short-

run counterproductive government measures to alleviate the burden of unexpectedly

skyrocketing fossil fuel prices that generate high uncertainty, hastening the shift

towards green policy is not necessarily at odds with price stability Heemskerk et al.

(2022). In other words, the authors emphasize that global energy prices are expected

to be reduced in the long run under a green energy policy.
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Figure 3.9: Responses of fossil energy prices to shocks in law and news-based indices.

Notes: This figure depicts impulse response functions for fossil energy prices to positive shocks in law and news-based indices (i.e. one standard deviation). The SVAR is
estimated with Bayesian methods and shocks are identified using Cholesky decomposition with variables ordered as follows: ∆(log(Laws)), ∆(log(News)), Oil price, Gas
price, Coal price. Bands represent 84% and 68% confidence intervals.
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6 Concluding remarks and policy recommenda-

tions

This chapter explored the European low-carbon policy through the legislative cy-

cle as well as the resulting uncertainty reflected in news articles. We relied on an

unsupervised machine learning algorithm on legal acts and newspapers pertaining

to energy and environmental regulations. This methodology yielded two distinct

measures: a law-based index of European low-carbon policy and a news-based in-

dex. Each index was the result of a bottom-up approach since they appeared as an

aggregation of equally-weighted endogenous individual components (also called sub-

indices). Whilst the law-based index somehow presented a stable seasonal scheme,

the news-based index appeared to be governed by the intrinsic volatility of news

articles. Besides, the news-based index made it possible to capture events around

law adoption and it emphasized the global context. In this sense, one considers that

once laws are voted, their treatment in newspapers per se might also generate an

inner uncertainty. Representing both indices side by side, we noticed periods of com-

mon dynamics and how laws foreshadow news in the short run. Hence, as designed,

the law-based index captures a structural dimension, whereas the news-based index

incorporates a conjunctural aspect, reflecting uncertainty.

Afterwards, we conducted an empirical analysis of the relationship between the

aforementioned indices and price uncertainty in fossil energy markets. The findings

show, in terms of maturity, heterogeneous responses across markets to shocks in law

and news-based indices. Especially, regarding the effects of the news-based index

shocks, we noted that, except for the gas market which reacted negatively from

the outset, the oil and coal markets displayed a dual effect. This dual effect was

characterized by a slight increase in price uncertainty in the short term followed by

a significant decrease that tended to stabilize price uncertainty permanently. In the

same way, looking at shocks in the law-based index, there was a significant decrease

in oil and coal price uncertainty, whereas no significant effect was recorded for the

gas market except when considering the law-based environment sub-index shock.

Additionally, we performed further analysis to appraise the effects of our indices on

markets’ price levels. We found out that only the news-based index contributed to

significantly dampening prices across markets, meaning that markets anticipate the

regulations and adjust their prices accordingly.
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The results of this chapter have two main implications. First, they lend credence

to a wealth-of-words environment based on legal acts and press articles to quantify

energy-related environmental policy. In this respect, the usefulness of the LDA

algorithm lies in the categorization of individual components to fulfill a bottom-

up approach, accordingly. Second, the effects of law and news-based indices on

price uncertainty in fossil energy markets could be of great interest to policymakers.

The latter should take transparent actions to provide incentives to reduce fossil

fuel demand for a given after-tax price. This would cushion the upward pressure on

energy prices and the subsequent uncertainty. Authorities also have to ensure energy

security since fossil fuel price shocks could lead to overall inflation. Therefore, a

coordinated policy at the European level could prevent national beggar-thy-neighbor

policies. Finally, policies need to bridge the gap in green investment to diversify

energy sources and contain energy prices.
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C.1 Estimating the LDA

As seen before, LDA as a probabilistic machine learning model consists of the joint

distribution of hidden variables z = (βK , θD, zD, wD) and observed variables x = wD,

such that P (z|x). Inference about this unknown conditional probability, also called

the posterior distribution is expressed as follows:

P (z|x) = P (βK , θD, zD|wD) =
P (βK , θD, zD, wD)

P (wD)
(C.1)

Unfortunately, the computation of the posterior distribution is intractable due

to the denominator P (wD) that represents the marginal probability. To tackle this

issue, one appeals to approximation of the posterior distribution, where the de-

nominator is the sum of the joint distribution over all instantiations of the hidden

structure. Hence, the newly LDA posterior distribution becomes:

P (βK , θD, zD|wD) =
P (βK , θD, zD, wD)∫

β

∫
z
P (βK , θD, zD, wD)

(C.2)

To estimate the posterior distribution, two types inference techniques are dis-

cerned:

➣ Sampling method uses Monte Carlo Markov Chains (MCMC) to generate in-

dependent samples from the posterior distribution.

➣ Optimizing method relies on Variational Bayes (VB), which provides similar

accurate results as does the sampling method. It optimizes a simple parametric

distribution to be as close as possible in Kullback-Leiber divergence to the

posterior distribution (more details about are discussed later).

The main advantage of VB over MCMC is to be faster when dealing with large

datasets, as highlighted by Hoffman et al. (2010).

Following Azqueta-Gavaldón (2017), the basic idea behind VB could be graphi-

cally described by figure C.1 below:
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Figure C.1: Variational Bayes inference.

Note: This graph illustrate a simple process of the variational Bayes inference.

Given the need to replicate as faithful as possible the posterior distribution

P (z|x), one postulates a variational family distributions over latent variables q(z, v),

with v the variational parameter. In the ellipse, the algorithm takes as a starting

point a particular realization of the distribution vinit and adjust the free parameter v

until it finds the closest value to the posterior distribution v∗. As shown in figure C.1,

the optimization process is the curvature path connecting vinit to v∗. Finally, the

Kullback-Leiber divergenceKL(q(z, v∗)∥P (z|x)) represents the measure of closeness.

There are two versions of VB: the batch version (generally set by default in any

LDA estimation), and the Stochastic or online VB. Our study uses a mix of the two,

namely the batch VB to get the optimal number of topics and the online VB to

estimate the final LDA model. Nonetheless, one admits that the batch VB faces in-

efficiency problems since for each data point it has to undertake local computations,

and then aggregate them to re-estimate the global structure iteratively. To overcome

this issue, online VB comes to rescue, hence is highly recommended. Hoffman et al.

(2010) provide details about the mathematical formalization of VB versions below.
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Batch variational Bayes

According to Hoffman et al. (2010), in the Variational Bayesian inference (VB) the

true posterior is approximated by a simpler distribution q(z, θ, β), which is indexed

by a set of free parameters (Attias, 1999, Jordan et al., 1999). These parameters

are optimized to maximize the Evidence Lower Bound (ELBO). In figure C.1, the

ELBO is represented by the optimization path that connects vinit to v∗. Formally,

the ELBO is given by the following expression:

Log P (w|α, η) ⩾ L(w, ϕ, γ, λ) ∆ Eq[Log P (w, z, θ, β|α, η)]−Eq[Log q(z, θ, β)] (C.3)

Note that maximizing the ELBO is equivalent to minimizing the KL divergence

between q(z, θ, β) and the posterior P (z, θ, β|w, , η). Following Blei et al. (2003), we

choose a fully factorized distribution q of the following form:

q(zdi = k) = ϕdwdik; q(θd) = Dirichlet(θd; γd); q(βk) = Dirichlet(βk;λk) (C.4)

It is worth mentioning that this posterior over the per-word topic assignments

z is parameterized by ϕ; the posterior over the per-document topic weights θ is

parameterized by γ; and the posterior over the topics β is parameterized by . As a

shorthand, we refer to λ as ”the topics”. Equation (C.4) factorizes to:

L(w, ϕ, γ, λ) =
∑
d

{Eq[Log P (wd|θd, zdβ] + Eq[Log P (zd|θd]− Eq[Log q(zd]

+ Eq[Log P (θd|α]− Eq[Log q(θd] + (Eq[Log P (β|η)]− Eq[Log q(β])/D} (C.5)

Notice we have brought the per-corpus terms into the summation over docu-

ments, and divided them by the number of documents D. This step will help to

derive an online inference algorithm. We now expand the expectations above to be

functions of the variational parameters. This reveals that the variational objective

relies only on ndw, the number of times word w appears in document d. When using
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VB -as opposed to MCMC- documents can be summarized by their word counts:

L =
∑
d

∑
w

ndw
∑
k

ϕdwk(Eq[Log θdk] + Eq[Log βdk]− Log ϕdwk)

− Log Γ(
∑
k

γdk) +
∑
k

(α− γdk)Eq[Log θdk] + Log Γ(γdk)

+ (
∑
k

−Log Γ(
∑
w

λkw) +
∑
w

(η − λkw)Eq[Log βkw] + Log Γ(λkw))/D

+ Log Γ(Kα)−KLog Γ(α) + (Log Γ(Wη)−WLog Γ(η))/D

∆
∑
d

ℓ(nd, ϕd, γd, λ) (C.6)

where W is the size of the vocabulary and D is the number of documents.

ℓ(nd, ϕd, γd, λ) denotes the contribution of document d to the ELBO. L can be op-

timized using coordinate ascent over the variational parameters ϕ, γ, λ (Blei et al.,

2003):

ϕdwk ∝ exp{Eq[Log θdk]+Eq[Log βkw]}; γdk = α+
∑
w

ndwϕdwk; λkw = η+
∑
d

ndwϕdwk

(C.7)

The expectations under q of Log θ and Log β are the following:

Eq[Log θdk] = Ψ(γdk)−Ψ(
K∑
i=1

γdi); Eq[Log βkw] = Ψ(λkw)−Ψ(
W∑
i=1

λki) (C.8)

where Ψ denotes the digamma function (the first derivative of the logarithm of

the gamma function). The updates in equation (C.8) are guaranteed to converge

to a stationary point of the ELBO. By analogy to the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977), we can partition these updates into an ”E”

step-iteratively updating γ and ϕ until convergence, holding λ fixed -and an ”M”

step-updating λ given ϕ. In practice, this algorithm converges to a better solution if

we reinitialize γ and ϕ before each E step. Algorithm 1 outlines batch VB for LDA.
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Algorithm 1: Batch variational Bayes for LDA

Initialize λ randomly.
while relative improvement in L(w, ϕ, γ, λ) > 0.00001 do

E step:
for d = 1 to N do

Initialize γdk = 1. (The constant 1 is arbitrary.)
repeat

Set ϕdwk ∝ exp{Eq[Log θdk] + Eq[Log βkw]}
Set γdk = α +

∑
w ϕdwkndw;

until 1
K

∑
k |Change in γdk| < 0.00001;

end
M step:
Set λkw = η +

∑
d ndwϕdwk

end

Online variational inference for LDA

Algorithm 1 has constant memory requirements and empirically converges faster

than batch collapsed Gibbs sampling (Asuncion et al., 2012). However, it still

requires a full pass through the entire corpus for each iteration. It can therefore be

cumbersome to apply to very large data-sets, and is not naturally suited for settings

where new data is constantly arriving. We propose instead an online variational

inference algorithm for fitting λ, the parameters to the variational posterior over the

topic distributions β. Our algorithm is nearly as simple as the batch VB algorithm,

but converges much faster for large datasets.

A good setting of the topics λ is one for which the ELBO L is the highest

possible after fitting the per- document variational parameters γ and ϕ with the

E step defined in algorithm 1. Let γ(nd, λ) and ϕ(nd, λ) be the values of γd and

ϕd produced by the E step. Our goal is then to set λ to maximize the following

expression:

L(n, λ) ∆
∑
d

ℓ(nd, γ(nd, λ), ϕ(nd, λ), λ) (C.9)

where L(n, λ) is the dth document’s contribution to the variational bound in the

equation (C.9). This is analogous to the goal of least-squares matrix factorization,

although the ELBO for LDA is less convenient to work with than a simple squared

loss function. Online VB for LDA (”online LDA”) is described in Algorithm 2.

As the tth vector of word counts nt is observed, we perform an E step to find
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locally optimal values of γt and ϕt, holding λ fixed. We then compute λ̃ the

setting of λ that would be optimal (given ϕt) if our entire corpus consisted of

the single document nt repeated D times. D is the number of unique documents

available to the algorithm, i.e. the size of a corpus. (In the true online case

D → ∞, corresponding to empirical Bayes estimation of β.) We then update λ

using a weighted average of its previous value and λ̃. The weight given to λ̃ is

given ρt ∆ (τ0 + t)−κ where κ ∈ [0.5, 1] controls the rate at which old values of

λ̃ are forgotten and τ0 ≥ 0 slows down the early iterations of the algorithm. The

condition that κ ∈ [0.5, 1] is needed to guarantee convergence. We showed above

that online LDA corresponds to a stochastic natural gradient algorithm on the

variational objective L (Bottou and Murata, 2002).

Mini-batches. A common technique in stochastic learning is to consider multi-

ple observations per update to reduce noise. In online LDA, this means computing

λ̃ using S > 1 observations:

λ̃kw = η +
D

S

∑
s

ntskϕtskw (C.10)

where nts is the sth document in mini-batch t. The variational parameters α

and η for this document are fit with a normal E step. Note that we recover the

batch VB when S = D and κ = 0.

Hyperparameter estimation. In batch variational LDA, point estimates of

the hyperparameters α and η can be fit given γ and λ using a linear-time Newton-

Raphson method. We can likewise incorporate updates for α and η into online

LDA:

α← α− ρtα̃(γt); η ← η − ρtη̃(λ) (C.11)

where α̃(λ)) is the inverse of the Hessian times the gradient ∇αℓ(nt, γt, ϕt, λ);

η̃(λ) is the inverse of the Hessian times the gradient ∇ηL, and ρt ∆ (τ0 + t)−κ as

elsewhere.
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Algorithm 2: Online variational Bayes for LDA

ρt ∆ (τ0 + t)−κ

Initialize λ randomly.
for t = 0 to ∞ do

E step:
Initialize γtk = 1. (The constant 1 is arbitrary.)
repeat

Set ϕtwk ∝ exp{Eq[Log θtk] + Eq[Log βkw]}
Set γtk = α +

∑
w ϕtwkntw;

until 1
K

∑
k |Change in γtk| < 0.00001;

M step:
Compute λ̃kw = η +Dntwϕtwk
Set λ = (1− ρt)λ+ ρtλ̃

end

C.2 Selecting the optimal number of topics

The estimation of LDA model draws an approximation of a posterior distribution

(see more details later) with K topics (represented as multinomial distribution over

V ). This process infers each topic distribution that contains words with different

probability assignment. Generally, words within topics with high probability are

those that tend to co-occur more frequently. Moreover, these words are used to

interpret and semantically label the topics.1

Choosing the optimal number of topics K is essential in topic modelling algo-

rithm, including the LDA. Previously, predictive likelihood have been sofar proposed

by researchers to determine K. However, such measures had a main drawback to be

negatively correlated with human interpretability. In other words, topics with high

predictive become less coherent from a human perspective. As a result, coherence

measures have emerged, which rely on a qualitative approach to automatically un-

cover the coherence of a topic. Indeed, a high topic coherence indicate that words

which constitute the topic occur in similar contexts. For this study, we mainly

focuses on two most popular coherence scores: the Cv coherence score based on

a sliding window one-set segmentation of top words in all documents’ topics; the

CUmass coherence score illustrates the cosine similarity among words co-occurrences

1One of the caveats of the LDA is that topics recovered most probable words that need to be
interpreted by the researcher. But this task seems to be straightforward since the training sample
is correctly calibrated.

163



APPENDIX C

in documents’ topics. The average CUmass score computes how often two words wi

and wj appear together in the corpus to draw each topic. It is then defined as

follows:

CUmass =
1

K

K∑
k=1

n∑
i ̸=j=1

log

(
D(wi,k;wj,k) + 1

D(wi,k)

)
(C.12)

While D(wi,k;wj,k) indicates how many times words wi and wj appear together

in documents for a given topic, D(wi,k) represents how many times wi figures alone

for a given topic. The greater the score, the better is the coherence score.2

In addition to coherence scores, we appreciate the performance of the final model

with the perplexity score. The latter is often used to evaluate models on a held-

out training sample and is equivalent to the geometric mean per-word likelihood.

Formally, it is given by :

Perplexity(wd) = exp

(
−
∑D

d=1 log(P (wd))∑D
d=1Nd

)
(C.13)

D is the number of documents, wd denotes words in document d, and Nd the

number of words in document d.3

Also in line with the pick up of the optimal number of topics K, we iterate

the LDA algorithm for different values of k = 1, ..., K. Thereafter, we retrieve for

each time the corresponding coherence and the perplexity scores. We also control

for similarity or diversity across each topics’ pairwise using Jaccard Similarity (JS)

score. JS score of pairwise i, j (i ̸= j) is given by:

JS =
Topici ∩ Topicj
Topici ∪ Topicj

(C.14)

A low value of JS score reflects a small topics overlapping structure, which is good

for the quality of the model. To sump up, the optimal number of topics is obtained

for the LDA model with the highest difference between the average Cv score and

the JS score before the two curves flatten out.4

2CUmass scores for both news and law-based final models are −0.81 and −0.28, respectively.
3The perplexity scores for news and law-based final models are −7.19 and −7.07, respectively.
4JS scores of news and law-based final models are around 0.13.
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C.3 Stopwords

[’i’, ’me’, ’my’, ’myself’, ’we’, ’our’, ’ours’, ’ourselves’, ’you’, ”you’re”, ”you’ve”,

’you’ll’, ’you’d’, ’your’, ’yours’, ’yourself’, ’he’, ’him’, ’his’, ’himself’, ’she’, ’she’s’,

’her’, ’hers’, ’herself’, ’it’, ”it’s”, ’its’, ’itself’, ’they’, ’them’, ’their’, ’theirs’, ’them-

selves’, ’what’, ’which’, ’who’, ’whom’, ’this’, ’that’, ’that’ll’, ’these’, ’those’, ’am’,

’is’, ’are’, ’was’, ’were’, ’be’, ’been’, ’being’, ’have’, ’has’, ’had’, ’having’, ’do’, ’does’,

’did’, ’doing’, ’a’, ’an’, ’the’, ’and’, ’but’, ’if’, ’or’, ’because’, ’as’, ’until’, ’while’,

’of’, ’at’, ’by’, ’for’, ’with’, ’about’, ’against’, ’between’, ’into’, ’through’, ’during’,

’before’, ’after’, ’above’, ’below’, ’to’, ’from’, ’up’, ’down’, ’in’, ’out’, ’on’, ’off’,

’over’, ’under’, ’again’, ’further’, ’then’, ’once’, ’here’, ’there’, ’when’, ’where’, ’why’,

’how’, ’all’, ’any’, ’both’, ’each’, ’few’, ’more’, ’most’, ’other’, ’some’, ’such’, ’no’,

’nor’, ’not’, ’only’, ’own’, ’same’, ’so’, ’than’, ’too’, ’very’, ’s’, ’t’, ’can’, ’will’,

’just’, ’don’, ’don’t’, ’should’, ’should’ve’, ’now’, ’d’, ’ll’, ’re’, ’ve’, ’ain’, ’aren’,

’aren’t’, ’couldn’, ’couldn’t’, ’didn’, ”didn’t”, ’doesn’, ’doesn’t’, ’hadn’, ’hadn’t’,

’hasn’, ’hasn’t’, ’haven’, ’haven’t’, ’isn’, ’isn’t’, ’ma’, ’mightn’, ’mightn’t’, ’mustn’,

’mustn’t’, ’needn’, ’needn’t’, ’shan’, ’shan’t’, ’shouldn’, ’shouldn’t’, ’wasn’, ’wasn’t’,

’weren’, ’weren’t’, ’won’, ’won’t’, ’wouldn’, ’wouldn’t’, ’official’, ’http’, ’reg’, ’data’,

’no’, ’page’, ’journal’, ’article’, ’paragraph’, ’european’, ’union’, ’member’, ’commis-

sion’, ’from’, ’subject’, ’use’, ’not’, ’would’, ’say’, ’could’, ’be’, ’know’, ’good’, ’go’,

’get’, ’do’, ’done’, ’try’, ’many’, ’some’, ’nice’, ’thank’, ’think’, ’see’, ’rather’, ’easy’,

’easily’, ’lot’, ’lack’, ’make’, ’want’, ’seem’, ’run’, ’need’, ’even’, ’right’, ’line’, ’even’,

’also’, ’may’, ’take’, ’come’]

C.4 Introduction to N-Gram models

An N-Gram model is a probabilistic language model for predicting the next item in

such a sequence in the form of a (n− 1) - order Markov model. The computing task

of the model is to determine the probability of a word w (or an entire word sequence

W ) given some history h defined as P (w|h). Formally, let’s consider P (Xi) denoting

the probability of a particular random variable Xi taking on a list of values. We

represent a sequence of n words either as w1....wn or w1:n (so the expression w1:n−1

means the string w1, ..., wn−1). For the joint probability of each word in a sequence

having a particular value P (X1 = w1, X2 = w2, X3 = w3, ..., Xn = wn), we use

P (w1, w2, ..., wn). To compute probabilities of entire sequences P (w1, w2, ..., wn), we
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decompose this probability using the chain rule of probability as follows:

P (X1..., Xn) = P (X1P (X2|X1)P (X3|X1:2)...P (Xn|X1:n−1)

=
n∏
k=1

P (Xk|X1:k−1)
(C.15)

Applying the chain rule to words, we get:

P (w1:n) = P (w1P (w2|w1)P (w3|w1:2)...P (wn|w1:n−1)

=
n∏
k=1

P (wk|w1:k−1)
(C.16)

The chain rule shows the link between computing the joint probability of a

sequence and computing the conditional probability of a word given previous words.

Equation above suggests that we could estimate the joint probability of an entire

sequence of words by multiplying together a number of conditional probabilities.

Nonetheless, using the chain rule does not really help since it is roughly difficult

to calculate the accurate probability of a word given a long sequence of preceding

words P (wn|w1:n−1). Moreover, we cannot just estimate it by counting the number

of times every word occurs following every long string, because language is creative

and any particular context might have never occurred before. Hence, the intuition

of the n-gram model is that instead of computing the probability of a word given

its entire history, we can approximate the history by only the last few words. For

example, predicting the conditional probability of the next word given the history

is equivalent to deducing its probability only from the previous word (according to

Markov property). Indeed, Markov models are the class of probabilistic models that

assume we can predict the probability of some future unit without looking too far

into the past. As a result, N-grams models split into subcategories such as bigrams

(with N = 2 and it looks one word into the past), trigrams (with N = 3 and it looks

two words into the past) and n-grams (with N = n and it looks n − 1 words into

the past). The generalization of the probability approximation is given as follows:

P (wn|w1:n−1) ≈ P (wn|w1:n−1) (C.17)

Under the bigram assumption, the probability of a complete word sequence that
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derives is defined as:

P (w1:n) ≈
n∏
k=1

P (wk|wk−1) (C.18)

Finally, an intuitive way to estimate probabilities is to call on the maximum

likelihood estimation (MLE). This method provides parameters of an n-gram model

by getting counts from the corpus, and normalizing them so that they lie between 0

and 1. For instance, to obtain a particular bigram probability of a word wn given a

previous word wn−1, we compute the count of the bigram C(wn−1wn) and normalize

by the sum of all the bigrams that share the same first word wn−1:

P (wn|wn−1) =
C(wn−1wn)∑
w C(wn−1w)

(C.19)

Since the sum of all bigram counts that start with a given word wn−1 must be

equal to the unigram (or bag-of-words) count for that word wn−1, the equation above

becomes:

P (wn|wn−1) =
C(wn−1wn)

C(wn−1w)
(C.20)

The process described above owes its importance to the construction of lexical

fields from a sequence of words. In other way, words associated by their meaning

with the same given conceptual idea tend to appear together. Now, moving across

documents, we reason in terms of term frequency-inverse document frequency (tf −
idf for short) which is a numerical statistic reflecting how a word is important to

a document in a corpus. The tf–idf value increases proportionally to the number

of times a word appears in the document and is offset by the number of documents

in the corpus that contain the word, which helps to adjust for the fact that some

words appear more frequently in general. The tf − idf splits into tf value and the

idf value. The term frequency, tf(w, d) is the relative frequency of term w within

document d given by:

tf(w, d) =
fw,d∑

w′∈d fw′ ,d

(C.21)

where fw,d is the raw count of a term in a document, i.e., the number of times

that term w occurs in document d. Note the denominator is simply the total number

of terms in document d (counting each occurrence of the same term separately).

The idf is a measure of how much information the word provides, i.e., if it is

common or rare across all documents. It is the logarithmically scaled inverse fraction
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of the documents that contain the word (obtained by dividing the total number of

documents by the number of documents containing the term, and then taking the

logarithm of that quotient such as:

idf(w,D) = Log
D

|d ∈ D : w ∈ d|
(C.22)

D is the total number of documents in the corpus. |d ∈ D : w ∈ d| is the number

of documents where the term w appears (i.e., tf(w, d) ̸= 0. If the term is not in the

corpus, this will lead to a division-by-zero. Therefore, it is common to adjust the

denominator to 1 + |d ∈ D : w ∈ d|. Then the tf − idf is calculated as follows:

tf − idf(w, d,D) = tf(t, d))× idf(t,D) (C.23)

A practical overview of tf−idf matrix is reported by the figure C.2 below. We can

draw from the analysis of this figure that the first two documents are quite similar

as their tf−idf values are equal whereas the last document is not unique. Moreover,

we remark, for instance, that while the first term is not useful in understanding the

unique content of the documents as all its tf − idf values equal to zero, the second

term is most useful.
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Figure C.2: Term Frequency- Inverse Document Frequency.

Source: Garla (2021)

Note: This graph illustrates tf-idf values of five terms extracted from five documents.
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C.5 Figures

Figure C.3: Cross correlation scatter plots between law and news-based indices.

Notes: This graph shows scatter plots adjustment between law and news-based indices in a range of 12 months.
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Figure C.4: Correlation functions (ACF and PACF) for the news-based index.

Figure C.5: Correlation functions (ACF and PACF) for the law-based index.
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Figure C.6: Price uncertainty in fossil energy markets.

Notes: The figure plots the price uncertainty (orange line scaled on the left axis) along with the price (blue line scaled on the right axis) in oil, gas and coal markets.
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Figure C.7: Estimates of hyperparameters’ posterior distribution of the BVAR model.

Notes: The figure depicts distributions of hyperparameters: ml (marginal likelihood), soc (sum-of-coefficients) prior, and sur (single-unit-root) prior.

173



A
P
P
E
N
D
IX

C

Figure C.8: Convergence assessment of λ in the BVAR model.

Notes: This figure reports the Geweke (1992) convergence diagnostic for Markov chains based on a test for equality of the means of the first and last part of a Markov
chain (by default the first 10% and the last 50%). The test statistic is a standard Z − score (the difference between the two sample means divided by its estimated
standard error. The standard error is estimated from the spectral density at zero and so takes into account any autocorrelation. The Z − score is calculated under the
assumption that the two parts of the chain are asymptotically independent, which requires that the sum of both 10% and 50% parts of the chain is strictly less than
1. In our case, we choose by default the first 10% of your chain and we divide the final 50% into 25 segments and we perform a Z − test for each segment. The test is
as follows: H0 : λ10% = λs

50%
vs H1 : λ10% ̸= λs

50%
. For each segment s, if the means are the same (i.e. we fail to reject H0), then we have strong evidence of chain

convergence. The dotted horizontal lines represent the 95% confidence interval.
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Figure C.9: The reverse effects of law and news-based indices

Note: This figure presents the dynamic inference of the reciprocal effects between law and news-based indices as stressed in the subsection 4.3.
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Figure C.10: The law-based indicator’s intertopic distance map produced using the library LDAvis developed by

Sievert and Shirley (2014)

Note: This figure presents a global visualization of the topic model. In this view, topics are plotted as circles in the two-dimensional plane whose centers are determined

by computing the distance between topics, and then by using multidimensional scaling to project the intertopic distances onto two dimensions, as is done in (Chuang

et al., 2012). We encode each topic’s overall prevalence using the areas of the circles, where we sort the topics in decreasing order of prevalence. Topics are projected on

two factorial axes bringing out the proximity and the imbrication across them.
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C.6 Tables

Table C.1: Variables description.

Sources Labels Description

European legislation Laws Law-based energy and environment policy.

European press News News-based energy and environment policy.

Oil market Oil price uncertainty one-month oil price uncertainty.

Gas market Gas price uncertainty one-month gas price uncertainty.

Coal market Coal price uncertainty one-month coal price uncertainty.

Table C.2: Descriptive statistics of variables.

Variables Mean Std.Dev Max Min Skewness Kurtosis Jarque-Berra

Laws 100.002 0.637 102.486 98.485 0.761 4.443 53.369***

News 99.959 0.775 102.019 98.120 -0.198 2.522 4.680***

Oil price uncertainty 0.086 0.030 0.247 0.038 1.893 9.516 688.719***

Gas price uncertainty 0.052 0.019 0.164 0.027 2.294 10.485 934.672***

Coal price uncertainty 0.056 0.023 0.156 0.020 1.313 5.476 158.056***

Note: The Jarque-Bera (1980) statistic tests for the null hypothesis of Gaussian distribution. *, **, *** denote the rejection
of the standard null hypothesis at 10%, 5% and 1% significance levels.177
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Table C.3: Unit root tests.

ADF PP KPSS ZA

level first diff level first diff level first diff level

Laws -3.826*** -12.171*** -6.635*** -29.142*** 1.258*** 0.205 -5.180**

News -3.511*** -7.608 -4.150*** -22.283 0.164 0.148 -3.810

Oil price uncertainty -3.741*** -9.666*** -3.323** -6.156*** 0.116 0.037 -4.318

Gas price uncertainty -3.080** -10.977*** -1.419 -11.330*** 0.275 0.276 -0.661

Coal price uncertainty -2.519 -10.252*** -1.124 -10.030*** 0.610** 0.150 -3.825

Note:The ADF, PP, KPSS, and ZA denote the statistics of Augmented Dickey-Fuller (1979), Phillips and Perron
(1988), Kwiatkowski et al. (1992), and Zivot-Andrews (1992) unit root test, respectively. The optimal lag length
of the ADF and the Perron test is chosen based on Schwarz information criterion (SIC) (Schwarz, 1978) and the
bandwidth of the PP unit root test and KPSS stationarity test are determined based on Newey-West criterion
(Newey-West, 1994). Noteworthy that ZA tests accounts for significant structural break dates in both intercept and
trend. The null hypothesis of ADF, PP and ZA tests is a unit root and that of the KPSS test is stationarity. *, **,
*** denote the rejection of the null hypothesis at 10%, 5% and 1% significance levels, respectively.
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General Conclusion

Overview

This thesis starts with the disentanglement of commodity price fluctuations in terms

of volatility shocks and uncertainty shocks. Over the past decade, several empirical

studies (Jurado et al., 2015, Ludvigson et al., 2015, Joëts et al., 2017, 2018) high-

light that unraveling price fluctuations is essential when assessing macroeconomic

effects. Building on these studies, throughout this thesis we have explored drivers

of commodity price uncertainty along three new lines of inquiry.

Chapter 1 investigates mechanisms of uncertainty transfer across commodity

markets. To do so, we first identify four groups of commodities: agriculture (co-

coa, maize, lumber, coffee, cotton, soybeans, sugar, and wheat), energy (oil, gas,

coal), industry (aluminum, lead, tin, copper, nickel, zinc, and iron), and precious

metals (gold, silver, platinum). For each group, we construct an aggregate price

uncertainty index at a given horizon arising from the monthly prices of its indi-

vidual components and their corresponding weights provided by the World Bank

website. The development of uncertainty indices relies on the predictability-based

approach of Jurado et al. (2015) and uses the moving average stochastic volatility

approach of Chan and Jeliazkov (2009), Chan and Hsiao (2013). In particular, these

predictability-based uncertainty measures are reliable in times of crisis since they

outperform other volatility-based uncertainty measures such as the GARCH (gen-

eralized autoregressive heteroskedasticity) and the VIX (implied volatility index).

Once these indices are constructed, we analyze the interconnections among markets

using an econometric framework specifying a vector autoregressive (VAR) model.

Our main results indicate that there are bi-causal relationships between uncer-

tainty in the agriculture, energy, and industry markets. In other words, price un-

certainty is transmitted at various degrees within a pairwise of the aforementioned
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markets. In contrast, precious metals markets are immune to other markets’ uncer-

tainty shocks and reinforce their safe haven nature. This chapter also unveils that

industry uncertainty is a proxy for macro-financial uncertainty and as such acts as

a key channel for transmitting uncertainty in heterogeneous markets. As a result,

at an aggregate level, the analysis of the links between commodity markets shows

evidence of the underlying role of the macro-financial factor in price uncertainty

diffusion across commodity markets.

Chapter 2 examines, at a disaggregated level, economic policy uncertainty (EPU)

as another factor of commodity price uncertainty in the oil and copper markets. In

their seminal empirical work, Baker et al. (2016) set out the EPU as reflecting unex-

pected changes in economic and non-economic policies that keep the future unclear.

The authors propose a measure of EPU using a tedious methodology of textual

analysis on narratives embedded in 10 leading US newspapers. In this chapter, our

research question is to determine how the EPU influences the dynamics of oil and

copper price uncertainty using the pioneering supply-demand shock identification

model initiated by Kilian (2009). We rely on the structural vector autoregressive

(SVAR) model to perform the empirical strategy on the impacts of the EPU on oil

and copper price uncertainties.

Our main finding indicates that the EPU shocks contribute, in the short run, to

increasing oil and copper price uncertainties. Unlike the copper market, the upward

effect appears stronger and more protracted in the oil market. We notice that the

effects of traditional supply and demand factors remain economic-intuitive and are

not altered with the introduction of the EPU to the model. In addition, we find

out that while supply, demand and the EPU have quite similar contributions to oil

price uncertainty shocks, copper price uncertainty shocks are highly dominated by

aggregate demand.

Chapter 3 studies a particular aspect of economic policy, namely energy-related

environmental policy and its consequences on the dynamics of prices in fossil energy

markets. This chapter departs from a context characterized by efforts of the Euro-

pean Commission to engage state members to be aware of climate change, which is of

interest when addressing global warming concerns. In 2008, the EU set a major turn-

ing point in its proactive legislative cycle by introducing a climate-energy program

to promote an environmentally friendly energy system. This program emphasized

three overarching targets: the cost-effective reduction of greenhouse gas emissions

by 20%, the increase by 20% of the share of renewable energy in final consumption,
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and the improvement in energy efficiency by 20%. This 3x20 program is part of

low-carbon policies undertaken by the EU Commission to reach carbon neutrality

by 2050 and is recorded in laws voted on and implemented at the European level.

Since our interest is to assess the impact of the energy-related environmental policy

on fossil energy markets, we need to quantify such a policy by constructing news

and law-based indices of energy and environmental policy using textual analysis. To

do so, we use state-of-the-art text mining techniques that allow for the extraction of

relevant information from European newspaper articles and legal acts. We rely on a

hands-off Latent Dirichlet Allocation (LDA) algorithm to cluster text into different

themes or topics. It does so in an unsupervised manner, meaning that the algorithm

infers the thematic information of any text without the need for pre-labeled data.

Furthermore, in order to validate the usefulness of this algorithm in an economic

context, we match indices derived from it with salient events that have occurred in

the history of energy and environmental policy. Building economic policy indices

with unsupervised machine learning models allows the researcher to endogenously

extract the themes of any set of documents, and then select the relevant topics.

Topics of interest are those which describe any issue regarding economic policies

(energy, environment, climate, fiscal, trade, monetary, etc). Relying on both news

and law-based indices helps disentangle two aspects of energy and environmental

policy. While news covers both global uncertainty and energy and environmental

policy-related regulatory aspects as reported by the European newspapers, laws de-

scribe structural changes in European energy and environment policy. According

to this distinction, our news-based index differs from the EPU index. Thereby, we

conduct an empirical investigation on the effects on fossil energy markets, and more

specifically on fossil energy price uncertainty which is a standard measure in the

literature to appreciate unpredictable price fluctuations. Following empirical stud-

ies examining the effects of text-as-data economic policy indicators on economic

variables, we use a vector autoregressive (VAR) model to infer the dynamics.

Our results show that news-based index shocks lead to particular patterns of

price uncertainty in markets that are worth highlighting. Especially, price dynamics

in the oil and coal markets depict a two-way evolution implied by a short-run upsurge

effect and a long-lasting bearish effect. We argue that each of these effects is the

result of a news-based index component. Meanwhile, the downward impact starts

earlier and is permanent in the gas market. Thus, we can deduce that the low-carbon

policy appears to be beneficial to stabilize price uncertainty dynamics. Similarly,
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the analysis of the effects of the law-based index shocks shows heterogeneous market

responses in terms of maturity. We observe that the law-based index has a short-

run and a persistent negative impact on oil and coal price uncertainty, respectively.

Regarding the gas market, the evolution of price uncertainty highly depends on

specific shocks in environmental regulations. Regarding the evolution of gas price

uncertainty under news and law-based index shocks, there is a markedly similar

momentum inducing a high sensitivity to regulations. In a further analysis dedicated

to the incidence of the developed indices on market prices, our outcomes specify a

downward adjustment of prices after an increase in the news-based index. This

finding supposes that markets anticipate the regulations and adapt accordingly.

Some policy implications

Several policy challenges and responses can be drawn from this thesis. In particular,

policy tools should be tailored to the developed drivers of commodity price uncer-

tainty. It is commonly admitted that robust macroeconomic policy frameworks are

critical to build buffers and allow authorities to better manage the negative economic

effects of commodity price swings (Borensztein and Reinhart, 1994). More specifi-

cally, on the one hand, countercyclical policies are a way forward to mitigate macro-

financial uncertainty-induced commodity price uncertainty, in particular, building

a fiscal policy space that supports spending during slumps (Gill et al., 2014), and

exchange rate flexibility linked to a monetary policy with credible low-inflation ob-

jectives (Broda, 2004, Céspedes and Velasco, 2012, Berg et al., 2016). On the other

hand, the stringent management of structural policies in climate change could rein-

force the resilience of emerging markets and developing economies (EMDEs) when

facing unexpected shifts in commodity prices. According to the foregoing, chapters

1 and 2 show evidence that interdependencies across markets and uncertainty about

economic policy fuel uncertainty in commodity prices. The underlying vulnerabil-

ity of the commodity price cycle constitutes a permanent concern that could be

addressed via longer-term sustainable policies. For instance, chapter 3 underscores

a low-carbon policy as a structural policy to manage commodity price uncertainty.

This chapter highlights that the efficacy of the European low-carbon policy is mainly

due to its ability to stem unexpected price fluctuations in fossil energy markets. Be-

sides, given the energy market and other markets nexus as described in chapter 1,
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one might argue that such a policy affecting energy price uncertainty could spill over

into other markets. Hence, the potential domino effect is beneficial for market price

stability.

Research perspectives

Some lines of research have already been undertaken to extend the overall contribu-

tion presented in the thesis.

In this contemporary era, tackling climate concerns has become a vital energy-

related environmental policy agenda, especially for realizing a temperature below

2°C. Relatedly, a key ingredient is promoting renewable energy to decarbonize the

energy mix. Therefore, public incentives for companies to invest in renewable tech-

nologies range from feed-in tariffs, investment subsidies, tax credits, portfolio re-

quirements, and certificate systems. A recent work of He et al. (2023) investigates

the efficacy of scaling public investments to counter the causes and effects of cli-

mate change. The finding identifies natural resources and urbanization as the main

factors responsible for piling up climate change concerns. In this regard, such invest-

ments exert moderating effects to partially neutralize the adverse effects of climate

change. However, in 2020, the overwhelming bulk of fuel supply investment went

into fossil fuels, namely 84% to oil and gas, 14.5% to coal (which is a much less

capital-intensive sector), and only around 1.3% spent on low-carbon fuels. There-

fore, investment spending appears caught between two worlds: neither strong enough

to satisfy current fossil fuel consumption trends nor diversified enough to meet clean

energy goals. Meanwhile, the World Energy Investment (2021) reports that clean

energy investments by the oil and gas industry accounted for 1% of total capital

expenditure and were expected to rise to more than 4% in 2021. Moreover, the

financing of projects for offshore wind closely aligned with industry strengths was

considerably higher in the first quarter of 2021 than in the whole of 2020. Apart

from the pandemic, which caused diverging trends between government and private

spending on research and development to support innovation on net-zero emissions

plans, the signals for investment in low-carbon energy technologies are broadly pos-

itive.

In principle, as many countries agree on the strategy described above, our clos-

ing chapter can be extended in various respects. Notably, our law-based low-carbon
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policy composite indicator could be explored as an alternative measure to appre-

ciate environmental policy stringency at the European level. Furthermore, we can

consider subsequent long-run perspectives through impacts on investments in energy

utilities. This insight is all the more important since the new geopolitical and en-

ergy market realities require a drastic acceleration of the clean energy transition and

an increase in Europe’s energy independence from unreliable suppliers and volatile

fossil fuels. The Renewable Energy Power of the EU (REPowerEU) is the European

Commission’s plan to make Europe independent from Russian fossil fuels well before

2030, in light of Russia’s invasion of Ukraine. This plan sets out a series of mea-

sures to increase the resilience of the EU-wide energy system. Short-term measures

include the following: common purchases of gas, liquefied natural gas, and hydro-

gen via the EU Energy Platform; new energy partnerships with reliable suppliers,

including future cooperation on renewable and low-carbon gases; rapid rollout of

solar and wind energy projects combined with renewable hydrogen deployment to

save around 50 billion cubic meters (bcm) in gas imports; and an increase in the

production of biomethane to save 17 bcm in gas imports. As medium-term mea-

sures to be completed before 2027, numerous actions are being undertaken, namely:

new national REPowerEU Plans under the modified recovery and resilience fund

to support investment and reforms worth €300 billion; boosting industrial decar-

bonization with €3 billion of frontloaded projects under the innovation fund; new

legislation and recommendations for faster authorization of renewables, especially

in dedicated ‘go-to areas’ with low environmental risk; investments in an integrated

and adapted gas and electricity infrastructure network; increased ambition regard-

ing energy savings by raising the EU-wide efficiency target for 2030 from 9% to 13%;

increase of the European renewable target for 2030 from 40% to 45%; new EU pro-

posals to ensure industry access to critical raw materials; and a modern regulatory

framework for hydrogen to build 17.5 Gigawatt of electrolyzers by 2025 to fuel EU

industry with a homegrown production of 10 million tonnes of renewable hydrogen.

Finally, given the interdependences between commodity markets, the implica-

tions of the European low-carbon policy on the new energy investment paradigm

could also be great of interest for agricultural and industrial markets.
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Joëts, M., Mignon, V., and Razafindrabe, T. (2017). Does the volatility of commod-

ity prices reflect macroeconomic uncertainty? Energy Economics, 68:313–326.
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Titre: Incertitude sur les prix des matières premières: diffusion et politique économique comme

déterminants
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Résumé: Une meilleure analyse des marchés
des matières premières est plus que jamais es-
sentielle au regard de l’épidémie de COVID-19,
de la guerre en Ukraine et de la transition des
énergies fossiles vers les énergies renouvelables.
Les fluctuations des prix sont généralement at-
tribuées à des chocs de volatilité. Cependant,
les crises économiques récentes ont montré
que ces fluctuations des prix révèlent une
importante composante d’incertitude, ques-
tionnant ainsi l’hétérogénéité de ces marchés
et les différents facteurs économiques qui les
régissent. Cette thèse met en lumière trois
principaux facteurs d’incertitude sur les prix
des matières premières. Le chapitre 1 met en
évidence l’incertitude macro-financière comme
le premier facteur d’incertitude sur les prix,
en analysant la diffusion de l’incertitude en-

tre les marchés. Le chapitre 2 analyse, à
un niveau désagrégé, l’incertitude liée à la
politique économique comme deuxième fac-
teur d’incertitude sur les marchés du pétrole
et du cuivre. Enfin, le chapitre 3 exam-
ine l’influence des politiques européennes à
faibles émissions de carbone sur l’incertitude
des prix des énergies fossiles. Nous identifions
les différents aspects des politiques à faibles
émissions de carbone à travers deux indicateurs
: un indicateur basé sur la presse et un indica-
teur structurel basé sur les textes de lois. Notre
principal résultat suggère que les politiques
à faibles émissions de carbone contribuent à
réduire l’incertitude des prix sur les marchés
des énergies fossiles. Ce résultat demeure
cohérent lorsqu’on considère l’incertitude liée
à l’environnement international.

Title: Commodity Price Uncertainty: Diffusion and Policy Drivers

Keywords: Commodity markets; Price uncertainty; Macro-financial uncertainty; Economic

policy uncertainty; Low-carbon policies.

Summary: A thorough understanding of com-
modity markets is now more crucial than ever,
given the impact of the COVID-19 outbreak,
the war in Ukraine, and the ongoing transi-
tion from fossil fuels to renewable energy com-
modities. These price movements are typically
attributed to volatility shocks. However, eco-
nomic disruptions reveal evidence that com-
modity price fluctuations can also stem from
a significant element of uncertainty, highlight-
ing the heterogeneity of commodity markets
and the diverse economic forces that influence
them. This thesis sheds light on three primary
drivers of commodity price uncertainty. Chap-
ter 1 emphasizes macro-financial uncertainty as
the primary driver of commodity price uncer-

tainty, analyzing the diffusion of uncertainty
across markets. In a similar vein, Chapter 2
examines economic policy uncertainty as the
second driver of uncertainty in oil and copper
markets, analyzing it at a disaggregated level.
Finally, Chapter 3 explores how European low-
carbon policies influence uncertainty in fossil
energy prices. We disentangle aspects of low-
carbon policies using two indicators: a news-
based indicator and a structural laws-based in-
dicator. Our main finding suggests that low-
carbon policies contribute to reducing price un-
certainty in fossil energy markets. This result
holds true even when considering uncertainty
related to the international environment.
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