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Résumé en Francais

Dans cette these, j'explore I'interaction entre I’ Apprentissage Automatique et la Physique Statis-
tique, en mettant en lumiere leur relation mutuellement bénéfique. D’une part, '’apprentissage
automatique peut servir d’outil puissant pour identifier des motifs complexes dans les données,
aidant ainsi les physiciens a développer des théories. D’autre part, les méthodes analytiques
développées par la communauté de la physique statistique pour étudier des systemes complexes
avec de nombreux degrés de liberté peuvent étre appliquées a I’étude théorique des modeles
d’apprentissage automatique, offrant des perspectives précieuses sur leurs mécanismes sous-
jacents.

Dans le premier chapitre, j’examine une direction de cette relation en abordant un défi récurrent
dans ’apprentissage automatique: le probléme du déséquilibre des classes, a 1’aide d’un modele
analytiquement solvable. Un probleme central dans les approches d’apprentissage automatique
réside dans le fait que les ensembles de données représentent souvent les différentes classes de
maniere déséquilibrée, en raison des méthodes de collecte des données ou des caractéristiques in-
trinseques de la tache étudiée. Cela constitue un probleme significatif, car apprendre a partir de
données déséquilibrées peut produire des résultats trompeurs, les modeles reflétant cet déséquili-
bre et pouvant conduire les utilisateurs a des conclusions erronées. Bien que le déséquilibre des
classes soit bien reconnu dans la communauté de ’apprentissage automatique et ait été traité
par diverses approches empiriques, ces méthodes manquent souvent de garanties et il est difficile
de choisir la plus efficace dans différents contextes. Cette incertitude provient en grande partie
de I’'absence d’une théorie unifiée du déséquilibre des classes. Ces dernieres années, des physi-
ciens ont abordé cette problématique en développant des modeles théoriques pour expliquer le
phénomene et proposer des stratégies théoriquement fondées pour atténuer le déséquilibre des
classes. Dans ce chapitre, je contribue a cette ligne de recherche en étudiant un modeéle analy-
tiquement tractable, le Teacher-Student Perceptron, a I’aide des outils de la physique statistique.
En m’appuyant sur ce cadre paradigmatique, j’ai modélisé les données d’entrée pour reproduire
un déséquilibre des classes du type détection d’anomalies, ou le déséquilibre est intrinseque au
probleme plutét qu’un résultat du processus de collecte des données. Ce cadre permet de clari-
fier le role du déséquilibre des classes dans I’entrainement (provenant de la collecte des données)
par rapport au déséquilibre des classes intrinseque. De plus, ce cadre offre une interprétation
claire de I'impact du déséquilibre, distinguant les "bons" modeles des "mauvais" et identifiant
les facteurs clés grace a une argumentation basée sur le compromis entre énergie et entropie.
En méme temps, ce cadre valide la fiabilité de plusieurs métriques de performance couramment
utilisées dans des contextes empiriques, en identifiant la Balanced Accuracy comme la métrique
la plus efficace. De maniere intéressante, ce modele simple révele un comportement trés non
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trivial: contrairement a la pratique courante, un ensemble d’entrinement constituée de données
équilibrées conduit souvent a une performance sous-optimale.

Dans le second chapitre, j'explore la direction inverse de cette relation interdisciplinaire en
étudiant le phénomeéne de blocage dynamique dans les verres structuraux a ’aide de modeles
d’apprentissage profond. Les verres structuraux sont des matériaux amorphes, c’est-a-dire des
matériaux sans aucun type d’ordre cristallin. Dans ces matériaux, les fonctions de corrélation
a deux points simples, couramment utilisées en physique pour détecter un ordre structurel, ne
parviennent pas & identifier un arrangement régulier a longue portée des particules. Un aspect
particulierement intrigant des verres structuraux est la présence d’une transition dynamique:
en dessous d’une certaine température, ces matériaux se comportent comme des solides, bien
qu’aucun changement visible ne se produise dans 'arrangement structurel des particules. Cela
contraste fortement avec la cristallisation traditionnelle des solides, ot les particules s’alignent en
un réseau régulier lors de la transition de phase. Les physiciens se demandent depuis longtemps
s’il existe un "ordre amorphe" dans la structure des verres, une forme d’organisation qui pour-
rait croitre a mesure que la température diminue et expliquer le ralentissement observé de la
dynamique (la transition vers la solidité). Cette question est loin d’étre triviale et reste un
défi ouvert dans I’étude des matériaux désordonnés. Pour tenter de répondre & cette question,
les physiciens se tournent vers l'apprentissage automatique, déclenchant une nouvelle ligne de
recherche dans laquelle des modeéles d’apprentissage automatique sont employés pour identifier
des descripteurs structurels complexes susceptibles de capturer un ordre amorphe sous-jacent et
de le corréler au ralentissement de la dynamique. Je contribue a cette recherche en utilisant un
modele avancé d’apprentissage automatique, les réseaux neuronaux SE(3)-équivariants. Inspirés
par la théorie des groupes, ces modeles disposent de bases théoriques solides, garantissant que
les features apprises respectent la symétrie roto-translationnelle inhérente au matériaux. J’ai
pu prédire le champ de mobilité avec une grande précision a partir de la structure statique
des particules dans des simulations numériques des verres. Dans ces matériaux, le champ de
mobilité présente une hétérogénéité spatiale, caractérisée par des régions distinctes "lentes" et
"rapides". Mon modele a réussi a capturer les corrélations spatiales de ce champ et a démontré
une transférabilité en température, indiquant qu’il avait efficacement appris une représentation
robuste de la structure statique. Cette représentation suggere 'existence d’un ordre amorphe
qui croit a mesure que la température diminue et correspond a I’échelle de longueur croissante
des observables dynamiques, telles que la taille typique des domaines "rapides" et "lents". Bien
que le modele lui-méme ne soit pas entierement interprétable, son accent sur les informations
directionnelles souligne I'importance d’incorporer et de combiner des caractéristiques vectorielles
des empilements atomiques, au-dela des simples caractéristiques invariantes par rotation, pour
identifier ’ordre amorphe.

Les deux problématiques examinées dans ce manuscrit représentent seulement quelques exemples
des nombreuses instances de fertilisation croisée entre ces domaines. J’espére que ce travail
mettra en avant la valeur de cette relation, en encourageant une collaboration accrue dans les
années a venir. Une telle synergie promet une compréhension plus approfondie des outils avancés
d’apprentissage automatique, tout en faisant progresser notre compréhension des phénomenes
physiques.
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Introduction

Today, discussing the successes of Artificial Intelligence (AI), particularly Machine Learning
(ML), and why they’re compelling fields of study might seem redundant. Over the past two
decades, advances in data availability, GPU-powered parallel computing, and open-source frame-
works have made implementing ML more accessible than ever. Coupled with a capitalistic drive
to over-perform and automate, machine learning has permeated our society to such an extent
that even this manuscript could plausibly have been generated by a language model, without rais-
ing suspicion among non-experts. Regardless of whether this deep integration of Al is beneficial
or concerning, studying Al remains essential for understanding our era. It fosters an awareness
of the inherent limitations and biases in these systems, shaped largely by the privileged few who
wield the power to influence their design.

The rise of ML has revolutionized numerous aspects of society, with scientific disciplines, and
particularly physics, being no exception. The capacity of ML models to detect complex patterns
within data has proven a valuable tool for scientists. Indeed, the adoption of ML approaches
across various branches of physics has expanded rapidly, with applications ranging from mate-
rials science [CM17, KMB*16, CYZ*19] to high-energy physics [PAON18, AAA*19], molecular
dynamics simulations [RPK17, CSMT18], ab-initio calculations [HSD*21] and numerous others
not cited here [CCC*19].

An intriguing aspect of the relationship between machine learning and physics is that, while
the application of ML techniques to physics tasks is relatively recent, the communities study-
ing these fields have a deep-rooted connection. In particular, the statistical physics community
made significant contributions to early theoretical studies on machine learning models. This
synergy became especially prominent from the late 1980s, with the development of the Hop-
field model [Hop82]1, an artificial network grounded in spin glass concepts that could func-
tion as an associative memory system, and Elizabeth Gardner’s foundational studies on the
learning capacity of the perceptron, the simplest neural network [GD89]. During this period,
and especially in the early 1990s, researchers in disordered physics produced numerous stud-

'Hopfield was awarded the Nobel Prize in Physics in 2024 “for foundational discoveries and inventions
that enable machine learning with artificial neural networks”. More information can be found at https:
//www.nobelprize.org/uploads/2024/09/advanced-physicsprize2024.pdf
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ies employing spin glass techniques to explore the theoretical behavior of basic neural net-
works [Gyo90, SST92, Engl2].

Since those early years, the machine learning community has made remarkable advances in
practical applications, largely by scaling up models: with vastly more clean data available,
models have grown significantly in the number of adjustable parameters. These advances were
driven by the development of deep feed-forward networks and increasingly effective algorithms
for training them. Remarkably, deep learning achieved a major leap by revisiting the same
architectures proposed in the 1980s and 1990s, applying them on a much larger scale in terms
of both data and parameters [KSH12, LBH15, HZRS15, GPAM*14, VSP*17]. However, these
deep architectures are challenging to analyze using statistical mechanics (SM) approaches. De-
spite this, physicists continue to study neural networks through SM tools, as many phenomena
observed in deep nonlinear networks can be mimicked in simpler models that are easier to

analyze [{RBK20, dSB21, GSd*19, GAS*19, MMN18, DKL*23, CKZ23).

With a growing number of numerical experiments revealing intriguing phenomenology in neural
networks, much of which remains unexplained, a growing community of machine learners suggest
that the task of interpreting these results falls also to physicists, who can apply tools specialized
to study the emergence of collective behavior from the interaction of a large number of degrees
of freedom to better understand the behavior of these complex models [Zde20].

In my thesis, I explore the interface between these two disciplines, focusing on their mutually
beneficial relationship and how they can foster each other’s development. On the one hand,
machine learning can serve as a powerful tool for identifying complex patterns in data, helping
physicists in developing theories by highlighting key quantities and phenomena to investigate.
On the other hand, the analytical methods developed by the statistical physics community to
study complex systems with many interacting degrees of freedom can be applied to the theoretical
study of machine learning models, providing valuable insights into their underlying mechanisms.

In the first chapter, I examine one direction of this relationship by addressing a prevalent chal-
lenge in machine learning, the issue of class imbalance, using an analytically tractable model. As
discussed earlier, the success of machine learning depends, among other factors, on the availabil-
ity of large amounts of data. However, a central problem is that these datasets often represent
different classes in an unbalanced way, stemming from the methods of data collection or the
inherent characteristics of the task under study. This is a significant issue because learning
from unbalanced data can yield misleading results, with models reflecting this imbalance and
potentially leading users to incorrect conclusions. While class imbalance is well-recognized in
the machine learning community and has been tackled with various empirical approaches, these
methods often lack guarantees and it is challenging to choose the more effective in different con-
texts. This uncertainty largely stems from the absence of a unified theory of class imbalance. In
recent years, physicists have approached this issue by developing theoretical models to explain
the phenomenon and propose theoretically grounded strategies to mitigate class imbalance. In
this chapter, I contribute to this line of research by proposing an analytically tractable model
that aims at capturing the phenomenology of anomaly detection problems. This model, be-
ing both exactly solvable and interpretable, enables us to identify the underlying causes and
main mechanisms driving the problem. Although I do not claim to have fully elucidated the
complexities of real-world networks and tasks, this toy model offers insight into simpler cases
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Introduction

and provides guidance on potentially relevant aspects to investigate in more complex scenarios.
This approach underscores a key advantage of statistical physics methods: while they may not
capture the full intricacies of large models, they can effectively isolate different mechanisms at
play, guiding more advanced analyses.

In the second chapter, I explore the reverse direction of this interdisciplinary relationship by
examining the phenomenon of dynamical arrest in supercooled liquids using advanced machine
learning models. Supercooled liquids are amorphous materials i.e. materials that lack a long
range crystalline order. Many common materials are amorphous, including window glass (silica
oxide), basalt (and various other rocks), most plastics (complex polymer assemblies that rarely
crystallize), as well as pastes, gels, and creams. In these materials, simple two-point correlation
functions, commonly used in physics to detect structural order, fail to identify any long-range
regular arrangement of particles. One particularly intriguing aspect of supercooled liquids is the
presence of a dynamical transition: below a certain temperature, these materials behave like
solids, even though no visible change occurs in the structural arrangement of particles. This
stands in stark contrast to traditional crystallization in solids, where particles align into a regular
lattice upon phase transition. As I'll explore further, physicists have long questioned whether
an “amorphous order” exists within the structure of supercooled liquids, a form of organization
that might grow as temperature decreases and account for the observed slowdown in dynamics
(the transition to solidity). This question is far from trivial and remains an open challenge in
the study of disordered materials. In pursuit of this answer, physicists have turned to machine
learning, sparking a new line of research in which ML models are employed to identify complex
structural descriptors that might capture an underlying amorphous order and correlate it with
the slowdown in dynamics. I contribute to this research by employing an advanced machine
learning model, Roto-Translational Equivariant Neural Networks. Inspired by group theory,
these models have robust theoretical foundations, ensuring that the features learned respect the
roto-translational symmetry inherent to the material. I adapted this architecture to handle large
assemblies of molecules in supercooled liquids and achieved state-of-the-art results. While these
findings do not fully elucidate the nature of amorphous order, they strongly suggest its existence
and indicate that directional features are essential for identifying it.

The two problems examined in this manuscript represent just a few examples of the many
instances of cross-fertilization between these fields. Hopefully, this work will underline the value
of this relationship, encouraging further collaboration in the years ahead. Such synergy promises
a deeper understanding of advanced ML tools, while also advancing our understanding of physical
phenomena. In essence, this partnership has the potential to enhance our understanding of the
world, and both disciplines stand to gain from embracing each other’s insights.
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Class Imbalance in Exactly Solvable
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In this chapter, we investigate the impact of class imbalance on learned models using statistical
mechanics tools. We begin by reviewing the SM framework and demonstrating how it applies
to learning problems, translating physical concepts into machine learning terminology. Next,
we introduce key techniques from the field of glassy physics that are relevant to our analysis.
Following this, we address the problem of class imbalance, discussing its effects and examining
the main empirical strategies developed by the machine learning community to mitigate these
effects. We then delve into the theoretical foundations underlying our approach. Finally, we



Chapter 1 : Class Imbalance in Exactly Solvable Models

discuss our theoretical setup, analysis, and results on anomaly-detection class imbalance for
perceptron learning, highlighting our ability to uncover non-trivial insights in a relatively simple
model. Some of these insights are further supported by experimental findings and existing
literature.

1.1 Statistical Mechanics of Learning

Statistical Mechanics, being concerned with the collective behavior of systems composed of a
large number of interacting components, such as molecules or atoms, offers a powerful set of
tools and methodologies for addressing complex problems in Machine Learning. The funda-
mental premise of Statistical Mechanics is to describe how macroscopic properties emerge from
microscopic interactions, a perspective that aligns well with the challenges in Machine Learning,
where the goal is to understand and optimize the behavior of models composed of numerous
interacting parameters. In this context, the parameters of machine learning model can be viewed
as the degrees of freedom, analogous to position and velocity of particles in a physical system.
The techniques developed in statistical mechanics, particularly mean-field approaches for spin
glass models, provide valuable insights into the typical behavior of these parameters and allow to
extract macroscopic quantities like the generalization performances of the model from the micro-
scopic interaction of the large number of parameters. This approach represents a paradigm shift
in the theoretical study of machine learning models by focusing on typical behavior, rather than
on the statistical worst-case bounds that represent a common focus in statistical learning theory.
Building on the seminal works of Gardner on the storage capacity of neural networks [Gar87]
and of Gyorgyi and Tishby on learning a perceptron rule [Gyo90], a prolific body of research has
emerged [SST92, FM93, CDS23, CMV*23, MKL*20, LPCM24], continuing to the present day,
and demonstrating the effectiveness of statistical mechanics methods in addressing these types
of problems.

1.1.1 Gibbs Learning, typical behavior

Supervised Classification is a fundamental task in modern machine learning. This problem is
also referred to as learning from examples since a model has to infer a labelling rule from the
observation of a set of input-output relationships. Following the notation of Seung et al. in
[SST92], it can be defined in the following way: we have a set of examples, or training data-
points, {Sé}f;l with 8¢ = (S%,..., S&) M-dimensional vector and P number of data points. A
label or class membership, is associated to each sample through a labelling rule UO(SE ), thus the
training dataset is composed of P input-output pairs (S%, o(S)). A model ¢ with a set of N
parameters w = (w1, ..., wy) is defined by the input-output relation: ¢’ = o(w;S’) and has to
adjust its weights during the training procedure in order to best reproduce the original labeling
rule og. The training procedure is performed through the minimization of the training loss (or
energy in the SM dictionary):

P

E(w) =Y e(w;S") (1.1)

l=1
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where the error function e(w; Se) is a measure of the distance between the network prediction
and the true labeling rule. A popular choice is the quadratic error function:

e(w: S!) = %[a(w; S - o0(S)]? (1.2)

Learning from examples can be framed as an optimization problem where the goal is to minimize
the training loss to find the optimal parameters w* = argming, F(w). This optimization can be
performed using methods such as gradient descent (GD):

68—‘: =-VwE (W) (1.3)
This approach ensures that the training loss decreases, leading to good performance on the
training set, which consists of a limited number of samples. However, it does not guarantee
good generalization, meaning it does not ensure that the model correctly learns the original
labeling rule. To evaluate generalization, one should examine the generalization error, which
measures the performance of the learned model on new, unseen samples. Assuming a certain
population distribution du(S), this is quantified as follows:

€g = (e(w";8) hau (1.4)

where the symbol (...)q, denotes the average over the distribution of the sample. This set-up
is very general and, to apply it to a specific problem, one must specify the main building blocks:
the data distribution du, which is often unavailable in practice and must be approximated for
analytical computations; the labeling rule oy which denotes the relationship between a sample
and its class and the model o which is parametrized by learnable weights and whose architecture
needs to be fixed by choosing the input-output relation. Furthermore one needs to specify
the form of the energy function. We presented the common choice of the L2-loss, but many
alternatives are available (hinge loss, cross-entropy loss, etc.).

Traditional GD dynamics have notable limitations in both training efficiency and generalization
performance. Specifically, GD can become trapped in local minima or saddle points, which slows
the learning process, but also risks converging to sharp minima that correspond to solutions
that do not generalize well [KMN*17, WZE17]. To address these issues, stochastic optimization
techniques such as Stochastic Gradient Descent (SGD) were developed [Bot99]. In this study,
we explore an alternative approach known as Langevin dynamics, defined as follows:

0
Tr = VW E) £ () (L5)
ot
where 1(t) is a white noise with variance:
<77i(t)77j (t,)> = 2T52‘j(5(t — t’) (1'6)

the parameter T' measures the amplitude of the stochastic noise and we will refer to it as tem-
perature in the SM vocabulary. According to Statistical Mechanics, an ergodic system evolving
under Langevin dynamics will reach an equilibrium state after a sufficiently long period [Gar09].

7
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At equilibrium, the system samples different configurations according to the Gibbs probability
distribution:

P(w) = L BEW) (1.7)
Z

with 8 = 1/T. In our framework, the equilibrium state corresponds to the end of the training
regime. Once the model has been trained for sufficiently long according to the dynamics described
by Eq. 1.5, each solution w* is associated with a probability P(w*). By knowing this probability
distribution, we can extract meaningful insights into the typical behavior of the learned model
by computing statistical averages. To achieve this, we need to take the thermodynamic limit,
where N — oo, which in machine learning terms corresponds to the limit of infinite number of
parameters: in this limit the behavior concentrates around the typical one and non-typical cases
become negligible thus statistical averages coincide with typical behavior (in non-pathological
thermodynamic phases). Here we also define two quantities that will be fundamental in the
following:

Z = [dwe‘ﬂE(w) (1.8)

P —%ng (1.9)

Z is called partition function and corresponds to the normalization factor in Eq. 1.7. F' is called
free energy and contains all the information about the equilibrium state of a system.

Up to this point, we have assumed a fixed realization of the training data. However, in practice,
training data is sampled from an underlying distribution dgitrain and then held fixed throughout
training. To compute expectations properly, one must also average over the initial distribution
of samples. This is analogous to what occurs in Spin Glass models with quenched disorder. The
statistical mechanics community has developed numerous tools to study such systems, which we
will introduce in the next sections.

1.1.2 Spin Glass models and quenched disorder

The connection between statistical mechanics and machine learning becomes especially pro-
nounced when considering spin glass models, a type of disordered system characterized by the
presence of quenched disorder. While a comprehensive treatment of the physics underlying spin
glasses lies beyond the scope of this manuscript, we will discuss key concepts relevant to our
derivation. For an introductory discussion on Spin Glass Physics, see [CC05]; for a thoroughly
referenced review, see e.g. [ABJ24].

Quenched disorder Disorder refers to any form of irregularity or randomness in the structure
of the system’s components. Quenched disorder can be thought of as "frozen" randomness.
Imagine a material where some of its components, like impurities or defects, are randomly
distributed but do not change over time. These imperfections are introduced during the process
of creating or cooling the material, and once set, they remain fixed. This is what we refer to
as quenched disorder: it reflects randomness that is static and does not evolve as the system
evolves. Quenched disorder can be found in various systems, including magnetic materials,

8
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alloys, and glasses [Myd93]. For example, in some alloys, certain atoms may be replaced by
magnetic impurities in random positions, creating quenched disorder. This fixed randomness
can have significant effects on the system’s macroscopic behavior, such as its ability to conduct
electricity or respond to external magnetic fields. As we’ll detail in the following, in the context
of machine learning, the role of disorder is played by the training samples. These samples
are randomly drawn from an underlying distribution and remain fixed throughout the learning
process

Self-averageness FEach sample of a material has its own peculiar realization of the quenched
disorder that is determined by the way in which the sample was prepared. Thus melting and
instantaneously cooling-down multiple times a single sample produces different realizations of
the disorder i.e. the defects freeze in different positions each time. It is impractical to study each
specific instance of disorder in detail. Instead, physicists introduce a probability distribution to
describe the disorder, allowing to focus on the typical behavior of the system. Fortunately, many
generic properties of these systems do not depend on the specific realisation of the quenched
disorder, or more precisely these properties average out when considering a larger sample size,
and are called self-averaging. For these quantities, the average over the disorder distribution
coincides with the typical behavior when considering the thermodynamic limit:

N—oo
Atyp - <<A>>Ndiso7>de7‘ (]' . 10)

One of such quantities is the free energy F' introduced in Eq. 1.9.

An example To illustrate the concepts introduced in the previous paragraphs, let us examine
a paradigmatic spin-glass model, the Edwards-Anderson (EA) model [EA75]. As introduced
above, spin-glasses are alloys in which magnetic impurities substitute the original atoms in
positions randomly selected during the chemical preparation of the sample. This results in
magnetic impurities distributed in space in a disordered fashion that interact between them
through a magnetic coupling. This complex system is effectively mimicked by the EA model
where impurities are arranged in a regular fashion on a cubic lattice, each impurity is described
by a state variable s; that can assume two values s; € {-1,+1} and the disorder in the space
arrangement is converted into disorder in the interactions, meaning that two impurities interact
between them with an interaction J;; that is random. The energy of such model reads:

E(S) = - Z JijSiSj (1.11)
(i)

with J;; independent and identically distributed according to a gaussian distribution and (ij)
denotes the sum over nearest neighbors in the cubic lattice. Notice that the state of the system
s = (s1,...,8n) here plays the same role as the network weights w in Eq. 1.1 and the random
interactions J;; correspond to the training samples S. To characterize the model, one should
compute the typical free energy which, by leveraging the self-averaging property, can be obtained
through averaging over the disorder distribution. Since, for the models we are interested in, the
free energy is an extensive quantity i.e. it scales with the size of the system N, we focus on its
density to have a finite result:

t . 1 . 1 -BE(s
fr =~ lim N—ﬁ«logz»du({ﬂj}) = _J\I,EEON—ﬁfl;[dJijP(Jij)lngdse pEE) (1.12)
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Going back to the learning from examples set-up, to extract the typical behavior of the learned
model averaged over the distribution of input samples one should compute:

ftyp:— hm _fndsép({sé})log[dwe BE(w) (113)

where P({S%}) is the joint distribution of training samples. In the simplest scenario these are
assumed to be i.i.d. and the distribution factorizes. Physicists have developed various techniques
to compute or estimate the analytical form of the quenched free energy of disordered systems.
In particular, we will focus on the replica method, which plays a central role in the analysis
presented in this work.

1.1.3 The replica method

The replica method allows ezact evaluation of the quenched free energy [MPV87]. Although it
is a non-rigorous technique, its results have been shown to align with those obtained through
more mathematically rigorous methods [BM19, Shil8, Pas22]. The core idea behind the method
is the smart use of the identity:

zZ" -1

log Z = lim (1.14)
n—0

As already introduced above, the main goal is the evaluation of the quenched free energy intro-

duced in Eq. 1.13:

. 1
_ﬁftyp = ]\1[1_{130 N<<IOgZ>>Mtrain (115)

with (.. )y = [ T1edSP({S’}). Computing the quenched average of the logarithm of the
partition function is a hard problem, but exploiting the relation of Eq. 1.14, one can rewrite the
quenched free energy as:

—Bf% = lim lim Nilog«Z"))

N—o00n—0

(1.16)

Htrain

For the identity to hold rigorously, n should be a real number, but in that case there would be
no advantage at all in computing the r.h.s. compared to the L.h.s. However, if one promotes n to
be an integer, Z™ can be written as the product of partition functions of n replicas of the same
System:

—Bf1P = hm hn%N—log fdwl dwy . .. dwye PEW1)=BE(w2)=BE(wa)y
N—ocon— n

(1.17)

Htrain

All the replicas here experience the same disorder, this makes the analytical treatment much
easier, as we will show in the full computation of the quenched free energy in next sections.
Once the average is computed, one should perform the analytical continuation of Eq. 1.17 to
n — 0 and take the limit. This step is crucial to the replica method and needs to be done with
care as the analytical continuation may not be unique [DVO01, VZ85]. At this stage, it’s worth
mentioning that a common practice in replica calculations is to switch the thermodynamic limit
and the n — 0 limit to allow the saddle-point calculation. In addition to ensuring uniqueness,
this approach requires a stability check of the retrieved stationary points. In our work we adopt
a model known to avoid such instabilities [SST92] so we do not perform this check directly. For
an insightful study on saddle-point stability in spin glass models, see [dAT78].
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1.2 Class Imbalance

Supervised learning has become a cornerstone of modern machine learning, underpinning a wide
range of applications from image classification to natural language processing. Central to this
paradigm is the availability of labeled data, where the learning algorithm infers patterns from a
set of input-output pairs. A fundamental assumption in supervised learning is that the training
data represents the underlying distribution of the target domain. However, in many real-world
scenarios, this assumption is violated due to the presence of class imbalance, where one or
more classes are significantly underrepresented in comparison to others [YTWMOO0,
AHY11, KHM*21, SGPC*23|.

Class imbalance poses a serious challenge to supervised learning models. When the distribution
of classes in the training data is skewed, machine learning algorithms tend to become
biased towards the majority class. This bias can lead to poor predictive performance on
the minority class, which is often of greater interest in practical applications. For instance, in
medical diagnostics, detecting rare diseases (minority class) is crucial, yet models may struggle
to identify these cases due to the overwhelming number of healthy instances (majority class).

The consequences of class imbalance extend beyond reduced accuracy on minority classes. Im-
balanced datasets can cause misleading evaluation metrics, such as accuracy, to overestimate
model performance by favoring high-quality predictions for the majority class. This can mask
the true deficiencies of the model, particularly in scenarios where the minority class is of critical
importance. As a result, addressing class imbalance is not merely a matter of improving overall
model accuracy, but of ensuring fair and effective decision-making in contexts where minority
classes carry significant weight.

Different kinds of imbalance Imbalance in data can arise from various factors. Depending
on the underlying cause, class imbalance can be categorized into two types: intrinsic and ex-
trinsic. Intrinsic imbalance occurs when the natural distribution of classes in the real world is
inherently imbalanced. This reflects the true nature of the data, such as in medical diagnosis
where certain diseases are rare compared to healthy cases. On the other hand, extrinsic imbal-
ance arises due to external factors, such as limitations in data collection processes, where some
classes are underrepresented due to practical constraints rather than their actual frequency. We
introduce a further distinction by classifying two types of imbalance based on the
shape of the distribution of training data. Outlier or Anomaly Detection (AD) imbalance,
is generally a binary problem. All examples are drawn from the same distribution, and one needs
to identify outliers based on an unknown rule (e.g. only some of the components of a power
grid will cause a failure, but we do not know what will cause it [ZSZ"19]). In this case, the
imbalance is intrinsic to the problem, as anomalies are naturally fewer in number than normal
samples. In contrast, Multiple Groups (MG) imbalance involves samples drawn from distinctly
different distributions, with the imbalance arising either from the sampling process (e.g. the
toxicity of certain chemicals is tested more often than others [SGPC*23|) or being intrinsic to
the data itself (e.g. some species being more common within an ecosystem [KHM*21]). As we
will see, a feature that makes MG imbalance different from AD imbalance is that, differently
from MG, AD imbalance has an associated intrinsic imbalance scale, which we will call pg and
represents the fraction of anomalies. If pg = 0.5, common data and anomalies appear with the
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same frequency.

Performance Metrics In the context of supervised classification, performance metrics used
to assess a model’s effectiveness are computed starting from the entries of the confusion matrix.
Each row of the matrix represents the instances in an actual class while each column represents
the instances in a predicted class. In particular, when considering a binary classification set-up
with two classes referred to as Positives and Negatives the confusion-matrix takes the following
form:

Predicted Class
Positive Negative
True Positives (TP) False Negatives (FN)
False Positives (FP) True Negatives (TN)

Positives (1.18)

Actual Class Negatives

The most common metric is the accuracy (a), defined as the ratio of correctly predicted samples
to the total number of observed samples:

TP+ TN
a =
TP +FP+TN+FN

(1.19)

It is highly sensitive to class imbalance and it can provide misleading results as it can be biased
towards the majority class. Indeed a "dummy" model that predicts always the majority
class in an highly imbalanced problem will have an high accuracy even though it’s
not able to predict at all the minority class. To better assess model performance on
imbalanced datasets, several alternative metrics are commonly used. In order to define them,
we introduce the Recall (r) and the Specificity (s) which correspond respectively to the True
Positive Rate and the True Negative Rate:

TP
__Ir 1.2
"TTP+FN (1.20)
s TN (1.21)

TN+ FP

The most used metrics in imbalanced problems are the Balanced Accuracy (apa1), Precision (p)
and F1-Score (F1):

e Balanced Accuracy is computed as the average between recall and specificity. This metric
weights the accuracy on the majority and the minority class in the same way regardless of
the amount of imbalance:

(r+s)
2

[ (1.22)

e Precision measures the proportion of correctly predicted positive instances among all in-
stances predicted as positive:

TP

S — 1.2
TP+ FP (123)

p
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e F1-score is obtained as the harmonic mean of precision and recall. For this reason a high
F1-score implies both high precision and recall while when one of the two quantities is low
also the F1-score deteriorates. This metric is able to locate a model that is able to predict
a large number of positive samples with high precision.

P = 25:; (1.24)

1.2.1 Mitigation strategies

Addressing the detrimental effects of class imbalance has led to the development of multiple
approaches, with the machine learning community establishing common rules of thumb based
on empirical tests. These approaches can be broadly categorized into three types: those acting
on the data distribution, those modifying the loss function, and those biasing the dynamics of the
training process. In the following we review some representative works of the three categories.

Data Distribution Standard methods consist in random under/over sampling (RUS and
ROS): the goal of these methods is to re-balance the training set by acting on the sampling pro-
cedure. In ROS the training set is sampled with replacement from the original data-set [JS02].
In RUS, random samples from the majority class are discarded. More involved over-sampling
techniques consist in the generation of synthetic examples for the minority class either in the
original data-space [CBHKO2] or in the deep feature space of a Neural Network [AH17]. Ad-
vanced under-sampling techniques consist in downsizing the majority class by selection of near
miss or most distant examples i.e. majority samples that are closest to, or farthest from, the
minority samples [ZM03]. Many works comparing multiple re-sampling methods are present in
literature: Kamalov et al. compare different re-sampling methods to establish best sampling
ratio with extensive experiments on multiple datasets. They use shallow learning models (SVM
and RF). They conclude that rarely full-resampling (i.e. exactly balancing the train set) pro-
duces the best balanced accuracy or Fl-score [KAE22]. The main drawbacks of these methods
are that under-sampling techniques discard data, thus they’re not well suited for problems where
few data is available while over-sampling techniques can lead to overfitting of the minority class.

Objective function First approaches in this direction consisted in re-weighting the loss of
each sample based on their class [XM89]. The goal of such approaches is to assign a larger
weight in the loss function to examples from minority classes and force a better accuracy on
them. Latest works focus on more refined re-parametrization of the loss that are effective also in
over-parametrized regimes [KPOT21] [BKVT23] [TKVB22] [MJR*21]. These works offer also
theoretical guarantees based mainly on the Unconstrained Features Model (UFM) which is a
model that mimics deep networks but it’s analytically treatable. It is important to note that
while ROS is equivalent to simple loss reweighting when considering Gradient Descent dynamics
or the infinite-data limit, in practical scenarios where algorithms like SGD are employed, these
two approaches exhibit distinct behavior.

Learning algorithm These methods aim to bias the learning dynamics to suppress the dom-
ination of the majority class. Tang et al. exploit a causal framework to dynamically modify
the momentum of the SGD algorithm [THZ20]. Francazi et al. modify the SGD algorithm
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by computing gradients separately on the minority and majority class and re-scaling them by
their norm. This helps counter the directional noise introduced by imbalance in the training
dynamics [FBJL23].

1.2.2 Theoretical studies

Due to the lack of a theoretical framework for the analysis of Class Imbalance, it is often
unclear which mitigation strategy works best and when or why. For this reason, recent
studies tried to fill this theoretical gap, either by focusing on how imbalance influences the
learning dynamics, or on how it influences the loss landscape. We review some representative
works that investigate the statistical properties of the loss landscape under class
imbalance: we introduce the main building blocks and features of their analytical set-up that
will serve as foundations for our analysis in the subsequent sections.

Teacher-Student Perceptron The Perceptron model is a paradigmatic model for theoret-
ical machine learning studies. Despite its simplicity it offers an exact analytical framework,
making it valuable for exploring fundamental concepts. The model captures key aspects of the
behavior seen in more complex systems, while remaining accessible enough to allow for intuitive
understanding and precise mathematical treatment. Since the seminal work of Gardner and Der-
rida [GD89] it has been widely studied in all its variants [Gyo90, SST92, FM93, Nis01] and has
become a cornerstone in understanding the statistical mechanics of learning. These studies have
explored its phase transitions, generalization capabilities, and error landscapes. The Perceptron

is a linear model characterized by a set of N +1 learnable parameters: weights w = (w1, ..., wy)
and a bias b. Given an input sample S* = (Sf, el Sﬁ,), its input-output relation reads as:
¢
¢ w-S
g =g +b 1.25
() 1

where the factor 1/\/]_\7 is there to ensure that the scalar product is O(1) as the bias and
g is a non-linear activation function. Multiple variants of the Perceptron model have been
developed, primarily differing in the choice of weight domains (either real-valued or discrete)
and the form of the activation function. These modifications significantly influence the model’s
learning dynamics and capacity. For instance, real-valued weights allow for finer adjustments and
smoother optimization landscapes, while discrete weights may lead to simpler representations
but more rugged energy landscapes. Similarly, the choice of activation function, whether it
is a step function, a sigmoid, or a ReLU, affects the model’s ability to handle non-linearities,
convergence properties, and generalization performance.

The most common framework for studying the Perceptron model is the teacher-student setup.
In this set-up, a teacher perceptron with a planted weight configuration assigns a label to each
sample, while a student perceptron learns to mimic the teacher by adjusting its weights through
Empirical Risk Minimization on the samples in the training set. This approach allows to rigor-
ously analyze how well the student model generalizes from finite training data, how efficiently
it can approximate the teacher’s function, and how the complexity of the teacher influences
learning difficulty. Ground-truth labels gg are obtained through the teacher assignment:

0.q!
) w" S
= +bo ). 1.26
90 g( N 0) (1.26)
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Although teacher and student have the same architecture, the teacher’s parameters w" and b
are fixed, while the student parameters w and b are learned through the minimization of the
loss

P W'SZ '
E(W,b)ze;e(g( Vi +b),go), (1.27)

The choice of the specific form of the error function e influences as well the behavior of the
model under training. Multiple reviews are available where different combinations are investi-

gated [SST92, WRB93, Engl2].

Perceptron and Class Imbalance Mignacco et al. [MKL*20] investigate the effects of class
imbalance on a perceptron trained on a Gaussian Mixture. The model used to generate the data
is a mixture of 2 gaussian clusters in N dimensions. Each data point S’ is described by:

v)\-

S‘ = —yf + VAZ 1.28

Vi (1.28)
where y; € {+1, -1} denotes the class of the samples which correspond to the cluster membership
(one cluster contains positives and the other negatives). z; and v* are ~ A/(0,1). They introduce
a parameter p that determines the fraction of positive samples in the train-set: denoting with P
the number of training samples, pP have label y = +1 and (1 — p) P have label y = —1. Learning
is performed through Empirical Risk Minimization with the loss:

w- St

P
1
E(w,b) = e( +b,y£)+—)\ wl[3 1.29
e; TN 5wz (1.29)

where the activation is linear and a regularization term is introduced with respect to (1.27).
They perform an exact analytical analysis though the use of Gordon Inequalities and investi-
gate thoroughly the effect of the regularization term and different choices of the loss-function e
(square, logistic and hinge). In particular they observe that imbalance i.e. p # 0.5 deteriorates
the quality of learning and impedes achieving Bayes optimal performances.

Mannelli et al. [MGRS23] introduce a more involved model for generating data: the teacher-
mixture. Data is sampled from two symmetric gaussians: S ~ N (£v/v/N, A IV*V) each one
with probability p and 1 - p. For each group a teacher perceptron determines the labels with
a planted configuration W7, and W7.. The loss is computed taking into account that for each
sub-population there’s a different teacher:

P W‘SZ WCZ.SK 1
E(w,b) =Y ¢ g(—+b),g(T—+bCf))+—Aw2 1.30
wt) = 2e (o™ R | R (130)

the choice for the loss-function € is the cross-entropy loss. They perform exact computations
via the Replica Method in the T' — 0 limit which corresponds to the absence of randomness in
the dynamics. They focus mostly on fairness implications, studying how imbalance affects the
performances across the sub-populations. They also introduce a mitigation strategy based on
coupled neural networks trained on subsets of the full training dataset.

Loffredo et al. [LPCM24] analyze imbalance in a set-up where the data is discrete. Each data
point is composed of L (the data dimension) categorical variables that can assume @ values. In
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our notation: S’ e {0,1}2*? assuming one-hot encoding for the categorical variables. Similarly
to the gaussian-mixture set-up, they assign labels based on cluster membership, thus two sub-
populations are present in the data each one associated to one class. They don’t do strong
assumption on the shape of the distribution but fix the first two moments of the two sub-
populations. They study a linear model which represents a generalisation of the perceptron to
categorical data:

¢ Wik Sik ]
g =sgn|) ———-> (1.31)
D

where W € RE*Q and b € R are the learned parameters. The learning is performed trough
Empirical Risk Minimization on the hinge loss. They investigate the effect of imbalance on
various accuracy metrics and in particular show that the AUC score is rather insensitive to
imbalance while the Balanced Accuracy is a better suited metrics to study imbalanced problems.
They focus also on the effectiveness of re-sampling techniques and prove that mixed strategies
of random over-sampling /under-sampling are the most effective.

Limitations All the recent analytical works presented do not make the distinction between
AD and MG imbalance that we introduced in Sec. 1.2. Most often they implicitly address
MG imbalance relying on the assumption of two distinct sub-populations in the data
distribution. Our work differs from the latter in its focus on a different kind of imbalance, namely
Anomaly Detection, where features in both classes are instances of an overarching distribution.
One consequence is that some of the re-balancing solutions analyzed in [LPCM24] do not apply
in our context.
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1.3 Anomaly-Detection Class Imbalance for perceptron learning

We study the effects of AD imbalance on the training and test landscape in a paradigmatic
analytically tractable model. Specifically, we study a modified version of the Teacher-Student
(TS) spherical perceptron [SST92], where one can tune the amount of class imbalance, and
study its effect on learning. Studying a tractable model, where the ground truth is known,
allows us to disentangle the various reasons why a high performance is reached or not, providing
interpretable results. We investigate the theoretical trends of various performance metrics and
compare our predictions with experiments in realistic settings.

1.3.1 Model

We consider the widely-studied Teacher-Student Spherical Perceptron, a variant of the model
introduced in Sec. 1.2.2 where the parameters are real numbers, namely:

w=(wi,...,wy) eRY, beR (1.32)
and weights are subject to the spherical constraint:
wl.-w=N (1.33)

this choice fixes the norm of the weight vector and it acts similarly to the reqularization term
in the loss (1.29). The activation function is g(z) = sign(z) thus the output of the network is
discrete: g e {+1,-1}.

The train-set is composed of P = Na samples 8¢ € RY (¢ = 1,..., P is the sample index).
The number of train samples is chosen to scale with the data/weights dimension in order to
have an extensive energy (1.27) in the thermodynamic limit. The parameter o ~ O(1) is called
data-scarcity parameter and determines the training regime:

a>1 under-parametrized

a<l over-parametrized

This parameter can have a big impact on the behavior of the model: TS-perceptrons with
discrete weights show phase transition to perfect learning when increasing « above a certain
critical value a* [SST92]. Our model with continuous weights doesn’t show any discontinuities
when varying the data-scarcity parameter.

As introduced in Sec. 1.2.2 ground-truth labels gé are obtained through the teacher assignment
which has the same architecture of the student and whose parameters (wg, b) are fixed. Learning
is performed through minimization of the loss (1.27) where the loss function is the square-loss

e(z,y) = 5(z-y)>

Modeling Class Imbalance The novelty of our computation consists in modeling the AD
Imbalance by introducing an imbalance parameter p, that fixes the ratio between samples in the
majority and minority classes.

Samples are i.i.d., and for each sample S the components are distributed according to: S; ~
DS; = js_ e SiI2, We will use the shorthand notation DS = H 1 DS; to denote the measure of

probability of the single sample.
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Chapter 1 : Class Imbalance in Exactly Solvable Models

In order to have a skewed distribution of samples with a number Napipain of positive samples
(g6 = +1) and Na(1l - pyain) of negative samples (g5 = —1), we define the training set measure
as:

OéNptraln

. ; WO . SE
d,utrain({s }) = ]Vaptraln H DS @( \/N +b0) g

1 alN v wo.s?
8 C]_Va(l_ptrain) ( H DS @(_ N —bo (1.34)

£/=aNPtrain+1

The notation d,utrain({SZ}) is shorthand for dprain(S?,...,S8V%) and denotes the measure of
probability over all the training samples. We use the Heaviside (©) function to select the
samples according to the relevant output sign of the Teacher Perceptron. ¢, = 1/2 Erfc(-by/v/2)
and ¢ = 1 — ¢, represent respectively the normalization constant for positive and negative
samples. Note that dugrain is in general not a Gaussian measure, since in the direction of WO, it
is a piecewise Gaussian with normalization factors which depend on pirain.

Train, Population and Test Imbalance Here, we elaborate on the definition and roles of
the imbalance ratio p for training set, population and test set.

bo = —2, po = Prrain = 0.02 bo= —1, Po = Ptrain = 0.16 bo =0, po = Ptrain = 0.5 bo = —3, po =0.02, Ptrain = 0.5
(a) (b) (c) (d)

Figure 1.1: (a,b,c) Intrinsic Imbalance. 2D sketches showing the effect of the teacher bias by on the
intrinsic imbalance. Normal examples (negative label, g§ = —1) are represented with blue — symbols,
anomalies (positive label, g§ = +1) with red +. Shaded grey points depict the underlying Gaussian data
distribution and grey circles locate contours at 10,20 and 30 (o is the standard deviation). The black
dashed line represents the teacher decision boundary which determines the ground-truth labels. All the
examples are extracted from the underlying Gaussian distribution and no specific imbalance ratio is
imposed externally. Increasing the magnitude of the teacher bias by ((c¢) — (a)) translates the teacher
boundary (black dashed line) away from the origin cutting the tails of the Gaussian distribution, making
anomalies more rare. (¢,d) Informative samples. Two cases are compared where the training imbalance
is fixed t0 ptrain = 0.5 while the teacher biased is varied. As |bg| grows, anomalies become more and more
concentrated around the decision boundary, becoming more informative about the teacher’s direction.

The introduction of piain in Eq. (1.34) allows to control the amount of imbalance in the training
set. This parameter is externally imposed and enables us to explore scenarios where the model
is trained with varying levels of imbalance.

When pirain is not fixed, 4.e. when samples are extracted from the Gaussian measure dgupop({S¢}) o
H? DS’ an imbalance also arises naturally due to the presence of the bias parameter by in the
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1.3 Anomaly-Detection Class Imbalance for perceptron learning

Teacher model. It can be computed as:

: 1
po(bo) = P (WO S by > 0) = Exfe (—b—o) . (1.35)

VN V2

We refer to this as Intrinsic Imbalance as it measures the intrinsic imbalance present in
the data generation process. It depends solely on the teacher’s bias, and describes the rarity of
observing anomalies. It can be easily visualized geometrically: when dealing with the population,
all the samples are drawn from a Gaussian distribution centered in the origin, while varying bg
amounts to translating the Teacher decision boundary away from the origin of the N-dimensional
space. Thus, one of the two classes lies on the tail of the distribution and is less represented.
This is depicted in 2D sketches of Fig. 1.1 (a,b,c), where a decreasing by (in magnitude) results
in a less biased teacher and a less imbalanced population.

Since the population distribution is rarely available in practice, a test set consisting of samples
not observed during training is introduced in standard machine learning settings to test the
performance of the trained model. We define the test distribution as:

0 0
Ptest w - S 1 = prest w S
dptgest(S) = ——0O +bo | DS + o|-
jes(8) = 20 (%2 sy s 4 -t (L2

where piest measures the probability of having an anomaly in the test set. Common choices are
prest = 0.5 (balanced test set) or piest = po(bo) (test set that reflects the intrinsic imbalance). As
we will discuss below, while some performance metrics do not explicitly depend on pyest, others
do. The choice of the test imbalance is as important as the train imbalance, and can lead to
misleading results if not properly considered.

—bo) DS (1.36)

Informative samples The teacher bias by also determines how informative the two classes
are. When by # 0, the samples with label sign opposite to that of the bias (class 1 if by < 0 or
class —1 if by > 0 — in other words, the anomaly, or minority class) concentrate on the decision
boundary of the teacher, while the samples of the other class have a lower probability to lie on the
boundary. Thus the samples of the minority class (in the population) are more informative about
the decision boundary (i.e. the direction of the teacher hyperplane). Fig. 1.1 (c,d) shows this
effect through 2-dimensional sketches. The consequences of this feature are particularly relevant
when the student has information about the teacher’s bias. This specific scenario is discussed
in Sec. 1.3.3. It is possible to evaluate the probability of a sample lying on the boundary and
showing this effect quantitatively: let’s consider a sample S extracted from an N-dimensional
gaussian centered in the origin:

_ 1 -1/2%N, 52
We're interested in the case with by < 0 (the positives are the anomalies) and we want to
compute the probability that the sample lies between the teacher decision boundary and the
parallel hyperplane at a distance dx such that gy > 0, namely:

. . P(0< ¥ 4 py < bz
P(0<WOS+b0<5xWO—S+b0>O)= (0<% ) (1.38)
VN VN P(WL\/'NS+b0>O)
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Figure 1.2: Probability of being close
to the boundary: for the minority (go >
10° 0) and for the majority class (go < 0). As
a function of by, we plot the quantities
Pyoundary(b0) and Py 40, (Do), divided
1014 by their value at by = 0.

Pboundary(bo)/Pboundary(O)

-3.0 -2.5 -2.0 -15 -1.0 -0.5 0.0

bo

We can now evaluate the denominator:

P(W\;'NS £ o > 0) - f DSO (W;'NS +b0) (1.39)

:fdy@(y+bo)fDS5(y—w\;'NS) (1.40)

By exploiting the Fourier representation of the J one gets:

. TN . WS
P(W\ENS+bo>0)=/dy@(erbo)/;i—ielynySe_zy% (1.41)
- f dy©(y + o) f ;1—?’6@9*1/2@2 (1.42)
s

=[®(y+b0)Dy=%Erfc(_—\/b§O) (1.43)

As for the numerator, the computation follows the same lines and one gets:

Wo - S ~bo+éz Sz—0 1 )
Pl0< +bp < 5:6) = / Dy — e 05 (1.44)
(0<% : vor

bo 2

Similarly, one can compute the probability for samples with gy < 0 and finally get:

1 -b2/2
. ) Norid ox
Pboundar - (145)
Y lEfe <_—b°)
2 V2
%e‘bg/%x
Pb_oundary = 17T b (146)
1- EEI‘fC (TS)

The two quantities are shown in Fig.1.2 versus by < 0. It is clear that positive samples have a
higher probability to lie on the boundary as long as the teacher bias is negative, so they represent
the minority class in the population distribution.
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1.3.2 Theoretical Analysis

Here we perform the detailed calculation of the free energy density of our model in the ther-
modynamic limit and show how to extract relevant features and performances of the learned
model.

Replica Calculation

As introduced in Sec. 1.1.3 the goal of the replica calculation is the evaluation of the free energy
density in the thermodynamic limit, namely:

(1.47)

Htrain

WP - lim lim —— log( 2"
A = lim lim —— log(Z™)
the form of pirqin is the one of Eq. 1.34. To make the notation lighter, we abbreviate pirain
as p for the whole derivation, since we are now only focusing on the training set. We start by
evaluating the replicated partition function:

(2= [ dwnin((sh) [ (ﬁldu(ba)du(w”))eBZUZMW”’*’“S” (1.48)

where we have used the shorthand notation for the loss £(w,b) = Zé\icf e(w,b; S%) to denote the
dependence of term ¢ in the sum on the student weights and on the sample ¢. du(w) denotes
the integration measure over the student weights and it enforces the spherical constraint:

N

du(w) = q

dwi

271_efs(w-w—N) (1.49)

du(d) = db is the integration measure over the student bias.

By expanding the integration measure over the training samples and collecting respectively
positive and negative terms we get:

N«
(%)= [ T1du(s du(W")[ / DS@( ) Bzae<w«bo;s>] "

o=1
.S . Na(1-p)
[ fDS@( ) -BE,e(w ,ba;s):| (1.50)
We define:
1 0. o b
Gr ({w,bo}) = ~log — f DS© (ﬂ:w\/NS ibo) ¢ Lo (W ba38) (1.51)
+

where {w?,b,} denotes the dependence of G* on the whole set of n replicated students. Then
one can rewrite the replicated partition function as:

(Zm) = HdM(b ) dp(w)e ~NapG; ({w?,bs})-Na(1-p)G, ({w?,bs}) (1.52)

o=1
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We introduce the auxiliary variables x, and y in order to remove S from the argument of g
function in the expression of G*:

+ 1 n ] 2 L w?-8S w’-S
-G; :_f d /d e b e~ 3 Zolg(@o+bo)—g(y+bo)] /DS 5( - )5( - )
e Ty +bo)e T
. ;jl Yy (y 0) }:[1 \/ﬁ ) \/ﬁ
(1.53)
H dxg dxo f dg dgg(y N bo)e(’g T 9(@o+be ) =g (y+b0) 1 +i £g woita+iyd)
o T
<[ DS (E W aew0) (1.54)

where we exploited the Fourier representation of the J-function and introduced the conjugate
1 o N

variables 2, and . The last integral is Gaussian and it yields: e 2x (X W #o+w’9)*  The function

G, depends on the vectors w?, w only through the overlaps:

(1.55)

which are emergent order parameters of the theory. They measure respectively the alignment
between replicated students and between replicas and the teacher. In terms of these functions,
G can be written as:

1
e 9 =

cv J ;o 2w

ﬁ dr, dZs, f dgdg@(y+ bo)e—gZd[g(zg+bg)—g(y+bo)]2+i ZoTolo+iyy
T

< 67%2070' :)Asg(ﬁdeoalfgzo ClAfoRa'*%ng’ (156)
and similarly

oG =

C_

da:g dfl’g f dydy@( —y - bo)e 22 [9(zo+bo)—g(y+bo) ]2 +i T, Tolo+iYY o

X 6_5 Zo—,cr’ ‘io':%o-’Qo'a’_ng ‘iO'RO‘_%Q2‘ (157)
The replicated partition function can thus be written as an integral over the order parameters:

(2" = / H dpu(by) dp(w? Yo NowGE (W o)) =Na(1=p)G; (W bo})

fHdQUU[HdRUH(S(W w7 NQJU)H(S(W -w’ - NR,)

o>o’ o>o’
(1.58)
f [] dbs f [] Seor Cor dQ""’dQ“ [ HdR dRa ¢ NOPGE (Qgor R o))~ Na(1-p)G5 ({Quar R }) o
o>o’

X6N(—Zg>a/QUUIQGJI—ZU]?JRU)/ HdM(WU)BZU>“'QGU'w0w0 +ZJRUWUWO (159)
o=1

with QM/ and R, conjugates of the overlaps. Then:

Z” /Hdb f 1—[ anU’ona’ fHdR ng _NAT({QUU Qoo R Ro}) (160)

o>o'!
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with:

AT’({QO’O”; Qaa’a Rm RO’}) = apg:({Qaa’a Rm ba}) + a(l - p)gr_({an’, Rm ba}) - go({QO’U’7 Qaa’y RO'7 Ra})
(1.61)

and

A A A A ]. n A oo ® o
go({QUOJ’ cho’7 R, Ra}) == Z QUU’QJU’ - Z R,R, + N log H du(wg)ezo>a’ QuetWoW? +Y, Row WO'
o=1

o>o’ o

(1.62)

Replica Symmetric Ansatz In order to evaluate the integral in (1.60) by saddle-point we
switch the order of the two limits, getting:

B =lim L min {-Ar({Quors Overs R o)) (1.63)

n—-0n Q R

oo’tlos

Qgg’nyr:ba

To carry on the computation one has to find a parametrization of the order parameters and
express (1.63) as a function of the elements of these multi-dimensional arrays and the number of
replicas n. We stick to the Replica Symmetric (RS) case where one assumes that the replicated
students are symmetric i.e. they all have the same overlap with the teacher and among them:

Qoo =000 + (1 = d50')q (1.64)
Qoo’ =0g0’ + (1 - 500’)‘.7 ( )
R, =R (1.66)
R, =R (1.67)
by =b. (1.68)

We stress that in our computation the student bias b is treated as an order parameter and its
value is fixed by saddle point as for the other parameters. We define:

+
Gy =lim ==, Gp=lim Yo (1.69)

n-0 n n—-0 n

then the optimization problem to solve in order to find the equilibrium values of the order
parameters becomes the following:

_ﬁftyp = an}%n {GO(qv ij Ra é) - apG:(q’ Rv b) - a(l - p)G;(Qa R7 b)} (170)
q.Rb
We'll refer to G as the energetic terms as they represent the energetic contribution to the free

energy of positive and negative class samples. G is the entropic or volume term and quantifies
the number of student configurations that correspond to a given choice of the order parameters.

In the following we show the detailed computations for G}, the derivation follows the same lines
for G;. The plan is to substitute the RS ansatz in the expression of G, and integrate over the
conjugates variables ¢, Z,: the integral in §j is a Gaussian integral and yields:
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. dz, dZ, dy
e [T [ e b o)
¢ 5 Zolo(@ob)=g(y+b0)]* (=3 (1-0) £p @5+ 5 (R?=0) To o1 8080r+i Lo o (wo—yR) (1 71)

In order to integrate out the &, we need to decouple the term Z,Z,s through Hubbard-Stratonovich
transform:

LGRS, dotyr _ f Dte(iVa-R2E,80)t (1.72)

_ et/
we recall that Dt = \/2_

™

Integrals over 2, are now Gaussian and yield:

. (mg—q R+ty/ —R2)2
e 97 = _[Dnyt@(y+bo) e (E R o~ 5l9(za+b)=g(y+bo)]° (1.73)

V2m(1- q
Performing the shift and re-scaling x, — z,+/1 - ¢+ yR —t\/q — R? one gets:

. 8 (o Togry Rtn/a—FE+b)- 1"
- :iny@(wbo)th[f o e e ] (1.74)
Cy

2[o(evT=gryR-t/g-R7+b)- 9(y+bo)]

Now we can compute the n — 0 limit. We call A = f Dzxe 2 and
exploit the identity A™ ~ 1+ nlog A for n — 0:
G, = hn%——log(l +n— / DyO(y + by) / DtlogA) (1.75)
Since n is small we can expand the first log around 1:
1
G =-— [ DyO(y +bo) / Dtlog A (1.76)
Cy

We recall our choice of the activation function g(z) = sign(z). The square-loss per sample in
this case reads e(w;S) = 20(—(w-S +b)(w”-S + by)). We re-define it without the the factor 2
in order to count the number of mis-classified samples. G, becomes:

a - _l oo Dy /oo D log <—/°° D:Ue_ﬂ@(_(m,/l—q-%—yR—t\/ q—R2+b)(y+b0))) (177)
" Cy J-bg — o0 — 00
We define: u = 24 HR b and H(z)= [ Dt= erfc ( \/-) The final form for G reads:
1 oo [ee]
G = ——[ Dy/ Dtlog (e_6+(1—e_’8)H(u)) (1.78)
C+ —bO — 00
~ 1 —-bg 00 8
G: :__[ Dy[ Dtlog((e? = 1)H (u) + 1) (1.79)
C_ J-o0 —o00
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We now show the detailed computation for the entropic term Gy. Starting from (1.62) and
substituting the RS ansatz one gets:

1 ~ 1 n ~ o o', > leg
Go = ~5n(n-1)qd-nRR + ﬁlog/ [T du(w? )ed Zemer WIWo HREwIws () g)

o=1

We decouple wow? through Hubbard-Stratonovich:

~ ! 14 LS N 14 =
eqz””’ wow? _ e§q20’01w"w” -3 X, wWiw _ e—ngaw”w" [ Dze\/ézawaz (1‘81)

Then:
Go = ‘%n(n ~1)g4-nRR + % log [ Dz (f d/‘(W)6W(RWO+ﬂZ%QW)) (1.82)

Now we can take the n — 0 limit:

Go = lim Go _ -RR+ qq + = f Dzlog [ d,u(w)ew(Rw azgaw) (1.83)

n—-0 n
The last integral yields:
wozi
szlog —)\e]\gke 7 logle(A+q]) 2(A+tz)(R2+qZZ 1+2\/_RZZNZ ), (1.84)

Computing the integral over A with a saddle point approximation we reduce the double integral
to

A1 R R? iz Zzw zi
R R oo Shewr BT (o e o |

where now A\ denotes the saddle point value. The Gaussian integral over z is easily computed,
and one gets as a result:

A A1 1R?2+4 1
Go=-RR+=q4+= - =log(A+4q) += - 1.86
0 +5ad+ 5 — 5 log( +q)+2(A+q) 5 (1.86)

Saddle Point Equations We look for a stationary point of the variational free energy to
fix the value of the order parameters at equilibrium. We then set to 0 the derivatives of the
variational free energy with respect to the order parameters (q,q,R,R, b) and the additional
Lagrange multiplier A that we introduced to enforce the spherical constraint for the students’
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weights.
R=R(1-q) (1.87)
¢=(3+R*)(1-q)* (1.88)
Rzaﬁ ﬁ/th e*”2/2+\/%t L met gUQ/QK;%t (1.89)
2n/T=q | ey oo (eP-1)1+H(@Ww) ¢ Joo (eP-1)"1+H(v)

A [0 P o0 00 efu2
7= 27(1-q) {Z [bo Dy .[oo Dt[(eﬁ -1)"1+ H(u)]2+
1 —-p —bo o e—u2
AT - W} (190)

) ) 7u2/2 1= ) ) 7u2/2
P € P e
0=— f D f Dt f D f Dt 1.91
e Joy Y S (e =1)"1+ H(u) e e Y (e B -1)"1+ H(u) (1.91)

For any given choice of the hyperparameters by, ptrain, 7' and « (in SM these are called control
parameters), we can solve these selfconsistent equations numerically, to obtain the order pa-
rameters, with particular interest in (R,b). These order parameters contain all the information
about the typical behavior of the learned model at the end of the training. In the following we
show how to extract them.

Train and Generalization metrics

Train and generalization metrics are all derived from the order parameters at equilibrium. The
average train error per sample can be evaluated as:

v = (B2 LE WD) D (1.92)

where Ep[...] denotes the average over the realizations of the thermal noise. Explicitly:

N pewhyy 1 0 __1 o)
= 5l [ Anw) [ au®E b)Y, = (o lor Z) = oS (199)
10 N
€ = _Ea_ﬂ {GO(q’ (/j) R7 R) - aﬂtrainG:(% Ra b) - O[(]_ - ptrain)G;(q, R, b)} (194)

evaluated in the saddle point. The volume term Gy doesn’t depend on the temperature and we
get:

9G; (¢, R,b) 9G, (¢, R,b)
= Ptrain 1 = pirain — 1.
€ = Pt 03 + (1 = purain) 08 (1.95)
Prain [ e 1-H(u) L ~ ptrain /_bo foo H (u)
=— D Dt D Dt
Cq /—;0 y[oo 1+(€B—1)H(U) " C_ — 00 Y — oo €B+(1—€6)H(u)
(1.96)
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For any metric M (w,b;S), its generalization value is:

My = ((E2[M (W, b58) 1) perain Dseest (1.97)

The idea behind the computation of generalization metrics is to add one sample that was not
observed during training and evaluate the performance of the trained student on it. In practice,
we can define the generalization error as:

€g = <<<<]ET|:€(W7 b; S)]»Mtrain >>Mtest (198)

The first average is on the train-set and it yields the saddle-point equations shown in the previous
section. The second average, on the test-set is needed to evaluate the trained student on the
new, unseen sample. Explicitly:

o=l [ an(w) [ Au®)e(w, b 8)eEE D) (1.99)
(277 [ du(w) [ du(v)e(w,biS)e IR OISO,y (1.100)
- tiny [ dpce() [ dinn(89) [ 1) di(w e i) 5B o8

(1.101)
- lim [ djttest(S) f Hdu(b ) dp(w)e(w, by: §)e~NawdE (w7 bo})=Na(1-p)G; ({(w7 b))
(1.102)

One can evaluate:

1-
f pttest (S)e(w, by 8) = Liesty, | T 7 Presty (1.103)

Cy c_

Where we have defined:

Ii-fDS@(

In the following we show the computation for I, the one for I_ follows the same lines.

1+_ste)(

- [ 2L [ dydy g+ by) - gy + bo) POy +) [ DSe TROENDS (1 105)

j:bo) e(wh,b;S) (1.104)

+b0)e(w b1;S) (1.105)

Integrating over S, Z, 7 one gets:

I+:/Dx/::Dy%[g(x\/l—R%erRl+b1)—g(y+b0)]2: (1.107)
=[DxfooDy@(—(m\/l—R%+yR1+b1)(y+b0))= (1.108)

:fbo Dy/ D = f Dy(1 - H(u')) (1.109)
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Computing also I_ we get:

= w ~ Pres -b 0
e(Ry,b1) = Prest f Dy f Dz + & [ ’ Dy [ Dax (1.110)
lelrfc ( \}’9) ~bo —oo0 1— %erfc (__\%) —oo "

Thus we can rewrite the generalization error:

_hmfndb f ]‘[dQ”’dQ” f]‘[dR ARy (1.111)

o>o'

X E(Rl, b]. )e_Napg:({Qo,o"7R0"bU})_Na(l_p)g;‘({Qa,o'/’Ra?b"'})_"NgO({Qo',a/7QJ,UI7RU7RU})
(1.112)

Following the same lines of the Replica Calculation performed in the previous section one gets:
€g = €(R,b) (1.113)

with (R,b) parameters at equilibrium i.e. the ones that solve the saddle-point equations.

As introduced in Sec.1.2, all the generalization metrics that we investigate in the manuscript
can be expressed in terms of True Positive Rate (Recall, r) and the True Negative Rate
(Specificity, s). Here we show the derivation for these two metrics:

<<<<ET[[1—@(—(‘J—%+b)(V§§+bo))]@(W°NS+bo)]>>mm>>

r= Htest (1114)

Ptest
- é DS@(W;'NS +b0) [1 ( ( +b0))] . (1.115)
0, W -
- l_éfDS@(WﬁS +bg)@( ( ) +bo)) . (1.116)
- L1 (R b o) (1.117)
Cy S.P.

The derivation follows the same lines of the one for the Generalization Error. We stress that
metric is evaluated at the saddle point for the order parameters.

([0 (- (x5 +0) (2 +m))]o (-2 -]}, )

5o st (1.118)

1
=1- —I_(R,b,by) (1.119)
C_

S.P.

28



1.3 Anomaly-Detection Class Imbalance for perceptron learning

1.3.3 Theoretical Results

Here we present the theoretical results of our work on Anomaly-Detection Class Imbalance in
Exactly Solvable Models. The main contributions of our work are the following :

o By solving the teacher-student (TS) spherical perceptron in the presence of AD Imbalance,
we provide an interpretable framework to characterize AD Imbalance. This allows
us to elucidate the role of three sources of imbalance: the intrinsic imbalance pg, the train-
ing imbalance, pirain, and the test set imbalance, piest- As a function of these quantities,
we examine how various commonly used performance metrics are able to track both the
overlap of the Student with the Teacher model, and how the Student bias reproduces that
of the Teacher. The bias of the Student is more sensitive to ptrain than to the bias of the
Teacher.

e Should one attempt at re-balancing the training set to have pgain = 0.5, as it is usually
done? Challenging the common intuition that a perfectly balanced training set is optimal,
we find that the optimal value of pi.i, is not 0.5. Factors influencing this value and
its relevance include the abundance of data, the amount of noise in the dynamics, and the
bias of the teacher.

e Dynamics with lower noise are less susceptible to CI. We identify two distinct
regions. For low noises, the performance is optimal, and largely unaffected by the noise
level. For large noises, the performance degrades and becomes sensitive to additional
amounts of noise. This effect correlates with the degree of imbalance in the system, and
is related to how well the student can reconstruct the teacher bias.

When the teacher bias is known

We begin by considering a simpler scenario where the student’s bias is not learned but fixed at
b = by, corresponding to the situation in which the student has prior knowledge of the teacher’s
bias. This case is particularly insightful because it reveals some underlying symmetries of the
problem and clarifies the concept of informative samples introduced in Sec. 1.3.1.

Optimal training. In this setup, the self-consistent equations presented in Sec. 1.3.2 simplify,
reducing to just the first four equations, since the student’s bias b is fixed and does not need to be
fixed self-consistently. The relevant information is thus captured entirely by the teacher-student
overlap R. A key consequence of this fixed bias is that translations of the student’s decision
boundary are not permitted. Therefore, the alignment between teacher and student depends
solely on the density of samples near the teacher boundary, regardless of their class labels. When
bo # 0, one class becomes more informative about the teacher’s direction, meaning that samples
closer to the teacher’s boundary provide more information about its position. This becomes
particularly evident here: when by # 0, one class is inherently more informative, and to maximize
the overlap R, the optimal training set would ideally consist solely of samples from
the minority class. This phenomenon is illustrated in Fig. 1.3—(left), where the resulting R
from training is plotted against pyain for various values of the teacher’s bias by. We observe that
as |bp| increases, this effect becomes more pronounced, as the minority class samples become
increasingly concentrated near the teacher’s boundary.
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Figure 1.3: Overlap and accuracy on the spherical teacher-student perceptron, with the
constraint b = bg. (left) Teacher-student overlap R as a function of pirain, for o = 0.7 and T = 0.5. Stars
indicate the point where the overlap is maximized. The vertical line indicates ptpain = 0.5. (right) Test-set
accuracy a with piest = Prrain @s a function of pypain, for a = 0.7 and T' = 0.5. Stars indicate the point
where the overlap is maximized which correspond to a low accuracy on the test set.

Invariance under sample reflection. The case b= by = 0 is particularly interesting because
it highlights a symmetry in the problem. Here, both classes contribute equally to informative-
ness, meaning there is no advantage in having more samples from one class over the other. This
symmetry is reflected in the flat curve in Fig. 1.3—(left). It also manifests in the free energy
function, where the two energetic terms G, defined in Eq. (1.51), become equal when b, = by = 0.
In fact, by applying the change of variables S — —S in the integral, we recover G, from G, and
vice versa. This symmetry arises because the Boltzmann weight of each sample is identical
regardless of its label, meaning that as long as the total number of samples remains fixed, the
free energy remains the same. In essence, when b = 0, there exists a bijection between flipping
the labels and flipping the samples S. Thus, in the second integral of Eq. (1.50), imposing a
label flip also imposes a reflection in the data space, leading to the problem’s invariance under
sample reflection.

Test accuracy. Another important insight from this simplified case is that evaluating simple
accuracy a on a test set with the same imbalance as the training set (ptest = Ptrain) can be
misleading. We observe that the value of pirain Which maximizes accuracy often corresponds to
a lower overlap R. This discrepancy arises because a higher density of samples near the boundary
increases the likelihood of misclassification, lowering accuracy even when the alignment between
teacher and student is quite strong. This effect is demonstrated in Fig. 1.3—(right), where the
accuracy on the test set is plotted against pirqin.

Learning the bias

The most intriguing phenomenology arises when the full problem is considered, i.e., when the
student is also required to learn the bias. In the following, we summarize the key observations
and insights from this scenario.

Good and bad models, Energy-Entropy interplay. We begin by investigating the influ-
ence of pyrain on the learned model. Figure 1.5 (a)-(b), reports the solution of the self-consistent
equations for the overlap R and the learned bias b as a function of piain, for multiple choices of
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Figure 1.4: Geometrical interpretation of learning an Anomaly Detection task under class
imbalance, with fixed pg, and pirain = 0.1,0.5,0.9. Normal examples (negative label, gg = -1) are
represented with blue — symbols, anomalies (positive label, gg = +1) with red +. Shaded grey points
depict the underlying Gaussian data distribution and grey circles locate contours at 1o,20 and 30 (o is
the standard deviation). The black dashed line represents the teacher decision boundary which determines
the ground-truth labels and the colored regions of the plane depict the classes predicted by the student
(the model being trained). The three examples contain the same number of misclassified examples, but
the learned model is very different. When the training set is strongly imbalanced ((a) and (c)) the student
has an entropic incentive to learn a strong bias, completely discarding the alignment with the teacher:
learning only a bias that matches the train imbalance is statistically favored due to the large number
of possible directions for the student’s decision plane that achieve a low error. Learning on a balanced
training set (b) forces the student to learn the direction of the teacher because of the higher cost of
mis-classifying one of the two classes.

the teacher bias by. Learning under strong imbalance leads to a model that has a strong bias
and low alignment with the teacher, this is a bad model since it is not able to reproduce by
and wq correctly. Meanwhile, learning on a more balanced training set, leads to a good model
that is able to better reproduce the teacher’s labeling rule, learning a good overlap R and not
being overly biased. This phenomenon can be geometrically interpreted (Fig. 1.4a,c): since the
loss counts the number of misclassified examples, a dummy model that has a strong bias and
always predicts the majority class pays a small price in terms of loss. However, it is statistically
favored with respect to a model with b = by, since with |b| > |bo|, there is a very large number
of weight configurations w that allow for the same small training error, while with b = by the
number of weight configurations giving a small error is much lower. This is an example of what
is called energy-entropy interplay [CABJ20]: solutions with large b have an entropic advantage
(there are more of them), at the expense of a few misclassifications (what is sometimes called
an energetic cost). As pirain becomes more balanced, the energetic cost increases, eventually
overcoming the entropic advantage. We also note that, while the situations in Figs. 1.4a,c are
similar with what regards the training errors, they are of course very dissimilar when one looks
into the generalization error (accuracy curve in Fig. 1.5d).

Finally, we highlight that training at pain = po is always sub-optimal, both in terms of R and
of b.

Performance metrics, which one? When testing a trained model, it is common practice
to build a balanced test set with samples not observed during training, i.e., ptest = 0.5. Another
practice is to leave the distribution untouched, ptest = po(bo). How are different performance
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Figure 1.5: Analytical results as a function of pirain, for @ =1.1 and T = 0.5. (a) Student overlap
R, for by = 0,-0.2,-0.4,-0.6 (po = 0.5,0.42,0.34,0.27). Stars indicate the point where the overlap is
maximized, diamonds indicate the performance at piain = po- The vertical line indicates pirain = 0.5.
The inset is a zoom. (b) Same as (a), but for the student bias b. The horizontal lines indicate by. Now
the stars indicate the points where b = by, and the diamonds indicate the b that would be learned if one
trained with perain = po. (¢) Accuracy, recall, precision and F1 score, for by = 0.6, ptest = 0.5. The stars
indicate the peak of each curve. The vertical lines indicate pp, the imbalance p(b*) at which the bias is
optimal, and that at which the overlap is optimal, p(R*). (d) Same as (c), but for piest = po(bo)-
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Figure 1.6: Dependence on pirain for different a or T'. The optimal balanced accuracy (apa1). We
plot ap,) as a function of pipain, shifted so that all the curves peak at 0. The vertical dotted lines indicate
Ptrain = 0.5. (Main) study at by = -1 and 7" = 0.5. Varying « changes the position of the peak, as well as
how fast the performance decreases when leaving the peak. (Inset) same by and fixed « = 1.1, varying T
The cases T'=0.01 and T = 0.1 are almost impossible to distinguish because they both correspond to the
low-temperature region (Fig. 1.8). For high T the curvature is larger.

metrics affected by the test imbalance, and which metric is best able to identify a good model in
terms of R and b7 Figure 1.5(c,d) report different performance metrics for models trained with
varying pirain and tested with piest = 0.5 and piest = po-

The recall is trivially maximized for paim = 1, since this generates a dummy model which
identifies anything as an anomaly. The sensitivity s has the opposite trend (not shown), being
trivially maximized for pgrain = 0.

The balanced accuracy (not explicitly plotted, since it coincides with a when piegy = 0.5) is the
quantity that best reproduces R(pirain), and shares with R(pirain) the feature of not depending
Ol Ptest-

The accuracy for piest = po is maximized at small pyain, because this generates a model which
always guesses the majority class. This can also be seen from the expression of the accuracy in
terms of recall and specificity i.e. a = prest” + (1 — prest ) S, where if piest < 0.5 the contribution of
the s dominates.

The trend of the precision seems independent of piest, though its specific value is. p peaks
between pg and p(b*), making it the best candidate to identify by.

Finally, F1, when calculated with piegst = 0.5, peaks at a value representing a low R and a bias
with sign opposite to bg. It is instead more informative when prest = po is used, since it peaks at
a value close to p(R*).

In summary, we identify ap, as the most suitable metric to identify the overlap, due to the
qualitative agreement with R and the independence from piest. The metric which best identifies
the optimal b is instead the precision.

Optimal train imbalance. We already noted that training at pirain = po never gives the
best model (in terms of best R nor b). We now turn to pgain = 0.5, which is commonly
believed to lead to optimal generalization performances, and the most common choice in CI
reweighting /resampling schemes. We challenge this assumption, showing that the optimal train-
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Figure 1.7: Optimal pirain as function of the control parameters o and pg(bo). (a) p(R*) as
function of data abundance a. (b) p(R*) as function of the intrinsic imbalance py (controlled by by), for
a=1.1. (¢) Same as (b), for o = 8. The dependencies are non monotonous, indicating a highly non-trivial
behavior. Dashed grey lines highlight the values pgpain = 0.5 or o = 1.

ing imbalance, pirain(R*) = argmaxptmm(R), is different from 0.5. This is true for the overlap
(Fig. 1.5a-inset), and it is also true for the best proxy of the overlap, ap,. Fig. 1.6 shows that,
when by < 0, apa on the test set peaks at pirain > 0.5, i.e. when there are slightly more of
the anomalous examples. This is consistent with previous empirical observations on SVMs and
Random Forests, which found that pirain = 0.5 is not the optimal training ratio [KAE22].

We also look into the influence of the degree of under-parameterization («) and the amount
of noise in the dynamics (T') on the value of prain(R*): for the values considered in Fig. 1.6,
increasing « and decreasing T make the curves more tilted, shifting the optimal train imbalance,
and the curves more peaked, thus increasing the penalty for choosing pirain # Ptrain (R*)-

In Fig. 1.7 we further investigate this effect, showing that pirain(R*) depends on «, T and bg;
that the effect is non-monotonic; and it can shift pirain(R*) both to values > 0.5 (as in Fig. 1.6)
and < 0.5.

We argue that this is the result of two competing effects. On one side, as depicted in Fig. 1.1d,
minority class examples are more informative, so it is more convenient to train with more of
those (i.e. increase pyain). On the other side, if |by| is large enough, there is a large region
R between typical negatives and (informative) positives that is empty of points, thus allowing
for many possible hyperplane directions w that separate the training set. This means that a
large fraction of student models with |b| < |bg| will result in a small error. Since there are many
more weight configurations allowing for |b| < |bp| than weight configurations allowing b = by,
configurations with a wrong b and w are entropically favored. One way to decrease this entropic
contribution is to fill the region R with negatives, i.e. increase the proportion of negatives
(decrease pirain)-

Interplay between noise and CI. We investigate the impact of the amount of noise in
the dynamics (7') on the quality of the learned model. Fig. 1.8 shows a crossover around a
temperature T*. Below T the performance is optimal, and largely unaffected by the noise
level. Above T, the performance degrades and becomes sensitive to any additional amount of
noise. By comparing with Fig. 1.6-inset, we see that the performance in the high-noise regime
is connected to a lower tolerance to non-optimal values of pirain.

A similar effect has already been observed in the teacher-student perceptron, from a dynamical
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Figure 1.8: Performance as function of T'. (Left) Balanced accuracy as a function of temperature T,
for a = 1.1. The teacher bias is by = —0.6 (dotted horizontal line in the inset, po = 0.27). (Right) Same,
for the learned bias b.

perspective, by studying the regimes of Stochastic Gradient Descent (SGD) as shown in [SW24].
They identify a Gradient Descent-like regime with low noise and optimal performances and a
noise-dominated regime where performance deteriorates as noise increases. Here, we elucidate
the interplay between the noise level and the training imbalance. In particular, we observe that
Ptrain determines the evolution of the student’s bias with 7" increasing T favors the entropic
contribution discussed in Fig. 1.4 and, depending on the value of piain, this results in a more or
less biased model. This can be again interpreted in terms of an energy-entropy interplay: noise
in the dynamics places greater importance on the statistical abundance of solutions rather than
minimal error, thus favoring overly-biased dummy models. This effect is more pronounced when
considering strong imbalance scenarios, i.e. pirain approaching 1 or 0.

1.3.4 Experiments

We consider two experimental setups to assess: (i) the influence of learning dynamics and the
read-out (activation) function on our results within a controlled scenario that mirrors theoretical
computations, and (ii) the effects of dataset characteristics and model choice in a scenario more
akin to practical machine learning applications.

Perceptron TS: In this setup, we use a Spherical Perceptron within a Teacher-Student frame-
work. The model is linear, with the weights’ norm constrained to be O(1), and employs a
sigmoid activation function. The model is trained through the minimization of the L2 loss.
This configuration closely mirrors the theoretical setup, with two key distinctions: the use of
a sigmoid activation function that outputs continuous values within the (0,1) range and SGD
learning dynamics, similar to real machine learning practices. It is important to note that the
choice of a continuous activation function is essential to enable gradient descent dynamics, as
a discontinuous function, such as a sign function, would result in gradients that are either zero
or infinite. To produce binary labels, teacher outputs are discretized, assigning a label of 1 for
values above thr = 0.5 and 0 otherwise. The SGD dynamic shares some characteristics with the
Langevin dynamics used in the theoretical derivation, as both implement gradient descent on
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the training loss with added stochastic noise. The key difference lies in the correlated nature of
the SGD noise, which arises from mini-batch gradient estimates.

To approximate theoretical conditions as closely as possible, we set the data dimension to
N = 5000. We observe that, by further increasing N, our results remain stable, suggesting
that this setting is close enough to the infinite-dimensional limit. We train the student model
by performing multiple passes on the whole training set (epochs) until the training loss has con-
verged. This corresponds to the "end of training" (equilibrium) regime assumed in theoretical
computations. The noise level in SGD is governed by the learning rate and batch size, which can
be approximately related to the temperature introduced in the main text as T ~ Ir/BS [JKA*17].

For each combination of control parameters (b, ptrain, 1, &), we perform multiple runs, resam-
pling both the dataset and teacher weights to compute the quenched average over the data
distribution. Results on a balanced test set (piest = 0.5) are illustrated in Fig. 1.9-(left). We
observe trends that are qualitatively compatible with theoretical results, and most importantly,
we find a non-trivial maximum of the metrics at p* # 0.5. In experiments, we also evaluate the
AUC metric since a threshold is needed to discretize the output of the learned perceptron. We
observe that it is rather insensitive to imbalance, confirming the findings of [LPCM24]. Fig-
ure 1.10 reports the trends of balanced accuracy and student’s bias versus effective temperature.
The experimental trends align qualitatively with the theoretical ones, identifying the low-noise
and high-noise regions separated by T* as introduced in Sec. 1.3.2.
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Figure 1.9: (left) Perceptron TS. by = -0.6, a = 2.0. Effective temperature T = % = % =25-107%
Each point represents the average over 40 re-samplings of the data and the error-bar represents its relative
standard error. (right) MLP and ResNet on AD CIFAR-10. SGD optimizer, with momentum = 0.02
and weight decay 0.01. Each point represents the average over 10 re-samplings of the data and the error-
bar represents its relative standard error.

MLP and ResNet on AD CIFAR-10: in this setup, we employ a real-world anomaly detection
dataset: Anomaly Detection CIFAR-10, a standard benchmark for anomaly detection tasks (see
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e.g. [RCBH20]). This dataset involves re-labeling the original CIFAR-10 classes such that the
first class (Airplanes) is designated as the anomaly (label +1), while all other classes are labeled
as normal samples (label 0). CIFAR-10 consists of 60,000 samples, with 6,000 samples per
class, structured and non-independent by design. Defining one class as the anomaly sets the
intrinsic imbalance to pg = 0.1. To explore various values of pirain, we perform sub-sampling on
the dataset according to the desired level of imbalance, keeping the total number of training
samples fixed at Niain = 6000.

We evaluate two representative models: an MLP with one hidden layer of 16 neurons, and a
pre-trained ResNet34 [HZRS15] in which only the final linear layer is trained on the anomaly de-
tection task, while all other layers remain frozen. Training is conducted via L2 loss minimization,
using SGD for learning dynamics.

In this experimental setup, not all theoretical hyper-parameters can be controlled. For instance,
po is fixed by the dataset, and defining by is not feasible. Additionally, tuning « is challenging
for both theoretical and practical reasons. Theoretically, the definition of « differs significantly
from that in our analytical model, as the data dimensionality and model parameter count are no
longer in one-to-one correspondence. Practically, varying Ni;ain or adjusting the MLP’s hidden
layer size is constrained by limited data availability and the risk of overfitting. Nonetheless, for
each parameter configuration, we re-train the models multiple times, re-sampling data from the
original CIFAR-10.

Results on a balanced test set, shown in Fig. 1.9-(right), reveal a phenomenology qualitatively
consistent with theoretical predictions. However, the effect strength and available statistics limit
the conclusiveness of these findings.
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Figure 1.10: Perceptron TS vs T. Temperature is varied in SGD experiments by tweaking the
the mini-batch size. The learning rate is fixed to be Ir = 0.05 and the mini-batch size varies BS =
{2000, 200, 20, 10, 5,2, 1}.

1.4 Conclusion

In this chapter, we analyzed the effect of AD Imbalance on learning, through exact analytical
calculations grounded in statistical physics methods. We constructed an interpretable framework
that clarifies the influence of various factors on the learning outcome.
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In addition to the train and test imbalance, pirain and prest, in AD Imbalance we identified
an intrinsic imbalance, pg, over which practitioners have no control. If data generation
is unbiased, no re-balancing of the class distributions is performed and the dataset faithfully
represents the deployment distribution, then one has pg = ptrain = Ptest-

Varying pirain corresponds to re-balancing the training distribution. Since our results are in the
asymptotic data limit, they equally represent the effect of both class reweighting and resampling.
Note, however, that these two re-balancing strategies influence SGD differently [FBJL23|.

We have showed that the value of pirajn Which maximizes the overlap between teacher
and student is generally not 0.5. This is consistent with previous empirical work [KAE22],
where on different kind of architectures it was shown that re-sampling using some ptrain < 0.5 was
consistently optimal over a broad range of tasks and models. The case pirain > 0.5 was however
not explored. A trend was observed: as data is initially more abundant (corresponding to larger
a for us), more re-sampling can be done. Our results show that the picture can in general be
more complex. In fact, this deviation from p;_ . =0.5 depends non-linearly on po and
on «. While « indicates how much data is available in comparison with the model size, in our
linear classifier it also indicates the dimensionality of the input space. Therefore, we cannot
disentangle whether this effect is due to model size or to input dimensionality. We also found
that the importance of this deviation is amplified in dynamics with a strong noise
(e.g. large learning rate), with small-noise dynamics leading to better solutions than larger-noise
ones, with a clear separation between two regimes.

This asymmetry is at least in part a consequence of the fact that, in AD Imbalance,
examples from different classes are intrinsically not equally informative. While this
asymmetry was, to our knowledge, not observed in previous work on MG Imbalance, we believe
that similar deviations from piain(R*) = 0.5 can also be observed, in cases where different
classes inform differently on the classification boundary (e.g. a class having smaller variance).
In particular, in MG classification, we conjecture that this asymmetry could also be observed
in the absence of imbalance. In fact, while in AD Imbalance, ptrain(R*) # 0.5 is a feature of the
imbalance, in MG classification it can be a feature of the data structure.

From the point of view of what happens to the training landscape when varying prain, we
observed that it causes smooth variations in the solutions, with no abrupt changes even when
values such as perain = po or 0.5 are crossed. We noticed such an absence of phase transitions
also when tuning pp and piest-

Varying pirain and peest, and the evaluation metrics, informs us on what each metric reproduces.
The balanced accuracy seems the best proxy for the teacher overlap R, while the
quantity that best reflects the bias is the precision p.

Finally, we outline four key directions for further research:

e Data Distribution: the first step to enhance connection with realistic settings is to assess
the validity of the AD Imbalance assumption. This involves determining to what extent
the overlap between distributions applies in real datasets. Future research could focus on
modeling more complex data distributions that incorporate meaningful structures, moving
beyond the current assumption of independent data points.
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e Loss Function: in the current model, the loss function does not consider the distance
between misclassified samples and the student boundary, and margins are absent. Explor-
ing the use of a hinge loss could provide new insights. The introduction of margins may
significantly alter the learning landscape, leading to a stronger alignment with the teacher
model and potentially different qualitative behavior.

e Improved Models: extending the analysis to deeper and more sophisticated architec-
tures, such as kernel machines or fully connected networks, would improve the connection
to practical scenarios. While deep networks remain analytically challenging, certain limits,
like the infinite width scenario, are well-understood. For instance, networks with infinitely
wide hidden layers have been linked to kernel machines [BCP20].

e Multiclass Classification: extending our results to multi-class scenarios would allow the
exploration of various forms of class imbalance. This includes investigating different label
distributions across multiple classes, which could provide deeper insights into the impact
of imbalance on learning.
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In this chapter, we explore the emergence of amorphous order in supercooled liquids using roto-
translational equivariant graph neural networks. We begin by introducing the phenomenology
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of supercooled liquids, discussing the main limitations of current theoretical approaches and
numerical simulations, along with key open questions. Next, we review research that leverages
machine learning models to study the structure of these materials and to correlate structural
features with dynamical properties. We then turn to equivariant neural networks, providing
the mathematical background on group theory and the theoretical framework needed to un-
derstand the construction of such models. Finally, we present our work on SE(3)-equivariant
GNNs for glassy liquids, achieving state-of-the-art results in predicting particle mobilities from
static structures. Our findings reveal valuable insights into the role of directional information,
temperature generalization, and transferability.

2.1 Supercooled Liquids

Typically, when a liquid is cooled, it reaches a characteristic temperature T,,, known as the
melting temperature, at which it undergoes a phase transition and crystallizes. However, for
a large number of liquids, a carefully controlled cooling process can allow them to enter a
metastable phase known as a supercooled liquid. This phase is amorphous, meaning that simple
structural descriptors do not reveal long-range order, unlike in a crystal, where a periodic
structure is formed. To achieve this state, crystallization must be avoided by preventing the
nucleation of the stable crystal phase from the metastable liquid phase. This is typically done by
cooling the liquid quickly enough to prevent the formation of crystal nuclei, but not so rapidly
as to drive the system out of equilibrium. Although supercooled liquids are often described
as being in equilibrium, they are technically out of equilibrium, as the true thermodynamic
equilibrium below the melting temperature is the crystalline state, while the liquid remains
metastable. However, it is possible to experimentally stabilize a supercooled liquid in such a
way that time-translation invariance (and thus the fluctuation-dissipation theorem) holds. In
this case, no experimental observation can easily distinguish that the system is in a metastable
state rather than in true equilibrium.

The supercooled liquid phase is a precursor to the dynamic glass transition. As the supercooled
liquid is further cooled, it eventually reaches a point, commonly referred to as T, where it can
no longer equilibrate, moving out of equilibrium. At this stage, on any experimentally accessible
timescale, the liquid behaves as an amorphous solid: it no longer flows, despite showing no
obvious structural order. Though obtaining a supercooled liquid requires careful cooling, glassy
materials are ubiquitous in daily life, with examples including window glasses (silica glass), glassy
gels [Daw02], protein-systems [FML*02], and metallic glasses [Joh02]. For many materials,
achieving a crystalline state is even more challenging than forming a glass: even slow cooling in
laboratory conditions may result in a glassy solid as Ty is approached.

Supercooled liquids and the glass transition have been studied by physicists for a long time, yet
despite their many real-world applications, a comprehensive theoretical framework that fully
describes these phenomena is still lacking. In the following, we will delve into the phenomenology
of supercooled liquids to highlight the significance of studying them. For an in-depth overview
of phenomenological perspectives and theoretical approaches to supercooled liquids, see the
excellent reviews by Cavagna [Cav09] and Arceri [ALBB20], which inspired the following section.
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2.1.1 Phenomenology

Viscosity and relaxation time, Angell plot In supercooled liquids, as the temperature
decreases, the molecular motion slows down, and the liquid begins to resemble a solid in terms
of its mechanical rigidity. This dramatic slowing down of molecular motion is reflected in both
the viscosity and the relaxation time. The wiscosity (1) measures the resistance of a liquid to
flow. It quantifies the internal friction that arises when adjacent layers of fluid move relative to
each other. It can be defined as the ratio of the applied shear stress o, and the rate of shear
strain +:

n=—_ (2.1)

The relazation time (7,) refers to the timescale over which a system relaxes the stress imposed
by a shear transformation. In the context of supercooled liquids, it is often associated with the
time required for the molecular structure to de-correlate from its initial configuration. The two
quantities can be related in a simple Maxwell model for a liquid:

N=GooTy (2.2)

where G is the elastic modulus representing the material’s ability to resist deformation in the
short timescale before relaxation occurs.

As the temperature decreases in a supercooled liquid, both viscosity and relaxation time increase
dramatically. This means that as the liquid cools, it becomes increasingly difficult for the
molecules to rearrange, and the liquid behaves more like an elastic solid over long timescales.
This increase is commonly illustrated for many glass-forming liquids using the Angell plot (2.1),
which displays the logarithm of viscosity or relaxation time as a function of inverse temperature,
normalized by the dynamical glass transition temperature T,,. This temperature is conventionally
defined as the point where the viscosity reaches 10'*Poise, corresponding to when the material’s
relaxation time exceeds the longest measurable experimental timescale.

Ta(T < Tg) > texp (2.3)

The increase is so dramatic that viscosity can change by 14 orders of magnitude with just a
"small" variation in temperature around Tj,. This indicates a significant qualitative change in
the material’s state.

The Angell plot clearly distinguishes between two distinct families of materials:

Strong liquids: the relationship between temperature and relaxation time (or viscosity) follows
an Arrhenius law:

A
~exp -2 2.4
oo (f7) 2

Here, A is an activation energy barrier, and the liquid’s molecular rearrangements occur via
thermally activated processes that remain constant as temperature decreases. In these liquids,
viscosity and relaxation time increase linearly with the inverse of the temperature.
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Figure 2.1: Angell’s plot: Strong liquids exhibit approximate linearity (Arrhenius behaviour), indicative

of a temperature-independent activation energy. Fragile liquids exhibit super-Arrhenius behaviour, their
effective activation energy increasing as temperature decreases. (Reproduced from [DS01])

Fragile liquids: the increase in viscosity and relaxation time is much more dramatic and follows
a super-Arrhenius behavior. This is commonly captured by the Vogel-Fulcher-Tammann (VET)
law:

(2.5)

Ta:Toexp(T_TO)

The VFT law suggests a divergence at a finite temperature Ty, although this cannot be ob-
served experimentally. More importantly, the VFT law implies that energy barriers increase as
the temperature decreases. This rise in energy barriers suggests that glass formation in fragile
supercooled liquids is a collective phenomenon, where molecular rearrangements require coop-
erative movement of increasingly larger groups of molecules. For this reason, fragile glass
formers are particularly intriguing, and they will be the focus of our study.

Excess Entropy, Kauzmann Temperature Further experimental evidence supporting the
idea of cooperative rearranging regions in fragile liquids comes from their thermodynamic
behavior. As the temperature decreases, the entropy of the supercooled liquid can be compared
to that of the crystalline state by defining the excess entropy as:

AS(T) = S1o(T) - Scr(T) (2.6)

The entropy of the supercooled liquid decreases more rapidly than that of the crystal, making the
excess entropy a decreasing function of temperature (see fig. 2.2). This quantity can be calculated
only down to the glass transition temperature 7, as the system falls out of equilibrium below
this point. However, by extrapolating the excess entropy to lower temperatures, it is found that
for some materials, the excess entropy vanishes at a finite temperature T, referred to as the
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Figure 2.2: Excess entropy: Entropy of the liquid and the corresponding crystal as a function of
temperature. As temperature decreases, the entropy of the supercooled liquid decreases more rapidly
than that of the crystal. This trend can be observed down to T, below which the liquid falls out of
equilibrium, illustrated by the colored curves representing the out-of-equilibrium glass. The extrapolated
entropy curve of the liquid intersects the crystal entropy at Tj. (Reproduced from [Cav09])

Kauzmann temperature. This temperature is very close to Tp, the point at which the relaxation
time diverges according to the VFT law for many glass formers [Ang97, RA9S].

This coincidence becomes even more intriguing when considering that the excess entropy is
thought to provide a good approximation of the configurational entropy in supercooled liquids.
A widely accepted model in the community for describing deeply supercooled liquids is the Gold-
stein scenario, where, near T}, the supercooled liquid navigates phase space through activated
jumps between different amorphous minima of the free energy landscape. These minima are
separated by sufficiently high energy barriers to associate each state with a distinct minimum.
This suggests that the entropy of the liquid can be divided into two components: the vibrational
entropy (Syip), which is associated with the motions within a single minimum and is roughly
equivalent to the entropy of the crystal (Scr), and the configurational entropy (S.), which
quantifies the number of amorphous states that the liquid can explore in an ergodic manner.
Therefore, the excess entropy can be approximated as:

AS(T) = Spo(T) = Scr(T) ~ Se(T') (2.7)

The vanishing of excess entropy at Tk implies that the configurational entropy also vanishes,
meaning the number of amorphous states that the liquid can explore below Tk becomes sub-
exponential. This suggests a breakdown of ergodicity and points to a true thermodynamic
phase transition. Unfortunately, since empirical measurements cannot be performed below T,
this transition cannot be directly observed. Nevertheless, the fact that Tx ~ Tp links thermody-
namic considerations to purely dynamical behavior, suggesting a connection between the
slowdown of dynamics, the reduction in configurational entropy, and the breakdown of
ergodicity.

A breakdown of ergodicity, along with an infinite relaxation time, implies infinite energy barriers.
In other words, the system should become trapped in one of the lowest-lying minima below T .
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But why would the energy barriers between amorphous minima become infinite at Tx? The
physical mechanism driving this drastic phenomenon likely lies in the cooperative motion of
particles in real space. The emergence of a static correlation length, which increases
(and ideally diverges) as temperature decreases, would bridge these two observations and
suggest the formation of an amorphous order. Such a scenario would classify the glass
transition as a thermodynamic phase transition.

Static Correlation Function When examining standard two-point correlation functions, no
clear evidence of a growing length scale is observed. The simplest way to structurally characterize
a homogeneous and isotropic liquid is through the radial distribution function g(r), which gives
the probability of finding a particle at a distance r from a reference particle:

1
4mr2p

N N
(X 20(r—ri7)) (2.8)

i j>i

o) =+

where N is the total number of particles, p the density and r;; = ||x; —x;||. The radial distribution
function is an effective tool for distinguishing different phases: the more structured the system,
the more pronounced and well-defined the peaks in g(r). In liquids, one typically observes a
series of smooth peaks with decreasing height, corresponding to successive coordination shells,
reflecting the absence of long-range order due to the disordered nature of the liquid. In contrast,
in crystals, the peaks are sharp and persistent over long distances, indicating the presence of
long-range order characteristic of crystalline structures.

From the experimental point of view the more accessible quantity to measure is the static
structure factor S(g). It provides the same structural information as ¢g(r) but in momentum
space, and is related to g(r) by the following Fourier integral:

o singr
gr

S(g)=1+ 47rp[0 drr (g(r)-1) (2.9)
The evolution of S(g) with temperature is reported in Fig. 2.3. No significant changes are
observed, and notably, there is no evidence of a growing length scale that can be extracted
from this data.

Dynamical Correlation Functions and MSD When examining dynamical observables, a
clear indication of dynamical slowdown as the transition is approached becomes evident. More
significantly, this slowdown is not only quantitative but also qualitative, reflecting a change in
the underlying mechanism of particle rearrangement. This shift can be detected by studying
dynamic correlation functions, particularly the incoherent intermediate scattering function:

N
Fa,t) = 5 {60i(a )50i(-a,0)) (210)

(2

where 0p;(q,t) = exp[—iq-r;(t)] represents the g-component of the Fourier transform of the
fluctuations of density associated with particle .

This function measures how quickly the system decorrelates from its initial configuration. By
fixing q, we select a corresponding length scale in real space, effectively probing particles that
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Figure 2.3: Static Structure Factor: measured in the numerical simulation of a Lennard-Jones liquid
at three different temperatures. Minor changes are observed in the structure while the relaxation time
changes by almost 4 orders of magnitude. (Reproduced from [Kob03])

have moved a distance comparable to this scale. If ||r;(¢) — r;(0)|| is larger than 1/||q|| then
0pi(q,t)0p;(q,0) ~ 0. Thus, this function provides insight into the fraction of particles that
have moved a given distance after time ¢. The behavior of such function as the temperature
approaches the glass transition is shown in Fig. 2.4-(left).
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Figure 2.4: (Left) Incoherent Intermediate Scattering Function: At high temperatures, relaxation
is exponential, characterized by a single timescale. As temperature approaches T}, a two-step relaxation
process emerges, indicating two distinct timescales. (Right) Mean Squared Displacement: Illustrates
similar behavior as seen in Fi(q,t); at high temperatures, normal diffusion is observed, while at lower
temperatures, a plateau forms, highlighting the two-step relaxation and introducing the concept of the
“cage” effect. (Reproduced from [KA95a] and [KA95b])

At high temperatures the system behaves like a typical liquid. In this regime, particles are able
to move freely, and the decay of the incoherent intermediate scattering function is simple and
fast. Fs(q,t) shows a single-exponential decay, which reflects the fact that particles decorrelate
from their initial positions on relatively short timescales. The motion of particles is primarily
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diffusive, and relaxation is uniform across the system.

As the liquid is cooled and approaches T}, the dynamics begin to change significantly,
and F(q,t) exhibits a two-step decay: at short timescales, Fs(q,t) decays quickly due to
local vibrational motion of particles within the "cages" formed by their neighbors. This initial
decay is often referred to as S-relaxation and reflects the rapid, short-range motion of particles
that remain trapped by their surrounding neighbors. After this fast initial decay, it reaches
a plateau, indicating that the system is temporarily stuck in a configuration where particles
are caged by their neighbors. During this time, particles do not move far enough to escape
their cages, and the system remains highly correlated over intermediate timescales. At longer
timescales, the system undergoes a second, much slower decay, known as a-relaxation. This
corresponds to the cooperative motion of particles, allowing them to escape their cages and
rearrange the structure of the liquid. The time required for this relaxation increases dramatically
as temperature decreases, reflecting the overall slowdown of dynamics near the glass transition.

This two-step decay of Fs(q,t) is a qualitative fingerprint of glass transition as it relates the
increase of relaxation time to a new mechanism determining the particles re-arrangement.

The interpretation of the two-step decay is closely tied to the so-called cage picture, which is also
evident when examining the mean squared displacement (MSD) of a particle. For short times,
the MSD exhibits ballistic motion (~ t?), followed by a plateau, reflecting that the particle is
trapped within a local cage of neighboring particles. This plateau reflects the confinement of
the particle, with very limited movement. Eventually, at longer times, the particle escapes this
cage, and the MSD resumes a diffusive behavior (~ ¢). Interestingly, although the cage picture
is useful for describing real-space systems, the two-step relaxation phenomenon also appears in
mean-field models [CHS93], where real-space structures and cages do not physically exist. This
suggests that, while the cage effect provides an intuitive explanation for particle dynamics in
supercooled liquids, the underlying mechanism behind the two-step relaxation is likely more
fundamental and extends beyond real-space interactions.

2.1.2 Dynamical Heterogeneities

A relevant feature of the incoherent intermediate scattering function at low temperatures is that
the tail of the a-relaxation does not follow a simple exponential decay, as one might expect.
Instead, it takes the form of a stretched exponential, exp[-(t/74)?] with g < 1 [GSTC6].
Interestingly, the exponent [ decreases as the temperature is lowered, indicating a growing
deviation from standard exponential relaxation the deeper the system enters the supercooled
phase. This behavior suggests an increasingly heterogeneous dynamics in space, with
different regions of the material relaxing on different timescales. The observed curve
would then represents an average of these relaxation processes occurring across various parts of
the system at different rates.

A similar conclusion can be drawn from the behavior of the self-part of the van Hove function,

defined as:
Gu(r1) = | 23~ [ri(0) - :(0))) (211)
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This function measures the distribution of particle displacements over a given timescale. At
high temperatures, G(r,t) closely follows a Gaussian distribution, characteristic of a standard
diffusive process. However, as the temperature approaches T}, the tails of the distribution
become significantly broader, deviating from the Gaussian shape. These fat tails are better
described by an exponential law, indicating the presence of a population of particles that move
considerably farther than the rest, marking them as distinctly more mobile.

Another phenomenon supporting the previous explanations is the decoupling between the self
diffusion coefficient (D) and viscosity. In typical fluids, these two quantities are related by the
Stokes-Einstein relation, expressed as:

D~ T (2.12)

n

This relation assumes that molecular diffusion and viscosity are governed by the same relaxation
processes, so as the liquid’s viscosity increases, its diffusivity decreases proportionally. However,
in supercooled liquids, this proportionality breaks down as the temperature decreases towards
the glass transition. Specifically, the viscosity increases much more rapidly than the diffusion
coeflicient reduces. In other words, while the liquid becomes extremely viscous and resists flow,
some particles remain unexpectedly mobile, moving through the system more easily than the
relation would predict.

All these observations point to the existence of heterogeneous dynamics in supercooled liquids,
a feature referred to as dynamic heterogeneity. This phenomenon has been extensively observed
in experiments on glass-forming liquids. As the glass transition is approached, the dynamics
become more spatially heterogeneous, with regions of the material displaying vastly different
relaxation behaviors [CWCK™*10, BBB*11, CLB*21, ALBB20].

In order to characterize these dynamic heterogeneities, four-point correlation functions were
introduced [DGP99, DFGP02]. These functions enable the extraction of a typical length scale
and time scale associated with dynamical domains and allow the observation of a growing length
scale which is inherently dynamical. Choosing as observable the density fluctuation one defines:

Ga(r,t) = (6p(0,0)5p(0,)dp(r,0)p(r,t)) = (3p(0,0)p(0,)}(5p(r,0)dp(r,t)) (2.13)

to unveil cooperative dynamics these functions examine the behavior at two spatial locations,
separated by r, at two different instants of time, separated by t¢. It trivially corresponds to
inspecting the correlations of particles displacements over a time-scale ¢ at two positions in
space with distance r. In this perspective one can define a field p(x,t) = dp(x,0)dp(x,t) and
note that its average is just a dynamical correlation function (independent on space because the
system is statistically homogeneous):

C(t) = {p(z,1)) (2.14)
On the other hand, G4 measures the spatial fluctuations of the same field, namely:
G4(7’, t) = ((P(O, t)QO(’I“, t)) - (@(07 t))(@(ru t)) = ((,0(0, t)‘P(”, t)) - C(t)2 (215)

It is now clear that this function quantifies the spatial fluctuations of dynamical observables
around the mean value which is represented by C(¢). This is precisely what we were interested
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Figure 2.5: Fluctuations of the Self-overlap function: for each temperature, x4(¢) has a maximum,
which shifts to larger times and has a larger value when T is decreased, revealing the increasing length-
scale of dynamic heterogeneity in supercooled liquids approaching the glass transition. (Reproduced from
[ALBB20])

in quantifying. By integrating in space the four-point correlation function one obtains the
corresponding susceptibility:

M@:[w@mw (2.16)

This quantity allows to extract the typical volume of correlated regions and the time-scale over
which correlation, and thus cooperative dynamics is maximal. By looking at Fig. 2.5 one can
notice that the maximum of y4(t) increases when lowering the temperature and it is always
located at t = 7. This reveals that the largest cooperative regions are observed during the a-
relaxation and that their typical size is increasing with 1/7 meaning that there’s an inherently
dynamical lenght-scale £, which grows approaching the glass transition.

2.1.3 Numerical simulations

Numerical simulations are an essential tool for studying supercooled liquids, as they provide
direct access to microscopic dynamical observables. In these simulations, the trajectories of
individual particles can be tracked, allowing for the detailed characterization of their dynamics
over timescales spanning multiple a-relaxation periods. Such resolution is challenging to achieve
experimentally, where timescales of tens of seconds often preclude microscopic observations. Al-
though the temperatures accessible in simulations are typically higher than their experimental
counterparts, recent advancements in numerical techniques have enabled the simulation of suf-
ficiently low temperatures, allowing systems to enter the deep-supercooled regime where clear
signatures of the glass transition emerge [BR22].

Classical numerical simulations of supercooled liquids primarily use molecular dynamics (MD)
approaches. In MD, once the interaction potential between particles is specified, the time evo-
lution is computed typically within either the Canonical (NVT) ensemble, which employs a
thermal bath to keep temperature constant, or the Micro-Canonical (NVE) ensemble, which
follows a deterministic, energy-conserving discretization of Newton’s equations.

More advanced simulation techniques can also resort to Monte-Carlo methods with moves care-
fully designed in order to avoid trapping in meta-stable states and slowing down of the simula-
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tions [JMG™*98]. One example is the Swap Monte Carlo method [GP01, BCNO16, NBC17] which
allows to generate equilibrated configurations of supercooled liquids even below T},. Unlike stan-
dard simulations, the swap Monte Carlo algorithm introduces unphysical moves by randomly
exchanging the identities of particle pairs. When constructed to satisfy detailed balance, these
swap moves allow the system to reach thermal equilibrium, significantly expanding the range of
accessible temperatures compared to conventional simulation methods [SGB22].

Several studies have examined the impact of different microscopic dynamics on the behavior
of glass-formers. Interestingly, while differences in dynamical fluctuations were observed, these
dynamics were found to yield equivalent results at the level of averaged dynamical behavior. See
e.g. [BBB*07].

Regarding models used for the simulations, we can distinguish three categories following the
classification of [BR22]. The first category consists of realistic off-lattice models, which simu-
late the microscopic details of interactions in common glass-forming substances. These models
typically involve complex features, such as non-spherical particle shapes, rotational degrees of
freedom, and long-ranged interactions [vBKvS90]. As a result, simulating the glass-forming be-
havior of these systems is computationally intensive, with both molecular dynamics and Monte
Carlo simulations becoming significantly more time-consuming compared to simpler models.
The second category includes in silico glass formers, where spherical particles interact via short-
range potentials [KA95a]. These models often incorporate some degree of polydispersity! and
carefully tuned interactions to avoid crystallization. Despite their relative simplicity, in silico
models exhibit nearly the full range of non-trivial behaviors observed in more complex molec-
ular glass-formers, making them highly efficient for numerical simulations while still retaining
the key features necessary to study glassy dynamics. The third category comprises fully coarse-
grained lattice models [BMO01], where particles are placed on a lattice and evolve through local
Monte Carlo moves without any inter-particle forces. These models are valuable due to their
simplicity, which allows for the direct application of analytical techniques, making them useful
for theoretical investigations of glass formation. In our work, we employ numerical simula-
tions of a glass-forming liquid from the second category, specifically the 3D Kob-Andersen
Lennard-Jones mixture [KA95a], a widely used model system for studying glassy dynamics.

Inherent Structures Numerical simulations provide a variety of techniques to filter out ther-
mal fluctuations from particles’ dynamics and extract information about the underlying potential
energy landscape. One such technique is the identification of inherent structures [SW82]. This
involves an instantaneous quench, where the system’s temperature is set to zero, effectively
eliminating particle velocities. The particle positions are then gradually adjusted to relax the
forces and allow the system to converge to a local minimum of the potential energy, typically
close to the initial configuration [BKG*06]. In the Goldstein picture introduced in section 2.1.1
a glass-forming liquid in the deeply supercooled phase spends most of the time near a minimum
of the potential energy landscape, with thermal fluctuations causing particles to vibrate around
this minimum. In this context, the inherent structure approach allows us to explore

IPolydispersity refers to the variation in particle sizes within a system, quantifying the degree of size diversity.
This variation helps to prevent crystallization by disrupting uniform packing. Common models include bidis-
perse mixtures, which consist of two distinct particle types of different sizes, and polydisperse systems, where a
continuous distribution of particle sizes is present.
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the arrangement of particles in these amorphous energy minima by removing the
influence of thermal fluctuations. Also dynamical observables, such as the displacement
of particle ¢ over a time interval ¢, can be computed in terms of transitions between inherent
structures. In this approach, the displacement does not correspond to the actual trajectory
taken by the particle but rather to the distance between its position in the inherent structure at
time t = 0 and its position in the inherent structure at time t. This method focuses on captur-
ing the system’s movement between energy minima. However, some information is inevitably
lost when studying inherent structures. In particular, the dynamical information on short
timescales, such as the g-relaxation timescale, is lost.

Isoconfigurational Ensemble Another commonly used technique in numerical simulations
is the so-called Isoconfigurational Ensemble. This method was developed to separate the thermal
contribution from the structural contribution in dynamical observables [CG10, GJL*07]. The
technique involves running multiple MD simulations, all starting from the same equilibrated con-
figuration of the fluid, but with initial velocities randomly assigned from the Maxwell-Boltzmann
distribution at the corresponding temperature. For a given dynamical observable m, the value
ms'(t) associated to particle i and run « is averaged over the n, different runs:

(m;(t))rso = nia nim?(t) (2.17)

In particular when m$(t) = |[x*(t) — x;(0)]|, one obtains a measure of the mobility of particle 4
averaged in the iso-configurational ensemble. This quantity is ubiquitous in numerical studies of
glass-forming liquids and it is referred to as Dynamical Propensity. In theory, averaging over an
infinite number of runs would completely eliminate the effects of initial velocities, isolating the
dynamics purely determined by the structure of the initial configuration. In practice, averaging
over a finite number of runs reduces the impact of velocities while still preserving the essential
structural contributions to the observable. This approach ensures that the observable is less
influenced by random thermal fluctuations.

While some information is inevitably lost when calculating iso-configurational averages, key
features, especially dynamical heterogeneities, are retained [WCHF04]. This demonstrates that
dynamical heterogeneities are indeed rooted in the system’s structure (or energy
landscape). As such, the iso-configurational mobility serves as a good proxy for a structural
order parameter, with its correlations growing alongside the dynamical length scale.

However, a challenge with this technique is that the resulting value is difficult to interpret
purely as a structural quantity. While it is indeed independent of the initial velocities and
fully determined by the structure, it still requires the governing equations of motion (such as
Newtonian or Langevin dynamics) to be defined and ran. This dependency on the dynamics
introduces a layer of complexity, as the mobility reflects both the structural configuration and
the specific rules governing particle motion.

The quest for a Static Correlation Length

In previous sections, we established that the only clearly increasing length scale in super-
cooled liquids is the dynamical one. However, to define an increasing amorphous order and

52



2.1 Supercooled Liquids

demonstrate the existence of a thermodynamic phase transition, we require a static correla-
tion length. Numerous attempts have been made to identify such a length scale, with notable
examples being the Random First-Order Transition (RFOT) theory and Point-to-set (PTS) cor-
relation [BB04, MS06, CGV07, BCGV08|. The point-to-set (PTS) approach builds on a common
method in statistical physics that exploits boundary conditions to detect growing static corre-
lations. The key idea is that to observe the growth of amorphous order, one must measure
how far the influence of amorphous boundary conditions extends into the system. Specifically,
starting from an equilibrated configuration of a supercooled liquid, all particles outside a cavity
of radius R are frozen, while the particles inside the cavity are allowed to evolve and equilibrate
under the influence of the pinned boundary. These pinned particles impose an alignment with
an amorphous structure.

To quantify this effect, one measures the overlap? distribution P(Q) between the initial config-
uration and the equilibrium configurations within the cavity. Two scenarios arise: if the cavity
is small, only one amorphous state is accessible, resulting in a high-overlap peak in P(Q). Con-
versely, if the cavity is large enough, multiple amorphous states become accessible, and P(Q)
shows a peak at low overlap. Between these extremes, there is a critical cavity radius, R ~ £p,
where the distribution becomes bimodal, signaling a crossover between the two regimes. This
crossover identifies the typical size of the correlated region and is a measure of the extent of the
amorphous order.

While the study of point-to-set correlations has confirmed many predictions of RFOT theory and
suggests a divergence of the static length scale at finite temperature (7}) in three-dimensional
models, there are limitations. First, the method is computationally demanding: finite-size
cavities are not self-averaging, so it is necessary to repeat the overlap measurements for many
independent quenched configurations and average over these disorder realizations. Additionally,
running MD simulations inside the cavity is very slow and requires both SMC and parallel
tempering. Second, the growth of the static length scale does not seem to match the dynamic
one: the dramatic slowdown in dynamics is accompanied by only a modest increase in the static
length scale [BJ12].

The last limitation highlights a key challenge in the study of supercooled liquids: identifying a
structural length scale that grows as temperature decreases and can explain the expansion of
dynamical domains, thereby linking static and dynamic correlations. In the following sections,
we explore approaches that leverage Machine Learning techniques to define a structural order
parameter and try to uncover this elusive length scale.

2Much similarly to the concept of replica overlap ¢ introduced in the previous chapter, here the overlap Q
. . c c
between two configurations measures how similar they are. It can be computed as: @ =+ ¥, .., ©(a—|r{® - r;'[)
where v refers to the volume of the cavity, and Co, C; represent the initial and final configurations, respectively.
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2.2 ML for Structural Glasses

As mentioned in the previous section, two major challenges remain in the development of a
microscopic theory of glasses. The first is the search for structural order: specifically, iden-
tifying "defects" or locally preferred structures that could reveal short- or medium-range order
within the glass. The second challenge involves understanding the mechanisms driving
glassy dynamics, particularly the microscopic structural features that give rise to dynamical
relaxation and heterogeneity. A key task here is to pinpoint "soft" and "hard" regions within the
structure and establish a connection between structural characteristics and dynamical behavior.
Both of these challenges present an ideal opportunity for the application of machine learning
(ML) models, which are powerful tools for uncovering hidden patterns in complex datasets. In-
deed, in recent years, a growing number of physicists have begun using ML techniques to tackle
these problems.

For the first challenge, researchers have applied pattern-recognition techniques [Cosll, KIG11,
RK17, TTR17, RTS20] and unsupervised learning approaches [BMAM*20, PJC20, CJP22,
RCH*11, RCH"12] to autonomously detect and classify structural motifs in supercooled lig-
uids.

In addressing the second challenge, several studies have used expert, hand-crafted features,
to describe the structure of super-cooled liquids which directly correlate with the dynam-
ics [TT19, LBVP22], without the application of Machine Learning. Some approaches have
leveraged unsupervised methods to extract relevant structural features from low-dimensional
representations of liquid configurations [BMAM™20, PJC20, CJP22]. The majority of recent so-
lutions, though, rely on supervised learning techniques of varying complexity, aiming to predict
particle mobility based on structural information [CSR*15, BKGB*20, BSF21, JBB23|.

Ultimately, a comprehensive theory of the glass transition should integrate solutions from both
these challenges. Some efforts in this direction have been discussed in the road-map paper
[JAB*23].

Here we examine key works addressing the second challenge, categorizing them into three groups:
those that rely on expert-crafted features without the use of machine learning, those employing
unsupervised learning approaches, and those utilizing supervised learning techniques.

2.2.1 Expert features

Tong et al. construct structural order parameters that detect sterically favored structures in
instantaneous liquid states [TT19]. The method measures deviations from a perfectly packed
arrangement. For example, in two-dimensional glass formers, for each particle, they consider
all pairs of nearest neighbors, compute the angle formed by the three particles, and compare it
to the angle they would form if they were in contact. The structural order parameter is then
defined as:

1
N,

0 <35>

Qo= — 10 -0 (2.18)

v]

where 91-(]-1) is the actual angle, 92-(]-2) is the ideal packing angle, and N, is the number of pairs
of neighbors. This order parameter is local and is computed based on instantaneous positions,
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rather than inherent structures. By analyzing the macroscopic value of this parameter across
the entire system, they discover a linear scaling relation with intensive thermodynamic variables
that govern the transition to glassy states, such as temperature 7" and inverse density 1/p. This
relationship holds across different supercooled glass formers. At the macroscopic level, they
establish a direct quantitative relationship between structural order parameters and relaxation
time 7,(T, p). Furthermore, by spatially coarse-graining the system, they reveal a spatial corre-
lation between maps of the structural order parameter and dynamical behavior. However their
method achieves good precision only on hard-spheres models where the only interaction between
particles is of excluded-volume type. Lennard-Jones models display a more complex relation-
ship between structure and dynamics; in such models prediction of dynamical heterogeneites is
intrinsically harder.

Lerbinger et al. demonstrate how local soft directions are key to understanding the rate of local
relaxations in supercooled liquids [LBVP22]. Specifically, they construct local descriptors of
softness by analyzing the inherent structures of the system and conducting local shear tests. In
these tests, they impose a shear along a direction € on a local region with a radius of five par-
ticle diameters using an athermal quasi-static deformation. They then compute the directional
residual plastic strengths A7¢(6) and identify the softest direction by sampling multiple values
of 0:

Ats . =mingAT¢(6) (2.19)

This local, purely structural quantity correlates well with the spatial fluctuations of the coarse-
grained dynamical propensity, revealing that soft directions strongly influence thermal relax-
ation. Moreover, they show that the vectorial thermal displacement between two IS overlaps
significantly with the non-affine displacement caused by deformation along the weakest direc-
tion, further reinforcing the connection between local structural softness and dynamical be-
havior. Their methodology proves effective in studying the rheology of structural glasses as
well [PVF16, RPS*20]. However, since their approach is rooted in inherent structures, it shows
good correlation on the a-relaxation timescale while reduced accuracy on shorter times.

2.2.2 Unsupervised Learning

In unsupervised settings, the structure of a supercooled liquid is typically described using struc-
tural descriptors that capture the local environment of each particle. Dimensionality reduction
algorithms are then applied to extract relevant features. This is often followed by clustering
techniques to identify heterogeneous populations of particles, or the low-dimensional represen-
tations may be directly used to predict dynamical observables. A key debate in the field centers
on whether supervised learning approaches, which fit dynamical measures such as propensity,
simply replicate the dynamical data without uncovering meaningful structural properties. Un-
supervised methods, in contrast, rely solely on structural information, avoiding this potential
pitfall. However, while unsupervised approaches are generally effective at identifying structural
heterogeneity, they are typically less successful at predicting dynamics compared to supervised
methods.

Coslovich et al. explore dimensionality reduction methods to characterize the structure of su-
percooled liquids and aim to establish a connection between low-dimensional representations of
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structural descriptors and dynamical fluctuations [CJP22]. Their focus is primarily on structural
descriptors such as smoothed bond-order parameters (SBO) and the smooth overlap of atomic
positions (SOAP). We highlight the definition of SOAP, as it provides a useful comparison with
the present work. Within the SOAP descriptor the starting point is the density of neighbors
around a central particle smeared by Gaussians of width o:

No(2) r-r;
p(r;1) = Z exp( | 20j| ) (2.20)

This density is then expanded in a basis that incorporates both radial dependence via radial
basis functions g, (r) and angular dependence through spherical harmonics Y}, (%):

Nmax max

o) = 558 S (9 g (1) Vi (). (2.:21)

n=1 1=0 m=-1

the coefficients of the expansion are obtained as:

enim(@) = [ drp(rs0)ga(r) i (8. (2.22)

However, this quantity lacks sensitivity to angular correlations between particles at different
distances. To address this, they introduce interactions between neighboring shells:

The basic SOAP descriptor is then defined by the power spectrum py;(i) = ¥4 _ ¢, (i) Cnim ().

8w 2 1
1) Z:—l C;lm(i)cn’lm(i)- (2.23)

an l(Z) (

The full SOAP descriptor of a particle ¢ is then represented by the feature tensor:

("'7an’l(i))"')7 (224)

They apply both Principal Component Analysis (PCA) and Neural Auto Encoder (NEA) tech-
niques to these descriptors, observing similar outcomes: while these methods effectively capture
structural heterogeneity in glass-forming liquids, the principal components exhibit weak corre-
lation with dynamical observables. As a result, they turn to supervised learning, performing
linear regression on SOAP descriptors, which demonstrates a strong correlation with dynamic
propensity.

Boattini et al. follow a procedure conceptually similar to that of Coslovich et al. They use
bond-order parameters (BOP) to encode the local environments of the particles and implement
a neural network auto encoder to perform dimensionality reduction [BMAM?*20]. This is followed
by Gaussian mixture clustering, which identifies two clusters: one representing mobile particles
and the other static particles. They define their order parameter as the probability P,..q that a
particle belongs to the mobile cluster. After performing spatial coarse-graining, they observe a
strong correlation with dynamics in hard-sphere models and the Wahnstrém mixture, although
the method performs less effectively on the Kob-Andersen mixture. At the macroscopic level,
their order parameter exhibits an exponential relationship with the structural relaxation time
To- The BOP is similar to SOAP but contains less information, as it projects the density of
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surrounding particles onto a sphere of radius 1, without using a radial basis. The BOP is defined

q(i) = \J

QZm(i)

)2| (2.25)

ot )J}b(% Ylm<rw> (2:26)

It’s worth noting that not only the dynamical measure but also the structural parameter (the
BOP) is averaged over neighboring particles in this work. Despite this, the quality of the
correlation is lower than that observed in the results of Coslovich et al. demonstrating that
some information is missing in this description.

2.2.3 Supervised Learning

The majority of works that exploit ML tools to establish a connection between a growing
static order and a dynamic length-scale relies on supervised learning approaches. The first
significant contributions in this area can be traced back to the pioneering works of Liu et
al. [SLRR14, CSR*15, SCKL16, SCS*16]. In their studies, simple structural descriptors of the
local environment around each particle were used as input for linear machine learning models,
such as Support Vector Machines, to predict particle mobility. In these approaches, each parti-
cle is treated as an independent sample for the ML model, meaning that no direct interaction
between the structural descriptors of different particles is considered. It’s worth highlight-
ing that this straightforward yet effective methodology has led to a number of physics-driven
studies [STC*18, CIS*17, SSCL17, LBD*20, TRL22, ZXY*22], which have provided physical
interpretations of the model’s output, often referred to as Softness. More recent works have
employed advanced techniques and more sophisticated structural descriptors. While these ap-
proaches sometimes result in less interpretable models, they allow to establish stronger correla-
tions between structural and dynamical fluctuations.

Bapst et al. were the first to employ Graph Neural Networks to predict dynamic propensity (the
iso-configurational average displacement of a particle) from the static structure of glass-forming
liquids [BKGB*20]. Specifically, they focused on the 80:20 3D Kob-Andersen mixture. Instead
of manually crafting structural descriptors, they allowed the GNN to learn them automatically.
The only inputs provided to the network were the particle types in the mixture and their relative
positions. GNNs are particularly well-suited for this task because they aggregate information
over increasingly larger length scales as the number of "convolutional" layers increases, making
them ideal for capturing long-range structural patterns in the material. Additionally, GNNs al-
low interactions between the descriptors of different particles, enhancing the predictive capacity.

This approach significantly improved the accuracy of predicting particle dynamics from static
observables. The model exhibited a growing machine-learned length scale and demonstrated
strong generalization to temperatures not seen during training, suggesting that the network was
capturing meaningful features rather than overfitting the dataset. However, there are notable
shortcomings: GNNs are complex models with a large number of parameters, which rely heavily
on MLPs to update features. This complexity makes the model difficult to interpret, obscuring
the specific physical features that drive the predictions of particle mobility.
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Shiba et al. improved results obtained by Bapst et al. through the introduction of an auxil-
iary task of edge regression. To enhance the accuracy of mobility predictions, they regressed
the change in particles’ relative positions. This inevitably leads to an increase in number of
parameters for the model though [SHSS23].

Boattini et al. mimicked the coarse-graining effectively produced by GNNs and were able to
match the predictive performance of [BKGB*20] using a much simpler, more interpretable
model [BSF21]. Their approach is more expert features oriented, relying on carefully crafted de-
scriptors of the local environment around each particle. These descriptors capture both isotropic
(distance-based) and angular information about the surrounding particles. The radial descrip-

tors are defined as: ,
(rij-r)

GEO)(T,5,$)= Yoe (2.27)

J#iis=8

which counts the number of neighbors J within the shell centered at distance r of width §. The
angular descriptors are given by:

Tz'_r)
)(l m,T,0) Ze T Y™ (rij), (2.28)

j#z

where Z is a normalization constant and Y;™ are the Spherical Harmonics as defined above. The
rotationally invariant version of these angular descriptors is obtained by taking the norm:

(0) (0) 2 2.9
i 1,r,) - ng 3 1O tmr o) (2.29)

The complete feature vector describing the environment of particle ¢ then consists of the values
of Gl(.o)(r, J,s) and qi(o)(l,r,é).

They perform spatial averaging of these descriptors and feed their value averaged on multiple
shells to a ridge regression model (linear model). Through this simpler and more interpretable
architecture, they achieve prediction accuracy comparable to that of Bapst et al., demonstrating
the power of expert-driven features in glassy systems.

In a similar vein, Jung et al. and Alkemade et al. explored the impact of various physical
observables that can be computed from the structure of a supercooled liquid on the quality of
dynamical predictions [JBB23, ASF23].

Jung et al. employed an MLP with physics-informed input features. They highlighted the
importance of several key factors in predicting particle mobility, such as the local potential energy
(computed as the sum of pairwise interactions with neighbors), the perimeter of the Voronoi cell
surrounding each particle, and the variance of potential energy. Their feature set includes the
descriptors from Boattini et al. [BSF21] as well as these additional physical observables. They
also applied spatial coarse-graining to these features. To further enhance their model, Jung
et al. modified the typical mean squared error loss function by introducing additional terms
that penalize deviations from the true variance and the true spatial correlations of the dynamic
propensities (the target variable). This allowed them to achieve state-of-the-art results, with
strong generalization across different temperatures and physical systems, while using far fewer
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parameters than the GNN model from Bapst et al., as they employed a simpler MLP architecture.
Notably, their model precisely captures the growing length scale of dynamic propensity, although
they achieve this by explicitly including this information in their loss function. While it is
unsurprising that their model performs well in capturing spatial correlations when trained to
do so, the fact that it generalizes effectively to other temperatures and systems suggests it
is learning meaningful representations. A more detailed comparison with their results will be
discussed in Sec. 2.4.3.

Alkemade et al. adopted the same descriptors introduced by Boattini et al. and employed a
similar methodology, involving spatial averaging and the use of a simple linear model. However,
they significantly improved the prediction quality of dynamic propensity on short-to-medium
timescales by incorporating new information into the model, specifically the cage size and the
interaction forces between neighboring particles. They developed an algorithm to estimate the
cage size around each particle, which is purely a structural quantity as it depends solely on
the initial particle positions. Their findings demonstrate that interaction forces are crucial for
predicting particle mobility at short timescales (ballistic motion before being trapped in the
cage), while cage size becomes the dominant factor at medium timescales (when the plateau
of MSD starts to form), and the traditional structural descriptors become more relevant at
long timescales, approaching the a relaxation time. Furthermore, they revealed that Inherent
Structures lose all relevant dynamical information at short timescales but retain valuable insights
at longer timescales. Some of these conclusions are corroborated by our own analysis, which will
be discussed in detail in later sections.

Limitations

Works that exploit advanced machine learning models, such as GNNs [BKGB*20, SHSS22], often
suffer from two main shortcomings: a large number of parameters and a lack of interpretability.
On the other hand, approaches based on expert-designed features frequently lack expressivity,
as they typically use shallow models, and the chosen features may not be sufficiently informative
to capture the structural factors driving particle dynamics.

Our work seeks to bridge this gap by leveraging the recent concept of group-equivariant ma-
chine learning [CW16a]. We implement a roto-translational equivariant graph neural
network to predict particle mobilities from their static positions. This approach re-
duces the number of parameters and improves interpretability compared to standard GNNs. At
the same time, we draw on the lesson learned from computer vision and the advent of CNNs,
which highlights that meta-design (allowing the model to learn features with an expert-designed
inductive bias) tends to outperform manual feature design. Expert-crafted features, while often
invariant, can be less expressive than features learned by a neural network with a well-designed
architecture.

By enforcing equivariance with respect to rotations and translations in our network, we allow
for greater expressivity compared to simply invariant features, since invariance imposes a much
stricter constraint than equivariance. Our model is designed to be SE(3)-equivariant, meaning
that the hidden representations within the GNN are sensitive to translations and rotations.
Concretely, under a rotation of the entire glass, scalar properties of particles (such as mobility)
remain unchanged, while vectorial quantities (such as relative positions) transform accordingly.
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With SE(3)-equivariant networks, internal representations behave like physical vectors, ensur-
ing that the model’s learned features rotate appropriately when the input undergoes rotation,
providing both expressivity and interpretability.

In the next section we will define equivariant neural networks and all the theoretical concepts
necessary to build them.
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2.3 Equivariant Neural Networks

One of the key factors behind the remarkable success of deep learning in recent years is the inte-
gration of inductive biases directly into neural network architectures. This involves constraining
the network to learn features that align with certain inherent properties of the data, such as
symmetries in the system being modeled. For example, Convolutional Neural Networks (CNNs)
achieved widespread success due to their inherent translation equivariance: a translation in
the input produces a corresponding translation in the output. This property allows CNNs to
efficiently capture spatial patterns, reflecting a fundamental symmetry in many tasks such as
image recognition. Incorporating symmetries into neural networks helps in learning represen-
tations that respect the physical properties of the system under study, while also reducing the
number of model parameters. This not only improves interpretability but also makes models
more data-efficient.

While CNNs are naturally translation equivariant, many tasks involve more complex symme-
tries, such as rotations or scale changes. Simply enforcing invariance to these transforma-
tions, 4.e. ensuring that a transformation in the input leaves the output unchanged, can be
too restrictive, as it prevents the model from distinguishing between different orientations or
scales of the same feature, leading to a loss of valuable information. This has led to a shift
in focus from invariance to equivariance in many applications. Equivariance, as opposed to
invariance, preserves the structure of the transformation, allowing the network to learn how
different features behave under the same group of transformations. For example, in 3D tasks
such as molecular modeling or object recognition, rotational equivariance is often crucial, as
vectorial properties like magnetic moments must rotate in accordance with object orienta-
tion [FWFW20, BHvdP*21, LNC22, SHW22, LWDS23]. Beside this, in recent years, equiv-
ariant architectures have achieved competitive performance across various fields. These in-
clude simulation of fluid dynamics [TGB*23a, TGB*23b], approximation of inter-atomic po-
tentials for ab-initio simulations [BMS*22, BKS*22, MBJ*23, GLZ*23], drug discovery and
design [SGP*22, TAS23, SHD*24, LLC*24] and protein structure prediction with AlphaFold,
winner of the Nobel Prize in Chemistry, being the most notable example [JEP*21, Nob24].

In this section, we review the theoretical foundations of equivariant neural networks. We begin
by introducing the necessary mathematical background in Sec. 2.3.1, followed by the concept
of group convolutions, which achieve equivariance with respect to roto-translations in Con-
volutional Neural Networks, discussed in Sec. 2.3.2. Next, in Sec. 2.3.3, we explore steerable
convolutions, which allow for true equivariance without discretization by operating in the Fourier
space. We then extend these concepts to GNNs, where convolutions are applied to point clouds
that do not necessarily lie on a regular grid, as in CNNs (Sec. 2.3.4). Finally, we define the
typical layer of an SE(3)-equivariant GNN, which serves as the core model in our work.

2.3.1 Mathematical Background

Here we review some elements of group theory, covering the notions of group structure, represen-
tations and equivariance. Two excellent references that explore these concepts and apply them
to the context of equivariant networks are [Bek21] and [Vee24], which have served as inspiration
for this section.

We start by defining a Group:
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Definition 2.3.1: Group

A group G is a set, together with a binary operation -, that combines two elements g,h € G
to form another element g-h € G. The set and operation must satisfy four axioms:
1. Closure: For all g,heG, g-heG.
2. Associativity: For all g,h,ke G, (¢9-h) -k=g-(h-k).
3. Identity Element: There exists an element e € G such that for all g e G, e-g =
g-e=g.

4. Inverse Element: For each g € G, there exists an element g~! € G such that

g-gt=gt-g=e

\

Two examples of group particularly relevant for our work are the Translation Group and the
Special Orthogonal Group:

2.3.1 Example: The translation group (R",+) consists of the set of translation vectors
{x € R"} equipped with group product and inverse given by:

g-h=%xg+xp (2.30)
gt =-x, (2.31)

2.3.2 Example: The Special Orthogonal Group, denoted as SO(n), describes the group
of continuous rotations in an n-dimensional space. These rotations are parameterized by
a set of angles ©, with the number of required angles depending on the dimensionality of
the space. Notable examples include SO(2), representing planar rotations, which requires
a single angle, and SO(3), representing volumetric rotations, which requires three angles.
The action of a rotation rg € SO(n) is defined as:

Vee X =R":rg,z»rg-z=9(0)z

Where (©) is the rotation matrix, i.e., for rotations in SO(2) with © = {0}:

cosf —sind
sinf cos@ |’

(O) [

and 1 (0O)x is the regular matrix-vector product.
The SO(n) groups are therefore the group of all n x n orthogonal real matrices with
positive determinant:

SO(n) = {O eR™™ | OTO =1, and det(O) = 1}_

equipped with group product and inverse given by the matrix product and the matrix
inversion operation.

\

In previous example we exploited the concept of group action, let’s formalize it:
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Definition 2.3.2: Group Action

The action of group G on a space X is a binary operator ®: G x X — X that follows the
group structure:

go(gor)=(g-9) 0
with g,g € G and z € X.

\.

in particular, if for any two points x,y € X there exists an element g € G such that the action
of g moves x to y the space X is called a Homogeneous Space of G. It is worth noting that X
can also be a group itself, allowing us to define the action of one group on another in a similar
manner.

A relevant concept in defining the roto-translation group, with respect to which we aim to
enforce equivariance in our network, is the Semi-Direct Product. It is defined as follows:

Definition 2.3.3: Semi-Direct Product

Consider two groups (N, *) and (H,+), along with a group action ¢ : H x N - N of H
on N. The semi-direct product group N x4 H is defined as the Cartesian product N x H
with the following group operation:

(n1,h1) - (n2, ha) = (n1 * ¢(h1,n2), h1 + ha).

\

As in a standard Cartesian product, each element of the semi-direct product can be uniquely
identified by a pair of elements from the two subgroups. We can now look at the Special
Euclidean Group i.e. the group of roto-translations in n dimensions:

2.3.3 Example: The Special Euclidean Group, denoted as SE(n), is the group of all
translations and rotations in n-dimensional space. This group can be represented as the
semi-direct product of the translation group (R",+) and the special orthogonal group
SO(n), which governs rotations.

Any element of SE(n) can be identified as a pair (t,,re), where t, € R" represents
a translation vector and rg € SO(n) is a rotation. The group operation between two
elements (t,,,re,) and (t,,,re,) is given by:

(tvl ) /'n@l) . (t’U27r®2) = (t’Ul + T@lth,’f’@1T@2).

In this operation, the translation vectors are composed by applying the rotation rg, to
the second translation t,, before adding it to the first translation t,,, while the rotations
are composed as usual in the special orthogonal group.

.

Next, we introduce the concept of a linear representation, which is valuable because it maps
group elements to matrices that act on vector spaces. This allows us to practically handle
operators representing group elements. In fact, we applied this concept informally when we
introduced the rotation group, describing it as the group of orthogonal matrices. In doing so,
we were actually working with a linear representation of the group SO(n). Now, let’s formally
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define a linear group representation:

Definition 2.3.4: Linear Group Representation

A Linear Group Representation p of a group G on a vector space V is a group homomor-
phism from G to the general linear group GL(V), i.e., it is a map:

p:G—>GL(V) st Vg,02¢G p(g1-g2) = p(g1)p(g2)

if V =R3, GL(V) corresponds to the group of three dimensional matrix with real entries.

Another important concept is that of the left-regular representation. This allows us to define
the action of group elements on a function by transforming the function’s domain, i.e.:

Definition 2.3.5: Left-regular representation

Let f e Lo(X) and ® denote the action of the group G on the domain of X. Then the
left-regular representation of G acting on Lo(X) is given by:

[£4f1(z) = f(g" @2)

The concept becomes intuitive if we consider an example where we have a function f(x) with
x € R%, and we want to apply a rotation rg € SO(2). The left-regular representation tells us that
we should rotate the domain of the function in the opposite direction, i.e.:

[Lrg F1(x) = f(7-9%) (2.32)

When working with matrix representations of groups, a key concept is that of irreducible repre-
sentations (irreps), which enable the decomposition of a representation into simpler components,
much like a Fourier decomposition. Suppose a group G acts on a vector space V', which can be
decomposed into two invariant sub-spaces V7 and V3, such that V = V; @ V5. Invariance under
the action of p(G) means that for all g € G, p(g)V; € V;. In this case, the matrix of p(g) can be
expressed in block-diagonal form:

p(g) = [pl(()g) p;()g)] (2.33)

where p1 : G > GL(V1) and py : G - GL(V2). Thus, the representation decomposes as the direct
sum of the two representations acting on the sub-spaces: p(g) = p1(g) ® p2(g). In principle,
this factorization can continue, breaking down p; and po further until we reach irreducible
representations.

Definition 2.3.6: Irreducible Representation

A representation is irreducible if it does not contain any non-trivial invariant sub-spaces,
meaning it cannot be further decomposed.

An important property of irreducible representations is that, for the types of groups and vector
spaces of interest in this work, the Peter-Weyl theorem applies. This theorem states that any
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representation can be decomposed into a direct sum of irreducible representations through an
appropriate change of basis Q:

p(9) =Q [EB wi(g)] Q™ (2.34)

iel

where [ is the index set of irreducible representations of p.

Moreover, this result extends to square-integrable functions defined on the group G i.e. functions
belonging to L2(G). Specifically, the matrix coefficients of the irreducible representations of G
form a spanning set for the vector space L2(G). An explicit orthonormal basis for the space of
complex-valued square-integrable functions in L?(G) can be constructed as:

(Vs ()i

welG 1<i,j gdw} (2.35)

where G denotes the set of irreducible representations of G' and dy is the dimension of the
irreducible representation 1.

Since irreps form an orthonormal basis of I.?(G), they can be used to express a function f : G —
C trough the inverse Fourier transform:

Definition 2.3.7: Inverse Fourier Transform

Let G be a group and f : G — C a function defined on the group. The inverse Fourier
transform allows us to express f as a linear combination of the irreps of G, namely:

f(g) = Z Va;Tr (v;(9)" F (7))

’IZ)J'EG

f (1;) denotes the Fourier coefficient corresponding to the irrep ¢; and it is computed as
follows:

Fw) =V [ #(9)i(9)dg

Having established how to represent functions on groups using irreps, the final tool we need is a
method for combining different irreps. This is accomplished through the Clebsch-Gordan tensor
product:
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Definition 2.3.8: Clebsh-Gordan Tensor Product

Let G be a compact group and let p; : G — GL(V;) and p; : G — GL(Vj) be two
irreducible representations of G acting on vector spaces V; and Vi, respectively. The
tensor product representation p; ® py is defined as the representation acting on the tensor
product space V; ® V given by:

(m® pr)(9) = pi(g) ® pr(9)

If |Vj| = n; and |Vi| = ng then p;® p € CM*™™ agsuming complex valued representations.
This representation is not necessarily irreducible. The Clebsch-Gordan decomposition
states that the tensor product of two irreducible representations is, in general, reducible
and can be decomposed into a direct sum of irreducible representations:

3(1k)

RN
(1 ® pi)(9) = [C"*] (EB Q) ¢j(9))0lk
J

S
where 9 : G — GL(V;) are the irreps necessary for the decomposition, each of them
with a multiplicity [j(lk)]. C% e C™>*™™ is the matrix of change of basis. We can

identify block of columns in C'* such that each irreps acts separately on them by defining
C'Jl-'C e C™>™™  In this way we can rewrite the decomposition as a sum over irreps:

B kT Ik
(Pl®Pk)(9):Z Y. [Cr] vi(9)Ci
Vi S

The index s in the coefficients is introduced to account for the multiplicity of irreps. C’]l-k
are called Clebsch-Gordan coefficients and allow the projection on the subspace associated
to irrep j of the tensor product of irreps [ and k.

We conclude this section by stating the definition of Equivariance which is our ultimate goal:

Definition 2.3.9: Equivariance

An operator ¢ : X — Y which maps elements from an input space X to an output space
Y is equivariant with respect to a group G if and only if:

VgeG: px(g)od=dopy(g)

This means that if an operator is equivariant with respect to the action of a group, upon
transformation of the input, the output transforms accordingly. A straightforward example is
the convolution operator which is equivariant with respect to translations: if the input field
is translated, the output field is translated accordingly. In the following, ® will represent one
parametrized layer of the neural network and the goal is to design its action in such a way that
it fulfills equivariance with respect to a group G.

66
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2.3.2 Group Convolutions

Group convolution is a generalization of the standard convolution operation used in CNNs,
designed to implement equivariance with respect to a group G [CW16a]. We begin by revisiting
the concept of regular convolution, demonstrating its inherent translation equivariance. Building
on this, we extend the idea to a general group G, deriving the formula for group convolution.
However, there are certain limitations when implementing practically group convolution, which
we will explore in the final part.

In a standard CNN, the input signal is typically® a function f : R” — R and the kernel is another
function k : R™ — R. The action of a convolutional layer is defined by the regular convolution
operation (or more precisely, cross-correlation):

[k * f](z) = fR k(7 - ) f(F) d7 (2.36)

This amounts to sliding the kernel over all the possible translations x € R™ and for each trans-
lation compute the inner product of Ly(R™) defined as:

k) = [ F@)h() di (2:37)

This inner product serves as a similarity measure, meaning the convolution essentially computes
the similarity between the kernel and the input signal at each point in space. Now, considering
the group of translations (R",+) and exploiting the definition of left-regular representation
(2.3.1) we can express the regular convolution as:

[k * f1(x) = (Loernk, fLymn) (2.38)

It is straightforward to show that this operation is equivariant to translations, as a translation
of the input signal can be handled by a simple change of variables. This leads to the following
equivariance relation:

[k % Lyern f1(2) = Liern [k * f](2) (2.39)

Thus, a translation applied to the input signal is reflected equivalently in the output of the
convolution.

This concept can be generalized by replacing the action of the translation group with a more
general group G. This leads to the definition of group convolution, which is equivariant to the
action of G.

3In practice, when dealing with 2D images, n = 2 and for colored images, there are usually 3 channels corre-
sponding to RGB values. Thus, the common setup is f : R> — R3, with the kernel often being a matrix that maps
a given number of input channels to an arbitrary number of output channels. For simplicity, we consider the case
of a single channel here, though the derivation can be easily extended to multiple channels.
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Definition 2.3.10: Group Convolution

Given a group G, a signal f : G — R and a kernel k : G — R the group convolution is
defined as:

[+ f1(9) = [ k(s™'9)1(3) 45
= (Lygeck, flLo ()

\.

Equivariance can be proved by applying a group element h € G to the input signal:

[k £1f19) = [ k(e DI (h75) g (2.40)

change of variable g = hlg

= [ k(a7 (h))1(3) 43
= [ K79 9 £(@) g = Lalk +c £1(9) (2.41)

with dg the left Haar measure on G.

In practical applications, the group of interest for equivariant neural networks is commonly
SE(n) = (R™,+) x SO(n) the group of roto-translation in n dimension. In this case the group
convolution takes the following form:

[k *SE(n) f](CC,T@) = [n »/S'O(n) k('rél(;i’ - :c),rélf@)f(:l’j@)djdf@ (242)

This generalizes the concept of regular convolution in a natural way. Just as regular convolution
achieves translation equivariance by applying all possible translations to the kernel, here, to
achieve roto-translation equivariance, the kernel is both translated and rotated during convolu-
tion. However, there’s an important caveat: the input signal must be defined on the group space
SE(n), whereas, in typical scenarios, the input signal is defined on R". To address this, group
equivariant neural networks introduce a first layer called the lifting convolution, which lifts the
input signal from R"™ to the space of the group. This lifting operation is performed as follows:

[+ re) = [ k6@ -2)(2) d (2.43)

The lifting convolution is an equivariant operation as well.

Group convolutions, while theoretically effective, face certain limitations in practical appli-
cations. First, to lift the input function to the group space, one must discretize the possible
rotations. This means that the resulting network will only be equivariant to a finite set of discrete
rotations, rather than to continuous rotations, which may lead to a loss of precision [LBP*20].
Second, there is a significant computational challenge: sampling and applying discrete rotations
at various finite angles is computationally expensive, especially as the dimensionality of the
group increases. This leads to a high computational overhead, particularly in 3D tasks or when
the group has complex structure, such as the full roto-translation group SFE(3).
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2.3 Equivariant Neural Networks

2.3.3 Steerable Convolutions

In order to overcome limitations of group convolution CNNs, Cohen et al. exploited the Fourier
representation introduced in definition 2.3.1 to introduce Steerable Convolutions [CW16b].

In group convolutions, features are defined as a field f: G — R with G = (R",+) x H. Thus the
signal on which the convolution layer acts is a field f(x,h) whose domain is extended, or lifted,
to the space of the group G. In the example shown above H = SO(n), here we adopt a more
general approach considering a generic subgroup H.

An alternative approach involves defining |H|-dimensional feature vectors over the spatial do-
main, i.e., f:R"” > R, In this framework, the input signal is a feature field f(x) € Rl which
assigns to each point in space a vector of features known as group fibers. These fibers reside in
an H-dimensional space, and the action of a subgroup element h € H on them is described by
its representation pg(h). Consequently, we must generalize the left-regular representation, as
the entire group G acts on the feature field in a more complex way:

[L4f1() = pu(h) f (g~ ) (2.44)

where the spatial domain is transformed by the full group G, while the fibers in the codomain
(output domain) are transformed only by the subgroup H. This means that the group G applies
transformations to the input’s spatial coordinates, while the internal structure of the features
(the fibers) is transformed by the subgroup H.

Let’s explore a practical example:

’

2.3.4 Example: Let f : R> - R? be a two-dimensional field defined on the plane and
G = SE(2) = R? x SO(2) the group of roto-translation. An element g = try acts on f as
follows:

[£f](x) = R(OE(R™(0)(x - 1))

Roto-translating a vectorial field consists in applying the inverse roto-translation to its
domain while the vectors are rotated by the angle 6 as shown by the following sketch:

AR EER NN
S/ P VAN O N NN
VAV A B B B U CUN N N N NN
A7 7Y RN N NN N
VAV A0 A B S N S Y N f e m m - -
VAR A A T Y N N - e e o e —
LA A A T T N L . e i e
v v 4 <« 0y L G A g g i
e . v

\

In particular one can choose to express this field in terms of irreps: given an irrep v, : H —
GL(R%) we can define an irrep field Jp; R" — R% such that it is transformed according to
the action of the irrep:

[Lofe,)(@) = 5(h) fy, (97 ) (2.45)
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One can concatenate multiple feature vectors belonging to different irreps space (with vary-
ing multiplicity), thanks to the direct sum the generalization is straightforward: let f(z) =

®; EBEJ ] fy;(x), the action of the group is as follows:

b (h) 0 0 0 7[fu, (g2
0 k) 0 - 0 fu, (97 )

£/ 1) =] 0 0 W) 0 || fu,le7e) (2.46)
o 0 0wl e

Consider a scenario where both the input and output fields are of the group fiber type. We
aim to map the input field to the output field through a network layer, while ensuring that this
mapping is equivariant with respect to the group G. As shown in [WGW™18], the most general
equivariant linear maps are convolutions with H-steerable kernels.

Let fin : R™ - R be the input field and fou : R® — R%" be the output field. The action
of an element h from the subgroup H on these spaces is represented by pin(h) and pout(h),
respectively. The condition for H-steerability of the kernel k : R™ — RCut*n g given by:

k(ha) = pout(h)k(x)pin(R™Y) Yhe H,z e R" (2.47)

The steerable convolution operation is then defined as:

fouc() = [ * ful(@) = [ k(@ =)+ fin(@) d (2.48)
This operation ensures that the mapping from the input to the output field respects the desired

equivariance with respect to G.

To explicitly determine the form of the kernel, one must solve the constraint in Eq. 2.47. It
can be simplified by expanding pi, and poyt in terms of irreps to factorize the constraint over
independent sub-spaces:

k(ha) =Qo&t( ) wz-(h))Qoutk(x)le(éB wj(h)l)Qm VheH, xeR". (2.49)
iEIout jEIin
Next, we perform a change of variables, defining & = Qoutk(7)Q:L, which gives:
k(hx) = ( P Wh)) k(z) ( fans ¢j(h)T) VheH, zeR" (2.50)
iEIout jelin

By exploiting the block diagonal structure of the irrep expansions, we can factorize the equation.
We define k7 € R%*% as the diagonal block of k corresponding to irreps i € Ioy; and j € Iiy. The
constraint then reduces to:

]%Zj(hl') = Qﬁz(h)]%ZJ(IL‘)ﬂ)J(h)T Vhe H, r e R"™. (2.51)

This formulation simplifies the problem by breaking the kernel into smaller, independent blocks
based on the irreps, making it easier to handle and solve.
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2.3 Equivariant Neural Networks

Explicit solution for SE(3) We show the explicit solution to Eq. 2.51 in the case of G =
(R3,+) x SO(3) = SE(3), which is the group of interest for our work. For a detailed derivation
see the work of Weiler et al. in [WGW*18].

First, we need to introduce the irreps of SO(3), known as Wigner-D matrices:

Definition 2.3.11: Irreps of SO(3)

Let r(a8,) €S O(3) be an element of the rotation group in three dimensions, parameter-
ized by three angles. There exists a family of matrix representations, indexed by their
order [ > 0, which act on vector spaces of dimension |Vj| = 2] + 1 and form the irreducible
representations of SO(3) on the subspace V;. These matrices are known as Wigner-D
matrices and are denoted by Dl(r(aﬁﬁ)). An important property of Wigner-D matrices
is that their central column corresponds to spherical harmonics, i.e.,

Dl o(T(apy) = V20 +1Y} (0 5)) (2.52)
where Y,f@(n(aﬁ)) = Neims"]-’lm(cos 0) are the spherical harmonics, with [ >0, m = —[,... [,

and P/"(cos#) are the associated Legendre polynomials.

.

Spherical harmonics form a basis of functions on the sphere £2(S?) through Fourier represen-
tation, but they can also be interpreted as functions on SO(3), invariant to rotations around
the third angle v. As part of the Wigner-D matrices, spherical harmonics are steerable func-
tions. In next sections we will exploit spherical harmonics to transform input data, typically
residing on the sphere, into steerable features, and then process these features through steerable
convolutions.

Equation 2.51 can be re-formulated for SO(3) in the following way:

l;lj(r(a,ﬁ,'y)x) = Dl(r(a,ﬂ,v))]élj(x)Dj(r(a,B,’y))T (2.53)
The solution is found in [WGW*18]:
k() = DS wpy g ki = szg 5 wvee(" (|2 [CF 7Y (/) (2.54)
Jn

Here, wl 7 € R represents the weights of a linear combination of basis functions for the kernel.
The functlons ©"(||z||) are the basis functions for the radial part of the kernel, which is not con-
strained by the H-steerability condition and is therefore free. The terms C J] € (C(QJ F1)x(2+1)(25+1)
are the Clebsch-Gordan coefficients, Y € C%*1 is the array of spherical harmonics of rotational
order [ and the unvec operation restores the kernel to the correct shape of (20 +1) x (25 + 1).

As mentioned earlier, we will work with features that belong to steerable spaces, so we can
assume that l;:lj is the actual kernel we will be using (there is no need to rotate back to the
initial representation). Thus, we can focus on specific irreps in both the input and output for
the steerable convolution and compute the contribution of irrep j of the input field to irrep [ of
the output one:

Fouai @) = [ k(@ =a)- Fi(@) dz (2.55)
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Furthermore, due to the interaction with the kernel through the Clebsch-Gordan coefficients,
multiple input irreps will contribute to the irrep [ in output, then:

fo@) = 3 [ (@) f(2) di (2:56)

jEIin

By substituting the explicit form of the convolution kernel the steerable convolution on SFE(3)
reads:

Definition 2.3.12: Steerable Convolution on SE(3)

fou@) = [ 3 it " (1 -2l)Y (@ - 2)/l15 - oll)) 57 £1,(5) da

J7j?n

where we have used the notation ®f]j for the Clebsch-Gordan tensor product defined as
follows: h? ®f,lj) hi = h' [CG]? h? with [CG]? e CRHDxQ2J+1)x(2j+1) which represents
the un-vectorization of the Clebsch-Gordan coefficients defined in 2.3.1. Notice that
[C’G]lj #0 only for le[|j—J|,j+ J].

2.3.4 SE(3) Steerable GNNs

The concept of steerable convolutions has been widely adopted in neural networks and, in
particular, has been generalized to Graph Neural Networks, where the input field is typically
composed of point-wise features in space [TSK*18, BMS*22, S22, BHvdP*21]. In this section,
we review the construction of a GNN and adapt the previous discussion on steerable convolutions
to this setup.

Graph Neural Networks Consider a graph G = (V,&), where V = {1,...,n,} is the set
of vertices or nodes v; and £ ¢ V x V is the set of edges e;;, respectively endowed with node
features h; € R® and edge features a;; € R°. GNNs operate on such graphs by updating node
(and possibly edge) features through local operations on the neighborhood of each node. These
operations are designed to adapt to different kinds of neighborhoods and respect node-index
permutation equivariance, which are the two key features of GNNs, as opposed to CNNs (for
which the learned kernels must have fixed, grid-like geometry, and for which each neighboring
pixel is located at a fixed relative position). In this work we deal with Graph Convolutional
Networks (GCN), a subclass of GNNs. A GCN layer acts on node features as follows:

h'(x;)= > k(x;-x;)h(x;) (2.57)
JeN (4)

where N(i) is the neighborhood of node i. Here a position x; € R? is associated to each node
and k is a continuous convolution kernel which only depends on relative nodes’ positions. In
this case, as for CNNs, the node update operation is translation-equivariant by construction. It
is however not automatically rotation-equivariant.

72



2.3 Equivariant Neural Networks

Equivariance We can represent the point cloud processed by the GNN as a vector field
h(x) = Y, 0(x — x;)h; with values in some vector space H, and the action of a layer as a
mapping K from one field h to the updated one h’. We have seen in previous section that an
element ¢, 74 g € SE(3) which is composed of a translation ¢, and a rotation r(, g ), will act
on the vector field as follows:

(o (a,8,7)) _
h(x) 2 (o YRR (@, B,7) (x - v) (2.58)

The codomain is transformed by the representation of the rotation while the domain is trans-
formed by the one of the inverse roto-translation. The definition of equivariance in this set-up
translates as follows: let there be a mapping K : h(x) - h'(x) and h e H, h' ¢ H' with H, H'
two vector spaces. The kernel K is equivariant with respect to G if

VgeG Kop(g)=p'(g9)oK (2.59)

with p, p’ representations of G on H and H’ respectively. The input and output codomains
H, H' do not need to be identical, and this is taken into account by the group representations
pr(g) and pgr(g). A direct consequence of this definition is that invariance is a particular case
of equivariance where pg:(g) =1 Vg e G.

When dealing with SE(3), the only invariant quantities are scalars, thus considering only in-
variant features would significantly reduce the model’s expressivity.

Equivariant Features In the context of steerable networks, the input signals are represented
in a steerable basis. In particular, we have seen in definition 2.3.3 that spherical harmonics form
a steerable basis of complex functions on the sphere. Here we limit ourselves to real spherical
harmonics Y,f@ :S? - R. They can be thought of as the generalization of Fourier modes (circular
harmonics) to the sphere. Any real-valued function on the sphere f : S? - R can be Fourier
Transformed to this SH basis:

F(Em) = fiu= [, f@)Y;(0)dn (2.60)
co |
f(n) = ZZ(:) Z_:,l fLyl(n) (inverse transform) (2.61)

where n = (0, ¢) € S represents a generic direction or point on the sphere. Here the coefficients f !
are not real values but are (2[ + 1)-dimensional vectors (with components f ). Each coefficient
fl transforms according to a Wigner-D matrix D': the SH embedding is thus equivariant. Note
that to make a representation finite-dimensional, we need to choose a high-frequency cutoff for
the rotational order, [ = ;4.

Coming to implementation, a feature is just a concatenation of different [-vectors: scalars (I = 0),
3-D vectors (I = 1), 5-D vectors (I = 2) and so on. Multiple pieces with the same [ are also allowed,
we address this multiplicity by referring to channels. For example we can have two [ = 0 channels,
a single [ =1 channel and a single [ = 2 channel:

h(x) = (b (), h{57 (), b (), b (%)) (2.62)
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where h : R? - R¥ with k = Zln,(:l) -(2l+1)=2-1+3+5 =10 with n{” number of channels of
type I. Rotation of these features is straightforward:

(1=0)
DO DO Z?l:_oo)
D! h%l::ll)
p? || @
c=0

D(r)h = (2.63)

The representation matrix is block-diagonal thanks to SO(3) being decomposed in a direct sum,
and scalars (I = 0) being invariant with respect to rotation (D(® = 1).
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Figure 2.6: Overview of the convolution layer, summarizing Egs. (2.64,2.65). For each neigh-
boring node, the node and edge features are combined (with C-G product) and multiplied by the learned
radial filter . Before performing this operation, the one-hot encoded particle type is concatenated to
h; by adding 2 [ = 0 channels (not shown, for simplicity). Because multiple triplets come out of the C-G
product, we obtain a much larger representation (left part of inset). This intermediate representation is
narrowed down using a linear layer (one for each lp and each channel).

Convolution Layer We can now adapt the definition of steerable convolutions (2.3.3) to the
GNN set-up. Here we introduce multiple channels indexed by ¢ and we split the full operation
in two steps: the convolution and the self-interaction. The integration over the space variable
% € R? turns into a sum over neighbors due to point-wise nature of the feature field and the
convolution operations reads as:

] I lo~rlp /A Irlo 1.l
o = Y e(lag oY’ (ay) elio nl, (2.64)
JeN(4)

The radial filters goﬁg lf are implemented as Multi-Layer Perceptrons (MLPs, to be learned)
that share some weights among triplets lo,[;,lr and channels c¢. This operation is depicted in
Figure 2.6 (left part). The updated feature h;.fgll 1, at node 7 is indexed by the channels (which
are in one-to-one correspondence with the input ones) and by the triplet of I’s. At this stage,
operations are performed channel-wise, but hg} . Is a concatenation of all possible triplets, and as
multiple combinations of {7, can contribute to a given lp, it is larger than the original feature

h; .. For ;45 = 3, there are 34 different triplets (instead of just 4 different values of 7).

To go back to the original representation, we mix together the triplets that share the same
output lp, with a linear layer. However, to let the various channels interact, we also perform
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channel mixing with a linear layer. As linear layers combine linearly, this can be expressed as a
single linear layer (right part of Figure 2.6) that is often referred to as the self-interaction layer:

nottlo - 3 ylo o (2.65)

i,C l[lF,CC’ i,Cl,l[lF
ZIZF,C’

where ¢’ is the input channel’s index and ¢ is the output one. Note that all operations are
now performed node-wise, and independently for each lp. This operation fulfills equivariance
because only features with the same [p are combined together, with weights that do not depend
on m (all elements inside a vector are multiplied by the same factor). At this point we are back
to our expected node feature shape, and the convolution layer can be repeated (up to a few

technical details like using Batch-Norm and adding the previous layer’s representation to the
newly computed one, see next section).
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Y (&), ||a]|

1=0

Figure 2.7: Input Graph with its input features. Node features are the one-hot encoded particle
types (invariant features, [ = 0), and edge attributes aj; are split: the direction is embedded in Spherical
Harmonics Y (4;5) and the norm is retained separately.

2.4 SE(3)-equivariant GNN for learning glassy liquids represen-
tations

In this section, we present the methods and results adopted in our work on rotation-equivariant
graph neural networks for learning glassy liquid representations [PCL24].

2.4.1 Dataset and Task

To probe the ability of our model to predict mobility, we adopt the dataset built by Bapst
et al. in [BKGB*20]. It is obtained from molecular dynamics simulations of an 80:20 Kob-
Andersen mixture of N = 4096 particles in a three-dimensional box with periodic boundary
conditions, at number densities of p ~ 1.2. Four state points (temperatures) are analyzed:
T =0.44,0.47,0.50,0.56. For each point, 800 independent configurations {x; };-1.. y are available,
i.e. 800 samples (each sample represents N particles’ positions).

The quantity to predict (Ground Truth label) is the individual mobility of each particle, mea-
sured as the dynamical propensity [BJ07, BBB*07]: for each initial configuration, 30 micro-
canonical simulations are run independently, each with initial velocities independently sampled
from the Maxwell-Boltzmann distribution. The propensity of particle ¢ over a timescale 7 is
then defined as the average displacement over the 30 runs (iso-configurational ensemble aver-
age). Propensity is available at nymes = 10 different timescales that span the log scale, a priori
resulting in ng;mes different tasks. For some experiments we also use another similar dataset as
provided by Shiba et al. [SHSS23], which models the same glass-former yet differs from that of
Bapst et al. on a couple of points, that we detail in section 2.4.3. Note that the finite number
of independent runs (here, 30) in the iso-configurational ensemble induces some noise in the
estimation of the propensity. This uncertainty in our ground truth induces an upper bound on
the theoretically achievable accuracy of any prediction method. This bound has been computed
in [JAB*23]; we do not report it here, as we are far enough from it, in order to avoid obscuring
the figures.

For each sample to be processed through the GNN, the input graph is built by taking particles
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Figure 2.8: Overall Architecture. Top: node and edge features are fed to each convolution layer.
Each SE-convolution layer L =0,...,7 refines the output hl(L). Arrows connecting the embedded graph
features to each convolution block show that the initial information (one-hot particle types and relative
positions in SH and radial basis) is fed to each layer.

as nodes and connecting them when the inter-atomic distance between positions x; and x; is
less than d. = 2 (in atomic potential units). The node features encode the particle type, here A
or B (“Node features” is machine learning vocabulary for “set of values associated to the node”,
and similarly for edge features). We use one-hot encoding, such that node features consist of
Niype = 2 boolean variables. This generalizes trivially to mixtures with ny,. > 2. Optionally, we
also include the value of the potential energy of particle ¢ as node feature, which brings their
number to 3 (2 boolean and a real). The edges are directed, and edge (i,j) has for feature
a;; = (xj — Xx;), i.e. it stores the relative position of the particles (nodes) it connects. We show
a sketch of our input graph with its node and edge features in Figure 2.7.

The task is then the node-wise regression of the particle’s propensity m; € R (node label).
Notably, here we simultaneously regress both particle types, meaning that all nodes contribute
to the computation of the loss function. We also introduce a new task, referred to as multi-
variate regression, in which the ngmes timescales are regressed at once, as opposed to the usual
uni-variate approach.

2.4.2 Network

Our network is composed of embedding blocks for nodes and edges features followed by a series
of SE(3)-equivariant convolutional layers interspersed with batch normalization and connected
in a Res-Net fashion [HZRS15], and one output block (decoder), as shown in Figure 2.8. Here
we provide a few insights on some key parts that are specific to SE(3)-equivariant networks.

The architecture choice is found empirically to be the most stable at train time. It is built
and trained in the framework of PyTorch Geometric [FL19] which handles all the generic graph
operations. All the SE(3)-related operations (SH embedding, C-G tensor product, equivariant
batch-normalization) are integrated in this framework thanks to the e3nn library [GSM*22].

Radial MLP The radial MLPs are the only part of the network with non-linearities. They
implement the radial dependence of convolution filters gal’ lo( |laij]|), thus they take as input the
norms of relative node positions. Before being fed to the MLP, each norm ||a;;|| is expanded
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from a real value to an array through an embedding. Here we use a Bessel basis embedding;:

By (r) = \/rzw (2.66)

where n is the number of roots of each basis function: n =1,2,..., N, and we use N, = 10,
re = d. = 2. Other embeddings could be for instance a Gaussian basis (with cutoff), which would
act as a kind of smooth one-hot encoding of the value r. In practice, the Bessel basis (which is
orthogonal) has better generalization properties.

The embedded input is processed through an MLP with layers sizes (Np, 16, n¢omp) and ReLu
non linearities. The output size Nepmp is the number of possible triplets (combinations), times
the number of channels. We also use BatchNorm (BN) [IS15] and Dropout (with rate p = 0.3)
in this MLP to stabilize training and reduce overfitting. In summary, for each combination of
triplets and channels (lp,l;,lr,c), we have a real output

P = (Wi 16 Dropout (BN (a(Wie,x, B(llai;)))) (2.67)

comb>
where the W’s are weight matrices and o(z) = maz(0, z). There are also bias parameters, which
are not displayed here. Note that up to the layer of 16 neurons, the MLP is the same for all
triplets and channels, only the last linear layer introduces different weights for each combination.

Batch Normalization As often in Neural Networks, we sometimes need to perform Batch
Normalization to avoid the neuron’s activation to take overly large values. However, using a
usual batch normalization layer [IS15] separately on each entry of the hidden representations h
would kill the equivariance property. Thus a modified version is implemented and applied to
node features [WGW*18, GSM*22]. The [ = 0 features are invariant and can be processed as
usual:

h—h

%y = B+ (2.68)

where h = (h°) and ¢? = (h02) — (h%)? with (-) batch average computed with 0.5 momentum

(keeping memory of previous batches) and f3, v are learned parameters. For each piece of feature
with [ > 0, only the norm can be modified:

hl
hpy = hl—”UZHBZ (2.69)

where o' = \/(||h!||2)/v/2] + 1 and ' are learnable parameters. In Figure 2.8 we show where this
Batch Norm is used.

Decoder After the last convolution layer, the ultimate output block performs two node-wise
operations to decode the last layer’s output into a mobility prediction. First it computes SE(3)-
invariant features from the hidden representation h(Emaz): for each channel ¢ = 1,...,8, the

norm of each directional (I > 1) feature is computed: |[hl|2 =1/%,, h£n2, and all these norms are
concatenated together with the [ = 0 features (already invariant). Thus, we obtain an invariant
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representation of exactly l,q. + 1 (I values) x8 (channels) = 32 (components), which we denote
\h(Lm‘”)] for simplicity, despite the fact that the [ = 0 components can be negative. The second
operation is to feed this representation into a decoder, which we chose to be a linear layer, it
outputs one real value, which is the predicted mobility for a given timescale and given particle
type. For instance, at the timescale 7, and for particles of type A, the model writes:

Yo = Wz D) ()], (2.70)

where y4 -, is the mobility label and w 4 -, is a set of weights to be regressed (32 real values). In
the multi-variate setup we regress mobilities at all timescales at once, using one linear decoder
(set of weights w) per timescale and per particle type (20 different decoders for the Bapst
dataset).

Non-linearities We note that all the layers act linearly on the node features. The only non-
linearities of the network are hidden in the implementation of the radial part of the filters ¢
(MLPs). This limited scope of non-linearities is unusual, and is needed to preserve equivariance
(as pointed out above when we describe Batch Norm). We have explored other forms of non
linearities, like Gate-activation, without observing significant improvement.

Connection with expert features We emphasize that the first layer of our network has a
clear interpretation, connecting with the widely-used expert features introduced in Sec. 2.2.1.
In the first convolution, the input node features h;. = d;, . consist of two [ = 0 channels, cor-
responding to the one-hot encoding of the particle type. Since I; = 0, the only non-zero C-G
triplets occur when lp =1z =0,1,2,3, and for these triplets, [CG];?:ZF’ZI:O = 1. Thus, the graph
steerable convolution defined in Eq. 2.64 simplifies to:

b7 = S o(llagl)ie.cdr, Y7 (8i7) (2.71)
JeN(4)

For the channel corresponding to particle type A, i.e., ¢ = A, and by fixing the radial function
to be constant, ¢(|a||)ip.c =1, we obtain:

hin= Y Y'"(ay) (2.72)
JeN(9),t;=A

This is in the same form as the BOP coefficients adopted in [BMAM™*20, CJP22]. This operation
projects all neighbors of the central particle onto the unit sphere within a cutoff radius. However,
as discussed in the cited works, these descriptors are limited as they lose information about
different neighbor shells by squashing the neighborhood onto the unit sphere. To address this,
descriptors like SOAP [CJP22] and RBO [BSF21] were introduced, which incorporate radial
information. In these approaches, radial dependence is included by introducing a Gaussian
radial basis to separate neighbors into different shells. For each shell, a quantity analogous to
Eq. 2.72 is computed. In [BSF21], each shell is treated separately, while in [CJP22], multiple
shells interact. Specifically, the SOAP coefficients from [CJP22] take the form:

Cnlm(i): Z gn(HijH)}/lm(f.Zj)a (2'73)
JeN(4)
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where g, is the n-th radial basis function corresponding to distance r from the central particle.
The interaction between shells occurs when computing the product ¢, (%) cpim (%).

Our network can similarly retrieve the ¢, (i) coefficients by learning the radial function or
replacing it with a radial basis function (see the Appendix of [PCL24] for a detailed comparison
with [BSF21]). However, when it comes to combining different shells the approach of our work
is quite different. By expanding the function ¢, which is implemented as an MLP acting on a
radial basis expansion of the vector a;;, we can rewrite the equation as: (we assume simplest
MLP with only one linear layer)

h'" = > Y waieB(llai)ndy Y (45). (2.74)
JeN(i) n

In the notation of [CJP22], this corresponds to the following operation:

0" = S w1 cCatpm (1), (2.75)

n

which amounts to summing different shells with learned weights for each. Additionally, our
approach introduces non-linear functions for the radial part, multiple channels, and channel
mixing. However, the main distinction lies in how we treat equivariant features: while [BSF21,
CJP22] compute invariant descriptors by taking the norms of I[-th order features, our network
maintains equivariant features throughout, only computing the invariant features at the final
layer.

This distinction significantly enhances our model’s ability to predict mobility. For a detailed
discussion on performance improvements and an ablation study, refer to Sec. 2.4.3.

Number of parameters This counting refers to the version of our network with 8 channels
and no Ep in input. In total, the MLPs of our network (across all layers) account for a number
of 35664 learnable parameters: in each layer L > 0 we have one radial MLP of size (10,16,284)
with 5036 parameters, for the layer L = 0 the MLP is of size (10,16,3 x 4) with 412 parameters.
The other main source of learnable parameters in the Network is the part of mixing the channels
(right part of fig. 2.6), which accounts for 16000 learnable parameters: 2272 for each L > 0 layer
and 12 x 8 =96 for the L = 0 layer. The total number of parameters to build the representation
is thus 35664 + 16000 = 51664. One has to add to this number the parameters of the 20 decoders
(10 timescales for A and B particles). The final number is then: 51664 + 32 x 20 = 52304. When
single variate (single time scale) regression is performed (as in the other GNNs works we compare
with), the number of channels is reduced to 4 and the total number of parameters amounts to
23210.

2.4.3 Experiments, Results

Here we report on the performance of our architecture, discuss the role of the task, input choices
and architecture choices, and compare with recent works that tackle the same problem.

Experimental Setup and Training Strategy To increase our model’s robustness, we si-
multaneously predict the mobility both for A and B particles, instead of focusing only on the
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Figure 2.9: Loss and p vs epoch. Training
of multi-time model performed at T = 0.44.
[ ———————R N R c=== los  The loss curves (full lines) correspond to the
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A’s. The accuracy turns out to be similar for the two types. We show results only for one type,
A, which is the reference most other works are also using. As in the works we compare with, we
use the Pearson correlation coeflicient as performance metric, which is invariant under shift and
scale of the test labels distribution. The network architecture and hyper-parameter choices were
optimized for a single task (7' =0.44 and 7 = 7, for uni-variate and T' = 0.44 for multi-variate),
using only the train and validation sets. The resulting choices were applied straightforwardly
to other tasks, thus preventing over-tuning of the hyper-parameters. The number of convolu-
tion layers is 8, thus the last representation is indexed L = Ly, = 7 (representation hZ(L:O)
at L = 0 is the input, before any convolution). At each layer L > 0 the internal or hidden
representation hZ(L) for particle 7 at layer (L) has a maximum rotational order 4, = 3 and a
number ngl) = ngo) = ngl) = n£2) = n,§3) of channels, n. = 4 for uni-variate and n. = 8 for multi-
variate. These choices arise from striking a balance between over- and under-fitting, under our

compute-time and memory budget constraints.

Note that we perform a different train-test split with respect to [BKGB*20], which does not
explicitly use a test set. Here, for each state point, 400 configurations are used for training, 320
for validation and 80 for the final test.

In Figure 2.9 we display one learning curve (as function of iterations, epochs). Each epoch is a
sweep over the entire 400 samples dataset (each sample represents N = 4096 atoms). For training,
we use the Adam optimizer with initial learning rate v = 1073, moments 3; = 0.99, 52 = 0.999
and weight decay A = 10~7. We also add a learning rate scheduler that divides v by 2 at several
epochs as shown by the vertical dashed lines in Figure 2.9. Most of the results presented here
are obtained with a number of epochs nepocns = 100, this choice results from several tests and
strikes the balance between accuracy and training time. As it can be seen in Figure 2.9, each
training stops before any serious overfit kicks in.

Uni-variate or Multi-variate In Figure 2.10 we compare the performances of various choices
for our model, in particular uni-variate and multi-variate approach (red triangle and red dia-
monds). We see that we get almost the same prediction accuracy by training only one model
instead of ten models, provided we increase the number of parameters for that single model: we
double the number of channels in the multi-variate case, from 4 to 8, thus going from ~ 25000
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to ~ 50000 parameters. Actually, also keeping the number of parameters constant yields com-
petitive results (not shown). In any case, we observe that the multi-variate choice slightly
improves the robustness of our representation: it generalizes better to other temperatures. Be-
yond performance considerations, it is very advantageous when considering generalization to
other temperatures, since all timescales are encompassed in the same representation |h(Lm‘”)|.
In this sense, our network is about an order of magnitude less parameter-hungry that other
models, where each of the 10 timescales and each particle type need a dedicated network.

Role of Inherent Structures It has been observed several times that pre-processing the
input positions by quenching them to their corresponding Inherent Structures (IS) helps most
Machine Learning models in predicting long-time mobility measures [SCS*16, JBB23, ASF23|.
Such a quench is performed using the FIRE algorithm: temperature is set to 0 (velocities set
to 0), and positions adjust gradually so as to converge to a local minimum of the potential
energy, typically close to the original configuration. This can be seen as a mere pre-processing
step (for which the knowledge of the interaction potentials is needed) or as a new task, i.e.
predicting the propensities {m;} from the quenched positions {x/°}. We note that the quench,
while intuitively cleaning some noise related to thermal motion, destroys information too: one
cannot recover the thermal positions from the quenched ones.

We observe that for our network, this new task is harder at short timescales, while it’s easier at
long timescales (in Figure 2.10, compare the red diamonds and the dark blue downward-pointing
triangles). We interpret this result by noting that the quench destroyed the information about
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t=05LJ t=17,

{x{"} {x/°} {x{"} {x/°}
10 Epo | 0.676739%] 0.27470-50110.718753-9571 0.81570-503
Epey | 0.67870:073] 0.33470:007| 0.72870003] 0.81670:007
EIS 1 0.677700%] 0.27370:003] 0.79870:005] 0.82270007

Table 2.1: Influence of IS at low temperature. For each combination of inputs, a multi-time model
is trained at temperature T = 0.44. We repeat the training 10 times with variable parameter initialization
and report the test set correlation coefficient (median, best and worst values).

the relative location of each particle within its cage, thus making it much harder to predict
short-time displacements. Our experiment and its interpretation explain why some models,
based on quenched positions alone, have very low performance at short timescales [JBB23].
Their low performance should not be attributed to the machine learning models themselves, but
rather to their input data. About mobility at long times, there it is not much of a surprise that
quenched positions reveal an underlying slowly-evolving pattern in the structure and thus help
at prediction (although in principle all the information was contained in the original thermal
positions).

Ideally, one would like to combine both the complete information from thermal positions and the
de-noised information from the quenched positions. For GNNs, this could be done by building
the graph from either the thermal or quenched relative positions, but using as edge features
a concatenation of both. However this would be quite costly in terms of memory and would
increase the number of parameters needlessly. Instead, inspired by the findings of [JBB23], we
compute the local potential energy (in either the thermal or the IS positions) for each particle
Epoti = ¥+ Vo (xi,%x;) and use it as a new scalar (I = 0) input node feature. This can be seen
as a compressed version of the positional information. Note that the first layer remains very
interpretable: this new channel represents the field of potential energies surrounding a given
particle, expressed in the spherical harmonics basis. In Table 2.1 we compare performances
obtained for all combinations of input positions (thermal or quenched), with all possible Eput
inputs (none, thermal or quenched), resulting in 6 combinations, that we study at two timescales:
0.5717 and 7,. We summarize the key results from this table:

o Adding the information about Egi to {XZI SV is irrelevant. Indeed we observed that we could
1S

easily regress F,; from a network with {XZ] 51 input with very high precision (p ~ 0.9).
e Similarly for thermal positions and thermal potential: adding Effgt to {th} is basically
useless, the increase from p = 0.718 to 0.728 is barely statistically significant.

o Adding E;ht to {x/°} helps only at short timescales (from p = 0.27 to 0.33) and it’s not

O

sufficient to fill the gap with thermal positions.

o Adding E;i to {x"} helps, but at long timescales only (from p = 0.72 to 0.80)

e For predicting short times, thermal positions work much better than quenched ones: 1st
column shows consistently larger performance than the 2nd one, by up to 0.4 more in
correlation.
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o For predicting long times, quenched positions work better than thermal ones: 4th column
shows consistently larger performance than the 3rd one, by up to 0.1 more in correlation.

e A good compromise for maintaining performance at all timescales is to combine Elg(i to
{x{"}.

In the table we focus on two timescales for clarity, and in Figure 2.10 (top) we report results
for 3 out of the 6 combinations but at all times. In Figure 2.10 (bottom) we study the effect
of adding EI{[Z to the thermal positions (red to blue symbols) as a function of temperature, for
two timescales. We verify that for the long timescale (full symbols) the addition of EZI,S; helps
especially for the lower temperatures, where the potential energy landscape is expected to be
more relevant, while for the short timescale (open symbols) there’s no improvement at all, at

any temperature.

We can compare these observations with the findings of Alkemade et al. [ASF23]. They identify
three physical quantities, each being relevant in a given time range:

1. In the ballistic regime, the forces F; = =V, Fpot,; are most relevant

2. In the early caging time, the distance between the thermal position and the IS one Ar!®
is most relevant

3. At later times, the quenched configurations are most relevant

For the ballistic regime, our results perfectly match theirs: our model is likely to be aware of
information equivalent to the forces, since it’s able to regress the local potential energy with
very high accuracy (p ~ 0.9). This explains our good performances in the very early regime (see
also Figure 2.11). For the early caging regime, we tried to introduce Ar'® as a further I = 0 node
feature but were not able to see any significant improvement in the caging regime. This may be
due to improper encoding of this information, or to a deeper shortcoming of our architecture, or
also to the datasets being slightly different (see paragraph Shiba vs Bapst). For the long times,
our performances are indeed high thanks to the use of EIS: they are slightly higher if we use

pot*
{xI5} (see Table 2.1 or Figure 2.10 (top)).

Comparison with recent works Often, comparison with previous works can not be done
rigorously, for two reasons: use of different datasets and different input data. As mentioned in the
previous section and already pointed out in [ASF23] the two main datasets [BKGB*20, SHSS23]
differ in many features, although being built from MD simulations of the same system (3D Kob-
Andersen mixture). A detailed comparison at fixed input dataset is presented in a Roadmap
paper [JAB*23]. A further difference is introduced by the choice of input data. For instance we
have shown that the introduction of Inherent Structures helps, especially for low temperatures
and long timescales. Thus better performances for works that rely on IS do not directly imply
that the machine learning architecture is better (or vice versa for works that are limited to
thermal inputs).

Despite these limitations, in Figure 2.11 we provide a qualitative comparison of methods by
considering each as a whole, regardless of the details of dataset and input choice. Thus we
compare our model trained on thermal positions + Ep.t(1.S) at temperature 7' = 0.44, with the
recent works in the field presented in Sec 2.2.3 [BSF21, ASF23, JBB23, BKGB*20, SHSS23].
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Our proposed approach outperforms all previous methods for timescales approaching the struc-
tural relaxation time (7,), while demonstrating competitive results in other regimes. Notably,
our model achieves comparable performance to other GNN approaches on short timescales (bal-
listic motion), despite being the first to regress all timescales simultaneously. For the early
caging regime, we do not perform as well as Alkemade et al. [ASF23] although it is important
to note that they incorporate early-times related information as an input feature. We overper-
form Shiba et al. [SHSS23] only when using the quenched input. We do not know about their
performances when using the quenched input too.

Since the first version of this work (preprint of Nov. 2022), we tried to include these recent works’
ideas to improve performance. Our use of E,, inspired by [JBB23], was indeed successful.
However, when we tried to mimick [SHSS23] by regressing the edge relative elongation as an
additional (edge) target label, or when we tried to reproduce the results of [ASF23], using as
input node feature the distance to the local cage center (estimated as the quenched position),
or when we introduced equivariant attention schemes (inspired by [JTL22] but technically as in
[LS22, HLLZ*21] or [FWFW20]), our attempts did not yield any significant improvement (nor
deteriorated the performance).

To compare Machine Learning architectures in a fair way, one should work at fixed task (fixed
dataset and input data). We now respect this constraint to obtain two precise results, that we
deem significant.

Firstly, going back to using only the thermal positions as input, we perform an ablation study
on the choice of l,45, to compare fairly with Bapst et al., and notice that: (i) restricted to
lmaz = 0, we reach the same accuracy, (ii) increasing [, notably improves results, especially up
t0 Iz = 2. We conclude that the equivariant nature of a network can be key to its performance,
compared to previous GNN approaches. Numerical proof is provided in the Ablation Studies
paragraph.

Secondly, using the same kind of (invariant) inputs as non-GNN methods [BSF21, ASF23,
JBB23], i.e. thermal positions combined with E,.(15), in addition to the (equivariant) po-
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Figure 2.12: Fluctuations of the Self-overlap function. Time evolution of the fluctuations as mea-
sured by xj(t). Left: On Bapst’s dataset; Right: Shiba’s dataset. MD is short for Molecular Dynamics
and refers to the ground truth. “Separate training” indicates a new model was trained at each tempera-
ture (but dealt with all timescales at once), while “transfer-learned” refers to sec. 2.4.4: we apply a single
model trained at a given temperature to all other temperatures (left: Tyqin = 0.50, right: Typqin = 0.56).
The color code represents training temperatures, ranging from red (hottest) to blue (coolest) for each
dataset.

sitional inputs, we study the impact of the network’s depth. We noticed already in Figure 2.11
that we perform better than those methods, at most timescales. Here we want to stress that
the network’s depth plays a crucial role (more so that the rotational order l,,4,): varying the
number of convolution layers from L,,q; =1 to Ly = 7, we noticed that performance does not
even saturate. We conclude that although using invariant features (and ideally, equivariant ones)
is helpful, the combinatorial power of deep learning architectures is also key to performance.
Numerical proof is provided in the Ablation Studies paragraph.

A side result of these ablation studies is that the short timescales seem to be the ones that
benefit the most from increased l,,4,, while they also benefit from increased depth (Lj,qz), up to
saturation at L > 4. We conjecture that directional features are key to computing instantaneous
forces, itself a key element for predicting short-time dynamics.

Spatio-temporal correlations The particle-wise correlation coefficient between ground truth
mobility and predicted one is not everything, it’s good to also measure whether the statistical
properties of our predicted mobility match those of the true one.

Defining ¢;(t) = tanh (20(m;(t) —0.44) + 1)/2 a pseudo-binarized mobility measure, Q°(t) =
NLA Yiea Ci(t) its sample average (also called self-overlap function), one defines a four-point cor-
relation function xj(t) = Na [(Qs(t)z) - (Qs(t))z], the fluctuations of the Self-overlap function,
that we report in Figure 2.12 (we use the same specifications as in [JBB23]). This measure
of the sample-to-sample fluctuations of mobility is often interpreted as a volume of correlation
(as it can be re-written as the integral of a correlation function). Our estimated xj (“separate
training”) is generally smaller than the ground-truth (MD) but tracks variations over time fairly
well and much better so than the initial GNN of [BKGB*20]. Furthermore it is comparable to
the performance of [JBB23], which however incorporates information about fluctuations in theirs
model’s loss. One may notice that the amplitude of fluctuations is smaller in the first dataset
(Baspt’s): this is due to the peculiar sampling choice, in which samples at a given “timescale”
are actually taken at different times but equal value of the self-intermediate scattering function
Fy(t), a choice which by definition reduces the variance between samples.
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Figure 2.13: Spatial dynamical correlations. The function G4 is computed on the true labels (MD,
solid line) or on our predictions. Same color and marker coding as previous plot. Our models reproduce
G4 remarkably well (“separate training”), especially at low temperatures (blue), while the transfer-learned
fields track the trends and orders of magnitude correctly as well.
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Figure 2.14: Comparison of datasets. The same models trained at temperature 7" = 0.44 on each
dataset.

A complementary measure of the statistical quality of the predicted mobility field is given by
the spatial correlation function of the mobility-related quantity c¢;(t):

Gy(r,t) = NLA (me Gi(t)e;(t)o(r —r;y(0) + rj(O))) where ¢(t) = ¢;(t) — (c(t)). Our predictions
reproduce it almost perfectly (see Figure 2.13).

Shiba vs Bapst In Bapst’s dataset [BKGB*20], a timescale actually corresponds to a fixed
value of the self-intermediate scattering function Fj(t), so that different samples are measured
at slightly different times. Equilibration is performed under an NPT thermostat, 7.e. at constant
pressure and temperature, i.e. the volume is varying (and thus the density as well).

In Shiba’s dataset [SHSS23], equilibration is performed at constant volume and temperature
(NVT) so that the density is exactly p = 1.2 in all samples and at all temperatures. Furthermore,
sampling of the trajectories is performed at fixed times, not fixed Fj(t).

In Figure 2.14 we report the performance of our main model (thermal positions + Epo(1.S)
inputs) for these two Kob-Anderson 3D datasets. Performances are shifted in time but otherwise
rather comparable.
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Figure 2.15: (left) lmaa ablation using thermal positions and no E,, input. A separate model
was trained at T = 0.44, for each value of [,,4.. The colors correspond to the njmes = 10 timescales of
mobility, with ¢4, ranging from 0 to 9. For clarity, only some of these timescales are displayed here. The
GNN of [BKGB*20] obtains p ~ 0.65 for the timescale 6, we are in this range when using only invariant
features (lqaz = 0). When using higher orders, we outperform it. (right) l,;na. ablation using thermal
positions combined with E,,(IS). Performance is overall higher, the relative gain from using >0
is less pronounced, probably because E,,.(15) already provides equivalent information.

Ablation Studies Here we display the ablation studies, that outline which are the key ele-
ments of our model. We also report the learning curve (ablation on training set size).

All our results rely on the embedding of the input data into the Spherical Harmonics basis
and on the built-in equivariance of convolution layers. One may expect that a large cutoff
rotational order l,,q, is needed. Here we show that actually, going from l,,q: = 0 t0 lpee = 1 i8
the most critical step. We build architectures that vary only by their /4, value and measure
the performance p in each, as shown in Figure 2.15. The biggest gap in performance is indeed
observed between purely isotropic, scalar features (l,q, = 0) versus directional ones (lqr = 1).
We notice as well that short timescales require higher rotational order and the performance
indeed has not saturated for them. One possible interpretation is that the network has to learn
inter-atomic forces to describe the dynamics at short times, and that directional information is
more relevant in that case. Further increasing l,,,q, provides a finer rotational order resolution,
but we observe that the accuracy tends to saturate. We cannot go above [, = 3 due to memory
constraints: as the rotational order increases, the number of activations of neurons to keep track
of grows exponentially with l,,4, (while it grows linearly with the number of edges, with the
batch size, and with the size of the hidden layer in the radial MLP).

In Figure 2.16-left we present the performance of our multi-time model trained at temperature
T = 0.44 for an increasing number L,,,, of equivariant convolution layers stacked in the archi-
tecture. While the short timescales seem to be saturated, the longer ones seem not: indeed,
we’d expect increased accuracy if we increased L;,q; further. Note that there is a possibility of
encountering over-smoothing effects with an increased number of layers.

In Figure 2.16-right, we present learning curves that illustrate the model’s performance (multi-
variate setting) as a function of the number of samples in the training set for different timescales.
The choice of the samples to include in the training set is performed in an incremental way: for
each point of the curve new samples are added to the others already present, while the test set
(80 samples) is kept constant. In this version we used early stopping with a validation set of 320
samples, however using the last epoch’s model yields very similar result. In [JAB*23] we used the
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Figure 2.16: (left) Lymae ablation. Color-code is the same as for the other ablation studies, but here
we vary the number of convolution layers applied. Performance does not seem to saturate: one expects
increased performance with more layers. (right) Learning curve Performance is already very high when
training on a single sample: our network seems to resist well to overfitting. Here again, performance does
not seem to saturate, more precisely it seems to increase logarithmically with train set size.

0.8 | 0.8 S ";jifiE
& -
o e . s ———a
bl |
~ 0.6 - Q 0.6
£S ~—~_ <
A P
X
0.4 Ttrain = 0.44 Ttrain=0.50  —A— Transfer test 0.4
Ttrain = 0.47 Ttrain=0.56  -#- Transfer learn
0.56 0.5 0.4685 0.44 1 0.64 0.56 0.5 0.44
test test

Figure 2.17: Transfer-learning between different temperatures. Each model is fully trained once
at one state point (T) and tested (“transfer test”) or fine-tuned on the remaining ones (“transfer learn”).
The timescale of mobilities showed in the plot is 7 = 7,(7T"), but multi-times models were used. (left)
Bapst’ dataset, (right) Shiba’s dataset. For each training temperature (color) two different experiments
are performed: transfer test (square markers with dashed lines) and transfer learn (upper triangle with
full line). This results in 8 curves per plot coming from all the combinations of colors and line-styles.
The transfer learned-generalization on Shiba’s dataset is almost indistinguishable from direct training,
indicating excellent generalization power of our learnt representation.

last epoch’s model and observe similar behavior. We emphasize that competitive performances
are achieved already by using less than 1/4 of the available training set and meaningful prediction
are obtained also when training the model on a single sample, contrary to what one would expect
for a “deep” model like ours.

2.4.4 Temperature Generalization: Machine Learned Order Parameter

Here, we aim to advance the idea that deep learning can serve as a valuable tool for defining
a structural order parameter in glassy systems. As introduced in Sec. 2.2, the primary goal in
developing a microscopic theory for glasses is to find a structural order parameter that identifies
amorphous order, which increases as the temperature decreases, and relates this growth to the
dynamical length scale. Deep learning models provide a powerful framework to define such an
order parameter. In practice, this involves designing a machine learning model, specifically a
function fy({x}), that takes the structure as input and is trained to predict local mobility (such
as propensity). The result is a formally structure-based function, fy({x}), capable of locating
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"soft" and "hard" regions within the structure and displaying an increasing length scale corre-
sponding to the dynamical heterogeneities. This function will demonstrate a sharp distinction
between active and passive regions, with a noticeable change around T}, resembling the behavior
of a structural order parameter.

A counter-argument to this approach is that such an order parameter is not strictly structure-
based, as it uses mobility as the training data. Critics may argue that, since “neural networks
can overfit,” the function fy({x}) might simply track the mobility it was trained on, rather
than capturing true structural features. Indeed, a complex network with millions of parameters,
specialized to a particular temperature and timescale, could associate mobility variations with
minor peculiarities specific to that temperature and timescale, potentially failing to generalize
to others. Furthermore, if the function fy becomes too complex to interpret, it might not pro-
vide any deeper understanding of the underlying physics, rendering it unsatisfactory as an order
parameter. In this view, even if a network achieves a perfect correlation (p = 1) in predicting
mobility, it could be seen as merely a computational shortcut to predict iso-configurational dis-
placement faster than Molecular Dynamics simulations, which could still be useful—for instance,
in designing effective glass models, as shown in [ZXY*22].

However, we argue that a deep learning model, fy, should be viewed as a microscope that
magnifies subtle structural variations within the material. Training the model to predict mobility
is simply a means to extract relevant structural information, with the specifics of the training
process being secondary. A true structural order parameter, f({x}), must be universally defined
for a given system, irrespective of temperature. This translates into applying the same trained
model fy across all temperatures for a given glass-former. A crucial test for determining whether
the model captures relevant structural changes is to evaluate its ability to predict mobility and
its spatial and temporal correlations, especially at temperatures other than the one used for
training.

If the model successfully generalizes across different temperatures, this would directly challenge
the criticism that “the neural network overfits” Such a transferability test was introduced
several years ago [LBD*20, BKGB*20], and the idea of applying a trained model to different
temperatures dates back to the original works on machine learning applied to glasses [SLRR14].

Transfer-testing Here we repeat this experiment and observe better temperature-generalization
abilities of our network, as compared with the original work of Bapst [BKGB*20], as shown in
Figure 2.17 (top part, label “Transfer test”). We also perform the same experiment using the
more recent Shiba’s dataset [SHSS23], showing even better temperature-generalization. This is
a strong indication that our network learns the relevant subtle structural signatures rather than
“overfitting” the dynamics separately at each temperature. We note that performance at a given
temperature decreases as the training temperature goes further away from the test temperature
(reading markers vertically). This can be attributed either to an increasing dissimilarity in the
structures present, or also to a change in how these structures correlate with the dynamics at
different temperatures. We also note an asymmetry in the performance drop between training
at high temperature, testing at low (red line) or vice versa (blue line): the training at high tem-
perature generalizes better, comparatively. In works based on SVM, the opposite was observed,
and attributed to the noisy nature of high-temperature data. Here we do not seem to suffer from
this noise, and attribute the increased generalizability to the larger diversity in input structures
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observed and the broader range of propensities observed when training on high temperature
data.

Transfer-learning Here we aim to push forward the idea of embracing the Deep Learning
notion of learning representations and comment on the properties of our learned representation.
Indeed, the convolution layers of our network effectively build an equivariant feature, h(Lm‘”),
that describes the local structure around each particle. The norm \h(Lm‘”‘)| of these features is a
list of 32 numbers (8 channels times 4 possible [ values, [ = 0,1, 2, 3) that is decoded into mobility
by 20 independent decoders. Thus, for any training temperature, the model must somehow

pack the information about these 20 (non-independent) scalar values into the 32 components of
‘h(Lma:c) ’

Here we further test the robustness of our model by evaluating the generalization ability of its
underlying representation, [h(fma=)|. If we consider [h{fma=)| as a general structural descriptor,
it must be relevant at all temperatures. A simple way to test whether this structural measure
captures the glass transition correctly is to verify if it tracks dynamics across different tempera-
tures from the one used in training. Concretely, we train a representation |h(Lm'“”)| by regressing
labels at a given temperature, and then fine-tune only the decoders at other temperatures. The
part of the network responsible for computing [h(Zma=)| (most of the network) is frozen, so the
fine-tuning reduces to learning the weights w of the decoders, as in Eq. 2.70, ¢.e., only 32 val-
ues per timescale and per particle type. This transfer-learning strategy is central to Machine
Learning and has been successful, e.g., in computer vision. For example, a Convolutional Neu-
ral Network (CNN) is first trained on a dataset such as ImageNet with 1000 classes, and then
the backbone of the network (all convolution layers) is frozen. The last layers that decode this
representation into labels are re-trained on a different dataset, such as CIFAR10 or other natu-
ral images. This transfer-learning approach often yields better performance than training from
scratch, particularly when fewer data are available for the final task [Ben12]. More importantly,
the success of transfer learning indicates that the learned representation is more general than
expected, suggesting that the backbone can be considered an advanced image pre-processing
tool.

An application of transfer learning is few-shot learning [WYKN20], where a good representation
is built from a large dataset (either labeled or through self-supervised learning), and a classifier is
then trained using only a handful of examples (1 to 5 per class). In our case, |h(L"“”)| effectively
extracts structural features, or more precisely, detects patterns correlated with mobility.

We report the results of our transfer-learning experiment across temperatures in Figure 2.17.
As expected, the performance (dashed lines) improves compared to transfer-testing (solid lines).
Moving towards considering |h(Lm”)| as a multidimensional equivalent of a structural order
parameter, one could study how the coefficients w4 ,, depend on the target temperature, and,
for example, attempt to fit them with interpretable functions of temperature. It is worth noting
that among the components of w4 -, , most vary monotonously with temperature, particularly
the [ = 0 components (which dominate the total). We leave a deeper investigation of these
coefficients for future work.

As an additional test of the robustness of our representation, we also report the transfer-learned
estimates of xj in Figure 2.12, which show larger discrepancies compared to those trained at each
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temperature, but still track the trends observed in the data (similarly in Figure 2.13). Note that
this transfer-learned xj reflects structural heterogeneity since our input is purely structural,
based on a single set of descriptors (the representation [h(Fma=)|). To our knowledge, this is
the first time that a unique set of descriptors has been shown to display such large structural
fluctuations across temperatures and timescales. For clarity, we do not show the transfer-test
results (they typically perform slightly worse).

2.4.5 Future directions

Here we performed a non-exhaustive but thorough architecture search and found no performance
gain when attempting several intuitive improvements for the network, such as increasing lyqz,
increasing the decoders’ complexity, introducing bottleneck layers (by reducing l,q, or the
number of channels), using attention mechanisms as in [LS22, LWDS23, HLLZ*21], or assigning
channels to specific bond types. This list of negative results does not preclude us from suggesting
further improvements for enhanced performance, either for our model or others, which we leave
for future work.

Potential improvements include:

e Fully leveraging the equivariant properties of the network to predict directly the dis-
placement vector (comprising three components in 3D space), rather than just its scalar
magnitude; this requires mobility to be computed from single-run positions rather than
the iso-configurational average, which may yield non-physical directional displacements.
Incorporating directional features from [LBVP22] could further enhance the extraction of
relevant information.

e Decoding various timescales using a single timescale-aware decoder, similar to FiLM
[PSDV*18] (conditioning the decoder with an embedding of the timescale, as proposed
in [GB22], allowing for a single final decoder).

e Training the backbone on several temperatures simultaneously, with separate decoders for
each temperature (possibly incorporating the previous idea to create a decoder that is
both timescale-aware and temperature-aware).

o As in [JBB23], adding non-local quantities as additional target labels (i.e., adding terms
in the loss function), such as global correlation functions evaluated at specific lengths
(computed for the entire sample, resulting in a graph-wide target), or the local variance of
the mobility (variance of the target label within a node’s neighborhood). This could im-
prove prediction quality, particularly in terms of spatio-temporal correlations, addressing
over-smoothing—a known issue in GNNs.

e Using coarse-grained mobility measures as target labels. These have been shown to be
more structure-dependent [BJO7] and display stronger correlations with simple structural
descriptors [OKK23]. Reducing label noise may improve precision and potentially maxi-
mize performance.

Self-supervised learning offers a possible solution to the issue that our structural features are
trained using dynamical data (as labels). Here, we propose a few self-supervised strategies:
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o Denoising: Adding nonphysical noise to thermal (or quenched) positions and asking the
network to denoise the input.

o Predicting only known quantities, such as Ep, or quenched/thermal positions from ther-
mal/quenched inputs.

Finally, it is important to emphasize that steerable convolutions are not the only available ap-
proach to achieve equivariance. Several alternative frameworks have emerged in recent years.
These include leveraging Clifford Algebra for efficient handling of rotations and reflections [RBF23)],
employing Frame Averaging to adapt existing networks to be invariant or equivariant [PAB*21],
and utilizing continuous Fourier analysis, which combines the benefits of group convolutions
and steerable convolutions for greater flexibility [ZG24a, ZG24b]. These alternatives open up
interesting possibilities for future research.

2.5 Conclusion

In this chapter, we introduced the concept of supercooled liquids and explored their phenomenol-
ogy, briefly mentioning the theoretical approaches used to study them. We demonstrated that
a comprehensive theoretical framework is still missing, one that can relate the growth of a
structural order to the dramatic slowdown of relaxation times and the emergence of dynamic
heterogeneities. We then explored ML approaches as useful tools for extracting structural fea-
tures whose subtle variations underlie the changes in relaxation dynamics. This is the context
in which our work was situated: utilizing advanced ML methods, particularly deep learning
approaches, to design complex features that go beyond the capabilities of manually designed
studies.

We also used this complex task as an opportunity to thoroughly investigate modern architectures,
pushing them to their limits and working towards novel designs. In this chapter, we reviewed in
detail the theoretical foundations of Equivariant Neural Networks and presented an adaptation of
recent rotation-equivariant architectures, such as NequlP [BMS*22], for modeling glassy liquids.
Specifically, we had to adapt these architectures to handle large graphs (4096 nodes)
and address our particular task of multi-variate node regression. We also introduced
some ideas specific to glasses: inspired by recent works on ML for glasses [JBB23, ASF23],
we combined information from thermal positions and their quenched counterparts,
using the local potential energy of quenched positions as input, thereby boosting
our network’s performance.

We compared our model with two families of architectures. On one hand, compared to deep
learning approaches, particularly GNN models that are neither equivariant nor invariant
[BKGB*20, SHSS23|, our SE(3)-equivariant architecture outperforms them with sig-
nificantly fewer parameters, as soon as we use strictly equivariant features (/4. > 0).
In other words, we prove the usefulness of equivariance. On the other hand, compared to
shallow learning techniques [BSF21, ASF23, JBB23] that use expert features as input (such
as invariant features and local potential), our deep network performs better, especially
when enriched with combined information from thermal and quenched positions.
The deeper the network, the better the performance, particularly for longer timescales, suggest-
ing that dynamics becomes increasingly non-local as time progresses.
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Moreover, we emphasized the importance of building a robust representation: pure performance
measured by the correlation of our predictions with the ground truth mobility is a means to
an end, not the end goal itself. What truly matters is whether our representation of the local
structure allows us to deduce physical insights. Our good correlation p, the very good fit of G4,
and the acceptable trends in predicted y4 all indicate that we have built a strong representation.
We are able to capture the local mobility field as well as its spatial and temporal
correlations.

Most importantly, the fact that a representation learned at a given temperature gen-
eralizes well to other temperatures suggests that this representation is more than just a
learned structural descriptor: it approaches the concept of an acceptable structural order pa-
rameter. This generalization power largely stems from our use of an equivariant representation
and is reinforced by our approach of regressing all particle types and timescales simultaneously,
using a single backbone representation, with the predictions differing only in the final decoder.
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Conclusion

This thesis aimed to underline the value of collaboration between Statistical Physics and Machine
Learning, demonstrating how each field can enrich the other. The compelling nature of this
intersection is highlighted not only by the increasing number of recent publications on the topic,
but also by two recent Nobel Prizes in Physics. The 2024 Prize was awarded to John Hopfield
for his pioneering work on Neural Networks rooted in Statistical Physics, and the 2021 Prize
to Giorgio Parisi for his groundbreaking contribution to the understanding of complex physical
systems, among which ML models.

In this work, I addressed two relevant challenges for these disciplines: the problem of class im-
balance in supervised learning and the prediction of dynamical heterogeneities in supercooled
liquids. While these topics may initially appear unrelated, they share a unifying theme: the ex-
ploration of complex, interacting systems using both theoretical and computational approaches.

The first part of this thesis explored the problem of class imbalance, studying an analytically
tractable model, the teacher-student perceptron, through Statistical Physics tools. Building on
this paradigmatic set-up, I modeled the input data to reproduce class imbalance of the Anomaly
Detection type, where the imbalance is intrinsic to the problem rather than a result of the data
collection process. This framework makes it possible to clarify the role of training imbalance
(originating from data collection) relative to the intrinsic imbalance. Additionally, the frame-
work provides a straightforward way to interpret the impact of imbalance, distinguishing "good"
models from "bad" ones and identifying the key factors thanks to an energy-entropy interplay
argument. At the same time, this framework validates the reliability of various performance
metrics commonly used in empirical settings, ultimately identifying balanced accuracy as the
most effective metric. Interestingly, this simple model reveals highly non-trivial behavior: con-
trary to commonly accepted wisdom in the field, a balanced dataset often leads to suboptimal
performance. This is just an initial step towards fully understanding the mechanisms at play
in supervised learning under class imbalance. There are many promising directions for future
research, including modeling more complex datasets with inherent structure (correlations) and
using more sophisticated models, such as kernel machines or deep architectures, to better sim-
ulate practical scenarios.

The second part of this thesis focused on predicting dynamical heterogeneities in supercooled
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liquids. By utilizing advanced Machine Learning models, specifically Roto-Translational Equiv-
ariant Neural Networks, I was able to predict the mobility field with high accuracy based on the
static structure of particles in numerical simulations of glass formers. In these materials, the
mobility field exhibits spatial heterogeneity, characterized by distinct ’slow’ and ’fast’ regions.
My model successfully captured the spatial correlations of such field and demonstrated tem-
perature transferability, indicating that it had effectively learned a robust representation of the
static structure. This representation suggests the existence of an amorphous order that grows
as the temperature decreases and matches the growing length scale of dynamical observables,
such as the typical size of 'fast’ and ’slow’ domains. While the model itself may not be fully in-
terpretable, its emphasis on directional information implies the importance of incorporating and
combining vectorial features of atomic packings, beyond simply rotationally invariant features,
in identifying amorphous order. Future research in this area could aim to improve the model’s
accuracy and transferability to reliably detect structural features. Additionally, distilling infor-
mation from the model could help to pinpoint the key physical observables that underlie the
mechanism of dynamical slowdown in structural glasses.

The challenges tackled in this thesis illustrate the potential benefits of combining these do-
mains: in one case theoretical methods from Statistical Physics provided a precise framework
to characterize a Machine Learning problem, while in the other, ML tools were employed to
effectively detect structural features in a physical model that elude traditional handcrafted de-
scriptors. These are just two of the many examples emerging in recent years which hold promise
for advancing our understanding of complex systems.
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