
HAL Id: tel-04910860
https://theses.hal.science/tel-04910860v2

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scalability of public geo-distributed fog computing
federations

Chih-Kai Huang

To cite this version:
Chih-Kai Huang. Scalability of public geo-distributed fog computing federations. Other [cs.OH].
Université de Rennes, 2024. English. �NNT : 2024URENS055�. �tel-04910860v2�

https://theses.hal.science/tel-04910860v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Chih-Kai HUANG
Scalability of Public Geo-Distributed Fog Computing Federations

Thèse présentée et soutenue à Rennes, le 09 Décembre 2024
Unité de recherche : IRISA (UMR 6074)

Rapporteurs avant soutenance :

Romain ROUVOY Professeur des Universités, Université de Lille
Pierre SENS Professeur des Universités, Sorbonne Université

Composition du Jury :

Président : Anne-Cécile ORGERIE Directrice de Recherche, CNRS
Examinateurs : Ivona BRANDIĆ Professeure, Technische Universität Wien

Romain ROUVOY Professeur des Universités, Université de Lille
Pierre SENS Professeur des Universités, Sorbonne Université
Monica VITALI Professeure associée, Politecnico di Milano

Dir. de thèse : Guillaume PIERRE Professeur des Universités, Université de Rennes

Experiments presented in Chapter 4 and Chapter 5 were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https://www.
grid5000.fr).

3

https://www.grid5000.fr
https://www.grid5000.fr

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my supervisor, Professor
Guillaume Pierre, for his continuous guidance and strong support in my research and
life throughout my Ph.D. journey in France. This journey would not be delightful and
smooth without his patience and guidance. It is a great honor to be supervised by such
an outstanding professor. I will continue to help others as he has helped me. I would also
like to thank Dr. Shadi Ibrahim for his help at the very beginning of this thesis.

I would like to thank my jury members: Professor Romain Rouvoy, Professor Pierre
Sens, Professor Ivona Brandić, Dr. Anne-Cécile Orgerie, and Professor Monica Vitali for
taking the time to review and evaluate my thesis and for giving me valuable feedback and
discussions.

I am also deeply grateful to CSID committee members: Professor Erik Elmroth and
Professor Cédric Tedeschi for their invaluable feedback and support over these years.

Many thanks to all the Magellan (Myriads) team members for their support, chats, and
discussions. Special thanks to Wedan-Emmanuel Gnibga, Amandine Seigneur, Matthieu
Simonin, and Stéphanie Gosselin Lemaile for invaluable help in all aspects. My deepest
thanks also go to CMI Rennes for providing excellent services and taking care of all my
complex administrative procedures in France. I sincerely thank the many wonderful people
I have met during these years: Shengnan Yao, Zhilei Luo, Kai Gu and more.

My deepest gratitude to my incredible family for their invincible support, care, and
love that makes this Ph.D. come true. This achievement is not only for me but also for
my family. To see my family proud would be my greatest accomplishment.

Finally, I would like to give myself a big thumbs up for all the work I have put into
my Ph.D. over the past three years. I am proud of myself and excited to see what comes
next.

5

RÉSUMÉ

Ces dernières années, le cloud computing est devenu une technologie importante offrant
une gamme d’avantages par rapport aux déploiements sur site, tels que l’évolutivité, le
faible coût et la flexibilité. La nature publique, partagée et à la demande des plateformes de
cloud computing les rend accessibles à d’innombrables utilisateurs allant des individus et
petites entreprises aux grandes entreprises. Cela simplifie les tâches liées à l’informatique
pour les utilisateurs, qui n’ont alors qu’à se concentrer sur leur activité principale sans
avoir à construire et à maintenir leur propre infrastructure informatique. Les utilisateurs
peuvent facilement développer et déployer leurs applications sur les plateformes de cloud
grâce à une grande variété d’outils et de services maintenus par les Cloud Service Providers
(CSPs). Une plateforme de cloud public comprend généralement un petit nombre de
centres de données centralisés, chacun incluant un grand nombre de serveurs de calcul, de
capacité réseau et de ressources de stockage.

Lorsque les utilisateurs déploient leurs applications sur une plateforme de cloud public,
ils prennent en compte différentes exigences non fonctionnelles pour chaque application,
telles que la capacité de ressources nécessaire, la haute disponibilité et la tolérance aux
pannes. L’émergence d’applications sensibles à la latence, comme la réalité virtuelle et
le streaming vidéo à 360 degrés, crée de nouvelles exigences telles qu’une faible latence
réseau de bout en bout. En outre, le développement rapide de l’Internet des Objets (IoT) a
conduit à une augmentation spectaculaire du nombre de dispositifs IoT, qui génèrent une
énorme quantité de données devant être envoyées aux centres de données cloud distants
pour un traitement des données en temps réel.

Bien que l’expansion mondiale des centres de données cloud et les améliorations sig-
nificatives de l’accessibilité au réseau et de la capacité de bande passante aient réduit la
latence entre les utilisateurs finaux et leurs applications cloud, la centralisation des grands
centres de données signifie qu’ils restent physiquement éloignés de la plupart des utilisa-
teurs finaux. Une grande latence de bout en bout pour les applications et la transmission
longue distance de grandes quantités de données rendent les applications sensibles à la
latence et certaines applications IoT inadaptées aux environnements cloud traditionnels.

7

Pour répondre à leurs exigences et pallier les limitations des plateformes cloud tradition-
nelles, le fog computing est apparu comme une solution viable.

Le fog computing ne vise pas à remplacer l’utilisation du cloud computing. Il est plutôt
conçu comme une extension du cloud computing. Le concept de base est de rapprocher
les ressources de calcul du bord du réseau pour combler l’écart du continuum numérique
entre les utilisateurs et les plateformes de cloud. En servant les utilisateurs et en traitant
les données à proximité, le fog computing a le potentiel de réduire considérablement la
latence de bout en bout, améliorant ainsi la qualité de l’expérience utilisateur. Cette
caractéristique est cruciale pour les applications nécessitant des interactions en temps
réel. De même, les plateformes de fog peuvent également optimiser la quantité de données
transmises sur de longues distances et n’envoyer que les données les plus importantes et
pertinentes aux centres de données distants pour traitement, tandis que d’autres données
peuvent être traitées localement dans la plateforme de fog.

La plupart des solutions actuelles de fog computing, qu’elles soient commerciales ou
open-source, exigent que les utilisateurs de fog construisent leur propre plateforme de fog
privée dans la zone pertinente avec du matériel et des logiciels dédiés. Cependant, cette
pratique annule les économies d’échelle réalisées grâce au partage multi-tenant et au mul-
tiplexage statistique du cloud, et ramène les services à un modèle pré-cloud où chaque
application nécessitait une mise en service individuelle avec une infrastructure personnal-
isée. De plus, ces solutions nécessitent un investissement initial élevé et ne permettent pas
d’ajuster facilement à la hausse ou à la baisse les ressources provisionnées, ce qui pose des
défis importants aux utilisateurs individuels et aux startups, ralentissant l’adoption des
technologies de fog computing.

Pour permettre à tous les types d’utilisateurs allant des particuliers aux petites en-
treprises et aux grandes entreprises, de bénéficier d’avantages tels qu’une faible latence de
bout en bout, une disponibilité des ressources à la demande et une flexibilité, il est crucial
de développer des plateformes de fog computing publiques, multi-tenant, géo-distribuées à
grande échelle qui peuvent couvrir un pays ou même un continent entier. Les utilisateurs
pourront tirer parti de cette plateforme de fog publique pour développer des logiciels
et déployer des applications, ce qui permettra de réduire l’investissement massif dans
l’infrastructure nécessaire pour installer une plateforme de fog privée et leur permettre de
se concentrer sur leurs activités principales et d’innover continuellement sans le fardeau
de la gestion des infrastructures de fog.

8

Malgré le grand potentiel des futures plateformes de fog computing publiques à grande
échelle, il n’existe actuellement aucune plateforme de ce type sur le marché. Construire
une plateforme publique à grande échelle pose plusieurs défis, comme des considérations
économiques. Par exemple, il faudrait un investissement important pour installer un nom-
bre suffisant de matériel et de logiciels de fog. Le modèle de profit et d’affaires doit encore
être étudié en raison de la nouveauté de ce concept. En outre, d’innombrables détails sci-
entifiques et techniques doivent encore être résolus, tels que l’évolutivité, l’automatisation,
la sécurité et la durabilité.

Cette thèse explore spécifiquement trois défis clés liés à l’évolutivité des futures plate-
formes de fog computing publiques géo-distribuées. Premièrement, une seule entreprise
aurait du mal à déployer un nombre suffisant de ressources de fog pour couvrir une vaste
zone géographique tout en attirant suffisamment de charges de travail pour générer une
haute utilisation des ressources, en particulier pour les ressources de fog situées dans les
zones rurales. La plus faible densité de population dans ces régions pourrait entraîner une
sous-utilisation des ressources de fog, ce qui augmenterait à son tour le coût global pour
un fournisseur de fog. Il est donc nécessaire de concevoir un modèle qui puisse répondre
à la fois à la couverture de service et à l’utilisation des ressources.

Deuxièmement, une plateforme de fog publique géo-distribuée à grande échelle peut
devoir desservir un grand nombre d’utilisateurs simultanément, ce qui nécessite donc un
cadre d’orchestration robuste pour gérer les ressources nécessaires. Ce cadre doit donc
être capable de gérer de nombreux utilisateurs, charges de travail et dispositifs de fog de
manière efficace. De plus, la nature partagée d’une plateforme de fog publique signifie que
ce système doit inclure des méthodes robustes de gestion de la multi-location pour isoler
les utilisateurs et les empêcher de se nuire mutuellement.

Troisièmement, la surveillance est une fonctionnalité essentielle pour mesurer l’utilisation
des ressources dans les environnements de calcul modernes, identifier les pannes poten-
tielles et héberger efficacement les applications. Cette capacité est particulièrement cru-
ciale dans les plateformes de fog à grande échelle, géo-distribuées et potentiellement insta-
bles. Cependant, surveiller une grande plateforme géo-distribuée est difficile car les don-
nées de surveillance proviennent d’un grand nombre d’infrastructures de fog distribuées et
doivent être transmises sur de longues distances. Le trafic réseau causé par la surveillance
peut gaspiller les liaisons réseau existantes et finir par représenter une quantité impor-
tante du trafic de gestion du système. Il est donc important d’étudier des méthodes de

9

surveillance efficaces pour équilibrer le volume de trafic réseau et la précision des données
à grande échelle.

Cette thèse propose une série de solutions pour relever les défis d’évolutivité mention-
nés ci-dessus. Nous tirons parti du concept de cluster federation comme solution pour
concevoir une plateforme de fog à grande échelle qui déploie stratégiquement plusieurs
clusters géo-distribués et qui peut être gérée et utilisée comme un seul cluster homogène.
Nos contributions s’appuient sur les écosystèmes populaires d’orchestration de conteneurs
Kubernetes et de système de surveillance Prometheus. Cependant, nous avançons que
les principes et algorithmes introduits dans cette thèse peuvent s’adapter et s’intégrer à
d’autres solutions d’orchestration de conteneurs et systèmes de surveillance existants et
futurs.

Première Contribution : Gestion Multi-Tenant dans les Méta-Fédération Fog
Scalables

La première contribution de cette thèse aborde les problèmes liés à la couverture des
services et à l’utilisation des ressources. En raison de la difficulté à déployer un nombre
suffisant de clusters de fog à travers un pays ou un continent, nous supposons que plusieurs
petits ou moyens fournisseurs de services de fog, chacun dans une région différente, peuvent
s’associer pour créer une plateforme à grande échelle en utilisant une féfération de clusters
fog. Dans ce contexte, nous proposons le concept de méta-fédérations, où des fournisseurs
locaux de fog indépendants peuvent louer de manière flexible leurs clusters fog les uns
aux autres. En appliquant cette idée, un fournisseur de fog peut utiliser des clusters fog
d’autres régions, opérés par différents fournisseurs de fog, afin d’étendre la couverture de
service dans des zones où il ne possède pas lui-même de ressources. De plus, les clusters
fog situés dans des zones à faible densité peuvent être loués à plusieurs fournisseurs de
services de fog afin d’augmenter l’utilisation des ressources et ainsi réduire le coût global
pour les propriétaires des clusters.

La mise en œuvre du concept de grandes méta-fédérations, dans lesquelles des milliers
de fournisseurs fog locaux louent leurs clusters à des centaines de fédérations indépen-
dantes, nécessite de relever deux principaux défis. (i) Multi-Tenancy : dans le cadre de la
conception des meta-federations, chaque cluster peut être partagé par différentes fédéra-
tions. Les applications dans le même cluster créées par des utilisateurs de différentes
fédérations ne doivent pas pouvoir interférer les unes avec les autres. Une fog federation
peut également inclure un grand nombre d’utilisateurs. Les charges de travail soumises par

10

différents utilisateurs au sein d’une fédération doivent également bénéficier de garanties
d’isolation similaires. (ii) Scalabilité : cette plateforme de fog à grande échelle et distribuée
géographiquement peut inclure de nombreux clusters fog. Par conséquent, chaque féféra-
tion doit être capable de gérer un grand nombre de clusters membres, tandis que chaque
cluster membre doit pouvoir louer ses ressources à un grand nombre de fédérations.

Pour établir une base solide pour le développement de futures plateformes publiques
de fog computing multi-tenant à grande échelle et relever les défis introduits par les meta-
federations, cette thèse présente UnBound, une plateforme de meta-federations de fog
scalable. UnBound exploite le framework d’orchestration de conteneurs Kubernetes pour
gérer les ressources au sein de chaque cluster de fog et Open Cluster Management (OCM)
pour fédérer plusieurs clusters membres sous la gouvernance centralisée d’un cluster de
gestion. OCM est un orchestrateur open-source et extensible, spécialement conçu pour
Kubernetes dans des scénarios multi-clusters, qui prend en compte la scalabilité d’une
fédération. UnBound aborde les problèmes de gestion multi-tenant en utilisant le pro-
jet Virtual Kubernetes Clusters (vCluster). UnBound l’utilise pour créer des sous-clusters
logiques afin d’isoler les fédérations au sein d’un cluster membre. Chaque vCluster possède
son propre serveur API et son propre magasin de données, ce qui garantit une isolation
stricte. En ce qui concerne les utilisateurs d’une fédération, nous utilisons les Names-
paces de Kubernetes pour les isoler grâce à la fonctionnalité de vCluster qui permet aux
utilisateurs de créer des ressources à l’échelle du cluster.

Des évaluations avec des fédérations de jusqu’à 500 clusters Kubernetes distribués géo-
graphiquement démontrent que UnBound maintient des temps de déploiement d’applications
comparables à ceux de l’Open Cluster Management original dans un seul cluster membre,
évite l’augmentation du trafic réseau entre les clusters, maintient la consommation de
ressources dans des limites acceptables, et montre stabilité et scalabilité, en faisant une
solution adaptée pour des déploiements de fog computing à grande échelle.

Deuxième Contribution : Systèmes de Surveillance Efficaces des Fédération
Fog géo-distribuées

La surveillance distribuée est une fonctionnalité essentielle qui permet aux grandes
fédérations de clusters de planifier efficacement le déploiement des applications sur un
ensemble de clusters fog géo-distribués. Cela nécessite un système de surveillance ro-
buste tel que Prometheus et son extension Prometheus Federation pour fournir les don-
nées de surveillance. Cependant, Prometheus collecte toujours l’état de tous les serveurs

11

disponibles des clusters cibles à une fréquence fixe, ce qui peut gaspiller la bande passante
réseau dans la fédération tout en étant inutile pour garantir un ordonnancement précis et
non scalable avec l’augmentation du nombre de serveurs.

Cette thèse propose deux systèmes de surveillance, Acala et AdapPF, pour résoudre
les problèmes de surveillance susmentionnés dans une fédération de clusters Kubernetes
géo-distribués. Les deux solutions sont basées sur l’écosystème de surveillance open-source
bien connu Prometheus et introduisent des solutions pour équilibrer le trafic réseau inter-
clusters et la précision des données de surveillance. Acala vise à fournir au cluster de
gestion des informations agrégées sur l’ensemble du cluster plutôt que sur des serveurs in-
dividuels, ce qui élève la vue traditionnelle de la surveillance dans Prometheus Federation
du niveau « nœud » au niveau « cluster ». De son côté, AdapPF vise à ajuster dynamique-
ment la fréquence de collecte des données de surveillance pour chaque cluster en fonction
de l’état d’utilisation des ressources du cluster.

Nous effectuons des évaluations approfondies des deux systèmes de surveillance à l’aide
de déploiements réels dans le banc d’essai géo-distribué Grid’5000. Les résultats montrent
que Acala améliore considérablement les performances par rapport à Prometheus. Acala
réduit le trafic réseau inter-clusters jusqu’à 97% et diminue la durée de collecte des données
jusqu’à 55% dans des expériences sur des clusters à un seul membre. Des expériences plus
larges avec jusqu’à 1 000 serveurs montrent qu’il réduit le trafic réseau global d’environ
95%. De plus, nous démontrons que notre solution a un impact minimal sur l’efficacité
de l’ordonnancement. L’autre système, AdapPF, atteint une précision de planification
comparable à Prometheus Federation avec un intervalle de collecte fixe de 5 secondes tout
en réduisant le trafic réseau inter-clusters jusqu’à 36%.

Nous soutenons que les concepts proposés dans Acala et AdapPF peuvent en principe
être combinés pour améliorer les performances et l’efficacité du système de surveillance,
car ils traitent différentes parties de l’architecture de Prometheus Federation.

Ces contributions fournissent une base solide pour le développement de plateformes
de fog computing multi-tenant, publiques, à grande échelle et géo-distribuées, et pour
démocratiser les technologies de fog computing.

12

ABSTRACT

In recent years, cloud computing has become a significant and successful technology
that offers a range of advantages over on-premise deployments, such as scalability, af-
fordability, and flexibility. The public, shared, and on-demand nature of cloud computing
platforms makes them available to countless users ranging from individuals and small
businesses to large enterprises. This keeps IT-related tasks simple for users so that they
only need to focus on their core business without having to build and maintain their own
IT infrastructure. Users can easily develop and deploy applications on cloud platforms
using a wide variety of tools and services maintained by Cloud Service Providers (CSPs).
A public cloud platform usually comprises a limited number of centralized data centers,
each of which includes a large number of computing servers, network capacity, and storage
resources.

When users deploy their cloud applications on a public cloud platform, they consider
different non-functional requirements for each application, such as necessary resource ca-
pacity, high availability, and fault tolerance. The emergence of latency-sensitive applica-
tions such as virtual reality and 360-degree video streaming creates new demands such
as low end-to-end network latency. Moreover, the rapid development of the Internet of
Things (IoT) has led to a dramatic increase in the number of IoT devices, which generate
a massive amount of data that must be sent to remote cloud data centers for real-time
data processing.

Although the global expansion of cloud data centers and significant improvements in
network accessibility and bandwidth capacity have reduced the latency between the end
users and their cloud applications, the centralization of large data centers means they re-
main physically distant from most end users. Large end-to-end latency for applications and
long-distance transmission of large amounts of data make some latency-sensitive and IoT
applications unsuitable for traditional cloud environments. To fulfill their requirements
and address the limitations of traditional cloud platforms, fog computing has emerged as
a viable solution.

Fog computing does not aim to replace the use of cloud computing. Instead, it is
designed as an extension of cloud computing. The core concept is to bring computing

13

resources to the network edge to bridge the computing gap between users and the cloud
platforms. By serving users and processing data in closer proximity, fog computing has
the potential for significantly reducing end-to-end latency, thereby enhancing the user
Quality-of-Experience (QoE). This characteristic is critical for applications that require
real-time interactions. Moreover, fog platforms can also optimize the amount of data
transmitted over long distances and only send the most important and relevant data to
remote data centers for processing, while other data could be processed locally in the fog
platform.

Most current fog computing solutions, whether commercial or open-source, require fog
users to build their own private fog platform in the designated area with dedicated hard-
ware and software. However, this practice negates the cost efficiencies achieved through
the multi-tenancy and statistical multiplexing of cloud computing, and it reverts the ser-
vices back to a pre-cloud model where each application needed individual provisioning
with a custom infrastructure. These solutions also demand high upfront investment and
are unable to easily scale up and down the provisioned resources, which makes individual
users and startups face significant challenges, slowing down the adoption of fog computing
technologies.

To allow all kinds of users, including individuals, small businesses, and large enter-
prises, to gain advantages such as low end-to-end latency, on-demand resource availability,
and flexibility, it is crucial to develop large-scale, public, multi-tenant, geo-distributed fog
computing platforms that can cover a country or even an entire continent. Users will
be able to leverage this public fog platform to develop software and deploy applications,
which in turn can reduce the massive infrastructure investment of preparing a private
fog platform and enable them to focus on their core business activities and continuously
innovate without the burden of managing fog infrastructures.

Despite the great potential of future large-scale public fog computing platforms, there
are currently no such platforms on the market. Building a large-scale public platform
faces several challenges such as economic considerations. For example, it would require a
significant investment to install enough number of fog hardware and software. The profit
and business model still needs to be investigated due to the novelty of this computing
concept. In addition, countless scientific and technical details should still be addressed,
such as scalability, automation, security, and sustainability.

This thesis specifically explores three key challenges related to the scalability of future
public geo-distributed fog computing platforms. First, a single company would find it

14

challenging to deploy enough number of fog resources to cover a large geographic area
while attracting sufficient workloads to generate high resource utilization, especially for
fog resources located in rural areas. The smaller population density in these regions may
result in the underutilization of fog resources, which may in turn increase the overall cost
for a fog provider. Therefore, it is necessary to design a model that can address service
coverage and resource utilization at the same time.

Second, a large-scale public geo-distributed fog platform may need to serve a large
number of users simultaneously, which therefore demands a robust orchestration frame-
work to manage the necessary resources. The framework must therefore be able to handle
numerous users, workloads, and fog devices efficiently. Moreover, the shared nature of
the public fog platform means that this framework must include robust multi-tenancy
management methods to isolate users and prevent them from interfering with each other.

Third, monitoring is an essential functionality to track resource usage of modern com-
puting environments, identify potential failures, and efficiently schedule applications. This
capability is particularly critical in large-scale, geo-distributed, and unstable fog platforms.
However, monitoring a large geo-distributed platform is difficult because the monitoring
data come from a large number of distributed fog infrastructures and need to be transmit-
ted over long distances. The network traffic caused by monitoring may waste the existing
network links and may eventually account for a significant amount of the system man-
agement traffic. Therefore, it is important to investigate efficient monitoring methods to
balance the volume of network traffic and data accuracy on a large scale.

This thesis proposes a series of solutions to address the scalability challenges mentioned
above. We leverage the concept of cluster federation as a solution to design a large-
scale fog platform that strategically deploys multiple geo-distributed clusters and can be
managed and used as a single homogeneous cluster. Our contributions are based on the
popular Kubernetes container orchestration and the Prometheus monitoring framework
ecosystems. However, we argue that the principles and algorithms introduced in this
thesis can adapt and integrate seamlessly with existing and future container orchestration
solutions and monitoring systems.

Contribution 1: Multi-Tenancy Management in Scalable Fog Meta-Federations

The first contribution of this thesis addresses the issues related to service coverage and
resource utilization. Due to the difficulty of deploying enough fog clusters across a country
or a continent, we assume that several small or medium-sized fog service providers, each

15

of which in a different region, may team up to deliver a large-scale platform using a fog
cluster federation. In this context, we propose the concept of meta-federations, where
independent local fog providers can flexibly lease their own fog clusters to one another.
By applying this idea, a single fog provider may use fog clusters from other regions that
are operated by different fog providers to expand service coverage in locations where they
do not own resources themselves. Moreover, fog clusters located in low-density areas may
be leased to multiple fog service providers to increase resource utilization and thereby
reduce the overall cost for cluster owners.

Implementing the concept of large meta-federations in which thousands of local fog
providers rent their fog clusters to hundreds of independent federations requires one to
address two main challenges. (i) Multi-Tenancy: As part of the meta-federations design,
each cluster may be shared by different federations. Applications in the same cluster
created by users from different federations should not be able to interfere with each
other. A fog federation may also include a large number of users. Workloads submitted by
different users in a federation should also have similar isolation guarantees. (ii) Scalability:
This large-scale geo-distributed fog platform may include many fog clusters. Therefore,
each management cluster should be able to handle a large number of member clusters,
while each member cluster should be able to lease its resources to a large number of
management clusters.

To establish a cornerstone for developing future large-scale, public, multi-tenant fog
computing platforms and address the challenges introduced by meta-federations, this the-
sis presents UnBound, a scalable fog meta-federations platform. UnBound leverages the
Kubernetes container orchestration framework to manage resources within each fog cluster
and Open Cluster Management (OCM) to federate multiple member clusters under the
centralized governance of a management cluster. OCM is an open-source, extensible or-
chestrator specifically designed for Kubernetes in multi-cluster scenarios, which takes into
account the scalability of a federation. UnBound addresses the multi-tenancy management
issues by leveraging the Virtual Kubernetes Clusters (vCluster) project. UnBound uses
it to create logical sub-clusters to isolate the federations within a member cluster. Each
vCluster has its own API server and data store, which provides hard isolation guarantees.
As for the users in a federation, we use Kubernetes Namespaces to isolate them thanks
to the vCluster functionality that allows users to create cluster-scoped resources.

Comprehensive evaluations with federations of up to 500 geo-distributed Kubernetes
clusters demonstrate that UnBound maintains comparable application deployment times

16

to the original Open Cluster Management in a single member cluster, avoids increasing
cross-cluster network traffic, keeps resource consumption within acceptable boundaries,
and exhibits stability and scalability, making it a suitable solution for large-scale fog
computing deployments.

Contribution 2: Efficient Monitoring Frameworks in Geo-Distributed Cluster
Federations

Distributed monitoring is an essential functionality that allows large cluster federa-
tions to efficiently schedule applications on a set of available geo-distributed fog clus-
ters. This requires a robust monitoring framework such as Prometheus and its extension
Prometheus Federation to provide the monitoring data. However, Prometheus always col-
lects the status of every available server from target clusters at a fixed frequency, which
may waste network bandwidth in the federation while being unnecessary for ensuring
accurate scheduling and unscalable with increasing server number.

This thesis proposes two monitoring frameworks, Acala and AdapPF, to address the
above monitoring issues in a geo-distributed Kubernetes cluster federation. Both solutions
are based on the well-known open-source Prometheus monitoring ecosystem and introduce
solutions to balance cross-cluster network traffic and the accuracy of monitoring data.
Acala aims to provide the management cluster with aggregate information about the entire
cluster instead of individual servers, which elevates the traditional view of monitoring in
Prometheus Federation from the “node” level to the “cluster” level. AdapPF aims to
dynamically adjust the collection frequency of monitoring data for each cluster based on
the resource utilization status of the cluster.

We perform extensive evaluations of both monitoring frameworks using actual de-
ployments in the geo-distributed Grid’5000 testbed. The results show that Acala achieves
significant performance improvements compared to traditional Prometheus. Acala reduces
cross-cluster network traffic by up to 97% and decreases scrape duration by up to 55% in
single-member cluster experiments. Larger experiments with up to 1,000 servers demon-
strate that it reduces the overall network traffic by about 95%. Moreover, we demonstrate
that our solution has minimal impact on scheduling efficiency. The other framework,
AdapPF, achieves comparable scheduling accuracy to Prometheus Federation with a fixed
5 seconds scrape interval while reducing cross-cluster network traffic by up to 36%.

17

We argue that the concepts proposed in Acala and AdapPF can in principle be com-
bined together to improve monitoring system performance and efficiency, considering that
they address different parts of the Prometheus Federation architecture.

These contributions provide a solid foundation for developing future large-scale, public,
multi-tenant, geo-distributed fog computing platforms and democratizing fog computing
technologies.

18

TABLE OF CONTENTS

1 Introduction 25
1.1 Contributions . 30
1.2 Published Papers . 34
1.3 Organization of the Thesis . 34

2 Background 37
2.1 Cloud Computing . 37

2.1.1 Cloud Computing Characteristics 38
2.1.2 Cloud Computing Architecture and Business Models 39
2.1.3 Cloud Computing Deployment Models 41
2.1.4 Cloud Computing Limitations . 41

2.2 Fog Computing . 43
2.2.1 Fog Computing Architecture . 44
2.2.2 Fog Computing Applications . 45
2.2.3 Fog Computing Challenges . 46

2.3 Virtualization Technology: Virtual Machines and Containers 47
2.4 Kubernetes . 50

2.4.1 Architecture . 51
2.4.2 Scalability . 55
2.4.3 Federations . 56
2.4.4 Multi-Tenancy . 56
2.4.5 Monitoring . 57

3 State of the Art 61
3.1 Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks . . . 62

3.1.1 KubeFed and KubeFed-Related Systems 62
3.1.2 Other Federation Solutions and Frameworks 63
3.1.3 Multi-Tenancy Frameworks . 65
3.1.4 Discussion . 68

19

TABLE OF CONTENTS

3.2 Monitoring for Fog Computing Environments 71
3.2.1 Monitoring Solutions for Fog Computing 72
3.2.2 Issues of Prometheus Federation . 74

4 Multi-Tenancy Management in Scalable Fog Meta-Federations 77
4.1 Introduction . 77
4.2 Motivation . 78
4.3 System Design . 80

4.3.1 System Model and Meta-Federations 80
4.3.2 System Architecture . 81
4.3.3 Components of UnBound . 83

4.4 Performance Evaluation . 88
4.4.1 Experimental Setup . 88
4.4.2 Multi-Cluster Application Creation in a Member Cluster 88
4.4.3 Application Stability Despite a vCluster Failure 92
4.4.4 One Management Cluster with Multiple Member Clusters 93
4.4.5 Multiple Management Clusters with One Member Cluster 95

4.5 Conclusion . 97

5 Efficient Monitoring Frameworks in Geo-Distributed Cluster Federa-
tions 99
5.1 Introduction . 99
5.2 Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations . . . 102

5.2.1 System Design . 102
5.2.2 Performance Evaluation . 110

5.3 AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed
Cluster Federations . 124
5.3.1 System Design . 126
5.3.2 Performance Evaluation . 130

5.4 Conclusion . 133

6 Conclusion and Future Directions 135
6.1 Conclusion . 135
6.2 Future Directions . 137

6.2.1 Automation of Geo-Distributed Fog Computing Federations 137

20

TABLE OF CONTENTS

6.2.2 Security of Geo-Distributed Fog Computing Federations 139
6.2.3 Sustainability of Geo-Distributed Fog Computing Federations . . . 141

6.3 Closing Statement . 142

Bibliography 143

21

LIST OF FIGURES

1.1 A map of Google Cloud regions around the world 26
1.2 An example of a fog provider in Brittany that wants to expand its service

coverage to other regions of France . 31

2.1 High-level architecture of cloud computing 39
2.2 High-level architecture of fog computing 44
2.3 Comparison of hardware virtualization and OS virtualization architectures 49
2.4 Simplified Kubernetes architecture . 51
2.5 Architecture of Prometheus Federation . 59

4.1 An example of KubeFed architecture . 79
4.2 An example of meta-federations . 80
4.3 Architecture of UnBound . 82
4.4 Registration process between one management cluster and one member

cluster . 85
4.5 Cross-cluster network traffic and application creation time in multi-cluster

application creation experiment . 89
4.6 CPU and memory usage of vCluster with long-term collection in multi-

cluster application creation experiment . 90
4.7 CPU and memory usage of vCluster in multi-cluster application creation

experiment . 91
4.8 CPU and memory usage of work-agent in multi-cluster application creation

experiment . 92
4.9 Application stability despite a vCluster failure 93
4.10 Performance of UnBound with one management cluster managing multiple

member clusters . 94
4.11 Performance of API server in the member cluster while UnBound with

multiple management clusters managing the same member cluster 95

22

LIST OF FIGURES

4.12 Performance of whole member cluster while UnBound with multiple man-
agement clusters managing the same member cluster 96

5.1 Cross-cluster network traffic in the management cluster when using mck8s 100
5.2 Overview of Acala architecture and scrape flow 103
5.3 An example of metrics aggregation . 105
5.4 Coefficient of variation when injecting workloads in a member cluster . . . 113
5.5 Average cross-cluster network traffic . 114
5.6 Cross-cluster network traffic per scrape . 115
5.7 Scrape duration and execution time of each step 117
5.8 CPU and memory consumption of Acala components and a whole member

cluster . 118
5.9 Average cross-cluster network traffic in multi-cluster deployment 120
5.10 Cross-cluster network traffic per scrape in multi-cluster deployment 121
5.11 Total CPU and memory usage of management cluster 122
5.12 Completion rate when injecting workloads in 5 member clusters 123
5.13 Percentage of pending Pods . 125
5.14 Overview of AdapPF architecture and system workflow 126
5.15 Experiment results of percentage of pending Pods and cross-cluster network

traffic . 132

23

LIST OF TABLES

2.1 Differences between fog computing and cloud computing 43

3.1 Comparison of multi-cluster federation and multi-tenancy frameworks . . . 69

5.1 10 results of pending Pods percentage . 125

24

Chapter 1

INTRODUCTION

Cloud computing, as one of the most successful computing paradigms, has revolution-
ized the way enterprises develop software and deploy applications. Traditionally, enter-
prises had to invest money in building their own server rooms with Information Technology
(IT) devices, such as servers, switches, and firewalls. Nowadays, by using cloud resources
from public cloud providers with high performance, flexibility, on-demand resource avail-
ability, reliability, and scalability, enterprises can focus on their major business and other
priorities without worrying about IT-related installation and maintenance [1]. In addi-
tion, the public and shared nature of cloud computing platforms makes them available to
numerous users ranging from individuals and small companies to large enterprises.

Cloud Service Providers (CSPs) typically build and maintain their own cloud data
centers, which are composed of a large number of computing servers, network devices,
and storage resources. To improve resource utilization, virtualization technologies enable
CSPs to abstract cloud resources and share them with multiple users without letting them
interfere with each other. For example, a single physical server can run multiple Virtual
Machines (VMs) using hardware virtualization technology [2].

The number of data centers for each CSP is typically small. For instance, Figure 1.1
shows the regions of Google Cloud, which includes 40 locations in the world and plans
to launch a few new regions such as Mexico [3]. This situation causes data centers to
be often physically distant from the end users, possibly resulting in high network access
latency [4].

According to a survey from the Enterprise Strategy Group, there is a strong trend
toward multi-cloud application deployment [5]. The findings indicate that 85% of orga-
nizations leverage two or more CSPs for their deployments. One of the key reasons for
this trend is that applications can deploy and distribute to different data center locations
to gain the advantages of multi-cloud deployments, such as reducing the user-to-cloud
latency [6]. This indicates a need to increase the number of locations where cloud tenants
can deploy their applications.

25

Chapter 1 – introduction

Figure 1.1 – A map of Google Cloud regions around the world. Blue dots show current
regions. Triangle represents future regions [3].

The emergence of latency-sensitive applications requires reducing the user-to-cloud la-
tency, which may not be compatible with traditional cloud computing deployments [7]. For
instance, head-tracking applications such as virtual reality and 360-degree video stream-
ing request that network transmission combined with application processing times should
remain under 20 milliseconds to avoid motion sickness [8]. Another demanding use case
is the Internet of Things (IoT), which is experiencing rapid growth with 127 additional
devices being connected to the Internet every second [9]. The number of connected IoT de-
vices worldwide in 2030 is predicted to be greater than 32 billion [10]. Typically, these IoT
devices generate data that should be sent to a cloud data center for real-time processing
due to the limited computing capabilities of the IoT devices themselves [11]. Moreover, the
long-distance data transmission of large amounts of data over the network may eventually
saturate the existing network links [12].

To address the limitations of data-center-based cloud computing architectures, an in-
tuitive solution is to place the computing resources closer to the end users. Fog computing
proposes such an extension of cloud computing that distributes computing resources at

26

the network edge, close to the end users, and to the location of data sources generated
by IoT devices [13]. This design enables computational tasks to be performed close to
the data sources, reducing end-to-end latency to improve the user Quality-of-Experience
(QoE) and reducing the volume of data transmitted to data centers.

Since the introduction of the fog computing concept in 2012 [13], various fog/edge
computing solutions have been developed and made available on the market. For example,
Microsoft provides Azure Stack Edge, a Hardware-as-a-Service (HaaS) product that allows
customers to order Azure-managed devices and deploy them in the desired locations [14].
These hardware devices contain the computing, storage, and intelligent capabilities of
the Azure cloud and can process the data directly at the network edge. Another similar
solution called “Google Distributed Cloud connected” is designed for customers who want
to obtain real-time insights from data at the local level with low latency [15]. This solution
offers a flexible selection of hardware options that allow customers to select and build the
right-sized fog/edge infrastructure locally. Other CSPs propose similar fog/edge solutions,
such as Oracle Roving Edge Infrastructure [16] and Amazon Web Services Snowball Edge
Compute [17]. In the open-source world, several solutions also exist. The FogGuru project
develops the LivingFog platform, which allows users to leverage Raspberry Pi clusters
to process IoT data transmitted with the LoRa long-distance wireless protocol [18]. This
platform has been successfully used for smart water management and smart-city data
processing [19]. KubeEdge is a Kubernetes-based framework that aims to bring container
orchestration on devices at the network edge [20]. KubeEdge’s architecture includes two
main components: CloudCore and EdgeCore. Users deploy CloudCore in the cloud to
manage the edge devices and install EdgeCore in user-owned edge devices that may be
placed in strategic edge locations such as factories.

Considering the current fog/edge solutions, deploying applications close to the end
users to benefit from the advantages of fog computing requires one to deploy customized
hardware infrastructures and/or software at appropriate locations to form a private fog
deployment. However, assigning a specific set of devices to accommodate a single use
case within a particular location weakens the economies of scale delivered by the multi-
tenancy and statistical multiplexing principles of cloud computing. This situation brings
fog computing back to a pre-cloud era where each application required dedicated hardware
to be provisioned, limiting its geographical scope to a small choice of locations where
suitable devices have been deployed. Moreover, this may lead to high costs and large
delays in setting up these hardware devices, which in turn could slow down innovation.

27

Chapter 1 – introduction

As a result, many potential fog computing users may thereby be unable to fully utilize
fog technology due to these technical and management limitations. In terms of flexibility,
as their business expands, scaling up fog infrastructures may prove to be difficult and
time-consuming. These issues show that the current fog computing solutions do not fully
enable the potential and unique capabilities of fog computing.

Fog computing was initially designed as an extension of cloud computing. We there-
fore believe it should follow the same guiding principles as cloud computing. In particular,
users around the world who are unable to build their own private fog platform should be
able to deploy their applications in a public fog computing platform with zero upfront
infrastructure cost. Enabling fog computing to embrace the full benefits of cloud comput-
ing principles requires the design of large-scale, public, multi-tenant, geo-distributed fog
computing platforms that can cover a whole country or even a continent. Similar to public
cloud platforms, public fog platforms should exploit the statistical multiplexing of large
numbers of independent workloads to help guarantee high resource utilization and there-
fore reduce the cost of building and maintaining the fog platform. In doing this, public
fog platforms may help unlock the full potential of fog computing that makes computing
resources accessible to all kinds of users, letting them focus on their major affairs and
pursue innovation. Moreover, with the rapid growth in the number of IoT devices and the
increasing demand for real-time data processing, we believe it is particularly important
to design large-scale public shared fog computing platforms.

Unfortunately, although fog computing technology has demonstrated its potential and
advantages in many fields, no large-scale public fog platforms exist today that are easily
accessible to any user. There are many reasons for this, ranging from economic aspects
to technical and scientific ones. On the economic side, building a public fog platform
would require large investments to deploy the fog infrastructures, develop the software,
and maintain and operate the platform. Compared to cloud computing, the concept of
fog computing is relatively new. Therefore, the revenue or service model still needs to be
further investigated to ensure that the Return on Investment (ROI) is within an acceptable
range. In addition, environmental protection and data regulatory challenges also make it
difficult to design a compliant large-scale platform due to its decentralized nature. A very
large fog platform may cover different countries, which means that these distributed fog
infrastructures would need to pass regional environmental assessments and follow complex
data protection laws in different countries.

28

The scientific aspects of constructing large-scale fog platforms are also very challeng-
ing. A large number of fog computing servers and user’s applications must be distributed
in various strategic locations, which makes management and monitoring face stringent
scalability issues. Moreover, maintaining a platform manually is costly, which encourages
developing robust automation methods to remotely maintain and repair these physical
servers and network devices. Applications deployed by users also need to take into account
automatic scheduling, migration, and failover. Compared to centralized data centers with
co-located hardware that can be protected together, guaranteeing security is clearly a
difficult issue in decentralized fog architectures, which may be more vulnerable than cen-
tralized ones to physical or network attacks. Sustainability can also be a key challenge
for such platforms, and energy efficiency should be considered to keep the fog clusters
running with a balance between energy consumption and speed of computation, which
thereby can help minimize operational costs and keep platforms effective [21]. As a result,
these challenges make building large-scale fog platforms difficult, which requires a series
of solutions for them.

This thesis addresses the challenges of designing scalable public fog computing in-
frastructures, with the aim to eventually be able to cover an entire country or even a
continent. Within this scope, we specifically focus on three main issues whose solutions
may constitute a basis for further research toward the design of future large-scale, public,
multi-tenant, geo-distributed fog computing platforms.

The first issue addressed in this thesis is to enable broad service coverage of a fog
resource provider. Deploying a sufficient number of geo-distributed fog servers to cover a
country or a continent is a major challenge. For example, the 5G (5th-Generation mo-
bile communication technology) Observatory Biannual Report published in October 2023
shows that the number of 5G base stations in France is 39,502 with 88.8% of popula-
tion coverage [22]. Each base station can serve more than 2,000 users simultaneously [23].
To achieve a fog service coverage similar to that of 5G base stations, the number of fog
servers may need to be even greater than this, requiring major deployment and mainte-
nance efforts. In addition, the population density differs from region to region. Therefore,
it may be difficult for deployed fog infrastructure in low-density areas to attract sufficient
workloads to produce high resource utilization.

The second issue is the management of a large-scale, public, geo-distributed fog com-
puting platform. The large-scale characteristic means that the platform may contain a
large number of fog resources and workloads, which requires a robust and scalable or-

29

Chapter 1 – introduction

chestration framework to manage them. The public nature of the platform implies that it
may need to accommodate many users, which demands effective multi-tenancy strategies
to ensure isolation between the users. To this end, we need to simultaneously address the
challenges related to scalability and multi-tenancy to manage such a platform efficiently.

The third issue is related to the monitoring of a large-scale geo-distributed fog comput-
ing platform. Monitoring plays a critical role in resource usage tracking, failure identifica-
tion, and workload scheduling, especially in potentially resource-constrained and unstable
fog environments. Monitoring a large fog platform is very challenging compared to tradi-
tional centralized cloud data centers, as fog infrastructures are deployed in many different
locations. An excessive amount of monitoring data transmitted over long distances across
a geo-distributed platform may waste the existing network resources and may eventually
represent the majority of the system management traffic.

1.1 Contributions

To address these challenges, the thesis proposes two main contributions, which both
rely on the concept of cluster federation. A federation is composed of multiple server
clusters deployed in different strategic locations that can be managed and used as a single
large-scale geo-distributed platform. Our solutions are based on the Kubernetes container
orchestrator, the Prometheus monitoring system, and their respective ecosystems, which
constitute the current industry standard while remaining open-source, highly mature, and
extensible [24], [25]. However, the concepts and algorithms proposed in this thesis can be
easily applied and integrated with other current or future container orchestrators and
monitoring systems.

The main contributions of this thesis are as follows:

(1) Multi-Tenancy Management in Scalable Fog Meta-Federations
Designing large-scale, multi-tenant, public fog federation platforms requires the ag-
gregation of large numbers of clusters in numerous locations covering a country or
even a continent. However, it would be difficult for a single organization to deploy
enough resources in strategic locations while attracting sufficient workloads to gen-
erate high resource utilization. We propose to address this challenge with the vision
that many small or medium-sized fog resource providers may choose to cover only
a limited region or set of regions. A “global” fog service provider may then expand
its service coverage span in additional locations by securing a business deal with the

30

1.1. Contributions

Figure 1.2 – An example of a fog provider in Brittany (black) that wants to expand
the service coverage to other regions of France by gaining access to other fog providers
in Hauts-de-France (green) and Auvergne Rhône-Alpes (blue). The base image is from
OpenStreetMap France [26].

other fog resource providers and by including their resources in a federation. In this
way, the global fog service provider may attract new customers and increase the size
of its business. At the same time, the regional fog resource providers may choose
to lease their resources to multiple fog service providers. For example, as shown
in Figure 1.2, a fog provider with its own cluster federation in Brittany may want
to use the fog resources of other fog providers in Hauts-de-France and Auvergne-
Rhône-Alpes.

This thesis proposes the design of scalable fog meta-federations. We define a meta-
federation as a complex ecosystem composed of many independent fog resource
providers that may set up business agreements with one another to allow access to

31

Chapter 1 – introduction

their computing resources. The legal framework for setting up such business agree-
ments is outside the scope of this thesis. Any single fog cluster may simultaneously
act as the manager of a large federation and contribute its own resources to one
or more other federations, which contributes to enhancing resource utilization and
reducing the operational cost of the cluster.

Realizing the vision of a large meta-federations ecosystem that can span a country
or a continent with thousands of local providers renting their computing resources
to hundreds of independent federations in turn requires one to address two main
challenges: (i) Multi-tenancy: Workloads submitted by multiple federations to the
same member cluster should be strictly isolated from each other, and multiple users
from any single federation should also benefit from similar isolation guarantees; (ii)
Scalability: Each management cluster 1 must effectively control a large number of
member clusters, while each member cluster must be able to lease its resources to a
large number of management clusters.

To support the vision of building a large-scale, public, shared, geo-distributed fog
computing platform while effectively addressing the complex multi-tenancy and scal-
ability challenges introduced by meta-federations, we present UnBound, a scalable
fog meta-federations platform. UnBound relies on Kubernetes to orchestrate re-
sources within individual fog clusters [27] and Open Cluster Management (OCM)
to federate multiple member clusters under the authority of a management clus-
ter [28]. We address the issue of multi-tenancy management by isolating federations
within a single member cluster using the Virtual Kubernetes Clusters (vCluster)
project to create isolated logical sub-clusters within the member clusters [29].

We conduct extensive evaluations through real-world deployments in the Grid’5000
testbed [30] and demonstrate that UnBound achieves inter-user and inter-federation
isolation while maintaining comparable application creation time to the original
Open Cluster Management and avoiding increasing cross-cluster network traffic be-
tween the management and member clusters. Moreover, the resource consumption
of UnBound components remains within acceptable limits. Finally, we demonstrate

1. In a cluster federation, a “management cluster” is in charge of deciding which of the “member
clusters” will be in charge of handling each newly deployed application.

32

1.1. Contributions

the stability and scalability of UnBound using federations with up to 500 member
clusters and a member cluster belonging to up to 100 independent federations.

(2) Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations
To enable accurate scheduling decisions, it is necessary to have information about
the resource usage status of each member cluster in a geo-distributed Kubernetes
cluster federation [31]. This requires a robust monitoring framework that can pro-
vide resource utilization data, such as Prometheus and its extension Prometheus
Federation [32], [33]. However, the design of Prometheus makes it fetch the precise
status of each available server with fixed frequency. This is unnecessary to allow
accurate scheduling, unscalable as the number of servers grows, and it may waste
long-distance network bandwidth in a large cluster federation.

In this contribution, we present two frameworks to address these issues in a geo-
distributed cluster federation: Acala and AdapPF. Both of them aim to balance
between cross-cluster network traffic and the accuracy of monitoring data. Acala
exploits two strategies called metrics aggregation and metrics deduplication for re-
ducing the volume of monitoring data that needs to be reported to the management
cluster, elevating the traditional view of monitoring from “node” granularity to
“cluster” granularity. On the other hand, AdapPF uses a self-adaptive approach to
dynamically adjust the scrape interval for each member cluster based on the re-
source status of the target clusters.

Our contributions based on actual deployments in the geo-distributed Grid’5000
testbed demonstrate that Acala reduces the cross-cluster network traffic by up to
97% and the scrape duration by up to 55% in single member cluster experiments.
Our solution also decreases cross-cluster network traffic by 95% and memory re-
source consumption by 83% in multiple member cluster scenarios. A comparison of
scheduling efficiency with and without data aggregation shows that aggregation has
minimal effects on the system’s scheduling function. On the other hand, AdapPF
can achieve comparable application scheduling results to Prometheus Federation
with 5 seconds scrape interval while reducing cross-cluster network traffic by 36%.

These two solutions are complementary as they address different aspects of the
Prometheus Federation architecture. In principle, they may be combined to leverage
the strengths of both.

33

Chapter 1 – introduction

1.2 Published Papers

The following manuscripts are published as part of this thesis:
Journal article(s)

(1) “Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations”, Chih-
Kai Huang and Guillaume Pierre, in IEEE Transactions on Cloud Computing, vol.
12, no. 4, pp. 1449-1462, Oct.-Dec. 2024.

Conference paper(s)

(1) “UnBound: Multi-Tenancy Management in Scalable Fog Meta-Federations”, Chih-
Kai Huang and Guillaume Pierre, in Proceedings of the 17th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing, Sharjah, United Arab Emirates,
Dec 2024.

(2) “AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations”, Chih-Kai Huang and Guillaume Pierre, in Proceedings of the 28th
IEEE Symposium on Computers and Communications, Tunis, Tunisia, Jul 2023.

(3) “Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations”, Chih-Kai
Huang and Guillaume Pierre, in Proceedings of the 38th ACM/SIGAPP Sympo-
sium on Applied Computing, Tallinn, Estonia, Mar 2023.

1.3 Organization of the Thesis

This thesis is organized into six chapters.
Chapter 2 presents the technical background of this thesis. We first explore the basics

of cloud computing with its characteristics, architecture, service models, and limitations.
We then discuss geo-distributed fog computing and the reason why it can address some
of the limitations of cloud computing. We also introduce virtualization technology and
discuss the trend of moving from virtual machines to containers. Finally, we introduce
Kubernetes, a widely used open-source container orchestrator that we rely on in this
thesis.

Chapter 3 discusses the academic state of the art related to our contributions. We
start the chapter with the multi-cluster federation control planes. Then, we review the
multi-tenancy frameworks for Kubernetes clusters and position our contributions in this
context. Finally, we present the literature on monitoring in fog computing environments
and discuss the challenges of the Prometheus monitoring system.

34

1.3. Organization of the Thesis

Chapter 4 introduces our first contribution: Multi-Tenancy Management in Scalable
Fog Meta-Federations. We first define meta-federations as a way to realize the vision
of large-scale, public, multi-tenant, geo-distributed fog computing platforms. Next, we
present UnBound, a scalable fog meta-federations platform, with its system architecture
and multi-tenancy management methods. Finally, we evaluate UnBound in a realistic
testbed and show its performance results.

Chapter 5 proposes our second contribution: Efficient Monitoring Frameworks in Geo-
Distributed Cluster Federations. We first present the Acala monitoring framework and
subsequently discuss the AdapPF monitoring framework. Both frameworks follow the
discussion with their system design and performance evaluation.

Chapter 6 restates the challenges of building a large-scale, shared, public fog computing
platform. Then, we summarize the contributions of this thesis and identify promising
directions for future research.

35

Chapter 2

BACKGROUND

In this chapter, we first explore the cloud computing concept with its characteristics,
architecture, service models and limitations, and then shift to discuss the geo-distributed
fog computing. After that, we discuss the evolution of virtualization technology from
Virtual Machines (VMs) to containers. We also review Kubernetes and its related topics.

2.1 Cloud Computing

Cloud computing has been one of the most significant technological concepts over
the past twenty years [34]. The history of cloud computing can be traced back to 1961
when John McCarthy introduced the first utility computing concept at the Massachusetts
Institute of Technology [35]. Afterward, the Compaq Computer Corporation started to
bring computing into the business aspect in 1996 [36]. It took almost a decade of evo-
lution for three giants, Amazon, Microsoft, and Google, to roll out their own “cloud”
services or platforms successfully. In 2006, Amazon released its cloud computing services,
which included Amazon Simple Storage Service (S3) and Amazon Elastic Compute Cloud
(EC2) [37], [38]. Then, Microsoft Windows Azure [39] and Google App Engine [40] were
also announced and started sharing the cloud market. As of the fourth quarter of 2023,
the three major Cloud Service Providers (CSPs) shared a total of around 66% of the cloud
market [41].

Cloud computing is changing the way individuals and enterprises develop software
and deploy applications. A Eurostat survey of 161,000 EU enterprises with different sizes
shows that 45.2% of EU enterprises used cloud computing services in 2023. Compared
to 2021, it is 4.2 percentage points greater, representing a growing trend in the business
fields [42].

The rising trend of cloud computing can be attributed to the gradual maturation of
software. Virtualization technologies such as Virtual Machines (VMs) [43] and contain-
ers [44] enable cloud computing as CSPs can leverage them to abstract the computing

37

Chapter 2 – Background

resources on a physical server and share each server with multiple users without letting
them interfere with each other. Using virtualization technology in cloud platforms brings
additional benefits, including improving the overall resource utilization in each server,
reducing costs, and providing functions such as high availability and auto-scaling [45]. We
will discuss virtualization technologies in Section 2.3.

For users, there are several advantages to using cloud computing such as reducing
their investment cost of Information Technology (IT) infrastructures and software. The
users can directly utilize the services provided by CSPs without needing to deploy or
maintain their own servers and storage systems [46]. Cloud computing can also enhance
the flexibility of deployed services such as dynamically scaling the capacity of IT services
up and down according to the demand [1]. For instance, a shopping website may experience
greater workloads during the weekend, requiring the administrator to scale up the cloud
resources to handle the load. After the peak has ended, they can scale resources down to
maintain cost-effectiveness. One more advantage that users can benefit from using cloud
computing is efficiency. Enterprise users only need to focus on their major business and
do not need to care too much about IT-related work. Moreover, applications and data
hosted in the cloud can be accessed from almost any device connected to the internet [47].

2.1.1 Cloud Computing Characteristics

Cloud computing relies on numerous servers, networks, and storage resources being
placed together in the same location to build a data center that can provide services
to cloud users over the Internet. According to the National Institute of Standards and
Technology (NIST) definition, the basic characteristics of cloud computing are listed be-
low [48]:

(1) On-demand self-service: CSPs provide cloud users with services or computing
resources, such as applications, data storage, and infrastructure. It can automati-
cally allocate resources according to user requirements without system administrator
intervention.

(2) Broad network access: Cloud users are able to access the cloud services with
different types of devices, such as mobile phones, laptops, and desktop computers,
anytime and anywhere through the Internet.

38

2.1. Cloud Computing

Internet

Cloud
Layer

Edge
Layer

Application Layer
(SaaS)

Platform Layer
(PaaS)

Infrastructure Layer
(IaaS)

Data center Layer

Figure 2.1 – High-level architecture of cloud computing.

(3) Resource pooling: The resources managed by CSPs are aggregated into a shared
massive computing pool. By using virtualization technologies, CSPs can share the
resources or provide services to the end users through a multi-tenancy model.

(4) Rapid elasticity: The size of services can quickly scale up and down to adapt to
user needs.

(5) Measured service: CSPs can monitor the service usage of cloud users and are billed
based on the pay-per-use method. Moreover, the CSPs can leverage monitoring data
to manage the resources in a data center.

In addition to the above basic characteristics, there are some common characteristics,
including massive scale, resilient computing, and geographic distribution service orienta-
tion [49]. To sum up these characteristics, cloud computing is the integration and develop-
ment of distributed computing, Internet technology, and large-scale resource management.

2.1.2 Cloud Computing Architecture and Business Models

Figure 2.1 presents the relationship between cloud computing and its end users. The
cloud layer aggregates computing resources into one or more data centers and provides
services to the end users. The edge layer is composed of end users, including their Internet-
of-Things (IoT) devices, mobile phones, and computers. These devices produce the data

39

Chapter 2 – Background

and requests, and send them through the Internet to the cloud data centers for analysis
or processing.

The architecture of a data center could be divided into four layers, which are applica-
tion, platform, infrastructure, and data center layers [46], [50]. Moreover, NIST classifies
the service models into three levels: Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS), and Infrastructure-as-a-Service (IaaS) [48]. SaaS is oriented towards end users who
only use complete applications. It provides Internet-based on-demand software services
without requiring users to install or maintain them. PaaS targets application developers,
in which PaaS delivers a platform that contains software development and management
frameworks. Developers only need to upload code and data to use the platform without
having to worry about the issues related to the underlying network, storage, and operat-
ing system. IaaS is designed for users who require complete control over their computing
infrastructure, including servers for computation, storage, and networking. Each service
model can be mapped to the different architecture layers, and we discuss the architecture
from the down to the top layers of cloud computing.

(1) Data center layer: CSPs operate the data centers to offer the services to the
cloud users. Each data center includes thousands or more physical machines, such as
servers, switches, and routers, packed into racks and connected by a high-bandwidth
internal network. There are several challenges in this layer, including the configura-
tion of hardware components, ensuring fault tolerance, and keeping energy efficiency.

(2) Infrastructure layer: This layer, also called the virtualization layer, leverages vir-
tualization technologies to share computing resources with different cloud users. The
infrastructure layer belongs to the IaaS model, providing computing resources, such
as servers, storage, and networking. Some well-known IaaS products are Amazon
Elastic Compute Cloud (Amazon EC2) [51], Google Cloud Storage [52], and Azure
Virtual Network [53].

(3) Platform layer: The platform layer stands in the PaaS model and is built using
the infrastructure layer. It is responsible for providing application frameworks to the
software developers. It can relieve developers from the burden of managing servers
and deployment settings. Google App Engine [54] is one of the products in this
layer.

(4) Application layer: This layer can map to the SaaS model and aims to offer different
cloud software services to the cloud users, such as E-mail services and document

40

2.1. Cloud Computing

editor. Typical examples are Google Workspace [55], which include Google Docs
and Gmail.

2.1.3 Cloud Computing Deployment Models

Cloud users can choose between different deployment models for their applications
based on their requirements, such as locations and policies. Cloud data centers, managed
by CSPs such as Microsoft Azure, Google Cloud, and Amazon Web Services, provide the
services mentioned in the previous section in the form of public cloud, where cloud users
do not need to maintain their own infrastructure and software. For cloud users who want
a higher degree of performance, reliability, and security, an alternative is to select a model
named private cloud, where cloud users build their own data centers to fulfill the needs
of control or privacy.

Some users need their applications to run in specific geographic locations for perfor-
mance or legal reasons, while others wish to avoid a single vendor lock-in. For them,
multi-cloud is a viable solution for geo-distributed application deployment [6], [56]. The
administrators of applications can launch multiple applications by using different public
cloud service providers in various locations to serve end users. For example, Google Cloud
and Microsoft Azure operate data centers in Taiwan. However, AWS does not have one.
If AWS customers want to deploy an application to serve end users closer to Taiwan, they
need to leverage other cloud providers, ending up with a multi-cloud deployment. Another
geo-distributed deployment model is the hybrid cloud. The idea of hybrid cloud deploy-
ment is to combine the resources from one or more private data centers with the public
cloud, which brings benefits from both sides. The users can keep sensitive workloads or
data in a private data center and utilize the scalability and flexibility of the public cloud
to run a larger number of applications and less sensitive workloads.

2.1.4 Cloud Computing Limitations

Cloud computing brings many benefits, but it also presents challenges in different
aspects. The first major issue for cloud computing is its energy consumption. A report
from the International Energy Agency (IEA) shows that the electricity use for cloud data
centers and transmission networks each is estimated up to 1.5% of the global use [57].
Moreover, the growing trend of data centers is driving an increase in energy usage by
Artificial Intelligence (AI) [58]. Security and privacy are also significant topics that people

41

Chapter 2 – Background

care about. According to a survey from Cloud Security Alliance (CSA), the top threats are
data breaches, weak identity, credential and access management, and insecure Application
Programming Interfaces (APIs) [59]. Another report shows that some of the threats are
growing over the years such as data breaches [60].

The enhancement of network accessibility and bandwidth, combined with the widespread
proliferation of cloud data centers in different locations worldwide, has significantly re-
duced end user to cloud service latency. As a result, popular cloud services such as Face-
book can be accessed within as little as 40 milliseconds round-trip latency [61]. The
latency between end users and cloud services is an important topic for CSPs because
lower latency brings a better user experience and thereby it impacts the profit of appli-
cation owners. Amazon discovered that every extra 100 milliseconds of delay resulted in
a 1% loss in sales [62]. Meanwhile, another study also demonstrated a similar outcome
that an increase of 0.5 seconds in generating search results causes a 20% decrease in traf-
fic [63]. Reducing network delays also enables the development of new latency-sensitive
applications. For example, virtual reality and 360-degree video streaming require the total
end-to-end latency, which includes both network transmission and application processing
delays, to remain within 20 milliseconds [8].

The rapid development of the Internet of Things (IoT) enables the creation of smart
home and improved urban services with the smart city. A forecast shows that the volume
of data generated by IoT devices will reach 79.4 zettabytes by 2025 [64]. Meanwhile, to
monitor and analyze the data collected from various IoT devices and sensors, the data
must be sent to a cloud data center for real-time data processing. Long-distance data
transmission of such large amounts of data over the network may eventually saturate the
existing network links [12].

Although cloud users can take advantage of multi-cloud deployments to execute their
applications in different data centers with multiple CSPs to reduce the latency and the
volume of long-distance data transmission over the network, the centralization of large
data centers means that they may remain physically distant from the end users [4]. As
these limitations of cloud computing become more recognized, fog computing emerges as
a solution to address their limitations.

42

2.2. Fog Computing

Table 2.1 – Differences between fog computing and cloud computing.
Characteristics Fog Computing Cloud Computing

Architecture Decentralized
fog nodes or clusters

Centralized
data centers

Latency Between Users
and Nearest Servers Low High

Distance From Users Close Far
Bandwidth Low High

Computing Capacity Intermediate High
Storage Capacity Intermediate High

Use Cases Latency sensitive
or IoT applications General applications

2.2 Fog Computing

Fog computing was proposed by Cisco in 2012 [13] as a widely distributed cloud-liked
infrastructure to address the limitations of centralized cloud computing. The aim was
to bridge the gap between end users/IoT devices and traditional cloud computing data
centers by providing resources, including computing, storage, and networking services,
that are closer to them. This design can fulfill the characteristics of IoT applications, such
as geographic distribution and low latency.

In 2017, the OpenFog Consortium Architecture Working Group published a white
paper called “OpenFog Reference Architecture for Fog Computing” [65] to further consol-
idate the definition of fog computing. Then, in 2018, the IEEE adopted this standard [66].
In this standard, the authors state that “Fog computing is a horizontal, system-level archi-
tecture that distributes computing, storage, control, and networking functions closer to the
users along a cloud-to-thing continuum.” Based on this definition, fog computing is seen
as an extension of cloud computing where the computing resources are spread in different
locations close to the data producers and users within a large geographical coverage. Fog
computing should have all the characteristics of cloud computing, such as virtualization,
service models, and efficiency. To conclude these two definitions from Cisco and OpenFog,
they share a similar concept: computing resources are provided between end users and
cloud data centers to reduce the end-to-end latency of applications. We compare the main
differences between fog computing and cloud computing in Table 2.1.

The main ideas of fog computing and edge computing are similar in that both of them
address the latency issues between end users and cloud data centers. However, there are
still two key differences between these two concepts. First, fog computing includes cloud

43

Chapter 2 – Background

Internet

Cloud
Layer

Edge
Layer

Internet

Fog
Layer

Figure 2.2 – High-level architecture of fog computing.

computing to define a complete computing continuum, whereas edge computing excludes
cloud computing as an independent architecture. Second, the structure of fog computing
is hierarchical, combined with cloud, fog, and edge devices, while edge computing usually
involves a flat structure with fewer layers [65].

2.2.1 Fog Computing Architecture

Figure 2.2 illustrates a typical high-level fog computing architecture, which includes
edge, fog, and cloud layers.

(1) Edge layer: This layer, also called the device layer, is the bottom layer in fog
computing. The edge layer contains different types of devices such as IoT devices,
sensors, mobile phones, smart vehicles, and other endpoints that can connect to the
Internet. These devices generate or collect data, and send them to the upper layer
for additional processing, such as analysis and decision-making. To send data, the
methods of accessing the network are often wireless using protocols, such as Wi-Fi,

44

2.2. Fog Computing

cellular network (LTE, 5G), and Long Range Wide Area Network (LoRaWAN) [18],
[67].

(2) Fog layer: This layer is composed of computing resources located near the data
sources outside traditional cloud data centers. These resources may potentially cover
a very large region, such as a country and a continent. Moreover, fog servers often
have limited computational power. For example, Raspberry Pi single-board com-
puters are often used to build fog clusters [68]–[71]. Additional devices can also join
the system and provide computational power, such as drones [72] and vehicles [73],
which can also serve as part of the fog infrastructures. Applications that want to
execute close to their end users will deploy in this layer.

(3) Cloud layer: This layer is made up of one or more powerful cloud data centers. Each
data center consists of high-performance servers, high-speed network connections,
and high-capacity storage. These computing resources can be used for applications
that require reliability and high performance. Since these cloud data centers are
physically far from end users, this layer can deploy the non-latency-sensitive part of
fog applications.

2.2.2 Fog Computing Applications

The emergence of fog computing paradigms presents new opportunities to serve end
users in close proximity and process data from sources outside traditional on-premise cloud
data centers. The main idea of this design is to improve the user’s Quality of Experience
(QoE), especially for those applications that are not compatible with traditional cloud
computing deployment [7].

Latency-sensitive applications require low end-to-end latency between users and appli-
cations. For example, humans have a low tolerance for delays or inconsistencies. Therefore,
applications such as virtual reality and 360-degree video streaming need an end-to-end
round-trip latency under 20 milliseconds [8]. Using a distributed fog infrastructure can
reduce latency to meet the needs of latency-sensitive applications.

Fog computing resources located close to end users can also bring benefits to appli-
cations such as video surveillance. These applications produce large volumes of data and
require broad network bandwidth to transmit these data to cloud data centers for pro-
cessing. By using fog computing, processing can take place in closer infrastructures, which
effectively minimizes the volume of data transmitted to the cloud.

45

Chapter 2 – Background

Although web applications usually do not require ultra-low latency between end users
and applications, as mentioned above, excessive latency for end users may reduce not only
the profit but also the traffic. Improving the user experience is one of the main goals of fog
computing. These fog infrastructures can be used for web content delivery and caching,
such as static items (web pages, images, and videos), as well as application services [74],
[75], to reduce end-to-end latency.

Several works have applied this distributed computing paradigm to different fields,
including the fields of transportation [73], [76], smart city [77], [78], agriculture [79], [80],
and entertainment [81].

2.2.3 Fog Computing Challenges

Fog computing addresses the limitations of cloud computing, such as high latency and
long-distance network transmission. However, to fully realize the fog computing potential,
there remain challenges that need to be tackled. We discuss each point as follows:

(1) Computing resource constraints: Traditional cloud data centers are composed
of many powerful servers, massive volumes of storage, and stable networks. Instead,
fog infrastructures are equipped with potentially weak servers, small storage, and
unstable networks. This challenge requires methods to handle workloads efficiently
within these limits, making sure that users can still have a similar user experience
to cloud computing. We discuss this constraint further in Section 2.3.

(2) Scalability challenges: Fog computing widely distributes fog infrastructures to
strategic locations near the end users and data sources. These infrastructures may
cover a very large region, such as a city, a country and even a continent, and may
therefore be composed of a very large number of computing nodes. Maintaining a
scalable fog platform demands a robust framework with a strong orchestrator to
govern the fog resources as well as handle many functions, such as deployment,
scheduling, and monitoring, which are utilized by different users. A fog platform
may need to handle a large number of users or administrators. Therefore, it is
crucial to deal with the multi-tenancy challenge that users may have from different
departments or even organizations. Additionally, the network traffic for management
with a large number of infrastructures in the platform is also an issue that needs to
be taken into account. We discuss this challenge in Section 2.4.

46

2.3. Virtualization Technology: Virtual Machines and Containers

(3) Security and privacy issues: Cloud data centers implement different security
measures to protect cloud users. Their centralized design makes it easier for CSPs
to build their security ecosystem, which includes physical and network security since
all the computing resources are in the same location. In centralized data centers,
physical infrastructures can be secured by surveillance cameras and security guards,
and the network can be protected by specifically designed machines, such as net-
work firewalls and Intrusion Prevention Systems (IPSs) [82], [83]. In contrast, fog
computing is a geographically distributed architecture, which makes security and
privacy issues more challenging. Distributed fog infrastructures may be vulnerable
to physical tampering or theft. Network protection in fog computing may require
the use of distributed firewalls or IPSs rather than a single machine. To ensure data
privacy, a centralized data center makes it easier to precisely locate data and com-
putation. However, distributed fog resources within a single fog platform may be
located in different countries with different data compliance regulations.

This thesis aims to address the second point mentioned above, which is the scalability
challenge in geo-distributed fog computing. Scalability is a key concern in this environment
that enables the fog platform to efficiently handle increasing infrastructures, workloads,
users, and management traffic. As a result, designing frameworks to enable the evolution
of scalable fog computing platforms is the main objective of this thesis.

2.3 Virtualization Technology: Virtual Machines and
Containers

Virtualization is a key technology that enables multiple users to share computing re-
sources in a physical server without interfering with each other. By doing this, virtualiza-
tion improves computing resource utilization and facilitates functions such as on-demand
scaling [84]. There are two main types of virtualization for computing: hardware virtualiza-
tion and operating system virtualization [2]. While numerous virtualization technologies
also exist for network or storage, they fall outside the scope of this thesis and will not be
discussed here.

Hardware virtualization, also called hypervisor-based virtualization, is a technology
to run multiple Virtual Machines (VMs) in a single physical machine [2], [85]. As shown
in Figure 2.3(a), each of the VMs has its own virtual computing resources, operating

47

Chapter 2 – Background

system, and applications, which provide the same user experience as a physical server.
For example, users can install any applications in a VM or use any kind of operating
system. To manage the computing resources of VMs, a hypervisor or Virtual Machine
Monitor (VMM) is required. The hypervisor allocates resources to each VM and manages
the scheduling between VM resources and the physical hardware. Although a VM has its
own virtual computing resources, the execution of computing tasks is carried out by the
physical hardware. Well-known hypervisors include Microsoft Hyper-V 1, VMware ESXi 2,
Xen 3, and VirtualBox 4.

Another type of virtualization is Operating System (OS) virtualization, also known
as containerization. It is an approach that encapsulates an application, along with its es-
sential libraries, dependencies, and execution environment, within a container image [2],
[85]. Containers present the characteristics of portability and isolation. By using the same
image, applications can have a consistent execution in different computing environments.
Different from VMs, containers rely on a shared image registry such as the Docker Reg-
istry [86], which allows users to easily download application images and run them in any
environment equipped with the container runtime. Container isolation in the same ex-
ecution environment is provided through the use of the Linux kernel features, such as
namespaces and control groups (cgroups) [87]–[89]. Well-known container technologies
include Docker 5, LXC 6, and Podman 7.

Although VMs are the backbone of centralized cloud computing architecture, the com-
puting resources of fog infrastructures are often limited and geographically distributed
compared to cloud data centers. Using VMs to deploy applications in this type of ma-
chine is very challenging. VM-based applications include applications related to software,
dependencies, and data and contain an entire guest OS, which potentially consumes sig-
nificant amounts of computing resources. This situation leads to high overhead for VMs,
which might not be acceptable on constrained fog devices. Moreover, this overhead makes
it hard to scale the number of VM-based applications per server. VM image sizes are
usually large also due to the guest OS, often reaching into the gigabytes [74], [90]. Using
VMs in this context may also cause an increase in the launch time of applications to

1. Microsoft Hyper-V - https://reurl.cc/dLYLAg
2. VMware ESXi - https://reurl.cc/1393qV
3. Xen - https://reurl.cc/g4d4EN
4. VirtualBox - https://reurl.cc/orjrAj
5. Docker - https://reurl.cc/eLrlXx
6. LXC - https://reurl.cc/RWNGvr
7. Podman - https://reurl.cc/VN9O8R

48

https://reurl.cc/dLYLAg
https://reurl.cc/1393qV
https://reurl.cc/g4d4EN
https://reurl.cc/orjrAj
https://reurl.cc/eLrlXx
https://reurl.cc/RWNGvr
https://reurl.cc/VN9O8R

2.3. Virtualization Technology: Virtual Machines and Containers

Physical Machine

CPU Memory Network Disk

Host OS (Linux, Windows...)

Hypervisor (KVM, Hyper-V...)

VM
APP

Guest OS
APP APP

VM
APP

Guest OS
APP APP

...

(a) Hardware virtualization

Physical Machine

CPU Memory Network Disk

Host OS (Linux)

Container Runtime (Docker, rkt...)

...Container
APP

Container
APP

(b) OS virtualization

Figure 2.3 – Comparison of hardware virtualization (a) and OS virtualization (b) archi-
tectures.

serve users, which creates significant delays in fog computing, whereas the goal of fog is
to provide a better user experience.

To effectively address the challenges related to performance and scalability encoun-
tered with VMs in fog computing environments, OS virtualization offers a more suitable
solution. The main reason is the lightweight nature of containers, which do not need to
contain a full guest OS, as illustrated in Figure 2.3(b). This characteristic ensures low
consumption of computing resources, which is especially important in constrained fog in-
frastructures. Furthermore, the image sizes can be greatly reduced as they do not include
a full OS. This reduction of the size allows containers to have faster startup time than
VMs. Typically, it takes a matter of seconds or less for a container to start and turn ready
status to handle user requests [74], [88]. Additionally, multiple solutions exist to further
reduce the launch time of a container [69], [91]–[93]. As a result, container-based applica-
tions have a fast launch time and are able to scale the number of applications to a higher
degree across geo-distributed fog devices, which is crucial for adapting to the dynamic
demands in fog computing scenarios. Many works use containers to enhance the resource
utilization efficiency and reduce service latency within fog computing environments [18],
[94]–[97].

Because each physical machine may run a large number of containers, fog infrastruc-
tures are requested to manage thousands or even tens of thousands of containers. Man-
aging these amounts of containers spread across numerous machines in a fog computing

49

Chapter 2 – Background

environment requires a robust orchestrator to handle deployment, scaling, and network-
ing seamlessly and efficiently. Various container orchestrators have been proposed, such as
Docker Swarm [98], Apache Mesos [99], and Kubernetes [27]. Among these orchestrators,
Kubernetes has now become the most widely-used platform [100]–[102].

On the other hand, there is still no standardized platform for fog computing that
can support all its specific requirements, especially regarding scalability. Therefore, this
thesis considers containerization as a viable virtualization solution for geo-distributed fog
computing environments. Owing to the fact that Kubernetes is currently the de-facto
standard for cloud scenarios, we choose it as the preferred orchestrator for managing
containers and clusters, aiming to explore ways to meet the scalability requirements of
fog computing. Kubernetes has been adopted in many academic works for this type of
projects [18], [71], [103]–[105].

2.4 Kubernetes

Kubernetes is an open-source container orchestrator, often abbreviated K8s, which
was initially designed by Google. Later, Kubernetes was donated to the Cloud Native
Computing Foundation (CNCF). In 2018, CNCF accepted Kubernetes at the “gradu-
ated” maturity level, which certifies that Kubernetes is a stable and production-ready
platform [24]. As an open-source project, it has attracted around 3,600 contributors and
is very active in releasing new versions [106]. This level of activity can speed up bug fixes
and feature deployment to accommodate the rapidly evolving needs of its users and can
keep Kubernetes at the forefront of container orchestration technologies.

Kubernetes can be used to automate the deployment, scaling, and management of
containerized applications in public or private cloud infrastructures. It is deployed on a set
of computing nodes that constitute a cluster. Each Kubernetes cluster is composed of two
roles: control plane and worker node. The control plane is in charge of managing worker
nodes and containers. To provide fault tolerance and high availability in a production
environment, the platform administrator can also install multiple control planes that
are distributed across several machines. Moreover, each cluster also needs at least one
worker node to run the containers. Kubernetes relies on container runtimes to execute

50

2.4. Kubernetes

Control Plane

API Server

etcd

Scheduler

Controller
Manager

Worker Node 1

Kubelet Kube Proxy

Container Runtime
Pod

Container

Container

Pod

Container

Container

Worker Node X

Kubelet Kube Proxy

Container Runtime
Pod

Container

Container

Pod

Container

Container

...

Figure 2.4 – Simplified Kubernetes architecture.

the containers, such as containerd 8, CRI-O 9, Docker Engine 10, and Mirantis Container
Runtime 11 on all nodes in a cluster.

2.4.1 Architecture

Figure 2.4 presents a simplified view of the Kubernetes architecture. The control plane
includes four main components: API server, scheduler, etcd, and controller manager.

(1) API server: API server exposes the Kubernetes API to the system administrators
and other components. The Kubernetes API provides a standard interface to interact
with the Kubernetes platform and perform tasks such as deploying and managing
applications. In the Kubernetes API, a resource is an endpoint that stores API
objects. For example, the built-in Pod resource contains a collection of Pod objects
(we discuss the concept of Pod in Section 2.4.1.1). Moreover, it is possible to launch
multiple API servers and enable load balancing to distribute requests across these
API servers in a Kubernetes cluster.

8. containerd - https://reurl.cc/orWqkg
9. CRI-O - https://reurl.cc/bD0yQE

10. Docker Engine - https://reurl.cc/G4Wl8A
11. Mirantis Container Runtime - https://reurl.cc/M4qGp3

51

 https://reurl.cc/orWqkg
 https://reurl.cc/bD0yQE
 https://reurl.cc/G4Wl8A
https://reurl.cc/M4qGp3

Chapter 2 – Background

(2) Scheduler: Scheduler is responsible for monitoring newly initiated Pods without
an assigned worker node and determining an appropriate worker node for their
execution. A Pod can be scheduled using different indicators, such as affinity/anti-
affinity specifications, policy constraints, and hardware requirements.

(3) etcd: etcd is a key-value data store with features such as strong consistency, dis-
tributed design, and high efficiency. The task for etcd is to store all the objects in a
Kubernetes cluster. In a production environment, etcd is usually deployed in an etcd
cluster with an odd number of servers such as 3 and 5 to ensure high availability. This
is because etcd is based on the Raft [107] algorithm to keep data consistent across
multiple etcd, which requires a majority of members to accept updates to the etcd
cluster status. Similar to Kubernetes, etcd is also a CNCF graduate project [108].

(4) Controller manager: Controller manager oversees the different controller pro-
cesses in a Kubernetes cluster. It comprises a series of controllers, such as node
controller, job controller, and deployment controller. Each controller monitors the
status of their target Kubernetes resources through the API server and ensures that
the actual resource status converges toward the desired status.

The second role in Kubernetes is the worker node, which is responsible for running
the containerized applications placed by the scheduler in the control plane. Each worker
node executes three main elements: Kubelet, Kube-proxy, and container runtime.

(1) Kubelet: Kubelet is an agent in charge of managing the lifecycle of containers
within a worker node. Kubelet continually pulls the latest information about the
desired status from the API server and ensures that the status of corresponding
containers in the worker node matches their PodSpec. A PodSpec is a definition of
the intended behavior of the Pods. In addition to pulling information, Kubelet also
periodically reports the status of the worker node and Pods to the API server.

(2) Kube-proxy: Kube-proxy is tasked with setting up network communication for
Pods in the Kubernetes cluster. It runs in each worker node and manages the network
rules to allow Pods to communicate with each other internally within the cluster
and with the external world.

(3) Container runtime: Container runtime is the component that allows Kubernetes
to actually run containers. As motioned above, there are several runtimes for Ku-
bernetes so that the platform administrator can choose the preferred one to deploy
in their cluster.

52

2.4. Kubernetes

Several add-ons can also be deployed in a Kubernetes cluster to provide cluster-level
functionalities, including Domain Name System (DNS) services, network plugins, and
monitoring systems. In this thesis, one of the contributions focuses on the scalability of
the monitoring system, especially for the Prometheus monitoring system. This topic is
discussed in Section 2.4.5. The platform administrator can select from various CNCF
projects to fulfill specific needs. These projects can be installed easily through package
managers such as Helm 12.

2.4.1.1 Workloads

In the Kubernetes ecosystem, the smallest execution unit is a Pod. A Pod is defined
as a group of one or more containers that are scheduled on the same worker node and
managed together by Kubernetes. The most frequent use case uses a single container
per Pod [109]. In the case of containers that need to work together intensively, the users
can run multiple containers in a single Pod. This is because containers in a Pod share
computing resources, dependencies and volumes, and can communicate with each other
through a local host using different port numbers.

To enable both high availability and application scalability, Kubernetes offers different
types of built-in resources for managing Pod replication efficiently, including Deployment,
StatefulSet, and DaemonSet.

Deployment resource is designed to manage stateless applications, such as web servers
and API backends, that do not need to store data generated by end users. The adminis-
trators first describe the desired state of Pods in a YAML or JSON file. The Deployment
controller then watches the running application state and continually ensures that the
status between the desired and the observed state is consistent. For example, the admin-
istrators can change the desired number of Pods anytime. The Deployment controller will
automatically handle the related operations, such as creating and deleting Pods. This
resource can be used to quickly scale the number of replicas up or down or automatically
replace crashed Pods.

StatefulSet resource is utilized to handle stateful applications such as databases and
data stream processing systems that require a stable identity or persistent storage for
storing data. StatefulSets are similar to Deployment resources in that the administrators
provide a YAML or JSON file with desired specifications. Different from a Deployment
resource, Pods in a StatefulSet can be deployed and scaled in a strict sequential order.

12. Helm - https://reurl.cc/dLRKek

53

https://reurl.cc/dLRKek

Chapter 2 – Background

This characteristic is particularly crucial for micro-services that have a specific processing
order.

DaemonSet resource is typically used when administrators want to deploy applications
to all nodes. The DaemonSet ensures that all nodes in a Kubernetes cluster will run the
application, which is for instance suited for log collection and monitoring applications.

In addition to the standard built-in resources, Custom Resource Definitions (CRDs)
can be used to create new types of resources, as we discuss next.

2.4.1.2 Custom Resource Definitions (CRDs) and custom Kubernetes con-
trollers

Custom Resource Definitions (CRDs) are a powerful mechanism for extending the Ku-
bernetes API. It allows administrators to create and manage new Custom Resources (CRs)
beyond the default built-in resources. When new CRDs are deployed in a Kubernetes clus-
ter, the API server creates new RESTful paths and handles the whole lifecycle for these
CRs. Users can interact with them in the same way as with built-in resources. CRs are
increasingly being used to implement core functionalities within the Kubernetes frame-
work [110]. Moreover, this concept has been used in several Kubernetes-related projects.
For example, ManifestWork is a CR used to manage Kubernetes resources across multiple
Kubernetes clusters in the Open Cluster Management open-source project [111].

The controller pattern in Kubernetes is used to run a control loop, which repeatedly
tracks the current status of objects [112]. A controller continually makes sure its actual
state is the same as the desired status specified by the user. Without the custom con-
troller designed to execute actual logic for a CR, the CR would only store objects in the
Kubernetes cluster and only be used to store and retrieve structured data. It is therefore
necessary to run a custom controller to manage the CR and continuously synchronize and
update its status.

Custom controllers, also called operators, can be designed following the control pattern
by using the Monitor, Analyze, Plan, and Execute over a shared Knowledge (MAPE-K)
principle or any domain-specific logic [113], [114]. This can be done by frameworks in
different coding language, such as Kubernetes Operator Pythonic Framework (Kopf) 13,
Java Operator SDK 14, and Kubebuilder 15.

13. Kopf - https://reurl.cc/kr4aNx
14. Java Operator SDK - https://reurl.cc/YVM0Wn
15. Kubebuilder - https://reurl.cc/OG2jpr

54

https://reurl.cc/kr4aNx
https://reurl.cc/YVM0Wn
https://reurl.cc/OG2jpr

2.4. Kubernetes

2.4.1.3 Pull versus Push Management Model

In this thesis, the definition of the push management model is that the control plane
watches resource APIs and pushes the resource manifests to the worker nodes. This push
action is done by the control plane directly accessing each worker node and managing
all workloads, which is a simple method to manage resources in a cluster. It has some
advantages such as faster propagation of changes across the cluster. However, the push
model may have scalability challenges because the central controller manages all the
resources in a cluster and thereby becomes a bottleneck.

In contrast to the push model, the pull model means that an agent deployed in each
worker node periodically monitors the resource APIs defined in the control plane, fetches
the resource manifests and applies them to its corresponding worker node. By offloading
management tasks to agents distributed on each worker node, the control plane can reduce
management pressure, which improves system performance and then increases scalability.
As a result, the pull model is considered more robust and scalable.

2.4.2 Scalability

A single Kubernetes cluster contains many worker nodes with many Pods each. It
would be very challenging for the control plane to directly operate all the resources in a
large cluster [115]. To address this issue, Kubernetes chose the Pull model to manage the
cluster. Kubelet pulls the desired state of the Pods from the API server and makes sure
that the corresponding Pods have the same status as desired.

However, a single Kubernetes cluster still has size limitations to keep performance and
stability. The Kubernetes documentation suggests that the size of a single Kubernetes
cluster should not exceed a specified limit: each worker node should not run more than
110 Pods, and the whole cluster should not exceed 150,000 Pods. Moreover, the number
of worker nodes should remain under 5,000 nodes [116].

These scalability limitations may not allow a single-cluster platform with the size of a
very large geo-distributed fog computing platform. To overcome issues related to the scal-
ability of a single Kubernetes cluster, deploying multiple clusters has emerged as a viable
solution. The platform can then be scaled by launching several clusters and managing
them together. However, managing these clusters efficiently is a difficult challenge. As a
result, it quickly becomes desirable to organize the multi-cluster platform as a “federa-
tion” of multiple independent clusters, each of which is in charge of its own resources and

55

Chapter 2 – Background

components. By doing so, the administrators are able to manage the resources of multiple
independent clusters as a single homogeneous cluster.

2.4.3 Federations

The emergence of the Multicluster Special Interest Group (SIG) [117] from the Kuber-
netes community aims to solve the issues of multi-cluster administration and application
management in multiple Kubernetes cluster environments. The SIG proposes different
APIs to deal with the challenges in this environment. For instance, the goal of the About
API [118] is to enable the identification of clusters within a ClusterSet (a group of clus-
ters), and the purpose of the Work API [119] is to deploy workloads across different
clusters within a ClusterSet.

In addition to the above APIs, the Multicluster SIG presents a federation solution
called Kubernetes Cluster Federation (KubeFed), which provides application deploy-
ment and resource management in multiple Kubernetes cluster environments [120]. The
KubeFed platform is typically organized into one management cluster and multiple mem-
ber clusters. The management cluster determines which member clusters will handle each
newly deployed Pod. Users can manage multiple Kubernetes clusters from a single host
cluster with the KubeFed control plane installed.

KubeFed extends Kubernetes with CRDs to offer abstractions such as Federated-
Namespaces and FederatedDeployments for managing multi-cluster federated resources.
It also introduces three concepts for these resources: Template, Placement, and Override.
Template specifies the desired state of the federated resources across all member clusters.
Placement defines the member cluster where federated resources should be deployed. If
this field is empty, KubeFed will not be distributed to any cluster. Override allows the
user to customize the configuration for specific member clusters. For example, it can be
used to change the number of replicas for a particular cluster. Based on these abstractions
and concepts, users can deploy their applications to different Kubernetes clusters with a
number of Pods and where they should run that under KubeFed control. We discuss
KubeFed in detail as well as other federation frameworks in Section 3.1.

2.4.4 Multi-Tenancy

By default, Kubernetes is designed for environments where all users trust each other.
However, similar to sharing a server with virtualization technology, a Kubernetes cluster

56

2.4. Kubernetes

may need to support many different users to deploy their applications and services thereby
saving costs and simplifying administration.

Supporting multi-tenancy and isolating the workloads of multiple tenants can be re-
alized by making each user deploy applications in a separate Namespace and using Role-
Based Access Controls (RBAC) to restrict each user in their Namespace and to scope
security policies to specific Namespaces [121]. This method is considered a “soft” form of
isolation as all tenants share the same control plane, and appropriate configurations are
required to isolate their data planes.

On the other hand, “hard” tenant isolation is more difficult to achieve. One possibility
is to create a separate Kubernetes cluster for each tenant so that both the control and
data planes are totally separated from each other. However, the cost of launching multiple
clusters is high, and it may be hard to manage these clusters.

Another method for hard isolation is using virtual control planes in a single Kuber-
netes, where each tenant has their own control plane. For example, each tenant may store
metadata in separate databases, which prevents data leakage between tenants. In terms
of data plane isolation in this context, there are two different designs: (i) Tenants utilize
a shared data plane to enhance resource utilization while isolating Pods through Kuber-
netes Namespaces. (ii) Each virtual control plane is assigned its own worker nodes, which
provide stronger isolation for user applications.

The isolation can be only for the data plane by reserving specific servers within a
Kubernetes cluster for tenants. Each tenant uses the same control plane and deploys
the applications to their own worker nodes. We discuss multi-tenancy frameworks in the
Kubernetes environments further in Section 3.1.3.

2.4.5 Monitoring

Monitoring is an essential functionality for modern computing systems to keep the
system healthy and improve its resource utilization. The demand for monitoring becomes
greater with the increasing complexity of systems, which requires monitoring of large
numbers of entities ranging from bare metal machines to software objects, such as VMs
and containers.

Kubernetes is a complex system that is composed of many components, such as worker
nodes, Kubernetes resources, networking, and controllers. Monitoring these objects not
only allows real-time understanding of their status but also traces the history data for
debugging or risk prediction. Moreover, accurate monitoring data is necessary to efficiently

57

Chapter 2 – Background

schedule applications on a set of available resources. However, monitoring a great number
of components is very challenging. For example, monitoring may produce a huge amount
of data that needs to be stored in the cluster, which requires sufficient storage space. In
addition, this amount of data may waste the network bandwidth to transfer them within
the Kubernetes cluster.

2.4.5.1 Prometheus

Prometheus is an open-source monitoring and alerting software. Similar to the Ku-
bernetes project, it is also a graduate project from CNCF, which shows Prometheus is
stable for production and has great potential to integrate with modern orchestrators such
as Kubernetes [25].

The Prometheus ecosystem consists of three main components: Prometheus server,
exporters, and alertmanager. The Prometheus server is responsible for scraping moni-
toring data, and storing them in a time-series database. The term “scrape” represents
the action by Prometheus of fetching metrics from targets. The administrator can set a
scrape interval to periodically pull the monitoring data. The default scrape interval is 60
seconds, which means that the Prometheus server scrapes the metrics every 60 seconds.
The administrator can query these stored metrics using the Prometheus Query Language
(PromQL). PromQL is designed to apply mathematical operations and data aggregation
functions to time-series data. Prometheus can also be integrated with visualization tools
such as Grafana 16.

Prometheus uses HTTP to pull metrics values from remote targets. For monitoring
applications or services that do not have native Prometheus metrics endpoint, exporters
can be used for converting metrics from target systems into a format that Prometheus
can pull. Prometheus officially maintains several exporters such as Node-exporter [122].

Alarms are another important part of a good monitoring system. In Prometheus, the
tasks of scraping data and issuing alarms are separated into two components. The admin-
istrator can define alerting rules in the Prometheus server and let the server periodically
evaluate the rules. When the alerting conditions are met, the Prometheus server will push
alerts to the alertmanager. The alertmanager handles these alerts and sends the alarm
messages to the users.

In addition to deploying Prometheus in a single Kubernetes cluster, Prometheus also
provides a function called Federation. As shown in Figure 2.5, this feature allows a

16. Grafana - https://reurl.cc/eL0Y1L

58

https://reurl.cc/eL0Y1L

2.4. Kubernetes

Global-view cluster

Kubernetes cluster 1 Kubernetes cluster X
...

Pull metrics

Figure 2.5 – Architecture of Prometheus Federation.

Prometheus server to gather monitoring data from other Prometheus servers, which can
therefore build a global-view cluster and scale up to monitor multiple Kubernetes clusters.
By querying the monitoring metrics from the global-view cluster, the administrators can
easily monitor the status of other Kubernetes clusters instead of accessing each cluster
individually.

In Section 3.2, we explore in detail the limitation of Prometheus Federation for mon-
itoring multiple Kubernetes clusters and review solutions proposed for fog computing
environments in the scientific literature.

59

Chapter 3

STATE OF THE ART

Cloud computing has received much attention from both academic and industrial
communities worldwide. To meet regional requirements for applications or to avoid a
single vendor lock-in, multi-cloud deployment is a powerful solution. Users can launch
applications by leveraging different cloud providers in various locations. However, the
cloud data centers may remain far from the end users, leading to latency issues.

Fog computing further extends the cloud computing concept with additional resources
located closer to the end users. It has received much attention from academia in the last
few years [123]. Many prior studies present different facets of fog/edge computing, includ-
ing placement of jobs and services [124], service caching [74], [75], seamless application
migration [125], [126], and supporting data stream processing [127]. These works are based
on a single geo-distributed cluster, which will necessarily face scalability problems. To
handle this issue, we now witness an increasing adoption of geo-distributed multi-cluster
deployments. Some works focus on job scheduling [128], whereas others address resource
management [129] and fault prediction [130].

In turn, the rise of multi-cluster federations for fog computing has spurred the develop-
ment of various control plane solutions to manage and orchestrate federated Kubernetes
environments. Multi-tenancy in federated Kubernetes clusters is also important to opti-
mize resource utilization and ensure isolation among multiple users. We discuss the related
work on multi-cluster federation and multi-tenancy frameworks designed for Kubernetes
environments in Section 3.1.

Monitoring is an essential function in modern cloud data centers, which can be used
to provide input for a large number of management systems such as scheduling. Fog
computing has different characteristics compared to cloud computing, such as unstable
network connections and geo-distribution, which create new monitoring challenges in this
context. We explore the existing literature and tools in monitoring for fog computing
environments in Section 3.2.

61

Chapter 3 – State of the Art

3.1 Multi-Cluster Federation Frameworks and Multi-
Tenancy Frameworks

In this section, we first review the various federation frameworks proposed for Kuber-
netes. We then explore the solutions for multi-tenancy within Kubernetes environments.
Lastly, we discuss the differences among these approaches and position our contributions
in this context.

3.1.1 KubeFed and KubeFed-Related Systems

Kubernetes Cluster Federation (KubeFed) was the first system to support seamless
application deployment and resource management in multiple Kubernetes cluster en-
vironments [120]. With the KubeFed control plane deployed on a Kubernetes cluster,
users can centrally distribute and manage workloads across various Kubernetes clus-
ters. In the KubeFed design, the workloads can be propagated to the different clusters
by using two fields in a YAML file of a federated resource: spec.placement.clusters and
spec.placement.clusterSelector. The administrators can manually select one or more clus-
ters that should run the applications by using the spec.placement.clusters field. They
can also utilize the spec.placement.clusterSelector field to let the system choose among
clusters with a specific label. These manual and limited policy-based scheduling methods
make KubeFed unable to scale to manage the hundreds or thousands of clusters with
a large number of workloads that we expect to encounter in large-scale fog computing
environments. Importantly, KubeFed does not integrate with a monitoring solution to
obtain the real-time resource status in the member cluster, so it propagates workloads to
target clusters without any prior checks on resource availability in the chosen clusters.
This fails to manage resources efficiently, which may cause resource wastage and fragmen-
tation. The KubeFed project is now retired and is no longer maintained or under active
development [120].

Despite KubeFed limitations, the potential of using it to design geo-distributed fog
computing environments was demonstrated in [131]. The authors compare two scenarios:
the first one consists of a single Kubernetes cluster that manages an entire infrastructure
with worker nodes located across different regions. The second scenario separates these
infrastructures into independent Kubernetes clusters and federates them together using
the KubeFed framework. With a cluster federation, the platform achieved a more scalable

62

3.1. Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks

and resilient system to face network faults, which is ideal for managing the complexities of
a highly distributed scenario such as fog computing. However, the federation framework
remains based on KubeFed, which therefore faces the same challenges as KubeFed.

To address the limitations of KubeFed, multi-cluster Kubernetes (mck8s) proposes to
extend the KubeFed framework with resource-based automated placement, multi-cluster
horizontal Pod auto-scaling, and cloud bursting [31]. It bases its placement decisions on re-
source utilization information, which reduces the pending Pods from 65% to 6% compared
to KubeFed when executing the real-world Google cluster trace [132]. When the available
computing resources are not sufficient to handle the full workload with a fixed number
of member clusters, mck8s also provides a Cluster Provisioner and Cluster Autoscaler
(CPCA) to automatically create new Kubernetes clusters in cloud data centers and join
them in the federation. Moreover, mck8s integrates several open-source tools such as Cil-
ium [133] and Prometheus [32] to provide additional functionality, including multi-cluster
network discovery, global load balancing, and monitoring. Although mck8s addresses part
of the issues from the KubeFed framework, there remain some issues with KubeFed. For
example, KubeFed uses a Push model where the management cluster directly controls the
workloads and member clusters, putting all management tasks on a single cluster. As a
result, the frameworks based on KubeFed may be unable to scale to manage the hundreds
or even thousands of clusters commonly required in certain multi-cluster scenarios such
as fog computing. We further discuss the superiority of the Pull model compared to Push
in Section 3.1.4.1.

3.1.2 Other Federation Solutions and Frameworks

To avoid a single point of failure and reach the scalability requirement of edge cloud
use cases, the decentralized Kubernetes Federation Control Plane leverages distributed
federated databases with Conflict-free Replicated Data Types (CRDTs) to maintain the
status of resources across different Kubernetes clusters [134]. To suit this design, the
system also relies on a distributed algorithm rather than a central host cluster to schedule
the resources. However, this work makes the assumption that all the clusters are managed
by a single entity, which may cause issues such as limited service coverage in practical
fog/edge cluster deployment.

Karmada project offers solutions for managing applications across multiple Kubernetes
clusters [135]. In contrast to other frameworks, it simplifies multi-cluster application man-
agement by providing a series of custom control components. Karmada is composed of

63

Chapter 3 – State of the Art

the Karmada API server, Karmada controller manager, Karmada scheduler, and Karmada
agent. Detailed information for the main components is listed below:

— Karmada API server: This component can serve as both the interface of the
control plane for Karmada and of its underlying Kubernetes, which exposes the
APIs of Karmada and Kubernetes at the same time. To provide operations that are
identical to the original Kubernetes, the Karmada API server is itself based on the
implementation of the Kubernetes API server.

— Karmada controller manager: This component includes various controllers for
different purposes that Karmada needs. The goal of these managed controllers is
to monitor Karmada resource objects and communicate with the API servers of
the underlying clusters to create related Kubernetes resources. Users can enable or
disable controllers based on their requirements.

— Karmada scheduler: This component schedules the standard Kubernetes resources
and CRD resources to the member clusters. The scheduler determines which clus-
ters are available for the workload based on constraints and available resources. The
scheduler then scores and sorts the available clusters and binds the resources to the
most appropriate cluster.

— Karmada agent: Karmada supports both Push and Pull approaches to manage
multiple clusters and applications. The Karmada agent is deployed on member clus-
ters when using the pull model. This agent registers its representative member clus-
ter to the Karmada control plane and pulls the manifests from the Karmada control
plane to member clusters. It is also responsible for synchronizing the state of member
clusters and workloads to the Karmada control plane.

However, similar to previous work, Karmada does not take into account the scenario
of federate clusters managed by different organizations, which again limits the service
coverage in large-scale scenarios.

Liqo is an open-source project that allows dynamic and seamless federate multiple
Kubernetes clusters [136]. Liqo creates virtual node resources in the management clus-
ter using a so-called Virtual Kubelet [137]. After a Pod is scheduled to a virtual node,
the corresponding virtual kubelet creates a twin-Pod object in the member cluster for
actual execution. This design ensures that all behaviors are identical to those in a single
Kubernetes cluster when the administrator issues commands in the management cluster.
Moreover, Liqo allows multiple management clusters to manage the same member cluster

64

3.1. Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks

simultaneously. However, Liqo relies on a Push model, which arguably limits its scalabil-
ity. Moreover, all management clusters send their requests to a single shared API server
in the member cluster and store the related data in a single shared database, representing
only a soft version of workload isolation between different management clusters.

Open Cluster Management (OCM) presents a management model inspired by the orig-
inal design principles of Kubernetes [28]. OCM separates multi-cluster operations into two
phases: computation/decision (performed in the management cluster) and execution (per-
formed in the member clusters). The management cluster stores prescriptions (i.e., the de-
sired state of applications that users want to deploy in member clusters), whereas member
clusters periodically actively Pull the latest prescriptions from the management cluster,
ensuring that applications in the member cluster are consistent with the expected state.
This design reduces the load on the management cluster and makes OCM more scalable
than a push-based design. The placement module in OCM provides the ability to dynam-
ically schedule the workloads to a set of member clusters. The process involves two main
phases: Predicate and Prioritize, where clusters are selected based on hard requirements
and then ranked based on soft requirements such as computing resources. Moreover, OCM
also provides the addon framework for placement to extend the multi-cluster scheduling
capabilities. For example, users can implement a customized score provider to rank the
member clusters and schedule the workloads. In this thesis, we leverage OCM as our
federation framework due to its Pull architecture nature, modularity, and extensibility.
These features make it a scalable and flexible solution for our needs.

3.1.3 Multi-Tenancy Frameworks

In this section, we explore the multi-tenancy frameworks designed for Kubernetes
environments. We first discuss the soft tenant isolation solutions and then review the
hard tenant isolation frameworks.

3.1.3.1 Soft Tenant Isolation

By default, Kubernetes is designed for environments where all users trust each other.
Supporting multi-tenancy and isolating the workloads of multiple tenants can however be
realized by making each user deploy applications in a separate Namespace and by using
Role-Based Access Controls (RBAC) to restrict each user in their Namespace and to scope
security policies to specific Namespaces [121]. This method is considered a soft form of

65

Chapter 3 – State of the Art

isolation as all tenants share the same control plane, and appropriate configurations are
required to isolate their data planes. While original Kubernetes Namespaces are useful,
this method may be insufficient and inefficient for the complex needs of large organizations.
Stronger forms of isolation require different techniques, as described next.

Kiosk open-source multi-tenancy framework uses flat Namespaces to provide isolated
execution environments for tenant applications [138]. Kiosk defines different roles in in-
teracting with Kubernetes. Cluster Admin allows one to operate and manage cluster-wide
resources such as custom resources in the Kiosk framework (Account, AccountQuota,
and others). Each tenant maps to an Account, and each Account is scoped to a single
Namespace called a Space in Kiosk. This framework also provides AccountQuota, which
is similar to the Resource Quotas [139] function in Kubernetes, to limit resource usage
for Account. Contrary to regular Kubernetes Namespaces, each Kiosk user can only see
or interact with resources in their own Space. Kiosk provides a Template mechanism to
automatically deploy pre-defined resources described in a Template, such as network poli-
cies and Pod security policies in the designated Space. Although the Template mechanism
reduces management complexity, Kiosk’s flat Namespace approach may make it difficult
for cluster administrators to manage numerous Namespaces. Moreover, flat Namespaces
make it impossible to isolate several tenants in the same Namespace to accommodate
more tenants. The project have been archived by its owner in 2024 [138].

Another project named Capsule also leverages flat Namespaces as their multi-tenancy
solution [140]. Capsule improves the original Kubernetes Namespace management by
grouping multiple Kubernetes Namespaces into a tenant. This design allows cluster ad-
ministrators to manage multiple Namespaces more easily at once rather than setting
policies for each Namespace separately. Although this method addresses difficult manage-
ment issues, it remains a flat Namespace design that faces the same challenges mentioned
above.

Extending the flat Kubernetes Namespace structure may be realized using the Hier-
archical Namespace Controller (HNC) [141]. Hierarchical Namespaces allow one to apply
similar policies to multiple Namespaces. By default, Kubernetes role bindings operate at
the Namespace level, and each role binding must be created individually for each Names-
pace. HNC proposes sub-Namespaces to address this problem. The administrator can cre-
ate children Namespaces of another Namespace, and the lifecycle of each sub-Namespace
is bound to its parent. This design can reduce the complexity of Namespace management
and further isolate specific tenants in the same Namespace. However, this remains a soft

66

3.1. Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks

form of tenant isolation where all tenants share a single control plane, which may cause
security issues such as data leakage and cross-tenant attacks.

EdgeNet proposes another hierarchical Namespace architecture with a sub-Namespace
mechanism as a way to implement a multi-tenancy mechanism [142]. There are two main
differences between EdgeNet and HNC in terms of multi-tenancy: (1) EdgeNet can en-
force unique names for Namespaces, whereas HNC can not; and (2) EdgeNet provides
a more robust resource quota management system. For example, the HNC framework
may cause uneven resource quota allocation across sub-Namespaces because it does not
enforce quota setting at every level. In contrast, EdgeNet applies quotas uniformly across
the entire tenant hierarchy, preventing this issue. Moreover, EdgeNet supports a federa-
tion function which then introduces the Federation Manager to manage the deployment of
workloads from local clusters to remote clusters within a federated environment. EdgeNet
also presents a custom resource called Selective Deployment to target a specific node or
set of nodes based on specified geographic information to deploy workloads. However,
EdgeNet uses a shared control plane in the remote cluster, which again faces the security
issues mentioned above.

3.1.3.2 Hard Tenant Isolation

A simple way to implement hard tenant isolation is to create a separate Kubernetes
cluster for each tenant or to reserve specific servers within a Kubernetes cluster for specific
tenants [121]. This approach ensures that computing resources are dedicated to a single
tenant, which can prevent resource contention and security vulnerabilities. However, it
contradicts our goal of designing a shared fog platform for any number of tenants.

To reduce the operational complexity and cost of creating separate Kubernetes clus-
ters, the Kamaji framework runs individual Kubernetes control plane components in Pods
for achieving multi-tenancy within a single Kubernetes cluster [143]. Each tenant has its
own Kubernetes control plane and dedicated worker nodes to isolate from others. This
design enables centralized management of logical multiple Kubernetes clusters from a
single Kubernetes cluster. In addition, this isolation approach provides tenants with a
dedicated control plane that provides administrative privileges within their isolated envi-
ronment. However, since each tenant has dedicated worker nodes, this solution contradicts
maximizing computing resource utilization of cloud computing principals by sharing the
available servers between large numbers of tenants.

67

Chapter 3 – State of the Art

The Virtual Kubernetes Clusters (vCluster) project provides a fully functional virtual
cluster that runs on top of the Kubernetes cluster [29]. Each vCluster has its own control
plane and schedules all workloads into the same Namespace of its control plane in the host
cluster. Since each vCluster has its own API server and data store, this design provides
a strong form of isolation and reduces the risk of data leakage between the tenants of
different virtual clusters. Compared to the Kamaji framework, vCluster shares a pool
of worker nodes among multiple virtual clusters in the host cluster by default, keeping
resource usage efficient. Furthermore, the Kubernetes community has officially certified
the vCluster project as a compliant Kubernetes distribution [144]. In this thesis, we use
the vCluster project to handle multi-tenancy management, which is discussed in Section 4.

3.1.4 Discussion

Table 3.1 classifies the multi-cluster federation solutions and multi-tenancy frameworks
by comparing parameters including sync models, support for meta-federations, multi-
tenancy methods, isolation levels, and the presence or absence of certification.

3.1.4.1 Sync Models

KubeFed, mck8s, Liqo, and EdgeNet rely on the Push method to deploy applications
to member clusters, which can be unstable in the presence of transient network failures,
particularly in fog computing scenarios where network reliability can be a concern [145].
Moreover, the push model typically requires that the management cluster can access the
API server of each member cluster. This may be problematic because the API servers
may either be behind a firewall or not have a publicly accessible IP address.

As discussed in Section 2.4.1.3, the Pull-based methods that are used by Karmada and
OCM are usually considered more robust, scalable, and secure. Moreover, according to
the Karmada authors, the Push method is most suitable for deployment in public cloud
environments. In contrast, the Pull model is better for private cloud and edge-related
scenarios [146]. It provides better performance because the decentralized management
by a Pull agent within each member cluster reduces the load pressure of the centralized
control plane. In terms of each Pull agent is isolated in a separate member cluster, which
manages its resources independently. Therefore, we consider that the Pull architecture is
a better way to build large-scale fog computing platforms.

68

3.1. Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks

Table 3.1 – Comparison of multi-cluster federation and multi-tenancy frameworks.
Sy

nc
M

od
es

M
et

a-
Fe

de
ra

ti
on

s
M

ul
ti

-T
en

an
cy

M
et

ho
ds

Is
ol

at
io

n
Le

ve
ls

C
er

ti
fic

at
io

n

M
ul

ti
-C

lu
st

er
Fe

de
ra

ti
on

Fr
am

ew
or

ks
K

ub
eF

ed
[1

20
]

Pu
sh

+
/-

é
é

é
m

ck
8s

[3
1]

Pu
sh

+
/-

é
é

é

K
ar

m
ad

a
[1

35
]

Pu
sh

/P
ul

l

+
/-

(P
us

h
M

od
e)

é
(P

ul
lM

od
e)

é
é

Ë
C

N
C

F

Li
qo

[1
36

]
Pu

sh
Ë

Fl
at

N
am

es
pa

ce
So

ft
é

O
C

M
[2

8]
Pu

ll
+

/-
é

é
Ë

C
N

C
F

M
ul

ti
-T

en
an

cy
Fr

am
ew

or
ks

K
io

sk
[1

38
]

é
é

Fl
at

N
am

es
pa

ce
So

ft
é

C
ap

su
le

[1
40

]
é

é
Fl

at
N

am
es

pa
ce

So
ft

Ë
C

N
C

F

H
N

C
[1

41
]

é
é

H
ie

ra
rc

hi
ca

l
N

am
es

pa
ce

s
So

ft
é

E
dg

eN
et

[1
42

]
Pu

sh
Ë

H
ie

ra
rc

hi
ca

l
N

am
es

pa
ce

s
So

ft
é

K
am

aj
i

[1
43

]
é

é
Se

pa
ra

te
C

on
tr

ol
Pl

an
e

&
D

at
a

Pl
an

e
H

ar
d

Ë
C

er
tifi

ed
K

ub
er

ne
te

s
D

ist
rib

ut
io

n

vC
lu

st
er

P
ro

je
ct

[2
9]

é
é

Se
pa

ra
te

C
on

tr
ol

Pl
an

e
H

ar
d

Ë
C

er
tifi

ed
K

ub
er

ne
te

s
D

ist
rib

ut
io

n
C

on
tr

ib
ut

io
n

U
nB

ou
nd

Pu
ll

Ë
Se

pa
ra

te
C

on
tr

ol
Pl

an
e

H
ar

d
+

/-
(C

er
tifi

ca
te

d
C

om
po

ne
nt

s)
Ë

de
no

te
s

th
at

th
e

ite
m

is
fu

lly
im

pl
em

en
te

d/
ad

dr
es

se
d.

+
/-

de
no

te
s

th
at

th
e

ite
m

is
pa

rt
ia

lly
im

pl
em

en
te

d/
ad

dr
es

se
d.

é
de

no
te

s
th

at
th

e
ite

m
is

no
t

im
pl

em
en

te
d/

ad
dr

es
se

d.

69

Chapter 3 – State of the Art

3.1.4.2 Meta-Federations with Multi-Tenancy

Liqo and EdgeNet support meta-federations because they consider the isolation be-
tween workloads being deployed by different management clusters in mind. Liqo addresses
multi-tenancy by using different Namespaces in member clusters to isolate resources cre-
ated by each management cluster. However, it limits itself to flat Namespaces, making it
impossible to isolate further workloads produced by different users within a single manage-
ment cluster. On the other hand, EdgeNet leverages hierarchical Namespace architecture,
which is more flexible than flat Namespaces. However, both solutions rely on a single
shared control plane and data store for all management clusters in the member cluster,
which provides only soft isolation properties. Soft isolation may be risky because the
management clusters may belong to owners who are different from their member clusters.
This lack of hard isolation could lead to potential security and privacy issues such as data
leakage between federations.

Other federation solutions make the same underlying assumption that all resources in
a federation belong to a single administrative domain. They are therefore not designed to
support meta-federations. These solutions basically allow users to create and propagate
Kubernetes Namespaces to member clusters to isolate the workloads created by different
management clusters. However, this action needs to be performed manually, which may
introduce inefficiencies and possibly conflicts with the resources if multiple management
clusters deploy resources to the same member cluster using the same name. Therefore,
they only partially support meta-federations.

It is crucial to note that besides EdgeNet providing multi-tenancy in a cluster feder-
ation environment, other multi-tenancy frameworks do not consider the federation func-
tionally, which limits the scope of frameworks only working in a single Kubernetes cluster.

3.1.4.3 Certification

The Cloud Native Computing Foundation (CNCF) promotes cloud-native technologies
by accepting and supporting many different open-source projects to foster their develop-
ment and adoption [147]. Certification from them is a critical metric for evaluating the
potential and stability of the projects. Karmada and OCM have both been accepted as
projects by the CNCF, which shows that they have great potential for managing multi-
ple Kubernetes clusters [148], [149]. In the case of multi-tenancy frameworks, Capsule is
also a CNCF-hosted project [150]. Kamaji and vCluster projects use the hard isolation

70

3.2. Monitoring for Fog Computing Environments

method that each tenant has its own sub-cluster in a Kubernetes cluster. Both solutions
are certified Kubernetes distributions, which guarantees their consistency, timely updates,
and confirmability [151].

3.1.4.4 Contribution

This thesis proposes UnBound, a scalable fog meta-federations platform that combines
the strengths of both multi-cluster federation solutions and multi-tenancy frameworks. We
leverage OCM to federate the Kubernetes clusters because of the nature of the pull model,
which provides better scalability and has the potential to create very large geo-distributed
fog federations. UnBound then specifically addresses the multi-tenancy issue for support-
ing meta-federations, where individual fog Kubernetes clusters may lease their resources
to multiple administrative domains by using the vCluster project. vCluster project uses
separate control planes with a shared data plane, which can provide hard isolation for
inter-federation while keeping high resource utilization within the member clusters. The
code base of UnBound is small thanks to the usage of existing open-source projects. We
consider this as a strength of UnBound which can facilitate broad adoption by the Ku-
bernetes community as well as long-term maintenance and support. Moreover, we plan to
make UnBound available in open-source, which ensures compatibility and reliability for
users while fostering community collaboration and continuous improvement. Although Un-
Bound is based on Kubernetes and its ecosystem, the concepts of the UnBound platform
hold broader applicability and can in principle be applied to current or future container
orchestrators, multi-cluster federation solutions, and multi-tenancy frameworks.

3.2 Monitoring for Fog Computing Environments

Monitoring is an essential functionality in current computing environments. There are
several purposes for monitoring, including resource usage, fault detection and diagnosis,
billing, and performance monitoring. Among these, the main objective of geo-distributed
monitoring is to track the resource usage of computing nodes, particularly in potential
resource-restricted fog environments. A number of open-source and commercial monitor-
ing tools such as DARGOS [152], Zabbix [153], PCMONS [154], JCatascopia [155], and
Nagios [156] were developed to suit cloud computing requirements. However, they are
not considered appropriate for geo-distributed fog computing environments [157]–[161].
On the other hand, to overcome the challenges of monitoring in a fog computing envi-

71

Chapter 3 – State of the Art

ronment, some authors present monitoring solutions and architectures designed with the
specific constraints of fog computing in mind.

3.2.1 Monitoring Solutions for Fog Computing

PyMon provides a monitoring solution for fog environments specially designed to run
on ARM-based single-board computers [162]. It collects monitoring data from devices at
a periodic rate and sends them to a centralized PostgreSQL database. PyMon also offers
a web interface based on the Django framework and can show graphs and tabulars of
the monitored system status. To collect the monitoring data, PyMon reuses the Monit
lightweight open-source software [163]. Although PyMon is a lightweight monitoring solu-
tion that is suited for resource-restricted environments, its scalability was not evaluated.
This means it may not handle large-scale scenarios [159]. Moreover, PyMon is not adaptive
and flexible, which does not support on-the-fly configuration changes or data transmission
frequency modification [157].

FMonE aims to address monitoring challenges in fog environments with an indepen-
dent, stand-alone solution in fog environments [164]. It relies on a container orchestration
system called Marathon [165] to build the monitoring workflow based on the user require-
ments. The system gathers monitoring data at a periodic interval through a centralized
or hierarchical structure. FMonE combines pull and push methods for data collection and
can monitor infrastructure, platforms, and services. However, the authors evaluate their
work using up to 78 Virtual Machines (VMs). This number remains very far from the
scale at which global fog platforms are expected to operate.

FogMon proposes a lightweight and Peer-to-Peer (P2P) monitoring architecture that
deploys an agent in each member node called “Follower.” Followers report hardware-
based metrics and network QoS data to their “Leader” node [166]. Each Follower node is
linked to a single Leader node and runs in a classic client-server model. Follower nodes
periodically push data to a Leader node. The Leader node aggregates the monitoring
data and disseminates them to other Leader nodes using a gossip protocol. To reduce the
network traffic between Followers and Leaders, FogMon adopts a solution where Followers
only send data with the average or variance value greater than a threshold compared
to the last sent. In addition, FogMon has been refined into FogMon2, which adds new
features and improves handling of latency and bandwidth degradation [167]. FogMon2
was evaluated in the Fed4Fire testbed with up to 40 nodes. However, this number of
nodes is still too limited to prove its scalability.

72

3.2. Monitoring for Fog Computing Environments

AdaptiveMon extends FogMon with a self-adaptive monitoring solution for fog environ-
ments. It introduces two additional functions: Indicators Selection and Change Rate [168].
Indicators Selection reduces the number of metrics, whereas Change Rate adjusts the fre-
quency of metrics reported from Follower to Leader. Using these two features and compar-
ing them to the original FogMon framework, the results show that AdaptiveMon can save
energy and reduce network I/O, with the trade-off of requiring more memory resources.
The authors conduct the experiments in a Linux virtual machine with Docker containers
as nodes (one Leader and one Follower), which only focus on individual peers. However,
AdaptiveMon, an extension of FogMon, still needs to prove its scalability and suitability
for integration with modern orchestration frameworks such as Kubernetes federation [157].

DEMon is a decentralized and self-adaptive monitoring framework specially designed
for edge environments [169], [170]. It does not rely on a single point of control for storing
data and controlling the system. DEMon uses a gossip-based protocol to disseminate the
monitoring data to other edge nodes in the system. Moreover, each edge node can be
self-adaptive by adjusting monitoring settings to balance monitoring data quality with
resource usage. DEMon also proposes a Leaderless Quorum Consensus (LQC) protocol
to retrieve the monitoring data for users or client applications. DEMon was examined in
a large-scale simulated edge environment with up to 300 nodes and a real-world testbed
with 12 Raspberry Pi nodes. The results demonstrate that DEMon effectively shares and
retrieves monitoring data and proves its scalability, which suits edge environments.

The most popular monitoring tool is Prometheus [32]. It has been accepted by the
Cloud Native Computing Foundation (CNCF) as a “graduated” project, which shows its
great potential in conjunction with the de-facto standard Kubernetes container orches-
trator and demonstrates that Prometheus is a stable and production-ready monitoring
system [25]. At the same time, many research works use Prometheus as a basis for system
monitoring [171]–[176]. Prometheus provides a function called “Federation” which allows a
Prometheus server to collect metrics from other Prometheus servers. A common use case is
building a global-view Prometheus server, which scrapes and stores the monitoring data
of other Prometheus servers. Two levels of federation are instance-level drill-down and
job-level drill-down. In Prometheus terminology, an instance is an endpoint that the user
can scrape from, and a job is a collection of instances with the same purpose. Prometheus
Federation has been used to monitor systems in numerous studies [18], [31], [177], [178].

73

Chapter 3 – State of the Art

3.2.2 Issues of Prometheus Federation

However, except for the Prometheus monitoring system, other monitoring solutions are
discussed at the node level, which are not designed for cluster federation environments
where nodes are not considered individually but cluster by cluster. Considering the grad-
uated maturity level and functionality of the monitoring frameworks, this thesis leverages
Prometheus and its Prometheus Federation function as the monitoring solutions for clus-
ter federation. However, the Prometheus Federation also has a number of limitations that
this thesis aims to address.

(1) The highest scrape level of Prometheus Federation is job-level, and it uses the match
mechanism to select the series of metrics. For example, the operator can write
job=“Node-exporter” in a federation server’s configuration file to scrape the met-
rics that match this label from the target Prometheus servers. It results in scraping
the matching metrics that are all the nodes 1 in the target cluster when job=“Node-
exporter” is set. This design is suitable for backing up metrics for high availability
purposes but not for letting a management cluster manage federated clusters. It
wastes network bandwidth to transmit and disk resources to save the same node
metrics in the management cluster.

(2) Prometheus Federation appends all original labels in each metric when a Prometheus
server scrapes from the target Prometheus server to identify where the metric comes
from. However, not all original labels are necessary for recognition, and the scheduler
may not need this detailed information to make scheduling decisions. Furthermore,
the labels are attached before the metrics transmission, which increases the cross-
cluster network traffic.

(3) Prometheus scrapes all the metrics even if some of the metrics values did not change.
This unnecessary data transfer would waste network bandwidth, particularly when
dealing with a large number of targets across a large fog federation.

(4) Prometheus Federation collects the monitoring data from target clusters at a fixed
periodicity. If the member clusters are mostly idle, the federation scheduler can easily
select among any of them because their computing resources will have enough ca-
pacity to execute applications. This case does not require real-time monitoring data
of these member clusters, which gives opportunities for reducing the cross-cluster
network traffic. However, when computing resources in member clusters are in high

1. We assume all nodes in all clusters have installed Node-exporter and labeled job=“Node-exporter”.

74

3.2. Monitoring for Fog Computing Environments

demand, minimizing the number of pending Pods 2 in member clusters requires one
to carefully determine which clusters have enough resources to run the applications.
Increasing the frequency of metric scraping by using a shorter scrape interval can
enhance the accuracy of monitoring data of target clusters in the global-view clus-
ter. However, this comes with the downside of generating more cross-cluster network
traffic.

To overcome these monitoring challenges and optimize the value of scrape interval,
we base our work on the Prometheus monitoring ecosystem and introduce Acala and
AdapPF. Both aim to balance cross-cluster network traffic and the accuracy of monitor-
ing data. Acala automatically aggregates the metrics whose metric name and labels are
identical in different servers, which reduces the cross-cluster network traffic as well as
the deployment and configuration cost. This addresses the issues (1) and (2). Acala also
deduplicates metrics values and thereby avoids transferring unchanged values over and
over again to address the issue (3). To understand the impact of scrape interval, cross-
cluster network traffic, and data accuracy while avoiding the accuracy effects introduced
by metrics aggregation, we propose AdapPF which can dynamically adjust the values of
the scrape interval in a geo-distributed cluster federation environment. It checks the cur-
rent resource status of the target cluster with non-aggregated data and then adjusts the
scrape interval to address the issue (4). We argue that these two solutions complement
each other and could be combined in principle.

2. In the event that there are insufficient resources on the nodes within the member cluster to start
the Pod, the Pod gets placed in a pending state until adequate resources become available.

75

Chapter 4

MULTI-TENANCY MANAGEMENT IN

SCALABLE FOG META-FEDERATIONS

4.1 Introduction

Enabling fog platforms to embrace the full benefits of cloud computing principles re-
quires the design of large-scale, multi-tenant, geo-distributed fog computing platforms
that any application may make use of and where statistical multiplexing of large num-
bers of independent workloads can help guarantee high resource utilization. This chapter
proposes the design of scalable fog meta-federations to address this challenge. We define
meta-federations as a complex ecosystem composed of many independent fog resource
providers that may set up business agreements with one another to allow access to their
computing resources and thereby expand their geographical span in locations where they
do not own resources themselves. We discuss the concept of meta-federations in detail in
Section 4.2.

An important and difficult challenge of fog meta-federations is multi-tenancy. In these
systems, the same group of servers may be used to host workloads belonging to multiple
tenants who are customers of different providers. This scenario requires the system to guar-
antee isolation at two different levels. First, two tenants of the same fog provider should
not be able to see or interfere with each other’s workloads. Second, two fog providers
that have established access to the same member cluster should also not be able to see
or interfere with one another. To our best knowledge, this two-level multi-tenancy chal-
lenge is unique to federated environments where the same cluster may belong to multiple
independent federations.

The second challenge in designing fog meta-federations is that of scalability. Building
a fog computing infrastructure at the scale of a country or even a continent requires one
to aggregate resources in thousands of different locations. A single “management cluster”
therefore needs to be able to control access to thousands of “member clusters.” Conversely,

77

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

to maintain high resource utilization, each member cluster may decide to join numerous
independent federations, each with its own management cluster.

In this chapter, we propose UnBound, a scalable fog meta-federations platform that
specifically addresses the multi-tenancy scenario, where individual fog clusters may lease
their resources to multiple administrative domains. UnBound relies on Kubernetes to
orchestrate resources within individual fog clusters [27] and Open Cluster Management
(OCM) to federate multiple member clusters under the authority of a management clus-
ter [28]. We address the issue of multi-tenancy management by isolating federations within
a single member cluster using the Virtual Kubernetes Clusters (vCluster) [29] project to
create isolated logical sub-clusters within the member clusters. Each vCluster 1 has its
own API server and data store, which provides stronger isolation guarantees than sim-
ple Kubernetes Namespaces to ensure that different federations do not interfere with one
another.

We conduct extensive evaluations through real-world deployments in the Grid’5000
testbed [30] and demonstrate that UnBound achieves inter-user and inter-federation isola-
tion while maintaining comparable application creation time to the original Open Cluster
Management and avoiding increasing cross-cluster network traffic between the manage-
ment and member clusters. Moreover, the resource consumption of UnBound components
remains within acceptable limits. Finally, we demonstrate the stability and scalability
of UnBound using federations with up to 500 member clusters and a member cluster
belonging to up to 100 independent federations.

The remainder of this chapter is organized as follows: Section 4.2 discusses the motiva-
tion behind this work. In Section 4.3, we describe the design and components of UnBound
meta-federations. We evaluate our solution in Section 4.4 and summarize the chapter’s
conclusions in Section 4.5.

Parts of this chapter were published in [179].

4.2 Motivation

Multi-cluster federations are a standard technique to aggregate the resources of multi-
ple independent Kubernetes clusters into a single logical entity [117]. This concept enables
users to gain seamless access to a large computing infrastructure in multiple geographical

1. We use the term “vCluster project” to refer to the entire vCluster framework, and the term “vClus-
ter” to refer to a virtual cluster created for isolation between different management clusters in a member
cluster.

78

4.2. Motivation

Management
Cluster A

Member
Cluster B

Member
Cluster C

Federation 1

Member
Cluster D

Figure 4.1 – An example of KubeFed architecture. Management Cluster A manages mul-
tiple Member Clusters B, C, and D.

locations. Federation users submit their workload deployment requests to a single man-
agement cluster, which subsequently forwards requests to one or several of their member
clusters according to the job’s metadata and some pre-defined scheduling policies. How-
ever, as shown in Figure 4.1, standard federation frameworks such as KubeFed [120]
basically follow a hierarchical organization where a given cluster should be either a man-
agement cluster or a member of a single federation. More complex organizations (e.g., a
cluster being a member of two different federations while also being a manager of a third
one) are usually not supported. We refer the reader to Section 3.1.4.2 for a detailed discus-
sion. Also, traditional federations assume that all the hardware resources in a federation
belong to a single administrative domain, which limits federations to scenarios where the
organizations that own the resources have total trust in each other.

We propose a different model where multiple clusters belonging to different organi-
zations may freely establish or revoke peering relationships with one another. Figure 4.2
shows an example where three federations co-exist with varying types of relationships
between the clusters. Federation 1 (in purple color) is a geo-distributed federation where
management cluster A has established access rights to member clusters C, D, and E.
Cluster E has multiple roles because it is also a member of Federation 3 while being
in charge of managing Federation 2. Federation 2 also expands to multiple other mem-
ber clusters. This example demonstrates the versatility of meta-federations capabilities,
accommodating various configurations, including the one-to-many and many-to-one rela-
tionships showcased here.

79

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

Management
Cluster B

Management
Cluster A

Member
Cluster C

Member
Cluster D

Member
Cluster G

Member
Cluster H

Federation 1
Federation 2
Federation 3

Management
Cluster E

Member
Cluster F

Member

Figure 4.2 – An example of meta-federations.

In meta-federations, each cluster may be owned by a different entity. Peering relation-
ships between clusters may be established via a legal contract where one company leases
some of its hardware resources to another, following a classical cloud-like business model.
For example, Cluster C and Cluster D may belong to two separate companies in different
locations. Both of them have established a peering contract with Federation 1 so that
Federation 1 can use their computing resources and expand its range of service locations.

4.3 System Design

In this section, we propose UnBound, a scalable fog meta-federations platform that
considers different levels of multi-tenancy to support clusters from different organizations
in multiple Kubernetes cluster environments.

4.3.1 System Model and Meta-Federations

Considering the characteristics of fog computing, we assume that a fog federation
may be composed of multiple Kubernetes clusters. These Kubernetes clusters may belong
to different organizations or companies and may be located in various regions. Within
each cluster, we assume that all servers are located in the same geographical location
and that all clusters and nodes can communicate with each other through the network
infrastructure. We further assume that each Kubernetes cluster has enough computing
resources to run UnBound’s components.

80

4.3. System Design

In meta-federations, fog resource providers can establish business agreements to share
their computing resources with one or more federations. These agreements allow Kuber-
netes federations to expand their geographical reach and serve users in different areas by
using computing resources from other Kubernetes clusters. Different organizations may
operate their own federations and host multiple users in their federations.

Users can choose to run their applications on a specific Kubernetes cluster or to dis-
tribute them among member clusters of a given federation. As a result, two separate
isolation scenarios arise: inter-user isolation and inter-federation isolation. Inter-user iso-
lation requires isolation between different users within the same Kubernetes cluster in a
non-federated environment. Once a Kubernetes cluster takes the role of management clus-
ter of a federation, the users in this management cluster can deploy applications across all
member clusters in the federation. Similar to the case of a single cluster, the isolation of
the users in the member clusters must also be considered. For inter-federation isolation,
each federation, which may belong to different fog providers, should also not be able to
see or interfere with one another and should be isolated when these federations access the
same Kubernetes clusters.

We expect fog computing platforms to be geographically distributed, with their mem-
ber clusters spanning a country or even a continent. In this environment, the scalability of
meta-federations is a critical challenge. Each management cluster should be able to man-
age a large number of member clusters simultaneously, and each member cluster should be
able to join multiple management clusters from different organizations to maintain high
resource utilization. As a result, meta-federations support both one management cluster
to many member clusters and many-to-one configurations. Therefore, each Kubernetes
cluster can concurrently operate as both a management cluster and a member cluster.

4.3.2 System Architecture

To achieve the vision of meta-federations, UnBound relies on Kubernetes to orchestrate
resources within individual fog clusters. Then, we build UnBound meta-federations based
on two open-source projects, Open Cluster Management (OCM) and Virtual Kubernetes
Clusters (vCluster). OCM is responsible for managing federated clusters and distributing
the workloads across these clusters, where the Pull model of OCM is well-suited for large-
scale federations to address the scalability challenge of meta-federations. To ensure the
isolation between different federations in the same member cluster, we select the vCluster

81

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

Member Cluster 1

Open Cluster
Management

Kubernetes

...

Namespace for Management Cluster 1

Namespace 1

Pod

Namespace 2

Pod

Pod for ns2

Klusterlet Registration
Agent

Work
Agent

Pod for ns1

Management Cluster 1

User 1, 2,..., x

Kubernetes Open Cluster
Management

Open Cluster Management
Cluster

Manager
Registration
Controller

Placement
Controller

Work
Webhook

Cluster 1
ManifestWork
Pod for ns1

ManifestWork
Pod for ns2

ManifestWork
Namespace 1
ManifestWork
Namespace 2

Management Cluster X

User 1, 2,..., x

Kubernetes Open Cluster
Management

Open Cluster Management
Cluster

Manager
Registration
Controller

Placement
Controller

Work
Webhook

Cluster 1
ManifestWork
Pod for ns1

ManifestWork
Pod for ns2

ManifestWork
Namespace 1
ManifestWork
Namespace 2

Pull desire state and Push status

...

Namespace for Management Cluster X

Namespace 1

Pod

Namespace 2

Pod

Pod for ns2

Klusterlet Registration
Agent

Work
Agent

Pod for ns1

Figure 4.3 – Architecture of UnBound where a member cluster shares its resources with
two independent management clusters. The “ns” abbreviation stands for Namespace.

project as our multi-tenancy solution because of its hard isolation guarantees and low
performance overhead.

Figure 4.3 illustrates the UnBound architecture and its components. A management
cluster can accommodate multiple users who can utilize this Kubernetes cluster to deploy
workloads in the host cluster or member clusters via the kubectl or clusteradm 2 tools.
After a member cluster joins the management cluster, the system provisions a dedicated
Kubernetes Namespace to represent the member cluster. Users can manually create Man-
ifestWorks to this Namespace in the management cluster (we discuss ManifestWork in
the following section), and the system then deploys the workload, which is described in
ManifestWorks, to the corresponding member cluster. Moreover, users can also distribute

2. The clusteradm command-line interface allows users to interact with Open Cluster Management
clusters.

82

4.3. System Design

workloads with the placement-controller. Based on the requirements of ManifestWorks,
the placement-controller selects a set of member clusters and deploys the ManifestWorks
to the dedicated Namespaces which represent the target member clusters in the manage-
ment cluster.

Within each member cluster, UnBound creates a specific Kubernetes Namespace for
each corresponding management cluster and installs the OCM components and k3s-based
vCluster components in this Namespace. The work-agent in the member cluster continu-
ously monitors the Namespace from the management cluster, pulling the latest Manifest-
Works states, synchronizing them with the respective vCluster through its own API server,
and pushing the current status of workloads to the management cluster. The metadata
of workloads from the management cluster are stored in the vCluster’s own data store.
Based on these metadata, vCluster creates corresponding Pods or related Kubernetes
resources in the underlying host Kubernetes cluster in the same Namespace of OCM com-
ponents and vCluster. This design isolates all UnBound components and workloads from
a management cluster within a dedicated Namespace in a member cluster, preventing
interference from other management clusters. Additionally, this approach facilitates the
enforcement of resource quotas in the Namespace for each management cluster within the
member cluster [139]. We leave the topic of dynamically setting the resource quotas of
different Namespaces and possibly allowing quota oversubscription for future work.

Note that the Kubernetes Namespace isolates the Pods created by different manage-
ment clusters. This design results in two types of isolation. Pods created within a single
federation are isolated using Namespaces in the member cluster, using the same mecha-
nism as in the original Kubernetes. Furthermore, vCluster isolates the metadata and the
workload requests of each federation with its own storage backend and API server.

4.3.3 Components of UnBound

This section discusses details of the main UnBound components.

4.3.3.1 Open Cluster Management

Open Cluster Management (OCM) [28] simplifies the management of multiple Kuber-
netes clusters by decomposing multi-cluster operations in two phases: computation/decision
and execution. Consequently, a federation is composed of two different roles: management
cluster (hub) and member cluster (agent).

83

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

A federation’s management cluster is responsible for managing and controlling multiple
member clusters. The management cluster also makes placement decisions to distribute
the workloads across the member clusters. On the other hand, each member cluster is
responsible for carrying out the management cluster’s instructions and running the work-
loads that were assigned to it.

To achieve greater scalability for the federation platform, OCM employs the “hub-
agent” architecture, which mirrors the original “hub-kubelet” pattern from Kubernetes.
This architecture utilizes a Pull mechanism to retrieve the latest prescriptions from the
management cluster and to continuously reconcile the workloads to the desired state in
the member cluster.

OCM introduces a Custom Resource (CR) called ManifestWork [110], [111]. A Mani-
festWork defines a group of Kubernetes resources to be deployed across member clusters in
a federation. Users deploy ManifestWorks in a particular Namespace in the management
cluster, and the work-agent in the member cluster subsequently monitors the contents of
ManifestWorks in that Namespace to keep the status of workloads in sync with it. Note
that only workloads that use ManifestWork will be deployed to the member clusters.

In the management cluster, UnBound exploits four main components from OCM:
cluster-manager, placement-controller, registration-controller, and work-webhook. We dis-
cuss each component below.

— Cluster-manager: The cluster-manager serves as an operator responsible for es-
tablishing and managing other components within the management cluster.

— Placement-controller: The placement-controller enables users to schedule their
workloads to a set of member clusters automatically. The OCM scheduling frame-
work is based on the Kubernetes scheduling architecture and is organized in two
steps: predicate and prioritize. The predicate handles hard requirements, such as la-
bel selection and taints/tolerations. After selecting clusters that satisfy the manda-
tory hard requirements, the prioritize phase evaluates the clusters identified in the
predicate step based on soft requirements such as the number of clusters and re-
source status of clusters, to determine a suitable subset of member clusters. More-
over, users can expand the multi-cluster scheduling functionality through the OCM
add-on framework.

— Registration-controller: Two main tasks for the registration-controller are for
member cluster registration and receiving the health status of member clusters.

84

4.3. System Design

Registration
Controller

1. Sign the bootstrap kubeconfig
Registration

Agent
2. Issue CSR and registration request

3. Approve registration

Figure 4.4 – Registration process between one management cluster and one member clus-
ter, with registration-controller in the management cluster and registration-agent in the
member cluster.

— Work-webhook: The work-webhook is an admission webhook running in the man-
agement cluster to validate the content of ManifestWorks.

UnBound leverages three OCM components in the member clusters: Klusterlet, registration-
agent, and work-agent.

— Klusterlet: The task of Klusterlet is similar to cluster-manager, which is a boot-
strap application to create and manage other agents in the member cluster.

— Registration-agent: The registration-agent operates in the member cluster and
handles the registration process. Figure 4.4 shows the three steps of registration be-
tween a management cluster and a member cluster. First, the registration-controller
gets the bootstrap token so that the user can use this token to join the manage-
ment cluster in the member cluster. Then, the registration-agent issues a Certificate
Signing Request (CSR) and sends it to the controller. Finally, the administrator
in the management cluster approves the request for registration. After the regis-
tration procedure, the registration-agent keeps regularly sending heartbeats to the
controller and checking the certificate of registration validation.

— Work-agent: The work-agent monitors the ManifestWorks in a Namespace that
represents the work-agent hosted member cluster in the management cluster. When
the work-agent detects a change in the Namespace in the management cluster, it
applies or changes the Kubernetes resources included in the ManifestWorks to the
member cluster.

4.3.3.2 Virtual Kubernetes Clusters

Virtual Kubernetes Clusters (vCluster) project aims to run a full Kubernetes clus-
ter as an application and host it in another Kubernetes cluster to provide multi-tenancy

85

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

functionality [29]. It supports different Kubernetes distributions, including vanilla Kuber-
netes, K3s, and K0s. Each vCluster has its own control plane, providing better tenant
isolation than the original Kubernetes Namespaces. Moreover, vCluster has its own stor-
age backend and supports different databases, such as SQLite, MySQL, PostgreSQL, and
etcd. vCluster relies on its host underlying cluster to provide its own worker node pool
and networking resources.

The vCluster project separates Kubernetes resources using two levels: high-level and
low-level. High-level resources, such as Deployment, StatefulSet, and Custom Resource
Definitions (CRDs), are purely virtual. These resources only reach the vCluster API server
and get stored in vCluster’s data store to avoid using the API server and data store from
the underlying Kubernetes cluster. Since vCluster does not have actual worker nodes and
networking, some “low-level” resources such as Pods and Services need to be synchronized
to the underlying Kubernetes cluster and in the same Namespace as the vCluster.

UnBound leverages vCluster to isolate different management clusters, which may make
simultaneous usage of the same member cluster. UnBound therefore deploys vCluster only
in the member cluster. Although vCluster can also run in the management cluster for
different users, we leave this topic for future work.

Each vCluster has two components: control plane and syncer.

— Control plane: vCluster’s control plane includes the Kubernetes API server, data
store, controller manager, and optional scheduler. In UnBound meta-federations, the
Kubernetes API server handles the requests from the work-agent to create, update,
or delete the workloads in the vCluster. The data store is the database where the API
server stores metadata of all resources. The controller manager monitors the status
of the entire vCluster and ensures that the vCluster is in the expected working
state. The administrator can enable the scheduler inside the vCluster to provide
scheduling with custom requirements, such as affinity and topology spreading in the
host Kubernetes cluster.

— Syncer: vCluster uses a syncer to create low-level resources, such as Pods and Con-
figmaps, in the underlying host cluster. To schedule low-level workloads in the host
cluster, vCluster reuses the host cluster’s scheduler to place workloads by default.
As Pods are scheduled directly in the underlying host cluster, they experience no
performance degradation. Similar to the work-agent component of OCM, after de-
ploying low-level resources, vCluster’s syncer keeps periodically synchronizing the
status between vCluster’s control plane and the underlying host cluster.

86

4.3. System Design

4.3.3.3 Multi-Tenancy Management

UnBound meta-federations support two levels of isolation: inter-user and inter-federation.
We discuss these two levels in detail below. We divide inter-user into two cases: users
within a cluster and users within a federation.

— Inter-user multi-tenancy within a Kubernetes cluster: Kubernetes cluster
administrators can use Kubernetes Namespaces to isolate workloads from each other.
To limit resource usage in different Namespaces, the administrators can also leverage
the resource quotas function [139] to divide cluster computing resources between
multiple users in each Namespace.

— Inter-user multi-tenancy within an UnBound meta-federation: When a Ku-
bernetes cluster becomes the management cluster of an UnBound meta-federation,
its administrator can create Kubernetes Namespaces in the vCluster using Manifest-
works (see Figure 4.3). The capability to isolate different users within the federation
stems from the vCluster functionality which allows users to create cluster-scoped re-
sources such as Namespaces. Furthermore, unlike the original OCM, which directly
accesses Kubernetes clusters where the control plane manages the entire cluster,
the completely separate control plane of vCluster offers users access to vCluster
for detailed management or debugging tasks through the vCluster’s kubeconfig file
without affecting other vClusters or the host Kubernetes cluster.

— Inter-federation multi-tenancy within a single member cluster: Manage-
ment clusters potentially belonging to different organizations can concurrently use
the computing resources of the same member cluster. To enable multi-tenancy man-
agement in this scenario, UnBound employs vCluster to isolate workloads associated
with different management clusters. Each vCluster uses its own control plane, which
effectively isolates workloads from different management clusters in the same mem-
ber cluster. Moreover, the metadata of the Kubernetes resources in vCluster are
stored in its own data store. As a result, requests and metadata created by manage-
ment clusters cannot reach the underlying Kubernetes cluster nor other vClusters,
which provides a stronger form of isolation than Kubernetes Namespaces. Note that
the owner of a member cluster can still access information about all workloads in
their cluster. Therefore, while the owner lends its clusters to others, it can still
enforce the terms of the resource leasing contract.

87

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

4.4 Performance Evaluation

We evaluate UnBound using four sets of experiments: (i) multi-cluster application cre-
ation in a member cluster; (ii) application stability despite a vCluster failure; (iii) one
management cluster with multiple member clusters; and (iv) multiple management clus-
ters with one member cluster. We run the experiments in both cloud and fog networking
environments.

4.4.1 Experimental Setup

We base our prototype implementation on the principles outlined in Section 4.3. We
modify the code from the Open Cluster Management project to automatically create
vCluster in the particular Namespace and connect the work-agent to vCluster. We also
fine-tuned the vCluster configurations to suit UnBound meta-federations. We use Kuber-
netes v1.27.3, Open Cluster Management v0.11.0, vCluster v0.15.5 with k3s v1.27.3, and
Cilium v1.13.4 for the deployment. For data collection, we use the tcpdump package to
collect the cross-cluster network traffic and Kubernetes Metrics Server v0.6.4 to measure
resource consumption, including CPU and memory usage [180]. We then compare our
solution to the original Open Cluster Management.

To ensure that our experiments closely resemble production conditions, we run our
evaluations in the Grid’5000 geo-distributed testbed [30]. To emulate a fog networking
environment, we use the netem [181] package to introduce a 50 ms delay with 5 ms jitter
to both the network ingress and egress, resulting in a total one-way network latency of
100 ms with 10 ms jitter.

4.4.2 Multi-Cluster Application Creation in a Member Cluster

In this experiment, we launch two Kubernetes clusters: a management cluster that
uses a single Virtual Machine (VM) with 16 cores and 32 GiB of memory; and a member
cluster that uses 101 VMs, including one control plane node with 16 cores and 32 GiB of
memory and 100 worker nodes with 2 cores and 4 GiB of memory each. We deploy up to
1000 ManifestWorks in the management cluster to create Kubernetes Deployments in the
member cluster. Each Deployment creates 10 nginx Pods, resulting in up to 10,000 Pods
in total within the same Namespaces. Moreover, we also create a scenario with 10,000
Pods where each Deployment runs in its own Namespace in the member cluster so there

88

4.4. Performance Evaluation

0 2000 4000 6000 8000 10000
Number of pods

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
Ki

B/
s)

UnBound(Cloud)
UnBound(Fog)
OCM(Cloud)
OCM(Fog)

(a) Cross-cluster network traffic (collect in the man-
agement cluster).

2000 4000 6000 8000 10000 10000
 (1000-ns)

Number of pods

0
200
400
600
800

1000
1200
1400
1600
1800

Ti
m

e
(s

ec
on

ds
)

UnBound(Cloud)
UnBound(Fog)
OCM(Cloud)
OCM(Fog)

(b) Application creation time.

Figure 4.5 – Cross-cluster network traffic and application creation time in multi-cluster
application creation experiment.

are a total of 1000 Namespaces, and each Namespace contains 10 nginx Pods to simulate
inter-user isolation in UnBound. We refer to this scenario as 1000-ns in the following
section.

We run each experiment three times and report the average results across them. The
only exceptions are Figure 4.6 for long-term collection experiments, which show the results
of a single run (repeating these experiments draws similar results). For other figures, we
skip the first 9000 seconds of data and average the remaining 7200 seconds as the results
for a round. We do this because we found that vCluster optimizes deployed resources and
uses slightly more computing resources during the first 9000 seconds, as we can see in
Figure 4.6. Therefore, the data during this first period does not represent normal resource
usage.

Figure 4.5(a) demonstrates that UnBound effectively reduces cross-cluster network
traffic in both cloud and fog environments for any number of Pods. The average network
traffic across different numbers of Pods in UnBound is 0.33 KiB/s in both environments,
while the average network traffic for OCM is 1.68 KiB/s in the cloud and 1.63 KiB/s in
the fog. To enhance clarity, the figure excludes the results for 1000-ns experiments, which
are essentially identical to those for 10,000 Pods within a single Namespace. These find-
ings not only show that our solution does not introduce additional cross-cluster network

89

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

CP
U

 u
sa

ge
 (

m
)

UnBound(Fog)

(a) CPU usage of vCluster in 10,000 Pods case (sin-
gle Namespace) with long-term collection.

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

0

1

2

3

4

5

6

7

M
em

or
y

us
ag

e
(G

iB
)

UnBound(Fog)

(b) Memory usage of vCluster in 10,000 Pods case
(single Namespace) with long-term collection.

Figure 4.6 – CPU and memory usage of vCluster with long-term collection in multi-cluster
application creation experiment. The yellow dash lines indicate the time when all Pods
reach running status.

traffic between the management and member clusters but also evidence the effectiveness
of UnBound.

Figure 4.5(b) presents the time it takes to create applications from the management
cluster to the member cluster. We measure the creation time by the time of script execution
and then wait until all Pods reach running status in the member cluster. We can see that
the creation times for UnBound(Cloud), UnBound(Fog), OCM(Cloud), and OCM(Fog)
are 1488, 1533, 1468 and 1492 seconds, respectively, for the 10,000 Pods case. The fog
environment takes a little longer to finish, regardless of whether the method is UnBound or
OCM. This result is due to network latency, which may cause a delay in pulling the latest
prescription. Our solution takes 20 (Cloud) and 41 (Fog) seconds longer than OCM in
the same condition, which shows that the overhead of our approach is small. The 1000-ns
scenario shows the same trend, but it takes longer to create the applications because the
Namespaces for each Deployment must also be created, resulting in 2000 ManifestWorks
instead of 1000 in the same Namespace case.

Figure 4.6(a) and Figure 4.6(b) represent the long-term collection of 10,000 Pods in the
same Namespace in the member cluster. We only show the results for the fog environment,
as the results for the cloud environment are similar. Before 914 seconds, the member
cluster is busy creating Pods, which causes CPU and memory usage to increase. Once all

90

4.4. Performance Evaluation

0 2000 4000 6000 8000 10000
Number of pods

0

100

200

300

400

500

CP
U

 u
sa

ge
 (

m
)

UnBound(Cloud)
UnBound(Fog)
UnBound(Cloud)(1000-ns)
UnBound(Fog) (1000-ns)

(a) CPU usage of vCluster.

0 2000 4000 6000 8000 10000
Number of pods

0

1

2

3

4

5

6

M
em

or
y

us
ag

e
(G

iB
)

UnBound(Cloud)
UnBound(Fog)
UnBound(Cloud)(1000-ns)
UnBound(fog)(1000-ns)

(b) Memory usage of vCluster.

Figure 4.7 – CPU and memory usage of vCluster in multi-cluster application creation
experiment. 1000-ns represents the results of a scenario with 10,000 Pods that each De-
ployment runs in its own Namespace, resulting in 1000 Namespaces.

Pods are running, the vCluster spends approximately 2.5 hours optimizing the deployed
workloads, which requires more CPU resources than the maintenance phase. Memory
usage follows the same trend, stabilizing after the vCluster completes its optimization. The
average CPU usage in the maintenance phase is 391 milli-cores with a standard deviation
of 36 m 3, and the average memory usage is 5.9 GiB with a standard deviation of 9 MiB.
These results show that the resource usage of vCluster is small and stable.

Figure 4.7(a) demonstrates vCluster CPU usage with different numbers of Pods. The
results show that the CPU usage trend is almost the same in both cloud and fog environ-
ments, up to 391 m in the 10,000 Pod case. For the 1000-ns scenario, vCluster consumes
more CPU usage, 460 m (Cloud) and 456 m (Fog), because it maintains more resources,
including Namespaces, Kubernetes Deployment, and Pods. As shown in Figure 4.7(b),
the memory usage of vCluster in the cloud environment experiences linear growth from
0.3 GiB (for 0 Pod), 1.4 GiB (2000 Pods), to 5.4 GiB (10,000 Pods). However, the memory
usage for the 1000-ns scenario consumes less memory usage, 3.5 GiB (Cloud) and 3.6 GiB
(Fog). According to the results, UnBound can efficiently utilize resources in both cloud
and fog environments. The CPU and memory usage are relatively low, even when the
number of Pods reaches large values.

3. The Kubernetes metrics server uses millicores (m) to measure CPU usage. One millicore equals
0.001 vCPU/core for cloud providers or 0.001 hyperthread on bare-metal Intel processors [182].

91

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

0 2000 4000 6000 8000 10000
Number of pods

0
20
40
60
80

100
120
140
160
180
200

CP
U

 u
sa

ge
 (

m
)

UnBound(Cloud)
UnBound(Fog)
OCM(Cloud)
OCM(Fog)
UnBound(Cloud)(1000-ns)
UnBound(Fog)(1000-ns)
OCM(Cloud)(1000-ns)
OCM(Fog)(1000-ns)

(a) CPU usage of work-agent.

0 2000 4000 6000 8000 10000
Number of pods

0
10
20
30
40
50
60
70
80
90

100
110
120
130

M
em

or
y

us
ag

e
(M

iB
)

UnBound(Cloud)
UnBound(Fog)
OCM(Cloud)
OCM(Fog)
UnBound(Cloud)(1000-ns)
UnBound(Fog)(1000-ns)
OCM(Cloud)(1000-ns)
OCM(Fog)(1000-ns)

(b) Memory usage of work-agent.

Figure 4.8 – CPU and memory usage of work-agent in multi-cluster application creation
experiment. 1000-ns represents the results of a scenario with 10,000 Pods that each De-
ployment runs in its own Namespace, resulting in 1000 Namespaces.

Figure 4.8(a) illustrates the work-agent resource usage. The CPU usage is similar
regardless of the methods or environments. For 10,000 Pods, the CPU usage is between
51 m and 55 m. Figure 4.8(b) shows that the 1000-ns case uses more memory, which is
around 63 MiB, whereas the memory usage of 10,000 Pods in a single Namespace is 45 MiB.

Overall, these results demonstrate that UnBound performs comparably to the original
Open Cluster Management in both cloud and fog network environments despite introduc-
ing additional components to provide inter-federation isolation.

4.4.3 Application Stability Despite a vCluster Failure

UnBound leverages vCluster to isolate different federations in the member cluster.
However, vCluster is an additional component that may become a weak point, as vClus-
ter may crash and affect the workloads they manage. To demonstrate the resilience of
UnBound in the face of vCluster failures, we launch two clusters, one serving as the man-
agement cluster and the other as a member cluster. In this experiment, we use Online
Boutique, a micro-service demo application [183]. We create ManifestWorks of this micro-
service demo in the management cluster and wait for these applications to reach running
status in the member cluster. We then repeatedly delete the vCluster Pod 100 times
and check the micro-services application status in the member cluster using the kubectl
command.

92

4.4. Performance Evaluation

Figure 4.9 – Application stability despite a vCluster failure.

As shown in Figure 4.9, the first command lists all Pods running in the particular
Namespace to check the information about these Pods, including their status, the times of
restarts, and their age. The second command displays the number of times the vCluster has
been deleted in the log files. We can see in the figure that after 100 deletions, the age of the
vCluster Pod is only 8 seconds, while the other micro-service Pods (whose names end with
vCluster) are 28 minutes, which shows that the vCluster is indeed deleted by our script.
Note that the vCluster has 0 restart because we delete the Pod of the vCluster instead
of restarting it. Additionally, the registration-agent restarts one time upon completion of
the registration process. The figure shows that all micro-service Pods restarted 0 times,
which indicates that the applications managed by the vCluster are not affected if the
vCluster crashes. The micro-service application continues to serve users even after the
main component fails. This result demonstrates the stability of UnBound.

4.4.4 One Management Cluster with Multiple Member Clusters

In this experiment, we explore the case of a single management cluster managing
multiple member clusters. We deploy a management cluster with one VM that has 16
CPU cores and 32 GiB of memory. Then, we launch 100, 200, and up to 500 member
clusters. Each member cluster uses only one VM with 2 CPU cores and 4 GiB of memory.
We collect 2 hours of data for each round and average them to represent the results. We
then run the experiment three times and present the average results of these three rounds

93

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

0 100 200 300 400 500
Number of member clusters

0
20
40
60
80

100
120
140
160
180
200

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
Ki

B/
s)

UnBound(Cloud)
UnBound(Fog)

(a) Cross-cluster network traffic (collect in
management cluster).

0 100 200 300 400 500
Number of member clusters

0
40
80

120
160
200
240
280
320
360
400

CP
U

 U
sa

ge
 (

m
)

UnBound(Cloud)
UnBound(Fog)

(b) CPU usage of API server in management
cluster.

0 100 200 300 400 500
Number of member clusters

200

300

400

500

600

700

800

900

M
em

or
y

U
sa

ge
 (

M
iB

)

UnBound(Cloud)
UnBound(Fog)

(c) Memory usage of API server in manage-
ment cluster.

Figure 4.10 – Performance of UnBound with one management cluster managing multiple
member clusters: Cross-cluster network traffic (a), and CPU and memory usage of the
API server in the management cluster (b)(c).

in the figures. This experiment only shows the results of UnBound since the previous
outcomes show a similar trend between our solution and Open Cluster Management.

We depict the results of cross-cluster network traffic between a management cluster and
multiple member clusters in Figure 4.10(a). We find that the cross-cluster network traffic
grows as the number of member clusters increases and is similar regardless of whether
the environment is cloud or fog. In the case of 500 member clusters, the network traffic
is around 166 KiB/sec in both cloud and fog cases. At the same time, Figure 4.10(b) and
Figure 4.10(c) show the resource usage of the API server in the management cluster since
the work-agent in member clusters will send requests to the API server of its management

94

4.4. Performance Evaluation

0 20 40 60 80 100
Number of management clusters

0

400

800

1200

1600

2000

2400

CP
U

 U
sa

ge
 (

m
)

UnBound(Cloud)
UnBound(Fog)

(a) CPU usage of API server in member cluster.

0 20 40 60 80 100
Number of management clusters

800

1000

1200

1400

1600

1800

M
em

or
y

U
sa

ge
 (

M
iB

)

UnBound(Cloud)
UnBound(Fog)

(b) Memory usage of API server in member cluster.

Figure 4.11 – Performance of API server in the member cluster while UnBound with
multiple management clusters managing the same member cluster.

cluster to pull the latest prescriptions. The CPU and memory usage also follow the same
trend as the results of network traffic, which rises linearly as the number of member
clusters grows. The CPU usage in the fog environment is from 58 (0 member cluster),
123 (100 member clusters), to 338 m (500 member clusters), whereas the memory usage
in the fog environment is from 309, 492, to 843 MiB.

4.4.5 Multiple Management Clusters with One Member Cluster

We now study the scenario of multiple management clusters managing a single member
cluster. We launch a 101-VMs member cluster, consisting of one control plane node with
16 cores and 32 GiB of memory, and 100 worker nodes with 2 cores and 4 GiB of memory
per worker. Next, we deploy 20, 40, and up to 100 management clusters, each with a
single VM equipped with 2 CPU cores and 4 GiB of memory. Similar to the experiment
in Section 4.4.4, we conduct three rounds of experiments; the outcome of each round is
the average of 2 hours of data. The final results are the average of these three rounds.

Figure 4.11(a) and Figure 4.11(b) illustrate the CPU and memory consumption of
the API server in the member cluster, respectively. In the cloud/fog environment, the
CPU usage of the API server exhibits superlinear growth, rising from 153 m/153 m (for
0 management cluster) to 251 m/251 m (for 20 clusters) and reaching 2308 m/2328 m (for
100 clusters). In contrast, memory usage growth is relatively slow compared to CPU
usage, demonstrating a linear trend from 934 MiB to 1550 MiB in the cloud scenario. The

95

Chapter 4 – Multi-Tenancy Management in Scalable Fog Meta-Federations

0 20 40 60 80 100
Number of management clusters

0

5

10

15

20

25

30

CP
U

 U
sa

ge
 (

%
)

UnBound(Cloud)
UnBound(Fog)

(a) CPU utilization rate of member cluster.

0 20 40 60 80 100
Number of management clusters

10

15

20

25

30

35

40

M
em

or
y

U
sa

ge
 (

%
)

UnBound(Cloud)
UnBound(Fog)

(b) Memory utilization rate of member cluster.

Figure 4.12 – Performance of whole member cluster while UnBound with multiple man-
agement clusters managing the same member cluster.

growth in CPU usage results from the fact that agents of OCM in the member cluster send
requests to the API server not only to the management cluster but also to the member
cluster. Additionally, the components of vCluster also send requests to the API server.
This surge in requests leads to increased processing time on the API server, potentially
causing delays and timeouts that necessitate re-sending requests, further exacerbating
the CPU usage. We however note that the absolute numbers remain reasonable, with a
member cluster needing to allocate around 2 CPU cores and 1.5 GiB of memory when
being a member of 100 federations simultaneously. One potential way to reduce these
numbers could be to scale the number of API servers in the member cluster and enable
load balancing to distribute requests across multiple API servers.

Figure 4.12(a) and Figure 4.12(b) depict the utilization percentage of the entire mem-
ber cluster, including control plane and worker nodes. The CPU usage percentages exhibit
relatively flat growth until the member cluster is shared between 60 management clusters.
Subsequently, CPU usage increases sharply due to the high load on the API server in the
control plane and Kube-proxy in each node. At the same time, the percentages of memory
cluster utilization rise steadily from 16% to 33%.

We conclude that, although it is not totally negligible, the performance overhead of
UnBound for both the management and the member clusters remains reasonable. This
demonstrates the feasibility of realizing our vision of very large-scale fog meta-federations
capable of spanning entire countries or even continents.

96

4.5. Conclusion

4.5 Conclusion

This chapter presents a new concept called meta-federations, which enables fog clus-
ters to federate their resources with one another in a very flexible way, potentially allowing
one to build very large-scale distributed fog platforms at the scale of a country or even
a continent. We propose UnBound, a solution for meta-federations with scalability and
different levels of multi-tenancy management in mind. UnBound leverages Kubernetes
for resource orchestration within individual fog clusters. Then, we rely on Open Cluster
Management and Virtual Kubernetes Clusters project as the main building blocks of the
UnBound platform. Extensive experiments with actual large-scale deployments up to 500
clusters show that UnBound achieves inter-user and inter-federation isolation while main-
taining performance comparable to the original Open Cluster Management and acceptable
overhead levels.

97

Chapter 5

EFFICIENT MONITORING FRAMEWORKS

IN GEO-DISTRIBUTED CLUSTER

FEDERATIONS

5.1 Introduction

In a cluster federation, a “management cluster” is in charge of deciding which of the
“member clusters” will be in charge of handling each newly deployed application. Although
the original KubeFed project allowed little control of the choice of member cluster when
applications should be deployed [120], newer federation frameworks such as mck8s support
a range of fine-grained placement policies based on metrics such as cluster load, location,
and network usage [31]. These policies base themselves on detailed monitoring information
about the status of available resources in the respective target cluster, provided by a robust
monitoring framework such as Prometheus and its extension Prometheus Federation [32],
[33].

Monitoring a large cluster federation is a very challenging task because the number
of metrics and the volume of monitoring data to be reported to the management cluster
may grow to large values. To illustrate this problem, we leverage a real deployment in the
Grid’5000 testbed [30]. In the setup, we use the “Kubernetes in Docker” (kind) frame-
work to launch large numbers of Kubernetes clusters [184]. The first cluster acts as our
management cluster. Then, we launch up to 500 member clusters. Each cluster contains
two servers (one control plane and one worker node), resulting in up to 1,000 nodes in
total.

Figure 5.1 depicts the aggregate volume of cross-cluster network traffic after deploying
a large mck8s federation with no application workload. recv and send show the network
traffic received/sent by the management cluster. We sum recv and send as the total
network traffic. The scrape interval of Prometheus is set to 5 seconds, which means that the

99

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

100 200 300 400 500
Number of member clusters

0
3
6
9

12
15
18
21
24
27
30
33

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
M

iB
/s

)
recv
send
total

Figure 5.1 – Cross-cluster network traffic in the management cluster when using mck8s.

management cluster fetches metrics from every cluster once every 5 seconds. We observe a
linear growth up to 27.7 MiB/s for monitoring 500 member clusters (1,000 nodes), which
may be enough to saturate many fog computing networks and may eventually represent
the majority of the system management traffic. The same linear growth appears when
increasing the number of servers per cluster (not shown in the figure for clarity reasons).
This very large management traffic is due to the resource monitoring used by mck8s
to implement sophisticated scheduling functionalities. It does not appear when using
KubeFed, which schedules workloads without considering the cluster status.

This experiment shows that even for medium-sized cluster federations, the necessary
monitoring network traffic grows to such large values. This is caused by Prometheus
Federation which offers fine-grained monitoring data that are being reported to the man-
agement cluster. Therefore, this chapter aims to reduce the volume of management data
to provide the cluster federation with accurate enough and up-to-date information while
significantly reducing the networking overhead of the federated monitoring framework it-
self. As a result, the precious platform’s network resources may be used for actual user
workloads rather than cluster management operations.

As discussed in Section 3.2.2, the Prometheus Federation has four limitations that
make the system accurate but costly: (1) It scrapes monitoring data from every server in
the federation; (2) It appends unnecessary labels to identify the monitoring data; (3) It
fetches all monitoring data regardless of value changes; and (4) It collects the monitoring

100

5.1. Introduction

data from target clusters at a fixed periodicity. To address these challenges, this chapter
proposes Acala to address limitations (1), (2) and (3), and AdapPF to address limita-
tion (4). Acala is an extension of Prometheus which uses two techniques to reduce the
number of metrics to be reported to the management cluster: metrics aggregation merges
together the metrics values with the same metric name and labels from multiple servers
to report the aggregate status of an entire cluster rather than its individual servers; and
metrics deduplication avoids one to repeatedly report the same metrics in case their value
does not change. Our evaluations based on actual deployments in the geo-distributed
Grid’5000 testbed [30] show that Acala reduces the volume of cross-cluster network traffic
by up to 97% compared with vanilla Prometheus while reducing the necessary time to
scrape metrics by up to 55% in a single member cluster experiment. At larger scales,
Acala also performs well in reducing the cross-cluster network traffic by about 95%. The
resource usage of Acala components also remains acceptable in the single cluster case,
and we prove that our solution can save memory resources in the larger case. Moreover,
a comparison of scheduling efficiency with and without data aggregation shows that ag-
gregation has minimal effects on the system’s scheduling function. We discuss Acala in
detail in Section 5.2.

In Section 5.3, we present Adaptive Prometheus Federation (AdapPF), an extension
of Prometheus Federation which dynamically adjusts the scrape interval of the target
member cluster based on its resource status to balance between cross-cluster network
traffic and the required accuracy of monitoring data. To this end, a self-adaptive scrape
interval method tailored for AdapPF considers the status of CPU and memory com-
puting resources. When the targeted member cluster utilizes a substantial amount of
resources, the scrape interval will automatically adjust to increase the frequency of data
collection. This allows for the timely acquisition of up-to-date monitoring data, enabling
the scheduler or system alarm to make informed decisions or trigger alerts earlier. We
show, using actual deployments, that AdapPF achieves comparable scheduling accuracy
to Prometheus Federation while reducing cross-cluster network traffic by up to 36%.

We believe that the concepts proposed in Acala and AdapPF can be in principle
integrated theoretically and practically together to enhance system performance and effi-
ciency, considering that they address disjoint components of the Prometheus Federation
architecture. However, due to the lack of time, we leave this topic for future work.

Parts of this chapter were published in [185]–[187].

101

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

5.2 Acala: Aggregate Monitoring for Geo-Distributed
Cluster Federations

In this section, we first discuss the system design of the Acala framework and then
turn to its performance evaluation.

5.2.1 System Design

The objective of Acala is to monitor computing resources in geo-distributed Kuber-
netes cluster federations while reducing the required cross-cluster network traffic as well
as the deployment and configuration costs. In this section, we discuss the operation of
Acala and introduce two data reduction strategies designed for Acala to reach our goal.

5.2.1.1 System Model

A geo-distributed Kubernetes cluster federation is a set of multiple “member” Ku-
bernetes clusters in various locations that are considered as a single execution platform
thanks to a “management” cluster which is in charge of collecting metrics data from the
member clusters and deciding which application should be running in which member clus-
ter. Each cluster consists of several computing nodes, and we assume that each node has
enough resources to run the necessary applications to provide monitoring. All computing
nodes in a cluster are located in the same area. The network connects each node and
cluster and can communicate. Although the current design can support multiple layers,
for the sake of simplicity, we leverage a two-tier architecture in this chapter.

Acala is built on several components from the Prometheus ecosystem, including the
Prometheus server, Node-exporter [122], and Pushgateway [188]. The system overview is
shown in Figure 5.2.

Prometheus server in member clusters: The duty of these servers is to scrape
time-series data about local metrics in each member cluster and store them in their local
database. They constitute the source of data before aggregation. They can also be used
for querying detailed per-node metrics, for example for anomaly detection, diagnosis, or
system management purposes. Moreover, these Prometheus servers can also be configured
to trigger alerts about nodes with abnormal metric values in their member cluster, such
as fully saturated nodes.

102

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

Global View Cluster

....

Prometheus

Pushgateway

Acala-Controller

Member Cluster 1

Acala-Member

HTTP GET

Prometheus

Node
Exporter

....

Node
Exporter

Member Cluster 2

Acala-Member

HTTP GET

Prometheus

Node
Exporter

....

Node
Exporter

Member Cluster N

Acala-Member

HTTP GET

Prometheus

Node
Exporter

....

Node
Exporter

.....
Pushgateway

Acala-Controller

Pushgateway

Acala-Controller

Figure 5.2 – Overview of Acala architecture and scrape flow.

Prometheus server in the global view cluster: The Prometheus server in the
global view cluster is used to save the aggregated data from the member clusters and
their local metrics. The federation’s scheduler can leverage this Prometheus server to
query member cluster information and make the scheduling decisions.

Node-exporter: This component monitors the per-node metrics. We install a Node-
exporter for each node in each cluster to expose hardware and operating system metrics.

Pushgateway: The Pushgateway is installed in the global view cluster. It is a mid-
dleware that can expose these metrics for the Prometheus server to scrape. Moreover,
Pushgateway also acts as a cache for metrics values.

Acala introduces two new components: Acala-Controller and Acala-Member. Acala-
Controller is responsible for scraping the metrics from the target member cluster, adding
the labels to identify the member cluster, and pushing the metrics to the Pushgate-
way. Acala-Controller is located in the global view cluster, and the administrators may
launch additional Acala-Controller instances to accommodate the larger number of mem-
ber clusters. In this case, each Acala-Controller can be configured to scrape metrics from
a designated subset of member clusters. The task of Acala-Member is to pull the metrics

103

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

from the Node-exporter in a single member cluster and execute proposed data reduc-
tion strategies. The data transmissions between Acala-Controller and Acala-Member are
compressed using gzip. The detailed scrape steps are as follows:

(1) When it is time for the Acala-Controller to scrape the metrics, the controller sends
a request to the target Acala-Member.

(2) After Acala-Member receives the request, Acala-Member uses the HTTP GET
method to pull the metrics from the local computing nodes through the Node-
exporter. Meanwhile, Acala-Member executes Algorithm 1 to modify the metrics.
Finally, Acala-Member compresses the metrics and sends them back to Acala-
Controller.

(3) Acala-Controller decompresses the metrics and leverages the HTTP POST method
to push metrics to the Pushgateway. In this step, the Acala-Controller adds the
labels (IP address of control plane and cluster name) to identify the member cluster.

(4) The global-view Prometheus server periodically scrapes the metrics from the Push-
gateway (at a user-defined periodicity independent from the periodicity of cross-
cluster metrics transfer) and stores them locally. The administrator or federation
scheduler can then query the monitoring data of the member cluster via this Prometheus
server.

5.2.1.2 Timing to Scrape Metrics

Similar to the original design of Prometheus, the timing to scrape the metrics from
the target member cluster is determined by a fixed scrape interval. We leverage a timer
in the Acala-Controller to perform periodic scrape actions. When the timer counts down
to 0, the system scrapes the metrics once and then sets the timer back to the default
values configured by the administrator. A shorter scrape interval value means that data
in the global view cluster will be more precise in representing the actual status of the
member clusters yet at the cost of additional cross-cluster network traffic. The default
scrape interval is defined as 5 seconds.

5.2.1.3 Data Reduction Strategies

To address the problems mentioned in Section 3.2.2, we propose two data reduction
strategies: metrics aggregation and metrics deduplication highlighted in Algorithm 1.

104

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

node_cpu_seconds_total{cpu="0",mode="idle"} 9
node_cpu_seconds_total{cpu="0",mode="user"} 32

.......

node_cpu_seconds_total{cpu="0",mode="idle"} 5
node_cpu_seconds_total{cpu="0",mode="user"} 22

.......

node_cpu_seconds_total{cpu="0",mode="idle"} 7
node_cpu_seconds_total_CV{cpu="0",mode="idle"} 0.285

node_cpu_seconds_total{cpu="0",mode="user"} 27
node_cpu_seconds_total_CV{cpu="0",mode="user"} 0.185

.......

node 1

Aggregated Metrics

node-exporter

node 1 node 2

node-exporter

Figure 5.3 – An example of metrics aggregation.

The data model of metrics in Prometheus is composed of a metric_name, any number
of pairs label_name, label_value, and finally a metric_value. The notation of a metric is:

metric_name {label_name = label_value, . . .} metric_value

Metrics Aggregation. Each node in member clusters deploys the Node-exporter to
expose its node-related metrics. In standard Prometheus Federation design, the highest
scrape level is job, which will scrape metrics that are all nodes in the target member
cluster and append all original labels for these metrics. In contrast, we choose metrics
aggregation between the nodes in the target member cluster as our solution, elevating the
point of monitoring view from “node” to “cluster.” For easy understanding, we use metric
name with labels to represent metric name, label name, and label value.

Figure 5.3 presents an example of metrics aggregation. Node-exporter of node 1 exposes
the metric node_cpu_second {cpu = “0”, mode = “idle”} 9, and node 2 has the same
metric name with labels (fuchsia color). Metrics aggregation will thus aggregate both
metric names with their labels and metric values (blue color). The resulting aggregated
metric values are composed of the average of all individual values as well as the coefficient

105

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

of variation between them 1. Note that the federation schedulers only need to know about
the general status of the member clusters rather than detailed per-server metrics.

Node-exporter exposes node-related metrics such as utilized CPU, memory, and net-
work bandwidth. These metrics can be aggregated with other metrics with the same name
and labels. When metrics do not have identical name and labels within the cluster, Acala
reports them non-aggregated to the global view cluster. In case more detailed per-node
information is needed, the administrator can request the Prometheus server deployed in
each cluster directly.

The main idea of this strategy is to aggregate values whose metric name and labels
are identical in different servers. This method can collect and report monitoring data
from each node in the target member cluster while significantly reducing cross-cluster
network traffic. Moreover, metrics aggregation averages metrics values to represent the
overall cluster status. This is similar to other related work [31], which also applies the
aggregating strategy to represent the overall cluster resources situation. However, they
perform aggregation after all individual metrics have been scraped, transferred, and stored
in the global view cluster.

Prometheus Federation adds all original labels in each metric to identify which server
each metric belongs to. In contrast, metrics aggregation keeps the metrics labels un-
changed, the same as before aggregation. For the cluster information, we add the labels
including the IP address of the control plane and cluster name (set by administrators
manually) to indicate the member cluster in Acala-Controller, which takes place after
the transmission. Therefore, metrics aggregation can reduce more cross-cluster network
traffic.

Metrics Deduplication. Prometheus Federation blindly scrapes metrics from mem-
ber clusters at a periodic interval. As a result, in case some metrics values do not change
frequently, they get transferred repeatedly and unnecessarily, which consumes network
bandwidth to transfer these redundant data. To further reduce cross-cluster network traf-
fic, we propose a second data reduction strategy – metrics deduplication.

Metrics deduplication compares each aggregated metric value with the most recently
transferred one. If the value is identical, the deduplication strategy removes this metric
from this metrics transfer. On the other hand, if the metric value changes, the system will
include this metric again to report the fresh data.

1. In statistics, the coefficient of variation is a standardized measure of the dispersion of aggregated
values. It is defined as the ratio between the standard deviation σ and the mean µ of the distribution:
CV = σ

µ .

106

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

However, note that Prometheus includes a metrics staleness mechanism. If no new
value is reported after 5 minutes (default of Prometheus), this metric will be marked as
stale, and its value will be excluded from results returned to the federation scheduler.
When using metrics deduplication, this staleness mechanism may exclude valuable dedu-
plicated values from the results. Therefore, Acala leverages Pushgateway to cache these
metrics locally so that the Prometheus server in the global view cluster can scrape from
Pushgateway and keep fresh metrics values in the Prometheus server without having to
repeatedly transfer them from member clusters.

To allow Acala to perform both metrics aggregation and deduplication, the algorithm
will perform aggregation first and then deduplication based on the aggregated data. Al-
though both data reduction strategies may run independently, we leave this topic for
future work.

The metrics aggregation and deduplication process are illustrated in Algorithm 1.
When a request for a new scrape action arrives at the Acala-Member in the target member
cluster, the Acala-Member checks the type of request. If it is a full request, the algorithm
clears the LastAverage and LastCV which contains the latest reported metrics values
(lines 32-33). Then, Acala-Member pulls the metrics from each node through the Node-
exporter. If the metric name with labels is already present in Aggregated Metrics AM , the
value of matched metrics is appended to it. However, if AM does not have the same metric
name with labels, the algorithm adds it as a new metric (lines 1-11). After all metrics
finish aggregation, the algorithm computes the average and coefficient of variations of
each metric (line 35). If deduplication is enabled, the function then checks LastAverage

and LastCV . If LastAverage and LastCV exist, it means that the computed metric
values should be compared with the previous one. If the values stored in LastAverage or
LastCV compare to the current values are not identical, the algorithm appends the new
value to the deduplicated AMWCV file. If deduplication is disabled and/or LastAverage

and LastCV are empty, then the system creates a full AMWCV file (lines 17-27). After
returning this file, the procedure copies the current values to LastAverage and LastCV

(line 38). Finally, Acala-Member compresses the AMWCV file using gzip, sends it back
to Acala-Controller, clears the data, and waits for the subsequent scrape request (lines
41-43).

Metrics aggregation and metrics deduplication are well-established techniques. How-
ever, our work applies these methods and implementation within a geo-distributed Ku-
bernetes cluster federation environment to build a fog computing platform where this

107

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

Algorithm 1: metrics aggregation and deduplication
Output: AMWCV : A File of Aggregated Metrics With Coefficient of Variation

1 Function Aggregation():
2 Mnode ← Pull Metrics from each node in the cluster
3 if AM == ∅ then
4 AM ←Mnode

5 else
6 for key, value ∈Mnode do
7 if key ∈ AM then
8 AMkey.append(value)
9 else

10 AMkey ← value

11 return AM

12 Function Calculation(AM):
13 for key ∈ AM do
14 AverageDictkey ←MEAN(AMkey)
15 CV Dictkey ← STD(AMkey)/AverageDictkey

16 return AverageDict, CV Dict

17 Function Dedup(AM, AverageDict, CV Dict, LastAverage, LastCV, DedupFunc):
18 for key ∈ AM do
19 if DedupFunc then
20 if LastAverage and LastCV then
21 if LastAveragekey ! = AverageDictkey or LastCVkey ! = CV Dictkey then
22 Build AMWCV based on AverageDict and CV Dict (Deduplicated)
23 else
24 Build AMWCV based on AverageDict and CV Dict (Full)
25 else
26 Build AMWCV based on AverageDict and CV Dict (Full)
27 return AMWCV

28 Function Main:
29 while true do
30 Wait for the connection
31 if Received scraping request then
32 if It is a full request then
33 clear LastAverage and LastCV
34 AM ← Aggregation()
35 AverageDict, CV Dict← Calculation(AM)
36 if deduplicationfunction is enabled then
37 AMWCV ← Dedup(AM, AverageDict, CV Dict, LastAverage, LastCV, 1)
38 LastAverage← AverageDict, LastCV ← CV Dict

39 else
40 AMWCV ← Dedup(AM, AverageDict, CV Dict, LastAverage, LastCV, 0)
41 Compress AMWCV
42 send AMWCV back to Acala-Controller
43 AM, AverageDict, CV Dict← ∅

108

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

environment has yet to be extensively explored. Moreover, the proposed framework and
two data reduction strategies elevate the traditional view of monitoring in Prometheus
Federation from “node” level to “cluster” level. The design of Acala is to hierarchically
monitor different levels of metrics. The original Prometheus Federation scrapes per-server
metrics from all member clusters to the global view cluster, where all the detailed metrics
can be found. Instead, Acala keeps the detailed per-server metrics in the member clus-
ter, which are neither aggregated nor deduplicated. It then reports the modified metrics
to the global view cluster. Using metrics aggregation, the monitoring data in the global
view cluster represents the overall member cluster status. The layer of monitoring will
be “cluster status” in the global view cluster and “node status” in each member clus-
ter. Note that, although Acala performs metrics aggregation and metrics deduplication,
from a macro perspective, our solution does not discard any data. The operator can still
query detailed per-node metrics in member clusters for anomaly detection and system
management.

Prometheus also supports a feature called “recording rules” which is similar to Acala’s
metrics aggregation. Using it, one can pre-aggregate selected metrics, store the results
in member clusters, and scrape them from other Prometheus servers with appropriate
labels. However, recording rules in Prometheus need to be defined manually for each
metric in each member cluster, which is error-prone and may increase the deployment and
configuration cost in large-scale environments. Moreover, Prometheus does not provide
metrics deduplication, so it reports data to the global view cluster periodically, regardless
of whether the value has changed since the previous scraping period.

5.2.1.4 Kubernetes Deployment and Error Handling

Acala is designed to use Kubernetes to manage its own deployment due to Kuber-
netes “graduated” maturity level certified by the Cloud Native Computing Foundation
(CNCF) [24]. This maturity level is usually considered a stable and production-ready so-
lution. Using this level of container orchestrator can make the design of Acala closer to the
real environment and further improve the current environment. However, we argue that
the concepts and algorithms proposed in this chapter can be easily applied and integrated
with other current or future monitoring solutions and container orchestrators.

Kubernetes offers various workload resource types such as Deployment and Job [189].
We leverage a Kubernetes Deployment for deploying the Pushgateway, Acala-Controller,

109

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

and Acala-Member in their respective Kubernetes cluster. A critical advantage is that
these applications will automatically restart if any component failure occurs.

The activation of deduplication requires a careful system design to ensure that metrics
values are not lost. Acala-Controller uses HTTP POST to send metrics to the Pushgate-
way. If the Acala-Controller fails to send data to the Pushgateway, it assumes that the
Pushgateway may have failed and lost previous metrics values. It therefore continues to
scrape the metrics periodically from Acala-Member, but it sends full data requests. When
the Pushgateway recovers, the Acala-controller can give it a fresh set of metrics values
before returning to its normal behavior.

If an error occurs with the Acala-Controller and Kubernetes decides to restart it, the
Acala-Controller will behave as if it was its first time launch. It then sends a first full data
request to the Acala-Member before starting again to accept deduplicated metrics values.

Finally, in case Acala-Member fails, it will restart with an empty LastAverage and
LastCV , and thus send the full data to the Acala-Controller before returning to its normal
behavior.

5.2.2 Performance Evaluation

We evaluate Acala’s performance using four separate experiments: (i) replaying Google
cluster-usage traces in a member cluster to study the distribution of monitored metrics
values across the cluster’s servers; (ii) evaluating the cross-cluster network traffic and other
performance indicators for a single member cluster with the various number of worker
nodes; (iii) exploring Acala’s scalability with a greater number of member clusters; and
(iv) scheduling workloads across member clusters with Acala monitoring framework.

5.2.2.1 Experimental Setup

For the sake of making our work as close as possible to a production environment,
we implement a prototype of our framework and run it in the Grid’5000 geo-distributed
testbed [30]. We discuss the setup along the following four aspects: deployment of the
experiment, performance indicators, comparison methods, and tools for collecting the
data.

Deployment. To support the design features described in Section 5.2.1, we utilize
Python 3.10 to implement Acala-Controller and Acala-Member. We leverage Kubernetes
(v1.23.5) for container orchestration to build the test environment and analyze Acala in a

110

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

geo-distributed cluster federation. At the same time, we use different open-source projects
in Kubernetes clusters for different functions. Cilium v1.11.4 is our Container Network In-
terface (CNI) that provides, secures, and observes network connectivity between container
workloads in Kubernetes. Kube-Prometheus-stack v34.10.0 is a collection of Kubernetes
manifests, including Prometheus v2.34.0 and Node-exporter v1.3.1.

We launch one management (global view) cluster and one or more member clusters.

— The management cluster contains two nodes (one for the control plane and one
worker node). Each node runs inside a VM with 4 CPU cores and 16 GiB of memory
for all four experiments.

— In the first and second experiments, we create a single member cluster with a number
of nodes between 2 and 31 nodes. The VMs in the member cluster have 2 CPU cores
and 8 GiB of memory.

— In the third experiment, we launch up to 50 member clusters, each of which has 20
nodes (1,000 nodes in total). To mimic the limited resources of worker nodes in a
fog computing environment, the VMs in the member clusters have 1 CPU core and
4 GiB of memory for worker nodes and 2 CPU cores and 8 GiB of memory for the
control plane.

— In the fourth experiment, we run 5 member clusters, each of which contains 1 control
plane and 6 worker nodes. Each VM in all member clusters is equipped with 2 CPU
cores and 8 GiB of memory.

We deploy Acala-Controller in the global view cluster and Acala-Member in each
member cluster. Acala-Controller is installed on the same node as the Prometheus server,
which can reduce the inter-node network traffic when the Prometheus server in the global
view cluster scrapes from Pushgateway. Meanwhile, the Pushgateway is launched in the
same Pod as Acala-Controller, which enables local metrics transmission within this Pod.

Performance Indicators. The first experiment aims to evaluate the dispersion of
metrics values across an active member cluster. We therefore evaluate the Coefficient
of Variation (CV) across values of the same metrics among the member cluster. The
main goal of Acala is to reduce the cross-cluster network traffic in geo-distributed cluster
federations. Hence, in the second and third experiments, we measured network traffic
as our primary indicator. Lower network traffic implies better performance. Moreover,
efficiency is a pivotal point in evaluating a system. Therefore, the scrape duration and
resource consumption are also the objectives we consider. The overall efficiency is better

111

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

if scrape duration and resource consumption are shorter and lower. The objective of the
fourth experiment is to understand the impact of monitoring data accuracy with the
Acala framework. Therefore, we inject and schedule the workloads across the member
clusters based on the resource status of workloads. Then, we check how many tasks can
be completed as the indicator. A higher completion rate means better performance.

Comparison Methods. In our proposed system, the data reduction strategy is a
method to reduce the metrics when the global view clusters scrape from the member
clusters. To evaluate the performance of metrics aggregation and metrics aggregation with
deduplication, we compare them with unmodified Prometheus Federation. Comparing our
framework to a production-ready monitoring solution as a baseline can better reflect the
effectiveness of our approach in real-world scenarios. In addition, we examine these three
methods with different scrape interval (5 s and 60 s).

Tools for Collecting the Data. The results of experiments in Section 5.2.2.3 and
Section 5.2.2.4 are gathered for 6 minutes. Three performance indicators that need other
tools or functions to collect related data for evaluating Acala. For the cross-cluster network
traffic, we use tcpdump to capture the network traffic. The scrape duration is based on
the time.perf_counter() function in the Acala source code to measure the execution time
of each step. We sum the execution time of Acala-Member, Acala-Controller, and the
duration of Prometheus scrape from the Pushgateway to become our scrape duration.
The resource usage of the Acala components, including CPU and memory, is monitored
by the Kubernetes Metrics Server (v0.6.1) [180].

5.2.2.2 Distribution of Resource Usage in One Member Cluster

Aggregating metrics values across a cluster obviously results in dropping detailed in-
formation about individual servers. We however argue that the resource usage of each
worker node in a single Kubernetes cluster is sufficiently well balanced, so individual met-
rics values do not differ very much, and aggregate information is sufficient to perform
accurate task scheduling. Note that, although Acala does not report per-server metrics
to the management cluster, these measurements remain available in each member cluster
(e.g., for troubleshooting).

To understand the distribution of resource usage in a member cluster, we replay a
workload in the member cluster based on the Google cluster-usage traces, which is a
real-world dataset from a Google cluster [132]. A Google cluster consists of multiple
machines arranged in racks and interconnected through a high-bandwidth cluster network.

112

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0
3
6
9

12
15
18
21
24
27
30
33
36
39

Co
ef

fic
ie

nt
 o

f V
ar

ia
ti

on
 (

%
) CPU_system

CPU_idle
CPU_user
MemFree
MemAvai

Figure 5.4 – Coefficient of variation when injecting workloads in a member cluster.

In this cluster, there is a shared cluster management system responsible for scheduling
workloads to these machines in a cluster. The Google cluster-usage traces include data
about thousands of deployed applications in a cluster with several important parameters,
including resource requirements (CPU, RAM), duration, and inter-arrival rates. We build
a container application based on the stress-ng tool [190] to generate actual resource usage.
In each experiment, we inject the workload in the member cluster for a duration of 60
minutes (1,096 tasks in total) and then wait for 30 more minutes for letting jobs to
complete and release the computing resources. We monitor five metrics in the cluster
with a scrape interval of 5 s and compute the coefficient of variation across the cluster’s
servers for clusters configured with different numbers of servers. The metrics are chosen
as follows:

— node_cpu_seconds_total{“mode=system”}: Time spent in kernel space of all the
node’s CPU cores. We use “CPU_system” in the figure.

— node_cpu_seconds_total{“mode=idle”}: Time during which each of the node’s
CPU cores remained idle. We use “CPU_idle” in the figure.

— node_cpu_seconds_total{“mode=user”}: Time spent in user space of all node’s
CPU cores. We use “CPU_user” in the figure.

— node_memory_MemFree_bytes: Free memory on the node. We use “MemFree” in
the figure.

113

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0
5

10
15
20
25
30
35
40
45

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
Ki

B/
s)

MA
MAWD
PF

(a) Scrape interval set to 5 seconds.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0

1

2

3

4

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
Ki

B/
s)

MA
MAWD
PF

(b) Scrape interval set to 60 seconds.

Figure 5.5 – Average cross-cluster network traffic with scrape interval set to 5 seconds (a)
and 60 seconds (b).

— node_memory_MemAvailable_bytes: Available 2 memory on the node. We use “MemAvai”
in the figure.

The results of this experiment are plotted in Figure 5.4. We can see that the CV
of all five metrics in most of the cases remains between 3.7% and 19.7% except for the
single-node case where no inter-node variations exist and CV is therefore equal to 0.
An interesting result is that the CV of CPU resources tends to grow for cluster sizes
greater than 25 servers. The reason is that the workload can be handled by fewer than
25 servers, so some servers remain idle while others are active. This experiment shows
that the distribution of resource usage metrics remains relatively well-balanced in a wide
variety of situations, which indicates that Kubernetes does an excellent job at balancing
the load across available servers. It also demonstrates that reporting only an aggregate of
these metrics values to the management cluster depicts a sufficiently accurate picture of
the cluster’s situation to allow efficient scheduling decisions.

5.2.2.3 Performance in a Single Member Cluster

In this experiment, we evaluate the performance improvements brought by Acala’s
aggregation strategies using a single member cluster with a variable number of servers.

2. Available memory includes unallocated (free) memory as well as the cached and buffered memory
that are currently occupied by the system but potentially reclaimable.

114

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0

30

60

90

120

150

180

210

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 p
er

 s
cr

ap
e

(K
iB

)

MA
MAWD
PF

(a) Scrape interval set to 5 seconds.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0

30

60

90

120

150

180

210

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 p
er

 s
cr

ap
e

(K
iB

)

MA
MAWD
PF

(b) Scrape interval set to 60 seconds.

Figure 5.6 – Cross-cluster network traffic per scrape with scrape interval set to 5 seconds
(a) and 60 seconds (b).

Cross-Cluster Network Traffic. Figure 5.5 and Figure 5.6 show the experimen-
tal results of cross-cluster network traffic on average and per scrape, respectively. Fig-
ure 5.5(a) and Figure 5.6(a) present the results of the system scraping the metrics every 5
seconds, whereas the outcomes of 60 seconds scrape interval are shown in Figure 5.5(b) and
Figure 5.6(b). To increase the readability of the figures, we denote Metrics Aggregation
as MA, Metrics Aggregation With Deduplication as MAWD, and Prometheus Federation
as PF.

Figure 5.5(a) shows that metrics aggregation with deduplication significantly reduces
cross-cluster network traffic, which is 0.56 KiB/s, whereas the network traffic in metrics
aggregation and Prometheus Federation are 2.29 KiB/s and 2.33 KiB/s when monitoring
a single worker node in the member cluster. Using metrics aggregation with deduplication
in Acala and compared to Prometheus Federation, the reduction of network traffic in
the single-node case is 1.77 KiB/s, which is 76% lower, and there are 2% lower when
we apply the metrics aggregation as our data reduction strategy. Figure 5.5(b) shows
the same trend that both of our proposed methods have lower network traffic than the
Prometheus Federation. If the monitored nodes are set to 20, 25, and 30, the network
traffic is 96%/88%, 97%/90%, and 97%/92% lower when we use the metrics aggregation
with deduplication/metrics aggregation and compare to Prometheus Federation.

Overall, Figure 5.5 demonstrates that no matter how many monitored nodes are in the
experiment, both of our proposed methods perform significantly better than Prometheus

115

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

Federation. The design of Prometheus Federation will scrape the metrics of all nodes in
the target member cluster to the global view cluster. Our strategy is also to scrape the
metrics that are all nodes, but we make this task in the member cluster, making the
transmission happen inside the cluster, which can reduce the cross-cluster network traffic.
Moreover, our methods aggregate the same metrics between the monitored nodes, which
can decrease the volume of monitoring data to reduce cross-cluster network traffic and
make the view of monitoring from node to cluster. In addition, the method of metrics
aggregation with deduplication is even lower than metrics aggregation since unchanged
data is not sent multiple times. If the value of the metric is the same as the current time
and the last time, metrics aggregation with deduplication will remove these metrics to
save network bandwidth between clusters.

Acala collects metrics from monitored targets based on a fixed scrape interval. How-
ever, the current design does not smooth the data transmission over time as data get
transferred at periodic interval (same as Prometheus Federation). Therefore, we also want
to know how much network bandwidth is used per scrape in this experiment. The results
of cross-cluster network traffic per scrape are shown in Figure 5.6. In the case of 5 sec-
onds scrape interval, we see in Figure 5.6(a) that the cross-cluster network traffic of
Prometheus Federation experiences linear growth from 11.67 KiB (for 1 node), 39.17 KiB
(for 5 nodes) to 215.48 KiB (for 30 nodes). The difference between 1 and 30 monitored
nodes is 203.81 KiB, which is 1,746% greater. This is because Prometheus Federation
scrapes the metrics that are all nodes in the member cluster. Moreover, it also appends all
original labels in each metric to identify the scraped target. These strategies significantly
increase cross-cluster network traffic. Figure 5.6(b) reflects that the results are almost the
same as with 5 seconds scrape interval case in our methods of metrics aggregation and
metrics aggregation with deduplication. The network traffic of both methods grows a lit-
tle when the number of monitored nodes increases. When increasing the monitored nodes
from 5 to 30, the network traffic of metrics aggregation with deduplication/metrics aggre-
gation is 6.06/15.24 KiB and 6.74/18.33 KiB, respectively. The growth rates are around
11% and 20%, which are lower than the Prometheus Federation. Although our methods
aggregate the metrics, some metrics are specific to nodes. These metrics will be appended
to aggregated metrics, which will increase cross-cluster network traffic a little.

Scrape Duration. We now study the time it takes to scrape metrics using Acala.
For the sake of clarity, we only show the results of 5 seconds scrape interval in Figure 5.7.
We see in Figure 5.7(a) that scrape duration grows with the number of worker nodes that

116

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
ra

pe
 d

ur
at

io
n

(s
)

MA
MAWD
PF

(a) Scrape duration.

MA
1 node

MAWD
1 node

MA
30 nodes

MAWD
30 nodes

0.00

0.05

0.10

0.15

0.20

0.25

Ex
ec

ut
io

n
ti

m
e

(s
)

Pull Metrics and Merge
Execute Methods
Send To Controller
Post To Pushgateway
Prometheus Scrape

(b) Execution time of each step.

Figure 5.7 – Scrape duration (a) and execution time of each step (b) when scrape interval
is set to 5 seconds.

need to be scraped. However, the growth rates of Prometheus Federation’s scrape duration
are greater than those of both of our methods. Acala starts to outperform Prometheus
Federation with about 15 monitored nodes. In the case of a single node, the scrape du-
ration of metrics aggregation and metrics aggregation with deduplication is greater than
Prometheus Federation because Acala must execute additional operations compared to
Prometheus Federation. In the case of 30 nodes in the member cluster, the scrape duration
of Prometheus Federation is around 0.58 s, whereas the scrape duration of metrics aggre-
gation is 0.27 s (53% lower than Prometheus Federation). The metrics aggregation with
deduplication in the same case performs even better, up to 55% shorter than Prometheus
Federation. In general, our methods perform better than Prometheus Federation when
the cluster contains more nodes.

The detailed execution times of each step are shown in Figure 5.7(b). We present two
cases with 1 node and 30 nodes and split the scrape time along the five main steps of Acala:
Pull Metrics and Merge, Execution Methods, Send To Controller, Post To Pushgateway,
and Prometheus Scrape. We can see that the total execution time of metrics aggregation
and metrics aggregation with deduplication are similar in 1 node case. Based on the figure,
we can find that the Send to Controller and Post To Pushgateway are slightly greater in
both cases because metrics aggregation will not compare the last metrics values, which
have more metrics that need to be sent and executed. The execution time of the 30 node
situation is greater than 1 node. The major increases are from Pull Metrics and Execution
Methods. More nodes need to be processed by the Acala-Member, which takes more time.

117

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0
5

10
15
20
25
30
35
40
45

Ac
al

a
CP

U
 u

sa
ge

 (
m

)

MA_Controller
MAWD_Controller
MA_Member
MAWD_Member

(a) CPU consumption of Acala components.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

40

50

60

70

80

90

Ac
al

a
m

em
or

y
us

ag
e

(M
iB

)

MA_Controller
MAWD_Controller
MA_Member
MAWD_Member

(b) Memory consumption of Acala components.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0
30
60
90

120
150
180
210
240
270
300

To
ta

l C
PU

 u
sa

ge
 (

m
)

MA_Member
MAWD_Member
PF_Member

(c) Total CPU consumption of member cluster.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

200

300

400

500

600

700

800

900

1000

To
ta

l m
em

or
y

us
ag

e
(M

iB
)

MA_Member
MAWD_Member
PF_Member

(d) Total memory consumption of member cluster.

Figure 5.8 – CPU (a) and memory (b) consumption of Acala components and total CPU
(c) and memory usage (d) of member cluster when scrape interval is set to 5 seconds.

Resources Consumption of Acala Components and Member Cluster. To
better understand the efficiency of our system, we measure the resource usage to see how
much CPU and memory are needed. Same as scrape duration experiments, we only show
the results of 5 seconds scrape interval in Figure 5.8. The CPU usage of Acala components
is depicted in Figure 5.8(a). We found that the CPU usage of Acala-Member grows as
the number of monitored nodes increases, and metrics aggregation with deduplication is
a little greater than metrics aggregation. There are two reasons for these results: one is
that more nodes need to execute, and the other is because comparison consumes CPU
resources. At the same time, the Acala-Controller’s CPU usage of metrics aggregation
with deduplication is lower than metrics aggregation because the transmission volume

118

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

is smaller, which reduces the execution of functions such as decompression in the Acala-
Controller. Regardless of the Acala-Controller or Acala-Member, the memory consumption
of both components is under 80 MiB, as shown in Figure 5.8(b).

The total resource usage combines Acala-Member and Prometheus server resource
consumption in a member cluster. In Figure 5.8(c), we can see that the CPU usage of
Prometheus Federation is higher than both of our approaches when the number of worker
nodes is greater. Although our methods require resources to run the data reduction strate-
gies, Prometheus Federation needs to attach local labels to metrics, which also consumes
resources. This is the reason why Prometheus Federation uses higher CPU resources. Fig-
ure 5.8(d) shows the results for memory. Overall, we do not see much difference in mem-
ory consumption between these three methods. For example, in the case of 30 computing
nodes, the memory usage is 792 MiB, 879 MiB, and 812 MiB for metrics aggregation, met-
rics aggregation with deduplication, and Prometheus Federation, respectively.

5.2.2.4 Performance in Multiple Member Clusters

We now evaluate Acala in a larger environment where we increase the number of
member clusters up to 50 clusters with 20 computing nodes each, representing up to
1,000 computing nodes. We present the same cross-cluster network traffic and resource
consumption measures as in the previous section but exclude the scrape duration perfor-
mance because it is a local measure within the cluster and would therefore show the same
results as with a single cluster.

Cross-Cluster Network Traffic. Figure 5.9 and Figure 5.10 show the average and
per-scrape network traffic when the number of clusters increases. In these two figures,
subfigures (a) and (b) are the results of 5 seconds and 60 seconds scrape interval. Fig-
ure 5.9(a) presents the same trend as the previous experiment: Prometheus Federation
still exhibits the greatest cross-cluster network traffic between the member and global
view clusters. With 50 member clusters, Prometheus Federation uses around 1.40 MiB/s,
followed by metrics aggregation (0.17 MiB/s) and metrics aggregation with deduplication
(0.07 MiB/s). This means that metrics aggregation reduces the cross-cluster traffic by
88% compared with Prometheus Federation, and metrics aggregation with deduplication
reduces it by 95%. Figure 5.9(b) obtains a similar reduction when scraping metrics at
the 60 seconds interval, showing that Acala can effectively reduce the cross-cluster net-
work bandwidth usage and free these precious resources to be rather used by actual user
workloads.

119

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

0 10 20 30 40 50
Number of clusters

0.0

0.3

0.6

0.9

1.2

1.5

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
M

iB
/s

)

MA
MAWD
PF

(a) 5 seconds scrape interval.

0 10 20 30 40 50
Number of clusters

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
M

iB
/s

) MA
MAWD
PF

(b) 60 seconds scrape interval.

Figure 5.9 – Average cross-cluster network traffic in multi-cluster deployment with scrape
interval set to 5 seconds (a) and 60 seconds (b).

Figure 5.10 shows that no matter whether the scrape interval is set to 5 or 60 sec-
onds, the cross-cluster network traffic per scrape is almost identical. We see in Fig-
ure 5.10(a) that when the scrape interval is set to 5 seconds, cross-cluster network traffic
of Prometheus Federation is 4.19, 5.58, and 6.99 MiB per scrape when using 30, 40, and
50 member clusters, which represent 600, 800, and 1,000 computing nodes in total. In the
same conditions, the network traffic using metrics aggregation/metrics aggregation with
deduplication is 0.50/0.21, 0.66/0.28, and 0.83/0.35 MiB. Comparing metrics aggregation
and metrics aggregation with deduplication to Prometheus Federation, the reductions of
network traffic are 3.69/3.98, 4.92/5.30, and 6.16/6.64 seconds which is around 90% lower
than Prometheus Federation. Figure 5.10(b) shows almost identical results using a scrape
interval of 60 s.

Overall, Figure 5.9 and Figure 5.10 show that our methods effectively reduce cross-
cluster network traffic by an order of magnitude compared to the Prometheus Federation.

Resource Usage in the Management Cluster. We now explore the resource usage
in the management cluster with a large number of member clusters. We only show the
results of total usage in the management cluster with a 5 s scrape interval. As previously
discussed, the total resource usage is summed by Acala components and the Prometheus
server.

Figure 5.11(a) plots the CPU resource usage as a function of the number of mem-
ber clusters. All approaches see a roughly linear growth of their CPU utilization. Also,

120

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

0 10 20 30 40 50
Number of clusters

0

1

2

3

4

5

6

7

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 p
er

 s
cr

ap
e

(M
iB

)

MA
MAWD
PF

(a) 5 seconds scrape interval.

0 10 20 30 40 50
Number of clusters

0

1

2

3

4

5

6

7

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 p
er

 s
cr

ap
e

(M
iB

)

MA
MAWD
PF

(b) 60 seconds scrape interval.

Figure 5.10 – Cross-cluster network traffic per scrape in multi-cluster deployment with
scrape interval set to 5 seconds (a) and 60 seconds (b).

Acala’s strategies require slightly more CPU than Prometheus Federation. The reason
is that Acala needs to apply additional operations compared to Prometheus Federation:
after scraping the metrics from member clusters, Acala-Controller then leverages HTTP
POST methods to put these metrics in the Pushgateway. The metrics aggregation without
deduplication is slightly higher than the metrics aggregation with deduplication because
more metrics have to be scrapped.

In contrast with CPU, Acala’s memory usage is much lower than that of Prometheus
Federation (Figure 5.11(b)). With 50 member clusters, the memory usage in the man-
agement cluster is respectively 7,028 MiB, 1,191 MiB, and 1,187 MiB for Prometheus Fed-
eration, metrics aggregation with deduplication, and metrics aggregation. The memory
reduction in both methods compared to Prometheus Federation is 5,837 MiB (83% lower)
and 5,841 MiB (83% lower) for metrics aggregation with deduplication and metrics aggre-
gation.

5.2.2.5 Impact of Aggregation on Scheduling Efficiency

To understand the impact of aggregating monitoring data with the Acala framework,
we compare scheduling efficiency based on monitoring data with and without aggregation.
We inject the same workloads from Google cluster-usage traces as in Section 5.2.2.2 and
simulate each task execution using stress-ng, with 60 minutes of injection and 30 minutes
waiting for tasks to be finished. We set the scrape interval to 5 seconds for Prometheus

121

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

0 10 20 30 40 50
Number of clusters

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

To
ta

l C
PU

 u
sa

ge
 (

m
)

MA_Management
MAWD_Management
PF_Management

(a) Total CPU consumption of management clus-
ter.

0 10 20 30 40 50
Number of clusters

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta

l m
em

or
y

us
ag

e
(M

iB
)

MA_Management
MAWD_Management
PF_Management

(b) Total memory consumption of management
cluster.

Figure 5.11 – Total CPU (a) and memory usage (b) of management cluster when scrape
interval is set to 5 seconds.

Federation and Acala. To schedule the workloads across these member clusters, we deploy
mck8s to federate and manage clusters and workloads. We also modify the scheduler of
mck8s to make it suitable for our experiment. The scheduler assigns each task to the
cluster where the highest (worst-fit) or lowest (best-fit) number of Pods can be executed.
Note that Kubernetes scheduling takes into account the sum of resource requests from
running pods in each cluster node rather than their actual current resource usage. We
then measure how many tasks can be completed as the metric of scheduling efficiency. We
run each experiment 10 times and average the results across them.

Figure 5.12 depicts the completion rate when we use monitoring data for scheduling
from Prometheus Federation and Acala with metrics aggregation. The two bars on the
left represent the worst-fit, and the remaining are the best-fit method. The completion
rate of using Prometheus Federation monitoring data is slightly higher than Acala in
the worst-fit case, which are about 80.3% (Prometheus Federation) and 76.2% (Acala).
On the other hand, the best-fit method selects the member cluster with the smallest
available resources to enhance the resource utilization of clusters, which requires greater
accuracy in monitoring data to schedule to the correct member cluster. In this difficult
case, the results are similar to worst-fit, which are 79.8% (Prometheus Federation) and
75.7% (Acala). Although metrics aggregation slightly impacts the data accuracy, this
scheduling experiment and previous results show that our solution can reduce cross-cluster

122

5.2. Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations

PF-WorstFit Acala-WorstFit PF-BestFit Acala-BestFit
Methods

0
10
20
30
40
50
60
70
80
90

Co
m

pl
et

ed
 t

as
ks

 (
%

)

Figure 5.12 – Completion rate when injecting workloads in 5 member clusters.

network traffic while achieving a comparable task completion rate to the Prometheus
Federation.

123

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

5.3 AdapPF: Self-Adaptive Scrape Interval for Mon-
itoring in Geo-Distributed Cluster Federations

Accurate application scheduling in a geo-distributed cluster federation environment
requires monitoring information from all member clusters to be collected and transferred
to the management cluster. Prometheus, a well-known open-source monitoring tool, is
stable enough for deployment in production environments and also suits to integrate with
the federated scheduler for geo-distributed cluster federation environments [31]. However,
the fixed scrape interval in both Prometheus and Prometheus Federation can lead to
resource wastage. When the workload in each member cluster is relatively low, frequent
scraping for timely data collection is unnecessary for scheduling and may result in excessive
network bandwidth usage.

To illustrate this issue, we leverage an actual deployment in the geo-distributed Grid’5000
testbed [30]. In the setup, we launch 6 Kubernetes clusters, one of which is our manage-
ment cluster (global view cluster), while the other five are member clusters. Each member
cluster has five worker nodes with 2 CPU cores and 8 GiB of memory. We install mck8s [31]
on the management cluster to manage member clusters. mck8s relies on Prometheus Fed-
eration as its monitoring solution. Furthermore, mck8s provides advanced scheduling poli-
cies based on the resource status of member clusters. By using mck8s, we can understand
how different scrape interval for Prometheus Federation may affect the scheduling accu-
racy when we inject workloads. Two workloads based on Google cluster-usage traces [132]
are used. One dataset represents high resource usage for the platform and is identical to
the Google cluster-usage traces. In the second dataset, we skip the deployments with even
indexes, which therefore generates low resource utilization. We inject each workload for
60 minutes and wait 30 minutes to release the computing resources, resulting in 1,096
tasks for the high-resource usage scenario and 547 tasks for the low-usage scenario. We
run each experiment ten times and calculate the percentage of pending Pods with two
different scrape interval for Prometheus Federation: 5 and 60 seconds.

Figure 5.13(a) shows the results of one of these 10 experiment rounds (number 10 in
the Table) when we inject high workload, and Table 5.1 presents the average percentage
of pending Pods over time for all 10 experiment rounds (sorted). We observe that the
percentage of pending Pods is much lower when we set the scrape interval to 5 seconds
compared to 60 seconds, which indicates that the method schedule can base its placement
decisions on high-quality data. However, the cross-cluster network traffic of these two

124

5.3. AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations

0
30
0
60
0
90
0
12
00
15
00
18
00
21
00
24
00
27
00
30
00
33
00
36
00
39
00
42
00
45
00
48
00
51
00
54
00

Time (s)

0
3
6
9

12
15
18
21
24
27
30
33
36

Pe
nd

in
g

po
ds

 (
%

)

Interval-5s
Interval-60s

(a) High workload injection.

0
30
0
60
0
90
0
12
00
15
00
18
00
21
00
24
00
27
00
30
00
33
00
36
00
39
00
42
00
45
00
48
00
51
00
54
00

Time (s)

0
1
2
3
4
5
6
7
8
9

Pe
nd

in
g

po
ds

 (
%

)

Interval-5s
Interval-60s

(b) Low workload injection.

Figure 5.13 – Percentage of pending Pods with high workload injection (a) and low work-
load injection (b).

Table 5.1 – 10 results of pending Pods percentage (Avg: average of 10 rounds; Std:
standard deviation of 10 rounds).

Lower value is better
1 2 3 4 5 6 7 8 9 10 Avg Std

High Workload
interval-5s (%) 1.88 2.98 3.50 3.88 4.13 4.45 4.54 4.91 5.00 5.22 4.05 1.03
interval-60s (%) 4.66 4.90 6.05 6.45 6.78 6.84 6.84 7.26 11.62 12.13 7.35 2.53

Low Workload
interval-5s (%) 0.29 0.31 0.32 0.41 0.42 0.86 0.87 0.87 0.88 1.57 0.68 0.41
interval-60s (%) 0.39 0.39 0.46 0.58 0.81 0.90 0.99 1.01 1.12 1.30 0.79 0.32

cases is 55.32 and 4.63 KiB/sec, respectively. The difference between these two cases is
one order of magnitude. When the platform size grows, network traffic for monitoring will
grow proportionally and may ultimately represent the majority of the system management
traffic. We also note that when we reduce the workload, the percentage of pending Pods
is similar regardless of whether the scrape interval is set to 5 or 60 seconds, as illustrated
in Figure 5.13(b). These results indicate that in this case, a 60 seconds scrape interval
can achieve similar results without precise information about the member clusters since
clusters have enough resources to handle the workload.

This scheduling experiment inspires AdapPF: we aim to find a good balance between
cross-cluster network traffic and accurate monitoring data to enable accurate application
scheduling by dynamically adjusting the scrape interval based on the resource status

125

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

Member Cluster 1
Node

exporter

...
.

Node
exporter

Prometheus
Server

Time-series
database

HTTP GET

Global view cluster

Prometheus
Server

Time-series
database

Pushgateway AdapPF-
Pullagent

HTTP POST

...
.

Member Cluster N
Node

exporter

...
.

Node
exporter

Prometheus
Server

Time-series
database

Figure 5.14 – Overview of AdapPF architecture and system workflow.

of member clusters. Doing so can achieve precise scheduling decisions while using lower
cross-cluster network traffic than the fixed interval strategy of Prometheus Federation.

5.3.1 System Design

The goal of the Adaptive Prometheus Federation (AdapPF) is to achieve precise mon-
itoring data for accurate application scheduling with lower cross-cluster network traffic in
geo-distributed cluster federations. This section presents the design of AdapPF and intro-
duces dynamically adjusting scrape interval strategies specifically designed for AdapPF
to achieve our objectives.

5.3.1.1 System Model and Architecture

A fog computing platform is a decentralized paradigm with a large number of fog
nodes that are typically weak and unstable. To address these characteristics, we assume
the existence of multiple clusters grouped into a cluster federation. The primary purpose of
monitoring is to track the resource usage of computing nodes, and the information can be
used for making scheduling decisions. The cluster federation distributes each cluster across
various locations within a vast region and situates all servers in each cluster within the
same area. Additionally, we assume that each server in a cluster has sufficient computing

126

5.3. AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations

resources to run the required applications for monitoring. All clusters and servers can
communicate with one another through the network. For this study, we select one cluster
as our global-view cluster, while the remaining clusters are considered member clusters.
Although the current design can support multiple tiers, in this chapter, we have chosen a
two-tier architecture for simplicity.

We build AdapPF on the well-known Prometheus open-source monitoring solution
and its feature Prometheus Federation. Note that AdapPF is not based on the Acala
framework because AdapPF aims to provide a solution for users who do not want to
aggregate the data in geo-distributed cluster federation environments. Moreover, without
metrics aggregation, we can understand the real impact between scrape interval, cross-
cluster network traffic, and data accuracy. We leverage the Prometheus server, Node-
exporter [122], and Pushgateway [188] to build AdapPF. We present the overview of the
architecture in Figure 5.14 and discuss the detailed description of each component below:

— Prometheus server: Prometheus servers are responsible for collecting monitoring
data from the configured targets and storing these metrics in the local time-series
database installed in all clusters. The administrator can retrieve and analyze moni-
toring data by querying the relevant Prometheus server. In the global-view cluster,
the Prometheus server includes monitoring data from member clusters so that the
users or federation’s scheduler can have the resource status of all federated clusters
to execute their jobs accordingly.

— Node-exporter: This application is a monitoring agent that exposes various met-
rics related to server resources, such as CPU and memory usage. Prometheus server
can scrape metrics from Node-exporter to gather information about the status of
individual machine resources. We install a Node-exporter on all nodes in all clusters.

— Pushgateway: Pushgateway provides an HTTP endpoint for the Prometheus server
to scrape and cache the metrics. Pushgateway can also automatically generate alert-
ing metrics for failed pushes. Administrators can set related alerting rules to receive
notifications.

The AdapPF framework adds a specialized proxy in this architecture called AdapPF-
Pullagent to facilitate the achievement of the self-adaptive scrape interval for each member
cluster based on cluster resource status. Modifying the configuration files directly on the
Prometheus server in the global-view cluster requires reloading it, which may cause system
instability. Instead, the main purpose of AdapPF-Pullagent is to scrape metrics from the

127

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

Prometheus server in each member cluster. A timer determines the timing for scraping
metrics from target member clusters. Once AdapPF-Pullagent has scraped the metrics,
it adds corresponding information to identify the member cluster to the data and pushes
these metrics to Pushgateway. Administrators can launch multiple AdapPF-Pullagent
applications to accommodate more member clusters, making the system more scalable.
The detailed workflow is as follows:

(1) The Prometheus server in each member cluster periodically scrapes the metrics from
Node-exporter and saves these monitoring data in the local database. This is a local
operation within each member cluster.

(2) When the timer in AdapPF-Pullagent for target clusters expires, the Pullagent uses
the HTTP GET method and Prometheus Federation API to scrape the metrics from
the Prometheus server in the target member clusters. We use Gzip to compress the
data transmission between the global-view cluster and member clusters.

(3) After AdapPF-Pullagent receives the metrics, the Pullagent adds related information
(the IP address of the control plane set by the user) to the metrics to correlate them
with the member cluster. Then, the Pullagent leverages the HTTP POST method
to push these metrics to the Pushgateway.

(4) The Prometheus server in the global-view cluster periodically scrapes metrics from
the Pushgateway at a user-defined interval and stores them in a local time-series
database. As a result, this Prometheus server includes monitoring data coming from
the target member clusters.

5.3.1.2 Self-Adaptive Scrape Interval

To achieve a self-adaptive scrape interval for each member cluster based on the resource
status in a geo-distributed cluster federation environment, AdapPF-Pullagent follows a
classical Monitor, Analyze, Plan, Execute (MAPE) loop pattern. Each member cluster
runs its own control loop for monitoring and self-adaptation. This design ensures that the
AdapPF-Pullagent can adjust the scrape interval for each member cluster according to
its local resource utilization status. We discuss each phase below.

Monitor: The Monitor phase gathers monitoring data in each member cluster, such
as CPU or memory usage. As discussed in the previous section, The Pullagent scrapes the
monitoring data when the timer in AdapPF-Pullagent for a target cluster counts down to

128

5.3. AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations

0. Therefore, AdapPF-Pullagent maintains the current monitoring data from the target
member cluster. As a result, we can use these monitoring metrics for the next step.

Analyze: The main purpose of the Analyze step is to process monitoring data that
are collected from the Monitor phase. In the current design, we leverage the following
three metrics:

— node cpu seconds total is the cumulative amount of CPU time consumed by a node
since its boot phase.

— node memory MemFree bytes is the amount of free memory on the node, measured
in bytes.

— node memory MemTotal bytes is the total installed memory on the node, measured
in bytes.

Prometheus Federation collects monitoring data from member clusters at the node
level, providing metrics from each node. To analyze these three metrics, we calculate
the average values of these three metrics independently across all servers for the target
member cluster to obtain an overall representation of the cluster status and then compute
the current resource usage as a percentage. Consequently, we obtain two values, CPU and
memory utilization, and select the greater value to plan the scrape interval for the target
member cluster. For instance, if the CPU usage is 60% and the memory usage is 48%, the
system will select 60% as the Cluster Status (CS) for the subsequent step.

Plan: The Plan step uses the Cluster Status (CS) from the previous phase and cal-
culates the scrape interval for the next round. We apply the following equation in each
iteration:

M = Tmincluster − Tmaxcluster

Rmaxcluster −Rmincluster

(5.1)

intercept = Tmaxcluster −M ×Rmincluster (5.2)

Intervalcluster = M × CS + intercept (5.3)

Tmincluster and Tmaxcluster represent the shortest and longest scrape interval for the
target cluster, respectively. Similarly, Rmaxcluster and Rmincluster correspond to the high-
est and lowest resource status of the clusters that map to the scrape interval. For example,
if the status of the current resource CS of the target cluster reaches Rmaxcluster, then

129

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

the system sets the scrape interval to Tmincluster. This design uses shorter scrape interval
during high target cluster activity periods to use timely monitoring data for accurate
application scheduling. At the same time, if the CS is Rmincluster, our method sets the
scrape interval to Tmaxcluster and saves the network bandwidth with a longer scrape
interval.

In addition, the scrape interval must be between Tmaxcluster and Tmincluster. There-
fore, Intervalcluster should satisfy the constraint:

Tmincluster ≤ Intervalcluster ≤ Tmaxcluster (5.4)

Enforcing this constraint ensures that if the threshold is greater than Rmaxcluster or
less than Rmincluster, the scrape interval will remain for Tmincluster and Tmaxcluster,
respectively.

Execute: After calculating the scrape interval for the next round, the system stores
this information in memory. When the timer for the target cluster expires again, our
approach returns to the monitor step and finds the scrape interval for the next round.

5.3.2 Performance Evaluation

We now evaluate the performance of AdapPF using our self-adaptive scrape interval
approach.

5.3.2.1 Experimental Setup

We conduct the experiments using the Grid’5000 geo-distributed testbed, which con-
sists of ten server clusters located in various cities [30].

5.3.2.2 Implementation and Experiment Deployment

We implement AdapPF-Pullagent in Python 3.10 and follow the design features dis-
cussed in Section 5.3.1. For the experiment environment, we utilize Kubernetes v1.23.5 as
our container orchestration platform and various packages to provide different functional-
ities, including multi-cluster Kubernetes (mck8s) to distribute workloads across member
clusters, Cilium v1.11.4 as the Container Network Interface (CNI), Prometheus v2.34.0,
Node-exporter v1.3.1, and Pushgateway v1.5.1. To ensure the robustness of our software,
we deploy AdapPF-Pullagent using a Kubernetes Deployment. This setting enables auto-
matic restart of the software in case of component errors.

130

5.3. AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations

In our experiments, we deploy a Kubernetes cluster that serves as the global-view
cluster, consisting of two nodes dedicated to the control plane and the worker node. Each
node has 4 CPU cores and 16 GiB of memory. We then launch 5 clusters to be our member
clusters. Each cluster has nine nodes (one control plane and eight worker nodes). All nodes
in each member cluster have 2 CPU cores and 8 GiB of memory. Each cluster incorporates
the Prometheus server installation, with the Node-exporter deployed in every node.

5.3.2.3 Performance Indicators and Test Methods

AdapPF aims to maintain monitoring data accuracy while reducing cross-cluster net-
work traffic in a geo-distributed cluster federation environment. Therefore, we use resource-
based scheduling and measure the percentage of pending Pods under an execution work-
load. Meanwhile, we collect the cross-cluster network traffic using tcpdump. A low per-
centage of pending Pods and network traffic indicates better performance.

To evaluate AdapPF’s performance, we conduct a comparison with the unmodified
Prometheus Federation. We set the Prometheus Federation’s scrape interval to 5 s and
60 s and compare against AdapPF’s self-adaptive scrape interval approach with differ-
ent Rmaxcluster (60%, 70%, and 80%). For all member clusters, we set Tmincluster and
Tmaxcluster to 5 (mck8s default) and 60 (Prometheus default) seconds, respectively.
Rmincluster is set to 0% to reduce the complexity of the experiment. All Prometheus
servers have set their scrape interval to 5 seconds. Similar to the experiments from Sec-
tion 5.3, we use original Google cluster-usage traces as a dataset representing high resource
usage. These traces contain information regarding numerous deployed applications, in-
cluding essential parameters such as resource demands (CPU, RAM), job duration, and
job inter-arrival times. This dataset has been extensively utilized for evaluating resource
scheduling [191]. We inject workloads (1,096 jobs) for 60 minutes and then wait 30 min-
utes to release the computing resources. We run each experiment 10 times and present
the results in the next section.

5.3.2.4 Experiment Results

Figure 5.15 illustrates the average and standard deviation results of 10 rounds for the
percentage of pending Pods (a) and cross-cluster network traffic (b). For clarity in the
figures, we use the abbreviation PF to denote Prometheus Federation and AdapPF-60%,
AdapPF-70%, and AdapPF-80% to represent AdapPF with different values of Rmaxcluster.

131

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

PF-5s PF-60s AdapPF-60%AdapPF-70%AdapPF-80%
Methods

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

Pe
nd

in
g

po
ds

 (
%

)

(a) Percentage of pending Pods

PF-5s PF-60s AdapPF-60%AdapPF-70%AdapPF-80%
Methods

0
10
20
30
40
50
60
70
80
90

Cr
os

s-
cl

us
te

r
ne

tw
or

k
tr

af
fic

 (
Ki

B/
se

c)

(b) Cross-cluster network traffic

Figure 5.15 – Experiment results of percentage of pending Pods (a) and cross-cluster
network traffic (b).

Figure 5.15(a) shows that the Prometheus Federation with 60 seconds scrape interval
(PF-60s) has the highest average percentage of pending Pods (2.12%) whereas PF-5s,
AdapPF-60%, AdapPF-70%, and AdapPF-80% respectively have 1.59%, 1.51%, 1.63%,
and 1.86%. A greater percentage of pending Pods indicates that more Pods were scheduled
in member clusters that did not have sufficient resources to run them. This situation is
because the monitoring data in the management cluster is up to one minute late, which
may result in the scheduler scheduling applications to an already fully loaded member
cluster. On the other hand, setting a shorter scrape interval leads to a lower percentage of
pending Pods, which comes at the cost of increased cross-cluster network traffic, as shown
in Figure 5.15(b).

As Rmaxcluster is set to 60%, 70%, and 80%, the percentage of pending Pods in
AdapPF exhibits a progressive increase. This is because AdapPF sets the scrape in-
terval to Tmincluster when the resources of the target cluster reach Rmaxcluster. Using
Prometheus Federation with 5 seconds scrape interval, the percentage of pending Pods
is similar to AdapPF-60% and AdapPF-70%. At the same time, by referring to Fig-
ure 5.15(b), we can observe that when comparing the cross-cluster network traffic with
PF-5s, both AdapPF-60% and AdapPF-70% can significantly reduce the traffic from 81.34
KiB/sec to 54.54 KiB/sec and 52.40 KiB/sec, representing a reduction of 33% and 36%,

132

5.4. Conclusion

respectively. Despite having lower cross-cluster network traffic, AdapPF-80% yields the
greatest percentage of pending Pods among the three settings of AdapPF.

This experiment demonstrates that AdapPF can achieve similar accuracy compared
to Prometheus Federation with 5 seconds scrape interval while reducing the cross-cluster
network traffic between member clusters and management cluster by dynamically ad-
justing the scrape interval based on the resource usage of target member clusters. We
anticipate that the reduction of cross-cluster network traffic will become even more pro-
nounced when deploying more member clusters in a geo-distributed cluster federation
environment. Our approach differs from Prometheus Federation in allowing longer scrape
interval for member clusters with lower resource usage, which results in reduced network
traffic. On the other hand, when a cluster is experiencing high resource usage, AdapPF
can dynamically adjust the scrape interval to a shorter value to get timely monitoring
data. By leveraging this, the scheduler or system alarm can make informed decisions or
trigger earlier alerts. In contrast, Prometheus Federation’s fixed scrape interval leads to
fixed cross-cluster network traffic regardless of the cluster’s current load, which may waste
network bandwidth to report the monitoring data. Note that this design may need time
to adjust the scrape interval in case of a sudden load surge. The administrator may define
an appropriate Tmaxcluster based on their system load patterns.

5.4 Conclusion

To support accurate scheduling in a cluster federation while reducing the cross-cluster
network traffic generated by Prometheus Federation, this chapter first presents Acala, a
monitoring framework for geo-distributed Kubernetes cluster federations. Acala exploits
two strategies called metrics aggregation and metrics deduplication for reducing the vol-
ume of monitoring data that needs to be reported to the management cluster. Acala per-
forms more efficiently than regular Prometheus Federation because of lower cross-cluster
network traffic and shorter scrape duration when we increase the number of worker nodes
in a member cluster. We also examine our framework in a federation with large numbers
of clusters, proving that the solutions suit the fog environment. Using actual deployments,
we show that Acala can reduce the cross-cluster network traffic by up to 95%-97% and
scrape duration by up to 55% compared to Prometheus Federation. Moreover, its resource
usage remains reasonable and can even save memory resources in the management cluster.
Finally, Acala does not significantly impact scheduling efficiency, which shows that report-

133

Chapter 5 – Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations

ing only aggregated metrics to the management cluster provides an accurate overview for
efficient scheduling decisions.

To further address the fixed scrape interval issue, this chapter presents Adaptive
Prometheus Federation (AdapPF), an extension of Prometheus Federation designed ex-
plicitly for a geo-distributed cluster federation environment. AdapPF uses a self-adaptive
approach to dynamically adjust the scrape interval for each member cluster based on the
resource status of target clusters. Using actual deployment for experiments, we show that
AdapPF achieves comparable accuracy as Prometheus Federation with 5 seconds scrape
interval while reducing cross-cluster network traffic by 36%.

134

Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

Cloud computing is a prevailing computing paradigm that has revolutionized the way
users access and use computing resources. The cloud architecture consists of many power-
ful servers and large capacity storage connected by high speed network links in a limited
number of data centers. Using virtualization technology, a public cloud data center can
share its almost infinite computing resources with many users while maintaining high plat-
form resource utilization. Therefore, cloud users can leverage the public cloud to deploy
their applications easily without worrying about the underlying infrastructure. However,
the cloud data centers may be far from the users, which increases latency between the users
and the cloud applications. This situation may make some types of applications, such as
latency-sensitive ones, unsuitable for traditional centralized cloud computing deployment.

The emergence of the fog computing concept aims to address issues such as end-to-
end latency, bandwidth constraints, and the need for real-time data processing. The main
idea is to deploy computing resources and software at the network edge. Fog computing
is regarded as an extension of cloud computing. However, the current fog computing
solutions, no matter in the commercial or open-source world, are designed for specific use
cases that require the creation of a new dedicated hardware or software infrastructure in
the appropriate location to form a private fog platform. Therefore, we argue that future fog
platforms should follow the same cloud computing principle that allows users to deploy any
application on large-scale, public, multi-tenant geo-distributed fog computing platforms.
To build this public fog platform across very large geographical area, engineers would
encounter several challenges, such as scalability, resource management, and monitoring.
This thesis applies the concepts of cluster federation and assumes each cluster is deployed
in different strategic locations to serve the end users. In this context, we then propose
two contributions to address the scalability-related challenges.

135

In the first contribution, this thesis presents the concept of meta-federations, which
enables fog clusters to federate their resources with one another in a very flexible way.
Each cluster and federation may be owned by a different entity. Peering relationships
between clusters may then be established via a legal contract where one company leases
some of its hardware resources to another. This design can expand the service coverage of
fog providers’ geographical span in locations where they do not own resources themselves
by using computing resources from other Kubernetes clusters. Using the meta-federation
concept potentially allows one to build very large-scale shared public geo-distributed fog
platforms at the scale of a country or even a continent, which can then follow a classical
cloud-like business model to easily deploy any applications.

To support meta-federations design, this thesis introduces UnBound, a scalable fog
meta-federations platform that considers different levels of multi-tenancy to support users
and clusters from different organizations in multiple Kubernetes cluster environments.
UnBound relies on Kubernetes to orchestrate resources within individual fog clusters
and Open Cluster Management (OCM) to federate multiple member clusters under the
authority of a management cluster. To isolate the users and federations using the same
member cluster, UnBound leverages the Virtual Kubernetes Clusters (vCluster) project
to create isolated logical sub-clusters within the member clusters. Each vCluster has its
own API server and data store to ensure different federations do not interfere with each
other when using the same member cluster.

Extensive experiments with actual large-scale deployments of up to 500 clusters show
that UnBound achieves inter-user and inter-federation isolation while maintaining per-
formance comparable to the original Open Cluster Management and acceptable overhead
levels.

In the second contribution, we introduce two monitoring frameworks specifically
designed for geo-distributed cluster federation environments. The first one is Acala which
reports information about entire member clusters rather than the individual servers within
them. This elevates the traditional view of federation monitoring from the “node” level to
the “cluster” level. Acala exploits two data reduction strategies, metrics aggregation and
metrics deduplication, to reduce the number of metrics to be reported to the management
cluster. Metrics aggregation aggregates values whose metric name and labels are identical
in different servers; and metrics deduplication avoids one to repeatedly report the same
metrics in case their value does not change. The evaluations show that Acala can reduce
the cross-cluster network traffic by up to 95%-97% and scrape duration by up to 55%

136

compared to Prometheus Federation. Moreover, its resource usage remains reasonable
and can even save memory resources in the management cluster. Finally, Acala does
not significantly impact scheduling efficiency, which shows that reporting only aggregate
metrics to the management cluster provides an accurate overview for efficient scheduling
decisions.

This thesis also discusses Adaptive Prometheus Federation (AdapPF), which can self-
adaptive change the scrape interval based on the status of CPU and memory computing
resources. If the usage of computing resources is high, AdapPF will automatically increase
the frequency of data collection. This allows for the timely acquisition of up-to-date mon-
itoring data, enabling the scheduler or system alarm to make informed decisions or trigger
alerts earlier while keeping the cross-cluster network traffic at a lower level. Based on the
actual deployments with scheduling experiments, AdapPF achieves comparable schedul-
ing accuracy to Prometheus Federation while reducing cross-cluster network traffic by up
to 36%.

Acala and AdapPF are complementary as they address different parts of the Prometheus
Federation architecture. In principle, they may be combined to leverage the strengths of
both.

6.2 Future Directions

This thesis presents several solutions to address the scalability challenges of geo-
distributed fog computing federations. Although we believe these contributions have
pushed a step toward building a large-scale, shared, public, geo-distributed fog federation
platform, additional research work remains necessary to realize this vision. Therefore, we
highlight some future directions in this section and hope they can inspire further research
and development in this context.

6.2.1 Automation of Geo-Distributed Fog Computing Federa-
tions

Building a fog federation platform requires fog providers to deploy clusters at strate-
gic locations across a country or continent to serve end users efficiently. By leveraging
the principles of federation, these fog clusters can operate and manage together, which
not only enhances scalability but also enables seamless coordination and resource shar-

137

ing among clusters. A federation typically consists of a management cluster and many
member clusters, which register with the management cluster. To effectively manage a
large number of member clusters and workloads in a geo-distributed fog platform, a highly
automated and robust framework is essential.

The first direction for automation in large-scale fog federation platforms could focus
on infrastructure-level management, such as the registration process between the manage-
ment cluster and member clusters. To serve a large population in a very broad landscape,
the number of member clusters within the federation will need to scale significantly and
may reach a very large number. For example, the number of 5G base stations in France is
39,502 with 88.8% of population coverage [22]. To achieve comparable or greater service
coverage, the number of member clusters in a fog computing federation would need to be
similar to or greater than this number. Moreover, using the meta-federations concept, a fog
provider is allowed to expand the service coverage span in additional locations by securing
a business deal with the other fog resource providers and including their resources in the
federation. Given the complexity of a fog federation platform that includes a large number
of member clusters, each of which is potentially managed by a different administrative
domain, it is important to investigate automatic mechanisms that make the federations
follow the contract to dynamically discover new related clusters, handle registration and
de-registration processes, and manage resource quota setting. These automated processes
should be able to reduce the potential for human error and the time and effort required
for deployment. Moreover, by automating the management of resource quotas, the federa-
tion or member cluster’s owner could dynamically set resource quotas based on real-time
demand, ensuring optimal utilization in each member cluster. To design these automation
solutions, a possible direction may be to exploit smart contract technology [192] as a way
to formalize and automate to ensure all interactions between the management cluster and
member clusters are conducted securely and following predefined agreements.

Another research direction for automation in large-scale fog federation platforms is
application-level management, which includes application scheduling and application failover
mechanisms. The scheduling methods in current federation frameworks such as UnBound,
OCM, mck8s, and Karmada support resource-based placement with labels or cluster
names, which provide some automation for deploying the applications across the member
clusters. However, addressing specific clusters by their names may become increasingly
cumbersome. Moreover, only considering the computing resources of each member cluster
would not be enough in this environment since this does not consider fog application char-

138

acteristics such as low user-to-application latency. Therefore, newer scheduling designs are
required that take into account different requirements to support fog applications, such as
latency-aware and location-aware placement. An interesting point that also needs to be
considered for future solutions is the two-level architecture introduced by the federation,
which is composed of the node and cluster levels. For example, the management cluster
could first identify a set of suitable member clusters based on the locations or other factors
and then find the appropriate servers based on the computing resources or other relevant
criteria within those selected clusters.

Classical cloud data centers are composed of powerful servers within stable execution
environment conditions. In contrast, geo-distributed fog federation platforms may consist
of a very large number of weak and potentially unreliable servers within unstable envi-
ronments, which introduces a greater chance of facing nodes or cluster failures. Therefore,
application failover mechanisms are crucial to maintain service continuity in such plat-
forms. As discussed earlier, the fog federation platform is a two-tier architecture that
needs to consider nodes and clusters at the same time when designing failover solutions,
which could have different failover levels. Additionally, stateful and stateless applications
may also need to be taken into account, which could involve data migration for stateful
ones across clusters. Another issue that may be encountered is the trigger conditions for
failover. These conditions could take into account application availability by monitoring
the status of services, the network connectivity of nodes or clusters, or the health of the
control plane or worker nodes.

6.2.2 Security of Geo-Distributed Fog Computing Federations

In general, Cloud Service Providers (CSPs) can build a robust and comprehensive
physical security ecosystem because of the centralized nature of cloud data centers. For
instance, CSPs could protect their data center infrastructures with surveillance cameras
and security guards. In terms of network security, they can defend the network with
specifically designed machines, such as network firewalls and Intrusion Prevention Sys-
tems (IPSs), by filtering traffic, blocking unauthorized access, and detecting and prevent-
ing potential attacks in real-time. On the other hand, a fog federation platform relies
on a geo-distributed computing paradigm where fog clusters are deployed in many dif-
ferent locations, which may be vulnerable to physical or remote tampering, potentially
turning them into malicious clusters or “spies” within the federation. To mitigate this
risk, one potential solution could be to apply the zero-trust security model in the fog

139

federation platform [193]. This model assumes that no cluster in the federation is trusted,
no matter the location or previous behavior. Each interaction between member clusters
and management clusters is strictly authenticated to reduce the chances of compromised
clusters affecting the federations. However, while the increased security procedures en-
hance protection, this model may also introduce trade-offs in operational efficiency. This
potential trade-off requires a comprehensive evaluation to ensure that the benefits of a
higher security level do not reduce the overall system performance.

In a fog meta-federations platform, fog providers can seamlessly access and share their
computing resources across different entities. However, servers within each fog provider’s
cluster may not have the same security conditions. This requires a solution that provides
a unified secure computing environment for user applications. One possible strategy is to
apply the concept of Trusted Execution Environments (TEEs) [194]. By enabling TEEs
in each server, they provide isolated environments that maintain data confidentiality and
integrity, thereby offering a standardized level of security across all fog servers in the
federation. However, effective TEEs typically rely on hardware support, such as dedicated
processors or Trusted Platform Modules (TPMs) [195]. A challenge arises when servers
may not be equipped with specialized hardware components. This limitation needs to be
considered when designing the solution.

Distributed Denial of Service (DDoS) attack is a significant cybersecurity threat that
computing platforms face today. According to a report from Cloudflare, in the year 2023,
they have mitigated around 14 million DDoS attacks [196]. Moreover, the number of
attacks is still increasing. Therefore, it would be beneficial to investigate a DDOS defense
framework specially designed for geo-distributed fog federation platforms. For example,
one application in a member cluster may be under DDOS attacks. The security framework
should mitigate the DDOS attacks in that cluster while starting to prevent similar attacks
for other member clusters in the same federation. Implementing such a framework requires
a multi-cluster network policies solution, in which policies are created in one cluster and
seamlessly extended to other clusters in the federation. A framework such as Cilium
could be part of the defense solution. Cilium is one of the Container Network Interface
(CNI) plugins that offer Pod connectivity with support for multi-cluster networking in
cloud-native environments [133]. In addition to providing connectivity, Cilium supports
multi-cluster network policies, allowing for the creation of global network policies across
distributed clusters. However, the effectiveness of these capabilities in a large-scale geo-

140

distributed fog federation platform requires further evaluation to ensure comprehensive
performance.

6.2.3 Sustainability of Geo-Distributed Fog Computing Federa-
tions

To deliver high-quality fog services, a fog service provider should deploy fog clusters
in rural areas with low-density populations for its own fog federation platform. The com-
puting resources in these clusters may be difficult to fully utilize, which results in some
nodes in the cluster remaining idle during non-peak periods. To optimize energy con-
sumption, one could design a self-adaptive mechanism to dynamically and temporarily
shut down these idle nodes through the cluster’s control plane. This mechanism could
follow the Monitor, Analyze, Plan, Execute (MAPE) pattern to monitor node status, an-
alyze node usage patterns in the cluster, plan shutdown timing, and execute the necessary
application migration and shutdown actions. It could also combine machine learning or
other related technology to further optimize this process by accurately predicting usage
patterns for decision-making. Moreover, it could not only shutdown the individual nodes
within a cluster but also the entire cluster when necessary. In this case, a remote wake-up
protocol for entire clusters by the management cluster is required, which should also be
considered in the solutions.

Due to the geo-distributed nature of the fog federation platform, fog clusters are de-
ployed across different locations. The placement of fog clusters is an important factor,
as it could significantly influence system performance and environmental sustainability.
Fog providers should carefully select the fog cluster locations in order to reduce carbon
emissions while keeping the computing resources close to data sources. These location
decisions may require multi-criteria analysis to evaluate and compare the environmental
impacts of different cluster deployments. To this end, a series of mathematical models is
essential to accurately quantify and predict the operational carbon footprint and overall
system performance across various deployment scenarios, which may include the consider-
ations of carbon emissions, population density, the availability of infrastructure, and other
important factors. By simulating and analyzing potential impacts before real-world imple-
mentation, these models may help reduce environmental impacts and assist in identifying
and minimizing potential operational, financial, and technological risks.

141

6.3 Closing Statement

This thesis has proposed the concept of meta-federations to increase the coverage of
fog services and improve the utilization of computing resources by sharing the cluster
with other fog providers. The UnBound framework addresses the multi-tenancy chal-
lenges caused by the meta-federations while maintaining the scalability of the platform.
Two monitoring solutions significantly improve the overall monitoring efficiency in clus-
ter federation environments and maintain cost-effectiveness. These contributions pave the
way toward the vision of developing large-scale, public, multi-tenant, geo-distributed fog
computing platforms and democratizing fog computing technologies.

142

BIBLIOGRAPHY

[1] International Business Machines Corporation, What Are the Benefits of Cloud
Computing?, https://reurl.cc/WR70R7, cited Mar 2024.

[2] O. Laadan and J. Nieh, « Operating System Virtualization: Practice and Experi-
ence », in Proceedings of the ACM Annual Haifa Experimental Systems Conference,
2010.

[3] Google LLC, Cloud Locations, https://reurl.cc/Gjd0LG, cited Apr 2024.

[4] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat, and S.
Tai, « A Research Perspective on Fog Computing », in Proceedings of the ICSOC
Workshop on IoT Systems Provisioning and Management for Context-Aware Smart
Cities, 2018.

[5] F. Blair, The Digital Forecast: 40-Plus Cloud Computing Stats and Trends to Know
in 2023, https://reurl.cc/8v30j7, cited Apr 2024.

[6] Z. Wu and H. V. Madhyastha, « Understanding the Latency Benefits of Multi-
Cloud Webservice Deployments », ACM SIGCOMM Computer Communication
Review, vol. 43, 2, 2013.

[7] C. Avasalcai, I. Murturi, and S. Dustdar, « Edge and Fog: A Survey, Use Cases,
and Future Challenges », in 2020.

[8] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill, « Perceptual Sensitivity to
Head Tracking Latency in Virtual Environments with Varying Degrees of Scene
Complexity », in Proceedings of the ACM Symposium on Applied Perception in
Graphics and Visualization, 2004.

[9] P. Mark, S. Jason, and T. Christopher, What’s New With the Internet of Things?,
https://reurl.cc/va5Zdy, cited Apr 2024.

[10] L. S. Vailshery, Number of Internet of Things (IoT) Connected Devices Worldwide
from 2019 to 2030, https://reurl.cc/2YrL69, cited Apr 2024.

143

https://reurl.cc/WR70R7
https://reurl.cc/Gjd0LG
https://reurl.cc/8v30j7
https://reurl.cc/va5Zdy
https://reurl.cc/2YrL69

[11] L. Hou, S. Zhao, X. Xiong, K. Zheng, P. Chatzimisios, M. S. Hossain, and W. Xiang,
« Internet of Things Cloud: Architecture and Implementation », IEEE Communi-
cations Magazine, vol. 54, 12, 2016.

[12] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, I. M. Al Jawarneh,
and A. Zanni, « How Fog Computing Can Support Latency/Reliability-Sensitive
IoT Applications: An Overview and a Taxonomy of State-of-the-Art Solutions »,
in 2020.

[13] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, « Fog Computing and Its Role
in the Internet of Things », in Proceedings of the ACM SIGCOMM Workshop on
Mobile Cloud Computing, 2012.

[14] Microsoft Corporation, Azure Stack Edge, https://reurl.cc/MOo8zk, cited June
2024.

[15] Google LLC, Google Distributed Cloud Connected, https://reurl.cc/yLaYYl,
cited June 2024.

[16] Oracle Corporation, Roving Edge Infrastructure, https : / / reurl . cc / YEz7Eo,
cited July 2024.

[17] Amazon Web Services Inc., Amazon Web Services Snowball Edge Compute, https:
//reurl.cc/oRGDrg, cited July 2024.

[18] D. Battulga, M. Farhadi, M. A. Tamiru, L. Wu, and G. Pierre, « LivingFog: Lever-
aging Fog Computing and LoRaWAN Technologies for Smart Marina Management
(Experience Paper) », in Proceedings of the Conference on Innovation in Clouds,
Internet and Networks, 2022.

[19] FogGuru project, The LivingFog Platform, https://reurl.cc/lQOW0l, cited June
2024.

[20] The KubeEdge Authors, KubeEdge, https://reurl.cc/kOR9WK, cited July 2024.

[21] K. Toczé and S. Nadjm-Tehrani, « The Necessary Shift: Toward a Sufficient Edge
Computing », IEEE Pervasive Computing, vol. 23, 2, 2024.

[22] The European 5G Observatory Authors, 5G Observatory Biannual Report October
2023, https://reurl.cc/4r70lY, cited June 2024.

[23] Essentra Components, A Guide to 5G Small Cells and Macrocells, https : / /
reurl.cc/AjeNY8, cited June 2024.

144

https://reurl.cc/MOo8zk
https://reurl.cc/yLaYYl
https://reurl.cc/YEz7Eo
https://reurl.cc/oRGDrg
https://reurl.cc/oRGDrg
https://reurl.cc/lQOW0l
https://reurl.cc/kOR9WK
https://reurl.cc/4r70lY
https://reurl.cc/AjeNY8
https://reurl.cc/AjeNY8

[24] Cloud Native Computing Foundation, Kubernetes Maturity Level, https://reurl.
cc/eL1LrW, cited Mar 2024.

[25] Cloud Native Computing Foundation, Prometheus Maturity Level, https://reurl.
cc/1vXeE9, cited June 2024.

[26] OpenStreetMap France, OpenStreetMap France, https://reurl.cc/XGb0oj, cited
June 2024.

[27] The Kubernetes Authors, Kubernetes, https://reurl.cc/L48ovL, cited Mar
2024.

[28] The Open Cluster Management Authors, Open Cluster Management, https://
reurl.cc/qrAYxp, cited Mar 2024.

[29] Loft Labs, Inc., Virtual Kubernetes Clusters Project, https://reurl.cc/kOE19q,
cited May 2024.

[30] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jean-
voine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez,
F. Quesnel, C. Rohr, and L. Sarzyniec, « Adding Virtualization Capabilities to the
Grid’5000 Testbed », in Cloud Computing and Services Science, vol. 367, Springer
International Publishing, 2013, pp. 3–20.

[31] M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, « mck8s: An Orchestration
Platform for Geo-Distributed Multi-Cluster Environments », in Proceedings of the
International Conference on Computer Communications and Networks, 2021.

[32] The Prometheus Authors, Overview, https://reurl.cc/Vz1DgA, cited May 2024.

[33] The Prometheus Authors, Federation, https://reurl.cc/mM3o2W, cited May
2024.

[34] E. Shein, The Most Important Cloud Advances of the Decade, https://reurl.
cc/A4zqO3, cited Mar 2024.

[35] J. Surbiryala and C. Rong, « Cloud Computing: History and Overview », in Pro-
ceedings of the IEEE Cloud Summit, 2019.

[36] A. Regalado, Who Coined Cloud Computing, https://reurl.cc/E4amxg, cited
Mar 2024.

[37] Amazon Web Services Inc., Announcing Amazon S3 - Simple Storage Service,
https://reurl.cc/prV8al, cited Mar 2024.

145

https://reurl.cc/eL1LrW
https://reurl.cc/eL1LrW
https://reurl.cc/1vXeE9
https://reurl.cc/1vXeE9
https://reurl.cc/XGb0oj
https://reurl.cc/L48ovL
https://reurl.cc/qrAYxp
https://reurl.cc/qrAYxp
https://reurl.cc/kOE19q
https://reurl.cc/Vz1DgA
https://reurl.cc/mM3o2W
https://reurl.cc/A4zqO3
https://reurl.cc/A4zqO3
https://reurl.cc/E4amxg
https://reurl.cc/prV8al

[38] Amazon Web Services Inc., Announcing Amazon Elastic Compute Cloud (Amazon
EC2) - Beta, https://reurl.cc/Z9z8Zp, cited Mar 2024.

[39] Microsoft Corporation, Windows Azure General Availability, https://reurl.cc/
E4aWVa, cited Mar 2024.

[40] Google LLC, App Engine 1.6.0 Out of Preview Release, https://reurl.cc/
WRVyO5, cited Mar 2024.

[41] F. Richter, Amazon Maintains Cloud Lead as Microsoft Edges Closer, https :
//reurl.cc/Xqd44e, cited Mar 2024.

[42] Eurostat, Cloud Computing - Statistics on the Use By Enterprises, https : / /
reurl.cc/RWE56Z, cited Mar 2024.

[43] J. E. Smith and R. Nair, « The Architecture of Virtual Machines », IEEE Com-
puter, vol. 38, 5, 2005.

[44] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, « Cloud Container Technologies:
A State-of-the-Art Review », IEEE Transactions on Cloud Computing, vol. 7, 3,
2017.

[45] A. Badkar, 7 Astonishing Benefits of Virtualization in Cloud Computing, https:
//reurl.cc/D4EqDe, cited Mar 2024.

[46] R. Beri and V. Behal, « Cloud Computing: A Survey on Cloud Computing »,
Foundation of Computer Science International Journal of Computer Applications,
vol. 111, 16, 2015.

[47] GlobalDots, 13 Key Cloud Computing Benefits for Your Business, https : / /
reurl.cc/77mKY1, cited Mar 2024.

[48] P. Mell and T. Grance, « The NIST Definition of Cloud Computing », 2011.

[49] N. Subramanian and A. Jeyaraj, « Recent Security Challenges in Cloud Comput-
ing », Elsevier Computers and Electrical Engineering, vol. 71, 2018.

[50] Q. Zhang, L. Cheng, and R. Boutaba, « Cloud Computing: State-of-the-Art and
Research Challenges », Springer Journal of Internet Services and Applications,
vol. 1, 2010.

[51] Amazon Web Services Inc., Amazon EC2, https://reurl.cc/WRoyoO, cited Mar
2024.

[52] Google LLC, Google Cloud Storage, https://reurl.cc/Z9YVO3, cited Apr 2024.

146

https://reurl.cc/Z9z8Zp
https://reurl.cc/E4aWVa
https://reurl.cc/E4aWVa
https://reurl.cc/WRVyO5
https://reurl.cc/WRVyO5
https://reurl.cc/Xqd44e
https://reurl.cc/Xqd44e
https://reurl.cc/RWE56Z
https://reurl.cc/RWE56Z
https://reurl.cc/D4EqDe
https://reurl.cc/D4EqDe
https://reurl.cc/77mKY1
https://reurl.cc/77mKY1
https://reurl.cc/WRoyoO
https://reurl.cc/Z9YVO3

[53] Microsoft Corporation, Azure Virtual Network, https://reurl.cc/YVZqla, cited
Apr 2024.

[54] Google LLC, Google App Engine, https://reurl.cc/zlko26, cited Mar 2024.

[55] Google LLC, Google Workspace, https://reurl.cc/g4oWep, cited Mar 2024.

[56] J. Hong, T. Dreibholz, J. A. Schenkel, and J. A. Hu, « An Overview of Multi-Cloud
Computing », in Proceedings of the AINA Workshop on Multi-Clouds and Mobile
Edge Computing, 2019.

[57] International Energy Agency, Data Centres and Data Transmission Networks,
https://reurl.cc/qr647R, cited Mar 2024.

[58] N. S. Malik and Bloomberg, With AI Forcing Data Centers to Consume More En-
ergy, Software That Hunts for Clean Electricity Across the Globe Gains Currency,
https://reurl.cc/WR7M55, cited Mar 2024.

[59] Cloud Security Alliance, The Treacherous 12: Cloud Computing Top Threats in
2016, https://reurl.cc/E4evD0, cited Mar 2024.

[60] A. Chaudhary, Cloud Security Threats to Watch Out for in 2023: Predictions and
Mitigation Strategies, https://reurl.cc/g41olN, cited Mar 2024.

[61] B. Schlinker, I. Cunha, Y.-C. Chiu, S. Sundaresan, and E. Katz-Bassett, « In-
ternet Performance from Facebook’s Edge », in Proceedings of the ACM Internet
Measurement Conference, 2019.

[62] Gigspaces, Amazon Found Every 100ms of Latency Cost Them 1% in Sales, https:
//reurl.cc/E4Nzzk, cited Mar 2024.

[63] G. Linden, Geeking with Greg: Marissa Mayer at Web 2.0. https://reurl.cc/
M4mdXp, cited Mar 2024.

[64] Statista, Data Volume of Internet of Things (IoT) Connections Worldwide in 2019
and 2025, https://reurl.cc/80Az0o, cited Mar 2024.

[65] OpenFog Consortium Architecture Working Group, OpenFog Reference Architec-
ture for Fog Computing, https://reurl.cc/j3EQ8Z, cited Mar 2024.

[66] IEEE Standard Association, « IEEE Standard for Adoption of OpenFog Reference
Architecture for Fog Computing », IEEE Std 1934-2018, 2018.

[67] M. Chiang and T. Zhang, « Fog and IoT: An Overview of Research Opportunities »,
IEEE Internet of Things Journal, vol. 3, 6, 2016.

147

https://reurl.cc/YVZqla
https://reurl.cc/zlko26
https://reurl.cc/g4oWep
https://reurl.cc/qr647R
https://reurl.cc/WR7M55
https://reurl.cc/E4evD0
https://reurl.cc/g41olN
https://reurl.cc/E4Nzzk
https://reurl.cc/E4Nzzk
https://reurl.cc/M4mdXp
https://reurl.cc/M4mdXp
https://reurl.cc/80Az0o
https://reurl.cc/j3EQ8Z

[68] A. Ahmed, H. Arkian, D. Battulga, A. J. Fahs, M. Farhadi, D. Giouroukis, A.
Gougeon, F. Gutierrez, G. Pierre, P. Souza Junior, M. A. Tamiru, and L. Wu,
« Fog Computing Applications: Taxonomy and Requirements », arXiv preprint
arXiv:1907.11621, 2019.

[69] A. Ahmed and G. Pierre, « Docker Container Deployment in Fog Computing In-
frastructures », in Proceedings of the IEEE International Conference on Edge Com-
puting, 2018.

[70] A. van Kempen, T. Crivat, B. Trubert, D. Roy, and G. Pierre, « MEC-ConPaaS: An
Experimental Single-Board Based Mobile Edge Cloud », in Proceedings of the IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering,
2017.

[71] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge, « Fogernetes: Deployment and
Management of Fog Computing Applications », in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium, 2018.

[72] N. Mohamed, J. Al-Jaroodi, I. Jawhar, H. Noura, and S. Mahmoud, « UAVFog: A
UAV-Based Fog Computing for Internet of Things », in Proceedings of the IEEE
Smart World Congress, 2017.

[73] C. Zhu, G. Pastor, Y. Xiao, and A. Ylajaaski, « Vehicular Fog Computing for Video
Crowdsourcing: Applications, Feasibility, and Challenges », IEEE Communications
Magazine, vol. 56, 10, 2018.

[74] C.-K. Huang and S.-H. Shen, « Enabling Service Cache in Edge Clouds », ACM
Transactions on Internet of Things, vol. 2, 3, 2021.

[75] C.-K. Huang, S.-H. Shen, C.-Y. Huang, T.-L. Chin, and C.-A. Shen, « S-cache:
Toward an Low Latency Service Caching for Edge Clouds », in Proceedings of the
ACM MobiHoc Workshop on Pervasive Systems in the IoT Era, 2019.

[76] A. S. Alfakeeh and M. A. Javed, « Intelligent Data-Enabled Task Offloading for
Vehicular Fog Computing », MDPI Applied Sciences, vol. 13, 24, 2023.

[77] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang, « Incorporat-
ing Intelligence in Fog Computing for Big Data Analysis in Smart Cities », IEEE
Transactions on Industrial Informatics, vol. 13, 5, 2017.

[78] N. Chen, Y. Chen, X. Ye, H. Ling, S. Song, and C.-T. Huang, « Smart City Surveil-
lance in Fog Computing », in 2017.

148

[79] Y. Kalyani and R. Collier, « A Systematic Survey on the Role of Cloud, Fog, and
Edge Computing Combination in Smart Agriculture », MDPI Sensors, vol. 21, 17,
2021.

[80] H. A. Alharbi and M. Aldossary, « Energy-Efficient Edge-Fog-Cloud Architecture
for IoT-Based Smart Agriculture Environment », IEEE Access, vol. 9, 2021.

[81] Y. Lin and H. Shen, « CloudFog: Leveraging Fog to Extend Cloud Gaming for
Thin-Client MMOG with High Quality of Service », IEEE Transactions on Parallel
and Distributed Systems, vol. 28, 2, 2016.

[82] Fortinet, Inc., What Is A Data Center?, https://reurl.cc/Dj14y6, cited Apr
2024.

[83] Fortinet, Inc., Data Center Security, https://reurl.cc/VzaN1Z, cited Apr 2024.

[84] Y. Xing and Y. Zhan, « Virtualization and Cloud Computing », in Proceedings of
the Future Wireless Networks and Information Systems, 2012.

[85] A. Bhardwaj and C. R. Krishna, « Virtualization in Cloud Computing: Moving
from Hypervisor to Containerization — A Survey », Springer Arabian Journal for
Science and Engineering, vol. 46, 9, 2021.

[86] Docker, Inc., Registry, https://reurl.cc/OGlLqX, cited Mar 2024.

[87] A. M. Joy, « Performance Comparison Between Linux Containers and Virtual Ma-
chines », in Proceedings of the International Conference on Advances in Computer
Engineering and Applications, 2015.

[88] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, « A Comparative Study
of Containers and Virtual Machines in Big Data Environment », in Proceedings of
the IEEE International Conference on Cloud Computing, 2018.

[89] C. Pahl, « Containerization and the PaaS Cloud », IEEE Cloud Computing, vol. 2,
3, 2015.

[90] K. Jin and E. L. Miller, « The Effectiveness of Deduplication on Virtual Machine
Disk Images », in Proceedings of the ACM The Israeli Experimental Systems Con-
ference, 2009.

149

https://reurl.cc/Dj14y6
https://reurl.cc/VzaN1Z
https://reurl.cc/OGlLqX

[91] A. Ahmed, A. Mohan, G. Cooperman, and G. Pierre, « Docker Container Deploy-
ment in Distributed Fog Infrastructures with Checkpoint/Restart », in Proceedings
of the IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering, 2020.

[92] A. Ahmed and G. Pierre, « Docker-pi: Docker Container Deployment in Fog Com-
puting Infrastructures », Inderscience International Journal of Cloud Computing,
vol. 9, 1, 2020.

[93] L. Civolani, G. Pierre, and P. Bellavista, « FogDocker: Start Container Now, Fetch
Image Later », in Proceedings of the IEEE/ACM International Conference on Util-
ity and Cloud Computing, 2019.

[94] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo, « Container-Based Fog
Computing Architecture and Energy-Balancing Scheduling Algorithm for Energy
IoT », Elsevier Future Generation Computer Systems, vol. 97, 2019.

[95] P. Bellavista and A. Zanni, « Feasibility of Fog Computing Deployment Based on
Docker Containerization Over RaspberryPi », in Proceedings of the IEEE Interna-
tional Conference on Distributed Computing and Networking, 2017.

[96] A. Omar, B. Imen, S. M’hammed, B. Bouziane, and B. David, « Deployment of
Fog Computing Platform for Cyber Physical Production System Based on Docker
Technology », in Proceedings of the International Conference on Applied Automa-
tion and Industrial Diagnostics, 2019.

[97] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, « Foggy: A Framework for
Continuous Automated IoT Application Deployment in Fog Computing », in Pro-
ceedings of the IEEE International Conference on AI and Mobile Services, 2017.

[98] Docker, Inc., Swarm Mode Overview, https://reurl.cc/XqdbOg, cited Mar 2024.

[99] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S.
Shenker, and I. Stoica, « Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center », in Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, 2011.

[100] S. Conway, Survey Shows Kubernetes Leading As Orchestration Platform, https:
//reurl.cc/77gA2b, cited Mar 2024.

[101] Datadog, Inc., 9-Insights On Real-World Container Use, https://reurl.cc/
G4W4Rv, cited Mar 2024.

150

https://reurl.cc/XqdbOg
https://reurl.cc/77gA2b
https://reurl.cc/77gA2b
https://reurl.cc/G4W4Rv
https://reurl.cc/G4W4Rv

[102] Cloud Native Computing Foundation, CNCF Survey 2019, https://reurl.cc/
j3LY3p, cited Mar 2024.

[103] Z. Wan, Z. Zhang, R. Yin, and G. Yu, « KFIML: Kubernetes-Based Fog Computing
IoT Platform for Online Machine Learning », IEEE Internet of Things Journal,
vol. 9, 19, 2022.

[104] W.-S. Zheng and L.-H. Yen, « Auto-Scaling in Kubernetes-Based Fog Computing
Platform », in Proceedings of the International Computer Symposium, 2019.

[105] N. D. Nguyen, L.-A. Phan, D.-H. Park, S. Kim, and T. Kim, « ElasticFog: Elastic
Resource Provisioning in Container-Based Fog Computing », IEEE Access, vol. 8,
2020.

[106] The Kubernetes Authors, Kubernetes Releases and Contributors, https://reurl.
cc/97MydV, cited Apr 2024.

[107] D. Ongaro and J. Ousterhout, « In Search of an Understandable Consensus Algo-
rithm », in Proceedings of the USENIX Annual Technical Conference, 2014.

[108] Cloud Native Computing Foundation, etcd Maturity Level, https://reurl.cc/
rvDGDr, cited August 2024.

[109] The Kubernetes Authors, What Is a Pod, https://reurl.cc/G47z6A, cited Apr
2024.

[110] The Kubernetes Authors, Custom Resources, https://reurl.cc/WRpnA5, cited
Apr 2024.

[111] The Open Cluster Management Authors, ManifestWork, https://reurl.cc/
YEkyQX, cited June 2024.

[112] The Kubernetes Authors, Controller Pattern, https://reurl.cc/Req4VG, cited
September 2024.

[113] P. Arcaini, E. Riccobene, and P. Scandurra, « Modeling and Analyzing MAPE-
K Feedback Loops for Self-Adaptation », in Proceedings of the IEEE/ACM In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, 2015.

[114] J. Dobies and J. Wood, Kubernetes Operators: Automating the Container Orches-
tration Platform. O’Reilly Media, 2020.

151

https://reurl.cc/j3LY3p
https://reurl.cc/j3LY3p
https://reurl.cc/97MydV
https://reurl.cc/97MydV
https://reurl.cc/rvDGDr
https://reurl.cc/rvDGDr
https://reurl.cc/G47z6A
https://reurl.cc/WRpnA5
https://reurl.cc/YEkyQX
https://reurl.cc/YEkyQX
https://reurl.cc/Req4VG

[115] The Open Cluster Management Authors, Hub-Spoke Architecture, https://reurl.
cc/0vo00x, cited Apr 2024.

[116] The Kubernetes Authors, Considerations for Large Clusters, https://reurl.cc/
ezvrYK, cited Apr 2024.

[117] The Kubernetes Authors, Multicluster Special Interest Group, https://reurl.
cc/Xq4dx0, cited June 2024.

[118] The About API Authors, About API, https://reurl.cc/93Gm5v, cited August
2024.

[119] The Work API Authors, Work API, https://reurl.cc/QELKdo, cited August
2024.

[120] The KubeFed Authors, KubeFed: Kubernetes Cluster Federation, https://reurl.
cc/9RGa8x, cited Mar 2024.

[121] The Kubernetes Authors, Multi-Tenancy, https://reurl.cc/RWrRyg, cited Mar
2024.

[122] The Prometheus Authors, Node-exporter, https://reurl.cc/GjpbAp, cited June
2024.

[123] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, and J. P. Jue, « All One Needs To Know About Fog Computing And Related
Edge Computing Paradigms: A Complete Survey », Elsevier Journal of Systems
Architecture, vol. 98, 2019.

[124] A. J. Fahs and G. Pierre, « Tail-Latency-Aware Fog Application Replica Place-
ment », in Proceedings of the International Conference on Service-Oriented Com-
puting, 2020.

[125] P. Souza Junior, D. Miorandi, and G. Pierre, « Stateful Container Migration in
Geo-Distributed Environments », in Proceedings of the IEEE International Con-
ference on Cloud Computing Technology and Science, 2020.

[126] P. Souza Junior, D. Miorandi, and G. Pierre, « Good Shepherds Care for Their
Cattle: Seamless Pod Migration in Geo-Distributed Kubernetes », in Proceedings
of the IEEE International Conference on Fog and Edge Computing, 2022.

152

https://reurl.cc/0vo00x
https://reurl.cc/0vo00x
https://reurl.cc/ezvrYK
https://reurl.cc/ezvrYK
https://reurl.cc/Xq4dx0
https://reurl.cc/Xq4dx0
https://reurl.cc/93Gm5v
https://reurl.cc/QELKdo
https://reurl.cc/9RGa8x
https://reurl.cc/9RGa8x
https://reurl.cc/RWrRyg
https://reurl.cc/GjpbAp

[127] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth, « Model-Based Stream Pro-
cessing Auto-Scaling in Geo-Distributed Environments », in Proceedings of the
International Conference on Computer Communications and Networks, 2021.

[128] J. Huang, C. Xiao, and W. Wu, « Rlsk: A Job Scheduler for Federated Kuber-
netes Clusters Based on Reinforcement Learning », in Proceedings of the IEEE
International Conference on Cloud Engineering, 2020.

[129] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, « TOSCA-Based and
Federation-Aware Cloud Orchestration for Kubernetes Container Platform », MDPI
Applied Sciences, vol. 9, 1, 2019.

[130] B. Shayesteh, C. Fu, A. Ebrahimzadeh, and R. H. Glitho, « Automated Concept
Drift Handling for Fault Prediction in Edge Clouds Using Reinforcement Learn-
ing », IEEE Transactions on Network and Service Management, vol. 19, 2, 2022.

[131] F. Faticanti, D. Santoro, S. Cretti, and D. Siracusa, « An Application of Kuber-
netes Cluster Federation in Fog Computing », in Proceedings of the Conference on
Innovation in Clouds, Internet and Networks, 2021.

[132] C. Reiss, J. Wilkes, and J. L. Hellerstein, « Google Cluster-Usage Traces: Format
+ Schema », Google LLC, Tech. Rep., 2011.

[133] The Cilium Authors, Cilium, https://reurl.cc/yL5Eva, cited July 2024.

[134] L. Larsson, H. Gustafsson, C. Klein, and E. Elmroth, « Decentralized Kubernetes
Federation Control Plane », in Proceedings of the IEEE/ACM International Con-
ference on Utility and Cloud Computing, 2020.

[135] The Karmada Authors, Karmada, https://reurl.cc/RyW9rz, cited Mar 2024.

[136] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini, « Computing
Without Borders: The Way Towards Liquid Computing », IEEE Transactions on
Cloud Computing, vol. 11, 3, 2023.

[137] The Virtual Kubelet Authors, Virtual Kubelet, https://reurl.cc/m0RK1Y, cited
Mar 2024.

[138] Loft Labs, Inc., Kiosk, https://reurl.cc/GKn2qW, cited Mar 2024.

[139] The Kubernetes Authors, Resource Quotas, https://reurl.cc/WRaekL, cited
Mar 2024.

[140] Clastix Labs, Capsule, https://reurl.cc/OGyOyR, cited Mar 2024.

153

https://reurl.cc/yL5Eva
https://reurl.cc/RyW9rz
https://reurl.cc/m0RK1Y
https://reurl.cc/GKn2qW
https://reurl.cc/WRaekL
https://reurl.cc/OGyOyR

[141] Kubernetes Multitenancy Working Group, The Hierarchical Namespace Controller,
https://reurl.cc/QZV7AZ, cited June 2024.

[142] B. C. Şenel, M. Mouchet, J. Cappos, T. Friedman, O. Fourmaux, and R. McGeer,
« Multitenant Containers as a Service (CaaS) for Clouds and Edge Clouds », IEEE
Access, vol. 11, 2023.

[143] Clastix Labs, Kamaji, https://reurl.cc/OMLbg7, cited June 2024.

[144] Loft Labs, Inc., vCluster Becomes First Certified Kubernetes Distribution for Vir-
tual Kubernetes Clusters, https://reurl.cc/4j1YpK, cited May 2024.

[145] K. Manaouil and A. Lebre, « Kubernetes and the Edge? », Inria Rennes – Bretagne
Atlantique, Tech. Rep. RR-9370, 2020.

[146] The Karmada Authors, Test Report on Karmada’s Support for 100 Large-Scale
Clusters, https://reurl.cc/Wv8Emy, cited Mar 2024.

[147] Cloud Native Computing Foundation, Who We Are, https://reurl.cc/Dlm6zN,
cited August 2024.

[148] Cloud Native Computing Foundation, Karmada Maturity Level, https://reurl.
cc/9vdxNV, cited July 2024.

[149] Cloud Native Computing Foundation, Open Cluster Management Maturity Level,
https://reurl.cc/NQEjD9, cited June 2024.

[150] Cloud Native Computing Foundation, Capsule Maturity Level, https://reurl.
cc/kO4vNd, cited July 2024.

[151] Cloud Native Computing Foundation, Certified Kubernetes Software Conformance,
https://reurl.cc/ez0Zxm, cited July 2024.

[152] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi, and L.
Foschini, « DARGOS: A Highly Adaptable and Scalable Monitoring Architecture
for Multi-Tenant Clouds », Elsevier Future Generation Computer Systems, vol. 29,
8, 2013.

[153] Zabbix LLC, Zabbix, https://reurl.cc/GjNl43, cited June 2024.

[154] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, « Toward an Architecture for
Monitoring Private Clouds », IEEE Communications Magazine, vol. 49, 12, 2011.

154

https://reurl.cc/QZV7AZ
https://reurl.cc/OMLbg7
https://reurl.cc/4j1YpK
https://reurl.cc/Wv8Emy
https://reurl.cc/Dlm6zN
https://reurl.cc/9vdxNV
https://reurl.cc/9vdxNV
https://reurl.cc/NQEjD9
https://reurl.cc/kO4vNd
https://reurl.cc/kO4vNd
https://reurl.cc/ez0Zxm
https://reurl.cc/GjNl43

[155] D. Trihinas, G. Pallis, and M. D. Dikaiakos, « JCatascopia: Monitoring Elastically
Adaptive Applications in the Cloud », in Proceedings of the IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2014.

[156] Nagios, Nagios, https://reurl.cc/MOjkRW, cited June 2024.

[157] B. Costa, J. Bachiega Jr, L. R. Carvalho, M. Rosa, and A. Araujo, « Monitoring
Fog Computing: A Review, Taxonomy and Open Challenges », Elsevier Computer
Networks, vol. 215, 2022.

[158] S. K. Battula, S. Garg, J. Montgomery, and B. Kang, « An Efficient Resource
Monitoring Service for Fog Computing Environments », IEEE Transactions on
Services Computing, vol. 13, 4, 2019.

[159] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois, and A. Lebre, « A Holistic
Monitoring Service for Fog/Edge Infrastructures: A Foresight Study », in Proceed-
ings of the IEEE International Conference on Future Internet of Things and Cloud,
2017.

[160] H. G. Abreha, C. J. Bernardos, A. D. L. Oliva, L. Cominardi, and A. Azcorra,
« Monitoring in Fog Computing: State-of-the-Art and Research Challenges », In-
derscience International Journal of Ad Hoc and Ubiquitous Computing, vol. 36, 2,
2021.

[161] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, « Monitoring
Self-Adaptive Applications within Edge Computing Frameworks: A State-of-the-
Art Review », Elsevier Journal of Systems and Software, vol. 136, 2018.

[162] M. Großmann and C. Klug, « Monitoring Container Services at the Network
Edge », in Proceedings of the International Teletraffic Congress, 2017.

[163] Tildeslash Ltd., Monit, https://reurl.cc/oRyx7Q, cited June 2024.

[164] Á. Brandón, M. S. Pérez, J. Montes, and A. Sanchez, « FMonE: A Flexible Mon-
itoring Solution at the Edge », Hindawi Wireless Communications and Mobile
Computing, vol. 2018, 1, 2018.

[165] Mesosphere, Inc., Marathon, https://reurl.cc/3X97vX, cited June 2024.

[166] S. Forti, M. Gaglianese, and A. Brogi, « Lightweight Self-Organising Distributed
Monitoring of Fog Infrastructures », Elsevier Future Generation Computer Sys-
tems, vol. 114, 2021.

155

https://reurl.cc/MOjkRW
https://reurl.cc/oRyx7Q
https://reurl.cc/3X97vX

[167] M. Gaglianese, S. Forti, F. Paganelli, and A. Brogi, « Assessing and Enhancing a
Cloud-IoT Monitoring Service Over Federated Testbeds », Elsevier Future Gener-
ation Computer Systems, vol. 147, 2023.

[168] V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani, « Towards Self-Adaptive
Peer-to-Peer Monitoring for Fog Environments », in Proceedings of the Interna-
tional Conference on Software Engineering for Adaptive and Self-Managing Sys-
tems, 2022.

[169] S. Ilager, J. Fahringer, S. C. de Lima Dias, and I. Brandić, « DEMon: Decentral-
ized Monitoring for Highly Volatile Edge Environments », in Proceedings of the
IEEE/ACM International Conference on Utility and Cloud Computing, 2022.

[170] S. Ilager, J. Fahringer, A. Tundo, and I. Brandić, « A Decentralized and Self-
Adaptive Approach for Monitoring Volatile Edge Environments », arXiv preprint
arXiv:2405.07806, 2024.

[171] A. Aznavouridis, K. Tsakos, and E. G. M. Petrakis, « Micro-Service Placement
Policies for Cost Optimization in Kubernetes », in Proceedings of the International
Conference on Advanced Information Networking and Applications, 2022.

[172] G. Carcassi, J. Breen, L. Bryant, R. W. Gardner, S. McKee, and C. Weaver,
« SLATE: Monitoring Distributed Kubernetes Clusters », in Proceedings of the
ACM Practice and Experience in Advanced Research Computing, 2020.

[173] Y.-W. Chan, H. Fathoni, H.-Y. Yen, and C.-T. Yang, « Implementation of a
Cluster-Based Heterogeneous Edge Computing System for Resource Monitoring
and Performance Evaluation », IEEE Access, vol. 10, 2022.

[174] T. Hu and Y. Wang, « A Kubernetes Autoscaler Based on Pod Replicas Predic-
tion », in Proceedings of the Asia-Pacific Conference on Communications Technol-
ogy and Computer Science, 2021.

[175] T. Lin, S. Marinova, and A. Leon-Garcia, « Towards an End-to-End Network Slic-
ing Framework in Multi-Region Infrastructures », in Proceedings of the IEEE In-
ternational Conference on Network Softwarization, 2020.

[176] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, « Machine Learning-Based Scaling
Management for Kubernetes Edge Clusters », IEEE Transactions on Network and
Service Management, vol. 18, 1, 2021.

156

[177] J. Cho and Y. Kim, « A Design of Serverless Computing Service for Edge Clouds »,
in Proceedings of the International Conference on Information and Communication
Technology Convergence, 2021.

[178] T. Dockendorf, T. Baer, and D. Johnson, « Early Experiences with Tight Integra-
tion of Kubernetes in an HPC Environment », in Proceedings of the ACM Practice
and Experience in Advanced Research Computing, 2022.

[179] C.-K. Huang and G. Pierre, « UnBound: Multi-Tenancy Management in Scalable
Fog Meta-Federations », in Proceedings of the 17th IEEE/ACM International Con-
ference on Utility and Cloud Computing, Dec. 2024.

[180] Kubernetes SIGs, Kubernetes Metrics Server, https://reurl.cc/RrmAGG, cited
June 2024.

[181] S. Hemminger, « Network Emulation with NetEm », in Proceedings of the Aus-
tralia’s National Linux Conference, 2005.

[182] The Kubernetes Authors, Resource Management for Pods and Containers, https:
//reurl.cc/70d3k1, cited June 2024.

[183] Google LLC, Online Boutique, https://reurl.cc/z670ga, cited June 2024.

[184] The Kubernetes Authors, Kubernetes in Docker, https://reurl.cc/70d3R1, cited
June 2024.

[185] C.-K. Huang and G. Pierre, « Acala: Aggregate Monitoring for Geo-Distributed
Cluster Federations », in Proceedings of the 38th ACM/SIGAPP Symposium On
Applied Computing, Tallinn, Estonia, Mar. 2023.

[186] C.-K. Huang and G. Pierre, « AdapPF: Self-Adaptive Scrape Interval for Moni-
toring in Geo-Distributed Cluster Federations », in Proceedings of the 28th IEEE
Symposium on Computers and Communications, Tunis, Tunisia, Jul. 2023.

[187] C.-K. Huang and G. Pierre, « Aggregate Monitoring for Geo-Distributed Kuber-
netes Cluster Federations », IEEE Transactions on Cloud Computing, vol. 12, 4,
2024.

[188] The Prometheus Authors, Pushgateway, https://reurl.cc/mMyvDj, cited June
2024.

[189] The Kubernetes Authors, Workloads, https://reurl.cc/9Gajkn, cited June
2024.

157

https://reurl.cc/RrmAGG
https://reurl.cc/70d3k1
https://reurl.cc/70d3k1
https://reurl.cc/z670ga
https://reurl.cc/70d3R1
https://reurl.cc/mMyvDj
https://reurl.cc/9Gajkn

[190] The stress-ng Authors, stress-ng, https://reurl.cc/p3vx6l, cited June 2024.

[191] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, « Heterogene-
ity and Dynamicity of Clouds at Scale: Google Trace Analysis », in Proceedings of
the ACM Symposium on Cloud Computing, 2012.

[192] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran, « An
Overview on Smart Contracts: Challenges, Advances and Platforms », Elsevier
Future Generation Computer Systems, vol. 105, 2020.

[193] Y. He, D. Huang, L. Chen, Y. Ni, and X. Ma, « A Survey on Zero Trust Architec-
ture: Challenges and Future Trends », Wiley Wireless Communications and Mobile
Computing, vol. 2022, 1, 2022.

[194] M. Sabt, M. Achemlal, and A. Bouabdallah, « Trusted Execution Environment:
What It Is, and What It Is Not », in Proceedings of the IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications, 2015.

[195] S. L. Kinney, Trusted Platform Module Basics: Using TPM in Embedded Systems.
Elsevier, 2006.

[196] Cloudflare, Inc., DDoS Threat Report for 2024 Q2, https://reurl.cc/XRlog0,
cited August 2024.

158

https://reurl.cc/p3vx6l
https://reurl.cc/XRlog0

Titre : Scalabilité des Fédérations de Fog Computing Publiques Géo-distribuées

Mot clés : Scalabilité, Fog Computing, Fédérations, Multi-Tenancy, Surveillance

Résumé : Construire une plateforme de
fog computing publique, géo-distribuée, multi-
tenant et à grande échelle, où n’importe quelle
application peut être déployée, nécessite un
grand nombre de ressources de calcul pla-
cées à différents endroits stratégiques cou-
vrant un pays entier ou même un continent.
L’un des défis pour réaliser cette plateforme
publique de fog est la scalabilité. À cette fin,
cette thèse se concentre sur la résolution de
certains défis liés à l’évolutivité et propose
une série de solutions. Tout d’abord, nous pré-
sentons le concept de méta-fédérations, où
de nombreux fournisseurs de ressources lo-

caux indépendants peuvent louer leurs res-
sources à plusieurs fournisseurs de fog afin
de résoudre les problèmes de couverture de
service et d’utilisation des ressources. Nous
proposons UnBound, un système scalable de
meta-federations qui aborde spécifiquement
les défis difficiles du multi-tenancy introduits
par les méta-fédérations. Ensuite, nous propo-
sons deux systèmes de surveillance conçus
pour les environnements de fédération de
clusters géo-distribués, Acala et AdapPF, qui
visent à réduire le trafic réseau inter-cluster de
la surveillance tout en maintenant la précision
des données de surveillance.

Title: Scalability of Public Geo-Distributed Fog Computing Federations

Keywords: Scalability, Fog Computing, Federations, Multi-Tenancy, Monitoring

Abstract: Building a large-scale, multi-tenant,
public, geo-distributed fog computing platform
where any application can be deployed re-
quires a large number of computing resources
placed at different strategic locations span-
ning an entire country or even a continent.
One of the challenges to realizing this pub-
lic fog platform is scalability. To this end, this
thesis focuses on addressing some scalability
challenges and proposes a series of solutions.
First, we present the meta-federations con-
cept, where many independent local resource

providers may lease their resources to multi-
ple fog providers to solve the service coverage
and resource utilization issues. We propose
UnBound, a scalable meta-federations frame-
work that specifically addresses the difficult
multi-tenancy challenges introduced by meta-
federations. Second, we propose two monitor-
ing frameworks designed for geo-distributed
cluster federation environments, Acala and
AdapPF, which aim to reduce the cross-cluster
network traffic of monitoring while maintaining
the accuracy of the monitoring data.

	Introduction
	Contributions
	Published Papers
	Organization of the Thesis

	Background
	Cloud Computing
	Cloud Computing Characteristics
	Cloud Computing Architecture and Business Models
	Cloud Computing Deployment Models
	Cloud Computing Limitations

	Fog Computing
	Fog Computing Architecture
	Fog Computing Applications
	Fog Computing Challenges

	Virtualization Technology: Virtual Machines and Containers
	Kubernetes
	Architecture
	Scalability
	Federations
	Multi-Tenancy
	Monitoring

	State of the Art
	Multi-Cluster Federation Frameworks and Multi-Tenancy Frameworks
	KubeFed and KubeFed-Related Systems
	Other Federation Solutions and Frameworks
	Multi-Tenancy Frameworks
	Discussion

	Monitoring for Fog Computing Environments
	Monitoring Solutions for Fog Computing
	Issues of Prometheus Federation

	Multi-Tenancy Management in Scalable Fog Meta-Federations
	Introduction
	Motivation
	System Design
	System Model and Meta-Federations
	System Architecture
	Components of UnBound

	Performance Evaluation
	Experimental Setup
	Multi-Cluster Application Creation in a Member Cluster
	Application Stability Despite a vCluster Failure
	One Management Cluster with Multiple Member Clusters
	Multiple Management Clusters with One Member Cluster

	Conclusion

	Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations
	Introduction
	Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations
	System Design
	Performance Evaluation

	AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster Federations
	System Design
	Performance Evaluation

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future Directions
	Automation of Geo-Distributed Fog Computing Federations
	Security of Geo-Distributed Fog Computing Federations
	Sustainability of Geo-Distributed Fog Computing Federations

	Closing Statement

	Bibliography

