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RESUME

Ces dernieres années, le cloud computing est devenu une technologie importante offrant
une gamme d’avantages par rapport aux déploiements sur site, tels que 1’évolutivité, le
faible cofit et la flexibilité. La nature publique, partagée et a la demande des plateformes de
cloud computing les rend accessibles a d’innombrables utilisateurs allant des individus et
petites entreprises aux grandes entreprises. Cela simplifie les taches liées a I'informatique
pour les utilisateurs, qui n’ont alors qu’a se concentrer sur leur activité principale sans
avoir a construire et a maintenir leur propre infrastructure informatique. Les utilisateurs
peuvent facilement développer et déployer leurs applications sur les plateformes de cloud
grace a une grande variété d’outils et de services maintenus par les Cloud Service Providers
(CSPs). Une plateforme de cloud public comprend généralement un petit nombre de
centres de données centralisés, chacun incluant un grand nombre de serveurs de calcul, de

capacité réseau et de ressources de stockage.

Lorsque les utilisateurs déploient leurs applications sur une plateforme de cloud public,
ils prennent en compte différentes exigences non fonctionnelles pour chaque application,
telles que la capacité de ressources nécessaire, la haute disponibilité et la tolérance aux
pannes. L’émergence d’applications sensibles a la latence, comme la réalité virtuelle et
le streaming vidéo a 360 degrés, crée de nouvelles exigences telles qu'une faible latence
réseau de bout en bout. En outre, le développement rapide de I'Internet des Objets (IoT) a
conduit a une augmentation spectaculaire du nombre de dispositifs IoT, qui génerent une
énorme quantité de données devant étre envoyées aux centres de données cloud distants

pour un traitement des données en temps réel.

Bien que I'expansion mondiale des centres de données cloud et les améliorations sig-
nificatives de 'accessibilité au réseau et de la capacité de bande passante aient réduit la
latence entre les utilisateurs finaux et leurs applications cloud, la centralisation des grands
centres de données signifie qu’ils restent physiquement éloignés de la plupart des utilisa-
teurs finaux. Une grande latence de bout en bout pour les applications et la transmission
longue distance de grandes quantités de données rendent les applications sensibles a la

latence et certaines applications IoT inadaptées aux environnements cloud traditionnels.
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Pour répondre a leurs exigences et pallier les limitations des plateformes cloud tradition-

nelles, le fog computing est apparu comme une solution viable.

Le fog computing ne vise pas a remplacer 1'utilisation du cloud computing. Il est plutot
conc¢u comme une extension du cloud computing. Le concept de base est de rapprocher
les ressources de calcul du bord du réseau pour combler ’écart du continuum numérique
entre les utilisateurs et les plateformes de cloud. En servant les utilisateurs et en traitant
les données a proximité, le fog computing a le potentiel de réduire considérablement la
latence de bout en bout, améliorant ainsi la qualité de I'expérience utilisateur. Cette
caractéristique est cruciale pour les applications nécessitant des interactions en temps
réel. De méme, les plateformes de fog peuvent également optimiser la quantité de données
transmises sur de longues distances et n’envoyer que les données les plus importantes et
pertinentes aux centres de données distants pour traitement, tandis que d’autres données

peuvent étre traitées localement dans la plateforme de fog.

La plupart des solutions actuelles de fog computing, qu’elles soient commerciales ou
open-source, exigent que les utilisateurs de fog construisent leur propre plateforme de fog
privée dans la zone pertinente avec du matériel et des logiciels dédiés. Cependant, cette
pratique annule les économies d’échelle réalisées grace au partage multi-tenant et au mul-
tiplexage statistique du cloud, et raméne les services a un modele pré-cloud ou chaque
application nécessitait une mise en service individuelle avec une infrastructure personnal-
isée. De plus, ces solutions nécessitent un investissement initial élevé et ne permettent pas
d’ajuster facilement & la hausse ou a la baisse les ressources provisionnées, ce qui pose des
défis importants aux utilisateurs individuels et aux startups, ralentissant 1’adoption des

technologies de fog computing.

Pour permettre a tous les types d’utilisateurs allant des particuliers aux petites en-
treprises et aux grandes entreprises, de bénéficier d’avantages tels qu'une faible latence de
bout en bout, une disponibilité des ressources a la demande et une flexibilité, il est crucial
de développer des plateformes de fog computing publiques, multi-tenant, géo-distribuées a
grande échelle qui peuvent couvrir un pays ou méme un continent entier. Les utilisateurs
pourront tirer parti de cette plateforme de fog publique pour développer des logiciels
et déployer des applications, ce qui permettra de réduire l'investissement massif dans
I'infrastructure nécessaire pour installer une plateforme de fog privée et leur permettre de
se concentrer sur leurs activités principales et d’innover continuellement sans le fardeau

de la gestion des infrastructures de fog.



Malgré le grand potentiel des futures plateformes de fog computing publiques a grande
échelle, il n’existe actuellement aucune plateforme de ce type sur le marché. Construire
une plateforme publique a grande échelle pose plusieurs défis, comme des considérations
économiques. Par exemple, il faudrait un investissement important pour installer un nom-
bre suffisant de matériel et de logiciels de fog. Le modele de profit et d’affaires doit encore
étre étudié en raison de la nouveauté de ce concept. En outre, d’innombrables détails sci-
entifiques et techniques doivent encore étre résolus, tels que I’évolutivité, I’'automatisation,

la sécurité et la durabilité.

Cette these explore spécifiquement trois défis clés liés a ’évolutivité des futures plate-
formes de fog computing publiques géo-distribuées. Premierement, une seule entreprise
aurait du mal a déployer un nombre suffisant de ressources de fog pour couvrir une vaste
zone géographique tout en attirant suffisamment de charges de travail pour générer une
haute utilisation des ressources, en particulier pour les ressources de fog situées dans les
zones rurales. La plus faible densité de population dans ces régions pourrait entrainer une
sous-utilisation des ressources de fog, ce qui augmenterait a son tour le cotit global pour
un fournisseur de fog. Il est donc nécessaire de concevoir un modele qui puisse répondre

a la fois & la couverture de service et & 'utilisation des ressources.

Deuxiéemement, une plateforme de fog publique géo-distribuée a grande échelle peut
devoir desservir un grand nombre d’utilisateurs simultanément, ce qui nécessite donc un
cadre d’orchestration robuste pour gérer les ressources nécessaires. Ce cadre doit donc
étre capable de gérer de nombreux utilisateurs, charges de travail et dispositifs de fog de
maniere efficace. De plus, la nature partagée d'une plateforme de fog publique signifie que
ce systeme doit inclure des méthodes robustes de gestion de la multi-location pour isoler

les utilisateurs et les empécher de se nuire mutuellement.

Troisiemement, la surveillance est une fonctionnalité essentielle pour mesurer I'utilisation
des ressources dans les environnements de calcul modernes, identifier les pannes poten-
tielles et héberger efficacement les applications. Cette capacité est particulierement cru-
ciale dans les plateformes de fog a grande échelle, géo-distribuées et potentiellement insta-
bles. Cependant, surveiller une grande plateforme géo-distribuée est difficile car les don-
nées de surveillance proviennent d’un grand nombre d’infrastructures de fog distribuées et
doivent étre transmises sur de longues distances. Le trafic réseau causé par la surveillance
peut gaspiller les liaisons réseau existantes et finir par représenter une quantité impor-

tante du trafic de gestion du systeme. Il est donc important d’étudier des méthodes de



surveillance efficaces pour équilibrer le volume de trafic réseau et la précision des données
a grande échelle.

Cette these propose une série de solutions pour relever les défis d’évolutivité mention-
nés ci-dessus. Nous tirons parti du concept de cluster federation comme solution pour
concevoir une plateforme de fog a grande échelle qui déploie stratégiquement plusieurs
clusters géo-distribués et qui peut étre gérée et utilisée comme un seul cluster homogene.
Nos contributions s’appuient sur les écosystémes populaires d’orchestration de conteneurs
Kubernetes et de systeme de surveillance Prometheus. Cependant, nous avangons que
les principes et algorithmes introduits dans cette thése peuvent s’adapter et s’intégrer a
d’autres solutions d’orchestration de conteneurs et systémes de surveillance existants et

futurs.

Premiere Contribution : Gestion Multi-Tenant dans les Méta-Fédération Fog
Scalables

La premiere contribution de cette these aborde les problemes liés a la couverture des
services et a l'utilisation des ressources. En raison de la difficulté a déployer un nombre
suffisant de clusters de fog a travers un pays ou un continent, nous supposons que plusieurs
petits ou moyens fournisseurs de services de fog, chacun dans une région différente, peuvent
s’associer pour créer une plateforme a grande échelle en utilisant une féfération de clusters
fog. Dans ce contexte, nous proposons le concept de méta-fédérations, ou des fournisseurs
locaux de fog indépendants peuvent louer de maniere flexible leurs clusters fog les uns
aux autres. En appliquant cette idée, un fournisseur de fog peut utiliser des clusters fog
d’autres régions, opérés par différents fournisseurs de fog, afin d’étendre la couverture de
service dans des zones ou il ne possede pas lui-méme de ressources. De plus, les clusters
fog situés dans des zones a faible densité peuvent étre loués a plusieurs fournisseurs de
services de fog afin d’augmenter 1'utilisation des ressources et ainsi réduire le cotit global
pour les propriétaires des clusters.

La mise en ceuvre du concept de grandes méta-fédérations, dans lesquelles des milliers
de fournisseurs fog locaux louent leurs clusters a des centaines de fédérations indépen-
dantes, nécessite de relever deux principaux défis. (i) Multi-Tenancy : dans le cadre de la
conception des meta-federations, chaque cluster peut étre partagé par différentes fédéra-
tions. Les applications dans le méme cluster créées par des utilisateurs de différentes
fédérations ne doivent pas pouvoir interférer les unes avec les autres. Une fog federation

peut également inclure un grand nombre d’utilisateurs. Les charges de travail soumises par
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différents utilisateurs au sein d’une fédération doivent également bénéficier de garanties
d’isolation similaires. (ii) Scalabilité : cette plateforme de fog a grande échelle et distribuée
géographiquement peut inclure de nombreux clusters fog. Par conséquent, chaque féféra-
tion doit étre capable de gérer un grand nombre de clusters membres, tandis que chaque
cluster membre doit pouvoir louer ses ressources a un grand nombre de fédérations.

Pour établir une base solide pour le développement de futures plateformes publiques
de fog computing multi-tenant a grande échelle et relever les défis introduits par les meta-
federations, cette these présente UnBound, une plateforme de meta-federations de fog
scalable. UnBound exploite le framework d’orchestration de conteneurs Kubernetes pour
gérer les ressources au sein de chaque cluster de fog et Open Cluster Management (OCM)
pour fédérer plusieurs clusters membres sous la gouvernance centralisée d’un cluster de
gestion. OCM est un orchestrateur open-source et extensible, spécialement cong¢u pour
Kubernetes dans des scénarios multi-clusters, qui prend en compte la scalabilité d’une
fédération. UnBound aborde les problemes de gestion multi-tenant en utilisant le pro-
jet Virtual Kubernetes Clusters (vCluster). UnBound l'utilise pour créer des sous-clusters
logiques afin d’isoler les fédérations au sein d’un cluster membre. Chaque vCluster possede
son propre serveur API et son propre magasin de données, ce qui garantit une isolation
stricte. En ce qui concerne les utilisateurs d'une fédération, nous utilisons les Names-
paces de Kubernetes pour les isoler grace a la fonctionnalité de vCluster qui permet aux
utilisateurs de créer des ressources a 1’échelle du cluster.

Des évaluations avec des fédérations de jusqu’a 500 clusters Kubernetes distribués géo-
graphiquement démontrent que UnBound maintient des temps de déploiement d’applications
comparables a ceux de ’'Open Cluster Management original dans un seul cluster membre,
évite 'augmentation du trafic réseau entre les clusters, maintient la consommation de
ressources dans des limites acceptables, et montre stabilité et scalabilité, en faisant une

solution adaptée pour des déploiements de fog computing a grande échelle.

Deuxieme Contribution : Systémes de Surveillance Efficaces des Fédération

Fog géo-distribuées

La surveillance distribuée est une fonctionnalité essentielle qui permet aux grandes
fédérations de clusters de planifier efficacement le déploiement des applications sur un
ensemble de clusters fog géo-distribués. Cela nécessite un systeme de surveillance ro-
buste tel que Prometheus et son extension Prometheus Federation pour fournir les don-

nées de surveillance. Cependant, Prometheus collecte toujours 1’état de tous les serveurs
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disponibles des clusters cibles a une fréquence fixe, ce qui peut gaspiller la bande passante
réseau dans la fédération tout en étant inutile pour garantir un ordonnancement précis et
non scalable avec 'augmentation du nombre de serveurs.

Cette these propose deux systemes de surveillance, Acala et AdapPF, pour résoudre
les problemes de surveillance susmentionnés dans une fédération de clusters Kubernetes
géo-distribués. Les deux solutions sont basées sur I’écosysteme de surveillance open-source
bien connu Prometheus et introduisent des solutions pour équilibrer le trafic réseau inter-
clusters et la précision des données de surveillance. Acala vise & fournir au cluster de
gestion des informations agrégées sur I'ensemble du cluster plutot que sur des serveurs in-
dividuels, ce qui éleve la vue traditionnelle de la surveillance dans Prometheus Federation
du niveau « nceud » au niveau « cluster ». De son coté, AdapPF vise a ajuster dynamique-
ment la fréquence de collecte des données de surveillance pour chaque cluster en fonction
de I’état d’utilisation des ressources du cluster.

Nous effectuons des évaluations approfondies des deux systemes de surveillance a I'aide
de déploiements réels dans le banc d’essai géo-distribué Grid’5000. Les résultats montrent
que Acala améliore considérablement les performances par rapport a Prometheus. Acala
réduit le trafic réseau inter-clusters jusqu’a 97% et diminue la durée de collecte des données
jusqu’a 55% dans des expériences sur des clusters a un seul membre. Des expériences plus
larges avec jusqu'a 1000 serveurs montrent qu’il réduit le trafic réseau global d’environ
95%. De plus, nous démontrons que notre solution a un impact minimal sur 'efficacité
de l'ordonnancement. L’autre systeme, AdapPF, atteint une précision de planification
comparable a Prometheus Federation avec un intervalle de collecte fixe de 5 secondes tout
en réduisant le trafic réseau inter-clusters jusqu’a 36%.

Nous soutenons que les concepts proposés dans Acala et AdapPF peuvent en principe
étre combinés pour améliorer les performances et l'efficacité du systeme de surveillance,
car ils traitent différentes parties de ’architecture de Prometheus Federation.

Ces contributions fournissent une base solide pour le développement de plateformes
de fog computing multi-tenant, publiques, a grande échelle et géo-distribuées, et pour

démocratiser les technologies de fog computing.
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ABSTRACT

In recent years, cloud computing has become a significant and successful technology
that offers a range of advantages over on-premise deployments, such as scalability, af-
fordability, and flexibility. The public, shared, and on-demand nature of cloud computing
platforms makes them available to countless users ranging from individuals and small
businesses to large enterprises. This keeps I'T-related tasks simple for users so that they
only need to focus on their core business without having to build and maintain their own
IT infrastructure. Users can easily develop and deploy applications on cloud platforms
using a wide variety of tools and services maintained by Cloud Service Providers (CSPs).
A public cloud platform usually comprises a limited number of centralized data centers,
each of which includes a large number of computing servers, network capacity, and storage
resources.

When users deploy their cloud applications on a public cloud platform, they consider
different non-functional requirements for each application, such as necessary resource ca-
pacity, high availability, and fault tolerance. The emergence of latency-sensitive applica-
tions such as virtual reality and 360-degree video streaming creates new demands such
as low end-to-end network latency. Moreover, the rapid development of the Internet of
Things (IoT) has led to a dramatic increase in the number of IoT devices, which generate
a massive amount of data that must be sent to remote cloud data centers for real-time
data processing.

Although the global expansion of cloud data centers and significant improvements in
network accessibility and bandwidth capacity have reduced the latency between the end
users and their cloud applications, the centralization of large data centers means they re-
main physically distant from most end users. Large end-to-end latency for applications and
long-distance transmission of large amounts of data make some latency-sensitive and IoT
applications unsuitable for traditional cloud environments. To fulfill their requirements
and address the limitations of traditional cloud platforms, fog computing has emerged as

a viable solution.

Fog computing does not aim to replace the use of cloud computing. Instead, it is

designed as an extension of cloud computing. The core concept is to bring computing
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resources to the network edge to bridge the computing gap between users and the cloud
platforms. By serving users and processing data in closer proximity, fog computing has
the potential for significantly reducing end-to-end latency, thereby enhancing the user
Quality-of-Experience (QoE). This characteristic is critical for applications that require
real-time interactions. Moreover, fog platforms can also optimize the amount of data
transmitted over long distances and only send the most important and relevant data to
remote data centers for processing, while other data could be processed locally in the fog

platform.

Most current fog computing solutions, whether commercial or open-source, require fog
users to build their own private fog platform in the designated area with dedicated hard-
ware and software. However, this practice negates the cost efficiencies achieved through
the multi-tenancy and statistical multiplexing of cloud computing, and it reverts the ser-
vices back to a pre-cloud model where each application needed individual provisioning
with a custom infrastructure. These solutions also demand high upfront investment and
are unable to easily scale up and down the provisioned resources, which makes individual
users and startups face significant challenges, slowing down the adoption of fog computing

technologies.

To allow all kinds of users, including individuals, small businesses, and large enter-
prises, to gain advantages such as low end-to-end latency, on-demand resource availability,
and flexibility, it is crucial to develop large-scale, public, multi-tenant, geo-distributed fog
computing platforms that can cover a country or even an entire continent. Users will
be able to leverage this public fog platform to develop software and deploy applications,
which in turn can reduce the massive infrastructure investment of preparing a private
fog platform and enable them to focus on their core business activities and continuously

innovate without the burden of managing fog infrastructures.

Despite the great potential of future large-scale public fog computing platforms, there
are currently no such platforms on the market. Building a large-scale public platform
faces several challenges such as economic considerations. For example, it would require a
significant investment to install enough number of fog hardware and software. The profit
and business model still needs to be investigated due to the novelty of this computing
concept. In addition, countless scientific and technical details should still be addressed,

such as scalability, automation, security, and sustainability.

This thesis specifically explores three key challenges related to the scalability of future

public geo-distributed fog computing platforms. First, a single company would find it
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challenging to deploy enough number of fog resources to cover a large geographic area
while attracting sufficient workloads to generate high resource utilization, especially for
fog resources located in rural areas. The smaller population density in these regions may
result in the underutilization of fog resources, which may in turn increase the overall cost
for a fog provider. Therefore, it is necessary to design a model that can address service
coverage and resource utilization at the same time.

Second, a large-scale public geo-distributed fog platform may need to serve a large
number of users simultaneously, which therefore demands a robust orchestration frame-
work to manage the necessary resources. The framework must therefore be able to handle
numerous users, workloads, and fog devices efficiently. Moreover, the shared nature of
the public fog platform means that this framework must include robust multi-tenancy
management methods to isolate users and prevent them from interfering with each other.

Third, monitoring is an essential functionality to track resource usage of modern com-
puting environments, identify potential failures, and efficiently schedule applications. This
capability is particularly critical in large-scale, geo-distributed, and unstable fog platforms.
However, monitoring a large geo-distributed platform is difficult because the monitoring
data come from a large number of distributed fog infrastructures and need to be transmit-
ted over long distances. The network traffic caused by monitoring may waste the existing
network links and may eventually account for a significant amount of the system man-
agement traffic. Therefore, it is important to investigate efficient monitoring methods to
balance the volume of network traffic and data accuracy on a large scale.

This thesis proposes a series of solutions to address the scalability challenges mentioned
above. We leverage the concept of cluster federation as a solution to design a large-
scale fog platform that strategically deploys multiple geo-distributed clusters and can be
managed and used as a single homogeneous cluster. Our contributions are based on the
popular Kubernetes container orchestration and the Prometheus monitoring framework
ecosystems. However, we argue that the principles and algorithms introduced in this
thesis can adapt and integrate seamlessly with existing and future container orchestration

solutions and monitoring systems.

Contribution 1: Multi-Tenancy Management in Scalable Fog Meta-Federations

The first contribution of this thesis addresses the issues related to service coverage and
resource utilization. Due to the difficulty of deploying enough fog clusters across a country

or a continent, we assume that several small or medium-sized fog service providers, each
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of which in a different region, may team up to deliver a large-scale platform using a fog
cluster federation. In this context, we propose the concept of meta-federations, where
independent local fog providers can flexibly lease their own fog clusters to one another.
By applying this idea, a single fog provider may use fog clusters from other regions that
are operated by different fog providers to expand service coverage in locations where they
do not own resources themselves. Moreover, fog clusters located in low-density areas may
be leased to multiple fog service providers to increase resource utilization and thereby

reduce the overall cost for cluster owners.

Implementing the concept of large meta-federations in which thousands of local fog
providers rent their fog clusters to hundreds of independent federations requires one to
address two main challenges. (i) Multi-Tenancy: As part of the meta-federations design,
each cluster may be shared by different federations. Applications in the same cluster
created by users from different federations should not be able to interfere with each
other. A fog federation may also include a large number of users. Workloads submitted by
different users in a federation should also have similar isolation guarantees. (ii) Scalability:
This large-scale geo-distributed fog platform may include many fog clusters. Therefore,
each management cluster should be able to handle a large number of member clusters,
while each member cluster should be able to lease its resources to a large number of

management clusters.

To establish a cornerstone for developing future large-scale, public, multi-tenant fog
computing platforms and address the challenges introduced by meta-federations, this the-
sis presents UnBound, a scalable fog meta-federations platform. UnBound leverages the
Kubernetes container orchestration framework to manage resources within each fog cluster
and Open Cluster Management (OCM) to federate multiple member clusters under the
centralized governance of a management cluster. OCM is an open-source, extensible or-
chestrator specifically designed for Kubernetes in multi-cluster scenarios, which takes into
account the scalability of a federation. UnBound addresses the multi-tenancy management
issues by leveraging the Virtual Kubernetes Clusters (vCluster) project. UnBound uses
it to create logical sub-clusters to isolate the federations within a member cluster. Each
vCluster has its own API server and data store, which provides hard isolation guarantees.
As for the users in a federation, we use Kubernetes Namespaces to isolate them thanks

to the vCluster functionality that allows users to create cluster-scoped resources.

Comprehensive evaluations with federations of up to 500 geo-distributed Kubernetes

clusters demonstrate that UnBound maintains comparable application deployment times
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to the original Open Cluster Management in a single member cluster, avoids increasing
cross-cluster network traffic, keeps resource consumption within acceptable boundaries,
and exhibits stability and scalability, making it a suitable solution for large-scale fog

computing deployments.

Contribution 2: Efficient Monitoring Frameworks in Geo-Distributed Cluster

Federations

Distributed monitoring is an essential functionality that allows large cluster federa-
tions to efficiently schedule applications on a set of available geo-distributed fog clus-
ters. This requires a robust monitoring framework such as Prometheus and its extension
Prometheus Federation to provide the monitoring data. However, Prometheus always col-
lects the status of every available server from target clusters at a fized frequency, which
may waste network bandwidth in the federation while being unnecessary for ensuring

accurate scheduling and unscalable with increasing server number.

This thesis proposes two monitoring frameworks, Acala and AdapPF, to address the
above monitoring issues in a geo-distributed Kubernetes cluster federation. Both solutions
are based on the well-known open-source Prometheus monitoring ecosystem and introduce
solutions to balance cross-cluster network traffic and the accuracy of monitoring data.
Acala aims to provide the management cluster with aggregate information about the entire
cluster instead of individual servers, which elevates the traditional view of monitoring in
Prometheus Federation from the “node” level to the “cluster” level. AdapPF aims to
dynamically adjust the collection frequency of monitoring data for each cluster based on

the resource utilization status of the cluster.

We perform extensive evaluations of both monitoring frameworks using actual de-
ployments in the geo-distributed Grid’5000 testbed. The results show that Acala achieves
significant performance improvements compared to traditional Prometheus. Acala reduces
cross-cluster network traffic by up to 97% and decreases scrape duration by up to 55% in
single-member cluster experiments. Larger experiments with up to 1,000 servers demon-
strate that it reduces the overall network traffic by about 95%. Moreover, we demonstrate
that our solution has minimal impact on scheduling efficiency. The other framework,
AdapPF, achieves comparable scheduling accuracy to Prometheus Federation with a fixed

5 seconds scrape interval while reducing cross-cluster network traffic by up to 36%.
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We argue that the concepts proposed in Acala and AdapPF can in principle be com-
bined together to improve monitoring system performance and efficiency, considering that
they address different parts of the Prometheus Federation architecture.

These contributions provide a solid foundation for developing future large-scale, public,
multi-tenant, geo-distributed fog computing platforms and democratizing fog computing

technologies.
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CHAPTER 1

INTRODUCTION

Cloud computing, as one of the most successful computing paradigms, has revolution-
ized the way enterprises develop software and deploy applications. Traditionally, enter-
prises had to invest money in building their own server rooms with Information Technology
(IT) devices, such as servers, switches, and firewalls. Nowadays, by using cloud resources
from public cloud providers with high performance, flexibility, on-demand resource avail-
ability, reliability, and scalability, enterprises can focus on their major business and other
priorities without worrying about IT-related installation and maintenance [1]. In addi-
tion, the public and shared nature of cloud computing platforms makes them available to
numerous users ranging from individuals and small companies to large enterprises.

Cloud Service Providers (CSPs) typically build and maintain their own cloud data
centers, which are composed of a large number of computing servers, network devices,
and storage resources. To improve resource utilization, virtualization technologies enable
CSPs to abstract cloud resources and share them with multiple users without letting them
interfere with each other. For example, a single physical server can run multiple Virtual
Machines (VMs) using hardware virtualization technology [2].

The number of data centers for each CSP is typically small. For instance, Figure 1.1
shows the regions of Google Cloud, which includes 40 locations in the world and plans
to launch a few new regions such as Mexico [3]. This situation causes data centers to
be often physically distant from the end users, possibly resulting in high network access
latency [4].

According to a survey from the Enterprise Strategy Group, there is a strong trend
toward multi-cloud application deployment [5]. The findings indicate that 85% of orga-
nizations leverage two or more CSPs for their deployments. One of the key reasons for
this trend is that applications can deploy and distribute to different data center locations
to gain the advantages of multi-cloud deployments, such as reducing the user-to-cloud
latency [6]. This indicates a need to increase the number of locations where cloud tenants

can deploy their applications.
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Figure 1.1 — A map of Google Cloud regions around the world. Blue dots show current
regions. Triangle represents future regions [3].

The emergence of latency-sensitive applications requires reducing the user-to-cloud la-
tency, which may not be compatible with traditional cloud computing deployments [7]. For
instance, head-tracking applications such as virtual reality and 360-degree video stream-
ing request that network transmission combined with application processing times should
remain under 20 milliseconds to avoid motion sickness [8]. Another demanding use case
is the Internet of Things (IoT), which is experiencing rapid growth with 127 additional
devices being connected to the Internet every second [9]. The number of connected IoT de-
vices worldwide in 2030 is predicted to be greater than 32 billion [10]. Typically, these IoT
devices generate data that should be sent to a cloud data center for real-time processing
due to the limited computing capabilities of the IoT devices themselves [11]. Moreover, the
long-distance data transmission of large amounts of data over the network may eventually

saturate the existing network links [12].

To address the limitations of data-center-based cloud computing architectures, an in-
tuitive solution is to place the computing resources closer to the end users. Fog computing

proposes such an extension of cloud computing that distributes computing resources at
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the network edge, close to the end users, and to the location of data sources generated
by IoT devices [13]. This design enables computational tasks to be performed close to
the data sources, reducing end-to-end latency to improve the user Quality-of-Experience

(QoE) and reducing the volume of data transmitted to data centers.

Since the introduction of the fog computing concept in 2012 [13], various fog/edge
computing solutions have been developed and made available on the market. For example,
Microsoft provides Azure Stack Edge, a Hardware-as-a-Service (HaaS) product that allows
customers to order Azure-managed devices and deploy them in the desired locations [14].
These hardware devices contain the computing, storage, and intelligent capabilities of
the Azure cloud and can process the data directly at the network edge. Another similar
solution called “Google Distributed Cloud connected” is designed for customers who want
to obtain real-time insights from data at the local level with low latency [15]. This solution
offers a flexible selection of hardware options that allow customers to select and build the
right-sized fog/edge infrastructure locally. Other CSPs propose similar fog/edge solutions,
such as Oracle Roving Edge Infrastructure [16] and Amazon Web Services Snowball Edge
Compute [17]. In the open-source world, several solutions also exist. The FogGuru project
develops the LivingFog platform, which allows users to leverage Raspberry Pi clusters
to process IoT data transmitted with the LoRa long-distance wireless protocol [18]. This
platform has been successfully used for smart water management and smart-city data
processing [19]. KubeEdge is a Kubernetes-based framework that aims to bring container
orchestration on devices at the network edge [20]. KubeEdge’s architecture includes two
main components: CloudCore and EdgeCore. Users deploy CloudCore in the cloud to
manage the edge devices and install EdgeCore in user-owned edge devices that may be

placed in strategic edge locations such as factories.

Considering the current fog/edge solutions, deploying applications close to the end
users to benefit from the advantages of fog computing requires one to deploy customized
hardware infrastructures and/or software at appropriate locations to form a private fog
deployment. However, assigning a specific set of devices to accommodate a single use
case within a particular location weakens the economies of scale delivered by the multi-
tenancy and statistical multiplexing principles of cloud computing. This situation brings
fog computing back to a pre-cloud era where each application required dedicated hardware
to be provisioned, limiting its geographical scope to a small choice of locations where
suitable devices have been deployed. Moreover, this may lead to high costs and large

delays in setting up these hardware devices, which in turn could slow down innovation.
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As a result, many potential fog computing users may thereby be unable to fully utilize
fog technology due to these technical and management limitations. In terms of flexibility,
as their business expands, scaling up fog infrastructures may prove to be difficult and
time-consuming. These issues show that the current fog computing solutions do not fully

enable the potential and unique capabilities of fog computing.

Fog computing was initially designed as an extension of cloud computing. We there-
fore believe it should follow the same guiding principles as cloud computing. In particular,
users around the world who are unable to build their own private fog platform should be
able to deploy their applications in a public fog computing platform with zero upfront
infrastructure cost. Enabling fog computing to embrace the full benefits of cloud comput-
ing principles requires the design of large-scale, public, multi-tenant, geo-distributed fog
computing platforms that can cover a whole country or even a continent. Similar to public
cloud platforms, public fog platforms should exploit the statistical multiplexing of large
numbers of independent workloads to help guarantee high resource utilization and there-
fore reduce the cost of building and maintaining the fog platform. In doing this, public
fog platforms may help unlock the full potential of fog computing that makes computing
resources accessible to all kinds of users, letting them focus on their major affairs and
pursue innovation. Moreover, with the rapid growth in the number of IoT devices and the
increasing demand for real-time data processing, we believe it is particularly important

to design large-scale public shared fog computing platforms.

Unfortunately, although fog computing technology has demonstrated its potential and
advantages in many fields, no large-scale public fog platforms exist today that are easily
accessible to any user. There are many reasons for this, ranging from economic aspects
to technical and scientific ones. On the economic side, building a public fog platform
would require large investments to deploy the fog infrastructures, develop the software,
and maintain and operate the platform. Compared to cloud computing, the concept of
fog computing is relatively new. Therefore, the revenue or service model still needs to be
further investigated to ensure that the Return on Investment (ROI) is within an acceptable
range. In addition, environmental protection and data regulatory challenges also make it
difficult to design a compliant large-scale platform due to its decentralized nature. A very
large fog platform may cover different countries, which means that these distributed fog
infrastructures would need to pass regional environmental assessments and follow complex

data protection laws in different countries.
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The scientific aspects of constructing large-scale fog platforms are also very challeng-
ing. A large number of fog computing servers and user’s applications must be distributed
in various strategic locations, which makes management and monitoring face stringent
scalability issues. Moreover, maintaining a platform manually is costly, which encourages
developing robust automation methods to remotely maintain and repair these physical
servers and network devices. Applications deployed by users also need to take into account
automatic scheduling, migration, and failover. Compared to centralized data centers with
co-located hardware that can be protected together, guaranteeing security is clearly a
difficult issue in decentralized fog architectures, which may be more vulnerable than cen-
tralized ones to physical or network attacks. Sustainability can also be a key challenge
for such platforms, and energy efficiency should be considered to keep the fog clusters
running with a balance between energy consumption and speed of computation, which
thereby can help minimize operational costs and keep platforms effective [21]. As a result,
these challenges make building large-scale fog platforms difficult, which requires a series

of solutions for them.

This thesis addresses the challenges of designing scalable public fog computing in-
frastructures, with the aim to eventually be able to cover an entire country or even a
continent. Within this scope, we specifically focus on three main issues whose solutions
may constitute a basis for further research toward the design of future large-scale, public,

multi-tenant, geo-distributed fog computing platforms.

The first issue addressed in this thesis is to enable broad service coverage of a fog
resource provider. Deploying a sufficient number of geo-distributed fog servers to cover a
country or a continent is a major challenge. For example, the 5G (5th-Generation mo-
bile communication technology) Observatory Biannual Report published in October 2023
shows that the number of 5G base stations in France is 39,502 with 88.8% of popula-
tion coverage [22]. Each base station can serve more than 2,000 users simultaneously [23].
To achieve a fog service coverage similar to that of 5G base stations, the number of fog
servers may need to be even greater than this, requiring major deployment and mainte-
nance efforts. In addition, the population density differs from region to region. Therefore,
it may be difficult for deployed fog infrastructure in low-density areas to attract sufficient

workloads to produce high resource utilization.

The second issue is the management of a large-scale, public, geo-distributed fog com-
puting platform. The large-scale characteristic means that the platform may contain a

large number of fog resources and workloads, which requires a robust and scalable or-
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chestration framework to manage them. The public nature of the platform implies that it
may need to accommodate many users, which demands effective multi-tenancy strategies
to ensure isolation between the users. To this end, we need to simultaneously address the
challenges related to scalability and multi-tenancy to manage such a platform efficiently.

The third issue is related to the monitoring of a large-scale geo-distributed fog comput-
ing platform. Monitoring plays a critical role in resource usage tracking, failure identifica-
tion, and workload scheduling, especially in potentially resource-constrained and unstable
fog environments. Monitoring a large fog platform is very challenging compared to tradi-
tional centralized cloud data centers, as fog infrastructures are deployed in many different
locations. An excessive amount of monitoring data transmitted over long distances across
a geo-distributed platform may waste the existing network resources and may eventually

represent the majority of the system management traffic.

1.1 Contributions

To address these challenges, the thesis proposes two main contributions, which both
rely on the concept of cluster federation. A federation is composed of multiple server
clusters deployed in different strategic locations that can be managed and used as a single
large-scale geo-distributed platform. Our solutions are based on the Kubernetes container
orchestrator, the Prometheus monitoring system, and their respective ecosystems, which
constitute the current industry standard while remaining open-source, highly mature, and
extensible [24], [25]. However, the concepts and algorithms proposed in this thesis can be
easily applied and integrated with other current or future container orchestrators and
monitoring systems.

The main contributions of this thesis are as follows:

(1) Multi-Tenancy Management in Scalable Fog Meta-Federations
Designing large-scale, multi-tenant, public fog federation platforms requires the ag-
gregation of large numbers of clusters in numerous locations covering a country or
even a continent. However, it would be difficult for a single organization to deploy
enough resources in strategic locations while attracting sufficient workloads to gen-
erate high resource utilization. We propose to address this challenge with the vision
that many small or medium-sized fog resource providers may choose to cover only
a limited region or set of regions. A “global” fog service provider may then expand

its service coverage span in additional locations by securing a business deal with the
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Figure 1.2 — An example of a fog provider in Brittany (black) that wants to expand
the service coverage to other regions of France by gaining access to other fog providers
in Hauts-de-France (green) and Auvergne Rhone-Alpes (blue). The base image is from
OpenStreetMap France [26].

other fog resource providers and by including their resources in a federation. In this
way, the global fog service provider may attract new customers and increase the size
of its business. At the same time, the regional fog resource providers may choose
to lease their resources to multiple fog service providers. For example, as shown
in Figure 1.2, a fog provider with its own cluster federation in Brittany may want
to use the fog resources of other fog providers in Hauts-de-France and Auvergne-

Rhone-Alpes.

This thesis proposes the design of scalable fog meta-federations. We define a meta-
federation as a complex ecosystem composed of many independent fog resource

providers that may set up business agreements with one another to allow access to
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their computing resources. The legal framework for setting up such business agree-
ments is outside the scope of this thesis. Any single fog cluster may simultaneously
act as the manager of a large federation and contribute its own resources to one
or more other federations, which contributes to enhancing resource utilization and

reducing the operational cost of the cluster.

Realizing the vision of a large meta-federations ecosystem that can span a country
or a continent with thousands of local providers renting their computing resources
to hundreds of independent federations in turn requires one to address two main
challenges: (i) Multi-tenancy: Workloads submitted by multiple federations to the
same member cluster should be strictly isolated from each other, and multiple users
from any single federation should also benefit from similar isolation guarantees; (ii)
Scalability: Each management cluster ! must effectively control a large number of
member clusters, while each member cluster must be able to lease its resources to a

large number of management clusters.

To support the vision of building a large-scale, public, shared, geo-distributed fog
computing platform while effectively addressing the complex multi-tenancy and scal-
ability challenges introduced by meta-federations, we present UnBound, a scalable
fog meta-federations platform. UnBound relies on Kubernetes to orchestrate re-
sources within individual fog clusters [27] and Open Cluster Management (OCM)
to federate multiple member clusters under the authority of a management clus-
ter [28]. We address the issue of multi-tenancy management by isolating federations
within a single member cluster using the Virtual Kubernetes Clusters (vCluster)

project to create isolated logical sub-clusters within the member clusters [29].

We conduct extensive evaluations through real-world deployments in the Grid’5000
testbed [30] and demonstrate that UnBound achieves inter-user and inter-federation
isolation while maintaining comparable application creation time to the original
Open Cluster Management and avoiding increasing cross-cluster network traffic be-
tween the management and member clusters. Moreover, the resource consumption

of UnBound components remains within acceptable limits. Finally, we demonstrate

1. In a cluster federation, a “management cluster” is in charge of deciding which of the “member
clusters” will be in charge of handling each newly deployed application.
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the stability and scalability of UnBound using federations with up to 500 member

clusters and a member cluster belonging to up to 100 independent federations.

Efficient Monitoring Frameworks in Geo-Distributed Cluster Federations
To enable accurate scheduling decisions, it is necessary to have information about
the resource usage status of each member cluster in a geo-distributed Kubernetes
cluster federation [31]. This requires a robust monitoring framework that can pro-
vide resource utilization data, such as Prometheus and its extension Prometheus
Federation [32], [33]. However, the design of Prometheus makes it fetch the precise
status of each available server with fixed frequency. This is unnecessary to allow
accurate scheduling, unscalable as the number of servers grows, and it may waste

long-distance network bandwidth in a large cluster federation.

In this contribution, we present two frameworks to address these issues in a geo-
distributed cluster federation: Acala and AdapPF. Both of them aim to balance
between cross-cluster network traffic and the accuracy of monitoring data. Acala
exploits two strategies called metrics aggregation and metrics deduplication for re-
ducing the volume of monitoring data that needs to be reported to the management
cluster, elevating the traditional view of monitoring from “node” granularity to
“cluster” granularity. On the other hand, AdapPF uses a self-adaptive approach to
dynamically adjust the scrape interval for each member cluster based on the re-

source status of the target clusters.

Our contributions based on actual deployments in the geo-distributed Grid’5000
testbed demonstrate that Acala reduces the cross-cluster network traffic by up to
97% and the scrape duration by up to 55% in single member cluster experiments.
Our solution also decreases cross-cluster network traffic by 95% and memory re-
source consumption by 83% in multiple member cluster scenarios. A comparison of
scheduling efficiency with and without data aggregation shows that aggregation has
minimal effects on the system’s scheduling function. On the other hand, AdapPF
can achieve comparable application scheduling results to Prometheus Federation

with 5 seconds scrape interval while reducing cross-cluster network traffic by 36%.

These two solutions are complementary as they address different aspects of the
Prometheus Federation architecture. In principle, they may be combined to leverage
the strengths of both.

33



Chapter 1 — introduction

1.2 Published Papers

The following manuscripts are published as part of this thesis:

Journal article(s)

(1) “Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations”, Chih-
Kai Huang and Guillaume Pierre, in IEEE Transactions on Cloud Computing, vol.
12, no. 4, pp. 1449-1462, Oct.-Dec. 2024.

Conference paper(s)

(1) “UnBound: Multi-Tenancy Management in Scalable Fog Meta-Federations”, Chih-
Kai Huang and Guillaume Pierre, in Proceedings of the 17th IEEE/ACM Interna-

tional Conference on Utility and Cloud Computing, Sharjah, United Arab Emirates,
Dec 2024.

(2) “AdapPF: Self-Adaptive Scrape Interval for Monitoring in Geo-Distributed Cluster
Federations”, Chih-Kai Huang and Guillaume Pierre, in Proceedings of the 28th

IEEE Symposium on Computers and Communications, Tunis, Tunisia, Jul 2023.

(3) “Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations”, Chih-Kai
Huang and Guillaume Pierre, in Proceedings of the 38th ACM/SIGAPP Sympo-
sium on Applied Computing, Tallinn, Estonia, Mar 2023.

1.3 Organization of the Thesis

This thesis is organized into six chapters.

Chapter 2 presents the technical background of this thesis. We first explore the basics
of cloud computing with its characteristics, architecture, service models, and limitations.
We then discuss geo-distributed fog computing and the reason why it can address some
of the limitations of cloud computing. We also introduce virtualization technology and
discuss the trend of moving from virtual machines to containers. Finally, we introduce
Kubernetes, a widely used open-source container orchestrator that we rely on in this
thesis.

Chapter 3 discusses the academic state of the art related to our contributions. We
start the chapter with the multi-cluster federation control planes. Then, we review the
multi-tenancy frameworks for Kubernetes clusters and position our contributions in this
context. Finally, we present the literature on monitoring in fog computing environments

and discuss the challenges of the Prometheus monitoring system.
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1.8. Organization of the Thesis

Chapter 4 introduces our first contribution: Multi-Tenancy Management in Scalable
Fog Meta-Federations. We first define meta-federations as a way to realize the vision
of large-scale, public, multi-tenant, geo-distributed fog computing platforms. Next, we
present UnBound, a scalable fog meta-federations platform, with its system architecture
and multi-tenancy management methods. Finally, we evaluate UnBound in a realistic
testbed and show its performance results.

Chapter 5 proposes our second contribution: Efficient Monitoring Frameworks in Geo-
Distributed Cluster Federations. We first present the Acala monitoring framework and
subsequently discuss the AdapPF monitoring framework. Both frameworks follow the
discussion with their system design and performance evaluation.

Chapter 6 restates the challenges of building a large-scale, shared, public fog computing
platform. Then, we summarize the contributions of this thesis and identify promising

directions for future research.
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CHAPTER 2

BACKGROUND

In this chapter, we first explore the cloud computing concept with its characteristics,
architecture, service models and limitations, and then shift to discuss the geo-distributed
fog computing. After that, we discuss the evolution of virtualization technology from

Virtual Machines (VMs) to containers. We also review Kubernetes and its related topics.

2.1 Cloud Computing

Cloud computing has been one of the most significant technological concepts over
the past twenty years [34]. The history of cloud computing can be traced back to 1961
when John McCarthy introduced the first utility computing concept at the Massachusetts
Institute of Technology [35]. Afterward, the Compaq Computer Corporation started to
bring computing into the business aspect in 1996 [36]. It took almost a decade of evo-
lution for three giants, Amazon, Microsoft, and Google, to roll out their own “cloud”
services or platforms successfully. In 2006, Amazon released its cloud computing services,
which included Amazon Simple Storage Service (S3) and Amazon Elastic Compute Cloud
(EC2) [37], [38]. Then, Microsoft Windows Azure [39] and Google App Engine [40] were
also announced and started sharing the cloud market. As of the fourth quarter of 2023,
the three major Cloud Service Providers (CSPs) shared a total of around 66% of the cloud
market [41].

Cloud computing is changing the way individuals and enterprises develop software
and deploy applications. A Eurostat survey of 161,000 EU enterprises with different sizes
shows that 45.2% of EU enterprises used cloud computing services in 2023. Compared
to 2021, it is 4.2 percentage points greater, representing a growing trend in the business
fields [42].

The rising trend of cloud computing can be attributed to the gradual maturation of
software. Virtualization technologies such as Virtual Machines (VMs) [43] and contain-

ers [44] enable cloud computing as CSPs can leverage them to abstract the computing
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resources on a physical server and share each server with multiple users without letting
them interfere with each other. Using virtualization technology in cloud platforms brings
additional benefits, including improving the overall resource utilization in each server,
reducing costs, and providing functions such as high availability and auto-scaling [45]. We

will discuss virtualization technologies in Section 2.3.

For users, there are several advantages to using cloud computing such as reducing
their investment cost of Information Technology (IT) infrastructures and software. The
users can directly utilize the services provided by CSPs without needing to deploy or
maintain their own servers and storage systems [46]. Cloud computing can also enhance
the flexibility of deployed services such as dynamically scaling the capacity of I'T services
up and down according to the demand [1]. For instance, a shopping website may experience
greater workloads during the weekend, requiring the administrator to scale up the cloud
resources to handle the load. After the peak has ended, they can scale resources down to
maintain cost-effectiveness. One more advantage that users can benefit from using cloud
computing is efficiency. Enterprise users only need to focus on their major business and
do not need to care too much about IT-related work. Moreover, applications and data

hosted in the cloud can be accessed from almost any device connected to the internet [47].

2.1.1 Cloud Computing Characteristics

Cloud computing relies on numerous servers, networks, and storage resources being
placed together in the same location to build a data center that can provide services
to cloud users over the Internet. According to the National Institute of Standards and
Technology (NIST) definition, the basic characteristics of cloud computing are listed be-
low [48]:

(1) On-demand self-service: CSPs provide cloud users with services or computing
resources, such as applications, data storage, and infrastructure. It can automati-
cally allocate resources according to user requirements without system administrator

intervention.

(2) Broad network access: Cloud users are able to access the cloud services with
different types of devices, such as mobile phones, laptops, and desktop computers,

anytime and anywhere through the Internet.
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Figure 2.1 — High-level architecture of cloud computing.

(3) Resource pooling: The resources managed by CSPs are aggregated into a shared
massive computing pool. By using virtualization technologies, CSPs can share the

resources or provide services to the end users through a multi-tenancy model.

(4) Rapid elasticity: The size of services can quickly scale up and down to adapt to

user needs.

(5) Measured service: CSPs can monitor the service usage of cloud users and are billed
based on the pay-per-use method. Moreover, the CSPs can leverage monitoring data

to manage the resources in a data center.

In addition to the above basic characteristics, there are some common characteristics,
including massive scale, resilient computing, and geographic distribution service orienta-
tion [49]. To sum up these characteristics, cloud computing is the integration and develop-

ment of distributed computing, Internet technology, and large-scale resource management.

2.1.2 Cloud Computing Architecture and Business Models

Figure 2.1 presents the relationship between cloud computing and its end users. The
cloud layer aggregates computing resources into one or more data centers and provides
services to the end users. The edge layer is composed of end users, including their Internet-

of-Things (IoT) devices, mobile phones, and computers. These devices produce the data
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and requests, and send them through the Internet to the cloud data centers for analysis
or processing.

The architecture of a data center could be divided into four layers, which are applica-
tion, platform, infrastructure, and data center layers [46], [50]. Moreover, NIST classifies
the service models into three levels: Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS), and Infrastructure-as-a-Service (IaaS) [48]. SaaS is oriented towards end users who
only use complete applications. It provides Internet-based on-demand software services
without requiring users to install or maintain them. PaaS targets application developers,
in which PaaS delivers a platform that contains software development and management
frameworks. Developers only need to upload code and data to use the platform without
having to worry about the issues related to the underlying network, storage, and operat-
ing system. [aaS is designed for users who require complete control over their computing
infrastructure, including servers for computation, storage, and networking. Each service
model can be mapped to the different architecture layers, and we discuss the architecture

from the down to the top layers of cloud computing.

(1) Data center layer: CSPs operate the data centers to offer the services to the
cloud users. Each data center includes thousands or more physical machines, such as
servers, switches, and routers, packed into racks and connected by a high-bandwidth
internal network. There are several challenges in this layer, including the configura-

tion of hardware components, ensuring fault tolerance, and keeping energy efficiency.

(2) Infrastructure layer: This layer, also called the virtualization layer, leverages vir-
tualization technologies to share computing resources with different cloud users. The
infrastructure layer belongs to the laaS model, providing computing resources, such
as servers, storage, and networking. Some well-known IaaS products are Amazon
Elastic Compute Cloud (Amazon EC2) [51], Google Cloud Storage [52], and Azure
Virtual Network [53].

(3) Platform layer: The platform layer stands in the PaaS model and is built using
the infrastructure layer. It is responsible for providing application frameworks to the
software developers. It can relieve developers from the burden of managing servers
and deployment settings. Google App Engine [54] is one of the products in this

layer.

(4) Application layer: This layer can map to the SaaS model and aims to offer different

cloud software services to the cloud users, such as E-mail services and document
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editor. Typical examples are Google Workspace [55]|, which include Google Docs

and Gmail.

2.1.3 Cloud Computing Deployment Models

Cloud users can choose between different deployment models for their applications
based on their requirements, such as locations and policies. Cloud data centers, managed
by CSPs such as Microsoft Azure, Google Cloud, and Amazon Web Services, provide the
services mentioned in the previous section in the form of public cloud, where cloud users
do not need to maintain their own infrastructure and software. For cloud users who want
a higher degree of performance, reliability, and security, an alternative is to select a model
named private cloud, where cloud users build their own data centers to fulfill the needs
of control or privacy.

Some users need their applications to run in specific geographic locations for perfor-
mance or legal reasons, while others wish to avoid a single vendor lock-in. For them,
multi-cloud is a viable solution for geo-distributed application deployment [6], [56]. The
administrators of applications can launch multiple applications by using different public
cloud service providers in various locations to serve end users. For example, Google Cloud
and Microsoft Azure operate data centers in Taiwan. However, AWS does not have one.
If AWS customers want to deploy an application to serve end users closer to Taiwan, they
need to leverage other cloud providers, ending up with a multi-cloud deployment. Another
geo-distributed deployment model is the hybrid cloud. The idea of hybrid cloud deploy-
ment is to combine the resources from one or more private data centers with the public
cloud, which brings benefits from both sides. The users can keep sensitive workloads or
data in a private data center and utilize the scalability and flexibility of the public cloud

to run a larger number of applications and less sensitive workloads.

2.1.4 Cloud Computing Limitations

Cloud computing brings many benefits, but it also presents challenges in different
aspects. The first major issue for cloud computing is its energy consumption. A report
from the International Energy Agency (IEA) shows that the electricity use for cloud data
centers and transmission networks each is estimated up to 1.5% of the global use [57].
Moreover, the growing trend of data centers is driving an increase in energy usage by

Artificial Intelligence (AI) [58]. Security and privacy are also significant topics that people

41



Chapter 2 — Background

care about. According to a survey from Cloud Security Alliance (CSA), the top threats are
data breaches, weak identity, credential and access management, and insecure Application
Programming Interfaces (APIs) [59]. Another report shows that some of the threats are

growing over the years such as data breaches [60].

The enhancement of network accessibility and bandwidth, combined with the widespread
proliferation of cloud data centers in different locations worldwide, has significantly re-
duced end user to cloud service latency. As a result, popular cloud services such as Face-
book can be accessed within as little as 40 milliseconds round-trip latency [61]. The
latency between end users and cloud services is an important topic for CSPs because
lower latency brings a better user experience and thereby it impacts the profit of appli-
cation owners. Amazon discovered that every extra 100 milliseconds of delay resulted in
a 1% loss in sales [62]. Meanwhile, another study also demonstrated a similar outcome
that an increase of 0.5 seconds in generating search results causes a 20% decrease in traf-
fic [63]. Reducing network delays also enables the development of new latency-sensitive
applications. For example, virtual reality and 360-degree video streaming require the total
end-to-end latency, which includes both network transmission and application processing

delays, to remain within 20 milliseconds [8].

The rapid development of the Internet of Things (IoT) enables the creation of smart
home and improved urban services with the smart city. A forecast shows that the volume
of data generated by IoT devices will reach 79.4 zettabytes by 2025 [64]. Meanwhile, to
monitor and analyze the data collected from various IoT devices and sensors, the data
must be sent to a cloud data center for real-time data processing. Long-distance data
transmission of such large amounts of data over the network may eventually saturate the

existing network links [12].

Although cloud users can take advantage of multi-cloud deployments to execute their
applications in different data centers with multiple CSPs to reduce the latency and the
volume of long-distance data transmission over the network, the centralization of large
data centers means that they may remain physically distant from the end users [4]. As
these limitations of cloud computing become more recognized, fog computing emerges as

a solution to address their limitations.
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Table 2.1 — Differences between fog computing and cloud computing.

Characteristics Fog Computing | Cloud Computing
. Decentralized Centralized
Architecture
fog nodes or clusters data centers
Latency Between Users .

and I\BT,earest Servers Low High
Distance From Users Close Far
Bandwidth Low High
Computing Capacity Intermediate High
Storage Capacity Intermediate High

Latency sensitive

Uk (G or IoT applications

General applications

2.2 Fog Computing

Fog computing was proposed by Cisco in 2012 [13] as a widely distributed cloud-liked
infrastructure to address the limitations of centralized cloud computing. The aim was
to bridge the gap between end users/IoT devices and traditional cloud computing data
centers by providing resources, including computing, storage, and networking services,
that are closer to them. This design can fulfill the characteristics of IoT applications, such
as geographic distribution and low latency.

In 2017, the OpenFog Consortium Architecture Working Group published a white
paper called “OpenFog Reference Architecture for Fog Computing” [65] to further consol-
idate the definition of fog computing. Then, in 2018, the IEEE adopted this standard [66].
In this standard, the authors state that “ Fog computing is a horizontal, system-level archi-
tecture that distributes computing, storage, control, and networking functions closer to the
users along a cloud-to-thing continuum.” Based on this definition, fog computing is seen
as an extension of cloud computing where the computing resources are spread in different
locations close to the data producers and users within a large geographical coverage. Fog
computing should have all the characteristics of cloud computing, such as virtualization,
service models, and efficiency. To conclude these two definitions from Cisco and OpenFog,
they share a similar concept: computing resources are provided between end users and
cloud data centers to reduce the end-to-end latency of applications. We compare the main
differences between fog computing and cloud computing in Table 2.1.

The main ideas of fog computing and edge computing are similar in that both of them
address the latency issues between end users and cloud data centers. However, there are

still two key differences between these two concepts. First, fog computing includes cloud
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Figure 2.2 — High-level architecture of fog computing.

computing to define a complete computing continuum, whereas edge computing excludes
cloud computing as an independent architecture. Second, the structure of fog computing
is hierarchical, combined with cloud, fog, and edge devices, while edge computing usually

involves a flat structure with fewer layers [65].

2.2.1 Fog Computing Architecture

Figure 2.2 illustrates a typical high-level fog computing architecture, which includes

edge, fog, and cloud layers.

(1) Edge layer: This layer, also called the device layer, is the bottom layer in fog
computing. The edge layer contains different types of devices such as IoT devices,
sensors, mobile phones, smart vehicles, and other endpoints that can connect to the
Internet. These devices generate or collect data, and send them to the upper layer
for additional processing, such as analysis and decision-making. To send data, the

methods of accessing the network are often wireless using protocols, such as Wi-Fi,
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cellular network (LTE, 5G), and Long Range Wide Area Network (LoRaWAN) [18],
[67].

(2) Fog layer: This layer is composed of computing resources located near the data
sources outside traditional cloud data centers. These resources may potentially cover
a very large region, such as a country and a continent. Moreover, fog servers often
have limited computational power. For example, Raspberry Pi single-board com-
puters are often used to build fog clusters [68]-[71]. Additional devices can also join
the system and provide computational power, such as drones [72] and vehicles [73],
which can also serve as part of the fog infrastructures. Applications that want to

execute close to their end users will deploy in this layer.

(3) Cloud layer: This layer is made up of one or more powerful cloud data centers. Each
data center consists of high-performance servers, high-speed network connections,
and high-capacity storage. These computing resources can be used for applications
that require reliability and high performance. Since these cloud data centers are
physically far from end users, this layer can deploy the non-latency-sensitive part of

fog applications.

2.2.2 Fog Computing Applications

The emergence of fog computing paradigms presents new opportunities to serve end
users in close proximity and process data from sources outside traditional on-premise cloud
data centers. The main idea of this design is to improve the user’s Quality of Experience
(QoE), especially for those applications that are not compatible with traditional cloud
computing deployment [7].

Latency-sensitive applications require low end-to-end latency between users and appli-
cations. For example, humans have a low tolerance for delays or inconsistencies. Therefore,
applications such as virtual reality and 360-degree video streaming need an end-to-end
round-trip latency under 20 milliseconds [8]. Using a distributed fog infrastructure can
reduce latency to meet the needs of latency-sensitive applications.

Fog computing resources located close to end users can also bring benefits to appli-
cations such as video surveillance. These applications produce large volumes of data and
require broad network bandwidth to transmit these data to cloud data centers for pro-
cessing. By using fog computing, processing can take place in closer infrastructures, which

effectively minimizes the volume of data transmitted to the cloud.
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Although web applications usually do not require ultra-low latency between end users
and applications, as mentioned above, excessive latency for end users may reduce not only
the profit but also the traffic. Improving the user experience is one of the main goals of fog
computing. These fog infrastructures can be used for web content delivery and caching,
such as static items (web pages, images, and videos), as well as application services [74],
[75], to reduce end-to-end latency.

Several works have applied this distributed computing paradigm to different fields,
including the fields of transportation [73], [76], smart city [77], [78], agriculture [79], [80],

and entertainment [81].

2.2.3 Fog Computing Challenges

Fog computing addresses the limitations of cloud computing, such as high latency and
long-distance network transmission. However, to fully realize the fog computing potential,

there remain challenges that need to be tackled. We discuss each point as follows:

(1) Computing resource constraints: Traditional cloud data centers are composed
of many powerful servers, massive volumes of storage, and stable networks. Instead,
fog infrastructures are equipped with potentially weak servers, small storage, and
unstable networks. This challenge requires methods to handle workloads efficiently
within these limits, making sure that users can still have a similar user experience

to cloud computing. We discuss this constraint further in Section 2.3.

(2) Scalability challenges: Fog computing widely distributes fog infrastructures to
strategic locations near the end users and data sources. These infrastructures may
cover a very large region, such as a city, a country and even a continent, and may
therefore be composed of a very large number of computing nodes. Maintaining a
scalable fog platform demands a robust framework with a strong orchestrator to
govern the fog resources as well as handle many functions, such as deployment,
scheduling, and monitoring, which are utilized by different users. A fog platform
may need to handle a large number of users or administrators. Therefore, it is
crucial to deal with the multi-tenancy challenge that users may have from different
departments or even organizations. Additionally, the network traffic for management
with a large number of infrastructures in the platform is also an issue that needs to

be taken into account. We discuss this challenge in Section 2.4.
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(3) Security and privacy issues: Cloud data centers implement different security
measures to protect cloud users. Their centralized design makes it easier for CSPs
to build their security ecosystem, which includes physical and network security since
all the computing resources are in the same location. In centralized data centers,
physical infrastructures can be secured by surveillance cameras and security guards,
and the network can be protected by specifically designed machines, such as net-
work firewalls and Intrusion Prevention Systems (IPSs) [82], [83]. In contrast, fog
computing is a geographically distributed architecture, which makes security and
privacy issues more challenging. Distributed fog infrastructures may be vulnerable
to physical tampering or theft. Network protection in fog computing may require
the use of distributed firewalls or IPSs rather than a single machine. To ensure data
privacy, a centralized data center makes it easier to precisely locate data and com-
putation. However, distributed fog resources within a single fog platform may be

located in different countries with different data compliance regulations.

This thesis aims to address the second point mentioned above, which is the scalability
challenge in geo-distributed fog computing. Scalability is a key concern in this environment
that enables the fog platform to efficiently handle increasing infrastructures, workloads,
users, and management traffic. As a result, designing frameworks to enable the evolution

of scalable fog computing platforms is the main objective of this thesis.

2.3 Virtualization Technology: Virtual Machines and

Containers

Virtualization is a key technology that enables multiple users to share computing re-
sources in a physical server without interfering with each other. By doing this, virtualiza-
tion improves computing resource utilization and facilitates functions such as on-demand
scaling [84]. There are two main types of virtualization for computing: hardware virtualiza-
tion and operating system virtualization [2]. While numerous virtualization technologies
also exist for network or storage, they fall outside the scope of this thesis and will not be
discussed here.

Hardware virtualization, also called hypervisor-based virtualization, is a technology
to run multiple Virtual Machines (VMs) in a single physical machine [2], [85]. As shown

in Figure 2.3(a), each of the VMs has its own virtual computing resources, operating
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system, and applications, which provide the same user experience as a physical server.
For example, users can install any applications in a VM or use any kind of operating
system. To manage the computing resources of VMs, a hypervisor or Virtual Machine
Monitor (VMM) is required. The hypervisor allocates resources to each VM and manages
the scheduling between VM resources and the physical hardware. Although a VM has its
own virtual computing resources, the execution of computing tasks is carried out by the
physical hardware. Well-known hypervisors include Microsoft Hyper-V !, VMware ESXi 2,
Xen?, and VirtualBox *.

Another type of virtualization is Operating System (OS) virtualization, also known
as containerization. It is an approach that encapsulates an application, along with its es-
sential libraries, dependencies, and execution environment, within a container image [2],
[85]. Containers present the characteristics of portability and isolation. By using the same
image, applications can have a consistent execution in different computing environments.
Different from VMs, containers rely on a shared image registry such as the Docker Reg-
istry [86], which allows users to easily download application images and run them in any
environment equipped with the container runtime. Container isolation in the same ex-
ecution environment is provided through the use of the Linux kernel features, such as
namespaces and control groups (cgroups) [87]-[89]. Well-known container technologies
include Docker®, LXC® and Podman .

Although VMs are the backbone of centralized cloud computing architecture, the com-
puting resources of fog infrastructures are often limited and geographically distributed
compared to cloud data centers. Using VMs to deploy applications in this type of ma-
chine is very challenging. VM-based applications include applications related to software,
dependencies, and data and contain an entire guest OS, which potentially consumes sig-
nificant amounts of computing resources. This situation leads to high overhead for VMs,
which might not be acceptable on constrained fog devices. Moreover, this overhead makes
it hard to scale the number of VM-based applications per server. VM image sizes are
usually large also due to the guest OS, often reaching into the gigabytes [74], [90]. Using

VMs in this context may also cause an increase in the launch time of applications to

Microsoft Hyper-V - https://reurl.cc/dLYLAg
VMware ESXi - https://reurl.cc/1393qV

Xen - https://reurl.cc/gdd4EN

VirtualBox - https://reurl.cc/orjrAj

Docker - https://reurl.cc/eLrlXx

LXC - https://reurl.cc/RWNGvr

Podman - https://reurl.cc/VN9IOSR
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Figure 2.3 — Comparison of hardware virtualization (a) and OS virtualization (b) archi-
tectures.

serve users, which creates significant delays in fog computing, whereas the goal of fog is
to provide a better user experience.

To effectively address the challenges related to performance and scalability encoun-
tered with VMs in fog computing environments, OS virtualization offers a more suitable
solution. The main reason is the lightweight nature of containers, which do not need to
contain a full guest OS, as illustrated in Figure 2.3(b). This characteristic ensures low
consumption of computing resources, which is especially important in constrained fog in-
frastructures. Furthermore, the image sizes can be greatly reduced as they do not include
a full OS. This reduction of the size allows containers to have faster startup time than
VMs. Typically, it takes a matter of seconds or less for a container to start and turn ready
status to handle user requests [74], [88]. Additionally, multiple solutions exist to further
reduce the launch time of a container [69], [91]-[93]. As a result, container-based applica-
tions have a fast launch time and are able to scale the number of applications to a higher
degree across geo-distributed fog devices, which is crucial for adapting to the dynamic
demands in fog computing scenarios. Many works use containers to enhance the resource
utilization efficiency and reduce service latency within fog computing environments [18],
[94]-[97].

Because each physical machine may run a large number of containers, fog infrastruc-
tures are requested to manage thousands or even tens of thousands of containers. Man-

aging these amounts of containers spread across numerous machines in a fog computing
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environment requires a robust orchestrator to handle deployment, scaling, and network-
ing seamlessly and efficiently. Various container orchestrators have been proposed, such as
Docker Swarm [98], Apache Mesos [99], and Kubernetes [27]. Among these orchestrators,
Kubernetes has now become the most widely-used platform [100]-[102].

On the other hand, there is still no standardized platform for fog computing that
can support all its specific requirements, especially regarding scalability. Therefore, this
thesis considers containerization as a viable virtualization solution for geo-distributed fog
computing environments. Owing to the fact that Kubernetes is currently the de-facto
standard for cloud scenarios, we choose it as the preferred orchestrator for managing
containers and clusters, aiming to explore ways to meet the scalability requirements of
fog computing. Kubernetes has been adopted in many academic works for this type of
projects [18], [71], [103]-[105].

2.4 Kubernetes

Kubernetes is an open-source container orchestrator, often abbreviated K8s, which
was initially designed by Google. Later, Kubernetes was donated to the Cloud Native
Computing Foundation (CNCF). In 2018, CNCF accepted Kubernetes at the “gradu-
ated” maturity level, which certifies that Kubernetes is a stable and production-ready
platform [24]. As an open-source project, it has attracted around 3,600 contributors and
is very active in releasing new versions [106]. This level of activity can speed up bug fixes
and feature deployment to accommodate the rapidly evolving needs of its users and can

keep Kubernetes at the forefront of container orchestration technologies.

Kubernetes can be used to automate the deployment, scaling, and management of
containerized applications in public or private cloud infrastructures. It is deployed on a set
of computing nodes that constitute a cluster. Each Kubernetes cluster is composed of two
roles: control plane and worker node. The control plane is in charge of managing worker
nodes and containers. To provide fault tolerance and high availability in a production
environment, the platform administrator can also install multiple control planes that
are distributed across several machines. Moreover, each cluster also needs at least one

worker node to run the containers. Kubernetes relies on container runtimes to execute
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Figure 2.4 — Simplified Kubernetes architecture.

the containers, such as containerd ®, CRI-O?, Docker Engine ', and Mirantis Container

Runtime ' on all nodes in a cluster.

2.4.1 Architecture

Figure 2.4 presents a simplified view of the Kubernetes architecture. The control plane

includes four main components: API server, scheduler, etcd, and controller manager.

(1) API server: API server exposes the Kubernetes API to the system administrators

and other components. The Kubernetes API provides a standard interface to interact

with the Kubernetes platform and perform tasks such as deploying and managing

applications. In the Kubernetes API, a resource is an endpoint that stores API

objects. For example, the built-in Pod resource contains a collection of Pod objects

(we discuss the concept of Pod in Section 2.4.1.1). Moreover, it is possible to launch

multiple API servers and enable load balancing to distribute requests across these

API servers in a Kubernetes cluster.

10.
11.

. containerd - https://reurl.cc/orWqkg

. CRI-O - https://reurl.cc/bD0yQE

Docker Engine - https://reurl.cc/ GAWISA
Mirantis Container Runtime - https://reurl.cc/M4qGp3
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(2)

Scheduler: Scheduler is responsible for monitoring newly initiated Pods without
an assigned worker node and determining an appropriate worker node for their
execution. A Pod can be scheduled using different indicators, such as affinity/anti-

affinity specifications, policy constraints, and hardware requirements.

etcd: eted is a key-value data store with features such as strong consistency, dis-
tributed design, and high efficiency. The task for etcd is to store all the objects in a
Kubernetes cluster. In a production environment, etcd is usually deployed in an etcd
cluster with an odd number of servers such as 3 and 5 to ensure high availability. This
is because eted is based on the Raft [107] algorithm to keep data consistent across
multiple etcd, which requires a majority of members to accept updates to the eted

cluster status. Similar to Kubernetes, eted is also a CNCF graduate project [108].

Controller manager: Controller manager oversees the different controller pro-
cesses in a Kubernetes cluster. It comprises a series of controllers, such as node
controller, job controller, and deployment controller. Each controller monitors the
status of their target Kubernetes resources through the API server and ensures that

the actual resource status converges toward the desired status.

The second role in Kubernetes is the worker node, which is responsible for running

the containerized applications placed by the scheduler in the control plane. Each worker

node executes three main elements: Kubelet, Kube-proxy, and container runtime.

(1)

Kubelet: Kubelet is an agent in charge of managing the lifecycle of containers
within a worker node. Kubelet continually pulls the latest information about the
desired status from the API server and ensures that the status of corresponding
containers in the worker node matches their PodSpec. A PodSpec is a definition of
the intended behavior of the Pods. In addition to pulling information, Kubelet also

periodically reports the status of the worker node and Pods to the API server.

Kube-proxy: Kube-proxy is tasked with setting up network communication for
Pods in the Kubernetes cluster. It runs in each worker node and manages the network
rules to allow Pods to communicate with each other internally within the cluster

and with the external world.

Container runtime: Container runtime is the component that allows Kubernetes
to actually run containers. As motioned above, there are several runtimes for Ku-
bernetes so that the platform administrator can choose the preferred one to deploy

in their cluster.
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Several add-ons can also be deployed in a Kubernetes cluster to provide cluster-level
functionalities, including Domain Name System (DNS) services, network plugins, and
monitoring systems. In this thesis, one of the contributions focuses on the scalability of
the monitoring system, especially for the Prometheus monitoring system. This topic is
discussed in Section 2.4.5. The platform administrator can select from various CNCF
projects to fulfill specific needs. These projects can be installed easily through package

managers such as Helm 2,

2.4.1.1 Workloads

In the Kubernetes ecosystem, the smallest execution unit is a Pod. A Pod is defined
as a group of one or more containers that are scheduled on the same worker node and
managed together by Kubernetes. The most frequent use case uses a single container
per Pod [109]. In the case of containers that need to work together intensively, the users
can run multiple containers in a single Pod. This is because containers in a Pod share
computing resources, dependencies and volumes, and can communicate with each other
through a local host using different port numbers.

To enable both high availability and application scalability, Kubernetes offers different
types of built-in resources for managing Pod replication efficiently, including Deployment,
StatefulSet, and DaemonSet.

Deployment resource is designed to manage stateless applications, such as web servers
and API backends, that do not need to store data generated by end users. The adminis-
trators first describe the desired state of Pods in a YAML or JSON file. The Deployment
controller then watches the running application state and continually ensures that the
status between the desired and the observed state is consistent. For example, the admin-
istrators can change the desired number of Pods anytime. The Deployment controller will
automatically handle the related operations, such as creating and deleting Pods. This
resource can be used to quickly scale the number of replicas up or down or automatically
replace crashed Pods.

StatefulSet resource is utilized to handle stateful applications such as databases and
data stream processing systems that require a stable identity or persistent storage for
storing data. StatefulSets are similar to Deployment resources in that the administrators
provide a YAML or JSON file with desired specifications. Different from a Deployment

resource, Pods in a StatefulSet can be deployed and scaled in a strict sequential order.

12. Helm - https://reurl.cc/dLRKek
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This characteristic is particularly crucial for micro-services that have a specific processing
order.

DaemonSet resource is typically used when administrators want to deploy applications
to all nodes. The DaemonSet ensures that all nodes in a Kubernetes cluster will run the
application, which is for instance suited for log collection and monitoring applications.

In addition to the standard built-in resources, Custom Resource Definitions (CRDs)

can be used to create new types of resources, as we discuss next.

2.4.1.2 Custom Resource Definitions (CRDs) and custom Kubernetes con-

trollers

Custom Resource Definitions (CRDs) are a powerful mechanism for extending the Ku-
bernetes API. It allows administrators to create and manage new Custom Resources (CRs)
beyond the default built-in resources. When new CRDs are deployed in a Kubernetes clus-
ter, the API server creates new RESTful paths and handles the whole lifecycle for these
CRs. Users can interact with them in the same way as with built-in resources. CRs are
increasingly being used to implement core functionalities within the Kubernetes frame-
work [110]. Moreover, this concept has been used in several Kubernetes-related projects.
For example, ManifestWork is a CR used to manage Kubernetes resources across multiple
Kubernetes clusters in the Open Cluster Management open-source project [111].

The controller pattern in Kubernetes is used to run a control loop, which repeatedly
tracks the current status of objects [112]. A controller continually makes sure its actual
state is the same as the desired status specified by the user. Without the custom con-
troller designed to execute actual logic for a CR, the CR would only store objects in the
Kubernetes cluster and only be used to store and retrieve structured data. It is therefore
necessary to run a custom controller to manage the CR and continuously synchronize and
update its status.

Custom controllers, also called operators, can be designed following the control pattern
by using the Monitor, Analyze, Plan, and Execute over a shared Knowledge (MAPE-K)
principle or any domain-specific logic [113], [114]. This can be done by frameworks in
different coding language, such as Kubernetes Operator Pythonic Framework (Kopf) '3,
Java Operator SDK ', and Kubebuilder °.

13. Kopf - https://reurl.cc/kr4daNx
14. Java Operator SDK - https://reurl.cc/YVMOWn
15. Kubebuilder - https://reurl.cc/OG2jpr
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2.4.1.3 Pull versus Push Management Model

In this thesis, the definition of the push management model is that the control plane
watches resource APIs and pushes the resource manifests to the worker nodes. This push
action is done by the control plane directly accessing each worker node and managing
all workloads, which is a simple method to manage resources in a cluster. It has some
advantages such as faster propagation of changes across the cluster. However, the push
model may have scalability challenges because the central controller manages all the
resources in a cluster and thereby becomes a bottleneck.

In contrast to the push model, the pull model means that an agent deployed in each
worker node periodically monitors the resource APIs defined in the control plane, fetches
the resource manifests and applies them to its corresponding worker node. By offloading
management tasks to agents distributed on each worker node, the control plane can reduce
management pressure, which improves system performance and then increases scalability.

As a result, the pull model is considered more robust and scalable.

2.4.2 Scalability

A single Kubernetes cluster contains many worker nodes with many Pods each. It
would be very challenging for the control plane to directly operate all the resources in a
large cluster [115]. To address this issue, Kubernetes chose the Pull model to manage the
cluster. Kubelet pulls the desired state of the Pods from the API server and makes sure
that the corresponding Pods have the same status as desired.

However, a single Kubernetes cluster still has size limitations to keep performance and
stability. The Kubernetes documentation suggests that the size of a single Kubernetes
cluster should not exceed a specified limit: each worker node should not run more than
110 Pods, and the whole cluster should not exceed 150,000 Pods. Moreover, the number
of worker nodes should remain under 5,000 nodes [116].

These scalability limitations may not allow a single-cluster platform with the size of a
very large geo-distributed fog computing platform. To overcome issues related to the scal-
ability of a single Kubernetes cluster, deploying multiple clusters has emerged as a viable
solution. The platform can then be scaled by launching several clusters and managing
them together. However, managing these clusters efficiently is a difficult challenge. As a
result, it quickly becomes desirable to organize the multi-cluster platform as a “federa-

tion” of multiple independent clusters, each of which is in charge of its own resources and
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components. By doing so, the administrators are able to manage the resources of multiple

independent clusters as a single homogeneous cluster.

2.4.3 Federations

The emergence of the Multicluster Special Interest Group (SIG) [117] from the Kuber-
netes community aims to solve the issues of multi-cluster administration and application
management in multiple Kubernetes cluster environments. The SIG proposes different
APIs to deal with the challenges in this environment. For instance, the goal of the About
API [118] is to enable the identification of clusters within a ClusterSet (a group of clus-
ters), and the purpose of the Work API [119] is to deploy workloads across different
clusters within a ClusterSet.

In addition to the above APIs, the Multicluster SIG presents a federation solution
called Kubernetes Cluster Federation (KubeFed), which provides application deploy-
ment and resource management in multiple Kubernetes cluster environments [120]. The
KubeFed platform is typically organized into one management cluster and multiple mem-
ber clusters. The management cluster determines which member clusters will handle each
newly deployed Pod. Users can manage multiple Kubernetes clusters from a single host
cluster with the KubeFed control plane installed.

KubeFed extends Kubernetes with CRDs to offer abstractions such as Federated-
Namespaces and FederatedDeployments for managing multi-cluster federated resources.
It also introduces three concepts for these resources: Template, Placement, and QOuverride.
Template specifies the desired state of the federated resources across all member clusters.
Placement defines the member cluster where federated resources should be deployed. If
this field is empty, KubeFed will not be distributed to any cluster. Override allows the
user to customize the configuration for specific member clusters. For example, it can be
used to change the number of replicas for a particular cluster. Based on these abstractions
and concepts, users can deploy their applications to different Kubernetes clusters with a
number of Pods and where they should run that under KubeFed control. We discuss

KubeFed in detail as well as other federation frameworks in Section 3.1.

2.4.4 Multi-Tenancy

By default, Kubernetes is designed for environments where all users trust each other.

However, similar to sharing a server with virtualization technology, a Kubernetes cluster
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may need to support many different users to deploy their applications and services thereby
saving costs and simplifying administration.

Supporting multi-tenancy and isolating the workloads of multiple tenants can be re-
alized by making each user deploy applications in a separate Namespace and using Role-
Based Access Controls (RBAC) to restrict each user in their Namespace and to scope
security policies to specific Namespaces [121]. This method is considered a “soft” form of
isolation as all tenants share the same control plane, and appropriate configurations are
required to isolate their data planes.

On the other hand, “hard” tenant isolation is more difficult to achieve. One possibility
is to create a separate Kubernetes cluster for each tenant so that both the control and
data planes are totally separated from each other. However, the cost of launching multiple
clusters is high, and it may be hard to manage these clusters.

Another method for hard isolation is using virtual control planes in a single Kuber-
netes, where each tenant has their own control plane. For example, each tenant may store
metadata in separate databases, which prevents data leakage between tenants. In terms
of data plane isolation in this context, there are two different designs: (i) Tenants utilize
a shared data plane to enhance resource utilization while isolating Pods through Kuber-
netes Namespaces. (ii) Each virtual control plane is assigned its own worker nodes, which
provide stronger isolation for user applications.

The isolation can be only for the data plane by reserving specific servers within a
Kubernetes cluster for tenants. Each tenant uses the same control plane and deploys
the applications to their own worker nodes. We discuss multi-tenancy frameworks in the

Kubernetes environments further in Section 3.1.3.

2.4.5 Monitoring

Monitoring is an essential functionality for modern computing systems to keep the
system healthy and improve its resource utilization. The demand for monitoring becomes
greater with the increasing complexity of systems, which requires monitoring of large
numbers of entities ranging from bare metal machines to software objects, such as VMs
and containers.

Kubernetes is a complex system that is composed of many components, such as worker
nodes, Kubernetes resources, networking, and controllers. Monitoring these objects not
only allows real-time understanding of their status but also traces the history data for

debugging or risk prediction. Moreover, accurate monitoring data is necessary to efficiently
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schedule applications on a set of available resources. However, monitoring a great number
of components is very challenging. For example, monitoring may produce a huge amount
of data that needs to be stored in the cluster, which requires sufficient storage space. In
addition, this amount of data may waste the network bandwidth to transfer them within

the Kubernetes cluster.

2.4.5.1 Prometheus

Prometheus is an open-source monitoring and alerting software. Similar to the Ku-
bernetes project, it is also a graduate project from CNCF, which shows Prometheus is
stable for production and has great potential to integrate with modern orchestrators such
as Kubernetes [25].

The Prometheus ecosystem consists of three main components: Prometheus server,
exporters, and alertmanager. The Prometheus server is responsible for scraping moni-
toring data, and storing them in a time-series database. The term “scrape” represents
the action by Prometheus of fetching metrics from targets. The administrator can set a
scrape interval to periodically pull the monitoring data. The default scrape interval is 60
seconds, which means that the Prometheus server scrapes the metrics every 60 seconds.
The administrator can query these stored metrics using the Prometheus Query Language
(PromQL). PromQL is designed to apply mathematical operations and data aggregation
functions to time-series data. Prometheus can also be integrated with visualization tools
such as Grafana 1°.

Prometheus uses HTTP to pull metrics values from remote targets. For monitoring
applications or services that do not have native Prometheus metrics endpoint, exporters
can be used for converting metrics from target systems into a format that Prometheus
can pull. Prometheus officially maintains several exporters such as Node-exporter [122].

Alarms are another important part of a good monitoring system. In Prometheus, the
tasks of scraping data and issuing alarms are separated into two components. The admin-
istrator can define alerting rules in the Prometheus server and let the server periodically
evaluate the rules. When the alerting conditions are met, the Prometheus server will push
alerts to the alertmanager. The alertmanager handles these alerts and sends the alarm
messages to the users.

In addition to deploying Prometheus in a single Kubernetes cluster, Prometheus also

provides a function called Federation. As shown in Figure 2.5, this feature allows a

16. Grafana - https://reurl.cc/eLOY1L
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Figure 2.5 — Architecture of Prometheus Federation.

Prometheus server to gather monitoring data from other Prometheus servers, which can
therefore build a global-view cluster and scale up to monitor multiple Kubernetes clusters.
By querying the monitoring metrics from the global-view cluster, the administrators can
easily monitor the status of other Kubernetes clusters instead of accessing each cluster
individually.

In Section 3.2, we explore in detail the limitation of Prometheus Federation for mon-
itoring multiple Kubernetes clusters and review solutions proposed for fog computing

environments in the scientific literature.
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CHAPTER 3

STATE OF THE ART

Cloud computing has received much attention from both academic and industrial
communities worldwide. To meet regional requirements for applications or to avoid a
single vendor lock-in, multi-cloud deployment is a powerful solution. Users can launch
applications by leveraging different cloud providers in various locations. However, the

cloud data centers may remain far from the end users, leading to latency issues.

Fog computing further extends the cloud computing concept with additional resources
located closer to the end users. It has received much attention from academia in the last
few years [123]. Many prior studies present different facets of fog/edge computing, includ-
ing placement of jobs and services [124], service caching [74], [75], seamless application
migration [125], [126], and supporting data stream processing [127]. These works are based
on a single geo-distributed cluster, which will necessarily face scalability problems. To
handle this issue, we now witness an increasing adoption of geo-distributed multi-cluster
deployments. Some works focus on job scheduling [128], whereas others address resource

management [129] and fault prediction [130].

In turn, the rise of multi-cluster federations for fog computing has spurred the develop-
ment of various control plane solutions to manage and orchestrate federated Kubernetes
environments. Multi-tenancy in federated Kubernetes clusters is also important to opti-
mize resource utilization and ensure isolation among multiple users. We discuss the related
work on multi-cluster federation and multi-tenancy frameworks designed for Kubernetes

environments in Section 3.1.

Monitoring is an essential function in modern cloud data centers, which can be used
to provide input for a large number of management systems such as scheduling. Fog
computing has different characteristics compared to cloud computing, such as unstable
network connections and geo-distribution, which create new monitoring challenges in this
context. We explore the existing literature and tools in monitoring for fog computing

environments in Section 3.2.
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3.1 Multi-Cluster Federation Frameworks and Multi-

Tenancy Frameworks

In this section, we first review the various federation frameworks proposed for Kuber-
netes. We then explore the solutions for multi-tenancy within Kubernetes environments.
Lastly, we discuss the differences among these approaches and position our contributions

in this context.

3.1.1 KubeFed and KubeFed-Related Systems

Kubernetes Cluster Federation (KubeFed) was the first system to support seamless
application deployment and resource management in multiple Kubernetes cluster en-
vironments [120]. With the KubeFed control plane deployed on a Kubernetes cluster,
users can centrally distribute and manage workloads across various Kubernetes clus-
ters. In the KubeFed design, the workloads can be propagated to the different clusters
by using two fields in a YAML file of a federated resource: spec.placement.clusters and
spec.placement.clusterSelector. The administrators can manually select one or more clus-
ters that should run the applications by using the spec.placement.clusters field. They
can also utilize the spec.placement.clusterSelector field to let the system choose among
clusters with a specific label. These manual and limited policy-based scheduling methods
make KubeFed unable to scale to manage the hundreds or thousands of clusters with
a large number of workloads that we expect to encounter in large-scale fog computing
environments. Importantly, KubeFed does not integrate with a monitoring solution to
obtain the real-time resource status in the member cluster, so it propagates workloads to
target clusters without any prior checks on resource availability in the chosen clusters.
This fails to manage resources efficiently, which may cause resource wastage and fragmen-
tation. The KubeFed project is now retired and is no longer maintained or under active
development [120].

Despite KubeFed limitations, the potential of using it to design geo-distributed fog
computing environments was demonstrated in [131]. The authors compare two scenarios:
the first one consists of a single Kubernetes cluster that manages an entire infrastructure
with worker nodes located across different regions. The second scenario separates these
infrastructures into independent Kubernetes clusters and federates them together using

the KubeFed framework. With a cluster federation, the platform achieved a more scalable
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and resilient system to face network faults, which is ideal for managing the complexities of
a highly distributed scenario such as fog computing. However, the federation framework
remains based on KubeFed, which therefore faces the same challenges as KubeFed.

To address the limitations of KubeFed, multi-cluster Kubernetes (mck8s) proposes to
extend the KubeFed framework with resource-based automated placement, multi-cluster
horizontal Pod auto-scaling, and cloud bursting [31]. It bases its placement decisions on re-
source utilization information, which reduces the pending Pods from 65% to 6% compared
to KubeFed when executing the real-world Google cluster trace [132]. When the available
computing resources are not sufficient to handle the full workload with a fixed number
of member clusters, mck8s also provides a Cluster Provisioner and Cluster Autoscaler
(CPCA) to automatically create new Kubernetes clusters in cloud data centers and join
them in the federation. Moreover, mck8s integrates several open-source tools such as Cil-
ium [133] and Prometheus [32] to provide additional functionality, including multi-cluster
network discovery, global load balancing, and monitoring. Although mck8s addresses part
of the issues from the KubeFed framework, there remain some issues with KubeFed. For
example, KubeFed uses a Push model where the management cluster directly controls the
workloads and member clusters, putting all management tasks on a single cluster. As a
result, the frameworks based on KubeFed may be unable to scale to manage the hundreds
or even thousands of clusters commonly required in certain multi-cluster scenarios such
as fog computing. We further discuss the superiority of the Pull model compared to Push
in Section 3.1.4.1.

3.1.2 Other Federation Solutions and Frameworks

To avoid a single point of failure and reach the scalability requirement of edge cloud
use cases, the decentralized Kubernetes Federation Control Plane leverages distributed
federated databases with Conflict-free Replicated Data Types (CRDTs) to maintain the
status of resources across different Kubernetes clusters [134]. To suit this design, the
system also relies on a distributed algorithm rather than a central host cluster to schedule
the resources. However, this work makes the assumption that all the clusters are managed
by a single entity, which may cause issues such as limited service coverage in practical
fog/edge cluster deployment.

Karmada project offers solutions for managing applications across multiple Kubernetes
clusters [135]. In contrast to other frameworks, it simplifies multi-cluster application man-

agement by providing a series of custom control components. Karmada is composed of
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the Karmada API server, Karmada controller manager, Karmada scheduler, and Karmada

agent. Detailed information for the main components is listed below:

— Karmada API server: This component can serve as both the interface of the
control plane for Karmada and of its underlying Kubernetes, which exposes the
APIs of Karmada and Kubernetes at the same time. To provide operations that are
identical to the original Kubernetes, the Karmada API server is itself based on the

implementation of the Kubernetes API server.

— Karmada controller manager: This component includes various controllers for
different purposes that Karmada needs. The goal of these managed controllers is
to monitor Karmada resource objects and communicate with the API servers of
the underlying clusters to create related Kubernetes resources. Users can enable or

disable controllers based on their requirements.

— Karmada scheduler: This component schedules the standard Kubernetes resources
and CRD resources to the member clusters. The scheduler determines which clus-
ters are available for the workload based on constraints and available resources. The
scheduler then scores and sorts the available clusters and binds the resources to the

most appropriate cluster.

— Karmada agent: Karmada supports both Push and Pull approaches to manage
multiple clusters and applications. The Karmada agent is deployed on member clus-
ters when using the pull model. This agent registers its representative member clus-
ter to the Karmada control plane and pulls the manifests from the Karmada control
plane to member clusters. It is also responsible for synchronizing the state of member

clusters and workloads to the Karmada control plane.

However, similar to previous work, Karmada does not take into account the scenario
of federate clusters managed by different organizations, which again limits the service
coverage in large-scale scenarios.

Liqgo is an open-source project that allows dynamic and seamless federate multiple
Kubernetes clusters [136]. Liqo creates virtual node resources in the management clus-
ter using a so-called Virtual Kubelet [137]. After a Pod is scheduled to a virtual node,
the corresponding virtual kubelet creates a twin-Pod object in the member cluster for
actual execution. This design ensures that all behaviors are identical to those in a single
Kubernetes cluster when the administrator issues commands in the management cluster.

Moreover, Liqo allows multiple management clusters to manage the same member cluster
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simultaneously. However, Liqo relies on a Push model, which arguably limits its scalabil-
ity. Moreover, all management clusters send their requests to a single shared API server
in the member cluster and store the related data in a single shared database, representing
only a soft version of workload isolation between different management clusters.

Open Cluster Management (OCM) presents a management model inspired by the orig-
inal design principles of Kubernetes [28]. OCM separates multi-cluster operations into two
phases: computation/decision (performed in the management cluster) and execution (per-
formed in the member clusters). The management cluster stores prescriptions (i.e., the de-
sired state of applications that users want to deploy in member clusters), whereas member
clusters periodically actively Pull the latest prescriptions from the management cluster,
ensuring that applications in the member cluster are consistent with the expected state.
This design reduces the load on the management cluster and makes OCM more scalable
than a push-based design. The placement module in OCM provides the ability to dynam-
ically schedule the workloads to a set of member clusters. The process involves two main
phases: Predicate and Prioritize, where clusters are selected based on hard requirements
and then ranked based on soft requirements such as computing resources. Moreover, OCM
also provides the addon framework for placement to extend the multi-cluster scheduling
capabilities. For example, users can implement a customized score provider to rank the
member clusters and schedule the workloads. In this thesis, we leverage OCM as our
federation framework due to its Pull architecture nature, modularity, and extensibility.

These features make it a scalable and flexible solution for our needs.

3.1.3 Multi-Tenancy Frameworks

In this section, we explore the multi-tenancy frameworks designed for Kubernetes
environments. We first discuss the soft tenant isolation solutions and then review the

hard tenant isolation frameworks.

3.1.3.1 Soft Tenant Isolation

By default, Kubernetes is designed for environments where all users trust each other.
Supporting multi-tenancy and isolating the workloads of multiple tenants can however be
realized by making each user deploy applications in a separate Namespace and by using
Role-Based Access Controls (RBAC) to restrict each user in their Namespace and to scope

security policies to specific Namespaces [121]. This method is considered a soft form of
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isolation as all tenants share the same control plane, and appropriate configurations are
required to isolate their data planes. While original Kubernetes Namespaces are useful,
this method may be insufficient and inefficient for the complex needs of large organizations.

Stronger forms of isolation require different techniques, as described next.

Kiosk open-source multi-tenancy framework uses flat Namespaces to provide isolated
execution environments for tenant applications [138]. Kiosk defines different roles in in-
teracting with Kubernetes. Cluster Admin allows one to operate and manage cluster-wide
resources such as custom resources in the Kiosk framework (Account, AccountQuota,
and others). Fach tenant maps to an Account, and each Account is scoped to a single
Namespace called a Space in Kiosk. This framework also provides AccountQuota, which
is similar to the Resource Quotas [139] function in Kubernetes, to limit resource usage
for Account. Contrary to regular Kubernetes Namespaces, each Kiosk user can only see
or interact with resources in their own Space. Kiosk provides a Template mechanism to
automatically deploy pre-defined resources described in a Template, such as network poli-
cies and Pod security policies in the designated Space. Although the Template mechanism
reduces management complexity, Kiosk’s flat Namespace approach may make it difficult
for cluster administrators to manage numerous Namespaces. Moreover, flat Namespaces
make it impossible to isolate several tenants in the same Namespace to accommodate

more tenants. The project have been archived by its owner in 2024 [138].

Another project named Capsule also leverages flat Namespaces as their multi-tenancy
solution [140]. Capsule improves the original Kubernetes Namespace management by
grouping multiple Kubernetes Namespaces into a tenant. This design allows cluster ad-
ministrators to manage multiple Namespaces more easily at once rather than setting
policies for each Namespace separately. Although this method addresses difficult manage-
ment issues, it remains a flat Namespace design that faces the same challenges mentioned

above.

Extending the flat Kubernetes Namespace structure may be realized using the Hier-
archical Namespace Controller (HNC) [141]. Hierarchical Namespaces allow one to apply
similar policies to multiple Namespaces. By default, Kubernetes role bindings operate at
the Namespace level, and each role binding must be created individually for each Names-
pace. HNC proposes sub-Namespaces to address this problem. The administrator can cre-
ate children Namespaces of another Namespace, and the lifecycle of each sub-Namespace
is bound to its parent. This design can reduce the complexity of Namespace management

and further isolate specific tenants in the same Namespace. However, this remains a soft
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form of tenant isolation where all tenants share a single control plane, which may cause

security issues such as data leakage and cross-tenant attacks.

EdgeNet proposes another hierarchical Namespace architecture with a sub-Namespace
mechanism as a way to implement a multi-tenancy mechanism [142]. There are two main
differences between EdgeNet and HNC in terms of multi-tenancy: (1) EdgeNet can en-
force unique names for Namespaces, whereas HNC can not; and (2) EdgeNet provides
a more robust resource quota management system. For example, the HNC framework
may cause uneven resource quota allocation across sub-Namespaces because it does not
enforce quota setting at every level. In contrast, EdgeNet applies quotas uniformly across
the entire tenant hierarchy, preventing this issue. Moreover, EdgeNet supports a federa-
tion function which then introduces the Federation Manager to manage the deployment of
workloads from local clusters to remote clusters within a federated environment. EdgeNet
also presents a custom resource called Selective Deployment to target a specific node or
set of nodes based on specified geographic information to deploy workloads. However,
EdgeNet uses a shared control plane in the remote cluster, which again faces the security

issues mentioned above.

3.1.3.2 Hard Tenant Isolation

A simple way to implement hard tenant isolation is to create a separate Kubernetes
cluster for each tenant or to reserve specific servers within a Kubernetes cluster for specific
tenants [121]. This approach ensures that computing resources are dedicated to a single
tenant, which can prevent resource contention and security vulnerabilities. However, it

contradicts our goal of designing a shared fog platform for any number of tenants.

To reduce the operational complexity and cost of creating separate Kubernetes clus-
ters, the Kamaji framework runs individual Kubernetes control plane components in Pods
for achieving multi-tenancy within a single Kubernetes cluster [143]. Each tenant has its
own Kubernetes control plane and dedicated worker nodes to isolate from others. This
design enables centralized management of logical multiple Kubernetes clusters from a
single Kubernetes cluster. In addition, this isolation approach provides tenants with a
dedicated control plane that provides administrative privileges within their isolated envi-
ronment. However, since each tenant has dedicated worker nodes, this solution contradicts
maximizing computing resource utilization of cloud computing principals by sharing the

available servers between large numbers of tenants.
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The Virtual Kubernetes Clusters (vCluster) project provides a fully functional virtual
cluster that runs on top of the Kubernetes cluster [29]. Each vCluster has its own control
plane and schedules all workloads into the same Namespace of its control plane in the host
cluster. Since each vCluster has its own API server and data store, this design provides
a strong form of isolation and reduces the risk of data leakage between the tenants of
different virtual clusters. Compared to the Kamaji framework, vCluster shares a pool
of worker nodes among multiple virtual clusters in the host cluster by default, keeping
resource usage efficient. Furthermore, the Kubernetes community has officially certified
the vCluster project as a compliant Kubernetes distribution [144]. In this thesis, we use

the vCluster project to handle multi-tenancy management, which is discussed in Section 4.

3.1.4 Discussion

Table 3.1 classifies the multi-cluster federation solutions and multi-tenancy frameworks
by comparing parameters including sync models, support for meta-federations, multi-

tenancy methods, isolation levels, and the presence or absence of certification.

3.1.4.1 Sync Models

KubeFed, mck8s, Liqo, and EdgeNet rely on the Push method to deploy applications
to member clusters, which can be unstable in the presence of transient network failures,
particularly in fog computing scenarios where network reliability can be a concern [145].
Moreover, the push model typically requires that the management cluster can access the
APIT server of each member cluster. This may be problematic because the API servers
may either be behind a firewall or not have a publicly accessible IP address.

As discussed in Section 2.4.1.3, the Pull-based methods that are used by Karmada and
OCM are usually considered more robust, scalable, and secure. Moreover, according to
the Karmada authors, the Push method is most suitable for deployment in public cloud
environments. In contrast, the Pull model is better for private cloud and edge-related
scenarios [146]. It provides better performance because the decentralized management
by a Pull agent within each member cluster reduces the load pressure of the centralized
control plane. In terms of each Pull agent is isolated in a separate member cluster, which
manages its resources independently. Therefore, we consider that the Pull architecture is

a better way to build large-scale fog computing platforms.
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Table 3.1 — Comparison of multi-cluster federation and multi-tenancy frameworks.
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3.1.4.2 Meta-Federations with Multi-Tenancy

Ligo and EdgeNet support meta-federations because they consider the isolation be-
tween workloads being deployed by different management clusters in mind. Liqo addresses
multi-tenancy by using different Namespaces in member clusters to isolate resources cre-
ated by each management cluster. However, it limits itself to flat Namespaces, making it
impossible to isolate further workloads produced by different users within a single manage-
ment cluster. On the other hand, EdgeNet leverages hierarchical Namespace architecture,
which is more flexible than flat Namespaces. However, both solutions rely on a single
shared control plane and data store for all management clusters in the member cluster,
which provides only soft isolation properties. Soft isolation may be risky because the
management clusters may belong to owners who are different from their member clusters.
This lack of hard isolation could lead to potential security and privacy issues such as data
leakage between federations.

Other federation solutions make the same underlying assumption that all resources in
a federation belong to a single administrative domain. They are therefore not designed to
support meta-federations. These solutions basically allow users to create and propagate
Kubernetes Namespaces to member clusters to isolate the workloads created by different
management clusters. However, this action needs to be performed manually, which may
introduce inefficiencies and possibly conflicts with the resources if multiple management
clusters deploy resources to the same member cluster using the same name. Therefore,
they only partially support meta-federations.

It is crucial to note that besides EdgeNet providing multi-tenancy in a cluster feder-
ation environment, other multi-tenancy frameworks do not consider the federation func-

tionally, which limits the scope of frameworks only working in a single Kubernetes cluster.

3.1.4.3 Certification

The Cloud Native Computing Foundation (CNCF) promotes cloud-native technologies
by accepting and supporting many different open-source projects to foster their develop-
ment and adoption [147]. Certification from them is a critical metric for evaluating the
potential and stability of the projects. Karmada and OCM have both been accepted as
projects by the CNCF, which shows that they have great potential for managing multi-
ple Kubernetes clusters [148], [149]. In the case of multi-tenancy frameworks, Capsule is

also a CNCF-hosted project [150]. Kamaji and vCluster projects use the hard isolation

70



3.2. Monitoring for Fog Computing Environments

method that each tenant has its own sub-cluster in a Kubernetes cluster. Both solutions
are certified Kubernetes distributions, which guarantees their consistency, timely updates,
and confirmability [151].

3.1.4.4 Contribution

This thesis proposes UnBound, a scalable fog meta-federations platform that combines
the strengths of both multi-cluster federation solutions and multi-tenancy frameworks. We
leverage OCM to federate the Kubernetes clusters because of the nature of the pull model,
which provides better scalability and has the potential to create very large geo-distributed
fog federations. UnBound then specifically addresses the multi-tenancy issue for support-
ing meta-federations, where individual fog Kubernetes clusters may lease their resources
to multiple administrative domains by using the vCluster project. vCluster project uses
separate control planes with a shared data plane, which can provide hard isolation for
inter-federation while keeping high resource utilization within the member clusters. The
code base of UnBound is small thanks to the usage of existing open-source projects. We
consider this as a strength of UnBound which can facilitate broad adoption by the Ku-
bernetes community as well as long-term maintenance and support. Moreover, we plan to
make UnBound available in open-source, which ensures compatibility and reliability for
users while fostering community collaboration and continuous improvement. Although Un-
Bound is based on Kubernetes and its ecosystem, the concepts of the UnBound platform
hold broader applicability and can in principle be applied to current or future container

orchestrators, multi-cluster federation solutions, and multi-tenancy frameworks.

3.2 Monitoring for Fog Computing Environments

Monitoring is an essential functionality in current computing environments. There are
several purposes for monitoring, including resource usage, fault detection and diagnosis,
billing, and performance monitoring. Among these, the main objective of geo-distributed
monitoring is to track the resource usage of computing nodes, particularly in potential
resource-restricted fog environments. A number of open-source and commercial monitor-
ing tools such as DARGOS [152], Zabbix [153], PCMONS [154], JCatascopia [155], and
Nagios [156] were developed to suit cloud computing requirements. However, they are
not considered appropriate for geo-distributed fog computing environments [157]-[161].

On the other hand, to overcome the challenges of monitoring in a fog computing envi-
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ronment, some authors present monitoring solutions and architectures designed with the

specific constraints of fog computing in mind.

3.2.1 DMonitoring Solutions for Fog Computing

PyMon provides a monitoring solution for fog environments specially designed to run
on ARM-based single-board computers [162]. It collects monitoring data from devices at
a periodic rate and sends them to a centralized PostgreSQL database. PyMon also offers
a web interface based on the Django framework and can show graphs and tabulars of
the monitored system status. To collect the monitoring data, PyMon reuses the Monit
lightweight open-source software [163]. Although PyMon is a lightweight monitoring solu-
tion that is suited for resource-restricted environments, its scalability was not evaluated.
This means it may not handle large-scale scenarios [159]. Moreover, PyMon is not adaptive
and flexible, which does not support on-the-fly configuration changes or data transmission
frequency modification [157].

FMonE aims to address monitoring challenges in fog environments with an indepen-
dent, stand-alone solution in fog environments [164]. It relies on a container orchestration
system called Marathon [165] to build the monitoring workflow based on the user require-
ments. The system gathers monitoring data at a periodic interval through a centralized
or hierarchical structure. FMonE combines pull and push methods for data collection and
can monitor infrastructure, platforms, and services. However, the authors evaluate their
work using up to 78 Virtual Machines (VMs). This number remains very far from the
scale at which global fog platforms are expected to operate.

FogMon proposes a lightweight and Peer-to-Peer (P2P) monitoring architecture that
deploys an agent in each member node called “Follower.” Followers report hardware-
based metrics and network QoS data to their “Leader” node [166]. Each Follower node is
linked to a single Leader node and runs in a classic client-server model. Follower nodes
periodically push data to a Leader node. The Leader node aggregates the monitoring
data and disseminates them to other Leader nodes using a gossip protocol. To reduce the
network traffic between Followers and Leaders, FogMon adopts a solution where Followers
only send data with the average or variance value greater than a threshold compared
to the last sent. In addition, FogMon has been refined into FogMon2, which adds new
features and improves handling of latency and bandwidth degradation [167]. FogMon2
was evaluated in the Fed4Fire testbed with up to 40 nodes. However, this number of

nodes is still too limited to prove its scalability.
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AdaptiveMon extends FogMon with a self-adaptive monitoring solution for fog environ-
ments. It introduces two additional functions: Indicators Selection and Change Rate [168].
Indicators Selection reduces the number of metrics, whereas Change Rate adjusts the fre-
quency of metrics reported from Follower to Leader. Using these two features and compar-
ing them to the original FogMon framework, the results show that AdaptiveMon can save
energy and reduce network 1/0, with the trade-off of requiring more memory resources.
The authors conduct the experiments in a Linux virtual machine with Docker containers
as nodes (one Leader and one Follower), which only focus on individual peers. However,
AdaptiveMon, an extension of FogMon, still needs to prove its scalability and suitability

for integration with modern orchestration frameworks such as Kubernetes federation [157].

DEMon is a decentralized and self-adaptive monitoring framework specially designed
for edge environments [169], [170]. It does not rely on a single point of control for storing
data and controlling the system. DEMon uses a gossip-based protocol to disseminate the
monitoring data to other edge nodes in the system. Moreover, each edge node can be
self-adaptive by adjusting monitoring settings to balance monitoring data quality with
resource usage. DEMon also proposes a Leaderless Quorum Consensus (LQC) protocol
to retrieve the monitoring data for users or client applications. DEMon was examined in
a large-scale simulated edge environment with up to 300 nodes and a real-world testbed
with 12 Raspberry Pi nodes. The results demonstrate that DEMon effectively shares and

retrieves monitoring data and proves its scalability, which suits edge environments.

The most popular monitoring tool is Prometheus [32]. It has been accepted by the
Cloud Native Computing Foundation (CNCF) as a “graduated” project, which shows its
great potential in conjunction with the de-facto standard Kubernetes container orches-
trator and demonstrates that Prometheus is a stable and production-ready monitoring
system [25]. At the same time, many research works use Prometheus as a basis for system
monitoring [171]-[176]. Prometheus provides a function called “Federation” which allows a
Prometheus server to collect metrics from other Prometheus servers. A common use case is
building a global-view Prometheus server, which scrapes and stores the monitoring data
of other Prometheus servers. Two levels of federation are instance-level drill-down and
job-level drill-down. In Prometheus terminology, an instance is an endpoint that the user
can scrape from, and a job is a collection of instances with the same purpose. Prometheus

Federation has been used to monitor systems in numerous studies [18], [31], [177], [178].
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3.2.2 Issues of Prometheus Federation

However, except for the Prometheus monitoring system, other monitoring solutions are

discussed at the node level, which are not designed for cluster federation environments

where nodes are not considered individually but cluster by cluster. Considering the grad-

uated maturity level and functionality of the monitoring frameworks, this thesis leverages

Prometheus and its Prometheus Federation function as the monitoring solutions for clus-

ter federation. However, the Prometheus Federation also has a number of limitations that

this thesis aims to address.

(1)

The highest scrape level of Prometheus Federation is job-level, and it uses the match
mechanism to select the series of metrics. For example, the operator can write
job="Node-exporter” in a federation server’s configuration file to scrape the met-
rics that match this label from the target Prometheus servers. It results in scraping
the matching metrics that are all the nodes! in the target cluster when job="Node-
exporter” is set. This design is suitable for backing up metrics for high availability
purposes but not for letting a management cluster manage federated clusters. It
wastes network bandwidth to transmit and disk resources to save the same node

metrics in the management cluster.

Prometheus Federation appends all original labels in each metric when a Prometheus
server scrapes from the target Prometheus server to identify where the metric comes
from. However, not all original labels are necessary for recognition, and the scheduler
may not need this detailed information to make scheduling decisions. Furthermore,
the labels are attached before the metrics transmission, which increases the cross-

cluster network traffic.

Prometheus scrapes all the metrics even if some of the metrics values did not change.
This unnecessary data transfer would waste network bandwidth, particularly when

dealing with a large number of targets across a large fog federation.

Prometheus Federation collects the monitoring data from target clusters at a fixed
periodicity. If the member clusters are mostly idle, the federation scheduler can easily
select among any of them because their computing resources will have enough ca-
pacity to execute applications. This case does not require real-time monitoring data
of these member clusters, which gives opportunities for reducing the cross-cluster

network traffic. However, when computing resources in member clusters are in high

1. We assume all nodes in all clusters have installed Node-exporter and labeled job="Node-exporter”.
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demand, minimizing the number of pending Pods? in member clusters requires one
to carefully determine which clusters have enough resources to run the applications.
Increasing the frequency of metric scraping by using a shorter scrape interval can
enhance the accuracy of monitoring data of target clusters in the global-view clus-
ter. However, this comes with the downside of generating more cross-cluster network
traffic.

To overcome these monitoring challenges and optimize the value of scrape interval,
we base our work on the Prometheus monitoring ecosystem and introduce Acala and
AdapPF. Both aim to balance cross-cluster network traffic and the accuracy of monitor-
ing data. Acala automatically aggregates the metrics whose metric name and labels are
identical in different servers, which reduces the cross-cluster network traffic as well as
the deployment and configuration cost. This addresses the issues (1) and (2). Acala also
deduplicates metrics values and thereby avoids transferring unchanged values over and
over again to address the issue (3). To understand the impact of scrape interval, cross-
cluster network traffic, and data accuracy while avoiding the accuracy effects introduced
by metrics aggregation, we propose AdapPF which can dynamically adjust the values of
the scrape interval in a geo-distributed cluster federation environment. It checks the cur-
rent resource status of the target cluster with non-aggregated data and then adjusts the
scrape interval to address the issue (4). We argue that these two solutions complement

each other and could be combined in principle.

2. In the event that there are insufficient resources on the nodes within the member cluster to start
the Pod, the Pod gets placed in a pending state until adequate resources become available.
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CHAPTER 4

MULTI-TENANCY MANAGEMENT IN
SCALABLE FOG META-FEDERATIONS

4.1 Introduction

Enabling fog platforms to embrace the full benefits of cloud computing principles re-
quires the design of large-scale, multi-tenant, geo-distributed fog computing platforms
that any application may make use of and where statistical multiplexing of large num-
bers of independent workloads can help guarantee high resource utilization. This chapter
proposes the design of scalable fog meta-federations to address this challenge. We define
meta-federations as a complex ecosystem composed of many independent fog resource
providers that may set up business agreements with one another to allow access to their
computing resources and thereby expand their geographical span in locations where they
do not own resources themselves. We discuss the concept of meta-federations in detail in
Section 4.2.

An important and difficult challenge of fog meta-federations is multi-tenancy. In these
systems, the same group of servers may be used to host workloads belonging to multiple
tenants who are customers of different providers. This scenario requires the system to guar-
antee isolation at two different levels. First, two tenants of the same fog provider should
not be able to see or interfere with each other’s workloads. Second, two fog providers
that have established access to the same member cluster should also not be able to see
or interfere with one another. To our best knowledge, this two-level multi-tenancy chal-
lenge is unique to federated environments where the same cluster may belong to multiple
independent federations.

The second challenge in designing fog meta-federations is that of scalability. Building
a fog computing infrastructure at the scale of a country or even a continent requires one
to aggregate resources in thousands of different locations. A single “management cluster”

therefore needs to be able to control access to thousands of “member clusters.” Conversely,
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to maintain high resource utilization, each member cluster may decide to join numerous
independent federations, each with its own management cluster.

In this chapter, we propose UnBound, a scalable fog meta-federations platform that
specifically addresses the multi-tenancy scenario, where individual fog clusters may lease
their resources to multiple administrative domains. UnBound relies on Kubernetes to
orchestrate resources within individual fog clusters [27] and Open Cluster Management
(OCM) to federate multiple member clusters under the authority of a management clus-
ter [28]. We address the issue of multi-tenancy management by isolating federations within
a single member cluster using the Virtual Kubernetes Clusters (vCluster) [29] project to
create isolated logical sub-clusters within the member clusters. Each vCluster! has its
own API server and data store, which provides stronger isolation guarantees than sim-
ple Kubernetes Namespaces to ensure that different federations do not interfere with one
another.

We conduct extensive evaluations through real-world deployments in the Grid’5000
testbed [30] and demonstrate that UnBound achieves inter-user and inter-federation isola-
tion while maintaining comparable application creation time to the original Open Cluster
Management and avoiding increasing cross-cluster network traffic between the manage-
ment and member clusters. Moreover, the resource consumption of UnBound components
remains within acceptable limits. Finally, we demonstrate the stability and scalability
of UnBound using federations with up to 500 member clusters and a member cluster
belonging to up to 100 independent federations.

The remainder of this chapter is organized as follows: Section 4.2 discusses the motiva-
tion behind this work. In Section 4.3, we describe the design and components of UnBound
meta-federations. We evaluate our solution in Section 4.4 and summarize the chapter’s
conclusions in Section 4.5.

Parts of this chapter were published in [179].

4.2 Motivation

Multi-cluster federations are a standard technique to aggregate the resources of multi-
ple independent Kubernetes clusters into a single logical entity [117]. This concept enables

users to gain seamless access to a large computing infrastructure in multiple geographical

1. We use the term “vCluster project” to refer to the entire vCluster framework, and the term “vClus-
ter” to refer to a virtual cluster created for isolation between different management clusters in a member
cluster.
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Figure 4.1 — An example of KubeFed architecture. Management Cluster A manages mul-
tiple Member Clusters B, C, and D.

locations. Federation users submit their workload deployment requests to a single man-
agement cluster, which subsequently for