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Abstract: With the advent of 5G networks and
the road towards 6G already being established,
innovative wireless communication technolo-
gies including massive multiple-input multiple-
output (mMIMO) and millimeter-wave systems
are emerging to address the ever-increasing
number of mobile users and to support new in-
dustry applications. However, higher frequen-
cies and wider bandwidths lead to increased
power consumption in radio-frequency (RF) cir-
cuits, necessitating more energy-efficient com-
ponents. At the same time, systems are increas-
ingly susceptible to nonlinear impairments such
as phase noise, saturation, and quantization dis-
tortions. Understanding the impact of these
nonlinearities on transceiver design and funda-
mental limits becomes essential. This thesis fo-
cuses on the nonlinear effects of low-resolution
analog-to-digital converters (ADCs) at the re-
ceiver. ADC power consumption increases with
both bandwidth and resolution, making low-
resolution ADCs a practical solution in sys-
tems like mMIMO, where power consumption
is a major constraint. The first part of this
work examines data detection in quantized flat-
fading MIMO channels, with various assump-
tions about the channel state information (CSI).
Maximum likelihood (ML) detection is optimal
for minimizing the error probability but is com-
putationally expensive. While sphere-decoding
(SD) algorithms are commonly used to reduce
complexity in unquantized channels, they are
not directly applicable to the quantized case due
to the discrete nature of observations. To ad-
dress this, we propose a two-step low-complexity
detection algorithm for systems with one-bit
comparators. This method approximates the
ML metric using a Taylor series and converts the
detection problem into a classical integer least-
squares optimization, allowing the use of SD al-
gorithms. Numerical results show this approach
achieves near-ML performance. This method is

also extended to multi-bit scenarios, converging
to conventional SD as resolution increases. In
more practical scenarios, where only statistical
CSI at the receiver (CSIR) is available, we ex-
plore data detection under a pilot transmission
scheme. The first approach frames channel es-
timation and detection as binary classification
tasks using probit regression. Achievable mis-
matched rates using the generalized mutual in-
formation are then evaluated in comparison to
the Bussgang linear minimum mean-square er-
ror estimators where it’s shown that the per-
formance depends on the choice of the estima-
tor. The second approach jointly processes data
and pilot sequences where we encounter chal-
lenges related to evaluating multivariate Gaus-
sian probabilities and the combinatorial com-
plexity of optimization. We address the first
challenge with the Laplace method that pro-
vides us with a closed-form expression, while for
the complexity we adapt the SD technique from
the perfect CSI case on a surrogate metric. It is
of interest for future wireless systems to obtain
design guidelines that can accurately explain
the trade-off between spectral efficiency and en-
ergy consumption. We then investigate the ca-
pacity of quantized MIMO channels, which is
difficult to characterize due to their discrete
nature. Therefore, assuming an asymptotic
regime where the number of receive antennas
grows large and employing known information-
theoretic results from Bayesian statistics on ref-
erence priors, the capacity scaling can be charac-
terized for the coherent multi-bit case providing
us with an expression that can be used for the
analysis of the spectral efficiency and power con-
sumption balance. For the noncoherent case, we
apply the same results at the unquantized chan-
nel as an upper bound for the quantized chan-
nel and identify upper and lower bounds on the
scaling for particular values on the coherence in-
terval.
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Résumé: Avec l’avancement des communica-
tions sans fil vers la 5G et la 6G, de nouveaux
défis émergent en raison de l’augmentation des
utilisateurs et des applications industrielles. Des
technologies comme le massive multiple-input
multiple-output (mMIMO) et les systèmes à on-
des millimétriques sont développées pour répon-
dre à ces besoins. Cependant, des fréquences et
des largeurs de plus élevées entraînent une con-
sommation d’énergie accrue dans les circuits ra-
diofréquences (RF), nécessitant des composants
plus économes. Parallèlement, les systèmes de-
viennent sensibles aux non-linéarités, telles que
le bruit de phase et les distorsions de quantifica-
tion. Comprendre l’impact de ces non-linéarités
sur la conception des émetteurs-récepteurs et les
limites fondamentales devient essentiel. Cette
thèse se concentre sur les effets non linéaires des
convertisseurs analogique-numérique (CAN) à
faible résolution au récepteur. La consommation
d’énergie des CAN augmente avec la largeur de
bande et la résolution, rendant les CAN à faible
résolution pratiques dans des systèmes comme
le mMIMO, où la consommation est cruciale.
La première partie examine la détection de don-
nées dans des canaux MIMO à évanouissement
plat quantifié, avec différentes hypothèses sur
l’information de l’état du canal (IEC). La dé-
tection par maximum de vraisemblance (MV)
est optimale pour minimiser les erreurs, mais
elle est coûteuse en calculs. Les algorithmes
de décodage sphérique (DS) réduisent la com-
plexité dans les canaux non quantifiés, mais ne
s’appliquent pas directement aux canaux quan-
tifiés. Pour y remédier, nous proposons un algo-
rithme de détection à faible complexité en deux
étapes pour les systèmes à un bit. Cette méth-
ode utilise une approximation de la métrique
MV via une série de Taylor et transforme le
problème de détection en optimisation des moin-
dres carrés entiers, permettant d’utiliser les al-
gorithmes de DS. Les résultats montrent que
cette approche atteint des performances proches

de celles de ML. La méthode est également
étendue aux scénarios multi-bits, convergeant
vers le DS classique avec une résolution ac-
crue. Dans des scénarios plus pratiques, où
seule l’information statistique sur l’état du canal
au récepteur (ISECR) est disponible, nous ex-
plorons la détection sous un schéma de trans-
mission pilote. La première approche considère
l’estimation du canal et la détection comme des
tâches de classification binaire. Les taux réalis-
ables en utilisant l’information mutuelle général-
isée sont comparés aux estimateurs de Buss-
gang où on trouve que la performance dépend
de l’estimateur choisi. La seconde approche
traite conjointement les séquences de données et
de pilotes en rencontrant des défis d’évaluation
des probabilités gaussiennes et de complexité
combinatoire. Le premier défi est résolu par
la méthode de Laplace, et pour la complexité,
nous adaptons la technique DS du cas avec IEC
parfait à une métrique de substitution. Il est
crucial d’obtenir des directives de conception
pour les futurs systèmes sans fil afin d’expliquer
le compromis entre efficacité spectrale et con-
sommation d’énergie. Nous examinons ensuite
la capacité des canaux MIMO quantifiés, diffi-
cile à caractériser en raison de leur nature dis-
crète. Par conséquent, en supposant un régime
asymptotique où le nombre d’antennes de ré-
ception augmente et en utilisant des résultats
théoriques bien connus de la statistique bayési-
enne sur les prioris de référence, l’échelonnement
de la capacité peut être caractérisé pour le cas
multi-bits cohérent, fournissant une expression
utile pour l’analyse de l’efficacité spectrale et
de la consommation d’énergie. Pour le cas non
cohérent, nous appliquons les mêmes résultats
au canal non quantifié comme borne supérieure
pour le canal quantifié et identifions des bornes
supérieures et inférieures sur l’échelonnement
pour certaines valeurs de l’intervalle de co-
hérence.
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Synthèse en Français
À mesure que les systèmes de communication évoluent vers de nou-

velles générations, les défis au niveau des circuits radiofréquenceS (RF)
deviennent de plus en plus importants. Les considérations pratiques con-
cernant la consommation d’énergie au niveau du front-end du récepteur
sont particulièrement critiques, notamment avec l’adoption de largeurs
de bande plus élevées et d’architectures numériques plus complexes. Pour
les systèmes au-delà de la 5G et la 6G, l’objectif est d’atteindre des débits
de transmission élevés tout en minimisant la consommation d’énergie des
composants RF individuels. Une observation clé est que la consommation
énergétique des convertisseurs analogique-numérique (CAN) augmente de
manière exponentielle avec la résolution et linéairement avec la fréquence
d’échantillonnage. Cela motive l’utilisation d’alternatives à faible réso-
lution, au prix de techniques de traitement du signal plus sophistiquées.

On examine le modèle système du canal multiple-input multiple-
output (MIMO) quantifié sous une architecture numérique et des hy-
pothèses de canal à évanouissement plat. Le modèle mathématique est
simplifié en considérant une synchronisation parfaite et un traitement
analogique, facilitant ainsi la conception et l’évaluation des algorithmes
d’estimation de canal et de détection des données. L’étude passe en revue
les techniques de pointe pour ces défis, notamment les récepteurs linéaires
exploitant la décomposition de Bussgang et les méthodes probabilistes
qui intègrent le modèle statistique global du système de communication.

La première contribution de ce travail aborde la détection des don-
nées dans les canaux MIMO quantifiés à un bit. En utilisant une in-
terprétation géométrique de la fonction de vraisemblance, il est démon-
tré que l’algorithme décodage sphérique (DS) conventionnel peut être
adapté via une approximation du second ordre. Contrairement aux méth-
odes heuristiques proposées dans la littérature, cette approche utilise
l’information de l’état du canal (IEC) disponible pour construire une
liste de candidats via la fonction Hessienne. Les expériences numériques
montrent que la méthode proposée atteint des performances vector error
rates (VER) quasi-optimales par rapport à une borne inférieure sur le
maximum de vraisemblance (MV), pour diverses configurations MIMO
et tailles de constellations. L’impact de la corrélation spatiale entre les
antennes de réception est également considéré, révélant une dégradation
générale des performances VER. Néanmoins, l’algorithme conserve une
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quasi-optimalité par rapport aux performances MV. De plus, une étude
détaillée de la complexité computationnelle de l’algorithme DS met en
évidence qu’un choix judicieux de la taille de pas réduit les itérations
nécessaires lors de la descente de gradient dans la première étape de
l’algorithme.

Ensuite, nous examinons le problème de détection des données lorsque
le IEC est indisponible au niveau du récepteur. Deux schémas sont ex-
plorés dans des canaux Rayleigh à évanouissement par bloc avec des
trames pilotes et de données indépendantes. Le premier utilise un pro-
cessus explicite en deux étapes impliquant une estimation du canal et une
détection des données basées sur le cadre de régression probit. Des ma-
trices pilotes unitaires sont utilisées pour estimer le canal, qui remplace
ensuite le canal réel lors de la détection. Des comparaisons sont effec-
tuées avec l’estimation de canal basée sur la décomposition de Bussgang,
montrant que les performances VER s’améliorent avec des séquences
d’entraînement plus longues pour les signaux QPSK et 16-QAM, en par-
ticulier à un haut rapport signal sur bruit (RSB). L’instabilité observée
dans la CDF gaussienne sous IEC imparfait est attribuée au choix de
l’estimateur plutôt qu’aux limites inhérentes de la CDF. En outre, les
débits atteignables avec des métriques sous-optimales sont analysés à
l’aide de la GMI. Les résultats montrent que des séquences d’entraînement
plus longues permettent d’approcher les débits de communication adap-
tés avec IEC parfait.

Le second schéma traite conjointement les trames pilotes et de don-
nées. Pour un modèle de canal réel, la métrique de détection optimale
introduit deux défis: l’évaluation des probabilités orthantes gaussiennes
multivariées sans formes fermées et la complexité prohibitive de détection
pour des entrées discrètes en grandes dimensions. Ces problèmes sont
résolus par une approximation Laplace pour les probabilités orthantes
gaussiennes, produisant une expression en forme fermée. L’algorithme
DS est ensuite appliqué à cette approximation via une métrique MV de
substitution sous-optimale. Pour un signal 4-PAM, la métrique LA se
rapproche de la borne inférieure de la métrique optimale exacte, avec
des performances qui convergent vers le cas cohérent à mesure que la
longueur d’entraînement augmente.

Enfin, cette thèse explore les travaux en cours et futurs visant à éten-
dre ces résultats aux CAN multi-bits à faible résolution et à analyser
le compromis entre la consommation énergétique et la dégradation de
l’efficacité spectrale au niveau du front-end du récepteur. L’algorithme
DS est adapté pour la quantification multi-bits, atteignant des perfor-
mances VER quasi-optimales par rapport aux bornes inférieures MV. À
mesure que la résolution augmente, l’algorithme converge vers le cas DS

iv



conventionnel. En utilisant des asymptotiques théoriques de l’information
issues des statistiques bayésiennes, c’est possible de caractériser l’échelle
de capacité quand le nombre de récepteurs augmente. Pour les canaux
MIMO quantifiés multi-bits cohérents, l’extension du cas un bit au multi-
bit fournit une expression de la capacité asymptotique. Les travaux
futurs incluent l’intégration de modèles physiques de la consommation
énergétique des composants RF avec les expressions de capacité. Pour
les canaux non cohérents non quantifiée, la capacité asymptotique sert de
borne supérieure dans certains intervalles de cohérence, l’intégration sur
l’espace des paramètres produisant généralement des bornes supérieures
et inférieures sur l’échelle.

Les recherches futures exploreront également les techniques de suréchan-
tillonnage pour les CAN un bit, qui ont démontré une amélioration des
performances. Le problème de précodage de canal en direction descen-
dante avec des convertisseur numérique-analogique à faible résolution au
niveau de l’émetteur constitue une autre voie prometteuse. En outre,
l’étude d’autres sources de non-linéarité, telles que la saturation des am-
plificateurs de puissance et le bruit de phase dans les oscillateurs locaux,
pourrait fournir des informations plus approfondies sur les limites de
performance.
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Chapter 1

Introduction
The evolution of wireless communication systems has been mainly

driven by the emergence of new applications, technologies, and the fun-
damental need to convey information efficiently and reliably. Since its
conception and commercialization in the 1980s, the first generation (1G)
cellular network has enabled voice communication through analog tech-
nology. Its digital successor, the Global System for Mobile Communica-
tions (GSM), or 2G, provided improved data rates and supported text
messaging applications such as the Short Message Service (SMS). Begin-
ning in the early 2000s, multimedia communication further encompassed
video, photo, and reliable Internet access with the advent of 3G and 4G
mobile networks. Throughout the last decade, the 5G standard was es-
tablished to address the challenges presented by the exponential increase
in the number of mobile devices and the explosion in data traffic, through
enhanced mobile broadband, massive machine-type communications, and
ultra-reliable low latency [1]. The discussion on what 6G represents is
already ongoing and it is expected to provide orders of magnitude in en-
hancements of prior generations’ key performance indicators, as well as
incorporate revolutionary new use cases and applications such as multi-
sensory extended reality and fully autonomous connected robotics and
systems [2, 3]. The advancement towards each generation comes with
its own set of challenges that require a re-thinking of standards, and
motivate the development of innovative and enabling technologies [4].
For example, 5G networks saw the deployment of massive multiple-input
multiple-output (mMIMO) and millimeter-wave (mmWave) to address
problems of spectrum scarcity and spectral efficiency [5]. Frequency
bands in the sub-terahertz regime are also being explored as viable can-
didates for 6G systems. It’s expected that in the 6G era, there will
be extensive deployment of non-terrestrial networks including unmanned
aerial vehicles and satellites along with plans to integrate them with cel-
lular systems infrastructure to ensure global coverage and reliability [6].
Indeed, interest in satellite communication is being rekindled, and the
development of high throughput satellites will play a prominent role in
fulfilling growing and exigent requirements driven by new trends in spec-
trum usage, energy efficiency, and ubiquitous connectivity [7, 8].
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1.1 . Background and Motivation

Adopting these new technologies necessitates, in general, a closer
study of the overall system since direct implementation of current archi-
tectures and strategies might not be as straightforward. The main com-
mon aspects of the technology trends mentioned above are the increase
in bandwidth, higher carrier frequencies, and energy-efficient constraints
that have primary roles in the design of radio-frequency (RF) circuitry.
An RF architecture of a communication system typically includes compo-
nents such as power amplifiers (PAs), local oscillators (LOs), and analog-
to-digital converters (ADCs). The performance of individual components
can depend on the intended application and operating conditions. Sub-
sequently, nonlinear characteristics and distortions can manifest due to
the design choices and inevitable imperfections present in the circuit. We
begin by briefly surveying the different kinds of nonlinearities in RF com-
ponents to get a better overview of their characteristics and the incurred
challenges.

1.1.1 . RF Impairments and Nonlinearities
A critical component in a wireless communication system is the ADC

that converts analog signals to the digital domain, whether for storage
purposes or efficient implementation of signal processing algorithms. The
function of an ADC can be generally decomposed into two fundamental
operations: sampling the input signal and then quantizing the result
into a finite set of values. The sampling operation is conducted in the
sample-and-hold circuitry susceptible to aperture noise. This impairment
is attributed to noise present in the sampling circuit itself and in addition
to phase noise affecting the clock that generates the sampling signal [9–
11]. Given an input x(t), aperture noise can be formally defined as
the sample-to-sample uncertainty and can be related to the delay in the
switching circuit. In other words, assuming a sampling period Ts and a
time instant nTs, the sampled output is effectively

z(nTs) = x(nTs + ε(nTs)), (1.1)

where ε(nTs) is a random process that can be assumed to be Gaussian,
but more intricately depends on the contribution from both sampling
circuit noise errors and the clock phase noise model [12, 13]. If the per-
turbation is small, a first-order Taylor approximation of the noise effect
can be written in a discrete model representation as

z[n] = x[n] + ε[n]
dx(t)

dt

∣∣∣∣
t=nTs

= x[n] + e[n], (1.2)
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where the jitter term e[n] is seen to be dependent on the signal’s rate of
change. The effect of aperture noise can be severe, especially in wideband
applications where high-frequency components of the input signal can
contribute to large deviations from the sampled value. As we will elabo-
rate upon later, aperture noise is seen as the limiting factor in the design
of high-speed and high-resolution ADCs [14,15]. Quantization distortion
is due to the fundamental limitation of representing continuous-valued in-
puts with high precision according to a fixed number of bits [16,17]. The
resolution is specified by the ADC manufacturer and measured in terms of
the signal-to-noise and distortion (SNDR) which can vary depending on
the RF architecture and design choices. The quantization can be seen as
a partition of the real line R with a set of intervals I = {Ik = (Ik−1, Ik]}
for k = 1, . . . , 2b where b is the resolution. The output y[n] of the quan-
tizer given an input z[n] is assigned to yk if z[n] ∈ Ik. The distortion
error due to quantization can then be defined as e[n] = y[n]− z[n]. Note
that the quantization stage can also be subject to integral and differen-
tial nonlinearities that result in deviation from the specified quantizer
thresholds [18, 19].

We highlight other nonlinear impairments that can be present, for
example, phase noise can affect other critical components of communi-
cation systems including LOs responsible for up- and down-conversion
of signals during transmission [20, 21]. The power of an ideal sinusoidal
signal oscillator is concentrated at a particular value, but due to cir-
cuit imperfections, the power is going to be spread over a larger range
of values. Models of the phase noise generating process obtained ana-
lytically and from measurements show that, in general, the phase noise
variance can grow quadratically with carrier frequency [20]. Power am-
plifiers are power-hungry devices that exhibit increased signal distortion
close to the saturation point where power efficiency is high. To motivate
the nonlinearities present in PAs, we turn our attention to the transmit-
ter. The analog signal is passed through a high-power amplifier (HPA)
before being transmitted over the channel, this is to ensure coverage and
mitigate losses due to the propagation environment. The Friis formula
for the free space path loss (FSPL) explicitly shows this relationship for
electromagnetic signals

FSPL =

(
4πdfc
c

)
2, (1.3)

where c is the speed of light, fc is the carrier frequency and d is the
distance between transmit and receive antennas assumed to have unit
directivity gains. The relation essentially tells us that the received power
degrades with the square of the signal frequency, which becomes more
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detrimental as we move to mmWave and sub-THz bands [6, 8]. This
power degradation can be compensated by employing highly directive
transmit antennas [5] or operating the HPA close to its saturation re-
gion, at the cost of pushing the amplifier towards the nonlinear regime
causing the transmitted signal to be distorted and resulting in in-band
and out-of-band intermodulation interference [22]. The latter can usually
be eliminated by filtering the signal after the amplification stage if it lies
outside the bandwidth of interest. The PA is a nonlinear and bandpass
device that operates on real signals

x(t) = R{x̃(t)ej2πfct}
= |A(t)| cos(2πfct+ ϕ(t)), (1.4)

where x̃(t) = A(t)ejϕ(t) is the complex envelope of the signal. The de-
vice is generally represented by its amplitude-modulation to amplitude-
modulation (AM-AM) and amplitude-modulation to phase-modulation
(AM-PM) conversion characteristics

y(t) = G(|x̃(t)|) cos(2πfct+ ϕ(t) + Ψ(|x̃(t)|)) (1.5)

where the functions G(·) and Ψ(·) represent the AM-AM and AM-PM
characteristics respectively, assuming no memory in the system. Denot-
ing the nonlinear operation by V[·], the most general representation of
the transfer function, also incorporating memory effects, is the Volterra
series (VS) [23,24]

y(t) = V [x(t)]

=
∞∑
n=0

∞∫
0

...

∞∫
0

hn(τ1, . . . , τn)
n∏

i=1

x(t− τi) dτi, (1.6)

where we have the nth order Volterra kernels hn and time delays τi. The
device is assumed to be causal, i.e., hn is 0 for all τi < 0, and symmetric
in its delays without any loss of generality. The VS can be regarded
as a generalization of Taylor series for dynamical systems with mem-
ory. In fact, it was shown in [24] that, under certain assumptions of
fading memory, any nonlinear system can have a Volterra series kernel
representation. Moreover, it can be considered as the most general for
PAs in the sense that it captures other well-known polynomial models in
the literature for different classes including strictly and quasi-memoryless
PAs [25, 26]. To reduce the complexity of this model, the memory is as-
sumed to be truncated up to a finite order. There exist other models
in the literature that characterize the AM-AM and AM-PM character-
istics depending on the architecture, e.g., the Saleh and Rapp models
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were developed to emulate the behavior of traveling wave tube and solid-
state power amplifiers, respectively, which can prove useful if a specific
application is envisioned [27].

1.1.2 . RF Nonlinearities Challenges
The induced nonlinearities in the system can have adverse effects on

the information transmission performance, especially when specific re-
quirements on power consumption are needed. For example, to exploit
higher energy efficiencies provided by PAs, the design of waveforms (e.g.
discrete Fourier transform-frequency division multiple access) and sig-
nal processing techniques (e.g. crest factor reduction) that promote a
low peak-to-average power ratio is one approach, as it allows operating
the HPA at a low output power back-off while keeping the distortion at a
minimum [28,29]. Another approach can include linearizing the transmit-
ted signal through digital pre-distortion techniques at the transmitter by
designing inverse functions cascaded with the PA nonlinearity [23, 30].
Predistortion can add more complexity to the transmitter since addi-
tional operations are needed to learn the nonlinearity coefficients which
can also result in higher power consumption. Alternatively one can adopt
nonlinear equalization techniques at the receiver [31–33]. Nonlinearities
induced by HPAs are particularly interesting for satellite communication
applications where power can be scarce and low complexity solutions
processing schemes are crucial [7, 34]. Regarding aperture jitter, com-
pensation techniques have also been proposed in the literature, including
models based on VS representation [13, 35]. The effect of quantization
noise on receiver detection schemes has also received significant attention,
especially for low-resolution cases where the effect is most severe [36–40].
On another note, understanding the fundamental limitations in terms
of the spectral efficiency is important in the design of communication
systems, which can become more challenging when incorporating nonlin-
earity effects. Studying the mutual information with HPA distortion at
the transmitter depends on the assumed model and whether the coeffi-
cients are known a priori. For example, achievable rates with amplifier
nonlinearities have been studied in [41] using the VS model and ran-
dom coding arguments, and in [42,43] for multiple-input multiple-output
(MIMO) systems assuming the Saleh and polynomial models and Gaus-
sian signaling. Similarly for the quantized channel, the capacity of the
quantized additive white Gaussian noise (AWGN) channel has been char-
acterized for the one-bit single-input single-output (SISO) case in [44],
and the achievable rates for the MIMO channel with fading have been
studied in [45,46].

Energy efficiency is becoming an added dimension in wireless systems
design [47, 48], and more importantly from the receiver point of view
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LNA Mixer ADC

Figure 1.1: Simplified RF frontend component structure composed of a receive
antenna, LNA, a mixer for downconversion including oscillators and an ADC.

where an increased overall system complexity raises important practical
questions on feasibility in terms of costs and power consumption [49].
Consider the simplified receiver architecture as shown in Fig 1.1 com-
posed mainly of an antenna, a low-noise amplifier (LNA), a mixer, and
an ADC [38]. Recent surveys and roadmaps demonstrate that, in gen-
eral, as frequency increases, power consumption grows for LNAs and
ADCs [14, 15, 50]. Moreover, nonlinear distortions arise if higher power
efficiency is required, manifesting as intermodulation distortion in LNAs,
phase noise in the mixer and ADC sampling circuitry, and quantization
errors if low-resolution ADCs are employed. Regarding the imposed chal-
lenges presented earlier, it is of interest to study the communication sys-
tem in this nonlinear paradigm. However, a joint study of the overall
combined effects can be challenging given the different facets of the prob-
lem that can depend on the technology, application, and requirements.
We focus hereafter on the ADC component of the RF chain.

1.2 . Analog-to-Digital Converters

As in any RF circuit containing active or passive components, noise
sources would arise due to unavoidable imperfections whose effects can
vary according to hardware designs. Nevertheless, the performance of
each ADC architecture can be summarized and evaluated according to
different metrics, or figure of merits (FoMs) that depend on sampling
frequency, resolution, and power consumption. The most notable survey
that first explored trends of ADC technology was conducted in 1999 by
Walden [14]. The results therein show a tradeoff between resolution and
the increase in sampling frequency which is attributed to the dominant
effects of aperture noise present in the sampling circuitry. Walden’s pro-
posed FoM FW , relates the power dissipation P to the bandwidth B and
resolution b1,

P = FW ·B · 2b, (1.7)

1In practice, b is the effective number of bits (ENOB), which is calculated from
SNDR measurements as ENOB = (SNDR− 1.62)/6.02. This metric can be lower
than the stated number of bits.
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and is used to analyze the trends in performance. Moreover, the author
stipulated that future design trends in ADC technologies will continue
to compromise between speed and resolution for the design of power-
efficient converters. The work of Le et al. in 2005 [51] extends the anal-
ysis for ADC data up to seven years further and refutes his pessimistic
point of view; their findings indicate an exponential increase in the trend
towards the design of fast, power-efficient and high-resolution ADC tech-
nology. Their results show that certain architectures are more relevant
for specific applications than others; sigma-delta converters are practi-
cal for high-resolution applications with lower bandwidth requirements
whereas flash ADCs are more useful for high-speed and low-resolution
scenarios. More recently, Murmann re-explores this topic in his 2015 arti-
cle [15] which includes data from more modern designs. They show that
ADC designs with moderate to high resolutions exhibit a quadrupling
in power consumption for every bit increase, whereas for low-resolution
converters the Walden FoM remains a valid approximation, i.e., power
consumption only doubles with every increasing bit of resolution. This
behavior is demonstrated in Fig 1.2 reproduced from [52] which shows
data collected for state-of-the-art ADC designs reported in the IEEE In-
ternational Solid-State Circuit Conferences (ISSCC) and VLSI Circuits
Symposium, where we also show the Schreier FoM FS that captures the
quadrupling effect in the power for higher resolutions. Murmann also re-
emphasizes the speed-resolution design limitation due to aperture noise
as predicted in [14].

In light of the previous discussion, it becomes evident that while, on
the one hand, there have been significant technological advancements in
ADC designs that can potentially accommodate the increase in band-
widths for future wireless technologies, there remain, on the other hand,
important practical considerations. For example, Eq. (1.7) shows that
power consumption grows linearly with the bandwidth and exponentially
in the resolution which can become prohibitive. In addition, considering
a fully digital architecture for a mMIMO system where the number of
antenna elements can reach the order of thousands, the use of low-quality
RF components becomes imperative to deter high costs [47, 48, 51, 53].
For this purpose, the use of low-resolution ADCs becomes attractive in
terms of power and cost, and consequently, there will be newly imposed
challenges on various classical aspects regarding channel estimation, data
detection, and capacity computation which we survey in the following
section. In this thesis, our focus will be on the ADC component which
constitutes the bottleneck in terms of energy consumption and informa-
tion transfer for baseband processing, especially for mmWave, sub-THz,
and mMIMO systems. Incorporating the contribution of nonlinearities
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Figure 1.2: ADC energy performance survey data collected from IEEE ISSCC
and VLSI Symposium.

due to amplification and phase noise is an interesting direction for future
work that merits a detailed study.

1.2.1 . Challenges and Related Work for Low-Resolution ADCs
Due to the severe quantization, the application of classical data de-

tection, channel estimation, and signal processing techniques is not a
straightforward feat as we enter the nonlinearity paradigm. Extensive
research was dedicated in the early 2000s to exploring the effects of quan-
tized channels on system performance, with ultra-wideband communica-
tions being a main drive in that direction [51, 54, 55]. The fundamental
capacity limits of quantized single-input single-output (SISO) real ad-
ditive white Gaussian noise channels were studied in [56] and [44], the
authors proved that discrete input distributions are capacity-achieving
and binary phase shift keying is optimal for the special case of one-bit
quantization. Under Rayleigh fading with statistical channel state in-
formation at the receiver (CSIR), the rate expression is known [57] and
on-off quadrature phase-shift keying (QPSK) is optimal. Moreover, the-
oretical work on channel and parameter estimation for the SISO channel
also considered dithering to improve estimation performance [58–60]. In
general, the use of dither consists of adding artificial noise before quan-
tization in order to shape the statistical distribution of the quantization
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error [61], this can result in useful signal processing techniques that are
amenable to analysis [62]. Under coarse quantization, MIMO systems can
be beneficial when exploiting the system’s spatial oversampling. One of
the earliest works on this topic considered the problems of channel estima-
tion using an expectation-maximization framework for quantized signals
and pilot design [63], where it was demonstrated that the performance
in terms of mean-square error is dependent on the type of pilot signals
used [64]. Finally, the capacity degradation with one-bit quantization is
a factor of 2/π compared to the ideal case, at least in the low signal-to-
noise ratio (SNR) regime and with symmetric quantizers [55]. This loss
can be further compensated with asymmetric quantizers [65], or in some
cases correlated additive noise [66].

With the prospect of mmWave and mMIMO for future wireless sys-
tems, major challenges arose with increased system complexity due to
nonlinearities, resulting in intractable expressions when it comes to per-
formance evaluation and receiver design. To this end, research on low-
resolution ADCs gained further traction in later years focusing on study-
ing capacity bounds, linear approximations, and machine learning meth-
ods. Mo and Heath [45] derive lower and upper bounds on the one-bit
MIMO deterministic channel at finite SNR assuming perfect CSI at the
transmitter and receiver. They demonstrate that channel inversion pre-
coding with QPSK signaling is capacity-achieving when the channel ma-
trix is full row rank and semi-unitary. Furthermore, the authors in [67]
expand the mutual information up to second-order in the low SNR regime
and show that QPSK is uniquely optimal for deterministic channels, and
capacity achieving for the ergodic case with CSIR. Li et al. [68] leverage
the Bussgang decomposition to linearize the flat-fading Rayleigh one-bit
channel, and derive lower bound approximations in the low SNR regime
on the achievable rates. The authors also propose the Bussgang linear
minimum mean square error (BLMMSE) estimator for the channel and
extend classical linear data detectors, e.g., maximum ratio combining
(MRC) and zero-forcing (ZF) for the quantized channel. These results
were generalized to the multi-bit case in [46]. Assuming a pilot training
scheme and one-bit transceivers, Gao et al. [69] provide an algorithm to
compute a lower bound on the capacity using the replica method in the
asymptotic regime for large-scale channels. They show that the train-
ing length may be set smaller than the number of users in the system.
Considering practical channel estimation and data detection methods,
Wen et al. [70] present a joint channel and data detection algorithm for
low-resolution ADCs based on generalized approximate message passing
(GAMP) which yields best estimation results in the Bayesian sense, albeit
at a high computational complexity. Choi et al. [71] propose a two-stage
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data detection and channel estimation algorithms based on projected gra-
dient descent which constrains the norm of the estimated signal. Simi-
larly, for the orthogonal frequency division multiplexing (OFDM) MIMO
channel, Studer and Durisi [72] formulate both tasks into convex opti-
mization problems that are solved using the forward-backward splitting
algorithm. Mollen et al. [73] linearize the wide-band quantized chan-
nel and consider the regime where the number of taps goes to infinity.
Wan et al. [74] generalize the BLMMSE estimator by optimizing over the
quantizer threshold to reduce the mean square error (MSE), this results in
improved performance compared to fixed zero-thresholding. The authors
in [75] study in detail the performance with the Bussgang decomposition
for the class of least-squares estimators in single-input multiple-output
(SIMO) systems, they highlight on the stochastic resonance effect [76]
and show that the optimal SNR for channel estimation decreases with
increasing pilot length. In addition, a series of recent work considers
machine learning tools to address receiver design complexity [40,77–81].
There is also a plethora of contributions on low-resolution ADCs that
explore other directions such as mixed architectures, oversampling and
transmit precoding [37,82–85].

1.3 . Main Contributions and Organization

In this thesis, we consider the communication scenario in a fully digi-
tal MIMO channel with low-resolution ADCs at each receive antenna.
This channel model also assumes perfect synchronization and analog
matched-filtering [46, 73]. In Chapter 2, we review relevant state-of-the-
art techniques that address this problem considering different channel
models: linear techniques based on the Bussgang decomposition and
additive quantization noise model (AQNM) that linearize the channel,
and probabilistic channel models that treat the likelihood function. In
Chapter 3, we look at the problem of data detection with perfect CSIR
in the extreme case where only a one-bit of resolution is available. It
is well known that ML detection is optimal in the sense of minimizing
the probability of error. However, the optimization is a hard combina-
torial problem when the input is discrete since the size of the search
space to consider grows exponentially with the number of users in the
system and modulation order. The usual approach is first to minimize
the ML objective function in the continuous domain and then, either
map into the discrete constellation or construct a list of candidate points
based on specific heuristics where the original ML function is eventually
evaluated [40,71,79,81]. Our contribution in this aspect is as follows:

• We propose a data detection algorithm that first obtains an initial
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estimate using first-order methods. The ML metric is then ex-
panded in Taylor series form up to second-order around this point,
and the level sets are exploited to define an ellipsoid containing
the list of candidate points. This formulation allows us to recover
the classical integer least-squares problem where efficient sphere-
decoding (SD) algorithms can be readily employed.

• The algorithm greatly reduces the search space of candidate points,
and is shown to be near-optimal with respect to the ML oracle
lower bound method proposed in [86] in terms of vector error rates
(VERs).

A discussion on the computational complexity is also provided. Finally,
the algorithm is evaluated in a typical mMIMO channel exhibiting spa-
tial correlation of the receive antennas at the base station. In Chapter 4,
we consider a more realistic scenario where no channel state information
(CSI) is available a priori at the receiver and adopt a pilot transmission
strategy. In the first part and under the framework of probit regression
due to the similarity with the channel model, we assume a pilot trans-
mission scheme that first estimates the channel parameters and then
performs data detection according to these estimates. We assess the
performance numerically by plotting the symbol error rates (SERs) and
the generalized mutual information (GMI) for the mismatched achievable
rates under the different metrics. Using this formulation, we address the
instability highlighted in [40,79,87] for the probit model under imperfect
CSI and show that it’s effectively related to the choice of the estima-
tor. In the second part, we focus on a real channel for simplicity and
formulate the optimal metric that processes the pilot and data signals
jointly. Computing the ML metric directly requires averaging over the
channel statistics which do not have a closed and tractable form. In addi-
tion, it is still a hard combinatorial problem with respect to the discrete
transmitted signal. Our contribution in this direction is then as follows:

• Given the difficulty of directly averaging over the channel statistics,
we reformulate the optimal metric such that averaging is conducted
over the channel’s posterior distribution conditioned on pilot data.
Integrating with respect to this distribution is still as difficult given
its non-Gaussianity. Therefore, we resort to approximating it using
the Laplace method [88], this allows the evaluation of the likelihood
in closed-form.

• To address the combinatorial aspect of the problem, we leverage the
SD algorithm presented in the previous part. Application of this
algorithm to the approximate metric is not straightforward given
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the data dependence of the parameters. Therefore, we propose a
workaround where we employ a surrogate metric over which the SD
algorithm can be applied and construct a list of candidate points
over which we evaluate the proposed approximation.

In Chapter 5, we look at the communication problem when low-resolution
ADCs are employed at the receiver side. We show that the SD algorithm
can be extended to the multi-bit case. Then, we focus our attention on
understanding the trade-off between RF power consumption and spectral
efficiency degradation due to quantization distortion. As a first step in
that direction, we look at the capacity problem of the quantized MIMO
channel. In the coherent case and for a multi-bit quantizer, it’s possible
to obtain the scaling of the capacity in the asymptotic regime where the
number of receive antennas grows large. This is done using information-
theoretic asymptotic results in Bayesian statistics. For the noncoherent
case, we begin by looking at the asymptotic capacity of the unquantized
case as an upper bound for particular cases of the coherence interval
length. In general, obtaining exact expressions of the capacity scaling
is not straightforward due to the difficulty in integrating over the pa-
rameter space. We conclude in Chapter 6 with final remarks on areas of
improvement, future perspectives, and potential research directions.
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work

• K. Safa, R. De Lacerda, and S. Yang, “Channel Estimation and
Data Detection in MIMO channels with 1-bit ADC using Pro-
bit Regression,” 2023 IEEE Information Theory Workshop (ITW).
Saint-Malo, France: IEEE, Apr. 2023, pp. 457–461.

• K. Safa, R. Combes, R. de Lacerda and S. Yang, “Data Detection
in 1-bit Quantized MIMO Systems,” IEEE Transactions on Com-
munications, vol. 72, no. 9, pp. 5396-5410, Sept. 2024

The following is ongoing work and future perspectives

• K. Safa, R. De Lacerda, and S. Yang, “Capacity of Block Fading
Low-Resolution MIMO Channel: Asymptotics and Bounds”, work
in progress

• K. Safa, R. De Lacerda, and S. Yang, “Spectral and Energy Efficient
System Design in Low-Resolution ADCs in MIMO Channels”, work
in progress
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Chapter 2

System Model and Receiver Design
Due to the nonlinearity introduced by the quantizer, classical tech-

niques for channel estimation and data detection do not apply directly
and there are several approaches to address these difficulties. In this
chapter, we elaborate on the system model assumed throughout the the-
sis along with the general assumptions for the quantized MIMO channel.
We present the relevant state-of-the-art work that addresses the prob-
lem of data detection under quantizer nonlinearities. The mathematical
notations adopted are as follows:

Notation
Lowercase letters refer to scalars, e.g., x. Column vectors and matri-

ces are given in boldface lowercase and capital letters respectively, e.g.,
x and A. The tilde accent is used when referring to complex versions of
these quantities, e.g., x̃ and Ã. We denote the transpose and hermitian
transpose operators as AT and Ã

H
, respectively. The operator diag(·)

returns a diagonal matrix with the diagonal elements of its matrix in-
put. The real and imaginary part operators are given by, respectively,
R{·} and I{·} and are applied component-wise if the input is a vector or
matrix. The natural and base 2 logarithms are denoted with ln and log,
respectively. Sets are represented in calligraphic font, e.g., A. Identity
matrices of dimension n are given by In. The notation ||.|| represents the
ℓ2 norm of a vector. The spectral norm of a matrix A ∈ Rn×m is defined
as ||A||2 = supx̸=0

||Ax||
||x|| . The standard big O and little o notations are

O(·) and o(·), respectively. The standard normal distribution is denoted
by ϕ(x), and its cumulative density function (CDF) by Φ(x).

2.1 . System Model

We consider the MIMO transmission model with M transmit anten-
nas and N receivers at the base station where each receive antenna is
equipped with a b-bit quantizer as shown in Fig. 2.1. The received signal
is

ỹ = Q̃b(H̃x̃+ z̃), (2.1)

where we have:

13



M transmit
antennas

N receive
antennas

RF Qb(·)

Qb(·)

R{·}

I{·}

RF Qb(·)

Qb(·)

R{·}

I{·}

RF Qb(·)

Qb(·)

R{·}

I{·}

B
as
eb
an
d

P
ro
ce
ss
in
g

Fading
Channel

Figure 2.1: MIMO fading channel with M transmit and N receive antennas
with quantizers Qb assigned to each in-phase and quadrature-phase component
of the signal.

• The flat-fading channel matrix H̃ ∈ CN×M with zero-mean, unit
variance, independent and identically distributed (i.i.d.) circu-
larly symmetric complex Gaussian (CSCG) components h̃n,m ∼
CN (0, 1).

• The transmitted signal x̃, an M -dimensinal complex vector where
each element belongs to a complex constellation denoted as X̃ , e.g.,
QPSK or 16-quadrature-amplitude modulation (QAM).

• Additive noise vector z̃ ∈ CN that is assumed independent of the
input and channel, with i.i.d. circularly symmetric complex Gaus-
sian elements having variance σ̃2. In our setting, we define the SNR
as ρ̃ = 1/σ̃2.

• A uniform midriser quantizer Q̃b with resolution b and spacing δ
that operates on each real and complex dimension of the received
signal independently, i.e., given a complex number r̃, Q̃b = Qb(r̃)+
jQb(r̃) with Qb(·) defined as below.

• The quantized received signal ỹ with elements belonging to a finite
set of complex numbers Ỹb.

We will also find it convenient for simplicity of notation and derivations
to work with the real-equivalent form of this channel that can be decom-

14



posed as[
R{ỹ}
I{ỹ}

]
= Qb

([
R{H̃} −I{H̃}
I{H̃} R{H̃}

] [
R{x̃}
I{x̃}

]
+

[
R{z̃}
I{z̃}

])
,

y2N = Qb(H2N×2Mx2M + z2N), (2.2)

with the subscripts explicitly shown here to denote the adjusted new
dimensions. The effective noise variance is then σ2 = σ̃2/2, the extended
M -dimensional constellation is now X 2M such that X represents the real
counterpart of X̃ . The quantizer Qb operates element-wise and is defined
as the map from R to a finite set of values Yb = {ν1, . . . , νl, . . . , ν2b}
associated with the set of intervals I = {I1, . . . , Il, . . . , I2b},

νl = δ

(
l − 1

2
− 2b−1

)
, l = 1, 2, . . . , 2b. (2.3)

Since we assume a uniform quantizer, the spacing for each interval Il =
(Il−1, Il] is Il − Il−1 = δ for l = 2, . . . , 2b − 1, and we define I0 = −∞
and I2b = ∞. The points in Yb are taken as the midpoints of each
corresponding interval1. In the extreme case where b = 1, we have a
simple zero-threshold comparator Q̃1(r̃) = sgn(R{r̃}) + jsgn(I{r̃}) that
outputs the sign of the input signal

sgn(a) =
{

1, a ≥ 0
−1, a < 0

Remark: The discrete-time channel model assumes that conventional
digital signal processing (DSP) operations such as down-conversion and
matched filtering are conducted in the analog domain, in addition to hav-
ing perfect synchronization between the transmitter and receiver. In par-
ticular, to the low-resolution ADCs literature, designing receivers with
analog processors is an interesting research topic [89, 90]. Similarly, for
the synchronization requirement, there have been some proposed algo-
rithms in the literature [39, 91], and a practical system demonstrator is
proposed in [92] for analog synchronization in a one-bit ADC system.

The nonlinear nature of the quantized channel imposes several dif-
ficulties in retrieving the transmitted signal x̃. In the classical setting
where the receiver has access to the signal assuming infinite precision
and that the channel matrix H̃ is perfectly known, the optimal metric
under Gaussian additive noise is the ML receiver equivalent to the near-
est neighbor detector under square loss. This is no longer the case due

1More precisely, on the boundaries where saturation can occur, these points are
effectively half the step size δ apart from the finite valued thresholds I1 and I2b−1.
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to the discrete nature of the observations. This becomes more challeng-
ing in a more practical setting when the channel is not known to either
the transmitter or receiver. In this case, assuming the channel is block-
fading over a coherence interval of length T , the receiver can form an
estimate of the channel and use it in place of the true channel realization
during the data detection process. More generally, in a situation where
only statistical information is available, non-coherent detection can be
an option [93]. The transmitter then allocates a portion of the coherence
interval to transmit pilot information Tp and the remaining duration Td

is used for data detection. The transmission is then split into two stages
with the subscripts p and d referring to pilot and data respectively[

Ỹ p Ỹ d

]
= Q̃b

(
H̃
[
X̃p X̃d

]
+
[
Z̃p Z̃d

])
. (2.4)

We assume the pilot transmission matrix X̃p is unitary which can be
achieved, for example, with a truncated discrete-fourier-transfor (DFT)
matrix or the identity matrix [37,79,94].

One of the most common techniques to deal with quantization is to
linearize the channel based on the Bussgang decomposition [95], in addi-
tion to the AQNM [96, 97] allowing the design of low-complexity linear
channel estimation and data detection receivers [37, 94]. Other meth-
ods include maximizing the likelihood function induced by this channel
which can result in a better performance albeit at a higher computational
complexity [70,71,81].

2.2 . Channel Linearization

2.2.1 . Bussgang Decomposition
The Bussgang decomposition is a useful technique that allows writing

the output of a deterministic function as a sum of its Gaussian input
multiplied by a constant term referred to as the Bussgang gain, and a
distortion term that is uncorrelated with the input and any other jointly
Gaussian random variable [66, 75, 98]. Given an input u that follows a
CSCG distribution and a deterministic function f(·), the output v = f(u)
can be equivalently expressed as

v = w · u+ e

= E [ru∗]E
[
|u|2
]−1 · u+ e. (2.5)

In fact, this decomposition can be seen as the LMMSE estimate of the
output v given the input u, where e is the distortion error term that is
uncorrelated with u [98]. Constraining the problem to the class of linear
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estimators, we would like to find the unbiased estimate v̂ such that

v̂ = w · u+ b, (2.6)

which implies b = E [v̂] − wE [u]. For simplicity and without loss of
generality we can therefore assume the input is zero-mean and set b = 0.
By the orthogonality principle, the estimator should be the best among
all linear estimators in the mean square error sense, i.e., the error term
should be uncorrelated with the input E [(v − v̂)u∗] = 0. Expanding the
latter we obtain the expression of the linear scale α in Eq. (2.5). We can
proceed similarly for the vector case assuming f(·) operates element-wise
on the input vector to obtain

v = Wu+ e

= CvuC
−1
u u+ e, (2.7)

where Cru = E
[
vuH

]
is the cross-covariance between the input and the

output and Cu = E
[
uuH

]
is the auto-covariance of the input. We can

also obtain an expression of the distortion term auto-covariance as

Ce = E
[
eeH

]
= E

[
(v −Wu)(v −Wu)H

]
= Cv −CvuC

−1
v CH

vu (2.8)

We can apply these results directly to our channel model in Eq. (2.1) for
the multi-bit quantizer Qb(·). Denote the input before quantization by
r̃ = H̃x̃+ z̃ and Cr̃ its autocovariance matrix, the linear representation
of Eq. (2.1) is

ỹ = Wbr̃ + e

= WbH̃x̃+Wbz̃ + e, (2.9)

where the Bussgain gain matrix can be written as

Wb = Cỹr̃C
−1
r̃

= diag(Cr̃)
− 1

2

2b∑
i=1

νi√
π

(
e−I2i−1diag(Cr̃)

−1 − e−I2i diag(Cr̃)
−1
)
. (2.10)

A detailed derivation of this result can be found in Appendix A where we
use Price’s theorem [99] [98] to compute Cỹr̃ that highlights the assump-
tions required to obtain this form which includes mainly the Gaussianity
of the input. When b = 1, we have

W1 =

√
4

π
diag(Cr̃)

− 1
2 . (2.11)
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This decomposition allows the design of simple linear receivers akin to the
classical channel without quantization. We can also obtain an expression
of Cỹ similarly by direct application of Price’s theorem

Ce =
4

π

[
arcsin

(
diag(Cr̃)

− 1
2R{Cr̃}diag(Cr̃)

− 1
2

)
+ j arcsin

(
diag(Cr̃)

− 1
2I{Cr̃}diag(Cr̃)

− 1
2

)
− diag(Cr̃)

− 1
2Cr̃diag(Cr̃)

− 1
2

]
. (2.12)

2.2.2 . Additive Quantization Noise Model
Another common method found in the literature to represent the

quantized channel is with the AQNM [39,66,97,100]. It can be seen as a
special case of the Bussgang decomposition when the quantizer function is
specified. In particular, it mainly relies on the fact that Qb(·) is designed
in the MMSE sense [17,101–103] such that the output can be written

ỹ = r̃ + q̃, (2.13)

where q̃ is the quantizer distortion noise per receive element in r̃. De-
noting β as the distortion factor assigned per receive element in ỹ and
defining it as the ratio

β =
E [|qi|2]

σ̃2
i

, (2.14)

then proceeding similarly as in Eq. (2.7) we obtain the following expres-
sion [40,97]

ỹ = (1− β)H̃x̃+ (1− β)ñ+ ñq. (2.15)

The result is obtained by following the reasoning in [66,96] which reduces
the cross-covariance matrix to

Cỹr̃ = (1− ρq)Cr̃. (2.16)

Note that the Bussgang decomposition gives a more general expression
as it does not require any assumption on the choice of the quantizer itself
and does not make any approximations for the quantizer distortion noise
ñq. There are other linearization variants of the Bussgang decomposition.
For example, in [74] the authors propose a generalized version for the
one-bit channel that considers a non-zero threshold. More recently, [104]
proposed a novel linearization of the channel that depends on a second-
order Hermite polynomial expansion of the quantization function.
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2.2.3 . Linear Receivers
The linearized channel allows the design of low-complexity linear re-

ceivers similar to those of a classical Gaussian channel which include ZF,
MRC, and LMMSE equalizers. Inspecting Eq. (2.9) obtained with the
Bussgang decomposition, we have the following equivalent channel and
additive noise effects

ỹ = G̃bx̃+ ñ. (2.17)

Assuming perfect CSI, let F denote the receiver combining filter such
that the transmitted signal estimate is obtained as [40,46]

x̂ = F ỹ. (2.18)

This estimate is usually re-scaled to match the input signal energy be-
fore forcing its components to the discrete values in X̃ . Based on this
equivalent channel, we obtain the Bussgang MRC (BMRC)

FBMRC = diag
(
G̃

H

b G̃b

)
−1G̃

H

b , (2.19)

the Bussgang ZF receiver

FBZF =
(
G̃

H

b G̃b

)
−1G̃

H

b , (2.20)

and the Bussgang MMSE (BMMSE)

FBMMSE = G̃
H

b C
−1
ỹ . (2.21)

In the special case of one-bit quantizers, we have for the BMMSE

FBMMSE = G̃
H

1

(
G̃1G̃

H

1 +Ce

)
−1, (2.22)

with Ce obtained according to Eq. (2.12). When the channel matrix
needs to be estimated, referring to the pilot transmission strategy in
Eq. (2.4) and focusing on the one-bit case, we can also obtain the Buss-
gang LMMSE of the channel [46, 68]

Ĥ =
α

2− 4
π
+ σ̃2α2 + Tpα2

Ỹ pX̃
H

p . (2.23)

where α =
√

4
π(M+σ̃2)

. This estimator is computed assuming unitary pilot
transmission matrices and that the input covariance matrix is diagonally
dominant. It’s important to note that the distortion term in Eq. 2.9 is not
necessarily Gaussian, and although it’s uncorrelated with the input by
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the orthogonality principle, they remain dependent. Therefore, analyzing
the optimality in the MSE sense of these receivers in general is not as
well-studied as for the Gaussian case. The work in [75] considers a more
analytical and in-depth look at this problem for the SIMO channel. For
the AQNM, we can also derive the Wiener filter [40, 96]

FWF = H̃
H
((1− β)Cr̃ + βdiag(Cr̃))

−1. (2.24)

This filter is obtained under the assumption of an MMSE quantizer de-
sign, in addition to approximating the output covariance matrix as

Cỹ ≈ (1− β)(Cr̃ + βdiag(Cr̃)) (2.25)

which gives the following expression for the distortion term covariance

Cñq ≈ β(1− β)diag(Cr̃). (2.26)

2.3 . Statistical Model Based Methods

2.3.1 . Maximum Likelihood Detection with Perfect CSIR
An alternative approach to studying the design of receivers is through

optimizing the likelihood function of the channel. Considering the data
detection problem in a perfect CSIR situation, we first map each element
in the received vector yn to its associated index for the corresponding
interval, i.e., from yn ∈ Yb to yn ∈

{
1, 2, . . . , l, . . . , 2b

}
. The likelihood

function for the received vector y, given a uniformly transmitted vector
x and channel H can then be written as

P (y|x,H) =
2N∏
n=1

P (rn ∈ Iyn|hn,x)

=
2N∏
n=1

[
Φ

(
Iyn − hT

nx

σ

)
− Φ

(
Iyn−1 − hT

nx

σ

)]
. (2.27)

This decomposition is valid under the assumption that the noise covari-
ance matrix is diagonal. Note that the likelihood implicitly depends on
the resolution b and step size δ. This can be written directly for the
one-bit case with yn ∈ {−1, 1}

P (y|x,H) =
2N∏
n=1

Φ

(
ynh

T
nx

σ

)
. (2.28)

These expressions are based on the real-equivalent form of the channel
in Eq. (2.2). The maximum likelihood detector seeks to maximize the
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log of the likelihood function in Eq. (2.27), or equivalently, minimize its
negative

x∗ = argmin
x∈X 2M

− ln [P (y|H ,x)]

= argmin
x∈X 2M

−
2N∑
n=1

ln

[
Φ

(
Iyn − hT

nx

σ

)
− Φ

(
Iyn−1 − hT

nx

σ

)]
= argmin

x∈X 2M

ℓb(x). (2.29)

Even when the channel is known, given the discrete nature of the input
signal, computing this metric has a complexity that grows exponentially
in the number of users and constellation size as it requires to search over a
space of size |X |2M . There are several solutions presented in the literature
to address the optimization problem in Eq. (2.29) with a particular focus
on the one-bit case. One approach is to relax the discrete constraint from
X 2M to R2M as in [71] where the authors propose a two-stage near ML
detector. In the first stage, the metric

argmin
x∈R2M

||x||2≤M

−
2N∑
n=1

ln

[
Φ

(
ynh

T
nx

σ

)]
(2.30)

is computed using projected gradient descent to satisfy the inequality
constraint, then normalized after the last iteration to match the input
signal energy to obtain ẋnML. This estimate is eventually mapped back
into the complex constellation symbol by symbol to match the discrete
constraint and retrieve ẍnML. Note that this procedure is still sub-optimal
given the above relaxation. In order to improve the performance, the
authors propose a second stage where a constant χ > 1 is fixed, and the
following preliminary sets are constructed for each transmit antenna at
index m

Cm =

{
x ∈ X̃

∣∣∣∣ |ẋm − x|
|ẋm − ẍm|

< χ

}
, (2.31)

and then the final candidate set is constructed as the Cartesian product
C = C1 × C2 × · · · × CM , such that

C =
{
x̌ = [x̌1, . . . , x̌m, . . . , x̌M ]T

∣∣∣∣x̌m ∈ Cm,∀m
}
. (2.32)

The nML solution is finally obtained as

xnML = argmax
x∈C

ℓ1(x). (2.33)
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We can see that this technique, although similar to the heuristic of SD,
is only based on the Euclidean distance from an initial estimate and
does not take into account the effects of the fading channel matrix, as is
usually the case. Note that, in addition, the radius χ has to be carefully
tuned so that the size of C is not too large.

The authors in [81] propose a one-bit sphere-decoding algorithm to
compute Eq. (2.28). The idea is based on converting the metric into a
minimum weighted-hamming distance detection problem by first enumer-
ating a codebook that contains all binary output vectors that correspond
to noise-free measurements of the possible input vectors in X 2M , i.e.,
construct

CW =
{
c = sgn(Hx),∀x ∈ X 2M

}
, (2.34)

then the ML metric for the one-bit case is re-written as

x∗ = argmin
x∈X 2M

dw(y, c;w, w̃)

= argmin
x∈X 2M

2N∑
n=1

(
wi1{yn ̸=cn} + w̃n1{yn=cn}

)
, (2.35)

where the weights wn = − lnQ
(

−ynhTx
n

σ

)
, w̃n = − ln

[
1−Q

(
−ynhTx

n

σ

)]
,

and Q(x) represents the Gaussian Q-function. Essentially, as a pre-
processing stage, the authors consider the problem of building the dis-
crete channel transition matrix. This can be prohibitive as the size of
the output vector grows exponentially in N , which is usually taken to be
much larger than M . To circumvent this limitation, the authors consider
partitioning the output vector and the codewords for the noise-free code-
book CW into G sub-vectors of size Ns = 2N/G. For each sub-vector, the
authors construct a sub-list of size L having the closest sub-codeword
to the sub-vector in terms of the metric in Eq. (2.35). Now, given a
received signal y, the same partition is applied as before and the overall
list of codewords or transmitted signals is constructed as the union of the
sub-lists corresponding to the partition of the received vector. The final
estimate is computed as the maximum of the proposed metric over this
sublist. The authors use in addition an approximation to the Q-function
to minimize the computational complexity of the metric. Note that this
method does not exactly reduce the size of the input search space as the
pre-processing stage requires enumerating all noise-free output binary
vectors for each transmitted input in X 2M .

2.3.2 . Data Detection with Imperfect CSI
In the case where we need to obtain an estimate of the channel ac-

cording to the pilot transmission scheme Eq. (2.4), we can look at the
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posterior distribution of the channel matrix given the pilot data. To ob-
tain a concise expression, we re-write directly the real-equivalent channel
model

Yp = Qb(XpH̄ +Zp),[
R{Ỹ p}T
I{Ỹ p}T

]
= Qb

([
R{X̃p} I{X̃p}
−I{X̃p} R{X̃p}

]T [
R{H̃}T
I{H̃}T

]
+

[
R{Z̃p}T
I{Z̃p}T

])
(2.36)

and the posterior distribution of the real-equivalent channel is therefore
given by

P
(
H̄|Yp,Xp

)
∝ P

(
Yp|H̄ ,Xp

)
· P
(
H̄
)

=
N∏

n=1

2Tp∏
t=1

Φ

(
ytp,nx

T
p,th̄n

σp

)
P
(
h̄n

)
. (2.37)

The authors in [71] propose an ML estimator similar in structure to their
data detector that essentially ignores the prior distribution on the chan-
nel. Considering frequency-selective channels and OFDM transmission,
the authors in [72] formulate the channel estimation and data detection
problems for the multi-bit quantizer under a statistical approximation
of the quantized channel likelihood function that assumes a linear model
with a Gaussian additive distortion term that is independent of the input
with variance equal to the conditional MSE for each quantization label.
Mainly, the channel is first estimated using the maximum a posteriori
(MAP) estimator and used for the detection process through a convex re-
laxation to the input space which is then solved using a forward-backward
splitting algorithm. A similar approach is adopted in [105] where the data
detection is conducted after averaging over the channel estimation errors.
The authors in [70], propose a joint channel estimation and data detec-
tion procedure that is based on GAMP to compute the best estimates
of H̄ and Xd jointly in the MSE sense. In particular, for the one-bit
scenario, recent work in the literature considers nonlinear machine learn-
ing methods to solve the data detection problem. For example, the work
in [79] reformulates the detection into a support vector machine (SVM)
binary classification problem to retrieve an estimate of the channel used
subsequently for data detection under the same formulation. Moreover,
the same authors propose the OBMNet architecture in [40] which approx-
imates the Gaussian CDF with a sigmoidal function to employ the deep
unfolding technique in the computation of the gradient for optimizing the
likelihood function based on an estimate of the channel. A similar deep
unfolding architecture, labeled as LoRD-Net is proposed in [78] where
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the authors formulate a data-driven algorithm for the blind detection of
BPSK signals in one-bit mMIMO systems.

2.4 . Summary

In this chapter, we presented the system model of the quantized
MIMO channel assumed in this thesis which mainly focuses on a fully dig-
ital architecture with a flat-fading channel. The mathematical model is
simplified under perfect synchronization and analog processing assump-
tions, allowing the design and analysis of channel estimation and data
detection algorithms. We cover state-of-the-art methods for dealing with
the latter problems, which include linear receivers based on linear chan-
nel models using the Bussgang decomposition and probabilistic methods
that consider the overall statistical model of the communication system.
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Chapter 3

One-Bit ADCs Data Detection with Perfect
Channel State Information

This chapter addresses the problem of data detection in one-bit MIMO
systems under the assumption that perfect CSI is available at the re-
ceiver. The main motivation behind this channel is two-fold in terms of
simplicity; only a comparator is needed at the receiver which alleviates
the need for adaptive-gain-control at the receiver [49, 55] and it facili-
tates the analysis of the proposed algorithms. The transmitted signal
contains symbols usually chosen from quadrature constellations with a
finite number of amplitudes such as QPSK, 16 or 64-QAM. The optimal
receiver that minimizes the detection error probability is the ML detec-
tor which requires an exhaustive search over the entire constellation. In
a MIMO system with multiple transmit antennas, the size of the search
set grows exponentially with their number, rendering the computational
complexity prohibitive. Sphere-decoding is a heuristic method that aims
to reduce this complexity by enumerating the possible transmitted vec-
tors that depend on the received signal. The Euclidean distance metric
is optimal when the received signal takes values with infinite precision
and the noise is i.i.d. Gaussian. It does not extend directly when they
are binary-valued as is the case for the one-bit quantized MIMO channel.
In this chapter, we first formulate the ML data detection for the one-bit
MIMO channel and show how the SD algorithm can be extended to our
system model.

3.1 . Maximum Likelihood Data Detection Problem

Consider the negative log-likelihood function of the real-equivalent
channel in Eq. (2.27) with b = 1. Given the channel H and a received
vector y, the ML detector seeks to reduce the detection error probability
by finding the transmitted signal x in the set X 2M that minimizes this
function

xML = argmin
x∈X 2M

−
2N∑
n=1

ln

[
Φ

(
ynh

T
nx

σ

)]
. (3.1)

As stated earlier, this is a difficult combinatorial problem with a search
space of size |X |2M . One useful observation is that ℓ(x) is log-convex
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over its argument which we can check by looking at the Hessian and ver-
ifying that the eigenvalues are non-negative. This allows us to relax the
discrete constraint and solve the problem using gradient-descent tech-
niques to obtain an initial estimate, then round each coordinate to the
nearest integer in X . Note that this is only a heuristic as it ignores the
combinatorial nature of the problem. We can try to improve the per-
formance through list detection, which consists of enumerating a set of
possible transmitted signals based on specified criteria, e.g. the second
stage nML step discussed in Chapter 2 [71, 79] or similar variants [40],
and then maximizing the log-likelihood over this list. The choice of the
criteria can be crucial as it impacts both the performance and how we
can control the size of the list. This second-stage approach aims to re-
duce the computational complexity while remaining as faithful as possible
to the original optimization problem. Under infinite precision assump-
tions and i.i.d. Gaussian noise, the ML metric reduces to a quadratic loss
which can be computed using SD algorithms that reduce the input search
space [106]. The nonlinearity presented by the quantizer does not allow
for the straightforward application of these algorithms. However, the ge-
ometric interpretation of SD gives an intuition as to how we can extend
it to our channel model. For this purpose, we review in the upcoming
section the basic idea of conventional SD in MIMO channels.

3.2 . Sphere-Decoding with One-Bit ADCs

3.2.1 . Review of Sphere-Decoding
In this section, we will review the basic concepts of SD for the classical

channel where the receiver has access to the signal with infinite precision

r = Hx+ z. (3.2)

The detection problem for this channel has been extensively studied
where different linear receivers can also be employed to retrieve x in-
cluding ZF and MMSE detectors. It’s convenient to translate the con-
stellation to a subset D of the 2M -dimensional lattice Z2M , by shifting
and scaling the coordinates in the constellation assuming minimum sym-
bol distance equal to 2. This set can be written as

D =

{
s =

1

2
(x+ 12M) : x ∈ X 2M

}
, (3.3)

where 12M is the all-one vector of size 2M × 1. Including this re-scaling,
the ML detector, under i.i.d. Gaussian noise, is the optimal criterion and
is given by

sML = argmin
s∈D

||t−Bs||2, (3.4)
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where B = 2H and t = y + H12M which takes values in R2N . This
is closely related to the integer least-squares problem where the matrix
B is usually referred to as the lattice-generating matrix [107], i.e., we
have the truncated lattice Γ = {Bs : s ∈ D} and we would like to find
the closest point in Γ to t. Due to the discrete nature of the problem,
finding an exact solution to this problem is known to be NP-hard for a
general lattice-generating matrix B, however, there exist heuristics that
can retrieve a solution. For example, the Fincke-Pohst algorithm [108]
is one of the earliest SD heuristics that was proposed to solve Eq. (3.4)
that we will focus on to illustrate the functionality. The basic idea is to
first constrain the search space over a sphere of radius d instead of the
entire lattice D, then enumerate all possible points within this sphere in
a manner analogous to traversing a tree. In other words, we need to find{

s ∈ D : ||t−Bs||2 ≤ d
}
. (3.5)

The procedure begins with a triangularization of B by performing a QR
factorization such that

B = QR =
[
Q1 Q2

] [R1

0

]
(3.6)

where Q is an orthogonal matrix1 and R is upper-triangular. With this
decomposition, we can write the metric as the following [106,109]

sML = argmin
s∈D

||t−Bs||2

= argmin
s∈D

||R1sZF −R1s||2 + c

= argmin
s∈D

||t̂−R1s||2 (3.7)

where we have the ZF estimate sZF = (BTB)−1BTt and c is a constant
that is independent of s. Exploiting the triangular structure of R1, the
Fincke-Pohst algorithm searches for the integer-valued coordinates, while
moving in descending order from m = 2M to m = 1, that verify the ra-
dius constraint. Once we find a point in D that is compatible, we store it
and proceed until the algorithm terminates before outputting the point
with the smallest Euclidean distance. In a practical communication sce-
nario, the received signal r is not arbitrary and is usually a perturbed
version of the lattice point by noise components that follow a known dis-
tribution. In addition, the matrix B also exhibits a known structure or
statistical behavior. Under these assumptions, the authors in [110] show
that SD has an average complexity that is polynomial in M , motivating

1An orthogonal matrix A is defined such that AAT = ATA = I.
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its implementation in practical systems [109]. One of the key questions
with SD is how to choose the radius d in advance. This radius can be set
as a scale of the SNR by observing that the noise vector magnitude fol-
lows a χ2 distribution. Therefore, we can choose d such that, with high
probability, the magnitude of the noise vector is less than d. Another
approach would be to set the radius value to infinity as this can guar-
antee to find at the first iteration a single point, then update the radius
accordingly. The SD algorithm cannot be applied directly to Eq. (3.1)
since we do not have a quadratic form, however, its functionality provides
us with the intuition on how such an extension is possible. First observe
that given a good initial estimate x̂, we would like to enumerate a list
of candidate points in its vicinity that might contain the ML solution.
We can choose to enumerate the points by defining a sphere around x̂.
It’s evident that the parameters of the sphere should also take advantage
of the available CSI at the receiver. We will elaborate in detail on this
reasoning in the upcoming subsection.

3.2.2 . Likelihood Function and Taylor Series Approximation
Given an initial estimate x0 that we can obtain with gradient-descent

iterations, we expand the negative log-likelihood function in Eq. (3.1) in
Taylor series form up to second order around this point to obtain

ℓ(x) = ℓ(x0) + (x− x0)
T∇ℓ(x0) +

1

2
(x− x0)

T∇2
ℓ(x0)

(x− x0) (3.8)

where ∇ℓ(x0) and ∇2
ℓ(x0)

are respectively the gradient and Hessian opera-
tors evaluated at x0 and given by the following expressions after a simple
application of the chain rule

∇ℓ(x) =
∂ℓ(x)

∂x
= − 1

σ

2N∑
n=1

κ

(
ynh

T
nx

σ

)
ynhn,

∇2
ℓ(x) =

∂2ℓ(x)

∂x2
=

1

σ2

2N∑
n=1

η

(
ynh

T
nx

σ

)
hnh

T
n ,

(3.9)

(3.10)

where we define the following functions for convenienceκ(u) =
ϕ(u)

Φ(u)
,

η(u) = κ(u)
[
u+ κ(u)

]
.

(3.11)

(3.12)

This second order approximation allows us to describe a quadratic sur-
face around this initial estimate x0. If the optimal solution x∗ is given,
then the Taylor expansion will describe the best quadratic approxima-
tion of the likelihood function at that point. Although this statement
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is obvious, it provides the motivation behind the algorithm. Mainly, if
we can find a quadratic surface described by its data-dependent param-
eter pair (∇ℓ(x),∇2

ℓ(x)) that is close to the optimal and search the points
in its vicinity, then we might be able to retrieve the ML solution that
maximizes (3.1). The advantage of this formulation is that we can lever-
age the geometry of the problem, at least up to second-order, to remain
as faithful as possible to the original objective function. Moreover, the
approximation takes into account the effect of the initial estimate and
CSI on which it depends nonlinearly through the functions in Eq. (3.11)
and (3.12). A summary of the proposed algorithm is given in Algorithm 1
and outlined in details as the following:
Step 1: We can obtain an initial estimate of the solution x̂, by relaxing
the discrete condition and iterating using gradient descent with a step
size set to ζ,

xt+1 = xt − ζ∇ℓ(xt). (3.13)

Note that since the objective function is convex, the step size ζ can be
set optimally according to its smoothness factor (Lipschitz constant) in
order to ensure convergence. We elaborate more on this in the discussion
on the computational complexity in the following section. This gives us
the initial estimate x̂ ∈ R2M . While this results in a solution under
the relaxed constraint, we still need to retrieve a discrete solution in
X 2M . A naive approach would be to round each real coordinate to the
closest integer, i.e., projecting to the closest neighbor with respect to
the Euclidean distance. We refer to the overall result (iterative gradient-
descent and then rounding) as the nonlinear zero-forcing (NLZF) solution

xNLZF = ProjX 2M (x̂), (3.14)

where the projection operation ProjX 2M (·) simply means in this context,
rounding the coordinates of x̂i for i = 1, . . . , 2M to the closest points in
the constellation X 2M .

We expand the log-likelihood function around x̂ to obtain a quadratic
function. For any fixed level set of ℓ(x) and assuming the gradient term
is negligible, this defines the boundary of an ellipsoid

(x− x̂)T∇2
ℓ(x̂)(x− x̂) = d. (3.15)

Fig. 3.1 gives illustrates closely the geometric intuition of the algorithm
for two dimensions. The eigenvalues of the Hessian represent the varia-
tion of our quadratic approximation along each principle axis. For ex-
ample, a large eigenvalue indicates a sharp decrease of the approximate
likelihood, therefore it is reasonable to exclude points along that direction
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Figure 3.1: Illustration of second stage SD in two dimensions. The initial esti-
mate from stage 1, the nearest neighbor based on the Euclidean distance and
the ML estimate are x̂, x̄ and x∗, respectively. The shaded ellipse boundary
is defined by d, the dashed circle represents the search region under the Eu-
clidean distance and the enumerated points are represented in a larger scale.

when enumerating our list. This property is lost if we were to consider
points based only on a fixed Euclidean distance from x̂ as shown by the
dashed circle. Rounding the coordinates directly to find the closest point
to x̂, we would get an incorrect solution x̄. We can add more candi-
date points by taking a larger ellipsoid, which is well-motivated since we
expect these new points to remain within this region described by the
objective function’s second-order dynamics. Obviously, and as noted in
the previous remark, this depends on whether the quadratic approxima-
tion in (3.15) is sufficiently accurate in describing these variations, which
we show through numerical experiments is indeed the case for regimes of
interest.
Step 2: We first perform a Cholesky decomposition on the Hessian,
∇2

ℓ(x̂) = RTR, which we can do since the log-likelihood is convex. Then
from (3.15) we obtain the condition

||R(x̂− x)||2 ≤ d

||t−Rx||2 ≤ d

||t̂− R̃s||2 ≤ d. (3.16)

Translating x to the integer truncated lattice D, we now see that this

30



coincides exactly with the objective function presented in Eq. (3.7) of
SD for unquantized channels with the vector t̂ = R(x̂ − 12M) and the
upper-triangular matrix R̃ = 2R acting as the observations and effective
channel, respectively. The final steps consist of populating the list where
the original ML metric will be evaluated.
Step 3: We can now use any efficient SD algorithm, for example Fincke-
Pohst [108], to construct a list S of the closest candidates. The only
challenge remaining consists of how we choose the initial radius d which
we elaborate upon in this step. The algorithm procedure is analogous to
constructing a tree with 2M levels whereby a path at depth j corresponds
to a partial vector s2Mj = [sj, sj+1, . . . , s2M ] which is assigned the weight
for each given j [106]

φ
(
s2Mj

)
=

2M∑
i=j

∣∣∣∣∣t̂i −
2M∑
m=i

r̃i,msm

∣∣∣∣∣
2

. (3.17)

Fixing d, the SD algorithm enumerates all vectors such that the following
set of constraints is satisfied

φ
(
s2Mj

)
≤ d, for j = [1, . . . , 2M ] . (3.18)

A key difference in our approach is that we need to fix |S| to a certain
number τ during the enumeration. Therefore, our algorithm needs to
output the τ closest vectors or leaf nodes

[s1, . . . , sk, . . . , sτ ] (3.19)

that are sorted according to their weights

d = [d1, . . . , dk, . . . , dτ ], (3.20)

where dk = φ(sk) and d1 ≤ ... ≤ dk ≤ ... ≤ dτ . This list can then be
defined, after translating back to the constellation X as

S =
{
[x1, . . . ,xk, . . . ,xτ ] ∈ X 2M

∣∣ ||t−Rxk||2 ≤ dτ
}
. (3.21)

In order to guarantee that the minimum number of points satisfies the
list size constraint and to alleviate the problem of initializing the radius,
we first define the following event

E = {The search sphere is not empty}, (3.22)

and initialize the elements of the radius vector d to infinity, which also
corresponds to the weights of the candidate points sorted in increasing
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order. While the event E remains true, the SD algorithm will then re-
trieve a point or a leaf node according to the largest weight dτ in d and
then appends it to the list before sorting d and S in ascending order
of weights. Until the list is fully populated, the event E remains true
since the largest radius in d is always set to infinity, therefore the algo-
rithm is guaranteed to enumerate τ points. Once the maximum radius
dτ becomes finite, the algorithm continues to enumerate the remaining
points inside the sphere with that given radius, which can only decrease
as the algorithm continues, otherwise, this will contradict the constraint.
At each remaining iteration, the number of leaf nodes is only finite, and
therefore the algorithm is guaranteed to converge and terminate once
there are no more points that satisfy the constraint.
Step 4: Finally, we evaluate the likelihood function over the set S instead
of X 2M

xSD = argmin
x∈S

ℓ(x). (3.23)

Algorithm 1 Sphere-decoding with one-bit ADCs
Input: Channel matrix H , binary observations vector y, noise variance
σ, candidates list size τ .
Initialization: Fix the step size ζ, maximum number of iterations is
tmax, tolerance threshold ε, and the elements of the weight vector d in
(3.20) are set to ∞, |S| = ∅.
Step 1: Obtain an initial estimate x̂ using gradient descent:
while t ≤ tmax and |ℓ(xt)− ℓ(xt−1)| > ε|ℓ(xt−1)|

xt+1 = xt − ζ∇ℓ(xt)

end
Store x̂ = xtfinal .
Step 2: Perform the Cholesky factorization ∇2

ℓ(x̂) = RTR.
Step 3: Begin populating the candidates list S with the SD algorithm
and set d = dτ :
while E is true

Find leaf node x̆ such that φ(x̆) ≤ dτ
Append S ← x̆
Update d(τ) = φ(x̆)
Sort d and S in ascending order of weights
Update the sphere radius in (3.16) d = dτ

end
Step 4: Find x∗ = argmin x∈S ℓ(x).
Output: xSD = x∗
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3.2.3 . Computational Complexity
In order to assess the computational complexity of the proposed al-

gorithm, we can analyze separately both stages of finding the initial es-
timate x̂ (Step 1) and evaluating the likelihood after constructing the
list S of points inside the sphere (Step 2–4). The convergence and
number of iterations required highly depend on the choice of the step
size ζ. Given that the objective function is convex (the Hessian is semi-
definite as shown in the previous part), and that the gradient is Lipschitz
continuous with constant L, setting the step size ζ ≤ 1

L
will guarantee

convergence with a rate O(1/K), where K is the number of iterations.
And by letting

ζ ≤ σ2

λ2
max(H)

, (3.24)

with λmax(H) denoting the largest singular value of the matrix H , this
should guarantee the convergence of the gradient descent algorithm (please
see Appendix B for details). Note that this choice of the step size should
be sufficient for any quantizer resolution as the upper bound in (3.24)
applies for any δ and b. We note that the number of elementary oper-
ations required to obtain the largest eigenvalue in (6.11) is in the order
of O(MN2) to compute HTH and O(M3) to find the eigenvalues. The
gradient descent operations scale as O(KMN), where K depends on the
step size ζ and the acceptable tolerance threshold ε. We show in our nu-
merical results the average number of iterations required under several
assumptions on the quantizer’s resolution, SNR, and number of transmit
and receive antennas. For the second stage of the algorithm, the num-
ber of operations for computing the Cholesky decomposition in Step 2
scales as O(M3). Within our framework, assessing the average complex-
ity of constructing the candidates list S in a light similar to that of [110]
would be an interesting direction of future work but out of the scope of
this paper. For this purpose, we resort to evaluating the average number
of floating points operations (nflops) numerically as will be detailed in
the section on numerical experiments. Finally, in Step 4, we evaluate
the likelihood which requires O(NM) operations and scales with |S| as
O(|S|MN), which in our case can be fixed as desired.

3.3 . Simulation Results

3.3.1 . ML Lowerbound Criterion
In order to assess the gap between the proposed schemes and opti-

mality in terms of error probability, we adopt the oracle lower bound
method proposed in [86]. Assume that q(y|x) is the likelihood function

33



that one would like to maximize. Then, it can be readily shown that the
probability of ML detection error is lower bounded as [86]

PML(error) ≥ P
{
q(y|x) < q(y|xxx†)

}
, (3.25)

where x and y are the actual input and output of the channel, respec-
tively; xxx† is any point inside the input set (which can depend on the
output y or even on the input x). In particular, when xxx† is the ML
solution, equality in (3.25) is achieved. When xxx† is the actual input, the
right-hand side of (3.25) is 0 and the inequality is trivial. Intuitively, the
inequality says that whenever there exists a point with a strictly higher
likelihood than the true input, ML detection cannot return the correct
decision.

3.3.2 . Vector Error Rates Performance
We now assess the performance of the proposed one-bit quantized

SD algorithm. We consider a MIMO system with several assumptions
on the number of transmit antennas, receive antennas, the SNR and
the maximum number of candidate points in the set S. We begin by
investigating the performance with i.i.d. Rayleigh fading and QPSK
signaling (i.e., X̃ = {±1± 1j} or X = {−1,+1} for the real equivalent
channel). The results are shown in Fig. 3.2-3.4 where the cardinality of
the enumerated set S in Eq. (3.21) is fixed to 3 points for several MIMO
antenna setups. For the case of a 2 × 16 and 4 × 32-MIMO system in
Fig. 3.2 and Fig. 3.3, the exact ML with exhaustive search, Eq. (3.1),
can be computed directly. It can be readily seen that the SD approach
achieves the ML performance in terms of VER compared to naive NLZF
(3.14). For reference, we also present the lower bound (3.25) for the SD
metric which is shown to be tight as expected. As we double the number
of transmit and receive antennas, we observe that a candidate set size of 3
points remains near-optimal for a 8×64-MIMO setup in Fig. 3.4c. Given
the increased ML complexity, we only show the lower bound which is tight
with the proposed SD algorithm solution. Compared to the Euclidean
distance rounding, we can attribute this performance improvement to
the reasoning provided earlir. In other words, by enumerating the points
with respect to the basis described by the original objective function
second-order dynamics, ∇2

ℓ(x), we are more likely to capture the optimal
solution x∗ since we do not ignore the available CSI while doing this
enumeration, in contrast to the approach proposed by the second stage
nML method. Moreover, in contrast to the heuristic proposed in [81],
our extension is more aligned with the conventional SD since it does not
involve pre-processing stage that depends on listing all possible transmit
vectors in XM .
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Figure 3.2: VER for 2× 16-MIMO with QPSK, perfect CSI, and fixed candi-
dates list cardinality |S| = 3 for varying SNR.

We are also interested in evaluating the performance as we increase
the constellation size to 16-QAM, which entails an increase in the search
space when computing the ML metric. As a benchmark, we compare
our results with the two-stage near ML (nML) method proposed in [71].
Fig. 3.5 shows the achievable VER for a 8 × 128-MIMO system with
Rayleigh fading and 16-QAM signaling with varying sizes of the candidate
set S. The radius χ has been set equal to 1.3 and the average size of
C over the SNR range is 4.25 points. We evaluate the performance of
the SD algorithm with a starting size of |S| = 2. For a similar size of
candidate sets, the SD solution has an improved performance in terms of
VER. The performance gradually improves and the lower bound on the
ML becomes tighter as we increase the list size to 5. Increasing both the
number of transmit antennas and the constellation size, these numerical
results indicate how the SD algorithm remains robust to the added search
complexity. The performance with NLZF is the weakest since rounding
the coordinates based on the Euclidean distance is sub-optimal.

3.3.3 . Performance Assessment in a Spatially Correlated Chan-
nel

It is of interest to investigate the performance of our proposed algo-
rithm in a typical single-cell mMIMO environment. We now consider
a more realistic setting, where the antennas at the base station exhibit
spatial correlation between them. In other words, we assume that the
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Figure 3.3: VER for 4× 32-MIMO with QPSK, perfect CSI, and fixed candi-
dates list cardinality |S| = 3 for varying SNR.

columns in the channel matrix

H̃ = [c1, . . . , cm, . . . , cM ] (3.26)

are each drawn according to CN (0N ,Cm) and are independent amongst
each other (i.e., we do not assume that the transmitters are co-located).
The channel covariance matrices, Cm are generated according to the
model specified in [111] and as detailed in Appendix C. We assume a
10× 72-MIMO system with QPSK signaling and that the users average
angle of arrivals (AoA) are drawn uniformly from [−π

3
, π
3
] where they

share the same value of the angular spread AS = 5◦. The results are
shown in Fig. 3.6 where we also compare our proposed approach with the
linear Bussgang receivers: the BMMSE Eq. (2.22) and BZF Eq. (2.20).
We observe that the effect of receiver spatial correlation has a detrimental
effect on the performance. Nevertheless, the proposed approach achieves
a performance that is tight with the ML lower bound for that particular
channel.
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Figure 3.4: VER for 8× 64-MIMO with QPSK, perfect CSI, and fixed candi-
dates list cardinality |S| = 3 for varying SNR.

3.3.4 . Numerical Assessment of SD Computational Complex-
ity

We first focus on the first stage of obtaining the initial estimate x̂
(Step 1). The average number of iterations, KSD, conducted by gra-
dient descent and the first stage of the nML solution [71] are shown in
Table 3.1. We note that the number of iterations increases with the SNR.
We can justify this behavior by examining the eigenvalues of the Hessian
in (3.10) which are governed by the values of the function η(·). As the
SNR increases, the eigenvalues become very small, indicating that the
curvature of the likelihood function is becoming less steep and therefore
requiring more iterations in order to reach convergence. Moreover, our
approach requires a fewer number of iterations compared to nML. This
can be associated with the fact that the chosen step size in our setup is
set according to the Lipschitz constant of the gradient, whereas in [71] it
is fixed for all SNR values.
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Figure 3.5: VER for 8 × 128-MIMO with 16-QAM, perfect CSI and varying
SNR for several data detection metrics, and different sizes of S.

Table 3.1
Average number of iterations KSD and KnML with b = 1, different

assumptions on the SNR, constellation size, and antenna configurations.

ρ = −10 dB ρ = 10 dB
KSD KnML KSD KnML

QPSK, M = 8, N = 64 35.7 44.5 198.3 313.6

16-QAM, M = 4, N = 64 32.9 64.1 153.9 267.6

16-QAM, M = 8, N = 128 44.6 49.7 193.3 307.6

3.4 . Summary

In this chapter, we have formulated the data detection problem in
the one-bit quantized MIMO channel. Based on a geometric interpreta-
tion of the likelihood function, it was shown that the conventional SD
algorithm can be extended to this channel model through a second-order
approximation. In contrast to the proposed heuristics in the literature,
the approach exploits the available CSI in constructing the list of candi-
date points through the Hessian function. In our numerical experiments,
we assess the VER performance and show that the proposed approach is
near-optimal with respect to an oracle-based lower bound on the ML error
probability, under different assumptions on MIMO systems and constella-
tion sizes. Moreover, we look at the effects of spatial correlation between
the receive antennas for the given channel of each transmitter, it was
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Figure 3.6: VER with QPSK, perfect CSI for a 10×72-MIMO system with one-
bit quantization and a list size |S| = 5. The angular spread for the correlated
channels case is set to 5◦.

shown that, in general, the correlation degrades the overall performance
in terms of VER compared to the i.i.d. case, however, the algorithm re-
mains near-optimal compared to the ML performance. Finally, we study
numerically the computational complexity of the first stage in the SD
algorithm where it is demonstrated that a judicious choice of the step
size reduces the number of iterations required during gradient descent.
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Chapter 4

One-Bit ADC Data Detection without Prior
Channel State Information

In practice, the realization of the channel might not be readily avail-
able at the receiver for the data detection process. Different transmission
strategies that address this problem can be used, for example, differential-
phase-shift-keying where information is carried in the phase between con-
secutive data symbols. For the MIMO Rayleigh flat-fading channel, the
authors in [112] propose unitary space-time modulation schemes that do
not require knowing the channel gain. Another standard approach is to
estimate the fading coefficients and conduct the detection process ac-
cordingly [93]. The performance can also be improved when the detected
data symbols are re-used to refine the estimate of the channel coefficients.
This procedure is known as joint channel and data estimation. This is
feasible when the channel is assumed to be constant over a sufficiently
long duration and the effective data rate is not heavily penalized by the
training overhead cost. These strategies can be seen as special cases
of addressing the general problem of noncoherent communication [113],
where it’s of interest to design transmission schemes that can achieve
high transmission rates in fading channels without any a priori CSI. We
note that the noncoherent capacity for the block-fading MIMO quantized
channel is not known and only approximations are available in limiting
regimes such as very low SNR [67] or large system limits where both the
number of transmitters and receivers grow to infinity [69]. Nevertheless,
the same training strategies can be applied, however, with incurred diffi-
culties due to the nonlinearity induced by the quantizer. As discussed in
Chapter 2, linear channel estimators based on the Bussgang decomposi-
tion have been proposed and were also used to compute lower bounds on
the capacity under the assumptions of channel hardening and favorable
propagation [46, 68]. These estimators are sub-optimal as they ignore
the data dependence of the noise in the residual term due to the lin-
earization. In addition, machine learning techniques were also proposed
such as the SVM and deep learning approaches that attempt to learn the
channel [40,78,79].

In this chapter, we tackle the problem of data detection in the absence
of CSI in one-bit quantized MIMO block-fading channels while focusing
on two approaches. The first one considers a two-stage channel estima-
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tion and data detection procedure that formulates the problem as binary
classification based on the statistical “probit model" of the channel. This
formulation offers more flexibility in studying achievable rates in the con-
text of mismatched decoding, and in particular, the GMI. We use this
approach to investigate the instability of the Gaussian CDF under im-
perfect CSI as reported in [79,87]. In the second part, we focus on a real
channel model and formulate the ML metric that processes the trans-
mitted input and the pilot data jointly. Evaluating this metric exhibits
many challenges that stem from two main difficulties. Mainly, multivari-
ate Gaussian orthant probabilities do not have exact forms in general,
therefore closed-form expressions of the ML cannot be obtained. For this
purpose, we propose an approximation based on the Laplace method.
Secondly, the discrete nature of the optimization is another challenge
that we address by adapting the SD problem proposed in Chapter 3.

4.1 . Channel Estimation and Data Detection with Probit
Regression

We can formulate the channel estimation and data detection stages
problems as binary classification procedures under the framework of pro-
bit regression, essentially the analog of logistic regression with the only
difference being the assumption on the latent variable distribution, which
is in our case Gaussian. We convert the binary outcomes of the chan-
nel output from {−1, 1} to {0, 1} only to emphasize the similarity with
the standard probit model form. Under perfect CSI, for the coherent
channel, the ML metric can then be re-written as

xML = argmin
x∈X 2M

W (y|x,H)

= argmin
x∈X 2M

−
2N∑
n=1

ln

[
Φ

(
hT

nx

σ

)
yn+1

2 ·
(
1− Φ

(
hT

nx

σ

))
1−yn

2

]
.

(4.1)

We refer to this metric as the matched ML. We assume a pilot trans-
mission strategy as in Eq. (2.4) which we convert to real-equivalent form
similarly to Eq. (2.2).

4.1.1 . Channel Estimation Stage
For the channel estimation of the procedure, we are interested in the

pilot transmission stage as per Eq. (2.36)

Yp = Q1(XpH̄ +Zp). (4.2)

41



We note that the pilot matrix X̃p is unitary and defined from a truncated
DFT matrix of size Tp×Tp such that X̃pX̃

H

p = TpIM . The matrices take
the following forms

Yp = [yp,1, . . . ,yp,n, . . .yp,N ] yp,n ∈ {0, 1}2Tp

Xp =
[
xp,1, . . . ,xp,t, . . .xp,2Tp

]T
xp,t ∈ R2M

H̄ =
[
h̄1, . . . , h̄n, . . . , h̄N

]
h̄n ∈ R2M

Zp = [zp,1, . . . ,zp,n, . . . zp,N ] , zp,n ∈ R2Tp

Taking the negative logarithm of the posterior distribution in Eq. (2.37)
based on Bayes’ theorem, we can re-write the MAP estimator as N par-
allel optimization problems for each channel vector

ĥn = argmin
hn∈R2M

L(hn)

= argmin
hn∈R2M

− 1

2Tp

2Tp∑
t=1

(
ytp,n+1

2

)
ln

[
Φ

(
hT

nxp,t

σ

)]

+
(

1−ytp,n
2

)
ln

[
1− Φ

(
hT

nxp,t

σ

)]
−

2M∑
m=1

ln
[
P
(
h̄n,m

)]
.

(4.3)

We recognize the first summation on the right-hand side as a “cross-
entropy" term LCE(h̄n). In fact, we can retrieve almost the same ex-
pression by minimizing the Kullback-Leibler divergence between the true
distribution of the labels yp,n and the estimates obtained from the probit
model

ŷp,n =

[
Φ

(
h̄

T
nxp,1

σ

)
, . . . ,Φ

(
h̄

T
nxp,t

σ

)
, . . . ,Φ

(
h̄

T
nxp,2Tp

σ

)]T
. (4.4)

Assuming a Gaussian prior on the channel vectors with i.i.d. elements,
the MAP channel optimization problem can then be summarized as

ĥn = argmin
hn∈R2M

LCE(h̄n) + ηp||h̄n||2. (4.5)

We see that the prior plays the role of an L2 regularization term, where
we added a tunable hyperparameter ηp. To this end, it can be seen
that the channel estimation procedure is analogous to a binary classi-
fication problem where we need to find the hyperplane parameters h̄n

that best minimize the cross-entropy loss function. Furthermore, we re-
parameterize the objective function by allowing the SNR to be absorbed
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within the channel weights and define θ̄n = h̄n

σ
. This modification as-

sumes that we do not require knowledge of the SNR during the pilot
training. This is a convex optimization problem since the Hessian of the
objective function in Eq. (4.5) is positive definite. Therefore classical
gradient descent techniques can be employed to find the optimal weights
θ̄n for n = 1, 2, . . . , 2N . At each new iteration k + 1 we update the
weights as

θ̂n,k+1 = θ̂n,k − ζp∇L
(
θ̂n

)
, (4.6)

with ζp and ∇L(θ̂) denoting the step size and the gradient of the loss
function respectively. The gradient with the probit model is found as

∇L
(
θ̄n

)
=− 1

2Tp

2Tp∑
t=1

 ytp,n+1

2
− Φ

(
θ̄
T
nxp,t

)
Φ
(
θ̄
T
nxp,t

)(
1− Φ

(
θ̄
T
nxp,t

))


×
[
ϕ
(
θ̄
T
nxp,t

)]
+ 2ηpθ̄. (4.7)

The regularization term, which is only a consequence of the MAP for-
mulation, can add robustness by promoting smaller weights. From a
geometric perspective, the L2 term transforms the optimization into a
strongly convex problem which can also lead to faster convergence with
an appropriately chosen step size. The final obtained estimate of the
weights matrix is then used during the data detection stage to obtain

Θ̂ =
[
θ̂1, . . . , θ̂n, . . . , θ̂N

]
(4.8)

4.1.2 . Data Detection Stage
We propose two different schemes for the data detection stage. When

the complexity is not prohibitive, we can employ an exhaustive mis-
matched ML (mML) at the receiver as the first method. In other words,
instead of W (y|x,H), we use the estimated coefficients

x̂mML = argmin
x∈X 2M

Q(y|x, Θ̂). (4.9)

We refer to this as the probit mML under exhaustive search. We can
also devise the data detection stage in a fashion similar to that of channel
estimation. Since data detection is conducted independently at each time
instant, we drop the time subscript for brevity. For this purpose, we relax
the discrete constraint by assuming a box boundary similar to the one
presented by C. Thrampoulidis et al. [114]. The latter condition allows
us to constrain the search space by imposing a maximum amplitude on
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the coordinates xd,m in xd,m. We present the derivations according to
the real-channel model, but re-written in the following form

Yd = Q1

(
H̆Xd +Zd

)
,

[
R{Ỹ d}
I{Ỹ d}

]
= Q1

([
R{H̃} −I{H̃}
I{H̃} R{H̃}

] [
R{Xd}
I{Xd}

]
+

[
R{Zd}
I{Zd}

])
. (4.10)

Under the hard box constraint, we obtain

x̂d,t = argmin
|xd,m|≤max(X )∀m

LCE(xd,t), (4.11)

where we define θ̆ = h̆n

σ
and let

LCE(xd,t) =
−1
2N

2N∑
n=1

(
yd,n+1

2

)
ln
[
Φ
(
θ̆
T
xd

)]
+
(

1−yd,n
2

)
ln
[
1− Φ

(
θ̆
T
xd

)]
. (4.12)

The first stage consists of updating the gradient according to

x̂d,k+1 = x̂d,k − ζd∇LCE(x̂d,k), (4.13)

with the gradient taking the form at each coordinate

∂LCE(xd)

∂xd

= − 1

2N

2N∑
n=1

 yd,n+1

2
− Φ

(
θ̆
T

nxd

)
Φ
(
θ̆
T

nxd

)(
1− Φ

(
θ̆
T

nxd

))


×
[
ϕ
(
θ̆
T

nxd

)
θ̆n

]
. (4.14)

The hard constraint is enforced at each iteration by projecting the up-
dated value on max(X ) × B∞, where B∞ is the l∞ unit ball. We study
the achievable rates in the context of mismatched decoding. In particu-
lar, we look at the GMI in its dual form which is given by the following
expression [115]

IGMI(x,y) = sup
s≥0

EPXY

[
log

q(x,y)s∑
x̄ PX(x̄)q(x̄,y)s

]
. (4.15)

It is an achievable rate obtained under the assumption of a random cod-
ing argument with an i.i.d codebook and an arbitrary decoding metric
q(x,y). It constitutes a lower bound on the mismatched and matched
capacity and can be further optimized under the input distribution, how-
ever, it remains only as a lower bound due to the absence of a converse in
general. Note that for s = 1 and a metric matched to the channel statis-
tics, i.e. q(x,y) = W (y|x), we recover the known mutual information
(MI).
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4.2 . Optimal Data Detection for the Real Channel Model
with Statistical CSIR

In what follows, for simplicity and ease of illustration, we assume a
real channel model. The channel matrix realization is not given a priori
and only its statistical distribution is known. The system model is then
given as the following

Y = Q
(
H̄X +Z

)
,

[Yp Yd] = Q
(
H̄ [Xp Xd] + [Zp Zd]

)
. (4.16)

The transmitted signal is decomposed into two independent frames, where
Xp is a pre-determined pilot matrix of size M × Tp known at both the
transmitter and receiver, and Xd is the unknown data matrix whose
columns are in XM and with total length Td. The corresponding pi-
lot and data binary observations are given by Yp ∈ {±1}N×Tp and
Yd ∈ {±1}N×Td , respectively. For each transmission phase i ∈ {p, d},
we have

Yi = Q(H̄Xi +Zi), (4.17)

such that
H̄ = [h̄1, . . . , h̄n, . . . , h̄N ]

T, h̄n,m ∼ N (0, 1)
Xi = [xi,1, . . . ,xi,t, . . . ,xi,Ti

],
Yi = [yi,1, . . . ,yi,n, . . . ,yi,N ]

T, yi,n ∈ {±1}T
Zi = [zi,1, . . . ,zi,n, . . . ,zi,N ]

T, zi,n ∼ N (0, σ2
i IT )

Under this formulation, with uniform signaling and assuming the channel
statistics are known, the optimal metric is then

X∗
d = argmax

Xd

P (Yd,Yp|Xd,Xp)

= argmax
Xd

EH̄

[
P
(
Yd,Yp|Xd,Xp, H̄

)]
, (4.18)

noting that Xd ∈ XM×Td . The difficulty in evaluating this metric is two-
fold: we have to average over the channel distribution and solve a hard
combinatorial problem as in the perfect CSI case. We highlight that a
similar metric is proposed for the unquantized MIMO channel in [116]
and a closed-form expression can be obtained when the channel is Gaus-
sian. Due to the severe quantization in this setting, obtaining a tractable
expression in general is not possible, to the best of our knowledge. In fact,
when the channels are independent at each receive antenna and follow
a multivariate Gaussian distribution, it can be shown that (4.18) corre-
sponds to the evaluation of multivariate Gaussian orthant probabilities
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which is, in general, a hard problem especially for large dimensions [117].
To simplify the problem, we first assume that we can detect each vector
at each time instant t independently, i.e., optimize over xd,t ∈ XM and
we can therefore drop the time subscript for the data detection phase.
As a second step, conditional on the channel and transmitted data, the
two transmission stages are independent and we can re-write (4.18) as

x∗
d = argmax

xd∈XM

E
[
P
(
yd|xd, H̄

)
· P
(
Yp|Xp, H̄

)]
= argmax

xd∈XM

∫
P
(
yd|xd, H̄

)
· P
(
Yp|Xp, H̄

)
· P
(
H̄
)
dH̄

= argmax
xd∈XM

P (Yp|Xp)

∫
P
(
yd|xd, H̄

)
· P
(
H̄|Yp,Xp

)
dH̄

= argmax
xd∈XM

EH̄|Yp,Xp

[
P
(
yd|xd, H̄

)]
. (4.19)

From a Bayesian perspective, this corresponds to maximizing the “predic-
tive distribution" after averaging over the posterior of the latent channel
variables. In other words, the detection is conducted without explicit es-
timation of the channel. This, in turn, requires a closed-form derivation
of the channel’s posterior distribution given the pilot information

P
(
H̄|Yp,Xp

)
=

1

Ω
P
(
Yp|Xp, H̄

)
· P
(
H̄
)
, (4.20)

where we have the normalizing factor or the “evidence"

Ω =

∫
P
(
Yp|Xp, H̄

)
· P
(
H̄
)
dH̄ . (4.21)

With the independence across receive antennas, we can further simplify
(4.20)

P
(
H̄|YpXp

)
=

N∏
n=1

P
(
h̄n|Yp,Xp

)
=

N∏
n=1

[
1

ωn

P
(
yp,n|Xp, h̄n

)
· P
(
h̄n

)]

=
N∏

n=1

[
1

ωn

Tp∏
t=1

Φ

(
ytp,nh̄

T
nxp,t

σp

)
· P
(
h̄n

)]
, (4.22)

where

Ω =
N∏

n=1

ωn, and ωn =

∫ Tp∏
t=1

Φ

(
ytp,nh̄

T
nxp,t

σp

)
· P
(
h̄n

)
dhn. (4.23)
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Computing the integral in (4.19) with respect to the distribution in (4.20)
still does not give any closed tractable form. One can then resort to nu-
merical or Monte-Carlo (MC) sampling methods, but as we stated at the
beginning of this section, this can be difficult in general, especially when
Tp is large [117]. For this purpose, we propose to retrieve an approximate
solution using the Laplace method [88].

4.2.1 . Laplace Approximation of the Channel Posterior Dis-
tribution

The Laplace approximation (LA) is a Bayesian method in the sense
that it approximates the posterior distribution in (4.20) with a Gaussian.
The first step consists of expanding the logarithm of (4.20) in Taylor
series form up to second-order around a point ĥn usually taken to be the
MAP estimate, where we expect most of the density to be concentrated.
Assuming the channel matrix entries are i.i.d. and follow a Gaussian
distribution and unit variance, define

L(H̄) = ln
[
P
(
Yp|Xp, H̄

)
· P
(
H̄
)]

= ln

[
N∏

n=1

P
(
yp,n|Xp, h̄n

)
· P
(
h̄n

)]

=
N∑

n=1

L(h̄n), (4.24)

where

L(h̄n) =

Tp∑
t=1

ln

[
Φ

(
ytp,nh̄

T
nxp,t

σp

)]
− 1

2
||h̄n||2. (4.25)

Then for each n in parallel we find the MAP estimate, i.e, conduct the
following optimization

ĥn = argmax
h̄n∈RM

L(h̄n). (4.26)

This can be efficiently done using first-order gradient methods, since this
objective function is concave in h̄n with the assumption that the prior
distribution on the channel is Gaussian. Exponentiating and normalizing
the approximation, the final result is as follows

P
(
H̄|Yp,Xp

)
≈ Q

(
H̄|Yp,Xp

)
≈

N∏
n=1

ϕM

(
h̄n;µn,Σn

)
(4.27)

≈
N∏

n=1

1

ω̂n

e−
1
2
(h̄n−µn)TΣ

−1
n (h̄n−µn), (4.28)
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with ϕk(.;µ,Σ) representing the multivariate Gaussian distribution of a k
dimensional vector with mean µ and covariance matrix Σ. The Gaussian
parameters in (4.28) are given by

ω̂n =
√

(2π)M |Σn|
µn = ĥn − (∇2

L(ĥn)
)−1∇L(ĥn)

Σn = −(∇2
L(ĥn)

)−1,

(4.29)

with the gradient and the Hessian of L(h̄) having the following expres-
sions 

∇L(h̄n) =
1

σp

Tp∑
t=1

κ

(
ytp,nh̄

T
nxp,t

σp

)
ytp,nxp,t − h̄n

∇2
L(h̄n)

= −

[
1

σ2
p

Tp∑
t=1

η

(
ytp,nh̄

T
nxp,t

σp

)
xp,tx

T
p,t + IM

]

and κ(·), η(·) given as in (3.11) and (3.12) respectively. The detailed
derivations can be found in Appendix D.

4.2.2 . Approximation of the ML Metric
After obtaining the Gaussian approximation of the channel’s posterior

distribution, we can now evaluate (4.19) in order to obtain a closed-
form solution, where the expectation is now taken over the multivariate
Gaussian in (4.28)

xLA = argmax
xd∈XM

EQ

[
P
(
yd|xd, H̄

)]
= argmin

xd∈XM

−
N∑

n=1

ln

[
Φ

(
yd,nx

T
dµn√

σ2
d + xT

dΣnxd

)]
. (4.30)

The derivation of this last equation is given in Appendix E for the sake of
completeness. We highlight that this problem is still a hard optimization
problem with the discrete nature of xd, in addition to the dependence of
the noise on the transmitted signal. However, the evaluation of (4.30)
is simpler than that of (4.19) since we no longer have high dimensional
orthant probabilities. This approximation can also be seen as a quantized
version of the Generalized Gaussian Model (GGM) proposed in [118]
where prior to quantization, the noise second-order statistics are data
dependent due to the nonlinearity. In particular, we retrieve the linear
self-interference model as per Definition 1 in [118]

w = ϱ(xd) + σdn1 +W (xd)n2, (4.31)
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such that {
ϱ(xd) = Ĥxd

W (xd) = (In ⊗ xT
d )C,

where Ĥ = [µ1, . . . ,µN ], n1 ∼ N (0, IN), n2 ∼ N (0, INM) and C ∈
RNM×NM is a block diagonal matrix of

[
CT

1 , . . . ,C
T
n , . . . ,C

T
N

]
such that

Cn is retrieved from the Cholesky decomposition of Σn.

4.2.3 . Choice of Pilot Transmission Strategy
The metric in (4.30) is for a general matrix Xp, although we expect

that the performance to be dependent on the choice of pilot transmission
strategies. In this paper we use the identity matrix such that Xp =
1T
γ ⊗ IM , wherein for a pilot transmission period Tp, users transmit in a

round-robin fashion γ = Tp/M symbols. We can further simplify (4.22)
for each channel index n as

P
(
h̄n|Yp,Xp

)
=

1

ωn

Tp∏
t=1

Φ

(
ytp,nh̄

T
nxp,t

σp

)
· P
(
h̄n

)
=

M∏
m=1

[ γ∏
km=1

1

ωn,km

Φ

(
ykmp,nh̄n,m

σp

)
ϕ(h̄n,m)

]
(4.32)

=
M∏

m=1

[
1

ωn,m

Φ

(
h̄n,m

σp

)
αn,mΦ

(
−h̄n,m

σp

)
βn,mϕ(h̄n,m)

]
(4.33)

=
M∏

m=1

p(h̄n,m), (4.34)

where we defined the sets for each n,m pair

Y+
n,m = {ykmp,n ∈ ȳp,n| ykmp,n = 1, km = 1, . . . , γ},
Y−

n,m = {ykmp,n ∈ ȳp,n| ykmp,n = −1, km = 1, . . . , γ},

and let αn,m = |Y+
n,m| and βn,m = |Y−

n,m|, with αn,m + βn,m = γ. Equa-
tion (4.32) is obtained by a permutation or re-ordering of the Tp di-
mensional vector yp,n containing γ one-bit observations for each channel
coefficient h̄n,m. Letting ȳp,n denote this permuted vector, we then get
(4.33) by separating positive and negative observations for each channel
coefficient. This decomposition is useful, as it simplifies the numerical
integration when evaluating the ML metric in (4.19) during the lower
bound computation as we did for the perfect CSI case in Eq. (3.25).
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First note that we can re-write

EH̄|Yp,Xp

[
P
(
yd|xd, H̄

)]
=

N∏
n=1

[∫
RM

Φ

(
yd,nh̄

T
nxd

σd

)
P
(
h̄n|Yp,Xp

)
dh̄n

]
.

(4.35)

Since the channel distributions are independent for each m, this is equiv-
alent to finding the integral, for a given xd as

N∏
n=1

[∫
R
Φ(sn)p(sn) dsn

]
, (4.36)

where we define the vector

gn =
yd,n
σd

[h̄n,1xd,1, . . . , h̄n,mxd,m, . . . , h̄n,Mxd,M ], (4.37)

and let sn =
∑M

m=1 gn,m with p(sn) obtained from the M -fold linear
convolution (pgn,1 ∗ · · · ∗ pgn,M

). Note that in more general cases, we can
also apply the MC sampling method proposed in [119] which we detail
in Appendix F.

4.2.4 . Sphere-Decoding under Channel Uncertainty
The optimization problem in (4.30) is still exponential in the input

dimension. To address this complexity issue we can adapt the SD algo-
rithm from Chapter 3 to this scenario. The objective is to construct a
list of candidate points over which we can evaluate the metric in (4.30).
Noting that applying the technique directly is not straightforward, this is
due to the additional dependence of the variance term on the transmitted
data. We therefore propose the following approximation:

• Step 1: We consider a surrogate metric that is convex in the data
vector. For example, we can take the MAP channel estimate al-
ready obtained during the LA procedure Ĥ and formulate the mis-
matched ML metric similarly to Eq. (4.9)

xMM = argmin
xd∈XM

−
N∑

n=1

ln

[
Φ

(
yd,nx

T
dµn

σd

)]
. (4.38)

This metric ignores the data-dependent noise. However, it is indeed
convex in xd when relaxed over RM .

• Step 2: We then perform SD operations and construct a list of
candidates

M =
{
[x1, . . . ,x|M|] ∈ XM

∣∣ ||t−Uxk||2 ≤ d
}
, (4.39)

such that U is given by the Cholesky decomposition of the mis-
matched log-likelihood’s Hessian of (4.38).
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• Step 3: Finally, we perform the optimization

xLA-SD = argmin
xd∈M

−
N∑

n=1

ln

[
Φ

(
yd,nx

T
dµn√

σd + xT
dΣnxd

)]
, (4.40)

where we retrieve the Laplace approximation sphere-decoding (LA-
SD) solution. Although this heuristic is dependent on the choice of
the surrogate metric, it will still provide us with a list of candidate
points where we can evaluate (4.30).

4.2.5 . Computational Complexity of the LA Approach
Similarly as in the perfect CSI case, we analyze the computational

complexity by counting the theoretical number of operations in different
stages. The first step is to obtain the initial estimate in (4.26) which
is done using gradient descent and grows in the order of O(LMNTp)
where L is te number of required iterations. The second step requires
constructing the LA approximate metric after obtaining the parameters
in (4.29) which is dominated by computing the inverse of the Hessian
for each channel vector and scales as O(M3N). Finally, we will need to
compute the final LA metric in (4.30) which scales as O(|X |MM2N) when
spanning over the entire constellation and can be reduced to O(|M|M2N)
when applying the SD algorithm.

4.3 . Simulation Results

4.3.1 . Data Detection with Probit Regression Framework
For the simulation setup, we first investigate the performance of

QPSK signaling and compute the matched and mismatched achievable
rates for a SIMO channel with one transmitter M = 1, and N = 8 receive
antennas. The step sizes are chosen similarly as described in Chapter 3
for the perfect CSI case based on the Lipschitz constant. The optimiza-
tion over the parameter s in the GMI is done numerically by discretizing
it over a fixed range and then taking the maximum rate among this
range. It is possible to compute the exact GMI rates which are plot-
ted in Fig. 4.1 along with the MC simulations for comparison. We see
that the MC simulations are close to the exact computations. We also
look at the SER for data detection using the procedure described earlier
for a 4 × 32-MIMO system with training lengths Tp = {5, 10, 20} and
compare that with the exact ML and BLMMSE metric from Eq. (2.23)
(see Fig. 4.2). We show the results for the exhaustive mML for Tp = 20.
The BLMMSE estimator is accurate for low SNRs, in this regime the
additive Gaussian noise dominates and the Bussgang approximation is

51



-15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

MI exact ML

GMI Probit mML

MI exact ML (MC)

GMI Probit mML (MC)

Figure 4.1: Achievable rates with matched ML and mismatched metric with
QPSK signaling for 1 × 8-SIMO and Tp = 20 (exact computations and MC
simulations)

accurate. As the SNR increases, it can be observed that its performance
depreciates compared to that of the probit model. We note that the
initial results reported in [120] show a higher instability in that regime
which was due to a missing scale factor when computing the estimator.
This instability vanishes after including the proper scaling and using the
logistic approximation of the Gaussian CDF proposed in [40]. Neverthe-
less, the conclusion remains the same: the choice of the estimator is what
influences the overall performance since we are still using the Gaussian
CDF in our model. We also re-examine the mismatched rates for the
probit and the BLMMSE metrics as reported in [120] (Figure 4 therein)
which we plot in Fig. 4.4 for the same 4×32-MIMO system. We see that
after including the correct scaling, the instability in the mid to high SNR
regime indeed vanishes. In general, we observe that the performance im-
proves with increasing Tp. A similar behavior is echoed in Fig. 4.3 as the
maximum mismatched achievable rates for the given uniform input dis-
tribution improve with increasing Tp. We see that the GMI based on the
identified model parameters approaches that of the MI with perfect CSI.
This confirms that the probit model is indeed stable even with imperfect
CSI, in contrast to what has been reported recently [40]. In Fig 4.5, we
look at the SER performance in a 16-QAM 2×32-MIMO system, we ob-
serve similar behavior in the mid to high SNR regime. The mismatched
rates are also plotted in Fig. 4.6. We remark on the following observa-
tions. First, the SERs for all metrics, including that with perfect CSI
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4× 32-MIMO and increasing training lengths Tp = {5, 10, 20}.
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Figure 4.4: Achievable rates under the mismatched Probit and BLMMSE met-
rics for a 4× 32-MIMO with QPSK and Tp = {10, 50}.

case, exhibit a minimum with respect to the SNR, this can be justified
by the following fact: considering the simple scenario where we transmit
a point from a 4-PAM constellation, as the SNR increases it becomes
evident that some constellation points will “collapse" onto each other re-
sulting in the ML declaring an error. A similar explanation is provided in
the recent work where this particular problem is treated [121]. Moreover,
this behavior is frequently encountered in the literature on one-bit ADCs,
e.g. [46,73,75]. Second, the BLMMSE estimator marginally outperforms
the probit model in the low SNR regime, this can be attributed to the
fact that we do not take into account the SNR during the optimization,
i.e., the step size is fixed for all SNR values.

4.3.2 . Data Detection with Statistical CSIR
We now consider the situation where only the channel statistics are

known at the receiver and adopt the identity pilot transmission strategy.
Figure 4.7 shows the VER for a 2 × 64 real MIMO system with 4-PAM
signaling and training lengths Tp = {52, 100}. We show in the same
figure the performance of the proposed LA metric (4.30) along with the
LA-SD method to reduce the search space (4.40). As a benchmark, we
also present the VER results with perfect CSI, the mismatched ML from
(4.38) with the mismatched channel estimate and the Bussgang linear
minimum mean square error (BLMMSE) channel estimator proposed in
[68]. Several remarks are in order. We first note that VERs for all metrics
also exhibit a minimum with respect to the SNR for the reason explained

54



-15 -10 -5 0 5 10 15 20

10
-2

10
-1

10
0

0 20

10-5

100 BLMMSE

Probit mML (exhaustive)

Exact ML

Figure 4.5: SER for exact ML, mismatched probit and BLMMSE with 16-
QAM 2× 32-MIMO and Tp = {20, 50}.

-15 -10 -5 0 5 10 15 20

0

1

2

3

4

5

6

7

8

MI exact ML

GMI Probit mML

GMI BLMMSE

Figure 4.6: Achievable rates under the mismatched Probit and BLMMSE met-
rics for a 2× 32-MIMO with 16-QAM and Tp = {20, 50}.

earlier. Secondly, for training lengths of 52 and 100, the proposed LA
solution is tight with the lower bound of the optimal metric in (4.19).
This is conserved as we reduce the search space and employ the LA-
SD solution which uses the mismatched ML metric as a surrogate for
constructing the list, with |M| = 2 in this setting. Moreover, it can be
observed that, compared to other metrics, the LA solution remains near-
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creasing Tp.

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

0 500

10-1

100

BLMMSE

Mismatched ML

LA-SD

LA

LB on ML

ML (perfect CSI)

Figure 4.8: VER performance with respect to increasing training lengths for
a 2 × 64 real MIMO channel, 4-PAM signaling, SNR is fixed to −5dB, and
|M| = 2 points.

optimal even as we cut the training length in half. We investigate this
behavior by fixing the SNR to −5dB and varying the training period
as shown in Fig. 4.8. Indeed, the LA solution is tight with the ML
lower bound, and as Tp increases, it approaches the performance of the
coherent ML detector, as expected. Increasing the number of transmit
antennas and keeping N fixed, similar behavior is echoed for a 4 × 64
real MIMO system in Fig. 4.9. This indicates that the proposed metric
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Figure 4.9: VER performance with respect to increasing training lengths for
a 4 × 64 real MIMO channel, 4-PAM signaling, SNR is fixed to −5dB, and
|M| = 2, 5 points.

remains robust for small training periods and an increased number of
users, as it takes advantage of the learned channel statistics without
explicitly estimating it. In both scenarios, the LA-SD metric remains
near-optimal, with a deviation in the regime when Tp is small, this can
be attributed to the fact that it uses the estimated channel from the
mismatched ML for the list construction which can be inaccurate.

4.4 . Summary

In this chapter, we looked at the data detection problem where CSI is
unavailable at the receiver. We considered two schemes in block-fading
Rayleigh channels where transmission is decomposed into two indepen-
dent pilot and data frames. The first is a two-stage channel estimation
and data detection approach based on the probit regression binary clas-
sification framework. Using unitary pilot matrices, the channel is first
estimated and used directly as a replacement for the true channel during
the detection process. The results are compared with an estimator of
the channel obtained based on the Bussang decomposition. In general,
the performance improves with increasing training length for QPSK and
16-QAM uniform signaling, with larger gaps in the high SNR regime.
Moreover, we address the observation noted in [40] where instability is
attributed to the Gaussian CDF under imperfect CSI. It’s shown that,
instead, the instability is due to the choice of the estimator itself. In ad-
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dition, we looked at the mismatched achievable rates with the GMI using
the formulated mismatched metrics. It is seen again that increasing the
training lengths allows us to approach the achievable rates of matched
communication with perfect CSI. In the second part, we move to a more
general situation where the pilot and data frames are processed jointly.
The optimal metric is then formulated for a real channel model where
we establish two main difficulties. The first involves evaluating multi-
variate Gaussian orthant probabilities which do not have closed forms.
The second is detection complexity under the discrete nature of the input
which is prohibitive for large dimensions similar to the perfect CSI case.
We address the first problem with an approximation using the Laplace
method which allows us to obtain a closed-form expression. We then
apply the SD algorithm proposed in Chapter 3 to the Laplace approx-
imation through the mismatched ML as a surrogate metric. Assuming
a 4-PAM signaling, it’s observed that the LA metric is close to optimal
with respect to the lower bound on the exact optimal metric with an
overall performance approaching the coherent case as the training length
increases.
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Chapter 5

Communication with Multi-Bit Low-Resolution
ADCs

In the previous chapters, we have considered the data detection prob-
lem in the extreme case where one-bit ADCs are employed at the receiver,
under different assumptions on the channel state information. Under-
standing the fundamental limitations of communication systems guides
their design and provides insights into how to optimize their performance.
Since the pivotal work of Claude Shannon in 1948 [122], information the-
ory has become a rich field that paved the path for the conception of
now standardized and indispensable data compression and channel cod-
ing schemes [123]. The channel capacity is defined as the ultimate limit
under which information can be transferred with an arbitrarily vanishing
error probability. Characterizing the capacity of a system is challenging
from several aspects, as it first requires obtaining a simple yet faithful
statistical model of the physical channel model, and second, solving the
optimization problem is generally difficult. For example, the effect of
channel fading has been extensively studied in the past under several as-
sumptions on the CSI. In fact, tractable expressions even for basic chan-
nel models such as SISO Rayleigh fading channel under an average power
constraint are not known, and only a characterization of the capacity-
achieving distribution is available [124]. This optimization problem can
become more intractable as we move to MIMO channels. Nevertheless,
insightful results can still be obtained by looking at particular cases or
asymptotic regimes in the SNR, number of transmit and receive antennas,
or the coherence interval for block-fading channels [93, 113,125].

The capacity problem of the communication channel while incorporat-
ing effects of low-resolution ADCs at the receiver has also received atten-
tion in recent years. One of the earliest works considers the AWGN quan-
tized output SISO channel with an average input power constraint [44].
The authors show that for a symmetric quantizer with a resolution b
and 2b output levels, the capacity-achieving distribution is discrete with
2b + 1 mass points. For the one-bit case (i.e. b = 1), binary antipodal
signaling is shown to be optimal, and an exact expression of the capacity
is obtained as a function of the SNR. For b > 1, no analytical expres-
sion is available and the capacity can only be computed numerically,
given a fixed quantizer design. For MIMO channels with deterministic
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channel state realization, upper and lower bounds on the capacity have
been proposed in [45]. In [67], the authors study the capacity of the
quantized MIMO case by finding the asymptotic expression of the mu-
tual information in the low SNR regime, where they consider particular
cases of the ergodic and noncoherent channels. Achievable rates have
also been obtained based on the Bussgang decomposition and AQNM
models, along with specific choices of linear receivers [46, 68, 97]. It is
evident then that asymptotic expressions and bounding techniques on
the capacity can prove useful in providing insightful results on capacity
scaling in certain regimes.

Another key aspect of future wireless communication systems de-
sign that merits attention is power consumption, particularly that of
the receiver [47–49]. Therefore, there has also been recent interest in
studying the communication rate and quantization resolution trade-off
to obtain insight into practical limitations of the communication system
design [85,97,126,127]. The work therein sets assumptions on the choice
of the quantizer or the signaling scheme usually taken to be Gaussian. It
would be interesting to explore a similar direction where we obtain, as a
first step, a tractable expression of the quantized MIMO channel capacity
with less strict assumptions. The results by Clarke and Barron [128,129]
could provide us with the necessary tools for that goal. They have been
used in [130, 131] to obtain capacity scalings for the coherent and non-
coherent one-bit quantized channel in the asymptotic regime where the
number of receive antennas is large which could be of particular inter-
est for mMIMO. The results therein could potentially be extended for
the multi-bit case. In this chapter, we investigate a direction towards
that goal. First, for the coherent case, we re-visit the data detection
problem and extend the SD algorithm in the scenario where multi-bit
ADCs are employed at the receiver by redefining the likelihood function
for the multi-bit quantizer. Then, the asymptotic capacity expression
can be found similarly as in [131]. For the noncoherent channel, we start
by looking at the unquantized output for special cases of the coherence
interval as upper bounds on the one-bit asymptotic channel capacity.

5.1 . Data Detection Extension to Multi-Bit ADCs

Assume now that the receiver is equipped with a uniform midriser
quantizer where b ≥ 2. Consider now the negative log-likelihood function
in Eq. (2.29), as in the binary case, we also compute the gradient and
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Hessian functions that can be shown to take the following form
∇ℓb(x) = −

1

σ

2N∑
n=1

κb,δ

(
Iyn − hT

nx

σ
,
Iyn−1 − hT

nx

σ

)
hn,

∇2
ℓb(x)

=
1

σ2

2N∑
n=1

ηb,δ

(
Iyn − hT

nx

σ
,
Iyn−1 − hT

nx

σ

)
hnh

T
n ,

(5.1)

(5.2)

with similar functions defined as
κb,δ(u, v) = −

ϕ(u)− ϕ(v)

Φ(u)− Φ(v)
,

ηb,δ(u, v) =
uϕ(u)− vϕ(v)

Φ(u)− Φ(v)
+(κb,δ(u, v))

2.

(5.3)

(5.4)

We highlight that these functions implicitly depend on the resolution b
and the step size δ. We can perform the Taylor expansion of the log-
likelihood function in Eq. (2.29) around an initial estimate and follow
similar steps as in Algorithm 1, i.e., obtain an x̂ using gradient iterations
and employ the Hessian evaluated at that point to construct the list
of candidate points. It can be shown that this extension generalizes
the proposed approach as it captures the extreme case where we only
have one bit of resolution, and recovers the classical SD problem for
the unquantized channel as the quantization becomes finer. To see the
latter case, first, observe that Eq. (5.3) and (5.4) are functions of finite
difference terms centered around v and depend on the step size δ. As
the resolution b −→ ∞ and δ −→ 0 we get for the infinite resolution case
κ∞ ≈ v and ηb,δ ≈ 1 which result in the following expressions for the
gradient and Hessian functions

∇ℓ∞(x) = −
1

σ

2N∑
n=1

hn(yn − hT
nx) = −

1

σ
HT(y −Hx),

∇2
ℓ∞(x) =

1

σ2

2N∑
n=1

hnh
T
n =

1

σ2
HTH .

(5.5)

(5.6)

It’s now evident that by setting Eq. (5.5) to 0 we obtain the well-known
least-squares or ZF solution

xZF =
(
HTH

)−1HTy, (5.7)

along with the Euclidean distance metric for the classical SD problem

xML = argmin
x∈X 2M

(x− xZF)
THTH(x− xZF) (5.8)

61



-15 -10 -5 0 5 10 15
10

-4

10
-3

10
-2

10
-1

10
0

-20 0 20

10-2

100

NLZF

SD (quantized)

LB on ML (quantized)

nML

Zero-Forcing

SD (b= )

LB on ML (b= )

Figure 5.1: VER for 4 × 64-MIMO with 16-QAM, perfect CSI and varying
SNR for several data detection metrics, and assumptions on the resolution b.
The list size is fixed to |S| = 5.

We show in Fig. 5.1 for a 16-QAM constellation and a 4× 64-MIMO
channel simulation results with several assumptions on the quantizer res-
olution b and a fixed list size of |S| = 5. The step size δ is set to minimize
the mean-square error distortion at the output assuming a Gaussian in-
put signal [101]. The SD algorithm is applied in the same manner as
before with the adapted gradient and Hessian functions from Eq. (5.1)
and (5.2), respectively. As the resolution increases, the VER performance
for our proposed SD algorithm improves while approaching that of the
unquantized case when the resolution is equal to 8 bits. In the latter
case, we show both the exact ZF detector from Eq. (5.7). Note that
adding one additional bit of resolution from b = 1 to b = 2 significantly
improves the detection performance, which implies that the effect of em-
ploying low-resolution ADCs might not be very severe assuming the base
station is equipped with a sufficient number of receive antennas. We next
look at the computational complexity of the SD algorithm as a function
of the resolution and number of antennas at the receiver. Given that
other measures of performance, e.g. running time, can highly depend on
the machine and number of processors in use, we focus on counting the
average number of floating point operations nflops taken by the algorithm
to output the list of candidates for a given fixed size. Fig. 5.2 shows
how the number of operations scales while increasing |S| with different
assumptions on the quantizer resolution and number of receiver antennas
for M = 8 transmitters and a 16-QAM constellation. We observe two
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Figure 5.2: Scaling of average floating point operations with list size |S| in
a 8 × N -MIMO system, 16-QAM with M = 8, SNR=−5 dB, and different
assumptions on b and N .

interesting behaviors: the number of operations decreases as the num-
ber of receive antennas increases, for a fixed transmission scheme and
quantizer resolution, indicating the benefit of mMIMO systems. For ex-
ample, the number of operations with one-bit quantization for a 8× 128
is close to that of an unquantized system with only 64 receive antennas.
Moreover, a resolution of b = 4 seems to be sufficient in approaching the
performance of the unquantized channel for both MIMO setups. cc

5.2 . Asymptotic Capacity of Quantized MIMO Channel

We begin by formulating the capacity problem for a real quantized
MIMO channel without a priori CSI before presenting the theorem pro-
vided in [129]. The channel is assumed to be block fading, stationary,
ergodic, and without loss of optimality in terms of capacity, the source
can be considered memoryless

YN×T = Qb(HN×MXM×T +ZN×T ). (5.9)

where we have hnm ∼ N (0, 1), znm ∼ N (0, σ2). From a practical aspect,
we usually impose a power constraint on the input set X . In our setting,
we assume a peak-power constraint on the columns of X, i.e., for any
X ∈ X we need the columns to satisfy {||xi||2 ≤ ρ, i = 1, . . . , T}. We
employ the following Shannon capacity definition of this channel written
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as a functional of the input distribution PX and the channel law PY |X

C = max
PX∈P

I(PX ;PY |X), (5.10)

where I represents the mutual information between the matrix valued
random variables X and Y , and P is the set of input distributions on
X ∈ X . Obtaining a closed-form expression of Eq. (5.10) is difficult, in
general, and as discussed earlier only asymptotic expressions or approx-
imations are known. Let us introduce the following Markov chain

X → θ → Y , (5.11)

where θ is a function of X and defined over the space

Θ = {θ(X) : X ∈ X} ⊆ Rd. (5.12)

We can parameterize the set of the family of output distributions condi-
tional on X by choosing θ ∈ Θ and denoting each member of this family
as fθ(Y ). We emphasize that fθ is a function of Y but is omitted here
for notation simplicity. From the data-processing inequality we can upper
bound the mutual information as

I(PX ;PY |X) ≤ I(Pθ, fθ), (5.13)

where Pθ is the distribution over θ, then the capacity of the channel in
(5.10) can be upper bounded by

C ≤ sup
Pθ

inf
Q

D(fθ||Q|Pθ)︸ ︷︷ ︸
¯
CN

(a)

≤ inf
Q

sup
Pθ

D(fθ||Q|Pθ)

= inf
Q

sup
θ

D(fθ||Q)︸ ︷︷ ︸
C̄N

(5.14)

where Q is any other distribution on Y . The following result by Clarke
and Barron, originally obtained in the context of defining least informa-
tive priors in Bayesian statistics, can be used here to show that inequality
(a) becomes an equality, asymptotically in N .

Theorem 1 (Clarke and Barron [129])

lim
N→∞

[
C̄N −

d

2
log

N

2πe

]
= log

∫
θ

|J(θ)|
1
2 dθ, (5.15)

and similarly the minimax divergence has the same asymptotic value

lim
N→∞

[
¯
CN −

d

2
log

N

2πe

]
= log

∫
θ

|J(θ)|
1
2 dθ. (5.16)
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which implies that, asymptotically, we can find the saddlepoint capacity
solution that is uniquely achieved when the optimal auxiliary input dis-
tribution P ∗

θ is the Jeffreys prior 1
c
|J(θ)|

1
2 . This result is satisfied under

certain regularity conditions including twice differentiability of fθ with
respect to θ, the Fisher information matrix J(θ) is positive definite and
the family of distributions of fθ has a one-to-one mapping, i.e., for θ ̸= θ′

we have fθ ̸= fθ′ . These results can be applied for the coherent and non-
coherent one-bit quantized channel as shown in [130] and we take a first
step in the direction of extending them for the multi-bit case in order
to analyze the spectral efficiency and power consumption tradeoff of a
communication system.

5.3 . Multi-bit case Receiver Design: Spectral and Energy
Efficiency Constraints

Beyond 5G and 6G system design goals are leaning more towards en-
suring higher spectral efficiencies while maintaining minimum incurrences
in RF power consumption particularly that of the receiver. We have seen
that energy efficiency usually comes at the compromise of higher incurred
signal distortion which could be due to power amplification, phase noise,
or coarse quantization. Consequently, the spectral efficiency can be pe-
nalized and an analysis of the trade-off is needed [42, 44]. On the one
hand, information-theoretic tools can be leveraged to obtain approxima-
tions or bounds on the spectral efficiency of a communication system.
On the other hand, this necessitates a faithful yet simple statistical rep-
resentation of the physical model at hand to incorporate the effects of
power consumption. Theorem 1 in the previous section can be useful in
obtaining similar results in the regime where the number of receive anten-
nas is large. Such an approximation is not too severe as it’s natural for
mMIMO or distributed processing systems where the number of receivers
can be very high. Moreover, the signaling scheme is not assumed to fol-
low any specific distribution such as Gaussian. In this section, we would
like to study the trade-off between the spectral efficiency and the energy
consumption of the receiver in a MIMO system assuming for simplicity
quantizer distortion only. The work in [126] considers this problem for
a SISO link with a line-of-sight transmission. The target transmission
rate is set as R = SE × fs where SE is the required spectral efficiency
that depends on the SNR and quantizer resolution of the link, and fs is
the Nyquist sampling rate. Assuming an average power constraint and
a uniform quantizer, the capacity can be obtained numerically using the
cutting-plane algorithm [44]. In this work, the authors assume only the
power dissipation due to the ADC. For sampling frequencies between 1
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and 100 GHz, power dissipation scale quadratically with the bandwidth
and effective number of quantization levels, therefore

PADC = const · 22b · f ν
s

= const×
(

R

SE

)
ν × 22b. (5.17)

where ν = {1, 2} is a parameter that reflects the different state-of-the-
art power consumption scaling in sampling frequency of the quantizer.
For a fixed throughput and power constraint Ωs, the authors retrieve the
ADC parameterization pair (bopt, fs,opt) that minimizes its power dissi-
pation. For any fixed resolution, SEmax minimizes the power dissipation
of the ADC which is a function of b and SNR. With the latter depend-
ing on the average power constraint and sampling rate, this results in
an optimization problem that first minimizes the power dissipation over
b with SE numerically and then obtains the optimal sampling frequency
from the optimal SE. The work in [97] approaches the same problem for a
MIMO system assuming the AQNM decomposition presented in Chapter
2 along with transmit and receive beamforming architectures including
analog and digital. The output is decomposed as

yq = H̃x+ ñ (5.18)

where H̃ = (1 − β)H and ñ = (1 − β)n + e. Assuming the input is
Gaussian distributed with covariance Cx, the noise ñ is also Gaussian
with the covariance Cñ = (1−ρ)(ρdiag(Cr)+(1−ρ)Cn), and the system
operates over a bandwidth B, the achievable rate is given as

EH

[
B log det

{
I + (ρdiag

(
HCxH

H
)
+BCn)

−1(1− ρ)HCxH
H
}]
(5.19)

and is maximized in terms of the input covariance matrix while assum-
ing analog and digital combining architectures along with the incurred
penalty in terms of energy efficiency. The authors include power con-
sumption induced by the LNA, mixer circuitry and ADC that scale with
N . In [49], they follow a similar approach while including saturation
distortion effects. A lower bound on the spectral efficiency is obtained
based on the Bussgang decomposition and mainly depends on the SNDR.
The receiver energy efficiency is defined as the ratio of the rate and the
power consumption of LNA, saturation, and ADC modeled according to
state-of-the-art FoM available in the literature. The results therein show
that, at low resolutions, the noise figure from the LNA is the dominant
noise factor and the resolution can be increased to improve the spectral
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efficiency. For high resolutions, the thermal noise is the dominant term
which limits the spectral efficiency.

We consider here coherent communication where CSI is only available
at the receiver and a peak power constraint on the transmitted signal.
The capacity for the block-fading channel with side information normal-
ized by the coherence interval T written directly as a function of the
random variables is

C = max
PX

1

T
I(X;Y ,H)

= max
PX

1

T
I(x1, . . . ,xT ;y1, . . . ,yT |H)

= max
Px

I(x;y|H). (5.20)

The channel law is given by the joint distribution P (y,H|x) which we
can decompose as

∏N
n=1 P (yn,hn|x)P (hn) since the noise is also assumed

i.i.d. across antennas. We drop the n subscript in the following as it
becomes immaterial. Assuming a symmetric quantizer as described in
Chapter 2, we can obtain the Fisher matrix by taking the expectation of
negative the Hessian of the log-likelihood function which we obtained in
Eq. (5.2) up to a sign. Associating the quantized received vector from
y ∈ Yb to y = {1, 2, . . . , 2b}, defining uy = Iy−hTx and vy = Iy−1−hTx,
we can write

Jb,δ(x) = EP (y,h|x)
[
∇2

ℓb(x)

]
= Eh

{[
2b∑
y=1

[
uyϕ(uy)− vyϕ(vy)

Φ(uy)− Φ(vy)
+

(
ϕ(uy)− ϕ(vy)

Φ(uy)− Φ(vy)

)
2

]

× P (y|h,x)

]
hhT

}

= Eh

 2b∑
y=1

(ϕ(uy)− ϕ(vy))
2

Φ(uy)− Φ(vy)
hhT

 (5.21)

where the last equation is obtained given the assumption of a symmetric
midriser quantizer. We highlight that the Fisher matrix depends on the
choice of the quantizer design specified by b and δ. Similarly as in [131],
let g = V Th where V =

[
x

||x|| Ṽ
]

is unitary and define

ξb,δ(s) =
2b∑
y=1

(ϕ(Iy − s)− ϕ(Iy−1 − s))2

Φ(Iy − s)− Φ(Iy−1 − s)
, (5.22)
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we obtain denoting g1 as the first element in g

Jb,δ(x) = V Eg

[
ξb,δ(||x||g1)ggT

]
V T, (5.23)

Following the same notation as in [131], the determinant can be written
as

|Jb,δ(x)| = ζb,δ0 (||x||)M−1ζb,δ2 (||x||) (5.24)

where ζb,δk (s) = E
[
gkξb,δ(sg)

]
where g ∼ N (0, 1). We note the additional

dependence of the capacity on the choice of the quantizer in terms of b
and δ. Applying Theorem 1 in [131] for the multi-bit quantized coherent
channel, the asymptotic capacity expression can be written as [131]

C =
M

2
log

N

2πe
+ logαb,δ

ρ,M + log VM + o(1) (5.25)

where

αb,δ
ρ,M =

∫ √
ρ

0

ζb,δ0 (r)
M−1

2 ζb,δ2 (r)
1
2 rM−1 dr (5.26)

and VM is the volume of a unit ball with dimension M . In contrast to
previous work, this expression does not assume any particular input dis-
tribution, or linearization of the channel model and includes parameters
of interest that can also capture the effect of the receiver power con-
sumption due to the choice of the quantizer parameters in terms of the
resolution and effect of the noise figure in the SNR. The previous result
provides us in a first step with an expression of the capacity as N be-
comes large. The second step requires studying the relationship between
spectral efficiency degradation and the quantizer resolution, which relates
directly to its power consumption. Assuming a digital architecture where
each receive antenna is equipped with a dedicated RF chain, future work
involves formulating a meaningful optimization problem that can capture
the balance with the spectral efficiency by defining a power consumption
model of the receiver front-end in a manner similar to [49, 97, 126] and
given the data and proposed FoMs in the literature [15]. It would be in-
teresting to derive similar results for the noncoherent channel, therefore
we begin by investigating this problem in the following section.

5.4 . Asymptotic Capacity of Noncoherent Channel

Without any a priori CSI, the likelihood function depends on the
covariance matrix of the channel Gaussian density function. When b = 1,
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the channel law of Eq. (5.9) is given as

P (Y |X) =
n∏

k=1

P (yi|X) (5.27)

=
n∏

k=1

∫
Kyk

|Σ|−1/2

(2π)T/2
exp

{
−1

2
vT
kΣ

−1vk

}
dvk, (5.28)

where Σ = IT + ρXTX and Kyk
is the orthant probability region

such that yk ⊙ vk ≥ 0, where ⊙ represents an element-wise product.
Theorem 1 has been used in [130] to derive the capacity scaling by find-
ing a carefully chosen one-to-one parameterization between X and θ such
the left-hand side of Eq. (5.14) becomes equality. We will consider upper
bounds on the results therein by looking at the unquantized channel and
following the same approach. Assuming infinite precision, the channel
likelihood function is given by

p(Y |X) =
N∏

n=1

p(yn|X), (5.29)

where we have N i.i.d. realizations {y1, . . . ,yN} according to

p(y|X) =
|ΣX |−

1
2

(2π)T/2
exp
{
−1

2
yTΣ−1

X y
}
, (5.30)

such that ΣX = IT + ρXTX. It can be seen that the channel law in
Eq. (5.30) depends on the input through ΣX , i.e., it is parameterized by
the following set

F :=
{
φ(X) := IT + ρXTX : X ∈ X

}
. (5.31)

Consider the set of parameters θ := {θ1, θ2, . . . , θd} where d =
(
T+1
2

)
and

define

Θ :=
{
θ ∈ Γ ⊂ Rd : Σ̃(θ) ⪰ 0

}
(5.32)

as the set of positive semi-definite matrices parameterized by θ where Γ
is such that θjj ≥ 0 for j = k and −1 ≤ θj,k ≤ 1 for j ̸= k for j, k ∈ [T ].
We also have the following functions

Σ̃(θ) = Σ(θ)− IT , (5.33)

Σ̃(θ) := [θ{j,k}], j, k ∈ [T ]. (5.34)
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Since φ(X) is not injective into Θ, the mutual information can be written
as

I(X;Y ) = I(φ(X);Y )

≤ max
θ∈Θ

I(θ;Y ). (5.35)

The following is an equivalent of Lemma 1 in [130] to show the existence
of a signaling scheme that achieves an equality above. Let

F ′ := {Σ(ρθ) : θ ∈ Θ} (5.36)

It is evident that F ⊂ F ′, this is because we can write

Σ(ρθ) = IT + ρΣ̃(θ) (5.37)

and

φ(X) = IT + ρXTX (5.38)

where XTX ⪰ 0. Furthermore, let Σ̃(θ) = LLT where LT has columns
with magnitude less than or equal to 1, then see that

Σ(ρθ) = IT + ρLLT = φ(LT) ∈ F (5.39)

Similarly, define the function

ϱ : X −→ Θ, (5.40)

such that ϱ{j,k}(X) := xT
j xk for X ∈ X , and the canonical set X0 through

the Cholesky decomposition function

X0(θ) = Chol
(
Σ̃(θ)

)
T, (5.41)

then the two functions are the inverse of one another and we obtain a
bijection between the two sets. We can now work directly with the fol-
lowing parameterized pdfs for all θ ∈ Θ which is that of the multivariate
Gaussian

fθ(y) = N (0,Σθ). (5.42)

Note that the regularity conditions of Theorem 1 hold for this family
and more generally for the exponential family of distributions as shown
in [128]. Applying Barron and Clarke’s result for this channel, we have

max
θ

I(θ,Y ) =
d

2
log

(
N

2πe

)
+ log

∫
Θ

|J(θ)|
1
2 dθ + o(1). (5.43)
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The Fisher information is given by

JT (θ) = E
[
∇θ ln(fθ(y))∇T

θ ln(fθ(y))
]
. (5.44)

In our case, for a zero-mean multivariate Gaussian distribution, the
Fisher information can be obtained in closed-form as

[JT (θ)]i,j =
1

2
tr

{
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj

}
(5.45)

Proof: First, we define the log-likelihood function

ℓ(θ) = ln(fθ(y))

= −1

2
ln |Σθ| −

1

2
yTΣ−1

θ y + cte (5.46)

then we take the partial derivative with respect to θi

∂ℓ(θ)

∂θi
=

1

2
tr

{
Σ−1

θ

∂Σθ

∂θi

}
+

1

2
yTΣ−1

θ

∂Σθ

∂θi
Σ−1

θ y, (5.47)

then the partial derivative with respect to θj and applying the chain rule,
we obtain

∂2ℓ(θ)

∂θi∂θj
=− 1

2
tr

{
Σ−1

θ

∂2Σθ

∂θ2i
θj +

∂Σ−1
θ

∂θj

∂Σθ

∂θi

}
+

1

2
yT

[
Σ−1

θ

∂Σθ

∂θi

∂Σ−1
θ

∂θj
+Σ−1

θ

∂2Σθ

∂θ2i
θjΣ

−1
θ +

∂Σ−1
θ

∂θj

∂Σθ

∂θi
Σ−1

θ

]
y,

(5.48)

which simplifies to

∂2ℓ(θ)

∂θi∂θj
=
1

2
tr

{
Σ−1

θ

∂Σθ

∂θj
Σ−1

θ

∂Σθ

∂θi

}
− 1

2
yT

[
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj
Σ−1

θ +Σ−1
θ

∂Σθ

∂θj
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

]
y,

(5.49)

The Fisher matrix is obtained by then taking negative of the expectation

[JT (θ)]i,j = −E
[
∂2ℓ(θ)

∂θi∂θj

]
. (5.50)

We will now look at particular cases when the coherence interval is fixed.
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5.4.1 . Special Case: T = 1
When the coherence interval is equal to T = 1 and d = 1, we obtain

σθ = 1 + ρθ. (5.51)

Asymptotically in N , the optimal distribution on θ is Jeffreys prior given
by

p∗(θ) =
1

c

√
|J(θ)| (5.52)

where we have the Fisher information

J(θ) =
ρ2

2(1 + ρθ)2
(5.53)

with

c =

1∫
0

√
ρ2

2(1 + ρθ)2
dθ =

1√
2
ln(1 + ρ). (5.54)

The asymptotic capacity grows as N →∞

C =
1

2
log

(
N

4πe

)
+ log ln(1 + ρ), (5.55)

and the optimal distribution on θ is

p∗(θ) =
ρ

ln(1 + ρ)
· 1

1 + ρθ
. (5.56)

The optimal signaling is such that

x(θ∗) =
√
θ∗, (5.57)

this implies that as N goes to infinity, one transmit antenna is sufficient
to achieve capacity under a peak power constraint.

5.4.2 . Special Case: T = 2
As T increases, the dimensionality of the problem also grows rendering

the computation of certain quantities such as the Fisher matrix along
with the integral of its determinant more challenging. We consider now
the special case when T = 2 and d =

(
3
2

)
= 3. We have

Σθ =

[
1 + ρθ1 ρθ2
ρθ2 1 + ρθ3

]
, Σ−1

θ =
1

|Σθ|

[
1 + ρθ3 −ρθ2
−ρθ2 1 + ρθ1

]
(5.58)
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such that |Σθ| = (1 + ρθ1)(1 + ρθ3) − ρ2θ22 > 0. From Eq. (5.45), we
obtain

∂Σθ

∂θ1
= ρ

[
1 0
0 0

]
,
∂Σθ

∂θ2
= ρ

[
0 1
1 0

]
,
∂Σθ

∂θ3
= ρ

[
0 0
0 1

]
, (5.59)

The Fisher information is given by the following form

J2(θ)

=
ρ2

2|Σθ|2

 (1 + ρθ3)
2 −2ρθ2(1 + ρθ3) ρ2θ22

−2ρθ2(1 + ρθ3) 2[ρ2θ22 + (1 + ρθ1)(1 + ρθ3)] −2ρθ2(1 + ρθ1)
ρ2θ22 −2ρθ2(1 + ρθ1) (1 + ρθ1)

2


(5.60)

Where the determinant of the Fisher matrix in Jeffreys’ prior is given by

|J2(θ)| =
ρ6

4|Σθ|3
=

ρ6

4 [(1 + ρθ1)(1 + ρθ3)− ρ2θ22]
3 (5.61)

and the normalizing constant is such that c =
∫
Θ

√
|J2(θ)| dθ. Knowing

that

Θ =
{
θ : θ1θ3 − θ22 ≥ 0 and 0 ≤ θ1, θ3 ≤ 1

}
, (5.62)

the normalizing constant is equal to

c =

ρ∫
0

ρ∫
0

√
θ1θ3

1 + θ1 + θ3
· 1

(1 + θ1)(1 + θ3)
dθ1 dθ3

=

ρ∫
0

ρ∫
0

f(θ1, θ3)g(θ1, θ3) dθ1 dθ3 (5.63)

To the best of our knowledge, this integrand does not have any closed-
form expression or an anti-derivative, therefore we will seek upper and
lower bounds. There are different ways to bound this integral for a fixed
value of ρ, the first is a direct application of the extreme value theorem
by first noting that for a fixed value of θ3, the right-hand side function
denoted now as gθ3(θ1) is monotonically decreasing with θ1 over [0, ρ] and
can be upper-bounded as

gθ3(ρ) ≤ gθ3(θ1) ≤ gθ3(0)

1

(1 + ρ)(1 + θ3)
≤ gθ3(θ1) ≤

1

(1 + θ3)
(5.64)
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therefore integrating further with respect to θ3 we obtain the bounds on
c as

κLB
1 (ρ) :=

1

1 + ρ
κ(ρ) ≤ c ≤ κ(ρ) := κUB

1 (ρ), (5.65)

where we define the function

κ(ρ) = 2

[
(2 + ρ)

√
ρ

1 + ρ
ln
(√

ρ+
√
ρ+ 1

)
− ln2(

√
ρ+

√
ρ+ 1)− ρ

]
. (5.66)

The second approach relies on an alternative parameterization of Σθ

using the Cholesky decomposition and provides us with tighter bounds.
Let the covariance matrix be parameterized such that Σ(ℓ) = IT+ρLLT.
Following the same approach as before, the space becomes

Ω :=
{
ℓ ∈ Rd : Σ(ℓ) ⪰ 0

}
(5.67)

where l = {ℓ1, . . . , ℓd} represents the elements of L stacked column-
wise. Note that since the Fisher information matrix is covariant under
re-parameterization [132], we can write

J(ℓ) =

[
∂θ

∂ℓ

]T
J(θ(ℓ))

[
∂θ

∂ℓ

]
(5.68)

The square root of the determinant of the Fisher matrix is given by

|J(ℓ)|
1
2 = |J(θ(ℓ))|

1
2 ·
∣∣∣∣∂θ∂ℓ

∣∣∣∣
=

ρ3

2|Σ(θ(ℓ))| 32
·
∣∣∣∣∂θ∂ℓ

∣∣∣∣
=

2ρ3

(1 + ρ2ℓ21ℓ
2
3 + ρℓ22 + ρℓ23 + ρℓ21)

3
2

· ℓ21ℓ3. (5.69)

We can use the following identity to upper and lower bound the deter-
minant

|Σ(θ(ℓ))| = |IT + ρ2LLT|
= 1 + ρ2|LLT |+ ρtr {IT} tr

{
LLT

}
− ρtr

{
ITLLT

}
= 1 + ρ2|LLT |+ ρtr

{
LLT

}
= 1 + ρ2ℓ21ℓ

2
3 + ρ(ℓ21 + ℓ22 + ℓ23)

≥ 1 + ρ2ℓ21ℓ
2
3 + ρ(ℓ21 + ℓ23) (5.70)
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which we can also upper bound as

|Σ(θ(ℓ))| ≤ 1 + ρ2ℓ21ℓ
2
3 + ρ2ℓ21ℓ

2
2 + ρ(ℓ21 + ℓ22 + ℓ23) (5.71)

These two choices of the bounds along with converting to spherical coor-
dinates allow us to integrate over the region where we can retrieve tighter
upper and lower bounds on c as explicit functions of ρ

κLB
2 (ρ) ≤ c ≤ κUB

2 (ρ) (5.72)

where

κLB
2 (ρ) =

4

1 + ρ
· (ρ−

√
ρ(1 + ρ) sinh−1(

√
ρ))

+ 8

(
sinh−1(

√
ρ)−

√
ρ

1 + ρ

)
· tanh−1

(√
1 + ρ− 1
√
ρ

)
κUB
2 (ρ) =

4√
1 + ρ

·
(√

1 + ρ sinh−1(
√
ρ)−√ρ

)
·(√ρ− arctan(

√
ρ))

(5.73)

We compare these bounds in Fig. 5.3. We see that the second bounding
technique gives us tighter scalings of the capacity compared with the
numerical integration for increasing values of ρ which are shown to be
tightest for small peak power constraints. For a fixed ρ = 5 dB and
increasing values of N , we plot in Fig. 5.4 the asymptotic capacity of
the unquantized channel for this particular case compared to that of the
one-bit quantized channel result obtained in [130]. As expected from the
data processing inequality, for a fixed value of N and ρ, the capacity of
the unquantized channel is an upper bound to that of the one-bit case.
For a fixed ρ, the comparison can provide us with a rough estimate of the
number of receive antennas needed to approach the spectral efficiency of
the unquantized channel.

5.4.3 . Special Case: T = 3
When T = 3 the dimension of the input space now involves 6 param-

eters. We can proceed similarly to the case when T = 2 and obtain the
determinant of the Fisher information matrix as

|J3(θ)|
1
2 =

ρ6

2
√
2|Σ(θ)|2

(5.74)

Using the Cholesky parameterization we have Σ(ℓ) = IT + Σ̃(ℓ) and the
square root of the Fisher matrix determinant is then given by

|J(ℓ)|
1
2 = |J(θ(ℓ))|

1
2 .

∣∣∣∣∂θ∂ℓ
∣∣∣∣

=
ρ6

2
√
2|Σ(ℓ)|2

· 8ℓ31ℓ23ℓ6, (5.75)
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Figure 5.3: Normalizing constant as a function of ρ in linear scale along with
the updated upper and lower bounds for T = 2.
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Figure 5.4: Comparison between the asymptotic capacity of the unquantized
and one-bit quantized channel for T = 2 and ρ = 5 dB.

Let λ = {λ1, λ2, λ3} denote the eigenvalues of LLT, then using the fol-
lowing identity

exp
{
tr
{
I −A−1

}}
≤ |A| ≤ exp{tr {A− I}}, (5.76)

76



we obtain an upper bound on the Fisher matrix determinant as

|Σ(ℓ)| ≤ exp

{
ρ

6∑
i=1

ℓ2i

}
(5.77)

The integral lower bound is thus

c ≥ 2
√
2ρ6
∫
Ω

ℓ31ℓ
2
3ℓ6 exp

{
−2ρ

6∑
i=1

ℓ2i

}
dℓ (5.78)

With the spherical parameterization, we manage to obtain the following
lower bound on this integral

c ≥ π2

256
√
2
· (e

2ρ − 2ρ− 1)3

e6ρ
. (5.79)

For general T > 3, Jeffreys’ prior obtained as the limit of the conjugate
prior of the Inverse-Wishart distribution with T − 1 degrees of freedom
can be written as [133]

|JT (θ)|
1
2 ∝ 1

|Σ(θ)|T+1
2

. (5.80)

Following the same Cholesky parameterization as before, the integral of
the Fisher matrix determinant may be written as∫

Θ

|J(θ)|
1
2 dθ =

∫
Ω

|JT (θ(ℓ))|
1
2 ·
∣∣∣∣∂θ∂ℓ

∣∣∣∣ dℓ
= 2T

∫
Ω

T∏
i=1

(1 + ρℓ2ii)
−(T+1)(ℓii)

T−i+1 dℓ (5.81)

For this particular case and T > 3 ongoing work is underway to obtain
an upper bound on the integral to get a better understanding of the
scaling of the capacity when N is large. The main challenge towards
this goal is in obtaining meaningful bounds on the determinant of the
Fisher matrix for any T that can result in tight scalings of the capacity.
The difficulty lies in integrating over the space Θ or Ω in general, and
although reparameterizing the space can sometimes provide us with sim-
pler expressions to obtain closed-form expressions of these bounds, it is
not evident how to do that for general T. An alternative approach would
be to consider the capacity scaling thereafter in asymptotic regimes of
the SNR. Future objectives involve studying the scaling once a multi-bit
quantizer is introduced.
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5.5 . Summary

In this chapter, we presented preliminary studies for ongoing and
future work that aims to extend the work to the multi-bit low-resolution
ADCs case and to analyze the trade-off between power consumption and
spectral efficiency degradation at the receiver front end. We have seen
that the SD algorithm in Chapter 3 can be extended to the multi-bit case,
and exhibits near-optimal performance in terms of VERs with respect to
the ML lower bounds. The approach captures as the resolution grows
to infinity the conventional SD case. Employing known information-
theoretic asymptotics used in Bayesian statistics, we can characterize the
capacity scaling in the asymptotic regime where the number of receive
antennas is large. For the coherent multi-bit quantized MIMO channel,
a straightforward extension of the one-bit case as presented in [131] is
possible and we can obtain an expression of the asymptotic capacity.
A future step is identifying meaningful yet simple physical models that
capture the power consumption of RF components that can be analyzed
jointly with the capacity expression. For the noncoherent channel, we
look at the unquantized asymptotic capacity as an upper bound when the
coherence interval takes particular values. Integrating over the parameter
space does not result in closed-form expressions in general, therefore we
identify upper and lower bounds on the scaling.
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Chapter 6

Conclusion and Future Perspectives
As we move towards newer generations of communication systems,

the difficulties imposed on the RF circuitry level become more prevalent.
Practical considerations have to be taken on the overall energy consumed
at the receiver front-end, especially as we strive towards employing higher
bandwidths and more complex digital architectures. Beyond 5G and 6G
system design goals aim to ensure high transmission rates while keeping
power consumption due to individual RF components at a minimum.
We have seen that, for ADCs, this consumption scales exponentially in
resolution and linearly in their sampling frequency. This incentivizes the
use of low-resolution alternatives, at the cost of more complex signal
processing techniques. We have considered in this thesis the problems of
optimal data detection under two extreme cases of CSI availability in a
quantized narrowband block-fading Rayleigh MIMO channel. In Chap-
ter 3, we addressed the case of optimal data detection under a perfect
CSI case with one-bit ADCs. The computational complexity under a
discrete constellation constraint grows exponentially in the number of
transmitters and constellation size. For the classical case with infinite
resolution, SD is a technique that aims to reduce the search space under
the square-loss metric. We then showed that SD can be applied under
coarse quantization, and in contrast to SD-like heuristics [71, 81] in the
literature, the approach is more in line with the conventional method
that does indeed reduce the search space while taking advantage of the
available CSI. Moreover, near-optimality is assessed with respect to a
numerical lower bound on the ML metric in terms of VERs for different
constellation sizes and assumptions on channel correlations. In addition,
the approach is extended to the multi-bit quantized case and captures
naturally the infinite resolution case. In Chapter 4, we looked at the
scenario where only statistical CSI is available at the receiver. Assuming
transmission is conducted independently between pilot and data frames,
we first present a two-stage channel estimation and data detection ap-
proach based on probit regression. This approach is adopted given its
direct similarity with the binary classification problem. In addition, it al-
lows us to investigate the instability of the probit model under imperfect
CSI. First, it is demonstrated that the instability is essentially related
to the BLMMSE estimator and not the model. Second, the GMI is used
to compute achievable rates with the mismatched metrics obtained from
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the probit model and BLMMSE estimators. Generally, it’s shown that
the performance approaches that of the matched case as the training
length increases, with degradation when 16-QAM signaling is used. In
the second part, we look at a more general approach where the pilot
and data frames are processed jointly at the receiver. For simplicity, we
assumed a real channel model. After formulating the optimal metric in
this case, we identify two main difficulties that involve the evaluation
of multivariate Gaussian orthant probabilities which do not have closed-
form expressions, and the combinatorial optimization as in Chapter 3.
We then present an approximation using the Laplace method and extend
the SD algorithm based on the mismatched ML as a surrogate metric.
It’s shown through numerical simulations that the proposed approxima-
tion achieves an improved near-optimal performance for 4-PAM signaling
schemes over one-shot estimators such as the mismatched ML and the
Bussgang techniques in terms of VERs. In Chapter 5, we turned our
attention to power consumption and spectral efficiency trade-off assess-
ment by first looking at the capacity problem of the quantized channel.
We present preliminary work motivated by Clarke and Barron’s results
to obtain an asymptotic expression of the capacity. The objective is to
use information-theoretic results coupled with physical constraints on the
system to derive design guidelines for future wireless communication sys-
tems. For the coherent channel, we present the straightforward extension
of the results in [131] for the multi-bit quantizer and highlight the de-
pendence of the capacity expression on different parameters that can be
useful for the energy consumption design guidelines. A future step is to
identify a meaningful model of the receiver front-end power consumption.
Aspiring for a similar goal with the noncoherent channel, we begin by
investigating the asymptotic capacity of the unquantized channel as an
upper bound for the quantized case for particular values of the coherence
interval. When T = 1, an exact expression of the capacity is obtainable.
When T = 2, the Fisher matrix determinant does not have a closed-form
and we manage to obtain tight upper and lower bounds with respect to
the numerical integration. For T = 3, we present a lower bound on the
capacity scaling. The main challenge for general T is the difficulty in in-
tegrating over the induced parameter space. This motivates future work
in investigating these bounds for asymptotic regimes of other parameters
of the capacity such as the SNR. Moreover, studying the scaling of the
capacity for the multi-bit quantized case is also an interesting direction.
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6.1 . Future Perspectives

6.1.1 . Improvements and Extensions
The research work on communication systems with low-resolution

ADCs is rich and each area can offer a plethora of opportunities to inves-
tigate. In our work, we have assumed Nyquist sampling at the receiver.
It’s known that oversampling in the extreme case of one-bit ADCs can im-
prove the system performance [83,134–136]. Moreover, we have not made
any design assumptions about the transmitter, which opens a line of dif-
ferent research perspectives. For example, coupled with the oversampling
approach, we can investigate optimal transmission strategies and signal-
ing schemes [84,137]. Under a more general assumption of low-resolution
digital-to-analog converters (DAC) and considering the downlink case,
the design of precoding schemes is another direction [37,85,138]. Assum-
ing frequency-selective channels, employing OFDM with low-resolution
ADCs is not straightforward, since after quantization applying the DFT
does not result in the channel singular values that we can directly equal-
ize [72, 73, 139]. In addition to the current contributions, several ex-
tensions can be explored. For example, analyzing analytically the SD
complexity in the average sense in a manner similar to [110] where the
channel statistics and the noise distribution are considered. It would be
also useful to assess the performance of the proposed metrics in more
practical scenarios where we have coded transmission. For the data de-
tection problem under statistical CSI, future work involves extending the
LA method to the complex channel and exploring the effect of channel
spatial correlations. We also note that the Laplace method is one tech-
nique that allows us to approximate the optimal metric in Eq. (4.19), it
would be interesting to consider more general models that can describe
this metric more accurately.

6.1.2 . Other Sources of Nonlinearities
The current work can be extended to encompass other sources of

nonlinearities. For example, we have not assumed any impairments in
the quantization operation such as integral and differential nonlineari-
ties [19]. Furthermore, aperture uncertainty effects in the sample-and-
hold circuitry could also impose additional difficulties, which are not as-
sumed in this work [7]. Another source of signal distortion can be due to
power amplification (PA) which can be present both at the transmitting
and receiving ends. Inexpensive and power-efficient amplifiers are inher-
ently nonlinear which can cause distortions that affect the transmission
rates. A pioneering work that deals with PA distortion for satellite com-
munications is due to Benedetto et al. [31] for their design of a nonlinear
equalizer of the Volterra channel that estimates the coefficients based on
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a minimum mean square error (MMSE) criterion. We note that these
techniques have been presented in the context of satellite communication
channels where the power is very limited and high efficiency is necessary.
Regarding the performance evaluation of MIMO systems with nonlinear
amplifier distortion, Fozooni et al. [43] analyze the ergodic achievable rate
where the Bussgang decomposition is exploited to decompose the output
of the power amplifier such that the distortion noise is additive. More-
over, the authors in [42] present single-carrier optimal transmit beam-
forming techniques in the presence of memoryless nonlinear PAs in flat
Rayleigh fading channels, and compute bounds on the average symbol
error probability (SEP). As for mMIMO systems where dedicating RF
chains for each transmit antenna can be impractical, the authors in [140]
shed light on evaluating the performance degradation of hybrid OFDM
digital-analog mMIMO systems. Much less work has focused on the joint
impairments due to both PA and ADC distortions which can be an inter-
esting direction for receiver design and spectral-power efficiency trade-off
analysis.
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Appendices
Appendix A

In this section, we provide a detailed derivation of the Bussgang gain
in Eq. (2.10) obtained from linearizing the multi-bit quantized MIMO
channel using Price’s theorem which states that, as a particular case,
given two jointly Gaussian x and y as inputs to two deterministic func-
tions f1(·) and f2(·), the covariance component at the outputs is given
by

∂E [f1(x)f2(y)]

∂σxy

= E
[
∂f1(x)

∂x
· ∂f2(y)

∂y

]
. (6.1)

We can now proceed to show the result in Eq. (2.10). The deriva-
tion assumes that r̃ follows a CSCG distribution. First, we express the
quantizer function as

Qb(x) =
2b∑
l=1

νl1{x∈Il}

(6.2)

To obtain the Bussgang gain Wb we will need to compute the cross-
correlation matrix

Cỹr̃ = E [ỹr̃] =

E[r̃1ỹ
∗
1] . . . E[r̃1ỹ∗N ]

... . . . ...
E[r̃N ỹ∗1] . . . E[r̃N ỹ∗N ]


=

E[Q̃b(ỹ1)ỹ
∗
1] . . . E[Q̃b(ỹ1)ỹ

∗
N ]

... . . . ...
E[Q̃b(ỹN)ỹ

∗
1] . . . E[Q̃b(ỹN)ỹ

∗
N ]

 (6.3)

Noting that

E
[
Q̃b(ỹi)ỹ

∗
j

]
=E

[(
Qb(ỹ

R
i )ỹ

R
j + Qb(ỹ

I
i )ỹ

I
j

)]
+ jE

[(
Qb(ỹ

I
i )ỹ

R
j − Qb(ỹ

R
i )ỹ

I
j

)]
(6.4)
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We apply Eq. (6.1) where now f1(·) is the quantization operation Qb

whose derivative is

∂Qb(x)

∂x
=

2b∑
l=1

νl [δ(x− Il−1)− δ(x− Il)] , (6.5)

such that δ(x) represents the Dirac delta function. In this setting, f2(·)
is simply the identity function. Using the circular symmetry property
of the input, the real and imaginary components of the input vector
r̃ have the same auto-covariance, while their cross-covariance matrix is
skew-symmetric. Therefore let σ̃i,j = [Cr̃]i,j we can write Eq. (6.4) after
applying the Dirac’s function sifting property,

E
[
Q̃b(ỹi)ỹ

∗
j

]
= σ̃

− 1
2

i

2b∑
l=1

νl√
π

(
e
−

I2l−1

σ̃2
i − e

− I2l
σ̃2
i

)
·(σ̃i,j), (6.6)

expanding in matrix form and multiplying by the right with Cr̃, we
obtain Eq. (2.10).

Appendix B

The gradient is L−Lipschitz by the following sufficient condition on
the Hessian’s spectral norm

||∇2
ℓb(x)
||2 = λmax(∇2

ℓb(x)
) ≤ L, (6.7)

for some L > 0 for all x ∈ R2M and where λmax(·) denotes the largest
singular value of the corresponding matrix. This last condition can be
readily established by first re-writing (5.2) into a matrix form

∇2
ℓb(x)

=
1

σ2
HTΥb,δH , (6.8)

where

Υb,δ = diag(ηb,δ(y1), . . . , ηb,δ(yn)). (6.9)

We obtain by the sub-multiplicative property of matrix norms

||∇2
ℓb(x)
||2 ≤

1

σ2
||HT||2 · ||Υb,δ||2 · ||H||2

≤ 1

σ2
λ2
max(H) · λmax(Υb,δ)

≤ λ2
max(H)

σ2
. (6.10)
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The last inequality follows knowing that (5.4) is upper bounded by 1.
Therefore we can choose L in (6.7) as

λmax(∇2
ℓb(x)

) ≤ L =
1

σ2
max

i=1,...,2N
λ2
i ,

=
1

σ2
λ2
max(H), (6.11)

where the λi are the singular values of H .

Appendix C

We present in this section how the spatial correlation model is gen-
erated for users channel vectors at the base station and as described
in [111]. This model assumes a massive MIMO single-cell scenario in a
frequency flat fading channel. The channel vectors for each user are given
by

cm =

∫
Θ

v(θ)cm(θ) dθ, (6.12)

where cm(θ) and v(θ) represent, respectively, the channel gain function
and base station response vector as a function of the incidence angle
θ, which we assume to lie within a fixed range in Θ = [−π

2
, π
2
]. The

correlation matrix for the channel cm of transmit antenna m is given as

Cm = E
[
cmc

H
m

]
=

∫
Θ

v(θ)v(θ)HSm(θ) dθ

≈ V RmV
H, (6.13)

with Sm(θ) representing the power angular spread density. The last ex-
pression represents the approximation for a mMIMO system where V is
a scaled DFT matrix with components

Vi,j =
1√
N

exp

{
−j 2π

M
(i− 1)(j − 1−N/2)

}
, 1 ≤ i, j ≤ N (6.14)

The matrix Rm is diagonal with elements equal to

Rm
n = NSm(f(αn−1))(f(αn)− f(αn−1)), n = 1, 2, . . . , N. (6.15)

Where αn = n/N and θ = f(α) = arcsin(2α− 1). Given each transmitter
average AoA θm and the angular spread ςm, the PAS density assumed is
the Laplacian [141]

Sm(θ) =
1√

2ςm(1− exp
{
−
√
2πςm

}
)
· exp

{
−
√
2
|θ − θm|

ςm

}
. (6.16)
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The mean AoAs are drawn uniformly from the interval [−π
3
, π
3
] and are

used in the computation of each channel vector cm correlation matrix.

Appendix D

We first conduct a Taylor expansion for each channel vector in (4.26)

L(h̄n) ≈ L(ĥn) + (h̄n − ĥn)
T∇L(ĥn)

+
1

2
(h̄n − ĥn)

T∇2
L(ĥn)

(h̄n − ĥn). (6.17)

Exponentiating this result and expanding the terms in the parenthesis
we obtain

f(h̄n) = exp
{
L(h̄n)

}
= exp

{
k(ĥn)− bTn h̄n +

1
2
h̄

T
n∇2

L(ĥn)
h̄n

}
, (6.18)

where we defined

bn = ∇2
L(ĥn)

ĥn −∇L(ĥn)
, (6.19)

and exp
{
k̃(ĥn)

}
is only a constant dependent on ĥn and bn that even-

tually cancels out. Completing the square in (6.18) we get

f(h̄n) ∝ exp
{

1
2
(h̄n − µn)

T∇2
L(ĥn)

(h̄n − µn)
}
. (6.20)

Identifying with the Gaussian (4.28), we obtain the corresponding pa-
rameters in (4.29) {

µn = ĥn − (∇2
L(ĥn)

)−1∇L(ĥn)

Σn = −(∇2
L(ĥn)

)−1 (6.21)

The final step is to normalize by integrating, which can be easily done
for a multivariate Gaussian distribution

an =

∫
f(h̄n) dh̄n

= ek̃(ĥn)
√
(2π)M |Σn|

∫
ϕ(hn;µn,Σn) dhn

= ek̃(ĥn)
√
(2π)M |Σn|. (6.22)

Finally, we obtain the result in (4.28)

Q(H̄|Yp,Xp) =
N∏

n=1

1

an
f(h̄n). (6.23)
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Appendix E

The derivation of (4.30) relies on straightforward applications of Gaus-
sian properties which we outline in this part. Since the channels are
independent, we can re-write the expectation for each channel

EQ

[
P
(
yd|xd, H̄

)]
=

N∏
n=1

EQ

[
P
(
yd,n|xd, h̄n

)]
=

N∏
n=1

∫ [
Φ

(
yd,nh̄

T
n x̄d

σd

)]
× ϕM(h̄n;µn,Σn) dh̄n

=
N∏

n=1

In(xd), (6.24)

where the expectation over Q in this context should be understood as
taken over each channel h̄n due to independence. We introduce the latent
variable vn = h̄

T
nxd + zn and drop the n subscript for brevity in what

follows. We can re-write

I(xd) =

∫
R
EQ

[
P
(
yd, v|xd, h̄n

)]
dv

=

∫
R
P (yd|v)EQ

[
P
(
v|xd, h̄n

)]
dv (6.25)

such that conditional on v, yd is deterministic where

P (yd|v) =
{
1{v≥0}, yd = 1
1{v<0}, yd = −1

(6.26)

and 1{.} represents the indicator function. We can therefore express
(6.24) for each n as

I(xd) =

∞∫
0

∫
RM

ϕ(v, ydh̄
T
xd, σ

2
d).ϕM(h̄;µ,Σ) dh̄ dv. (6.27)

Marginalizing over the distribution of h̄ in this last equation for each n,
and taking the negative logarithm we get (4.30).

Appendix F

To compute the metric in Eq. (4.18), we will need to generate samples
of the channel that follow the posterior distribution from Eq. (4.20). We
can make use of the following theorem proposed in [119]
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Theorem (Durante [119]): If y = [y1, y2, . . . , yi, . . . , yT ]
T is a vector

of conditionally independent binary data from a probit model (yi|xi,h) ∼
Bern(Φ(xT

i h)), for i = 1, . . . , k and h ∼ NM(µ,Σ) then

(h|y,X) ∼ SUNM,T (µ,Σ,∆,η,Γ) (6.28)

Where SUNM,T represents the skewed-unified normal distribution family
with density function

ϕM (z;µ,Σ)
ΦT

(
η +∆T Σ̄

−1
w−1(z − µ),0T ,Γ−∆T Σ̄

−1
∆
)

ΦT (η;0T ,Γ)
(6.29)

such that ΦT denotes the T -dimensional cumulative multivariate Gaus-
sian integral evaluated at η+∆T Σ̄

−1
w−1(z−µ) representing the orthants

with mean 0T and covariance matrix Γ−∆T Σ̄
−1
∆. w is a diagonal ma-

trix containing the square roots of the diagonal elements in Σ, and we
have the following relations

X = [x1, . . . ,xT ]
T

Σ = wΣ̄w
∆ = Σ̄wDTs−1

η = s−1Dµ
Γ = s−1(DΣDT + IT )s

−1

(6.30)

where D = diag(y1, . . . , yT )X and s = diag
{
(dT

1Σd1+1)1/2, . . . , (dT
TΣdT+

1)1/2
}
.

Corollary (Durante [119]): If (h|y,X) has the unified skew-normal
distribution from Theorem 1, then

(h|y,X)
d
= µ+w{V0 + Σ̄wDT (DΣDT + IT )

−1sV1} (6.31)

with the following distributions{
V0 ∼ N

(
0M , Σ̄− Σ̄wDT (DΣDT + IT )

−1wΣ̄
)

V1 ∼ T N
(
−s−1Dµ,0T , s

−1(DΣDT + IT )s
−1
) (6.32)

where the notation d
= means equality in distribution and T N (l,a,C)

is a truncated normal distribution from below l with mean and covari-
ance matrix a and C, respectively. Looking at the simplified posterior
from Eq. (4.33), it can be directly verified that hn,m, implicitly condi-
tioned on the data, follows the skew-normal distribution after a simple
re-parameterization according to the previous theorem

p(h̄n,m) = ϕ(h̄n,m, 0, 1)
Φγ{ h̄n,m√

2
X̄γ, 0,

1
2
Iγ}

Φγ

{
0, 1

2
(Iγ + X̄γX̄

T
γ )
}
,

(6.33)
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where we have X̄γ = 1√
σp

diag(y1p,n, . . . , yγp,n)1γ. Since everything is inde-
pendent, to perform MC integration we can simply generate the random
variables hn,m in parallel according to the Corollary:

v0 ∼ N (0, 1− X̄
T
γ (X̄γX̄

T
γ + Iγ)

−1X̄γ)

V1 ∼ T N γ(0;0γ,
1
2
(X̄γX̄

T
γ + Iγ))

Therefore,

h̄n,m
d
= v0 +

√
2X̄

T
γ (X̄γX̄

T
γ + Iγ)

−1V1. (6.34)

The truncated normal distribution can be generated according to the
method proposed in [117].
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