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Abstract

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant
morbidity and mortality, straining healthcare systems worldwide. Fundamental
approaches for controlling viral spread and mitigating its impact are vaccinations
and non-pharmaceutical interventions (NPIs). Before vaccines became available,
governments relied on NPIs with largely unknown epidemiological and societal im-
pacts. Despite numerous studies, the effectiveness of NPIs on COVID-19 dynam-
ics remained uncertain, especially over multiple pandemic waves. With a gradual
roll-out of vaccines, population immunity increased, but this increase in was coun-
teracted by the emergence of immune-escaping variants of concern (VoCs) and
waning of both infection- and vaccine-induced immunity. The long-term dynamics
of this decline are currently not well characterized, particularly in the context of
multiple infections and infections with different VoCs.

Given the only partially observed nature of epidemics and their non-linear
dynamics, mathematical models are uniquely suited for their analysis. In my the-
sis, I applied mathematical models to various COVID-19 data, from aggregated
population-level data of infections and hospitalizations to antibody (Ab) titers in
individuals, with the goal of quantifying the effectiveness of NPIs and vaccines,
identifying protective Ab thresholds, and characterizing immunity waning dynam-
ics.

Specifically, my first objective was to estimate the effectiveness of NPIs and
vaccines in France and explore counterfactual NPI and vaccine implementation
scenarios. We developed a population-based mechanistic model, which we fit to
epidemiological data in France from March 2020 to October 2021. The model
showed a significant reduction in viral transmission by lockdowns, school closures,
and curfews, though their effectiveness decreased over time. Simulations demon-
strated that vaccines had saved nearly 160k lives over the study period, but an
earlier implementation or a faster rollout could have prevented even more deaths.

To understand why NPI effectiveness estimates vary across studies, we evalu-
ated two methodologies in my second objective: mechanistic models and a com-

i



monly used two-step regression approach. The latter first estimates the reproduc-
tive number (Rt) and then regresses it against NPI parameters. Using simulated
data of varying complexity, mechanistic models consistently showed minimal bias
(0-5%) and high confidence interval (CI) coverage, whereas the two-step regres-
sions had biases up to 20% and much lower CI coverage. The bias stemmed from
the depletion of susceptibles and challenges in estimating Rt, indicating that cau-
tion is warranted with this method despite its simplicity and speed.

Accurate epidemiological models require up-to-date parameters. My third ob-
jective was therefore two-fold: 1) to relate SARS-CoV-2 specific Ab levels to the
risk of infection and 2) to characterize antibody waning. Using Ab data from over
220k Canadian blood donors between April 2020 and December 2023, we found
that both anti-S and anti-N Abs reduced infection risk, with anti-N showing a
stronger effect at lower titers. We used biphasic decay models to characterize
waning dynamics and estimated that that 51.3% (95% CI 40.6-66.1%) of individu-
als would drop below detectable anti-N Ab levels within three years after a single
infection. The duration of Ab detection increased after subsequent infections.
However, antibodies waned within months below thresholds needed to attain sub-
stantial protection, even after multiple infections and vaccinations, indicating that
continuous vaccine booster doses might be needed to sustain protection.

The analyses I conducted in my PhD research highlight the importance of
timely interventions and continuous monitoring of immunity to better prepare for
future outbreaks. Moreover, I illustrated that mathematical models are a powerful
tool to inform public health decision making and strategies.

Keywords: COVID-19, vaccines, non-pharmaceutical interventions, infectious
diseases, mathematical modeling
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Résumé

La pandémie de COVID-19, causée par le SRAS-CoV-2, a entrâıné une morbidité
et une mortalité importantes, mettant à rude épreuve les systèmes de santé mon-
diaux. Les vaccinations et les interventions non pharmaceutiques (INP) sont es-
sentielles pour contrôler la propagation du virus. Avant les vaccins, les gouverne-
ments s’appuyaient sur des INP dont l’impact épidémiologique et sociétal restait
incertain, notamment sur plusieurs vagues pandémiques. Le déploiement des vac-
cins a augmenté l’immunité collective, mais l’émergence de variants préoccupants
(VoCs) échappant à l’immunité et l’affaiblissement de l’immunité induite ont reduit
l’immunité effective. La dynamique à long terme de ce déclin est mal comprise,
surtout dans le contexte d’infections multiples et par divers VoCs.

Les épidémies étant partiellement observées et leur dynamique non linéaire, les
modèles mathématiques sont bien adaptés pour leur analyse. Dans ma thèse, j’ai
appliqué ces modèles à diverses données COVID-19, depuis les données agrégées
sur les infections et les hospitalisations jusqu’aux titres d’anticorps (Ac) chez les
individus, pour quantifier l’efficacité des INP et vaccins, identifier les seuils de
protection des Ac et caractériser la décroissance de l’immunité.

Mon premier objectif était d’estimer l’efficacité des INP et des vaccins en France
et d’explorer des scénarios contrefactuels des INP et des vaccins. Nous avons
développé un modèle mécaniste ajusté aux données épidémiologiques françaises
de mars 2020 à octobre 2021. Le modèle a montré une réduction significative de
la transmission virale grâce aux INP, bien que leur efficacité ait diminué avec le
temps. Les simulations ont montré que les vaccins avaient sauvé près de 160000
vies au cours de la période étudiée, mais qu’une mise en œuvre plus précoce ou un
déploiement plus rapide aurait évité encore plus de décès.

Pour comprendre la variabilité des estimations de l’efficacité des INP, nous
avons évalué deux méthodologies pour mon deuxième objectif: les modèles mécanistes
et une régression en deux étapes couramment utilisée, qui d’abord estime le nom-
bre de reproduction ( Rt), puis le regresse sur les paramètres des INP. En utilisant
des données simulées, les modèles mécanistes ont montré un biais minimal (0-5%)
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et une couverture d’intervalle de confiance (IC) élevée, tandis que les régressions
en deux étapes ont montré des biais jusqu’à 20% et une couverture d’IC inférieure.
Ce biais était dû à la déplétion des susceptibles et aux difficultés d’estimation de
Rt, montrant que cette méthode nécessite prudence malgré sa rapidité.

Les modèles épidémiologiques précis nécessitent des paramètres actualisés. Mon
troisième objectif était donc 1) relier les niveaux d’Ac SARS-CoV-2 au risque de
(ré)infection et 2) caractériser la décroissance des Ac. Grâce aux données d’Ac
de plus de 220000 donneurs de sang canadiens entre avril 2020 et décembre 2023,
nous avons constaté que les Ac anti-S et anti-N réduisaient le risque d’infection,
avec un effet plus prononcé des anti-N à de faibles titres. J’ai estimé avec des
modèles de décroissance biphasique que 51.3% (95% IC 40.6-66.1%) des individus
tomberaient en dessous des niveaux détectables d’Ac anti-N dans les trois ans suiv-
ant une infection. La durée de détection des Ac augmentait après chaque infection.
Cependant, les Ac chutaient en quelques mois en dessous des seuils requis pour
une protection substantielle, même après plusieurs infections et vaccinations, indi-
quant la nécessité d’administrer des rappels régulièrs pour maintenir la protection.

Les analyses dans ma thèse soulignent l’importance des interventions rapides
et du suivi continu de l’immunité pour mieux se préparer aux futures épidémies.
De plus, j’ai démontré que les modèles mathématiques sont un outil puissant pour
orienter la prise de décision en santé publique et les stratégies de prévention.

mots-clés: COVID-19, vaccins, interventions non pharmaceutiques, maladies in-
fectieuses, modélisation mathematique
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Résumé substantiel en français

Introduction

La pandémie de COVID-19, causée par l’émergence du SRAS-CoV-2, représente
une crise sanitaire mondiale sans précédent au XXIe siècle. À travers plusieurs
vagues pandémiques, elle a entrâıné une morbidité et une mortalité importantes,
exerçant une pression immense sur les systèmes de santé et les sociétés du monde
entier. En l’absence de vaccins ou de traitements médicaux aux premiers stades,
les gouvernements ont dû mettre en place des interventions non pharmaceutiques
(INP) pour éviter la saturation des hôpitaux et réduire les décès prématurés. Les
INP sont toutes les interventions de santé publique qui ne nécessitent pas de pro-
duits médicaux et comprennent des mesures telles que le confinement, le couvre-
feu, la fermeture des écoles et le port du masque. Ces mesures ont souvent été
imposées de manière urgente, avec des preuves limitées pour orienter les décisions.
De nombreuses études ont utilisé diverses méthodologies pour estimer l’efficacité
des INP, surtout durant la première vague de la pandémie. Cependant, les résultats
varient considérablement, allant d’inefficaces à très efficaces pour presque toutes
les INP évaluées. Ainsi, malgré une grande quantité de recherches, l’efficacité à
long terme des INP reste incertaine, en particulier après l’apparition de variants
préoccupants et l’introduction des vaccins. Un deuxième niveau d’incertitude con-
cerne la méthodologie elle-même: comment les différentes approches analytiques
et sources de données influencent les conclusions sur l’efficacité des INP? Après le
développement et la distribution des vaccins, les INP ont pu être progressivement
assouplies. Bien que les vaccins aient été essentiels pour réduire la transmission
virale, la quantification des vies sauvées reste un débat ouvert. De plus, l’efficacité
vaccinale contre l’infection a diminué au fil du temps en raison de deux facteurs
: (1) la diminution naturelle de l’immunité, et (2) l’apparition de nouveaux vari-
ants plus transmissibles et porteurs de mutations échappant à l’immunité. Par
conséquent, des doses de rappel fréquentes peuvent être nécessaires pour maintenir
une immunité suffisante. Néanmoins, la protection conférée par les vaccins contre
les formes graves reste élevée dans le temps. Deux protéines sont les cibles princi-
pales des anticorps anti-SRAS-CoV-2: la protéine de surface (spike) et la protéine
de nucléocapside. Des nombreuses études ont examiné la dynamique des anticorps
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anti-spike générés par la vaccination, les anticorps neutralisants anti-spike ayant
été identifiés comme un corrélat de protection. Cependant, les niveaux spécifiques
d’anticorps totaux conférant une protection contre l’infection—en particulier con-
tre des variants échappant à l’immunité comme Omicron—restent flous. De plus,
peu d’informations sont disponibles sur d’autres composantes de l’immunité, telles
que les anticorps anti-nucléocapside ou l’immunité mucosale, qui ne sont générés
que par une infection naturelle. En outre, les études sur la dynamique à long
terme et les effets protecteurs des anticorps anti-SRAS-CoV-2 dans des cohortes
de grande taille ont été rares, laissant une autre lacune dans la compréhension
globale du paysage immunologique du COVID-19.

Les objectifs de cette thèse sont donc triples:

1. Estimer l’efficacité des interventions à l’échelle de la population contre la
COVID-19 en France, en se concentrant à la fois sur les INP et les vaccins, et
en utilisant des données granulaires de haute qualité. Les paramètres d’INP
et de vaccin seront estimés à l’aide d’un modèle mécaniste, qui est partic-
ulièrement adapté, car il permet d’incorporer des informations biologiques
sur l’évolution de la maladie et la protection par la vaccination. Des simu-
lations de scénarios contrefactuels avec le même modèle seront menées pour
illustrer l’effet de l’implémentation opportune des INP et des vaccins ou, au
contraire, les conséquences de l’absence de vaccins.

2. Évaluer de manière comparative la performance de différentes méthodologies
utilisées dans les études sur l’efficacité des INP. À cette fin, le modèle mécaniste
développé dans l’objectif 1, qui estime tous les paramètres en une seule étape,
sera comparé à un modèle de régression en deux étapes, qui estime d’abord
les indicateurs épidémiques, puis les régressent sur les variables INP. Les
sources potentielles de biais pour les deux modèles seront explorées.

3. Estimer le risque d’infection basé sur les titres d’anticorps dans une large co-
horte de donneurs de sang et de plasma canadiens et identifier des seuils po-
tentiellement protecteurs des anticorps anti-spike et anti-nucléocapside. En
outre, les dynamiques de décroissance de ces anticorps seront caractérisées,
notamment le temps nécessaire pour que les niveaux d’anticorps tombent en
dessous de ces seuils protecteurs.

Les modèles mathématiques ont été des outils essentiels pour fournir aux décideurs
des métriques clés de la dynamique épidémiologique, telles que le nombre de repro-
duction du virus, les prévisions des besoins en ressources de santé et les résultats
potentiels de différentes stratégies de santé publique. En particulier, les modèles
mathématiques de type SIR, également appelés modèles compartimentaux, ont
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été fréquemment utilisés par les chercheurs pendant la pandémie de COVID-19.
Dans ces types de modèles, la population étudiée est divisée en états d’infection
mutuellement exclusifs, les compartiments, tels que Susceptibles (S), Infectieux
(I) et Rétablis (R). Le modèle représentent les flux d’individus entre les comparti-
ments au cours du temps en reproduisant la dynamique temporelle des épidémies
de maladies infectieuses avec des équations différentielles ordinaires (EDO). Les
EDO peuvent également être utilisées pour décrire les dynamiques intra-hôte, par
exemple le mécanisme biologique de production et de décroissance des anticorps.

Dans ma thèse, j’ai utilisé des modèles compartimentaux, parfois seuls, parfois
couplés à d’autres types de modèles, tels que des modèles de régression, pour
atteindre les objectifs mentionnés ci-dessus.

Manuscrit 1 : Efficacité des interventions contre

la COVID-19 en France
Dans ce chapitre, je présente une étude sur l’efficacité des interventions de santé
publique contre la pandémie de COVID-19 en France. Nous avons développé un
modèle mécaniste à l’échelle de la population qui inclut l’effet des vaccins sur la
transmission du SARS-CoV-2 et le risque d’hospitalisation. La partie mécaniste
du modèle est illustrée dans la Figure F1. Nous avons ensuite couplé le modèle
mécaniste à un modèle linéaire mixte des taux de transmission virale b qui inclut
l’impact des interventions non pharmaceutiques (INP). Ce modèle représente le
taux de transmission temporel bt en fonction du taux de transmission de base b0,
des INP, des conditions météorologiques et des variants d’intérêt (VoC), avec des
effets aléatoires pour capturer la variabilité résiduelle entre départements:

log(bi,t) = b0i +
∑

j

βj
iNPIji,t +

∑

k

βk
VVoC

k
i,t + βwmétéoi,t

b0i ∼ N(b0pop , ω) pour le département i à temps t, avec le INP j et le VoC k.
Nous avons intégré les effets de la vaccination, en tant qu’effet vaccinal pop-

ulationnel contre la transmission (evI) et contre l’hospitalisation (evH), directe-
ment dans le modèle compartimental. Cette approche a permis d’estimer tous
les paramètres en une seule étape, en propageant l’incertitude de manière précise.
Nous avons ajusté le modèle aux données épidémiologiques fournies par Santé
Publique France de mars 2020 à octobre 2021. Les paramètres ont été estimés par
maximum de vraisemblance à l’aide d’un algorithme d’approximation stochastique
de l’espérance-maximisation (SAEM) implémenté dans le logiciel Monolix. Avec
le même modèle, nous avons simulé des scénarios de déploiement vaccinal, en util-
isant le logiciel Simulx.
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Figure F1: Modèle SEIRAHD

Le modèle a montré que le premier confinement était le plus efficace, réduisant
la transmission de 84% (intervalle de confiance (IC) à 95%: 83-85). Les confine-
ments suivants ont montré une efficacité diminuée (réduction de 74% (69-77) et
de 11% (9-18), respectivement). Un couvre-feu à 18h a été plus efficace qu’à 20h
(68% (66-69) contre 48% (45-49) de réduction), tandis que la fermeture des écoles a
réduit la transmission de 15% (12-18). Nous avons également observé une influence
significative de la météo sur la transmission du SARS-CoV-2, avec une augmenta-
tion moyenne de 10% en conditions hivernales et une diminution moyenne de 20%
en conditions estivales par rapport aux conditions météorologiques moyennes en
France durant toute la période d’étude. L’effet vaccinal populationnel contre la
transmission et l’hospitalisation a augmenté au fil du temps avec la hausse de la
couverture vaccinale. Cependant, l’effet du vaccin sur la transmission a plafonné à
environ 25% (IC 95%: 22-27) avec la propagation du variant Delta. L’effet popula-
tionnel du vaccin contre l’hospitalisation a continué de crôıtre avec l’augmentation
de la couverture vaccinale, atteignant 84% (82-85) à la fin de la période d’étude.

Avec ces paramètres d’efficacité vaccinale estimés, nous avons simulé des scénarios
contrefactuels de déploiement vaccinal. Dans un scénario sans vaccins avant novem-
bre 2021, le modèle a prédit 159 000 décès supplémentaires, soit une augmentation
de 168% (intervalle de prédiction (IP) à 95% : 70-315), ainsi que 1 488 000 hospital-
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isations supplémentaires, soit une augmentation de 300% (133-492). Si un vaccin
avait été disponible dès 100 jours après le début de l’épidémie, plus de 71 000 décès
supplémentaires (16 507-204 249) et 384 000 hospitalisations supplémentaires (88
579-1 020 386) auraient pu être évités. De même, nous avons simulé des scénarios
contrefactuels de mise en œuvre des confinements. Si le premier confinement avait
été mis en place une semaine plus tôt, 92 000 hospitalisations (IC 95% : 61-118
000) et 20 000 décès (13-26 000) auraient pu être évités.

Les résultats de cette étude mettent en évidence l’impact substantiel des in-
terventions non pharmaceutiques, y compris les confinements et les couvre-feux,
dans le contrôle de la pandémie de COVID-19. Nous avons également démontré
l’effet des vaccins pour réduire les hospitalisations, les décès et les infections liés à
la COVID-19.

Manuscrit 2 : Évaluation comparative des métho-

dologies d’estimation de l’efficacité des interven-

tions non pharmaceutiques

En comparant les estimations du Manuscrit 1 avec une autre étude sur l’efficacité
des INP en France [1], nous avons noté plusieurs divergences dans l’estimation des
effets des INP. Nous avons émis l’hypothèse que ces différences provenaient des
différentes méthodologies utilisées, à savoir un modèle mécaniste estimant tous
les paramètres en une seule étape, et un modèle de régression en deux étapes
: 1) estimation du nombre de reproduction effectif Rt à partir des observations
épidémiologiques, et 2) utilisation de Rt estimé comme variable dépendante dans
un modèle de régression, avec les variables indicatrices des INP comme prédicteurs.
Rt est défini comme le nombre moyen de cas secondaires produits par un seul
individu infectieux. En raison de sa facilité d’application et de la rapidité des es-
timations, cette méthodologie a fréquemment été utilisée pour estimer l’efficacité
des INP. Dans le Manuscrit 2, nous avons cherché à clarifier les divergences ob-
servées en comparant les deux approches méthodologiques en termes de biais des
paramètres et de couverture des intervalles de confiance des paramètres d’efficacité
des INP.

Nous avons simulé des jeux de données de complexité croissante, allant de
modèles mécanistes SIR et SEIRAHD à des modèles multi-agents. Nous avons créé
des scénarios comparables aux premiers mois d’une épidémie, avec une première
INP, comparable en intensité à un confinement, suivie d’une deuxième INP, com-
parable à une intervention post-confinement. Dans la procédure de régression en
deux étapes, nous avons d’abord estimé Rt à partir des infections ou des hospital-
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isations, séparément pour chaque région simulée, avec une fenêtre de lissage de 7
jours à l’aide du package R EpiEstim. Ensuite, nous avons effectué une régression
à effets mixtes avec l’estimation ponctuelle du log(Rt) comme variable dépendante
et les deux INP comme prédicteurs.

Dans les scénarios SIR simples, le biais des estimations des effets des INP par
le modèle de régression en deux étapes augmentait avec la déplétion des individus
susceptibles, tandis que le modèle mécaniste estimait constamment la valeur cor-
recte (Tableau F1). Ce biais est expliqué par la variation temporelle du nombre de
personnes susceptibles. Dans la procédure de régression en deux étapes, les effets
des INP ont été estimés en utilisant le mathcalRt estimé dans la première étape
selon l’équation 1. Avec R(t) = b(t)S(t)

γN
et en remplaçant b(t) par l’équation de

transmission log(b(t)) = log(b0) + β1NPI1(t) + β2NPI2(t), nous obtenons:

log(Ri(tij)) = log(b0)− log(γN)+ log(S(t))+β1NPI1(tij)+β2NPI2(tij)+ui+ ϵij
(1)

Dans cette équation, log(b0) et log(γN) sont des constantes et sont donc in-
clus dans le terme d’ordonnée à l’origine. En revanche, log(S(t)) varie dans le
temps et peut donc fausser les effets estimés de l’INP, un déplétion plus important
des susceptibilités au cours de la période d’estimation entrâınant un biais plus
important.

Bien que les scénarios SIR soient utiles pour comprendre les défis sous-jacents
de la procédure de régression en deux étapes, la simplicité du modèle SIR ne per-
met pas de saisir la complexité des scénarios du monde réel. Dans les scénarios
plus réalistes, nous avons maintenu la déplétion des susceptibles à un faible niveau
(≤ 3%). Dans les données créées avec le modèle SEIRAHD (Figure F1), les esti-
mations ponctuelles des modèles de régression en deux étapes présentaient un biais
important, particulièrement prononcé pour la première INP (biais relatif allant de
18 à 25%) par rapport à la deuxième INP (environ 14 à 18%). De plus, les IC
dérivés de ces modèles n’incluaient pas systématiquement les véritables valeurs de
l’INP. Comme l’enchâınement de deux étapes d’analyse sous-estime l’incertitude
de l’estimation finale, nous avons mis en œuvre une procédure de bootstrap en
échantillonnant de manière répétée la distribution Rt. Cette procédure bootstrap
a élargi les IC résultants, mais ceux-ci n’incluaient la valeur réelle que pour l’INP
2 et non pour l’INP 1. En revanche, les IC à 95% pour les deux INP dérivés des
modèles mécanistes couvraient la valeur réelle dans l’ensemble des 100 jeux de
données, tandis que les estimations ponctuelles ne présentaient qu’un biais absolu
et relatif minime (¡ 1% pour les deux INP).
En examinant les sources du biais élevé du modèle de régression en deux étapes,
nous avons identifié des divergences au début de l’épidémie et un décalage dans
l’estimation de Rt par EpiEstim lorsque le véritable Rt a subi des changements
soudains résultant de la mise en œuvre ou de la levée des INP. Ces décalages
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Déplétion de
S

2% 10% 20% 40% 60%

Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech.

INP 1
Biais absolu -0.02 0.00 0.10 0 0.21 0 0.40 0 0.65 0
Biais relatif (%) 1.2 0.2 7.0 0 14.8 0 27.4 0 45.0 0
IC 95% (%) 0 - 0 - 0 - 0 - 0 -
IC 95%
bootstrap (%)

100 100 0 100 0 100 0 100 0 100

INP 2
Biais absolu 0.05 0 0.20 0 0.33 0 0.42 0 0.48 0
Biais relatif (%) 6.6 0.1 24.5 0 40.9 0 51.9 0 59.5 0
IC 95% (%) 0 - 0 - 0 - 0 - 0 -
IC 95%
bootstrap (%)

100 100 0 100 0 100 100 100 100 100

Table F1: Paramètres d’évaluation de la simulation SIR. Pour chaque scénario
de déplétion des susceptibles, le biais absolu et relatif moyen et le pourcentage d’IC à
95% couvrant la valeur réelle sur 100 jeux de données simulés sont indiqués. Les colonnes
indiquent le modèle d’analyse. Les lignes de l’IC indiquent le pourcentage d’ensembles
de données pour lesquels l’IC à 95% couvre la valeur réelle. L’IC à 95% du modèle
mécaniste a toujours été déterminé par bootstrap.
Reg. modèle de régression en deux étapes, Mech. modèle mécaniste, IC intervalle de
confiance, INP intervention non pharmaceutique

ont conduit à une sous-estimation de la force de l’INP 1 et à une surestima-
tion de l’INP 2, car le modèle de régression a estimé une moyenne sur la période
d’implémentation des INP.

Outre la sous-estimation de l’incertitude, la déplétion des susceptibles au cours
de la période d’étude et les problèmes d’estimation de mathcalRt peuvent donc
fausser les paramètres d’efficacité des INP lors de l’utilisation de la méthode de
régression en deux étapes. Nos résultats ont donc des implications significatives
pour affiner la méthodologie utilisée pour estimer l’efficacité des INP.

Manuscrit 3: Diminution de l’immunité contre le

SARS-CoV-2 au fil du temps

Une étape essentielle pour améliorer les études sur l’efficacité des INP et les autres
modèles mathématiques utilisés pendant la pandémie de COVID-19 est le raffine-
ment continu des paramètres d’entrée fixes, tels que la durée de l’immunité. Avec
l’émergence du variant Omicron, une grande partie de la population a acquis une
immunité hybride, c’est-à-dire une immunité issue à la fois de la vaccination et
de l’infection naturelle. Pour adapter et améliorer les modèles aux nouveaux vari-
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ants et sous-variants émergents, il est nécessaire de disposer de nouvelles données.
L’un des principaux manques de connaissances concernait le niveau de protection
immunitaire conféré par la vaccination antérieure et l’infection, ainsi que la durée
de cette protection.

La Société canadienne du sang a fourni l’accès à des mesures d’anticorps de
plus de 448,270 donneurs de sang au Canada entre avril 2020 et décembre 2023.
Étant donné que les vaccins ciblent exclusivement la protéine spike, alors que les
anticorps ciblant les protéines spike et nucléocapside sont produits en réponse à
une infection, nous avons pu estimer les dates d’infection et de vaccination à partir
des profils longitudinaux d’anticorps anti-spike (anti-S) et anti-nucléocapside (anti-
N). Une augmentation substantielle des anticorps anti-N indiquait une infection,
tandis qu’une augmentation des anticorps anti-S sans augmentation des anti-N
indiquait une vaccination (Figure F2).

Nous avons utilisé les dates d’infection déduites pour évaluer l’association entre
les niveaux d’anticorps anti-SRAS-CoV-2 et le risque d’infection dans les modèles
de risques proportionnels de Cox. Nous avons modélisé l’effet des anticorps anti-S
et anti-N sur le risque d’infection sous forme de splines flexibles, en tenant compte
du risque d’infection de fond, de la circulation des variantes et de l’âge, du sexe
et de l’origine ethnique des donneurs. À l’aide de modèles mécanistes, nous avons
caractérisé plus précisément la dynamique de décroissance des anticorps anti-S et
anti-N. Avec les paramètres estimés, nous avons simulé les titres d’anticorps sur
une période de trois ans afin d’évaluer le temps nécessaire pour atteindre les seuils
de protection définis avec les modèles de Cox.

Des titres plus élevés d’anticorps anti-S et anti-N étaient associés à un risque
d’infection plus faible. Les titres d’anticorps anti-S présentaient une relation non
linéaire avec le risque d’infection, avec un plateau de protection à des niveaux
intermédiaires (10 à 1 000 U/mL) et une forte baisse des rapports de risques
instantanés (hazard ratio, HR) en-deçà de ce niveau (figure F3). Les anticorps
anti-N présentaient une relation plus linéaire, avec une augmentation de leur titre
diminuant continuellement le risque instantané d’infection et offrant des hautes
niveaux de protection. Les modèles mécanistes ont révélé que les niveaux des
deux types d’anticorps diminuaient de manière biphasique, avec un déclin initial
rapide suivi d’une décroissance plus lente. Les simulations ont montré qu’après
trois ans, 48% des personnes ayant contracté une seule infection et plus de 80%
de celles ayant contracté plusieurs infections avaient des taux d’anticorps anti-N
détectables. Cependant, moins de 5% des personnes ayant contracté une seule
infection et seulement 20% environ de celles ayant contracté plusieurs infections
ont conservé des niveaux d’anti-N assurant une protection de 50% après deux
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Figure F2: Aperçu des procédures et des objectifs du Manuscrit 3. Image
créée avec BioRender (biorender.com)
CSA: cellule sécrétrice d’anticorps.

ans. Les taux d’anticorps anti-S ont chuté encore plus rapidement sous le seuil
de protection de 50%, avec seulement environ 5% des individus ayant des taux
d’anticorps supérieurs à ce seuil un an après l’immunisation.

Nous avons constaté que les anticorps anti-S et anti-N réduisent de manière
significative le risque d’infection, même après l’émergence du variant Omicron. Si
les anticorps sériques anti-N ne préviennent pas directement l’infection, ils ser-
vent de marqueurs indirects de la protection conférée par l’immunité naturelle.
Nos résultats confirment que de multiples épisodes de vaccination sont nécessaires
pour atteindre et maintenir des titres d’anticorps élevés afin d’assurer une protec-
tion durable. Ces résultats fournissent des indications précieuses pour orienter les
stratégies de vaccination et les interventions de santé publique.

Conclusion

Cette thèse a porté sur l’application de modèles mathématiques aux données col-
lectées pendant la pandémie de COVID-19 afin d’améliorer notre compréhension de
la manière dont la propagation virale peut être contrôlée. Elle a abouti à plusieurs
résultats importants : premièrement, elle a contribué à l’identification d’INP ef-
ficaces et a souligné l’importance d’une mise en œuvre rapide des INP. Pour les
futures pandémies ou vagues de COVID-19, j’ai montré que les mesures de confine-
ment pourraient être un bon instrument de santé publique pour freiner rapidement
et radicalement la propagation. Toutefois, leurs coûts sociaux et économiques
pourraient limiter leur faisabilité à long terme. D’une manière générale, plus les
INP sont mises en œuvre rapidement, plus elles parviennent à contrôler la propa-
gation virale. Deuxièmement, j’ai montré qu’un déploiement rapide et précoce des
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Figure F3: Rapports de risques instantanés ajustés de l’association entre les
titres d’anticorps et le risque d’infection. Les rapports de risque et les IC à 95%
correspondants sont indiqués pour la gamme des anticorps anti-S (panneau A) et des
anticorps anti-N (panneau B). Les rapports de risque pour les anticorps anti-S ont été
calculés par rapport au seuil de positivité du test fixé à 0,8, tandis que ceux pour les
anticorps anti-N ont été évalués par rapport à un seuil de 1. Les rapports de risque
ont été ajustés en fonction de l’âge, du sexe et de l’origine ethnique du donneur, de la
différence hebdomadaire de séroprévalence et de la circulation des VoC. Les diagrammes
en violon au-dessous indiquent la distribution des titres d’anticorps respectifs.
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vaccins est essentiel pour freiner à la fois la transmission virale et les conséquences
graves de la maladie. En outre, j’ai démontré que des titres élevés d’anticorps
offraient une protection efficace contre l’infection. Ces titres élevés d’anticorps
peuvent être atteints à la fois par l’infection et par la vaccination, mais ils dimin-
uent rapidement en dessous des seuils nécessaires pour maintenir une protection
élevée. La troisième contribution de ma thèse concerne la méthodologie utilisée
dans les études d’efficacité des INP. J’ai montré qu’il fallait faire preuve de pru-
dence lors de l’application de modèles de régression en deux étapes pour estimer
l’efficacité des interventions, même s’ils permettent d’obtenir des résultats beau-
coup plus rapidement qu’avec des modèles en une étape intégrant la dynamique
épidémiologique.
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1
Introduction

1.1 Background

The COVID-19 pandemic, caused by the emerging SARS-CoV-2 virus, represents
an unprecedented global health crisis in the 21st century. Throughout multiple
pandemic waves, it led to extensive morbidity and mortality and put immense pres-
sure on healthcare systems and whole societies worldwide. In the absence of vac-
cines or other medical treatments during the early stages, governments were com-
pelled to implement non-pharmaceutical interventions (NPIs) to prevent health-
care systems from becoming overwhelmed and to reduce premature deaths. These
interventions were often mandated urgently and with a limited evidence base to
guide decisions.

Mathematical models have been essential tools to provide decision-makers with
critical knowledge, such as the speed of viral reproduction, forecasts of healthcare
resource needs, and potential outcomes of various public health strategies. Nu-
merous studies used various types of methodologies to estimate the effectiveness
of NPIs, especially during the first wave of the pandemic. However, there is large
variation in the results, ranging from non-effective to highly effective for almost
all assessed NPIs. Therefore, despite the vast amount of research, the long-term
effectiveness of NPIs remains uncertain, particularly after the emergence of vi-
ral variants of concern and the introduction of vaccines. A second research gap
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emerges in the methodology itself: how do different methodological approaches
affect the conclusions about NPI effectiveness?

After the exceptionally fast development and distribution of vaccines, NPIs
could be relaxed gradually. While vaccines were essential to curbing the spread,
the quantification of lives saved by vaccines is an open debate. Moreover, the
effectiveness of vaccines against infection decreased over time due to two factors:
(1) the natural waning of immunity, and (2) the emergence of new viral variants
with increased transmissibility and immune-escaping mutations. Consequently,
frequent booster doses may be necessary to maintain sufficient immunity. Never-
theless, the protection conferred by vaccines against severe disease remained high
over time.

Many studies have examined the dynamics of anti-spike antibodies elicited by
vaccination as neutralizing anti-spike antibodies have been identified as a correlate
of protection. However, the specific overall antibody levels that confer protection
against infection—especially against immune-evasive variants like Omicron—are
still unclear. Moreover, much less is known about other components of immunity,
such as anti-nucleocapsid antibodies or mucosal immunity, which are only elicited
by natural infection. Furthermore, studies about the long-term dynamics and pro-
tective effects of anti-SARS-CoV-2 antibodies in large cohorts are lacking, leaving
another gap in understanding the broader immunological landscape of COVID-19.

1.2 Objectives

The objectives of this thesis are threefold:

1. To estimate the population-wide effectiveness of interventions against COVID-
19 in France, focusing on both NPIs and vaccines, and using high-quality
data. NPI and vaccine parameters will be estimated with a mechanistic
model, which is uniquely suited to the research area, as it allows incor-
poration of biological information on the course of disease and protection
through vaccination. Simulations of counterfactual scenarios with the same
model will be conducted to illustrate the effects of timely implementation of
NPIs and vaccines or, in contrast, the effects of the absence of vaccines.

2. To evaluate comparatively the performance of different methodologies used
in NPI effectiveness studies. To this end, the mechanistic model developed
in objective 1, which estimates all parameters in one step, will be compared
to a two-step regression model, which first estimates epidemic indicators and
then regresses them on NPI variables. The potential sources of bias for both
models will be explored.
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3. To estimate the risk of infection based on antibody levels in a large co-
hort of Canadian blood and plasma donors and identify potential protective
thresholds of anti-spike and anti-nucleocapsid antibodies. Furthermore, the
waning dynamics of these antibodies will be characterized, particularly the
time required for antibody levels to fall below these protective thresholds.

1.3 Format
The thesis is comprised of three manuscripts, each addressing the research objec-
tives stated above. Prior to presenting the manuscripts, supporting chapters are
included to provide essential context. Chapter 2 reviews the relevant scientific
literature, identifying the gaps that the thesis aims to address. Chapter 3 intro-
duces the models I used in my thesis research. Chapters 4 to 6 correspond to the
three main objectives. Specifically, Chapter 4 assesses the effectiveness of NPIs
and vaccines against COVID-19 in France using a mechanistic model. Chapter
5 evaluates the performance of this model against a more commonly used, but
simpler, methodology for estimating NPI effectiveness. Chapter 6 estimates the
effect of antibody levels on infection risk, with the aim of establishing protective
thresholds. This chapter also models the waning of immunity and predicts when
individuals are likely to fall below these thresholds. Finally, Chapter 7 synthesizes
the findings from the three manuscripts, discusses the broader implications of the
results, addresses common methodological challenges, and Chapter 8 provides an
outlook for future research.

3



4



2
Review of the Literature

2.1 Brief overview of the COVID-19 pandemic

The coronavirus disease (COVID-19) pandemic was first detected as an outbreak
of pneumonia in Wuhan, China, in December 2019 [2, 3]. The disease was caused
by a newly emerging virus, which was subsequently named severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [4] and spread rapidly around the
globe. The World Health Organization (WHO) declared the SARS-CoV-2 out-
break a pandemic on March 11, 2020 [5]. Since then, the COVID-19 pandemic has
caused substantial morbidity and mortality and has taken a heavy toll on health-
care systems globally. The severity of COVID-19 disease varies widely, from mild
or asymptomatic to severe respiratory distress and death. While asymptomatic
disease is not harmful for infected individuals, asymptomatic transmission com-
plicates disease control from a public health perspective [6, 7]. If symptoms are
developed, they are usually mild; however, the risk of severe symptoms and death
increases with age, up to an estimated infection fatality ratio (IFR) of 8.3% in pa-
tients 80 years and older [8]. Other risk factors for severe disease include underlying
comorbidities such as cardiovascular disease, chronic kidney disease, chronic pul-
monary disease, diabetes, cancer, immunodeficiencies, and obesity [9–11]. These
associations persist even after vaccination, although vaccines are highly effective
at preventing severe disease [12].
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Multiple sources have produced estimates regarding the total number of con-
firmed cases as well as COVID-19 related deaths. From the start of the pandemic
until March 2024, the WHO reported 775 million cases and just over 7 million
COVID-19 deaths [13]. Similarly, the widely used Johns Hopkins University coro-
navirus dashboard reported 676 million confirmed COVID-19 cases and close to
7 million COVID-19 deaths by October 2023 [14]. However, substantial underre-
porting is likely, particularly for cases, due to a high proportion of asymptomatic
infections and a lack of testing infrastructure, especially at the outset of the pan-
demic. Furthermore, the WHO estimated 14.83 million excess deaths globally from
the beginning of the pandemic until December 2021 [15], 2.74 times more than the
reported COVID-19 deaths. Another study by Wang et al. suggests that 18.2 mil-
lion global deaths (95% uncertainty interval 17.1–19.6 million) were caused by the
COVID-19 pandemic between Jan 1, 2020, and Dec 31, 2021 [16], though their
methodology has been heavily debated [17–20]. Excess mortality includes deaths
from the virus itself as well as deaths due to indirect impacts of the COVID-19
pandemic, such as healthcare disruptions.

Indeed, the overall impact of the COVID-19 pandemic was not limited to
COVID-19 patient surges in hospitals, but also included the effects of government
interventions. Many countries implemented highly restrictive non-pharmaceutical
interventions (NPIs) avoid overwhelming the healthcare systems until vaccines
were available. These NPIs deeply interfered with daily life, economic activities,
and personal freedoms. Healthcare systems were restructured to manage surges
of COVID-19 patients, leading to a neglect of routine care. For example, the ini-
tial pandemic waves saw a marked reduction in healthcare services such as cancer
screening [21], management of chronic diseases [22–25], and the administration of
childhood vaccines [26]. Moreover, the COVID-19 pandemic (as most, if not all
infectious diseases) proved to be not only an infectious disease problem but also
exacerbated existing social and health inequalities, disproportionately affecting
disadvantaged populations [27]. Significant geographical inequalities in COVID-
19 mortality have been observed, with higher case and mortality rates in areas
of greater socioeconomic disadvantage [28, 29]. The disproportionate outcomes
among those with chronic diseases were seen particularly in under-resourced or
rural areas [22]. Striking inequalities were also evident in the global vaccine dis-
tribution and through differential vaccination rates, with lower vaccination rates
in economically disadvantaged populations [30]. The WHO officially declared the
pandemic over on May 5th, 2023 [31], but SARS-CoV-2 continues to spread en-
demically worldwide.
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2.2 SARS-CoV-2 biology
Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses, and
SARS-CoV-2 belongs to the betacoronaviruses of group 2B. The SARS-CoV-2
genome encodes four structural proteins—spike (S), envelope (E), membrane (M),
and nucleocapsid (N)—as well as sixteen non-structural proteins (nsp1-16). Ge-
nomic analyses of SARS-CoV-2 reveal a high similarity to coronaviruses of bat
origin, and a 79% similarity to SARS-CoV [32]. However, the exact origin of
SARS-CoV-2 remains a subject of scientific debate, with most studies supporting
the hypothesis of a zoonotic event [33–36].

2.2.1 SARS-CoV-2 life cycle

Understanding the SARS-CoV-2 life cycle is crucial for grasping the basics of its
transmission. Its life cycle starts with contagion: The virus is primarily spread
through respiratory droplets when an infected person coughs or sneezes, and via
aerosols (Figure 2.1) [37–39]. Transmission through contact with contaminated
surfaces is also possible, though less common [37]. Droplet and aerosol transmission
enable SARS-CoV-2 to have a relatively high basic reproduction number (R0),
estimated at 2.87 (95% confidence interval, CI, 2.39–3.44) for the original strain,
meaning that each infected person is likely to infect 2-3 others [40]. The virus is
particularly contagious in indoor settings with poor ventilation, which can lead to
superspreading events [41].

The infectious cycle of SARS-CoV-2 begins when virions enter the upper air-
ways. The spike protein binds to the human angiotensin-converting enzyme 2
(ACE2) receptor on the surface of target cells in the respiratory tract1. The S1
subunit of the spike protein facilitates receptor binding, while the S2 subunit me-
diates membrane fusion between the virion and the host cell [44]. Following fusion,
the viral genome is released into the host cell cytoplasm, where it is translated by
the host cell machinery (Figure 2.2). Viral RNA is replicated, new viral proteins
are synthesized, and both proteins and RNA are packed into new viral particles.
Mature virions are transported to the cell surface in vesicles and secreted from
infected cells by exocytosis [45]. Once released, the virus can infect other cells.

After an incubation period of approximately 4-5 days (for the ancestral strain
[46]), viral replication and release in the lung cells can cause respiratory symptoms
(e.g. coughing and sneezing) and non-specific disease symptoms such as fever, myal-
gia, and headache. Loss of smell and taste are also possible. With the ancestral

1The ACE2 receptor is expressed ubiquitously in the human body. Therefore, SARS-Co-V-2
can spread and replicate in other organs, which can lead to local damage outside of the lungs
[43].
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Figure 2.1: SARS-CoV-2 transmission routes. From reference [42]
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Figure 2.2: SARS-CoV-2 lifecycle. The SARS-CoV-2 lifecycle begins with the
spike protein binding to the ACE2 receptor, followed by host cell entry via TMPRSS2
or cathepsin L-mediated fusion. The RNA genome is then released, translated, and repli-
cated within virus-induced double-membrane vesicles. Structural and accessory proteins
are assembled in the ER–Golgi intermediate compartment, leading to the formation and
secretion of new virions. From reference [42]
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strain, a high proportion of infections were asymptomatic, with estimates ranging
from 15.6% [47] to 40% [48]. However, it is clear that asymptomatic individuals
can still transmit the virus [49].

Within-host modeling of viral load measurements in sputum and pharyngeal
swabs confirms high initial viral loads in the upper airways at symptom onset,
which decline over the course of 1-2 weeks, once an effective immune response is
mounted by the host [50–53]. There is uncertainty about the viral load in asymp-
tomatically infected individuals: Some studies describe little to no difference in vi-
ral load between pre-symptomatic, asymptomatic and symptomatic patients [52],
while other studies found that infectiousness correlated well with the logarithm of
viral load [54, 55]. Individuals are highly infectious in the early symptom phase,
but also before symptom onset. Further, viral RNA has been detectable in spu-
tum even after symptoms resolved, suggesting prolonged shedding and potential
infectivity [56].

2.2.2 Viral evolution and SARS-CoV-2 variants

SARS-CoV-2 relies on its RNA-dependent RNA polymerase for replication. The
error rate of this polymerase is estimated to be around 1-2 mutations per million
nucleotides [57], which results in a high number of mutations and therefore fast
viral evolution. Additionally, host-mediated genome editing by innate immune
mechanisms may introduce mutations into the SARS-CoV-2 genome, and recom-
bination of genomes is possible when a host is co-infected with two genetically dis-
tinct viruses [57] (Figure 2.3). While most mutations are neutral or detrimental to
the virus, some can lead to increased transmission or immune-escaping capabilities.

The first divergent SARS-CoV-2 lineages appeared about eight months into
the pandemic (for a timeline of viral variants in France and Canada, see Figure
2.4). Each variant has several designations based on the nomenclature used by
distinct phylogenetic classification systems, among which the Pango nomenclature
is most commonly referenced [59, 60]. The WHO later classified the most notable
variants as variants of concern (VoCs) and named them using Greek letters [61,
62]. VoCs are characterized by higher transmissibility, immune evasion, and in-
creased pathogenicity [63–66]. For example, the D614G mutation and H69/V70
deletion increased viral fitness without significant immune escape in the Alpha
variant (Pango B.1.1.7 lineage) [67, 68], while mutations like E484K and N501Y
significantly reduced vaccine-induced neutralization of Alpha [69, 70]. The Delta
variant (Pango B.1.617.2 lineage), which emerged in India during the spring of
2021, had a combination of mutations that conferred advantages in transmissibil-
ity, infectivity, and immune evasion [71–73]. These properties of increased viral
fitness allowed the VoCs to rapidly outcompete the ancestral strain and other, less
transmissible, previously circulating VoCs.

10



Figure 2.3: Mechanisms of SARS-CoV-2 viral evolution. Nucleotide changes
may arise naturally through replication errors or through host-derived RNA editing
enzymes (APOBEC, ADAR1), which introduce specific point mutations (C to U and A
to I) into the viral genome. Recombination may occur if two viral variants co-infect the
same cell, leading to the packaging of genetic material from both into a single virion.
From reference [58].

The emergence of the Omicron variant (B.1.1.529) in October 2021 marked the
start of a new phase of the pandemic with subsequent sweeps of Omicron sub-
lineages [57, 74]. Omicron’s extremely high transmissibility and immune evasion
from previous infection- and vaccination-acquired immunity drove its rapid spread
[75–79], although it generally caused less severe disease than previous VoCs [80,
81]. The impact of VoCs on immunity will be discussed in section 2.5.6, after
having introduced relevant aspects of the immmunity towards SARS-CoV-2.

2.3 Immunity to SARS-CoV-2

Mounting an effective immune response is crucial for clearing a SARS-CoV-2 in-
fection and involves a complex, multi-step process. The innate immune system
acts as the first line of defense, limiting viral replication and spread, and activat-
ing the adaptive immune system. Next, the coordinated response of the adaptive
immune system leads to clearance of the virus from the body. After the infec-
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Figure 2.4: Timeline of SARS-CoV-2 variants of concern in France and
Canada. Figure generated on OurWorldInData [82].
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tion is resolved, the adaptive immune system’s memory cells—memory B cells and
memory T cells—persist long-term. These memory cells provide lasting immunity
by rapidly reacting to future exposures to the virus, thereby reducing the prob-
ability of (symptomatic) reinfection. If reinfection occurs, the disease severity is
usually lower, as the immune system is able to mount a faster and more efficient
response. Thus, immunological memory is a key factor in preventing transmission
and severe disease in subsequent SARS-CoV-2 infections. In the following section,
I review the functions of the immune system in general and the immune reaction
to SARS-CoV-2 in particular.

2.3.1 Innate immunity

The detection of a foreign entity triggers the human immune system. As a first line
of defense, the innate immune response is activated by cellular pattern-recognition
receptors, which react to general pathogen-associated molecular patterns. The
innate immune system has three primary functions: 1) limiting viral replication
within infected cells, 2) creating an antiviral environment in the surrounding tis-
sue, which includes recruiting effector cells of the innate immune system (such
as macrophages, neutrophils, and dendritic cells), and 3) initiating the adaptive
immune response [83]. The activation of receptors on innate immune cells initiates
signaling pathways that result in the release of pro-inflammatory cytokines, type
I and III interferons (IFNs), and the elimination of infected cells (Figure 2.5). In
order to establish a sustained infection, viruses must interfere with the innate im-
mune system. Otherwise, the infection would be cleared efficiently without symp-
toms, precluding the potential for spread. SARS-CoV-2 effectively evades early
innate immune responses, such as IFNs [84–86] and pro-inflammatory cytokines
[83]. Moreover, SARS-CoV-2 infection causes suppression of host cell protein syn-
thesis, which enables more efficient translation of viral mRNA and attenuates
immune responses [86]. While the innate immune response is indispensable for
controlling viral infections, excessive pro-inflammatory cytokine production can
cause significant tissue damage and is often observed in severe disease [45, 83].

2.3.2 Adaptive immunity

The adaptive immune response consists of cellular components—CD4+ and CD8+

T-cells—and humoral components—pathogen-specific antibodies produced by B-
cells. Both types of cells recognize specific antigens of pathogens, and, in contrast
to the innate immune system, can mount a pathogen-targeted response. In sim-
ple terms, antibodies prevent viruses from infecting cells, while T-cells eliminate
viruses that have already entered cells. Antibodies can also induce the killing of
virally infected cells, an important mechanism in vivo [87, 88].
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Figure 2.5: Overview of the immune response to viral infection and the de-
velopment of immunity. A: The innate immune response is activated within hours of
viral exposure, serving as the first line of defense by releasing antiviral molecules at the
infection site. B: The adaptive immune response is triggered days later, following prim-
ing by the innate system, and initiates pathogen-specific cellular and humoral responses.
Immune memory cells persist after viral clearance, providing long-term immunity. From
reference [58]
STAT, signal transducer and activator of transcription; JAK, Janus kinase; CD, cluster
of differentiation; MHC, major histocompatibility complex; TCR, T-cell receptor.14



2.3.2.1 Humoral adaptive immunity

The humoral immune response produces highly specific antibodies, or immunoglob-
ulins (Ig), to foreign antigens. The recognition of an antigen with membrane-bound
antibodies (also called B-cell receptors) activates B-cells to proliferate and differ-
entiate into antibody-secreting plasma cells (ASCs) and memory B-cells. ASCs
secrete large amounts of antibodies to neutralize antigens, while memory B-cells
provide long-term immunity by responding quickly to future encounters with the
same antigen. B-cell activation also triggers a process called ”somatic hypermuta-
tion” (SHM), where the B-cells undergo rapid mutations to produce higher-affinity
antibodies. The affinity maturation also involves switching from less specific IgM
to higher-affinity IgA and IgG.

The vast majority of SARS-CoV-2 infected individuals seroconvert (i.e. pro-
duce detectable levels of antibodies in serum) within 5-15 post-symptom onset
(PSO), with about 90% of individuals having seroconverted by day 10 PSO [89,
90] (Figure 2.6). The antigenic targets which are most frequently monitored are
the spike and nucleocapsid proteins. IgM, IgA, and IgG are detectable approx-
imately at the same time [91]. IgM follows a rise and fall pattern, with a peak
two to five weeks PSO and a quick decline afterwards [90, 92, 93]. IgG levels peak
around 25 days PSO and are much more durable than IgM antibodies [92–95]. IgA
antibodies, which play a crucial role in mucosal immunity, are thought to have ap-
proximately the same dynamics as IgM [91, 93, 96], but are less studied overall
[90, 97]. A strong positive correlation between disease severity and the height of
antibody peak levels as well as response duration has been documented [91, 98–
100]. Independent correlations with age, sex, and other factors are debated, but
not consistent across studies [101].

Antibodies provide protective immunity mainly by preventing the spike protein
from binding to the ACE2 receptor on host cells. Thus, the spike protein is the
sole target of SARS-CoV-2 neutralizing antibodies (nAbs), and therefore the most
relevant antigen for vaccine development [91]. However, the nucleocapsid protein
is still an important antigenic target, as antibodies targeting it can trigger the
removal of already infected cells [102].

The majority of antibody measurements in humans are conducted on blood
samples, as this method is the most convenient for evaluating immune responses.
However, serum antibodies might not accurately represent antibody levels in mu-
cosal tissues, which are more relevant for protection from subsequent infection [89].
Both IgG and IgA are produced in mucosal tissues but are frequently measured in
serum. However, the close connection between the lungs and the circulatory sys-
tem suggests that IgG and IgA levels in serum are likely mirrored in the mucosal
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Figure 2.6: Timeline of immune reactions to SARS-CoV-2. From [103]

tissues of the airways. Indeed, a strong correlation between levels of spike-specific
serum and mucosal IgG has been observed [104].

2.3.2.2 Cellular adaptive immunity

SARS-CoV-2 specific T-cells can be detected as early as 2 to 4 days PSO [105]
(Figure 2.6). CD4+ T-cells have been detected after almost all SARS-CoV-2 in-
fections, and are associated with control of primary infection. In contrast, poor
disease outcomes correlate with scarcity of naive T-cells, which decrease with age
[106]. CD4+ T cells differentiate into various helper and effector cell types and
have the capacity to 1) help CD8+ T-cells or B-cells, 2) recruit innate immunity
cells, 3) have direct antiviral activities, and 4) facilitate tissue repair. CD8+ T cells
are associated with better COVID-19 outcomes, as they can kill infected cells, but
are less consistently observed than CD4+ T-cells [106].

2.4 Non-pharmaceutical interventions
In the battle against infectious diseases like COVID-19, two main strategies are
employed to curb viral spread and thus reduce the burden on healthcare systems:
non-pharmaceutical interventions (NPIs) and vaccines. NPIs encompass a range
of actions, policies, or strategies designed to curb disease transmission without
the use of medications. These interventions, also known as public health and so-
cial measures (PHSM), are critical at the onset of outbreaks when vaccines or
treatments are not yet available or equitably distributed [107]. NPIs can reduce
pathogen transmission by either reducing the number of transmission-relevant ex-
posures and/or making them safer. It is important to note that NPIs not only
serve as the first line of defense in public health emergencies but also continue to
play an important role alongside medical countermeasures throughout the whole
duration of an outbreak.
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There are many ways to group and classify NPIs (see Section 2.4.2). For the
purpose of this literature review, they were grouped into these broad categories:

• Containment and closure measures: these include lockdowns, stay-at-
home orders, social distancing, restrictions on gathering sizes, and closures
of public spaces such as schools, workplaces, and businesses.

• Health system interventions: strategies like contact tracing, testing poli-
cies, quarantine measures, and public information campaigns fall into this
category.

• International or domestic travel restrictions: Measures to limit or
control cross-border or across-region movement to prevent the spread of the
virus.

• Individual hygiene measures: these include practices like mask-wearing
and hand washing, which are critical in reducing transmission on a personal
level.

• Economic measures: although not strictly NPIs, economic interventions
like income support or governmental stimulus spending often accompany
NPIs to mitigate their socioeconomic impacts.

During the early stages of the COVID-19 pandemic, it became clear that strong
NPIs were necessary to stop the exponential spread of SARS-CoV-2. Governments
around the world rapidly implemented a broad spectrum of NPIs in response to
the evolving situation. NPI implementation strategies were highly heterogeneous
and based on a multitude of country-specific factors, such as the severity of local
outbreaks, political and social factors, and economic conditions [108]. These in-
terventions were instrumental in ”flattening the curve” of the epidemic, thereby
preventing the overwhelming of healthcare systems until vaccines could be devel-
oped and distributed.

Before the COVID-19 pandemic, the effectiveness of most NPIs was not well
understood, and much of the existing literature focused on seasonal or pandemic
influenza [109]. Recommendations were limited to a few NPIs like hand hygiene
and respiratory etiquette, surveillance and case reporting, and rapid viral diagnosis
[110]. Interventions like widespread mask use were often discouraged due to prac-
tical constraints [109]. Therefore, in the beginning of the COVID-19 pandemic,
NPIs were implemented without a clear knowledge base of their effectiveness, and
many scientific recommendations were given based on infectious disease models
[111, 112].
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Evidence of the effectiveness of individual NPIs is, however, of great impor-
tance, as it helps policymakers implement the most effective and cost-efficient
measures to control the spread of an epidemic. Moreover, it is important to de-
velop evidence so that the benefits of NPIs can be weighed against their detri-
mental societal and economic impacts [113]. During the COVID-19 pandemic, the
evidence base grew due to a plethora of effectiveness studies being conducted, but
the lack of a robust pre-existing knowledge base led to researchers from diverse
fields approaching NPI assessment with a wide range of methodologies [114]. Dis-
entangling the effectiveness of individual NPIs is inherently challenging, in part
due to the simultaneous implementation of multiple interventions, the dependence
of implemented NPIs on the epidemiological situation, and the infeasibility of con-
trolled trials. In what follows, I will review the literature on NPI effectiveness and
the methodologies used for estimation.

2.4.1 Effectiveness studies of non-pharmaceutical interven-
tions

Studies assessing the effectiveness of NPIs during the COVID-19 pandemic have
yielded a wide range of results, from findings of ineffectiveness to evidence of signif-
icant impact for each NPI. This variation in outcomes can be attributed to several
factors, including differing methodological approaches, data sources, definitions of
NPIs and combinations of NPIs implemented together, timing of NPI implemen-
tation, geographical scope, and populations studied. Heterogeneity in approaches
is not inherently negative, as it allows for the assessment of the robustness of
results across different approaches and assumptions. However, variation presents
challenges for study comparability in systematic reviews and meta-analyses, which
are crucial for drawing conclusive knowledge. Moreover, it can also introduce bias
when a significant portion of the methods lack validity.

Systematic reviews Several systematic reviews have been conducted to sum-
marize NPI effectiveness studies, but each review only includes a subset of the
available studies [115–123]. This can be justified by the timing and specific scope
of each review, such as focusing solely on mask-wearing [124] or school closures
[122, 123], as well as inclusion and exclusion criteria regarding study design, which
were sometimes highly restrictive. For example, some reviews only included stud-
ies that used COVID-19 deaths as outcomes [117], others excluded certain study
types (e.g. those that involved mathematical modeling [117, 119]), or had very
vague inclusion criteria [118]. However, each review captures only a portion of
the available evidence, which complicates NPI comparison and the generation of
comprehensive evidence.
Systematic reviews have highlighted the low quality of many NPI effectiveness
studies and high heterogeneity in findings [115, 116, 123]. However, there is a
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general consensus that earlier NPI implementation leads to higher effectiveness in
controlling viral spread [115, 116]. Most studies conducted on NPIs were based on
data from the first wave of the pandemic, and therefore most systematic reviews
only generated evidence on this period [114–116, 119].

All NPIs and summary indices A meta-analysis concluded that implement-
ing any NPI led to an approximate 5% reduction in the daily growth rate of
COVID-19 cases or deaths [115]. However, since the heterogeneity was high across
studies and effectiveness of individual NPIs, the utility of a meta-analysis is some-
what questionable. Similarly, a pooled analysis of 149 countries found that imple-
menting any physical distancing intervention was associated with a 13% reduction
in COVID-19 incidence [125]. There are conflicting findings regarding the strength
of NPIs parameterized in a stringency index [116, 126]. Some studies found strong
associations between higher stringency and reduced transmission [127, 128], while
others found no significant effect [129].

Lockdowns The impact of lockdowns on COVID-19 transmission has been ex-
tensively studied, with most research indicating significant reductions in COVID-
19 indicators during and immediately after lockdowns [115, 116]. For example, one
study in the U.S. found that lockdowns reduced the reproduction number Rt by
51% [130], and another study on European countries estimated an 81% transmis-
sion reduction during lockdowns [131]. Another U.S.-based study concluded that
lockdowns were the only intervention that consistently lowered Rt below 1 [132],
which means that the disease will eventually stop spreading. However, some stud-
ies reported more modest effects, with national lockdowns in European countries
reducing Rt by only 25% [133], 13% [134] or even only 4% [135].
The variability in these findings is likely due to differences in how lockdowns are
defined and the combination of other NPIs studied alongside them (for an in-depth
discussion, see Section 2.4.2). For example, when additional measures such as busi-
ness closures, cancellation of public events, and gathering bans are estimated on
top of lockdowns, the incremental effectiveness of the lockdown or stay-at-home
order may be diminished [134, 135]. However, if one assumes that all these NPIs
are considered part of a lockdown, the effectiveness of the lockdown will be the
combined effectiveness of the single NPIs and will thus be much higher.

Gathering bans The effect of added effectiveness can clearly be seen in studies
that assessed gathering bans alongside lockdowns: for example, a ban on gatherings
of more than 10 people was associated with a 19% reduction in transmission in a
study by Liu et al. [130] and around 40% in two other studies that did not attribute
high effectiveness to lockdowns [134, 135]. Another study found that cancelling
small gatherings led to an 83% reduction in Rt [133]. In general, gathering bans
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were found to be effective in reducing transmission, with their impact increasing
as the permitted group size decreased [116, 134].

Business closures The effectiveness of business closures also varied depending
on how they were assessed—whether as part of a broader lockdown or as an in-
dividual NPI. When evaluated independently, business closures were associated
with significant reductions in COVID-19 growth rates, ranging from around a 5
percentage point reduction in daily COVID-19 growth rate in the U.S. [136] to
a 27% reduction in Rt when non-essential businesses were closed in a European
study [134].

School closures Closure of educational institutions was the most frequently as-
sessed NPI together with lockdowns [114]. A systematic review by Mendez-Brito
et al. found that school closures were among the most effective measures, as they
based their assessment on how many studies found the closures effective [116].
Another review was more cautious, concluding that the effectiveness of school
closures remains uncertain [123]. However, the majority of studies reported sig-
nificant reductions in SARS-CoV-2 transmission rates, with some studies finding
reductions as high as 73% [133] and 60% [134, 137]. A few studies found more
modest reductions (Rt reduced by 10% [130]) or no significant impacts [136, 138];
this limited effect might be due to confounding from other NPIs which were im-
plemented simultaneously or variations in the type of educational institutions that
were closed.

Testing and contact tracing The effectiveness of testing and contact tracing
strategies is difficult to assess because these NPIs will initially lead to more de-
tected cases and therefore seem ineffective. An early study suggested that contact
tracing and quarantine in Portugal did not reduce secondary cases of COVID-19,
as the contact patterns of infected individuals simply shifted from the community
to household members [139]. Regarding a more pertinent outcome, a systematic
review did not find any evidence that testing and contact tracing strategies were
associated with a reduction in COVID-19 deaths [116].

Border closures Studies conducted at the onset of the COVID-19 epidemic in
China found that there was a high correlation between the movement out of Wuhan
and the magnitude of the early epidemic [140]. Thus, it is not surprising that travel
restrictions enforced by the Chinese government were estimated to decrease the
daily rate of exportation by 81.3% [141]. Later studies in Europe also found that
international border closures reduced transmission, with one study estimating a
10% reduction in Rt [135] and another one estimating a 56% decrease [133]. While
border restrictions were thus effective in slowing down the early spread of the
pandemic, they might have become less important once local transmission was
established [142, 143].
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Face masks and other hygiene measures Face masks were widely recom-
mended both to protect individuals from SARS-CoV-2 infection and to control the
spread of the virus from infected people. An early meta-analysis, which also in-
cluded evidence from SARS-CoV-1 and MERS-CoV, suggested that mask-wearing
reduced infections by 66%, with N95 masks being particularly effective [144]. In
general, there is a consensus that masking is a very effective NPI [129, 130, 145].
For example, one modeling study concluded that mandating face masks early in
the pandemic could have reduced national U.S. deaths by 19 to 47% [146]. Mask
effectiveness was sometimes assessed in combination with other hygiene measures,
such as handwashing or surface disinfection. One meta-analysis concluded that
mask-wearing reduced transmission by 53%, that hand washing reduced transmis-
sion by the same amount, and that surface disinfection reduced transmission by
77% [119]. These measures seem unrealistically high and are likely confounded by
other health-protective behaviors. Conversely, Haug et al. ranked environmental
measures such as surface disinfection as the least effective NPIs [133].

Second and third-wave studies The majority of NPI effectiveness studies
are focused on the first wave of the pandemic. Only a few studies have assessed
NPIs implemented during the second and third waves, which were more complex
to analyze due to more overlapping NPIs, increased diversity in NPI strategies,
the introduction of vaccines, the appearance of VoCs, and changing population
behavior due to pandemic fatigue. All conducted studies agree that while NPIs
continued to reduce transmission during these later waves, their effectiveness was
diminished compared to the first wave [147–149]. Specifically, the effectiveness
of lockdowns was found to decrease over time [1, 149, 150]. Curfews—which had
rarely been implemented during the first wave, or only in combination with stay-at-
home orders—became more common in later waves and were estimated to reduce
transmission by 13% [147] or approximately 30% [1].

2.4.2 Summary of NPI effectiveness assessment method-
ologies

In this section, I review the differences in methodologies across NPI effectiveness
studies in detail, as they are an important factor contributing to study heterogene-
ity.

Outcomes Studies on NPI effectiveness used a wide range of health-related out-
comes or proxy outcomes to measure their impact. Commonly used outcomes in-
clude confirmed SARS-CoV-2 cases or incidence rates [119, 125, 133, 151], though
case numbers were not reliable due to heavy underreporting of cases, especially
in the first wave of the pandemic [152]. Moreover, reporting guidelines and the
availability of tests changed frequently. Therefore, many studies opted for epidemi-
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ological indicators that were hypothesized to be have a more consistent relationship
with the true infection incidence, such as hospital or intensive care unit (ICU) ad-
missions and COVID-19 deaths [119, 131, 153]. An alternative approach was to
use metrics believed to be independent of the reporting process or where the same
bias would uniformly apply across all reported numbers, effectively cancelling it
out. Such metrics are the case growth rate [149], the death growth rate [146, 154],
and the reproduction number Rt, which are calculated in intermediate steps, and
then used in further analyses. Especially Rt has been widely used in studies as an
indicator of transmission dynamics [1, 130, 131, 133, 147, 155]. However, even the
calculated metrics can be biased if reporting of the indicators used to derive Rt is
not consistent across populations and over time.
Mobility tracking using mobile phone data has also been used as an endpoint of
NPI studies to represent either a surrogate outcome for more relevant epidemio-
logical data or an indicator for population compliance with the imposed measures.
During the COVID-19 pandemic, mobility data could be obtained from internet
and technology companies like Google [156], Apple (no longer available online),
and Baidu [157].
Epidemiological data was usually obtained from national or sub-national health
authorities or other governmental bodies [114]. Additionally, large international
databases were created to provide and consolidate data across countries. No-
table examples include the database by the European center of disease control
(ECDC[158], e.g. used by reference [131]), the Johns Hopkins University dash-
board [14] (e.g. used by reference [133]), Worldometer [159] (e.g. used by reference
[130]), and Our World in Data [82] (e.g. used by reference [153]).

Exposures Several databases were created to track NPI implementation types
and dates across different regions during the COVID-19 pandemic:

• Oxford COVID-19 Government Response Tracker (OxCGRT): this database
gathered global NPI information from 2020-2022 [126]. It also features a
stringency index, an index which summarizes the number and severity degree
of policies in place in a given area.

• Complexity Science Hub COVID-19 Control Strategies List (CCCSL): this
global dataset structures NPI into four hierarchal levels with eigh overarching
themes NPIs [108].

• COVID-19 Government Measures Dataset from ACAPS [160]

• WHO PHSM initiative: this initiative harmonizes data from various sources,
including OxCGRT, CCCSL, and ACAPS, to provide a comprehensive view
of global NPI implementation. [107]
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Many studies relied on NPI data supplied by these curated trackers, while only
a few studies used self-collected data [1, 147]. The most frequently used tracker
was OxCGRT [114, 149, 153]. A more comprehensive list with more details on
individual trackers can be found in reference [161].

Methodological approach Conducting controlled trials to assess NPI effec-
tiveness was largely infeasible due to ethical concerns and the urgency of imple-
menting interventions. It would have been ethically unacceptable to withhold
potentially life-saving measures from any segment of the population in the face
of a fast-spreading and deadly virus. Exceptions are individualized interventions
like mask-wearing, where some trials were conducted [162–164]. Thus, the large
majority of study designs were observational. Studies either exploited variations
in NPI implementation over time (i.e. comparing one population before and after
NPI implementation), variation in NPI implementation between multiple popula-
tions, or both.
A systematic review summarized the methodology of NPI effectiveness studies dur-
ing the COVID-19 pandemic [114]. Many studies used methods like interrupted
time series analyses to compare raw epidemiological or computed outcomes before
and after the implementation of NPIs [151]. Expanding on that methodology, the
difference-in-difference design [165], sometimes with synthetic controls [153], com-
bines changes over time with differences between populations.
Non-mechanistic models, such as (generalized) linear regression models, were of-
ten used to establish an association between NPIs and outcomes [125, 138]. Many
of these employed a two-step approach, where intermediate outcomes—such as
Rt—were estimated in the first step and then regressed on NPI dummy variables
that indicated whether a particular NPI was in effect [1, 133, 148, 155]. Approx.
50% of the computed outcomes were used in a chained second analysis [114].
Semi-mechanistic or mechanistic models were also frequently fit to epidemiolog-
ical observations to compute intermediate outcomes such as transmission rates
or reproduction numbers, which were then related to NPI implementation [131,
132, 134, 150]. Most mechanistic models were compartmental transmission mod-
els. Another approach was to add extra compartments into the model to directly
estimate the effectiveness of certain interventions, for example quarantine [166].
Counterfactual approaches were used with both mechanistic and non-mechanistic
models, where models were calibrated to pre-NPI implementation data and then
used to project epidemiological outcomes under different NPI implementation sce-
narios [140, 167, 168]. Similar procedures were applied to model the effects of
lifting NPIs [169].
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Geographical scope The geographical scope of studies is crucial, as NPI ef-
fectiveness can vary significantly between populations due to differences in age
structure, compliance, mask-wearing behavior, and other factors. Additionally,
whether studies accounted for sub-national variations is important, particularly in
later pandemic waves, where heterogeneity increased [147]. Most studies examined
NPIs implemented in the USA, China, and Europe [114]. Notably, some studies
compared NPIs globally [127, 149, 155], with or without forming subgroups across
which NPI effects were allowed to vary.

2.4.3 Challenges in NPI effectiveness studies

Data challenges Using epidemiological surveillance data gathered during the
COVID-19 pandemic can come with several challenges: Firstly, data reporting de-
lays and case underreporting are common and can be both systematic and random,
such as the notable reductions in reported cases during weekends and holidays. Re-
ported data may also change based on retrospective updates, and these corrections
can lead to the appearance of spikes in observations or negative values [13]. In
general, reporting quality depends heavily on the strength of a country’s health
system. Moreover, testing policies evolved throughout the pandemic, impacting
the comparability of data over time. Initially, many countries had limited testing
capacity and prioritized severely ill patients or high-risk groups, such as contacts
of confirmed cases and healthcare workers [131]. Secondly, data sharing by govern-
mental or other official bodies posed problems, including the unwillingness to share
data openly [170]. Thirdly, there exists substantial ambiguity in parameter defini-
tions across countries. For example, some countries reported only PCR-confirmed
cases, while others included suspected or symptomatic cases. In hospitals, distinc-
tions were not always made between admissions or deaths with COVID-19 versus
those due to COVID-19, a distinction which became more pronounced particu-
larly during the Omicron period [171, 172]. Data quality also varied in regards to
geographical and time resolution—some sources only reported weekly aggregated
data or only on the national level, where sub-national data would have been more
informative.
Data from NPI trackers, while invaluable for analyzing NPIs, also present chal-
lenges. One issue is the absence of a standardized terminology for NPIs, with
each tracker separately defining their NPI terms. Timing discrepancies—such as
differences between the announcement and implementation of measures—further
complicate data compilation and analysis [161].
The absence of a standard terminology for NPIs is also a common problem for
aggregating information from individual studies in reviews. For example, the term
”lockdown” has been used to refer to a wide range of measures, from curfews over
business closures to stay-at-home orders, leading to inconsistencies in data col-
lection and analysis. ”Shelter-in-place order,” ”stay-at-home order,” or ”internal

24



movement restrictions” can also refer to the concept of a ”lockdown” [155]. Al-
ternatively, analyses examined a combination of interventions and referred to this
combination as “lockdown” [114]. The scope and design of the studies differed
in terms of how NPIs were assessed. Often, the effects of individual NPIs could
not be disentangled because many were implemented simultaneously, so studies
evaluated combinations of interventions together.

Methodological challenges Many studies estimating NPI effectiveness used
a two-step approach. While this can simplify models and increase comparability
across populations, it often fails to account for the uncertainty of the first step.
This uncertainty can stem from the estimation process as well as from the use of
uncertain epidemiological characteristics of SARS-CoV-2, like the distribution of
the serial interval. Consequently, the overall uncertainty in the estimates is often
underestimated.
One of the key challenges in estimating NPIs is that their implementation is not
independent of epidemiological situations, thus complicating causal inference in
an observational study design. This issue is referred to as ”selection into treat-
ment” in an econometric study [153], while epidemiologists describe this issue as
”unmeasured confounding” [116]. Across-time or across-population comparisons
can be heavily confounded by population differences as well. For example, one
study compared countries which implemented ”more restrictive NPIs”-like Eng-
land, France, and Germany-with countries implementing ”less restrictive NPIs”
(South Korea and Sweden) [173]. However, they failed to account for voluntary
anti-contagion measures, such as voluntary confinement or mask-wearing, popula-
tion density, national surveillance strategies, and infrastructural and demographic
factors [174]. Co-implemented NPIs can also lead to a bias in NPI effectiveness
estimates, as already mentioned with the example of school closures (Section 2.4.1).

Moreover, there is a time lag between the implementation of NPIs and their
effect on the epidemiological outcome of interest, which needs to be taken into
account. For example, using mortality data as outcomes, Hale et al. lagged the
stringency index by 28 days [127], and Haug et al. explored NPI lags ranging from
1 to 28 days [133]. Other approaches include to back-calculating from observations
to the infection dynamics at the time of NPI implementation [131].

2.4.4 Summary of NPI studies

In summary, the estimation of NPI effectiveness during the COVID-19 pandemic
has revealed substantial variation across studies. There is mainly a qualitative
consensus about the effect of different types of NPIs, but the effects are not con-
sistently quantified, especially since interest waned after the first pandemic wave.
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However, subsequent waves led to the implementation of more NPIs in different
combinations. Additionally, the low quality of many NPI studies is a signifi-
cant limitation. Many studies did not report the uncertainty surrounding their
estimates of NPI effectiveness [114], used data of uncertain quality, inconsistent
NPI definitions, inadequate measures of effectiveness [114, 175], or made highly
confounded cross-country comparisons [173]. All of these points complicate the
interpretation of findings and diminish their utility. Consequently, there is a need
for confirmatory studies with more rigorous methodologies.
The quality of available data has since improved with the establishment of more
robust and comprehensive surveillance systems. For example, datasets provided
by Santé Publique France offer high-quality data with a high geographic resolu-
tion across multiple waves. These datasets provide a unique opportunity for more
robust analyses. Furthermore, as the urgency of the pandemic has subsided, we
have time for the development of more sophisticated models, which may require
longer development and estimation times, but are potentially more accurate.
In Manuscript 1, I used these high-quality data to estimate the effec-
tiveness of NPIs and vaccines in France using a mechanistic model of
disease transmission spanning multiple waves. I also simulated coun-
terfactual scenarios of NPI and vaccine implementations. Mechanistic
models offer a structured way to model the dynamics of disease spread,
the impact of interventions, and the interplay between immunity and
infection rates. In Manuscript 2, I conducted a simulation study, where
I compared the performance of mechanistic models to that of chained
two-step regression models and illustrated in depth the challenges en-
countered by the latter model type.

2.5 SARS-CoV-2 vaccines

Besides NPIs, vaccines are a crucial public health strategy to limit the spread of
pathogens. During a natural infection, the immune system generates pathogen-
specific B-cells and T-cells, which can offer protection against future infections.
However, the initial infection itself can be severe or even life-threatening. This
is where vaccines play a crucial role. Vaccines mimic an infection by stimulating
the immune response through exposure to weakened or inactivated pathogens, or
components of a pathogen. This process allows the body to build immunological
memory, enabling a more effective defense when faced with the actual infection.
Vaccination remains the most successful method for preventing infections [176,
177].
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Figure 2.7: Overview over most frequently used SARS-CoV-2 vaccines. Values
are taken from reference [179].

2.5.1 Overview of SARS-CoV-2 vaccines

SARS-CoV-2 vaccines were developed exceptionally fast [178] and were crucial in
controlling the pandemic [179]. Several vaccine types, including mRNA vaccines
(Pfizer-BioNTech BNT162b2, Moderna mRNA-1273), recombinant adenoviral vec-
tor vaccines (AstraZeneca ChadOx AZD1222, Johnson & Johnson Ad26.COV2.S,
Gamaleya Sputnik V), and whole inactivated virus vaccines (Sinovac Biotech Coro-
naVac) were rapidly developed, clinically tested, and approved for emergency use
[179, 180]. An overview of vaccines is given in Figure 2.7.

mRNA vaccines contain modified nucleosides encoding the receptor binding
domain of the SARS-CoV-2 spike protein [181]. After delivery into the cells in
lipid nanoparticles, the cells transiently express spike proteins from the mRNA
and display them on their surface, which allows for immune system recognition
and antibody generation. Unlike live attenuated or killed virus vaccines, mRNA
vaccines do not carry any risk of infection or integration into the genome, as mRNA
is naturally broken down by the body. Additionally, they allow for rapid, scalable,
and cost-effective production, making them highly adaptable for responding to
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emerging pathogens [182].
In contrast, viral vectors vaccines against SARS-CoV-2 rely on recombinant aden-
oviruses to deliver DNA encoding the spike protein into the recipient’s cells. The
adenovirus used as a backbone is modified to be replication-deficient, i.e. it cannot
cause disease, and the DNA encoding the spike protein is inserted. Once inside the
cells, the cells produce spike protein, triggering an immune response. A key advan-
tage of viral vector vaccines is that they can stimulate a strong immune response
without the need for an adjuvant, as the viral vector itself activates the innate
immune system. Additionally, because the virus replicates within cells, spike pro-
tein is continuallly produced, which enhances immunogenicity. However, this also
raises concerns about potential adverse effects, particularly in immunocompro-
mised individuals. Moreover, pre-existing immunity to the backbone adenovirus
may reduce the vaccine’s effectiveness [183].
Viral subunit vaccines consist of recombinant SARS-CoV-2 spike protein, often
bound to nanoparticles, along with an adjuvant to enhance the immune response
[184]. Once the immune system recognizes these spike proteins, it generates an-
tibodies that target the virus. By including only the necessary antigens, subunit
vaccines minimize side effects, and they are safe for immunocompromised individ-
uals. However, they may require booster shots to maintain long-term protection.
Inactivated coronavirus vaccines, which use the entire killed virus, work similarly
by inducing an immune response without causing infection [185]. However, like
subunit vaccines, they may also need boosters for sustained immunity.
Vaccine efficacy was demonstrated in accelerated phase three clinical trials, where
mRNA vaccines demonstrated around 95% efficacy against symptomatic infection
and close to 100% efficacy against severe disease [186, 187] (Figure 2.7). All ap-
proved vaccines have been found to be safe, with minor side effects like pain at the
injection site, and very rare cases of severe reactions such as anaphylaxis and my-
ocarditis [179]. The efficacy estimates were important for the regulatory approval
of vaccines. However, vaccine effectiveness in real-world settings can be lower due
to various factors, such as differences in vaccinated populations, vaccination sched-
ules, and VoCs [188].

Clinical trials for SARS-CoV-2 vaccines generally followed a two-dose regimen,
with doses administered three or four weeks apart [186, 187]. However, due to vac-
cine shortages during roll-out, variations from this schedule were frequent, such
as extending the interval between doses or mixing different vaccines (see Section
2.5.7). To sustain immunity and maintain high antibody levels in individuals,
booster doses were introduced soon after the initial series, as it was assumed that
vaccine-derived antibodies wane faster than natural infection-derived antibodies
[189] and emerging SARS-CoV-2 variants increasingly escaped vaccine-induced
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immunity [190, 191] (see Section 2.5.6). The mRNA vaccines by Pfizer-BioNTech
and Moderna were widely rolled out in Europe and North America. In the same
regions, as there were rare reports of thrombocytopenia induced by AstraZeneca’s
ChAdOx-1 vaccine, this vaccine was restricted in certain age groups [192, 193].
Consequently, mRNA vaccines became the primary choice in vaccination cam-
paigns in North America and Europe. As my research covers populations in France
and Canada, the majority of the studies discussed here focus on immunity induced
by mRNA vaccines.

2.5.2 Population effects of vaccines

In the first year of vaccine availability, from December 2020 to December 2021,
8.33 billion doses were administered to 4.36 billion people globally. As of August
2024, the total number of administered vaccine doses has increased to 13.58, with
5.36 billion people having received at least one dose [82, 194]. It was estimated
that globally, vaccines prevented 19.8 million deaths in the first year of vaccina-
tions alone [195].
However, the distribution of vaccines has been markedly uneven. High-income
countries quickly achieved high vaccine coverages and even extended vaccine pro-
tocols to booster doses, while low-income countries had limited access to vaccines
[30]. As successful immunization programs require high vaccination rates, vaccine
hesitancy also poses a major challenge [196, 197]. This disparity has resulted in
high infection rates in under-vaccinated populations [198], despite research show-
ing that equitable vaccine distribution would result in positive outcomes for both
vaccine-giving and vaccine-receiving countries [199]. For example, modeling stud-
ies estimated that with a more equitable vaccine rollout, attaining a vaccine cov-
erage of only 20% in low-income countries, an estimated 156,900 additional deaths
could have been averted, while attaining the WHO goal of 40% vaccine coverage
in all countries by the end of 2021 would have prevented an additional 599,300
deaths [195, 200].

However, it is challenging to estimate the number of deaths averted by vac-
cines, as the comparator of no vaccine distribution is necessarily counterfactual.
Therefore, these studies rely on unbiased models, and a misspecification of the
model will result in bias in the estimates. Moreover, determining the counterfac-
tual transmission (i.e. transmission in the absence of vaccines) is challenging, as
alternative interventions to curb viral spread would likely have been implemented.
Thus, the impact of the vaccine was most pronounced in countries with high vac-
cination rates, which allowed them to relax NPIs. The study by Watson et al.
relies also on the estimation of excess deaths [195], which are difficult to estimate.
Also, it is of course more challenging to fit a model to global data than to national
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or regional data, because the model needs to be flexible enough to take different
reporting structures and other data biases into account, for example uncertainties
in the true number of deaths, the circulating variants of concern and their im-
mune escape capabilities, and the true number of vaccines administered [195]. In
Manuscript 1, I address these challenges by fitting an detailed model to
SARS-CoV-2 transmission in France and estimate the number of lives
saved under different vaccination scenarios.

2.5.3 Vaccine-induced immunity

All the above-mentioned vaccines target the spike protein to induce an immune
response, specifically the interaction between the receptor-binding domain and the
ACE2 receptor as the most vulnerable site of SARS-CoV-2. Thus, vaccinated in-
dividuals develop anti-spike antibodies from vaccination, but no anti-nucleocapsid
antibodies. These can only be developed after natural infection (along with anti-
spike antibodies of course). Measuring anti-spike and anti-nucleocapsid antibodies
thus allows distinguishing naturally infected from vaccinated individuals.
mRNA vaccines were found to elicit high anti-spike antibody titers [186, 187],
while individuals vaccinated with adenoviral vaccines do not develop very high,
but potentially more durable antibody titers, and may elicit stronger cellular re-
sponses [201]. Moreover, it was shown that vaccination alone does not elicit high
enough mucosal antibody titers (i.e. antibodies in the tissues of the respiratory
tract), which are important for granting sterilizing immunity [202, 203]. Far less
is known about T-cell responses than antibody responses following vaccination,
although T-cells form an important part of immunity against SARS-CoV-2. For
instance, longitudinal studies have shown that T-cell responses induced by the
original vaccines remain >80% cross-reactive against multiple viral variants [204,
205].

2.5.4 Correlates of protection

At the time of initial vaccine release, no single antibody level or threshold beyond
which SARS-CoV-2 infection risk is eliminated could be determined. Rather, it
was found that the infection risk decreases progressively as antibody levels rise.
In Moderna’s phase III trial, both binding and neutralizing anti-spike antibody
titers were strongly correlated with vaccine efficacy [206, 207]. The spike receptor-
binding site on S1 subunit is the target of SARS-CoV-2 most neutralizing antibod-
ies (nAbs) [208, 209]. However, other spike areas, such as the S2 subunit or the
N-terminal domain of S1, are also recognized by nAbs [180, 209]. nAbs develop
rapidly in most SARS-CoV-2-infected individuals, even with minimal somatic hy-
permutation, indicating that nAb generation is relatively straightforward and can
be achieved by many B-cells [89]. As nAbs can prevent the virus from infecting
cells by blocking its attachment to the ACE2 receptor on host cells, they have been
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explored as correlates of protection (CoPs) in vaccine efficacy trials and studies of
sera from naturally infected individuals [91, 180, 210, 211].
Plotkin and Gilbert defined a CoP as an immune marker that is statistically linked
to vaccine efficacy, distinguishing between markers that directly cause protection
(mechanistic CoPs) and those that correlate with another protective immune re-
sponse (non-mechanistic CoPs) [212]. Serum nAbs have thus been discussed as
mechanistic CoPs. However, these studies were conducted before the emergence of
the Omicron variant, which showed significant immune escape (see Section 2.5.6).
Another potential CoP are CD8+ T-cells, whose responses are critical for pre-
venting severe disease and who remain cross-reactive against the Omicron variant
[213].

2.5.5 Persistence of immunity

Immunological memory is the source of protective immunity against subsequent
infections. There are four major components of immunological memory towards
viruses: antibodies, memory B cells, memory CD4+ T cells, and memory CD8+ T
cells, which can be found in local tissues, the bloodstream, and the bone marrow
[89]. It is evident that immunity, both from vaccination and infection, wanes over
time [101]. The process of waning immunity has been studied with two interrelated
approaches: by assessing the effectiveness of previous immune-conferring events in
preventing subsequent infections over time or by measuring the decline of biologi-
cal markers, such as antibody or T-cell levels over time.

Initially, protection against re-infection conferred by a first infection was re-
ported to be very high, with estimates ranging from 80-98% [101]. However, these
studies typically spanned no more than eight months and were conducted before
vaccines became available. A systematic review found that previous SARS-CoV-
2 infection was associated with a significantly reduced risk of re-infection, with
protection lasting for at least one year and showing only a moderate decrease
over that interval [214]. In contrast, the waning of vaccine effectiveness has been
observed both in mRNA vaccines and adenoviral vector vaccines [77, 215–217].
While vaccine effectiveness against symptomatic infection decreased significantly
over the course of several months, it remained high against severe disease [218,
219]. There is evidence which suggests that immunity from natural infection offers
better protection against re-infection than vaccination alone [215, 220, 221]. How-
ever, these studies may be subject to additional confounding and selection biases,
as they conduct comparisons not only of infected versus uninfected individuals, but
additional comparisons between vaccinated and non-vaccinated individuals [101].
An influence of age on the rate of waning has been discussed, but the evidence
remains inconclusive [101].
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Early studies on SARS-CoV-2 specific antibodies with limited follow-up du-
ration indicated that after natural infection, anti-spike antibodies could generally
be detected for up to 5-7 months PSO [102, 222, 223]. However, these studies of-
ten only had small and highly selected cohorts with limited follow-up periods and
were conducted before vaccines were widely available. A few studies with longer
follow-up periods determined that the waning kinetics of anti-spike antibodies, de-
rived both from natural infection and vaccination, displayed two- or three-phase
decay dynamics, with an initial sharp decrease that stabilizes later, suggesting
longer-lasting immunity [224, 225]. Few studies have examined anti-nucleocapsid
antibody kinetics. Those that did found rapidly decaying anti-nucleocapsid an-
tibody levels, but showed the same limitations as previously mentioned—short
follow-up periods and low participant numbers [95, 223].
While the presence of circulating and neutralizing antibodies correlates with pro-
tection against infection, other immune mechanisms, such as cellular immunity
and memory cells, can be quickly reactivated upon re-exposure. Research on the
waning of cellular immunity is sparse and conducted in small cohorts. One system-
atic review included four studies and found that CD4+ cells only waned slightly
over 6-8 months, but CD8+ cells showed a more steady decline, with only 50% of
participants remaining positive 6-8 months post-infection [226]. Similar findings
of decreasing cellular immunity were reported after vaccination [227, 228]. It was
also shown that the magnitude of memory T cells was not significantly correlated
with antibody titers [102].

2.5.6 Immunity towards SARS-CoV-2 variants

Since the vaccination efficacy trials, genetic mutants of SARS-CoV-2 with immune-
escaping capabilities have started to emerge (Section 2.2.2). This emergence of
variants added another variable to the discussion on the duration of immunity, as
VoCs significantly reduced the protective effects of vaccines and previous infec-
tions [229]. This reduction coincided with the natural waning of immunity from
the initial waves of vaccination [217].
While mRNA vaccine boosters were shown to increase levels of neutralizing an-
tibodies against the Omicron variant, their effectiveness diminishes quickly [91,
230, 231]. The pronounced immune evasion by Omicron is illustrated by esti-
mates showing only 20-25% protection after the primary vaccination series and
immunity from combined vaccination and infection waning to 42% at 6 months
after the first booster dose and further declining to 30% nine months post-booster
[229, 232]. Omicron also evades neutralization from most available therapeutic
antibodies [233]. Nevertheless, although Omicron has greatly reduced the neu-
tralizing capacity of antibodies generated by current SARS-CoV-2 vaccines, T-cell
responses have remained relatively unaffected [101]. Furthermore, vaccines have
continued to offer substantial defense against severe illness caused by these vari-
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ants, including Omicron [234].
In response, both Moderna and Pfizer/BioNTech developed bivalent mRNA vac-
cines targeting both the original and Omicron BA.1 or BA.4/5 spike proteins [235,
236], which provided better protection against severe disease compared to monova-
lent boosters [237, 238]. However, the rapid emergence of new Omicron subvariants
with the capability to evade immunity acquired from previous Omicron subvariants
makes further vaccine development challenging [239].

2.5.7 SARS-CoV-2 immunologic landscape

The global immunologic landscape against SARS-CoV-2 is highly diverse, shaped
by a combination of different vaccination schedules, vaccine types, and exposure
to multiple viral variants. Due to limited vaccine availability, many individuals
delayed their second vaccine dose by several weeks to months. This has been
shown to increase vaccine effectiveness compared to the standard three- or four-
week regimen tested in randomized trials [240–242]. Additionally, heterologous
vaccination regimens have been demonstrated to elicit at least as high or higher
immune responses compared to homologous vaccine schedules [243, 244].

As vaccination campaigns progressed, some individuals had already been in-
fected with SARS-CoV-2, while others experienced breakthrough infections after
vaccination. Initially, there was hope that vaccines would provide long-lasting
immunity against infection and significantly reduce transmission. However, while
vaccines are very effective and durable in preventing severe disease, their effective-
ness has been more short-lived and lower than anticipated, particularly against
the Omicron variant [245].
The exposure to both vaccines and natural infection leads to an immunity pro-
file known as ”hybrid immunity.” There is evidence that individuals with hybrid
immunity possess higher antibody levels and greater protection against disease
compared to either vaccination or infection alone and that hybrid immunity de-
clines at slower rates [214, 225, 232, 246, 247]. This enhanced immunity can be
attributed to several factors: the breadth of neutralizing and non-neutralizing an-
tibody responses has been shown to improve substantially with hybrid immunity,
also showing cross-variant neutralizing activity [248–250]. Moreover, hybrid im-
munity can lead to distinct T-cell responses due to the recognition of a wider array
of antigens, as vaccinations only target the spike protein [250]. Hybrid immunity
has been shown to be effective even against Omicron [234], but immunity needs
to be sustained with booster doses [229, 232].

2.5.8 Summary SARS-CoV-2 immunity

Estimating the magnitude and durability of protection at the population level has
become challenging due to the highly diverse immunological landscape, character-
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ized by varying rates and timings of past infection and vaccinations, different vac-
cine types, and viral variants that can escape pre-existing immunity [232]. Much
of the research has focused on anti-spike antibodies, as the spike protein is the
only antigen targeted by most vaccines. Other aspects of immunity, such as cel-
lular immunity and anti-nucleocapsid antibodies, have been less studied. To date,
there have been no long-term studies conducted on anti-nucleocapsid antibody dy-
namics, and various factors, such as multiple VoCs and recurrent infections and
vaccinations further complicate the understanding of immunity.
There are also significant gaps in the literature regarding how antibody levels corre-
late with protection, especially in populations with hybrid immunity [232]. While
some studies have tried to establish protective antibody thresholds, they only fo-
cused on anti-spike antibodies [251–253]. This gap in knowledge is significant as
natural and hybrid immunity are critical factors for public health. Understanding
the duration of natural and hybrid immunity and their effectiveness in preventing
reinfection, particularly with variant viral strains, is essential for guiding public
health policies and vaccination strategies.

In Manuscript 3, I address these challenges by analyzing antibody
levels from a large cohort of Canadian blood donors and relating levels
of both anti-nucleocapsid and anti-spike antibodies to the risk of in-
fection. Additionally, I characterize the antibody-waning dynamics of
these antibodies with non-linear mixed effects models and evaluate the
time to falling under protective thresholds.
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3
Mathematical models

3.1 Introduction to mathematical models

3.1.1 What are mathematical models?

Models are found everywhere in science. For the purpose of this thesis, I define a
model as a simplified and interpreted representation of a system, phenomenon, or
process, designed to understand, quantify, or predict its behaviors or outcomes. At
their core, models provide simplified representations of reality intended to facilitate
understanding of complex relationships. As famously noted by statistician George
R. Box, ”all models are wrong, but some are useful” [254], when he discussed the
inherent trade-off between model complexity and usefulness. Despite their sim-
plifications, models enable researchers to generate and explore hypotheses, make
predictions, and guide decision-making processes across a wide range of disciplines.

In epidemiology, models are critical for understanding disease dynamics and
informing public health interventions. Epidemiological models can broadly be
categorized into two categories:

1. Phenomenological models extract information about statistical relation-
ships from data without considering the temporal evolution of the underlying
process, especially if this process is non-linear. These include regression mod-
els, which specify a relationship between an outcome and predictor variables,
or machine learning approaches, which can scan big datasets for relationships
between variables.
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2. Mechanistic models incorporate explicit hypotheses about these under-
lying processes [255–257]. They are also called dynamical models, systems
models, or mathematical models1 [256]. These models directly specify the
underlying biological processes—with ordinary differential equations or par-
tial differential equations—making them ideal to study infectious diseases,
both infection dynamics within an infected individual (so-called ”within-
host” models) and transmission in populations (”between-host” models).

I will discuss the trade-offs between these model types further in section 3.1.3. In
general, one needs to further distinguish between i) models for statistical inference,
ii) models for prediction, and iii) exploratory models for hypothesis generation.

Mechanistic models can be further divided into compartmental and agent-based
models [258]. To mimic the mechanism of disease progression and disease trans-
mission, compartmental (SIR-type) models partition the population under
study into mutually exclusive sets of disease states, so-called compartments, such
as susceptible, infectious, or recovered [259]. For within-host models, compart-
ments can represent different cell or pathogen populations [51]. The temporal
dynamics of the system are typically described with a set of ordinary differential
equations (ODEs), parameterized in terms of the fluxes between compartments.
Compartmental models can be imagined as breaking the population into different
states and modeling the rates of flow between these states. Compartmental mod-
els provide insights into disease transmission and the impact of interventions on a
population level but may overlook individual-level dynamics, as all entities within
a compartment or state are assumed to be identical.

In contrast, agent-based models (ABMs) offer a more detailed representa-
tion of individual behavior, allowing for the exploration of complex interactions
within populations. Instead of tracking groups of populations, agent-based models
simulate the trajectories of each individual (i.e. agent) within a population and
their interactions with other agents. Through these interactions, pathogens can
be transmitted in the population. The diverse behavior of individual agents is de-
termined by parameters sampled from probability distributions, which allows for
stochasticity in the simulations. Thus, ABMs allow for more detail in the model
and an analysis on the individual scale, which is useful when individual behavior
matters or when more complex interactivity is needed. However, these models
come with computational challenges, need a lot of data for accurate parameteri-
zation, and require extensive validation [260]. As I used compartmental models in
my thesis as models for analysis, I will focus on these models in the next sections.

1Without clear definitions for each of these terms
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3.1.2 From SIR models to more complicated models

The development of compartmental models dates back over a century. One of
the earliest and most influential models of infectious disease transmission was the
mathematical model developed by Ronald Ross in a series of articles between 1908
and 1917 [261–264], where he modeled the dynamics of human and mosquito pop-
ulations to understand malaria transmission and assessed intervention strategies.
His models highlighted the role of vectors in malaria dynamics and showed that
vector control is crucial for controlling the disease [261].

The most renowned and still widely used model for infectious diseases in human
populations was published by Kermack and McKendrick in 1927 [265]. What has
become known as the ”Kermack–McKendrick model” or simply ”SIR model” is a
special case of the model described in reference [265].2 The model includes three
compartments: Susceptible (S), Infectious (I), and Removed (R). The model tracks
changes in the proportion of the population in each compartment over time by
reproducing the progression of infectious disease epidemics. Susceptible individuals
can contract the pathogen of interest, infectious individuals have contracted the
pathogen and can spread it to others, and removed individuals have overcome the
disease and developed immunity or are deceased and therefore no longer participate
in transmission. In a simple SIR model, transition rates between the compartments
are defined by a constant infection rate (β) and a constant recovery rate (γ) (Figure
3.1 left side). An example of a dynamic governed by a SIR model is illustrated in
Figure 3.1, right side.

While a simplified version of reality, SIR models can capture well the non-linear
effects of epidemic spread. A fundamental property of this model is that when an
epidemic ends, some members of the population remain uninfected, as evident in
Figure 3.1, right side. In this figure, the epidemic starts with 1% of the population
in the Infectious compartment (blue curve). The infection spreads exponentially
at first, but as more individuals become infected and then recover (orange curve),
the number of susceptibles (red curve) decreases significantly.
Once a substantial fraction of the population is immune, not enough people are
within reach of the infectious individuals to sustain the infection rate, which slows
disease transmission. This indirect protection of individuals who are still suscep-
tible to disease (i.e. who have no immune protection on their own) is called herd
immunity [266]. Herd immunity implies that the susceptible population at the end

2The famous Kermack–McKendrick paper from 1927 originally presented a more complex
structure than the simplified version commonly cited today. They build their model under
the assumption that the time spent in the infectious compartment changes infectivity and the
probability of removal from that compartment. Then, they present the now commonly cited
SIR model as a special case with constant rates. They also extend the model to diseases which
require an intermediate host (malaria).
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Figure 3.1: SIR dynamics. The left side shows the dynamics in a schema and as
differential equations. The right side illustrates the temporal evolution of compartments.

of an epidemic is always larger than zero, and this fraction depends on the basic
reproduction number R0. R0 is the average number of secondary cases produced
by a single infectious individual in a completely susceptible population and serves
a measure of how fast a disease spreads [267]. In a SIR model, R0 is calculated
straightforwardly as the rate of infection divided by the rate of recovery (β/γ).
The herd immunity threshold can be derived from R0 using the formula 1 − 1

R0
.

For example, in the epidemic in Figure 3.1, which was simulated with an R0 of 2,
the epidemic begins to decline once the proportion of susceptibles drops below 0.5.
The concept of herd immunity also applies to immunity gained by vaccination,
where the threshold is then termed ”critical vaccination threshold” [268].

Mechanistic models based on ODEs make several important simplifying as-
sumptions: First, they assume homogeneous mixing of the population, meaning
every individual has an equal probability of coming into contact with every other
individual in the population. This assumption overlooks real-world complexities,
where social networks and interaction patterns create more uneven interaction pat-
terns. Second, these models assume uniform transitioning parameters across
all individuals, i.e. all individuals have the same level of infectiousness, suscepti-
bility to infection, and rate of recovery, disregarding variations due to factors such
as health status, age, or viral load, unless explicitly modelled. This also implies
that SIR models are inherently memory-less, meaning that every individual has
the same probability of transitioning to the next compartment, regardless of the
time spent in the current compartment (Markovian property). This results in
exponentially distributed waiting times in each compartment. Third, an impor-
tant corollary from ODEs is that transition rates are applied according to
the law of mass action: the number of people transitioning to the next state is
proportional to the number of individuals in each compartment.
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To overcome the memorylessness of compartmental models, alternative mod-
eling approaches, such as partial differential equations (PDEs) or expanded com-
partments (e.g. I1, I2, I3 ), can be considered [269–272]. For models running over
longer periods, population dynamics, including births and deaths, should be ac-
counted for [268]. Since compartmental models are deterministic and apply the
law of mass action, they will always produce the same output, given a set of start-
ing conditions and transmission parameters. This makes them less suitable for the
early or late stages of epidemics, where random events like super-spreading inci-
dents can significantly influence the trajectory of an epidemic. Stochastic models
provide a more accurate representation of these phases, capturing the inherent
randomness in the early and late epidemic dynamics [273, 274].

Moreover, the basic SIR model with only three compartments assumes no incu-
bation period (i.e. individuals become infectious immediately after their infection)
and no waning of immunity (i.e. recovered individuals do not become susceptible
again). More complex models can incorporate additional compartments to more
accurately reflect the clinical and epidemiological characteristics, to align with
specific research questions, and to use available data for inference. For example,
the frequently used SEIR model adds an ”exposed” (E ) compartment between the
susceptible and the infectious compartment, accounting for the incubation period
where individuals are already infected but not yet infectious. Moreover, individu-
als infected with SARS-CoV-2 can be asymptomatic but still transmit the virus;
thus, an asymptomatic compartment should be added. Other common extensions
include models allowing for waning of immunity (e.g. SIRS, SEIRS), and adding
compartments for severity of symptoms (mild, severe, hospitalized, ICU). For ex-
ample, one of the pertinent questions at the start of the SARS-CoV-2 pandemic
was how many people would have to be hospitalized simultaneously. In this case,
introducing a hospitalized compartment can provide a straightforward answer. If
the number of deceased patients is of interest for the model outputs or if it is used
as an observation, a death compartment can be included. Other common expan-
sions include compartments reflecting NPIs, such as diagnosed and quarantined
[275, 276], or compartments for the vaccinated [277, 278]. Another way of incorpo-
rating NPIs is to model the effects of interventions on a time-varying transmission
rate. This requires extending the model to accommodate time-varying transmis-
sion or piecewise model fitting [279, 280].

Another important extension for infectious disease models is metapopulation
models, which contain several subpopulations, each of them representing a class
of more homogeneous individuals. These subpopulations often correspond to age
classes or spatial areas. This allows for some heterogeneity in the population, mak-
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ing the model more realistic, as it is known that age strongly influences important
model parameters, such as the risk of severe COVID-19. However, it also requires
additional data for model parameterization and assumptions about contact rates
between age groups, typically formulated using contact matrices [6, 169, 281].
With spatial structures, interactions and movements between different subpopu-
lations can be investigated, and high-risk areas can be identified. However, the
number of compartments increases exponentially with each stratification variable,
limiting the model’s scalability. For more detailed population variability, ABMs
might thus be more suitable [255].

3.1.3 Discussion of dynamical models compared to phe-
nomenological models

As previously stated, mathematical models integrate knowledge about the under-
lying processes governing a system, whereas phenomenological models abstract
relationships between the variables under study without explicitly regarding the
underlying mechanisms. For studying infectious diseases, which are inherently
dynamic systems, mathematical models offer some key advantages:

1. Integration of biological knowledge: humans exist in mutually exclusive
states of susceptibility, exposure, infection or immunity. Mechanistic models
allow the integration of this knowledge about the natural history of disease
and additional factors which are important for disease transmission—such
as human behaviors and interventions—into the model.

2. Integration of data from different scales: these models link observations
across different scales, for example within-host dynamics (like antibody lev-
els), with population-level epidemiological trends (like transmission). Like-
wise, for vector-transmitted diseases, vector dynamics and disease states in
humans can be integrated into one model.

3. Forecasting and counterfactual scenario simulation: insights about
the disease dynamics over time can be used to make both short-term and
long-term forecasts. In practice, this means that similar models can be used
to study both immediate effects, for example, the impact of NPIs on the
number of SARS-CoV-2 hospitalizations, and explore long-term outcomes of
the pandemic, such as the annual dynamics. Moreover, mathematical models
can easily project scenarios under a range of ”what if” scenarios. This al-
lows for studying the influence of internal factors or external disruptors while
incorporating uncertainty about the projections [167, 170, 282]. Through a
deeper understanding of the system under study, mechanistic models can eas-
ily simulate the system even under assumed changes to the system dynamics,
such as lockdowns or increases in vaccination coverage.
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4. Dependent Dynamics: unlike regression models, mechanistic models ac-
count for the interdependence of disease transmission among individuals,
making them more suitable for studying effects like herd immunity or deter-
mining critical vaccine thresholds.

Phenomenological models, such as regression models or machine learning mod-
els, can extract or predict statistical relationships from observed data patterns if
sufficient data are available. The advantage of phenomenological models is that
they do not require explicit knowledge about the system under study or about the
relationships between variables in the system [257].3 These models can be highly
effective for short-term forecasts, particularly when data is abundant, but they
may not capture the deeper dynamics needed for long-term predictions or complex
scenarios [283]. While phenomenological models are powerful in their flexibility,
mechanistic models provide more accurate predictions when data is sparse or of
low quality and the underlying biological mechanisms are necessary to construct
meaningful models [257]. However, mechanistic models are constrained by the un-
certainties in biological knowledge and thus more prone to model misspecification.

In selecting between these approaches, it is essential to consider factors like
data quality, model complexity, and computational demands. For example, during
the COVID-19 pandemic, phenomenological models were found to be better suited
for short-term forecasts, where actual infection dynamics matter less and the au-
tocorrelated nature of the data mattered more, but mechanistic models performed
better over longer-term horizons [283]. Mechanistic models can also be coupled
with phenomenological models to enhance model flexibility and reduce complex-
ity. For example, in Manuscript 1, we integrated a linear mixed effects model
into a mechanistic model of SARS-CoV-2 transmission to include the effects of
NPIs in the model dynamics. We chose a mechanistic way to model SARS-CoV-
2 transmission to be able to integrate biological knowledge about the spread of
SARS-CoV-2. In contrast, modeling the direct mechanistic effects of NPIs would
have required making numerous assumptions, fixing many parameters, and adding
compartments, making the model overly complex. Therefore, we included NPI
terms as predictors in a regression model with the transmission as the outcome.
One major advantage of our model was that all parameters could be estimated
in a single step. Additionally, by regressing the transmission rate directly on the
NPIs—rather than regressing epidemiological observations on NPIs—we did not

3However, if a model is used in a causal inference problem, careful parameter selection based
on background knowledge is required in order to avoid confounding and selection bias. This
applies less for prediction models, but even then careful parameter selection is required in order
to avoid overfitting.
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have to account for uncertain time lags between the implementation of NPIs and
their observable effects on epidemiological observations.

3.1.4 Application of mathematical models to the COVID-
19 pandemic

Mathematical models serve as essential tools in the scientific analysis of complex
systems. Thus, the application of mathematical modeling to inform public health
policy is not new, but mathematical modeling has gained public attention during
the COVID-19 pandemic, as models have played an unprecedented role in pub-
lic health decision-making. Historical models used during previous public health
emergencies include responses to pandemic and seasonal influenza, among many
others. For instance, an age-stratified transmission model of influenza suggested
that expanding vaccination to school-aged children could enhance the overall effec-
tiveness of flu vaccination programs [284]. Similarly, early mathematical models of
the 2009 influenza A/H1N1 pandemic provided crucial estimates of the reproduc-
tive number and serial interval [285]. Additionally, Ferguson et al. explored various
mitigation strategies for influenza, showing that interventions like school closures
and antiviral treatments could significantly impact the course of a pandemic [286].
Likewise, models were instrumental in guiding critical interventions during Ebola
outbreaks. Alarming forecasts from mathematical models [287] prompted rapid in-
ternational aid and supported the implementation of public health measures such
as patient isolation and safe burial practices. Other studies [288, 289] focused
on transmission dynamics and the impact of interventions like increasing hospital
capacity and distributing protective kits.

Early in the COVID-19 pandemic, as immediate and effective action was re-
quired, both the public and policymakers turned their attention to infectious dis-
ease modelers to understand and predict the trajectory of the virus. From the
early days of the pandemic, researchers utilized a range of mathematical modeling
techniques to infer epidemiological parameters, predict epidemic trajectories and
inform public health responses. Mathematical models have been used in several
key areas: inferring epidemiological characteristics of the new virus, improving
situational awareness, and informing mitigation strategies.

3.1.4.1 Key epidemiological characteristics

In the early stages of the pandemic, key epidemiological parameters, transmis-
sion pathways, and clinical features of SARS-CoV-2 were unknown. Mathematical
models were widely used for estimating and inferring these parameters. To assess
the transmissibility of SARS-CoV-2, a range of studies estimated the basic trans-
mission number of SARS-CoV-2, R0. They all placed it between 2-3 [290–292].
The rapid spread of the virus was also confirmed through fitting growth rate mod-
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els after its emergence [293]. The potential for asymptomatic transmission was
quickly identified as a critical factor in SARS-CoV-2 spread [49, 290]. Early esti-
mates suggested a low case ascertainment rate of approx. 5% [291], indicating that
many infections went undetected alongside many asymptomatic infections. Other
studies provided estimates of the symptomatic case fatality ratio in Wuhan as
1.4% (0.9–2.1%) with an age-structured SIR model [294] and forecasted its poten-
tial for domestic and international spread of SARS-CoV-2 with a metapopulation
SEIR model [295]. This emphasized the urgent need for public health interventions
at both population and personal levels to prevent a global pandemic. As VoCs
emerged, new studies were required to re-estimate transmission parameters [66,
73, 296].

Mathematical models have also been used on the host level to estimate viral
kinetics of acute infections in cohorts of healthy individuals [53] and hospitalized
patients [51, 297]. Moreover, intra-host models have been used to distinguish viral
kinetics of VoCs in vaccinated and unvaccinated individuals [298] and to predict
the effectiveness of antiviral medications [51, 299, 300].

3.1.4.2 Situational awareness and mitigation strategies

As SARS-CoV-2 spread globally, forecasting models became essential for situ-
ational awareness and decision-making regarding interventions. In response to
early warnings from modeling studies about the potential for healthcare systems
to be overwhelmed, countries implemented lockdowns and other stringent mea-
sures [257, 301]. A model from the Institute for Health Metrics and Evaluation
(IHME), which was published in April 2020, greatly influenced the strategy in the
U.S. for the first wave but severely underestimated the number of deaths from
COVID-19 [112], and was soon criticized as methodologically flawed [302, 303].

Forecasting hospital demand became a crucial application of mathematical
models during the COVID-19 pandemic [304–307]. Soon, forecasting teams and
hubs, such as the CDC’s COVID-19 Forecast Hub (www.covid19forecasthub.org),
were established to use the power and robustness of ensemble forecast models to
predict hospitalizations [308–310]. Ensemble forecasts proved more accurate and
precise than individual models, though accuracy varied during critical moments
of the pandemic [310, 311]. The COVID-19 Scenario Modeling Hub, which had
been created from the COVID-19 Forecast Hub, further extended these efforts,
providing long-term projections for federal and local health authorities in the U.S.
(www.covid19scenariomodelinghub.org).

3.1.4.3 Effectiveness of mitigation strategies

Early models demonstrated the effectiveness of NPIs in ”flattening the curve” and
reducing infection rates. The models emphasized the importance of early and in-
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tense NPIs to reduce the effective reproduction rate below one, thus controlling
the epidemic [312, 313]. Premature lifting of NPIs without adequate compensatory
measures was shown to risk a resurgence of infections [169, 314]. Studies on the
effectiveness of quarantine measures in Wuhan provided early evidence supporting
strict containment strategies [315], and other researchers modeled the effectiveness
of combinations of public health interventions [316, 317]. After the first pandemic
wave, influential papers were published confirming the effectiveness of NPIs [131,
133, 134]. As the pandemic progressed, Ferretti et al. demonstrated the potential of
digital contact tracing in augmenting traditional public health measures to control
the spread of COVID-19 [318]. Vaccination strategies were later incorporated into
models to assess efficient roll-out strategies [319–321] and re-vaccination strate-
gies [322], and modeling vaccine and NPI strategies simultaneously [282, 323–326].
Moreover, compartmental models were also used to identify areas of uncertainty
where more research was needed, such as the duration of protection conferred by
vaccines and the rate of serious adverse events following vaccination [327]. Indeed,
models have been fitted to antibody dynamics to gain insights about the duration
of detectable antibodies in serum [225].

The previous examples underscore the importance of mathematical modeling in
informing and optimizing public health policies infectious disease outbreaks. I also
demonstrated that they can be powerful and effective tools during a public health
emergency. While I focused on how mathematical models aid public health policy
in understanding key epidemiological parameters, guiding intervention strategies,
and predicting possible future scenarios, it is worth noting that they also serve
other purposes, such as generating hypotheses about complex system dynamics.

3.2 Mathematical model development and model

fitting

3.2.1 Identifiability

One aspect of models that is not explained in detail in the manuscripts, but that
warrants attention and poses problems during model development, is the issue
of identifiability. A model is identifiable if the values of its parameters can be
determined uniquely from knowledge of its inputs and outputs [328]. On the
contrary, if a model is non-identifiable, different values of parameters can produce
the same predictions or fit to data. Non-identifiability leads to wrong parameter
estimates and bad uncertainty quantification [329, 330], that is, misleading models.
Models can for instance be unidentifiable if they include too many compartments
for which observations are not available, models with complex interactions, or
models with a high number of parameters relative to the amount of data [328].
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Identifiability can be further divided into structural and practical identifiability
[331]. Structural identifiability refers to whether unique parameter estimation is
theoretically possible for an ideal, error-free system based on the model structure
and output relations. It assesses the intrinsic capability of the model structure to
provide unique parameter solutions. There are techniques to formally verify struc-
tural identifiability, such as the software DAISY [332], which uses a differential
algebra algorithm to perform parameter identifiability analysis.
However, even when a model is structurally identifiable, in practice, parameters
may still be non-identifiable due to real-life limitations, such as the amount and
quality of the data available and/or the number of parameters that are jointly
estimated from the available data. This is commonly referred to as practical
non-identifiability, and is more aligned with the practical challenges faced dur-
ing modeling [331]. Practical non-identifiability can for example be assessed by
running several parameter estimations on the same dataset with random starting
values. If the different estimates do not converge, this can be caused by a problem
of practical identifiability.

3.2.2 Parameter estimation methods

Many models are fitted using maximum likelihood estimation (MLE), a statistical
method which aims to find the parameter values that make the observed data
most probable under the assumed model. The term ”likelihood” in this context
was first used by Fisher in 1922 [333]. The likelihood of a model quantifies how
well a model, given its parameters, explains the observed data. Mathematically, it
is expressed as: L(θθθ | yyy), where θθθ = [θ1, θ2, . . . , θk] is the vector of k model param-
eters to be estimated in the parameter space Ω and yyy = (y1, y2, . . . , y3) denotes
the n observed data points.

In a maximum likelihood approach, the objective is to find the parameter set
for which the observed data have the highest joint probability, i.e. that maximize
the likelihood function under the assumed statistical model:

θ̂̂θ̂θ = argmaxθ∈ΩL(θθθ | yyy)

In practice, since the likelihood values tend to be extremely small, it is more
common to work with the natural logarithm of the likelihood, known as the log-
likelihood and defined as l(θθθ,yyy) = log(L(θθθ | yyy)). Since the logarithm is a monotonic
function, the maximum of the log-likelihood occurs at the same point as the max-
imum of the likelihood function. Thus, the parameter space can be searched for
values of the parameters which result in the maximum of the log-likelihood to find
the most plausible model parameter values, given the observed data. In most cases,
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an analytic solution to this function does not exist, and numerical optimization
algorithms are required to estimate θ̂̂θ̂θ, such as the well-known Newton-Raphson
algorithm [334].

In nonlinear models, such as those governed by a set of ODEs and using ran-
dom effects, a different approach is needed for parameter estimation. One com-
mon method, used when the model depends on unobserved latent variables, is
the expectation-maximization (EM) algorithm—an iterative method to find the
maximum of the log-likelihood function with unobserved variables [335]. The EM
algorithm operates by iteratively applying two steps: the expectation (E) step and
the maximization (M) step. In the E step, the algorithm calculates the value of the
log-likelihood, based on the current estimates of the parameters. In the M step,
it updates the parameter estimates by maximizing this expected log-likelihood.
These newly estimated parameters are then used in the next E step to refine the
distribution of the latent (unobserved) variables, and the process repeats until
convergence.
For nonlinear mixed effects models (NLME), a more efficient version of the EM al-
gorithm has been developed: the stochastic approximation expectation-maximization
(SAEM) algorithm [336]. SAEM improves efficiency by simulating random effects
from the conditional parameter distribution at each iteration, thereby updating
the unknown parameters of the model. This method has been shown to converge
quickly towards the maximum likelihood estimator [336, 337]. The SAEM algo-
rithm is implemented in the Monolix software [338], and was used for parameter
estimation with the mechanistic models presented in Manuscripts 1 and 2.
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4
Manuscript 1

4.1 Preface to Manuscript 1

As outlined in the literature review, considerable uncertainty about the effective-
ness of NPIs remained, even after a considerable number of NPI studies. Moreover,
the number of studies after the first pandemic wave decreased significantly, despite
the fact that in subsequent waves, more NPIs were implemented in varying combi-
nations and at smaller geographical scale. For instance, in France, new strategies
such as curfews, gathering size restrictions (e.g. bans on gatherings of fewer than
10 people), and lockdown measures less stringent than the first lockdown were en-
forced. These measures coincided with the rollout of vaccines and the emergence
of VoCs.

Given this complexity of public health intervention decisions, compounded by
the lack of high-quality, consistent evidence about many facets of these interven-
tions, it is crucial for decision-makers to have updated and accurate estimates of
NPI effectiveness, for future SARS-CoV-2 waves as well as future pandemics. As
NPIs were shown to vary greatly across countries, we decided to focus on NPIs
in France. Several studies have previously evaluated NPI effectiveness in France
[1, 150, 169, 270], but there remain significant opportunities for refinement. The
studies by Roux. et al. [270] and DiDomenico et al. [169] covered only the first
wave in France, while Collin et al. [150] used a coarse geographical scale (12 re-
gions instead of 94 departments) and limited their analysis to data up until April
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2021. Paireau et al. [1] extended their analysis until May 2021 but used a two-step
regression model for analysis, which might not have accurately quantified the un-
certainty in estimates or been suitable for assessing the combined effects of NPIs
and vaccination (see chapter 5).

To address these limitations, we developed a population-based mechanistic
model to estimate NPI and vaccine effectiveness throughout three pandemic waves
in France. The mechanistic model presented in this manuscript is structured into
three layers: 1) The mechanistic layer includes biological information and models
the transmission process and vaccine effects mechanistically, similar to Collin et
al. [150]; 2) In the statistical layer, a mixed effects regression model is used to
include the effects of the NPIs on the transmission rate; and, 3) The observation
layer models four types of epidemiological data to explicitly account for errors in
reported data. To illustrate the impact of NPIs and vaccines beyond relative effec-
tiveness measures, we conducted simulations under counterfactual scenarios, such
as earlier vaccine rollouts and alternative NPI implementation timelines. These
simulations explicitly quantify the number of saved lives by timely interventions,
providing valuable insights for future pandemic preparedness and policy planning.

The following manuscript was published in Epidemics in March 2024.
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4.2 Manuscript 1: Estimating the population ef-
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Abstract

Background Non-pharmaceutical interventions (NPIs) and vaccines have been
widely used to manage the COVID-19 pandemic. However, uncertainty persists re-
garding the effectiveness of these interventions due to data quality issues, method-
ological challenges, and differing contextual factors. Accurate estimation of their
effects is crucial for future epidemic preparedness.
Methods To address this, we developed a population-based mechanistic model
that includes the impact of NPIs and vaccines on SARS-CoV-2 transmission and
hospitalization rates. Our statistical approach estimated all parameters in one
step, accurately propagating uncertainty. We fitted the model to comprehensive
epidemiological data in France from March 2020 to October 2021. With the same
model, we simulated scenarios of vaccine rollout.
Results The first lockdown was the most effective, reducing transmission by 84%
(95% confidence interval (CI) 83-85). Subsequent lockdowns had diminished effec-
tiveness (reduction of 74% (69-77) and 11% (9-18), respectively). A 6 pm curfew
was more effective than one at 8 pm (68% (66-69) vs. 48% (45-49) reduction),
while school closures reduced transmission by 15% (12-18). In a scenario without
vaccines before November 2021, we predicted 159,000 or 168% (95% prediction
interval (PI) 70-315) more deaths and 1,488,000 or 300% (133-492) more hospi-
talizations. If a vaccine had been available after 100 days, over 71,000 deaths
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(16,507-204,249) and 384,000 (88,579-1,020,386) hospitalizations could have been
averted.
Conclusion Our results highlight the substantial impact of NPIs, including lock-
downs and curfews, in controlling the COVID-19 pandemic. We also demonstrate
the value of the 100 days objective of the Coalition for Epidemic Preparedness
Innovations (CEPI) initiative for vaccine availability.

Keywords: COVID-19, SARS-CoV2, epidemics, dynamics, mathematical model,
non-pharmaceutical interventions, vaccines
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Introduction

The COVID-19 pandemic has caused substantial morbidity and mortality and
taken a heavy toll on healthcare systems globally. As no vaccine or other treatment
for COVID-19 was available at the beginning of the pandemic, governments around
the world implemented non-pharmaceutical interventions (NPIs) with mostly un-
known epidemiological and societal impacts to contain viral spread. Such NPIs
consisted for example of border closures, cancellation of public events and gather-
ings, school and workplace closures, stay-at-home restrictions, testing and contact
tracing, and mandated wearing of face masks [126]. Due to the high transmissi-
bility of SARS-CoV-2, rapid vaccine development and distribution programs were
implemented, and in late 2020, several became available. By the Spring of 2021,
vaccination efforts were ramped up, and booster doses were made available in
the Fall of 2021 in high-income countries because of waning vaccination immu-
nity [219]. Due to good protection against severe disease, NPIs were relaxed in the
Summer of 2021 in countries with high vaccination coverage, despite the emergence
of viral variants of concern (VoCs) with increased transmission and virulence.

Despite numerous studies [116, 119, 339], the effectiveness of NPIs on decreas-
ing SARS-CoV-2 transmission remains uncertain, especially over longer periods of
time and at a high geographical resolution. However, given the economic, psy-
chological, and social costs associated with these interventions, estimating their
effectiveness, particularly in combination with vaccination, is crucial. Previous
studies on the effectiveness of NPIs, such as lockdowns and school closures, dur-
ing the COVID-19 pandemic have yielded mixed results [115, 116], and many of
the studies have focused solely on the first pandemic wave, either estimating NPI
effectiveness [131] or simulating NPI exit scenarios [169]. However, relying solely
on first-wave estimates is not sufficient to fully comprehend the effects of NPIs
during a pandemic. After the initial wave, social interactions did not return to
pre-pandemic levels, population compliance with NPIs decreased [340], viral mu-
tations started to emerge, and population immunity increased through vaccination
and previous infections. Several simulation studies investigated optimized vaccine
rollout and NPI relaxation scenarios [282], but there is a lack of retrospective
analyses of vaccine rollout and studies which include estimates on NPI and vac-
cine effectiveness from observational studies. Additionally, weather is hypothesized
to have an impact on SARS-CoV-2 transmission, with higher temperatures and
ambient humidity decreasing transmission [341–343].

Country-specific cultural, demographic, and environmental factors make it rel-
evant to look at NPIs in different contexts. International studies combining data
from multiple countries have been conducted, but they often ignore geographical
variability, use heterogeneous NPI definitions, and suffer from cross-country con-
founding. This is why in the present study, we focus on the level of administrative
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sub-regions of France, where exceptionally rich data were available on a daily ba-
sis thanks to the Santé Publique France agency. We aim to build on previous
work conducted in France [1, 150] by extending the study period, including a more
granular analysis of VoCs and explicit modelling of vaccinations in the epidemic
dynamics. To this end, we propose a SARS-CoV-2 compartmental model that
incorporates the effect of NPIs, vaccination, viral variants of concern (VoCs), and
weather. To ensure accurate propagation of uncertainty, we employ a statistical
approach that estimates all model parameters in one step. A further refinement is
the quality of the information used to estimate these effects, as we use four types
of observations and retrospectively corrected data. To better illustrate the impact
of vaccines and the complex interplay between NPIs and vaccination, we perform
simulations of various counterfactual scenarios.

Methods

Data

COVID-19 hospitalizations, deaths, and cases We used four types of obser-
vational data, aggregated at the departmental level, published by Santé Publique
France. In France, a department is an administrative area with a median of ap-
prox. 500k inhabitants (Figure S4.1). As all data were available in aggregated
form in the public domain, no ethical regulations were applicable to this study.
For each department, daily COVID-19-related hospital data, including admissions
and occupancy from the SI-VIC database [344] (available since March 1st, 2020),
deaths in hospitals from SI-VIC [344] (available since March 18th, 2020), and
PCR-confirmed COVID-19 cases from the SI-DEP database [345] (available since
May 13th, 2020), were collected on a daily basis until October 31st, 2021. In April
2022, we downloaded the final dataset encompassing this entire period. More in-
formation on epidemiological data can be found in the Supplementary Methods
Sections. We excluded the two Corsican departments entirely from the analysis,
and department 5 (Hautes Alpes) from February 17, 2021, onwards, due to missing
weather data. We smoothed the hospital admission, death and case time series
with a centered 7-day moving average to account for the day-of-week effect. Our
study period extended until October 31st, 2021. After this date, very few NPIs
were enforced in France, and the Omicron VoC disrupted the epidemiological dy-
namics.

Non-pharmaceutical interventions During the study period, a wide range of
NPIs of varying stringency were implemented in France. We collected the NPI
data from official government websites and news articles and focused on the fol-
lowing NPIs: i) The three periods of lockdowns with varying levels of restrictions,
including a separate lockdown 2 before Christmas, where stores were allowed to
re-open, which we refer to as “lockdown 2 light”; ii) school closures; iii) curfews
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either starting at 8 or 9 pm or at 6 or 7 pm; and iv) four periods of barrier ges-
tures, where the first three directly follow the lifting of lockdowns, and the fourth
period starts with the implementation of a vaccine passport, which restricted ac-
cess to public areas for the unvaccinated. Barrier gestures encompass NPIs and
behavioral changes, such as mask wearing, remote working, and compliance with
hygiene protocols, which we were not able to model separately. The population
adherence to these measures was parameterized based on surveys of barrier ges-
ture adoption in France by Santé Publique France [346], as a continuous variable
ranging between 1 (indicating full population compliance) and 0 (no compliance).
A more in-depth description of NPIs can be found in the Supplementary Methods.
Due to identifiability issues, we did not succeed in quantifying the effect of bar and
restaurant closures, workplace closures, bans on large public events, travel bans,
enhanced testing, or contact tracing. Some of these effects may thus be absorbed
in lockdowns, curfews, and barrier gestures.

Exogeneous variables: SARS-CoV-2 variants of concern, vaccinations,
weather Variants of concern: During our study period, the predominant
VoCs in France were B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2
(Delta). The percentage of SARS-CoV-2 VoCs among all sequenced samples at the
departmental level was published by SI-DEP starting February 12th, 2021. More
information on reporting of VoCs by SI-DEP can be found in the Supplementary
Methods. As no VoC data were available before this date, we used a logistic re-
gression model to extrapolate departmental Alpha and Beta/Gamma circulation,
assuming no VoC circulation before January 1st, 2021. We fit binomial models
separately for each department and VoC. The proportion of circulating VoC was
regressed on the calendar day as the only predictor, using data of the first three
months of VoC circulation (February 2021-April 2021). The predictions from these
models were then used to impute VoC circulation for each department between
January 1st, 2021 and February 12th, 2021. Since the reported data were aggre-
gated by week and there was high variance in the VoCs captured by sequencing,
the percentages of VoCs among all sequenced samples were smoothed over 14 days
to account for random fluctuations in testing.

Vaccination: The proportion of the population vaccinated with one or two
doses was obtained from the VAC-SI database [347]. We did not consider addi-
tional vaccine doses as the proportion of people who received a booster by the end
of our analysis period was low (2.7% of the population). The effects of vaccine
doses were lagged by 21 days to account for the time needed to develop immunity
after vaccination.

Weather: To account for the potential impact of climate on SARS-CoV-2
transmission [348], we extracted daily weather data from the National Oceanic
and Atmospheric Administration database using the R package worldmet. The

53



data was collected from all meteorological stations located in France. We calcu-
lated a daily weather variable for each department combining temperature and
humidity (see Supplementary Methods).

Modeling approach and estimation

We modeled the SARS-CoV-2 epidemic in France from March 1st, 2020, to Oct
31st, 2021, using an extended SEIR model, adapted from previous studies [150,
349–352]. This model has already undergone strong identifiability analysis [150],
but compared to previous models, our model has some novelties. First, we divided
the population into seven compartments: Susceptible (S), latently Exposed (E),
symptomatically Infected (I), Asymptomatically infected (A), Hospitalized (H),
Recovered (R), and Deceased (D). We modeled the flow of individuals in the pop-
ulation through these compartments according to the diagram shown in Figure
4.1a. In short, viral transmission occurs from the individuals in the I and A com-
partments to the S compartment. After a latent period with an average duration
of 5 days in the E compartment, infected individuals progress to the I or A com-
partments. Individuals in I will become symptomatic during their infection, while
individuals in A will stay asymptomatic for the whole duration of their infection.
From there, they can either recover and progress to the R compartment, or symp-
tomatically infected individuals can be hospitalized. We assumed that individuals
in the H compartment are no longer infectious and can either recover or progress
to the D compartment. For a more comprehensive description of the model dy-
namics, the differential equations, and the parameters governing the system, the
reader is referred to the Supplementary Methods Section Model and Table S4.1.

Second, we linked the mechanistic model to a linear mixed effects model of
the viral transmission rate b. This model represents the time-varying transmission
rate bt as a function of a basic transmission rate b0, NPIs, weather, and VoCs, as
in Collin et al. [150]:

log(bi,t) = b0i +
∑

j

βj
iNPIji,t +

∑

k

βk
V V oCk

i,t + βwweatheri,t

, where b0i ∼ N(b0pop , ω) for department i at time t, NPI j and VoC k. The basic
transmission rate b0 is thus allowed to vary across departments, which accounts
for inter-departmental variations in age structure, population density, and contact
patterns. The percent transmission reduction of NPIs was calculated with the
respective β coefficients as (1− eβ)× 100.

Third, we included the effects of vaccination as the population vaccine effect
against transmission (evI) and the population vaccine effect against hospitalization
(evH) directly in the compartmental model. We define the vaccine effect to be the
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Figure 4.1: SEIRAHD model representation and model fits. (a) The 7 com-
partments of our model structure with the transition parameters are shown. (b) Model
fits for all four types of observed data for the entirety of France are shown. Black lines
indicate the observed data, red lines the model fit, and shaded areas the 95% prediction
interval.

product of the vaccine efficacy (estimated by the model) and the population vaccine
coverage at the departmental level.

Lastly, we explicitly modelled the effect of VoCs on transmission and risk of
hospitalization, with VoCs increasing both transmission and risk of hospitaliza-
tion according to strain-specific, previously published values (Table S1). As ob-
servations, we jointly modelled COVID-19 deaths, cases, hospital admissions, and
hospital occupancy, assuming Normal distributions and combined error models.
Hospital admissions were modeled as the influx of individuals into the H compart-
ment, hospital occupancy as the number of individuals in the H compartment,
cases as the influx of individuals into the I compartment, and deaths as the influx
of individuals into the D compartment for all departments i and all observation
times t. All modelling choices and assumptions are recalled and discussed in the
Supplementary Methods Section Modeling assumptions.

Parameters were estimated using maximum likelihood estimation using a stochas-
tic approximation expectation maximization (SAEM) algorithm implemented in
the software Monolix, version 2019R2 (http://www.lixoft.com). Due to practical
identifiability issues, some parameters were fixed or estimated with profile like-
lihood estimation (see Supplementary Methods Section Parameter estimation).
Standard errors for the calculation of 95% confidence intervals were obtained by
100 bootstrap replicates. For each bootstrap replicate, we randomly sampled 94
departments (with replacement) from the entire department pool and conducted
the estimation procedure (see Supplementary Methods). Furthermore, for each
estimation, the initial population parameters were randomly sampled from a uni-
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form distribution ranging between half and twice the assumed values. We repeated
the bootstrap procedure 100 times and determined the lower and upper limits of
the 95% confidence intervals by extracting the 2.5th and 97.5th percentiles from
each parameter distribution.

For comparability with other studies, we calculated the basic reproductive
number (R0) and the effective reproductive number over time (Reff (t)) with a
next-generation matrix from the basic transmission rate b0 and the time-varying
transmission rate, respectively [150, 353] (see Supplementary Methods).

We performed extensive model selection and goodness-of-fit analyses to arrive
at our final model. First, we checked for structural identifiability using DAISY
(Differential Algebra for Identifiability of Systems) [332] and we ensured that no
NPIs in our NPI matrix effect overlapped completely (Figure S4.2 in Supplemen-
tary Methods). Next, we checked practical identifiability by performing conver-
gence assessments, in which we confirmed the stabilization of the SAEM algorithm
towards the same value from a wide range of starting values (Section Model selec-
tion in Supplementary Methods). Then, we performed parameter selection, with
final models being chosen based on the Akaike Information Criterion (AIC), while
paying attention to the problems of non-identifiability of effects.

Simulations

We simulated the following scenarios: No vaccine availability until the end of the
study period, faster vaccine rollout (1% of the population vaccinated per day), and
the vaccine becoming available after 100 days, as called for by the Coalition for
Epidemic Preparedness Innovations (CEPI) initiative (www.cepi.net). t0 for the
100-day scenario was January 11th, 2020, following the publication of the com-
plete genomic sequence of SARS-CoV-2 [354]. Thus, in this scenario, vaccinations
started approximately 8 months earlier than the actual vaccine rollout in France.
Compared to the fast rollout scenario, the observed vaccine rollout was very slow
in the first months, with no more than 0.3% of the population vaccinated per day,
and picked up speed when more vaccine doses were available. However, it never
passed 0.8% of the population vaccinated per day. Additionally, we conducted
simulations in which the first lockdown was implemented one or two weeks earlier.
For each week shift, we simulated two scenarios: in one, the lockdown 1 was lifted
as observed (May 5th, 2020) and one where the length of the lockdown was kept
constant (54 days).

Simulations were performed with Simulx software version 2020R1 (www.lixoft
.com). We conducted 1000 simulations per scenario, with parameters drawn from
their respective estimated distributions. 95% prediction intervals were derived by
taking the 2.5th and 97.5th percentile of the distribution of simulations. We chose
to use the model’s predictions under the observed scenario as comparisons for the
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counterfactual scenarios instead of the actual data. This ensures more accurate
comparisons, considering the model’s imperfect fit to the observed data. For all
simulations, we assumed that immunity through vaccination did not decline or
that booster vaccinations were available to maintain protection. Moreover, we
assessed all scenarios under waning immunity. We assumed that the protection
from vaccines waned according to results from Clairon et al. who modeled waning
immunity as the probability of detecting neutralizing antibodies above a protective
threshold [355]. We applied these waning curves to the daily number of vaccina-
tions to derive the percentage of the population with active protection against the
original SARS-CoV-2 strain and the Delta VoC at each day.

Results

Rt over time

Figure 4.2: Effective reproductive number (Rt) as estimated by the model in
relation to implemented NPIs, variants of concern (VoC) and vaccinations.
The thin black lines depict Rt trajectories for each French department, while the thick
black line shows the average across France. The NPI lines are plotted if the NPI was
active in at least one department. The dashed line indicates the Rt threshold of 1, below
which an epidemic will eventually die out.

The model effectively captured the trajectories of all four types of observations,
although it exhibited a slight underestimation during the second wave (around
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November/December 2020) and for deaths (Figure 4.1b for the entirety of France
and Figure S4.4 in Supplementary Results for selected departments). Before the
initial lockdown, our model estimated that Rt varied around three. However, with
the implementation of the lockdown, it decreased to below one, and subsequently
fluctuated around one with two notable increases. The first occurred in Fall 2020
at the onset of the second wave, while the second happened in the summer of 2021
due to the increased circulation of the Delta VoC (Figure 4.2).

Effects of NPIs and vaccination

Based on the calibrated model representing the COVID-19 epidemic in France,
we demonstrated that all the tested NPIs deployed by the French government
significantly reduced SARS-CoV-2 transmission. Specifically, the first lockdown
led to an 84% decrease in viral transmission (95% CI 83.1 - 84.7), while the second
and third lockdowns resulted in a 73.8% (69.4 - 76.5) and 11.2% (9.4 - 18.3)
reduction in transmission, respectively (Figure 4.3). We also found that the 6/7
pm curfew was more effective than the 8/9 pm curfew, reducing transmission by
67.9% (66.2 - 68.5) and 47.5% (45.0 - 49.0), respectively. Although school closures
had a smaller effect, they still significantly reduced transmission by 14.5% (11.5
- 17.8). We chose to include intermediate periods of moderate restrictions into
our model (termed ”barrier gestures”), which substantially reduced transmission
(between 16.1% and 60.1% with 70% adherence, which represented the median of
population adherence). Finally, during the fourth period of barrier gestures, which
included a vaccine passport in addition to hygiene protocols and mask-wearing, we
estimated a reduction in transmission of 61.0% (59.6 - 62.9) due to this package
of interventions, independently of the vaccine’s effect. We found that weather had
a significant influence on SARS-CoV-2 transmission, with an average increase of
10% in winter conditions and an average decrease of 20% in summer conditions,
compared to the average weather conditions in France over the whole study period.
The results were robust to changes in fixed parameters (see Supplementary Results
Section Sensitivity analyses).

The population vaccine effect against both transmission and hospitalization
increased over time as the population coverage increased (Figure 4.4a). However,
after the emergence of the Delta variant, the vaccine’s effect on transmission (evI)
started to decline and first plateaued around 25% (95% CI 22 - 27) protective
effect, indicating that it prevented 25% (22 - 27) of all new infections. With
further increase in population vaccine coverage, evI stabilized at approximately
34% (30 - 38). evH increased steadily with increasing population vaccine coverage
and was estimated to reach 84% (82 - 85) by the end of the study period. Thus,
the overall protective effect against hospitalization, taking into account protection
against infection and subsequent hospitalization, reached 89% (87-91) by the end
of October 2021. If the whole population had been fully vaccinated with 2 doses
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Figure 4.3: Estimation of the effect of NPIs and weather on SARS-CoV-2
transmission. Point estimates with 95% confidence interval. A negative percent trans-
mission reduction indicates an increase in transmission (observed only for weather effect
during winter).
Summer conditions during June - August, winter conditions during December - Febru-
ary. The transmission reduction of barrier gestures is shown assuming 70% population
compliance, which was the median of the population compliance parameterization.
*Confidence intervals are not available for parameters whose effect was estimated by
profile likelihood.
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Figure 4.4: Vaccine effects. (a) Estimated protective effect conferred by vaccination.
The population vaccine effect against transmission (evI) is depicted in yellow, the popu-
lation vaccine effect against hospitalization (evH) among infected in green, and the total
population vaccine effect against hospitalization (evH ·evI) in red. (b) Simulated hospital
admissions in France under different vaccination scenarios. The solid lines depict the
median of 1000 simulations, while the shaded areas show the 95% prediction interval.
In the ”Fast” scenario, the start of the vaccinations was held constant, but 1% of the
population was vaccinated per day. In the ”100 days” scenario, the vaccine was available
100 days after the publication of the full genomic sequence of SARS-CoV-2 (April 20,
2020). In the ”No vaccination” scenario, no vaccines were available until the end of the
study period.

and only the original strain of SARS-CoV-2 was circulating, our analysis therefore
predicts a vaccine efficacy against hospitalization of 98% (85-100) and a vaccine
efficacy against transmission of 87.5% (78-98). However, with 100% Delta VoC
circulation, the vaccine efficacy against transmission reduced to 44% (39-49).

Compared to a scenario where no vaccines were available until the end of the
study period and all NPIs were implemented and lifted as observed, the availability
of vaccines saved 158,523 lives (95% prediction interval [PI] 39,518-348,958) and
prevented 1,488,142 hospitalizations (95% PI 383,515-3,084,308) (Table 1). In
relative terms, this corresponds to 168% more deaths (95% PI 69.5-314.8) and
300.1% (95% PI 132.9-492.0) more hospitalized patients. This would have exceeded
the hospital capacity of all existing beds except psychiatry (332,785 beds) [356]
on October 23, 2021, assuming that the entirety of hospital beds was available
for COVID-19 patients. Under the more realistic assumption that 20% of the
pre-pandemic hospital capacity would be available for COVID-19 patients, the
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national hospital bed capacity would have been exceeded by August 6, 2021. The
importance of NPIs in the absence of vaccines is underscored by the fact that
deaths and hospitalizations surged after NPIs were lifted in the summer of 2021
(Figure 4.4b).

Scenario Number of
observations · 1000
[95% PI]

Difference to
observed scenario ·
1000 [95% PI]

Percentage change
to observed sce-
nario [95% PI]

Hospitalizations

observed 470 [163; 1,348]
fast 330 [131;950] -146 [-373; -34] -29.5% [-45.9; -15.6]
100 days 116 [85; 170] -384 [-1,020; -89] -79.9% [-89.1; -52.1]
no
vaccination

1,930 [534; 4,597] 1,488 [384; 3,084] 300.1% [132.9; 492.0]

Deaths

observed 92 [32; 262]
fast 72 [28; 208] -20 [ -51; -5] -21.5% [-35.4; -11.1]
100 days 24 [17; 37] -71 [-204; -17] -78.9% [-88.4; -51.3]
no
vaccination

249 [71; 619] 159 [ 40; 349] 168.3% [ 69.5; 314.8]

Cases

observed 10,306 [4,817; 25,264]
fast 8,392 [4,388; 19,648] -2,007 [ -5,277; -463] -19.2% [-34.4; -8.0]
100 days 4,650 [3,560; 6,571] -6,141 [-16,114;

-1,459]
-62.1% [-77.3; -30.7]

no
vaccination

20,269 [7,489; 46,198] 10,174 [ 2,774;
19,654]

93.3% [ 43.9; 147.2]

Table 4.1: Counterfactual vaccine scenarios. In the ”Fast” scenario, the start of
the vaccinations was held constant, but 1% of the population was vaccinated per day.
In the ”100 days” scenario, the vaccine was available 100 days after the publication of
the full genomic sequence of SARS-CoV-2 (April 20, 2020). In the ”No vaccination”
scenario, no vaccines were available until the end of the study period.
NA not applicable, PI prediction interval

If a vaccine had been available after 100 days and had been rolled out at the
same speed and coverage as observed, but all NPIs had been implemented as they
were in reality, 384,490 (95% PI 88,579-1,020,386) fewer people would have been
hospitalized and 71,398 (16,507-204,249) fewer would have died. This corresponds
to an 80% (95% CI 52-89) reduction in hospitalizations and 79% (51-88) reduction
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in deaths while maintaining NPIs. We also demonstrated a significant reduction of
hospitalizations and deaths if the vaccine had been rolled out faster, with 1% of the
population vaccinated each day. The simulation outcomes for scenarios involving
waning immunity were not substantially changed, even in the 100-day scenario.
This finding can be explained by the fact that the vaccines combined with NPIs
would have been sufficiently efficient to limit further transmission, so that the
epidemics in each department concluded before any notable decline in vaccine-
induced immunity (Figure S4.5 and Table S4.2 in Supplementary Results). In our
simulations of earlier lockdown 1 implementation, we found that if the lockdown
1 had been implemented one week earlier, but the length of the lockdown would
have still been 54 days, 92k (95% CI 61-118k) hospitalizations and 20k (13-26k)
deaths could have been prevented, which corresponds to a 20.1 (8.6-39.7) and 21.9
(10.5-40.6) percent reduction of hospitalizations and deaths, respectively. If the
lockdown had been advanced by two weeks, 33k (21-44k) lives could have been
saved, which corresponds to a reduction in mortality of 35.2% (18.6-58.8) over
the whole study period. Additional results with longer lockdown 1 duration are
presented in the Supplementary Results Table S4.3 and Figure S4.6.

Discussion

Accurately estimating the effects of past interventions is critical for better prepa-
ration against future pandemics. In this study, we used a compartmental model
to estimate the joint impact of NPIs and vaccinations in France over a prolonged
period, with high geographic resolution. We found that all analyzed NPIs sig-
nificantly reduced SARS-CoV-2 transmission. Nevertheless, we observed that the
effectiveness of lockdowns decreased over time, potentially due to reduced interven-
tion stringency and/or population compliance. During the third lockdown, VoC
spread increased transmission while vaccinations were being rapidly administered,
which may have weakened the effectiveness of this NPI. We also demonstrated
that curfews were effective in reducing viral spread, with the 6/7 pm curfew being
more effective than the 8/9 pm curfew. This suggests that earlier curfews were
more effective, although one study in Greece concluded that an earlier curfew only
led to a very minor increase in residential spaces, and no change in time spent in
essential businesses [357].

Similar findings were reported in two studies conducted on French data dur-
ing a similar study period [1, 150]. However, our estimates for the first lockdown,
curfews, and school closures are higher, while the third lockdown estimate is signif-
icantly lower. The effects of weather, parameterized as IPTCC by Collin et al. and
included as only temperature by Paireau et al. were close to our estimates. The
differences in results can be explained by the modeling approach used. Whereas
Paireau et al. first estimated Rt from hospital admissions and then used a linear
mixed regression model to derive NPI effectiveness estimates, Collin et al. used a
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two-step estimation procedure with a compartmental model and Kalman filtering.
In contrast, we used a compartmental model that explicitly modeled the viral dy-
namics and vaccination and estimated all parameters in one step. By modeling
the dynamics of the disease directly, we believe that our approach can give more
accurate results than observing correlations in regression models. Additionally,
our model is on a more granular geographical scale (departmental vs. regional)
compared to Collin et al. [150].

Our study’s estimates for the effectiveness of the first lockdown in France align
with those found by Flaxman et al. (81% (75–87) reduction in Rt)[131], who
conducted pooled analyses of European countries, and Salje et al. (77% (76-78)
reduction in Rt)[269], who studied the effectiveness of the French lockdown during
the first wave. Similar to our results, curfews were estimated to effectively reduce
mobility in Quebec, Canada [358], and reduced viral transmission in French Guiana
[359]. However, conflicting results were found in Germany [360], which suggests
that curfews highly depend on the context in which they are implemented and on
the stringency of implementation or the methods used to assess the effect.

In contrast to the commonly used two-step study approach for estimating NPI
effectiveness, which involves estimating an epidemic parameter (e.g., reproductive
number) separately and then using it in a regression model [1, 155], we estimated all
model parameters simultaneously. This ensures accurate estimation of parameter
uncertainty, in contrast to the two-step approach, where the uncertainty from the
initial estimation step is not considered in the final result. Furthermore, regressions
cannot account for population immunity and are susceptible to confounding, given
the non-independent implementation of NPIs in relation to the epidemiological
situation. In contrast, compartmental models offer the advantage of a clear causal
framework [361], explicitly modelling epidemic dynamics and accounting for the
depletion of susceptible individuals.

Our results showed a strong effect of vaccines against hospitalization, which
is consistent with previous studies [362], and a smaller but still significant real-
life effectiveness of vaccines against transmission [363]. Since we had precise data
on the number of vaccine doses administered per day per department, it was not
necessary to model vaccinated compartments as unknowns, but we included them
as terms reducing transmission and hospitalization. The simulations showed that
158,523 (39,518 - 348,958) lives were saved, which conflicts with estimates from
Watson et al. who suggest that vaccination averted 571,100 (535,700 - 608,600)
deaths in France over a study period of one month longer than our study [195].
However, the methodology used by Watson et al. to estimate excess deaths, on
which their estimates are based, has been criticized for over-estimating deaths [17,
20].
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Our study has some limitations that must be acknowledged when interpreting
our findings. First, we were unable to incorporate an age structure into our anal-
ysis due to the unavailability of age-stratified hospital data at the departmental
level. Thus, we assumed uniform susceptibility across the population, which may
lead to an underestimation of the vaccine’s effectiveness against hospitalization.
This is because older individuals, who are more susceptible to severe disease, hos-
pitalization, and death, were vaccinated first and have a higher vaccine coverage
than younger age groups. We attempted to mitigate the problem by introducing
random effects at the departmental level, which could take into account some of the
intrinsic differences between the departments, such as the different age structure
and population density. Nevertheless, our estimates should be considered conser-
vative and a lower bound of the vaccine’s effectiveness. Due to collinearity, the
effects of other NPIs, such as non-essential store closures or bar and restaurant clo-
sures, could not be estimated separately. These effects are therefore included in the
estimated NPIs and the moderate restriction periods. Several more complex alter-
natives to our chosen model could have been considered, such as incorporating an
additional presymptomatic-and-infectious compartment[269, 270], including vac-
cinated compartments [278, 364], or chaining progressive stages of compartments
[271, 278]. However, opting for such models requires the estimation or fixation of
additional parameters. Faced with identifiability issues, we chose to adhere to a
simpler model, as many models similar to ours have been used to fit SARS-CoV-2
dynamics [150, 350–352].

In conclusion, our study provides valuable insights into the effectiveness of
various NPIs and vaccines in reducing COVID-19 transmission, hospitalizations,
and deaths in France. Our analysis shows that the implementation of stringent
NPIs, such as lockdowns, curfews, and school closures, contributed significantly to
reducing the spread of the virus. Moreover, vaccination was found to be effective
in reducing COVID-19 hospitalizations, deaths, and infections. Our dynamical
model allowed us to quantify the impact of vaccines in counterfactual scenarios,
highlighting the importance of early and fast vaccine rollout in preventing fur-
ther epidemic resurgences and controlling other emerging respiratory infectious
diseases. Our findings can aid in the development of effective mitigation policies
for future COVID-19 waves and other respiratory diseases. However, our findings
should be generalized to other settings with caution, as the effectiveness of NPIs
and vaccines may vary across different countries, depending on the local context,
population behavior, and implementation strategies. Further research is needed to
better understand the heterogeneity of NPI and vaccine effectiveness across regions
and to inform mitigation policies for further COVID-19 waves or other respiratory
diseases.
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4.4 Manuscript 1: Supplementary Methods

Data description

Epidemiological data

All epidemiological data were made available by Santé Publique France. COVID-
19-related hospital admissions and occupancy were obtained from the SI-VIC
(Système d’Information pour le suivi des VICtimes) database as of March 1st,
2020 [344]. The SI-VIC database includes all patients treated in private or pub-
lic hospitals with either a laboratory-confirmed diagnosis of COVID-19 or a chest
CT indicative of the diagnosis of COVID-19. Data on deaths of patients with
COVID-19 in hospitals could be obtained from the SI-VIC database as of March
18th, 2020. Since this was the only source of death data on the departmental
level, we make the assumption in our model that only hospitalized people died.
We corrected this assumption in the simulations and the model fits (see ”Observa-
tion model” in Supplementary Methods). PCR-confirmed COVID-19 cases were
available from the SI-DEP database (Système d’Informations de DEPistage) as
of May 13th, 2020 [345]. All data were aggregated at the departmental level. A
French department is a small administrative region with a median of approx. 550k
inhabitants (Figure S4.1).

NPI data

We separated the lockdown periods into three distinct measures as they encom-
passed different interventions with varying levels of stringency, which may have
different impacts on transmission. During the first lockdown, the personal time
and radius of movement of individuals was restricted to one hour a day and one
kilometer around the place of residence. Exceptions were made only for critical
workers, while all other individuals were required to work from home. In the sec-
ond lockdown, on-site work was allowed if remote working was not feasible, and
the personal radius around the place of residence was expanded to 20 km. Prior
to Christmas 2020, non-essential stores were permitted to reopen. To account for
this in our model, we introduced the NPI of ”lockdown 2 light,” whose effect is
estimated separately from the effect of the second lockdown. In contrast to the
second lockdown, where schools remained open, schools were closed during the
third lockdown and the personal radius was restricted to 10 km. In the coding of
the school closure variable, we did not differentiate between regular and pandemic-
related school closures. However, we accounted for two reopening phases from the
end of the first lockdown (May 11, 2020) until the end of the school year (July 4,
2020) during which student enrollment returned to normal. A summary of NPI
implementation and relaxation dates across all departments can be found in Figure
S4.2.
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Figure S4.1: Map of French non-insular departments. The department number is
indicated at the center of each department. Department 5 (Hautes Alpes) is highlighted
because it was excluded from the analysis due to missing weather data after February
17, 2021.
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Figure S4.2: NPI implementation and relaxation dates in France. While
the lockdown and curfew NPIs were parameterized as either in effect or not (1 vs. 0),
the school closure and barrier gesture NPIs could vary in stringency over time. This
parameterization is reflected in varying shades of red. Additionally, sometimes NPIs
were implemented only in some French departments, which is depicted in bright orange.

SARS-CoV-2 variants

In late 2020, the emergence of SARS-CoV-2 variants with increased transmissibil-
ity, virulence, and decreased effectiveness of pharmaceutical interventions prompted
health authorities to classify these viral mutants as ”variants of concern” (VoCs).
The methodology for reporting variants in SI-DEP changed over time: until the
end of May 2021, variants were indicated as 20I/501Y.V1 (Alpha), 20H/501Y.V2
(Beta), and 20J/501Y.V3 (Gamma).2 Afterwards, only the percentage of typical
mutations were reported, but they were not attributed directly to any VoC, and
no Alpha-specific mutations were reported. However, when the reporting switch
occurred, the alpha variant was found in close to 100% of all sequenced samples.
Therefore, we assumed that the percentage of Alpha mutates stayed around that
level and was gradually replaced by Delta. We defined all samples with an E484K
mutation as Beta/Gamma VoC, and all samples with a L452R mutation as Delta.
Omicron mutations were disregarded since our study ended on October 31st, 2021.

Weather

A daily weighted average temperature in Celsius (T), absolute humidity in g/m3
(AH), and relative humidity in percent (RH) was calculated for each geographical
unit, where the weights correspond to the population within a 10 km radius around
the weather station in order to account for varying population density. To keep the
model sparse, we combined temperature and humidity into the Index PREDICT
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Figure S4.3: Weather index. The thin lines indicate the weather index in each
department, while the thicker line indicates the median of all departments.

of Transmissibility of COVID-19 (IPTCC) [365, 366]:

IPTCC = 100× exp
− 1

2

[

(T−7.5)2

196
+

(RH−75)2

625
+

(AH−6)2

2.89

]

(S4.1)

The IPTCC ranges between 0% and 100%, with lower values indicating less
favorable conditions for SARS-CoV-2 transmission. To facilitate interpretation,
we normalized the index (i.e., forced its range to 1), subtracted the annual mean,
and inverted it. Thus, the annual average across all departments is set to 0,
with high values in summer and low values in winter. We also applied a loess
smoothing with a span of 0.2 to account for seasonal differences in SARS-CoV-2
transmissibility, resulting in a smooth weather variable W (Figure S4.3).

Model

Compartmental model

Our model divided the population into seven compartments: susceptible individ-
uals (S), latently exposed individuals (E), symptomatically infectious individuals
(I), asymptomatically infectious individuals (A), hospitalized individuals (H), re-
covered individuals (R), and deceased individuals (D). We assumed that individ-
uals were initially susceptible (S) and could be exposed to the virus but not yet
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infectious (E). After 5.1 days, exposed individuals could progress to either the
symptomatically infectious (I) or asymptomatically infectious (A) compartment,
based on their probability of being symptomatic.5 Individuals in these compart-
ments could then infect susceptible individuals at a time-varying transmission rate.
We assumed that asymptomatic individuals were 45% less infectious than symp-
tomatically infected individuals [367]. Individuals spent an average of 5 days in the
A compartment before recovering and progressing to the R compartment. Symp-
tomatically infected individuals could either be hospitalized after a certain time
(DQ) or recover based on a time-varying risk of hospitalization. We assumed that
hospitalized individuals were no longer infectious and remained in the hospital for
a department-specific and time-varying period (DH) or died after an average of
15 days. Due to waning immunity, recovered individuals will become susceptible
again after an average duration of 180 days. Additionally, we included parameters
evI and evH in the model to account for vaccine protection against transmission
and hospitalization, respectively. The dynamics of this model are given in equation
S4.2.

Ṡ = −b(1− evI)S
I + αA

N
+

R

DR

Ė = b(1− evI)S
I + αA

N
−

E

DE

İ =
rEE

DE

− (1− evH)
rHI

DQ

−
(1− rH)I

DI

Ȧ =
(1− rE)E

DE

−
A

DI

Ḣ = (1− evH)
rHI

DQ

−
(1− fr)H

DH

−
frH

DD

Ṙ =
(1− fr)H

DH

+
(1− rH)I + A

DI

−
R

DR

Ḋ =
frH

DD

(S4.2)

Our model relies on fixed estimates for some epidemiological parameters, such
as the duration of infection, the probability of being symptomatic, and transition
probabilities from some compartments to others (DE, DI , DR, and DD). Other
parameters such as DQ, DH , rI , and fr were estimated in two time periods to
account for changes in case reporting and treatment availability after the first wave.
Finally, the transmission rate t is time-varying and was estimated as a function of
NPIs and other factors influencing transmission (see 4.4). Table S4.1 contains a
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detailed listing of the parameters, their interpretation, values, and sources used in
defining the compartmental model.

The dynamics were estimated in a population approach, i.e., they described
the epidemics at the departmental level (= 94 units of observation) while also
accounting for inter-individual variability and estimating shared parameters. E0,
DQ, and b0 were estimated with random effects, i.e., separately for each department
but with a shared population value, to account for differences between departments
in population density, contact rates, starting conditions at the beginning of the
study period (the pandemic started in the East and Paris regions), and hospital
conditions in each department.

We assume that VoCs alter risk of hospital admission because of increased dis-
ease severity according to values published in a systematic review [369]. Therefore,
the time-varying risk of hospitalization is modeled as a function of VoC circulation:

rHi
= rWT ·%WTi

+ rα · rWT ·%αi
+ rβγ · rWT ·%βγi + rδ · rWT ·%δi (S4.3)

In our model, we separately evaluated the vaccines’ effect as the population
vaccine effect against transmission (evI) and the population vaccine effect against
hospitalization (evH). We define the vaccine effect to be the product of the vac-
cine efficacy (estimated by the model) and the population vaccine coverage at the
departmental level. Since hospitalized patients need to be infected first, the total
protection is the product of vaccine effect against transmission and vaccine effect
against hospitalization. As it has been shown that VoCs reduce vaccine effec-
tiveness against transmission, but not vaccine effectiveness against hospitalization
[372, 373], we included VoC circulation in the evI model only. Since we assume
that after vaccination, immunity takes three weeks to fully develop, we lagged the
effect of all vaccine doses by three weeks, both for dose one and two.

evH = V EH1 · covdose1i + V EH2 · covdose2i
evI = V EI1 · covdose1i · (1−%δi) + V EI2 · covdose2i · (1−%δi) + V EI2δ · covdose2i ·%δi

(S4.4)

where V EH1 = 0.7V EH2 [374], V EI1 = 0.5V EI2 [187], and V EI2δ = 0.5V EI2

[375].

Statistical model

In order to account for geographic variability across departments, we used a lin-
ear mixed effects model to describe the logarithm of the transmission rate at a
given time as a function of time, NPIs, weather, and VoCs. We fixed the ef-
fect VoCs to previously published values (transmission is increased by 50% for
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Parameter Interpretation Value

bt time-varying transmission rate of in-
fections cases

Estimated

b0 Basic transmission rate of infections
cases

Estimated - department-specific

rE Ratio of symptomatic cases among
all infected

0.844 [47]

rH Hospitalization rate Time-varying, dependent on VoC
circulation

rWT Risk of hospitalization when in-
fected with original SARS-CoV-2
strain

Fixed via profile likelihood in 2 pe-
riods: 0.15 for first wave, 0.04 after

DE Latent (incubation) period (days) 5.1 days [46]
DI Infectious period (days) 5 days [368]
α Ratio of transmission between A

and I

0.55 [367]

DQ Duration from infection to hospital-
ization (days)

Estimated in 2 periods (department-
specific)

DH Length of stay in hospital (days) Estimated from hospital admis-
sions and hospital occupancy
(department-specific)

DD Duration from hospital admission to
death (days)

15 (fixed with profile likelihood)

DR Duration of waning of infection-
acquired immunity (days)

365 days [247]

E0 Initial condition of exposed com-
partment

Estimated – department-specific

cov population vaccine coverage time-varying, from VAC-SI [347]
V E vaccine efficacy Estimated
%V oC proportion of VoC among all se-

quenced samples. %WT is calculated
as 1−

∑

%V oC

time-varying, from SI-DEP [345]

rα proportional risk increase of hospi-
talization when infected with Alpha
VoC

1.5 [369]

rβγ proportional risk increase of hospi-
talization when infected with Beta
or Gamma VoC

2.4 [369, 370]

rδ proportional risk increase of hospi-
talization when infected with Delta
VoC

3 [369, 371]

evI Population vaccine effect against in-
fection

Calculated as vaccine efficacy pa-
rameter (estimated)*population
vaccine coverage

evH Population vaccine effect against
hospitalization

Calculated as vaccine efficacy pa-
rameter (estimated)*population
vaccine coverage

Table S4.1: Definition of model parameters and associated values.
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Alpha/Beta/Gamma VoCs [375] and 100% for Delta [73, 375]) as they were not
identifiable due to temporal interactions with vaccinations and NPIs. Since we
used a logarithmic transformation, we assumed that NPIs and other covariates
have a multiplicative effect on the transmission rate. A multiplicative effect is also
more appropriate to ensure that NPIs can be effective even if transmission is low,
and a log transformation automatically ensures positive transmission values.

log(bi,t) = b0i +
∑

j

βj
iNPIji,t +

∑

k

βk
V V oCk

i,t + βwweatheri,t (S4.5)

where b0i ∼ N(b0pop , ω) for department i at time t, NPI j and VoC k. We included
a random effect only for the lockdown parameters and the basic transmission
rate b0, assuming that the effect of other interventions is consistent across all
departments. Extending the random effect estimation to other NPI parameters
did not improve model fits but increased identifiability issues.

Observation model

We jointly modeled COVID-19 deaths, cases, hospital admissions, and hospi-
tal occupancy as observations with a Normal distribution. We account for the
uncertainty of observations by including a combined error model of the form
y = f + (a + bf)ϵ, where f is the model’s prediction for each observation, re-
spectively, a is a constant error term, and b is a proportional error term, denoting
that the errors’ amplitude increases with the predicted value’s size.

To account for differential reporting, we applied a reporting correction factor
on observed cases. This parameter was determined through profile likelihood (see
below) as 0.2 during the first wave and 0.85 afterwards. As we assumed in our
model that only hospitalized individuals could proceed to the D compartments, we
applied an inflation factor of 1.33 (1/0.75) to all modelled deaths. This number was
derived from data from Santé Publique France, which showed that approximately
75% of all COVID-19 deaths were occurring in hospitals [376]. To facilitate model
fitting across compartments, we standardized all observations to the population
size of the respective department.

Hospital admissions : Y Had
i,t = (1− evH)

rHI

DQ

Hospital occupancy : Y H
i,t = Hi,t

Cases : Y I
i,t =

rEE

DE

Deaths : Y D
i,t =

frH

DD

(S4.6)
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Parameter estimation

Some of the parameters in the compartmental and the statistical model were fixed
based on literature or profile likelihood estimation. The profile likelihood estima-
tion process consists of i) defining a range of values for the parameter to be evalu-
ated, ii) sequentially fixing the parameter to the pre-defined value, iii) estimating
all other parameters that are not fixed by maximizing the log-likelihood, and iv)
selecting the parameter that results in the model with the highest likelihood value
(and therefore the lowest AIC) [377]. This approach was applied in a sequential way
to all parameters estimated using profile likelihood (influence of weather on trans-
mission, DD, rWT , and the β parameters for barrier gesture periods one and two).
The remaining parameters were estimated using maximum likelihood estimation
using a stochastic approximation expectation maximization (SAEM) algorithm
implemented in the software Monolix, version 2019R2 (http://www.lixoft.com).

Modeling assumptions

As in all SEIR-type models, we assume homogeneous mixing, uniform susceptibil-
ity of the population, no stochasticity in transmission, and mutual independence
between units of observation (departments). Moreover, we assume that population
dynamics, i.e., births or deaths other than from COVID-19 are negligible, since
we applied our model only for 1.5 years. The effects of NPIs are assumed to be
immediate and constant over the time they are implemented. However, a lag from
implementation to effect on the observations is implicitly incorporated through
the modelled period from viral transmission to case detection, from infection to
hospitalization, and from hospitalization to death. Furthermore, we assume that a
combined error model of the form y = f+(a+bf)ϵ is adequate for all observations,
where f is the structural model, a is constant error term, and b is proportional
error term. For the statistical model, we assume a linear relationship between
log(transmission) and the continuous covariates (weather and barrier gestures),
and independence of observations, given random effects.

While we accounted for waning immunity among naturally infected individuals,
we did not consider the waning of vaccine immunity, since our study period after
vaccination was relatively short, with most of the population having received their
vaccinations in the early summer of 2021. It is reasonable to assume that booster
vaccinations would be administered to maintain immunity in simulations of early
vaccination scenarios. In addition, we assumed that VoCs emerged as they did in
reality, despite the different vaccination schedule. We conducted separate sensi-
tivity analyses where we assumed that early vaccination prevented the emergence
of VoCs.
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Reproductive number

The next-generation matrix is a method to derive the basic or effective reproduc-
tion number for a compartmental model. For its calculation, only the “infected”
compartments are used, so E, I, and A. Let xi, i = 1, 2, 3, . . . ,m be the numbers of
infected individuals in the ith infected compartment at time t. Then, two matrices
can be built: 1) Vi(x), which represents the arrivals and departures from one of
the infected compartments to another, and 2) Fi(x), which describes the arrivals
of new infections in compartment i. The matrices Vi(x) and Fi(x) are therefore
constructed as [353]:

Vi(x) =







1
DE

0 0

− rE
DE

rH(1−evH)
DQ

+ (1−rH)
DI

0

− (1−rE)
DE

0 1
DI






(S4.7)

Fi(x) =





0 bS(1−evI)
N

bαS(1−evI)
N

0 0 0
0 0 0



 (S4.8)

Then, it has been shown that Rt = ρFV −1, where ρFV −1 is the spectral
radius (or largest eigenvalue) of the Next Generation Matrix FV −1. One can
picture the entries of FV −1 as the rate at which infected individuals in xj produce
new infections in xi, times the average length of time an individual spends in
compartment j. For a proof, see for example Perasso [378]. Therefore, we obtain:

Rt = transmission(1− evI)S(t)

(

DIα(1− rE) +
DIDQrE

DQ(1− rH) +DI(1− evH)rH

)

(S4.9)

Model selection

Our model selection process was guided by the key principle of effect identifiability.
To assess practical non-identifiability, we performed convergence assessments, in
which we confirmed the stabilization of the SAEM algorithm towards the same
value from a wide range of starting values. We conducted five SAEM estimations
per converge assessment and observed the SAEM traces and final parameter esti-
mates for signs of non-identifiability. For example, we noticed that the addition
of random effects on NPI covariates beyond the lockdown betas greatly decreased
identifiability and lead to non-convergence of the SAEM algorithm. We selected
the final models from a set of models that included additional NPIs (such as bar
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and restaurant closures), alternative formulations of the weather variable (tem-
perature only, temperature and relative humidity), higher temporal resolution of
estimation periods for parameters such as case detection rate and death rate, and
additional or fewer random effects. We performed extensive model selection based
on the Akaike Information Criterion (AIC), with lower AIC values indicating bet-
ter model fit.

81



4.5 Manuscript 1: Supplementary Results

Model fits

Figure S4.4: Model fits to all four types of observations for three selected
departments. The black line indicates the observed data, the red line the model fit,
and the shaded area the 95% prediction interval. We selected the departments to capture
a maximum of variability in department size and population density. Department 22
(Côtes-d’Armor) has a population size of approx. 600k and is located at the Atlantic
Ocean. Department 48 (Lozère) is the least populated department with a population of
approx. 80k and is in Southern France. In contrast, department 75 (Paris) is the second
most populated department with a very high population density.
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Additional simulation results

Vaccine simulations

Figure S4.5: Simulated hospital admissions in France under waning and non-
waning vaccination scenarios. For comparison with Figure 4.4b in the main text, we
included scenarios with waning vaccine immunity for the observed, fast, and 100 days
scenarios. The solid lines depict the median of 1000 simulations, while the shaded areas
show the 95% prediction interval. In the ”Fast” scenario, the start of the vaccinations
was held constant, but 1% of the population was vaccinated per day. In the ”100 days”
scenario, the vaccine was available 100 days after the publication of the full genomic
sequence of SARS-CoV-2 (April 20, 2020).
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Scenario Number of
observations · 1000
[95% PI]

Difference to
observed scenario ·
1000 [95% PI]

Percentage change
to observed
scenario [95%
PI]

Hospitalizations

observed 470 [163; 1,348]
observed
waning

476 [164; 1,369] 6 [ 1; 21] 1.6% [ 0.6; 3.8]

fast 330 [131;950] -146 [-373; -34] -29.5% [-45.9; -15.6]
fast waning 350 [136; 1,004] -126 [ -323; -29] -25.0% [-40.4; -13.0]
100 days 116 [85; 170] -384 [-1,020; -89] -79.9% [-89.1; -52.1]
100 days
waning

116 [ 86; 171] -384 [-1,019; -88] -79.8% [-89.0; -52.1]

Deaths

observed 92 [32; 262]
observed
waning

92 [33; 264] 1 [0; 2] 0.9% [0.3; 2.3]

fast 72 [28; 208] -20 [ -51; -5] -21.5% [-35.4; -11.1]
fast waning 75 [29; 216] -17 [-43; -4] -18.0% [-30.6; -9.1]
100 days 24 [17; 37] -71 [-204; -17] -78.9% [-88.4; -51.3]
100 days
waning

24 [17; 37] -71 [-204; -16] -78.8% [-88.3; -51.2]

Cases

observed 10,306 [4,817; 25,264]
observed
waning

10,396 [4,835; 25,558] 90 [18; 290] 1.1% [ 0.3; 2.6]

fast 8,392 [4,388; 19,648] -2,007 [ -5,277; -463] -19.2% [-34.4; -8.0]
fast waning 8,684 [4,455; 20,434] -1,693 [ -4,552; -390] -16.1% [-30.1; -6.6]
100 days 4,650 [3,560; 6,571] -6,141 [-16,114;

-1,459]
-62.1% [-77.3; -30.7]

100 days
waning

4,657 [3,562; 6,602] -6,133 [-16,086;
-1,457]

-62.0% [-77.1; -30.7]

Table S4.2: Counterfactual vaccine scenarios including waning vaccine im-
munity. In the ”fast” scenario, the start of the vaccinations was held constant, but 1%
of the population was vaccinated per day. In the ”100 days” scenario, the vaccine was
available 100 days after the publication of the full genomic sequence of SARS-CoV-2
(April 20, 2020).
NA not applicable, PI prediction interval
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Lockdown 1 simulations

Figure S4.6: Simulated hospital admissions in counterfactual lockdown 1
scenarios. The solid lines depict the median of 1000 simulations, while the shaded areas
show the 95% prediction interval. They grey shaded areas indicate the time period in
which the lockdown 1 was active.

85



Scenario Number of
observations · 1000
[95% PI]

Difference to
observed scenario ·
1000 [95% PI]

Percentage change
to observed sce-
nario [95% PI]

Hospitalizations

observed 470 [163; 1,348]
1 week 179 [ 53; 732] -308 [-523; -126] -66.8% [-71.4; -50.3]
2 weeks 55 [ 15; 319] -442 [-874; -168] -90.7% [-92.4; -80.5]
1 week same
length

377 [ 98; 1,237] -92 [-118; -61] -20.1% [-39.7; -8.6]

2 weeks
same length

319 [ 68; 1,146] -153 [-199; -97] -32.5% [-57.7; -15.3]

Deaths

observed 92 [32; 262]
1 week 33 [10; 131] -62 [-116; -24] -68.2% [-71.8; -55.2]
2 weeks 10 [ 3; 53] -86 [-185; -32] -91.1% [-92.4; -83.8]
1 week same
length

72 [19; 236] -20 [ -26; -13] -21.9% [-40.6; -10.5]

2 weeks
same length

59 [13; 215] -33 [ -44; -21] -35.2% [-58.8; -18.6]

Cases

observed 10,306 [4,817; 25,264]
1 week 3,807 [1,569; 12,876] -6,826 [-10,644;

-3,576]
-67.1% [-70.7; -52.7]

2 weeks 1,153 [ 450; 5,458] -9,626 [-17,027;
-4,800]

-90.8% [-92.3; -81.7]

1 week same
length

7,061 [2,363; 21,257] -3,248 [ -3,884;
-2,569]

-30.1% [-50.6; -15.8]

2 weeks
same length

5,477 [1,356; 18,922] -4,872 [ -5,949;
-3,688]

-45.0% [-70.8; -24.7]

Table S4.3: Counterfactual lockdown 1 scenarios. In the “1 week” and “2 weeks”
scenarios, the beginning of lockdown 1 was accelerated by one or two weeks, respectively,
but the lockdown always ended on May 5th, 2020. In the “1 weeks same length” and
“2 weeks same length” scenarios, the lockdown is shifted forwards by one or two weeks,
respectively, thus keeping the length of the lockdown 1 constant at 54 days.
NA not applicable, PI prediction interval

Simulation scenarios without VoCs
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Sensitivity analyses

Figure S4.7: Sensitivity analysis: Influence of VoCs on SARS-CoV-2 trans-
mission. The VoC coefficients were varied around their fixed value and their influence
on NPI effectiveness and vaccine effect is shown. For the vaccine effect, we depict the
effect with a population vaccine coverage of 75%. The value used in the main analysis
is depicted in orange.
VE: vaccine effect; VoC: variant of concern
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Figure S4.8: Sensitivity analysis: Influence of VoCs on the risk of COVID-19
hospitalization. The VoC coefficients were varied around their fixed value and their
influence on NPI effectiveness and vaccine effect is shown. For the vaccine effect, we
depict the effect with a population vaccine coverage of 75%. The value used in the main
analysis is depicted in red.
VE: vaccine effect; VoC: variant of concern
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Figure S4.9: Sensitivity analysis: Influence of fixed vaccine effectiveness re-
lations. The VE coefficients were varied around their fixed value and their influence
on NPI and vaccine effect is shown. For the vaccine effect, we depict the effect with a
population vaccine coverage of 75%. The value used in the main analysis is depicted in
green.
VE: vaccine effect; VE H1: vaccine effectiveness of one vaccine dose against hospital-
ization; VE I1: vaccine effectiveness of one vaccine dose against infection; VE I2 delta:
vaccine effectiveness of two vaccine doses against infection with the delta variant.
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5
Manuscript 2

5.1 Preface to Manuscript 2

In Manuscript 1, we developed a detailed mechanistic model of SARS-CoV-2 trans-
mission to estimate the effectiveness of NPIs and vaccines in France. When com-
paring our estimates with an article by Paireau et al. that also aimed to assess
NPI effects in France [1], we noted several discrepancies in the estimated NPI
effectiveness parameters. While Paireau et al. used the same data, analyzed at
the same geographical scale, and focused on similar key NPIs (such as lockdowns,
school closures, and curfews) over a slightly shorter time frame (March 2020 – May
2021), they used a different estimation method. The comparison of the estimates
found in the two studies is illustrated in Figure 5.1.

The method used by Paireau et al. is a two-step estimation process, which was
widely applied during the COVID-19 pandemic to estimate NPI effectiveness [1,
133, 148, 155, 379]. This approach involves two sequential steps: 1) estimating the
effective reproductive number Rt from epidemiological observations, such as hospi-
tal admissions, and 2) using the estimatedRt as the outcome in a regression model,
with NPI dummy variables as predictors. The NPI parameters from the second
step can then be interpreted as the effects of NPIs on viral spread. Although this
method reduces the complexity of the estimation process, it comes with potential
limitations. For instance, the uncertainty from the estimation in the first step is
not propagated into the second step, leading to an underestimation of the overall
uncertainty. Furthermore, challenges in estimating Rt may arise, especially early
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Figure 5.1: Comparison of the NPI effectiveness estimates found in
Manuscript 1 (Ganser et al. using a mechanistic model for estimation) and
by Paireau et al. (using a two-step regression model [1]).

in the epidemic when case numbers are low. Additionally, linear regression models
cannot account for factors like herd immunity, which may complicate the causal
interpretation of NPI effects.

Given these concerns, we conducted a simulation study of a simple scenario
with two NPIs. We simulated epidemiological data with two complex models and
compared the performance of the mechanistic model used in Manuscript 1 with
the two-step regression model applied by Paireau et al. Our aim was to investigate
in depth potential biases in the two-step approach and the mechanistic model,
in order to better understand why our estimates, based on real-world COVID-19
data, differed from each other.

This manuscript is under review for publication to the American Journal of
Epidemiology (AJE) and is available on medrxiv [380].
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5.2 Manuscript 2: Comparative evaluation of method-

ologies for estimating the effectiveness of non-

pharmaceutical interventions in the context

of COVID-19: a simulation study

Iris Ganser1,2, Juliette Paireau3,4, David L Buckeridge2, Simon Cauchemez3, Rodolphe
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Abstract

Numerous studies assessing the effectiveness of non-pharmaceutical interventions (NPIs)
against COVID-19 have produced conflicting results, partly due to methodological differ-
ences. This study aims to clarify these discrepancies by comparing two frequently used
approaches in terms of parameter bias and confidence interval coverage of NPI effective-
ness parameters. We compared two-step approaches, where NPI effects are regressed on
by-products of a first analysis, such as the effective reproduction number Rt, with more
integrated models that jointly estimate NPI effects and transmission rates in a single-
step approach. We simulated datasets with mechanistic and an agent-based models and
analyzed them with both mechanistic models and a two-step regression procedure. In the
latter, Rt was estimated first and then used as the outcome in a linear regression with
NPI variables as predictors. Mechanistic models consistently outperformed two-step
regressions, exhibiting minimal bias (0-5%) and accurate confidence interval coverage.
Conversely, the two-step regression showed bias up to 25%, with significantly lower-than-
nominal confidence interval coverage, reflecting challenges in uncertainty propagation.
We identified additional challenges in the two-step regression method, such high deple-
tion of susceptibles and time lags in observational data. Our findings suggest caution
when using two-step regression methods for estimating NPI effectiveness.

Keywords: dynamical models, non-pharmaceutical interventions, simulations, repro-
ductive number, non-linear mixed effects models

97



The emergence of novel infectious agents, such as the SARS-CoV-2 virus re-
sponsible for the COVID-19 pandemic, has highlighted the importance of non-
pharmaceutical interventions (NPIs) in mitigating the impact of infectious dis-
eases. NPIs encompass a wide range of public health measures, including social
distancing, quarantine, mask-wearing, and school closures, all implemented with
the primary goal of reducing disease transmission. The effectiveness of NPIs as
a means to mitigate pandemics has been the subject of extensive research during
the COVID-19 pandemic [115, 116, 119]. Insights from these studies are crucial
in guiding evidence-based public health responses to future pandemics. Various
methods and models have been devised to assess NPI impact on disease transmis-
sion, ranging from straightforward descriptive techniques [381, 382] and regression
models [131, 134] to advanced dynamic models [269, 383] and machine learning
approaches [166, 384]. While this diversity of approaches contributes to the robust-
ness of the estimates, it can introduce bias in systematic reviews and meta-analyses
if a significant proportion of the methods are potentially unreliable. For example,
different estimates of lockdown effectiveness have been found during the first wave
in the United States, ranging from no reduction in case growth rates to a reduction
by >50% [130, 132, 149, 384], which can at least partially be attributed to different
methodologies being used.

One systematic review reported that the most frequently used methodologies
are descriptions of change over time (48% of reviewed studies), non-mechanistic
models such as regression models (27%), and mechanistic models (15%).[114]
Among the latter two, many approaches involve the estimation of intermediary
outcomes, primarily the effective reproductive number Rt, from raw epidemio-
logical data. These intermediary outcomes are then typically used in regression
analyses to derive an estimate of NPI effectiveness. This strategy, which we call
”two-step regression approach,”, has been used across a range of studies.[1, 133,
148, 155, 379] Dividing the estimation process into two steps has the advantage of
reducing model complexity. However, in addition to the challenges of estimating
Rt, this approach fails to propagate the uncertainty associated with Rt estimation
in the first step to the final estimates. Despite the frequent application of two-step
models, the impact of chaining two analysis steps on confidence interval (CI) cov-
erage and parameter bias has not been explored. Moreover, the performance of the
one-step approach in estimating NPI effectiveness in mechanistic models remains
an open area of investigation, both in terms of parameter bias and correct esti-
mation of uncertainty.[385] Here, we describe an extensive methodological study
of the two approaches in the context of COVID-19 pandemic inspired by previous
results on French data [1, 383].
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Methods

Study design

Our primary objective was to construct a straightforward example for a meaningful
comparison of two methodological approaches. We generated epidemic data with
a mechanistic Susceptible-Infected-Recovered (SIR) model, a more complex mech-
anistic SEIRAHD model, and agent-based models (ABM) and then compared the
performance of mechanistic models with two-step regression models on the simu-
lated data. We used the SIR-generated data as a proof-of-principle to understand
the general challenges of the two-step regression approach, while in the SEIRAHD-
and ABM-created data, we explored challenges to both methodological approaches
in more realistic scenarios. With each simulation method, we generated a total
of 100 datasets, each comprising 94 distinct geographical regions [1, 383]. With
both data generation models, we assumed entirely susceptible closed populations.
The population sizes for each region were set to the respective population sizes of
French departments (range 80k - 2.6 million, median 560k). We created scenarios
comparable to the first months of an epidemic, with a first NPI, comparable in
strength to a lockdown, followed by a second NPI, comparable to a post-lockdown
intervention (Figures S5.3 and S5.6). Both NPIs were assumed to abruptly re-
duce transmission on a multiplicative scale, with an immediate and constant effect
throughout their implementation. See Table 5.1 for an overview of which data
were analyzed with which models.

Data generation
model

Data analysis models Observations

SIR
1. SIR
2. Two-step regression

Cases

SEIRAHD
1. SEIRAHD Cases, deaths, hospitalizations
2. SEIR Cases
3. Two-step regression Cases / hospitalizations

ABM
1. SEIR
2. Two-step regression

Cases

Table 5.1: Overview of data generation and data estimation plan.

Data generation with a SIR model We generated data with a deterministic
SIR model, which consisted of a mathematical model using ordinary differential
equations (ODEs) to describe the dynamics of SARS-CoV-2 transmission accord-
ing to equation 5.1 and a linear mixed model that determined the transmission rate
as a function of NPIs according to equation 5.2. To allow the basic transmission
rate to vary across regions, we included a random intercept [150]. We generated
100 datasets each under five conditions, with increasing depletion of susceptibles,
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i.e. greater spread of infection prior to NPI implementation (2%, 10%, 20%, 40%
and 60% depletion of susceptibles before implementation of NPI 1). For param-
eters used in each scenario, refer to Table S5.1. The true Rt was calculated as
btSt

γN
, where b represents the transmission rate, γ the recovery rate, S the number

of susceptibles, and N the total population. In equation 5.1, DI represents the
duration of the infectious period, i.e. 1/γ.

Ṡ = −
bSI

N

İ =
bSI

N
−

I

DI

Ṙ =
I

DI

(5.1)

log(bi(t)) = log(b0) + β1NPI1(t) + β2NPI2(t) + ub
i

ub
i ∼ N(0, ωb)

(5.2)

Data generation with a SEIRAHD model To create more realistic scenar-
ios, we generated data with a mechanistic SEIRAHD model, which has been used
previously to estimate NPI and vaccine effectiveness [150, 383]. Equation 5.2 was
again used to model the transmission rate as a function of NPIs, and the mathe-
matical model to describe the dynamics of SARS-CoV-2 transmission is presented
in equation 5.3. The mathematical model comprised seven compartments (Sus-
ceptible, latently Exposed, symptomatically Infected, Asymptomatically infected,
Hospitalized, Recovered, and Deceased), encompassing various stages of infection
(see Figure S5.1). rE represents the proportion of symptomatic cases among all
infected, rH the hospitalization rate, DE the duration of the incubation period,
DI the duration of the infectious period, DQ the duration from infection to hos-
pitalization, DH the duration of hospitalization, DD the duration from hospital
admission to death, α the ratio of transmission between A and I, and fr the death
rate of hospitalized patients. For a description of the data generation, see Sup-
plementary Methods Section SEIRAHD model structure and parameters and for
model parameters, see Table S5.2. To more closely represent real-life data, we
added measurement error to the simulated observations (see Table S5.5). We kept
the initial numbers of infected individuals low in order to have a very low depletion
of susceptibles (<2% before implementation of NPI 1).
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Ṙ =
(1− fr)H

DH

+
(1− rH)I + A

DI
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(5.3)

Data generation with agent-based models We generated data with a deter-
ministic ABM under two different scenarios: in the random mixing scenario, every
agent had an equal probability of coming into contact with any other agent in the
population, with an equal probability of transmission for each contact. Conversely,
in the multi-layer scenario, interactions were divided into layers of school, work-
place, households, and community encounters, with varying transmission prob-
abilities (Table S5.3). In the multi-layer scenarios, we assumed that NPIs did
not affect household transmission, and disease progression was age-specific (Table
S5.4). The population size mirrored French departments, and for the multi-layer
scenarios, the age distribution and contact structure were set according to the
French population. Epidemics were seeded by sampling the number of initially
infected agents and the basic transmissibility per contact (vt) from lognormal dis-
tributions (Table S5.3). Similar to the SEIRAHD models, we kept the depletion
of susceptibles very low (2-3%) before the first NPI implementation. Stochastic
measurement error was added similar to the SEIRAHD-generated data.

Parameter estimation with mechanistic models

All mechanistic models consisted of three layers: the differential equations (ODE)
layer, a statistical layer modeling NPI effects on transmission, and an observa-
tional layer, taking into account measurement errors (described in Supplementary
Methods: Observation model for mechanistic model data generation and estima-
tion). The SEIR model used for analyzing SEIRAHD- and ABM-generated data
is described in equation 5.4).
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(5.4)

To increase comparability across geographical regions and therefore facilitate
estimation, incidence data were scaled to 10,000 population. We fixed the pro-
gression parameters in the ODEs (DI , DE, etc.) to their respective true values.
Parameters were estimated in a population approach, i.e., we modeled the dy-
namics at the regional level while also accounting for inter-regional variability and
estimating shared parameters. The initial conditions of the I compartment (SIR
model) or E compartment (SEIR/SEIRAHD model) and b0 were estimated with
random effects, i.e., separately for each department but with a shared population
value, to account for differences between regional units [383]. NPI parameters were
estimated with fixed effects only.

Parameter estimation with two-step regression

The approach for the Rt regression was based on Paireau et al. [1]. First, we esti-
mated Rt from incident infections or hospital admissions, separately for each sim-
ulated region, with a smoothing window of 7 days. In the SIR-generated datasets,
we applied no smoothing because the data were generated without measurement
error. The approach requires the input of a generation interval. In the SIR model,
the generation interval is equal to the DI parameter, i.e. 5 days. For the data
generated with the SEIRAHD model, case and hospitalization data (i.e. entries
into the I and H compartments) were used as observations. For both, we calculated
a generation interval with a mean of 10.1 days and a standard deviation of 8.75
days according to Wallinga et al. [386] (for details, see Supplementary Methods
Section Generation intervals). In the ABMs, we only used symptom onset data
for the analysis, and the distribution of the generation interval was calculated di-
rectly during simulation, with a mean of 8.45 and a standard deviation of 4.45
for random mixing models and 7.8 and 4.4 for multi-layer models. Second, we
ran a mixed-effects regression with the point estimate of the derived log(Rt) as
outcome and the two NPIs as predictors. Using discretization, for region i = 1...94
at weekly time points j = 1...17, we modeled:
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log(Ri(tij)) = log(R0pop) + β1NPI1(tij) + β2NPI2(tij) + uR
i + ϵij

uR
i ∼ N(0, ωR)

ϵij ∼ N(0, σ)

(5.5)

When using data generated with an incubation period (SEIRAHD models and
ABMs), we lagged NPIs by 5 days for Rt estimated from cases, and by 10 days
for Rt estimated from hospitalizations, to account for transition periods. We
performed sensitivity analyses with different lagging periods. We reported the
95% CI using the Normal Distribution, i.e. the mean plus or minus 1.96 times the
standard error.

To take into account the uncertainty from the Rt estimation in the regression
step, we also implemented a bootstrap procedure by repeatedly sampling from the
Rt distribution (details in Supplementary Methods Section Bootstrapping 2-step
regression).

Performance evaluation

For comparison of methods, we compared the absolute and relative bias, which

we calculated as |β̂ − β| and |β̂−β|
β

, respectively. Additionally, we assessed 95% CI

coverage as the percentage of datasets where the 95% CI contained the true value,
separately for each estimated NPI parameter.

Implementation

We used the Simulx software version 2021 R2 [338] to simulate the mechanis-
tic model datasets. We used the Python package Covasim version 3.1.4 [387] for
ABM simulations, with ”new infectious cases” as observations for further analysis.
In the mechanistic model approach, parameters were estimated using maximum
likelihood estimation using a stochastic approximation expectation maximization
(SAEM) algorithm implemented in Monolix. [338] Standard errors for calculat-
ing 95% CIs were derived from 100 bootstrap samples (by resampling on the 94
geographical regions and varying the algorithm starting point).

The two-step regression analysis was conducted in R version 4.2.3 [388] with
the packages EpiEstim [389, 390] using recommendations from references [391]
and [392] to estimate Rt and lme4 [393] for the mixed effects regression. All code
is publicly available on GitHub (https://github.com/sistm/SEIR_vs_RTreg).

Bias exploration

To detect possible issues in the regression step, we ran linear mixed models with the
trueRt as the outcome variable. In the SEIRAHD-created datsets, the trueRt was
calculated as a linear transformation of the transmission parameter, using the next
generation matrix approach (see Supplementary Methods Section Next generation
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matrix approach) [353]. In the ABM datasets, Rt was computed directly during the
simulation as the quotient of new infections on day t over the number of infectious
agents on the same day, multiplied by the average duration of infectiousness [387].

To investigate the potential impact of NPI strength and implementation time
on the two-step model performance, we simulated data with diverse NPI imple-
mentation times (ranging from a 20-day to a 60-day NPI-free period) and varied
NPI 1 strengths (coefficients ranging from -0.5 to -2, corresponding to a percentage
reduction in transmission between 39% and 86%).

Results

Exploring bias in the two-step regression models

Data created with SIR model First, we analyzed data generated with a
simple SIR model, and different scenarios of depletion of susceptibles (ranging
from 2% to 60%). We found that the bias in NPI effect estimations from the two-
step regression model increased with greater depletion of susceptibles, whereas
the mechanistic model consistently estimated the correct value (Table 5.2). For
example, with a 2% depletion of susceptibles, the bias of the two-step regression
model in estimating NPI 1 was 1%, which increased to 15% at 20% depletion of
susceptibles and 45% at 60% depletion of susceptibles. Moreover, the 95% CI of
the mechanistic model covered the true value in all 100 simulated datasets. In
contrast, the CIs from the two-step regression procedure were consistently too
narrow, failing to cover the true value even in scenarios with little bias. The
CI width was improved by bootstrapping the two-step regression procedure, but
adequate coverage was only achieved in the scenario with the least bias. Of note,
in the 40% and 60% depletion of susceptible scenarios, the 95% CIs for NPI 2
showed good coverage despite a large bias. This anomaly can be attributed to
the absence of viral transmission during the NPI 2 period, due to the high prior
depletion of susceptibles (illustrated in Figure S5.4). Consequently, NPI 2 could
only be estimated with high uncertainty, with 95% CIs ranging from -2.57 to -0.37,
corresponding to a percentage reduction in transmission from 31% to 92%, making
the CIs so wide that they are practically meaningless (Figure S5.5).

The influence of the depletion of susceptibles on the bias of estimates can be
understood analytically. In the two-step regression procedure, NPI effects were
estimated using the Rt estimated in the first step according to equation 5.5. With
R(t) = b(t)S(t)

γN
and replacing b by equation 5.2, we derive:

log(Ri(tij)) = log(b0)− log(γN)+ log(S(t))+β1NPI1(tij)+β2NPI2(tij)+ui+ ϵij
(5.6)

In this equation, log(b0) and log(γN) are constants and thus included in the in-
tercept term. In contrast, log(S(t)) is time-varying and thus has the potential to
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bias the estimated NPI effects, with a greater depletion of susceptibles over the
estimation period leading to an increased bias.

Depletion of S 2% 10% 20% 40% 60%
Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech.

NPI 1
Absolute bias -0.02 0.00 0.10 0 0.21 0 0.40 0 0.65 0
Relative bias
(%)

1.2 0.2 7.0 0 14.8 0 27.4 0 45.0 0

95% CI (%) 0 - 0 - 0 - 0 - 0 -
95% bootstrap
CI (%)

100 100 0 100 0 100 0 100 0 100

NPI 2
Absolute bias 0.05 0 0.20 0 0.33 0 0.42 0 0.48 0
Relative bias
(%)

6.6 0.1 24.5 0 40.9 0 51.9 0 59.5 0

95% CI (%) 0 - 0 - 0 - 0 - 0 -
95% bootstrap
CI (%)

100 100 0 100 0 100 100 100 100 100

Table 5.2: Evaluation metrics from SIR simulation. For each scenario of depletion
of susceptibles, the mean absolute and relative bias and percentage of CIs covering the
true value across 100 simulated datasets are shown. The columns indicate the analysis
model. The CI rows show the percentage of datasets where the 95% CI covers the true
value. The 95% CI of the mechanistic model was always determined with bootstrap.
Reg. two-step regression model, Mech. mechanistic model, CI confidence interval, NPI
non-pharmaceutical intervention

Data created with SEIRAHD model While the SIR scenarios are useful
to understand the general underlying challenges of the two-step regression pro-
cedure, the SIR model’s simplicity does not capture the complexity of real-world
scenarios. The data generated by the SEIRAHD model address this limitation by
offering a more realistic representation of an epidemic. The point estimates from
the two-step regression models displayed substantial bias, particularly pronounced
for the first NPI (relative bias ranging from 18-25%) compared to the second NPI
(approximately 14-18%, see Table 5.3). Throughout all datasets, using hospital-
izations forRt estimation and subsequent regression consistently resulted in higher
bias compared to using case data. Moreover, the CIs derived from these models
consistently failed to include the true NPI values. When the two-step regression
procedure was bootstrapped, the CIs were wider and included the true value for
NPI 2, but not for NPI 1.

In contrast, the 95% CIs for both NPIs derived with the mechanistic models
covered the true value in all 100 datasets, while the point estimates exhibited only
minimal absolute and relative bias (<1% for both NPIs, detailed in Table 5.3).
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The exceptional accuracy of the SEIRAHD model was anticipated, as it was the
model used for data generation.

Metric SEIR model SEIRAHD
model

Regression
model cases

Regression
model hosp.

NPI 1
Absolute bias 0.00 0.01 -0.26 -0.37
Relative bias (%) 0.3 0.4 18.3 25.4
95% CI (%) - - 0 0
95% bootstrap CI
(%)

100 100 0 0

NPI 2
Absolute bias 0.01 0.00 -0.11 -0.15
Relative bias (%) 0.8 0.7 13.7 18.5
95% CI (%) - - 0 0
95% bootstrap CI
(%)

100 100 99 100

Table 5.3: Evaluation metrics over 100 datasets created with the mechanistic
SEIRAHD model. The columns indicate the analysis model. The CI rows show the
percentage of datasets where the 95% CI covers the true value. The 95% CI of the
mechanistic model was always determined with bootstrap.
CI confidence interval, hosp. hospitalization, NPI non-pharmaceutical intervention

Origins of bias

In light of the substantial bias observed in the two-step regression model when a
more realistic model was used for data generation, we investigated in depth the
origins of this issue. Firstly, we examined the regression analysis step by running
the linear mixed-effects model with the true Rt values as the outcome variable.
While the regression model fitted the true Rt almost perfectly and estimated NPI
effects with only slight bias for data generated by the SEIRAHD model (Table S5.6
and Figure 5.2A), the CIs failed to cover the true values due to the estimation of
extremely small standard errors. However, based on these findings, we ruled out
the regression step as the primary contributor to the bias.

Comparing the Rt curves estimated in the two-step procedure to the true Rt

from the mechanistic SEIRAHD model, we identified discrepancies at the onset
of the epidemic and a lag in Rt estimation by EpiEstim when the true Rt under-
went sudden changes resulting from the implementation or lifting of NPIs (Figure
5.2B). These lags led to an underestimation of the strength of NPI 1 and over-
estimation of NPI 2, as the regression model estimated an average of the NPI
periods. The pronounced decline in the first days contributed to the regression
model consistently overestimating R0, i.e. Rt at the onset of the epidemic.

We proceeded to investigate whether NPI strength had any discernible impact
on the bias in Rt estimation. For NPI 1, we observed that both absolute and
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Figure 5.2: 2-step regression bias exploration. A: Regression fits of true Rt in
three randomly selected regions. Each panel represents one geographic region with data
generated by the mechanistic SEIRAHD model. The true Rt is depicted in blue and
the corresponding regression fit in red. The panels on top show the respective case time
series.
B: Rt fits by the two-step procedure and subsequent regression for data generated by
the mechanistic SEIRAHD model. Each panel represents one geographic region. The
highlighted regions indicate which NPI was active at which time. The top panels the
respective case time series. Note that we followed EpiEstim guidelines in terms of not
estimating Rt before 2 generation times after the start of the epidemic, but these 2 weeks
are cut off from the plot.
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relative bias increased with the rise in NPI strength. Regarding NPI 2, the bias
followed a U-shaped pattern with increasing NPI 1 strength, with an underesti-
mation of Rt during the NPI 2 period by all models (Figures S5.8 and S5.9). A
more gradual NPI implementation period, involving a linear increase and decrease
of NPIs from 0 to 1 over 1 or 2 weeks, did not improve Rt estimation nor the bias
in regression coefficients (Figure S5.10 and Table S5.7).

We hypothesized that errors in more complex scenarios could stem from an
incorrect specification of the delay between infection and the observations used to
estimate Rt. The most pertinent data for Rt estimation is the timing of infections,
represented as entries into the E compartment in the SEIRAHD model, reflecting
real-time transmission. When relying on case data (entry into the I compartment)
or hospitalization data (entry into the H compartment) for Rt estimation, these
observations are assumed to have fixed delays relative to the infections. However,
in reality, these delays follow distributions, which ”dilutes” the original infection
timeline. Indeed, estimating Rt based on newly infected (corresponding to entry
into the E compartment) instead of newly symptomatic (entry into I compartment)
resulted in a notable reduction in relative bias for NPI 1, diminishing to 4.5%.
However, the bias in NPI 2 estimation increased to 22.9% (see Table S5.8).

Limitations of the mechanistic approach in the context of misspecified
models

To assess the robustness of the mechanistic model approach in the face of model
misspecification, we generated data with ABMs, which include more heteroge-
neous individual behavior and population interactions, and a different underlying
disease progression than assumed in the SEIRAHD model. We observed that even
within the ABM framework, the mechanistic SEIR model in general demonstrated
superior performance in terms of bias and coverage compared to the two-step re-
gression model. The SEIR model effectively estimated NPI 1 with minimal bias
around 2% and 95% CIs covered the true value in more than 95% of datasets,
regardless of whether the data were generated using random mixing or the multi-
layer ABM (Table 5.4). However, for NPI 2, CI estimated by the SEIR model
covered the true value in only 71% of the random mixing datasets but 100% of the
multi-layer datasets. For NPI 1, the CIs derived from the regression model (both
bootstrapped and non-bootstrapped) systematically failed to cover the values and
displayed significant underestimation (relative bias of 12% for random mixing and
19% for multi-layer). However, the bias for NPI 2 was substantially lower (5% for
random mixing and 1% for multi-layer).

Discussion

We compared the performance of mechanistic models with two-step Rt estimation
and subsequent regression modelling for estimating the relative reduction in viral
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SEIR
random
mixing

SEIR
multi-layer

Reg model
random
mixing

Reg model
multi-layer

NPI 1
Absolute bias 0.04 -0.02 -0.18 -0.27
Relative bias (%) 2.6 1.3 12.2 18.7
95% CI (%) - - 0 0
95% bootstrap CI
(%)

100 100 0 0

NPI 2
Absolute bias -0.04 0.02 -0.0.5 -0.01
Relative bias (%) 4.7 3.2 5.7 1.5
95% CI (%) - - 0 91
95% bootstrap CI
(%)

71 100 0 95

Table 5.4: Evaluation metrics for 100 datasets created with the agent-based
model. The CI rows show the percentage of datasets where the 95% CI covers the true
value. The 95% CI of the mechanistic model was always determined with bootstrap.
ABM agent-based model, CI confidence interval, NPI non-pharmaceutical intervention,
reg regression

transmission caused by NPIs. Mechanistic models consistently outperformed the
two-step approach both in terms of bias and CI coverage. The two-step procedure
underestimated standard errors of parameter estimates across all analyses, failing
to propagate the error inRt estimation into the final estimate. We showed that this
issue could be mitigated by repeatedly sampling from the posterior distribution of
the Rt estimated in the first step.

Similar to Gostic et al. [392], in basic SIR scenarios without weekly smoothing
of observations and minimal depletion of susceptibles, Rt was estimated accu-
rately, leading to nearly unbiased NPI effectiveness parameters. However, in sce-
narios with higher depletion of susceptibles, the bias increased substantially. As
an epidemic progresses and the number of susceptibles diminishes, Rt naturally
decreases. While not problematic for Rt estimation itself, the regression procedure
misattributes the decrease in Rt to the NPIs, thus overstating their effectiveness,
with bias worsening as the depletion of susceptibles increases.

In the more realistic scenarios generated by the SEIRAHD and ABM mod-
els, compared those generated by SIR models, the two-step regression procedure
showed greater bias in the point estimates, particularly for the first NPI. This bias
can be attributed to several factors. First, the representation of the natural his-
tory of infection in the SEIRAHD model and ABM differs from that assumed by
EpiEstim. If we had generated data with a mechanism consistent with EpiEstim,
(i.e. the generation time distribution as an input), mechanistic models might also
show bias. This is because misspecification of the generation time distribution can
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bias estimates of the reproduction number, regardless of the approach used [386].
Whether it is more realistic to simulate with the generation time as a parameter
or an underlying compartmental structure remains debatable.
Second, the inability to capture the sharp decline induced by NPIs stems from the
long smoothing time window (7 days) coupled with a lengthy generation interval
(10.1 days in SEIRAHD models). This gradual convergence of the estimated to
the true Rt following NPIs led to inaccurate estimations of NPI effectiveness, as
regression models fit an average across the entire NPI period. However, we found
that gradually implementing NPIs did not reduce the bias in regression estimates.
Moreover, smoothing remains necessary to handle measurements errors and other
irregularities in observational data.
Third, the lag in observational time series behind real-time transmission might
contribute to the bias, as symptomatic infections or hospitalizations capture trans-
mission events that occurred in the past. This delay cannot be rectified by merely
lagging the NPIs, and could explain why estimates from hospitalizations were less
accurate than estimations from cases, as we only shifted NPI periods without
considering the involved delay distributions [392]. Indeed, using transmission-
related observations directly (entry into the E compartment) helped reduce this
bias. Several R packages for back-calculating transmission events from cases or
hospitalizations are now available, such as EpiNow2 and EstimateR. [394, 395]

Using regression analyses without accounting for the depletion of susceptibles
also precludes strong causal conclusions about the effect of NPIs. Mechanistic
models, which explicitly consider viral transmission mechanisms and therefore de-
pletion of susceptibles, offer an alternative for causal interpretation [385], but
require detailed data and time to develop and estimate models. Running 100
bootstrap repetitions on 100 SIR datasets parallelized on 20 high-performance
computing nodes took approximately 42 hours. Since the two methodologies were
run on different computing platforms, their computing times are hard to compare.
Nevertheless, the two-step regression procedure, parallelized on 16 conventional
laptop cores, required only four hours of computing time. In an early epidemic or
pandemic setting, timely results are of great importance, so this trade-off between
speed and accuracy of the results needs to be taken into account when deciding
on a model. Therefore, developing user-friendly software for rapid epidemiological
modeling in such scenarios is essential.

Our study comes with limitations that need to be acknowledged. First, it is
important to note that our simulations do not prove that the mechanistic approach
will always be unbiased. Indeed, in estimating parameters in datasets created by
ABMs, we observed a reduced CI coverage with mechanistic models. Second, our
simulated datasets did not consider various systematic biases, such as reporting
delays, significant under-reporting or missing observations. The only measure-
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ment error present was random noise on observations, and we did not incorporate
weekly trends or seasonal changes in transmission. Moreover, we simulated only
two consecutive NPIs with no overlap. Our most realistic scenarios were there-
fore simpler than real-life scenarios during the COVID-19 pandemic, with spatial
structures, multiple overlapping NPIs implemented to varying degrees, behavioural
dynamics, and more. It is likely that in a real-life scenario, the problem could be
even more exacerbated because of practical identifiability issues. However, our
primary objective was to illustrate and compare the performance of two analysis
methods under close-to-optimal conditions, and these limitations to not threaten
the validity of our results. To address some of these simplifications, we included
simulations using ABM. However, we acknowledge that when analyzing real-world
data, misspecification of the mechanistic model (for example, assumptions about
the natural history of infection) might equally lead to bias. This is particularly
true in the context of real-time modelling of emerging pathogens.

Improving the public health response during an epidemic depends on informed
decision-making about NPIs. Our findings have significant implications for re-
fining the methodology used to estimate the effectiveness of NPIs. Our findings
highlight the potential for a systematic underestimation of uncertainty in the two-
step regression procedure, raising concerns about the reliability of its effectiveness
estimates across different scenarios. While compartmental models demonstrate
superior performance over simpler models, their resource requirements, as they
also require more time and expertise to implement, must be weighed against their
benefits.
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5.4 Manuscript 2: Supplementary Methods

Parameters used in SIR data generation

Parameter Interpretation Scenario Value
b0 Basic transmission rate all ∼ N (0.425, 0.01)
DI Infectious period (days) all 5 days [368]
γ recovery rate (1/days) all 0.2 (= 1/DI)

log(initI)
initial number of infected
individuals per region

2% S depletion ∼ N (-3, 0.4)
10% S depletion ∼ N (-1.2, 0.4)
20% S depletion ∼ N (-0.4, 0.4)
40% S depletion ∼ N (-0.6, 0.4)
60% S depletion ∼ N (-1.6, 0.4)

β1 Effectiveness parameter of NPI 1 all -1.45 [383]
β2 Effectiveness parameter of NPI 2 all -0.8 [383]

Table S5.1: Parameters governing the SIR model.

SEIRAHD model structure and parameters

The values of parameters governing the SEIRAHD model were sampled from prior
distributions to achieve different realizations of epidemics: We seeded the epidemic
in each region by randomly sampling an initial number of exposed, and set the
initial values of the I, A, H, and R compartments as functions of this number.
The D compartment was assumed to be empty at the beginning of simulations,
and S was set to complete a population size of the geographical region. From the
seeded compartment values and basic transmission rate, our model simulated daily
compartment values deterministically, under the assumption of random mixing and
uniform disease progression. The values of all model parameters can be found in
Table S5.2.

ABM model structure and parameters

To simulate observations with random mixing and hybrid models, we used the
standard Sim function from the Python Covasim module. Details on Covasim

can be found in the original publication [387] or in the Covasim tutorial (https:
//docs.idmod.org/projects/covasim/en/latest/tutorials.html). We
simulated 100 datasets containing observations for 94 regions over 120 days each.
The chosen transmission and initial parameters are listed in Table S5.3, and the
code is available on Github (https://github.com/sistm/SEIR_vs_RTreg).
In the multi-layer scenarios, agent interactions were simulated to occur in four
layers: households, schools, workplaces, and the community. The assumed daily
numbers of contacts per agent per layer and the risk of transmission multipliers
for each layer are also listed in Table S5.3. In multi-layer simulations, the risk
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Figure S5.1: Flowchart of SEIRAHD model.

Parameter Interpretation Value
rE Proportion of symptomatic cases among all

infected
0.85 [47]

rH Hospitalization rate 0.1
DE Latent (incubation) period (days) 5.1 days [46]
DI Infectious period (days) 5 days [368]
α Ratio of transmission between A and I 0.55 [290]
DQ Duration from infection to hospitalization

(days)
5 [383]

DH Length of stay in hospital (days) 18 [150]
DD Duration from hospital admission to death

(days)
10 [396]

fr Death rate of hospitalized patients 0.1 [383]
log(initE) initial number of exposed individuals per re-

gion
∼ N (2, 0.9) [383]

b0 Basic transmission rate ∼ N (0.5, 0.1) [383]
β1 Effectiveness parameter of NPI 1 -1.45 [383]
β2 Effectiveness parameter of NPI 2 -0.8 [383]

Table S5.2: Parameters governing the SEIRAHD data generation models.

of progression to more severe states was simulated stratified by age, in brackets
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of ten years (Table S5.4). NPIs in the multi-layer model were assumed to reduce
transmission risk in all layers except households.

Observation model for mechanistic model data generation
and estimation

With the SEIRAHD and ABM models, we generated time series of cases, hospital
admission and occupancy, and deaths as observations. We assumed full report-
ing of all observations. With the SEIRAHD model, the observations were taken as:

Hospital admissions: Y Had
i,t =

rHI

DQ

Hospital occupancy: Y H
i,t = Hi,t

Cases: Y I
i,t =

rEE

DE

Deaths: Y D
i,t =

frH

DD

(5.7)

For the ABM, we used the following outputs from the Covasim simulations:
”new infectious” (cases), ”new severe” (hospital admissions), ”n severe” (hospital
occupancy), and ”new deaths”, although in the end, we only used cases as obser-
vations for further analysis.

To account for measurement errors in epidemiological data, stochastic noise
was added to generated observations Y ∗ with a combined error model containing
a constant error term a and a proportional error term b as Y obs = Y ∗+(a+ bY ∗)ϵ,

with ϵ ∼ N (
(
0
0
0
0

)

,
(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

) The values we used for a and b are listed in Table S5.5).

The same observational model was used in the estimation process.
Exemplary datasets of the resulting simulations are shown in Figure S5.6.

Generation intervals

In the SEIRAHD model, several distributions of waiting times have to be taken in
to account to calculate the distribution of the generation interval. The SEIRAHD
model used to generate the data has two infectious compartments (A, I) and two
compartments which infectious individuals can progress to (R, H). However, very
conveniently, the waiting times in all infectious compartments (A → R, I → R,
I → H) are all exponentially distributed with a mean of 5 days (and therefore
a rate parameter of 0.2). Therefore, the three above processes can be combined
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into one, and the SEIRAHD model can be simplified to a SEIR model for the
calculation of the generation interval.
Following Wallinga et Lipsitch [386], there is a relationship between the repro-
ductive number Rt, the growth rate r, and the generation interval GI (with its
distribution g(a)). More specifically, Rt is related to r according to the moment-
generating function (MGF) of the GI Mg(a). A MGF, if it exists, uniquely charac-
terizes the shape of the entire probability distribution: M(z) determines g(a) and,
conversely, g(a) determines M(z). Thus, in order to find the distribution g(a), we
can use the corresponding MGF Mg(a).
For an exponentially distributed random variable of mean 1/λ, the moment gener-
ating function is M(z) = λ

λ−z
. For successive stages of disease (E and I in the SEIR

model), the MGFs of individual stages can be chained to calculate the generation
interval:

Mg(z) = ME(z)×MI(z) =
λE

λE − z
×

λI

λI − z
(S5.1)

where ME(z) is the MGF of the time spent in compartment E and MI(z) is the
MGF of the time spent in compartment I.

The first derivative of the MGF evaluated at z=0 is the mean of the generation
interval. In our case:

M ′
g(0) =

1

λE

+
1

λI

(S5.2)

With λE = 1
5.1

day−1 and λI =
1
5
day−1, we thus obtain E[GI] = 5.1+ 5 = 10.1.

The second derivative of the MGF evaluated at z=0 is the variance of the
generation interval.

M ′′
g (0) =

1

λ2
E

+
1

λEλI

+
1

λ2
I

(S5.3)

Thus, σ2(GI) = 26.01 + 25.5 + 25 = 76.51 and σ(GI) = 8.75.
Since individuals in the hospitalized compartment are assumed not to be infec-

tious, the contribution of the hospitalized compartment to the generation interval
is 0. Thus, when using hospitalizations as observations, we used the same gener-
ation interval as for case observations, but lagged the NPIs by the average time
from infection to hospitalization (10 days).

Bootstrapping 2-step regression

To bootstrap, the 2-step regression approach, we first ran the Rt estimation nor-
mally. Next, ran 500 bootstrap iterations as follows: First, we sampled a constant
quantile value from a Beta(2,2) distribution. Then, we extracted the quantile value
of the Rt distribution (Rt is assumed to be gamma-distributed) for each weekly
data point (illustrated in Figure S5.2A), and these Rt values were then used in
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the mixed effects model to estimate the NPI parameters. After 500 iterations, we
calculated the 2.5th and 97.5th percentiles of the estimated parameters to derive
lower and upper bounds of the CIs, respectively (Figure S5.2B).

Figure S5.2: Illustration of the quantile bootstrap method. A: The Rt point
estimate is shown as a solid black line, while the estimated 95% CI is depicted with
the grey shaded area. Each dashed orange line represents the bootstrap draw of one
constant quantile over time (only 50 iterations are shown for clarity). B: The NPI
parameter distribution of all 500 bootstrap iterations is shown as black dots. The blue
dot illustrates the point estimate and the red bars the 95% CI estimated from the
bootstrap.

Next generation matrix approach

The next-generation matrix is a method to derive the basic or effective reproduc-
tion number for a compartmental model. For its calculation, only the “infected”
compartments are used, so E, I, and A. Let xi, i = 1, 2, 3, . . . ,m be the numbers of
infected individuals in the ith infected compartment at time t. Then, two matrices
can be built: 1) Vi(x), which represents the arrivals and departures from one of
the infected compartments to another, and 2) Fi(x), which describes the arrivals
of new infections in compartment i. The matrices Vi(x) and Fi(x) are therefore
constructed as [353]:

Vi(x) =







1
DE

0 0

− rE
DE

rH(1−evH)
DQ

+ (1−rH)
DI

0

− (1−rE)
DE

0 1
DI






(S5.4)
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Fi(x) =





0 bS(1−evI)
N

bαS(1−evI)
N

0 0 0
0 0 0



 (S5.5)

Then, it has been shown that Rt = ρFV −1, where ρFV −1 is the spectral
radius (or largest eigenvalue) of the Next Generation Matrix FV −1. One can
picture the entries of FV −1 as the rate at which infected individuals in xj produce
new infections in xi, times the average length of time an individual spends in
compartment j. For a proof, see for example Perasso [378]. Therefore, we obtain:

Rt = transmission(1− evI)S(t)

(

DIα(1− rE) +
DIDQrE

DQ(1− rH) +DI(1− evH)rH

)

(S5.6)
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Parameter Interpretation Value
General parameters
vt (random
mixing)

Basic viral transmissibility per contact in ran-
dom mixing models

∼ logN (0.016, 0.02)
[387]

vt (multi-
layer)

Basic viral transmissibility per contact in
multi-layer models

∼ logN (0.017, 0.02)
[387]

Initial ex-
posed

Initial number of exposed individuals per re-
gion

∼ N (50, 5)

NPI 1 % reduction in transmission by NPI 1 75%
NPI 2 % reduction in transmission by NPI 2 55%
Duration parameters: time for disease progression
exp2inf Duration from exposed to infectious ∼ logN (4.5,1.5)
inf2sym Duration from infectious to symptomatic ∼ logN (1.1,0.9)
sym2sev Duration from symptomatic to hospitalization ∼ logN (6.6,4.9)
sev2crit Duration from hospitalization to requiring

ICU
∼ logN (1.5,2.0)

Duration parameters: time for disease recovery
asym2rec Duration for asymptomatic people to recover ∼ logN (8.0,2.0)
mild2rec Duration for people with mild symptoms to

recover
∼ logN (8.0,2.0)

sev2rec Duration for hospitalized people to recover ∼ logN (18.1,6.3)
crit2rec Duration for people with critical symptoms to

recover
∼ logN (18.1,6.3)

crit2die Duration from critical symptoms to death ∼ logN (10.7,4.8)
Additional parameters for multi-layer model

vt
weights

Multiplier for vt in specific
transmission layers

Household = 3
School = 0.6
Workplace = 0.6
Community = 0.3

N
contacts

Number of contacts per
person per day n specific
transmission layers

Household = 2
School = 20
Workplace = 16
Community = 20

Table S5.3: Parameters governing the ABM data generation models. The
duration and additional parameters are the default parameters provided in Covasim
[387].
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Age
cutoffs

Susceptibility
OR

Symptomatic
probability

Hospitalization
probability

Critical
probability

Death
probability

0 0.34 0.5 0.0005 0.00003 0.00002
10 0.67 0.55 0.00165 0.00008 0.00002
20 1 0.6 0.0072 0.00036 0.0001
30 1 0.65 0.0208 0.00104 0.00032
40 1 0.7 0.0343 0.00216 0.00098
50 1 0.75 0.0765 0.00933 0.00265
60 1.24 0.8 0.1328 0.03639 0.00766
70 1.47 0.85 0.20655 0.08923 0.02439
80 1.47 0.9 0.2457 0.1742 0.08292
90 1.47 0.9 0.2457 0.1742 0.1619

Table S5.4: Age-specific parameters for disease risk in the ABM data gen-
eration models. These parameters are the default parameters provided in Covasim
[387].

Parameter Interpretation Value
ac additive error cases 0.0408
bc multiplicative error cases 0.1
ad additive error deaths 2× 10−4

bd multiplicative error deaths 0.0754
aHa additive error hospital admissions 3.62× 10−3

bHa multiplicative hospital admissions 0.05
bHo multiplicative hospital occupancy 0.139

Table S5.5: Measurement error parameters for data creation with the
SEIRAHD model. Note that hospital occupancy was only modelled with a multi-
plicative error, no additive error.[383] All error parameters are given on a normalized
scale, i.e. they are applied to observations that have been scaled to 10000 population.
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5.5 Manuscript 2: Supplementary Results

SIR-generated data

Figure S5.3: Example of created datasets with SIR models.
A: Plots of depletion of susceptibles, separated by depletion scenario, normalized to
10,000 population.
B: Plots of daily incident cases, separated by depletion scenario, with populations equally
normalized to 10,000.
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Figure S5.4: Comparison of Rt and regression fits from the two-step model
on SIR-simulated datasets. A: Datasets generated with approx. 2% of susceptibles
depleted at the time of NPI 1 implementation. B: Datasets generated with approx. 60%
of susceptibles depleted at the time of NPI 1 implementation. Each panel represents
one geographic region. The highlighted regions indicate which NPI was active at which
time. The panels on top show the respective case time series.
NPI: non-pharmaceutical intervention
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Figure S5.5: Estimation results from SIR-generated data under different
scenarios of depletion of susceptibles. For each NPI separately, the point estimate
and 95% CIs are shown for each estimation method. The dashed black lines indicate the
value used in simulation.
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SEIRAHD-generated data

Figure S5.6: Illustration of created data with SEIRAHD model and ABMs.
A: Simulated cases with SEIRAHDmodel, B: simulated hospitalizations with SEIRAHD
model, C: simulated cases with random mixing agent-based model, D: simulated cases
with layered agent-based model.
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Analysis with true Rt

When the regression model was applied to ABM-created datasets, the bias in NPI
effect estimation was larger, likely due to higher fluctuations in Rt (Figure S5.7).

Figure S5.7: Regression fits of true Rt in three randomly selected regions.
Each panel represents one geographic region with data generated by either a random
mixing ABM or a multi-layer ABM. The true Rt is depicted in blue and the correspond-
ing regression fit in red. The panels on top show the respective case time series.

Metric SEIRAHD
model

Random
mixing ABM

Multi-layer
ABM

NPI 1
Absolute bias 0.04 0.05 -0.18
Relative bias (%) 2.9 3.6 12.3
95% CI (%) 0 0 0
NPI 2
Absolute bias 0.05 0.06 -0.02
Relative bias (%) 6.7 6.9 2.9
95% CI (%) 0 0 0

Table S5.6: Evaluation metrics for regressions with known Rt (average of
100 datasets). Note that the main part of the manuscript only describes results from
SEIRAHD-created data, but ABM-generated data results were added for completeness.
ABM agent-based model, CI confidence interval, NPI non-pharmaceutical intervention
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NPI implementation scenarios

Figure S5.8: Rt fits by EpiEstim for varying NPI 1 scenarios. Scenarios are
shown for four selected geographical regions, indicated by the numbers above the panels.
The panels on top depict the case time series. A1: Scenarios are shown for varying NPI
1 start days where the basic transmission rate was adjusted to prevent a reduction in
Rt due to high population immunity. A2: Scenarios for varying NPI 1 start days, with
the basic transmission rate remaining consistent with the main analysis. Especially in
the later NPI implementation scenarios, a notable decrease in Rt by population herd
immunity becomes evident. B: Rt estimates for three selected regions in scenarios
with varying NPI 1 strength. Considering the presentation of numerous scenarios, we
organized the trajectories into four rows based on NPI strength.
NPI non-pharmaceutical intervention
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Figure S5.9: Regression coefficients from the two-step regression for varying
NPI 1 scenarios. Results are shown separately by NPI. The dashed lines indicate the
true NPI values. A1: Coefficients with corresponding 95% CIs are shown for varying
NPI 1 start days where the basic transmission rate was adjusted to prevent a reduction
in Rt due to high population immunity. A2: Coefficients with corresponding 95% CIs
for varying NPI 1 start days, with the basic transmission rate remaining consistent with
the main analysis. B: Coefficients with corresponding 95% CIs for scenarios with varying
NPI 1 strength. Considering the presentation of numerous scenarios, we organized the
trajectories into four rows based on NPI strength.
NPI non-pharmaceutical intervention
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Figure S5.10: Rt and regression fits from the two-step model with gradual
NPI implementation. NPIs were either implemented ”early” (i.e. as in the main
analysis after on day 16) or ”late” (i.e. on day 27) and with a linear gradient either over
1 or 2 weeks.

1 week 2 weeks
Metric Gradient early Gradient late Gradient early Gradient late
NPI 1
Absolute bias -0.08 -0.06 -0.04 -0.01
Relative bias (%) 5.6 4.4 3.0 0.6
95% CI (%) 0 0 0 88
NPI 2
Absolute bias 0.03 0.10 0.06 0.15
Relative bias (%) 4.2 12.1 7.1 19.0
95% CI (%) 26 0 0 0

Table S5.7: Results from the two-step model with gradual NPI implemen-
tation (average of 100 datasets). NPIs were either implemented ”early” (i.e. as in
the main analysis after on day 16) or ”late” (i.e. on day 27) and with a linear gradient
either over 1 or 2 weeks.
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Incident infections vs. incident cases

Metric Estimation with
incident cases

Estimation with
incident infections

NPI 1
Absolute bias -0.26 0.07
Relative bias (%) 18.3 4.5
NPI 2
Absolute bias -0.11 0.18
Relative bias (%) 13.7 22.9

Table S5.8: Comparison of bias in regression parameters, using incident cases
(= entry into the I compartment) and incident infections (= entry into the
E compartment)

ABM-generated data

Due to the unexpected underperformance of the mechanistic model approach in
the data generated with the random mixing ABM, we conducted a sensitivity anal-
ysis of the bootstrap procedure. In our original bootstrap procedure, we resample
”individuals” (i.e. geographical regions) and vary the starting parameters of the
SAEM algorithm in Monolix. We observe that simulated data from the random
mixing models exhibit less heterogeneity compared to the multi-layer models (Fig-
ure S5.6C-D). While this is expected, as the clustering in the multi-layer models
can lead to more heterogeneous epidemics, there is less variability to be sampled
from when conducting the bootstrap procedure on the random mixing data com-
pared to the multi-layer data. It is also important to note that our confidence
intervals were derived from only 100 bootstrap runs due to high computational
demands. We hypothesize that 100 bootstrap runs may be insufficient to ade-
quately capture the ”tails” of the variability, particularly when the underlying
data exhibit low heterogeneity. This limitation likely explains why the empirical
95% CIs do not cover the true value in all simulated datasets. However, when we
account for variability by calculating the bootstrap standard error (SE) and then
making a normal approximation of the distribution, the 95% CIs cover the true
value in all but one dataset (Figure S5.11 and Table S5.9).
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Metric SEIR ABM random
mixing

SEIR ABM multi-
layer

NPI 1
Absolute bias 0.04 -0.02
Relative bias (%) 2.60 1.28
Empirical dist. bootstrap CI cover-
age (%)

100 100

Bootstrap SE CI coverage (%) 100 100
NPI 2
Absolute bias -0.04 0.02
Relative bias (%) 4.72 3.23
Empirical dist. bootstrap CI cover-
age (%)

71 100

Bootstrap SE CI coverage (%) 99 100

Table S5.9: Comparison of confidence interval coverage with two different
confidence interval calculation methods in ABM-generated data. Bias and CI
coverage were calculated across 100 datasets created with the agent-based model. The
empirical distribution bootstrap CI is taken from the main analysis and was calculated
using the empirical distribution of the bootstrap estimates, i.e., taking the 2.5th and
97.5th percentiles of the bootstrap results as the lower and upper limits of the CI, re-
spectively. In contrast, in the bootstrap SE approach, the standard errors for each NPI
are estimated from the distribution of bootstrap estimates and the CIs are derived as
point estimate ± 1.96 × SE. This method produces symmetric CIs around the point
estimate.
ABM agent-based model, CI confidence interval, dist. distribution, NPI non-
pharmaceutical intervention, SE standard error
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Figure S5.11: Comparison of confidence interval coverage in the random mix-
ing ABM-generated data with two different confidence interval calculation
methods. The empirical distribution bootstrap CI is taken from the main analysis and
was calculated using the empirical distribution of the bootstrap estimates, i.e., taking
the 2.5th and 97.5th percentiles of the bootstrap results as the lower and upper limits
of the CI, respectively. In contrast, in the bootstrap SE approach, the standard errors
for each NPI are estimated from the distribution of bootstrap estimates and the CIs are
derived as point estimate ± 1.96 × SE. This method produces symmetric CIs around
the point estimate and covers the true value in all datasets but one.
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6
Manuscript 3

6.1 Preface to Manuscript 3

An essential step in enhancing studies on NPI effectiveness and other mathemat-
ical models used during the COVID-19 pandemic is the continuous refinement of
fixed input parameters, such as the duration of immunity. The study period in
Manuscript 1 ended just as the Omicron variant began to spread globally, which
marked a substantial change in the characteristics of SARS-CoV-2 due to its many
mutations. Many previously established parameters, such as the length of the incu-
bation period, basic transmissibility, and the protection offered by prior infection
and vaccination, became uncertain. As large parts of the population became in-
fected with Omicron, many individuals soon possessed hybrid immunity, that is,
immunity from both vaccination and natural infection.

To adapt and improve models to the newly emerging Omicron variant and
its sub-variants, new parameters were necessary. One of the critical knowledge
gaps was the level and duration of protection conferred by prior vaccination and
infection. Waning immunity had been observed with other viral strains both as
decreasing protection from infection and decreasing antibody levels over time. Es-
timating these parameters is crucial for public health decision-makers, particularly
regarding the timing and frequency of booster shots. Moreover, these estimates
can also inform modelers for updating key parameters for serosurveillance studies
and forecasting models.
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In Manuscript 3, we used a large dataset of anti-SARS-CoV-2 nucleocapsid and
spike antibodies from Canadian blood donors. While these data were originally
collected for serosurveillance, they presented an promising opportunity to address
these critical questions about immune protection conferred by antibodies and the
duration of this protection.

This manuscript is in preparation and intended for submission to Nature Com-
munications.
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Abstract

A large proportion of the global population now possesses hybrid immunity, derived from both
infection and vaccination, against SARS-CoV-2. However, there is uncertainty about the extent
and duration of protection conferred by antibodies produced from hybrid immunity. Using
longitudinal antibody measurements from over 448,270 Canadian blood donors, we evaluated the
association between total anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody levels and
the risk of SARS-CoV-2 infection in Cox proportional hazards models, and we used mechanistic
models to analyze the waning dynamics of these antibodies over time. Both anti-S and anti-
N antibodies significantly reduced the hazard of infection, with higher titers providing greater
protection. The mechanistic models showed that antibodies waned in a bi-phasic way, with
a rapid initial decline followed by a slower decay. While multiple immunizing events resulted
in more durable protection, anti-S levels fell below thresholds providing 50% protection within
months post-immunization, and anti-N levels fell below this threshold within two years. Our
results suggest that maintaining high antibody levels is crucial for sustained protection and
underscore the need for regular booster vaccinations. The strong correlation of anti-N antibodies
with protection makes them a valuable marker for assessing natural immunity.
Keywords: SARS-CoV-2, vaccination, antibodies, infection-derived immunity, hybrid immu-
nity, waning dynamics, durability
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Introduction

COVID-19 continues to pose a significant public health challenge, even though
the world has transitioned from the pandemic to an endemic phase [31]. A large
part of the global population is anticipated to possess hybrid immunity, which is
derived from both infection and vaccination, to SARS-CoV-2 [397]. This com-
bined immunity offers superior protection compared to immunity from infection
or vaccination alone [232, 398], but neither immunity from infection or vaccination
alone, nor hybrid immunity guarantee protection against SARS-CoV-2 infection.
While vaccines, especially booster doses, have been effective in preventing severe
disease, their ability to prevent infection is limited and diminishes over time [77,
218, 229, 399]. This limitation can be attributed to two related, yet distinct fac-
tors: the emergence of new viral variants (variants of concern, VoCs), which can
evade immunity established by previous infection and vaccinations [79, 400, 401],
and the waning of immunity over time [219, 232]. The combination of these fac-
tors results in reduced overall immunity in the population and an increased risk
of (re-)infection.

Infections with different SARS-CoV-2 variants and vaccination with different
vaccine products, together with diverse individual immune factors, shape the pop-
ulation’s immunity landscape. The adaptive immune response to SARS-CoV-2 is
complex and multifaceted, involving both cellular and humoral components [402].
Most vaccines used in North America and Europe are based on messenger RNA
(mRNA) technology and target the viral spike (S) protein only. Neutralizing an-
tibodies towards the S protein have been identified as a correlate of protection
against the original strain of the virus as well as VoCs [211, 403], and total anti-
body levels, which are easier to measure, correlate well with neutralizing antibody
levels [222, 404]. While a negative correlation between total antibody level and risk
of infection has been demonstrated [405], the exact levels of antibodies required
to confer protection are unclear. Many studies have examined the effectiveness
of vaccination or infection in preventing COVID-19 [101], but few have correlated
these outcomes with antibody titers [251–253, 405, 406]. In particular, antibodies
against the viral nucleocapsid protein (anti-N antibodies), which are not elicited
by most vaccines and thus indicative of natural immunity, have rarely been taken
into consideration [407, 408].

Another area of uncertainty is the duration of protection conferred by indi-
vidual vaccine doses and infection. Recently, a large cohort study with extended
follow-up periods provided more detailed insights into anti-S antibody dynamics,
mainly after vaccinations [225]. However, there is limited research on the waning
of immunity from infection, as represented by anti-N antibodies: Most studies on
immunity following infection were conducted early in the pandemic, with small
participant numbers, highly selected cohorts, short follow-up periods, and some-
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times before vaccinations were widely available [95, 102, 222–224, 355]. This gap
in knowledge is significant as a clear understanding of natural and hybrid immu-
nity is necessary for evidence-based implementation of public health interventions.
Understanding the duration of this immunity and its effectiveness in preventing
reinfection, particularly with heterologous viral strains, is therefore important for
guiding public health policies and vaccination strategies.

More precisely, it is important to 1) quantify the association between hybrid im-
munity, as measured by anti-S and anti-N antibodies, and the risk of (re)infection,
and 2) assess the relationship between hybrid immunity and the duration of pro-
tection. As anti-N antibodies are produced exclusively following infection, while
anti-S antibodies are generated both after infection and vaccination, tracking the
trajectories of these antibodies allows for differentiation between immunity derived
from infection and immunity derived from vaccination. In this context, anti-N an-
tibodies can be used as a proxy for immunity derived from infection.

We take advantage of a unique dataset of antibody measurements from blood
donors across Canada, including data from over one million donations with exten-
sive follow-up over more than three years. Insights into the waning of immunity not
only inform the timing of booster doses and vaccination campaigns, but are also
important for epidemiological and seroprevalence modeling, aiding in the accurate
assessment of population immunity through serosurveys [409, 410]. Additionally,
this study seeks to contribute to the existing knowledge by identifying poten-
tial protective thresholds for anti-N and anti-S antibodies, thereby enhancing our
understanding of the correlation of readily available serum antibody levels with
SARS-CoV-2 infection and reinfection.

Results

Cohort characteristics

Canadian Blood Services (CBS) manages blood and plasma donations across Canada,
with the exception of the province of Quebec. Following blood and plasma dona-
tions, a portion of the residual blood was randomly selected by CBS for SARS-
CoV-2 antibody testing. Anti-N antibodies were measured in blood samples from
April 2020 to December 2023, and anti-S antibodies were measured from January
2021 to December 2023. Samples were chosen randomly until June 2021, after
which sampling was stratified by age group. Results of the tests, along with donor
demographic information was shared with the Canadian COVID-19 Immunity Task
Force. The initial cohort comprised 448,270 blood donors and 1,039,298 antibody
measurements, from which three cohorts with analytical samples were derived for
different study objectives: The risk of infection (ROI) cohort, the anti-N wan-
ing cohort, and the anti-S waning cohort (Table 6.1, and for participant selection
flowcharts, see Figures S6.2, S6.3 and S6.4). We inferred dates of infection and
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Figure 6.1: Overview of study procedures and goals. Figure created with BioRen-
der (biorender.com)

vaccination from longitudinal antibody profiles, with increases in anti-N antibod-
ies indicating infections and increases in anti-S antibodies without corresponding
increases in anti-N antibodies indicating vaccinations (Figures 6.1 and S6.1).

We included participants in the ROI cohort regardless of their infection or vac-
cination status. However, since antibody levels decrease after each immunization
and because we could only detect infections once an antibody measurement was
performed, we implemented restrictions on gaps between antibody measurements
in this cohort to limit measurement error and interval censoring. For each partici-
pant, we calculated the intervals between antibody measurements and selected the
longest consecutive sequence of measurements with a maximum inter-measurement
interval of 180 days for inclusion into the analysis (for a detailed explanation see
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Methods Section Samples and donors). In sensitivity analyses, we explored shorter
interval lengths, which is assumed to reduce interval censoring and measurement
error, but could introduce selection bias. Trends in infection rates remained consis-
tent across filtering intervals, but more participants, observations, and infections
were included at longer intervals (see Figure S6.5). Moreover, as the length of
filtering intervals decreased, the percentage of men, the percentage of participants
identifying as white, and the mean age in the cohorts increased (Table S6.1). The
180 day cohort, which we used in the main analysis, consisted of 134,652 indi-
viduals (Table 6.1). The median number of observations per participant was 4
(IQR: 2-7), with nearly 40,000 infections detected. The cohort was predominantly
of white ethnicity (approximately 82%), with a mean age of 50.9 years (SD: 15.5
years). Most participants had received at least two vaccine doses.
The anti-N and anti-S waning cohorts were selected on the infection/vaccination
episode level, with an infection/vaccination episode comprising all data points from
a detected increase in antibody levels to the next increase. In the anti-N waning
cohort, we included infection episodes with at least one measurement within 90
days prior to the newly detected infection (to ensure accurate peak level anti-
body measurements) and a minimum of four antibody measurements per episode.
The analysis sample could thus include multiple infections of the same donor,
but not necessarily all of them. In the anti-S waning cohort, we included infec-
tion/vaccination episodes that met the same inclusion criteria. The final cohort
for the anti-N waning analysis included 3176 infection episodes from a total of
2965 donors, while the final cohort for the anti-S waning analysis included 2911
infection episodes and 2752 vaccination episodes from 4479 donors. With the more
stringent inclusion criteria for the waning analysis cohorts, the percentage of male
donors and the donor age increased, as well as the percentage of donors with white
ethnicity. This is because plasma donors (who are primarily male, older, and
white) with more frequent donations than whole blood donors are selected at a
higher proportion.

Risk of infection and re-infection in relation to antibody levels

We observed non-linear associations between anti-N and anti-S antibody titers
and the hazard of infection (Figure 6.2). The associations between both types
of antibodies and the hazard of infection was estimated in the same model, thus
yielding the effects of each type of antibody independent of the other type. For
anti-S antibodies (measured in U/ml), the adjusted hazard ratio (HR, adjusted
for anti-N levels, donor age, sex, and race, weekly difference in seroprevalence,
and circulation of VoCs) decreased significantly as titers increased from detectable
levels to approximately 10 U/ml, plateaued at intermediate titers (10 to 1,000
U/ml), and further decreased at very high titers (>1,000 U/ml), reaching a HR
of 0.3 (95% CI 0.28-0.33) at 100,000 U/ml (the assay’s limit of quantification). In
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All donors

Risk of
infection
cohort (180
day interval)

Anti-S
waning
cohort

Anti-N
waning
cohort

Number of
participants

448,720 134,652 4,479 2,965

Number of
observations

1,039,298 431,833 40,226 24,243

Median number of
observations per
participant (IQR)

3 (2, 6) 4 (2, 7) 13 (5, 25) 10 (5, 19)

Total number of
detected infections

194,033 39,044 2,911 3,176

Total number of
detected vaccinations

411,151 246,347 12,097 7,483

Median number of
vaccinations per
participant (IQR)

0 (0, 2) 2 (2, 2) 3 (2, 3) 2 (2, 3)

Male participants (%) 49.5 60.6 83.6 83.8
Mean age (SD) 46.82 (15.87) 50.9 (15.49) 56.34 (14.41) 54.47 (14.45)
Participants of white
ethnicity (%)

74.8 81.6 87.3 86.8

Participants of Asian
ethnicity (%)

9.5 7.7 5.8 6.1

Participants of
Aboriginal ethnicity
(%)

1.4 1.2 1.2 1.2

Participants of other
ethnicity (%)

9.7 6.0 3.1 3.4

Participants with
missing ethnicity (%)

4.7 3.4 2.6 2.5

Table 6.1: Demographic characteristics of blood donors, separated by anal-
ysis cohort.
IQR: Interquartile range, SD: standard deviation

contrast, anti-N antibodies (measured as a cutoff index [COI] on a signal-to-cutoff
scale) showed a more linear relationship with the hazard of infection above the
seropositivity threshold of 1 COI, reaching an adjusted HR of 0.5 at 14.6 COI and
further decreasing to 0.08 at the highest titers (>100 COI). Although we did not
observe any distinct protection thresholds for anti-N, we identified the points where
the HRs corresponded to 25%, 50%, and 75% reductions in hazard of infection,
which occurred at 4.3, 14.6, and 61.7 COI, respectively. For anti-S, we defined
protection thresholds at three levels: 13% protection, corresponding to the middle
of the plateau (100 U/ml); 25% protection at 10,000 U/ml; and 50% protection at
41,783 U/ml.
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Week-to-week differences in seroprevalence, as an overall measure of infectiousness,
increased the hazard of infection (Figure S6.6 panel C). We also observed a strong
association between infection risk and VoCs, parameterized as periods of calendar
time with predominant circulation of the respective VoC (HRs: Alpha 1.08, 95% CI
[0.77-1.50]; Delta 14.14, 95% CI [10.71-18.67]; Omicron 37.3, 95% CI [28.33-49.09],
all compared to the ancestral strain). The Omicron VoC had the strongest effect,
reflecting its increased transmissibility and immune-evasive properties. Increasing
age was associated with a lower hazard of infection (HR per 10-year increase 0.88,
95% CI [0.87-0.89]), while sex and self-reported race did not significantly affect
the hazard of infection (HRs 0.98, 95% CI [0.96-1.00] and 0.97, 95% CI [0.95-1.00],
respectively).
Upon visual inspection, we found no substantial differences between models using
different filter intervals in terms of effect estimates, apart from slightly attenuated
effects with longer intervals, possibly due to interval censoring (Figure S6.6 panels
A and B). Similarly, results were robust across different imputation strategies for
the infection date (start or end point of the interval; Figures S6.10 and S6.9) and
time scales (calendar day vs. day since cohort entry; Figures S6.7-S6.8, Table
S6.2).
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Figure 6.2: Adjusted hazard ratios for the association of antibody levels with
hazard of infection. Hazard ratios with corresponding 95% CIs are shown over the
range of anti-S (panel A) and anti-N antibodies (panel B). Anti-S antibodies hazard
ratios were referenced to the assay’s positivity cutoff point of 0.8, and anti-N to the
assay’s positivity cutoff point of 1. Hazard ratios were adjusted for donor age, sex, and
race, weekly difference in seroprevalence, and circulation of VoCs. The violin plots below
indicate the distribution of the respective antibody levels.
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Antibody waning dynamics and duration of protection

Anti-N antibody dynamics To characterize anti-N antibody waning, we ap-
plied a mechanistic model to analyze waning patterns, separately for each infection
episode. A bi-phasic decay model with an initial rapid decline followed by a slower
waning phase was fit to the data. We found significant differences between first
and subsequent infection episodes, with higher initial antibody production and
slower waning rates in subsequent infections. Estimated model parameters, their
interpretations, and fit assessments are provided in the Supplementary Results
Section Anti-N antibody waning results.

To illustrate the duration of protection, we simulated individual waning trajec-
tories over a three-year period using the parameter estimates from the mechanistic
model and protection thresholds defined from the previously estimated risk-of-
infection models. After three years, 47.7% (95% CI: 33.1-58.1) of individuals with
a first infection remained above the seropositivity threshold (1 COI), compared
to 78.9% (95% CI: 53.8-86.0) and 83.8 % (95% CI: 48.9-92.2) of individuals with
two and three infections, respectively (Figure 6.3, Table 6.2). Notably, after a sin-
gle infection, few individuals reached antibody levels associated with 50% or 75%
protection, and only 12.2% (95% CI: 11.2–13.7) and 1.1% (95% CI: 0.7–1.6) re-
mained above these thresholds at one year post-infection, respectively. Protection
was more durable after subsequent infections, but still declined substantially, with
only 49.5% (95% CI 46.4–52.6) and 20.5% (95% CI 18.0–23.6) remaining above
the 50% and 75% protection thresholds one year after a second infection.

Anti-S antibody dynamics As anti-S antibodies are elicited both by infection
and vaccination, we analyzed waning dynamics separately by immunizing event.
The parameters estimated by the mechanistic model are detailed in the Supplemen-
tary Results Section Anti-S antibody waning results. Waning was slower following
infection than vaccination, with a 28% reduction (95% CI 20.5-30%) in the rate
of decline and a higher initial antibody production after infection. Simulations
showed that individuals remained above the anti-S seropositivity threshold of 0.8
U/ml for the simulation period of three years, due to initially high antibody lev-
els (Figure 6.4). Since anti-S antibodies showed a plateau the risk of infection
analysis, we adjusted the protection thresholds to 13% (HR plateau), 25%, and
50% protection. Over 90% of individuals reached the 25% protection threshold
after at least two immunizing events, but most fell below this level within a year
(Table 6.3). The 50% protection threshold was attained by less than half of the
individuals after multiple immunizing events, and dropped to approximately 5%
one year post-immunization.
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infection % above
threshold
t=0

% above
threshold
t=1Y

% above
threshold
t=2Y

% above
threshold
t=3Y

mean
waning
time (days)

positivity cutoff (1 COI)
1 98.9

(98.5-99.4)
81.7
(80.6-83.1)

60.7
(53.0-66.7)

47.7
(33.1-58.1)

534
(474-577)

2 99.7
(99.3-100)

89.9
(87.5-92.2)

83.6
(74.8-88.3)

78.9
(53.8-86.0)

438
(332-662)

3 99.0
(97.1-100)

92.4
(88.6-97.4)

88.6
(76.4-94.2)

83.8
(48.9-92.2)

455
(138-782)

25% hazard reduction (4.3 COI)
1 91.5

(90.4-92.6)
44.5
(42.2-46.5)

18.6
(13.4-24)

13.4
(7.1-19.2)

352
(338-371)

2 92.9
(91.3-94.6)

70.0
(66.8-73.9)

44.6
(39.7-49.5)

30.8
(25.6-40.4)

488
(442-515)

3 91.4
(87.2-95.7)

78.1
(70.6-84.7)

41.9
(35-52.8)

25.7
(16.9-42)

572
(482-621)

50% hazard reduction (14.6 COI)
1 71.2

(69.7-72.9)
12.2
(11.2-13.7)

4.5 (2.7-6.6) 3.3 (1.3-5.3) 218
(210-232)

2 81.0
(78.9-83.7)

49.5
(46.4-52.6)

24.2
(21.5-30.8)

17.3
(13.3-27.8)

402
(337-440)

3 84.8
(78.6-89.8)

54.3
(43.8-61.8)

20.0
(13.5-34.8)

13.3
(6.5-33.8)

429
(316-483)

75% hazard reduction (61.7 COI)
1 22.6

(21-24.2)
1.1 (0.7-1.6) 0.4 (0-1.0) 0.2 (0-0.7) 136

(123-144)
2 71.3

(68.7-74.9)
20.5
(18.0-23.6)

11.4
(6.8-19.7)

10.3 (3.1-19) 237
(199-299)

3 74.3
(67.3-81.2)

16.2
(10.5-27.4)

9.5 (3.4-24.3) 9.5 (1.4-20.8) 228
(194-299)

Table 6.2: Simulated anti-N antibody waning results over three years. The
percentage of donors above each threshold is depicted at the time of infection detection,
one year, two years, and three years after infection. Individual waning trajectories
were simulated and Kaplan-Meier analyses of time to falling below antibody thresholds
were conducted, separately by infection episodes and waning thresholds. We simulated
trajectories for each individual included in the initial model estimation and using the
estimated parameters, separate by infection number. The protection thresholds were
determined with the previous risk of infection model.
Y = year
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immuniz-
ing
episode

% above
threshold
t=0

% above
threshold
t=1Y

% above
threshold
t=2Y

% above
threshold
t=3Y

mean
waning
time (days)

13% hazard reduction (100 U/ml)
1 92.9

(90.5-95.4)
86.6
(82.6-90.1)

84
(79.4-86.9)

82.4
(76.1-85.0)

368
(325-526)

2 99.7
(99.5-100)

99
(98.7-99.4)

98.7
(98.2-99.1)

98.4
(97.9-98.9)

397
(287-501)

3 99.9
(99.8-100)

99.9
(99.8-100)

99.8
(99.6-100)

99.8
(99.6-99.9)

499
(16-1004)

4 100 (100-100) 100
(100-100)

100
(100-100)

100
(100-100)

-

5 100 (100-100) 100
(100-100)

100
(100-100)

100
(100-100)

-

25% hazard reduction (10,000 U/ml)
1 9.7 (7-13.1) 1.8 (0.5-3) 0.3 (0-0.8) 0 (0-0) 186

(126-245)
2 90.6

(89.8-91.7)
37.1
(35.7-39.1)

18.9
(15.8-21.4)

9.5 (6.6-12.1) 319
(305-331)

3 93.9 (93-95) 40.3
(37.7-42.5)

19.6
(15.6-21.3)

11.5
(7.5-13.1)

320
(307-335)

4 95 (93.3-96.7) 41.6
(36.6-44.7)

18.7
(14.1-23.6)

10.9
(7.2-13.7)

335
(314-356)

5 95.3
(92.7-97.5)

35.8
(28.8-42.0)

16
(11.3-22.5)

8 (4.9-11.7) 323
(281-356)

50% hazard reduction (41,783 U/ml)
1 2.1 (0.8-3.3) 0 (0-0) 0 (0-0) 0 (0-0) 42 (30-51)
2 44.8

(43.0-46.6)
4.6 (3.7-5.2) 0.8 (0.5-1.2) 0.3 (0.2-0.7) 157

(147-164)
3 46.8

(44.7-48.6)
5.3 (4.2-6.1) 1.6 (0.8-2.1) 0.3 (0.1-0.7) 162

(147-169)
4 49.8 (44.9-53) 5 (3.8-6.7) 1 (0.3-1.8) 0.3 (0-0.7) 139

(121-159)
5 46.7

(39.3-60.9)
2.8 (0.5-5.2) 1.4 (0-3.2) 0.9 (0-2.4) 109 (82-137)

Table 6.3: Simulated anti-S waning results over three years. The percentage
of donors above each threshold is depicted at the time of anti-S increase detection (i.e.,
vaccination or infection), and one year, two years, and three years after an anti-S increase
detection. The protection thresholds were determined with the previous risk of infection
model. Waning below the seropositivity threshold (0.8 U/ml) was not included in the
analysis, as >99% of individuals did not wane below this threshold.
Y = year
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threshold = 14.6 COI (50% hazard reduction) threshold = 61.7 COI (75% hazard reduction)

threshold = 1 COI (positivity cutoff) threshold = 4.3 COI (25% hazard reduction)
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Figure 6.3: Simulated anti-N antibody waning results over three years. Indi-
vidual waning trajectories were simulated and Kaplan-Meier analyses of time to falling
below antibody thresholds were conducted, separately by infection episodes and waning
thresholds. We simulated trajectories for each individual included in the initial model
estimation and using the estimated parameters, separate by infection number. Waning
was determined as falling under a pre-determined threshold, using four values as cut-
offs: The seropositivity cutoff (1 COI), 25% hazard reduction (4.3 COI), 50% hazard
reduction (14.6 COI), and 75% hazard reduction (61.7 COI). The latter three thresholds
were determined with the previous risk of infection model. As individuals often did not
attain the waning threshold throughout their course of infection, the survival curves do
not start at 100%. 95% confidence intervals were derived from the bootstrap runs, by
taking the 2.5th and 97.5th percentile of the trajectories for each day, separately for each
infection number and waning threshold.
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threshold = 10,000 U/ml (25% hazard reduction) threshold = 41,783 U/ml (50% hazard reduction)

threshold = 0.8 U/ml (positivity cutoff) threshold = 100 U/ml (13% hazard reduction)
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Figure 6.4: Simulated anti-S antibody waning results over three years. Indi-
vidual waning trajectories were simulated and Kaplan-Meier analyses of time to falling
below antibody thresholds were conducted, separately by immunizing episodes and wan-
ing thresholds. An immunizing episode can either be a vaccination or an infection. We
simulated trajectories for each individual included in the initial model estimation and
using the estimated parameters, separate by immunizing episode. Waning was deter-
mined as falling under a pre-determined threshold, using three values as cutoffs: 13%
hazard reduction (100 U/ml), 25% hazard reduction (10,000 U/ml), and 50% hazard
reduction (41,783 U/ml), determined with the previous risk of infection model. Con-
trary to the anti-N model, waning below the seropositivity threshold (0.8 U/ml) was
not included in the analysis, as >99% of individuals did not wane below this threshold.
95% confidence intervals were derived from the bootstrap runs, by taking the 2.5th and
97.5th percentile of the trajectories for each day, separately for each infection number
and waning threshold.
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Discussion

To our knowledge, this study is the largest investigation to date of the effect of
SARS-CoV-2 antibodies on the risk of subsequent infection, with a cohort of over
130,000 blood and plasma donors and over 39,000 infections. Unlike other studies,
which focused solely on anti-S antibodies [225, 251–253], our analyses take into
account the effects of both anti-N and anti-S antibodies. By examining the waning
dynamics of antibodies, our study offers a comprehensive view of how SARS-CoV-2
immunity evolves over time, allowing us to simultaneously assess the implications
on infection risk while accounting for the decline in antibody levels over time.
Most infections were observed during the Omicron period, reflecting the higher
probability of transmission and immune escape properties of the Omicron variant
and the increased sampling during this period [411]. Our findings demonstrate
that both anti-S and anti-N antibodies significantly reduce the risk of SARS-CoV-
2 infection, even during the Omicron period. Consistent with studies conducted
before and during the Omicron period [180, 251–253, 405], we found that higher
anti-S antibody levels were associated with increased protection. Anti-S anti-
bodies are the only SARS-CoV-2 antibodies with neutralizing activity, and spike-
targeting neutralizing antibodies have been discussed as a correlate of protection
against SARS-CoV-2 infection [211]. Nonetheless, recent evidence indicates that
neutralizing antibodies account only for a small portion of the protection against
infection with Omicron variants [412]. Interestingly, we found that anti-N anti-
bodies confer a comparable level of protection to anti-S antibodies. Although they
do not have neutralizing capacity, anti-N antibodies can mediate Fc-dependent
functions, including complement activation, phagocytosis, and cellular cytotoxic-
ity [413]. Moreover, as anti-N antibodies are produced only following infections,
they likely reflect induction of antibodies with increased potency and breadth and
other immune responses elicited by infection, such as local immune responses in
lung tissues [89, 202, 414, 415]. Previous studies have reported stronger protection
following infection compared to vaccination, but none of these studies related risk
of infection directly to antibody levels [220, 221]. Moreover, our findings show
that previous infection (in the form of anti-N antibodies), provides substantial
protection, while anti-S antibodies have an independent protective effect. This
can be interpreted as support of previous evidence indicating that hybrid immu-
nity—immunity derived from both vaccination and infection—is more effective
than either type of immunity alone [234, 246].

Our detailed analysis of antibody waning revealed that SARS-CoV-2 specific
antibodies persist longer than initially assumed. Early studies reported half-lives
ranging from 60-140 days for anti-S [102, 222] and 60-85 days for anti-N [95, 102,
222]. However, these studies did not have a follow-up time that was sufficiently
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long to observe a second phase of antibody decay, where the rate of waning slows.
Another study estimated with a bi-phasic model that only 7% (1%–31%) of ini-
tial anti-nucleocapsid IgG remains one year post symptom onset [416], but their
follow-up period did not extend beyond one year and they had few longitudi-
nal follow-up samples. The extended follow-up period of our study enabled us
to observe bi-phasic waning dynamics with a persistence of long-lived antibody-
secreting cells over multiple years. However, we found the duration of antibody
levels providing high levels of protection to be much more short-lived. Single im-
munizing events (i.e., one infection or vaccination) failed to elicit high antibody
titers and durable protection, while multiple immunizing events resulted in more
durable protection. However, even after multiple immunizing events, anti-S titers
fell below levels providing 50% within less than one year and anti-N titers waned
below the 50% protection threshold in under two years.

Our study is not without limitations. First, the anti-N assay was only officially
validated by the manufacturer to give qualitative results around the positivity
cutoff value and is thus not numerically validated across its whole range. We ad-
dressed this limitation by modeling anti-N values with flexible splines in the risk
of reinfection analysis, thus not relying on any linearity assumptions. Although
measurements are highly internally consistent, they can not be compared to anti-N
levels from other assays. Additionally, the anti-N assay was changed in January
2021; however, only three participants in the anti-N waning analyses were affected
by this anti-N change. In all analyses where anti-S antibodies were used (i.e., risk
of infection models and anti-S waning), we excluded observations before January
2021 since anti-S measurements only started in that month.
Second, the anti-S assay had an upper limit of quantification (LOQ) at 2,500 U/ml
before September 2021. After a change in dilution protocol, the LOQ increased
to 100,000 U/ml, but some participants still exceeded that limit. We took this
factor into account in the waning analyses by right-censoring these observations,
meaning that these observations were assumed to have a numerical value above
100,000 U/ml. No upper LOQ was observed in the anti-N measurements. More-
over, as with all antibody binding assays, the measured antibody levels are not
only influenced by the antibody concentration but also their avidity—the overall
strength with which an antibody binds to its antigen. Avidity tends to increase
over time following an immunizing event as the immune response matures [417,
418]. In our study, the assays were unable to differentiate between the effects of
antibody concentration and avidity.
Third, our study cohort consisted of blood donors, which are healthier than the
general population, and may thus not be representative. Blood donors self-select
into donating, and the cohort lacks individuals under 17 years of age and is un-
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derrepresented in rural areas. Additionally, we require data after an infection to
model the antibody waning dynamics, which means only individuals who survived
their infection and were healthy enough to donate blood or plasma afterward were
included in these analyses. Antibody responses tend to be lower and waning might
be faster in less healthy and older individuals [77, 419–421]. Thus, limiting our
study population to only healthy individuals might have biased the waning anal-
ysis towards longer antibody persistence and a higher percentage of blood donors
being above the defined protection thresholds compared to the general population.
Moreover, our stringent selection criteria, particularly for the waning cohorts, led
to higher donor ages (mean age approx. 55 years vs. 47 years in the overall donor
cohort), a higher proportion of males (83% vs. 50%), and a higher percentage of
white individuals (97% vs. 75%). However, we observed no differences in waning
parameters according to sex, age, or race, nor did our risk of (re-)infection results
change as selection criteria became more stringent. Furthermore, in terms of co-
hort selection, our study complements existing research conducted on hospitalized
patients [93, 422] and healthcare workers, who are predominantly younger and
female [95, 224, 225, 416]. Our results therefore allow insights into infection and
immunity in a broader demographic context [423].
Additionally, we lacked confirmed data on vaccine products, vaccination dates, in-
fection dates and infection severity. Instead, we inferred infection and vaccination
status from changes in antibody titers. This way, we did not rely on potentially
incomplete reporting, but we might have missed infections or vaccinations if they
did not result in an increase antibody titers.

Despite these limitations, our study provides valuable insights into the immune
response to COVID-19. Although we were unable to identify a clear protective
threshold for anti-N or anti-S antibodies, our findings suggest that maintaining
high antibody levels is crucial for sustained protection. Due to bi-phasic decay dy-
namics, these antibody levels decline rapidly following an immunizing event, but
persist at lower levels for longer than initially assumed. The quickly diminishing
protective effects of antibodies underscores the need for regular booster vaccina-
tions. Additionally, while anti-N antibodies may not play a direct biological role
in preventing infections, their strong correlation with protection suggests that as-
sessing serum anti-N levels may be valuable in informing personalized vaccination
decisions. As serum antibody measurements are quicker and more cost-effective to
obtain than measurements of cellular or mucosal immunity, they may be a feasible
option for some public health studies.
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Methods

Samples and donors

Early in the COVID-19 pandemic, Canadian Blood Services (CBS), in partner-
ship with the Canadian COVID-19 Immunity Task Force, began testing residual
samples from blood, plasma and platelet donors for SARS-CoV-2 antibodies, in
all Canadian regions except Quebec and the Northern Territories. From May to
December 2020, residual samples were tested only for anti-N antibodies, while af-
ter December 2020 testing was added for anti-S antibodies. Initially sampling was
performed for two weeks every month, starting January 2022. Before donation,
donors answer screening questions to ensure that they are in good health, and
their temperature is checked. Additionally, donations were deferred if the donor
had a SARS-CoV-2 infection in the previous two weeks, had been hospitalized
for COVID-19 in the previous three weeks, or had been in contact with a SARS-
CoV-2 infected individual. For more details on donor eligibility, sample collection,
and residual blood sampling strategies, see reference [411]. Available demographic
data were linked from the CBS donor database and included year of birth, sex,
self-reported ethnicity, and Forward Sortation Area (FSA) of the residential postal
code. Given the predominantly white donor population, we categorized ethnicity
as white versus non-white. Donors reporting conflicting ethnicity information were
coded as non-white if they ever reported non-white status.

The donors can be conceptualized as an open cohort with multiple measure-
ments on many donors, who could enter and leave the cohort at any time. We
compiled different cohorts for different analyses: For the risk of infection cohort,
all donors with at least two antibody measurements were eligible, regardless of
infection status. To ensure accurate measurement of Ab levels and to limit in-
terval censoring, we imposed a restriction on the gap between antibody measure-
ments, requiring the gap to be 180 days or less. For each donor, we selected
the longest consecutive sequence of measurements where the gaps between data
points remained within the 180-day interval (Figure 6.5). In sensitivity analyses,
we explored shorter intervals (90, 100, 120, and 150 days) to further enhance the
precision of antibody measurements. However, these more restrictive criteria in-
creased the risk of selection bias. Exploring different intervals represents a trade-off
between measurement error and selection bias.
For the anti-N waning analyses, we limited the cohort to donors who had ex-
perienced between one and three infections. For the anti-S waning analysis, we
included measurements up to the sixth increase in anti-S antibodies (either due to
vaccination or infection). For both analyses, we applied inclusion criteria at the
level of infection/vaccination episodes. We required 1) an antibody measurement
within 90 days before the detection of a new infection (anti-N analysis) or new
infection/vaccination (anti-S analysis) to ensure accurate antibody peak height
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Figure 6.5: Illustration of the interval selection criterion for the risk of in-
fection analysis. The anti-N antibody profiles of two donors are shown, with the
respective intervals between measurements. Data points included into the main analysis
(180 day filtering interval) are shown as black points. Data points not included because
they did not satisfy the condition of one measurement within 180 days before or do not
belong to the longest eligible measurement sequence are shown as X’s.

estimation and 2) at least four measurements per infection/vaccination episode to
estimate waning dynamics accurately.

This study was approved by the Canadian Blood Services Research Ethics
Board and the Instutional Review Board of the McGill Faculty of Medicine and
Health Sciences.

Serological assays

Two assays were used to measure antibodies. Total anti-SARS-CoV-2 spike an-
tibody (including IgA, IgG, and IgM) was measured with the semi-quantitative
Roche Elecsys® spike immunoassay. Total anti-SARS-CoV-2 nucleocapsid anti-
body was measured with the Abbott Architect SARS-Cov-2 IgG assay until De-
cember 2020, and with the qualitative Roche Elecsys® nucleocapsid immunoassay
afterwards. The Anti-S assay uses a standard curve, allowing results to be ex-
pressed in U/ml, with a validated positivity cutoff value of 0.8 U/ml (sensitivity
of 98.8% and specificity of 99.6%). In September 2021, the dilution factor was in-
creased because many samples were exceeding the maximum detection level, which
increased the upper limit of quantification from 2,500 to 100,000 U/ml. The Anti-
N assay was only validated as a qualitative test, i.e., designed only to determine
whether a sample is SARS-CoV-2 negative or positive. The positivity threshold
for this assay was validated with a sensitivity of 99.5% and specificity of 99.8%.
All numerical values of the assay are referenced to the cutoff value, resulting in a
cutoff index (COI) scale. While the anti-N values are internally comparable and
reproducible, they cannot be standardized to a U/ml scale.
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Infection and vaccination detection algorithm

SARS-CoV-2 infection dates were not reported and vaccination details were self-
reported by donors, leading to unreliable vaccination information. Therefore, we
developed an algorithm to infer infections and vaccinations from antibody data.
The algorithm used heuristics that were visually confirmed. Anti-N antibodies
are produced exclusively after infections, whereas anti-S antibodies are formed
following both infection and vaccination. This distinction allows us to differentiate
between immunity derived from infection and immunity derived from vaccination
(illustrated in Figure S6.1). We identified infections by a 0.4 increase on the log10
scale in anti-N antibodies (corresponding to a 2.5-fold increase on the natural
scale) or a transition from anti-N seronegative to seropositive. For subsequent
infections, we applied a lower threshold (0.2 on log10 scale, approx. 50% on the
natural scale). If anti-N levels continued to rise after an infection, we only counted
the first significant change within 60 days to avoid double-counting infections.
Visual inspection of individual time-series confirmed the algorithm’s accuracy in
detecting infection-related increases in anti-N levels. When donors had detectable
anti-N levels at their first measurement, we assigned them the status of having
been infected once. For vaccinations, we applied the same procedure using anti-S
antibodies, adjusting the threshold for very high anti-S levels to 0.2 on the log10
scale. Moreover, we ignored anti-S increases that coincided with anti-N increases
to exclude infection-induced changes. Given the difficulty in distinguishing closely
timed first and second doses due to temporal resolution limits, we did not detect
the first vaccination but focused on the primary vaccination series (i.e., first and
second dose). If donors entered the cohort with existing anti-S antibody levels, we
assigned them the vaccination status of a completed primary series, although we
acknowledge the probability of them having received booster doses.

Risk of infection and re-infection

We fit Cox proportional hazards models with time to infection as the outcome and
both antibody levels (anti-S and anti-N) as exposure. Participants were censored
if the antibody measurements were not included in the filtering intervals or at
the end of the study period (December 2023). Antibody levels were treated as
time-varying variables and fitted using cubic splines with three knots. As both
antibody types were included in the same model, the effects of each antibody
type can be interpreted as independent of the other effect. We did not explore
interactions between the two antibody types. Covariates included donor age, sex,
and ethnicity (white vs. not white). Age was included as a linear term since no
significant non-linearity was found. Additionally, we included information on the
circulation of variants of concern (VoCs), reported by the Public Health Agency of
Canada [424] and archived by the COVID-19 Canada Open Data Working Group
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[425]. We parameterized the VoC variable as predominant VoC (among Alpha,
Delta, and Omicron) at the time of measurement, with a two-week lag to account
for the time from infection to antibody response. We also included a marker
of overall infectiousness in the population, derived from weekly seroprevalence
differences, modeled at the province scale [409, 426]. We added a frailty effect
for individual donors to account for multiple infections and addressed interval
censoring by imputing infection dates to the midpoint of the interval. The full
equation for the Cox model is as follows:

λ(t|Xi, zi) = λ0(t)× exp(b1(anti-S(t)) + b2(anti-N(t)) + b3(seroprev-diff(t))+

β4age+ β5sex+ β6race+ β7Alpha(t) + β8Delta(t) + β8Omicron(t) + zi) (6.1)

where b(X) stands for the spline terms of the respective variables and zi is the
frailty term, with assumed distribution zi ∼ N (0, σz).
Sensitivity analyses were conducted by varying the imputation of infection dates
and using calendar day instead of the cohort entry date as the time scale. In these
cases, VoC predictors were excluded, as they were equal across all individuals for a
given calendar day. All model assumptions were checked visually and with statis-
tical tests, and no violation of the proportional hazards assumption was detected.
Coefficients were exponentiated to yield hazard ratios. Hazard ratios for the spline
terms were referenced to the respective positivity cutoff values for antibodies (1
for anti-N and 0.8 for anti-S) and 0 for the seroprevalence difference. We derived
95% confidence intervals (CIs) for the spline terms using 100 bootstrap samples,
taking the 2.5th and 97.5th quantiles of the bootstrapped distribution.

Model of antibody waning

Mechanistic model description To analyze the waning of antibody response,
we used a mechanistic model divided into three layers: a mathematical model, a
statistical model, and an observation model. The mathematical model is governed
by ordinary differential equations (ODEs), which describe the antibody produc-
tion and waning dynamics. The statistical model is a mixed effect model which
accounts for inter-individual and inter-infection variability of parameters, while
the observation model addresses measurement errors. The mathematical model of
waning describes a biphasic decay [91, 222, 225], parameterized according to the
work of [427, 428]. In brief, this model assumes antibody secretion from two types
of antibody-secreting cells (ASCs, also called plasma cells), which are short-lived
(S) and long-lived (L) ASCs. These cells decrease over time with decay param-
eters δS and δL, respectively. The ASCs secrete antibody into the bloodstream
at production rates θS and θL. In the blood, the antibodies decay with rate δAb.
These dynamics are detailed in equation 6.2.
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dS

dt
= −δSS

dL

dt
= −δLL

dAb

dt
= θSS + θLL− δAbAb

(6.2)

As neither short-lived nor long-lived ASC populations are observed in this
study, we had to modify the system to allow for parameter identification. Specif-
ically, the initial conditions of the S and L compartments, S0 and L0, could not
be identified separately from the production rates θS and θL. Following the ap-
proach by Pasin et al. [428], we re-wrote the dynamic system with the antibody
compartment as the only observation as:

dAb

dt
= ϕSe

−δSt + ϕLe
−δLt − δAbAb (6.3)

with ϕS = θSS0 and ϕL = θLL0. This leaves five parameters to estimate, three
decay parameters and two antibody secretion parameters: ξ = {δS, δL, δAb, ϕS, ϕL}.

In the statistical model, we accounted for two sources of variability, inter-
individual variability and inter-infection/vaccination episode variability. We in-
corporated these with two types of random effects, at the individual level and
at the infection/vaccination episode level, respectively. To ensure positivity, we
took the natural logarithm of the parameter for estimation. The value of param-
eter ξ for each subject i and infection/vaccination episode n is therefore written as:

log(ξin) = log(ξ0) + ui + un

ui ∼ N (0, ω2)

un ∼ N (0, γ2)

(6.4)

where ξ0 represents the population mean parameter across all infection/vaccination
episodes, ui is the individual random effect and un is the infection/vaccination
episode random effect. The two random effects are assumed to be independent of
each other.

For the observation model, we used antibody titers on the log10 scale, assum-
ing an additive, normally distributed error on the observations Y for participant i
at time t:

Yit = log10(Abit) + ϵit

ϵij ∼ N (0, σ2
Ab)

(6.5)
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Parameter estimation and model selection Parameters were estimated via
maximum likelihood estimation using a stochastic approximation expectation max-
imization (SAEM) algorithm implemented in the software Monolix, version 2023R2
(www.lixoft.com). We conducted extensive convergence assessments and model se-
lection procedures. The theoretical and practical identifiability of the model has
been confirmed in previous work [428]. However, as not all parameters could be
identified with only antibody titer data available, we fixed δAb to 0.033, which
corresponds to a half-life of 21 days [429, 430]. Additionally, we determined the
decay parameter for long-lived cells, δL, using profile likelihood estimation [431].
This process involves sequentially fixing δL at various values, running model esti-
mation, and selecting the value that maximizes the likelihood. As expected, given
the extended lifespan of L cells and the relatively short three-year observation
period, the likelihood profile remained flat at slower decay rates, indicating that
multiple rates were equally supported by the data. Consequently, we fixed δL to
the largest decay rate where further increases in likelihood were minimal. In a
backwards selection process, we found that applying random effects to the remain-
ing three parameters (δS, ϕS, ϕL) at the infection/vaccination episode level and
applying additional random effects to δS and ϕS at the individual level yielded the
lowest Akaike information criterion (AIC) while demonstrating good convergence.
Conversely, models that included regression coefficients (e.g., number of infections
instead of random effects) failed to converge, indicating practical identifiability
issues. CIs were computed using a bootstrapping approach, which involved resam-
pling participants with replacement and randomly varying the initial values of the
SAEM algorithm.

To nevertheless assess possible differences of waning parameters across different
infection episodes, we ran post-hoc linear mixed effects models separately for each
estimated parameter as follows:

log(δS) = log(δS1) + β2inf2 + β3inf3 (6.6)

To accurately include uncertainty from the mechanistic models into the regression
models, we ran the regression models also on the bootstrap runs and took the
2.5th and 97.5th percentile as the 95% confidence intervals. Since we used a log
link, the the beta parameters can be interpreted as having a multiplicative effect
on the baseline value of the parameter. Associations of demographic variables
with estimated parameters were examined the same way, while controlling for the
effect of the number of infections. Regression models were fit using R Statistical
Software version 4.4.1 [432], using the package lme4 version 1.1.35.3 [393].

Simulation of time to seroreversion To estimate when individuals were likely
to fall below different thresholds we simulated trajectories for all participants using
their individual estimated parameters. For anti-N, we used the assay detection
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threshold of 1 COI (i.e. seroreversion) and antibody levels determined by the Cox
model to reduce the hazard of infection by 25% (4.3 COI), 50% (14.6 COI), and
75% (61.7 COI). For anti-S, the thresholds were 0.8 U/ml (seroreversion), 100
U/ml (13% hazard reduction), 10,000 U/ml (25% hazard reduction), and 41,783
U/ml (50% hazard reduction). We simulated waning trajectories separately for
each infection episode, with each simulation starting at time 0. The simulations
covered a period of 3 years, as extrapolating beyond this time is less meaningful
due to the likelihood of reinfection, the high uncertainty in parameters after this
time, and reduced public health relevance. After obtaining individual trajectories,
we conducted Kaplan-Meier analyses of the time to seroreversion. To account
for uncertainty in previous parameter estimation, we also conducted the waning
analysis using the previous bootstrap runs and calculated the 95% CIs as the
2.5th and 97.5th percentiles of the bootstrap distribution. The simulations were
implemented in R version 4.4.1 [432] using the package deSolve version 1.40 [433],
and the Kaplan-Meier analysis was performed with the package survival version
3.7.0 [434].
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Figure S6.1: Exemplary antibody profiles of six repeat blood donors (A-F),
illustrating how we inferred infection and vaccination dates. Antibody assay
cutoff values are shown as dashed lines.
A: This donor has not been infected over the course of the study period, as can be seen
from the anti-N levels below the threshold of detection. In contrast, we could detect
four vaccinations through four increases in exclusively anti-S antibodies. It can also be
seen that the anti-S antibodies decrease quickly after an immunizing event.
B: In contrast, this donor has had two detected infections. As anti-S antibody levels
increased exclusively simultaneously with anti-N antibodies, we derived that this donor
has never received a vaccine dose.
C: In donor C, we were able to detect two vaccinations (by anti-S increases without
anti-N increases only), followed by two infections (simultaneous increases of anti-N and
anti-S antibodies).
D: Similarly, donor D first got vaccinated at least twice before they became infected.
After infection, we could detect two more anti-S increases, corresponding to two more
doses of vaccine.
E: Donor E presented already high anti-S antibodies at the first anti-S measurements.
Thus, we assigned them a vaccination status of completed primary series. However, they
could have received more vaccine doses before they entered the study cohort.
F: Similarly, donor F entered the study with already high anti-S levels. After an infection
the anti-S levels increased to the upper limit of quantification of the anti-S assay, thus
we were not able to detect any additional vaccine doses this donor might have received.
N nucleocapsid, S spike
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6.5 Manuscript 3: Supplementary Results

Cohort selection

Figure S6.2: Flowchart of participant selection for the risk of infection anal-
ysis.
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Figure S6.3: Flowchart of participant selection for the anti-N waning analysis.
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Figure S6.4: Flowchart of participant selection for the anti-S waning analysis.

Additional descriptives for all Cox model cohorts
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Figure S6.5: Weekly number of infections detected with different filtering
intervals.
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Results from additional Cox models

Sensitivity analysis of filtering intervals
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Figure S6.6: Adjusted hazard ratios for the association of spline-modeled
variables with the hazard of infection. Hazard ratios with corresponding 95% CIs
are shown over the range of assessed variables, and all assessed intervals are depicted.
The violin plots below indicate the distribution of the respective variables, with violin
area proportional to the amount of data in the respective datasets. A: Adjusted hazard
ratios for the association of anti-S antibody levels with hazard of infection. Hazard ratios
were referenced to the assay’s positivity cutoff point of 0.8 U/ml. B: Adjusted hazard
ratios for the association of anti-N antibody levels with hazard of infection. Hazard ratios
were referenced to the assay’s positivity cutoff point of 1 COI. C: Adjusted hazard ratios
for the association of weekly seroprevalence difference (a marker of overall infectiousness
in the population) with hazard of infection. The seroprevalence difference variable, can
range in theory from 0 (=no difference in seroprevalence to previous week) to 100%
(the whole population was infected within the last week). The seroprevalence difference
hazard ratios were referenced to 0.
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Sensitivity analysis on choice of time scale

Parameter 90 day interval 120 day interval 180 day interval

Calendar
day

Cohort
entry

Calendar
day

Cohort
entry

Calendar
day

Cohort
entry

sex (male) 1.05 (1.01-
1.10)

0.99 (0.95-
1.03)

0.97 (0.94-
1)

0.93 (0.9-
0.95)

0.98 (0.96-
1.00)

0.98 (0.96-
1.00)

age (10
years)

0.88 (0.87-
0.9)

0.88 (0.87-
0.89)

0.88 (0.87-
0.89)

0.88 (0.87-
0.88)

0.88 (0.88-
0.89)

0.88 (0.87-
0.89)

race
(white)

0.99 (0.94-
1.04)

0.99 (0.94-
1.04)

0.99 (0.95-
1.03)

0.99 (0.95-
1.02)

0.98 (0.95-
1.00)

0.97 (0.95-
1.00)

Alpha - 2.08 (1.03-
4.21)

- 1.63 (1.02-
2.63)

- 1.08 (0.77-
1.50)

Delta - 12.69
(6.65-
24.22)

- 14.21
(9.36-
21.59)

- 14.14
(10.71-
18.67)

Omicron - 62.02
(32.85-
117.07)

- 54 (35.78-
81.52)

- 37.3
(28.33-
49.09)

Table S6.2: Comparison of hazard ratios when model was fitted using differ-
ent time scales (Calendar day vs. cohort entry).

interval = 150 days interval = 180 days

interval = 90 days interval = 100 days interval = 120 days

Time scale

Calendar day

Cohort entry
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Figure S6.7: Comparison of anti-S splines when models were fitted using
different time scales (Calendar day vs. cohort entry).

176



interval = 150 days interval = 180 days

interval = 90 days interval = 100 days interval = 120 days

Time scale
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Cohort entry
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Figure S6.8: Comparison of anti-N splines when models were fitted using
different time scales (Calendar day vs. cohort entry).

Sensitivity analysis on imputation of infection date

interval = 150 days interval = 180 days

interval = 90 days interval = 100 days interval = 120 days

Interval
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Figure S6.9: Comparison of anti-N splines across all time intervals and event
imputation methods (directly after interval starts, interval mid point or in-
terval end point).
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interval = 150 days interval = 180 days

interval = 90 days interval = 100 days interval = 120 days
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Figure S6.10: Comparison of anti-S splines across all time intervals and event
imputation methods (directly after interval starts, interval mid point or in-
terval end point).

Antibody waning models

Anti-N antibody waning results

We determined the values for the decay rate of long-lived antibody-secreting cells
(ASCs) by profile likelihood, separately for first and subsequent infections, as we
hypothesized the value might differ according to infection number. Because the
maximum follow-up duration was only slightly over three years, the likelihood was
flat toward lower δL values, indicating a half-life of long-lived ASCs of over three
years. Therefore, we fixed δL to the value where the likelihood plateaued, which
was 0.000543 for the first infection and 0.000345 for subsequent infections. These
correspond to half-lives of 3.5 and 5.5 years, respectively. For the other parameters,
we estimated population-level values with our mechanistic model and afterwards
applied linear mixed models to assess parameter differences between infections.
The population estimate for the decay rate of short-lived ASCs (δS) was 0.008
(95% CI: 0.007-0.009), corresponding to a half-life of 84 days (95% CI: c days, see
Table S6.3). The ϕ-parameters are more complex to interpret because they are
the product of the initial concentration of the respective cells and their production
rate. We observed a higher value of ϕS than ϕL, indicating higher production or
higher starting values of short-lived than long-lived ASCs.
We found significant differences in estimates between infection numbers. Specif-
ically, the waning parameters (δS and δL) were reduced in second and third in-
fections compared to the first, indicating a higher ASC half-life. Likewise, the
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production parameters (ϕS and ϕL) were increased, suggesting higher initial ASC
concentration or higher ASC generation rates. Moreover, antibody titers at the
beginning of the first infection were substantially lower than after subsequent infec-
tions (population values estimated as 12.9 (95% CI: 12.1-13.7) after first infection,
52.4 (95% CI: 48.5-58.3) after second infection and 77.5 (95% CI: 44.9-84.5) after
third infection). The uncertainty increases with increasing number of infections
as less data was available for second and third infections than for first infections.
Note that we report these values without units, as the anti-N assay used, despite
being highly internally consistent, is not numerically comparable across labora-
tories. We tested the associations between demographic variables (sex, age, and
race) with the model parameters in linear mixed effects models, but no significant
associations were found.

Parameter Population estimate
(95% CI)

% difference 2nd to 1st

infection (95% CI)
% difference 3rd to 1st

infection (95% CI)

δS 0.008 (0.007-0.009) -17.5 (-32.0 - -7.0) -22.8 (-38.5 - -9.0)
φS 0.91 (0.81-1.06) 78.8 (3.5 - 202.8) 62.1 (-9.5 - 263.1)
δL

a 0.000543b -36.5c -36.5c

φL 0.05 (0.04-0.07) 95.3 (60 - 154.7) 144.7 (48.8 - 250.6)

Table S6.3: Anti-N waning parameters estimated with the mechanistic
model. δAb is not mentioned in the parameter table, as it was fixed to 0.033. Mecha-
nistic model parameters were estimated on a log10-scale.
a No CIs for estimates determined by profile likelihood
b Estimate for the first infection only
c Estimated by profile likelihood

Anti-S antibody waning results

Anti-S waning dynamics were modelled both for anti-S increases after vaccination
and infection. The decay rate δS was found to be comparable in magnitude to
that of anti-N antibodies, but ϕS and ϕL were estimated much higher (Table
S6.4). This is expected given that anti-S levels are significantly greater than anti-
N levels by several orders of magnitude. There was considerable uncertainty in
the dynamics of ϕL, as reflected by the wide confidence intervals. For long-lived
cells, we identified an inflection point in the profile likelihood curves at 0.00076,
corresponding to a half-life of 2.5 years. This value was determined as a consensus
across all vaccination/infection episodes.
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Parameter Population estimate
(95% CI)

% difference between
infection and vaccina-
tion (95% CI)

δS 0.007 (0.005-0.008) -25.3 (-26 - -17)
φS 449.8 (418.9 - 498.7) 108.6 (101.5 - 139.6)
δL

a 0.00076b -
φL 106.8 (61.4 - 127.1) 86.6 (46.9 - 87.5)

Table S6.4: Anti-S waning parameters estimated with the mechanistic model.
δAb is not mentioned in the parameter table, as it was fixed to 0.033.
a No CIs for estimates determined by profile likelihood
b Estimated across all anti-S increases
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Figure S6.11: Fits of anti-N waning model.
A: Visual predictive check of the anti-N waning dynamics, separated by infection num-
ber. The dots and lines depict the 5th, 50th, and 90th percentile of individual observed
data, binned into 50-day intervals. The shaded areas are calculated as the 95% prediction
interval from the bootstraps for the same percentiles, by taking the individual predic-
tions per bootstrap run, extracting the 5th, 50th, and 95th percentile, respectively, and
then calculating the 2.5th and 97.5th percentile of these values as prediction intervals.
The bar plots below indicate the number of observations that were used for every bin.
Since the observations per bin become scarce in the later time points of infections 2 and
3, the observations curves can sometimes unexpectedly increase.
B: Individual fits for nine randomly selected donors with only one infection (panels 1-
3), two infections (panels 4-6) and all three infections (panels 7-9). The dots indicate
observed data and the black lines the fits.
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7
Discussion

7.1 Summary of the results

My thesis focused on applying mathematical models to data collected during the
COVID-19 pandemic to improve our understanding of how viral spread can be
controlled. We developed sophisticated models to exploit data that were not orig-
inally intended for the purposes of my research. These included publicly available
epidemiological data provided by Santé Publique France, primarily collected for
surveillance and public information, and a large antibody dataset from Cana-
dian Blood Services, gathered for serosurveillance. Both data sources came with
unique advantages and limitations. The modeling approaches we used spanned
various techniques, such as linear mixed effects models, Cox proportional hazards
models, and mechanistic models, each of which required addressing different chal-
lenges. The mechanistic models were applied on two different scales: between-host
transmission dynamics (Manuscripts 1 and 2) and within-host immunity waning
(Manuscript 3). While my research began after the initial stages of the pandemic,
it provides a retrospective analysis of pandemic events, contributes to ongoing
debates, and informs future policies. When I started my research, many topics ad-
dressed in my thesis were the focus of considerable research and public discourse:
the effectiveness of vaccines in reducing hospitalizations and deaths, the validity of
lockdowns and other strong NPIs, and the duration of immunity from vaccination
and infection.
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In Manuscript 1, we developed a mechanistic model to estimate the effective-
ness of NPIs and vaccines in France from the start of the pandemic until the
emergence of Omicron. One strength of the model was that it estimated all pa-
rameters in a single step. Our findings showed that all major NPIs enforced by
the French government were effective in curbing SARS-CoV-2 spread, with the
first lockdown reducing transmission the most. Simulations demonstrated that
enforcing lockdowns one or two weeks earlier could have saved 20,000 or 33,000
lives, respectively. In counterfactual vaccine scenarios, we showed that vaccines in
France alone prevented over 158,000 deaths during the study period. If vaccines
had been available just 100 days after the SARS-CoV-2 genome was sequenced,
more than 70,000 additional lives could have been saved.

In Manuscript 2, we comparatively evaluated the optimal way to conduct NPI
effectiveness studies in terms of methodology. We simulated data using various
models, from simple SIR models to agent-based models with complex contact
networks. We then assessed the performance of two widely-used approaches for
estimating NPI effectiveness: a two-step Rt regression model and the mechanistic
model from Manuscript 1. Our analysis revealed that the confidence intervals for
NPI parameters estimated by the two-step regression procedure were consistently
too narrow, as these methods fail to account for uncertainty of the first step. We
mitigated this bias by implementing a bootstrap procedure, where the estimated
Rt distribution from the first step was used in the second step. Additionally, we
showed that depletion of susceptibles and challenges in the Rt estimation step
could strongly bias NPI estimates and that the regression approach should only
be applied in low-transmission scenarios to avoid misattributing herd immunity
effects to NPIs. Mechanistic models, on the other hand, produced more reliable
NPI estimates and accurate confidence intervals, even under minor model misspec-
ification and random measurement errors applied to observations.

Manuscript 3 focused on SARS-CoV-2 antibody data from a large cohort of
Canadian blood donors. We inferred infection and vaccination dates from antibody
trajectories and used these data to examine the impact of antibodies on reinfection
risk. The analysis revealed that both anti-nucleocapsid and anti-spike antibodies
provided protection against reinfection. This finding may not be due to antibody
activity itself—since only anti-spike antibodies exhibit neutralizing capacity—but
rather due to the correlation between anti-nucleocapsid antibodies and other im-
mune responses triggered by natural infection. We also modeled antibody waning
dynamics in a longitudinal sub-cohort using a biphasic mechanistic model, find-
ing that antibodies exhibited longer durability than expected, with a steep initial
decline followed by a slow waning phase. While few donors seroreverted over sev-
eral years, many fell below the threshold for sufficient protection, confirming that
immunity providing high levels of protection wanes relatively quickly.
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7.2 Strengths and limitations

The three chapters of my thesis altogether bring up more general questions and
raise several common issues that I will discuss in what follows.

7.2.1 Data challenges

Throughout my thesis, we used data that were not collected explicitly for the pur-
pose of my research. Re-using data in two different contexts came with unique
challenges, but the data also provided some strengths. By exploiting biological
knowledge and using mechanistic approaches, we could circumvent some of the
limitations.

Many challenges pertaining to NPI effectiveness studies have already been dis-
cussed in Section 2.4.2. NPI studies conducted early during the COVID-19 pan-
demic often faced issues related to data availability and quality. Surveillance data,
like COVID-19 cases, hospitalizations, and mortality, are the most direct indica-
tors of an epidemic, but greatly depend on the reporting systems in place, with
limitations such as under-reporting, reporting errors and lags, and missing geo-
graphical information. This is especially true in low- and middle-income countries
(LMIC), where the quality of data collection might be inconsistent within a coun-
try or not exist at all [435, 436]. In Manuscript 1, we retrospectively analyzed
data provided by Santé Publique France, with exceptionally high quality and ge-
ographical resolution. Still, to account for remaining reporting errors, we did not
rely on one type of observation, but used four types of observations (cases ad-
justed for under-reporting, hospital admissions, hospital occupancy, and deaths)
and modeled measurement errors on the reported data. In Manuscript 2, we only
simulated observations with a random measurement error, and we did not explore
the influence on other data problems. In Manuscript 3, we analyzed blood donor
data provided by Canadian blood services, which contained highly accurate and
reliable SARS-CoV-2 antibody measurements, but no information on vaccination
or infection dates. Moreover, since the cohort was based on blood donors only, the
findings might not be generalizable.

Beyond the surveillance data used for calibration, mechanistic models must
be parameterized with biological information of disease transmission. While this
parameterization increases the biological and causal relevance of the models, the
models can be highly sensitive to some assumptions and input parameters, many
of which are uncertain [257]. In Manuscript 1, results are sensitive to parameters
like the assumed proportion of asymptomatics and the duration of incubation and
infectious periods. Moreover, the uncertainty in fixed parameters is usually not
accounted for in the modeling process and thus not reflected in the confidence
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intervals of estimated NPI parameters. However, we conducted sensitivity anal-
yses to assess the influence of some fixed parameters. Furthermore, the study
presented in Manuscript 1 benefited from data collected over almost two years of
the COVID-19 pandemic, so the input parameters were more reliable than at the
start of the pandemic. One example of how we could improve parameters thanks
to a better knowledge of the disease is my Manuscript 3, in which we estimated
the duration of immunity derived from infection. This estimate-or a distribution
of this estimate-can then be used to better inform models that include waning
immunity.

Another issue relates to the lag of epidemiological surveillance reports relative
to the actual transmission process, due to incubation periods and the period from
infection or symptom onset to testing or care-seeking. Understanding these lags is
crucial for assessing the effectiveness of interventions, as one needs to account for
the time passed from NPI implementation until the effects are visible in surveil-
lance data. In Manuscript 1, the mechanistic model accounted for the incubation
period and the time from symptom onset to hospitalization. Moreover, observa-
tional data reported by Santé Publique France were corrected for reporting delays.
In Manuscript 2, we did not explore in depth the issue of data delays, neither by
simulating them explicitly, nor when assessing NPI effectiveness with the two-step
regression model. Instead, we lagged NPIs in regression models to account for
the incubation period, similar to many other studies [1, 135, 151, 155]. In an ex-
ploratory analysis, we found that by using the-in reality unobserved-new infections
to estimate Rt, we alleviated some of the bias in parameter estimates, but did not
remove it completely.
Several software packages are available to decompose the delay distributions re-
sulting from incubation period, time from symptom onset to testing, and time
from symptom onset to hospitalization [394, 395]. This decomposition allows for
estimation of the actual infection process, and therefore more accurate estimations
of Rt. Beyond improved Rt estimates, the deconvolution of time lags would also
have increased the uncertainty in Rt estimates, which is not taken into account in
the second step, unless a bootstrap approach is used.

Another data issue pertains to the quality of NPI data. For Manuscript 1, we
manually coded NPIs by gathering information from administrative websites, a
highly labor-intensive process, which is hardly feasible on an international scale.
Many studies thus relied on data gathered by NPI trackers, which come with their
own challenges (as discussed in Section 2.4.2). We used the Oxford COVID-19
Government Response Tracker (OxGCRT) [126] as a guide for coding NPIs, but
we adapted the categories to our needs. A comparison between our NPIs and the
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Figure 7.1: Comparison between all NPIs coded in the NPI dataset for
Manuscript 1 and the NPIs coded in the OxCGRT dataset. The OxCGRT
dataset provided NPI data for France only at the national level, whereas we gathered
data for 94 administrative units (departments), capturing variations across departments.
For illustration, we present NPI data for a single department (91, Essonne). Some NPIs
are coded with multiple levels, reflecting variations in the strictness of implementation.
For example, curfews in France were enforced at different times of the day (ranging from
6-9pm). Additionally, the OxCGRT includes a ”stringency index”, which is supposed to
summarize the overall strictness of NPIs in one measure.

OxGCRT is shown in Figure 7.1. The largest difference between the two datasets is
that we gathered data on 94 departments, whereas the OxCGRT only made NPI
data available for France on the national level. Discrepancies in the Figure 7.1
might stem from these different levels of NPI enforcement. Additionally, despite
orienting ourselves to the OxCGRT NPI categories, we formed our own categories
of NPIs to include in our analysis. For example, the OxCGRT category ”Stay
at home requirements” was divided into three lockdowns in our dataset. Due to
identifiability issues, we could not include all of the gathered NPIs into our analysis
model. For example, we were not able to include ”closed bars and restaurants”
or ”closed shops”; however, one could argue that these measures are parts of a
lockdown.

Similar to Manuscript 1, we had access to data about a very large popula-
tion in Manuscript 3, although the data was lacking detail at the individual level.
The greatest advantage of the blood donor dataset is its extremely large sample
size and thus high statistical power: Overall, it contained over 1 million antibody
measurements collected from over 400,000 donors. Since its primary envisaged use
was surveillance of SARS-CoV-2 immunity in the Canadian population, it also has
limitations regarding the re-purposing for our study. Some of these have not been
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discussed in depth in the manuscript and will be presented here: First, the dataset
contains exclusively individuals healthy enough to donate blood and is predomi-
nantly composed of men. Moreover, as the filtering criteria become more stringent
to increase the number of data points per participant, both the proportion of men
and their average age increase. Thus, the analysis conducted in Manuscript 3 can
complement other analyses which obtained their data from healthcare workers,
who are mainly younger and female. In post-hoc analyses, we found no differences
in waning according to demographic variables (age, sex, race), but this may be
due to limited variation in the cohort. The data collected by Canadian Blood
Services did not contain information on comorbidities (e.g. obesity, hypertension,
immune system impairment) or health-related behaviors (e.g. tobacco and alcohol
consumption). Furthermore, dates of infections and vaccinations were not included
in the data, which also means we lacked information on the severity or symptoms of
infection and the vaccine types. This type of information could easily be collected
via questionnaires, and there is potential for these questions to be included during
blood or plasma donation appointments in the future. Second, due to the lack of
information on vaccinations and infections, we developed an algorithm to detect
these immunizing events based on antibody data only. An important limitation to
emphasize is that infections and vaccinations risk being missed if antibody levels
do not increase enough after an immunizing event. This could happen in immuno-
compromised individuals—who are probably not blood donors anyways—or if the
upper LOQ of antibody assays is reached. Indeed, in some cases, we observed
increases in anti-nucleocapsid antibodies indicating an infection, while anti-spike
antibodies remained unchanged, mainly in individuals with anti-spike antibodies
close to or at the upper LOQ. Another reason for this phenomenon could also
be an asymptomatic infection, which has been shown to result in lower antibody
increases [437].

7.2.2 Modeling challenges

Modeling inherently requires a series of decisions, such as selecting the type of
model, determining how to parameterize it, choosing the appropriate level of com-
plexity, deciding which covariates to include and in what functional form, consid-
ering whether to incorporate random effects, and identifying which variables to
fix. Some of these choices are dictated by the research question, the availability
of data, or the data structure. Others require more arbitrary judgments by the
modeler.

Age is one of the most important characteristics in the modeling of infectious
diseases in populations [259]. In Manuscript 1, we were limited by the nonavail-
ability of daily age-stratified hospitalization data on the lowest geographical level
in France (department). Thus, a choice needed to be made to either 1) fit an

188



age-stratified model but with aggregated weekly data from 12 larger regions in-
stead of daily data from 94 small administrative units or 2) use daily data with
high geographical resolution but do not fit an age-stratified model. In the end, we
opted for the latter. Thus, we do not to estimate age-specific effectiveness of NPIs
or vaccines, nor do our simulations take into account the age-dependent effects of
vaccines or stratify by age when calculating the counterfactual number of deaths
and hospitalizations. For instance, we do not model age-specific risks of hospital-
ization or differential contact rates between age strata [438].
Incorporation of age stratification would make our model more realistic, as the dis-
ease dynamics in reality are not homogeneous and contacts are not random. Age
stratification is particularly relevant for estimating effects of age-targeted vaccina-
tion programs, which only affect certain segments of the population or have larger
benefits for certain groups. During the COVID-19 pandemic in France, high risk-
groups like healthcare workers, the elderly, and the immunocompromised were
prioritized for vaccination due to their high risk of exposure (healthcare work-
ers) or high risk of severe disease (elderly and immunocompromised). However,
younger people had a more important role in transmission [439, 440]. By ig-
noring age structure, our model might have underestimated vaccine effectiveness
against transmission, but potentially overestimated vaccine effectiveness against
hospitalization, as the most susceptible individuals were vaccinated first. Never-
theless, our effectiveness estimates against hospitalization were within the range
of other estimates [179]. Moreover, incorporating age structure requires additional
model parameters that need to be estimated or assumed, which adds complexity
[441]. Age-structured models also require accurate and up-to-date contact ma-
trices, which can be challenging to obtain, especially during a pandemic where
contact patterns can change in unpredictable ways.

Another modeling choice we made in Manuscript 1 was to account for regional
variation across 94 administrative units with a mixed effects model. However,
our model did not take into account population flows between individual admin-
istrative units, treating each as a closed population. This might have affected the
results, for example during school holiday periods, where population movements
are more frequent [442]. These movements have the possibility to increase viral
transmission in some places while decreasing it in others, or carrying the virus to
places where the epidemic had already died out, for example during the summer of
2020, where viral transmission was very low or nonexistent in some places. Overall,
this might have led to a misspecification of the random effects of the model, where
we assume a normal distribution of parameters across departments. However, the
fixed effects of NPI effectiveness should be robust to this misspecification. Other
studies have incorporated the population movement by using metapopulation net-
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work models, which are parameterized according to the movement of individuals
between geographical units [443, 444].

Another choice we faced in Manuscript 1 was how to incorporate vaccinations
into our mechanistic model. The data provided by Santé Publique France pro-
vided information on the number of vaccinated individuals in each geographical
region, but lacked details on what proportion of these individuals had been pre-
viously infected. Adding explicit ”vaccinated” compartments to the model would
thus have required assumptions about the distribution of vaccinated individuals
across compartments and about vaccine failure at the individual level [445]. For
instance, if vaccine effectiveness is assumed to be 70%, do vaccines protect 70%
of individuals completely or do they provide equal protection to all individuals,
but only 70% of the time? To avoid introducing these assumptions, we opted to
represent vaccines as the population vaccine effect, a parameter that modulates
transmission and the risk of hospitalization. This effect was parameterized as the
product of population vaccine coverage (available in Santé Publique France data)
and vaccine effectiveness (estimated). While this approach removed the need to
assume additional fixed parameters, it did not account for different modes of vac-
cine failure, which could have introduced bias into the results. Lee et al. find that
infection levels are generally lower with all-or-nothing vaccines compared to leaky
vaccines [445]. This discrepancy increases with intermediate vaccine efficacy, high
R0 and a higher proportion of vaccinated individuals. This is because if the epi-
demic is not controlled early and continues to spread, vaccinated individuals will
be repeatedly exposed and thus face a higher probability of infection when the
vaccine is leaky. When simulating a scenario similar to the one in France during
the Delta wave, Lee et al. find that the choice of vaccine failure mode has only a
small (but significant) effect on final estimates [445].

In Manuscript 2, we evaluated the choice of methodology for NPI effectiveness
studies more generally. Our criteria for model choice were focused on the accu-
racy of models to estimate parameters with little bias and high confidence interval
coverage. However, one criterion that we did not take into account is the ease of
implementation of the approaches used in modeling, neither did we evaluate ap-
proaches in terms of speed of parameter estimation and model development. There
is a trade-off between timeliness and accuracy when assessing NPI effectiveness,
especially at the start of an epidemic, when quicker but simpler models may be
necessary for decision-making. Mechanistic models, while more accurate, are com-
putationally intensive, requiring specialist software, high-performing computing
infrastructure, and expert knowledge. For instance, the model built in Manuscript
1 and re-used as the comparison model in Manuscript 2 required several months of
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model development and many hours of run time on a high-performance computing
cluster. Another fact that is rarely considered is the growing impact of computing
on resource use and carbon footprint, which should be included as a criterion of
model selection in the future [446].

In Manuscript 3, one modeling choice we took was to use a model that does
not focus on the increase in antibody-secreting cells (ASCs) after an infection or
vaccination. The models by Pasin et al. [428] and Alexandre et al. [427], on which
our model was based, assumed that ASCs reached equilibrium seven days after an
immunizing event, and started modeling antibodies at this point. This also means
that the initial values of ASC compartments (S0 and L0) are set to their respective
values of day 7 post-immunization. After that, the number of ASCs only decreases,
but they are nonetheless assumed to continue producing antibodies at rates θS and
θL, which allows for initial increases in antibodies.
We cannot be certain that the 7-day assumption was met or that seven days really
correspond to the time to reach equilibrium of ASCs triggered by a SARS-CoV-2
infection. However, the inclusion criteria into the analysis cohorts allow for 90
days to have passed between measurements, and eligibility criteria for blood do-
nations do not allow donations during the symptomatic phase of a SARS-CoV-2
infection. Together, these two criteria ensure that for most donations, seven days
have passed between the immunizing event and the antibody measurement.

Instead of modeling the establishment of an immune response after an immu-
nizing event, we reset the ODE system for each detected infection or vaccination.
However, this choice resulted in the estimation of model parameters that might
have been more difficult to interpret (ϕS and ϕL), as they represent the product
of two unidentifiable variables (θ parameters and initial values). More complex
models have been proposed to account for the establishment, reactivation, and
persistence of humoral immune responses following several vaccinations [355, 447].
The absence of antibodies does not imply absence of immunity, which could also
be mediated by memory cells. Our model did not consider the presence of mem-
ory cells like other, more complex models did [447], but recent findings suggest
that long-lived ASCs in bone marrow can secret antibodies continuously over long
periods of time without replenishment from memory B cells [448].

Due to the lack of observations on ASCs, all parameters needed to be estimated
from antibody data only. This forced us to fix one parameter (δAb), replace others
by combined parameters (θS and S0 by ϕS, θL and L0 by ϕL) and estimate one
parameter by profile likelihood (δL). With the profile likelihood estimation, we
could only determine a lower bound of the durability of long-lived ASCs, which
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means that immunity is likely to last longer than estimated in the study. It also
impeded us to estimate more complex models, such as those including memory
compartments. Moreover, the uncertainties associated with the fixed parameter
and the parameter determined by profile likelihood are not included in the confi-
dence intervals of the waning simulations.

7.2.3 Causal interpretation of estimated parameters

Manuscript 1 estimated the effectiveness of NPIs in curbing viral spread, and used
causal language to describe NPI effects. Mechanistic models have been proposed
as an alternative to the potential outcomes framework when estimating causal ef-
fects of interventions [361, 385, 449]. In mechanistic models, causality is rooted
in concepts of physical systems and expressed by mathematical equations, with
time being explicitly incorporated into the model structure. A major advantage
of mechanistic models is that they can directly integrate biological knowledge and
thus allow the modeler to restrict the system to only biologically plausible mech-
anisms. Moreover, mechanistic models also offer the advantage of simulating tra-
jectories. ABMs have also been suggested for exploration of causal mechanisms,
as they allow for multiple interacting causes and thus can be used to test sev-
eral competing theories about causal mechanisms [260]. Both mechanistic models
and ABMs can account for phenomena that traditional regression models struggle
with—such as the depletion of susceptibles in a population or the indirect protec-
tive effects of herd immunity, which regression models would erroneously attribute
to implemented NPIs, as shown in Manuscript 2. Moreover, phenomena like herd
immunity violate the i.i.d. (independent and identically distributed) assumption
of regression models. In the comparative discussion of models for NPI effectiveness
(Manuscript 2), this fact constitutes another advantage for mechanistic models.
However, it is important to note that in our mechanistic model, the effect of
NPIs was included into the model structure as a regression term that acted di-
rectly on the transmission rate. While this assumes NPIs influence transmission,
the exact causal pathways remain unexplored. The causal interpretations of NPI
effectiveness rely on assumptions that may not hold. Specifically, as NPIs rely
on population behavior, compliance with implemented NPIs plays a crucial role
in determining NPI effectiveness. Moreover, studies across different populations
or subgroups of populations can be confounded due to variations in compliance,
but also in demographics, economic conditions, and previously implemented or
co-implemented NPIs. Estimates could for example be biased by proactive popu-
lation behavior [450] or spillover effects. Moreover, NPI effectiveness may change
as the epidemic progresses, with virus evolution, public behavior shifts, and new
protective measures influencing outcomes [175].
For example, in their study on NPI effectiveness, Bendavid et al. compared coun-
tries with ”more restrictive NPIs”—like England, France, and Germany—to those
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with ”less restrictive NPIs” (South Korea and Sweden) [173]. However, they dis-
regarded voluntary anti-contagion behaviors such as mask wearing and mobil-
ity reductions. For instance, Sweden saw voluntary changes in mobility, where
the population avoided dense urban areas, traveled less distances in general, and
opted for more individual modes of transportation [451–453]. In South Korea,
mask wearing was common even before the pandemic, and compliance with im-
plemented NPIs, such as quarantine, was extremely high [454–456]. Additionally,
the analysis by Bendavid et al. overlooks the timing of NPI implementation. As
Brauner et al. [134] and Banholzer et al. [135] (among others) observed, if stricter
NPIs are implemented after less restrictive ones, their effectiveness is reduced. The
study also fails to account for the lag between NPI implementation and its effects
on case numbers, which is particularly important if highly restrictive NPIs are
implemented in response to high viral transmission.

Manuscript 1 and 2 use government-enforced NPIs as modifying factors of the
transmission rate or Rt, but do not account for how actual population behavior
may differ from mandated behavior. Non-adherence to NPIs, especially as the pan-
demic progressed, could be a reason for the diminishing effectiveness of lockdowns
over time found in Manuscript 1 and more generally in the literature [151, 340,
457–459]. Our analysis also lacks individual-level insights and only provides results
on a population-wide scale. Understanding how individual behaviors and exposure
patterns influence the transmission dynamics under NPIs is crucial. For example,
mask mandates could encourage more public interaction, or school closures might
lead parents to work from home more frequently [175]. Moreover, evaluating NPI
effectiveness in a causal manner is challenging because public awareness of dis-
ease transmission, or even the mere discussion of potential NPIs, can influence
people’s contact behaviors [460]. Researching these behavioral mechanisms could
shed light on why and when specific NPIs work and how they interact with each
other. Individual-level studies on risk factors and behaviors can further inform
policy decisions [461, 462], but these data might be challenging to obtain [435,
463]. Furthermore, keeping the balance between privacy and accurate individual
information can be difficult.

In Manuscript 3, we used a Cox proportional hazards model to assess the pro-
tective effect of antibody levels on the risk of SARS-CoV-2 infection. For anti-spike
antibodies, the findings could be interpreted in a causal way, i.e. higher levels of
anti-spike antibodies provide protection from infection directly. This is possible
because neutralizing anti-spike antibodies have been discussed as a mechanistic
correlate of protection [211]. Anti-nucleocapsid antibodies, however, are not rec-
ognized as a mechanistic correlate of protection. It is more likely that they are
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correlated with a range of immune mechanisms induced by natural infection, such
as mucosal and cellular immunity. The highly protective effect of anti-nucleocapsid
antibodies should thus be interpreted as an association, not as a direct causal ef-
fect—although it could of course be causal.

7.2.4 Missing embedding into the broader societal context

In Manuscript 1, we retrospectively confirmed the effectiveness of lockdowns, cur-
fews, and school closures in France using a sophisticated mechanistic model. How-
ever, we did not address the broader societal impacts of NPIs beyond reducing
transmission, although this is a critical issue. Stringent NPIs had profound impacts
on various aspects of society, including disruptions in essential services, worsening
mental health, and exacerbating social inequalities [464, 465]. These measures dis-
proportionately affected more vulnerable groups like children, low-income families,
ethnic minorities, and women [113]. NPIs have been linked to increased risks for
several non-communicable diseases, as they for instance decreased levels of phys-
ical activity and increased obesity rates [466–468]. Moreover, during lockdowns,
studies reported spikes in depression and anxiety [469–471]. Furthermore, essen-
tial health services were severely disrupted during the pandemic. Public fears,
social distancing, reduced public transportation, and the restructuring of health-
care institutions to handle surges in COVID-19 cases all made it more difficult
for individuals to obtain the services they needed [472]. A survey from the WHO
noted that virtually all health services were affected, both for communicable and
non-communicable diseases [473]. Another WHO report stated that mental health
services were notably impacted, with over 40% of countries reporting full or partial
closures of inpatient and 60–70% of countries reporting full or partial closures of
home care and day care services [474].

Due to their implementation directly and the broader economic disruptions
they caused [475, 476], NPIs also came with significant economic costs. Under-
standing which NPIs are most effective in different contexts is therefore crucial for
avoiding overly severe and unnecessarily prolonged restrictions [477]. Optimiza-
tion approaches using machine learning have been developed to simultaneously
reduce overall mortality and minimize economic losses [478–481]. Our simulations
in Manuscript 1 indicate that earlier implementation of lockdowns could have re-
sulted in fewer deaths and hospitalizations, even with the same duration. Many
studies report that early intervention interrupts viral transmission more effectively
and allows societies to return to normal more quickly [115, 116]. However, early
implementation of restrictive NPIs requires strong political leadership. Beyond
lockdowns, strategies like high vaccination rates, efficient contact tracing and test-
ing systems, and widespread mask usage can replace more restrictive NPIs. For
instance, we estimated curfews to be nearly as effective as lockdowns. Some ex-
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perts have suggested protecting only vulnerable populations rather than imposing
universal lockdowns, advocating for interventions that balance social and economic
needs while safeguarding high-risk individuals [119, 482].
In Manuscript 3, we observed that natural immunity appears to offer more robust
protection than vaccine-induced immunity. However, this does not necessarily
imply that countries should pursue a ”herd immunity” strategy, as some politi-
cians advocated by at the onset of the COVID-19 pandemic [483]. This approach
overlooks the significant health risks associated with widespread infection, partic-
ularly for vulnerable populations, and the unpredictable consequences of emerging
variants.
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8
Conclusions and Future Work

8.1 Implications

The research conducted in this thesis during and after the COVID-19 pandemic
has yielded several important findings: First, it contributed to the identification
of effective NPIs and emphasized the importance of timely NPI implementation.
For future pandemics or waves of COVID-19, I showed that lockdowns could be
a good policy instrument to rapidly and drastically curb spread. However, their
social and economic costs may limit their long-term feasibility. Alternative, less
disruptive interventions, such as early curfews paired with bar and restaurant
closures and hygiene protocols can achieve similar results. Overall, the sooner
NPIs are implemented, the more successful they are at controlling viral spread.
Second, I showed that an early and rapid rollout of vaccines is essential in curbing
both viral transmission and severe disease outcomes. Moreover, I demonstrated
that high antibody titers provided effective protection against infection. These
high antibody titers can be reached both through infection and vaccination, but
quickly wane below thresholds needed to maintain high protection. Compared
to vaccine-induced immunity, infection-induced immunity may offer more durable
and effective protection than vaccine-induced immunity.
The third contribution of my thesis is to the methodology used in NPI effectiveness
studies. I showed that careful consideration is needed when applying two-step
regression models for estimating effectiveness of interventions, although they can
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yield results a lot faster. Robust methods such as bootstrapping are required to
accurately capture the uncertainty in two-step models.

8.2 Outlook

Looking ahead, although the COVID-19 pandemic has been officially declared
over, SARS-CoV-2 continues to circulate and infect people globally. The virus has
become endemic in most countries, but it has not yet settled into a predictable
seasonal pattern like influenza. Ongoing challenges include the continued evolution
of the virus, which may still become more pathogenic or immune-evasive, reducing
the effectiveness of existing vaccines and natural immunity [484, 485]. Current
vaccine development lags behind viral mutations, though efforts are underway to
create a pan-coronavirus vaccine that can offer broader protection [486]. The tim-
ing and necessity of vaccine booster doses are also debated. As long follow-ups are
rarely available, the long-term dynamics of immunity are still uncertain.
Another challenge lying ahead is the co-circulation of SARS-CoV-2 with other
respiratory viruses, such as influenza and RSV, which could lead to severe health
impacts in co-infected individuals [487]. Beyond the direct health effects, the pan-
demic has significantly reversed progress toward global goals like the Sustainable
Development Goals and disproportionally affected vulnerable and disadvantaged
populations. These groups have borne the brunt of the crisis and will likely con-
tinue to face its long-term consequences [488].

Thus, preparing for the threat of an (inevitable) next pandemic is critical, and
addressing it will require applying the lessons learned from COVID-19. Many of
these lessons involve the use of mathematical models, which played an essential
role during the pandemic. Modeling has been shown to be a powerful tool for
exploring alternative policy scenarios, estimating health and economic impacts,
forecasting epidemiological trends, and assessing interventions both prospectively
and retrospectively. Models enable policymakers to understand the burden of ill-
ness and the effects of mitigation measures, helping to inform health economic
assessments of population-level interventions.
Despite the success of modeling during the COVID-19 pandemic, there are still
many ways it can be improved to better inform public health decisions in the future
[64, 435, 436, 460, 489]. One key area is data standards and sharing protocols. Es-
tablishing consistent data collection procedures at the start of an outbreak—which
means that protocols need to be in place before the outbreak—can improve the
reliability of observational data [435, 436]. Furthermore, databases should include
meta-data on the epidemiological context at the time the interventions were im-
plemented, such as changes in reporting practices [175]. Linking surveillance data
with administrative health data could improve data analyses tremendously. For
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instance, data linkage of the antibody data provided by Canadian Blood Services
with provincial health records—as already done for residents of Ontario—enables
analyses beyond those conducted in Manuscript 3. These analyses could provide
insights into optimal vaccine combinations and timings, and enable validation of
algorithms used to detect infections and vaccinations.

While mathematical modeling has provided significant public health benefits
during the COVID-19 pandemic, there remain numerous opportunities to improve
models. Future models could for example be more complex and realistic, incor-
porating factors such as individual behaviors [463], household and workplace dy-
namics, and spatial variability in transmission patterns. Moreover, results from
within-host models could be integrated with between-host models, for example
with a changing infectivity profile over the course of an infection or adjusted ef-
fects of vaccines according to viral variants [460]. Similarly, the immunity waning
parameters estimated in Manuscript 3 could be integrated into the model from
Manuscript 1, allowing for a more accurate representation of waning immunity
and its impact on viral spread. Moreover, model averaging, which has proven
useful for instance in forecasting pandemic trajectories [310, 311, 490], should be
explored further to enhance the reliability of model predictions.

Another ongoing challenge is how best to communicate model results. Effective
communication, particularly about the limitations of the models and uncertain-
ties in their predictions, is essential for ensuring that decision-makers are fully
informed. Modelers should distinguish in their communication between worst-case
scenarios and more likely outcomes, helping policymakers make informed decisions
under uncertainty [460, 489]. By addressing these challenges, modeling can better
inform health interventions, enhance pandemic preparedness, and contribute to
more effective management of future global health crises.
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60. Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal
for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol.
2020; 5():1403–1407.

61. Konings F, Perkins MD, Kuhn JH, et al. SARS-CoV-2 Variants of Interest
and Concern naming scheme conducive for global discourse. Nat. Microbiol.
2021; 6():821–823.

62. World Health Organization. Historical working definitions and primary ac-
tions for SARS-CoV-2 variants. Tech. rep. [Online; accessed 1. Aug. 2024].
World Health Organization, Mar. 2023. url: https : / / www . who . int /
publications/m/item/historical-working-definitions-and-primary-

actions-for-sars-cov-2-variants.

63. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike
mutations and immune escape. Nat. Rev. Microbiol. 2021; 19():409–424.

64. Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants
of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks
38/2020 to 10/2021. Eurosurveillance. 2021; 26(16):2100348.

65. Karim SSA, Oliveira T de. New SARS-CoV-2 Variants — Clinical, Public
Health, and Vaccine Implications. N. Engl. J. Med. 2021().

66. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and
impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021; 372(6538).

206



67. Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-
CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19
Virus. Cell. 2020; 182(4):812–827.e19.

68. Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2
spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep.
2021; 35(13):109292.

69. Garcia-Beltran WF, Lam EC, St. Denis K, et al. Multiple SARS-CoV-2
variants escape neutralization by vaccine-induced humoral immunity. Cell.
2021; 184(9):2372–2383.e9.

70. Cele S, Gazy I, Jackson L, et al. Escape of SARS-CoV-2 501Y.V2 from
neutralization by convalescent plasma. Nature. 2021; 593():142–146.

71. Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2
variant Delta to antibody neutralization. Nature. 2021; 596():276–280.

72. Eyre DW, Taylor D, Purver M, et al. Effect of Covid-19 Vaccination on
Transmission of Alpha and Delta Variants. N. Engl. J. Med. 2022().

73. Campbell F, Archer B, Laurenson-Schafer H, et al. Increased transmissibility
and global spread of SARS-CoV-2 variants of concern as at June 2021.
Eurosurveillance. 2021; 26(24):2100509.

74. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2
variant of concern in South Africa. Nature. 2021; 592():438–443.

75. Pulliam JRC, Schalkwyk C van, Govender N, et al. Increased risk of SARS-
CoV-2 reinfection associated with emergence of Omicron in South Africa.
Science. 2022; 376(6593).

76. Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529
leads to widespread escape from neutralizing antibody responses. Cell. 2022;
185(3):467–484.e15.

77. Andrews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness
against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022().

78. Cele S, Jackson L, Khoury DS, et al. Omicron extensively but incompletely
escapes Pfizer BNT162b2 neutralization. Nature. 2022; 602():654–656.

79. Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing
SARS-CoV-2 neutralizing antibodies. Nature. 2022; 602():657–663.

80. Relan P, Motaze NV, Kothari K, et al. Severity and outcomes of Omicron
variant of SARS-CoV-2 compared to Delta variant and severity of Omicron
sublineages: a systematic review and metanalysis. BMJ Global Health. 2023;
8(7):e012328.

207



81. Arabi M, Al-Najjar Y, Mhaimeed N, et al. Severity of the Omicron SARS-
CoV-2 variant compared with the previous lineages: A systematic review.
J. Cell. Mol. Med. 2023; 27(11):1443–1464.

82. Mathieu E, Ritchie H, Rodés-Guirao L, et al. Coronavirus Pandemic (COVID-
19). Our World in Data. 2020(). url: https://ourworldindata.org/
coronavirus.

83. Diamond MS, Kanneganti TD. Innate immunity: the first line of defense
against SARS-CoV-2. Nat. Immunol. 2022; 23():165–176.

84. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Re-
sponse to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181(5):1036–
1045.e9.

85. Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological assess-
ment of immunity to mild versus severe COVID-19 infection in humans.
Science. 2020; 369(6508):1210–1220.

86. Steiner S, Kratzel A, Barut GT, et al. SARS-CoV-2 biology and host inter-
actions. Nat. Rev. Microbiol. 2024; 22():206–225.

87. Zhang A, Stacey HD, D’Agostino MR, Tugg Y, Marzok A, Miller MS.
Beyond neutralization: Fc-dependent antibody effector functions in SARS-
CoV-2 infection. Nat. Rev. Immunol. 2023; 23():381–396.

88. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody ef-
fector functions in infectious diseases. Nat. Rev. Immunol. 2018; 18():46–
61.

89. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell.
2021; 184(4):861–880.

90. Post N, Eddy D, Huntley C, et al. Antibody response to SARS-CoV-2 in-
fection in humans: A systematic review. PLoS One. 2020; 15(12):e0244126.

91. Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to
SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell. Mol. Im-
munol. 2024; 21():144–158.

92. Wu J, Liang B, Chen C, et al. SARS-CoV-2 infection induces sustained
humoral immune responses in convalescent patients following symptomatic
COVID-19. Nat. Commun. 2021; 12(1813):1–9.

94. Arkhipova-Jenkins I, Helfand M, Armstrong C, et al. Antibody Response
After SARS-CoV-2 Infection and Implications for Immunity. Ann. Intern.
Med. 2021().

208



95. Lumley SF, Wei J, O’Donnell D, et al. The Duration, Dynamics, and Deter-
minants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) Antibody Responses in Individual Healthcare Workers. Clin. Infect. Dis.
2021; 73(3):e699–e709.

96. Isho B, Abe KT, Zuo M, et al. Persistence of serum and saliva antibody
responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Im-
munol. 2020; 5(52).

97. Knies A, Ladage D, Braun RJ, Kimpel J, Schneider M. Persistence of hu-
moral response upon SARS-CoV-2 infection. Rev. Med. Virol. 2022; 32(2):e2272.
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271. Sofonea MT, Reyné B, Elie B, et al. Memory is key in capturing COVID-19
epidemiological dynamics. Epidemics. 2021; 35():100459.

272. Arino J, Portet S. A simple model for COVID-19. Infectious Disease Mod-
elling. 2020; 5():309–315.

273. Britton T, Pardoux E. Chapter 1 Stochastic Epidemic Models. Stochastic
Epidemic Models with Inference. Cham, Switzerland: Springer, Dec. 2019:5–
19.

274. Beneteau T, Elie B, Sofonea MT, Alizon S. Estimating dates of origin and
end of COVID-19 epidemics. Peer Community Journal. 2021; 1().

275. Friji H, Hamadi R, Ghazzai H, Besbes H, Massoud Y. A Generalized Mech-
anistic Model for Assessing and Forecasting the Spread of the COVID-19
Pandemic. IEEE Access. 2021; 9():13266.

276. Aronna MS, Guglielmi R, Moschen LM. A model for COVID-19 with isola-
tion, quarantine and testing as control measures. Epidemics. 2021; 34():100437.

277. Giordano G, Colaneri M, Di Filippo A, et al. Modeling vaccination rollouts,
SARS-CoV-2 variants and the requirement for non-pharmaceutical interven-
tions in Italy. Nat. Med. 2021; 27():993–998.

278. Childs L, Dick DW, Feng Z, Heffernan JM, Li J, Röst G. Modeling waning
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Change Spatial Behaviour in Sweden? Mapping Daily Mobilities in Stock-
holm Using Mobile Phone Data During COVID-19. Appl. Spatial Analysis.
2024; 17(1):345–369.

452. Toger M, Kourtit K, Nijkamp P, Östh J. Mobility during the COVID-19
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Ontario and Québec (Canada): a population-based cohort study
of the first three epidemic waves. International Journal of Infectious
Diseases, Volume 121:1-10, www.doi.org/10.1016/j.ijid.2022.04.048

235



• Shen Y, Powell G, Ganser I, Zheng Q, Grundy C, Okhmatovskaia A, Buck-
eridge DL (2021). Monitoring non-pharmaceutical public health in-
terventions during the COVID-19 pandemic. Scientific Data, Volume
8, Number 225, Pages 1-6, www.doi.org/10.1038/s41597-021-01001-x

Communications

Communications at international conferences

• Ganser I, Buckeridge DL, Heffernan JM, Prague M, Thiébaut R. Estimat-
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