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Abstract

Context: Tuberculosis (TB) is one of the most deadly infectious diseases in the world, with
more than one million deaths by 2020. Neglected in international health policies, it mainly
affects developing countries. Its treatment requires antibiotic multi-therapies with toxic side
effects. Concerning pulmonary TB in particular, there is a clinical need for new tests to monitor
treatment more rapidly, using samples that are more consistently accessible than sputum. In

this context, immunological blood biomarkers represent promising options.

Objectives: The main objective was to evaluate the clinical relevance of selected blood-based
immunological tests for anti-TB treatment monitoring, in relation Mycobacterium tuberculosis
(Mtb) culture conversion. For this purpose, we conducted a prospective multicentered
translational study in five high-TB incidence countries (Bangladesh, Georgia, Lebanon,
Madagascar, Paraguay). We adopted a hybrid research approach including an on-site
evaluation of two point-of-care tests (complete blood counts and interferon-gamma (IFN-y)
release assays), and an exploratory component using high-dimensional single-cell techniques

for signature discovery (mass cytometry and full spectrum flow cytometry, in Lyon).

Findings: We enrolled 152 adult patients with culture-confirmed drug-susceptible (DS) or
drug-resistant (DR) pulmonary TB. Peripheral whole blood and sputum samples were collected
at inclusion, after two months (T1), and at the end of treatment (6 to 24 months). At inclusion,
high total white blood cell counts and low lymphocyte counts — measured by routine complete
blood counts —were predictive of treatment failure. Then, a combination of two plasma-based
IFN-y release assays (QuantiFERON-TB Gold Plus and heparin-binding hemagglutinin; HBHA)
was evaluated. In a subgroup of patients whose sputum cultures remained positive at T1, a
common clinical pattern at inclusion was observed (neutrophilia, lymphopenia, low body mass
index, low QFT-P IFN-y responses) as well as a low IFN-y response to HBHA during treatment.
Finally, in a subgroup of 22 patients, the phenotypic diversity of peripheral T-cells was
characterized by mass and full spectrum flow cytometry. At T1, T-cell immune-profile
comparison distinguished negative- from positive-sputum culture patients at two months,
whether infected with a DS- or DR-Mtb strain. In-depth analyses revealed an under-
representation of differentiated cytotoxic CD8* T-cells and an over-representation of naive
CD4* T-cells in positive-sputum culture patients at two months. This suggests a link between

the T-cell differentiation and mycobacterial clearance during treatment.



Perspectives: In this work, we have documented the clinical relevance of two simple
monitoring tests, adapted to lower-income, high-TB incidence settings. We have generated
new data on T-cell immunobiology during TB treatment in patients representative of the most
affected populations. These results may have direct applications to other major issues in TB
management, including latent TB infection screening, identification of patients most likely to

progress to active TB, and prediction of post-treatment relapse risk.



PART A: BACKGROUND



Introduction

Tuberculosis (TB) is one of the leading causes of death by a single infectious agent in the world.
It is caused by the bacillus Mycobacterium tuberculosis (M. tuberculosis; Mtb), which
preferentially infects the lungs, but also causes a diversity of extrapulmonary disease forms.
In 2020, one-fourth of the world population was estimated to latently carry Mtb, and active
TB disease was responsible for over 1 million deaths and an estimated 10 million new
infections. Although the sole existing vaccine (the Bacille de Calmette et Guérin (BCG) vaccine)
has been administered to over 3.5 billion people since its discovery in the early twentieth
century, the control of the TB epidemic remains a vastly unmet public health goal.
Simultaneously, the rising incidence of multi-drug resistant (MDR) and extensively drug
resistant (XDR) TB cases, and the emergence of totally-drug resistant (TDR) Mtb strains have
become a major public health concern as they require significantly heavier therapeutic options
and mobilize important funds.

Comprehensively understanding the immune response to Mtb infection remains a challenging
task despite decades of work. Mtb is a thick layered, slow-growing bacterium which can
survive a long time in a reversible latent state, is naturally tolerant to numerous antibacterial
chemotherapies, and displays highly effective immune escape mechanisms. Immune
responses to Mtb are hence only partly effective, leading to a vast reservoir of asymptomatic,
non-contagious latent infections in the general population. For these reasons, the treatment
of active TB requires combined antibiotic therapies that last six months at least? and are
associated with toxic side effects ranging from nausea to peripheral nerve damage and
hepatotoxicity, requiring consistent patient follow-up during treatment. However, adherence
to anti-TB treatment is notoriously low, in particular in primary care settings>*. This is a risk
factor for treatment failure and relapse as well as for further selection of drug-resistant
strains®>’. Efficient monitoring of anti-TB treatment adherence and efficacy is critical to
provide adequate patient care and curb relapse episodes and acquired drug resistance.

As per the current WHO recommendations, anti-TB treatment monitoring relies on bacilli
detection by sputum smear microscopy and M. tuberculosis culture when possible®. These
microbiology-based methods have been in use for over a century and their experimental
limitations take a toll on clinical TB management. Smear microscopy has poor sensitivity and
specificity for outcome prediction in patients with pulmonary TB because it is impacted by the

bacterial load and immunological state of patients, and the quality of results is highly



operator-dependent®°, M. tuberculosis culture is considered the gold standard for TB
treatment monitoring as it provides good outcome predictions, but slow mycobacterial
growth often causes results to arrive too late. It requires high biosafety laboratory
environments (BSL-3) and therefore has limited availability in primary care settings®!.

There is a clinical and public health need for new anti-TB treatment monitoring tests adapted
to primary care settings and that would provide quicker outcome predictions. To meet the
clinical needs for TB follow-up, the novel tests detecting biomarkers of interest would need to
be conductible on accessible samples (blood, urine, feces) and to require limited laboratory
expertise and equipment!?, As the TB epidemic keeps outgrowing our current bacteria-
centered diagnostic and therapeutical options, and as their limitations have become more
apparent over the years, novel developments on immune biomarkers of TB have showcased

a host-centered view as a promising alternative®3.



Chapter 1. Historical perspective on the fight against TB: from a bacterium-
centered to a host-centered approach.

1.1 From prehistorical times to modern history: TB, the eternal plague

1.1.1 Evidence of TB disease from Prehistorical and Antique times

TB is one of the oldest infectious diseases recorded in human history. Archeological,
paleontological, and genotyping evidence indicate that TB is intricately linked with the history
of human development. Historically, the first archeological discoveries of TB-characteristic
lesions in human remains were made in the early XX™ century on Ancient Egyptian mummies
dating back to 3,400 B.C. through the uncovering of bones showing typical TB-caused abscess
cavities (Figure 1.A.) or lesions evocative of Pott’s disease, a TB infection of the spine which

may cause spectacular spinal deformities (Figure 1.B.)*.

Figure 1. Paleontological evidence of bone TB infection in Ancient Egyptian mummies.

A. TB abscess cavity in a lumbar vertebra from a Middle Kingdom Egyptian mummy (c. 1975 — 1640 B.C.). B. Spinal
deformities evocative of TB infection (Pott’s disease) on the mummy of the priest Nesperehan (c. 1069 — 945
B.C.). Source: A.J.E. Cave, 1941,



Nowadays, however, modern genotyping methods have revealed the presence of Mtb DNA in
human remains as ancient as 9,000 to 8,000 years, in a Neolithic settlement located in the
Eastern Mediterranean, south of Haifa (Occupied State of Palestine)!. In animals, Mtb DNA
was detected in 17,000 year old remains of an extinct Bison antiquus species found in Natural
Trap Cave (Wyoming, USA). Erosive lesions of the articular surface of metacarpal bones were
deemed as characteristic of Mtb-like granulomatous infection, as confirmed by PCRY’; over a
decade later, lipidic Mtb virulence factors were even detected in the same remains®®. Such
paleomicrobiology discoveries were consistent with the anthropological hypothesis that TB
arose along with human settlement and with the development of agriculture and cattle
domestication (c. 9,000 — 8,000 B.C.). This led to initial theories that TB was a zoonotic disease,
passed on by cattle to humans, and that M. tuberculosis originated from Mycobacterium bovis.
However, over the last 20 years, whole genome sequencing (WGS) studies along with
extensive phylogenetics works have challenged these theories and generated debate over the
historical evolution of the M. tuberculosis complex (MTBC) genus, which includes seven
human-adapted M. tuberculosis lineages and nine animal-adapted ecotypes which may infect
humans as well and are found in diverse animal reservoirs, from bovids (M. bovis) to poultry
(M. avium) or pinnipeds (M. pinnipedii). Phylogenetic analyses within the MTBC rely on the
detection of genomic insertions or deletions of regions of difference (RD), which are unique
large sequence polymorphisms that occurred only once in the phylogeny of each MTBC
species, and help identify each species and their phylogenetic relationships'®. Based on this,
WGS studies now suggest that M. tuberculosis, M. bovis, and other animal ecotypes share a
common ancestor which would be genetically closer to M. tuberculosis (Figure 2). In addition,
phylogeny evidence indicates that MTBC emerged at least 70,000 years ago — well before
cattle domestication — and has constantly followed human migrations out of Africa, spreading
faster as population density increased during the Neolithic period, with very little genetic

diversificationZ°.

10



Common ancestor loss of 26

of the MTBC spacers present
in M. canettii TbD1

RD9  gyrBn4s0

katGe4e3 M. tuberculosis

«ulspouw,,

gy,Acss -~

RD7,8,10 | katGe2?

- M. afri West African |
mmpL6°551

N-RD2593s M. afri West African Il

T RD1Mon
— M. mungi

yrAce® RD1¢as
2 —— Dassie bacillus

Rv2042cc

——p . Orygis
RD12,13 oxyR"28% gyrBn7%6 RD2seal

——p M. pinnipedii
RD1mic

GYrBneST e M. microti

gyr8Mst

BEEN oyr&™" | pnoA™ k.
M. caprae

ot M. bovis

M. bovis BCG Tokyo

2L \b M. bovis BCG Pasteur

Figure 2. Phylogeny of the MTBC complex.

Phylogenetic relationships were based on the absence of regions of difference (RD; grey boxes) and the detection
of single nucleotide polymorphisms (SNPs; white boxes) with superscripts indicating the position of the mutation
at the nucleotide (n) or the codon (c) of each gene. BCG: Bacille Calmette Guérin strains. Adapted from Rodriguez-
Campos et al., 201422,

11



1.1.2  Maedical depictions of TB from Antiquity to the XVII*" century

The earliest written evidence referencing TB disease was discovered in India and dates back
to over 3,000 years??. Interestingly, some of these texts already advise patients to “move to
higher altitudes”, which is reminiscent of the XIX®-XX™" sanatorium movement. Pictural
references to TB disease were present in ancient Egyptian art as well, although found mostly
on funerary portraits with evocative depictions of Pott’s disease rather than on papyrus!®.
Later on, in Ancient Greece, TB became known as phtisis (¢0ioig), derived from root words
meaning “to waste away”, “to decay”. Hippocrates (460-370 B.C.) was one of the first
physicians to accurately describe clinical symptoms of pulmonary TB as we know them today
in his Of the Epidemics (Book 1), citing “a state of consumption”, “constant sweats”, and a
“weakness of the lung” along with descriptions of cough, hemoptysis, and nocturnal fever?3,
However, he thought the disease to be hereditary; it is Aristotle (384-322 B.C.) who is credited

“;
|

as the first Antiquity scholar to suspect the contagious nature of TB, as he writes: “in
approaching the consumptive, one breathes [his] pernicious air’?*. He described occurrences
of TB-like disease in pigs and oxes??, likely corresponding to depictions of Mycobacterium
bovis infection. After the fall of the Roman Empire (V" century) and on to the Middle Ages, TB
had spread throughout Europe, where the first records of TB cervical lymphadenitis were
found. It was then referred to as scrofula or “écrouelles” in French, derived from the latin
word for “sow”, evocative of the disgust physicians and patients alike felt for the spectacular

III

symptoms of the disease?. It was known as “the King’s Evil” in France and England, and
thought to be healed by the touch of a royal person endorsed with divine power. In the late
XVII™ century, the first anatomically accurate characterizations of pulmonary TB pathology
were published by the physician Franciscus Sylvius de la Boe, who first introduced the notion
of “tubercles” in his “Opera Medica” (1679)?2. These tubercles were considered the origin of
the phtisis and were later illustrated consistently by other pathologists (Figure 3). Later on, at
the end of the XVIIIt century, some scientists such as Benjamin Marten had formulated
hypotheses about the infectious nature of TB, but the majority of the physicians at the time
believed in its hereditary transmission. But by then, TB had started morphing into a deadly
epidemic, which expanded with the increasing urbanization of Europe and boomed
throughout the Industrial Revolution and its assorted cortege of precarious living conditions. As

the “white plague” tore through European cities with a mortality rate of over 900 per 100,000

people per year, physicians and scientists started investigating the infectious origin of TB®.
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Plate 1

Figure 3. “Tubercle” illustration showing advanced lung lesions and caseous granuloma caused by pulmonary

TB.
Colored plate published in “lllustrations of the Elementary Forms of Disease” (1837) by the Scottish pathologist

Sir Robert Carswell. Source: University of Edimburgh.
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1.2 From the XIX™" century to modern days: TB in the landscape of
microbiology and immunology research

1.2.1 Discovery of the etiological agent

As Europe and North America scrambled through the raging TB epidemic which would remain
responsible for over 20% of all their human deaths until the XIX™ century®®, the German and
French scientific communities extensively searched for its etiological agent. In 1865, the
French surgeon Jean-Antoine Villemin demonstrated the infectious nature of TB by infecting
a rabbit with liquid sampled from a TB cavity collected from a human dissection, and showing
TB symptoms upon sacrifice of the rabbit three months later?®. Then, in 1882, the German
microbiologist Robert Koch used methylene blue staining to isolate, stain, and characterize
the tubercle bacillus, to which he gave the name Mycobacterium tuberculosis. He received the
Nobel Prize in Medicine or Physiology in 1905 partly for this research. Koch is also credited for
the discovery of tuberculin or purified protein derivative (PPD), a combination of Mtb proteins

used for diagnostic purposes.

1.2.2  Early TB treatment strategies and advances in antibiotic research

For centuries, the only available therapeutic options for TB were formulated along
recommendations by the Greek physician Galen (133 — 201 A.D.) who recommended rest,
fresh air, and consumption of milk?®. If some early descriptions of surgery for scrofula were
documented during the XIVt" century, and later led to pneumothorax surgeries for upper lung
cavity lesions (Figure 4), the first therapeutic regimens which improved the quality of life of
TB patients were sanatorium cures, introduced in the mid-XIX"" century. As they gained
popularity from the end of the XIX" until the mid-XX™ century, sanatoria multiplied in
mountain towns throughout Europe and North America, enabling TB patients to rest in less
crowded areas and breathe cleaner air. In retrospect, this regimen is likely to have induced an
immune restauration caused by the improvement of living conditions in sanatoria compared
to cramped XX™ century European urban centers; but its clinical efficacy is difficult to
document accurately?’. In 1908, the French scientists Albert Calmette and Camille Guérin
developed an attenuated strain of M. bovis by growing and passaging it on fresh plates of bile-
potato media for over 11 years to decrease its virulence. The resulting strain, termed Bacille
Calmette Guérin (BCG), was first used in humans as a live attenuated vaccine in 1921; it is still

the vaccine used nowadays even though its efficacy is under 50% for adult TB patients.
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Figure 4. Pneumonolysis performed to collapse an underlying TB cavity.
Here, ping pong balls were used to create space under the ribcage and keep the lung separated from the pleura.
Source: Pezzella, 2019%.

In contrast, the true turning point in the history of TB treatment was the discovery of the first
antibiotics. If penicillin, discovered in 1929, was one of the first drugs routinely implemented
for antibacterial chemotherapy throughout the 1940s, it had no effect on M. tuberculosis,
which exhibited natural resistance due in part to its thick mycobacterial cell wall. In contrast,
streptomycin, discovered in 1944, was the first antibiotic agent shown to efficiently kill Mtb
in clinical trials?®. However, these spectacular results were challenged by the drug’s limited
availability and the significant side effects, as well as by the quick rise in streptomycin
resistance in Mtb strains at the time. When para-aminosalycilic acid (PAS) was discovered that
same year, similar results were observed?®. As scientists noticed that combining streptomycin
and PAS was efficient in slowing the occurrence of antibioresistance, one of the main
principles of modern anti-tuberculous regimens emerged: multi-therapy. In 1951, the
discovery of isoniazid (INH) was an additional breakthrough in the field of anti-TB therapy as
it was the most potent drug available at the time while being inexpensive and having
moderate side effects. The combination of streptomycin, PAS, and INH for over 18 months
soon became the go-to triple therapy for TB and remained a therapeutical standard for almost
20 years. Rifampicin, discovered in 1957 and added to the triple-therapy in 1966, enabled to
shorten the treatment course to 9 months. This duration was further reduced to 6 months
after pyrazinamide (PZA) at low doses was included. Finally, ethambutol (ETH) replaced
streptomycin for safety and efficacy reasons, forming the modern quadri-therapy still used

nowadays to treat drug-susceptible TB (DS-TB).
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1.2.3  The limits of antibiotic therapy

However, the limits of the antibiotic multi-therapy became apparent shortly after its early
implementation. The first nation-wide TB drug-resistance investigation took place in
untreated patients from the United Kingdom between 1955 and 1956 and showed that barely
ten years after their discovery, the levels of resistance to streptomycin, PAS, and INH had
reached 2.5%, 2.6%, and 1.3% respectively®°. This led to the recognition of newly characterized
strains of multi-drug resistant MDR-TB (MDR-TB), defined as resistant to INH and rifampicin.
Such numbers remained on the rise throughout the XXt century, with numerous outbreaks of
drug-resistant TB (DR-TB) occurring consistently between the 1970s and the 1990s3!. By the
mid-1990s, no TB-endemic country was spared from MDR-TB. This spurred research incentives
for more potent anti-TB drugs, novel or re-purposed: at the time, these included other
rifamycins, and fluoroquinolones such as moxifloxacin?®, which became the first second line

drugs.

1.2.4  Urbanization, migration, poverty: how neglecting to control TB shaped its modern
epidemiology
However, simultaneously, as healthcare quality and living conditions globally improved in
Europe and North America, many of the socio-economic risk factors associated with TB — such
as precarity, overpopulation, and malnutrition — became characteristic of marginalized
populations rather than the general public. As a consequence, in the late 1980s and early
1990s, public health policies started granting less and less attention to TB control, and media
coverage of TB decreased. The antibiotic quadri-therapy still seemed efficient as a majority
rule, and despite rising antibioresistance, TB was increasingly showcased as a fixable issue,
while worldwide TB elimination was viewed as an achievable short-term goal3!. However, as
the fractures in our world’s vastly differential economies widened along with globalization,
the structure of the TB epidemic started following the ever-growing disconnect between
Europe and North America versus the so-called Third World. Despite available antibiotic
therapies, TB persisted in the poorest settings: at the worldwide scale, it became
overwhelmingly more prevalent in low- and middle income countries, while awareness of TB
in the general public dwindled to nonexistence elsewhere. And within developed countries,
at the nationwide scale, TB became a synonym of extreme poverty, a threat only to the most

marginalized populations, living in precarious conditions and with little access to quality
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healthcare: homeless people, inmates, migrants, and travelers. For public health policy
makers, it had become a disease deemed too long and complex to treat to warrant investment
in lower-income settings3!. This is still reflected by modern maps of worldwide active TB
incidence (Figure 5..A.) and latent TB prevalence (Figure 5.B.). In 2020, one-fourth of the
world’s population was estimated to be latently infected by TB, and over 10 million new active
TB infections as well as 1 million TB deaths were recorded3?33, Historically, the Southern tip
of the African continent, Eastern Europe, and South Asia have concentrated the highest
prevalence of TB, which is still reflected by the World Health Organization (WHO)-established
list of the 30 highest-TB burden countries, in which the only country that is not located in Asia
or Africa is Brazil. More specifically, as of 2019, the two thirds of all TB cases were localized in
eight countries: India, Indonesia, China, the Philippines, Pakistan, Bangladesh, South Africa

and Nigeria.
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Figure 5. Worldwide TB epidemiology.

A. Incidence of active TB per 100,000 inhabitants in 2019. Source: WHO Global TB report 202033, B. Prevalence
of latent TB infection (LTBI) in 2019. Prevalence values were obtained by meta-analysis of 88 quantitative studies
and correlation with WHO incidence data was verified. Adapted from Cohen et al., 201932,
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1.2.5 From the shock of the HIV/AIDS epidemic to the rebirth of immunology

In the early 1980s, another epidemic had begun to spread from marginalized populations on
to the general public. Between the first recorded cases of acquired immunodeficiency
syndrome (AIDS) in 1981, to the discovery and establishment as causative agent of the Human
Immunodeficiency Virus (HIV) in 1984, renewed public awareness had been brought to
another player in the game of infection: the immune system. As the United States of America
were hit hard by the HIV epidemic, what remained of TB research funding was sucked into the
HIV vacuum, never to be seen again. But as patients, physicians, and scientists alike were
confronted at a worldwide scale to the spectacular medical consequences of collapsing CD4*
T-cell counts, two trends began to arise. The first one was a resurgence in TB infections, which
soon enough became inseparable from HIV because of the two diseases’ striking
epidemiological synergy (Figure 6), shared risk factors for transmission, and physiological
interplay at the tissular, cellular, and molecular levels. While HIV is a significant risk factor for
progression from latent to active TB, TB is the leading cause of death among people living with
HIV worldwide. The second trend was an renewed interest in immunology research, signing
the beginning of a paradigm shift which would be crucial for TB control strategies: the key to
reach beyond microbiological diagnosis and antibacterial chemotherapy, which the TB

epidemic was starting to outgrow, may be in the host immune response to TB.

HIV prevalence in new and
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Figure 6. HIV prevalence in new and relapse TB cases.
Source: WHO Global Tuberculosis Report 2020%.
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Chapter 2. Physiopathology of the immune response to M. tuberculosis
infection

2.1 A naturally resistant bacterium: structural and genomic characteristics of
M. tuberculosis

Historically, physicians and scientists have found M. tuberculosis to be difficult to grow,
difficult to stain, and hence difficult to diagnose and treat. As it doubles every 24h at most
depending on the phenotype, it is a particularly slow growing bacterium, which is a major
diagnostic challenge as M. tuberculosis colonies are detectable at the earliest three weeks
after inoculation on solid media and one week on liquid media34. Upon diagnosis and during
treatment monitoring, solid M. tuberculosis cultures are kept under surveillance for up to 12
weeks before declaring absence of growth. As for staining, species from the Mycobacteria
genus are not included in the Gram classification as they poorly retain dyes under this protocol
because of the characteristic layer of mycolic acids that surrounds their cell membrane (Figure
7). As a consequence, staining of M. tuberculosis bacilli was first performed using Ziehl-
Neelsen staining, which requires heating and utilizes acid-alcohol washes to enable fuchsin

staining of the mycolipidic wall.
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Figure 7. Chemical components of the mycobacterial cell wall.
The long-chained structure of mycolic acids is represented. mAGP: peptidoglycan-arabinogalactan-mycolic acid
complex. Source: Gordon & Parish34.
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This thick, waxy wall is one of the intrinsic factors conferring phagocytosis resistance to
M. tuberculosis®®. Survival inside phagocytes is further facilitated by metabolic modifications
exhibited by M. tuberculosis which enable the use of fatty acids as a primary carbon source
when in microaerophilic environments®. Consistently, over 9% of the coding sequences found
within the M. tuberculosis genome (which spans 4.4 Mb encoding 4,000 genes) are associated
with lipid metabolism3*, which reflects the evolutive importance of the metabolic functions
required for both mycolipidic cell wall synthesis and survival within host cells*>*. The mycolic
acid wall was later shown to be involved in the natural tolerance of M. tuberculosis to
antimicrobials3®, as it is a very efficient barrier stopping active molecules from reaching the
cell: for example, the diffusion of B-lactams through this cell wall is over a hundred times
slower than through that of Escherichia coli*’. These intrinsic factors distinctive of the
Mycobacteria genus and of M. tuberculosis in particular are associated with the complex
course of TB disease and contribute to making it challenging to treat, hence the clinical need

for consistent TB treatment monitoring.

2.2 Diagnosis and treatment of M. tuberculosis infection

2.2.1 Clinical presentation of M. tuberculosis infection

TB is transmitted via inhalation of aerosolized droplets with live bacteria. Thus, the lungs are
the portal of entry and the primary site of latency, diffusion, and dissemination. Usually, upon
transmission, latent TB infection (LTBI) develops as the infection is initially contained.
Individuals with LTBI represent 90% of Mtb carriers and are asymptomatic and non-contagious;
however, the bacteria persist in a dormant state. Progression from LTBI to active TB disease
(ATB) occurs in 5 to 10% of the cases over the patient’s lifetime. Risk factors for progression
to active TB include older age, malnutrition, HIV infection, and immunosuppressive therapy.
ATB is symptomatic and is characterized either by detectable Mtb bacilli or by detectable
lesions. In 85% of cases, active Mtb infection is localized in the lungs; characteristic symptoms
in non-immunosuppressed adult pulmonary TB (PTB) patients include prolonged cough
(> 3 weeks), chronic fever, anorexia, night sweats, and alteration of the general status.
Hemoptysis generally occurs late in the course of the disease. In the other 15% of cases,
extrapulmonary Mtb infections (EPTB) can occur and may affect a large variety of organs. The
most described occurrences include pleural infections, lymph nodes, bone infections

(especially Pott’s disease), central nervous system infection (meningitis), and genital TB. PTB
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and EPTB may coexist in a single patient, as Mtb spreads from the lungs to extrapulmonary
locations. Finally, in children, the clinical manifestations of ATB are vastly different from adult
patients. Pediatric PTB is characterized by paucibacillary infections, with rare cavitation and
mostly miliary forms generating little to no sputum expectoration and moderate symptoms,
whereas pediatric EPTB includes mostly TB meningitis with very high lethality rates in children

under 5 years of age.

2.2.2 Diagnosis of active TB

2.2.2.i (Clinical diagnosis

In the early XX century, diagnostic of active TB was commonly performed using chest X-rays,
which was a quick and accessible methods to screen large number of people for TB, in military
settings for example?®. Nowadays, clinicians still use chest X-rays as well as CT-scans when
available. When a tissular biopsy is performed, histo-pathology study is useful to diagnose TB.
On chest radiographs or CT-scan imagery, PTB can manifest as lung infiltrates, confluent
micronodular infiltrates, lung cavities predominantly in the upper lobes (Figure 8.A.). Military
disease is a specific entity, characterized by a diffuse micronodular infiltrate of hematogenous
origin (Figure 8.B.). These abnormalities can be associated with mediastinal
lymphadenopathy(ies). For EPTB detection, imaging is a key diagnostic method, in particular

for locations where biopsy is challenging (Figure 8.C.).

Figure 8. Radiological images of TB infection.

A. Characteristic presentation of PTB infection with cavities (white arrow) and upper lobe opacities (red arrows)
evocative of lymphocyte recruitment. B. Miliary TB is characterized by the absence of cavities, with disseminated
micronodular lesions in both lungs instead. C. TB meningitis in a nine-year-old child with hydrocephaly (blue
arrow), “tubercle”-like TB lesion (white arrow), and meningeal inflammation (red arrows). Source: Heemskerk et
al., 2015%,
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2.2.2.ii Bacteriological diagnosis

To this day, the gold standard for PTB diagnosis is M. tuberculosis culture. Liquid medium Mtb
culture is the fastest culture method available, as positive results may be yielded within a
week. Bacteria are inoculated from a sputum sample into a liquid medium loaded with a
fluorescent component which increases with bacterial growth. A solid medium tube is
inoculated in parallel with liquid media to reduce contamination risks. Tubes are checked daily
until either characteristic growth of Mtb is detected, contaminations are detected, or until 8
weeks have passed — after which the culture is deemed negative. Usually, sputum smear
microscopy is also performed as soon as the sputum sample is received to establish a first
intention diagnostic. After decontamination and heat-inactivation of M. tuberculosis, bacilli
are visualized in sputum samples using Ziehl-Neelsen (Figure 9.A.) or fluorescent staining (Figure

9.8.).
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Figure 9. M. tuberculosis sputum smear microscopy.
Visualized with Ziehl-Neelsen (A.) or auramine O fluorescent staining (B.). Source: CDC (public domain) and
Padmaja et al., 2019%°,

Nowadays, gene amplification methods are also used for this purpose are they are quick and
both more sensitive and specific than smear microscopy. This includes the cartridge-based,
automated assay GeneXpert MTB/RIF, and now the more sensitive GeneXpert MTB/RIF Ultra,
which rely on real time PCR to identify MTBC DNA as well as mutations associated with
rifampicin resistance directly from unprocessed sputum samples. However, as such assays
may detect DNA fragments from dead bacteria, microbiological confirmation remains
required to ascertain diagnosis. Diagnosis of active TB is then followed by genotypic and/or

phenotypic drug susceptibility testing whenever possible.

23



2.3 The challenges of pulmonary M. tuberculosis treatment

2.3.1 Mechanisms and evolution of drug resistance in M. tuberculosis in relation with
clinical management

As presented in Chapter 1, several decades of struggling with TB management have helped
identify two principles for TB therapy. First, a combination of multiple drugs is mandatory; and
second, it must stretch long enough to ensure sterilization of the different mycobacterial
phenotypes within the same disease entity. These principles stem directly from the capacity
of M. tuberculosis to resist treatment, as it displays a variety of intrinsic and acquired
mechanisms of drug resistance, which include structural modifications of drug target
interaction sites®®, direct chemical modification or enzymatic degradation of drugs®/, and
overexpression of drug targets by molecular mimicry. As horizontal gene transfer is rare in M.
tuberculosis, the main drivers of acquired antimicrobial resistance are rather associated with
chromosomal mutations than with mobile genetic elements in this species3®. This explains that
under- or misdiagnosis of drug-resistance, as well as poor treatment adherence or limited
access to the appropriately potent drugs — particularly in primary care settings>* — are thought
to be important drivers of acquired drug resistance as they contribute to the selection of
resistant strains among the diversity of bacterial subspecies present within the host>~ (Figure
10). Unequal access to quality healthcare has hence led to a disproportionate repartition of
drug-resistant strains worldwide3®. However, this is only a part of the problem because an
increasing body of literature indicates that M. tuberculosis drug resistance may also arise
despite strict treatment adherence?, likely due to sublethal concentrations of some drugs
after penetrating the various TB lesion compartments in the lung*!. These two facts highlight
the clinical need for consistently monitored treatment regardless of the healthcare setting

level.
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Figure 10. Pathways leading to increases in drug-resistant TB infections.
Source: WHO 2014,



2.3.2 Recommended treatment regimens: composition, length, and side effects

Anti-TB treatment regimens are built around an intensive phase followed by a continuation
phase mobilizing fewer drugs and required to clear the remaining bacterial subpopulations
within the host*3. The WHO-recommended treatment regimen for drug-susceptible TB (DS-
TB) utilizes first-line oral antibiotics (Figure 11) and consists in a six-month Directly Observed
Treatment (DOT) with a 2-month intensive phase (H-R-E-Z) followed by a four-month
continuation phase (H-R)**. However, research is ongoing to shorten this regimen to 4 months
by replacing ethambutol or isoniazid with moxifloxacin, but non-inferiority has not yet been
shown®. Strains that display resistance to one or more drugs are treated with second-line
drugs (including injectable agents and fluoroquinolones) according to their resistance

patterns, which are classified into several non-mutually exclusive categories (Table 1).

DESCRIPTION DRUG ABBREVIATION
Firstline oral anti-TB drugs Isoniazid H
Rifampicin R
Ethambutol E
Pyrazinamide Fi
Rifabutin Rfb
Rifapentine Rpt
Injectable anti-TB drugs Streptomycin 5
linjectable agents or parenteral Kanamycin Km
agents) Amikacin Amn
Capreomycin cm
Fluoroguinolones (FOQs) Levofloxacin Lfx
Maoxifloxacin Mfx
Gatifloxacin Gfx
Ofloxacin Ofx
Oral bacteriostatic second-line  Ethionamide Eto
anti-TB drugs Prothionamide Pto
Cycloserine Cs
Terizidone Trd
p-aminosalicylic acid PAS
p-aminosalicylate sodium PAS-Ma
Anti-TB drugs with limited Bedaquiline Bdg
data on efficacy and/or long- Delamanid Dim

term safety in the treatment of

drug-resistant TB (This group Linezolid Lzd

includes new anti-TB agents).  Clofazimine Cfz
Amoxicilling Clavulanate Amx/Clv
Imipenemy/ Cilastatin Ipmy/Cln
Meropenem Mpm
High-dose isoniazid High dose H
Thipacetazone T
Clarithromyein Clr

Figure 11. Second-line drugs used for the treatment of drug-resistant TB.
Source: WHO 20167,
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Table 1. WHO-defined drug resistance categorization.
Source: WHO 20144,

Name Resistance pattern

Single-resistance One first-line anti-TB drug only (RIF, INH, ETH, or PZA).

Poly-resistance More than one first-line anti-TB drug, other than INH and RIF.

Multi-drug resistance (MDR) At least INH and RIF.

Extensive drug resistance (XDR) Any fluoroquinolone, and at least one of three second-line injectable
drugs (capreomycin, kanamycin, and amikacin), in addition to MDR.

Total drug resistance (TDR) All anti-TB drugs.

Rifampicin resistance (RR) Includes any of the above resistance patterns as long as rifampicin
resistance is detected.

Drug-resistant TB regimens are often individualized within the frame of WHO
recommendations to find the combinations which are the most potent, the best tolerated by
each patient, and the most accessible, especially when a precise drug resistance pattern is
identified along with levels of resistance. However, when phenotypic DST is not readily
available, empiric treatment is initiated and standardized courses are adopted. In 2014, the
WHO recommended a standardized version of the shortest available course for MDR-TB
treatment, named the “Bangladesh regimen”4’ and built around an intensive phase of four to
six months (if there is no sputum smear conversion) and a five-month continuation phase. This
regimen uses gatifloxacin as the fluoroquinolone and kanamycin as the injectable agent, as
well as prothionamide, clofazimine, high-dose isoniazid, pyrazinamide and ethambutol.
However, individualized approaches remain the optimal treatment strategies whenever
possible because both first- and second-line drugs are associated with heavy adverse effects.
They may include gastro-intestinal disturbances, peripheral neuropathies which may cause
irreversible cecity and hearing loss, hemato-, hepato-, and nephrotoxicity, risks of QT

prolongation, and neuropsychiatric adverse effects (Figure 12.)%.

27



MEDICINE COHORTS USING  PATIENTS SAEs ATTRIBUTED TO

THE DRUG AND RECEIVING INDIVIDUAL MEDICINE
REPORTING SAEs MEDICINE o o .
I:N] {N) N PATIENTS fo [95.-00'.]

Pyrazinamide 19 2023 56 2.8% (2.1%3.7%)
Ethambutol 16 1325 5] 0.5% (0.2%-1.1%)
Second-line injectable 19 2538 184 7.3% (6.2%—8.4%)
agent
Ofloxacin or e 1408 40 2.8% (1.9%—4.1%)
ciprofloxacin
Other fluoroquinolones 13 827 10 1.2% (0.6%-2.4%)
Ethionamide/ 17 2106 173 8.2% (7.0%-9.6%)
prothionamide
Cycloserine 16 2140 96 4.5% (3.6%—5.5%)
p-aminosalicylic acid 16 1706 208 12.2% (10.6%-13.9%)
Linezolid 8 190 28 14.7% (10.0%—20.6%)

Figure 12. Occurrence of serious adverse events (SAE) in patients under treatment for MDR-TB.
Importantly, only studies within which SAEs had been recorded were included in this meta-analysis. Source: WHO
2016%.

These adverse events — as well as the pain associated with the injection of some agents —
contribute to low treatment adherence and poor treatment outcomes. And as the risk of
adverse effects increases with the total cumulative antibiotic dose, in particular second-line
injectables, the aim is thus to find both the shortest treatment duration and the least adverse
effects36. This explains why there is a clinical need for both consistent monitoring, and

research on early signatures of treatment response.
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2.3.3  Current monitoring methods for PTB treatment: stakes and unmet needs
Currently, the monitoring of anti-TB treatment is based on the absence of clinical relapse
rather than on the detection of signatures of cure. Physicians monitor weight gain and fever
throughout treatment as they are quick robust clinical markers of health improvement and
response to treatment. Simultaneously, microbiological follow-up using sputum culture and
microscopy is recommended throughout treatment because clinical markers may keep
improving even though bacterial sterilization has not been achieved, which is a risk factor for
relapse. Sputum culture is the most sensitive method for live M. tuberculosis detection, in
particular on liquid media, and hence is the reference standard recommended whenever
possible by the WHO to define the outcomes of treatment®“® (Table 2).

Table 2. Definition of treatment outcomes in DS-TB and DR-TB patients.
Source: WHO 2020%,

failure BUT with no record to show
that sputum smear or culture
results in the last month of
treatment and on at least one
previous occasion were negative.

Outcome DS-TB patients DR-TB patients

Cured Patient with microbiologically | Treatment completed as recommended by the
confirmed TB at the beginning of | national TB program without evidence of failure
treatment who was smear- or | AND three or more consecutive cultures taken
culture-negative! in the last | at least 30 days apart are negative after the
month of treatment and on at | intensive phase.
least one previous occasion.

Treatment PTB patient who completed | Treatment completed as recommended by the

completed treatment without evidence of | national policy without evidence of failure BUT

no record of three or more consecutive negative
mycobacterial cultures at least 30 days apart
after the intensive phase

Treatment success

Combinatio

n of cured and completed.

Treatment failed

PTB patient whose sputum smear
or culture is positive at month 5 or
later during treatment.

Need for treatment interruption or for
permanent regimen change of at least two anti-
TB drugs due to either of the following:

- Lack of culture conversion? by the end of the
intensive phase

- Culture reversion? in the continuation phase
- Additional acquired resistance to
fluoroquinolones or second-line injectables

- Adverse drug reactions.

Treatment interrupted for two consecutive months at least.

Death during the course of treatment, for any reason.

Outcome unknown for any reason including transfer to another unit.

Lost to follow-up
Death
Not evaluated

Footnotes: “DR-TB” refers to RR-TB, MDR-TB, or XDR-TB patients. 1. Sputum culture is the gold standard for
outcome evaluation even if sputum smear microscopy is realized in parallel, as it is both less sensitive and less
specific, and may generate falsely positive results*. Globally, sputum smear results during treatment should be
used for definition of treatment outcome only in settings where culture is not readily available. 2. Culture
conversion is defined as two consecutively negative mycobacterial cultures taken 30 days apart. Culture
reversion is defined as two consecutively positive mycobacterial cultures taken 30 days apart and occurring after
an initial conversion.
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As exposed in Chapter 1, these methods are over a hundred years old and have consequent
technical and practical limitations, which takes a toll on the management of an epidemic that
has outgrown them. M. tuberculosis sputum culture is very slow and requires BSL-3
environments which are not readily available in lower-income areas where TB is most
prevalent!l. In most settings across low- and middle-income countries, treatment monitoring
relies uniquely on clinical symptom assessment and sputum smear microscopy, which is
quicker, inexpensive, more commonly available, and relatively simple and specific for M.
tuberculosis. However, it is highly operator- and sample dependent, and hence displays poor
sensitivity and specificity for monitoring, especially in paucibacillary patients®?; a 2010 meta-
analysis of data from over 20,000 PTB patients indicated that 2-month smear microscopy was
a poor predictor of treatment failure (57% sensitivity and 81% specificity)!!. GeneXpert
MTB/RIF testing is more sensitive (97% compared to the combination of sputum smear and
culture®®) but is not currently recommended for treatment monitoring, as it has been proven
to detect dead bacteria (specificity estimated at 49% throughout treatment®°) (Figure 13).
Moreover, all of the above methods are sputum-dependent, but sputum composition is highly
variable and may not always reflect the overall bacterial load. In addition, sputum samples
may be difficult to collect during the later stages of treatment or in paucibacillary patients.
This further complicates monitoring as sputum smear microscopy requires two or three

sputum samples to be collected on consecutive mornings to increase sensitivity.
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Figure 13. Qualitative results of the four most frequently used sputum-based treatment monitoring methods
during PTB treatment.

Results from a 2013 study on 2741 sputum specimens collected from 221 PTB patients in South Africa and
Tanzania®,
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To improve treatment monitoring in high-TB burden settings — but not only —there is a short-term
clinical need for novel methods which are quick, affordable, with moderate expertise or
scientific equipment requirement, and based on samples accessible more consistently that
sputum??>1, Novel diagnostic tests are being investigated on samples other than sputum, such
as tests detecting volatile organic compounds in breath®?, urine lipoarabinomannan tests>3, or
stool-based methods>*. These tests may be investigated for treatment monitoring as well, but
they are still in early development stages, and are still part of a bacteria-centered approach.
Hence, the monitoring of host biomarkers that are more specific to the response to TB than
conventional clinical markers during treatment appears as a promising alternative.

As novel biomarker detection tests should ideally be able to detect the earliest signatures of
cure possible to shorten treatment durations®?, the monitoring of immune responses
—thought to be detectable prior to bacterial sterilization — shows potential. Even though
monitoring of metabolic byproducts has also been investigated®®, the technical and scientific
advances in the field of immunology throughout the past 20 years have yielded an abundance
of encouraging results for the immuno-monitoring of TB treatment*®. However, as the immune
response to TB is a vastly complex, multifaceted, and only partially understood process,
further work is needed to identify the most clinically relevant immune biomarkers and the

associated antigenic determinants.
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2.4 Immune response to pulmonary TB infection

Despite the fact that billions of people have historically been infected with PTB, our knowledge
of the immune mechanisms which occur upon exposure and throughout acute infection,
latency, or recovery is restricted by our limited ability to study immune responses directly at
the site of infection. Hence, most of the following physiological processes were identified via
autopsy, histology, animal models, in vitro infection of lineages or cells isolated from broncho-
alveolar lavage (BAL), and ex vivo analyses of peripheral blood>®, which means that they are

understood separately from their vastly more complex in vivo immunological dynamics.

2.4.1 Primary response to M. tuberculosis and formation of granuloma

Upon exposure with aerosolized droplets containing Mtb, alveolar macrophages (AM) are the
first cells to internalize the bacteria. This leads to increased secretion of pro-inflammatory
cytokines by the AMs, including TNF, IL-6, IL-1B, and IFN-y, which are then detectable in
serum?®. This primary response induces the recruitment of uninfected macrophages,
neutrophils, NK, and yb T-cells at the site of infection, generating a highly inflammatory milieu.
However, Mtb is able to resist phagocytosis, mainly by hindering phagosome acidification and
by preventing the fusion of phagosomes and lysosomes®’; as such, it persists and divides
within the macrophages. As a consequence, a coalescent structure of epithelial cell-like,
uninfected macrophages forms around Mtb-infected macrophages, which is then surrounded
by a T and B lymphocyte cuff: the granuloma (Figure 14). Lymphocytes control the granuloma
by maintaining a cytokine-rich microenvironment (TNF in early stages, then IFN-y). Fibroblast
recruitment and calcification may further contribute to this initially protective structure. The
granuloma forms a physical barrier that helps contain Mtb spread and limits lung tissue
damage. However, it acts a double-edged sword since it also hinders antibiotic diffusion,
represents a safe harbor for dormant mycobacteria, and lowers the efficacy of adaptive

immune responses at the site of infection.
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2.4.2 Cavitation and lung colonization

Usually, a homeostatic balance is reached in the granuloma because Mtb eventually enter a
nonreplicative dormancy state, and T-cells from the lymphocyte cuff exhibit downregulated
pro-inflammatory cytokine secretion®® and suppressed cytotoxic activity>® that are partially
independent from exhaustion®. This contributes to the asymptomatic, non-contagious state
of TB infection which characterizes latency. However, granuloma are heterogeneous, dynamic
structures which are shaped by immune changes and undergo structural and functional
changes over time. A growing body of literature supports the hypothesis that active, Mtb-
induced mechanisms turn the granuloma into a proliferation and dissemination hotspot®.
Because infected macrophages undergo metabolism reprogramming towards lipid anabolism,
their endosomes fill up with lipids, resulting in “foamy macrophages”®?. They are poorly
microbicidal compared to conventional macrophages, hence forming an Mtb survival niche®.
Eventually, foamy macrophage necrosis occurring at the center of the granuloma causes their
cytoplasmic contents to be released, along with free Mtb that multiply exponentially in this
sheltered, lipid-rich extracellular environment called caseum. They in turn undergo
phagocytosis by uninfected granuloma macrophages, which increases the number of infected

cells®4.
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Figure 14. Spatial structure and cellular actors of the TB granuloma.
Source: Ramakrishnan, 2012%%,
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This generates necrotic caseous lesions leading to the granuloma rupturing, causing cavities
that facilitate Mtb dissemination through bronchial connection and are associated with high
mycobacterial burden and poor treatment outcomes®?. Cavity formation is known to be driven
by long-lasting T-cell immune responses showing a Th1 polarity and enhanced IFN-y secretion
at the granuloma site®?, leading to site clearance of granuloma structure by effector and
cytotoxic cells. This is supported by the fact that clinical presentation of PTB in HIV-positive
patients canonically consists in an infection with few symptoms and infrequent granuloma
formation. Regarding TB in the non-immunosuppressed individual, It is also enhanced by local
inflammation, as increased TNF concentrations stimulate macrophage necrosis by producing
reactive oxygen species (ROS)®3. But the role of pro-inflammatory immunity in TB disease is
far from straightforward. For example, T-cell IFN-y secretion at the periphery of the granuloma
activates macrophages, which enhances Mtb phagocytosis, but also induces mycobacterial
spread and granuloma rupture. In contrast, initiation of immunosuppressive treatment can
result in latent TB reactivation, and treatment with anti-TNF biologics has been shown to
facilitate granuloma disorganization and mycobacterial spread®. Taken together, these
observations are representative of the finely tuned immune balance of granulomas, and of
the evolutionary success with which Mtb escapes, resists, and diverts host immune responses,
eventually leading to the failure of granuloma-mediated containment. Fascinatingly, they
suggest that Mtb seems to benefit from both suppressed immune responses and enhanced

immune responses.
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2.5 Peripheral immune biomarkers of pulmonary M. tuberculosis infection

This complex involvement of actors from the innate and adaptive immune system at the site
of infection suggests that studying immune parameters during the course of TB infection could
be equally as relevant as measuring mycobacterial markers. However, the highly localized
character of PTB infection in inaccessible tissue forces us to evaluate peripheral markers as a
proxy of the local response. In this context, the general working hypothesis tested when
investigating immune biomarkers of TB treatment is that peripheral immune changes occur

earlier than microbiological reversion and clinical improvement.

2.5.1 Immune biomarkers across the M. tuberculosis infection spectrum

In relation with our understanding of the granuloma pathophysiology, the current conception
of TB disease is a spectrum of microbiological, clinical, and immunological manifestations
which range from controlled infection to active disease®’ (Figure 15). This has generated a
number of strategies to identify immune biomarkers associated with the different stages of
TB, and efforts have been made to investigate markers that can either discriminate latent from
active TB, change in response to treatment, predict microbiological outcomes, and predict
vaccine efficacy®®. In particular, markers of latency are being thoroughly investigated for
treatment monitoring purposes, because latent infection and cured infection display similar
manifestations on the TB spectrum. Despite the fact that other immune cells have been
associated with TB disease outcome (e.g. peripheral neutrophilia, which is associated to
disease severity and poor treatment outcomes®®), T-cells remain considered as the key actors
of the anti-TB response. Hence, most investigated biomarkers correspond to T-cell associated
responses, either by measuring secreted cytokines, assessing T-cell functionality or
abundance, and characterizing T-cell phenotypes. As a consequence, to ensure reliable
monitoring assays and to detect Mtb-specific immune responses, stimulation with
mycobacterial antigens is often necessary, and finding the most efficient stage-specific

antigens is as hot a topic as identifying stage-specific biomarkers themselves.
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2.5.2 Importance of the TB recall antigen choice

A large majority of the currently described T-cell epitopes (nearly 500) are highly conserved
within the MTBC, hinting that they are selected as essential genes and that despite the partial
protection that T-cell recognition offers, Mtb evolutionarily benefits from it’. However, the
immune response to Mtb is characterized by the immunodominance of a select few of these
antigens, which induce the majority of the anti-Mtb T-cell response. Although it is unclear
whether T-cells specific of these dominant antigens actually efficiently recognize Mtb-infected
cells or if they act as decoys’>73, the associated T-cell responses are frequently detectable in
people with Mtb infection, which justifies the use of these antigens for immune biomarker
measurement. However, the accuracy of such antigens for TB diagnostic, prognostic, and
treatment monitoring is decreased by a number of factors. Many Mtb T-cell epitopes are
conserved across other Mycobacteria species, and some among other bacteria from the
MTBC. This lowers the specificity of tests relying on these antigens because of BCG vaccination
and exposure to environmental nontuberculous mycobacteria (NTM) or animal-adapted
mycobacterial ecotypes’. This is further confounded by the heterogeneity of individual Mtb
immune responses, in relation with microbiota composition, ethnic diversity, and inter-
patient clinical background. In particular, for treatment monitoring biomarkers, it is suspected
that TB therapy may selectively impact targeted immune responses to some antigens and not
others; hence, there is a clinical need for novel efficient antigens for this purpose (Table 3).
Many of the studies focusing on the topic are currently investigating latency-associated

antigens.
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Table 3. Common TB antigens used in or investigated for immunodiagnostics and/or vaccination.

Adapted from Meier et al., 20187°.

Antigen Full name

| Specificity |

Uses in immunodiagnostics

Validated Mtb infection-associated antigens

T-cell stimulation

PPD Purified Protein Derivative Mtb, BCG, | rop Standardized protein
NTM cocktail
Early Secreted Antigenic Target IGRA .
ESAT-6 6kDa Mtb T-cell stimulation >15aa peptide
. . IGRA .
CFP-10 | Culture Filtrate Protein 10kDa Mtb 8-13aa peptide

Investigated latency-associated antigens

LTBI/aTB discrimination

(ruoars) | Heparimbinding hemagglutinin | Mt NTM | 200 o | oerential methyition
o o aans e WOEL gy [l s o PO
RD-1-encoded antigens (e.g. Rv2659c) Mtb éﬂggg:al antigens for Full proteins
Ag85 antigens (Ag85A, Ag85B, Ag85C) Mtb Vaccine targets Full proteins

Footnotes: BCG: Bacille Calmette-Guérin. DosR : dormancy of survival region. IGRA: interferon-gamma release
assay. NTM: non-tuberculous mycobacteria. RD-1: region of difference 1. Rv: rough morphology virulent. TST:

tuberculin skin test.
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2.5.3  State of the art of peripheral immune biomarkers for TB treatment monitoring
The main trends in TB treatment immunomonitoring research were summarized in Table 4.
Additional information on their performance and limits is given thereafter.

Table 4. Current trends in TB treatment immunomonitoring research.
Adapted from Goletti et al., 20183,

Test Antigen(s) Measured markers
Monocyte/lymphocyte ratio’®, neutrophilia”
NK cells’®, CD4* T-cells” or CD8* T-cells®%31

Immune cell abundance None

Commercial IGRAs (QFT-P, ESAT-6/CFP-10 Mtb-specific plasma or T-cell IFN-y levels®83

T-SPOT.TB) CD8* peptide pool
Custom IGRAs (non- HBHA Mtb-specific plasma or T-cell IFN-y levels, custom
validated antigens) antigens8

IFN-y, IL-17, IL-2, and TNF production by T-cells;

T-cell functionality ESAT-6/CFP-10 polyfunctionality?2

QFT-P antigens Differentiation/memory markers (CD27, CD45RA)%7/88
T-cell bhenotvpes PPD Chemokine receptors (CXCR3, CCR6, CCR4)%°
P P HBHA Activation markers (CD38, HLA-DR)%!

Exhaustion markers (PD-1)°%%3

Plasma or serum

. . None IFN-y, IL-10, IP-10, CRP, TNF, IL-6, IL-12, IL-4°495
inflammation markers

T-cell, cytolytic and IFN genes®®

Signatures of inflammation (RISK6°7/°8)

Footnotes: QuantiFERON Gold In Tube (QFT-GIT) is an older version of QFT-P and as such is not discussed within
the scope of this work.

Gene expression tests None

2.5.3.i Historical approaches to TB treatment immunomonitoring: from TST to blood counts

The earliest applications of immunodiagnostic to TB were LTBI diagnosis tools which measure
the immune response upon re-challenge with Mtb antigens. The oldest of these methods is
the Tuberculin Skin Test (TST), first introduced in the early XXt century and still widely used
nowadays. During TST, Purified Protein Derivative (PPD, a standardized cocktail of
mycobacterial proteins) is injected under the skin. A local hypersensitivity reaction ensues,
which reflects PPD-specific cell-mediated immunity. The resulting induration is measured and
compared to reference values to assess likelihood of TB infection. However, this test is lowly
specific because of BCG vaccination and NTM exposure®®, lowly sensitive in
immunocompromised patients, does not discriminate between ATB and LTBI, and is not
clinically relevant for treatment monitoring. A few decades later, early descriptions of immune
changes at the cellular level during TB were provided by animal models. In 1930, an important
concept was established by studies on rabbit models: a higher circulating proportion of
peripheral monocytes compared to lymphocytes (monocyte/lymphocyte (M/L) ratio) was

associated with active TB'%. Hematological abnormalities such as leukocytosis, neutrophilia,
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or lymphopenia during pulmonary TB disease in humans were then described in the literature
since the eighties'®?. Since, low monocyte proportions have been associated with higher rates
of progression towards active TB’®, and neutrophilia and lymphopenia have been associated
with higher mortality risks during TB treatment’’. The relevance of the M/L ratio was
confirmed in humans and it was shown to decrease after successful treatment!2, These
simple and robust markers are still used routinely by clinicians to assess TB treatment efficacy,
along with fever and weight gain. However, to date, absolute numbers of peripheral
lymphocytes and monocytes have not been consistently associated with microbiological TB

clearance, and may reflect overall inflammation levels.

2.5.3.ii IGRAs for treatment monitoring: the limits of repurposing LTBI screening tests

Besides TST and complete blood counts, the most widely used and readily accessible TB
immunodiagnostic tests are the Interferon Gamma Release Assays (IGRA). IGRAs measure T-
cell IFN-y production after whole blood antigen stimulation and are hence used as tests for
LTBI. Validated IGRA antigens include peptides from ESAT-6 and CFP-10, which are encoded
by the RD-1 locus of the Mtb genome, and are absent from NTM and BCG®: they are hence
recommended instead of TST because of their improved specificity. The first type of IGRA is T-
SPOT.TB (Oxford Immunotec), an enzyme-linked immunosorbent spot test (ELISPOT) that
quantifies IFN-y-producing cells after ESAT-6/CFP-10 stimulation. As this test requires PBMC
isolation, the other commercially available IGRA is more frequently used, especially in settings
were the required equipment or scientific expertise are not readily available. The
QuantiFERON-TB Gold Plus test (QFT-P, Qiagen) measures plasma IFN-y levels by enzyme-
linked immunosorbent assay (ELISA) after whole blood stimulation by two stimulation
conditions: TB1 (ESAT-6/CFP-10, CD4"* T-cell stimulation) and TB2 (same stimulation, enriched
with an undisclosed peptide pool designed to induce CD8* T-cell stimulation). Because PPD
and QFT-P antigens are well-described, validated, and commercially available, they are a good
standardized antigenic stimulation possibly available in laboratories from middle- and lower-
income settings, and applicable to a variety of different studies on TB immune biomarkers,
including treatment immunomonitoring. However, neither TST nor IGRA can differentiate
between active and latent infection, and accordingly, attempts to use for them for treatment
response monitoring in relation with mycobacterial clearance have met limited success®3,

although a decrease in TB2 IFN-y has been observed after cure in a minority of studies®%83,
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2.5.3.iii Heparin-binding hemagglutinin (HBHA) IFN-y in the TB spectrum

HBHA is an adherence protein that contributes to TB dissemination by inducing its binding to
lung epithelial cells'3, a pivotal process for latency. Despite the fact that HBHA is produced
by all members of the MTBC as well as other mycobacteria, plasma IFN-y responses to
recombinant methylated Mycobacterium smegmatis HBHA (rmsHBHA) as an additional
stimulation antigen in combination with QFT-P have been shown to stratify Mtb infection
stages and progression to disease since the early 2000’s1%4-108, Low levels of IFN-y production
in response to rmsHBHA stimulation have been associated with active TB disease as opposed
to latent infection. Other studies have then contributed to further characterizing these trends
by showing that both CD4* and CD8* T-cells secreted IFN-y upon HBHA stimulation??, that the
cytokine profile of HBHA-primed CD4* T-cells beyond just IFN-y also stratified LTBI and ATB*1?,
and that HBHA-induced polycytotoxic CD4* T-cells were associated with Mtb infection
control*'!, More recently, in two studies from 2017 and 2018, plasma rmsHBHA IFN-y has also
shown promise to monitor TB treatment outcomes in children® and adults, including BCG-
vaccinated populations!? (Figure 16). However, this has been explored only in small cohorts

from non-TB endemic settings, or with no drug-resistant TB patients.
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Figure 16. IFN-y response to HBHA or QFT-GIT antigens in active TB patients before and after treatment.

A. and B. Data from 24 untreated drug-susceptible TB patients and 28 cured patients. Source: Wen et al., 20172,
C. Data from 19 children with drug- susceptible TB before and after treatment. Source: Sali et al., 2018%*. Here,
“HBHA” or “mHBHA” both refer to purified recombinant methylated HBHA.
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2.5.3.iv T-cell phenotype and functionality characterization during TB treatment

As a plasma-based assays measuring secreted inflammation markers and cytokines showed
promise for treatment monitoring, efforts were made to better understand the characteristics
of T-cell response during TB treatment. Because of their central role in TB immunobiology,
most studies on the topic investigate IFN-y, IL-2, and/or TNF functionality in antigen-
stimulated CD4* or CD8* T-cells. Upon Mtb antigen stimulation, IFN-y-producing T-cells are
generally believed to correspond to Mtb-specific cells, but the presence of basal IFN-y
secretion and the unclear role of IFN-y-secreting CD4* T-cells in TB clearance challenge this
assumption. An increasing number of studies hence rely on T-cell selection with antigen-
loaded multimers to improve specificity. T-cell surface phenotypes are often investigated in
parallel, in an attempt to understand the relation between cytokine profiles, differentiation,
activation, and chemotaxis during treatment. The main trends were summarized in Table 5.

Table 5. Main markers investigated for TB immunomonitoring in relation with canonical T-cell differentiation
stages.

Marker | Function Tn | Tom | Tem | Temra | Association with TB control
CD45RA Differentiation + - - + CM associates with LTBI
CD45R0O - + + - EM associates with ATB
CCR7 Chemokine receptor . . i i Impaired CM and EM associate with disease
Differentiation severity
Stratifies LTBI and ATB
Co-stimulation During treatment, decrease of CD27* CD38*
CD27 . + + +/- | - o .
Maturation Mtb-specific CD4*, increase of other CD27*

CD38* Mtb-specific CD4*

Chemokine receptor

CCR4 +/- | + + +/- With CD27, stratifies LTBl and ATB
Th2 response
CCR6 Chemokine receptor i . N +/- Pefine méin Iymphocyte compartments
Th17 response involved in anti-TB response
) Differential expression between lungs and
T-cell homing blood
CXCR3 Thl - + + + : . .
response CXCR3+ CCR6+ in the lungs associate with TB
Receptor for IP-10
control*
. Cytotoxicity Increased in ATB patients after 2 months of
Perforin . - +/- | + +
Pore formation treatment
CD38 Activation + - - - .
— Decrease during treatment
Activation . . . .
HLA-DR . ) - +/- | + - Correlation with culture conversion time
Antigen presentation
Exhaustion .
S Decrease during treatment
PD-1 Inhibition of - + + + . . .
Reverse correlation with CD27 expression
effectors

Footnotes: Tn: naive T-cells. Tem: central memory T-cells. Tem: effector memory T-cells. Temra: effector T-cells
re-expressing CD45RA. Tscm (stem cell memory) and Trm (transitional memory) T-cells were not represented. The
definition of the different memory phenotypes was adapted from Mahnke et al., 201313,

*data from non-human primate experiments*,
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The differential involvement of T-cell memory subsets has been studied across the spectrum
of TB infection'!>11® and the during treatment!'’~11°, |n Mtb-specific total and CD4* T-cells,
effector memory (EM) phenotypes have been associated with active TB disease, whereas
central memory (CM) T-cells have been associated to latency, and increased upon anti-TB
treatment in ATB patients. Impaired CD4* CM and EM responses to Region of Difference 1
(RD1) proteins before treatment have also been correlated with TB disease severity. After
treatment, a decrease in total peripheral Mtb-specific CD8* T-cells??® and in CM cells more
specifically®! has been observed, coupled with an increase in perforin production by effector
cellst?,

In addition, the IFN-y/IL-2/TNF functional profile of Mtb-specific CD4* T-cells has been shown
to correlate with their degree of differentiation, prompting investigations of T-cell
functionality during treatment'??. The role of polyfunctionality (production of more than
1 cytokine simultaneously) in TB remains conflicting as it has been alternatively associated
with TB disease and shown to decrease following TB treatment'?3, or associated to latency
and TB protective immunity as opposed to the production of a single cytokine type!?*. Other
studies have further characterized the polarization of helper T-cells during TB by measuring
the expression of chemokine receptors in parallel with cytokine production (IFN-y or IL-17).
Th1 lymphocytes are known to predominate compared to other T helper categories during TB
infection!?®, appearing as low-differentiated CXCR3* CCR6* cells in the blood and highly
differentiated CXCR3*/~ CCR6™ cells in the lungs®. A recent study on non-human primates
highlighted that recruitment of CXCR3* CCR6" cells at the site of infection was associated with
TB control'**. However, the abundance variations during treatment of T-cells expressing
canonical and non-canonical combinations of these markers remain unclear.

Finally, these observations have been supplemented by studies on the surface expression of
differentiation, maturation, and activation markers. CD27 expression on IFN-y* and/or TNF*
Mtb-specific CD4* T-cells has been studied extensively and shown to stratify LTBI and ATB, in
particular when coupled with CCR4 expression®’. CD27 associates with lung pathology*?® and
disease severity!?’. A decrease in PPD-stimulated IFN-y* CD27* CD38* CD4* T-cells was
documented in treated TB patients, and a correlation between CD38 and HLA-DR expression
on Mtb-specific CD4* T-cells and time to stable sputum culture conversion during treatment
was established®’. More recently, a comprehensive study demonstrated that decreased

expression of HLA-DR and increased CD27 and CD153 expression on Mtb-specific CD4* T-cells
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was associated with TB treatment!?’, accompanying a decrease in PD-1 expression®3. Finally,
still on Mtb-specific IFN-y* memory CD4* T-cells, loss of CD27 expression was correlated with
increased PD-1 expression, and discriminated between LTBI and treated TB2, suggesting that
assimilating treated TB to a “latency-like” state has limits, and further reflecting the
complexity of TB memory responses during and after treatment. Overall, the extensive body
of literature on this topic shows that measurable T-cell responses to Mtb depend on the
antigen nature, amount, and availability!?®. This further reinforces the concept that finding

the right antigen to detect the right biomarker is pivotal to monitor TB treatment.

2.5.3.v  Plasma inflammation markers and transcriptomic signatures for treatment monitoring

Finally, this section briefly summarizes topics that are relevant in the landscape of modern TB
research, but are not the main focus of this thesis. Historically, plasma levels of the chemokine
IP-10 (IFN-y inducible protein 10) have been extensively studied across the different TB stages.
Elevated IP-10 is associated with active TB and decreases after therapy!?®. This trend is
conserved in HIV-positive patients, and is also verified when using dried blood spot assays (in
EPTB)3°, which is relevant for implementation in lower-income settings. C-reactive protein
(CRP) has also been shown to correlate with plasma IP-10 during TB, is associated with
microbiological and radiological signs of TB and also decreases during treatment!3'. More
recently, studies screening high numbers of other potential plasma immune biomarkers for
treatment monitoring have helped narrow down options. Procalcitonin (PCT), IL-1B, and IL-6
emerged as molecular markers that are strongly modulated by treatment!3?; but in contrast,
most pro-inflammatory cytokines were shown to display no significant changes (e.g. IL-2) or
to undergo important unrelated fluctuations (e.g. TNF) in plasma during treatment®.
However, for any of the above molecules, specificity to Mtb infection and association with
mycobacterial clearance assessed by sputum culture remain to be established consistently. As
a consequence, most investigated blood transcriptomic signatures of TB cure have also examined
genes associated with inflammation. A 2012 transcriptional profiling study demonstrated that an initial
downregulation of inflammatory mediators was linked with rapid killing of dividing Mtb, whereas
longer-term changes in other targets were associated with lung damage improvement®. This led to
several princeps studies identifying robust signatures of TB disease risk (16-gene signature by Zak et
al., 2016°7), TB diagnostic (3-gene signature by Sweeney et al., 2016*3), treatment outcome prediction

(5-gene signature by Thompson et al., 2017'3%), or all of the above (6-gene signature “RISK6” by
Penn-Nicholson et al., 2020%; Figure 17).
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Figure 17. Performance of the RISK6 signature for PTB treatment monitoring.

A. RISK6 scores during treatment (formula based on the expression levels of each gene in the signature). EoRx:
end of treatment. Cases: n=87. Controls: n=21. B. Receiver Operating Characteristic (ROC) curve illustrating the
performance of RISK6 to discriminate each timepoint during treatment from the baseline gene expression at
treatment initiation (n=87) C. ROC curve showing the performance of RISK6 for treatment failure prediction.
Cured: n=70. Failure: n=7. Source: Penn-Nicholson et al., 2020%,
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Chapter 3. High-dimensional cytometry for new insights on TB treatment
immunomonitoring.

3.1 The limits of flow cytometry

The cellular immune response to Mtb during treatment has been extensively studied over the
past decades. Flow cytometry, which enables single cell analysis of the expression of surface,
cytoplasmic, and nucleic markers, has been an indispensable tool for understanding the role
of T-cell subpopulations across the spectrum of TB disease. This technique, invented in the
late 1960s, was a revolution at the time and has generated countless key discoveries in
fundamental and translational immunology. It has contributed so greatly to our modern
understanding of cellular immunology, that the technique has become almost indissociable
from the field of study. However, as we enter a numeric era, high-powered computers and
analysis pipelines are becoming more and more accessible, both in terms of cost-effectiveness
and expertise. High-dimensional proteomic, genomic, and transcriptomic analyses have
become approachable and have brought new research frameworks and perspectives. In this
context, the technical restrictions of modern conventional flow cytometers are limiting. In
conventional flow cytometry, cell samples are stained with monoclonal antibodies specific of
cellular markers of interest and tagged with fluorophores. Cells flow one by one through laser
beams, and the photons emitted upon fluorophore excitation are detected, converted into
electric signals, and processed by a computer (Figure 18.A.). However, the number of
parameters that can be stained simultaneously is restricted, because the emission spectra
emitted by different fluorophores overlap, and the spillover of signal from a given fluorophore
into the detection channel of another fluorophore hinders the precise measurement of
marker expression. Hence, despite advances in hardware and fluorochromes, most routinely
used conventional flow cytometers enable the detection of about 18 parameters
simultaneously. More recently, the detection of up to 28 to 30 colors has been reported with
conventional flow cytometry!3>, but only on certain machines, and provided that extensive
panel design gymnastics are performed, followed by a variety of spillover compensation
headaches. In the last decade, novel high-dimensional technologies have been developed to
overcome the limits of spectral overlap, and are being increasingly used in translational cancer

or infectious disease immunology studies: mass cytometry and spectral flow cytometry.
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Figure 18. Conventional flow cytometry and technical limitations.

A. Principle of conventional flow cytometry. During conventional flow cytometry data acquisition, cells are
stained with fluorescent-tagged antibodies. The liquid cell suspension is injected into the cytometer and a sheath
fluid flow enables the cells to pass one-by-one in front of the laser beam(s). The resulting scattered light and
emitted fluorescence are detected and converted into electric signals which are then digitalized. Source of image:
Hamamatsu Photonics. B. Spectral overlap. The emission spectra of two commonly used flow cytometry dyes:
fluorescein isothiocyanate (FITC, emission peak at 516nm) and phycoerythrin (PE, emission peak at 574nm) are
represented. The red and blue colors represent the spillover of FITC signal detected in the PE-dedicated channel,
and the spillover of PE detected in the FITC-dedicated channel, respectively. Source of image: Bio-Rad.
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3.2 Principle of mass cytometry

Mass cytometry (or cytometry by time of flight, CyTOF) was invented in 2009 and combines a
cytometry single cell injection procedure with a measurement system based on inductively
coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS)*3®. Instead of being tagged
with fluorophores, mass cytometry antibodies are coupled to stable isotope lanthanide metal
nanobeads. After staining with metal antibodies, single cells are nebulized into a chamber
using a heated argon gas flow, and ionized through a beam of argon plasma (5,000°C). The
resulting ion cloud is accelerated into a quadrupole whose electromagnetic field ejects low
mass ions (atomic mass (m)/charge (z) < 80). This eliminates plasma ions (e.g. Ar*, O2*) and
lighter ions that come from the biological sample (e.g. C*, CI'), which enables to measure
uniquely the atomic mass of the lanthanides from the cell staining. This is performed by
recording the time of flight of the ion cloud between the moment when it is accelerated into
a vacuum chamber, and the moment each ion hits the detector. After digitization and
conversion of the output signal, the metal composition of the sample is obtained and samples

are analyzable with analysis methods similar to those used in conventional flow cytometry.
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Figure 19. Principle of mass cytometry.

“Reporter atomic ions” refers to ions derived from the multiatom metal structures used for cell staining. The
colored histograms refer to the mass signals detected for each cell (x axis: stable isotope mass in Da; y axis: signal
intensity). Overlap between mass signals is extremely limited. ICP: inductively coupled plasma. Source: Bendall
etal., 2012%,
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Since it uses elemental isotope staining instead of fluorescence, mass cytometry is free from
spectral overlap, which greatly improves signal resolution. It is estimated that a thousandfold
abundance difference is required between two adjacent metal isotopes before spectral
overlap caused by insufficient mass resolution needs to be compensated (i.e. > 0.1% spillover).
As most lanthanide metal tags generate signal intensities that range within twofold of one

another!3’

, mass cytometry enables rigorous and standardized measurement of up to 45
parameters simultaneously3®13°, A major advantage of mass cytometry is the possibility to
easily stain different samples with individual intracytoplasmic Palladium isotope combination
barcodes and pool them together prior to staining and acquisition, which greatly reduces
inter-sample experimental variability. There are still sources of overlap or signal interference
in mass cytometry, which arise either from isotopic impurities in the metal nanobeads (usually
+/- 1 Da) or oxidation during ionization (+16Da generated by the two extra oxygen atoms).
However, they are minor compared to fluorescence spillover, and can be avoided with
rigorous panel design (e.g. making sure that markers which are often co-expressed are not
stained with metal tags that only differ from 1 Da), instrument tuning and calibration (e.g.
verifying that oxidation interference is <3% of signal measured from 3°La isotopes, which are
easily oxidized), and experiment controlling (e.g. Mass Minus One experiments for panel
isotopes that are easily oxidized)'*°. However, different limitations arose with the high
resolution and the technical prowess that came with mass cytometry. The low sample
throughput and labor intensity (the whole staining to data acquisition protocol takes at least
2 days), poor cell transmission efficiency (only 60-75% of the original sample actually
generates data), and operating costs decrease the practicality and accessibility of this

technology.
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3.3 Principle of full spectrum flow cytometry

The other commercially available high-dimensional cytometry is full spectrum flow cytometry
(also known as “spectral flow cytometry”), invented in the 2000s and first commercialized in
2012 In contrast to conventional flow cytometry, it records the entirety of the emission
spectra for each fluorochrome, from ultraviolet to infrared, across up to five lasers (Figure
20.A.). Each fluorochrome is thus associated to a unique spectral signature, which enables to
mathematically discriminate between fluorophores that have identical emission peaks as
other differences can be detected elsewhere on the spectrum (Figure 20.B.). Panels of up to

40 markers have been published as recently as last year using this technology#2.

A- ample Inlet ——

Sheath

Inlet
—

1

Sample
Stream Emitted light

1 Detectors )‘
° 1 e \
/ ) P = Filters
14! 4
|
Sheath / //l .
Stream

Dichroic mirrors Spectrograph 3 = N
Laser Beam Detectors

Conventional Detection Spectral Detection

2. Deconvoluted spectral signatures

T cells

CD4-eFluor 506

1. Total co-stained sample spectrum
CD4-eFluor 506

£ x CD8-Pacific Orange 593599995 95939903 999889999595 59959995:
[ &~
£ Violet Blue Red

Detectors Detectors Detectors

w1 CD8-Pacific Orange

Violet Blue Red

>
5. -
Detectors Detectors Detectors Ew - .
ey -
vy R Wy L A e
tosecese PPLPEPEE IR IRV P Peeoeeed e
Violet Blue Red 506
Detectors Detectors Detectors clos A

Figure 20. Principle of full spectrum flow cytometry.

A. While conventional flow cytometers use mirrors and filters to split emitted light towards individual detectors,
full spectrum flow cytometers rely on a spectrograph to separate light. The individual beams are cast into a
focusing lens prior to detection, then parallelized and directed linearly before reaching a detector. On the right,
a violet laser avalanche photodiode (APD) detection system is represented, with its 16 individual channels. In
total, on a 5-laser CYTEK Aurora spectral flow cytometer, the principle repeats itself for blue, yellow/green, red,
and UV lasers, reaching a total of 64 channels. Source: adapted from Nolan, 2013%*! and ThermoFisher Scientific
information sheets.

B. After data acquisition, the total recorded spectrum is mathematically separated into the autofluorescence
signature of the sample, and the separate spectral signature of each fluorochrome used for staining. Source:
ThermoFisher Scientific information sheets.
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3.4 The case for high-dimensional analyses of TB immunity

The cellular immune response to Mtb is intrinsically multifaceted, and further complexified by
mycobacterial mechanisms of immune evasion, individual immune heterogeneity, and poorly
understood response to treatment. As shown in Chapter 2, the number of molecular markers
and of cell phenotypes involved in TB control and of interest for monitoring keeps expanding
as our knowledge of the disease progresses. To understand how all these separated insights
relate to each other and are connected at the cellular and molecular levels during TB, a
comprehensive, deeper profiling of the immune system in relation with TB stages is needed.
With high dimensional single cell phenotyping technologies, insights that go beyond
conventional binary immune cell classifications and relate to non-canonical populations are
possible, while simultaneously assessing cellular function and overcoming the limitations of
RNA analysis'#3. Mass cytometry approaches have been successfully applied to translational
immunology topics ranging from immune alterations during sepsis!** to mostly onco-
immunology4~147, Although more recent, full spectrum flow cytometry is quickly garnering
even more scientific attention and is more popular in the field of infectious disease
immunology, as shown by recent high-impact contributions to influenza'*® and COVID-19
research#. There is evidence that these techniques have potentially huge implications on the
identification of biomarker targets and the development of new therapeutic options. Yet, they
are still niche techniques that mostly contributed to studying tumor microenvironments and
are rarely used in infectious disease research, even more so for TB research given its

complexity, long treatment durations, and skewed prevalence in lower-income settings.
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RESEARCH OBIJECTIVES

This research project was part of a larger multicentered study conducted within an
international network of laboratory and health centers coordinated by the Meérieux
Foundation (“Global Approach to Biological Research, Infectious diseases and Epidemics in
Low-income countries”; GABRIEL). In relation with the scientific questions to address exposed

previously, two main objectives were identified in this context.

First, by mobilizing local scientific capacity in areas heavily affected by TB, our work aimed to
evaluate the relevance and monitoring performance of inexpensive, rapid, and easy-to-use

tests for concrete short-term application in the communities concerned.

Then, by using state-of-the-art high-dimensional single-cell techniques available in France, we
implemented an exploratory approach from bench to bioinformatics to discover targets for

new tests that might improve diagnostic capabilities on the longer term.
The overarching aim of both aspects was to include the results in a framework which would

help advance TB management research in accordance with clinical needs in high-burden

countries, while remaining sustainable for local scientific partners.
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PART B: RESULTS AND ORIGINAL
PUBLICATIONS
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1. The HINTT study: genesis of the project

The HINTT study (HBHA Interferon-y Release Assay Test for Tuberculosis) was a multicentered
study organized with partner institutions from the Fondation Mérieux GABRIEL network
(Global Approach to Biology Research, Infectious diseases and Epidemics in Low-income
countries)*>°, which was created to build and enhance local research capacity in the field of
infectious diseases in lower-income countries. The objective of HINTT was to evaluate the
relevance of several immune tests and biomarkers for PTB treatment monitoring in TB-
endemic countries. Partner institutions selected for participation in HINTT were located in
countries with either high- or moderate nationwide TB incidence, had access to BSL-3
laboratory facilities, and had qualified staff available for TB patient follow-up and laboratory
analyses (sputum culture and smear and whole blood sample processing). Hence, we

conducted this study in five countries with the approval of national TB programs (Table 6).

Table 6. HINTT study clinical and laboratory partners.

Country TB incidence! City Laboratory
Bangladesh 71 Dhaka In.ternational center for diarrhoeal
disease research, Bangladesh
. _ National Center for Tuberculosis and
Georgia 74 Thilisi Lung Diseases NTCLD
Lebanon 13 Tripoli Labf)ratoire Microbi'olog'!e,l S:.:mté gt
Environnement, Université Libanaise
. Unité des Mycobactéries, Institut Pasteur
Madagascar 233 Antananarivo y
de Madagascar
Instituto de Investigationes en Ciencias
Paraguay 46 Asuncion de la Salud, Universidad Nacional de
Asuncion

Footnotes: 1. Nationwide TB incidence per 100,000 inhabitants, in 2019 (WHO Global TB Report).

The objective was to include 200 participants and to follow them at treatment initiation (T0),
after the intensive phase of treatment (T1), at the end of therapy (T2; 6 months for
drug-susceptible (DS-TB) patients, 9—24 months for drug-resistant (DR-TB) patients), and two
months after the end of therapy (T3), which was not always possible as it was outside national
TB program guidelines. Catchment areas were defined in each study sites in an attempt to
minimize loss to follow-up. Patients from these areas presenting with suspected active PTB
(symptoms, positive sputum smear and/or positive GeneXpert) were recommended by
partner clinicians for laboratory diagnostic and drug susceptibility testing. Exclusion criteria
were age < 15 years old, HIV co-infection, immunocompromising treatment, pregnancy, and
diabetes mellitus. In the following analyses, patients with negative sputum culture at inclusion

and patients lost to follow-up were excluded.
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All the studies presented thereafter were nested within HINTT and involved subsets of
patients from the same cohort, meeting the same inclusion and exclusion criteria, and
followed according to the same timepoints. Technical details on microbiological diagnosis and
drug susceptibility testing are detailed for all study sites in the Supplementary Data of
Publication 1 (see Annexes). Conducting this multi-tool study with patients living in
geographically distanced, lower-income settings was made possible by parsimonious
biological sample use: all analyses were performed on samples derived from the same 10mL

of whole blood collected at each timepoint (Figure 21).

Anti-TB treatment

T0 T T2 T3 (if possible)
Treatment initiation TO + 2 months EoT (T0 + 6 to 24 months) EoT + 2 months
10mL whole blood Sputum
CBC RNA preservation tube Unstimulated  Non-TB specific stimulation  Mtb recall antigens
QFT-P NIL QFT-P MIT QFT-P TB1, TB2
rmsHBHA

Mycobacterial culture

Transcriptomic response
RISK6 signature Plasma White blood cells

Adaptive cellular response

Total cellular response In-depth T-cell phenotyping Gold standard for

WBC absolute counts Inflammatory response Mass cytometry treatment moni.tollting
Lymphocyte and monocyte proportions QFT-P ELISA Full spectrum flow cytometry & drug susceptibility

Figure 21. Sample collection and analysis workflow for the HINTT study.

Patient were followed at least until the end of treatment. Participants who were lost to follow-up before T2 were
excluded from downstream analyses. As the T3 timepoint fell outside of national TB program-backed guidelines
and most patients had achieved cured at T2, the rate of loss to follow up was much higher at T3. The
transcriptomic response section (validation of the RISK6 signature®) is not within the scope of this thesis, and
the associated original publication was added to the Annexes. CBC: complete blood count. EoT: end of treatment.
QFT-P: QuantiFERON-TB Gold Plus. WBC: white blood cells. MIT refers to the Mitogen stimulation condition of
QFT-P that contains phytohemagglutinin, a non-specific stimulator of T-cells.

55



2. Publication 1

Association of baseline white blood cell counts with tuberculosis treatment

outcome: a prospective multicentered cohort study

Carole Chedid, Eka Kokhreidze, Nestani Tukvadze, Sayera Banu, Mohammad

Khaja Mafij Uddin, Samanta Biswas, Graciela Russomando, Chyntia Carolina Diaz
Acosta, Rossana Arenas, Paulo PR. Ranaivomanana, Crisca Razafimahatratra,
Perlinot Herindrainy, Niaina Rakotosamimanana, Monzer Hamze, Mohamad
Bachar Ismail, Rim Bayaa, Jean-Luc Berland, Giovanni Delogu, Hubert Endtz,

Florence Ader, Delia Goletti, Jonathan Hoffmann.

International Journal of Infectious Diseases 2020; 100 (1); 199-206.
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Article summary

Mtb sputum culture is the gold standard for TB treatment monitoring. However, it is time-
consuming and necessitates high-level biosafety laboratories. Quick alternatives that require
less scientific expertise and laboratory equipment than most currently studied
immunodiagnostic tests are needed to improve TB management in primary care settings.
Here, we conducted a prospective international cohort study in five low-and middle-income
countries with high- and moderate TB prevalence: Bangladesh, Georgia, Madagascar,
Paraguay (>20 TB cases per 100,000 inhabitants per year) and Lebanon (11 cases per 100,000).
We monitored the evolution of hematological parameters during pulmonary TB treatment,

and characterized their association with microbiologically confirmed treatment failure.

Between December 2017 and February 2020, we enrolled 198 adult, non-
immunocompromised, drug-susceptible (DS-TB) and drug- resistant (DR-TB) culture positive
pulmonary TB patients. We followed 152 of them during treatment: at initiation (T0), at the
end of intensive phase (T1), and at the end of treatment (T2) (23% lost to follow-up overall).
At the end of treatment, 90.8% (138/152) of patients achieved cure. During treatment, white
blood cell (WBC) absolute counts decreased, and lymphocyte proportions increased
significantly. An increasing trend was observed in monocytes, but was inconsistent between
study sites; hence, no conclusive result was obtained when monitoring the
monocyte/lymphocyte ratio, a historical immune marker of TB resolution. In multivariate
analyses (adjusted for age, sex, country of origin, drug resistance strain, and smoking habit),
baseline high WBC counts and low lymphocyte proportions were associated with positive
sputum culture results at the end of treatment (WBC > 11,450 cells/mm?3: p = 0.048;
lymphocytes <16.0%: p = 0.039; WBC > 11,450 cells/mm?3 and lymphocytes <16.0%: p = 0.024;

all thresholds were obtained using Receiver Operating Characteristic (ROC) curve cutoffs).

These trends are likely to reflect general clinical improvement in response to treatment, and
are consistent with the characteristics of successful therapy. However, the association of
these baseline parameters with treatment outcome may yield precious insights on treatment
failure prediction, and warrants further investigation. A hypothesis is that patients with high

baseline WBC counts and low lymphocyte proportions had highly inflammatory clinical
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patterns, as a high WBC count is likely to reflect peripheral neutrophilia. This immune profile
would be associated with more severe TB disease forms and could be more challenging to
cure. Overall, as complete blood counts are performed routinely in health care centers
worldwide and are usually evaluated in TB patients along the therapy course, our study
suggests that they may be a helpful point-of-care tool to help clinicians identify which patients
might be less responsive to treatment. They are cheap, quick tests that require a small volume
of blood, their output is easy to interpret, and they can be performed without automated

equipment. However, this warrants further investigation on larger cohorts.
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Introduction

Tuberculosis (TB) is the leading cause of death by an infectious
disease globally, responsible for 1.5 million deaths in 2018 (World
Health Organization Geneva, 2019a). The treatment of active
pulmonary TB lasts at least 6-months and can cause major side
effects (World Health Organization Geneva, 2017, 2019a). Conse-
quently, treatment adherence is poor, particularly in primary care
settings (Woimo et al., 2017).

Mycobacterium tuberculosis culture from sputum samples is the
gold standard for TB treatment monitoring (Wallis et al., 2016).
However, it is time-consuming and requires high-level biosafety
laboratories (Horne et al., 2010). Sputum smear Mmicroscopy is
quicker for treatment monitoring, but it has limited accuracy
(Ngabonziza et al., 2016). Hence, blood-based tests are a promising
alternative. A variety of blood-based immunoassays, from inter-
feron (IFN)-v release assays to T cell activation tests, are being
evaluated for treatment monitoring (Cingolani et al., 2012; Sali
et al., 2018). However, in low-resource countries, these tests need
to be adapted to limited laboratory equipment (MacLean et al.,
2017) and a simple output (Goletti et al., 2018).

Hematological abnormalities-such as leukocytosis, neutro-
philia, or lymphopenia-during pulmonary TB disease have been
described in the literature since the eighties (Morris et al., 1989).
Low monocyte proportions have been associated with higher rates
of progression towards active TB (Rakotosamimanana et al., 2015).
Neutrophilia and lymphopenia have been associated with higher
mortality risks during TB treatment (Lowe et al., 2013 ). However,
many these studies were either small case-control studies {(Abay
et al., 2018), focused on the risk of developing active TB disease
(Kurup et al., 2016), or assessed kinetics during treatment and not
association with treatment failure (Morris et al., 1989; Rakotosa-
mimanana et al, 2015). Most available comprehensive studies
were in low-burden, high-healthcare standards areas (Ritchie
et al., 2016).

Here, we describe a prospective multicentered cohort study
conducted in five low- and middle-income countries across four
continents: Bangladesh, Georgia, Lebanon, Madagascar, and
Paraguay. Four of these countries are on the 2019 WHO high
incidence TB country list (>20 cases per 100,000 population), with
the exception of Lebanon (eleven cases per 100,000 population)
(World Health Organization Geneva, 2019a). The target population
was adult, HIV-uninfected, drug-susceptible (DS-TB), and drug-
resistant (DR-TB) pulmonary TB patients.

This study's primary objective was to monitor the evolution of
simple hematological parameters during pulmonary TB treatment
in higher TB incidence settings: absolute WBC counts, lymphocyte,
and monocyte proportions. These markers of inflammation were
chosen because they are routinely monitored in primary care
settings. The focus was kept on cellular parameters.

A secondary objective was to characterize their association with
treatment failure, defined by sputum culture positivity (the gold
standard) at the end of treatment, in relation to clinical and
sociodemographic factors.

Materials and methods
Study design and sample population

Study design

This descriptive study was nested within a multicentered
prospective cohort study evaluating the prognostic value of blood-
based immunological marlkers for TB treatment monitoring, based
in five partner institutions from the Mérieux Foundation GABRIEL
network (Komurian-Pradel et al., 2013) with the approval of
national TB programs: the international center for diarrheal

diseases and research, Bangladesh (icddr,b) in Dhaka, Bangladesh;
the National Center for Tuberculosis and Lung Diseases (NTCLD) in
Tbilisi, Georgia; the Laboratoire Microbiologie, Santé et Environne-
ment (LMSE, Université Libanaise), in Tripoli, Lebanon; the Institut
Pasteur de Madagascar in Antananarivo, Madagascar; and the
Instituto de Investigationes en Ciencias de la Salud (Universidad
Nacional de Asuncién; [ICS-UNA) in Asuncién, Paraguay.

Ethical considerations

This study was conducted with the approval of the ethical
boards in Bangladesh, the Research Review Committee and the
Ethical Review Committee of icddr,b; in Georgia, the Institutional
Review Board of the NTCLD (IORG0009467); in Lebanon, the
institutional review board of NINI hospital (IRB-F-01); in
Madagascar, the Ministry of Public Health and the Ethical
Committee for Biomedical Research (reference number: n°099-
MSANP/CERBM); in Paraguay, the Research Ethics Committee and
the Scientific Committee of the ICS-UNA (IRB number:
IRB00011984; Federal Wide Assurance number: FWA00029097).
All recruited patients provided written informed consent.

Cohort recruitment, TB diagnosis, and patient follow-up

We calculated that a sample size of 156 was required to reach a
level of significance of 95% and a power of 80%, assuming an
average rate of treatment failure of 10% (World Health Organiza-
tion Geneva, 2019a), a baseline prevalence of lymphopenia (<15%
of total WBC) of 30%, and that treatment failure was three times
more likely in patients with lymphopenia (Lowe et al., 2013). We
aimed to include 200 participants to account for lower prevalence
values, failure rates, or missing data.

Patients were recruited if diagnosed with microbiologically
confirmed pulmonary TB (positive culture andjor sputum smear
andfor GeneXpert; see “Microbiological diagnosis™ section for
further detail). Patients with HIV or diabetes mellitus (defined by
HBAI1C levels »>6.5%; Cobas (Roche) automated analyzer) and
children under 15 years were excluded. In downstream analyses,
patients under immunocompromising treatment (corticosteroids,
calcineurin inhibitors, biologics, or other chemotherapeutic
agents), patients with negative cultures at inclusion, and patients
who were lost-to-follow-up were excluded.

Patients were followed up: at inclusion (T0), after two months of
treatment (T1), at the end of therapy (T2; 6 months for drug-
susceptible (DS-TB) patients, 9-24 months for drug-resistant (DR-TB)
patients), and twomonths after the end of therapy when possible (T3).
All patients were on Directly Observed Treatment, Short Course
(DOTS), and received treatment according to standard protocols (Aung
etal., 2014; World Health Organization Geneva, 2017, 2019a). Detail of
therapeutic regimens can be found in Supplementary Table 1.

Microbiological diagnosis and definition of treatment outcome

At each visit, at least one sputum sample per patient was
collected for culture (solid andjor liquid media) and smear
microscopy (Ziehl-Neelsen and/or Auramine O staining). Molecu-
lar amplification of M. tuberculosis DNA was conducted at inclusion
(GeneXpert MTB/RIF, Cepheid, Sunnyvale, CA). Drug susceptibility
testing (DST) and multi-drug resistance diagnosis were performed
according to standard protocols (World Health Organization
Geneva, 2019b). Microbiological methods and DST protocols are
detailed in Supplementary Table 2.

Treatment outcomes were defined as follows: failed (positive
sputum culture at T2); cured {negative sputum culture at T2 and no
evidence of positive culture at T3); relapse or reinfection (culture
conversion at T2 but positive culture recorded at T3); completed
(patient not lost to follow up, but no available culture data at T2 or
T3) (World Health Organization (WHOQ), 2013).
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On-site whole blood collection and cell count

At each visit, 10 mL of whole blood were drawn, 1 mL of which
was collected in EDTA tubes used for the present study. Complete
blood counts were performed on automated analyzers (details of
manufacturing references per study site are in Supplementary
Table 2).

Clinical data collection and standardization

Data collection forms were created with clinicians from partner
sites and standardized to ensure dataset homogeneity. Follow-up
sheets were used to track sample handling and time flow from the
collection in health centers to receipt in laboratories. All forms
were translated into the local official language upon request from
staff. Data were entered into the cloud-based database system
CASTOR (CASTOR Electronic Data Capture, Version 1.4,
Netherlands).

Descriptive statistical analysis

Data were cleaned and analyzed in R (version 3.6.2). As the
sample size was small, discrete variables were analyzed using
Fisher's Exact test with Bonferroni's post-hoc test (Kim, 2017).
Normality was assessed using the Shapiro-Wilk Normality Test
(test statistics available in Supplementary Table 3). Normal,
continuous variables were analyzed with Student’s ¢-test. Non-
normal, continuous variables were analyzed with the Mann-
Whitney test or the Kruskal-wallis rank-sum test with Dunn's
Kruskal-Wallis Multiple Comparisons post-hoc test (Dunn, 1964).
Repeated measures of non-independent continuous variables
were analyzed using the Friedman rank-sum test, with
Wilcoxon-Nemenyi-McDonald-Thompson's  post-hoc test (Paro
Padro et al., 2015).

Logistic regression and receiver operating characteristic (ROC)
analyses

For these analyses, the assessed outcome was a recorded
positive M. tuberculosis culture result at T2. Patients with
unavailable culture data at T2 and patients with relapse were
excluded from the analyses. The evaluated variables were
leukocyte counts, lymphocyte proportions, and monocyte pro-
portions at TO or T1. If missing data exceeded 10% of the sample

size, the variable was not considered. Otherwise, missing data were
replaced by the most frequent group (categorical variables) or the
mean (continuous variables). Highly skewed, non-normal contin-
uous variables were log-transformed prior to analyses. Variables
were first evaluated in univariate logistic regression analyses, then
multivariate analyses were performed. Adjustment variables were
selected as follows: sociodemographic variables of known clinical
importance (e.g., sex, country of origin), TB risk factors (e.g.,
smoking), and additional sociodemographic variables that were at
least moderately associated (p < 0.10) with the outcome in
univariate analyses (e.g., prison). lrrelevant adjustment variables
were then removed by backward model selection. The combina-
tion of variables that minimized the Akaike Information Criterion
(AIC) for most tested predictors, while including important
adjustment variables, was selected (age, sex, smoking habit, drug
sensitivity, country of origin). For lymphocyte proportions, odds
ratios (OR) were calculated for each increase of 5.0% because the
total range of measured values was 5.0-70.0%. Similarly, for
absolute WBC counts, OR were calculated for each increase of 1000
cells per mm>.

For both ROC analyses and logistic regression, since the sample
size was small, model performance metrics (respectively, the Area
Under the Curve (AUC) and the C-statistic) were corrected for
optimism using bootstrap to assess model validity as described
elsewhere (Smith et al., 2014).

Results
Demographic and clinical characteristics of the cohort

Between December 2017 and February 2020, 198 eligible
patients with culture-confirmed active pulmonary TB were
recruited in Dhaka (Bangladesh), Tbilisi (Georgia), Tripoli and
Akkar (Lebanon), Antananarivo (Madagascar), and Asuncién
(Paraguay). As of July 2020, 152 of them were followed at least
until the end of treatment and had available blood count data
(Figure 1). As the T3 time point was later than the local TB program
visits, the dropout rate was highest between T2 and T3 (26%).

Among patients followed until T2 at least, 18.4% (28/152) were
diagnosed with DR-TB. The sociodemographic and clinical
characteristics of DS-TB and DR-TB patients were comparable at
inclusion (Table 1). The characteristics of patients at inclusion were
compared between study sites (Supplementary Table 4). There was
no significant difference in baseline absolute WBC counts and

Suspected TB cases
N =274

Excluded:
HIV positive: N=3

I

Chemotherapy: N=1

‘ Eligible participants

Dishetes mellitus: N = 37

1

Excluded:

N =108
DS =153; DR =45

Microbiologically confirmed TB cases: HINTT cohort baseline (T0)

Negative ar contaminated sputum culture: N = 36

I

LTFU: N = 19 (3.6%)

End of intensive phase (T1: T0 +2 months)

N=

DS=137;DR=41

Deaths: N =1

LTFU: N = 25 (14.0%)

End of treatment (T2: TO + 6 to 24 months}
N=152
DS =124; DR = 28

Deaths: N =1

;

LTFU: N = 40 (26.3%)

2 months post-end of treatment (T3)
2

D5=96;DR =16

Figure 1. Inclusion and data collection process between December 2017 and July 2020.
DR: drug-resistant. DS: drug-susceptible. LTFU: lost to follow-up. TB: tuberculosis. HIV: human immunodeficiency virus. Treatment for DS-TB patients lasted 6 months.

Treatment for DR-TB patients lasted 9-24 months.
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Table 1

Sociodemographic and clinical characteristics of drug-susceptible and drug-resistant patients at inclusion.

C. Chedid et al./ International journal of Infectious Diseases 100 (2020) 199-206

N ALL DS-TB DR-TB p DS-TB vs DR-TB
152 124 28
Patient demographics
Age (years) 8 (22-37.25) 8 (22-39) 27.5(19.75-33.25) 022
Sex (male) 63.2% (96/152) 64.5% (80/124) 57.1% (16/28) 0.52
Country of origin
Bangladesh 25% (38/152) 16.9% (21/124) 60.7% (17/28) >0.001
Georgia 21.7% (33/152) 18.5% (23/124) 35.7% (10/28) 0.072
Lebanon 11.8% (18/152) 14.5% (18{124) 0 0.045
Madagascar 23.7% (36/152) 29% (36/124) 0 >0.001
Paraguay 17.8% (27/152) 21% (26/124) 3.6% (1/28) 0.028
BMI at inclusion 18.8 (17.1-21.4) 18.9 (16.9-21.4) 18.8 (17.5-21.0) 0.87
Sputum smear microscopy at inclusion
High grade (2+ or 3+) 51.1% (76/149) 50.4% (61/121) 53.6% (15/28) 0.83
Low grade (1+ or scanty) 18.8% (43/149) 29.8% (36/121) 25% (7/28) 0.81
Negative 20.1% (30/149) 19.8% (24/121) 21.4% (6/28) 0.79
WBC absolute count at inclusion (fmm?) 9590 (7468-11770) 9500 (7365—11640) 10,150 (7725-11850) 0.54
Lymphocytes at inclusion (¥ of WBC) 8 (14-24) 8 (14-23.2) 7 (13.8-245) 0.65
Monocytes at inclusion (¥ of WBC) 5 (2-7.48) 5(2-8.23) 4(3-5.25) 035
Number of household contacts 4(3-6) 4(3-6) 4(3.75-6.25) 091
BCG vaccination 81.1% (99/122) 80.2% (81/101) 85.7% (18/21) 0.64
Risk factors and comorbidities
Smoking 47.7% (72{151) 48% (59/123) 46.4% (13/28) 1
Alcohol abuse 21.9% (33/151) 23.6% (29/123) 14.3% (4/28) 0.55
Injectable drug use 3.3% (5f150) 2.4% (3/123) 7.4% (2]27) 036
Jail detention history 10.1% (15/149) 11.6% (14/121) 3.6% (1/28) 044
Chronic HCV infection 2.1% (3/146) 2.5% (3/118) 0 1
Other disease® 5.5% (7/128) 6.7% (7/105) 0 0.35
History of TB
Previous TB 18.9% (28/148) 16.4% (20{122) 30.8% (8/26) o1
Of which are documented 78.5% (22/28) 70.0% (14/20) 88.9% (8/9) 0.05
Prior exposure to active TB patients 30.9% (46/149) 31.4% (38{121) 28.6% (8/28) 022
Previous TB treatment outcome
Cured and completed 57.1% (12/21) 56.2% (9/16) 60% (3/5) 1
Completed 14.3% (3/21) 12.5% (2/16) 20% (1/5) 1
Treatment failure 14.3% (3/21) 18.8% (3/16) 0 -
Outcome not evaluated or unknown 14.3% (3/21) 12.5% (2/16) 20% (1/5) 1

DS-TB: drug-susceptible tuberculosis. DR-TB: drug-resistant tuberculosis. BMI: body mass index. IQR: interquartile range. WBC: white blood cells.
# Asthma, hypertension, inflammation. No patients presented with either pregnancy, renal disease, solid tumors or other cancers, HIV infection, chronic pulmonary disease,
or chronic HBV infection. Data were given as % (N) or median (IQR).

lymphocyte proportions between cohorts, but several other Table 2
parameters differed. Monocyte counts were significantly higher Microbiological characterization of treatment response and outcome definition.

in the Lebanon and Madagascar cohorts than in the other sites. Sputum culture results  Positive Negative Unavailable

Patien_ts in Bangladesh were younger than those r.ecruit.ed in Timepoint

Georgia and Paraguay. The body mass index (BMI) at inclusion of TO 100% (152/1521 0 0

patients from Bangladesh and Madagascar was significantly T1 13.8% (21/152)  70.4% (107/152) 15.8% (24{152)

lower than in the other study sites. Finally, BCG vaccination rates T2 33% (5/152)  94.8% (144/152) 19% (3/152)

were significantly lower in the Georgia and Lebanon cohorts. B 0.9% (1/m2) B8 (B9112) 5547 (62/112)
All patients DS-TB DR-TB

Treatment outcome
Cured and completed®  90.8% (138/152)  88.7% (110{124)  100% (28/28)

Microbiological characterization of treatment response over time
and assessment of treatment outcome

Completed® 5.3% (8/152) 6.5% (8/124) 0
) » Failed® 3.3% (5/152) 4% (5/124) 0
All enrolled patients were positive for sputum culture at Relapse or reinfection?  0.7% (1/152) 0.8% (1/124) 0

inclusion. Most patients were also positive for sputum smear
microscopy (78.2%, 119/152) and/or GeneXpert (98.6%, 150/152).
Culture positivity rates decreased significantly upon treatment
(Table 2). No significant difference was detected between DR-TB
and DS-TB patients (data not shown). At the end of treatment,
90.8% (138/152) of patients were cured, and eight had unavail-
able culture data and were classified as having completed
treatment with no evidence of cure (5.3%, §/152). One patient

TO: baseline. T1: baseline + 2 months. T2: end of treatment. T3: end of treatment + 2
months. DS-TB: drug-susceptible tuberculosis. DR-TB: drug-resistant tuberculosis.
 Positive culture at T2.

b Negative culture at T2 but positive culture at T3.

¢ Negative culture at T2 and no evidence of positive culture at T3.

4 Patients not lost to follow-up, but with no available culture data at T2 or T3.
Unavailable culture data were caused by contaminations or failure to expectorate
sputum. Unavailable sputum smear microscopy results were caused either by
technical issues or failure to expectorate enough s putum for both culture and smear.
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(0.7%, 1/152) was culture-negative at T2 but had a positive culture
result at T3, which was classified as relapse or reinfection.
Treatment failure was observed in five DS-TB patients (3.3%, 5/152;
Supplementary Table 5 for demographic and microbiclogical
characteristics). Notably, 80% (4/5) of treatment failure patients
had high sputum smear microscopy grades at baseline (2+ or 3+).
At T1, two of them were culture positive, and one was microscopy
positive,

Absolute WBC counts and lymphocyte proportions vary significantly
throughout therapy

In all cohorts (n = 152), we observed a significant decrease in
median absolute WBC counts during treatment (Figure 2A), and a
significant increase in median lymphocyte proportions (Figure 2B).
Monocyte proportions were heterogeneous between study sites
and increased significantly only in the Bangladesh and Georgia
cohorts (Figure 2C). At all time points, they were significantly
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higher in the Lebanon and Madagascar cohorts. Neutrophil
responses were assessed in a subset of the cohort (n = 129)
and decreased significantly during treatment (Supplementary
Figure 1).

Early absolute WBC counts and lymphocyte proportions were
significantly different between successfully and unsuccessfully treated
TB patients

Absolute WBC counts, lymphocyte, and monocyte proportions
were then compared between successfully and unsuccessfully
treated patients with available culture data at T2 (n = 143;
Figure 3). At baseline and after two months, unsuccessfully treated
patients had significantly higher absolute WBC counts (Figure 3A)
and significantly lower lymphocyte proportions than successfully
treated patients (Figure 3B). No significant difference was observed
for monocyte proportions (Figure 3C).
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Figure 2. Dynamics of main white blood cell types throughout TB treatment.

(A) White blood cell (WBC) absolute count. cumm: cubic millimeter of whole blood. (B) Lymphocyte percentage of WBC. (C) Monocyte percent of WBC. Data are given as
median + interquartile range. Each dot represents one patientat one timepoint. Grey lines connect data points from the same patient. T0: baseline. T1: baseline + 2 months. T2:
end of treatment. Data were analyzed using Friedman's test, with the Wilcoxon-Nemenyi-McDonald-Thompson test as a post-hoc correction for multiple pairwise

comparisons. *: p < 0.05. **: p < 0.01 ***: p < 0.001.
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Figure 3. Main white blood cell types over time stratified by sputum smear microscopy and treatment outcome.
‘White blood cell (WBC) absolute counts (A), lymphocyte percent of WBC (B), and monocyte percent of WBC (C) were assessed over time in cured (n = 138) and treatment
failure patients {n = 5). Data are given as median + interquartile range. TO: baseline. T1: baseline + 2 months. T2: end of treatment. T3: end of treatment + 2 months. cumm:
cubic millimeter of whole blood. Treatment failure was defined as a positive sputum culture result at T2. Treatment success was defined as a negative sputum culture result at
T2, and no evidence of positive culture at T3. Data were analyzed using the Mann-Whitney U test at each time point. *: p < 0.05. **: p < 0.01.

As most treatment failure patients had high AFB at baseline
(2+ or 3+), we compared WBC absolute counts and lymphocyte

proportions according to AFB results, in a subset of all patients
presenting with high AFB at baseline (51.7%, 74/143). In1 this subset,
median WBC and lymphocyte counts were similar at baseline, but
at T1, WBC counts were higher, and lymphocyte proportions were

Table 3

Association of selected baseline sociodemographic and clinical factors with treatment outcome.

lower in unsuccessfully than in successfully treated patients
(Supplementary Figure 2).

Sociodemographic factors and clinical Descriptive analysis (n = 143) Logistic regression - association with treatment failure
parameters at baseline and at
2 months
Cured (n = 138) Failed (n=5) ) Univariate analysis Multivariate analysis®
R (95% CI) p aOR P AIC  Corrected
C-statistic
Age (vears) 275 (21-37) 31 (29-45) 022  102(0.96-1.08) 038 - - - -
Sex (male) 62.3% (86/138) 100% (5/5) 015 - - - - - -
Drug resistance 20.3% (28/138) 0 0.58 - - - - - -
Smoking habit 45.3% (62{137) 100% (5/5) 0021 - - - - - -
BMI at inclusion 18.8 (17.1-214) 16.0 (15.8-20.9) 3.31 0387 (0.61-1.15) 0.39 0.74 (0.46-1.05) 014 4468 0862
Alcohol consumption 21.9% (30/137) 40% (2f5) 032  238(0.3-149) 035 052 (0.02-855) 0.66 4723 0861
History of prison 8.9% (12/135) 40% (2f5) 0075 694 (0.85-46.1) 0.047 196 (0.14-2581) 0.59 4716 0856
Previous TB episode 19.4% (26/134) 20% (1/5) 1 107 (0.05-759) 095  172(0.06-2924) 071 4730 0.860
Absolute WBC count at TO (cells/ 9500 (7403—11575) 12,100 0.032 126(0.97-164) 0.080 140(0.99-2.23) 0.092 43.87 0862
mm?*)° (11470—12300)
Lymphocytes at TO (% of WBC)* 18 (14-25) 4 (10-15) 0019 032 (0.10-0.80) 0.032 0.09 (0.0040- 0.042 37.85 0.866
0.52)
Monocytes at TO (% of WBC) 49(2-78) 3 (1-4) 012  075(0.49-103) 013  021(001-078) 012 4057 0861
Absolute WBC count at T1 (cells/ 7385 11,440 0.014 104 (094-111) 023 475 (145-55.6) 0.081 35.03 0.860
mm?*)° (5907—9382.5) (11200-11600)
Lymphocytes at T1 (% of WBC)* 5 (20.25-31) 3 (11-20) 0.0079 032 (011-0.68) 0.0091 018 (0.02-0.68) 0.063 39.25 0.864
Monocytes at T1 (% of WBC) 6 (3-8.4) 4(3-6) 04!  089(0.66-116) 040 0.9 (0.4-1.95) 079 4736 0.866
Baseline WBC > 11,450/mm’ 26.8% (37/138) 80% (4/5) 0.024 112 (160- 0.031 164 (152-592)  0.048 4194 0867
223.5)
Baseline lymphocytes <16% 31.9% (44/138) 80% (4/5) 0044 845 (121- 0061 121 (144-264) 0.039 42.06 0858
168.0)
Baseline WBC > 11,450/mm? 14.5% (204138) 60% (3/5) 0.029 877 (137-69.9) 0.019 299 (2.19-1088) 0.024 40.73 0.864

and lymphocytes <16%

Data are given as % (n) or median (interquartile range). Treatment failure was defined as a positive sputum culture result at T2 or T3. BMI: body mass index. OR: odds ratio.

a0R: adjusted odds ratio. AIC: Akaike Information Criterion. C-statistic: concordance statistic (corrected for optimism). WBC: white blood cells. TO: baseline. T1: baseline + 2

months. T2: end of treatment. T3: end of treatment + 2 months.
2 Adjusted for age, sex, country of origin, drug resistance strain, and smoking habit.
> OR or aOR given for each increase in 1000 units.
¢ OR or aOR given for each increase in 5 units.

64



C. Chedid et al. [international journal of Infectious Diseases 100 (2020) 199-206 205

Low baseline lymphocyte proportions are significantly associated with
a positive sputum culture at the end of treatment

Sociodemographic characteristics and blood counts at TO and
T1 were compared between cured (n = 138) and failed (n = 5)
patients, and logistic regression was performed (Table 3). In
univariate analyses, significant associations with treatment failure
were detected for lymphocyte proportions at baseline (OR 0.32,
95% CI 0.10-0.80, p = 0.032) and at two months (OR 0.32, 95% CI
0.11-0.68, p = 0.0091). No significant association was detected for
absolute WBC counts or monocytes proportions at T0 and T1. In
multivariate analyses, low lymphocyte proportions at TO remained
moderately associated with treatment failure (adjusted OR 0.090,
95% C1 0.0040-0.52, p = 0.042).

ROC analyses were then performed to identify a threshold
discriminating successfully and unsuccessfully treated patients
based on baseline WBC counts and lymphocyte proportions
(Supplementary Table 6). Baseline WBC counts predicted treat-
ment outcome performed with an AUC of 0788 (95% CI:
0.664—0.912; optimal cutoff >11,435 cellsjmm?). Baseline lym-
phocyte proportions performed with an AUC of 0.807 (95% Cl:
0.671-0.943; optimal cutoff <16% of total WBC). The AUC of both
variables combined into a new parameter performed better (AUC
0.841 95% (I 0.722—0.959).

Data was then stratified according to the ROC obtained cutoffs.
Significant associations were observed in univariate analyses for
patients absolute WBC > 11,450 cellsjmm? (OR 8.45, 95% CI 1.21-
168, p=0.031), and for patients with both WBC > 11,450 cellsfmm?
and lymphocytes <16.0% at baseline (OR 8.77, 95% Cl 1.37-69.8,
p =0.019), but not for lymphocytes <16.0% alone (p = 0.061). These
variables remained moderately associated in multivariate analyses
(WBC > 11,450 cellsjmm?®: p = 0.048; lymphocytes <16.0%:
p = 0.039; WBC > 11,450 cellsjmm?® and lymphocytes <16.0%:
p = 0.024).

Discussion

In this multicentered prospective study, we monitored the
evolution of absolute WBC counts, lymphocyte and monocyte
proportions during pulmonary TB treatment, and described their
association with treatment failure in five cohorts (Bangladesh,
Georgia, Lebanon, Madagascar, and Paraguay), four of which were
in high-incidence TB countries. We included 152 HIV-negative,
culture-confirmed pulmonary TB patients, including 28 drug-
resistant TB cases.

We showed that the lymphocyte proportions increased
significantly during treatment, whereas the absolute WBC counts
decreased significantly. These trends are indicative of general
clinical improvement in response to treatment and are consistent
with the characteristics of successful therapy. WBC counts are
usually higher in TB patients than in healthy individuals, with
distinct lymphocyte rates before and after TB treatment (Morris
et al., 1989; Rakotosamimanana et al., 2015). No significant
evolution of monocyte proportions during treatment was detected
in our cohort, consistently with previous work (Rakotosamima-
nana et al., 2015).

Five patients had positive cultureresults at the end of treatment
and were classified as treatment failure. Two of them had negative
smears or cultures at T1, likely due to poor sputum quality. The
main finding is that at baseline and after two months of treatment,
unsuccessfully treated patients had significantly higher WBC
counts and lower lymphocyte proportions than those successfully
treated. In adjusted logistic regression analyses, treatment failure
was significantly associated with high WBC counts and low
lymphocyte proportions at baseline. This result is significant
because WBC counts are usually evaluated in TB patients at

baseline and along the therapy course. They are cheap, quick tests
that are used routinely in health care centers worldwide. They
require a small volume of blood, their output is easy to interpret,
and they can be performed without automated equipment.
Therefore, they may be a helpful point-of-care tool to help
clinicians identify which patients might be less responsive to
treatment. Larger studies on this topic are needed to assess
whether early WBC or lymphocyte counts should be taken into
account when considering changes to treatment composition or
duration.

We hypothesize that patients with high baseline WBC counts
and low lymphocyte proportions had highly inflammatory clinical
patterns. In the context of mycobacterial infection, WBC counts are
mostly reflective of neutrophil counts as markers of persisting
inflammation or failure to clear the bacteria (Srivastava et al.,
2014). Sustained inflammation in chronic TB infection has been
described as an impairment of the TB-specific immune response
and a marker of active disease (Sia and Rengarajan, 2019). Previous
studies have highlighted a correlation between elevated neutro-
phils, lymphopenia, and TB disease severity, based on chest X-rays
(Naghaviet al., 2017; Panteleevetal., 2017). Therefore, a hypothesis
is that in this cohort, patients with high baseline WBC and low
lymphocytes also had more severe TB manifestations and were less
likely to achieve a cure.

We observed that in the subset of our cohort with high smear
microscopy grades (n = 74), WBC counts and lymphocyte
proportions at baseline were not associated with the treatment
outcome; however, significant associations were detected at T1.
This suggests that in patients who possibly had a higher bacterial
burden, cellular inflammatory markers did not stratify risks of
failure at baseline, but persistent cellular differences between
failed and cured patients were noticeable after the intensive phase
of treatment. A limitation is that TB disease severity at baseline
could not be assessed in our cohort other than with microscopy
(through chest X-rays, Erythrocyte Sedimentation Rate (ESR), or
hemoglobin measurements). Further work is needed to assess the
relevance of WBC and lymphocytes’ association with treatment
failure in cohorts with better-defined disease severity.

Moreover, a feature of TB infection is a delayed initiation of an
adaptive response after infection, and lymphocyte anergy during
chronic infection (Urdahl et al., 2011). This could indicate that M.
tuberculosis-specific adaptive immunity might be hindered during
treatment in patients with high WBC or low lymphocyte
proportions. Alternatively, as blood counts are measured in the
periphery, this may suggest that M. tuberculosis-specific lympho-
cytes are localized in the lungs for infection clearance: their
decreased frequency in peripheral blood would indicate a
persisting infection. We observed that the majority of unsuccess-
fully treated patients (80%, 4/5) presented either high WBC counts
or low lymphocyte proportions at baseline, and 60% (3/5) with
both, suggesting that the mechanisms behind a persistently
activated innate immune response and an anergic adaptive
immune response during anti-TB therapy might be linked.
Consequently, whether systemic inflammation hinders TB treat-
ment needs to be further investigated.

Qur cohort included patients from developing countries, in
diverse geographical areas, with varying sociodemographic back-
grounds and living standards. We have also enrolled both DS-TB
and DR-TB patients, which implies different clinical presentations
of the disease. This design suggests similar trends might be
occurring in heterogeneous settings and clinical contexts. Howev-
er, it creates significant limitations and analytical challenges as it
hinders the control of some patient- and pathogen-dependent
factors such as antibiotic regimens, malnutrition levels, untested
infections (e.g., parasites), mycobacterial strains, and genetic
background. Moreover, the sample size was small. To account
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for these limitations, adjustment with the available patient-
dependent factors and optimism corrections with a method
adapted to small sample sizes (Smith et al., 2014) was performed.
However, the clinical interpretation of these results should remain
cautious, given the cohort’s heterogeneity and size. Another
limitation was the significant dropout rate, particularly between T2
and T3 (26%, 40/152), as T3 was not a timepoint that fell within the
time frame of national TB programs. As a consequence, it is likely
that some occurrences of TB relapse could not be recorded in our
study.

In conclusion, this study confirms that WBC counts and
lymphocyte proportions are simple biomarkers for TB treatment
monmnitoring. In this cohort, early measurements of these param-
eters were associated with treatment failure; these results are
encouraging but need to be confirmed on larger cohorts.
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Article summary

QFT-P is an IGRA that is routinely used to test for exposure to Mtb, by measuring the T-cell-
driven IFN-y production upon in vitro antigen stimulation of whole blood. It is essential for the
triage of suspected TB patients, or as a precautionary test in patients starting
immunosuppressive therapy. However, previous attempts to use it for TB treatment
monitoring have met limited success. Novel IGRAs based on other recall antigens are being
investigated, in particular rmsHBHA, which stratifies TB cases by stages of infection. However,
the rmsHBHA IGRA has been evaluated only in studies in non-TB endemic settings, or with no
DR-TB patients. Here, we monitored the plasma IFN-y response to rmsHBHA and QFT-P
antigens during anti-TB treatment in DS-TB and DR-TB patients. Then, we analyzed these
results according to sociodemographic characteristics, immune cell counts, and culture
conversion during treatment. This study was nested in the HINTT prospective international

cohort study conducted in Bangladesh, Georgia, Lebanon, Madagascar, and Paraguay.

Between December 2017 and September 2020, we enrolled 199 adult, non-
immunocompromised, culture positive PTB patients. As of September 2020, 132 of them had
been followed at TO, T1, and T2 at least and had available IGRA data, including 21.2% (28/132)
DR-TB patients. The median IFN-y response to QFT-P antigen pools TB1 and TB2 remained
constant over time, while the median response to rmsHBHA increased significantly (0.086
IU/ml at TO vs. 1.03 IU/ml at T2, p < 0.001). Individual IFN-y levels were heterogeneous, but
an increased IFN-y response to TB1, TB2, and rmsHBHA was observed in 55.3% (73/132),
56.8% (75/132), and 77.3% (102/132) of patients respectively. Patients with low lymphocyte
percentages (<14%) or high neutrophil percentages (>79%) at baseline had significantly lower
IFN-y responses to QFT-P and rmsHBHA at TO and T1. Among patients with available sputum
culture results at TO, T1, and T2 at least (84.8%, 112/132), we stratified IFN-y levels in cured
patients according to culture conversion at T1, defining a subset of fast converters (definitive
culture conversion between TO and T1; 82.1%, 92/112) or slow converters (definitive culture
conversion between T1 and T2; 14.2%, 16/112). Slow converters had lower QFT-P positivity
rates and TB1 and TB2 IFN-y levels at TO and T1, and lower rmsHBHA IGRA positivity rates and
IFN-y levels at T1 and T compared to fast converters. However, the separate performances of

the QFT-P and rmsHBHA IGRAs for TB treatment monitoring at T1 and T2 were poor (accuracy
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between 44 and 55%, using culture as a reference standard). When evaluating a combined
QFT-p/rmsHBHA IGRA score the sensitivity improved (86% at T1 and 82% at T2) as well as the
accuracy (77% at T1 and 81% at T2) but the specificity remained inferior to 30%. Finally, in
multivariate logistic regression analyses, significant associations were found between slow
culture conversion and MIT IFN-y at TO (adjusted odds ratio 0.65, p = 0.009), QFT-P IGRA
positivity at TO (aOR 0.045, p = 0.013), and rmsHBHA IGRA positivity at T1 (aOR 0.076, p =
0.045). Overall, we observed a slow converter profile including consistent clinical patterns at
baseline (low BMI, high neutrophil percentages, low lymphocyte percentages, low TB1 and

TB2 IFN-y responses), as well as a downregulated rmsHBHA response at the end of treatment.

This study adds to a growing body of literature showing that rmsHBHA IFN-y stratifies TB
infection stages, including during treatment, which for this purpose is an improvement
compared to QFT-P alone; however, the specificity of this test compared to culture remained
insufficient to efficiently monitor treatment. While this may be partially attributed to immune
cross-reactivity with HBHA homologs present in NTM, it highlights that further research is
needed to clarify how the rmsHBHA response is regulated at the cellular level during
treatment and whether it is specifically associated with Mtb clearance. These results also
complete the previous article presented in this thesis (publication 1) and generate further
evidence for an association between general inflammation and poor TB control before and
during treatment, as total peripheral neutrophil and lymphocyte percentages directly
impacted IFN-y responsiveness to the evaluated TB-specific antigens, and as a low IFN-y
response to non-TB specific stimulation at TO was associated with slow culture conversion.
This must be taken into account when evaluating novel immune tests for treatment

monitoring.
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Background: Tuberculosis (TB) is a leading infectious cause of death. To improve treatment
efficacy, guicker monitoring methods are needed. The objective of this study was to menitor
the response to a heparin-binding hemagglutinin (HBHA) interferon-y {IFN-9 release assay
(IGRAY and QuantiFERON-TB Gold Plus {QFT-P) and to analyze plasma IFN-y levels
according to sputum culture conversion and immune cell counts during treatment.

Methods: This multicentered cohort study was based in Bangladesh, Georgia, Lebanon,
Madagascar, and Paraguay. Adult, non-immunocompromised patients with culture-
confirmed pumonary TB were included. Patients were followed up at baseline (TO),
after two months of treatment {T 1}, and at the end of therapy (T2). Clinical data and blood
samples were collected at each timepoint. Whole blood samples were stimulated with
QFT-P antigens or recombinant methylated Mycobacterium tuberculosis HBHA
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{produced in Mycobactenum smegmatis; rsHBHA). Plasma IFN-y levels were then
assessed by ELISA.

Findings: Between December 2017 and September 2020, 132 participants completed
treatment, including 28 (21.2%) drug-resistant patients. rmsHBHA IFN-y increased
significantly throughout treatment {0.086 IU/ml at TO vs. 1.03 IU/ml at T2, p < 0.001) while
QFT-P IFN-y remained constant (TB1: 0.53 IU/ml at TO vs. 0.63 IU/ml at T2, p = C.13).
Patients with low lymphocyte percentages (<14%) or high neutrophil percentages {>79%) at
baseline had significantly lower IFN-yrespenses to QFT-P and rmsHBHA at TG and T1. Ina
small group of slow converters {patients with positive cultures at T1; n = 16}, we cboserved a
consistent clinical pattemn at baseline {high neutrophil percentages, low lymphocyte
percentages and BMI, low TB1, TB2, and MIT IFN-y responses) and low rmsHBHA IFN-y
at T1 and T2. However, the accuracy of the QFT-P and rmsHBHAIGRAs compared to culture
throughout treatment was low {40 and 65% respectively). Combining both tests improved
their sensitivity and accuracy {70-80%) but not their specificity («30%;).

Conclusion: We showed that QFT-P and rmsHBHA IFN-y responses were assaciated
with rates of sputum cufture conversion. Our results support a growing body of evidence
suggesting that rmsHBHA IFN-y discriminates between the different stages of TB, from
active disease to controlled infection. However, further work is needed to confirm the
specificity of QFT-P and rmsHBHA IGRAs for treatment monitoring.

Keywords: tuberculosis, immunomonitoring, interferon-gamma release assays, heparin-binding haemagglutinin

adhesin, QuantiFERON, treatment monitoring, inflammatory markers

INTRODUCTION

Tuberculosis (TB) is one of the leading causes of death by infectious
disease in the world, causing 1.5 million deaths in 2019 (1). The
treatment of pulmonary TB requires antibiotic multitherapies that
last at least six months (2, 3) and can have toxic side effects.
Consequently, treatment adherence is not optimal, especially in
primary care settings (4, 5). Currently, anti-TB treatment
monitoring relies on Mycobacterium tuberculosis (M. tuberculosis)
detection by sputum smear microscopy and culture when possible
(6). Sputum culture is the gold standard, but it is slow and requires
high biosafety laboratory environments (7), while smear
microscopy is highly sample- and operator-dependent and has
poor sensitivity (8, 9). There is a dinical need for quicker anti-TB
treatment monitoring tests adapted to primary care settings (10),
that require accessible samples (blood, urine, feces) and limited
laboratory equipment (11).

QuantiFERON-TB Plus (QFT-P; Qiagen) is an ELISA-based
IFN-7 release assay (IGRA) that tests for exposure to M.
tuberculosis. While it is useful for the triage of suspected TB
patients, it cannot discriminate between active and latent TB (12)
and has shown little clinical relevance for TB treatment
monitoring so far (10). Previous works highlighted a general
decrease in IFN-Yylevels across TB treatment (13-18), and a study
on QuantiFERON Gold In-Tube highlighted the presence of
downregulated non-TB specific IFN-7y responses (Mitogen tube)
were associated with poor treatment outcomes (19). However,
persistently high quantitative results as well as heterogeneous

QFT-P conversion rates make the test unlikely to be adapted for
individual treatment monitoring (20-22).

Recently, the use of QFT-P in combination with the detection
of IFN-y responses to recombinant Mycobacterium smegmalis
heparin-binding hemagglutinin (hereafter called “rmsHBHA
IGRA”) as an additional stimulation antigen has shown promise
to stratify TB cases by stage of infection and progression to disease
(23-27), and to monitor TB treatment outcomes (28). In
particular, negative or low levels of IFN-y production in
response to rmsHBHA stimulation have been associated with
active TB disease as opposed to latent infection. However, this
assay has been explored only in studies in non-TB endemic
settings, or with no drug-resistant TB patients.

The primary objective of this prospective multicentered
cohort study was to monitor the plasma IFN-y response to
rmsHBHA and QFT-P antigens during anti-TB treatment.
Moreover, recent data collected in the same cohort highlighted
an association between baseline circulating white blood cells
(WBC) and TB treatment outcome (29); hence, a secondary
objective was to describe rmsHBHA and QFT-P IFN-yvalues in
subsets of patients stratified according to demographics, immune
cell counts, and culture conversion during treatment. For that
purpose, we conducted a cohort study in five countries with low-
or middle income status and high- or middle TB incidence rates
(30) (Bangladesh, Georgia, Lebanon, Madagascar, and
Paraguay), focusing on adult, HIV-uninfected, culture
confirmed drug-susceptible or drug-resistant pulmonary
TB patients.
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MATERIALS AND METHODS
Study Design and Sample Population

This descriptive study was nested within a multicenter prospective
cohort study assessing the prognostic value of blood-based
immunological markers for TB treatment monitoring. The study
was based in five institutions from the Mérieux Foundation
GABRIEL network (31), with the approval of national TB
programs and the following ethical committees: the international
center for diarrheal diseases and research, Bangladesh (icddr,b) in
Dhaka, Bangladesh; the National Center for Tuberculosis and Lung
Diseases (NTCLD) in Tbilisi, Georgia; the Laboratoire
Microbiologie, Santé et Environnement (LMSE, Université
Libanaise), in Tripoli, Lebanon; the Iustitut Pasteur
de Madagascar in Antananarivo, Madagascar; and the Instituto
de Investigationes en Ciencias de ln Salud (Universidad Nacional de
Asuncion; IICS-UNA) in Asuncion, Paraguay. All recruited patients
provided written informed consent and standard biosecurity and
institutional safety procedures were followed in all study sites.

Cohort Recruitment, TB Diagnosis, and
Patient Follow-Up

The sample size was evaluated to detect a difference in rmsHBHA
IFN-y between baseline and end of treatment, with the following
assumptions: we aimed for a level of significance of 95% and a power
of 80%, assuming a minimum average expected difference of 1.6 IU/
ml in rmsHBHA IFN-y levels throughout treatment based on
reported estimates (32), with an expected standard deviation of 3
IU/ml at each repeated measurement. We calculated (33) that a
sample size of 117 wasrequired to reach significance. As this study was
nested in a cohort study with a sample size of 200, we aimed to enroll
more patients to account for missing data. Patients were recruited if
diagnosed with microbiologically confirmed pulmonary TB (positive
culture and/or sputum smear andfor GeneXpert). Patients with HIV
or diabetes mellitus and children under 15 years were excluded.
In downstream analyses, patients under immunocompromising
treatment, patients with negative cultures at inclusion, and patients
who were lost-to-follow-up were excluded. Detailed procedures for
microbiological diagnosis, drug sensitivity testing, and therapeutic
regimen composition were described previously (29).

Patients were followed up: at inclusion (T0), after two months
of treatment (T1), at the end of therapy [T2; 6 months for drug-
susceptible (DS-TB) patients, nine to 24 months for drug-
resistant (DR-TB) patients]. Data were presented for all
patients followed up until T2 at least. Patients were on Directly
Observed Treatment (DOT) and received treatment according to
standard protocols (2, 3, 34). In this study, culture conversion at
T1 was used to define three patient subsets: fast converters
(definitive culture conversion between T(O and T1), slow
converters (definitive culture conversion between Tl and T2),
and patients with poor treatment outcome (positive culture
results at T2: treatment fajlure; or positive culture at T3: relapse).

On-Site Whole Blood Collection and Cell
Count

At every follow-up visit, 10 ml of whole blood were drawn: 4 ml
was used for other downstream analyses, 1 ml was collected in

EDTA tubes and used to measure whole blood cell counts by
standardized automated systems available in the study sites as listed
previously (29), and 5 ml was used for in vitro blood stimulation.
For the QFT-P assay, 1 ml of whole blood was seeded directly into
each of four QuantiFERON-TB Gold Plus (QFI-P, Qiagen) tubes
as per the manufacturer’s instructions. The NIL tube contained no
antigens and was used as a negative control. The TB1 and TB2
QFT-P tubes are coated with commercial M. tuberculosis-specific
antigenic peptide pools. TBL tubes contain two mycobacterial
peptides, ESAT-6 (>15aa) and CFP-10 (8-13aa), which elicit
specific immune responses from CD4+ T lymphocytes (35). TB2
tubes contain an additional commercial peptide pool designed to
induce CD8+ T lymphocyte stimulation. MIT tubes are coated
with commercial phytohemagglutinin-like bacterial antigens and
were used as a positive control (35). For the rmsHBHA assay, 1 ml
of blood was seeded into a NIL tube which was complemented
with rmsHBHA (provided by the Delogu laboratory, UNICATT,
Rome, Ttaly (23)), at a final concentration of 5 pg/ml. Within 2 h
of blood collection, samples were placed at 37°C in a 5% CO,
atmosphere and incubated for 24 h. After incubation, plasmas
were separated from the cell fraction by decantation, and stored at
—80°C until further use.

Interferon-y Release Assay

IFN-y secretion was quantified using the QFT-P ELISA kit
(Qiagen) according to the manufacturer’s instructions. Briefly,
plasma samples were thawed at room temperature, and 50 ul of
plasma was tested. Optical density results were compared to log-
normalized values from freshly reconstituted IFN-y kit
standards. To account for potential immunomodulation
phenomena unrelated with TB treatment, baseline IFN-y level
values (NIL tubes) were subtracted from antigen-stimulated
IEN-y values (MIT, TB1, TB2, rmsHBHA). According to the
kit’s sensitivity range, the maximum for IFN-ylevel values was
set at 10 IU/ml and negative values were rescaled to 0.

Assay Comparability Between Study Sites
To optimize comparability, a sample handling and processing
protocol common to all study sites was developed, and on-site
trainings were performed to standardize experimental processes
such as instrument settings and timings. A tracking sheet was
developed and used to follow sample shipment and standardize
storage conditions in all sites. As the models of measurement
instruments used in the different sites could not be homogenized,
instrument readings were tested with QuantiFERON Control
Panel (Qiagen) prior to launching the project. Finally, internal
controls were added to each ELISA run to control for experimental
variation and verify storage quality. Briefly, whole blood from a
healthy donor was collected and stimulated with QFT-P antigens
following the same protocol as described previously. Plasma was
then separated and aliquoted and added to each ELISA run.

Clinical Data Collection and Statistical
Analysis

Standardized clinical report and data collection forms were
implemented to ensure dataset homogeneity as described
previously (29). Data were entered into the CASTOR database
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system (Version 1.4, Netherlands) (36), and cleaned and
analyzed in R (version 3.6.2). Discrete variables were analyzed
using Fisher’s Exact test with Bonferroni’s post-hoc test (37).
Normal, continuous variables were analyzed with Student’s t-
test. Non-normal, continuous variables were analyzed with the
Mann-Whitney test, or the Kruskal-Wallis rank sum test with
Dunn’s Kruskal-Wallis Multiple Comparisons post-hoc test (38).
Repeated measures of non-independent continuous variables
were analyzed using the Friedman rank sum test, with the
Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test (39).
As the HBHA IGRA was not commercialized and QFT-P was
designed to screen latent rather than active TB patients, we used
Receiver Operating Curve (ROC) analyses to identify optimal
IFEN-ythresholds adapted for this cohort, discriminating culture
positive from culture negative patients. The overall QFT-P test
was considered positive if either TB1 or TB2 was above their
respective thresholds. ROC analyses and logistic regression were
performed as described previously (29). In particular, multivariate
logistic regression analyses were adjusted with the combination of
variables that minimized the Akaike Information Criterion (AIC)
for most tested predictors, while including important adjustment
variables (age, sex, drug sensitivity, country).

RESULTS

Sociodemographic, Clinical, and
Microbiological Characteristics of the
Cohorts

Between December 2017 and September 2020, 199 eligible
patients with culture confirmed active pulmonary TB were

recruited in Dhaka (Bangladesh), Tbilisi (Georgia), Tripoli and
Akkar (Lebanon), Antananarive (Madagascar), and Asuncién
(Paraguay). As of September 2020, 132 of them were followed at
least until the end of treatment and had available IGRA data
(Figure 1). Among these patients, 21.2% (28/132) were
diagnosed with DR-TB. The sociodemographic characteristics
of DS-TB and DR-TB patients were similar at inclusion (Table
1). Sociodemographic characteristics were compared between
study sites, and significant differences were observed concerning
age, BMI at inclusion, and BCG vaccination rates (Supplementary
Table 1). All enrolled patients were sputum culture positive at
inclusion. Most patients were also positive for sputum smear
microscopy (sensitivity: 78.0%, 103/132) andfor GeneXpert
(98.4%, 125/132). Three (3.9%) cases of treatment failure and
one (0.7%) case of relapse were recorded (Table 1).

Dynamics of Interferon-y Levels During
Treatment and Influence of
Sociodemographic Factors

Plasma IFN-y levels in response to TBI1, TB2, or HBHA
stimulations were measured during anti-TB treatment (Figure
2). The median IFN-y response to TBl and TB2 remained
constant over time, while the median response to rmsHBHA
increased significantly (Figure 2A). Individual IFN-ylevels were
heterogeneous in all three stimulation conditions (Figure 2B).
To account for individual variations, rmsHBHA/TB1 and
rmsHBHA/TB2 IFN-¥ ratios were evaluated, and a significant
increase in both ratios was still observed overall (Supplementary
Figures 1A-C). We also measured the TB2-TB1 IFN-yresponse,
as a proxy for the QFT-P CD8" T-cell response (Supplementary
Figure 1D). No significant difference was detected over time.

‘ Suspected TB cases

{

‘ Excluded:
» HIV positive: N=3

Eligible participants
N=237

‘ Diabetes mellitus: N = 36

Excluded:

Microbiologically confirmed TB cases: HINTT cohort baseline

DS = 154; DR = 45

Negative or contaminated sputum culture: N = 38

" Excluded:

Before treatment start (T0)
N=177
D5 =132; DR =45

QFT-P unavailable at enrolment: N =22

I

End of intensive phase (T1: TO + 2 months)

DS=117; DR = 41

- LTFU: N = 18 (10.1%)
Deaths: N =1

I

End of treatment (T2: TO + 6 to 24 months)
N=132
DS =120; DR = 28

* LTFU: N =25 {15.8%)
Deaths: N =1

!

2 months post-end of treatment (T3)
N=91
DS=77,DR=14

o LTFU: N = 41 (31.0%) ‘

FIGURE 1 | Patient inclusions betwesn December 2017 and September 2020, DR, drug-resistant; DS, drug-susceptible; LTFU, lost to follow-up. TB, tuberculosis,
HIV, human immunodeficiency virus. Treatment for DS-TB patients lasted 6 months. Treatment for DR-TB patients lasted 9 10 24 months
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TABLE 1 | Scciodemographic and clinical characteristios of drug-susceptible and drug-resistant patients at inclusion.

N ALL DS-TB DR-TB P
132 104 28
Patient demographics
Age (years) 27 (21-36.2) 27 (21-37.2) 275(19.7-33.2) 041
Sex (male) 62.8% (83/132) 54.4% (57/104) 57.1% (16/28) 051
Treatment outcome
Gured and complsted 95.5% (126/132) 94.2% (98/104) 100% (28/28) 0.34
Completed 1.5% (2/132) 1.9% (2/104) 0 -
Faiure 2.3% (3/182) 2.9% (3/104) o -
Relapse 0.8% (1/132) 1% (1/104) 0 -
Country of origin
Bangladesh 28.8% (38/132) 20.2% (21/104) 60.7% (17/28) >0.001
Georgia 23.5% (31/132) 20.2% (21/104) 35.7% (10/28) 013
Lebanon 5.3% (77132 6.7% (7/104) 0 0.54
Madagascar 27.3% (36/132) 34.6% (36/104) 0 >0.001
Paraguay 15.2% (20/132) 18.8% (19/104) 3.6% (1/28) 0073
BMI atinclusion 18.7(18.9-21.3) 18.83 (18.9-21.4) 18.7 17.5-21.0) 0739
WBG absolute count at inclusion (cells/mm ) 745 (7365-12032) 9635 (7350-12055) 10150 (7725-11850) 0.65
Neutophils at inclusion (% of WBC) 75 (88-79.1) 75 (88.3-79) 78 (66.7-80.2) 0.34
Lymphocytes at inclusion (% of WBG) 18 (14-25) 18 (14-25 17 (13.7-24.5) Q.52
Monocytes at inclusion (% of WBG) 4.4 (2-7) 5(2-8.0) 4352 042
Number of household contacts 4 (3-8) 4(3-6) 4(3.75-6.2) Q.88
BCG vaccination 86.2% (94/108) 86.4% (76/88) 85.7% (18/21) 7
Risk factors and comorbidities
Smoking 48.2% (61/132) 46.2% (48/104) 46.4% (13/28) 7
Alcohal abuse 22% (29/132) 249 (25/104) 14.3% (4/28) Q.57
Injectable drug use 3.8% (5/181) 2.9% (3/104) 7.4% (2/27) 027
Jail detention history 8.5% (11/130) 9.8% (10/102) 3.6% (1/28) 087
Chronic HCV infection 1.6% (2/128) 2% (2/101) 0 075
Other disease’ 6.2% (71113 7.8% (7/90) 0 0.54
History of TB
Prior exposure to active TB patients 29% (38/131) 29.1% (30/103) 28.6% (8/28) 023
Documented previous TB episode 15.1% (20/132) 11.5% (12/104) 28.5% (8/28) 0.048
Previous TB outcome
Cured and completed 51.1% (11/18) 61.5% (8/13) 50% (3/5) 7
Treatment completed 11.1% (2/18) 77% (1119 20% (1/5) 0,49
Outcome not evaluated or unknown 18.7% (G/18) 15.4% 213) 20% (1/5) 1
Treatment falure 11.1% (2/18) 15.4% 213) 0 -

Data are given as % (N or median (interquartile range). DSTE, drug-sueceptible lberculosis; DR-TE, drug-resistant tuberculosie; BMY, body mass index; WEBC, white blood cells;

1: asthma, hypertension, inflarmmation. P-vakies are given for DS-TB vs. DR-TB.

Mo patfents had Hiv, non-TE chronic pumonary diseases, renal diseases, solid tumors, clvonic HBV infection, were pregnant, or under immunosippressive therapies (corficosteraids,

caicinetrin inhibitors, biclogics).

The impact of sociodemographic parameters on IFN-ylevels was
assessed but no significant association was detected (data
not shown).

Overall, QFT-P positivity rates remained constant during
treatment (TG vs. T2: 52 vs. 55%, p = 0.71), whereas
rmsHBHA positivity rates increased significantly (TO vs. T2: 31
vs. 67%, p < 0.001 (Table 2). We also calculated the slopes of
rmsHBHA and QFT-P IFN-yvariations during treatment (Table
2). An increased INF-y response to TB1, TB2, and rmsHBHA
was observed in 55.3% (73/132), 56.8% (75/132), and 77.3%
(102/132) of patients respectively.

IFN-y levels over time were then stratified per study site
(Figures 2C-E). Similar trends were observed in all cohorts for
TB1 and TB2 IFN-y levels, except in the Madagascar site in
which an increase in TB1 IFN-y was recorded between T0 and
T2. Variation in IFN-ylevels produced by rmsHBHA-stimulated
samples was different between study sites: similar in increase and
order of magnitude in the Bangladesh and Georgia cohorts on
the one hand, as well as in Paraguay and Lebanon on the other

hand; however, no increase was observed in the Madagascar
cohort, as well as lower IFN-yvalues (Supplementary Table 2).
Mitogen IFN-7 levels were also significantly lower in the
Madagascar cohort than in the Georgia cohort at all timepoints
(Supplementary Table 2).

Effect of Neutrophil and Lymphocyte
Percentages on Interferon-y Release
Assay Interferon-y Response During
Treatment

We analyzed the distribution of neutrophil percentages, and
stratified IFN-y results according to three groups: low neutrophils
(less than the first quartile), intermediate neutrophils (between first
and third quartiles), and high neutrophils (Figure 3A; threshold
values are available in Supplementary Table 3). Similar analyses
were performed with lymphocyte percentages (Figure 3C). We
also evaluated the proportion of QFT-P and rmsHBHA positivity
at each timepoint, stratified by neutrophil (Figure 3B) and
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TABLE 2 | Qualitative evolution of QFT-P and HBHA IFN-ylevels during treatment.

Positivity rate at each timepoint HBHA TB1 only TB2 only QFT-P (TB1 and/or TB2)
TO 31.1% (41/132) 4.5% (6/132) 34.8% (46/132) 52.8% (69/132)
T 56.1% (74/132) 2.3% (3/132) 42,.4% (56/132) 50.8% (67/132)
T2 67.4% (89/132) 2.3% (3132) 43.9% (58/132) 55.3% (73132
Trend between TO and T1

Increase 56.7% (88/132) 56.1% (74/132) 47.7% (83/132) -
Decrease 24.2% (32/132) 41.7% (55/132) 47.7% (63/132)

Constant 2.1% (12/182) 2.3% (3132) 4.5% (6132)

Trend between TO and T2

Increase 77.3% (102/132) 55.3% (73/132) 56.8% (75/132) -
Decrease 15.2% (2011 32) 40.8% (54/132) 41.7% (551 32)

Constant 7.6% (10/132) 3.8% (5132) 1.5% (2/132)

Dataare givanas % (M. 70, basaling, T2, end of reatreant; QFT-F, QuantiFERCON-TE Gald Plus Constant, no difference infFN-y feveis batween T0 and T2, ragardiess of variations during
freatment. Positivity was set at 0.75 {Uiml for QFT-P and at 0.22 1Ufmi for HBHA based on ROC analyses.

lymphocyte percentages (Figure 3D). As HBHA stimulation was
not performed using a commercial kit, Receiver Operating Curve
(ROC) analyses were performed to identify the optimal rmsHBHA
IFN-y threshold value differentiating culture-positive patients from
culture-negative patients at any timepoint. The resulting Area
Under the Curve (AUC) was maximized for an IFN-y cutoff
value of 0.24 IU/ml (AUC 0.725, 95% CI 0.674-0.777). Overall,
neutrophil and lymphocyte percentages directly impacted IFN-y
responsiveness to TB-specific antigens: QFT-P and rmsHBHA
IFN-y levels and positivity rates were significantly higher in
patients with low neutrophil (Figures 3A, B) or with high
lymphocyte proportions (Figures 3C, D). This statistically
significant trend was also observed when comparing the

subgroup of patients with both low neutrophil and high
lymphocyte percentages to the rest of the cohort (data not shown).

Effect of the Culture Conversion Status at
2 Months on the Interferon-y Release
Assay Interferon-y Response Throughout
Treatment

Overall, 112 patients had available culture data at TQ, T1, and T2.
Most patients were fast converters (definitive culture conversion
between TQ and T1; 82.1%, 92/112) or slow converters (definitive
culture conversion between T1 and T2; 14.2%, 16/112). Poor
treatment outcomes were recorded in four patients (treatment
failure, 2.7%, 3/112; relapse, 0.9%, 1/112; data not shown).
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FIGURE 3 | Plasma IFN-y response to TB-gpecific QFT-P antigens or HBHA simulation in patients stratified by WBC counts over the course of TB therapy.
{A, C) Quantitative IFN-y response. Data are given as median + interquartile range and were compared using Kruskal-Wallis’ test with Dunn’s post-hoc when
necessary. (B, D) Data wers given as a percentage of each group and were compared using Fisher’s Exact Test with Bonferroni's correction when necessary.
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Among successfully cured patients (n = 108), median IFN-y
levels (Figure 4A) as well as QFT-P and rmsHBHA IGRA
positivity rates (Figure 4B) were stratified according to the
culture conversion profiles. In slow converters, TB1 and TB2
IEN-ylevels at TO and T1 and rmsHBHA IFN-7levels at T2 were
significantly lower than in fast converters. Similarly, QFT-P
positivity rates at T1 and rmsHBHA positivity rates at T1 and
T2 were significantly lower in slow converters.

Then, we calculated the sensitivity, specificity, and accuracy of
the QFT-P and rmsHBHA IGRAs for TB treatment monitoring at
T1 and T2, using culture as a reference standard (Supplementary
Table 4). At T1 and T2 respectively, the accuracy of the QFT-P
IGRA was of 44 and 46%, and the accuracy of TB2-TB1 was of 52
and 55%. For the rmsHBHA IGRA, we evaluated the test
performances of negative rmsHBHA results (i.e. rmsHBHA
IFN-y < 0.22 IU/ml), since lower rmsHBHA IFN-y values were
observed before treatment. The accuracy of the rmsHBHA IGRA
was of 64 and 65% at T1 and T2, respectively. Finally, we
generated a score which was positive when the QFT-P result
was positive and the rmsHBHA result was negative. The sensitivity
of this combined score was of 86% at T1 and 82% at T2, and its
accuracy reached 77% at T1 and 81% at T2, but its specificity
remained inferior to 30% at both timepoints. Similar results were
observed with a score combining rmsHBHA and TB2-TB1.

Association Between White Blood Cell
Counts, Culture Conversion, and
Interferon-y Release Assay Interferon-y
Response During Treatment

‘We compared the immune cell counts (Supplementary Table 5)
and the baseline sociodemographic characteristics (Supplementary
Table 6) of patients according to their culture conversion profiles.
No difference was detected between slow and fast converters for
immune cell counts, but at TO and T1, patients with treatment
failure or relapse had significantly higher neutrophil percentages (at
T0, median 84%, interquartile range (IQR) 81.5-86.5; at T1, 79%,
IQR 75-81.75), and lower lymphocyte percentages (at T0, 12.5%,
IQR 9.2-15.2; at T1, 15.5%, IQR 11-21.2) than successfully treated
patients. The BMI at inclusion was significantly lower in slow than
in fast converters, and slower conversion rates were observed in the
Madagascar cohort.

Then, logistic regression analyses were performed to identify
associations between slow culture conversion and immune cell
counts or IGRA results (Table 3). In univariate analyses,
significant associations were detected between slow conversion
and MIT IFN-yat T0 (odds ratio (OR) 0.78, p = 0.001) and T1
(OR 0.84, p = 0.021), with QFT-P IGRA positivity at TO (OR
0.19, p = 0.008), and with rmsHBHA IGRA positivity at T1 (OR
.24, p = 0.015) and T2 (OR 0.29, p = 0.029). The BMI at
inclusion was also associated (OR 0.791, p = 0.025).

In multivariate analyses, significant associations were
maintained for MIT IFN-y at T0 (adjusted OR 0.65, p =
0.009), QFT-P IGRA positivity at TO (aOR 0.045, p = 0.013),
and HBHA IGRA positivity at T1 (aOR 0.076, p = 0.045). No
significant association was found otherwise (Supplementary
Table 7). Adjusting the models with neutrophil and monocyte
proportions at baseline yielded similar results, but with higher
AIC values (Supplementary Table 8).

Overall, we observed a slow converter profile including
consistent clinical patterns at baseline (low BMI, high
neutrophil percentages, low lymphocyte percentages, low TB1
and TB2 IFN-yresponses), as well as a downregulated rmsHBHA
response at the end of treatment.

DISCUSSION

In this multicentered prospective study, we assessed the value of
QFT-P or rmsHBHA-based IGRAs for pulmonary TB sputum
culture conversion monitoring in five cohorts (Bangladesh,
Georgia, Lebanon, Madagascar, and Paraguay). We recruited
132 HIV-uninfected culture confirmed pulmonary TB patients,
including 28 DR-TB cases. To our knowledge, this is the first
time that QFT-P and HBHA IGRAs are prospectively evaluated
for treatment monitoring in DS-TB and DR-TB cohorts from
high-TB incidence countries.

Consistently with previous works (20, 21), we found that
individual monitoring of TBL and TB2 IFN-y levels during
treatment showed little relevancy; we observed important
inter-patient heterogeneity, and no significant changes in
median values over time. On the contrary, median rmsHBHA
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TABLE 3 | Associations between time to culture conversion, IFN-y respense, and selected clinical parameters.

Parameter Timepeint Descriptive analysis (n = 108) Univariate lysi iate .emalysis|
Slow responders Fast responders(n=92) P OR (95%CI) P aO0R (95%Cl) P c AIC
(n = 16; reference)
MIT IFN-y (U/ml) o 4.9(1.8-10) 10 (8.82-10) 0.0028 078{067-081) 0007 065044088 0009 075 575
771 8.3 (3.8-10) 10 (8.893-10) 0.0039 0.84(0.72-0.88) 027 0.77{056-1.01) 0OO/6 068 639
T~ 9.4 (4.8-10) 10 (8.94-10) a3 0.88(076-1.04) 077 0.78 (0.57-1.05) 070 086 847
Positive GFT-P IGRA 70 25% (4/16) B83% (58/62) 0006 0.1€(0.051-061) 0008 0.045(0.002-0.35) 0.013 077 576
771 31.2% (518) 56.5% (52/92) 070  0.33{0.089-099 0059 0390084197 027 064 B62
i~ 50% (8/16) 53.8% (48/92) 0.98 0.88 (0.28-2.57) 0.87 3.27 (0.58-24.1) 020 085 B57
Poslive HEHA IGRA T0 25% (4/16) 35.9% (33/92) 0.57 062 (016-1.68) 044 032(0.075-1.71) 024 084 667
71 31.2% (5/18) 65.2% (60/92) 0013 0.240.071-078 0015 0.076(0.003-087) 0045 074 ©1.9
7 50% (8/16) 77.2% (71/92) 0.033 029(0.087-0.89 0.9 079017413 a77 0Bl 871
Lymphaocyte % of WBG 70 17.5(12.8-19.5) 19.0 (15-26) 0099 093(084-1.00) 0038 0.94(0.83-1.05 035 064 864
Ti 23.0(16.2-28.0) 25.0(20.7-51) 0.099 083(086-009) 0052 08208308 0078 068 B33
72 28,5 (23.5-36.2) 30.0 {25.9-36) 0.93 1.01 {0.85-1.08) 0786 1.01 {0.94-1.08) 089 082 875
Body mass index To 17.0{16.3-18.6) 19.7 (17.4-21.5) 0.0088 0.79(063-093 0025 0.78{(056-1.02) 0038 065 655

T0O, inclusion. T1, 7O + 2 months. 72, end of treatment. OR, odds ratio; aOR, adjusted odds ratio; Cf confidence interval; WBC, white blood cells; C, model C statistic; AIC, Akaike
Information Criterion. Oniy parametars with significant associalfon to the outcome were SRown:; otfer tested parameters are availabie in Supplementary Tabie 7. Slow culture conversion
was defined as a persistently positfve culture result at 71 followed by a culfure conversion at T2, For MIT JFN-y assodiations were calculated for each unit increase. For [ymphocyte
proportions, assodiations were caloulated for aach increase of 8%. 'models were adusted for age, sex, country of arigin, drug resistance strain, body mass index at inclusion, and BOG

vaccination rate.

IEN-ylevels increased significantly throughout treatment, and an
increase was observed in most patients. This is consistent with
studies associating high rmsHBHA IFN-y levels to latency and
controlled infection (23, 25-27), as well as in children (28) and in
adults (32) receiving anti-TB treatment. The differences observed
between the QFT-P and rmsHBHA IFN-7y responses during
treatment can be explained by distinct antigen compositions.
TB1 and TB2 are peptide pools obtained from secreted antigens,
whereas rmsHBHA is a native protein found in mycobacterial
cell walls in vivo; hence, antigen processing and presentation may
differ. Bacterial pathogenesis mechanisms (40) as well as the
bactericidal effect of anti-TB treatment could also affect the
release of QFT-P and HBHA antigens. In addition,
mycobacterial immune escape mechanisms involving HBHA
(41, 42) could explain the downregulated in vitro IFN-y
responses to rmsHBHA during active disease.
Characterization of the association between QFT-P,
rmsHBHA IFN-%, and mycobacterial clearance has led us to
identify two subsets of conversion rates. In particular, slower
culture conversion was associated with QFT-P negativity at TO,
consistently with a prior study linking negative or indeterminate
QFT-P results with poor treatment outcomes (43), and with
HBHA IGRA negativity at T1. More generally, both a general
immunosuppression with low non-specific IEN-y (44), and low
M. tuberculosis-specific IFN-v (45) have been demonstrated
during active TB. Thus, an anergic early T-cell-driven response
might be involved in slower mycobacterial clearance (43). At the
other end of the spectrum, lower levels of IFN-¥ in slow
converters at T2 suggest a link between magnitude of the
rmsHBHA-mediated response and mycobacterial clearance.
Our data indicate that rmsHBHA and/or QFT-P IFN-y had
low specificity and accuracy compared to the gold standard
culture conversion. Because of the small cohort size, this result
must be interpreted with caution; but if confirmed, it could
suggest that the increase in rmsHBHA IFN-y might be

representative of general immune recovery during treatment
rather than a specific response to M. tuberculosis. Here, this
hypothesis is supported by the fact that a low IFN-y response to
non-TB specific stimulation (Mitogen tubes) at TG was also
significantly associated with slow culture conversion in
multivariate analysis. In addition, immune cross-reactions with
HBHA homologs present in environmental mycobacteria have
been previously reported (23).

Finally, our study had several limitations. The sample size was
relatively small, and patients were included in diverse
geographical areas and had different antibiotic regimens. As a
consequence, malnutrition levels, untested co-infections (besides
HIV and virus B and C hepatitis), different genetic and epigenetic
backgrounds, or potential differences in bacterial loads during
sputum collection could not be controlled. We were intrigued by
differences in IFN-y response to HBHA in the different study
sites, which could be linked to ethnic-specific influences over M.
tuberculosis responses (46). Although adjustment with
sociodemographic factors and optimism corrections with a
method adapted to small sample sizes (47) were performed,
our results need to be confirmed in larger cohorts.

In conclusion, this study described the associations between
mycobacterial clearance and immune responses to QFT-P and
rmsHBHA IGRAs throughout anti-TB treatment. Lower QFT-P
and rmsHBHA IFN-y levels were associated with slower
mycobacterial clearance. Our results support a growing body of
evidence suggesting that rmsHBHA IFN-ydiscriminates between
the different stages of TB. However, the specificity of both IGRAs
was insufficient for treatment monitoring, Further research is
needed to clarify how the rmsHBHA response is regulated at the
cellular level during treatment, and whether there is any specific
interaction with mycobacterial clearance. In particular,
evaluating how long rmsHBHA IFN-7 values remain stable
after treatment would help assess whether it could be a
relevant biomarker for relapse prediction.
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Article summary

Novel non-sputum-based tests are needed to improve TB treatment monitoring and shorten
treatment. Blood-based host immune biomarkers are promising targets because immune cells
undergo phenotypic changes over the course of the disease, in particular T-cells. However,
they have been mostly investigated in low-TB prevalence settings, with conventional flow
cytometry that measures a limited number of cell markers, or with high-dimensional
cytometry across diverse PBMC subpopulations but at the expense of deep profiling. In
particular, detailed phenotypic data on Mtb-stimulated CD8* T-cells during treatment are
scarce. Here, in a prospective cohort study of adult patients treated for TB in Bangladesh and
Georgia, we characterized peripheral blood T-cell immune-profiles with a 29-marker mass
cytometry panel. Deep T-cell profiling was performed using unsupervised analysis. Results
were examined throughout treatment at first, and then according to culture conversion at the

end of the intensive phase to study the association between T-cell profiles and Mtb clearance.

Between May 2019 and July 2020, we analyzed 144 samples collected from 22 adult, culture
confirmed, non-immunosuppressed PTB patients (4 in Bangladesh and 18 in Georgia; 11 DS-
TBand 11 DR-TB patients). Samples were either unstimulated or Mtb antigen-stimulated (QFT-
P TB2 or rmsHBHA). All patients achieved microbiological cure at the end of treatment. At T1,
definitive culture conversion occurred in 18 patients (fast converters) and cultures remained
positive in 4 patients (slow converters). Unsupervised cell subpopulation clustering based on
lineage markers revealed 196 distinct clusters grouped into 12 meta-clusters consistent with
canonical T-cell subpopulations. The abundance of each cluster was assessed during
treatment and clusters within which significant abundance changes were detected were
examined. Hierarchical clustering based on functional markers uncovered four subgroups of
phenotypically similar T-cell clusters with comparable abundance changes during treatment.
Four of these subgroups were associated with cure and remained relevant at the individual
level (central memory CD4* CCR6" IL7Ra* CD27*CD40L* CD38*HLA-DR*; effector memory CD8*
CD7* perforin*; central memory CD4* CCR6* CD26* IL7Ra* CD27* CD40L* CD38* HLA-DR;;
effector memory CD4* CD26* IL7Ra* CD7* CD27*), which was verified with manual gating
analyses. T-cell immune-profile comparison at each timepoint according to culture status at

T1 revealed that cytotoxic and terminally differentiated CD8* T-cells were under-represented
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and naive CD4* T-cells were over-represented in slow compared to fast converters during
treatment. Then, PCA on non-lineage markers highlighted that most of the immune variance
observed between slow and fast converters was explained by CCR4, CD26, CD7, and CD27

expression, and to a lesser extent by cytotoxicity and activation markers.

These results show that T-cell phenotype changes during TB treatment are detectable in Mtb-
stimulated samples without restriction to Mtb-specific cells. They indicate an antigen-driven
immune shift towards differentiated subpopulations, including cytotoxic CD8* T-cells, which
is associated with TB cure. Importantly, this shift appears to be delayed in patients with slower
microbiological cure. We were able to discover these new insights on TB immunobiology
during treatment precisely because CD8* T-cell-stimulating antigens were used, differently
from previous works mobilizing canonical Mtb antigens without HLA-DR-I loading. These
results suggest that T-cell immune profile combinations may be possible surrogate non-
sputum biomarkers of TB treatment efficacy. External validation in cohorts with higher rates
of treatment failure is necessary to confirm the observed trends. Ideally, a comparison with
broncho-alveolar lavage fluid lymphocytes and an assessment of T-cell subset abundance
changes in latently TB infected participants would help further characterize identify T-cell

phenotypes associating with TB control in the periphery and at the site of infection.
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Abstract

Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements
based on drug susceptibility profiles and treatment observance issues. TB cure is defined by
mycobacterial sterilization, technically complex to systematically assess. We hypothesized
that microbiological outcome was associated with stage-specific immune changes in
peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients
were prospectively characterized in a blinded fashion using mass cytometry after
Mycobacterium tuberculosis (Mtb) antigen stimulation, and then correlated to sputum culture
status. At two months of treatment, cytotoxic and terminally differentiated CD8* T-cells were
under-represented and naive CD4* T-cells were over-represented in positive- versus negative-
sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, an
antigen-driven T-cell immune shift towards differentiated subpopulations was associated with
TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters,
which brings new insights in TB prognostic biomarker research designed for clinical

application.
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Introduction

Tuberculosis (TB) is a leading cause of death of infectious origin, responsible for 1.5 million
deaths worldwide in 2020 (1). TB treatment regimens have toxic side effects (2) requiring
monitoring throughout treatment to adapt it and assess effectiveness. Pulmonary TB
treatment monitoring relies on Mycobacterium tuberculosis (Mtb) detection in sputum
samples (3), which can be difficult to collect in later stages of treatment (4). Smear microscopy
yields highly sample- and operator-dependent results and has poor sensitivity (5). Sputum
culture is the gold standard, although slow and requiring biosafety laboratory environments
(6). Simultaneously, one of the main stakes in improving TB management is shortening TB
treatment (7). Overall, there is a need for novel non-sputum-based tools to monitor disease
resolution and assess cure while remaining feasible in primary care settings (8). Blood-based
host immune biomarkers have recently gained interest in TB research as immune cells
undergo phenotypic changes throughout the disease. Numerous past investigations have
pointed to variations in the abundance and marker expression of several targeted
subpopulations (9-12), in particular T-cells, which are pivotal effectors for Mtb clearance (13).
However, this has been explored mostly in low-TB prevalence settings or with conventional
flow cytometry, targeting a limited number of cell markers (14, 15).

High-dimensional single-cell technologies such as mass cytometry enable the detection and
guantification of a high number of cell markers (16). This technique bypasses the limitations
of spectral overlap by using monoclonal antibodies coupled to metal polymers, and has
allowed high-dimensional exploration of the immune landscape in several domains (17, 18).
It has been applied to immune profiling during TB treatment in a 2018 study by Roy
Chowdhury and colleagues (19), in which the authors have provided a general overview of
changes in the main immune blood cells during treatment.

Here, in a prospective, international cohort study of adult patients treated for pulmonary TB
in high prevalence countries, peripheral blood T-cell immune-profiles were characterized
using a 29-marker mass cytometry panel. In-depth T-cell phenotypical analysis was performed
upon TB treatment initiation, after two months and at completion of treatment. To examine
the relation between mycobacterial clearance in hosts and changes in T-cell immune-profiles,
the results of these analysis were compared in negative and positive sputum culture

conversion patients after two months of treatment.
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Results

Study design and analysis strategy

Between May 2019 and July 2020, 144 cell samples collected from 22 adult TB patients were
analyzed (Bangladesh, n=4 and Georgia, n=18; DS- and DR-TB, n=11 each) (Supp. Figure 1).
Patient demographic, microbiological and clinical characteristics are available in Supp. Table 1.
All patients achieved microbiological cure at the end of treatment, but were retrospectively
classified into two response groups according to their M. tuberculosis culture status at T1
(after two months of treatment): fast converters (n=18; negative culture at T1 and T2) and
slow converters (n=4; positive culture at T1 and negative culture at T2). Among the latter,
three patients were treated for DS-TB and one for DR-TB.

An overview of the data collection and analysis process is shown in Figure 1. Briefly, data from
all samples were clustered automatically into subsets of homogeneous phenotypes to provide
a framework for analysis. Clusters were then color-coded and plotted onto a two-dimension
map to create a visual reference used throughout the paper (Figure 2). On this basis,
automatically detected clusters were first quantified and analyzed dynamically throughout
treatment to identify median clusters abundance variations associated with treatment
completion (Figure 3). Cluster phenotypes were deduced from marker expression heatmaps,
and hierarchical clustering was applied based on marker expression (Figure 4). In a supervised
manner, clusters of similar abundance changes and immunophenotypes were then re-
grouped into larger subsets, in order to assess relevance of the detected abundance variations
at the individual level, and consistency with manual gating (Figure 5). Finally, a cross sectional
analysis was performed at T1 to identify which automatically detected clusters differentiated
patients based on the microbiological response to the intensive phase of treatment (Mtb

culture positivity at T1; Figures 6 and 7).

Overall analysis of peripheral T lymphocyte subset abundance changes throughout TB
treatment.

First, a phenotype analysis was performed to identify the main expected T-cell
subpopulations. As no apparent difference was seen in UMAP structures within samples from
the different timepoints and stimulation conditions despite some marker expression
differences between stimulation conditions (Supp. Figure 2; exact p-values and test statistics

in Supp. Table 2), we performed the phenotype analysis on all single CD3* events. The purpose
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of this study was not to compare the stimulations, but rather to use them to uncover clusters
that might be associated with treatment response and that would not be visible in
unstimulated samples. FlowSOM automated clustering was performed on CD3* events,
revealing a total of 196 automatically detected clusters (Figure 2.A to 2.C). They were
automatically grouped into 18 meta-clusters, which were assembled into 12 canonical T-cell
subpopulations in a supervised manner (Figure 2.D and 2.E). FlowSOM clusters and meta-
clusters were then visualized on the initial UMAP to create a reference map of all
automatically detected T-cell subsets (Figure 2.F and 2.G).

To initiate the abundance analysis, variations of the main T-cell subpopulations throughout
treatment were then studied using a stratification according to each stimulation condition. No
significant change in the proportion of total CD4*, CD8*, y§, double negative (DN, CD4 CD8) or
double positive (DP, CD4* CD8*) T-cells was observed throughout treatment in any stimulation
condition (Supp. Figure 3). For all main studied subpopulations, no significant difference was

observed between DS- and DR-TB patients (data not shown).

Differential abundance of non-canonical T-cell subsets throughout TB treatment.

To identify non-canonical T-cell subsets whose abundance changed throughout treatment, we
calculated the percentage of each automatically determined FlowSOM cluster at each
timepoint and in each stimulation condition. These clusters were then categorized into two
groups: enriched or decreased after treatment completion. Abundance changes were studied
between TO and T1 and TO and T2 to characterize the main clusters associated with response
to treatment intensive phase and with treatment completion respectively. As these clusters
represent non-canonical cell subpopulations, their frequencies among total CD3* events were
low (< 5% in most samples). Hence, the differences analyzed thereafter describe rare
populations and warrant cautious analysis.

When comparing the reference UMAP (Figure 2.G) to the UMAP of clusters which were
increased between TO and T1 (Supp. Figure 4.A), we observed that they were either DN T-cells,
or effector memory (EM) or terminally differentiated effectors re-expressing CD45RA (TEMRA)
cells from both CD4* and CD8* subpopulations. In unstimulated samples, significant increases
were detected within three clusters corresponding to CD8* and DN T-cell subsets (Supp. Figure
4.B), whereas increases were detected in one CD4* and one CD8" cluster in TB2-stimulated

samples (Supp. Figure 4.C) and only in CD4* clusters in rmsHBHA samples (Supp. Figure 4.D).
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Clusters that decreased between TO and T1 (Supp. Figure 4.E)were detected only within CD8*
EM and TEMRA cells in all stimulation conditions (Supp. Figure 4.F to 4.H).

Between TO and T2, 11 increased clusters were detected (Figure 3.A). They corresponded
mostly (8/11 clusters, 73%) to CD4* EM and CM subpopulations rather than naive subsets,
regardless of the stimulation condition (Figure 3.B. to 3.D.). One DN cluster was increased in
unstimulated samples (Figure 3.B. as well as one CD8* TEMRA cluster and one y6 T-cell cluster
in rmsHBHA stimulated samples (Figure 3.D.). One CD4* CM cluster (number 38) increased
significantly in samples from all three stimulation conditions. Clusters which decreased
between TO and T2 were detected in one CD8* EM and two CD8* TEMRA subsets, and in seven
clusters within CD4* subpopulations in all three stimulation conditions (Figure 3.E to 3.H).
Regarding the latter clusters, no clear trend was observed regarding memory subset
compartmentalization, which suggests that the abundance decrease spared memory
functions and rather affected CD4* T-cells in general. One y& and one DN T-cell cluster also

decreased significantly within Mtb-stimulated samples (Figure 3.G. and 3.H.).

Antigen-driven cluster abundance changes during TB treatment show involvement of
effector and memory T-cells.

To further refine patterns in functional marker expressions within increased or decreased
clusters, we then performed a detailed phenotype analysis using marker expression heatmaps
and hierarchical clustering (Figure 4). Four subgroups of cellular subsets of similar abundance
changes and similar immunophenotypes were identified (labeled from A to D). Subgroup A
included four CD4* T-cell clusters with naive (n=2) and CM (n=2) phenotypes, which decreased
from TO to T2 in rmsHBHA-stimulated samples. Subgroup B included five CD8* T-cell clusters
that decreased throughout treatment, two of them between TO and T1 and three of them
between TO and T2. Consistently with the above results (Figure 3.E.), the latter were either
EM or TEMRA cells, with low CD45RA levels and intermediate levels of perforin. The other two
clusters were naive clusters with low CCR7, CD45RA, and CD27 expression levels.

In contrast, subgroup C and D included only CD4* T-cell clusters, most of which (70%, 7/10)
increased between TO and T2. Subgroup C consisted in five clusters exhibiting a CM phenotype
and expressing activation markers, detected in unstimulated and TB2-stimulated samples.
Subgroup D clusters were detected in Mtb-stimulated samples (3 in rmsHBHA and 2 in TB2)

and had an EM phenotype, except for cluster 69 that had a CM phenotype with low levels of
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CCR7. These clusters co-expressed CD26, IL7Ra, CD7 and CD27. They were characterized by an
absence of activation marker expression and an enhanced expression of exhaustion markers,
in particular CTLA-4 and PD-1. Overall, we observed antigen-driven T-cell subset abundance
changes between TO and T2. In TB2 and rmsHBHA samples, CD4* EM clusters mostly increased,

while CD8* EM clusters mostly decreased.

Individual profiling confirms abundance changes in phenotypically homogeneous,
correlated subsets after treatment in cured patients.

As the differentially abundant clusters identified above accounted for a small fraction of CD3*
T-cells (<1%), we intended to identify the largest possible subsets of phenotypically
homogeneous cells within which a significant abundance change was detectable (Figure 5).
Within the subgroups of similar immunophenotypes and abundance change identified in
Figures 3 and 4, we performed correlation analyses at baseline and pooled the best correlated
clusters together within the subgroups identified in Figure 4 (Figure 5.A and 5.D). We then
visualized the individual abundance change of these pooled subsets before and after
treatment completion in cured patients (Figure 5.B-C and 5.D-E). Within rmsHBHA samples, a
decrease in subgroup A and an increase in subgroup D were both detected in 93% (13/14) of
cured participants (Table 1). Within unstimulated samples, a decrease in subgroup B and an
increase in subgroup C were recorded in 81% (13/16) and 88% (14/16) of patients
respectively. This confirmed that the median trends observed previously were maintained
individually in most patients. Finally, we visualized the immunophenotypes of these four
subgroups of interest in comparison to cells from similar subpopulations which were not
associated to cure (Figure 5.F). Subgroup A and subgroup C corresponded to CD4* CM cells
expressing CCR6, IL7Ra, CD27, and activation markers (CD40L, CD38). However, cells within
subgroup A expressed HLA-DR while subgroup C did not; in addition, cells from subgroup C
expressed high levels of CD26, as well as CCR4, CXCR3, and CD7. Subgroup B corresponded to
CD8* CD7* Perforin* EM cells. Subgroup D corresponded CD4* EM cells expressing high levels
of CD26, as well as CCR4, CCR6, CXCR3, IL7Ra, CD7, and CD27. We then confirmed these
findings by manually gating the identified subpopulations and comparing the percentages at

TO and T2 (Figure 5.G-K, representative dot plots).
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Patients with persistent positive cultures at T1 show decreased peripheral CD8* cytotoxic
subsets and enriched peripheral CD4* naive subsets throughout treatment compared to
patients with negative cultures at T1.

Then, we aimed to detect a cellular signature associated with mycobacterial conversion. To
do so, we analyzed individual cluster abundance in slow vs. fast converters throughout
treatment. At TO, T1, and T2, respectively 21, 24, and 21 clusters with significantly different
abundance in slow converters compared to fast converters were detected (quantification in
Supp. Fig. 5). After phenotyping, the proportions of the main T-cell subpopulation phenotypes
in each group of enriched or decreased clusters at TO, T1, and T2 were calculated and
summarized in Table 2.

Before treatment initiation, of 21 clusters with different abundance, 18 (86%) were decreased
(Supp. Figure 5.A) and three (14%) were enriched (Supp. Figure 5.B) in slow compared to fast
converters. Clusters which were under-represented in slow converters corresponded mostly
to DN, y6, and CD8* T-cells (77%, 13/18 clusters), specifically y6 and CD8* EM T-cell
subpopulations (38%, 5/13 each); in addition, a majority of these clusters was perforin* (67%,
12/18) (Supp. Figure 6.A). In contrast, the three enriched clusters were naive CD4* and CD8" T-
cells, as well as one CD8* TEMRA subset.

At T1, of 24 clusters with significantly different abundance between slow and fast converters,
15 (62%) were decreased (Figure 6.A and 6.C) and 9 (38%) were enriched in slow converters
(Figure 6.B and 6.D). These clusters were mostly detected in TB2-stimulated samples (63%;
15/24 clusters). Comparison to the reference UMAP (Figure 6.E) and hierarchical clustering
(Figure 6.F) indicated that enriched and decreased subsets respectively had similar
immunophenotypes. Clusters which were under-represented at T1 in slow converters were
mostly perforin* cells (67%, 10/15 clusters); mostly CD8* TEMRA and DN T-cell phenotypes
were represented (40%, 6/15 clusters respectively). In contrast, enriched clusters comprised
a majority of CD4* T-cells (78%, 7/9 clusters), with predominantly naive phenotypes (45%,
3/7). One CD8* naive and one CD8" EM cluster were also enriched in slow converters at T1,
with the latter expressing ICOS.

After treatment completion, of 21 clusters with significantly different abundance between
slow and fast converters, 11 (52%) were decreased (Supp. Figure 5.C) and 10 (48%) were
enriched in slow converters (Supp. Figure 5.D). The immunophenotype profile at T2 was

similar to that of T1 for the enriched subsets: a majority of ICOS* CD4* naive T-cell subsets
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(50%, 5/10) were detected, as well as two CD8* naive clusters (Supp. Figure 6.B). Regarding
the decreased subsets, no specific phenotype polarization was observed, and clusters were
detected within diverse subsets (four CD8* EM clusters, four CD4* EM clusters, and three DN
T-cells clusters). Similarly to the T1 immune profile, all of the above clusters were mostly

detected in TB2-stimulated samples (67%, 14/21 clusters).

Maturation markers and chemokine receptors, rather than activation or cytotoxic markers,
discriminate slow from fast converters during treatment.

Finally, we sought to assess more precisely which combinations of cellular markers were the
most involved in the discrimination between fast and slow converters within the clusters
identified in the prior section. A principal component analysis (PCA) was performed on marker
expression data within these clusters. As a higher number of differentially abundant clusters
had been detected in Mtb-stimulated samples than in unstimulated samples during treatment
(T1 and T2), and because a complete overlap between the PCA profiles of fast and slow
converters was observed in unstimulated samples, we focused on Mtb-stimulated samples
(TB2 and rmsHBHA). PCA profiles were mostly separated when split by culture conversion
group (Figure 7.a). Dimension 1 (Dim1) explained 37.3% of the total observed variance, versus
12.5% for Dim2. The main markers accounting for variance described by Dim1 were markers
of memory subset definition (CCR7 and CD45RA), lineage (CD4 and TCRyd), maturation (CD27
and CD7), chemokine receptors (CCR4 and to a lesser extent CXCR3) or other receptors or
costimulatory molecules (e.g., CD26, CD161) (Figure 7.B. and 7.C). In contrast, variance
described by Dim2 was mostly explained by cytotoxicity (Perforin, CD56, CD8), activation
(CD38, CD40L, CD69), or exhaustion markers (CD152, PD-1) (Figure 7.B and 7.D). The PCA
scores were significantly higher in slow converters than in fast converters at all timepoints for
Dim1 (Figure 7.E), indicating that the immune profile of slow converters was more correlated
to Dim1 than that of fast converters regardless of the timepoint. In contrast, no significant
differences were detected at the end of treatment (T2) for Dim2 (Figure 7.F). When comparing
these results with PCA analyses performed on total CD3* T-cells, fast and slow converter
profiles were less separated, but similar marker involvement was observed in Dim1 and Dim2

respectively (Supp. Figure 7).
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Discussion

In a population of adults treated for TB, we observed a shift towards more differentiated
profiles among peripheral CD8* and CD4* T-cell subsets driven by the timing of Mtb culture
conversion, using a high-dimensional single cell approach after stimulation with standardized,
IVD-level TB2 antigens. In particular, differentiated CD8* cytotoxic effector subsets were
under-represented in positive- versus negative-sputum culture patients after two months of
treatment.

Over the course of TB treatment, we observed as a general trend that non-canonical subsets
within CM CD4* and TEMRA CD8* populations increased, whereas naive CD4* and naive/EM
CD8* subsets decreased. This is consistent with prior works addressing T-cell differentiation
and T-cell memory subsets during TB treatment (20-22). Mtb-specific CD4* EM T-cells have
been associated with active TB disease, whereas CM T-cells have been associated to latency
and increased upon treatment (23, 24). In Mtb-specific CD8* T-cells, an overall decrease in
peripheral blood (25) and a decrease in CM cells (26) have been documented after treatment.
In contrast, the central result of this study was to distinguish negative- from positive-sputum
culture patients at two months, whether infected with a DS- or DR-Mtb strain, through
differential peripheral T-cell populations. When retrospectively analyzing the T-cell profiles of
fast and slow converters at diagnosis, a pre-existing difference in percentages of cytotoxic EM
CD8* T-cell subpopulations was already observed. After two months of treatment, this trend
shifted into an under-representation of CD8* TEMRA, which persisted after cure. These
changes were revealed upon stimulation with QFT-P TB2 antigenic peptide pools. Although
many studies characterizing T-cell subsets during treatment have clearly underlined the
importance of Mtb-specific CD4* T-cells (9, 13, 27), less is known about the role of CD8* T-cells
in TB resolution and the most appropriate epitopes to study them in this context (28, 29). Yet,
effector CD8* T-cells are known to secrete cytolytic and antimicrobial factors that kill Mtb-
infected macrophages in vitro (30), inhibit Mtb growth (28), and are required for long-term
infection control in mice (31) and humans (32); perforin production by CD8* T-cells is also
higher in treated than in untreated TB patients (33). In addition, a 2012 study by Rozot and
colleagues had associated Mtb-specific TEMRA CD8* T cells to LTBI and EM cells to active TB
(34). Here, although we cannot establish causality, a lower peripheral CD8* TEMRA subset
abundance may be associated with slower mycobacterial culture conversion. In relation with

abundance changes during treatment, our study hints that the CD8* T-cell phenotype shift
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occurring during TB treatment would be delayed in patients with slower microbiological
conversion. Consistently, it has been shown that CD8* response importantly contributed to
the control of other granulomatous infections such as Brucella (35). Regarding CD4* T-cells,
naive subsets were over-represented in slow converters, which suggests a delayed
differentiation within the CD4* compartment as well. Previous work has shown that the IFN-
v/IL-2/TNF-a functional profile of Mtb-specific CD4* T-cells, which is key in anti-TB immunity
(14), was correlated with their degree of differentiation (36). Taken together, these results
support the hypothesis that CD4* and CD8* T-cell responses should be monitored together
during TB treatment, as successful mycobacterial clearance involves CD8* T-cell effectors,
which in turn require CD4* T-cell involvement (37).

Although the aim of this study was not to compare stimulation conditions, but to use them to
uncover cell clusters, our results suggest that the abundance changes observed throughout
treatment are antigen-driven. This adds to previous work highlighting differential Mtb-specific
CD8* T-cells marker profiles according to the nature of the antigen stimulation (38). We used
QFT-P TB2, which elicits cytotoxic CD8* responses in addition to ESAT-6/CFP-10-induced CD4*
responses (39), as well as rmsHBHA, a recombinant Mtb protein exposing many different
epitopes. The latter was included because the IFN-y response to HBHA, to which both CD4*
and CD8* cells participate (40), is impaired in active TB patients and restored during treatment
(41-43). Here, changes during treatment in CD8*, CD4*, DN, and y& T-cell subsets were
detectable within unstimulated and TB2 samples, consistently with previous works (39). In
contrast, in rmsHBHA-stimulated samples, significant abundance changes were mostly
detected within CD4* T-cells, suggesting a preferential CD4* T-cell response to HBHA epitopes
during treatment. This indicates that antigen-driven changes during the response to Mtb are
part of a complex process involving a variety of different epitopes (26) that induce responses
from phenotypically diverse T-cell subsets (38), despite well-described immunodominance
features. Our results confirm that a major stake in discovering blood-based immune signatures
of mycobacterial sterilization lies in finding the appropriate epitopes.

Finally, our study enabled profiling of non-lineage markers. A CXCR3* CCR6* CD27* CD4* EM
subset was increased in cured patients compared to pre-treatment, corresponding to a subset
enriched in Th1/Th17 cells (44, 45). Consistently with previous work on LTBI (46), this suggests
that an increase in these cells upon cure might be associated with infection control. Compared

to the other CD4* EM cells, this subset displayed higher CD26 and IL7Ra expression. CD26
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participates in T-cell activation and proliferation (47), and correlates with Th1-like responses
(48). In parallel, a significant decrease was also observed in a highly activated CCR6* IL7Ra*
CD4* CM subset, which expressed higher levels of CD40L, CD38, and HLA-DR than other CD4*
CM cells. Interestingly, an increase in another CD4* CM subset — which differed from the latter
because it expressed CD26 and CD27, but not HLA-DR — was observed simultaneously. This
adds to previous works with previous works highlighting a decrease in CD38* and HLA-DR*
Mtb-specific CD4* T-cells in successfully treated TB patients (13, 49, 50). This suggests that
upon TB treatment, differentiated Th1/Th17-like CD4* subsets expressing high levels of CD26
and IL7Ra are enriched in peripheral blood, likely at the expense of less differentiated subsets
expressing high levels of CD27 and CD38. Finally, principal components analysis showed that
within the subpopulations that differentiated slow from fast converters during treatment,
differentiation markers and chemokine receptors contributed to most of the variance,
followed by activation and cytotoxicity markers. CD27, CD26, and CCR4 were among the
markers which best discriminated fast and slow responders, consistently with prior studies
associating CD27 and CCR4 expression in Mtb-specific CD4* T-cells with active TB compared to
latent infection (51). HLA-DR and CD38 also contributed to a lesser extent, which adds to a
recent study in which co-expression of CD27, HLA-DR, and CD38 on PPD-stimulated CD4* T-
cells stratified fast and slow responders without restriction to IFN-y-producing cells (52).

This descriptive study has limitations. The number of patients included was low, resulting in
few slow converters, consistently with treated TB course (15 to 20% of slow culture
converters). In addition, the presence of within-host Mtb isolate micro-diversity has been
recently proven in patients treated for DS-TB without culture conversion after two months of
well-conducted TB treatment (53), suggesting that it could modulate the host response. We
are currently conducting a larger validation study including DS-TB patients only, from whom
Mtb isolates collected upon treatment initiation and at two months will be screened by whole
genome sequencing. In addition, the analyses were not conducted on live cells, but on fixed,
cryopreserved peripheral blood cells due to the design of the study using samples collected in
lower-income, high TB prevalence settings. For the same reason, the study was conducted on
peripheral blood, while the main infectious focus of TB is in the lungs. In addition, since the
study required to IGRAs to be performed on the same blood samples prior to cell
cryopreservation (41), we did not perform intracellular cytokine staining. Hence, the

integrality of the observed cell phenotype changes may not be associated with Mtb-specific
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responses. However, whether the bulk of anti-TB response relies purely on Mtb-specific cells
is debated. Given the complexity of the immune response to TB, cellular and molecular
interactions are likely to occur between Mtb-specific and non-specific subpopulations during
mycobacterial clearance, and hence influence the overall T-cell profiles. In addition, the
hypothesis that T-cells specific forimmunodominant epitopes actually recognize Mtb-infected
cells has been challenged by studies on mouse models (54), protective immunity post-BCG
vaccination(55), and failures of vaccine candidates based on immunodominant antigens (56).
These limitations are linked to the “bench to bedside” approach adopted in our study. They
reflect the reality of the needs for novel TB management tools: accessible samples, simple
experimental process, straightforward output. Here, we captured the complexity of T-cell
profiles during treatment and narrowed it down to subpopulations of interest associated with
cure at the individual level. Although mass cytometry requires complex equipment,
experiments, and analyses, we have shown that relevant T-cell profiles could be identified in
cryopreserved samples, obtained from small blood volumes, using manual gating analyses and
a smaller number of core markers. Future validation studies might confirm the relevancy of
simpler phenotypic signatures translatable in primary care settings. Importantly, our study
revealed T-cell populations discriminating patient status based on culture conversion, which
has a dual impact: on TB management, to better characterize the phenotypes of T-cells
involved in TB clearance; and on biomarker research, further supporting that a diversity of
epitopes is needed to fully disclose the spectrum of these cells. This work may help identify
simpler prognostic biomarkers associated with mycobacterial clearance and the antigens

appropriate for their discovery.
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Materials and methods

Experimental design

Study design and research objectives

This prospective cohort study was nested in a multicentered study coordinated by the Mérieux
Foundation GABRIEL network (57). The primary objective was to investigate the association
between sputum culture sterilization during active TB treatment and characteristic T-cell
profiles obtained by high-dimensional phenotyping. The sample size was maximized based on
availability of clinical samples. No prospective sample size calculations were performed.
Recruitment centers and ethical considerations

Recruitment centers were the National Center for Tuberculosis and Lung Disease (NTCLD) in
Thilisi, Georgia (approval of the Institutional Review Board of the NTCLD; IORG0009467); and
the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) in Dhaka,
Bangladesh (approval of the Research Review Committee and the Ethical Review Committee
of icddr,b; PR-17076; Version No. 1.3; Version date: 04-01-2018). All participants provided
written informed consent.

Cohort recruitment, patient follow-up, and clinical data collection

Patients were recruited if diagnosed with sputum culture confirmed pulmonary TB and older
than 15 years old. Patients with HIV, immune deficiency, diabetes mellitus, and lost-to-follow-
up were excluded. Detailed procedures for microbiological diagnosis, drug susceptibility
testing, and treatment regimens are described elsewhere (57). As antimicrobial resistance is
a major challenge for TB management and treatment, both drug-susceptible (DS-TB) and drug-
resistant (DR-TB) patients were recruited to examine immune profiles in these settings.
Patients were followed up: at inclusion (T0), after two months of treatment (T1), and at the
end of TB treatment (T2; 6 months for DS-TB patients, 9 to 24 months for DR-TB patients). The
T1 timepoint was chosen because it marks the moment after which antibiotic treatment is
reduced during clinical DS-TB management. For DR-TB monitoring, the same timepoint was
used for consistency. Patients were on Directly Observed Treatment (DOT) and received
treatment according to standard protocols (2). Treatment regimens are detailed in Supp.

Table 1.

Whole blood stimulation and processing
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Detailed whole blood collection and stimulation processes were described elsewhere (41).
Briefly, at every follow-up visit, 1mL of whole blood was seeded directly into each
QuantiFERON-TB Gold Plus (QFT-P, Qiagen) tube and incubated for 24 hours. Three
stimulation conditions were used: NIL as unstimulated control; TB2 which tubes contain the
M. tuberculosis antigenic peptides ESAT-6 (>15aa) and CFP-10 (8-13aa), which induce
responses from CD4* T lymphocytes (39), and an undisclosed peptide pool inducing CD8* T
lymphocyte stimulation (58); rmsHBHA which tubes contain recombinant M. tuberculosis
heparin-binding hemagglutinin generated in M. smegmatis at a final concentration of 5ug/mL
and graciously provided by the Delogu laboratory, UNICATT, Rome, Italy (59).

After incubation, plasma separation, and red blood cell lysis, the resulting fixed white blood
cells pellets were stored at -80°C. Cryopreserved samples were air-shipped in dry ice with
freezing controls to the Mérieux Foundation Emerging Pathogens Laboratory in Lyon, France

(International Center for Infectiology Research, INSERM U1111).

Experimental procedure

Sample preparation

Cryopreserved cells were thawed and resuspended in phosphate buffer saline (PBS) to a
concentration of 3.5x10°8cells/mL. Between 1 and 1.5x10° cells from each sample were
aliquoted for staining. Cells were incubated 10 minutes with FcR Blocking Reagent (6ulL/10°
cells; Miltenyi Biotec) and heparin sodium salt reconstituted in Millipore water (36ug/10° cells;
Sigma-Aldrich) to reduce nonspecific staining (60).

Panel design

A 29-marker panel of metal-labeled antibodies was used. All antibodies were obtained from
Fluidigm (Supp. Table 8). Briefly, the panel contained 28 T-cell oriented surface markers
(lineage markers, chemokine receptors, activation markers, and exhaustion markers) and one
intracellular target (perforin).

Experimental design and barcoding

As the study followed a longitudinal design, samples from a same patient were acquired in the
same barcoded batch of 3 timepoints and 3 stimulation conditions to reduce experimental
variation. Palladium barcoding (61) (Cell-ID 20-Plex, Fluidigm) was performed according to the
manufacturer’s instructions for simultaneous staining and data acquisition. For each

barcoding run, 18 patient T-cell samples were stained with unique combinations of
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intracellular palladium isotopes (Figure 1). Patient batches were processed in a random order
and investigators were blinded to patient sputum culture results during data collection.
Staining procedure

Extracellular staining was performed on pooled barcoded cells in Maxpar cell staining buffer
(Fluidigm) for 30 minutes at room temperature. Intracellular staining (perforin) was
performed in Maxpar Perm-S Buffer (Fluidigm) for 30 minutes at room temperature. Stained
cells were then incubated for 10 minutes in 1.6% formaldehyde (FA) freshly prepared from
16% stock FA (Sigma-Aldrich). DNA staining was performed by overnight incubation at 4°C in
2mL of 125nM Cell-ID Iridium intercalator solution (Fluidigm). Cells were then washed,
pelleted, and kept at 4°C until acquisition.

Data acquisition

Samples were analyzed on a CyTOF2 mass cytometer upgraded to Helios (Fluidigm) hosted by
the AniRA cytometry facility (Structure Fédérative de Recherche Lyon Gerland, INSERM
U1111, Lyon, France). Samples were filtered twice through a 50um nylon mesh and
resuspended in EQ™ Four Element Calibration Beads (Fluidigm) diluted to 0.5X in Maxpar
ultra-pure water (Fluidigm), to reach an acquisition rate of 150-200 events per second (0.5 x

106 cells/mL). Data were collected using the on-board Fluidigm software.

Data analysis

All data analyses were performed in RStudio (version 1.3.1073 with R version 4.0.3) and FlowJo
(version 10.7.1).

Data cleaning and preliminary manual gating

Signal normalization, concatenation, debarcoding, and conversion into Flow Cytometry
Standard (FCS) 3.0 format were performed using the Helios Software (Fluidigm). Debarcoded
files were imported into FlowJo and arcsinh-transformed (cofactor = 5). Gaussian parameters
of the Helios system were used for doublet exclusion (62), then 9Ir* 193|r* single events were
manually isolated, and debris (CD45  events) and calibration beads ('*°Ce* events) were
excluded). A preliminary manual gating analysis was then performed on CD45* single events
(Supp. Figure 8) to verify that the proportions of the main white blood cell subpopulations in
biobanked samples were consistent with the expected proportions, and sufficient for
downstream analysis. Samples with less than 1,000 CD3* events, and batches with missing

samples from a given timepoint were removed from the analysis to preserve a matched
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sample design. The exact number of available files per patient and per stimulation condition
is provided in Supp. Table 1.

Workflow for unsupervised analyses

CD3*single events were down-sampled to ensure equal contribution of each sample, exported
into separate Comma Separated Value (.csv) files, and uploaded into R software (version
4.0.3). Panel markers were defined as either lineage or functional markers for use as clustering
channels in downstream analyses (Supp. Table 9). Lineage-defining markers included
canonical surface markers such as CD4 which display a theoretically stable expression.
Functional markers included markers of activation (e.g. CD69), proliferation (CD38),
maturation (CD27), or migration (CCR7).

Dimension reduction, automated clustering, and phenotyping

After file concatenation, dimension reduction was performed with UMAP (Uniform Manifold
Approximation and Projection; version 3.1) (63). UMAPs were created in R using the package
Spectre (64). Unsupervised clustering was performed using FlowSOM (65) (version 2.7).
FlowSOM meta-cluster phenotyping was assessed by visualizing the surface expression of
lineage markers in each FlowSOM cluster (CD4, CD8, TCRgd, TCRVa7.2, CD56, CD25, IL7Ra,
CD26, and CD161) on a heatmap and performing hierarchical clustering. Marker expression
heatmaps were obtained in R using Spectre by plotting normalized, median arcsinh-
transformed mass signals. Biological consistency of FlowSOM meta-clusters with the main
expected T-cell subpopulations (Supp. Table 3) was controlled, and manual reassignment of
clusters which were in inconsistent meta-clusters was then performed when necessary (Supp.
Figure 9). Meta-clusters with an abundance <1% of all events were pooled with the most
phenotypically similar meta-cluster. Then, the proportion of corrected FlowSOM meta-
clusters in each node on the initial FlowSOM minimum spanning tree was visualized to control
reassignment consistency (66).

Statistical analysis

The proportion (percent of CD3*) of each FlowSOM cluster was calculated. For all statistical
analyses, exact p-values, test statistics and/or estimates of effect size are provided either in
the figure legend or in indicated Supplementary Tables. Normality was assessed using the
Shapiro-Wilk test. The evolution of cluster proportions over time corresponded to repeated
measures of non-normal, non-independent continuous variables, and was analyzed in

matched samples using the two-sided Friedman rank sum test with the Wilcoxon—-Nemenyi—

101



McDonald-Thompson post-hoc test (67). Independent, non-normal continuous variables were
analyzed with the two-sided Mann—-Whitney U test or the Kruskal-Wallis test with Dunn’s
Kruskal-Wallis Multiple Comparisons post-hoc test (68) when more than two categories were
compared. For discovery of clusters with significantly different abundance between slow and
fast converters, conservative corrections for multiple comparisons (e.g. Benjamini-Hochberg
(69)) were not used in order to minimize type Il errors. Instead, all p-values were computed
for each timepoint, and the p-value corresponding to the null hypothesis being rejected in 5%
of all comparisons was used as the significance threshold instead of 0.05 (70). This novel
significance threshold enabled to control type | error while maintaining an exploratory
approach; its value was always inferior to 0.05 and is reported in the corresponding figure

captions.
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Figure 1. Experimental and analytical workflow.

NIL, TB2 and rmsHBHA refer to whole blood stimulation conditions. NIL: negative control. TB2:
QuantiFERON TB2 tube (ESAT-6 + CFP-10 + undisclosed CD8* T-cell stimulating peptide pool).
rmsHBHA: heparin-binding hemagglutinin. TO, T1 and T2 refer to patient follow-up timepoints
(TO: baseline. T1: TO + 2 months. T2: end of treatment). Pd barcoding: palladium barcoding for
unique sample identification before multiplexing. UMAP: Uniform Manifold Approximation

and Projection. FlowSOM: self-organizing map.
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Figure 2. Peripheral CD3* T-cell unsupervised clustering and phenotyping.

Peripheral whole blood samples were collected from active TB patients at three timepoints
throughout treatment (n = 22). After whole blood stimulation with selected Mtb antigens or
with a negative control, total white blood cells were extracted, and T-cells were analyzed with
a 29-marker mass cytometry panel.

A to E. FlowSOM automated clustering. The surface expression of selected lineage markers

used for FlowSOM calculations was visualized in all CD3* events (200,000 events from equally
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down-sampled files) regardless of timepoint or stimulation. FlowSOM enabled automated
repartition of all CD3* events into 196 clusters according to the surface expression of selected
lineage markers such as CD4 (A), CD8 (B), and CD45RA (C). Scales indicate arcsinh-transformed
mass signal values. Clusters were automatically grouped into 18 meta-clusters of
homogeneous phenotype, which were assembled into 12 canonical T-cell subpopulationsin a
supervised manner after meta-cluster phenotyping with heatmap visualization of normalized,
arcsinh-transformed median mass signal values for each surface marker (D). Manual
reassignment of clusters which were in biologically inconsistent meta-clusters was performed
when necessary (Supp. Figure 2.H.). Then, the proportion of the identified T-cell
subpopulations in each node on the initial FlowSOM minimum spanning tree was visualized
to control phenotyping consistency (E).

F and G. Reference mapping. Data were mapped onto two dimensions with UMAP and
overlayed with automatically determined FlowSOM clusters (F) and meta-clusters (G) to
generate a phenotype reference map. Cluster labels were not displayed for legibility.
Abbreviations: CM: central memory. DN: double-negative CD4°CD8". DN: double-positive CD4*
CD8*. EM: effector memory. MAIT: mucosal associated invariant T-cells. Tgd: gamma delta T-

cells. Treg: T-regulators. TEMRA: terminally differentiated effectors re-expressing CD45RA.
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Figure 3. Significant abundance changes in non-canonical T-cell subsets throughout TB treatment.

The evolution of FlowSOM cluster abundance was analyzed over time in unstimulated or Mtb-stimulated samples (TB2 or rmsHBHA), and only
the clusters within which significant abundance changes were detected were displayed. CD4* clusters were represented in red, CD8* clusters in
blue, y6 T-cell clusters in green, and CD4" CD8 clusters in grey. Number of matched data points per timepoint for all panels: NIL: n = 16. TB2: n
= 18. rmsHBHA: n = 14. Data are represented as medians + interquartile range.

A to D. Significantly increased clusters at treatment completion (T2) compared to treatment initiation (T0). Clusters within which a significant
increase was detected between TO and T2 were first visualized on the reference UMAP shown in Figure 3 (A). Cluster abundance quantification
was then was performed in unstimulated (B), TB2-stimulated (C) or rmsHBHA-stimulated samples (D).

E to H. Significantly decreased clusters at treatment completion (T2) compared to treatment initiation (T0). Mapping (E) and abundance
guantification of clusters which increased between TO and T2 in unstimulated (F), TB2-stimulated (G) or rmsHBHA -stimulated samples (H).

Abbreviations: DN: double negative CD4  CD8". Tgd: gamma delta T-cells. Statistical analysis: Friedman rank sum test and Wilcoxon-Nemenyi-

Thompson post-hoc for pairwise comparisons between non-independent observations at TO, T1, and T2. *: p<0.05. **: p<0.01. ***: p<0.001.

Exact p-values and test statistics are available in Supp. Table 3.
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Figure 5. Individual immunoprofiling confirms differential abundance of correlated subsets in cured patients after treatment.

Cluster were stratified by type of significant abundance change: enrichment (A to C) or depletion (D to F) after treatment completion.

A and D. Pearson’s correlations were calculated on cluster abundance at TO and displayed on a heatmap with hierarchical clustering. Clusters
with similar immunophenotypes (Figures 3 and 4) and positive correlation coefficients were grouped. Estimates of effect sizes are in Supp. Tables
4 and 5.

B, C, E, F. The abundance of each subgroup was visualized. Each dot represents data for one patient. Statistical analysis: Friedman rank sum test.

*: p<0.05. **: p<0.01. Subgroup A: data from rmsHBHA samples (n =14), clusters 49, 50, 65, 154; p = 0.0013, Friedman’s Chi-Square (Fchisq) =
10.3. Subgroup B: data from unstimulated samples (n =16), clusters 74, 102, 160; p = 0.020, Fchisq = 5.4. Subgroup C: data from unstimulated
samples, clusters 37, 38, 70, 98; p = 0.0027, Fchisg = 9. Subgroup D: data from rmsHBHA samples, clusters 28, 54, 69; p = 0.0023, Fchisq = 9.3.

F. For each subgroup, normalized mean marker expression levels were compared with similar T-cell subsets.

G to K. Manual gating analysis was performed to verify unsupervised results (representative plots, 500 to 1,000 events). Numbers indicate the
percentage of gated cells among total CD3* cells. Subgroup A: CD4*CCR7*CD45RACCR6*IL7Ra*CD27*CD40L*CD38*HLA-DR*. Subgroup B:
CD8*CCR7'CD45RACD7* Perforin*. Subgroup C: CD4*CCR7 CD45RA"CCR4*CCR6*CXCR3*CD26*IL7Ra*CD7*CD27* CD40L*CD38*. Subgroup D:
CD4*CCR7'CD45RA CCR4*CCR6* CXCR3*CD26*IL7Ra*CD7 CD27*CD40L*CD38* HLA-DR'.
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CD8" and yb enriched CD4* naive T-cell subsets before treatment initiation and after two

months of treatment compared to fast converters.
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Fast converters (n = 18) were defined as patients with permanently negative M. tuberculosis
culture after two months of treatment (T1), whereas slow converters (n = 4) were defined as
patients with persistently positive cultures at T1. The abundance of all FlowSOM clusters at
baseline was compared between fast and slow converters. CD4* clusters were represented in
red, CD8" clusters in blue, and yb T-cell clusters in green. Clusters which were significantly
decreased (A and C) or enriched (B and D) at T1 in slow converters compared to fast converters
were compared to the reference UMAP (E). Normalized, arcsinh-transformed mean marker
expression levels were visualized (F). Each row represents one cluster. Scales indicate
normalized mass signal intensity. Boxplot data represent medians + interquartile range.

Statistical analysis: Only clusters within which significant differences were detected were

represented. Significance threshold: p<0.031 (Mann-Whitney U test). *: p<0.031. **: p<0.001.

Exact p-values and test statistics are available in Supp. Table 6.
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Figure 7. Non-lineage markers discriminate slow and fast responders within differentially
abundant subsets. Principal Component Analysis (PCA) was performed on marker expression
data from the clusters identified in Figure 6 within 96 Mtb-stimulated samples matched at TO,
T1, and T2 (TB2: 54 samples; rmsHBHA: 42 samples). A. Explanation of the variance between
fast converters (25 samples at each timepoint) and slow converters (7 samples at each
timepoint). Each dot represents one patient. The color code represents the culture conversion
group. Axes represent the principal components 1 (Dimension 1, Dim1) and 2 (Dim2) and
percentages indicate their contribution to the total observed variance. Axis values represent
individual PCA scores. Concentration ellipses correspond to 90% data coverage. B.
Contribution of cellular markers to the variance described by Dim1 and Dim2. Axis values
represent marker PCA scores. The color code represents broad marker functions. C. and D.
Quantification of panel B. for Dim1 (C.) and Dim2 (D.). Contributions of each marker are
expressed as a percentage of the dimensions. The red dashed line corresponds to the
expected reference value if each marker contributed uniformly to the variance. Markers
indicated in gray are below this reference value. E. and F. Distribution of individual PCA score
values according to the culture conversion group and to the timepoint, for Dim1 (E.) and Dim2

(F.). Data were compared with the Wilcoxon Rank Sum Test. ***: p<0.001.
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Tables

Table 1. Selected subset abundance changes before and after treatment completion.

Sample Abundance between TO and T2 (%, N)
Subset A decreased

NIL (n=16) 62% (10)

TB2 (n=18) 67% (12)

rmsHBHA (n=14) 93% (13)
Subset B decreased

NIL 81% (13)

TB2 72% (13)

rmsHBHA 71% (10)
Subset C increased

NIL 88% (14)

TB2 72% (13)

rmsHBHA 57% (8)
Subset D increased

NIL 69% (11)

TB2 78% (14)

rmsHBHA 93% (13)

Footnotes: these data were obtained from Figure 5.

Table 2. Proportions of the main T-cell subpopulations within enriched or decreased
subsets in slow converters compared to fast converters.

TO (21 clusters) T1 (24 clusters) T2 (21 clusters)
Abundance inslow | Decreased  Enriched | Decreased Enriched | Decreased Enriched
vs. fast converters 86% (18) 14% (3) 62% (15) 38% (9) 52% (11)  48% (10)
Total CD8* and yé 72% (13) 67% (2) 53% (8) 22% (2) 36% (4) 20% (2)
v6 T-cells 38 (5) - - - - -
CD8* TEMRA 24 (3) 50 (1) 75 (6) - - -
CD8*EM 38 (5) - 25(2) 50 (1) 100 (4) -
CD8* naive - 50 (1) - 50 (1) - 100 (2)
Total CD4* 11% (2) 33% (1) 7% (1) 78% (7) 36% (4) 80% (8)
CD4* TEMRA - - - 14 (1) - )
CD4* EM 50 (1) - 100 (1) 29 (2) 100 (4) -
CD4* CM 50 (1) - - 14 (1) - 38 (3)
CD4* naive - 100 (1) - 43 (3) - 62 (5)
Total DN 17% (3) 0 40% (6) 0 27% (3) 0

Footnotes: these data were obtained from Figure 6 and Supp. Figure 6. Data are given as percentage
of clusters in each category (number of clusters in each category/total number of clusters).
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4.2 From mass to full spectrum flow cytometry: technology transfer

4.2.1 Cost-effectiveness comparison

As exposed previously, our results confirmed that mass cytometry met two of the main
experimental needs required for high-dimensional TB immunomonitoring and biomarker
discovery: high resolution at a high numbers of parameters, reproduceable measurements
appropriate for prospective study designs. However, we also fully experienced its low
throughput, high cost, and low sample recovery. In September 2020, the latest
implementation of full spectrum flow cytometry, the CYTEK Aurora spectral flow cytometer,
which was first acquired in Lyon in its 5-laser version (violet, blue, yellow-green, red, and UV)
along with three scatter detectors and 64 fluorescence detectors®®!. As one of the main
background themes of this thesis was scientific sustainability and cost-effectiveness of high-
dimensional technologies for efficient translational research, a cost analysis of mass vs. full

spectrum flow cytometry was performed on an indicative basis (Table 7).

Table 7. From mass to spectral flow: a cost analysis.
Original work with T. Andrieu.

Technology Fluidigm Helios CYTEK Aurora 5-laser
Maximal number of parameters | 47-50 45
Complex: limited to 30-40 parameters in practice

Panel design Time consuming
Fast development . . .
Multiple panel iterations
Cells acquired per hour 1 million 30 million
Sample efficiency 60-70% 95%

Commercial range cost per tube! | €1,390 (with specimen multiplexing) | €70.5

Footnotes:

1. The price per test tube includes the reagent costs for a 30-parameter panel and the running costs of each
machine in our local facilities in Lyon necessary to stain and acquire 10 million cells. It was calculated as follows:
(€ per antibody) + (cost of number of hours to acquire 10.10° cells)*(correction for sample efficiency).

In this context, the overall cost of spectral flow cytometry data acquisition was nearly 20 times
lower than that of mass cytometry. This was mainly because machine running costs were
lower, but also because the maximal cell acquisition rate was much higher on Aurora. This
reduced the sample acquisition duration from nine hours on average on Helios, to three hours
on average Aurora for the same number of cells acquired, which is a major parameter to take

into account when performing infectious disease immunomonitoring for clinical purposes.
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4.2.2 Resolution comparison
As a preliminary experiment, we then performed a comparison of the resolution obtained on
a Helios mass cytometer and an Aurora 5-laser spectral flow cytometer with a 30-marker

panel (Table 8).

Table 8. From mass to spectral flow cytometry: a resolution analysis.
Source: T. Andrieu.

Parameters Fluidigm Helios CYTEK Aurora 5-laser
rSD* around 0 1.99 817
DNR? 32,768 (15bits) 4,194,304 (22bits)
Median of negative populations? 1.06 1,370
Maximal resolution* 23,240 146,678

Footnotes:

1. The robust standard deviation (rSD) measures the signal spread around the median for each metal or
fluorophore.

2. The dynamic range (DNR) is defined as the ratio of the largest detectable signal to the smallest detectable
signal. It depends on the cytometer’s detector system. Here, the value is also given in bits to reflect signal
digitization.

3. The median of negative populations is indicated because it plays a role in the overall resolution of the machine:
the better the negative events are separated from the positive events, the higher the resolution.

4. Here, the maximum resolution of this specific panel was calculated as follows:

(Maximal DNR — mean(median(negative populations)))/\/mean(rSD of negative populations)

Because mass cytometry does not rely on fluorescence spectra and measures discrete
masses, the robust standard deviation (rSD) of events that are negative for a given marker is
very low, which explains the high resolution that is reach even when measuring high
parameter numbers. However, at an equal number of parameters, we found that the maximal
resolution attained on the Aurora spectral flow cytometer was approximately six times higher
than that of the Helios mass cytometer. This is because the detection and signal digitization
systems on Aurora yield a much higher dynamic range (DNR) and hence allow for improved
separation of negative and positive events for a given marker. Thus, we adapted the Helios
mass cytometry antibody panel used in the previous publication for use on a 5-laser Aurora.

Preliminary results are exposed and discussed thereafter.

127



4.2.3 Proof of concept and technology transfer

For the technology transfer, all antibody clones from the initial mass panel were conserved,
except for one which was commercially unavailable, and an anti-CD19 antibody was added to
improve T-cell gating (see Supp. Table 10 - Annex 3, p. 183). Antibody titration was graciously
performed by CYTEK.

4.2.3.i Experimental procedures

Briefly, between 1 and 1.5x10° cells were aliquoted and incubated for 10 minutes in FcR
Blocking Reagent (6ulL/10° cells; Miltenyi Biotec) and heparin sodium salt (36ug/10° cells;
Sigma-Aldrich). Cells were stained in 50uL of BD Brilliant Stain Buffer (30 minutes, RT, in the
dark). A 10-minute fixation step was performed in 300uL of freshly reconstituted 4%
formaldehyde (FA) prior to intracellular staining (30 minutes, RT, in the dark, in 1X BD
PhosFlow Perm/Wash Buffer I). Samples were fixed for 20 minutes in 300uL of 1% FA and kept
at 4°C until acquisition at a maximal rate of 10,000 events per second on a CYTEK Aurora 5-
laser spectral analyzer, hosted by the CYLE flow cytometry core facility at the Cancer Research
Center of Lyon (CRCL, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard). Quality control
and spectral unmixing were performed using SpectroFlo software (CYTEK). Autofluorescence
was extracted individually from an unstained aliquot of each patient sample. Unmixed,
compensated data were cleaned in FlowJo (version 10.7.1) and analyzed in R software

(version 4.0.3) using analysis pipelines adapted from those presented in Manuscript 3.

4.2.3.ii Preliminary results

Between September and December 2020, optimization experiments and technical
comparisons were performed. For canonical T-cell phenotyping purposes, similar results were
obtained with Aurora and Helios, with a better spatial separation of phenotypically distinct
subpopulations with Aurora (Figure 22), possibly because the dynamic range of full spectrum

flow cytometry detectors is broader.
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Aurora Helios

Subset % of CD3 . Subset % of CD3

Treg 3.84 F Treg 3.50
MAIT 5.62 Er MAIT 3.15
TEM CD3 8.80 TEM CD8 9.23
EM CD8 9.42 EM CD8 13.4
Cm CD8 9.46 CM CD8 4.43
Naive CD8 45.6 3 ? Naive CD8 47.9
EM CD4 7.51 EM CD4 11.6
CM CD4 34.9 CM CD4 25.0
Naive CD4 36.9 Naive CD4 452
Tys 1.25 Tyd 1.16

Figure 22. Preliminary comparison of basic T-cell phenotyping with spectral flow and mass cytometry.
Aliquoted healthy donor cells from the same sample were acquired on Aurora (full spectrum flow cytometer)
and Helios (mass cytometer). For each technique, a UMAP showing 80,000 CD3* events was plotted using the
same graphing and clustering parameters. Red squares indicate areas of the UMAP were spatial separation
differs between Helios and Aurora.

Then, between December 2020 and May 2021, 80 samples collected from 12 adult,
culture-positive DS-TB patients from the Georgia and Lebanon HINTT cohorts were acquired
(Georgia, n=8 and Lebanon, n=4) (Figure 23). All patients achieved microbiological cure at the
end of treatment. Manual gating analysis was first performed to verify the proportions of the
main expected CD45* immune cell subpopulations on biaxial plots (Figure 24, representative
plots).Then, CD3* single events were analyzed using a workflow adapted from that of the
mass cytometry project. The main subpopulations observed were similar to those found with
mass cytometry, except for double negative CD4 CD8" T-cell subpopulations which were not
detected with spectral flow (Figure 25 ). This might be sample- or staining-dependent and will
be further investigated, as double negative T-cells usually represent 1 to 5% of peripheral
lymphocytes®®2,

Overall, we mainly aimed to validate the main result of manuscript 3 regarding T-cell
subpopulations differentiating fast and slow converters. However, there were 3 slow
converters (positive culture at T1 and negative culture at T2), two of which had cell samples
insufficient event numbers for analysis. Overall, T-cell data remain to be fully examined in
relation with patient clinical and microbiological characteristics and during treatment in

general. In this study, B cell and NK cell phenotypes will be analyzed as well.

129



Acquired data: n = 18 participants
Georgia: 13. Lebanon: 5.

Total number of samples: 162
Georgia: 117. Lebanon: 45.

Suitable for unsupervised analysis: n = 14
Georgia: 10. Lebanon: 4.

Total number of samples: 98.
Georgia: 82. Lebanon: 16.

meeting inclusion criteria for analysis: n =12 \
Georgia: 8. Lebanon: 4.

Total number of samples: 80.
Georgia: 64. Lebanon: 16.

Matched samples:
NIL: 5 patients
HBHA: 7 patients
TB2: 9 patients

Qh’ three stimulations. 4 patients /

Figure 23. Flowchart of sample analysis.

Samples not interpretable: 41
Exclusion criteria:
- Less than 1000 CD3* events
- Staining issues

Culture negative at T0: n = 1 patient
No culture dataat T1 and T2: n=1
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Figure 24. Representative morphology and gating strategy for the main CD45* non-granulocyte whole blood subpopulations in Aurora-acquired data.
CM: central memory. EM: effector memory MAIT: mucosal-associated invariant T-cells. NK: natural killers. TEMRA: terminally differentiated effectors re-expressing CD45RA.
Tgd: gamma delta T-cells. Treg: T regulators.
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Figure 25. Unsupervised clustering and phenotyping of peripheral CD3* T-cells using full spectrum flow
cytometry.

Peripheral whole blood samples were collected from 12 active DS-TB patients at diagnosis, after 2 months of
treatment, and at the end of treatment. After whole blood stimulation with either QFT-P NIL, TB2, or rmsHBHA,
T-cells were stained with a 30-marker panel and analyzed on a CYTEK Aurora 5-laser full spectrum flow
cytometer. A total of 80,000 CD3* events were recorded. FlowSOM enabled automated repartition of all CD3*
events 13 phenotypically similar meta-clusters (A.) corresponding to 196 clusters (B.). Meta-cluster phenotyping
was conducted with heatmap visualization of normalized, biexponential-transformed median fluorescence
intensity values for each surface marker (C.). Hierarchical clustering was performed to identify phenotypically
similar FlowSOM meta-clusters.

Abbreviations: CM: central memory. EM: effector memory. MAIT: mucosal associated invariant T-cells. Perf:
perforin. Tgd: gamma delta T-cells. Treg: T-regulators. TEMRA: terminally differentiated effectors re-expressing
CD45RA. Th1Th17: cells with a combined T helper 1/T helper 17 phenotype (co-expression of CXCR3 and CCR6).
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PART C: DISCUSSION AND PERSPECTIVES

“The title of the paper by Dr. Irving Willner in this issue of Diseases of the Chest is in the form
of a question: “Can Tuberculosis Be Eradicated?”. This question is definitely answerable in the
affirmative. If the title has been “Will Tuberculosis Be Eradicated?”, the answer would be
“probably not for centuries, if ever”. This answer is because humans have never freed
themselves from diseases for which much simpler and more specific methods of treatment
and prevention have been available, including diphtheria, gonorrhoea, malaria, smallpox, and
syphillis.”1>3,

If it had not been for the final mention of smallpox — eradicated in 1980 — this excerpt from
a 1963 editorial would still fit perfectly in modern opinion takes on TB research. As exposed
in Chapter 1, the causes for this are vastly multifactorial, but boil down to the following:
because TB disproportionately affects people living in precarity, massive funding gaps cause
active TB diagnostics, therapeutics, and monitoring tools to remain outdated despite scientific
advances. This contributes to millions of missed cases and to low treatment adherence, which
maintains disease transmission and worsens secondary drug resistance, which in turn
requires harsher and more expensive treatment. Simultaneously, the estimated 25% of all
humanity living with latent TB infection form a huge reservoir of potential progressors to
active TB, generating a parallel need for widespread LTBI screening and possible prophylactic
treatment. In addition to difficulties of public health and political nature, the slow growth of
Mtb, the difficulty of accessing host samples at the site of infection, and our resulting
incomplete knowledge of the immune response to TB have hindered innovation for these
purposes.

The work presented in this thesis bears witness to the complexity of the anti-TB immune
response, and to the magnitude of the translational research that remains to be done to meet
clinical needs. Despite the fact that we are not on track to eradicate TB by 2035 — an objective
set by the WHO in its 2015 implementation of the END-TB strategy®* — improving TB
management is concretely possible, and has succeeded in a decline of 14% in TB mortality
rates since 2015%>, Here, we focused on novel non-sputum-based, immune tools to monitor
treatment. The stakes are many: advancing treatment monitoring methods helps improve

treatment adherence and efficacy, but also brings new scientific insights translatable to
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diagnostic tools, LTBI screening, discrimination between remote or recent infection, and TB
“resister” phenotypes. Mainly, the current TB treatment immunomonitoring candidate tests
lack specificity compared to sputum culture to be relevant during treatment, and require too
much scientific instrumentation or expertise for rapid implementation in high-TB burden
areas. Here, we adopted two types of approaches to advance TB immunomonitoring
research. First, we evaluated simple, previously described host immune biomarkers with
relatively inexpensive methods in high-TB burden settings. Then, we explored new cellular
signatures of TB treatment using high-dimensional single-cell technologies. As our main
results have already been discussed within the earlier publications, some selected additional

aspects and final perspectives are reviewed thereafter.
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1. A multi-centered study in lower-income settings: how practical
constraints guided our research

The main characteristic of the HINTT study was its multicentered design, implemented in five
lower-middle-income countries with high TB incidence: >20 TB cases per 100,000 inhabitants
per year, with the exception of Lebanon (11 cases per 100,000 per year). This design was the
greatest strength of the study, because it enabled evaluation of immunomonitoring tests in
settings that were consistent with the current epidemiology of TB disease, in patients
representative of those who bear most of the TB burden — excluding TB/HIV patients. Recent
studies evaluating novel biomarkers of TB have often been conducted in middle- or high-
income settings with low TB incidence (e.g. Italy**®, Canada®’, Japan®8), because patient
follow-up and access to research infrastructures are considerably easier. There are numerous
high-quality studies based in high-TB incidence areas, but they are mostly conducted in
China®?>1>° or across the African continent, in particular in countries that have a history of TB
research because large TB laboratories have long been implanted there (e.g. South
Africal?4160-162  Tanzanial®31%4), Here, we have brought new data collected across three
continents, in countries that have traditionally hosted fewer TB research studies despite a
high TB burden (e.g. Madagascar, Paraguay). This is important to better understand the
immunobiology of TB in ethnically diverse populations exposed to different TB strains, and to
test the robustness and applicability of candidate immunomonitoring tests in these diverse
settings.

Moreover, the bulk of the patients enrolled in our study were recruited in Bangladesh and
Georgia, across which the prevalence of DR-TB is particularly high. Bangladesh is among the
WHO list of 20 high-MDR-TB burden countries ranked by absolute number!®: in 2019, an
estimated 11.7% of TB cases were registered as MDR/RR-TB, 0.7% of which were new cases.
This corresponds to over 1,300 laboratory-confirmed MDR/RR-TB cases, although the actual
burden is likely much higher. Dhaka — the capital city of Bangladesh, where our patients were
recruited — is the most densely populated metropolitan area in the world, home to
approximately 47,000 people per km?. This translates into an overall population of 21 million
people, many of whom live in slums, have limited access to healthcare, and are exposed to
malnutrition. Georgia, although less populated, has an extensive history of TB/HIV and is also

hit hard by drug-resistant TB: in 2019, an estimated 12% of new TB patients and 32% of re-
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treated patients were infected with strains that were at least MDR-TB*®>. This corresponds to
over 500 cases of MDR-TB enrolled by the Georgian national TB program yearly, over 10% of
which are pre-XDR or XDR-TB. In our study, we have enrolled and followed 28 patients treated
for either RR-TB, MDR-TB, pre-XDR-TB, and XDR-TB within the Bangladesh, Georgia, and
Paraguay (1 patient) study sites. As drug resistance is on the rise worldwide, data for this part
of the cohort are particularly valuable, since the follow-up of DR-TB patients — treated for
longer periods, with harsher medication — is considerably more difficult than that of DS-TB
patients.

Hence, despite being this study’s greatest strength, this multicentered design in lower-income
settings was also the reason for most its challenges, from patient recruitment to data analysis.
In particular, we had expected important loss to follow-up (LTFU), which we experienced
despite planning follow-up visits that coincided with national TB program planned visits, and
especially despite all the extensive efforts deployed by healthcare staff and community health
workers in partner study sites. Among the total HINTT cohort comprising 198 enrolled
participants (see flowchart in Publication 1), 23% (46) were LTFU between enrolment (T0) and
treatment completion (T2), and an additional 20% (40) between T2 and two months post-end
of treatment (T3, which was outside of national TB program planned visits for all study sites).
Between TO and T2, LTFU was greatest in the Dhaka cohort, amounting for 20 patients (43%
of all LTFU), 15 of whom were treated for DR-TB. This is due DR-TB treatment regimens being
less well tolerated, coupled with the difficulty of keeping track of patients who live in the
slums. For follow-up during treatment, we chose to implement a two-month follow-up visit
(T1) over other clinically relevant, earlier timepoints often described in the literature (e.g. two
weeks, one month) for several reasons. Firstly, the two-month timepoint was the only
moment during treatment coinciding with a sputum collection visit planned by national TB-
programs in all study sites, which helped reduce loss to follow-up to 9% (19) between
enrolment and two months. In addition, during clinical DS-TB management, the two-month
timepoint is a critical step because it marks the end of the intensive phase, after which
antibiotic treatment is reduced. The same timepoint was kept for monitoring of DR-TB
patients for consistency, and to compare immune profiles despite heterogeneous treatment
regimens. Here, all DR-TB patients benefitted from last-generation antituberculous agents
(bedaquiline, linezolid) except for RR-TB patients, and 89% (25/28) had achieved definitive

culture conversion after two months.
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Downstream of patient enrolment and follow-up processes, this study also presented a
number of logistic and technical challenges. In particular, as blood collection is challenging
depending on local cultures and settings, collecting large volumes of peripheral blood was not
a realistic option. We aimed for this work to be sustainable for partners and adapted to local
constraints, while evaluating a variety of blood-based immunological tests. Hence, we had to
adopt a parsimonious sample processing protocol making the most of 10mL of whole blood
maximum per visit, which were split into CBC monitoring, qRT-PCR experiments (see Annex 5),
and five different in vitro stimulation conditions for IGRAs and cytometry analyses. While this
admittedly generated a number of data analysis limitations, it reflected the reality of the
logistic needs for novel TB management tools, and was an opportunity to document the

relevance of cheaper tests such as CBC and IGRA as previously discussed.
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2. Single-cell technology at the service of translational TB immunology

Despite the constraints associated with in multicentered settings, we have applied high-
dimensional mass cytometry analyses in a subset of patients from the HINTT cohort to capture
the complexity of T-cell profiles during TB treatment. As conventional flow cytometry is
deeply engrained in the commercial supply and in users’ habits, in particular in infectious
disease immunology, high dimensional cytometry is currently igniting passions among
cytometrists. While conventional flow cytometry users praise the technology’s maturity,
extensive use worldwide, and practicality of use, the other party criticizes the low parameter
number or difficult panel design, with opinion pieces asking “is pain and anguish a necessary
component of good flow cytometry?” or affirming that “current flow cytometers are the least
advanced technologies in the field of spectroscopy, period.”!®. Here, we have chosen to
benefit from the analytical power of high-dimensional cytometry data to generate new,
detailed insights on T-cell differentiation during TB treatment. However, we have also
narrowed the most important features of the observed T-cell profiles down to simpler marker
combinations, applicable to validation studies using conventional flow cytometry and
eventually translatable to simpler techniques for treatment monitoring. Although we had to
attribute a cellular identity to subsets of interest to understand their biological role, our data
hint that rather than distinct cellular categories, the phenotypes of T-cells during treatment

appear as a complex spectrum whose detection is conditioned by the antigenic stimulation used.
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2.1 Insights on treatment monitoring

Overall, we observed a shift towards more differentiated profiles among peripheral CD8* and
CD4* T-cell subsets. We gained more insight on marker involvement within memory
compartments during treatment by phenotyping in detail three peripheral T-cell
subpopulations which were associated with cure at the individual level (despite
heterogeneity) but were more frequent in peripheral blood than automatically detected
clusters. We have shown that they could be identified in cryopreserved samples obtained
from small blood volumes, using manual gating analyses. They require a smaller number of
core markers to be isolated (13 surface markers), which would enable detection with cheaper,
more accessible conventional cytometers, and without cytokine staining. Regarding in-depth
phenotypic profiles, a CXCR3* CCR6* CD27* CD4* EM subset was increased in cured patients
compared to pre-treatment. Although it is not possible to infer the full function of this subset
without its cytokine expression profile, this phenotype possibly corresponds to a subset
enriched in Th1/Th17 cells!®”68 which have been shown to be the main peripheral CD4*
effectors involved in the TB response®125, This is consistent with previous works that showed
that peripheral Mtb-specific memory T-cells from latent TB patients were mostly CXCR3*
CCR6* Th1'®°, and supports the hypothesis that an increase in these cells upon cure might be
associated with infection control. This subset of interest also expressed CCR4 in lower levels,
which has been observed previously in Th1/Th17 cells'’?. Compared to the other CD4* EM
cells, this subset of interest displayed higher CCR6, CD26, IL7Ra, and CD7 expression. CD26 is
known to participate in T-cell activation, co-stimulation, and proliferation'’?, and its
expression levels on CD4* T-cells have been correlated with Th1-like immune responsest’2173,
However, its role in TB clearance is still unclear. Studies on PTB have mostly investigated CD26
levels on CD8* cells, showing that a CD26" phenotype was restored on bacteria-reactive,
peripheral MAIT cells during TB treatment!’. In contrast, a recent nationwide cohort study
highlighted an increased risk of active TB disease in diabetes patients treated with high-dose
CD26 inhibitors!’>. Along with our results, this warrants further investigation on the role of
CD26 expression on CD4* T-cells in mycobacterial clearance during treatment.

In parallel, a CCR6" CD27* CD4* naive subset was decreased. It expressed high levels of CD27
and CD38. This is consistent with previous works documenting a decrease in purified protein

derivative (PPD)-stimulated CD27* CD38* Mtb-specific CD4* T-cells in treated TB!’®. Our
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results suggest that this decrease in CD38* cells may not be restricted to Mtb-primed T-cells,
but could affect naive cells, perhaps within the frame of general CD4* T-cell differentiation
during treatment. This subset also expressed low levels of CD26 and IL7Ra compared to the
CD4* EM subset analyzed previously. Taken together, these findings indicate that upon TB
treatment, differentiated Th1/Th17-like CD4* subsets expressing high levels of CD26 and
IL7Ra are enriched in peripheral blood at the expense of less differentiated subsets expressing
high levels of CD27 and CD38.

Then, a main subset of interest we identified corresponded to CD8* EM cells expressing CD7
and perforin, but not CXCR3, that decreased upon cure. As CXCR3 is involved in effector cell
recruitment to inflammatory sites'’’, it is possible that this reflects a contraction in peripheral
cytotoxic CD8* T-cells that were circulating as a consequence of the chronic inflammation
generated by TB disease, but lacked the ability to migrate to the lung. However, as the role of
CXCR3 in TB has mostly been investigated in CD4* T-cells so far, these results call for further
work on CXCR3* CD8* T-cells during TB resolution. Overall, to fully understand the underlying
processes behind the prior observations, future works including analyses on lymphocytes

harvested from broncho-alveolar lavage are needed.
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2.2 Differentiating slow from fast converters

Finally, our results suggested that T-cell differentiation during treatment was delayed in slow
converters. Beyond the differentiation and memory functions discussed in the publication,
our data showed that maturation markers and chemokine receptors discriminated slow from
fast converters during treatment to a larger extent than activation and cytotoxicity markers.
CD26 and CD27 were also the markers which were responsible for most of the variance
observed between fast and slow responders during treatment, along with CCR4. CD27 and
CCR4 in Mtb-specific CD4* T-cells have previously been associated with active TB compared
to latent infection®’. In mouse models, CCR4 has also been shown to inhibit the suppressor
function of Tregs and to play a role in TB control'’®. In addition, we observed that HLA-DR and
CD38 also contributed to the discrimination between fast and slow converters. These results
add up to the observations made by Vickers and colleagues who observed that co-expression
of CD27, HLA-DR, and CD38 on PPD-stimulated CD4* T-cells stratified fast and slow responders
without restriction to IFN-y-producing cells’®. The fact that HLA-DR and CD38 accounted for
a lesser fraction of the observed variance than CCR4, CD27, and CD26, is consistent with
studies showing that there was no detectable relationship between bacterial loads and CD38
or HLA-DR expression on total CD4 T-cells'®0. Interestingly, the study by Vickers et al. also
highlighted a retrospective association between higher pre-treatment frequency of CD8*
CD27- IFN-y* CD8* T-cells and CD27* CD38" HLA-DR* CD4* T-cells, and lack of culture
conversion after two months of treatment?’®. A similar trend was also observed in more detail
in our study, with a pre-existing under-representation of cytotoxic CD8* EM T-cells and an
over-representation of CD38* CD27* CD4* naive T-cells in slow converters at diagnosis (Supp.
Figure 11 of Publication 3). In parallel, in successfully treated TB patients who experienced
relapse, excessive in vitro cytolytic responses and upregulation of genes involved in cytotoxic
cell-mediated killing have been observed at diagnosis and up to 4 weeks after treatment
initiation'81. Taken together, our results and prior works suggest that measuring these T-cell

populations pre-treatment may possibly predict risks of treatment failure or relapse!®?.
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3. Limitations

The studies presented in this thesis share limitations, most of which are linked to the “bench
to bedside” approach adopted in our study and to constraints specific to study sites in lower
income settings. The number of slow converters and of treatment was low, which reflects the
current epidemiology of TB in patients undergoing treatment. In addition, the DR-TB cohort
was heterogeneous in terms of drug resistance patterns, treatment regimens, and duration.
Some inter-patient variation factors could not be controlled, such as antibiotic regimens or
malnutrition levels. The genetic background of patients in relation with ethnicity may also
bias results, for example via polymorphisms in the IFNG gene!83, In addition, although
mycobacterial strain variation is known to impact the immune response!®*18 Mtb
genotyping could not be performed. Moreover, immune parameters may be influenced by
other untested infections that are highly prevalent in the our study sites, such as parasitic
infections that may impact CBC through eosinophilia, or arboviral diseases that may bias IFN-
v levels. Regarding the cytometry study in particular, experiments were conducted on
peripheral blood cells, which might induce an imbalance in T-cell proportions between blood
and the lungs, the main infectious focus of TB. Due to the design of the study, cytometry
analyses were not conducted on live cells, but on fixed, cryopreserved cells. Despite the fact
that staining quality was controlled, fixation might induce bias, in particular regarding
chemokine receptor expression as they are recycled between the endosomes and the cell
membrane in live cells!®. Cells were extracted from a small volume of blood and yielded a
small number of analyzed events per sample, which may cause rare populations to have been
undetected. In addition, only samples from the Bangladesh and Georgia cohorts were shipped to
Lyon. Moreover, since IGRAs were conducted on the same blood samples prior to cell
cryopreservation, intracellular cytokine staining was not performed. Hence, the integrality of
the observed cell phenotype changes may not be associated with Mtb-specific responses.
However, whether the bulk of anti-TB response relies purely on Mtb-specific cells is debated.
Given the complexity of the immune response to TB, cellular and molecular interactions are
likely to occur between Mtb-specific and non-specific subpopulations during treatment and
mycobacterial clearance. Moreover, this study design enabled us to detect outcomes of
interest in naive compartments, and to gain insights on the involvement of T-cell

differentiation in the global response during TB treatment.
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4, Ongoing validation studies and associated perspectives

As the studies presented in this thesis warrant further investigation, their main results will be
evaluated in a validation study for which recruitment and follow-up are currently ongoing at
the Hospices Civils de Lyon: OPTI4TB (Optimization of Tuberculosis Diagnosis and
Management Using Four Immunological Biomarkers). This study was designed to address
some of the shortcomings discussed above, by targeting a population of 20 non-
immunocompromised adult DS-TB patients. Standardized disease severity assessment and
chest X-rays are performed, and biological samples are collected at two additional timepoints
during treatment compared to HINTT (at two weeks and one month post-treatment
initiation). Whole genome sequencing of Mtb strains is performed at treatment initiation and
after two months. Full spectrum flow cytometry analyses will be conducted on live PBMC
instead of fixed white blood cells.

In addition, the results obtained in the ensemble of this thesis may be translatable to other
associated unmet needs in TB management. In particular, this applies to LTBI management,
which is a major public health concern and represents one of the pillars of the WHO END-TB
strategy!®*'®7. In this context, our team within the Mérieux Foundation is currently
conducting an associated study named APRECIT (Amélioration de la PRise En Charge de
I'Infection Tuberculeuse latente en milieu communautaire). Its objective is to improve
screening and overall management LTBI in partner institutions in Yaoundé, Cameroon, and
Antananarivo, Madagascar, where LTBI screening and treatment are not routinely performed.
In each study site, the aim is to include 125 index TB cases and 1250 TB household contacts
(Figure 26). In household contacts, QFT-P and T-SPOT.TB are performed, and PBMC are
collected. rmsHBHA IGRAs will also be performed in a subset of the cohort. In this context, an
analysis of plasma IFN-y and T-cell subset abundance changes using workflows similar to
those conducted in this thesis is performed in LTBI and uninfected household contacts, to

further characterize immune determinants of TB control.
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Figure 26. Flowchart of inclusions and follow-up in the APRECIT study.
Adapted from J. Hoffmann.

In addition, an extension of APRECIT called APRECIT-BIS is currently being designed and has
been submitted in September 2021 to a call for proposals hosted by the Agence Nationale de
Recherches contre le SIDA et les hépatites virales | Maladies Infectieuses Emergentes. Its
objective is to assess the diagnostic performances of novel immune tools to distinguish
participants with remote LTBI from those with recent LTBI (< 2 years after Mtb primo-
infection), the latter being at higher risk of progressing to active TB818, For this purpose,
the biobank collected in APRECT will be used retrospectively to (i) evaluate a flow cytometry
tool measuring the surface expression of HLA-DR within Mtb-specific CD3* IFN-y* T cells,
recently validated in a large-scale clinical study conducted by the South African Tuberculosis
Vaccine Initiative (SATVI)!11%0 and (ii) compare the diagnostic performances of this test to
those of the RISK6 signature®®® and of a novel plasma cytokine signature adapted from
previous works'9%193 and evaluated within the framework of HINTT. This work conducted in
APRECIT-BIS could also help document the cellular and molecular immune characteristics of
“TB resisters”, defined as individuals who do not develop LTBI despite long-term exposure to

Mtb194’195.

144



SP1

ANNEXES

1. Supplementary data from original publications

1.1 Annex 1 - Supplementary data from publication 1

Drug resistant patients were recruited in Bangladesh (17/28, 60.7%), Georgia (10/28, 35.7%), and Paraguay (1/28, 3.6%). Among them, 2/28 (7.1%)
were rifampicin-resistant (RR-TB), 4/28 (14.2%) were poly-resistant (PR-TB), 17/28 (60.7%) were MDR-TB, 4/28 (14.2%) were pre-extensively drug
resistant (pre-XDR-TB), and 1/28 (3.7%) was XDR-TB. All pre-XDR-TB or XDR-TB patients were recruited in Georgia.

Supplementary Table 1. Therapeutic regimens used in each study site.

Bangladesh (n = 38) Georgia (n =33) Lebanon (n=18) | Madagascar (n=36) | Paraguay (n=27)
New s 016 e
L - =
2HRZE/4HR SHRZE/4HRL
DS-TB New cases (n = 16) New cases (n =31) New cases (n = 20)
tient New cases (n =5) Re-treated (n = 2) Re-treated (n = 5) Re-treated (n = 6)
patients Re-treated (n = 5) 2HRZE/4HRE® 2HRZE/4HRYA 2HRZE/4HRYA 2HRZE/4HRYA
2SHRZE/1HRZE/SRHE? Poly-DR (isoniazid-resistant, n = 1)
RZE®
New cases (n =9) and re-treated (n = 1)
RR-TB: H+E+Z+Km+Mfx+Pto+Cfz / Mfx+E+Z+cfz;
MDR-TB: H+Z+Km+Lfx+cfz+Bdq / Z+Lfx+cfz+Bdg;
New cases (n =11) Cm+Lfx+Pto+Cs+Cfz+H / Cm+Lfx+Cs+Bdq+Lzd / Lfx+Cs+Bdg+Lzd; Re-treated (n = 1)
DR-TB Re-treated (n = 6) Z)+Cm+Mfx+Cs+Pto+Cfz / Lfx+Cfz+Bdqg+Lzd . N
. . No cases No cases 4 Km-Hhigh dose-
patients 4-6 Km-Mfx-Pto-Cfz-Z-HHigh Pre-XDR-TB: (Z)+Lfx+Pto+Cfz+Bdqg+Lzd / Cs+Cfz+Bdq+Lzd; 12E-Z-Mfx-Pto-Cfz
dose-E/5-6 Mfx-Cfz-Z-E3 Bdq+Cfz+Lfx+H+Pto+E+Z / Bdg+Cfz+Lzd+H+E / Bdg+Cfz+Lfx+H+Z /
Bdg+Cfz+Lfx+E+Z;
H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdg;
Cm+Lfx+Cs+Cfz+Bdq+Lzd / Lfx+Cs+Cfz+Bdq+Lzd
XDR-TB: Bdg+Lzd+Cfz+Cs

Footnotes: DS-TB: drug-susceptible. DR-TB: drug-resistant. RR-TB: rifampicin-resistant. MDR-TB: multi-drug resistant. XDR: extensively drug resistant. For treatment regimens,
antibiotic abbreviations are summarized at the end of the manuscript. Numbers refer to the total duration in months for each drug. Drug regimens were prescribed according
to each study site’s National TB program and could not be altered.
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Supplementary Table 2. Methods for microbiological diagnosis of tuberculosis, drug susceptibility testing, and cell count in each study site.

Sputum culture Smear microscopy Drug susceptibility testing (DST) Reference of cell counting machine
Country MGIT U OK | ZN Auramine O GeneXpert LPA LJ-DST MGIT-DST
Bangladesh X X X X fS:La;:cKiiQ::))mated Hematology Analyzer, MEK-7300
Georgia X X X XT-20001 (Sysmex)
Lebanon X X X CELL-DYN Ruby (Abbott)
Madagascar X X X X X XT2100i and XN1000 (Sysmex)
Paraguay X X X XT-20001 (Sysmex)

Footnotes: Crosses indicate the method(s) performed in each study site.MGIT: Mycobacteria Growth Indicator Tube (liquid medium). LJ: Léwenstein-Jensen (solid medium).
OK: Ogawa Kudoh (solid medium). ZN: Ziehl-Neelsen staining. LPA: line probe assay. Smear microscopy was performed after NALC-NaOH decontamination.

Critical drug concentrations used for DST:

MGIT: Streptomycin 4.0 pg/mL, Rifampicin 40.0 ug/mL, Isoniazid 0.2 pg/mL, and Ethambutol 2.0 pg/mL.

L-J: Streptomycin 1.0 ug/mL, Rifampicin 1.0 pg/mL, Isoniazid 0.1 ug/mL, and Ethambutol 5.0 ug/mL.

Supplementary Table 3. Normality assessment of evaluated continuous variables.

Timepoint TO T1 T2

W value p-value W value p-value W value p-value
Body mass index 0.947 >0.001 0.975 0.011 0.977 0.021
Leucocytes (/mm3) 0.971 0.003 0.444 >0.001 0.575 >0.001
Monocytes (%) 0.945 >0.001 0.964 0.001 0.966 0.001
Lymphocytes (%) 0.957 >0.001 0.924 >0.001 0.976 0.009
Age 0.881 >0.001 - - - -

Footnotes: normality was assessed using the Shapiro-Wilk test. The HO hypothesis of normality was rejected for p<0.05.



Supplementary Table 4. Sociodemographic characteristics of the cohort, stratified by country.

Bangladesh Georgia Lebanon Madagascar Paraguay p

N 38 33 18 36 27
Patient demographics
Age (years), median 22 (18.2-28)¢ 35 (28-44)8MP 29.5 (22.2-36.5) 26 (19.7-36.7) 29 (23-39) >0.001
Sex (male) 65.8% (25/38) 78.8% (26/33) 55.6% (10/18) 55.6% (20/36) 55.6% (15/27) 0.22
Drug-resistant strain 44.7% (17/38)-MP 30.3% (10/33)M 086 086 3.7% (1/27)8 >0.001
BMI at inclusion, median 17.6 (16.3-20.7)6L° 20.3 (18.8-23.6)BM 20.7 (19.4-21.4)8M 17.1(16.3-18.2)6LP 20.2 (17.8-22.4)BM >0.001
2’}’;’;;;"00‘1 cell absolute countatinclusion 4506 (5050.10975) 9800 (7600-12000) 8455 (7297.5-10875) 9370 (5802.5-12002.5) 11110 (8590-12585)  0.29
\LA‘;;"CF’)hOCVte proportion at inclusion (% of 20 (18-26.7) 18 (15-22) 16.5 (14.3-19.5) 17.6 (12.6-24.2) 17 (13-21) 0.10
x;g’cyte proportion atinclusion (% of 3 (2-4)5LMP 4 (4-6)pLMP 7.26 (5.7-9.2)86° 9.9 (6.8-11.3)86° 0/(0-2)p6LM >0.001
Number of household contacts, median 4.5 (3-7) 4 (2.75-4.25) 5 (4-6) 5 (4-6) 5(4-7) 0.056
BCG 84.2% (32/38)6+ 36.6% (12/33)BMP 26.7% (4/15)BMP 94.3% (33/35)G+ 85.7% (18/21)5+ >0.001
Risk factors and comorbidities
Smoking 44.7% (17/38) 57.6% (19/33) 50% (9/18) 38.9% (14/36) 50% (13/26) 0.62
Alcohol abuse 13.2% (5/38) 6.1% (2/33)MP 5.6% (1/18) 41.7% (15/36)C 38.5% (10/26)S >0.001
Injectable drug use 10.5% (4/38) 0 0 0 3.8% (1/26) 0.052
Jail detention history 5.3% (2/38) 6.1% (2/33) 16.7% (3/18) 2.9% (1/34) 26.9% (7/26)M 0.013
Chronic HCV infection 6.1% (2/33) 0 2.8% (1/36) 0 -
Other diseasel 0 0 5.6% (1/18) 8.3% (3/36) 14.3% (3/21) -
History of TB
Previous TB 29.7% (11/37) 9.7% (3/31) 11.1% (2/18) 13.9% (5/36) 26.9% (7/26) 0.15

Of which are documented 100% (11/11) 66.7% (2/3) 50% (1/2) 40% (2/5) 85.7% (6/7) 0.12
Prior exposure to active TB patients 28.9% (11/38) 6.2% (2/32) 44.4% (8/18) 36.1% (13/36) 48% (12/25) 0.17
Previous TB outcome
Cured and completed 45.5% (5/11) 0 50% (1/2) 40% (2/5) 57.1% (4/7) -
Treatment completed 18.1% (2/11) 0 0 0 14.3% (1/7) -
Treatment failure 0 33.3% (1/3) 0 20% (1/5) 14.3% (1/7) -
Outcome not evaluated or unknown 36.4% (4/11) 66.7% (2/3) 50% (1/2) 40% (2/5) 14.3% (1/7) -
Current TB outcome
Cured and completed 100% (38/38) 90.9% (30/33) 61.1% (11/18) 97.2% (35/36) 88.9% (24/27) 0.39
Completed 0 3% (1/33) 38.9% (7/18) 0 0 -
Treatment failure 0 6.1% (2/33) 0 2.8% (1/36) 7.4% (2/27) -
Relapse or reinfection 0 0 0 0 3.7% (1/27) -

LYT

Footnotes: BMI: body mass index. TB: tuberculosis. WBC: white blood cells. Data are given as % (N) or median (interquartile range).
1: asthma, hypertension, inflammation. & ¢ M P inijtial of study sites that are different from each other (p<0.05). *: different from all other sites.
Data were compared with Kruskal-Wallis’ test with Dunn’s post-hoc, or Fisher’s test with Bonferroni’s post-hoc when significant.



871

Supplementary Table 5. Characteristics of patients with treatment failure

Demographics TO T1 T2
Drug susceptibility Country Age (years) Culture Smear Culture Smear Culture Smear
S Georgia 31 + 2+ + Scanty + Scanty
S Georgia 58 + Scanty Unavailable* - + -
S Madagascar 45 + 3+ - 1+ + -
S Paraguay 24 + 3+ - - + Unavailable**
S Paraguay 29 + 3+ + - + Unavailable**

Footnotes: TO: baseline. T1: TO + 2 months. T2 : end of treatment. S: drug-susceptible. LTFU: lost to follow-up. + : positive. - : negative. *contamination during culture.

**: not enough sputum.

Supplementary Table 6. Receiver Operating Curve (ROC) analysis.

Clinical parameters at baseline AUC Sensitivity Specificity Optimal threshold
Absolute WBC counts (cells/mm?3) 0.788 (0.664-0.912) 1(0.8-1) 0.74 (0.57-0.84) 11435 (10105-12072.5)
Lymphocyte proportions (% of WBC) 0.807 (0.671-0.943) 1(0.8-1) 0.68 (0.58-0.93) 16.0 (10.5-16.5)
Absolute WBC counts (cells/mm3) + lymphocyte proportions (%) 0.841 (0.723-0.959) 1(0.8-1) 0.74 (0.62-0.94) -

Footnotes: WBC: white blood cells. AUC: Area Under the Curve. AUC are given with the 95% confidence interval.
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Supplementary Figure 1. Neutrophil proportions of total white blood cells during treatment.
Data are given as median + interquartile range (total n = 129). Each dot represents one patient at one
timepoint. Grey lines connect data points from a same patient. TO: baseline. T1: baseline + 2 months.
T2: end of treatment. Data were analyzed using Friedman’s test, with the Wilcoxon-Nemenyi-

McDonald-Thompson test as a post-hoc correction for pairwise multiple comparisons. *: p<0.05. **:
p<0.01. ***: p<0.001.
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Supplementary Figure 2. Evolution of the main white blood cell types during treatment in
patients with high baseline sputum smear microscopy grades.

White blood cell (WBC) absolute counts (A.), lymphocyte percent of WBC (B.); and monocyte percent
of WBC (C.) were assessed over time in 74 patients with sputum smear microscopy grades of 2+ or 3+
(success, n = 70; failure, n = 4). Data are given as median + interquartile range. TO: baseline. T1:
baseline + 2 months. T2: end of treatment. Data were analyzed using the Mann-Whitney U test. *:
p<0.05.

149



0sT

1.2  Annex 2 - Supplementary data from publication 2

Supplementary Table 1. Sociodemographic characteristics of the cohort, stratified by country.

Bangladesh Georgia Lebanon Madagascar Paraguay
N 38 31 7 36 20 P
Patient demographics
Age (years), median (IQR) 22 (18.25-28)6° 34 (28-43)BM 23(20.5-28.5) 26 (19.75-36.75) 28.5(22.5-38.25)8 >0.001
Sex (male), % (N) 65.8% (25/38) 77.4% (24/31) 42.9% (3/7) 55.6% (20/36) 55% (11/20) 0.23
Drug resistance, % (N) 44.7% (17/38) MP 32.3% (10/31)M 0 08 5% (1/20)® >0.001
Treatment failure, % (N) 2.6% (1/38) 6.5% (2/31) 0 2.8% (1/36) 0 0.72
BMI at inclusion, median (IQR) 17.6 (16.3-20.7)8LP  20.3 (18.8-23.8)8M 20.9 (20.2-21.2)8M 17.1 (16.3-18.2)6LP 20.8 (18.5-22.7)8M >0.001
White blood cell absolute count at inclusion 11180 (8690-13567.5)
(/cumm) 9500 (8050-10975) 9800 (7000-12050) 8610 (6780-12450) 9370 (5802.5-12002.5) 0.52
Lymphocyte proportion at inclusion (% of WBC) 20 (18-26.75)t 18 (15-21.5) 13.4 (12.55-15.6)8 17.6 (12.6-24.28) 18.5 (15.5-23) 0.041
Number of household contacts, median (IQR) 4.5 (3-7) 4 (3-4.75) 5 (4-5.5) 5 (4-6) 4 (4-6) 0.18
BCG vaccination, % (N) 84.2% (32/38) 38.7% (12/31) 14.3% (1/7)* 91.7% (33/36) 94.1% (16/17) >0.001
Risk factors and comorbidities
Smoking, % (N) 84.2% (32/38) 38.7% (12/31) 14.3% (1/7) 91.7% (33/36) 50% (10/20) 0.49
Alcohol abuse, % (N) 44.7% (17/38)M 58.1% (18/31)MP 28.6% (2/7) 38.9% (14/36)86 35% (7/20)¢ 0.0010
Injectable drug use, % (N) 13.2% (5/38) 6.5% (2/31) 0 41.7% (15/36) 5% (1/20) 0.10
Jail detention history, % (N) 10.5% (4/38) 0 0 0 25% (5/20) 0.064
Chronic HCV infection, % (N) 5.3% (2/38) 6.5% (2/31) 14.3% (1/7) 2.9% (1/34) 0 0.69
Other disease?, % (N) 0 3.2% (1/31) 0 2.8% (1/36) 16.7% (3/18) 0.060
History of TB
Previous TB, % (N) 29.7% (11/37) 10.3% (3/29) 14.3% (1/7) 13.9% (5/36) 20% (4/20) 0.10
Prior exposure to active TB patients, % (N) 28.9% (11/38) 6.7% (2/30) 42.9% (3/7) 36.1% (13/36) 45% (9/20) 0.36
Previous TB outcome
Cured and completed, % (N) 42.9% (3/7) 0 0 0 75% (3/4) 1
Treatment completed, % (N) 28.6% (2/7) 0 0 0 0 1
Outcome not evaluated or unknown, % (N) 0 66.7% (2/3) 0 0 25% (1/4) 1
Treatment failure, % (N) 0 33.3% (1/3) 0 33.3% (1/3) 0 1

Footnotes: BMI: body mass index. IQR: interquartile range. TB: tuberculosis. WBC: white blood cells.

1: asthma, hypertension, inflammation.

Data were compared with Kruskal-Wallis’ test with Dunn’s post-hoc, or Fisher’s test with Bonferroni’s post-hoc when significant.

B,G,L,M,P.

: initial of study sites that are different from each other (p<0.05). *: different from all other sites.
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Supplementary Table 2. QFT-P or HBHA IFN-y levels in the different study sites.

Parameter Timepoint All Bangladesh Georgia Lebanon Madagascar Paraguay P
N =132 N =38 N =31 N=7 N =36 N =20 (countries)
TO 0.52(0.11-1.78) 0.49 (0.08-1.9) 1(0.24-2.42) 0.74 (0.33-1.8) 0.25 (0.02-1.04) 0.36 (0.24-0.74) 0.12
TTIIU[/':\::)V] T1 0.53(0.1-1.73) 0.55(0.18-1.4) 0.94 (0.17-4.49) 1.53 (0.53-1.78) 0.26 (0.05-1.54) 0.35(0.11-1.47) 0.23
T2 0.62 (0.12-2.07) 0.85 (0.17-2) 0.46 (0.16-1.68) 0.72 (0.47-2.15) 0.6 (0.12-2.21) 0.53 (0.08-1.99) 0.96
T0 0.64 (0.27-2.06) 0.55 (0.18-1.98) 1.51 (0.33-3.88) 0.62 (0.5-1.76) 0.56 (0.1-1.29) 0.53 (0.3-0.91) 0.24
T?IZU[/':n'\:_')y] T1 0.66 (0.12-2.91) 0.84 (0.2-3.6) 0.77 (0.12-3.83) 0.92 (0.68-1.62) 0.48 (0.04-2.08) 0.37 (0.12-1.7) 0.47
'y 0.82(0.11-3.43) 0.9 (0.12-3.29) 0.61(0.11-4.17) 0.87 (0.5-2.55) 0.8 (0.1-2.33) 0.59 (0.08-3.75) 0.92
TO 10 (6.47-10) 10 (7.43-10) 10 (10-10)M 7.91 (5.12-10) 9.44 (1.98-10)¢ 10 (5.41-10) 0.0025
M('Lyri:\::)y] T1 10 (8.07-10) 10 (6.53-10) 10 (10-10)M 10 (10-10) 9.54 (5.35-10)¢ 10 (7.72-10) 0.0075
T2 10 (8.59-10) 10 (7.72-10)8 10 (10-10)8M 10 (9.75-10) 9.87 (7.42-10)¢ 10 (7.09-10) 0.0095
To 0.08 (0.01-0.48) 0.16 (0.03-0.6)° 0.54 (0.08-4.14)MP 0.04 (0.01-0.07) 0.05 (0.01-0.2)6 0.05 (0.01-0.07)8 >0.001
HB("I'C /[r':l'_\;'y] T1 0.37 (0.09-1.78) 0.6 (0.19-1.72)MP 2.5 (0.48-8.71)LMP 0.14 (0.07-1.28)¢ 0.14 (0.03-0.31)86 0.09 (0.02-0.45)8 >0.001
T 1(0.12-5.24) 5.05 (1.25-10) * 4.65 (1.46-10) * 0.36 (0.08-0.92) 0.08 (0.01-0.31) 0.5 (0.18-1.09) >0.001

Footnotes: TO: baseline. T1: baseline + 2 months. T2: end of treatment. All values are given after subtraction of NIL [IFN-y]. & ¢/ M P: jnitial of study sites that are different
from each other (p<0.05). *: different from all other sites. Data were compared using Kruskal-Wallis’s non-parametric test with Dunn’s post-hoc when significant.




Supplementary Table 3. Blood count thresholds for stratified IFN-y analysis.

T0 T1 T2
Q1 Q3 Q1 Q3 | a1 a3
WBC (cells/mm3) 7300 12000 {5900 9500|4900 7400
Neutrophils (% of WBC) 70 80 60 70 50 70
Lymphocytes (% of WBC) 14 25 20 31 26 37

Footnotes: TO: baseline. T1: baseline + 2 months. T2: end of treatment. Q1.: first quartile. Q3: third quartile.
WABC: total white blood cells.

Supplementary Table 4. Assay performances of the QFT-P and rmsHBHA IGRAs compared
to sputum culture.

Test Thresholds Timepoint Sensitivity Specificity Accuracy
. - T1 81.1 50 76.6
Smear microscopy
72 92.9 33.3 91.5
> T1
QFT-P IGRA TB12>0.75 IU/mL and TB2 45.3 35.3 43.8
>0.71 1U/mL 2 457 67 46
T1
QFT-P TB2-TB1 >0.03 IU/mL 51.6 52.9 51.8
2 54.3 66.7 54.6
T1
HBHA IGRA <0.22 1U/mL 64.2 64.7 64.3
72 66.9 0 65.4
HBHA and QFT-P - T1 6.3 3.5 6.8
'oRA 2 82.7 0 80.8
- T1
HBHA and TB2-TB1 80 35.3 73.2
r2 85 0 83.1

Footnotes: TO: baseline. T1: baseline + 2 months. T2: end of treatment.

For all IGRA variables, cutoffs adapted for this study on active TB patients were calculated using AUC
analyses. Respective cutoffs are indicated in the “Threshold” column. The overall QFT-P test was
considered positive if either TB1 or TB2 were above the indicated thresholds. The “HBHA and QFT-P
IGRA” variable was defined as follows: positive when HBHA-IGRA results are negative and QFT-P
results are positive; negative when HBHA-IGRA results are positive and/or QFT-P results are negative
or indeterminate. The “HBHA and TB2-TB1” variable was defined as follows: positive when HBHA-IGRA
results are negative and TB2-TB1 is strictly greater than the indicated threshold; negative when HBHA-
IGRA results are positive and/or TB2-TB1 is equal to or lesser than the indicated threshold.
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Supplementary Table 5. Associations between time to culture conversion and WBC

counts.
Successfully treated patients with available T1 culture results (n = 112)
Ti int Fast converters Slow converters Failure or relapse P
imepoin
N 92 16 4
Absolute WBC T0 9500 (7302.5-11425) 9385 (7822.5-14325) 12200 (12082.5-13400) 0.077
solute
count (per mm?) T1 7535 (6247.5-9367.5) 8500 (6220-10900) 10780 (9470-11300) 0.14
T2 6190 (4742.5-7812.5) 6750 (4387.5-7687.5) 6050 (5595-7247.5) 0.97
Neutroohil % of TO 75 (68-79) 75 (71.97-78.25) 84 (81.5-86.5)* 0.022
eutrophil % o
WEBC Pt T1 67.55 (60-72.17) 67.5 (61.1-75) 79 (75-81.75)* 0.043
72 60.15 (54.75-68) 58.5 (51.75-66.97) 64.5 (59-71.75) 0.49
L hocvte % of T0 19 (15-26) 17.5(12.8-19.5) 12.5(9.2-15.2)* 0.017
mphocyte % o
stcp yie s T1 25 (20.7-31) 23 (16.2-28.0) 15.5 (11-21.2)* 0.027
72 30 (25.9-36) 29.5 (23.5-36.2) 21(17.7-26.5) 0.21
High absolute WBC 70 21.7% (20/92) 31.2% (5/16) 75% (3/4) 0.050
count (>3rd T1 20.7% (19/92) 43.8% (7/16) 75% (3/4)* 0.014
quartile) 72 29.3% (27/92) 25% (4/16) 25% (1/4) 1
High troohil % T0 22.8% (21/92) 18.8% (3/16) 100% (4/4)* 0.0053
igh neutrophi
(>§r ; quartif;) ° T1 23.9% (22/92) 31.2% (5/16) 75% (3/4) 0.081
72 28.3% (26/92) 31.2% (5/16) 50% (2/4) 0.62
70 14.1% (13/92) 37.5% (6/16) 50% (2/4)* 0.020
Low lymphocyte %
(<1st quartile) T1 19.6% (18/92) 37.5% (6/16) 50% (2/4) 0.12
72 22.8% (21/92) 31.2% (5/16) 75% (3/4) 0.06

Footnotes: Data are given as median (interquartile range) or % (N). WBC: white blood cells. TO:
baseline. T1: baseline + 2 months. T2: end of treatment. Fast converters: culture conversion between
TO and T1. Slow converters: culture conversion between T1 and T2. Treatment failure: positive culture
at T2 or T3 (end of treatment + 2 months). *: significantly different from both other groups (Kruskal-
Wallis test + Dunn’s post-hoc test).
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Supplementary Table 6. Sociodemographic characteristics and culture conversion profile

Fast converters Slow converters Failure or relapse
N 92 16 a P
Patient demographics
Age (years), median (IQR) 26.5 (21-36.25) 33.5 (25.75-47.75) 38 (30.5-48.25) 0.099
Sex (male), % (N) 63% (58/92) 62.5% (10/16) 100% (4/4) 1
Drug resistance, % (N) 26.1% (24/92) 18.8% (3/16) 0 0.76
Country of origin, % (N)
Bangladesh 38% (35/92) 18.8% (3/16) 0 0.14
Georgia 26.1% (24/92) 25% (4/16) 50% (2/4) 0.93
Lebanon 5.4% (5/92) 0 0 0.34
Madagascar 10.9% (10/92)* 56.2% (9/16)* 25% (1/4) >0.001
Paraguay 19.6% (18/92) 0 25% (1/4) 0.053
BMI at inclusion, median (IQR) 19.7 (17.3-21.4)* 17.0 (16.2-18.6)* 17.5(15.9-20.2) 0.0088
White blood cell absolute count at inclusion (/mm3) 9500 (7302.5-11425) 9385 (7822.5-14325) 12200 (12082.5-13400) 0.75
Lymphocyte proportion at inclusion (% of WBC) 19 (15-26) 17.5(12.8-19.55) 12.5(9.25-15.25) 0.099
Number of household contacts, median (IQR) 4(3-6) 3.5(3-5.25) 5.5 (4.75-8) 0.44
BCG vaccination, % (N) 83.8% (62/74) 100% (13/13) 100% (2/2) 0.19
Risk factors and comorbidities
Smoking, % (N) 42.4% (39/92) 43.8% (7/16) 100% (4/4) 1
Alcohol abuse, % (N) 17.4% (16/92) 12.5% (2/16) 50% (2/4) 0.32
Injectable drug use, % (N) 4.4% (4/91) 0 0 1
Jail detention history, % (N) 7.7% (7/91) 6.2% (1/16) 50% (2/4) 1
Chronic HCV infection, % (N) 1.4% (1/71) 8.3% (1/12) 0 0.27
Other disease!, % (N) 5% (4/80) 8.3% (1/12) 0 0.51
History of TB
Previous TB, % (N) 17.3% (16/92) 12.5% (2/16) 25% (1/4) 0.73
Prior exposure to active TB patients, % (N) 26.4% (24/91) 12.5% (2/16) 75% (3/4) 1

Footnotes: BMI: body mass index. IQR: interquartile range. TB: tuberculosis. WBC: white blood cells.
1: asthma, hypertension, inflammation. Data were compared with the Kruskal-Wallis test and Dunn’s post hoc,

or Fisher’s test. *: groups significantly different from each other.

Supplementary Table 7. Associations between time to culture conversion and IFN-y

response.
Parameter | Timepoint Univariate analysis Multivariate analysis®

OR (95%Cl) p aOR (95%Cl) p C AIC

T0 0.87(0.611 - 1.09) 0.32 | 0.914(0.652-1.213) 055 062 671

TB1 IFN-y 1 0.879 (0.646 - 1.08) 0.30 |  1.051(0.74 - 1.392) 0.74 061 674

2 1.01(0.831- 1.18) 0.91 | 1.365(1.002 - 1.943) 0.058 0.66 636

70 0.81(0.543 - 1.03) 0.17 | 0.856(0.592 - 1.143) 0.33 0.65 664

TB2 IFN-y T 0.874 (0.659 - 1.07) 0.25 | 0.992(0.715 - 1.289) 096 062 675

2 0.99 (0.818 - 1.15) 0.90 | 1.162(0.911 - 1.493) 0.22 062 660

70 0.336 (0.023 - 0.916) 0.25 | 0.241(0.004 - 1.068) 0.36 0.68 648

HBHA IFN-y 1 0.989 (0.814 - 1.15) 0.89 | 1.068 (0.746 - 1.515) 0.69 061 673

T2 0.843 (0.674 - 0.993) 0.072| 0.983 (0.712 - 1.333) 091 o064 675

Footnotes: TO: inclusion. T1: TO + 2 months. T2: end of treatment. OR: odds ratio. aOR: adjusted odds ratio.
Cl: confidence interval. WBC: white blood cells. C: model C statistic. AIC: Akaike Information Criterion. Slow
culture conversion was defined as a persistently positive culture result at T1 followed by a culture conversion at
T2.TB1, TB2 and HBHA IFN-y levels were measured in IlU/mL. For continuous independent variables, associations
were calculated for each unit increase. 1: models were adjusted for age, sex, country of origin, drug resistance
strain, body mass index at inclusion, and BCG vaccination rate.
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Supplementary Table 8. Associations between time to culture conversion and IFN-y
response, adjusted for neutrophil and monocyte proportions at baseline.

Parameter Timepoint Multivariate analysis!
aOR (95% Cl) p C AIC
T0 0.939 (0.642 - 1.34) 0.73 0.62 68.0
TB1 IFN-y T1 0.957 (0.636 - 1.32) 0.80 0.61 68.0
T2 1.42 (1.027 - 2.08) 0.054 0.68 63.6
T0 0.844 (0.563 - 1.206) 0.36 0.64 67.2
TB2 IFN-y T1 0.928 (0.64 - 1.247) 0.64 0.62 67.8
T2 1.19(0.927 - 1.57) 0.16 0.67 66.1
T0 0.341 (0.006 - 1.185) 0.45 0.66 66.4
HBHA IFN-y T1 1.133(0.779 - 1.661) 0.49 0.62 67.6
T2 1.004 (0.723-1.39) 0.98 0.62 68.1
T0 0.62 (0.391-0.857) 0.013 0.74 58.7
MIT IFN-y T1 0.711 (0.498 - 0.954) 0.034 0.70 62.8
T2 0.799 (0.555-1.122) 0.19 0.63 66.3
T0 0.045 (0.002 - 0.404) 0.022 0.75 59.5
Positive QFT-P IGRA T1 0.279 (0.036 - 1.631) 0.17 0.66 66.1
T2 2.69 (0.462 - 21.2) 0.29 0.66 66.9
T0 0.551 (0.057 - 4.366) 0.57 0.61 67.8
Positive HBHA IGRA T1 0.075 (0.003 - 0.689) 0.045 0.72 62.7
T2 0.623 (0.098 - 4.45) 0.62 0.61 67.8
T0 0.89(0.482 - 1.685) 0.71 0.61 67.9
Lymphocyte % of WBC T1 0.898 (0.788 - 0.988) 0.055 066 63.0
T2 1.00 (0.915 - 1.09) 098 061 681
Body mass index T0 0.912 (0.578 - 1.35) 0.66 0.64 66.1

Footnotes: TO: inclusion. T1: TO + 2 months. T2: end of treatment. aOR: adjusted odds ratio. Cl: confidence
interval. WBC: white blood cells. C: model C statistic. AIC: Akaike Information Criterion. Slow culture conversion
was defined as a persistently positive culture result at T1 followed by a culture conversion at T2. TB1, TB2 and
HBHA IFN-y levels were measured in IU/mL. 1: models were adjusted for age, sex, country of origin, drug
resistance strain, body mass index at inclusion, BCG vaccination rate, and neutrophil and monocyte proportion
at baseline.
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Supplementary Figure 1. Dynamics of plasmatic IFN-y response to QFT-P and HBHA stimulations
over the course of TB therapy. Data are given as median + interquartile range. A. Evolution of the
HBHA/TB1 and HBHA/TB2 IFN-y ratios throughout treatment. B. Evolution of the TB2-TB1 IFN-y
response (QFT-P CD8+ T cell response) throughout treatment. Stratification per study site of the
HBHA/TB1 (C.) and HBHA/TB2 (D.) ratios. Bangladesh (n = 38), Georgia (n = 31), Lebanon (n = 7),
Madagascar (n = 36), Paraguay (n = 20). Each black dot represents one patient at one timepoint. Grey
lines connect data points from a same patient. TO: baseline. T1: baseline + 2 months. T2: end of
treatment. Data were compared using Friedman’s Exact Test with the Wilcoxon-Nemenyi-McDonald-
Thompson post-hoc, or the Mann-Whitney U test (panel B). *: p<0.05; **: p<0.01; ***: p<0.001.
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LST

1.3  Annex 3 - Supplementary data from publication 3

Participants with available samples at T0, T1, T2: n = 35
Bangladesh: 14. Georgia: 21.

Acquired data: n = 34 participants
Bangladesh: 14. Georgia: 20.

Total number of samples: 306
Bangladesh: 126. Georgia: 180.

Suitable for unsupervised analysis: n = 29 participants
Bangladesh: 9. Georgia: 20

Total number of samples: 203.
Bangladesh: 43. Georgia: 160.

ﬁaired T0, T1, T2 data available: n = 22 participants \
Bangladesh: 4. Georgia: 18.

Total number of samples: 144
Bangladesh: 27. Georgia: 117.

NIL: 16 patients
HBHA: 14 patients
TB2: 18 patients

vﬂ' three stimulations: 9 patients /

Supp. Figure 1. Flowchart of patient inclusions.

Treatment failed: 1 patient

Samples not interpretable: n = 103

Baseline or T1 data unavailable: n =59
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Supp. Figure. 2. Impact of in vitro whole blood stimulation with Mtb antigens on surface marker expression in the main T-cell subpopulations.

Stimulation

=
B3 T2
HBHA

Stimulation

=
ES 182

HBHA

The surface expression of all panel markers was compared between the three stimulation conditions (unstimulated (NIL), TB2, and rmsHBHA) in CD4* (A), CD8* (B), gamma-

delta (Tgd; C), or double negative (DN) T-cells (D). MMS: median mass signal. Only the markers for which a significant difference was observed were represented. Statistical

analysis: two-sided Kruskal-Wallis test with Dunn’s Kruskal-Wallis Multiple Comparisons post-hoc at TO, T1, and T2. *: p<0.05. **: p<0.01. Number of data points per timepoint

for all panels: NIL: n = 16. TB2: n = 18. HBHA: n = 14. Exact p-values and test statistics are available in Supp. Table 2.
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Supp. Figure. 3. Frequencies of the main peripheral T-cell subpopulations throughout anti-TB treatment.
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097

Evolution of the frequency of canonical T-cell subsets identified through FlowSOM meta-clustering and corresponding respectively to CD4* phenotypes (A), CD8* phenotypes
(B), or other cell subsets (C). Number of data points per timepoint for all panels: NIL: n = 16. TB2: n = 18. HBHA: n = 14. Data are given as median + interquartile range.
Abbreviations: CM: central memory. DN: double-negative CD4°'CD8". DP: double-positive CD4*CD8". EM: effector memory. HBHA: recombinant M. tuberculosis heparin-binding
hemagglutinin. MAIT: mucosal associated invariant T-cells. NIL: unstained control. TB2: M. tuberculosis antigenic peptide pool. Tgd: gamma delta T-cells. Treg: T-regulators.
TEMRA: terminally differentiated effectors re-expressing CD45RA. No statistically significant differences were detected (pairwise comparisons between non-sindependent
observations at TO, T1, and T2: two-sided Friedman rank sum test and Wilcoxon-Nemenyi-Thompson post-hoc for pairwise comparisons between non-independent

observations at TO, T1, and T2).
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Supp Figure 4. Significant abundance changes in non-canonical T-cell subsets after the intensive phase of
treatment. The evolution of FlowSOM cluster abundance was analyzed over time in unstimulated or Mtb-
stimulated samples (TB2 or rmsHBHA), and only the clusters within which significant abundance changes were
detected were displayed. CD4"* clusters were represented in red, CD8* clusters in blue, y6 T-cell clusters in green,
and CD4 CD8 clusters in grey. Number of matched data points per timepoint for all panels: NIL: n = 16. TB2:
n = 18. rmsHBHA: n = 14. Data are given as median + interquartile range.

A and B. Significantly increased clusters at the end of the intensive phase of treatment (T1) compared to
treatment initiation (T0). Clusters within which a significant increase was detected between TO and T1 were first
visualized on the reference UMAP (A). Cluster abundance quantification was then was performed in
unstimulated, TB2-stimulated or rmsHBHA-stimulated samples (B).

C and D. Significantly decreased clusters at the end of the intensive phase of treatment (T1) compared to
treatment initiation (T0). Mapping (C) and abundance quantification of clusters which decreased between TO and
T1 in unstimulated, TB2-stimulated, or rmsHBHA-stimulated samples (D).

Statistical analysis: two-sided Friedman rank sum test and Wilcoxon-Nemenyi-Thompson post-hoc for pairwise

comparisons between non-independent observations at TO, T1, and T2. *: p<0.05. **: p<0.01. ***: p<0.001. Exact

p-values and test statistics are available in Supp. Table 3 (associated Excel file).
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Supp. Figure. 5. Patients with slow microbiological culture conversion show decreased CD8* and y& and enriched CD4* naive peripheral T-cell subsets during treatment.
Clusters with differential abundance between patients with positive mycobacterial cultures at T1 (slow converters, n = 4) or with negative cultures at T1 (fast converters,
n = 18). Data are shown as median + interquartile range.

A and B. At treatment initiation (T0). Clusters significantly decreased (A) and increased (B) in slow converters compared to fast converters.

C and D. At treatment completion (T2). Clusters significantly decreased (C) and increased (D) in slow converters compared to fast converters.

CD4* clusters are represented in red, CD8" clusters in blue, Tgd clusters in green, and DN clusters in grey. The lighter shade of each color code corresponds to data from the

slow converters. Statistical analysis: two-sided Mann-Whitney U-test. For all represented clusters: P<0.025 at TO; P<0.013 at T2. Significance stars were not displayed for

readability. Exact p-values and test statistics are available in Supp. Table 6 (associated Excel file).
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Supp. Figure 6. Patients with slow microbiological culture conversion show decreased cytotoxic CD8* and yé
and enriched CD4* naive T-cell subsets before treatment initiation and after treatment completion compared
to fast converters. Fast converters (n = 18) were defined as patients with permanently negative M. tuberculosis
culture after the intensive phase of treatment (T1), whereas slow converters (n = 4) were defined as patients
with persistently positive cultures at T1. The abundance of all FlowSOM clusters at baseline was compared
between fast and slow converters. Only clusters within which significant differences were detected were
represented (TO: p<0.026. T2: p<0.013; two-sided Mann-Whitney U test; see Supp. Figure 5).

A. Before treatment initiation (T0). Clusters which were significantly decreased (green) or increased (orange) at
TO in slow converters compared to fast converters were represented. Normalized, arcsinh-transformed mean
marker expression levels were visualized). Each line represents one cluster. Scales indicate normalized mass
signal intensity.

B. After treatment completion (T2). Clusters which were significantly increased or decreased at T2 in slow
converters compared to fast converters were represented and marker expression levels were visualized. All

patients achieved microbiological cure at T2.
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Supp. Figure 7. Variance between fast and slow responders within all Mtb-stimulated CD3* T-cells. Principal
Component Analysis (PCA) was performed on marker expression data within all CD3* T-cells from 96 Mtb-
stimulated samples matched at TO, T1, and T2 (TB2: 54 samples; rmsHBHA: 42 samples).

A. Explanation of the variance between fast converters (25 samples at each timepoint) and slow converters (7
samples at each timepoint). Each dot represents one patient. The color code represents the culture conversion
group. Axes represent the principal components 1 (Dimension 1, Dim1) and 2 (Dim2) and percentages indicate
their contribution to the total observed variance. Axis values represent individual PCA scores. Concentration
ellipses correspond to 90% data coverage.

B. Contribution of cellular markers to the variance described by Dim1 and Dim2. Axis values represent marker
PCA scores. The color code represents broad marker functions.

C and D. Quantification of panel B. for Dim1 (C) and Dim2 (D). Contributions of each marker are expressed as a
percentage of the dimensions. The red dashed line corresponds to the expected reference value if each marker
contributed uniformly to the variance. Markers indicated in gray are below this reference value.

E and F. Distribution of individual PCA score values according to the culture conversion group and to the
timepoint, for Dim1 (E) and Dim2 (F). Data were compared with the two-sided Wilcoxon Rank Sum Test. *:

p<0.05; **: p<0.01. Exact p-values and test statistics are available in Supp. Table 7.
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Supp. Figure 8. Main CD45* non-granulocyte whole blood subpopulations and T-cell oriented gating strategy.

CM: central memory. EM: effector memory MAIT: mucosal-associated invariant T-cells. NK: natural killers.

TEMRA: terminally differentiated effectors re-expressing CD45RA. Tgd: gamma delta T-cells. Treg: T regulators.
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Supp. Figure 9. Control of automated FlowSOM metaclustering.

A. Expression of selected lineage markers in 18 automatically detected FlowSOM meta-clusters within total CD3* events. A higher number of meta-clusters than expected
was chosen in order to detect all expected cell subpopulations (see Supp.Table 9). B. List of meta-clusters which were reassigned to other phenotypically similar meta-clusters.
Abbreviations: CM: central memory. DN: double-negative CD4°CD8". DN: double-positive CD4* CD8*. EM: effector memory. HBHA: recombinant M. tuberculosis heparin-
binding hemagglutinin. MAIT: mucosal associated invariant T-cells. NIL: unstained control. TB2: M. tuberculosis antigenic peptide pool. Tgd: gamma delta T-cells. Treg: T-

regulators. TEMRA: terminally differentiated effectors re-expressing CD45RA.
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Supplementary Table 1. Sociodemographic and clinical characteristics of the cohort.

Nb of cell samples Drug susceptibility
ID NIL TB2 HBHA Phenot\'/p.n? drug Treatment regimen Country
susceptibility
01DSGE 3 3 3|DS 2HRZE/4HRE GEO
02DSGE 3 0 3| DS 2HRZE/4HRE GEO
03DSGE 3 3 3 (DS 2HRZE/4HR GEO
04DSGE 3 0 0| DS 2HRZE/4HR GEO
O5DSGE 3 3 3|DS 2HRZE/4HR GEO
06DSB 3 3 0| DS 2HRZE/4HR BD
06DSGE 3 3 0| DS 2HRZE/4HRE GEO
07DSGE 3 3 3| DS 2HRZE/4HRE GEO
08DSB 3 3 0| DS 2HRZE/4HR BD
08DSGE 3 3 3| DS 2HRZE/4HRE GEO
21DSB 0 3 3| DS 2HRZE/4HR BD
01DRGE 0 3 0| MDR H+Z+Km+Lfx+cfz+Bdq / Z+Lfx+cfz+Bdq GEO
02DRGE 3 3 3| MDR Cm+Lfx+Pto+Cs+Cfz+H / Cm+Lfx+Cs+Bdqg+Lzd / Lfx+Cs+Bdg+Lzd GEO
03DRGE 3 0 3 | Pre-XDR (Z)+Lfx+Pto+Cfz+Bdg+Lzd / Cs+Cfz+Bdg+Lzd GEO
Bdq+Cfz+Lfx+H+Pto+E+Z / Bdg+cfz+Lzd+H+E / Bdg+Cfz+Lfx+H+Z /
04DRGE 0 3 0| Pre-XDR Bdq+Cfz+Lfx+E+Z GEO
05DRGE 3 3 0| Pre-XDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO
06DRGE 0 3 3|RR H+E+Z+Km+Mfx+Pto+Cfz / Mfx+E+Z+cfz GEO
07DRGE 3 3 3 XDR Bdqg+Lzd+cfz+Cs GEO
09DRB 3 3 3|1 MDR 4-6 Km-Mfx-Pto-Cfz-Z-HHigh dose-E/5-6 Mfx-Cfz-Z-E3 BD
09DRGE 0 0 3 MDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO
10DRGE 0 3 0| MDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO
14DRGE 3 3 3| Pre-XDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO
Nb of patients: 16 18 14
Number of samples: 48 54 42
Total number of samples: 144

Footnotes: Three samples per patient were collected in each stimulation condition, corresponding to each timepoint: TO: baseline. T1: TO + 2 months. T2: end of
treatment.Samples with < 1,000 CD3* events, and batches with missing samples from a given timepoint were removed from the analysis. Abbreviations: BD: Bangladesh.
GEO: Georgia. DS: drug susceptible. MDR: multi-drug resistant. RR: rifampicin resistant. XDR: extensively drug resistant. Abbreviations for anti-TB drugs: E: Ethambutol. H:
Isoniazid. R: Rifampicin. S: Streptomycin. Z: Pyrazinamide. Bdqg: Bedaquiline. Cfz: Clofazimine. Cs: Cycloserine. Km: Kanamycin. Lfx: Levofloxacin. Lzd: Linezolid. Mfx:
Moxifloxacin. Pto: Prothionamide. Numbers indicate months of treatment when the information was available
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Supplementary Table 1 - continued

Baseline identification Microbiological evolution
Mtb culture AFB Treatment
. . GeneXpert

ID Gender | Age | Occupation HIV | Diabetes | BCG | QFT-P | GeneXpert RIFR response

TO Tl T2 T0 T1 T2 group
01DSGE M 28 Small business n n + + - + - - scanty scanty - Fast
02DSGE M 26 Student n n y + + - + - - - - - Fast
03DSGE M 37 Small business n n y + + - + - - - - - Fast
04DSGE M 24 Day Laborer n n y + + - + - - - - - Fast
05DSGE M 63 Unemployed / Retired n n + + - + - 2+ 2+ - Fast
06DSB M 16 Day Labour n n y + + - + - - 2+  scanty - Fast
06DSGE M 58 Unemployed / Retired n n - + - + + - 1+ 1+ scanty Slow
07DSGE M 50 Unemployed / Retired n n + + - + + - scanty scanty - Slow
08DSB M 60 Small business n n y - + - + - - 1+ - - Fast
08DSGE  F 29 Small business n n y + + - + + - scanty scanty - Slow
21DSB F 20 Student n n y + + - + - - 2+ - - Fast
01DRGE M 42 Farmer n n - + - + - - 1+ - - Fast
02DRGE F 34 Housewife n n y - + + + + - - - - Slow
03DRGE M 26 Business n n y + + - + - - 2+ - - Fast
04DRGE M 37 Private Service n n + + - + - - - 1+ - Fast
O5DRGE M 42 Unemployed n n + + - + - - 3+  scanty - Fast
06DRGE  F 33 Unemployed n n + + + + - - 2+ - - Fast
07DRGE  F 20 n n y - + + + - - 2+ - - Fast
09DRB F 15 Garments worker n n y - + + + - - 3+ - - Fast
09DRGE  F 28 n n + + - + - - 2+ - - Fast
10DRGE F 25 n n - + + + - - - - - Fast
14DRGE M 31 n n + + + + - - scanty scanty scanty Fast

Footnotes: BCG: Bacille Calmette-Guérin vaccination. QFT-P: QuantiFERON-TB Gold Plus. AFB: Acid Fast Bacilli detection (sputum smear microscopy). BMI: body mass index.
Mtb: Mycobacterium tuberculosis. Throughout the table, "+" and "-" indicate positive or negative results to the indicated test. For AFB results, 1+, 2+, or 3+ quantify the

amount of bacilli observed.



LT

Supplementary Table 1 - continued

Weight evolution TB risk factors
Weight (kg) BMI
ID Smoking | Alcohol | Intraveinous drug use | Prison | TB contact | Previous TB
T0 1 |12 0 |11 T2

01DSGE 72 72 73 20.8 20.8 21.1|n n n n n n
02DSGE 59 61 64 20.1 20.8 21.8|n n n n n n
03DSGE 65 66 71 24.1 24.5 26.3 |y n n n n n
04DSGE 59 60 64 19.9 20.2 216y n n n n n
O5DSGE 66.7 67 68 24.2 24.3 246 1|n n n n n n
06DSB 42.2 433 48.1 16.4 16.9 18.7 | n n y n n n
06DSGE 64.2 18.3 y n n n n
07DSGE 64 64 67 19.7 19.7 206 |y n n n n n
08DSB 52.5 57.5 59 18.1 19.8 204 |y n n n n n
08DSGE 60 61 67 24.3 24.7 27.1|n n n n n y
21DSB 36.7 37 445 133 134 16.1(n n n n n n
01DRGE 66 66 69 23.9 23.9 2501y y n n n n
02DRGE 48 52 54 18.7 20.3 210|n n n n n n
03DRGE 54 58 71 17.2 18.5 226 |y n n n n

04DRGE 71 72 73 20.5 20.8 211y n n n n
O5DRGE 60 62 65 19.8 20.4 2141y n n n n v
06DRGE 48 52 56 18.7 20.3 21.8|n n n n n n
07DRGE 54 57 61 19.5 20.6 22.1|n n n n n n
09DRB 43.2 45.5 44.9 17.9 18.9 186|n n n n y v
09DRGE 60 60 n n n n n n
10DRGE 59 59 63 19.9 19.9 21.2|n n n n n
14DRGE 60 62 66 20.7 21.4 2281y n n n v n

Footnotes: BMI: body mass index.




Supplementary Table 2. Exact p-values and test statistics for marker expression comparisons

between stimulation conditions, presented in Supplementary Figure 2.

. . . Stimulation  Kruskal Kruskal-Wallis Degrees of Dunn's Dunn's
Population Marker Timepoint ) ) .
comparison p-value Chi-Square p-value statistic

cD4* CD7 TO NIL-HBHA 0.012 8.75 2 0.0095 -2.95
Ccb4a* CD7 Tl NIL-HBHA 0.029 7.03 2 0.031 -2.56
Ccb4a* CCR7 Tl NIL-HBHA 0.036 6.62 2 0.035 -2.51
CcD8* CcD7 TO NIL-HBHA 0.031 6.93 2 0.038 -2.49
Tgd CcD7 TO NIL-HBHA 0.036 6.62 2 0.042 -2.45
Tgd CD152 T2 NIL-TB2 0.016 396 5 0.045 -2.43
Tgd CD152 T2 TB2-HBHA 0.033 2.54
DN CD152 T2 TB2-HBHA 0.030 6.95 2 0.030 2.57

Footnotes: here, independent, non-normal continuous variables were analyzed with the two-sided Kruskal—

Wallis test with Dunn’s Kruskal-Wallis Multiple Comparisons post-hoc.
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Supplementary Table 3. Exact p-values and test statistics for cluster abundance comparisons during

treatment, presented in Figure 3 and Supplementary Figure 4.

i . Friedman Friedman Chi- Degrees of L.
Cluster Timepoints Post-hoc p-value Post-hoc statistic
p-value Square freedom
NIL (n = 16 at each timepoint)
175 TO-T1 0.012 8.78 2 0.008 16
62 TO-T1 0.014 8.49 2 0.008 16
119 TO-T1 0.025 7.35 2 0.045 13
171 TO-T1 0.044 6.26 2 0.038 125
114 TO-T1 0.015 8.4 2 0.019 15
98 TO-T2 0.006 10.0 2 0.049 12
38 TO-T2 0.004 11.2 2 0.021 14.5
176 TO-T2 0.028 7.12 2 0.023 14
82 TO-T2 0.033 6.82 2 0.031 14
48 TO-T2 0.015 8.37 2 0.032 13.5
102 TO-T2 0.003 11.6 2 0.019 14.5
TB2 (n = 18 at each timepoint)
164 TO-T1 0.015 8.41 2 0.024 14
190 TO-T1 0.002 12.5 2 0.013 16
16 TO-T1 0.055 5.81 2 0.046 13.5
38 TO-T2 0.007 9.94 2 0.025 15
70 TO-T2 0.001 13.7 2 0.016 14.5
28 TO-T2 0.013 8.68 2 0.012 16.5
37 TO-T2 0.007 9.81 2 0.009 16.5
137 TO-T2 0.001 14.9 2 0.005 18
74 TO-T2 0.012 8.82 2 0.015 16.5
102 TO-T2 0.022 7.61 2 0.024 155
77 TO-T2 0.014 8.57 2 0.015 16
HBHA (n = 14 at each timepoint)

56 TO-T1 0.023 7.53 2 0.016 14
27 TO-T1 0.046 6.15 2 0.04 12.5
128 TO-T1 0.013 8.74 2 0.014 14
69 TO-T2 0.041 6.37 2 0.03 13
26 TO-T2 0.02 7.84 2 0.018 14
38 TO-T2 0.026 7.28 2 0.045 12.5
54 TO-T2 0.03 7.03 2 0.019 135
172 TO-T2 0.044 6.26 2 0.038 12.5
91 TO-T2 0.018 8.04 2 0.027 12.5
154 TO-T2 0.006 10.1 2 0.002 16.5
50 TO-T2 0.039 6.49 2 0.032 13
94 TO-T2 0.001 14.3 2 0,00 19
49 TO-T2 0.008 9.69 2 0.008 15
160 TO-T2 0.041 6.37 2 0.034 13
65 TO-T2 0.039 6.50 2 0.04 12

Footnotes: For pairwise comparisons between non-independent observations at TO, T1, and T2: the two-sided
Friedman rank sum test was performed followed by the Wilcoxon-Nemenyi-Thompson post-hoc.Only clusters

within which significant differences were detected were represented.
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Supplementary Table 4. Pearson’s correlation effect sizes (r) presented in Figure 5 for increased clusters.

Clus 98 Clus 38 Clus 176  Clus 37 Clus 28 Clus 70 Clus 69 Clus 26 Clus 172 Clus 91 Clus 54
Clus 98 1 0.228 -0.203 0.643 0.045 0.803 0.353 -0.102 -0.239 -0.132 0.032
Clus 38 0.228 1 0.042 0.364 0.282 0.263 0.356 -0.043 -0.152 0.224 0.572
Clus 176 |-0.203 0.042 1 -0.042 -0.049 -0.128 -0.131 -0.065 -0.116 0.018 -0.215
Clus 37 0.643 0.364 -0.042 1 0.261 0.444 0.114 -0.245 -0.183 0.135 -0.056
Clus 28 0.045 0.282 -0.049 0.261 1 0.214 0.184 0.483 0.374 0.367 0.39
Clus 70 0.803 0.263 -0.128 0.444 0.214 1 0.691 0.207 -0.259 0.048 0.279
Clus 69 0.353 0.356 -0.131 0.114 0.184 0.691 1 0.561 -0.154 0.068 0.647
Clus 26 -0.102 -0.043 -0.065 -0.245 0.483 0.207 0.561 1 0.543 0.157 0.471
Clus 172 |-0.239 -0.152 -0.116 -0.183 0.374 -0.259 -0.154 0.543 1 -0.081 0.039
Clus 91 -0.132 0.224 0.018 0.135 0.367 0.048 0.068 0.157 -0.081 1 0.155
Clus 54 0.032 0.572 -0.215 -0.056 0.39 0.279 0.647 0.471 0.039 0.155 1

Footnotes: Values indicate Pearson’s r. Correlations were calculated based on each cluster’s abundance (percent of total CD3*) in samples from all stimulation conditions at
treatment initiation (TO). Clus: clusters. Clusters in bold indicate the clusters that were grouped together in Figure 5 for manual analysis. The associated r values are highlighted

(orange: subgroup C corresponding to clusters, 37, 38, 70, 98; green: subgroup D corresponding to clusters 28, 54, 69).
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Supplementary Table 5. Pearson’s correlation effect sizes (r) presented in Figure 5 for decreased clusters.

Clus 48 Clus 82 Clus102 Clus137 Clus 77 Clus 74 Clus 154 Clus 50 Clus 94 Clus 49 Clus 160  Clus 65
Clus 48 1 0.377 0.412 0.137 0.462 0.725 0.485 -0.093 0.711 0.565 0.286 0.372
Clus 82 0.377 1 -0.006 0.189 0.064 0.48 0.456 0.318 0.615 0.424 0.114 0.686
Clus 102 |0.412 -0.006 1 -0.062 0.635 0.485 0.093 -0.365 0.206 -0.027 0.585 -0.087
Clus 137 |0.137 0.189 -0.062 1 -0.072 -0.054 0.226 -0.113 0.066 0.237 -0.008 -0.076
Clus 77 0.462 0.064 0.635 -0.072 1 0.614 0.189 -0.239 0.352 0.076 0.6 -0.027
Clus 74 0.725 0.48 0.485 -0.054 0.614 1 0.261 -0.048 0.678 0.311 0.318 0.375
Clus 154 | 0.485 0.456 0.093 0.226 0.189 0.261 1 0.288 0.471 0.513 0.145 0.64
Clus 50 -0.093 0.318 -0.365 -0.113 -0.239 -0.048 0.288 1 0.124 0.263 -0.199 0.673
Clus 94 0.711 0.615 0.206 0.066 0.352 0.678 0.471 0.124 1 0.324 0.241 0.637
Clus 49 0.565 0.424 -0.027 0.237 0.076 0.311 0.513 0.263 0.324 1 -0.063 0.452
Clus 160 | 0.286 0.114 0.585 -0.008 0.6 0.318 0.145 -0.199 0.241 -0.063 1 -0.017
Clus 65 0.372 0.686 -0.087 -0.076 -0.027 0.375 0.64 0.673 0.637 0.452 -0.017 1

Footnotes: Values indicate Pearson’s r. Correlations were calculated based on each cluster’s abundance (percent of total CD3*) in samples from all stimulation conditions at
treatment initiation (TO). Clus: clusters. Clusters in bold indicate the clusters that were grouped together in Figure 5 for manual analysis. The associated r values are highlighted

(green: subgroup A corresponding to clusters, 49, 50, 65, and 154; blue: subgroup B corresponding to clusters 74, 102, 160).



Supplementary Table 6. Exact p-values and test statistics for cluster abundance comparisons

between fast and slow converters, presented in Figure 6 and Supplementary Figure 5.

Cluster Timepoint Stimulation N (fast converters) N (slow converters) U statistic p
TO - significance threshold set at p < 0.026
117 T0 NIL 12 4 455 0.0094
132 T0 NIL 12 4 46  0.0079
134 TO NIL 12 4 45.5 0.0099
147 T0O NIL 12 4 43 0.023
148 TO NIL 12 4 43.5 0.019
186 TO NIL 12 4 3.5 0.0089
48 T0O NIL 12 4 44 0.017
62 TO NIL 12 4 46  0.0087
76 TO NIL 12 4 435 0.020
88 TO NIL 12 4 435 0.020
105 TO TB2 14 4 54 0.0061
118 TO TB2 14 4 51.5 0.012
134 TO TB2 14 4 52.5 0.010
147 TO TB2 14 4 50 0.021
148 TO TB2 14 4 49.5 0.025
32 TO TB2 14 4 50 0.020
74 TO TB2 14 4 49.5 0.025
75 TO TB2 14 4 54.5 0.0053
89 TO TB2 14 4 50 0.020
90 TO TB2 14 4 52 0.010
102 TO HBHA 11 3 32 0.018
132 TO HBHA 11 3 315 0.021
134 TO HBHA 11 3 315 0.023
148 TO HBHA 11 3 33 0.012
182 TO HBHA 11 3 2 0.015
183 TO HBHA 11 3 0 0.010
52 TO HBHA 11 3 315 0.023
62 TO HBHA 11 3 32.5 0.015
75 TO HBHA 11 3 315 0.021
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Supplementary Table 6 - continued

T1 - significance threshold set at p < 0.031

116
120
180

75

11
117
119
125
132
134
146
147
148
166
171
178
180

57
62
64
76
89
117
12
147
180
34
62

T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1
T1

NIL
NIL
NIL
NIL
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
TB2
HBHA
HBHA
HBHA
HBHA
HBHA
HBHA

12 4 43
12 4 435
12 4 6
12 4 435
14 4 7.5
14 4 50
14 4 49
14 4 5.5
14 4 49.5
14 4 55
14 4 49.5
14 4 535
14 4 525
14 4 7.5
14 4 6
14 4 6
14 4 7.5
14 4 6
14 4 5
14 4 51
14 4 49.5
14 4 51
14 4 49.5
11 3 33
11 3 15
11 3 315
11 3 1.5
11 3 31
11 3 32

0.023
0.019
0.023
0.020
0.031
0.021
0.027
0.018
0.025
0.0047
0.025
0.0075
0.010
0.019
0.021
0.020
0.028
0.021
0.016
0.016
0.025
0.016
0.023
0.011
0.022
0.021
0.020
0.028
0.018
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Supplementary Table 6 - continued

T2 - significance threshold set at p < 0.013
112 T2 NIL 12 4 2 0.0073
12 T2 NIL 12 4 0.0052
134 T2 NIL 12 4 46.5 0.0074
14 T2 NIL 12 4 0.0073
169 T2 NIL 12 4 0.0031
181 T2 NIL 12 4 3 0.012
182 T2 NIL 12 4 0.5 0.0021
183 T2 NIL 12 4 0.0049
60 T2 NIL 12 4 45 0.012
62 T2 NIL 12 4 47 0.0063
66 T2 NIL 12 4 455 0.010
67 T2 NIL 12 4 45 0.012
74 T2 NIL 12 4 47 0.0059
81 T2 NIL 12 4 45 0.012
112 T2 TB2 14 4 0.012
12 T2 TB2 14 4 3 0.0085
134 T2 TB2 14 4 52 0.012
148 T2 TB2 14 4 53 0.0088
166 T2 TB2 14 4 2 0.0045
169 T2 TB2 14 4 0.011
180 T2 TB2 14 4 0.0062
181 T2 TB2 14 4 1.5 0.0055
182 T2 TB2 14 4 0.0035
183 T2 TB2 14 4 0.0064
62 T2 TB2 14 4 55 0.0047
88 T2 TB2 14 4 52 0.012
94 T2 TB2 14 4 54 0.0059
98 T2 TB2 14 4 3.5 0.010
183 T2 HBHA 11 3 0 0.011

Footnotes: For comparisons between non-normal, independent continuous variables at TO, T1, and
T2 separately, the two-sided Mann-Whitney U test was performed. For discovery of clusters with
significantly different abundance, conservative corrections for multiple comparisons (e.g. Benjamini-
Hochberg) were not used in order to minimize type Il errors. Instead, all p-values were computed for
each timepoint, and the p-value corresponding to the null hypothesis being rejected in 5% of all
comparisons was used as the significance threshold instead of 0.05. This novel significance threshold
enabled to control type | error while maintaining an exploratory approach. Only clusters within which

significant differences were detected were represented.
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Supplementary Table 7. Exact p-values and test statistics for comparison of PCA scores between fast

and slow converters, presented in Figure 7 and Supplementary Figure 7.

Timepoint N(fast converters) N(slow converters) U statistic p-value
Figure 7 - within selected clusters

Component 1

TO 25 7 34 0.013
Tl 25 7 28 0.0051
T2 25 7 25 0.0029
Component 2

TO 25 7 130 0.0542
T1 25 7 72 0.503
T2 25 7 146  0.00602

Supp. Figure 7 - within all CD3* events

Component 1

TO 25 7 24 0.00247
Tl 25 7 30 0.00709
T2 25 7 22 0.00166
Component 2

TO 25 7 70 0.447
Tl 25 7 101 0.562
T2 25 7 58 0.191

Footnotes: For comparisons between non-normal, independent continuous variables

separately, the two-sided Mann-Whitney U test was performed.

at TO, T1, and T2
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Supplementary Table 8. Mass cytometry panel components.

Cellular target Clone Metal tag Volume for 10° cells in 100uL total
CD45 HI30 89Y 1,5
CD196/CCR6 11A9 141Pr 0,5
CD69 FN50 144Nd 1
CDh4 RPA-T4 145Nd 1
CD8 RPA-T8 146Nd 0,7
CD7 CD7-6B 147Sm 1
CD278/1COS C398.4A 148Nd 0,7
CD25 2A3 149Sm 1
CDh14 RMO52 151Eu 1,5
TCRgd 11F2 152Sm 1
TCRVa 7.2 3C10 153Eu 1,5
CD3 UCHT1 154Sm 1
CD279/PD-1 EH12.2H7 155Gd 1
CD183/CXCR3 G025H7 156Gd 1
CD194/CCR4 L291H4 158Gd 1
CD197/CCR7 GO043H7 159Tb 1
CD26 BASb 161Dy 1
CD27 L128 162Dy 1
CD161 HP-3G10 164Dy 1
CD127/IL-7Ra A019D5 165Ho 0,7
CD38 HIT2 167Er 1
CD154/CD40L 24-31 168Er 1
CD45RA HI100 169Tm 1
CD152/CTLA-4 14D3 170Er 1
CD185/CXCR5 RF8B2 171Yb 1
HLA-DR L243 173Yb 0,7
Perforin B-D48 175Lu 1
CD56 NCAM16.2 176Yb 1
CD16 3G8 209Bi 1

Footnotes: all antibodies were supplied by Fluidigm.
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Supplementary Table 9. Definition of clustering channels and expected cell subpopulations for

dimension reduction and automated clustering of CD3* T-cells.

Clustering channels

Expected cell subpopulations

Phenotype

CD4, CD8, CCR7,
CD45RA, CD161,
CD26, TCRgd,
TCRVa7.2, CD25

Gamma delta T-cells
MAIT-cells

Naive CD8* T-cells

Effector memory CD8* T-cells
Central memory CD8* T-cells
TEMRA CD8* T-cells

Naive CD4* T-cells

Effector memory CD4* T-cells
Central memory CD4* T-cells
TEMRA CD4* T-cells

Treg

Double negative T-cells

CD3* TCRy&*

CD3* CD4" CD8* CD26* CD161* TCRVa7.2*
CD3* CD4" CD8* CCR7* CDA5RA*

CD3* CD4" CD8* CCR7- CDA5RA"

CD3* CD4" CD8* CCR7* CDA5RA"

CD3* CD4" CD8* CCR7- CD45RA*

CD3* CD4* CD8 CCR7*CD45RA*

CD3* CD4* CD8 CCR7°CD45RA"

CD3* CD4* CD8 CCR7*CD45RA"

CD3* CD4* CD8" CCR7- CD4SRA*

CD3* CD4*CD25" IL7Ra’
CD3* CD4 CD&

Footnotes: only lineage-defining markers are presented in this table. MAIT: mucosal-associated invariant T-cells.
TEMRA: terminally differentiated effectors re-expressing CD45RA. NK: natural killer cells. NKT: natural killer T-

cells. Treg: T regulators.
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Supplementary Table 10. Spectral flow cytometry panel components.

ANTIBODIES! AURORA
Cellular target Clone Fluorochrome Supplier Single staining?
CD45RA HI100 BUV395 BD Cells
CD8 RPA-T8 BUV496 BD Cells
CD14? RMO52 BUV563 BD Cells
CD27 L128 BUV661 BD Cells
CD56 NCAM16.2 BUV737 BD Beads
CD4 RPA-T4 BUVS805 BD Cells
CD197/CCR7 G043H7 BVv421 Biolegend Cells
CD19?! HB19 SB436 Thermofisher Cells
HLA-DR L243 e450 Thermofisher Beads
TCRgd 11F2 BV480 BD Beads
TCRVa 7.2 3C10 BV510 Biolegend Beads
CD16 3G8 BV570 Biolegend Cells
CD194/CCR4 L291H4 BV605 Biolegend Cells
CD183/CXCR3 GO25H7 BV650 Biolegend Cells
CD196/CCR6 11A9 BV711 BD Beads
CD185/CXCR5 RF8B2 BV750 BD Beads
CD279/PD-1 EH12.2H7 BV785 Biolegend Cells
CD26 BASb FITC Biolegend Cells
CD3 UCHT1 A532 Thermofisher Cells
CD45 HI30 PerCP BD Cells
Perforin B-D48 PerCP-Cy5.5 Biolegend Beads
CD69 FN50 PerCP-eFluor710 Thermofisher Cells
CD25 2A3 PE BD Beads
CD278/1COS C398.4A PE Dazzle594 Biolegend Beads
CD154/CD40L 24-31 PE-Cy5 Biolegend Cells
CD152/CTLA-4 14D3 PE-Cy7 Thermofisher Cells
CD161 HP-3G10 APC Biolegend Cells
CD127/IL-7Ra A019D5 AF647 Biolegend Cells
CcD7 CD7-6B AF700 BD Cells
CD38 HIT2 APC e780 Thermofisher Cells

Footnotes:

LAll CyTOF and Aurora antibody clones were the same except for anti-CD14 (Aurora: clone M5E2; only
availability in this color), and anti-CD19, which was not included in the CyTOF panel.
2This column indicates which single stainings for unmixing reference controls were bright enough to
be performed on fixed white blood cell samples, or had to be performed on UltraComp eBeads Plus
compensation beads (ThermoFisher Scientific).
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Abstract

Objectives

Tuberculosis (TB) is the leading infectious cause of death in the world. Multi-drug resistant
TB (MDR-TB}) is a major public health problem as treatment is long, costly, and associated
to poor outcomes. Here, we report epidemiological data on the prevalence of drug-resistant
TB in Haiti.

Methods

This cross-sectional prevalence study was conducted in five health centers across Haiti.
Adult, microebiolegically confirmed pulmonary TB patients were included. Molecular genotyp-
ing (rpoB gene sequencing and spoligotyping) and phenotypic drug susceptibility testing
were used to characterize rifampin-resistant MTB isolates detected by Xpert MTB/RIF.

Resulis

Between April 2016 and February 2018, 2,777 patients were diagnosed with pulmonary TB
by Xpert MTB/RIF screening and positive MTB cultures. A total of 74 (2.7%) patients were
infected by a drug-resistant (DR-TB) M. tuberculosis strain. Overall HIV prevalence was
14.1%. Patients with HIV infection were at a significantly higher risk for infection with DR-TB
strains compared to pan-susceptible strains (28.4% vs. 13.7%, adjusted odds ratic 2.6, 95%
confidence interval 1.5-4.4, P = 0.001). Among the detected DR-TB strains, T1 (29.3%),
LAMY (13.3%j), and H3 (10.7%) were the most frequent clades. In comparison with previous
spoligotypes studies with data collected in 2000-2002 and in 2008-2009 on both sensitive
and resistant strains of TB in Haiti, we observed a significant increase in the prevalence of
the drug-resistant MTB Spoligo-International-Types (SIT) 137 (X2 clade: 8.1% vs. 0.3% in
2000-02 and 0.9% in 2008-09, p<0.001), 5 (T1 clade: 6.8% vs 1.9 in 2000-02 and 1.7% in
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2008-09, P=0.034) and 455 (T1 clade: 5.4% vs 1.6% and 1.1%, P=0.029). Newly
detected spoligotypes (SIT 6, 7, 373, 909 and 1624) were also recorded.

Conclusion

This study describes the genotypic and phenotypic characteristics of DR-TB strains circulat-
ing in Haiti from April 2016 to February 2018. Newly detected MTB clades harboring multi-
drug resistance patterns among the Haitian population as well as the higher risk of MDR-TB
infection in HIV-positive people highlights the epidemiclogical relevance of these surveil-
lance data. The importance of detecting RIF-resistant patients, as proxy for MDR-TB in
peripheral sites via molecular techniques, is particularly important to provide adequate
patient case management, prevent the transmission of resistant strains in the community
and to contribute to the surveillance of resistant strains.

Introduction

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (MTB). It
is the leading infectious cause of death worldwide. In 2018, the death toll for TB among HIV-
negative people was estimated to be 1.2 million, with an additional 251 000 deaths among
HIV-positive people. The estimated global burden for the same year was about 10 million new
cases [1]. Currently, about a quarter of the global population is latently infected, and at risk of
developing active TB.

Although the Americas accounted only for 3% of the global TB cases in 2018, Haiti is one of
the countries with the highest TB incidence in the Western hemisphere. In 2018, the country
reported an incidence of 176 cases per 100,000 population, of which approximately 15% were
cases of TB/HIV coinfection [2]. In Haiti, the mortality due to TB is estimated to be 9.2 per
100 000 population for HIV-negative patients, and 7.7 per 100 000 population for HIV-positive
patients [3]. The overall HIV prevalence is 2% and has remained stable in the past years, with
160,000 people living with HIV in 2018 including about 8,400 to 10,000 adolescents for whom
tailored interventions are needed to improve retention in care [4,5].

The definition of Multi Drug Resistance TB (MDR-TB) refers to strains that show resis-
tance to at least both Rifampicin (RIF) and Isoniazid (INH) two of the primary four drugs
used in TB treatment, whilst Drug Resistant TB (DR-TB) is may refer to strains that are resis-
tant to one or more drugs used in TB treatment. In Haiti, MDR-TB infections are a major pub-
lic health issue as the treatment and the risk of poor outcomes are starkly increased [6,7]. The
case management of such patients is costly for local healthcare systems and threatens to nega-
tively impact of the progress made in the recent years in the fight against TB in Haiti [8]. In
2018 in Haiti, 94 patients were diagnosed with laboratory-confirmed MDR-TB or Rifampin
Resistant TB (RR-TB) incidence of 5.1 per 100 000 population), and 91 were started on treat-
ment [3]. There are two existing centers for the treatment of these patients in Haiti, and the
capacity to perform Drug Susceptibility Testing (DST) to detect MDR-TB in Haiti remains
limited outside the capital city of Port au Prince (Ouest department). However, since 2014,
several peripheral laboratories have been equipped with GeneXpert® Systems (Cepheid, Sun-
nyvale, USA), enabling the molecular detection of rifampin resistant strains. Rifampin resis-
tance serves as a proxy for MDR-TB diagnosis in low-resource settings. In December 2019, 27
public laboratories and subsidized health institutions across the country had access to GeneX-
pert machines.
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In Haiti, the number of patients infected with Rifampin resistant MTB remains difficult to
estimate [9]. Available studies on this topic mainly focus on the urban population of Port au
Prince [6,10]. The present study was designed in collaboration with the National TB Program
and the National Public Health Laboratory in 2014, and involved five health institutions
located in the department of Ouest (GHESKIO INLR and GHESKIO IMIS), Nerd (Hépital
Justinien du Cap Haitien—HUTJ), Sud (Hépital Immaculée Conception des Cayes—HIC), and
Centre (Hépital Universitaire de Mirebalais—HUM). The general objective was to report the
prevalence of DR-TB in these five study sites. For surveillance purposes, this study aimed to
characterize the DR-TB strains circulating in Haiti from April 2016 to February 2018.

Materials and methods
Ethical statement

The study was approved by the Institutional Review Board of Weill Cornell Medical College
(New York, USA), the Institutional Review Board of GHESKIO Centres (Port-au-Prince,
Haiti) and the Haitian National Committee of Bioethics. Clinical and epidemiological data
were extracted from patients’ charts. As this was a retrospective clinical chart review, the
requiremnent for informed consent was waived by the institutional review boards.

Study sites

Five health institutions were selected to participate in the present study, based on the availabil-
ity of a functional GeneXpert® System (Cepheid, Sunnyvale, USA) on site and considered to
have large catchment areas for the population. The geographic distribution of the sites allowed
to cover four out of 10 departments: Ouest (GHESKIO INLR and GHESKIO IMIS), Nord
(Hépital Justinien du Cap Haitien—HUT), Sud (Hépital Immaculée Conception des Cayes—
HIC) and Centre (Hépital Universitaire de Mirebalais—HUM). Exclusion criteria included
age under 15, negative smear microscopy, and signs of extrapulmonary TB.

Tuberculosis screening and diagnostic algorithm

In the five participating health institutions, social workers administered a symptom checklist
enquiring about chronic cough lasting > 2 weeks, as well as other TB symptoms. Individuals
who reported chronic cough were separated from other patients and referred for same-day
physician evaluation. In the peripheral sites (HIC, HUJ, HUM), three sputurn samples were
collected per TB suspect: two were collected during the first consultation, then a sterile con-
tainer was given to the patient for collection of the third specimen the next morning, Smear
microscopy (Ziehl-Neelsen staining) was conducted. The third sputum specimen was refriger-
ated upon collection and transported to the biosafety level-3 Rodolphe Mérieux Reference
Laboratory in the GHESKIO IMIS (Port-au-Prince). Xpert MTB/RIF testing was done directly
on an early-morning specimen, in accordance with guidelines from the Haitian Ministry of
Health [11] and the manufacturer’s instructions. A single positive result from the smear exami-
nation led to the initiation of anti-TB treatment. HIV testing was conducted using rapid anti-
body tests (Determine; Alere, Waltharm, MA, USA). The protocol conducted by the GHESKIO
centers (INLR and IMIS) was slightly different as only two sputum specimens were collected
per patient, and no micrescopy testing was performed. Following internal diagnostics proto-
col, a digital chest radiograph (CXR} was performed on-site combined with Xpert MTB/RIF
testing. All sputum specimens collected in the present study were cultured on liquid media
(BACTEC MGIT 960, Becton Dickenson, Franklin Lakes, NJ, USA) and solid media (Lowen-
stein-Jensen).
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Phenotypic and genotypic drug-resistant TB assessment

DST to first- and second-line anti tuberculosis drugs was conducted for all samples with rifam-
pin resistance detected by Xpert MTB/RIF. First-line DST was performed with BACTEC
MGIT 960 SIRE and PZA kits as previously described [12]. Drug-resistant TB strains were fur-
ther characterized using an in-house Luminex PCR-based spoligotyping assay and by rpoB
gene sequencing as previously described [12,13]. Spoligotype International Type (SIT) patterns
were assigned using the SITVIT2 database [14].

Data analysis

Sociodemographic information, TB diagnosis and HIV status were collected using standard-
ized clinical report forms. Data were cleaned and analyzed in R studio software (version 3.6.2).
As the sample size was small, discrete variables were analyzed using Fisher’s Exact test with
Bonferroni’s pest-hoc [15]. Normal, continuous variables were analyzed using Student’s t-test.
Non-normal, continuous variables were analyzed using the Mann-Whitney or Kruskal- Wallis
rank tests with Dunn’s post-hoc [16] when necessary. For logistic regression, if missing data
exceeded 10% of the sample size, the variable was not considered. Otherwise, missing data
were replaced by the most frequent group (categorical variables) or the mean (continuous vari-
ables). Predictors were first evaluated in univariate logistic analyses, then models were adjusted
for sociodemographic factors.

Results
Sociodemographic and clinical characteristics of the participants

From April 2016 to February 2018, 2,777 microbiologically confirmed pulmonary TB patients
were enrolled in five study sites across Haiti. Initially, the aim of the study was to enroll 1,000
new TB patients and 250 re-treatment cases, with equal sampling from each site. However,
country-wide strike movements hindered patient recruitment in peripheral study sites,
prompting increased recruitment in central GHESKIO clinical centers (IMIS and INLR),
hence the unequal sample size per site. All study sites were comparable regarding the age, sex
ratio, and HIV prevalence of recruited participants (Table 1). The prevalence of HIV was
14.1% (391/2764). The frequency of retreatment was unequal between sites, with a lower fre-
quency in the HUJ and HUM centers (center and northern sites) compared to the remaining

Table 1. Sociodemographic and clinical characteristics of the cohort.

ALL INLR HIC HUJ HUM IMIS P
Ny = 2777 Ny = 2049 Np =148 N =50 Np =75 Ny = 455
Age (years), median (IQR) 31 (24-40) 31(25-41) 28.5 (23-39) 27 (23-40.75) | 31(24.5-445) 30 (23-39) 0.132
Sex (male), % (N) 56.6% (1572/2777) | 58.1% (1190/2049) | 55.4% (82/148) 60% (30/50) | 50.7% (38/75) | 51% (232/455) 0.060
HIV positivity, % (N) 14.1% (391/2764) 14.2% (291/2044) 19.9% (29/146) 12% (6/50) 11.4% (8/70) 12.6% (57/454) 0.272
Treatment category
New cases, % (N) 86.5% (2401/2777) | 85.8% (1759/2049) | 845% (125/148) | 96% (48/50) 96% (72/75) | 87.3% (397/455) 0.014
Relapse, % (N) 8.5% (236/2777) 8.5% (175/2049) 13.5% (20/148) 2% (1/50) 4% (3/75) 8.1% (37/455) 0.058
Treatment after interruption % (N) 4% (110/2777) 4.5% (92/2049) 1.4% (2/148) NA NA 3.5% (16/455) 0.049
Treatment after failure, % (N) 1.1% (30/2777) 1.1% (23/2049) 0.7% (1/148) 2% (1/50) NA 1.1% (5/455) 0.823
Drugresistance, % (N) 2.7% (74/2758) 1.7% (34/2045) 0.7% (1/138) 4.1% (2/49) 42% (3/71) 7.5% (34/455) <0.001

Data were analyzed using Fisher’s Exact text or the Mann-Whitney U test (p-values given for all categories). Pairwise differences were assessed using Bonferroni or

Dunn’s post hoc. Stars indicate statistically different groups.

hiips://doi.org/10.1371/journal. pone.0248707 1001
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three sites. Among the 2,777 TB patients diagnosed with the Xpert MTB/RIF molecular test,
74 (2.7%) had TB isolates displayed a concordant genotypic/phenotypic DR-TB profiles. The
prevalence of detected DR-TB strains was higher in te IMIS center compared to the rest of the
partner sites.

Phenotypic diversity of detected drug-resistant TB strains

Among the 74 drug-resistant TB strains identified by DST, 12 strains (16.2%) displayed a
mono-resistance to at least 1 antibiotic (drug-resistant TB strain; DR-TB) and 62 strains
(83.8%) displayed a multi-drug resistant (MDR-TB) profile (defined by resistance to at least
rifampin and isoniazid). Resistance phenotypes to INH and RIF were predominant (87.8%
and 91.9%, respectively).

Details of monoresistance and multi-drug resistant profiles are shown in 81 Table and S1
Fig. Sixty-two (83.8%) DR-TB strains were identified in new TB cases, 11 (14.9%) in relapse
T3B cases, and 1 (1.4%) in subjects under retreatment after failure (Table 2).

Comparison of clinical and sociodemographic factors between drug-
susceptible and drug-resistant TB patients

We then compared the sociodemographic and clinical characteristics of DR-TB and DS-TB
patients. Patient characteristics were comparable (age group, sex ratio, and treatment cate-
gory), but HIV prevalence was significantly higher in DR-TB patients (28.4% vs. 13.7%,

p = 0.002) (Table 2). Logistic regression analyses confirmed that HIV-positive patients
recruited in this cohort were at higher risk for detection of DR-TB strains. After adjusting for
age, sex, and study site of recruitment, HIV-positive patients were 2.5 times more likely to be
diagnosed with DR-TB than HIV-negative patients.

Diversity of circulating drug-resistant MTB strains

The repartition of drug-resistant M. fubercudosis strains in Haiti during this study period was
then assessed (Fig 1). T1, LAMY, LAMI and H3 were the most frequently detected clades

Table 2. Comparison of drug-susceptible and resistant TB patients and evaluation of associated risk factors.

Total Drug sensitive Drug Logistic regression—association with drug resistance
resistant Univariate analysis Multivariate analysis*
N =2777 Ny = 2684 Nt =74 P OR 2.50% 97.50% P aOR | lower upper P AIC
Sex (male) 56.6% (1572/ 56.9% (1526/ | 51.4% (38/74) 0.345 0.855| 0.616 1.188 | 0.347 | - - - - -
2777) 2684)
HIV positivity 14.1% (391/ 13.7% (365/ 28.4% (21/74) | 0.002 2.504 1463 4139 | 0.001 | 2.585 | 1.478 4.383 | 0.001 | 64328
2764) 2672)
Age (years; median, IQR) 31 (24-40) 30.5 (24-40) 33 (24-43.75) | 0.313 | 1.012 | 0.995 1.029 | 0.162 | - - - - -
Treatment category
New cases 86.5% (2401/ 80.7% (2328/ | 83.8% (62/74) 0.486  0.79 | 0.437 1.553 | 0.462 | 0.756 | 0.152 13.737 | 0.788 | 650.37
2777) 2684)
Relapse 8.5% (236/2777) | 8.2% (219/2684) | 14.9% (11/74) | 0.052 | 1.965  0.968 3.636 | 0.043 | 1.397 | 0.247 26.408 | 0.756 | 650.37
Treatment after 4% (110/2777) | 4.1% (109/2684) 0 0118 0 0 |5789.26 | 0.981 - - - - -
interruption

Treatment after failure 1.1% (30/2777) 1% (28/2684) 1.4% (1/74) | 0.547 1299 0.072 6.216 | 0.798 | 0 0 252087 | 0.98 | 650.37

Data were compared with Fisher’s Exact Test. OR: odds ratio. aOR: Adjusted odds ratio. IQR: Interquartile range. AIC: Akaike Information Criterion.
*Models were adjusted for age, sex, and study site. Fifteen out of 2,777 smear-positive samples were tested GeneXpert MTB/RIF negative (MTB not detected) and 4
isolates could not be cultured for DST.

https://doiorg/10.1371/journal pone 0248707 1002

PLOS ONE | hitps //doi_org/10.1371/joumal pone 0248707  March 18, 2021 5/12

189



PLOS ONE

Drug-resistant TB prevalence siudy in 5 health insiitutions in Haiti

MTB lineages
[ am =

B e [
l:l AFRI_3 LAMS
B unknown H3

[]re [ ] ame
. X2 . T

50km

Fig 1. Repartition of drug-resistant M. tuberculosis clades in Haiti (n = 74). Geographic repartition of DR-TB
clades in partner study sites. Data are given for all patients with known spoligotypes. Pie chart size correlates with
sample size in each site (Gheskio: n = 34. IMIS: n =34 HUM: n =3 HULEn=2 HIC:n=1).

htips://doi.org/10.1371/journal. pong.0246 707.g001

among all DR-TB patients. In the two sites with the most recruited patients (GHESKIO IMIS
and INLR), T1 was also the most frequently detected clade, however, a greater diversity of
clades was observed in the INLR center. Frequencies of detected DR-TB clades and spoligo-
types were compared with data collected in 2002 and in 2009 [13] (Table 3). The prevalence of
X2 strains (SIT 137) significantly increased from 0.3% and 0.9% in 2002 and 2009, respectively,
to 8.1% (6/74) in our study (P <0.001). Three of these strains had the same resistance pheno-
type (STR+INH+RIF+EMB+ETH), the same rpoB mutation (S531L), and were detected in the
same study site (GHESKIO INLR) (Table 4). A similar phenomenon was observed with T1
strains (SIT 5), carrying the D516V rpoB mutation, with the same resistance profiles (STR
+INH+RIF+EMB), and detected in the sarne site (GHESKIO INLR). Moreover, we recorded
rare occurrences of MDR-TB strains that were not detected in these previous studies (T'1 SIT
373 and 7, LAM SIT 1624, EAI-SOM SIT 6 and SIT 909 with unknown clade) among new TB
cases (52 Table). Finally, some of the strains that were highly prevalent in previous works
(LAM2) were less frequent in our study (1.4% vs. 5.8% in 2002 and 4.4% in 2009).

Relationship between rpoB mutation and lineage

rpoB sequencing was performed on DR-TB isolates (S2 Fig). $531L was the most frequently
detected mutation (44/74, 59.4%) followed by S531W and D516V (7/74, 9.4% respectively).
rpoB mutations were heterogeneously distributed within the detected clades (83 Fig). As
expected, the highest mutation diversity was observed in the most frequent lineage (T1), and
the most frequent rpoB mutation (S531L1) was detected in every lineage. Interestingly, S531L
mutations were detected in at least 50% of isolates for every lineage except LAMY, in which

PLOS ONE | hitps //doi_org/10.1371/joumal pone 0248707  March 18, 2021 6/12

190



PLOS ONE

Drug-resistant TB prevalence siudy in 5 health insiitutions in Haiti

Table 3. Spoligotyping data of TB isolates in Haiti.

SIT

42
53
93
20
91
137
5
50
455
2
77
51
294
408
17
373
578
714
909
1624
6

7

*Data from Ocheretina, O. et al. Journal of Clinical Microbiology 51, 2232-2237 (2013). Both studies include DS and DR-TB strains.
**4 samples failed to generate an interpretable pattern (SIT). $IT and Clades were retrieved from the SITVIT2 international database. Data were compared with Fisher’s

Exact Test.

htips//doiorg/10.1371/journal pone 0248707 1003

Clade TB isolates N (%)
2000-2002" 2008-2009" 2016-2018
Ny =379 Np =758 N = 74° P
LAMS9 27 (7.1) 54(7.1) 10 (13.5) 0.149
T 27 (7.1) 46 (6.1) 7(9.5) 0.433
LAMS 15 (4) 33 (44) 7(9.5) 0.135
LAM1 26 (6.9) 42 (5.5) 4(5.4 0.693
X3 29 (7.7) 31(41) 5(6.8) 0.031
X2 1(0.3) 7(0.9) 6(8.1) <0.001
T1 7(19) 13 (1.7) 5(6.8) 0.034
H3 37 (9.8) 79 (10.4) 2(2.7) 0.084
T1 6(1.6) 8(L1) 4(5.4) 0.029
H2 37(9.8) 72 (9.5) 3(41) 0.287
T 4(11) 11(1.5) 3(41) 0.149
T 17 (4.5) 26 (3.4) 2027 0.671
H3 1(0.3) 2(0.3) 2027 0.039
AFRI 3 s 4(0.5) 1(1.4) 0.019
LAM2 22 (5.8) 33(44) 1(L4 0.218
T1 -0) -G 1 (1.4 1.606
LAM1 3(0.8) 7(0.9) 1(L4 0.761
H3 4(1.1) 3(0.9) 1(1.4) 0.189
No clade - () - () 1(1.4 1.000
LAM -() - () 1(1.4 1.000
EAI-SOM - ) - () 1(1.4) 0.061
T s ) 2027 0.003

$531W was the most frequent mutation. No difference was observed when stratifying data
according to HIV status (data not shown).

Discussion

In this study, we reported the occurrence of DR-TB infections in patient cohorts across five
study sites in Haiti. We evaluated their distribution according to selected sociodemographic
parameters, and we described the phenotypic and genotypic characteristics of isolated DR-TB
strains.

First, we observed that patients living with HIV infection were at a significantly higher risk
for infection with DR-TB strains compared to pan-susceptible strains (31% vs. 15%, aOR 2.5,
95%CI 1.5-4.1, p < 0.001). Comparatively, in Haiti, reported rates of HIV infection are of 16%
in TB patients regardless of the drug-susceptibility status, and 2% in the general population
[L7]. Increased epideriological interactions between HIV and MDR-TB infections compared
to pan-susceptible TB infections have been described since the late nineties [18]. Data on this
topic in Haiti are scarce, but a 2006 study reported significantly higher rates of MDR-TB in
HIV-positive than in HIV-negative patients [7], which is corroborated by our results. The rea-
son for the interactions between HIV and MDR-TB rerains unclear: explanatory hypotheses
available in the literature include increased anti-TB drug malabsorption in HIV-positive
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Table 4. Description of DR-TB cases and characterization of genotypic and phenotypic drug-resistances by SIT.

SIT CLADE SITE

137 X2 GHESKIO
GHESKIO
GHESKIO
IMIS
IMIS
IMIS
B T1 GHESKIO
GHESKIO
GHESKIO
GHESKIO
IMIS
455 T1 GHESKIO
IMIS
IMIS
HUM

PID

GH-0128
GH-0477
GH-0573
IMIS-040
IMIS-388
IMIS-420
GH-0235
GH-0269
GH-1017
GH-1980
IMIS-239
GH-0640
IMIS-344
IMIS-210
PIH-005

62
25
68
71
57
19
17
29
21
45
69
26
29
18
30

AGE  SEX TREATMENT CATEGORY | HIV status | rpoB mutation Drug Susceptibility Testing

STR INH | RIF | EMB PZA ETH

M N P S531L R R R R S R
M N N S531L R R R R S R
F N N S531L R R R R S R
M N N S531L S R R S R R
F N N §531L S R R R R R
M R I §531L N R R N R )
M N P D516V R R R R S s
M N N D516V R R R R S S
F N N D516V R R R R S S
M N N D516V R R R R S S
F R P S531L S S R S S S
M R N S531L S S R S S S
M N P S531L S S R S S S
M N N S531L R R R R R S
M R N S531L R R R R S R

SIT and clades were retrieved from the SITVIT2 international database. Sex: M = male, F = female; Treatment category: N = new case, R = Relapse; HIV status:

P = positive; N = Negative; Drug susceptibility testing: R = Resistant; § = Susceptible; Drugs: STR = streptomycin, INH = isoniazid, RIF = Rifampin, EMB = etham butol,

PZA = Pyrazinamide), ETH = ethionamide. The shaded areas represent identical genotypic and phenotypic resistance profiles for the same SIT.

htips//doiorg/10.1371/journal pone 0248707 1004

patients, or enhanced fitness of MDR-TB strains compared to pan-susceptible strains in HIV-
positive hosts [19]. However, current evidence points to an increase in the risk of primary
MDR-TB infection in HIV-positive patients, rather than acquired drug-resistance [20].
Secondly, we studied the phenotypic and genotypic diversity of the DR-TB strains isclated
from our cohort. Most strains with RIF resistance upon GeneXpert testing also displayed drug
or multi-drug resistant phenotypes upon DST. The most frequent resistance phenotypes
detected were resistance to Isoniazid and Rifampin, and resistance to all four first line anti-TB
drugs. Sequencing analyses identified two high frequency rpoB mutations ($531L and S531W)
and 12 low-frequency rpoB mutations on different loci. Five strains with discrepant phenotypic
and genotypic results for resistance to RIF were isolated. Strains exhibiting these discrepancies
have been described in previous works in Haiti as possibly harboring subcritical levels of resis-
tance to RIF [12,21]. In our cohort, sequencing analyses identified either T508A or silent T508T
rpoB mutations in these five discrepant strain isolates, and their SIT numbers were 20 and 50
respectively, which is consistent with earlier findings [12]. In addition, strains harboring a
L511P rpoB mutation have been detected in our cohort; while this has been previously found in
phenotypically RIF susceptible strains [12], they were phenotypically drug-resistant in our case.
Thirdly, we aimed to identify the M'TB clades detected in the cohort’s DR-TB patients.
Indeed, molecular epidemiclogy is now an important tool to determine MTB transmission
patterns, as it complermnents classic epideriologic contact tracing and allows investigators to
better characterize transmission dynamics. In this study, T1, LAM9, LAMI and H3 were the
most frequently detected clades among all DR-TB patients. In the two sites with the most
recruited patients (GHESKIO IMIS and INLR), T1 was the most frequently detected clade as
well, but increased diversity was observed in the INLR center. These observations are consis-
tent with a review of MTB drug-resistance and associated genotypic clades observed in 3
French Departments of the Caribbean (Guadeloupe, Martinique and French Guiana) over a
seventeen-year period (January 1995-December 2011) [22]. This review reports that T, LAM,
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and H were the most common clades, respectively accounting for 29.9% (358/1199), 23.9%
(286/1199), and 22.1% (265/1199} of all DR-TB isolates. Moreover, a previous spoligetyping
study of 758 TB strains collected in patients presenting to the 6 largest TB centers in and
around Port-au-Prince (2008-to-2009 MDR-TB survey [6]) revealed that H3 (10.4%, SIT 50),
H2 (9.5%, SIT 2), LAMS (7.1%, SIT42), T1 (6.1%, SIT 53) and LAM-1 (5.5%, SIT 20) were the
5 most prevalent clades circulating in Haiti during this period [13]. Other spoligotyping data
from a project conducted by GHESKIO and Pasteur Institute Guadeloupe from 2000 to 2002
showed that H3 (9.8%, SIT 50), H2 (9.8%, SIT 2), LAMS (7.1%, SIT42), T1 (7.1%, SIT 53) and
LAM-1 (6.9%, SIT 20) were also the 5 most prevalent TB clades detected in 378 GHESKIO
patients [13]. Here, a comparative analysis of DR-TB strains spoligotypes circulating in Haiti
revealed a resurgence in the number of cases caused by strains with a previously low preva-
lence (i.e. SIT 137, 5, 455 and 294) or even unknown (SIT 373, 6, 7 909 and 1624). Phenotypic
and genotypic analysis of individual MTB strains revealed several identical patterns of
MDR-TB. These observations suggest that patients with genetically identical strains may have
been infected by a commeon index case or may have been part of a larger cluster of cases.

The Luminex spoligotyping method currently used by GHESKIO in combination with the
GeneXpert MTB/RIF was adapted as a first-line, high-throughput teol for MTB genotyping in
resource-limited countries. Luminex spoligotyping allows real-time typing and can be used for
multiple clinical and public health purposes in Haiti, such as epidemiological investigation
through community-based active case finding (ACF), contact tracing, and MTB strain charac-
terization during clinical trials of pulmonary MDR-TB treatrents [23-27]. Data from a 2014
2015 retrospective cohort analysis using the GHESKIO ACF campaign revealed that the preva-
lence of TB and HIV in slums of Port-au-Prince was respectively four and five times higher
than national estimates [23]. Active case finding for TB and HIV should be expanded to other
slum populations in Haiti as part of routine programmatic activities to increase the detection
rate of TB cases.

Conclusion

Overall, our study showed that people living with HIV in Haiti were particularly at risk for
drug-resistant TB, which is a major public health issue on the island. The identified MTB
clades were consistent with similar works conducted in the Caribbean, and several MTB clades
harboring drug resistance patterns were either newly identified or increasingly detected
among the Haitian population. These observations demonstrate that MTB strain genotyping,
identification, and surveillance of specific M. tuberculosis SITs are essential to better under-
stand the dynamics of DR-TB strain transmission, and to design adapted TB control measures
in Haiti. The use of Xpert MTB/RIF testing increased the detection rate of patients with
bacteriologically-confirmed TB, and an additional surrogate spoligotyping method is useful to
identify MDR-TB dades among newly diagnosed TB cases, to differentiate reactivation from
re-infection, to discover more virulent strains, and to monitor the spread of new types.
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Supplementary data

Table 1S. Summary of resistance profiles of DR-TB isolates identified in new TB cases,
relapse, treatment after failure or treatment after interruption.

New Treatment Treatment
Resistance profiles cases L0 after q after . P et
N (%) N (%) failure interruption N (%)
N (%) N (%)

Nr=2,401 Nt=236 Nr=30 Nt=110 Nt=2,777
Resistant to INH* 56 (2.3) 8 (3.4) 1(3.3) - 0.148 65 (2.3)
Resistant to RIF* 57 (2.4) 10 (4.2) 1(3.3) - 0.053 68 (2.4)
Resistant to EMB* 24 (1.0) 2(0.8) 1(3.3) - 1.000 27 (1.0)
Resistant to STR* 15 (0.6) 3(1.3) - - 0.431 18 (0.6)
Resistant to ETH* 11 (0.5) 1(0.4) - - 0.846 12 (0.4)
Resistant to PAS* 1(0.0) - - - 1.000 1(0.0)
Resistant to PZA* 23(1.0) 2(0.8) - - 0.720 25(0.9)
Monoresistant to INH 2(0.1) 1(0.4) - - 0.448 3(0.1)
Monoresistant to RIF 6(0.2) 3(1.3) - - 0.084 9(0.3)
Monoresistant to EMB - - - - 1.000 -
Monoresistant to STR - - - - 1.000 -
Monoresistant to ETH - - - - 1.000 -
Monoresistant to PAS - - - - 1.000 -
Monoresistant to PZA - - - - 1.000 -
Resistant to 1 AB** 8(0.3) 4(1.7) - - 0.067 12 (0.4)
Resistant to 2 AB** 18(0.7) 2(0.8) - - 0.893 20(0.7)
Resistant to 3 AB** 11 (0.5) 3(1.3) 1(3.3) - 0.172 15 (0.5)
Resistant to 4 AB** 13 (0.5) 1(0.4) - - 1.000 14 (0.5)
Resistant to 5 AB** 12 (0.5) 1(0.4) - - 1.000 13 (0.5)

Footnotes : *comprises all drug-resistant isolates to the respective drugs (irrespective of other associated resistances). INH (isoniazid), RIF
(Rifampin), EMB (ethambutol), STR (streptomycin), ETH (ethionamide), PAS (para-aminosalicylic acid) or PZA (Pyrazinamide),

respectively.** Strains resistant to 1, 2, 3 or 4 of the tested antibiotics (AB)
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Table 2S. Mono-resistance profile of DR-TB isolates identified in new TB cases, relapse,

treatment after failure, treatment after interruption.

TB strain Treatment Treatment
. Antibiotic resistance profile New cases Relapse after after TOTAL
resistance . . .
rofile failure interruption
g N % N % N % N % N %
Mono- INH 2 25 1 25 0o - 0 3 25
drug
resistant RIF 6 75 3 75 0 - 0 9 75
e STR 0 o0 0 0 0 - 0 0 o0
EMB 0 0 0 0 0 - 0 0 0
PZA 0 o0 0 0 0 - 0 0 o0
Total mono-drug resistant isolates 8 100 4 100 0o - 0 12 100

Table 3S. Multi-resistant profile of DR-TB isolates identified in new TB cases, relapse,

treatment after failure, treatment after interruption.

Treatment Treatment
New cases Relapse after after TOTAL
failure interruption
N % N % N % N % N %
Multi- INH + RIF 16 296 2 286 0 00 0 18 290
i:;ftant INH + RIF + STR 0 00 2 286 0 00 0 2 32
8 INH + RIF + EMB 2 37 0 00 1 1000 0 3 48
INH + RIF + EMB + PZA 5 93 1 14.3 0 00 0 6 97
INH + RIF + EMB + PZA + ETH 3 5.6 0 0.0 0 0.0 0 3 4.8
INH + RIF + PZA 6 11.1 1 14.3 0 00 0 7 11.3
INH + RIF + ETH 2 37 0 0.0 0 00 0 2 32
INH + RIF + STR + EMB 5 93 0 0.0 0 00 0 5 8.1
INH + RIF + STR + EMB + ETH 3 56 1 14.3 0 00 0 4 6.5
INH + RIF + PZA + KM 1 19 0 0.0 0 00 0 1 1.6
INH + RIF + PZA + ETH 2 37 0 0.0 0 00 0 2 32
INH + RIF + STR + EMB + PZA 6 111 0 00 0 00 0 6 9.7
INH + ETH + PAS 1 19 0 0.0 0 00 0 1 1.6
ETH + INH 1 19 0 0.0 0 00 0 1 1.6
STR + INH 1 19 0 0.0 0 00 0 1 1.6
Total multi-drug-resistant isolates 54 100.0 7 100.0 1 1000 0 62 100.0
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Table 4S. Summary of resistance profiles of DR-TB isolates identified in new TB cases,
relapse, treatment after failure, treatment after interruption.

Treatment Treatment
New cases Relapse after after TOTAL
failure interruption
N % N % N % N % N %
Mono-drug resistant TB 8 12.9 4 36.4 0 0.0 0 - 12 16.2
Multi-drug resistant TB 54 87.1 7 63.6 1 1000 0 - 62 838
Total drug-resistant isolates 62 100.0 11 100.0 1 1000 0 - 74 100.0

Table 5S. Distribution of DR-TB lineages (SIT) among new TB cases, relapse and treatment
after failure.

SIT New cases Relapse Treatment
Nt=62 Nr=11 Nr=1 P

2 1(1.6) 1(9.1) 1(100.0) <0.001
5 4(6.5) 1(9.1) -(9) 0.177
6 1(1.6) -(-) -(-) 0.196
7 2(3.2) -() -() 0.398
17 1(1.6) -(-) - (-) 0.196
20 4(6.5) -(-) - (-) 0.818
42 8(12.9) 2(18.2) -(9) 0.381
50 2(3.2) -(-) -(-) 0.398
51 2(3.2) -(9) -(-) 0.398
53 6(9.7) 1(9.1) -(-) 0.947
77 2(3.2) 1(9.1) -(-) 0.648
91 5(8.1) -(-) -(-) 0.595
93 5(8.1) 2(18.2) -() 0.543
137 5(8.1) 1(9.1) -(-) 0.950
294 2(3.2) -(9) -(-) 0.398
373 1(1.6) -() -() 0.196
408 1(1.6) -(-) -(-) 0.196
455 2(3.2) 2(18.2) -(-) 0.126
578 1(1.6) -(9) -(-) 0.196
714 1(1.6) -(9) -(-) 0.196
909 1(1.6) -(-) - (-) 0.196
1624 1(1.6) -() -() 0.196
UKN 4(6.5) -(-) -(-) 0.196

New SIT detected in the present study are in bold.
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Figure 1S. Description of DR-TB strains phenotypes among all patients with available DST results.
A total of 74 DR-TB strains were analyzed, including 12 mono-drug resistant strains and 62 multi-drug
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Figure 2S. rpoB genotypic diversity of DR-TB isolates (n = 74).

200



Tl (n=22) LAM (n = 10) H3 (n = 8) LAMA1 (n =7)

531Q
H526Y H526R

2\

D516V

533H
T508A

S531L

T508T W

LAMS {n=7) X3 (n=6) X2 (n=8) H2 (n =3)

Unknown (n = 2) AFRI_3 (n=2) LAM2 (n=1) LAM (n=1)

g

4
&

H526L S531L L533P S531L

T
&

Figure 3S. Frequency of detected rpoB mutation in each identified drug-resistant
M. tuberculosis lineage (n=74). Data are given for all patients with known spoligotypes.

201



2.2  Annex 5 — Multi-country evaluation of the blood transcriptomic signature RISK6

Multi-country evaluation of RISK6, a 6-gene blood transcriptomic signature,

for tuberculosis diagnosis and treatment monitoring

Rim Bayaa, Mame Diarra Bousso Ndiaye, Carole Chedid, Eka Kokhreidze, Nestani

Tukvadze, Sayera Banu, Mohammad Khaja Mafij Uddin, Samanta Biswas,
Rumana Nasrin, Paulo Ranaivomanana, Antso Hasina Raherinandrasana, Julio
Rakotonirina, Vohangy Rasolofo, Giovanni Delogu, Flavio De Maio, Delia Goletti,
Hubert Endtz, Florence Ader, Monzer Hamze, Mohamad Bachar Ismail,

Stéphane Pouzol, Niaina Rakotosamimanana, Jonathan Hoffmann.

Scientific reports 2021; 11(1); 1-12.

202



www.nature.com/scientificreports

scientific reports

W) Check for updates

Multi-country evaluation of RISKS6,
a 6-gene blood transcriptomic
signature, for tuberculosis
diagnosis and treatment
monitoring

Rim Bayaa’21*5, Mame Diarra Bousso Ndiaye'*%*, Carole Chedid'*3, Eka Kokhreidze$,
NestaniTukvadze®, Sayera Banu’, Mohammad Khaja Mafij Uddin’, Samanta Biswas’,
Rumana Nasrin’, Paulo Ranaivomanana?®, Antso Hasina Raherinandrasana®,

Julio Raketonirina®, Voahangy Rasolofo?, Giovanni Delogu®, Flavio De Maio?,

Delia Goletti'®, Hubert Endtz"!, Florence Ader'?, Monzer Hamze?, Mohamad Bachar Ismail?,
Stéphane Pouzol’, Niaina Rakatosamimanana®¢, Jonathan Hoffmann¢* & The HINTT
working group within the GABRIEL network”

There is a crucial need for non-sputum-based TB tests. Here, we evaluate the performance of RISK6,

a human-blood transcriptemic signature, for TB screening, triage and treatment menitoring. RISK6
performance was also compared to that of two IGRAs: one based on RD1 antigens (QuantiFERON-TB
Gold Plus, QFT-P, Qiagen) and one on recombinant M. tuberculosis HBHA expressed in Mycobacterium
smegmatis (IGRA-rmsHBHA). In this multicenter prospective nested case—control study conducted

in Bangladesh, Georgia, Lebanon and Madagascar, adult non-immunocompromised patients with
bacteriologically confirmed active pulmonary TB (ATB), latent TB infection (LTBI) and healthy donors
(HD) were enrolled. ATB patients were followed-up during and after treatment. Blood RISK6 scores
were assessed using quantitative real-time PCR and evaluated by area under the receiver-operating
characteristic curve (ROC AUC). RISK6 performance to discriminate ATB frem HD reached an AUC of
0.94 (95% C1 0.89-0.99), with 90.9% sensitivity and 87.8% specificity, thus achieving the minimal WHO
target product profile for a non-sputum-based TB screening test. Besides, RISK6 yielded an AUC of
0.93 (95% C1 0.85-1) with 90.9% sensitivity and 88.5% specificity for discriminating ATB from LTBI.
Moreover, RISK6 showed higher performance (AUC 0.90, 95% C1 0.85-0.94) than IGRA-rmsHBHA
(AUC 0.75, 95% C1 0.69-0.82) to differentiate TB infection stages. Finally, RISK6 signature scores
significantly decreased after 2 months of TB treatment and continued to decrease gradually until the
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end of treatment reaching scores obtained in HD. We confirmed the performance of RISK6 signature
as a triage TB test and its utility for treatment monitoring.

One fourth of the world population is estimated to be infected with Mycobacterium tuberculosis (Mth) that causes
approximately 10 million cases of tuberculosis (TB) vearly. This disease ranks among the leading causes of death
worldwide, resulting in 1.4 million deaths in 2019". Five to 10% of infected individuals develop the contagious,
active form of TB (ATB) disease, while most of them (90%) control the infection and develop asymptomatic
latent TB infection (LTBL). However, a small proportion (10%) of LTBI individuals will develop ATB during their
lifetime®. TB can be treated with a regimen of several antibiotics for a minimum of 6 months. In most patients,
TB therapy provides cure® but treatment failure and relapse can occur. These outcomes are associated with severe
adverse effects and long treatment durations that induce a lack of patient adherence to the treatment regimen
thus promoting the emergence of drug-resistance*.

Current ATB diagnostic tests include sputum-based culture and acid-fast Bacillus (AFB) smear microscopy
which are also used for monitoring TB treatment response’ . Molecular tests like the GeneXpert MTB/RIF or
ULTRA, are also performed using sputum samples®. Interferon (IFN)-y release assays (IGRAs) such as Quan-
tiFERON-TB Plus (QFT-P; Qiagen) are blood-based tests used for the detection of Mth infection, yet cannot
discriminate ATB from LTBI®. However, the combined use of QFT-P with the heparin-binding hemagglutinin
antigen; HBHA-based IGRAs, that relies on the stimulation of whole blood with recombinant Mtb HBHA protein
expressed in Mycobacterium smegmatis (IGRAs-rmsHBHA)'?, recently revealed the potential for the stratifica-
tion of TB stages (e.g. ATB vs LTBI)!'-14,

Sputum-based TB tests are associated with several limitations including the long-time of culture and the
lack of sensitivity and specificity of smear microscopy'®. Besides, although molecular tests are more sensitive
for diagnosing pulmonary TB, they still have limited sensitivity in paucibacillary pulmonary TB patients'®!. In
addition, sputum samples may be difficult to obtain in some populations (e.g. children and HIV co-infected TB
patients) as well as in ATB patients after symptom improvement'®. In this context, the World Health Organization
(WHO) has declared an urgent need for alternative non-sputum-based TB tests with a series of target product
profiles (TPPs) which detailed the minimal and optimal criteria that should be met to diagnose and monitor
TB treatment response'®*'. Those new TB tests need to be based on accessible biological samples such as whole
blood or urine, and must be practical for field applications?>.

Currently, there is much active research®*?* on human blood transcriptomic TB biomarkers®®. A six whole
blood gene transcriptomic signature (RISK6) has been recently described and validated in 7 independent cohorts,
demonstrating its utility to predict the risk of progression from TB infection to ATB disease, as a screening test
for TB, and to monitor TB treatment response'®*®, The present study aims: to evaluate the robustness of the
RISKS signature in four additional independent cohorts from different countries and ethnicities; to assess its
performance for TB screening and triage; to compare its performance to that of two IGRAs (QFT-P and IGRAs-
rmsHBHA); and to evaluate its utility for monitoring treatment outcome.

Results

Sociodemographic and clinical characteristics. A total of 141 patients with bacteriologically con-
firmed pulmonary ATB were included in the study. Their sociodemographic and clinical characteristics were
compared at baseline. The median age was 28 years, 66% were male, and 51.8% were smokers. Among them,
48.2% had a positive sputum smear microscopy with ahigh grade at baseline (2+ or 3+). 97 of these patients were
followed at least until the end of treatment and have been successfully treated for TB. The remaining participants
included 26 individuals with LTBI and 71 healthy donors (Table 1).

Performance of the RISK& signature as a screening and triage test for pulmonary TB dis-
ease. To investigate the use of RISK6 score as a screening and triage test for TB, we compared RISK6 scores
between patients with ATB disease (n=141), treated TB patients who have been successfully treated for TB
(TREATED, n=97, with negative sputum culture at T2 and/or T3), the individuals with LTBI (n=26), and
healthy donors (HD, n="71). In all cohorts, RISK$ scores were significantly higher in ATB patients at baseline
compared to HD (p<0.001) and TREATED TB patients (p <0.001) (Fig. la). Moreover, RISK6 score levels of
TREATED patients became indistinguishable from HD. Remarkably, in the Madagascar cohort that includes
the enrolled LTBI individuals, we observed a significant difference for the RISK6 scores between ATB and LTBI
group (p < 0.001) but not between the LTBI group and the TREATED TB patients or the HD group. Remarkably,
when we compared the RISK6 scores levels between study sites, we found that the RISK6 scores levels in ATB,
TREATED TB patients and the HD recruited from Bangladesh were higher than the levels observed in the other
study sites (Fig. la).

We then generated a receiver operating characteristic curve (ROC) and the respective areas under the curve
(AUC) for each cohort to evaluate, by country, the performance of RISK6 signature as screening or triage test
(Fig. 1b). First, we assessed the performance of RISK6 as a screening test for the discrimination between ATB
patients and HD. Remarkably, the performance of the RISK6 signature was similar in the four different cohorts,
with outstanding AUC values ranging from 90.1% (Bangladesh; 95% CI 80.7-99.4) to 96.4% (Georgia; 95% CI
90.5-100) (Fig. 1b). Secondly, ROC analysis was also performed to determine the potential of RISK6 signature as
a triage test to discriminate between different stages of TB infection. Results demonstrated a powerful classifying
potential to discriminate patients with ATB from LTBI or TREATED TB patients with an AUC of 92.8% (95% CI
85.6-100) and 96.1% (95% CI 91.7-100) respectively (Fig. 1b). Remarkably, we also found that the discrimina-
tion between ATB and HD was lowest in the cohort of Bangladesh when compared to other study sites (Fig. 1b).
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Georgia Madagascar Lebanon Bangladesh Total
ATB (N) 32 44 21 44 141
ATB patient demographics
Age (years) 33.5(26.75-445) | 29.5(21.75-43.25) | 30 (22-37) 23.5(20.75-30.5) | 28 (22-39)
Gender (male) 81.2% (26/32) 59.1% (26/44) 47.6% (10/21) 70.5% (31/44) 66% (93/141)
BMI at baseline 20.06 (18.65-21.67) | 17.19(16.31-18.67) | 20.94(19.59-21.41) | 18.28 (16.2-20.79) | 18.68 (16.89-20.95)
Vaccination
BCG vaccination 40.6% (13/32) 88.6% (39/44) 19% (4/21) 75% (33/44) 63.1% (89/141)
Risk factors
Smoking habit 59.4% (19/32) 432% (19/44) 57.19% (12/21) 52.3% (23/44) 51.8% (73/141)
Alcohol consumption 9.7% (3/31) 45.5% (20/44) 9.5% (2/21) 11.4% (5/44) 21.4% (30/140)
Injecting drug users - - - 9.3% (#43) 2.9% (4/138)
Jail detention history 6.2% (2/32) 2.4% (1/42) 14.3% (3/21) 4.5% (2744) 5.8% (8/139)
Other pathologies
HCY positive 9.4% (3/32) 2.3% (1/44) - - 2.8% (4/141)
Other underlying disease | - 9.1% (4/44) 9.5% (2/21) 2.3% (1744) 5.5% (7/127)
Sputum smear microscopy at baseline
Low grade (1+ or scanty) | 37.5% (12/32) 25% (11/44) 28.6% (6/21) 27.3% (12/44) 29.1% (41/141)
High grade (2+ or 3+) 25% (8/32) 54.5% (24/44) 38.1% (8/21) 63.6% (28/44) 48.2% (68/141)
Negative 34 4% (11/32) 20.5% (9/44) 19% (4/21) 9.1% (4/44) 19.9% (28/141)
Not evaluated 31% (1/32) - 14.3% (3/21) - 2.8% (4/141)
TB treatment
Treated 26 33 15 23 97
LTBI (N) - 26 - - 26
Healthy donors (N) 7 23 25 16 77

Table 1. Baseline sociodemographic and clinical characteristics of ATB patients in the four cohorts. TB
Tuberculosis, BMI Body Mass Index, LTBI latent TB infection, IQR interquartile range. Data were given as %
(N} or median (IQR).

Performance of RISK6 signature benchmarked against the WHO TPP for a non-sputum based
diagnostic test.  Our findings were then benchmarked against the WHO TPP for a screening/triage test for
TB that should have a minimum sensitivity of > 90% and specificity of > 70%!%27. At a sensitivity set to > 90%, the
performance of RISK6 signature as screening/triage test demonstrated specificity scores of > 70% in all cohorts,
except for Bangladesh (Table 2). This shows that RISK6 signature achieves the minimal WHO TPP for non-
sputum-based screening and triage tests discriminating patients with ATB from both HD and LTBI groups.

Performance of RISK6 as a confirmatory test for pulmonary TB disease. Our next aim was to
evaluate the performance of RISK& signature in sputum smear-negative and culture-confirmed TB individuals.
Based on the TPP criteria set by the WHO as a reference’?”, we found that RISK6 achieved the minimal sensitiv-
ity of > 60% with 100% specificity for an initial TB diagnostic test for sputum smear- negative TB to replace smear
microscopy in the cohort from Georgia (Table 2). Similarly, in the same cohort, RISK6 signature also reached
the minimum criteria of 65% sensitivity and 100% specificity for a confirmatory test. However, RISK6 signature
detection failed to meet these WHO requirements in the other study sites (Table 2).

As most ATB patients had a positive sputum smear microscopy with a high grade at baseline, we wondered if
RISKG scores and mycobacterial loads were correlated. We therefore performed a sub-analysis on stratified spu-
tum smear microscopy results among ATB patients, defined as follow: negative smears, low-grade positive smears
(1+ or scanty) and high-grade positive smears (2+ or 3+). RISK6 scores in the negative smear group showed
a significant difference (p <0.001) compared to HD (Fig. 2). Moreover, RISK6 scores were significantly lower
(median=0.31, IQR 0.22-0.40) in negative smears than in individuals with low- or high-grade positive smears
(p<0.001). While not statistically different (p >0.05), RISK6 scores in the high-grade smear group were higher
(median=0.5, IQR 0.40-0.56) than in the low-grade mycobacterial load group (median=0.46, IQR 0.38-0.52).

Performance of RISK6 signature compared to IGRAs.  Next, we assessed the performance of RISK6
signature compared to two assays based on IFN-y release: the commercial QFT-B and the non-commercial
IGRAs-rmsHBHA. Compared to the QFT-P assay, the RISKS signature achieved better performance in AUC
(94.1% vs 57.2%), sensitivity (90.9% vs 50.9%) and specificity (87.8% vs 57.2%) to discriminate ATB patients
from an asymptomatic population (LTBI+HD) (Table 3). However, a comparative sub-analysis indicated a
lower positive (79.7%) and negative (50%) predictive values of the RISKé signature when compared to QFT-P
assay (100% and 63.9%, respectively) in detection of Mb-infected individuals (ATB+LTBI) from uninfected
ones (HD). Notably, the RISK6 signature showed a higher performance (AUC 90.9%, 95% CI 87.2-94.5), with
90.1% sensitivity and 72.2% specificity than the IGRAs-rmsHBHA (AUC 75.3%, 95% CI 68.6-82) that achieved

Scientific Reports |

(2021)11:13646 |

nature portfolio

https:ffdoi.orgf10.1038/541598-021-93059-1

205



www.nature.com/scientificreports/

Georgia Madagascar Lebanon Bangladesh All
a —_ sax s

~an wn — — *

Score
T

R
~ .

'
s
T

s
e
e
P
o

6
L .

— R

RISKE Score
RISKS Score

ore
s,
gl
e,
L
By

e

RISK
T

I

SKi

sensitivity

sensitivity
sensitvity

sensitivity
sensitivity

ATB vs
HD [95.6%]
TREATED [96.1%)

ATB vs ATB vs ATB vs
HD [94.7%] HD [90.1%] HD [92.6%]

ATBvs
HD [96.4%)]

specificity specificity specificty specificity specicity

Figure 1. Validation of the performance of a multi-cohort &-gene signature; RISKS as a screening and triage
test in patients with pulmonary TB. (a) Violin plots showing the differences in the levels of RISKS signature
scores from patients with active TB at baseline (ATB, n=141), treated TB patients (TREATED, n=97; patients
with a negative sputum culture at T2 and/or T3), individuals with a latent TB infection (LTBI, n= 26}, and
healthy donors (HD, n=71) from Georgia, Madagascar, Lebanon, Bangladesh and in all sites. Horizontal
lines designate medians, boxes represent the inter-quartile ranges (IQR) and the ranges are represented by
whiskers. Single patient results are represented by each dot in the graph. Statistical significance was calculated
using Mann-Whitney U test. *Indicates a p-value < 0.05, **indicates a p-value < 0.01, and **indicates a
p-value < 0.001. (b) Receiver operating characteristic (ROC) curve analysis and the respective areas under the
curve (AUC) with 95% confidence intervals showing the performance of the RISK6 signature to discriminate
between ATB patients at baseline, HD and LTBL In the top left box, the solid and dashed lines represent the
respective optimal and minimum criteria set by the WHO in the target product profile (TPP) for a screening/
triage test for TB.

lower sensitivity and specificity (83.8% and 59.8% respectively) to differentiate Mtb-infection status (i.e. ATB vs
TREATED TB patients) (Table 3).

RISKE as a biomarker for TB treatment monitoring. Patients with successful treatment (defined as
negative sputum culture at T2) were selected to determine whether RISKS signature was a clinically relevant bio-
marker for TB treatment monitoring. Overall, in all cohorts combined, we observed a significant drop in RISKé
scores after two months of treatment (T1, p<0.001) and until treatment completion (T2, p <0.001). Moreover,
RISKS scores were significantly higher in cured TB patients (T2, p> 0.05) when compared to HD, however, in
each of the four cohorts, there were no significant difference between these two groups (p > 0.05) (Fig. 3a). Simi-
larly, analytical performance demonstrated capacity of RISKé signature to significantly discriminate patients at
baseline and two months after treatment initiation (AUC 69.7%, 95% CI 57.1-79.6) (Fig. 3b and Supplementary
Table 6). Noticeably, by the end of treatment, the majority of patients had lower RISK6 score levels, further
enhancing the discriminatory power between ATB patients at T0 and T2 (AUC 87.1, 95% CI 77.6-94.3) and at
T3 (AUC 90.4, 95% CI 82.6-96.6) (Fig. 3b and Supplementary Table 6).

Furthermore, we evaluated whether RISK6 allows the discrimination of cured TB patients (n=104) from
those with a treatment failure (defined as positive sputum culture at T2, n=2). Thereafter, patients were stratified
into drug-sensitive (DS) and drug-resistant TB (DR-TB) cases and the RISK6 signature scores were compared
within these groups. We found that RISK6 scores decreased throughout treatment among DS-TB patients inde-
pendently of treatment outcome (Supplementary Fig. 1). In contrast, the RISK6 score remained stable at baseline
and during treatment in a DR-TB patient with a treatment failure. Importantly, RISK6 score levels during TB
treatment seem to be higher in patients with treatment failure among both DS and DR-TB cases. However, in
a univariate or multivariate analyses, no significant association of the RISK6 score at baseline with treatment
failure was found (Supplementary Table 8).
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TPP requirement | Cutoft | Sensitivity% |Spedficity% | Cases,n | Controls n [AUC [AUCO%C
Screening test (ATB vs HD)

Georgia >0.2583 | 90.6 85.7 32 7 96.4% | 90.5-100%
Madagascar >0.3697 | 90.9 87 44 23 95.6% | 90.9-100%
Lebanon Sensitivity > 90% | »0.3171 | 90.5 88 21 25 947% | 88.6-100%
Bangladesh >0.3625 | 90.9 688 44 16 90.1% | 80.7-99.4%
All >0.3209 | 90.1 80.2 141 71 92.6% | 88.8-96.3%
Triage test (ATB vs LTBI)

Madagascar [ Sensitivity >90% | >0.3697 [ 909 885 [ [26 [ 92:8% [856-100%
Initial TB diagnostic test to replace smear microscopy (ATB (CLT" AFB”) vs HD)

Georgia »0.3514 | 63.6 100 11 7 948% | 85.1-100%
Madagascar »>0.4298 | 66.7 95.7 9 23 96.1% | 90.1-100%
Lebanon Sensitivity260% | >0.3217 |75 88 4 25 90% 78.2-100%
Bangladesh >0.3541 | 75 68.8 4 16 79.7% | 58.8-100%
All >0.3823 | 60.7 887 28 71 87.7% | 80.6-948%
Confirmatory test (ATB (CLT* AFB™) vs HD)

Georgia >0.3131 727 100 11 7 94.8% | 85.1-100%
Madagascar >0.4298 | 66.7 95.7 9 23 96.1% | 90.1-100%
Lebanon Sensitivity = 65% | >0.3217 | 75 88 4 25 90% 78.2-100%
Bangladesh >0.3541 |75 688 4 16 79.7% | 58.8-100%
All »0.3674 | 67.9 87.3 28 71 87.8% |80.6-948%

Table 2. Receiver operating characteristic curve analysis of the performance of the RISK6 signature to
distinguish active TB cases (ATB) from healthy donors (HD) and from latent TB infected individuals

(LTBI) in cohorts from Georgia, Madagascar, Lebanon, and Bangladesh. The performance of the signature is
benchmarked against the WHO TPP for a non-sputum based screening/triage test (at a sensitivity of > 90%,
the minimum specificity as set out in this TPP should be > 70%), for an initial TB diagnostic test to replace
sputum smear (at minimum 60% sensitivity, the minimum specificity as set out in this TPP should be > 98%)
and for a confirmatory test (at minimum 65% sensitivity, the minimum specificity as set out in this TPP should
be>98%)'°. ATB active TB, LTBI latent TB infection (were only recruited from Madagascar), HD healthy
donors, CLT* positive sputum culture, AFB™ negative AFB smear microscopy, AUC area under the curve, CI
confidence interval, Vs versus.
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Figure 2. Correlation between RISK6 signature scores and mycobacterial loads determined by sputum
smear microscopy in ATB patients. Boxplots comparing the RISK6 score levels stratified according to sputum
smear grade: Negative smears, low grade positive smears (1+ or scanty) and high grade positive smears (2+
or 3+). Horizontal lines designate medians, boxes represent the inter-quartile ranges (IQR) and the ranges
are represented by whiskers. Individual dots represent the results of patients with a RISK& scores out of

IQR. Statistical significance was calculated using Mann—Whitney U test. Ns non-significant, **indicates a
p-value <0.001. HD Healthy donors.
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Figure 1. Validation of the performance of a multi-cohort &-gene signature; RISKS as a screening and triage
test in patients with pulmonary TB. (a) Violin plots showing the differences in the levels of RISKS signature
scores from patients with active TB at baseline (ATB, n=141), treated TB patients (TREATED, n=97; patients
with a negative sputum culture at T2 and/or T3), individuals with a latent TB infection (LTBI, n= 26}, and
healthy donors (HD, n=71) from Georgia, Madagascar, Lebanon, Bangladesh and in all sites. Horizontal
lines designate medians, boxes represent the inter-quartile ranges (IQR) and the ranges are represented by
whiskers. Single patient results are represented by each dot in the graph. Statistical significance was calculated
using Mann-Whitney U test. *Indicates a p-value < 0.05, **indicates a p-value < 0.01, and **indicates a
p-value < 0.001. (b) Receiver operating characteristic (ROC) curve analysis and the respective areas under the
curve (AUC) with 95% confidence intervals showing the performance of the RISK6 signature to discriminate
between ATB patients at baseline, HD and LTBL In the top left box, the solid and dashed lines represent the
respective optimal and minimum criteria set by the WHO in the target product profile (TPP) for a screening/
triage test for TB.

lower sensitivity and specificity (83.8% and 59.8% respectively) to differentiate Mtb-infection status (i.e. ATB vs
TREATED TB patients) (Table 3).

RISKE as a biomarker for TB treatment monitoring. Patients with successful treatment (defined as
negative sputum culture at T2) were selected to determine whether RISKS signature was a clinically relevant bio-
marker for TB treatment monitoring. Overall, in all cohorts combined, we observed a significant drop in RISKé
scores after two months of treatment (T1, p<0.001) and until treatment completion (T2, p <0.001). Moreover,
RISKS scores were significantly higher in cured TB patients (T2, p> 0.05) when compared to HD, however, in
each of the four cohorts, there were no significant difference between these two groups (p > 0.05) (Fig. 3a). Simi-
larly, analytical performance demonstrated capacity of RISKé signature to significantly discriminate patients at
baseline and two months after treatment initiation (AUC 69.7%, 95% CI 57.1-79.6) (Fig. 3b and Supplementary
Table 6). Noticeably, by the end of treatment, the majority of patients had lower RISK6 score levels, further
enhancing the discriminatory power between ATB patients at T0 and T2 (AUC 87.1, 95% CI 77.6-94.3) and at
T3 (AUC 90.4, 95% CI 82.6-96.6) (Fig. 3b and Supplementary Table 6).

Furthermore, we evaluated whether RISK6 allows the discrimination of cured TB patients (n=104) from
those with a treatment failure (defined as positive sputum culture at T2, n=2). Thereafter, patients were stratified
into drug-sensitive (DS) and drug-resistant TB (DR-TB) cases and the RISK6 signature scores were compared
within these groups. We found that RISK6 scores decreased throughout treatment among DS-TB patients inde-
pendently of treatment outcome (Supplementary Fig. 1). In contrast, the RISK6 score remained stable at baseline
and during treatment in a DR-TB patient with a treatment failure. Importantly, RISK6 score levels during TB
treatment seem to be higher in patients with treatment failure among both DS and DR-TB cases. However, in
a univariate or multivariate analyses, no significant association of the RISK6 score at baseline with treatment
failure was found (Supplementary Table 8).
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and score changes over time despite the heterogeneity of both cohorts and study designs. In addition, marked
technical differences are also apparent between our studies: we performed the RISK6 scores measurements
on RNA manually isolated from whole blood collected directly in Tempus Blood RNA tubes and from blood
samples first collected in lithium heparin tube and then transferred in Tempus Blood RNA Tubes, while this
measurement was done by Penn-Nicholson et al. using RNA extracted manually or by an automated processes
from whole blood collected in PAXgene Blood RNA tubes. Collectively, these results highlight the robustness of
this PCR-based host-blood transcriptomic signature.

Besides, the higher RISK6 score levels detected in the cohort of Bangladesh compared to the other study sites
was a remarkable result. We hypothesized that these RISK6 scores observed in Bangladesh may be influenced by
the differing epidemiology, geographical locations as well as differences in gene expression levels between ethnic
populations that may have contributed to a stronger transcriptomic signal in Bangladesh.

Our AUC data showed that RISK6 scores had a powerful ability to distinguish ATB from HD, with better or
equal results to what was found with other transcriptomic signatures®**. Moreover, while these previous sig-
natures have shown promise as diagnostic tests, it should be noted that results of a three gene signature were not
generalizable’®*, while other signatures® require measurement of a high number of genes, thus limiting their
possible application in resource-limited settings. Moreover, while RISK® signature seems to meet or exceeded
the TPP criteria based on each of our four cohorts, only two among the previous signatures (Sweeney3* and
Sambarey10*) satisfied the sensitivity and specificity TPP criteria set by the WHO for a triage test®. However,
it would be interesting to validate those signatures in other independent cohorts®®*.

An important finding of our study is that RISK6 signature allowed to stratify TB patient’s stages. Thus, when
applied to the cohort of Madagascar, the only one including LTBI cases, the RISK6 signature demonstrated a
significantly higher score in ATB individuals at baseline compared to those with LTBI. This is consistent with a
previous study showing that a 3-gene transcriptomic signature was significantly higher in ATB patients versus
LTBI*® individuals, in addition to a 20-gene signature set that also discriminated ATB patients from LTBI and
healthy controls'®. In the same way, some gene-signatures were also evaluated'® and showed high specificity and
sensitivity to distinguish ATB patients from those with LTBI******, In our study, at > 90% sensitivity, RISK6
signature discriminated ATB from both LTBI and HD with a specificity > 70% which met the WHO TPP for a
triage test for TB. Besides, no significant differences in the classification performance of RISK6 signature were
observed between LTBI and HD, in line with recent transcriptomic studies demonstrating failure in discriminat-
ing LTBI from HD'®2%, Moreover, while no previous studies has compared the levels of a transcriptomic signature
between LTBI and treated TB patients, our data showed that the RISKS signature reached the same score levels in
treated TB patients when compared to LTBI individuals. Hence, it will be of interest to validate RISKS signature
in cohorts with larger number of latently infected individuals.

An additional finding of our study is that RISKS signature also achieved the minimal WHO criteria in the
Georgia cohort, for (i) an initial TB diagnostic test for sputum smear-negative TB to replace smear microscopy,
using culture-confirmed TB as a gold standard (ii) and a non-sputum-based confirmatory test for sputum smear-
negative TB. In this context, Turner et al.*’ reported a comparison of 27 signatures in cohorts of 181 patients for
discriminating TB and no TB disease. They found that no previously published signatures achieved the minimal
WHO sensitivity (65%) and specificity (98%) performance for a non-sputum-based confirmatory test for sputum
smear-negative TB. Thus, our results are promising but further validation of RISK6 signature in larger cohorts
will allow testing such performance. Furthermore, we found that ATB patients with low- or high-grade positive
smears had significantly higher RISK6 scores compared with those with negative smears. Similarly to previous
reported results with either Xpert MTB/RIF test or the C-reactive protein (CRP) concentration measurements’®*,
our findings suggest that RISK6 signature scores directly correlate with sputum smear grade, and may possibly
represent a useful tool in the identification of patients with high transmission risk.

In the present study, we also attempted to compare the performance of different TB blood-based tests; RISK6
versus two IGRAs (QFT-P and IGRAs-rmsHBHA). Our results indicate that the performance of RISK6 was
greater than that of QFT-P assay for ATB case-finding. Given that QFT-P was not recommended for the diagnosis
of ATB but for LTBI diagnosis, we and others have shown that this assay is a better indicator for the detection
of Mtb infection!>#0#.

Our next aim was to evaluate variations in the RISK6 scores throughout successful treatment. We found
that the RISK6 signature scores were significantly higher in ATB at baseline compared to HD, and continued to
decrease progressively until the end of treatment reaching scores obtained in HD. Moreover, we also demon-
strated that the RISK6 signature enables discrimination with high accuracy between untreated (T0), treated (T1
and T2), and post-treated (T3) TB patients who achieved a clinical cure. Taken together, these results showed the
RISKS genes might be modulated during anti-TB treatment as early as 2 months. Notably, the well-established
data by Penn Nicholson et al.? also included additional earlier time points (week | and week 4) and found that
RISKS signature scores decrease over the course of successful treatment as early as 1 week. Data obtained with
RISKS® is consistent with previous studies showing that transcriptomic signatures could be used as a powerful
tool to monitor TB treatment response®*2~*. In this context, it has been previously reported that reduced gene
expression levels occurred rapidly during the first and the second weeks of TB treatment*>*®. An additional report
showed that ATB gene set decreased after 4 months of anti-TB treatment, however, no tests were performed at
earlier time points, or during TP treatment course®. To note, we showed that the RISK6 signature scores returned
to normal levels (compared to HD) after 6 months of treatment, which confirmed previous data’® but contrasted
with another transcriptomic study showing that normal levels were reached 12 months after the treatment
initiation™. Subsequently, these results indicate that RISK6 scores significantly stratified end of treatment from
pre-treatment baseline. Taken together, our findings suggest that RISK6 signature could be used as a useful tool
to monitor the response to anti-TB treatment. It may represent a potential alternative of the current tests used
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to assess TB treatment efficacy and used comparing its result with those obtained by sputum culture that are
crucial to evaluate drug resistance occurrence.

Remarkably, RISK6 relies on the use of qRT-PCR that could detect low levels of gene expression®® and could
be integrated into clinical poor settings in contrast to other complex methods. Besides, this signature requires
the measurement of a small number of genes with subsequent reduced complexity and costs. Moreover, a key
advantage of RISKE is that it is a blood-based test, which is an easily accessible sample. Blood transcriptomic
tests will improve the diagnosis of TB allowing faster treatment and thus reduction of transmission, especially in
children, HIV co-infected TB patients and paucibacillary pulmonary TB patients. In such populations, micro-
biological tests are not always feasible due to the limited ability to produce good quality sputum samples or
due to low bacterial loads in their samples. In the future, it will be of interest (i) to evaluate if RISKS6 is able to
predict the risk of progression to TB as demonstrated by the RISK11 signature®® and (i) to assess the diagnostic
performance of RISK6 signature as a prototype cartridge assay as it has already been evaluated for the 3-gene
signature against a microbiological reference standard®.

This study was subject to several limitations. Indeed, the sample size was relatively small and LTBI individu-
als were recruited from only one country. Hence, validation of our findings in cohorts with larger number of
LTBI individuals is required to better estimate specificities and sensitivities for a triage test. Moreover, only
two patients had failed treatment. Therefore, further validation is required to better understand how RISKé
signature tracks with response to treatment. Additionally, we excluded diabetic and HIV-positive patients and
immunosuppressed individuals in general and our study was restricted to adults. Thus, similar validation studies
are needed for children and HIV-positive patients. Moreover, in future studies, it would be relevant to evaluate
the specificity of the RISK6 scores in comparison to other respiratory diseases than TB, which is considered as
most difficult to distinguish with.

In conclusion, data from this study provide strong proof that RISK6 can be applied as a non-sputum-based
screening and triage test that met the WHO TPP benchmarks. This host response-based gene signature may be
used for stratifying patients according to their TB infection status, as well as for monitoring patients over the
course of treatment. RISK6 signature is applicable using a robust and simple gqRT-PCR platform which facilitates
its implementation in the clinical laboratories located in resource-poor settings. Our overall findings support
the efforts to incorporate RISKS signature into a point-of-care test ensuring rapid and accurate detection of ATB
cases. Indeed, such simple tests are highly needed to reduce TB spread and transmission especially in areas with
high TB burden that are usually disturbed with poverty.

Methods

Study design and population.  This evaluation of the RISK6 signature was a nested case—control multi-
center prospective cohort study evaluating the prognostic value of blood-based immunological biomarkers for
monitoring TB treatment outcome. It was conducted within the GABRIEL Network® in four different countries
including Bangladesh, Georgia, Lebanon and Madagascar.

In total, 238 participants were recruited and followed-up between August 2018 and September 2020. Par-
ticipants included patients with ATB disease (n=141), HD (n="71) and individuals with LTBI (n=26). Enrolled
ATB patients aged = 15 years old, newly diagnosed with pulmonary ATB: scoring positive for TB following bac-
teriological (culture positive and/or sputum smear microscopy positive) and/or molecular analysis (GeneXpert
positive results) were recruited at primary healthcare TB clinics in each country: National Center for Tuberculosis
and Lung Diseases (NCTLD) in Thilisi, Georgia; Tuberculosis screening and treatment center (CHUSSPA) related
to National Tuberculosis Programs (NTPs) in Antananarivo, Madagascar; NTP centers in Tripoli and Akkar,
Lebanon and International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb) in Dhaka, Bangladesh.
Clinically asymptomatic healthy donors; who do not have a previous TB history and who have no recent TB
contacts were also recruited in all sites. In Madagascar, participants with positive QFT-P results (IFN-y produc-
tion >0.35 IU/mL) were defined as latently Mtb infected individuals. Patients with negative cultures at inclusion,
ATB patients with Human Immunodeficiency Virus (HIV) or with diabetes mellitus comorbidities and patients
under immunocompromising treatment were excluded (Fig. 4).

Enrolled ATB patients were followed-up during the treatment course at four different time points and clas-
sified as follow: (i) ATB at baseline TO: patients who didn’t start TB treatment; (ii) treated active TB at T1 and
T2: patients with ATB followed-up during the treatment and tested after 2 months of the start of the treatment
(T1), and at the end of treatment (T2); (iii) treated active TB at T3: treated TB patients tested at 2 months after
treatment completion.

Ethics statement. The study protocols were reviewed and approved by the human research ethics com-
mittees in each country; Georgia, the Institutional Review Board of the National Center for Tuberculosis and
Lung Diseases (NTCLD) (Reference number: IORG0009467), Madagascar, the Ministry of Public Health and
the Ethical Committee for Biomedical Research (Reference number: n°099-MSANP/CERBM), Lebanon, the
institutional review board of NINI hospital (Reference number: IRB-F-01) and Bangladesh, the Research Review
Committee and the Ethical Review Committee of International center for diarrheal diseases and research
(icddr,b). All study participants provided written informed consent. All research was performed in accordance
with relevant guidelines/regulations.

Diagnostic assessment and follow-up.  ATB diagnosis was based on both bacteriological and molecular
parameters. At least one sputum sample was collected at inclusion (T0) for culture testing (liquid culture media:
MGIT mycobacterial growth indicator tube, BD BioSciences, NJ, USA and/or solid culture media: L-T (Lowen-
stein-Jensen) and also tested by microscopy for the presence of acid-fast bacilli (AFB) using the Ziehl-Neelsen
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Participants included from the HINTT cohort study
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Study follow-up
treatment

Figure 4. Flow diagram describing the enrollment and exclusion of participants with active TB, latent TB
infection, and healthy donor participants from the different cohorts. ATB patients were followed-up at four
different time points: at baseline (T0), ATB patients who didn't their TB treatment and followed throughout
antibiotic therapy: at month 2 (T1), at the end of treatment (T2), and 2 months after treatment completion (T3).
TB Tuberculosis, ATB active TB, LTBI Latent TB infection, HD healthy donors, HIV human immunodeficiency
virus, DS drug-susceptible, DR drug-resistant, LTFU lost to follow-up.

staining method and/or Auramine O staining. In addition to positive culture, active TB status was defined by
positive Xpert MTB/RIF (Cepheid). Patients were re-evaluated by sputum smear and culture during the inten-
sive phase of treatment (T1) thereafter at the end of treatment (T2) and 2-months after treatment completion
(T3) to confirm that they were successfully treated and cured. Drug susceptibility testing (DST) methods were
performed according to standard protocols®.

Demographic and clinical data collection. At enrollment and at each follow-up visit, medical history,
clinical and demographic data were collected using standardized questionnaires to feed the cloud-based data-
base system CASTOR (CASTOR Electronic Data Capture, Version 1.4, Netherlands).

Blood collection process. A minimum of 3 mL of whole blood for transcriptomic analysis and 5 mL for
the Interferon-y release assays were drawn from each participant. For transcriptomic analysis, specimens were
directly collected in Tempus Blood RNA Tubes (Applied Biosystems, 4342792), vigorously shaken, and stored at
— 80 °C. Of note, in Madagascar and Bangladesh, blood samples were first collected inlithium heparin tubes and
then transferred in Tempus Blood RNA Tubes for transcriptomic analysis.

RNA extraction process and complementary DNA (cDNA) synthesis. Frozen Tempus Blood RNA
tubes were thawed and RNA was manually extracted using the MagMAX™ for Stabilized Blood Tubes RNA
Isolation Kit (Applied Biosystems by Thermo Fisher Scientific, 4451893) following the manufacturer’s instruc-
tions. RNA elution was performed by adding 30 pL of Elution Buffer. The purified RNA was transferred to a
nuclease-free tube, assessed for quantity and quality (Nanodrop spectrophotometer), and stored at— 80 °C until
needed. The cDNA was synthetized using the Applied High Capacity RNA to ¢cDNA kit (Applied Biosystems by
Thermo Fisher Scientific, 4387406). The RT reaction mix was prepared as follows: 10 pL of 2xRT buffer mix, 1
L of 20 x RT Enzyme, and 3 L of nuclease-free water. Then 6 puL of purified RNA/negative control samples were
added and proceeded using random hexamer primers (1 h 37 °C, 5 min 95 °C and hold 4 °C). cDNA was then
1:5 diluted (nuclease-free water) and stored at — 20 °C for long-term conservation.

Pre-amplification PCR. Prepared cDNA was pre-amplified using specific sequences of TagMan primer-
probes as previously described by Penn-Nicholson et al.?®. 5 uL of 2 x PCR mix (TagMan Universal PCR Master
Mix 2x) (Applied Biosystems by Thermo Fisher Scientific, 4304437) with 2.5 uL of the specific primers-probes
mix (PPM 0.6x), composed of primers of the 6 genes (listed in Supplementary Table 1) (Applied Biosystems by
Thermo Fisher Scientific) was mixeded. Then 2.5 pL of the diluted cDNA/negative control samples were added
and the mixture was incubated 10 min at 95 °C followed by 16 cycles of amplification at 95 °C for 15 s, 60 °C for
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4 min, and hold at 4 °C. The pre-amplified PCR products were diluted 1:25 with nuclease-free water and stored
at — 20 °C for long-term conservation.

Quantitative Real-Time PCR (qQRT-PCR) assay and gene expression analysis. For every target
to amplify, 4 pL of pre-amplified DNA was subjected to a real time nucleic acid amplification using 10 pL of
TaqMan Universal PCR Master Mix (Applied Biosystems by Thermo Fisher Scientific), 1 uL of primers-probe
mix (20x) and 4 UL of nuclease-free water using the following conditions: 2 min at 50 °C, 10 min at 95 °C, fol-
lowed by 95 °C for 15 s and 40 °C for 1 min for 40 cycles. For analytical reasons, all the PCR reactions were
performed in duplicate.

RISK6 score generation. Polymerase chain reaction signals were analyzed using CFX Manager Software
version 3.1 (BioRad) in regression mode and expressed as cycle threshold (Ct) values. The step-by-step proce-
dure for computing the 6-gene signature (RISK6) scores was performed as described by Penn-Nicholson et al.*.
Briefly, the mean of Ct values was calculated for every targeted genes and combined to generate a score. The score
was computed with R script available on https://bitbucket.org/satvi/riské/src/master/.

QuantiFERON-TB Gold Plus and IGRAs-rmsHBHA assays. 1 mL of whole blood was collected
directly into each of the QFT-P tubes (Qiagen, Hilden, Germany, 522526) (Nil: Negative Control, TB- Antigens
(TB1/TB2) and Mitogen: Positive control) and an extra 1 mL of blood was collected in a heparin tube and stimu-
lated with 10 pg/mL of rmsHBHA (UNICATT, Rome, ltaly'™*"?). After 16-24 h incubation at 37 °C, plasma
samples were harvested and stored at — 80 °C prior subjected to QFT-P ELISA (Qiagen, Hilden, Germany,
622120), following the manufacturer instructions. Briefly, 50 pL of plasma samples were tested, optical density
results were compared to log-normalized values from freshly reconstituted IFN-y kit standards. To account for
potential immunomocdulation phenomena unrelated with TB treatment, baseline IFN-y level values (INil tubes)
were subtracted from antigen-stimulated IFN-y values (TB1, TB2, Mitogen and rmsHBHA). According to the
kit’s sensitivity range, the maximum for IFN-y level values was set at 10 IU/mL and negative values were rescaled
to 0.

Statistical analysis. All statistical analyses were performed with R studio (version 4.0.3) software®*. Graphs
were created using the ggplot2 packages®™. Statistical evaluation of the performance of RISK6 was done by cal-
culating the Area Under the receiver operating characteristic curve (ROC AUC) and associated 95% confi-
dence intervals (CI) using the pROC in R*. Discrete variables were analyzed using Fisher’s Exact test with
Bonferroni’s post-hoc test. Normality was assessed using the Shapiro-Wilk Normality Test. Normal, continuous
variables were analyzed with Student’s t-test. Non-normal, continuous variables were analyzed with the Mann—
Whitney test or the Kruskal-Wallis rank-sum test with Dunns Kruskal-Wallis Multiple Comparisons post-hoc
test. Repeated measures of non-independent continuous variables were analyzed using the Friedman rank-sum
test, with Wilcoxon-Nemenyi-McDonald-Thompson's post-hoc test. Non-parametric data were presented as
median +IQR and the statistical significance cut-off was considered as a p value of <0.05. For logistic regres-
slon analyses, variables were first evaluated in univariate analyses, then multivariate analyses were performed.
Adjustment variables were selected as follows: socilodemographic variables of known dinical importance (e.g.,
sex, country of origin), TB risk factors (e.g., smoking), and additional sociodemographic variables that were at
least moderately associated (p<0.10) with the outcome in univariate analyses (e.g., prison). Irrelevant adjust-
ment variables were then removed by backward model selection. The combination of variables that minimized
the Akaike Information Criterion (AIC) for most tested predictors, while including important adjustment vari-
ables, was selected.

Data availability
The RISK6 scores and associated clinical data for all cohorts can be found in Supplementary Tables 2-7.
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Supplementary Figure 1. Ability of RISK6 signature to stratify TB patients according to ultimate
treatment outcome. Longitudinal kinetics of RISK6 signature scores across TB treatment time (TO:
baseline; T2: 2 months after initiation and T2: at the end of treatment) in patients with cure and those
with a treatment failure, stratified into drug-susceptible (n= 95) and drug-resistant TB cases (n= 11).

Dots depict medians and error bars represent the IQR.

215



3. Oral communications
July 11, 2021: 315t ECCMID (European Congress of Clinical Microbiology & Infectious Diseases;

virtual).

January 19, 2021: CYTEK User Meeting, Europe-Middle East-Asia region (virtual).

February 5 — 7, 2020: 2" Swiss Cytometry Meeting (Ecole Polytechnique Fédérale de

Lausanne, Switzerland).

January 21, 2020: Infectious Diseases Theme Day (Istituto Nazionale per le Malattie Infettive

“Lazzaro Spallanzani”, Rome, Italy).
April 25, 2019: DécrypThése — PhD day of the E2M2 doctoral school (Lyon, France). Award for

the best oral communication.

216



REFERENCES

10.
11.

12.

World Health Organization Geneva. Guidelines for treatment of drug-susceptible
tuberculosis and patient care. WHO press vol. 1
http://www.tandfonline.com/doi/full/10.1586/17476348.1.1.85 (2017).

World Health Organization Geneva. WHO consolidated guidelines on drug-resistant
tuberculosis treatment. (2019).

Woimo, T. T., Yimer, W. K., Bati, T. & Gesesew, H. A. The prevalence and factors
associated for anti-tuberculosis treatment non-adherence among pulmonary
tuberculosis patients in public health care facilities in South Ethiopia: a cross-sectional
study. BMC Public Health 17, 1-10 (2017).

Munro, S. A. et al. Patient Adherence to Tuberculosis Treatment: A Systematic Review
of Qualitative Research. PLoS Med. 4, (2007).

Volmink, J. & Garner, P. Directly observed therapy for treating tuberculosis ( Review ).
(2012).

Law, S., Piatek, A. S., Vincent, C., Oxlade, O. & Menzies, D. Emergence of drug resistance
in patients with tuberculosis cared for by the Indian health-care system : a dynamic
modelling study. Lancet Public Heal. 2, e47—e55 (2017).

Sharma, A. et al. Estimating the future burden of multidrug-resistant and extensively
drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a
mathematical modelling study. Lancet Infect. Dis. 17, 707715 (2017).

World Health Organization Geneva. Global Tuberculosis Report 2018. (2018).

Parrish, N. M. & Carroll, K. C. Role of the clinical mycobacteriology laboratory in
diagnosis and management of tuberculosis in low-prevalence settings. J. Clin.
Microbiol. 49, 772-776 (2011).

World Health Organization Geneva. Early detection of Tuberculosis. WHO press (2011).
Horne, D. J. et al. Sputum monitoring during tuberculosis treatment for predicting
outcome : systematic review and meta-analysis. Lancet Infect. Dis. 10, 387-394 (2010).
Maclean, E. et al. A sytematic review of biomarkers to detect active tuberculosis. Nat.

Microbiol. (2017) doi:10.1038/s41564-019-0380-2.

217



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Goletti, D. et al. Can we predict tuberculosis cure? Current tools available. Eur. Respir.
J. 1801089 (2018) d0i:10.1183/13993003.01089-2018.

Cave, A. J. E. The Evidence for the Incidence of Tuberculosis in Ancient Egypt. Br. J.
Tuberc. 141-152 (1941).

Hershkovitz, |. et al. Detection and Molecular Characterization of 9000-Year- Old
Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern
Mediterranean. PLoS One 3, 1-6 (2008).

Rothschild, B. M. & Martin, L. D. Frequency of pathology in a large natural sample from
Natural Trap Cave with special remarks on erosive disease in the Pleistocene.
Reumatismo 55, 58—65 (2003).

Rothschild, B. M. et al. Mycobacterium tuberculosis Complex DNA from an Extinct
Bison Dated 17,000 Years before the Present. Clin. Infect. Dis. 44512, 305—-311 (2001).
Lee, O.Y. et al. Mycobacterium tuberculosis Complex Lipid Virulence Factors Preserved
in the 17, 000-Year-Old Skeleton of an Extinct Bison , Bison antiquus. PLoS One 7, 1-9
(2012).

Faksri, K., Xia, E., Tan, J. H., Teo, Y. & Ong, R. T. In silico region of difference (RD) analysis
of Mycobacterium tuberculosis complex from sequence reads using RD-Analyzer. BMC
Genomics 17, 1-10 (2016).

Comas, |. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium
tuberculosis with modern humans. Nat. Genet. 1, 1-9 (2013).

Rodriguez-Campos, S., Smith, N. H., Boniotti, M. B. & Aranaz, A. Overview and
phylogeny of Mycobacterium tuberculosis complex organisms: Implications for
diagnostics and legislation of bovine tuberculosis. Res. Vet. Sci. (2014)
doi:10.1016/j.rvsc.2014.02.009.

Barberis, I., Bragazzi, N. L., Galluzzo, L. & Martini, M. The history of tuberculosis : from
the first historical records to the isolation of Koch ’ s bacillus. J Prev Med Hyg 58, 9-12
(2017).

Daniel, T. M. & lIversen, P. A. Hippocrates and tuberculosis. Int J Tuberc Lung Dis 19,
373-374 (2015).

Sepkowitz, K. A. Tuberculosis and the Health Care Worker : A Historical Perspective.

Ann. Intern. Med. 120, 71-79 (1994).

218



25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

Murray, J. F., Rieder, H. L. & Finley-croswhite, A. The King’s Evil and the Royal Touch :
the medical history of scrofula. Int J Tuberc Lung Dis 20, 713-716 (2016).

Daniel, T. M. The history of tuberculosis. Respir. Med. 1862-1870 (2006)
doi:10.1016/j.rmed.2006.08.006.

Pezzella, A. T. History of Pulmonary Tuberculosis. Thorac Surg Clin 29, 1-17 (2019).
Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a Substance Exhibiting Antibiotic
Activity Against Gram-Positive and Gram-Negative Bacteria. Exp. Biol. Med. 55, 66—69
(1944).

Murray, J. F., Schraufnagel, D. E. & Hopewell, P. C. Treatment of Tuberculosis: A
Historical Perspective. Ann Am Thorac Soc 12, 1749-1759 (2015).

Fox, W., Wiener, A., Mitchison, D. A., Selkon, J. B. & Sutherland, I. The Prevalence of
Drug-Resistant Tubercle Bacilli in Untreated Patients with Pulmonary Tuberculosis : A
National Survey, 1955-56. Tubercle, London 38, 71-77 (1956).

Keshavjee, S. & Farmer, P. E. Tuberculosis, Drug Resistance, and the History of Modern
Medicine. N. Engl. J. Med. 367, 931-936 (2012).

Cohen, A., Mathiasen, V. D. & Wejse, C. The global prevalence of latent tuberculosis :
a systematic review and meta-analysis. Eur. Respir. J. 54, 1-14 (2019).

Organization., G. W. H. Global Tuberculosis Report 2020. (2020).

Gordon, S. V & Parish, T. Microbe Profile: Mycobacterium tuberculosis: Humanity’s
deadly microbial foe. Microbiology 164, 437-439 (2018).

Pieters, J. Mycobacterium tuberculosis and the Macrophage: Maintaining a Balance.
Cell Host Microbe 3, 399-407 (2008).

Gygli, S. M., Borrell, S., Trauner, A. & Gagneux, S. Antimicrobial resistance in
Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. Fems
Microbiol. Lett. 41, 354-373 (2017).

Smith, T., Wolff, K. A. & Nguyen, L. Molecular Biology of Drug Resistance in
Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol. 374, 53—80 (2012).
Heemskerk, D., Caws, M., Marais, B. & Farrar, J. Tuberculosis in Adults and Children.
(2015).

Padmaja, G., Srujana, K. & Sadhana, C. Comparison of Ziehl-Neelsen’s stain, fluorescent
stain with CBNAAT of sputum for the diagnosis of pulmonary tuberculosis. J. Dr. NTR
Univ. Heal. Sci. 8, 238 (2019).

219



40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Calver, A. D. et al. Emergence of increased resistance and extensively drug-resistant
tuberculosis despite treatment adherence, South Africa. Emerg. Infect. Dis. 16, 264—
271 (2010).

Andersson, D. |. & Hughes, D. Microbiological effects of sublethal levels of antibiotics.
Nat. Rev. Microbiol. 12, 465-478 (2014).

World Health Organization (WHO). Companion Handbook to the WHO Guidelines for
the Programmatic Management of Drug-Resistant Tuberculosis. World Health
Organization (2014). doi:WHO/HTM/TB/2014.11.

Mitchison, D. & Davies, G. The chemotherapy of tuberculosis: Past, present and future.
Int. J. Tuberc. Lung Dis. 16, 724—732 (2012).

WHO. WHO guidelines for treatment of drug-susceptible TB and patient care:
factsheet. WHO Press (2017).

Gillespie, S. H. et al. Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive
Tuberculosis. N. Engl. J. Med. 371, 1577-1587 (2014).

WHO. WHO treatment guidelines for drug-resistant tuberculosis: 2016 update. WHO
Press 56 (2016) doi:WHO/HTM/TB/2016.04.

Aung K.J.M. et al. Successful ‘9-month Bangladesh regimen’ for multidrugresistant
tuberculosis among over 500 consecutive patients. Int. J. Tuberc. Lung Dis. 18, 1180—
1187 (2014).

World Health Organization (WHO). Definitions and reporting framework for
tuberculosis - 2013 revision (updated December 2014 and January 2020). European
communicable disease bulletin vol. 18 (2013).

Olaru, I. D., Heyckendorf, J., Grossmann, S. & Lange, C. Time to culture positivity and
sputum smear microscopy during tuberculosis therapy. PLoS One 9, 8-13 (2014).
Friedrich, S. O. et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF
assay as an early sputum biomarker of response to tuberculosis treatment. Lancet
Respir Med 1, 462—-470 (2013).

Denkinger, C. M. et al. Defining the needs for next generation assays for tuberculosis.
J. Infect. Dis. 211, S29-S38 (2015).

Lienhardt, C. et al. Translational Research for Tuberculosis Elimination: Priorities,

Challenges, and Actions. PLoS Med. 13, 1-11 (2016).

220



53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Drain, P. K. et al. Urine lipoarabinomannan to monitor antituberculosis therapy
response and predict mortality in an HIV-endemic region: a prospective cohort study.
BMJ Open 5, e006833 (2015).

Oramasionwu, G. E. et al. The utility of stool cultures for diagnosing tuberculosis in
people living with the human immunodeficiency virus. Int J Tuberc Lung Dis 17, 1023—
1028 (2016).

Mahapatra, S. et al. A metabolic biosignature of early response to anti-tuberculosis
treatment. BMC Infect. Dis. 14, 53 (2014).

Scriba, T. J., Coussens, A. K. & Fletcher, H. A. Human immunology of tuberculosis.
Microbiol Spectr. 5, 213-237 (2017).

Hmama, Z., Pefia-Diaz, S., Joseph, S. & Av-Gay, Y. Immunoevasion and
immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol.
Rev. 264, 220-232 (2015).

Andersson, J., Samarina, A, Fink, J., Rahman, S. & Grundstrom, S. Impaired expression
of perforin and granulysin in CD8+ T cells at the site of infection in human chronic
pulmonary tuberculosis. Infect. Immun. 75, 5210-5222 (2007).

Lin, P. L. & Flynn, J. L. CD8 T cells and Mycobacterium tuberculosis infection. Semin
Immunopathol. 37, 239-249 (2015).

Wong, E. A. et al. Low levels of T cell exhaustion in tuberculous lung granulomas. Infect.
Immun. 86, (2018).

Ehlers, S. & Schaible, U. E. The granuloma in tuberculosis: Dynamics of a host-pathogen
collusion. Front. Immunol. 3, 1-9 (2012).

D’Avila, H. et al. Mycobacterium bovis Bacillus Calmette-Guérin Induces TLR2-
Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis In
Vivo. J. Immunol. 176, 3087-3097 (2006).

Pagan, A. J. & Ramakrishnan, L. Immunity and immunopathology in the tuberculous
granuloma. Cold Spring Harb. Perspect. Med. 5, 1-19 (2015).

Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev.
Immunol. 12, 352-366 (2012).

Ong, C. W. M., Elkington, P. T. & Friedland, J. S. Tuberculosis, pulmonary cavitation, and
matrix metalloproteinases. Am. J. Respir. Crit. Care Med. 190, 9-18 (2014).

221



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Delogu, G. & Goletti, D. The spectrum of tuberculosis infection: New perspectives in
the era of biologics. J. Rheumatol. 41, 11-16 (2014).

Lin, P. L. & Flynn, J. L. The End of the Binary Era: Revisiting the Spectrum of Tuberculosis.
J. Immunol. 201, 2541-2548 (2018).

Walzl, G., Ronacher, K., Hanekom, W., Scriba, T. J. & Zumla, A. Immunological
biomarkers of tuberculosis. Nat. Rev. Immunol. 11, 343-354 (2011).

Panteleev, A. V. et al. Severe Tuberculosis in Humans Correlates Best with Neutrophil
Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific
CD4 T-Cell Response. Front. Immunol. 8, 1-16 (2017).

Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, (2016).

Comas, 1. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily
hyperconserved. Nat. Genet. 42, 498-503 (2010).

Yang, J. D. et al. Mycobacterium tuberculosis-specific CD4(+) and CD8(+) T cells differ
in their capacity to recognize infected macrophages. Plos Pathog. 14, 30 (2018).
Behar, S. M. Antigen-Specific CD8+ T Cells and Protective Immunity to Tuberculosis.
Adv Exp Med Biol 783, 141-163 (2013).

Goletti, D. et al. Can we predict tuberculosis cure? What tools are available? Eur. Respir.
J. 52, (2018).

Meier, N. R., Jacobsen, M., Ottenhoff, T. H. M. & Ritz, N. A Systematic Review on Novel
Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the
Diagnosis of Latent and Active Tuberculosis. Front. Immunol. 9, 1-22 (2018).
Rakotosamimanana, N. et al. Biomarkers for risk of developing active tuberculosis in
contacts of TB patients: a prospective cohort study. Eur. Respir. J. 46, 1095-1103
(2015).

Lowe, D. M. et al. Neutrophilia independently predicts death in tuberculosis. Eur.
Respir. J. 42, 1752-1756 (2013).

Roy Chowdhury, R. et al. A multi-cohort study of the immune factors associated with
M. tuberculosis infection outcomes. Nature 560, 644—648 (2018).

Goletti, D. et al. Region of difference 1 antigen-specific CD4+ memory T cells correlate
with a favorable outcome of tuberculosis. J. Infect. Dis. 194, 984-992 (2006).

Day, C. L. et al. Functional Capacity of Mycobacterium tuberculosis -Specific T Cell Responses

in Humans Is Associated with Mycobacterial Load. J. Immunol. 187, 2222-2232 (2011).

222



81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Axelsson-Robertson, R. et al. Frequency of Mycobacterium tuberculosis-specific CD8+
T-cells in the course of anti-tuberculosis treatment. Int. J. Infect. Dis. 32, 23-29 (2015).
Kamada, A. & Amishima, M. QuantiFERON-TB Gold Plus as a potential tuberculosis
treatment monitoring tool. Eur. Respir. J. 49, 1601976 (2017).

Petruccioli, E. et al. Effect of therapy on Quantiferon-Plus response in patients with
active and latent tuberculosis infection. Sci. Rep. 8, 15626 (2018).

Sali, M. et al. Combined use of Quantiferon and HBHA-based IGRA supports
tuberculosis diagnosis and therapy management in children. J. Infect. 77, 526-533
(2018).

Agrawal, S. et al. Efficacy of T regulatory cells, Th17 cells and the associated markers in
monitoring tuberculosis treatment response. Front. Immunol. 9, 1-16 (2018).

Sada, |., Carrillo-Alduenda, J. L., Chavez-Galan, L., Skold, M. & Salazar-Lezama, M. A.
Polyfunctional T cell responses to ESAT-6 and PPD after treatment in multidrugresistant
tuberculosis patients. J. Immunol. 188, (2012).

Latorre, I. et al. Study of CD27 and CCR4 Markers on Specific CD4+ T-Cells as Immune
Tools for Active and Latent Tuberculosis Management. Front. Immunol. 9, 1-11 (2019).
Adekambi, T. et al. Distinct effector memory CD4 + T cell signatures in latent
Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved
tuberculosis. PLoS One 7, (2012).

Nikitina, 1. Y. et al. Thl, Th17, and ThiTh17 Lymphocytes during Tuberculosis: Thl
Lymphocytes Predominate and Appear as Low-Differentiated CXCR3 + CCR6 + Cells in
the Blood and Highly Differentiated CXCR3 +/- CCR6 - Cells in the Lungs. J. Immunol.
200, 2090-2103 (2018).

Adekambi, T., Ibegbu, C., Cagle, S., Ray, S. & Rengarajan, J. Monitoring the response to
TB treatment using T cells biomarkers in TB/HIV patients undergoing ART. J. Immunol.
198, 125.14 (2017).

Ahmed, M. I. M. et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific
CDA T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front. Immunol.
9, 2247 (2018).

Day, C. L. et al. PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is

Associated With Bacterial Load in Human Tuberculosis. Front. Immunol. 9, 1995 (2018).

223



93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Hassan, S. S., Akram, M., King, E. C., Dockrell, H. M. & Cliff, J. M. PD-1, PD-L1 and PD-L2
gene expression on t-cells and natural killer cells declines in conjunction with a
reduction in PD-1 protein during the intensive phase of tuberculosis treatment. PLoS
One 10, e0137646 (2015).

Ferrian, S. et al. A combination of baseline plasma immune markers can predict
therapeutic response in multidrug resistant tuberculosis. PLoS One 12, e0176660
(2017).

Riou, C. et al. Effect of Standard Tuberculosis Treatment on Plasma Cytokine Levels in
Patients with Active Pulmonary Tuberculosis. PLoS One 7, e36886 (2012).

Bloom, C. I. et al. Detectable Changes in The Blood Transcriptome Are Present after
Two Weeks of Antituberculosis Therapy. PLoS One 7, 13 (2012).

Zak, D. E. et al. Ablood RNA signature for tuberculosis disease risk: a prospective cohort
study. Lancet (North Am. Ed. 387, 2312-2322 (2016).

Penn-Nicholson, A. et al. RISK6, a 6-gene transcriptomic signature of TB disease risk,
diagnosis and treatment response. Sci. Rep. 10, 1-21 (2020).

Pai, M. et al. Gamma interferon release assays for detection of Mycobacterium
tuberculosis infection. Clin. Microbiol. Rev. 27, 3-20 (2014).

Doan, C. A. & Sabin, F. R. The Relation of the Tubercle and the Monocyte-Lymphocyte
Ratio to Resistance and Susceptibility in Tuberculosis. J. Exp. Med. 52, 113-152 (1930).
Morris, C. D. W., Bird, A. R. & Nell, H. The haematological and biochemical changes in
severe pulmonary tuberculosis. Qim 73, 1151-1159 (1989).

La Manna, M. P. et al. Quantitative and qualitative profiles of circulating monocytes
may help identifying tuberculosis infection and disease stages. PLoS One 12, e0171358
(2017).

Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for
extrapulmonary dissemination. Nature 412, 190-194 (2001).

Delogu, G. et al. Methylated HBHA produced in M. smegmatis discriminates between
active and non-active tuberculosis disease among RD1-responders. PLoS One 6, (2011).
Locht, C., Hougardy, J. M., Rouanet, C., Place, S. & Mascart, F. Heparin-binding
hemagglutinin, from an extrapulmonary dissemination factor to a powerful diagnostic

and protective antigen against tuberculosis. Tuberculosis 86, 303—309 (2006).

224



106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Corbiere, V. et al. Risk Stratification of Latent Tuberculosis Defined by Combined
Interferon Gamma Release Assays. PLoS One 7, e43285 (2012).

Hougardy, J. M. et al. Heparin-binding-hemagglutinin-induced IFN-y release as a
diagnostic tool for latent tuberculosis. PLoS One 2, (2007).

Tang, J. et al. QuantiFERON-TB Gold Plus combined with HBHA-Induced IFN-y release
assay improves the accuracy of identifying tuberculosis disease status. Tuberculosis
124, (2020).

Masungi, C. et al. Differential T and B cell responses against Mycobacterium
tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and
patients with tuberculosis. J. Infect. Dis. 185, 513-520 (2002).

Smits, K. et al. Immunological Signatures ldentifying Different Stages of Latent
Mycobacterium tuberculosis Infection and Discriminating Latent from Active
Tuberculosis in Humans. J. Clin. Cell. Inmunol. 06, 1-9 (2015).

Aerts, L. et al. HBHA-Induced Polycytotoxic CD4+ T Lymphocytes Are Associated with
the Control of Mycobacterium tuberculosis Infection in Humans. J. Immunol. 202, 421—
427 (2019).

Wen, H. L. et al. Involvement of methylated HBHA expressed from Mycobacterium
smegmatis in an IFN-y release assay to aid discrimination between latent infection and
active tuberculosis in BCG-vaccinated populations. Eur. J. Clin. Microbiol. Infect. Dis. 36,
1415-1423 (2017).

Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-
cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 43, 2797-2809
(2013).

Shanmugasundaram, U. et al. Pulmonary Mycobacterium tuberculosis control
associates with CXCR3- And CCR6-expressing antigen-specific Thl and Th17 cell
recruitment. JC/ Insight 5, (2020).

Marriott, I. et al. Active Tuberculosis Is Characterized by Highly Differentiated Effector
Memory Th1 Cells. Front. Immunol. 9, 2127 (2018).

Chiacchio, T. et al. Polyfunctional T-cells and effector memory phenotype are
associated with active TB in HIV-infected patients. J. Infect. 69, 533-545 (2014).
Wang, X. et al. Association of mycobacterial antigen-specific CD4(+) memory T cell

subsets with outcome of pulmonary tuberculosis. J Infect 60, 133-139 (2010).

225



118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

Goletti, D. et al. Response to M. tuberculosis selected RDI peptides in Ugandan HIV-
infected patients with smear positive pulmonary tuberculosis: a pilot study. Bmc Infect.
Dis. 8, 13 (2008).

Petruccioli, E. et al. IFNy/TNFa specific-cells and effector memory phenotype associate
with active tuberculosis. J. Infect. 66, 475—-486 (2013).

Nyendak, M. R. et al. Mycobacterium tuberculosis Specific CD8(+) T Cells Rapidly
Decline with Antituberculosis Treatment. PLoS One 8, e81564 (2013).

Jiang, H. et al. Decreased expression of perforin in CD8+ T lymphocytes in patients with
Mycobacterium tuberculosis infection and its potential value as a marker for efficacy
of treatment. J. Thorac. Dis. 9, 1353-1360 (2017).

Riou, C., Berkowitz, N., Goliath, R., Burgers, W. A. & Wilkinson, R. J. Analysis of the
phenotype of Mycobacterium tuberculosis-specific CD4+ T cells to discriminate latent
from active tuberculosis in HIV-Uninfected and HIV-Infected individuals. Front.
Immunol. 8, (2017).

Young, J. M., Adetifa, I. M. O., Ota, M. O. C. & Sutherland, J. S. Expanded polyfunctional
T cell response to mycobacterial antigens in TB disease and contraction post-
treatment. PLoS One 5, (2010).

Harari, A. et al. Dominant TNF-a+ Mycobacterium tuberculosis-specific CD4+ T cell
responses discriminate between latent infection and active disease. Nat. Med. 17, 372—
377 (2011).

Lyadova, |. V & Panteleev, A. V. Thl and Th17 Cells in Tuberculosis: Protection,
Pathology, and Biomarkers. Mediators Inflamm. 854507 (2015)
do0i:10.1155/2015/854507.

Nikitina, 1. Y. et al. Mtb-specific CD27low CD4 t cells as markers of lung tissue
destruction during pulmonary tuberculosis in humans. PLoS One 7, e43733 (2012).
Riou, C., Jhilmeet, N., Rangaka, M. X., Wilkinson, R. J. & Wilkinson, K. A. Tuberculosis
antigen-specific T cell responses during the first 6 months of antiretroviral treatment.
J. Infect. Dis. 221, 162-167 (2020).

Moguche, A. O. et al. Antigen Availability Shapes T Cell Differentiation and Function
during Tuberculosis. Cell Host Microbe 21, 695-706.e5 (2017).

Zhao, Y. et al. IP-10 and RANTES as biomarkers for pulmonary tuberculosis diagnosis

and monitoring. Tuberc. 111, 45-53 (2018).

226



130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

Hoel, I. M. et al. IP-10 dried blood spots assay monitoring treatment efficacy in
extrapulmonary tuberculosis in a low-resource setting. Sci. Rep. 9, 3871 (2019).
Miranda, P. et al. Sustained elevated levels of C-reactive protein and ferritin in
pulmonary tuberculosis patients remaining culture positive upon treatment initiation.
PLoS One 12, e0175278 (2017).

Sigal, G. B. et al. Biomarkers of Tuberculosis Severity and Treatment Effect: a Directed
Screen of 70 Host Markers in a Randomized Clinical Trial. Ebiomedicine 25, 112-121
(2017).

Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for
diagnosis of pulmonary tuberculosis: A multicohort analysis. Lancet Respir. Med. 4,
213-224 (2016).

Thompson, E. G. et al. Host blood RNA signatures predict the outcome of tuberculosis
treatment. Tuberculosis 107, 48-58 (2017).

Liechti, T. & Roederer, M. OMIP-060: 30-Parameter Flow Cytometry Panel to Assess T
Cell Effector Functions and Regulatory T Cells. Cytom. Part A 95, 1129-1134 (2019).
Bandura, D. R. et al. Mass cytometry: Technique for real time single cell multitarget
immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.
Anal. Chem. 81, 6813—-6822 (2009).

Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler’s guide
to cytometry. Trends Immunol. 33, 323-332 (2012).

Baumgart, S., Peddinghaus, A., Schulte-Wrede, U., Mei, H. E. & Gritzkau, A. OMIP-034.:
Comprehensive immune phenotyping of human peripheral leukocytes by mass
cytometry for monitoring immunomodulatory therapies. Cytom. Part A 91, 34-38
(2017).

Dusoswa, S. A., Verhoeff, J. & Garcia-Vallejo, J. J. OMIP-054: Broad Immune
Phenotyping of Innate and Adaptive Leukocytes in the Brain, Spleen, and Bone Marrow
of an Orthotopic Murine Glioblastoma Model by Mass Cytometry. Cytom. Part A 95,
422-426 (2019).

Takahashi, C. et al. Mass cytometry panel optimization through the designed
distribution of signal interference. Cytom. Part A 91, 39-47 (2017).

Nolan, J. P. & Condello, D. Spectral flow cytometry. Curr. Protoc. Cytom. 1-18 (2013)
doi:10.1002/0471142956.cy0127s63.

227



142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.
154.

155.

Park, L. M., Lannigan, J. & Jaimes, M. C. OMIP-069: Forty-Color Full Spectrum Flow
Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human
Peripheral Blood. Cytom. Part A 97, 1044-1051 (2020).

Chattopadhyay, P. K. & Roederer, M. A mine is a terrible thing to waste: High content,
single cell technologies for comprehensive immune analysis. Am. J. Transplant. 15,
1155-1161 (2015).

Gossez, M. et al. Proof of concept study of mass cytometry in septic shock patients
reveals novel immune alterations. Sci. Rep. 8, 1-12 (2018).

Kourelis, T. V et al. Mass cytometry dissects T cell heterogeneity in the immune tumor
microenvironment of common dysproteinemias at diagnosis and after fi rst line
therapies. Blood Cancer J. 9, (2019).

Brummelman, J. et al. High-dimensional single cell analysis identifies stemlike cytotoxic
CD8+T cells infiltrating human tumors. J. Exp. Med. 215, 2520-2535 (2018).

Brodie, T. M., Tosevski, V. & Medova, M. OMIP-045: Characterizing human head and
neck tumors and cancer cell lines with mass cytometry. Cytom. Part A 93, 406—410
(2018).

Turner, J. S. et al. Human germinal centres engage memory and naive B cells after
influenza vaccination. Nature 586, 127-132 (2020).

Silvin, A. et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate
Severe from Mild COVID-19. Cell 182, 1401-1418.e18 (2020).

Komurian-Pradel, F. et al. Enhancing research capacities in infectious diseases: The
GABRIEL network, a joint approach to major local health issues in developing countries.
Clin. Epidemiol. Glob. Heal. 1, 40-43 (2013).

Bonilla, D. L., Reinin, G. & Chua, E. Full Spectrum Flow Cytometry as a Powerful
Technology for Cancer Immunotherapy Research. Front. Mol. Biosci. 7, 1-10 (2021).
Juvet, S. C. & Zhang, L. Double negative regulatory T cells in transplantation and
autoimmunity: Recent progress and future directions. J. Mol. Cell Biol. 4, 48-58 (2012).
Myers, J. A. Can tuberculosis be eradicated? Dis. Chest 43, 327—-329 (1963).

World Health Organization. End TB by 2030. World Heal. Organ. Reg. Off. Africa 1-28
(2017).

Fukunaga, R. et al. Epidemiology of Tuberculosis and Progress Toward Meeting Global

Targets — Worldwide, 2019. MMWR Surveill. Summ. 70, 427-430 (2021).

228



156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

Bartalesi, F. et al. The role of Quantiferon-TB Gold in-Tube in the diagnosis and
treatment monitoring of active tuberculosis. Infect. Dis. (Auckl). 49, 474-477 (2017).
Denkinger, C. M., Pai, M., Patel, M. & Menzies, D. Gamma Interferon Release Assay for
Monitoring of Treatment Response for Active Tuberculosis: an Explosion in the
Spaghetti Factory. J. Clin. Microbiol. 51, 607-610 (2013).

Kamada, A. & Amishima, M. QuantiFERON-TB Gold Plus as a potential tuberculosis
treatment monitoring tool. Eur. Respir. J. 49, 10-12 (2017).

Li, G. et al. Anti-tuberculosis (TB) chemotherapy dynamically rescues Thl and CD8+ T
effector levels in Han Chinese pulmonary TB patients. Microbes Infect. 22, 119-126
(2020).

Chegou, N. N. et al. Africa-wide evaluation of host biomarkers in QuantiFERON
supernatants for the diagnosis of pulmonary tuberculosis. Sci. Rep. 8, 2675 (2018).
Mpande, C. A. M. et al. Immune profiling of Mycobacterium tuberculosis-specific T cells
in recent and remote infection. EBioMedicine 64, (2021).

Roy Chowdhury, R. et al. A multi-cohort study of the immune factors associated with
M. tuberculosis infection outcomes. Nature (2018) doi:10.1038/s41586-018-0439-x.
Feng, J.-Y. et al. Depressed Gamma Interferon Responses and Treatment Outcomes in
Tuberculosis Patients: a Prospective Cohort Study. J. Clin. Microbiol. 56, 1-9 (2018).
Lyadova, I. & Nikitina, I. Cell differentiation degree as a factor determining the role for
different T-helper populations in tuberculosis protection. Front. Immunol. 10, 1-10
(2019).

World Health Organization Geneva. Global Tuberculosis Report 2020. WHO press vol. 1
(2020).

Robinson, J. P. Spectral flow cytometry—Quo vadimus? Cytom. Part A 95, 823-824
(2019).

Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo.
J. Clin. Invest. 108, 1331-1339 (2001).

Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human
interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639-646 (2007).
Lindestam Arlehamn, C. S. et al. Memory T Cells in Latent Mycobacterium tuberculosis
Infection Are Directed against Three Antigenic Islands and Largely Contained in a

CXCR3+CCR6+ Th1 Subset. PLoS Pathog. 9, (2013).

229



170.

171.

172.

173.

174.

175.

176.

177.
178.

179.

180.

181.

182.

Pandya, J. M. et al. Circulating T helper and T regulatory subsets in untreated early
rheumatoid arthritis and healthy control subjects. J. Leukoc. Biol. 100, 823—833 (2016).
Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of
CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp.
Immunol. 185, 1-21 (2016).

Oshikawa, K. & Sugiyama, Y. Elevated soluble CD26 levels in patients with tuberculous
pleurisy. Int. J. Tuberc. Lung Dis. 5, 868—872 (2001).

Ohnuma, K., Dang, N. H. & Morimoto, C. Revisiting an old acquaintance: CD26 and its
molecular mechanisms in T cell function. Trends Immunol. 29, 295-301 (2008).
Sharma, P. K. et al. High expression of CD26 accurately identifies human bacteria-
reactive MR1-restricted MAIT cells. Immunology 145, 443-453 (2015).

Chen, H. H. et al. Effects of dipeptidyl peptidase-4 inhibitor treatment doses on
tuberculosis in patients with diabetes: A long-term nationwide population-based
cohort study. Ann. Palliat. Med. 9, 2817-2825 (2020).

Ahmed, M. I. M. et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific
CD4 T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front. Immunol.
9, 2247 (2018).

Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620-631 (2011).
Bertolini, T. B. et al. CCR4-dependent reduction in the number and suppressor function
of CD4+ Foxp3+ cells augments IFN-y-mediated pulmonary inflammation and
aggravates tuberculosis pathogenesis. Cell Death Dis. 10, (2019).

Vickers, M. A. et al. Monitoring Anti-tuberculosis Treatment Response Using Analysis
of Whole Blood Mycobacterium tuberculosis Specific T Cell Activation and Functional
Markers. Front. Immunol. 11, 1-13 (2020).

Adekambi, T. et al. Biomarkers on patient T cells diagnose active tuberculosis and
monitor treatment response. J. Clin. Invest. 125, 1827-1838 (2015).

Cliff, J. M. et al. Excessive cytolytic responses predict tuberculosis relapse after
apparently successful treatment. J. Infect. Dis. 213, 485-495 (2016).

Morgan, J. et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity.

Immunol. Rev. 301, 10-29 (2021).

230



183.

184.

185.

186.

187.
188.

189.

190.

191.

192.

193.

194.

195.

De Albuquerque, A. C. et al. Association of polymorphism +874 A/T of interferon-y and
susceptibility to the development of tuberculosis: Meta-analysis. Eur. J. Clin. Microbiol.
Infect. Dis. 31, 2887-2895 (2012).

Tientcheu, L. D. et al. Immunological consequences of strain variation within the
Mycobacterium tuberculosis complex. Eur. J. Immunol. 47, 432—-445 (2017).

Genestet, C. et al. Rifampicin exposure reveals within-host Mycobacterium
tuberculosis diversity in patients with delayed culture conversion. PLOS Pathog. 17,
1009643 (2021).

Marchese, A. Endocytic trafficking of chemokine receptors. Curr Opin Cell Biol 27, 72—
77 (2014).

WHO. The End TB Strategy. WHO Press (2015).

Erkens, C. G. M. et al. Monitoring latent tuberculosis infection diagnosis and
management in the Netherlands. Eur. Respir. J. 47, 1492-1501 (2016).

Behr, M. A,, Edelstein, P. H. & Ramakrishnan, L. Revisiting the timetable of tuberculosis.
BMJ 362, 1-10 (2018).

Mpande, C. A. M. et al. Antigen-specific T-cell activation distinguishes between recent
and remote tuberculosis infection. Am. J. Respir. Crit. Care Med. 203, 1556—1565
(2021).

Bayaa, R., Ndiaye, M. D. B., Chedid, C. & Kokhreidze, E. Multi-country evaluation of
RISK6, a 6-gene blood transcriptomic signature, for tuberculosis diagnosis and
treatment monitoring. Sci. Rep. 11, 1-12 (2021).

Achkar, J. M. et al. Host Protein Biomarkers Identify Active Tuberculosis in HIV
Uninfected and Co-infected Individuals. EBioMedicine 2, 1160-1168 (2015).

Bark, C. M. et al. Identification of Host Proteins Predictive of Early Stage
Mycobacterium tuberculosis Infection. EBioMedicine 21, 150-157 (2017).

Simmons, J. D., Stein, C. M., Seshadri, C., Campo, M. & Kizza, H. M.-. Immunological
mechanisms of human resistance to persistent Mycobacterium tuberculosis infection.
Nat. Rev. Immunol. 18, 575-589 (2018).

Gutierrez, J., Kroon, E. E., Moller, M. & Stein, C. M. Phenotype Definition for “Resisters”
to Mycobacterium tuberculosis Infection in the Literature—A Review and

Recommendations. Front. Immunol. 12, (2021).

231



List of abbreviations

APD: avalanche photodiode (cytometry detector)
ATB: active tuberculosis

AUC: area under the curve (see: “ROC")

BCG: Bacille Calmette-Guérin

BMI: body mass index

CBC: complete blood counts

CCD: Charge Coupled Device (cytometry detector)
CD: cluster of differentiation

CFP-10: 10kDa culture filtrate protein

COVID-19: Coronavirus disease 2019

CT-scan: computed tomography scan

CyTOF: cytometry by time of flight

DR-TB: drug-resistant tuberculosis (includes all resistance phenotypes)

DS-TB: drug-susceptible tuberculosis

ELISA: enzyme-linked immunosorbent assay
ELISPOT: enzyme-linked immunosorbent spot assay
EPTB: extrapulmonary tuberculosis

ESAT-6: 6kDa early secreted antigenic target

HBHA: heparin-binding hemagglutinin

IFN-y: interferon gamma

IGRA: Interferon gamma release assay

IL-2: interleukin 2

LMIC: lower-middle-income countries

LTBI: latent tuberculosis infection

LTFU: lost to follow-up

MDR-TB: multi-drug resistant tuberculosis

Mtb or M. tuberculosis: Mycobacterium tuberculosis
MTBC: Mycobacterium tuberculosis complex

PBMC: peripheral blood mononucleated cells

PCA: principal components analysis

232



PMT: photomultiplier tube (cytometry detector)

PTB: pulmonary tuberculosis

QFT-GIT: QuantiFERON-TB Gold In-Tube

QFT-P: QuantiFERON-TB Gold Plus
ROC: Receiver Operating Curve
RR-TB: rifampicin-resistant TB

TB: tuberculosis

TCR: T-cell receptor

TNF: tumor necrosis factor

WBC: white blood cells

WHO: World Health Organization

XDR-TB: extensively drug-resistant TB

Abbreviations for TB drugs
First line drugs:

E: Ethambutol.

H: Isoniazid.

R: Rifampicin.

S: Streptomycin.

Z: Pyrazinamide.

Second line drugs:
Bdq: Bedaquiline.
Cfz: Clofazimine.
Cs: Cycloserine.
Km: Kanamycin.
Lfx: Levofloxacin.
Lzd: Linezolid.
Mfx: Moxifloxacin.

Pto: Prothionamide.

233



List of figures

Figure 1. Paleontological evidence of bone TB infection in Ancient Egyptian mummies. .........cc.......... 9
Figure 2. Phylogeny of the MTBC COMPIEX. ...viiiicuiiieiiiiiieeccitee e ecitee e ectre e e e cire e e eser e e e senraeeessnsaeeesnanneeaens 11

Figure 3. “Tubercle” illustration showing advanced lung lesions and caseous granuloma caused by

(o101 o gTe Yot VA Il - TSP 13
Figure 4. Pneumonolysis performed to collapse an underlying TB cavity......ccccccovveeriiieeesiciieeeeicnneeenn. 15
Figure 5. Worldwide TB epidemiolOgY . ....ccccuiiiiiiiiiiiiiiiieeeitee e scitee st e s e e ssare e e ssrae e e ssnraeeessaseeeeens 18
Figure 6. HIV prevalence in new and relapse TB CASES. ..uuiiciiiiiiciiiiiiiiieeeeciieeessireeessveeeessseeeessnneeeens 19
Figure 7. Chemical components of the mycobacterial cell wall. ........ccceeiiiiiiiniiiiieee, 20
Figure 8. Radiological images of TB iNfeCtioN. ........ciiviiiiiieciiie e 22
Figure 9. M. tuberculosis sputum SMEaAr MICITOSCOPY. ..uveerrrurrrerrirreeesirreeessrreeesssreeesssreeessssseeesssseeesns 23
Figure 10. Pathways leading to increases in drug-resistant TB infections.......cccccccvevviieeeiicieeeiicnennn, 25
Figure 11. Second-line drugs used for the treatment of drug-resistant TB............ccceccvvveericireeeeicnnenenn. 26
Figure 12. Occurrence of serious adverse events (SAE) in patients under treatment for MDR-TB......28

Figure 13. Qualitative results of the four most frequently used sputum-based treatment monitoring
Methods dUring PTB trEatMENT. .......ceecciiiieciiiie ettt e st e e e ate e e e et e e e e entaeesenteeeeenteeeeennrenas 30
Figure 14. Spatial structure and cellular actors of the TB granuloma. ........ccccceecieeeeciiieeecccieee e, 33
Figure 15. Immune host biomarkers across the TB spectrum, in relation with granuloma

oL 14 e oY o] 012 (o] 1o =4V 2SR 36
Figure 16. IFN-y response to HBHA or QFT-GIT antigens in active TB patients before and after

TrEATMENT. .ot e 41
Figure 17. Performance of the RISK6 signature for PTB treatment monitoring. ........ccccceevvvveeeriinennnn. 45
Figure 18. Conventional flow cytometry and technical limitations. .........ccoceeeiieiniiiinniieniiceceee 47
Figure 19. Principle of Mass CYtOMEtIY. ... ittt sttt ettt e sbee e sbee e 48
Figure 20. Principle of full spectrum flow cytometry. ......occuvieiiiiiiice e 50
Figure 21. Sample collection and analysis workflow for the HINTT study.......cccccceeeeiiieeeiicieeecciieenn. 55

Figure 22. Preliminary comparison of basic T-cell phenotyping with spectral flow and mass

(oY a0 1 0= o o SRS TSRS 129
Figure 23. Flowchart of sample @analysis. ........cooouiiiieiiiiieeee e 130
Figure 24. Representative morphology and gating strategy for the main CD45* non-granulocyte
whole blood subpopulations in Aurora-acquired data. ......ccccceeeeciiiieiiei e 131
Figure 25. Unsupervised clustering and phenotyping of peripheral CD3* T-cells using full spectrum
110XV oY oY o o =1 4 V2SR 132

Figure 26. Flowchart of inclusions and follow-up in the APRECIT study. ......cccceeevveeiviieee e, 144

234



List of tables

Table 1. WHO-defined drug resistance categorization.........cccceecuveiieiiieeecciiee e 27
Table 2. Definition of treatment outcomes in DS-TB and DR-TB patients........cccccceevciveeeeiiiveeeeccnneeenn. 29
Table 3. Common TB antigens used in or investigated for immunodiagnostics and/or vaccination. ..38
Table 4. Current trends in TB treatment immunomonitoring research. ........ccccccoeeeeeciieeeeccieeeeccveeen, 39

Table 5. Main markers investigated for TB immunomonitoring in relation with canonical T-cell

QI ErENtiation STAEES. .iiiviiii ittt e e s e e e e e e e e e e nbeeeeenreeas 42
Table 6. HINTT study clinical and [aboratory partNers.......cueevieeicciie e 54
Table 7. From mass to spectral flow: @ cost analysis. .......occuveiiiiiiiieiiiiee e 126
Table 8. From mass to spectral flow cytometry: a resolution analysis........ccccccoveveeiiviienincciee e, 127

235



Résumé en francgais

Contexte : La tuberculose (TB) est une des maladies infectieuses les plus meurtriéres au
monde, avec plus d’un million de morts en 2020. Délaissée dans les politiques sanitaires
internationales, elle touche principalement les pays en voie de développement et les
personnes en situation de précarité. Son traitement nécessite des multithérapies
antibiotiques aux effets secondaires toxiques. Concernant la TB pulmonaire en particulier, il
existe un besoin clinique pour de nouveaux tests de suivi du traitement plus rapides et
adaptés a des échantillons accessibles plus régulierement que les crachats. Dans ce contexte,

les biomarqueurs sanguins immunologiques représentent des options prometteuses.

Objectifs : L'objectif principal de cette thése était d'évaluer la pertinence clinique de tests
immunologiques sanguins pour le suivi du traitement anti-TB par rapport a I"évolution
microbiologique mesurée par la culture de Mycobacterium tuberculosis (Mtb). Pour ceci, une
étude prospective multicentrique a été menée dans cing pays a forte incidence de TB
(Bangladesh, Géorgie, Liban, Madagascar, Paraguay). Elle comportait un volet d’évaluation de
deux outils simples (une numération sanguine et deux tests plasmatiques), et un volet

exploratoire utilisant des techniques de cytométrie a hautes dimensions.

Résultats : Nous avons recruté 152 patients adultes atteints de TB pulmonaire sensible ou
résistante aux antibiotiques et prélevé des échantillons de sang et de crachats a l'inclusion,
apres deux mois (T1), et a la fin du traitement (6 a 24 mois). Nous avons observé qu’un
nombre de leucocytes élevé et une faible proportion de lymphocytes a l'inclusion, mesurés
lors de numérations sanguines de routine, avaient une valeur prédictive de I'échec du
traitement. Puis, une combinaison de deux IFN-y release assays (QuantiFERON-TB Gold Plus
et heparin-binding hemagglutinin ; HBHA) a été évaluée. Chez un sous-groupe de patients
dont les cultures étaient restées positives a T1, un schéma clinique commun a l'inclusion a
été observé (neutrophilie, lymphopénie, faible indice de masse corporelle, faibles réponses
QFT-P IFN-y) ainsi qu’une faible réponse IFN-y a HBHA pendant le traitement. Enfin, dans un
sous-groupe de 22 patients, la diversité phénotypique des lymphocytes T (LT) dans le sang a
été caractérisée par cytométrie de masse et de flux spectral. La comparaison des immuno-

profils des patients ayant une culture négative a T1, par rapport a ceux dont les cultures
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étaient restées positives, a révélé chez ces derniers une sous-représentation de LT CD8*
cytotoxiques différenciés et une sur-représentation de LT CD4* naifs aprés deux mois de
traitement. Ceci suggere un lien entre le stade de différenciation de certaines sous-
populations de LT et la clairance mycobactérienne au cours du traitement. Un phénotypage
détaillé des sous-populations concernées a permis d’isoler les marqueurs cellulaires

permettant la meilleure différenciation des patients en fonction de leur culture de Mtb.

Perspectives : Ces travaux ont documenté la pertinence clinique de deux tests de suivi simples
et rapides, adaptés aux zones a forte incidence de TB. Ils ont généré de nouvelles données
sur I'immunobiologie des lymphocytes T lors de I'infection tuberculeuse, chez des patients
représentatifs des populations les plus touchées. Ceci a permis de faire émerger de nouvelles
cibles cellulaires pour le suivi du traitement. Ces résultats pourront avoir des applications
directes dans d’autres enjeux majeurs de la prise en charge de la TB, notamment la détection
de l'infection tuberculeuse latente, I'identification des patients les plus susceptibles de

progresser vers une TB active, et la prédiction des risques de rechute post-traitement.
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