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Abstract 
 

Context: Tuberculosis (TB) is one of the most deadly infectious diseases in the world, with 

more than one million deaths by 2020. Neglected in international health policies, it mainly 

affects developing countries. Its treatment requires antibiotic multi-therapies with toxic side 

effects. Concerning pulmonary TB in particular, there is a clinical need for new tests to monitor 

treatment more rapidly, using samples that are more consistently accessible than sputum. In 

this context, immunological blood biomarkers represent promising options.  

 

Objectives: The main objective was to evaluate the clinical relevance of selected blood-based 

immunological tests for anti-TB treatment monitoring, in relation Mycobacterium tuberculosis 

(Mtb) culture conversion. For this purpose, we conducted a prospective multicentered 

translational study in five high-TB incidence countries (Bangladesh, Georgia, Lebanon, 

Madagascar, Paraguay). We adopted a hybrid research approach including an on-site 

evaluation of two point-of-care tests (complete blood counts and interferon-gamma (IFN-γ) 

release assays), and an exploratory component using high-dimensional single-cell techniques 

for signature discovery (mass cytometry and full spectrum flow cytometry, in Lyon). 

 

Findings: We enrolled 152 adult patients with culture-confirmed drug-susceptible (DS) or 

drug-resistant (DR) pulmonary TB. Peripheral whole blood and sputum samples were collected 

at inclusion, after two months (T1), and at the end of treatment (6 to 24 months). At inclusion, 

high total white blood cell counts and low lymphocyte counts – measured by routine complete 

blood counts – were predictive of treatment failure. Then, a combination of two plasma-based 

IFN-γ release assays (QuantiFERON-TB Gold Plus and heparin-binding hemagglutinin; HBHA) 

was evaluated. In a subgroup of patients whose sputum cultures remained positive at T1, a 

common clinical pattern at inclusion was observed (neutrophilia, lymphopenia, low body mass 

index, low QFT-P IFN-γ responses) as well as a low IFN-γ response to HBHA during treatment. 

Finally, in a subgroup of 22 patients, the phenotypic diversity of peripheral T-cells was 

characterized by mass and full spectrum flow cytometry. At T1, T-cell immune-profile 

comparison distinguished negative- from positive-sputum culture patients at two months, 

whether infected with a DS- or DR-Mtb strain. In-depth analyses revealed an under-

representation of differentiated cytotoxic CD8+ T-cells and an over-representation of naive 

CD4+ T-cells in positive-sputum culture patients at two months. This suggests a link between 

the T-cell differentiation and mycobacterial clearance during treatment. 
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Perspectives: In this work, we have documented the clinical relevance of two simple 

monitoring tests, adapted to lower-income, high-TB incidence settings. We have generated 

new data on T-cell immunobiology during TB treatment in patients representative of the most 

affected populations. These results may have direct applications to other major issues in TB 

management, including latent TB infection screening, identification of patients most likely to 

progress to active TB, and prediction of post-treatment relapse risk. 
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PART A: BACKGROUND 

  



 
  7 

 

Introduction 
 

Tuberculosis (TB) is one of the leading causes of death by a single infectious agent in the world. 

It is caused by the bacillus Mycobacterium tuberculosis (M. tuberculosis; Mtb), which 

preferentially infects the lungs, but also causes a diversity of extrapulmonary disease forms. 

In 2020, one-fourth of the world population was estimated to latently carry Mtb, and active 

TB disease was responsible for over 1 million deaths and an estimated 10 million new 

infections. Although the sole existing vaccine (the Bacille de Calmette et Guérin (BCG) vaccine) 

has been administered to over 3.5 billion people since its discovery in the early twentieth 

century, the control of the TB epidemic remains a vastly unmet public health goal. 

Simultaneously, the rising incidence of multi-drug resistant (MDR) and extensively drug 

resistant (XDR) TB cases, and the emergence of totally-drug resistant (TDR) Mtb strains have 

become a major public health concern as they require significantly heavier therapeutic options 

and mobilize important funds. 

Comprehensively understanding the immune response to Mtb infection remains a challenging 

task despite decades of work. Mtb is a thick layered, slow-growing bacterium which can 

survive a long time in a reversible latent state, is naturally tolerant to numerous antibacterial 

chemotherapies, and displays highly effective immune escape mechanisms. Immune 

responses to Mtb are hence only partly effective, leading to a vast reservoir of asymptomatic, 

non-contagious latent infections in the general population. For these reasons, the treatment 

of active TB requires combined antibiotic therapies that last six months at least1,2 and are 

associated with toxic side effects ranging from nausea to peripheral nerve damage and 

hepatotoxicity, requiring consistent patient follow-up during treatment. However, adherence 

to anti-TB treatment is notoriously low, in particular in primary care settings3,4. This is a risk 

factor for treatment failure and relapse as well as for further selection of drug-resistant 

strains5–7. Efficient monitoring of anti-TB treatment adherence and efficacy is critical to 

provide adequate patient care and curb relapse episodes and acquired drug resistance. 

As per the current WHO recommendations, anti-TB treatment monitoring relies on bacilli 

detection by sputum smear microscopy and M. tuberculosis culture when possible8. These 

microbiology-based methods have been in use for over a century and their experimental 

limitations take a toll on clinical TB management. Smear microscopy has poor sensitivity and 

specificity for outcome prediction in patients with pulmonary TB because it is impacted by the 

bacterial load and immunological state of patients, and the quality of results is highly 
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operator-dependent9,10. M. tuberculosis culture is considered the gold standard for TB 

treatment monitoring as it provides good outcome predictions, but slow mycobacterial 

growth often causes results to arrive too late. It requires high biosafety laboratory 

environments (BSL-3) and therefore has limited availability in primary care settings11.  

There is a clinical and public health need for new anti-TB treatment monitoring tests adapted 

to primary care settings and that would provide quicker outcome predictions. To meet the 

clinical needs for TB follow-up, the novel tests detecting biomarkers of interest would need to 

be conductible on accessible samples (blood, urine, feces) and to require limited laboratory 

expertise and equipment12. As the TB epidemic keeps outgrowing our current bacteria-

centered diagnostic and therapeutical options, and as their limitations have become more 

apparent over the years, novel developments on immune biomarkers of TB have showcased 

a host-centered view as a promising alternative13.  

  



 
  9 

 

Chapter 1. Historical perspective on the fight against TB: from a bacterium-
centered to a host-centered approach. 
 

1.1  From prehistorical times to modern history: TB, the eternal plague 

1.1.1  Evidence of TB disease from Prehistorical and Antique times 

TB is one of the oldest infectious diseases recorded in human history. Archeological, 

paleontological, and genotyping evidence indicate that TB is intricately linked with the history 

of human development. Historically, the first archeological discoveries of TB-characteristic 

lesions in human remains were made in the early XXth century on Ancient Egyptian mummies 

dating back to 3,400 B.C. through the uncovering of bones showing typical TB-caused abscess 

cavities (Figure 1.A.) or lesions evocative of Pott’s disease, a TB infection of the spine which 

may cause spectacular spinal deformities (Figure 1.B.)14.  

 

 

Figure 1. Paleontological evidence of bone TB infection in Ancient Egyptian mummies.  
A. TB abscess cavity in a lumbar vertebra from a Middle Kingdom Egyptian mummy (c. 1975 – 1640 B.C.). B. Spinal 
deformities evocative of TB infection (Pott’s disease) on the mummy of the priest Nesperehân (c. 1069 – 945 
B.C.). Source: A.J.E. Cave, 194114. 
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Nowadays, however, modern genotyping methods have revealed the presence of Mtb DNA in 

human remains as ancient as 9,000 to 8,000 years, in a Neolithic settlement located in the 

Eastern Mediterranean, south of Haifa (Occupied State of Palestine)15. In animals, Mtb DNA 

was detected in 17,000 year old remains of an extinct Bison antiquus species found in Natural 

Trap Cave (Wyoming, USA)16. Erosive lesions of the articular surface of metacarpal bones were 

deemed as characteristic of Mtb-like granulomatous infection, as confirmed by PCR17; over a 

decade later, lipidic Mtb virulence factors were even detected in the same remains18. Such 

paleomicrobiology discoveries were consistent with the anthropological hypothesis that TB 

arose along with human settlement and with the development of agriculture and cattle 

domestication (c. 9,000 – 8,000 B.C.). This led to initial theories that TB was a zoonotic disease, 

passed on by cattle to humans, and that M. tuberculosis originated from Mycobacterium bovis. 

However, over the last 20 years, whole genome sequencing (WGS) studies along with 

extensive phylogenetics works have challenged these theories and generated debate over the 

historical evolution of the M. tuberculosis complex (MTBC) genus, which includes seven 

human-adapted M. tuberculosis lineages and nine animal-adapted ecotypes which may infect 

humans as well and are found in diverse animal reservoirs, from bovids (M. bovis) to poultry 

(M. avium) or pinnipeds (M. pinnipedii). Phylogenetic analyses within the MTBC rely on the 

detection of genomic insertions or deletions of regions of difference (RD), which are unique 

large sequence polymorphisms that occurred only once in the phylogeny of each MTBC 

species, and help identify each species and their phylogenetic relationships19. Based on this, 

WGS studies now suggest that M. tuberculosis, M. bovis, and other animal ecotypes share a 

common ancestor which would be genetically closer to M. tuberculosis (Figure 2). In addition, 

phylogeny evidence indicates that MTBC emerged at least 70,000 years ago – well before 

cattle domestication – and has constantly followed human migrations out of Africa, spreading 

faster as population density increased during the Neolithic period, with very little genetic 

diversification20.  
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Figure 2. Phylogeny of the MTBC complex.  
Phylogenetic relationships were based on the absence of regions of difference (RD; grey boxes) and the detection 
of single nucleotide polymorphisms (SNPs; white boxes) with superscripts indicating the position of the mutation 
at the nucleotide (n) or the codon (c) of each gene. BCG: Bacille Calmette Guérin strains. Adapted from Rodriguez-
Campos et al., 201421. 

  



 
  12 

 

1.1.2  Medical depictions of TB from Antiquity to the XVIIth century 

The earliest written evidence referencing TB disease was discovered in India and dates back 

to over 3,000 years22. Interestingly, some of these texts already advise patients to “move to 

higher altitudes”, which is reminiscent of the XIXth-XXth sanatorium movement. Pictural 

references to TB disease were present in ancient Egyptian art as well, although found mostly 

on funerary portraits with evocative depictions of Pott’s disease rather than on papyrus14. 

Later on, in Ancient Greece, TB became known as phtisis (φθίσις), derived from root words 

meaning “to waste away”, “to decay”. Hippocrates (460–370 B.C.) was one of the first 

physicians to accurately describe clinical symptoms of pulmonary TB as we know them today 

in his Of the Epidemics (Book I), citing “a state of consumption”, “constant sweats”, and a 

“weakness of the lung” along with descriptions of cough, hemoptysis, and nocturnal fever23. 

However, he thought the disease to be hereditary; it is Aristotle (384-322 B.C.) who is credited 

as the first Antiquity scholar to suspect the contagious nature of TB, as he writes: “in 

approaching the consumptive, one breathes [his] pernicious air”24. He described occurrences 

of TB-like disease in pigs and oxes22, likely corresponding to depictions of Mycobacterium 

bovis infection. After the fall of the Roman Empire (Vth century) and on to the Middle Ages, TB 

had spread throughout Europe, where the first records of TB cervical lymphadenitis were 

found. It was then referred to as scrofula or “écrouelles” in French, derived from the latin 

word for “sow”, evocative of the disgust physicians and patients alike felt for the spectacular 

symptoms of the disease25. It was known as “the King’s Evil” in France and England, and 

thought to be healed by the touch of a royal person endorsed with divine power. In the late 

XVIIth century, the first anatomically accurate characterizations of pulmonary TB pathology 

were published by the physician Franciscus Sylvius de la Boe, who first introduced the notion 

of “tubercles” in his “Opera Medica” (1679)22. These tubercles were considered the origin of 

the phtisis and were later illustrated consistently by other pathologists (Figure 3). Later on, at 

the end of the XVIIIth century, some scientists such as Benjamin Marten had formulated 

hypotheses about the infectious nature of TB, but the majority of the physicians at the time 

believed in its hereditary transmission. But by then, TB had started morphing into a deadly 

epidemic, which expanded with the increasing urbanization of Europe and boomed 

throughout the Industrial Revolution and its assorted cortege of precarious living conditions. As 

the “white plague” tore through European cities with a mortality rate of over 900 per 100,000 

people per year, physicians and scientists started investigating the infectious origin of TB26.  
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Figure 3. “Tubercle” illustration showing advanced lung lesions and caseous granuloma caused by pulmonary 
TB.  
Colored plate published in “Illustrations of the Elementary Forms of Disease” (1837) by the Scottish pathologist 
Sir Robert Carswell. Source: University of Edimburgh. 
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1.2  From the XIXth century to modern days: TB in the landscape of 
microbiology and immunology research 

1.2.1  Discovery of the etiological agent 

As Europe and North America scrambled through the raging TB epidemic which would remain 

responsible for over 20% of all their human deaths until the XIXth century20, the German and 

French scientific communities extensively searched for its etiological agent. In 1865, the 

French surgeon Jean-Antoine Villemin demonstrated the infectious nature of TB by infecting 

a rabbit with liquid sampled from a TB cavity collected from a human dissection, and showing 

TB symptoms upon sacrifice of the rabbit three months later26. Then, in 1882, the German 

microbiologist Robert Koch used methylene blue staining to isolate, stain, and characterize 

the tubercle bacillus, to which he gave the name Mycobacterium tuberculosis. He received the 

Nobel Prize in Medicine or Physiology in 1905 partly for this research. Koch is also credited for 

the discovery of tuberculin or purified protein derivative (PPD), a combination of Mtb proteins 

used for diagnostic purposes. 

 

1.2.2  Early TB treatment strategies and advances in antibiotic research  

For centuries, the only available therapeutic options for TB were formulated along 

recommendations by the Greek physician Galen (133 – 201 A.D.) who recommended rest, 

fresh air, and consumption of milk26. If some early descriptions of surgery for scrofula were 

documented during the XIVth century, and later led to pneumothorax surgeries for upper lung 

cavity lesions (Figure 4), the first therapeutic regimens which improved the quality of life of 

TB patients were sanatorium cures, introduced in the mid-XIXth century. As they gained 

popularity from the end of the XIXth until the mid-XXth century, sanatoria multiplied in 

mountain towns throughout Europe and North America, enabling TB patients to rest in less 

crowded areas and breathe cleaner air. In retrospect, this regimen is likely to have induced an 

immune restauration caused by the improvement of living conditions in sanatoria compared 

to cramped XXth century European urban centers; but its clinical efficacy is difficult to 

document accurately27. In 1908, the French scientists Albert Calmette and Camille Guérin 

developed an attenuated strain of M. bovis by growing and passaging it on fresh plates of bile-

potato media for over 11 years to decrease its virulence. The resulting strain, termed Bacille 

Calmette Guérin (BCG), was first used in humans as a live attenuated vaccine in 1921; it is still 

the vaccine used nowadays even though its efficacy is under 50% for adult TB patients. 
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Figure 4. Pneumonolysis performed to collapse an underlying TB cavity.  
Here, ping pong balls were used to create space under the ribcage and keep the lung separated from the pleura. 
Source: Pezzella, 201927. 

In contrast, the true turning point in the history of TB treatment was the discovery of the first 

antibiotics. If penicillin, discovered in 1929, was one of the first drugs routinely implemented 

for antibacterial chemotherapy throughout the 1940s, it had no effect on M. tuberculosis, 

which exhibited natural resistance due in part to its thick mycobacterial cell wall. In contrast, 

streptomycin, discovered in 1944, was the first antibiotic agent shown to efficiently kill Mtb 

in clinical trials28. However, these spectacular results were challenged by the drug’s limited 

availability and the significant side effects, as well as by the quick rise in streptomycin 

resistance in Mtb strains at the time. When para-aminosalycilic acid (PAS) was discovered that 

same year, similar results were observed29. As scientists noticed that combining streptomycin 

and PAS was efficient in slowing the occurrence of antibioresistance, one of the main 

principles of modern anti-tuberculous regimens emerged: multi-therapy. In 1951, the 

discovery of isoniazid (INH) was an additional breakthrough in the field of anti-TB therapy as 

it was the most potent drug available at the time while being inexpensive and having 

moderate side effects. The combination of streptomycin, PAS, and INH for over 18 months 

soon became the go-to triple therapy for TB and remained a therapeutical standard for almost 

20 years. Rifampicin, discovered in 1957 and added to the triple-therapy in 1966, enabled to 

shorten the treatment course to 9 months. This duration was further reduced to 6 months 

after pyrazinamide (PZA) at low doses was included. Finally, ethambutol (ETH) replaced 

streptomycin for safety and efficacy reasons, forming the modern quadri-therapy still used 

nowadays to treat drug-susceptible TB (DS-TB). 
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1.2.3  The limits of antibiotic therapy 

However, the limits of the antibiotic multi-therapy became apparent shortly after its early 

implementation. The first nation-wide TB drug-resistance investigation took place in 

untreated patients from the United Kingdom between 1955 and 1956 and showed that barely 

ten years after their discovery, the levels of resistance to streptomycin, PAS, and INH had 

reached 2.5%, 2.6%, and 1.3% respectively30. This led to the recognition of newly characterized 

strains of multi-drug resistant MDR-TB (MDR-TB), defined as resistant to INH and rifampicin. 

Such numbers remained on the rise throughout the XXth century, with numerous outbreaks of 

drug-resistant TB (DR-TB) occurring consistently between the 1970s and the 1990s31. By the 

mid-1990s, no TB-endemic country was spared from MDR-TB. This spurred research incentives 

for more potent anti-TB drugs, novel or re-purposed: at the time, these included other 

rifamycins, and fluoroquinolones such as moxifloxacin29, which became the first second line 

drugs. 

 

1.2.4  Urbanization, migration, poverty: how neglecting to control TB shaped its modern 
epidemiology  

However, simultaneously, as healthcare quality and living conditions globally improved in 

Europe and North America, many of the socio-economic risk factors associated with TB – such 

as precarity, overpopulation, and malnutrition – became characteristic of marginalized 

populations rather than the general public. As a consequence, in the late 1980s and early 

1990s, public health policies started granting less and less attention to TB control, and media 

coverage of TB decreased. The antibiotic quadri-therapy still seemed efficient as a majority 

rule, and despite rising antibioresistance, TB was increasingly showcased as a fixable issue, 

while worldwide TB elimination was viewed as an achievable short-term goal31. However, as 

the fractures in our world’s vastly differential economies widened along with globalization, 

the structure of the TB epidemic started following the ever-growing disconnect between 

Europe and North America versus the so-called Third World. Despite available antibiotic 

therapies, TB persisted in the poorest settings: at the worldwide scale, it became 

overwhelmingly more prevalent in low- and middle income countries, while awareness of TB 

in the general public dwindled to nonexistence elsewhere. And within developed countries, 

at the nationwide scale, TB became a synonym of extreme poverty, a threat only to the most 

marginalized populations, living in precarious conditions and with little access to quality 
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healthcare: homeless people, inmates, migrants, and travelers. For public health policy 

makers, it had become a disease deemed too long and complex to treat to warrant investment 

in lower-income settings31. This is still reflected by modern maps of worldwide active TB 

incidence (Figure 5..A.) and latent TB prevalence (Figure 5.B.). In 2020, one-fourth of the 

world’s population was estimated to be latently infected by TB, and over 10 million new active 

TB infections as well as 1 million TB deaths were recorded32,33. Historically, the Southern tip 

of the African continent, Eastern Europe, and South Asia have concentrated the highest 

prevalence of TB, which is still reflected by the World Health Organization (WHO)-established 

list of the 30 highest-TB burden countries, in which the only country that is not located in Asia 

or Africa is Brazil. More specifically, as of 2019, the two thirds of all TB cases were localized in 

eight countries: India, Indonesia, China, the Philippines, Pakistan, Bangladesh, South Africa 

and Nigeria.  
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Figure 5. Worldwide TB epidemiology.  
A. Incidence of active TB per 100,000 inhabitants in 2019. Source: WHO Global TB report 202033. B. Prevalence 
of latent TB infection (LTBI) in 2019. Prevalence values were obtained by meta-analysis of 88 quantitative studies 
and correlation with WHO incidence data was verified. Adapted from Cohen et al., 201932. 
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1.2.5  From the shock of the HIV/AIDS epidemic to the rebirth of immunology 

In the early 1980s, another epidemic had begun to spread from marginalized populations on 

to the general public. Between the first recorded cases of acquired immunodeficiency 

syndrome (AIDS) in 1981, to the discovery and establishment as causative agent of the Human 

Immunodeficiency Virus (HIV) in 1984, renewed public awareness had been brought to 

another player in the game of infection: the immune system. As the United States of America 

were hit hard by the HIV epidemic, what remained of TB research funding was sucked into the 

HIV vacuum, never to be seen again. But as patients, physicians, and scientists alike were 

confronted at a worldwide scale to the spectacular medical consequences of collapsing CD4+ 

T-cell counts, two trends began to arise. The first one was a resurgence in TB infections, which 

soon enough became inseparable from HIV because of the two diseases’ striking 

epidemiological synergy (Figure 6), shared risk factors for transmission, and physiological 

interplay at the tissular, cellular, and molecular levels. While HIV is a significant risk factor for 

progression from latent to active TB, TB is the leading cause of death among people living with 

HIV worldwide. The second trend was an renewed interest in immunology research, signing 

the beginning of a paradigm shift which would be crucial for TB control strategies: the key to 

reach beyond microbiological diagnosis and antibacterial chemotherapy, which the TB 

epidemic was starting to outgrow, may be in the host immune response to TB. 

 

Figure 6. HIV prevalence in new and relapse TB cases.  
Source: WHO Global Tuberculosis Report 202033. 
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Chapter 2. Physiopathology of the immune response to M. tuberculosis 
infection 
 

2.1  A naturally resistant bacterium: structural and genomic characteristics of 
M. tuberculosis 

Historically, physicians and scientists have found M. tuberculosis to be difficult to grow, 

difficult to stain, and hence difficult to diagnose and treat. As it doubles every 24h at most 

depending on the phenotype, it is a particularly slow growing bacterium, which is a major 

diagnostic challenge as M. tuberculosis colonies are detectable at the earliest three weeks 

after inoculation on solid media and one week on liquid media34. Upon diagnosis and during 

treatment monitoring, solid M. tuberculosis cultures are kept under surveillance for up to 12 

weeks before declaring absence of growth. As for staining, species from the Mycobacteria 

genus are not included in the Gram classification as they poorly retain dyes under this protocol 

because of the characteristic layer of mycolic acids that surrounds their cell membrane (Figure 

7). As a consequence, staining of M. tuberculosis bacilli was first performed using Ziehl-

Neelsen staining, which requires heating and utilizes acid-alcohol washes to enable fuchsin 

staining of the mycolipidic wall. 

 

 

Figure 7. Chemical components of the mycobacterial cell wall.  
The long-chained structure of mycolic acids is represented. mAGP: peptidoglycan-arabinogalactan-mycolic acid 
complex. Source: Gordon & Parish34. 
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This thick, waxy wall is one of the intrinsic factors conferring phagocytosis resistance to 

M. tuberculosis35. Survival inside phagocytes is further facilitated by metabolic modifications 

exhibited by M. tuberculosis which enable the use of fatty acids as a primary carbon source 

when in microaerophilic environments35. Consistently, over 9% of the coding sequences found 

within the M. tuberculosis genome (which spans 4.4 Mb encoding 4,000 genes) are associated 

with lipid metabolism34, which reflects the evolutive importance of the metabolic functions 

required for both mycolipidic cell wall synthesis and survival within host cells35. The mycolic 

acid wall was later shown to be involved in the natural tolerance of M. tuberculosis to 

antimicrobials36, as it is a very efficient barrier stopping active molecules from reaching the 

cell: for example, the diffusion of β-lactams through this cell wall is over a hundred times 

slower than through that of Escherichia coli37. These intrinsic factors distinctive of the 

Mycobacteria genus and of M. tuberculosis in particular are associated with the complex 

course of TB disease and contribute to making it challenging to treat, hence the clinical need 

for consistent TB treatment monitoring. 

 
 

2.2  Diagnosis and treatment of M. tuberculosis infection 

2.2.1  Clinical presentation of M. tuberculosis infection 

TB is transmitted via inhalation of aerosolized droplets with live bacteria. Thus, the lungs are 

the portal of entry and the primary site of latency, diffusion, and dissemination. Usually, upon 

transmission, latent TB infection (LTBI) develops as the infection is initially contained. 

Individuals with LTBI represent 90% of Mtb carriers and are asymptomatic and non-contagious; 

however, the bacteria persist in a dormant state. Progression from LTBI to active TB disease 

(ATB) occurs in 5 to 10% of the cases over the patient’s lifetime. Risk factors for progression 

to active TB include older age, malnutrition, HIV infection, and immunosuppressive therapy. 

ATB is symptomatic and is characterized either by detectable Mtb bacilli or by detectable 

lesions. In 85% of cases, active Mtb infection is localized in the lungs; characteristic symptoms 

in non-immunosuppressed adult pulmonary TB (PTB) patients include prolonged cough 

(> 3 weeks), chronic fever, anorexia, night sweats, and alteration of the general status. 

Hemoptysis generally occurs late in the course of the disease. In the other 15% of cases, 

extrapulmonary Mtb infections (EPTB) can occur and may affect a large variety of organs. The 

most described occurrences include pleural infections, lymph nodes, bone infections 

(especially Pott’s disease), central nervous system infection (meningitis), and genital TB. PTB 



 
  22 

 

and EPTB may coexist in a single patient, as Mtb spreads from the lungs to extrapulmonary 

locations. Finally, in children, the clinical manifestations of ATB are vastly different from adult 

patients. Pediatric PTB is characterized by paucibacillary infections, with rare cavitation and 

mostly miliary forms generating little to no sputum expectoration and moderate symptoms, 

whereas pediatric EPTB includes mostly TB meningitis with very high lethality rates in children 

under 5 years of age. 

 

2.2.2  Diagnosis of active TB 

2.2.2.i  Clinical diagnosis  

In the early XXth century, diagnostic of active TB was commonly performed using chest X-rays, 

which was a quick and accessible methods to screen large number of people for TB, in military 

settings for example26. Nowadays, clinicians still use chest X-rays as well as CT-scans when 

available. When a tissular biopsy is performed, histo-pathology study is useful to diagnose TB. 

On chest radiographs or CT-scan imagery, PTB can manifest as lung infiltrates, confluent 

micronodular infiltrates, lung cavities predominantly in the upper lobes (Figure 8.A.). Military 

disease is a specific entity, characterized by a diffuse micronodular infiltrate of hematogenous 

origin (Figure 8.B.). These abnormalities can be associated with mediastinal 

lymphadenopathy(ies). For EPTB detection, imaging is a key diagnostic method, in particular 

for locations where biopsy is challenging (Figure 8.C.). 

 

 

Figure 8. Radiological images of TB infection.  
A. Characteristic presentation of PTB infection with cavities (white arrow) and upper lobe opacities (red arrows) 
evocative of lymphocyte recruitment. B. Miliary TB is characterized by the absence of cavities, with disseminated 
micronodular lesions in both lungs instead. C. TB meningitis in a nine-year-old child with hydrocephaly (blue 
arrow), “tubercle”-like TB lesion (white arrow), and meningeal inflammation (red arrows). Source: Heemskerk et 
al.¸ 201538. 
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2.2.2.ii  Bacteriological diagnosis 

To this day, the gold standard for PTB diagnosis is M. tuberculosis culture. Liquid medium Mtb 

culture is the fastest culture method available, as positive results may be yielded within a 

week. Bacteria are inoculated from a sputum sample into a liquid medium loaded with a 

fluorescent component which increases with bacterial growth. A solid medium tube is 

inoculated in parallel with liquid media to reduce contamination risks. Tubes are checked daily 

until either characteristic growth of Mtb is detected, contaminations are detected, or until 8 

weeks have passed – after which the culture is deemed negative. Usually, sputum smear 

microscopy is also performed as soon as the sputum sample is received to establish a first 

intention diagnostic. After decontamination and heat-inactivation of M. tuberculosis, bacilli 

are visualized in sputum samples using Ziehl-Neelsen (Figure 9.A.) or fluorescent staining (Figure 

9.B.). 

 

 

Figure 9. M. tuberculosis sputum smear microscopy.  
Visualized with Ziehl-Neelsen (A.) or auramine O fluorescent staining (B.). Source: CDC (public domain) and 
Padmaja et al., 201939. 

 

Nowadays, gene amplification methods are also used for this purpose are they are quick and 

both more sensitive and specific than smear microscopy. This includes the cartridge-based, 

automated assay GeneXpert MTB/RIF, and now the more sensitive GeneXpert MTB/RIF Ultra, 

which rely on real time PCR to identify MTBC DNA as well as mutations associated with 

rifampicin resistance directly from unprocessed sputum samples. However, as such assays 

may detect DNA fragments from dead bacteria, microbiological confirmation remains 

required to ascertain diagnosis. Diagnosis of active TB is then followed by genotypic and/or 

phenotypic drug susceptibility testing whenever possible. 
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2.3  The challenges of pulmonary M. tuberculosis treatment 

2.3.1  Mechanisms and evolution of drug resistance in M. tuberculosis in relation with 
clinical management 

As presented in Chapter 1, several decades of struggling with TB management have helped 

identify two principles for TB therapy. First, a combination of multiple drugs is mandatory; and 

second, it must stretch long enough to ensure sterilization of the different mycobacterial 

phenotypes within the same disease entity. These principles stem directly from the capacity 

of M. tuberculosis to resist treatment, as it displays a variety of intrinsic and acquired 

mechanisms of drug resistance, which include structural modifications of drug target 

interaction sites36, direct chemical modification or enzymatic degradation of drugs37, and 

overexpression of drug targets by molecular mimicry. As horizontal gene transfer is rare in M. 

tuberculosis, the main drivers of acquired antimicrobial resistance are rather associated with 

chromosomal mutations than with mobile genetic elements in this species36. This explains that 

under- or misdiagnosis of drug-resistance, as well as poor treatment adherence or limited 

access to the appropriately potent drugs – particularly in primary care settings3,4 – are thought 

to be important drivers of acquired drug resistance as they contribute to the selection of 

resistant strains among the diversity of bacterial subspecies present within the host5–7 (Figure 

10). Unequal access to quality healthcare has hence led to a disproportionate repartition of 

drug-resistant strains worldwide36. However, this is only a part of the problem because an 

increasing body of literature indicates that M. tuberculosis drug resistance may also arise 

despite strict treatment adherence40, likely due to sublethal concentrations of some drugs 

after penetrating the various TB lesion compartments in the lung41. These two facts highlight 

the clinical need for consistently monitored treatment regardless of the healthcare setting 

level. 
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Figure 10. Pathways leading to increases in drug-resistant TB infections.  
Source: WHO 201442. 
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2.3.2  Recommended treatment regimens: composition, length, and side effects 

Anti-TB treatment regimens are built around an intensive phase followed by a continuation 

phase mobilizing fewer drugs and required to clear the remaining bacterial subpopulations 

within the host43. The WHO-recommended treatment regimen for drug-susceptible TB (DS-

TB) utilizes first-line oral antibiotics (Figure 11) and consists in a six-month Directly Observed 

Treatment (DOT) with a 2-month intensive phase (H-R-E-Z) followed by a four-month 

continuation phase (H-R)44. However, research is ongoing to shorten this regimen to 4 months 

by replacing ethambutol or isoniazid with moxifloxacin, but non-inferiority has not yet been 

shown45. Strains that display resistance to one or more drugs are treated with second-line 

drugs (including injectable agents and fluoroquinolones) according to their resistance 

patterns, which are classified into several non-mutually exclusive categories (Table 1).  

 

 

Figure 11. Second-line drugs used for the treatment of drug-resistant TB.  
Source: WHO 201646. 
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Table 1. WHO-defined drug resistance categorization.  
Source: WHO 201442. 

Name Resistance pattern 

Single-resistance One first-line anti-TB drug only (RIF, INH, ETH, or PZA). 

Poly-resistance More than one first-line anti-TB drug, other than INH and RIF. 

Multi-drug resistance (MDR) At least INH and RIF. 

Extensive drug resistance (XDR) Any fluoroquinolone, and at least one of three second-line injectable 
drugs (capreomycin, kanamycin, and amikacin), in addition to MDR. 

Total drug resistance (TDR) All anti-TB drugs. 

Rifampicin resistance (RR) Includes any of the above resistance patterns as long as rifampicin 
resistance is detected. 

 

Drug-resistant TB regimens are often individualized within the frame of WHO 

recommendations to find the combinations which are the most potent, the best tolerated by 

each patient, and the most accessible, especially when a precise drug resistance pattern is 

identified along with levels of resistance. However, when phenotypic DST is not readily 

available, empiric treatment is initiated and standardized courses are adopted. In 2014, the 

WHO recommended a standardized version of the shortest available course for MDR-TB 

treatment, named the “Bangladesh regimen”47 and built around an intensive phase of four to 

six months (if there is no sputum smear conversion) and a five-month continuation phase. This 

regimen uses gatifloxacin as the fluoroquinolone and kanamycin as the injectable agent, as 

well as prothionamide, clofazimine, high-dose isoniazid, pyrazinamide and ethambutol. 

However, individualized approaches remain the optimal treatment strategies whenever 

possible because both first- and second-line drugs are associated with heavy adverse effects. 

They may include gastro-intestinal disturbances, peripheral neuropathies which may cause 

irreversible cecity and hearing loss, hemato-, hepato-, and nephrotoxicity, risks of QT 

prolongation, and neuropsychiatric adverse effects (Figure 12.)46.  
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Figure 12. Occurrence of serious adverse events (SAE) in patients under treatment for MDR-TB.  
Importantly, only studies within which SAEs had been recorded were included in this meta-analysis. Source: WHO 
201646. 
 

These adverse events – as well as the pain associated with the injection of some agents – 

contribute to low treatment adherence and poor treatment outcomes. And as the risk of 

adverse effects increases with the total cumulative antibiotic dose, in particular second-line 

injectables, the aim is thus to find both the shortest treatment duration and the least adverse 

effects36. This explains why there is a clinical need for both consistent monitoring, and 

research on early signatures of treatment response.  
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2.3.3  Current monitoring methods for PTB treatment: stakes and unmet needs 

Currently, the monitoring of anti-TB treatment is based on the absence of clinical relapse 

rather than on the detection of signatures of cure. Physicians monitor weight gain and fever 

throughout treatment as they are quick robust clinical markers of health improvement and 

response to treatment. Simultaneously, microbiological follow-up using sputum culture and 

microscopy is recommended throughout treatment because clinical markers may keep 

improving even though bacterial sterilization has not been achieved, which is a risk factor for 

relapse. Sputum culture is the most sensitive method for live M. tuberculosis detection, in 

particular on liquid media, and hence is the reference standard recommended whenever 

possible by the WHO to define the outcomes of treatment8,48 (Table 2).  

Table 2. Definition of treatment outcomes in DS-TB and DR-TB patients.  
Source: WHO 202048. 

Outcome DS-TB patients DR-TB patients 

Cured Patient with microbiologically 
confirmed TB at the beginning of 
treatment who was smear- or 
culture-negative1 in the last 
month of treatment and on at 
least one previous occasion. 

Treatment completed as recommended by the 
national TB program without evidence of failure 
AND three or more consecutive cultures taken 
at least 30 days apart are negative after the 
intensive phase. 

Treatment 
completed 

PTB patient who completed 
treatment without evidence of 
failure BUT with no record to show 
that sputum smear or culture 
results in the last month of 
treatment and on at least one 
previous occasion were negative. 

Treatment completed as recommended by the 
national policy without evidence of failure BUT 
no record of three or more consecutive negative 
mycobacterial cultures at least 30 days apart 
after the intensive phase 

Treatment success Combination of cured and completed. 

Treatment failed PTB patient whose sputum smear 
or culture is positive at month 5 or 
later during treatment. 

Need for treatment interruption or for 
permanent regimen change of at least two anti-
TB drugs due to either of the following: 
- Lack of culture conversion2 by the end of the 
intensive phase 
- Culture reversion2 in the continuation phase 
- Additional acquired resistance to 
fluoroquinolones or second-line injectables 
- Adverse drug reactions. 

Lost to follow-up Treatment interrupted for two consecutive months at least. 

Death Death during the course of treatment, for any reason. 

Not evaluated Outcome unknown for any reason including transfer to another unit. 

 
Footnotes: “DR-TB” refers to RR-TB, MDR-TB, or XDR-TB patients. 1. Sputum culture is the gold standard for 
outcome evaluation even if sputum smear microscopy is realized in parallel, as it is both less sensitive and less 
specific, and may generate falsely positive results49. Globally, sputum smear results during treatment should be 
used for definition of treatment outcome only in settings where culture is not readily available. 2. Culture 
conversion is defined as two consecutively negative mycobacterial cultures taken 30 days apart. Culture 
reversion is defined as two consecutively positive mycobacterial cultures taken 30 days apart and occurring after 
an initial conversion. 
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As exposed in Chapter 1, these methods are over a hundred years old and have consequent 

technical and practical limitations, which takes a toll on the management of an epidemic that 

has outgrown them. M. tuberculosis sputum culture is very slow and requires BSL-3 

environments which are not readily available in lower-income areas where TB is most 

prevalent11. In most settings across low- and middle-income countries, treatment monitoring 

relies uniquely on clinical symptom assessment and sputum smear microscopy, which is 

quicker, inexpensive, more commonly available, and relatively simple and specific for M. 

tuberculosis. However, it is highly operator- and sample dependent, and hence displays poor 

sensitivity and specificity for monitoring, especially in paucibacillary patients9,10; a 2010 meta-

analysis of data from over 20,000 PTB patients indicated that 2-month smear microscopy was 

a poor predictor of treatment failure (57% sensitivity and 81% specificity)11. GeneXpert 

MTB/RIF testing is more sensitive (97% compared to the combination of sputum smear and 

culture50) but is not currently recommended for treatment monitoring, as it has been proven 

to detect dead bacteria (specificity estimated at 49% throughout treatment50) (Figure 13). 

Moreover, all of the above methods are sputum-dependent, but sputum composition is highly 

variable and may not always reflect the overall bacterial load. In addition, sputum samples 

may be difficult to collect during the later stages of treatment or in paucibacillary patients. 

This further complicates monitoring as sputum smear microscopy requires two or three 

sputum samples to be collected on consecutive mornings to increase sensitivity. 

 
Figure 13. Qualitative results of the four most frequently used sputum-based treatment monitoring methods 
during PTB treatment.  
Results from a 2013 study on 2741 sputum specimens collected from 221 PTB patients in South Africa and 
Tanzania50. 
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To improve treatment monitoring in high-TB burden settings – but not only – there is a short-term 

clinical need for novel methods which are quick, affordable, with moderate expertise or 

scientific equipment requirement, and based on samples accessible more consistently that 

sputum12,51. Novel diagnostic tests are being investigated on samples other than sputum, such 

as tests detecting volatile organic compounds in breath52, urine lipoarabinomannan tests53, or 

stool-based methods54. These tests may be investigated for treatment monitoring as well, but 

they are still in early development stages, and are still part of a bacteria-centered approach. 

Hence, the monitoring of host biomarkers that are more specific to the response to TB than 

conventional clinical markers during treatment appears as a promising alternative. 

As novel biomarker detection tests should ideally be able to detect the earliest signatures of 

cure possible to shorten treatment durations52, the monitoring of immune responses 

– thought to be detectable prior to bacterial sterilization – shows potential. Even though 

monitoring of metabolic byproducts has also been investigated55, the technical and scientific 

advances in the field of immunology throughout the past 20 years have yielded an abundance 

of encouraging results for the immuno-monitoring of TB treatment13. However, as the immune 

response to TB is a vastly complex, multifaceted, and only partially understood process, 

further work is needed to identify the most clinically relevant immune biomarkers and the 

associated antigenic determinants. 
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2.4  Immune response to pulmonary TB infection 

Despite the fact that billions of people have historically been infected with PTB, our knowledge 

of the immune mechanisms which occur upon exposure and throughout acute infection, 

latency, or recovery is restricted by our limited ability to study immune responses directly at 

the site of infection. Hence, most of the following physiological processes were identified via 

autopsy, histology, animal models, in vitro infection of lineages or cells isolated from broncho-

alveolar lavage (BAL), and ex vivo analyses of peripheral blood56, which means that they are 

understood separately from their vastly more complex in vivo immunological dynamics. 

 

2.4.1  Primary response to M. tuberculosis and formation of granuloma 

Upon exposure with aerosolized droplets containing Mtb, alveolar macrophages (AM) are the 

first cells to internalize the bacteria. This leads to increased secretion of pro-inflammatory 

cytokines by the AMs, including TNF, IL-6, IL-1β, and IFN-γ, which are then detectable in 

serum56. This primary response induces the recruitment of uninfected macrophages, 

neutrophils, NK, and γδ T-cells at the site of infection, generating a highly inflammatory milieu. 

However, Mtb is able to resist phagocytosis, mainly by hindering phagosome acidification and 

by preventing the fusion of phagosomes and lysosomes57; as such, it persists and divides 

within the macrophages. As a consequence, a coalescent structure of epithelial cell-like, 

uninfected macrophages forms around Mtb-infected macrophages, which is then surrounded 

by a T and B lymphocyte cuff: the granuloma (Figure 14). Lymphocytes control the granuloma 

by maintaining a cytokine-rich microenvironment (TNF in early stages, then IFN-γ). Fibroblast 

recruitment and calcification may further contribute to this initially protective structure. The 

granuloma forms a physical barrier that helps contain Mtb spread and limits lung tissue 

damage. However, it acts a double-edged sword since it also hinders antibiotic diffusion, 

represents a safe harbor for dormant mycobacteria, and lowers the efficacy of adaptive 

immune responses at the site of infection.  
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2.4.2  Cavitation and lung colonization 

Usually, a homeostatic balance is reached in the granuloma because Mtb eventually enter a 

nonreplicative dormancy state, and T-cells from the lymphocyte cuff exhibit downregulated 

pro-inflammatory cytokine secretion58 and suppressed cytotoxic activity59 that are partially 

independent from exhaustion60. This contributes to the asymptomatic, non-contagious state 

of TB infection which characterizes latency. However, granuloma are heterogeneous, dynamic 

structures which are shaped by immune changes and undergo structural and functional 

changes over time. A growing body of literature supports the hypothesis that active, Mtb-

induced mechanisms turn the granuloma into a proliferation and dissemination hotspot61. 

Because infected macrophages undergo metabolism reprogramming towards lipid anabolism, 

their endosomes fill up with lipids, resulting in “foamy macrophages”62. They are poorly 

microbicidal compared to conventional macrophages, hence forming an Mtb survival niche63. 

Eventually, foamy macrophage necrosis occurring at the center of the granuloma causes their 

cytoplasmic contents to be released, along with free Mtb that multiply exponentially in this 

sheltered, lipid-rich extracellular environment called caseum. They in turn undergo 

phagocytosis by uninfected granuloma macrophages, which increases the number of infected 

cells64. 

 

 

Figure 14. Spatial structure and cellular actors of the TB granuloma.  
Source: Ramakrishnan, 201264. 
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This generates necrotic caseous lesions leading to the granuloma rupturing, causing cavities 

that facilitate Mtb dissemination through bronchial connection and are associated with high 

mycobacterial burden and poor treatment outcomes65. Cavity formation is known to be driven 

by long-lasting T-cell immune responses showing a Th1 polarity and enhanced IFN-γ secretion 

at the granuloma site61, leading to site clearance of granuloma structure by effector and 

cytotoxic cells. This is supported by the fact that clinical presentation of PTB in HIV-positive 

patients canonically consists in an infection with few symptoms and infrequent granuloma 

formation. Regarding TB in the non-immunosuppressed individual, It is also enhanced by local 

inflammation, as increased TNF concentrations stimulate macrophage necrosis by producing 

reactive oxygen species (ROS)63. But the role of pro-inflammatory immunity in TB disease is 

far from straightforward. For example, T-cell IFN-γ secretion at the periphery of the granuloma 

activates macrophages, which enhances Mtb phagocytosis, but also induces mycobacterial 

spread and granuloma rupture. In contrast, initiation of immunosuppressive treatment can 

result in latent TB reactivation, and treatment with anti-TNF biologics has been shown to 

facilitate granuloma disorganization and mycobacterial spread66. Taken together, these 

observations are representative of the finely tuned immune balance of granulomas, and of 

the evolutionary success with which Mtb escapes, resists, and diverts host immune responses, 

eventually leading to the failure of granuloma-mediated containment. Fascinatingly, they 

suggest that Mtb seems to benefit from both suppressed immune responses and enhanced 

immune responses. 
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2.5  Peripheral immune biomarkers of pulmonary M. tuberculosis infection 

This complex involvement of actors from the innate and adaptive immune system at the site 

of infection suggests that studying immune parameters during the course of TB infection could 

be equally as relevant as measuring mycobacterial markers. However, the highly localized 

character of PTB infection in inaccessible tissue forces us to evaluate peripheral markers as a 

proxy of the local response. In this context, the general working hypothesis tested when 

investigating immune biomarkers of TB treatment is that peripheral immune changes occur 

earlier than microbiological reversion and clinical improvement. 

 

2.5.1  Immune biomarkers across the M. tuberculosis infection spectrum 

In relation with our understanding of the granuloma pathophysiology, the current conception 

of TB disease is a spectrum of microbiological, clinical, and immunological manifestations 

which range from controlled infection to active disease67 (Figure 15). This has generated a 

number of strategies to identify immune biomarkers associated with the different stages of 

TB, and efforts have been made to investigate markers that can either discriminate latent from 

active TB, change in response to treatment, predict microbiological outcomes, and predict 

vaccine efficacy68. In particular, markers of latency are being thoroughly investigated for 

treatment monitoring purposes, because latent infection and cured infection display similar 

manifestations on the TB spectrum. Despite the fact that other immune cells have been 

associated with TB disease outcome (e.g. peripheral neutrophilia, which is associated to 

disease severity and poor treatment outcomes69), T-cells remain considered as the key actors 

of the anti-TB response. Hence, most investigated biomarkers correspond to T-cell associated 

responses, either by measuring secreted cytokines, assessing T-cell functionality or 

abundance, and characterizing T-cell phenotypes. As a consequence, to ensure reliable 

monitoring assays and to detect Mtb-specific immune responses, stimulation with 

mycobacterial antigens is often necessary, and finding the most efficient stage-specific 

antigens is as hot a topic as identifying stage-specific biomarkers themselves.  
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Figure 15. Immune host biomarkers across the TB spectrum, in relation with granuloma pathophysiology.  
In latent TB infection, sputum smear and GeneXpert are negative, whereas they may be persistently positive in 
cured infection due to dead bacilli detection. Adapted from Walzl et al., 201168 and Pai, 201670.  
 

  



 
  37 

 

2.5.2  Importance of the TB recall antigen choice 

A large majority of the currently described T-cell epitopes (nearly 500) are highly conserved 

within the MTBC, hinting that they are selected as essential genes and that despite the partial 

protection that T-cell recognition offers, Mtb evolutionarily benefits from it71. However, the 

immune response to Mtb is characterized by the immunodominance of a select few of these 

antigens, which induce the majority of the anti-Mtb T-cell response. Although it is unclear 

whether T-cells specific of these dominant antigens actually efficiently recognize Mtb-infected 

cells or if they act as decoys72,73, the associated T-cell responses are frequently detectable in 

people with Mtb infection, which justifies the use of these antigens for immune biomarker 

measurement. However, the accuracy of such antigens for TB diagnostic, prognostic, and 

treatment monitoring is decreased by a number of factors. Many Mtb T-cell epitopes are 

conserved across other Mycobacteria species, and some among other bacteria from the 

MTBC. This lowers the specificity of tests relying on these antigens because of BCG vaccination 

and exposure to environmental nontuberculous mycobacteria (NTM) or animal-adapted 

mycobacterial ecotypes74. This is further confounded by the heterogeneity of individual Mtb 

immune responses, in relation with microbiota composition, ethnic diversity, and inter-

patient clinical background. In particular, for treatment monitoring biomarkers, it is suspected 

that TB therapy may selectively impact targeted immune responses to some antigens and not 

others; hence, there is a clinical need for novel efficient antigens for this purpose (Table 3). 

Many of the studies focusing on the topic are currently investigating latency-associated 

antigens.  
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Table 3. Common TB antigens used in or investigated for immunodiagnostics and/or vaccination.  
Adapted from Meier et al., 201875. 

Antigen Full name Specificity Uses in immunodiagnostics 

Validated Mtb infection-associated antigens 

PPD Purified Protein Derivative 
Mtb, BCG, 
NTM 

TST 
Standardized protein 
cocktail 

ESAT-6 
Early Secreted Antigenic Target 
6kDa 

Mtb 
IGRA 
T-cell stimulation 

>15aa peptide 

CFP-10 Culture Filtrate Protein 10kDa  Mtb 
IGRA 
T-cell stimulation 

8-13aa peptide 

Investigated latency-associated antigens 

HBHA 
(Rv0475) 

Heparin-binding hemagglutinin Mtb, NTM 
IGRA 
T-cell stimulation 

Recombinant full protein 
Differential methylation  

DosR-encoded antigens (e.g. Rv0081, 
Rv1733c) 

Mtb 
Vaccine targets 
LTBI/aTB discrimination 

Full proteins 

RD-1-encoded antigens (e.g. Rv2659c) Mtb 
Additional antigens for 
ELISPOT 

Full proteins 

Ag85 antigens (Ag85A, Ag85B, Ag85C) Mtb 
Vaccine targets 
LTBI/aTB discrimination 

Full proteins 

Footnotes: BCG: Bacille Calmette-Guérin. DosR : dormancy of survival region. IGRA: interferon-gamma release 
assay. NTM: non-tuberculous mycobacteria. RD-1: region of difference 1. Rv: rough morphology virulent. TST: 
tuberculin skin test. 
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2.5.3  State of the art of peripheral immune biomarkers for TB treatment monitoring  

The main trends in TB treatment immunomonitoring research were summarized in Table 4. 

Additional information on their performance and limits is given thereafter. 

 
Table 4. Current trends in TB treatment immunomonitoring research.  
Adapted from Goletti et al., 201813. 

Test Antigen(s) Measured markers 

Immune cell abundance None 
Monocyte/lymphocyte ratio76, neutrophilia77 
NK cells78, CD4+ T-cells79 or CD8+ T-cells80,81 

Commercial IGRAs (QFT-P, 
T-SPOT.TB) 

ESAT-6/CFP-10 
CD8+ peptide pool 

Mtb-specific plasma or T-cell IFN-γ levels82,83 

Custom IGRAs (non-
validated antigens) 

HBHA 
Mtb-specific plasma or T-cell IFN-γ levels, custom 
antigens84 

T-cell functionality 
ESAT-6/CFP-10 
QFT-P antigens  
PPD 
HBHA 

IFN-γ, IL-17, IL-2, and TNF production by T-cells; 
polyfunctionality85,86 

T-cell phenotypes 

Differentiation/memory markers (CD27, CD45RA)87,88 
Chemokine receptors (CXCR3, CCR6, CCR4)89 
Activation markers (CD38, HLA-DR)90,91 
Exhaustion markers (PD-1)92,93 

Plasma or serum 
inflammation markers 

None IFN-γ, IL-10, IP-10, CRP, TNF, IL-6, IL-12, IL-494,95 

Gene expression tests None 
T-cell, cytolytic and IFN genes96 
Signatures of inflammation (RISK697,98) 

Footnotes: QuantiFERON Gold In Tube (QFT-GIT) is an older version of QFT-P and as such is not discussed within 
the scope of this work. 

 
 
2.5.3.i  Historical approaches to TB treatment immunomonitoring: from TST to blood counts 

The earliest applications of immunodiagnostic to TB were LTBI diagnosis tools which measure 

the immune response upon re-challenge with Mtb antigens. The oldest of these methods is 

the Tuberculin Skin Test (TST), first introduced in the early XXth century and still widely used 

nowadays. During TST, Purified Protein Derivative (PPD, a standardized cocktail of 

mycobacterial proteins) is injected under the skin. A local hypersensitivity reaction ensues, 

which reflects PPD-specific cell-mediated immunity. The resulting induration is measured and 

compared to reference values to assess likelihood of TB infection. However, this test is lowly 

specific because of BCG vaccination and NTM exposure99, lowly sensitive in 

immunocompromised patients, does not discriminate between ATB and LTBI, and is not 

clinically relevant for treatment monitoring. A few decades later, early descriptions of immune 

changes at the cellular level during TB were provided by animal models. In 1930, an important 

concept was established by studies on rabbit models: a higher circulating proportion of 

peripheral monocytes compared to lymphocytes (monocyte/lymphocyte (M/L) ratio) was 

associated with active TB100. Hematological abnormalities such as leukocytosis, neutrophilia, 
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or lymphopenia during pulmonary TB disease in humans were then described in the literature 

since the eighties101. Since, low monocyte proportions have been associated with higher rates 

of progression towards active TB76, and neutrophilia and lymphopenia have been associated 

with higher mortality risks during TB treatment77. The relevance of the M/L ratio was 

confirmed in humans and it was shown to decrease after successful treatment102. These 

simple and robust markers are still used routinely by clinicians to assess TB treatment efficacy, 

along with fever and weight gain. However, to date, absolute numbers of peripheral 

lymphocytes and monocytes have not been consistently associated with microbiological TB 

clearance, and may reflect overall inflammation levels. 

 

2.5.3.ii  IGRAs for treatment monitoring: the limits of repurposing LTBI screening tests  

Besides TST and complete blood counts, the most widely used and readily accessible TB 

immunodiagnostic tests are the Interferon Gamma Release Assays (IGRA). IGRAs measure T-

cell IFN-γ production after whole blood antigen stimulation and are hence used as tests for 

LTBI. Validated IGRA antigens include peptides from ESAT-6 and CFP-10, which are encoded 

by the RD-1 locus of the Mtb genome, and are absent from NTM and BCG99: they are hence 

recommended instead of TST because of their improved specificity. The first type of IGRA is T-

SPOT.TB (Oxford Immunotec), an enzyme-linked immunosorbent spot test (ELISPOT) that 

quantifies IFN-γ-producing cells after ESAT-6/CFP-10 stimulation. As this test requires PBMC 

isolation, the other commercially available IGRA is more frequently used, especially in settings 

were the required equipment or scientific expertise are not readily available. The 

QuantiFERON-TB Gold Plus test (QFT-P, Qiagen) measures plasma IFN-γ levels by enzyme-

linked immunosorbent assay (ELISA) after whole blood stimulation by two stimulation 

conditions: TB1 (ESAT-6/CFP-10, CD4+ T-cell stimulation) and TB2 (same stimulation, enriched 

with an undisclosed peptide pool designed to induce CD8+ T-cell stimulation). Because PPD 

and QFT-P antigens are well-described, validated, and commercially available, they are a good 

standardized antigenic stimulation possibly available in laboratories from middle- and lower-

income settings, and applicable to a variety of different studies on TB immune biomarkers, 

including treatment immunomonitoring. However, neither TST nor IGRA can differentiate 

between active and latent infection, and accordingly, attempts to use for them for treatment 

response monitoring in relation with mycobacterial clearance have met limited success13, 

although a decrease in TB2 IFN-γ has been observed after cure in a minority of studies82,83. 
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2.5.3.iii  Heparin-binding hemagglutinin (HBHA) IFN-γ in the TB spectrum 

HBHA is an adherence protein that contributes to TB dissemination by inducing its binding to 

lung epithelial cells103, a pivotal process for latency. Despite the fact that HBHA is produced 

by all members of the MTBC as well as other mycobacteria, plasma IFN-γ responses to 

recombinant methylated Mycobacterium smegmatis HBHA (rmsHBHA) as an additional 

stimulation antigen in combination with QFT-P have been shown to stratify Mtb infection 

stages and progression to disease since the early 2000’s104–108. Low levels of IFN-γ production 

in response to rmsHBHA stimulation have been associated with active TB disease as opposed 

to latent infection. Other studies have then contributed to further characterizing these trends 

by showing that both CD4+ and CD8+ T-cells secreted IFN-γ upon HBHA stimulation109, that the 

cytokine profile of HBHA-primed CD4+ T-cells beyond just IFN-γ also stratified LTBI and ATB110, 

and that HBHA-induced polycytotoxic CD4+ T-cells were associated with Mtb infection 

control111. More recently, in two studies from 2017 and 2018, plasma rmsHBHA IFN-γ has also 

shown promise to monitor TB treatment outcomes in children84 and adults, including BCG-

vaccinated populations112 (Figure 16). However, this has been explored only in small cohorts 

from non-TB endemic settings, or with no drug-resistant TB patients. 

 

Figure 16. IFN-γ response to HBHA or QFT-GIT antigens in active TB patients before and after treatment.  
A. and B. Data from 24 untreated drug-susceptible TB patients and 28 cured patients. Source: Wen et al., 2017112. 
C. Data from 19 children with drug- susceptible TB before and after treatment. Source: Sali et al., 201884. Here, 
“HBHA” or “mHBHA” both refer to purified recombinant methylated HBHA. 

  



 
  42 

 

2.5.3.iv  T-cell phenotype and functionality characterization during TB treatment 

As a plasma-based assays measuring secreted inflammation markers and cytokines showed 

promise for treatment monitoring, efforts were made to better understand the characteristics 

of T-cell response during TB treatment. Because of their central role in TB immunobiology, 

most studies on the topic investigate IFN-γ, IL-2, and/or TNF functionality in antigen-

stimulated CD4+ or CD8+ T-cells. Upon Mtb antigen stimulation, IFN-γ-producing T-cells are 

generally believed to correspond to Mtb-specific cells, but the presence of basal IFN-γ 

secretion and the unclear role of IFN-γ-secreting CD4+ T-cells in TB clearance challenge this 

assumption. An increasing number of studies hence rely on T-cell selection with antigen-

loaded multimers to improve specificity. T-cell surface phenotypes are often investigated in 

parallel, in an attempt to understand the relation between cytokine profiles, differentiation, 

activation, and chemotaxis during treatment. The main trends were summarized in Table 5. 

 
Table 5. Main markers investigated for TB immunomonitoring in relation with canonical T-cell differentiation 
stages. 

Marker Function TN TCM TEM TEMRA Association with TB control 

CD45RA 
Differentiation 

+ - - + CM associates with LTBI 
EM associates with ATB 
Impaired CM and EM associate with disease 
severity 

CD45RO - + + - 

CCR7 
Chemokine receptor 
Differentiation 

+ + - - 

CD27 
Co-stimulation 
Maturation 

+ + +/- - 

Stratifies LTBI and ATB 
During treatment, decrease of CD27+ CD38+ 
Mtb-specific CD4+, increase of other CD27+ 
CD38+ Mtb-specific CD4+ 

CCR4 
Chemokine receptor 
Th2 response 

+/- + + +/- With CD27, stratifies LTBI and ATB 

CCR6 
Chemokine receptor 
Th17 response 

- + + +/- 
Define main lymphocyte compartments 
involved in anti-TB response 
Differential expression between lungs and 
blood 
CXCR3+ CCR6+ in the lungs associate with TB 
control* 

CXCR3 
T-cell homing 
Th1 response 
Receptor for IP-10 

- + + + 

Perforin 
Cytotoxicity 
Pore formation 

- +/- + + 
Increased in ATB patients after 2 months of 
treatment 

CD38 Activation + - - - 
Decrease during treatment 
Correlation with culture conversion time HLA-DR 

Activation 
Antigen presentation  

- +/- + - 

PD-1 
Exhaustion 
Inhibition of 
effectors  

- + + + 
Decrease during treatment 
Reverse correlation with CD27 expression 

Footnotes: TN: naïve T-cells. TCM: central memory T-cells. TEM: effector memory T-cells. TEMRA: effector T-cells 
re-expressing CD45RA. TSCM (stem cell memory) and TTM (transitional memory) T-cells were not represented. The 
definition of the different memory phenotypes was adapted from Mahnke et al., 2013113. 
*data from non-human primate experiments114. 
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The differential involvement of T-cell memory subsets has been studied across the spectrum 

of TB infection115,116 and the during treatment117–119. In Mtb-specific total and CD4+ T-cells, 

effector memory (EM) phenotypes have been associated with active TB disease, whereas 

central memory (CM) T-cells have been associated to latency, and increased upon anti-TB 

treatment in ATB patients. Impaired CD4+ CM and EM responses to Region of Difference 1 

(RD1) proteins before treatment have also been correlated with TB disease severity. After 

treatment, a decrease in total peripheral Mtb-specific CD8+ T-cells120 and in CM cells more 

specifically81 has been observed, coupled with an increase in perforin production by effector 

cells121. 

In addition, the IFN-γ/IL-2/TNF functional profile of Mtb-specific CD4+ T-cells has been shown 

to correlate with their degree of differentiation, prompting investigations of T-cell 

functionality during treatment122. The role of polyfunctionality (production of more than 

1 cytokine simultaneously) in TB remains conflicting as it has been alternatively associated 

with TB disease and shown to decrease following TB treatment123, or associated to latency 

and TB protective immunity as opposed to the production of a single cytokine type124. Other 

studies have further characterized the polarization of helper T-cells during TB by measuring 

the expression of chemokine receptors in parallel with cytokine production (IFN-γ or IL-17). 

Th1 lymphocytes are known to predominate compared to other T helper categories during TB 

infection125, appearing as low-differentiated CXCR3+ CCR6+ cells in the blood and highly 

differentiated CXCR3+/− CCR6− cells in the lungs89. A recent study on non-human primates 

highlighted that recruitment of CXCR3+ CCR6+ cells at the site of infection was associated with 

TB control114. However, the abundance variations during treatment of T-cells expressing 

canonical and non-canonical combinations of these markers remain unclear. 

Finally, these observations have been supplemented by studies on the surface expression of 

differentiation, maturation, and activation markers. CD27 expression on IFN-γ+ and/or TNF+ 

Mtb-specific CD4+ T-cells has been studied extensively and shown to stratify LTBI and ATB, in 

particular when coupled with CCR4 expression87. CD27 associates with lung pathology126 and 

disease severity127. A decrease in PPD-stimulated IFN-γ+ CD27+ CD38+ CD4+ T-cells was 

documented in treated TB patients, and a correlation between CD38 and HLA-DR expression 

on Mtb-specific CD4+ T-cells and time to stable sputum culture conversion during treatment 

was established91. More recently, a comprehensive study demonstrated that decreased 

expression of HLA-DR and increased CD27 and CD153 expression on Mtb-specific CD4+ T-cells 
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was associated with TB treatment127, accompanying a decrease in PD-1 expression93. Finally, 

still on Mtb-specific IFN-γ+ memory CD4+ T-cells, loss of CD27 expression was correlated with 

increased PD-1 expression, and discriminated between LTBI and treated TB88, suggesting that 

assimilating treated TB to a “latency-like” state has limits, and further reflecting the 

complexity of TB memory responses during and after treatment. Overall, the extensive body 

of literature on this topic shows that measurable T-cell responses to Mtb depend on the 

antigen nature, amount, and availability128. This further reinforces the concept that finding 

the right antigen to detect the right biomarker is pivotal to monitor TB treatment. 

 
2.5.3.v  Plasma inflammation markers and transcriptomic signatures for treatment monitoring 

Finally, this section briefly summarizes topics that are relevant in the landscape of modern TB 

research, but are not the main focus of this thesis. Historically, plasma levels of the chemokine 

IP-10 (IFN-γ inducible protein 10) have been extensively studied across the different TB stages. 

Elevated IP-10 is associated with active TB and decreases after therapy129. This trend is 

conserved in HIV-positive patients, and is also verified when using dried blood spot assays (in 

EPTB)130, which is relevant for implementation in lower-income settings. C-reactive protein 

(CRP) has also been shown to correlate with plasma IP-10 during TB, is associated with 

microbiological and radiological signs of TB and also decreases during treatment131. More 

recently, studies screening high numbers of other potential plasma immune biomarkers for 

treatment monitoring have helped narrow down options. Procalcitonin (PCT), IL-1β, and IL-6 

emerged as molecular markers that are strongly modulated by treatment132; but in contrast, 

most pro-inflammatory cytokines were shown to display no significant changes (e.g. IL-2) or 

to undergo important unrelated fluctuations (e.g. TNF) in plasma during treatment95. 

However, for any of the above molecules, specificity to Mtb infection and association with 

mycobacterial clearance assessed by sputum culture remain to be established consistently. As 

a consequence, most investigated blood transcriptomic signatures of TB cure have also examined 

genes associated with inflammation. A 2012 transcriptional profiling study demonstrated that an initial 

downregulation of inflammatory mediators was linked with rapid killing of dividing Mtb, whereas 

longer-term changes in other targets were associated with lung damage improvement96. This led to 

several princeps studies identifying robust signatures of TB disease risk (16-gene signature by Zak et 

al., 201697), TB diagnostic (3-gene signature by Sweeney et al., 2016133), treatment outcome prediction 

(5-gene signature by Thompson et al., 2017134), or all of the above (6-gene signature “RISK6” by 

Penn-Nicholson et al., 202098; Figure 17). 
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Figure 17. Performance of the RISK6 signature for PTB treatment monitoring. 
A. RISK6 scores during treatment (formula based on the expression levels of each gene in the signature). EoRx: 
end of treatment. Cases: n=87. Controls: n=21. B. Receiver Operating Characteristic (ROC) curve illustrating the 
performance of RISK6 to discriminate each timepoint during treatment from the baseline gene expression at 
treatment initiation (n=87) C. ROC curve showing the performance of RISK6 for treatment failure prediction. 
Cured: n=70. Failure: n=7. Source: Penn-Nicholson et al., 202098. 
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Chapter 3. High-dimensional cytometry for new insights on TB treatment 
immunomonitoring. 

3.1  The limits of flow cytometry 

The cellular immune response to Mtb during treatment has been extensively studied over the 

past decades. Flow cytometry, which enables single cell analysis of the expression of surface, 

cytoplasmic, and nucleic markers, has been an indispensable tool for understanding the role 

of T-cell subpopulations across the spectrum of TB disease. This technique, invented in the 

late 1960s, was a revolution at the time and has generated countless key discoveries in 

fundamental and translational immunology. It has contributed so greatly to our modern 

understanding of cellular immunology, that the technique has become almost indissociable 

from the field of study. However, as we enter a numeric era, high-powered computers and 

analysis pipelines are becoming more and more accessible, both in terms of cost-effectiveness 

and expertise. High-dimensional proteomic, genomic, and transcriptomic analyses have 

become approachable and have brought new research frameworks and perspectives. In this 

context, the technical restrictions of modern conventional flow cytometers are limiting. In 

conventional flow cytometry, cell samples are stained with monoclonal antibodies specific of 

cellular markers of interest and tagged with fluorophores. Cells flow one by one through laser 

beams, and the photons emitted upon fluorophore excitation are detected, converted into 

electric signals, and processed by a computer (Figure 18.A.). However, the number of 

parameters that can be stained simultaneously is restricted, because the emission spectra 

emitted by different fluorophores overlap, and the spillover of signal from a given fluorophore 

into the detection channel of another fluorophore hinders the precise measurement of 

marker expression. Hence, despite advances in hardware and fluorochromes, most routinely 

used conventional flow cytometers enable the detection of about 18 parameters 

simultaneously. More recently, the detection of up to 28 to 30 colors has been reported with 

conventional flow cytometry135, but only on certain machines, and provided that extensive 

panel design gymnastics are performed, followed by a variety of spillover compensation 

headaches. In the last decade, novel high-dimensional technologies have been developed to 

overcome the limits of spectral overlap, and are being increasingly used in translational cancer 

or infectious disease immunology studies: mass cytometry and spectral flow cytometry. 
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Figure 18. Conventional flow cytometry and technical limitations. 
A. Principle of conventional flow cytometry. During conventional flow cytometry data acquisition, cells are 
stained with fluorescent-tagged antibodies. The liquid cell suspension is injected into the cytometer and a sheath 
fluid flow enables the cells to pass one-by-one in front of the laser beam(s). The resulting scattered light and 
emitted fluorescence are detected and converted into electric signals which are then digitalized. Source of image: 
Hamamatsu Photonics. B. Spectral overlap. The emission spectra of two commonly used flow cytometry dyes: 
fluorescein isothiocyanate (FITC, emission peak at 516nm) and phycoerythrin (PE, emission peak at 574nm) are 
represented. The red and blue colors represent the spillover of FITC signal detected in the PE-dedicated channel, 
and the spillover of PE detected in the FITC-dedicated channel, respectively. Source of image: Bio-Rad. 
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3.2  Principle of mass cytometry 

Mass cytometry (or cytometry by time of flight, CyTOF) was invented in 2009 and combines a 

cytometry single cell injection procedure with a measurement system based on inductively 

coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS)136. Instead of being tagged 

with fluorophores, mass cytometry antibodies are coupled to stable isotope lanthanide metal 

nanobeads. After staining with metal antibodies, single cells are nebulized into a chamber 

using a heated argon gas flow, and ionized through a beam of argon plasma (5,000°C). The 

resulting ion cloud is accelerated into a quadrupole whose electromagnetic field ejects low 

mass ions (atomic mass (m)/charge (z) < 80). This eliminates plasma ions (e.g. Ar+, O2
+) and 

lighter ions that come from the biological sample (e.g. C+, Cl-), which enables to measure 

uniquely the atomic mass of the lanthanides from the cell staining. This is performed by 

recording the time of flight of the ion cloud between the moment when it is accelerated into 

a vacuum chamber, and the moment each ion hits the detector. After digitization and 

conversion of the output signal, the metal composition of the sample is obtained and samples 

are analyzable with analysis methods similar to those used in conventional flow cytometry. 

 

 

Figure 19. Principle of mass cytometry. 
“Reporter atomic ions” refers to ions derived from the multiatom metal structures used for cell staining. The 
colored histograms refer to the mass signals detected for each cell (x axis: stable isotope mass in Da; y axis: signal 
intensity). Overlap between mass signals is extremely limited. ICP: inductively coupled plasma. Source: Bendall 
et al., 2012137. 
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Since it uses elemental isotope staining instead of fluorescence, mass cytometry is free from 

spectral overlap, which greatly improves signal resolution. It is estimated that a thousandfold 

abundance difference is required between two adjacent metal isotopes before spectral 

overlap caused by insufficient mass resolution needs to be compensated (i.e. > 0.1% spillover). 

As most lanthanide metal tags generate signal intensities that range within twofold of one 

another137, mass cytometry enables rigorous and standardized measurement of up to 45 

parameters simultaneously138,139. A major advantage of mass cytometry is the possibility to 

easily stain different samples with individual intracytoplasmic Palladium isotope combination 

barcodes and pool them together prior to staining and acquisition, which greatly reduces 

inter-sample experimental variability. There are still sources of overlap or signal interference 

in mass cytometry, which arise either from isotopic impurities in the metal nanobeads (usually 

+/- 1 Da) or oxidation during ionization (+16Da generated by the two extra oxygen atoms). 

However, they are minor compared to fluorescence spillover, and can be avoided with 

rigorous panel design (e.g. making sure that markers which are often co-expressed are not 

stained with metal tags that only differ from 1 Da), instrument tuning and calibration (e.g. 

verifying that oxidation interference is <3% of signal measured from 139La isotopes, which are 

easily oxidized), and experiment controlling (e.g. Mass Minus One experiments for panel 

isotopes that are easily oxidized)140. However, different limitations arose with the high 

resolution and the technical prowess that came with mass cytometry. The low sample 

throughput and labor intensity (the whole staining to data acquisition protocol takes at least 

2 days), poor cell transmission efficiency (only 60-75% of the original sample actually 

generates data), and operating costs decrease the practicality and accessibility of this 

technology. 
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3.3  Principle of full spectrum flow cytometry 

The other commercially available high-dimensional cytometry is full spectrum flow cytometry 

(also known as “spectral flow cytometry”), invented in the 2000s and first commercialized in 

2012141. In contrast to conventional flow cytometry, it records the entirety of the emission 

spectra for each fluorochrome, from ultraviolet to infrared, across up to five lasers (Figure 

20.A.). Each fluorochrome is thus associated to a unique spectral signature, which enables to 

mathematically discriminate between fluorophores that have identical emission peaks as 

other differences can be detected elsewhere on the spectrum (Figure 20.B.). Panels of up to 

40 markers have been published as recently as last year using this technology142. 

 

 

Figure 20. Principle of full spectrum flow cytometry. 
A. While conventional flow cytometers use mirrors and filters to split emitted light towards individual detectors, 
full spectrum flow cytometers rely on a spectrograph to separate light. The individual beams are cast into a 
focusing lens prior to detection, then parallelized and directed linearly before reaching a detector. On the right, 
a violet laser avalanche photodiode (APD) detection system is represented, with its 16 individual channels. In 
total, on a 5-laser CYTEK Aurora spectral flow cytometer, the principle repeats itself for blue, yellow/green, red, 
and UV lasers, reaching a total of 64 channels. Source: adapted from Nolan, 2013141 and ThermoFisher Scientific 
information sheets. 
B. After data acquisition, the total recorded spectrum is mathematically separated into the autofluorescence 
signature of the sample, and the separate spectral signature of each fluorochrome used for staining. Source: 
ThermoFisher Scientific information sheets. 
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3.4  The case for high-dimensional analyses of TB immunity 

The cellular immune response to Mtb is intrinsically multifaceted, and further complexified by 

mycobacterial mechanisms of immune evasion, individual immune heterogeneity, and poorly 

understood response to treatment. As shown in Chapter 2, the number of molecular markers 

and of cell phenotypes involved in TB control and of interest for monitoring keeps expanding 

as our knowledge of the disease progresses. To understand how all these separated insights 

relate to each other and are connected at the cellular and molecular levels during TB, a 

comprehensive, deeper profiling of the immune system in relation with TB stages is needed. 

With high dimensional single cell phenotyping technologies, insights that go beyond 

conventional binary immune cell classifications and relate to non-canonical populations are 

possible, while simultaneously assessing cellular function and overcoming the limitations of 

RNA analysis143. Mass cytometry approaches have been successfully applied to translational 

immunology topics ranging from immune alterations during sepsis144 to mostly onco-

immunology145–147. Although more recent, full spectrum flow cytometry is quickly garnering 

even more scientific attention and is more popular in the field of infectious disease 

immunology, as shown by recent high-impact contributions to influenza148 and COVID-19 

research149. There is evidence that these techniques have potentially huge implications on the 

identification of biomarker targets and the development of new therapeutic options. Yet, they 

are still niche techniques that mostly contributed to studying tumor microenvironments and 

are rarely used in infectious disease research, even more so for TB research given its 

complexity, long treatment durations, and skewed prevalence in lower-income settings.  
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RESEARCH OBJECTIVES 

 

This research project was part of a larger multicentered study conducted within an 

international network of laboratory and health centers coordinated by the Mérieux 

Foundation (“Global Approach to Biological Research, Infectious diseases and Epidemics in 

Low-income countries”; GABRIEL). In relation with the scientific questions to address exposed 

previously, two main objectives were identified in this context. 

 

First, by mobilizing local scientific capacity in areas heavily affected by TB, our work aimed to 

evaluate the relevance and monitoring performance of inexpensive, rapid, and easy-to-use 

tests for concrete short-term application in the communities concerned. 

 

Then, by using state-of-the-art high-dimensional single-cell techniques available in France, we 

implemented an exploratory approach from bench to bioinformatics to discover targets for 

new tests that might improve diagnostic capabilities on the longer term. 

 

The overarching aim of both aspects was to include the results in a framework which would 

help advance TB management research in accordance with clinical needs in high-burden 

countries, while remaining sustainable for local scientific partners. 
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1.  The HINTT study: genesis of the project 

The HINTT study (HBHA Interferon-γ Release Assay Test for Tuberculosis) was a multicentered 

study organized with partner institutions from the Fondation Mérieux GABRIEL network 

(Global Approach to Biology Research, Infectious diseases and Epidemics in Low-income 

countries)150, which was created to build and enhance local research capacity in the field of 

infectious diseases in lower-income countries. The objective of HINTT was to evaluate the 

relevance of several immune tests and biomarkers for PTB treatment monitoring in TB-

endemic countries. Partner institutions selected for participation in HINTT were located in 

countries with either high- or moderate nationwide TB incidence, had access to BSL-3 

laboratory facilities, and had qualified staff available for TB patient follow-up and laboratory 

analyses (sputum culture and smear and whole blood sample processing). Hence, we 

conducted this study in five countries with the approval of national TB programs (Table 6). 

Table 6. HINTT study clinical and laboratory partners. 

Country TB incidence1 City Laboratory 

Bangladesh 221 Dhaka 
International center for diarrhoeal 
disease research, Bangladesh 

Georgia 74 Tbilisi 
National Center for Tuberculosis and 
Lung Diseases NTCLD 

Lebanon 13 Tripoli 
Laboratoire Microbiologie, Santé et 
Environnement, Université Libanaise 

Madagascar 233 Antananarivo 
Unité des Mycobactéries, Institut Pasteur 
de Madagascar 

Paraguay 46 Asunción 
Instituto de Investigationes en Ciencias 
de la Salud, Universidad Nacional de 
Asunción 

Footnotes: 1. Nationwide TB incidence per 100,000 inhabitants, in 2019 (WHO Global TB Report). 

 

The objective was to include 200 participants and to follow them at treatment initiation (T0), 

after the intensive phase of treatment (T1), at the end of therapy (T2; 6 months for 

drug-susceptible (DS-TB) patients, 9–24 months for drug-resistant (DR-TB) patients), and two 

months after the end of therapy (T3), which was not always possible as it was outside national 

TB program guidelines. Catchment areas were defined in each study sites in an attempt to 

minimize loss to follow-up. Patients from these areas presenting with suspected active PTB 

(symptoms, positive sputum smear and/or positive GeneXpert) were recommended by 

partner clinicians for laboratory diagnostic and drug susceptibility testing. Exclusion criteria 

were age < 15 years old, HIV co-infection, immunocompromising treatment, pregnancy, and 

diabetes mellitus. In the following analyses, patients with negative sputum culture at inclusion 

and patients lost to follow-up were excluded. 
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All the studies presented thereafter were nested within HINTT and involved subsets of 

patients from the same cohort, meeting the same inclusion and exclusion criteria, and 

followed according to the same timepoints. Technical details on microbiological diagnosis and 

drug susceptibility testing are detailed for all study sites in the Supplementary Data of 

Publication 1 (see Annexes). Conducting this multi-tool study with patients living in 

geographically distanced, lower-income settings was made possible by parsimonious 

biological sample use: all analyses were performed on samples derived from the same 10mL 

of whole blood collected at each timepoint (Figure 21).  

 

 

Figure 21. Sample collection and analysis workflow for the HINTT study. 
Patient were followed at least until the end of treatment. Participants who were lost to follow-up before T2 were 
excluded from downstream analyses. As the T3 timepoint fell outside of national TB program-backed guidelines 
and most patients had achieved cured at T2, the rate of loss to follow up was much higher at T3. The 
transcriptomic response section (validation of the RISK6 signature98) is not within the scope of this thesis, and 
the associated original publication was added to the Annexes. CBC: complete blood count. EoT: end of treatment. 
QFT-P: QuantiFERON-TB Gold Plus. WBC: white blood cells. MIT refers to the Mitogen stimulation condition of 
QFT-P that contains phytohemagglutinin, a non-specific stimulator of T-cells. 
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2.  Publication 1 
 

 

 

Association of baseline white blood cell counts with tuberculosis treatment 

outcome: a prospective multicentered cohort study 

Carole Chedid, Eka Kokhreidze, Nestani Tukvadze, Sayera Banu, Mohammad 

Khaja Mafij Uddin, Samanta Biswas, Graciela Russomando, Chyntia Carolina Díaz 

Acosta, Rossana Arenas, Paulo PR. Ranaivomanana, Crisca Razafimahatratra, 

Perlinot Herindrainy, Niaina Rakotosamimanana, Monzer Hamze, Mohamad 

Bachar Ismail, Rim Bayaa, Jean-Luc Berland, Giovanni Delogu, Hubert Endtz, 

Florence Ader, Delia Goletti, Jonathan Hoffmann. 

 

International Journal of Infectious Diseases 2020; 100 (1); 199-206.  
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Article summary  

 

Mtb sputum culture is the gold standard for TB treatment monitoring. However, it is time-

consuming and necessitates high-level biosafety laboratories. Quick alternatives that require 

less scientific expertise and laboratory equipment than most currently studied 

immunodiagnostic tests are needed to improve TB management in primary care settings. 

Here, we conducted a prospective international cohort study in five low-and middle-income 

countries with high- and moderate TB prevalence: Bangladesh, Georgia, Madagascar, 

Paraguay (>20 TB cases per 100,000 inhabitants per year) and Lebanon (11 cases per 100,000). 

We monitored the evolution of hematological parameters during pulmonary TB treatment, 

and characterized their association with microbiologically confirmed treatment failure.  

 

Between December 2017 and February 2020, we enrolled 198 adult, non-

immunocompromised, drug-susceptible (DS-TB) and drug- resistant (DR-TB) culture positive 

pulmonary TB patients. We followed 152 of them during treatment: at initiation (T0), at the 

end of intensive phase (T1), and at the end of treatment (T2) (23% lost to follow-up overall). 

At the end of treatment, 90.8% (138/152) of patients achieved cure. During treatment, white 

blood cell (WBC) absolute counts decreased, and lymphocyte proportions increased 

significantly. An increasing trend was observed in monocytes, but was inconsistent between 

study sites; hence, no conclusive result was obtained when monitoring the 

monocyte/lymphocyte ratio, a historical immune marker of TB resolution. In multivariate 

analyses (adjusted for age, sex, country of origin, drug resistance strain, and smoking habit), 

baseline high WBC counts and low lymphocyte proportions were associated with positive 

sputum culture results at the end of treatment (WBC > 11,450 cells/mm3: p = 0.048; 

lymphocytes <16.0%: p = 0.039; WBC > 11,450 cells/mm3 and lymphocytes <16.0%: p = 0.024; 

all thresholds were obtained using Receiver Operating Characteristic (ROC) curve cutoffs). 

 

These trends are likely to reflect general clinical improvement in response to treatment, and 

are consistent with the characteristics of successful therapy. However, the association of 

these baseline parameters with treatment outcome may yield precious insights on treatment 

failure prediction, and warrants further investigation. A hypothesis is that patients with high 

baseline WBC counts and low lymphocyte proportions had highly inflammatory clinical 
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patterns, as a high WBC count is likely to reflect peripheral neutrophilia. This immune profile 

would be associated with more severe TB disease forms and could be more challenging to 

cure. Overall, as complete blood counts are performed routinely in health care centers 

worldwide and are usually evaluated in TB patients along the therapy course, our study 

suggests that they may be a helpful point-of-care tool to help clinicians identify which patients 

might be less responsive to treatment. They are cheap, quick tests that require a small volume 

of blood, their output is easy to interpret, and they can be performed without automated 

equipment. However, this warrants further investigation on larger cohorts.  
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3.  Publication 2 
 

 

 

Relevance of QuantiFERON-TB Gold Plus and Heparin-Binding Hemagglutinin 

Interferon-γ Release Assays for Monitoring of Pulmonary Tuberculosis 

Clearance: A Multicentered Study. 

Carole Chedid, Eka Kokhreidze, Nestani Tukvadze, Sayera Banu, Mohammad 

Khaja Mafij Uddin, Samanta Biswas, Graciela Russomando, Chyntia Carolina Díaz 

Acosta, Rossana Arenas, Paulo PR. Ranaivomanana, Crisca Razafimahatratra, 

Perlinot Herindrainy, Julio Rakotonirina, Antso Hasina Raherinandrasana, Niaina 

Rakotosamimanana, Monzer Hamze, Mohamad Bachar Ismail, Rim Bayaa, Jean-

Luc Berland, Flavio De Maio, Giovanni Delogu, Hubert Endtz, Florence Ader, Delia 

Goletti, Jonathan Hoffmann. 

 

Frontiers in Immunology 2020; 11 (1); 1-11. 
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Article summary  

 

QFT-P is an IGRA that is routinely used to test for exposure to Mtb, by measuring the T-cell-

driven IFN-γ production upon in vitro antigen stimulation of whole blood. It is essential for the 

triage of suspected TB patients, or as a precautionary test in patients starting 

immunosuppressive therapy. However, previous attempts to use it for TB treatment 

monitoring have met limited success. Novel IGRAs based on other recall antigens are being 

investigated, in particular rmsHBHA, which stratifies TB cases by stages of infection. However, 

the rmsHBHA IGRA has been evaluated only in studies in non-TB endemic settings, or with no 

DR-TB patients. Here, we monitored the plasma IFN-γ response to rmsHBHA and QFT-P 

antigens during anti-TB treatment in DS-TB and DR-TB patients. Then, we analyzed these 

results according to sociodemographic characteristics, immune cell counts, and culture 

conversion during treatment. This study was nested in the HINTT prospective international 

cohort study conducted in Bangladesh, Georgia, Lebanon, Madagascar, and Paraguay. 

 

Between December 2017 and September 2020, we enrolled 199 adult, non-

immunocompromised, culture positive PTB patients. As of September 2020, 132 of them had 

been followed at T0, T1, and T2 at least and had available IGRA data, including 21.2% (28/132) 

DR-TB patients. The median IFN-γ response to QFT-P antigen pools TB1 and TB2 remained 

constant over time, while the median response to rmsHBHA increased significantly (0.086 

IU/ml at T0 vs. 1.03 IU/ml at T2, p < 0.001). Individual IFN-γ levels were heterogeneous, but 

an increased IFN-γ response to TB1, TB2, and rmsHBHA was observed in 55.3% (73/132), 

56.8% (75/132), and 77.3% (102/132) of patients respectively. Patients with low lymphocyte 

percentages (<14%) or high neutrophil percentages (>79%) at baseline had significantly lower 

IFN-γ responses to QFT-P and rmsHBHA at T0 and T1. Among patients with available sputum 

culture results at T0, T1, and T2 at least (84.8%, 112/132), we stratified IFN-γ levels in cured 

patients according to culture conversion at T1, defining a subset of fast converters (definitive 

culture conversion between T0 and T1; 82.1%, 92/112) or slow converters (definitive culture 

conversion between T1 and T2; 14.2%, 16/112). Slow converters had lower QFT-P positivity 

rates and TB1 and TB2 IFN-γ levels at T0 and T1, and lower rmsHBHA IGRA positivity rates and 

IFN-γ levels at T1 and T compared to fast converters. However, the separate performances of 

the QFT-P and rmsHBHA IGRAs for TB treatment monitoring at T1 and T2 were poor (accuracy 
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between 44 and 55%, using culture as a reference standard). When evaluating a combined 

QFT-p/rmsHBHA IGRA score the sensitivity improved (86% at T1 and 82% at T2) as well as the 

accuracy (77% at T1 and 81% at T2) but the specificity remained inferior to 30%. Finally, in 

multivariate logistic regression analyses, significant associations were found between slow 

culture conversion and MIT IFN-γ at T0 (adjusted odds ratio 0.65, p = 0.009), QFT-P IGRA 

positivity at T0 (aOR 0.045, p = 0.013), and rmsHBHA IGRA positivity at T1 (aOR 0.076, p = 

0.045). Overall, we observed a slow converter profile including consistent clinical patterns at 

baseline (low BMI, high neutrophil percentages, low lymphocyte percentages, low TB1 and 

TB2 IFN-γ responses), as well as a downregulated rmsHBHA response at the end of treatment. 

 

This study adds to a growing body of literature showing that rmsHBHA IFN-γ stratifies TB 

infection stages, including during treatment, which for this purpose is an improvement 

compared to QFT-P alone; however, the specificity of this test compared to culture remained 

insufficient to efficiently monitor treatment. While this may be partially attributed to immune 

cross-reactivity with HBHA homologs present in NTM, it highlights that further research is 

needed to clarify how the rmsHBHA response is regulated at the cellular level during 

treatment and whether it is specifically associated with Mtb clearance. These results also 

complete the previous article presented in this thesis (publication 1) and generate further 

evidence for an association between general inflammation and poor TB control before and 

during treatment, as total peripheral neutrophil and lymphocyte percentages directly 

impacted IFN-γ responsiveness to the evaluated TB-specific antigens, and as a low IFN-γ 

response to non-TB specific stimulation at T0 was associated with slow culture conversion. 

This must be taken into account when evaluating novel immune tests for treatment 

monitoring. 
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4.  Beyond secreted biomarkers: a high-dimensional cytometric analysis of 
the T-cell response over the course of TB treatment. 

 

4.1  Publication 3 

 

 

 

In-depth immunophenotyping with mass cytometry reveals antigen-driven, 

non-canonical T-cell subset abundance changes during anti-TB treatment. 

Carole CHEDID, Thibault ANDRIEU, Eka KOKHREIDZE, Nestani TUKVADZE, Md. 

Fahim ATHER, Samanta BISWAS, Mohammad Khaja Mafij UDDIN, Sayera BANU, 

Flavio DE MAIO, Giovanni DELOGU, Hubert ENDTZ, Delia GOLETTI, Marc 

VOCANSON, Oana DUMITRESCU, Jonathan HOFFMANN, Florence ADER. 

 

(Submitted to Science Translational Medicine on September 24, 2021) 
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Article summary  

 

Novel non-sputum-based tests are needed to improve TB treatment monitoring and shorten 

treatment. Blood-based host immune biomarkers are promising targets because immune cells 

undergo phenotypic changes over the course of the disease, in particular T-cells. However, 

they have been mostly investigated in low-TB prevalence settings, with conventional flow 

cytometry that measures a limited number of cell markers, or with high-dimensional 

cytometry across diverse PBMC subpopulations but at the expense of deep profiling. In 

particular, detailed phenotypic data on Mtb-stimulated CD8+ T-cells during treatment are 

scarce. Here, in a prospective cohort study of adult patients treated for TB in Bangladesh and 

Georgia, we characterized peripheral blood T-cell immune-profiles with a 29-marker mass 

cytometry panel. Deep T-cell profiling was performed using unsupervised analysis. Results 

were examined throughout treatment at first, and then according to culture conversion at the 

end of the intensive phase to study the association between T-cell profiles and Mtb clearance. 

 

Between May 2019 and July 2020, we analyzed 144 samples collected from 22 adult, culture 

confirmed, non-immunosuppressed PTB patients (4 in Bangladesh and 18 in Georgia; 11 DS-

TB and 11 DR-TB patients). Samples were either unstimulated or Mtb antigen-stimulated (QFT-

P TB2 or rmsHBHA). All patients achieved microbiological cure at the end of treatment. At T1, 

definitive culture conversion occurred in 18 patients (fast converters) and cultures remained 

positive in 4 patients (slow converters). Unsupervised cell subpopulation clustering based on 

lineage markers revealed 196 distinct clusters grouped into 12 meta-clusters consistent with 

canonical T-cell subpopulations. The abundance of each cluster was assessed during 

treatment and clusters within which significant abundance changes were detected were 

examined. Hierarchical clustering based on functional markers uncovered four subgroups of 

phenotypically similar T-cell clusters with comparable abundance changes during treatment. 

Four of these subgroups were associated with cure and remained relevant at the individual 

level (central memory CD4+ CCR6+ IL7Ra+ CD27+ CD40L+ CD38+ HLA-DR+; effector memory CD8+ 

CD7+ perforin+; central memory CD4+ CCR6+ CD26+ IL7Ra+ CD27+ CD40L+ CD38+ HLA-DR-; 

effector memory CD4+ CD26+ IL7Ra+ CD7+ CD27+), which was verified with manual gating 

analyses. T-cell immune-profile comparison at each timepoint according to culture status at 

T1 revealed that cytotoxic and terminally differentiated CD8+ T-cells were under-represented 
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and naïve CD4+ T-cells were over-represented in slow compared to fast converters during 

treatment. Then, PCA on non-lineage markers highlighted that most of the immune variance 

observed between slow and fast converters was explained by CCR4, CD26, CD7, and CD27 

expression, and to a lesser extent by cytotoxicity and activation markers. 

 

These results show that T-cell phenotype changes during TB treatment are detectable in Mtb-

stimulated samples without restriction to Mtb-specific cells. They indicate an antigen-driven 

immune shift towards differentiated subpopulations, including cytotoxic CD8+ T-cells, which 

is associated with TB cure. Importantly, this shift appears to be delayed in patients with slower 

microbiological cure. We were able to discover these new insights on TB immunobiology 

during treatment precisely because CD8+ T-cell-stimulating antigens were used, differently 

from previous works mobilizing canonical Mtb antigens without HLA-DR-I loading. These 

results suggest that T-cell immune profile combinations may be possible surrogate non-

sputum biomarkers of TB treatment efficacy. External validation in cohorts with higher rates 

of treatment failure is necessary to confirm the observed trends. Ideally, a comparison with 

broncho-alveolar lavage fluid lymphocytes and an assessment of T-cell subset abundance 

changes in latently TB infected participants would help further characterize identify T-cell 

phenotypes associating with TB control in the periphery and at the site of infection. 
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In-depth immunophenotyping with mass cytometry reveals antigen-driven, 

non-canonical T-cell subset abundance changes during TB treatment. 

 

One-sentence summary: High-dimensional immune profiling during active TB treatment 

reveals non-canonical CD8+ T-cell phenotypes associated with Mycobacterium tuberculosis 

culture sterilization.  

 

Authors: Carole CHEDID1,2,3#, Thibault ANDRIEU4, Eka KOKHREIDZE5#, Nestani TUKVADZE5#, 

Samanta BISWAS6#, Md. Fahim ATHER6#, Mohammad Khaja Mafij UDDIN6#, Sayera BANU6#, 

Flavio DE MAIO7, Giovanni DELOGU7, Hubert ENDTZ8#, Delia GOLETTI9, Marc VOCANSON1, 

Oana DUMITRESCU1,10,11, Jonathan HOFFMANN1,2*#, Florence ADER1,12*. 

 

Affiliations: 

1. Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, 

INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure 

de Lyon, Lyon, France 

2. Medical and Scientific Department, Fondation Mérieux, Lyon, France 

3. Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France 

4. Cytometry Core Facility, Centre de Recherche en Cancérologie de Lyon, Université 

Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, 69373, Lyon, France 

5. National Center for Tuberculosis and Lung Diseases (NCTBLD), Tbilisi, Georgia 

6. Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, 

Bangladesh (icddr,b), Dhaka, Bangladesh 

7. Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e 

perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy 

8. Fondation Mérieux, Lyon, France 

9. Translational Research Unit, Department of Epidemiology and Preclinical Research, “L. 

Spallanzani” National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy  

10. Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, 

Lyon, France 

11. Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France 



 
  85 

 

12. Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Département des Maladies 

Infectieuses et Tropicales, F-69004, Lyon, France. 

* These authors share the senior authorship. #: On behalf of the HINTT working group within 

the GABRIEL network. 

 

Keywords: tuberculosis; treatment monitoring; immunophenotyping; CD8+ T-cells; heparin-

binding hemagglutinin; inflammatory markers; mass cytometry; unsupervised data analysis. 

 

Corresponding author: 

Carole CHEDID 

Centre International de Recherche en Infectiologie INSERM U1111 – CNRS UMR5308 

Département des Maladies Infectieuses et Tropicales 

Hôpital de la Croix-Rousse, Hospices Civils de Lyon,  

104, Grande Rue de la Croix-Rousse 

69004 Lyon, FRANCE 

carole.chedid@fondation-merieux.org; 

+33 6 72 68 69 35 

  



 
  86 

 

Abstract 

Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements 

based on drug susceptibility profiles and treatment observance issues. TB cure is defined by 

mycobacterial sterilization, technically complex to systematically assess. We hypothesized 

that microbiological outcome was associated with stage-specific immune changes in 

peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients 

were prospectively characterized in a blinded fashion using mass cytometry after 

Mycobacterium tuberculosis (Mtb) antigen stimulation, and then correlated to sputum culture 

status. At two months of treatment, cytotoxic and terminally differentiated CD8+ T-cells were 

under-represented and naïve CD4+ T-cells were over-represented in positive- versus negative-

sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, an 

antigen-driven T-cell immune shift towards differentiated subpopulations was associated with 

TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters, 

which brings new insights in TB prognostic biomarker research designed for clinical 

application.  
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Introduction 

Tuberculosis (TB) is a leading cause of death of infectious origin, responsible for 1.5 million 

deaths worldwide in 2020 (1). TB treatment regimens have toxic side effects (2) requiring 

monitoring throughout treatment to adapt it and assess effectiveness. Pulmonary TB 

treatment monitoring relies on Mycobacterium tuberculosis (Mtb) detection in sputum 

samples (3), which can be difficult to collect in later stages of treatment (4). Smear microscopy 

yields highly sample- and operator-dependent results and has poor sensitivity (5). Sputum 

culture is the gold standard, although slow and requiring biosafety laboratory environments 

(6). Simultaneously, one of the main stakes in improving TB management is shortening TB 

treatment (7). Overall, there is a need for novel non-sputum-based tools to monitor disease 

resolution and assess cure while remaining feasible in primary care settings (8). Blood-based 

host immune biomarkers have recently gained interest in TB research as immune cells 

undergo phenotypic changes throughout the disease. Numerous past investigations have 

pointed to variations in the abundance and marker expression of several targeted 

subpopulations (9–12), in particular T-cells, which are pivotal effectors for Mtb clearance (13). 

However, this has been explored mostly in low-TB prevalence settings or with conventional 

flow cytometry, targeting a limited number of cell markers (14, 15).  

High-dimensional single-cell technologies such as mass cytometry enable the detection and 

quantification of a high number of cell markers (16). This technique bypasses the limitations 

of spectral overlap by using monoclonal antibodies coupled to metal polymers, and has 

allowed high-dimensional exploration of the immune landscape in several domains (17, 18). 

It has been applied to immune profiling during TB treatment in a 2018 study by Roy 

Chowdhury and colleagues (19), in which the authors have provided a general overview of 

changes in the main immune blood cells during treatment.  

Here, in a prospective, international cohort study of adult patients treated for pulmonary TB 

in high prevalence countries, peripheral blood T-cell immune-profiles were characterized 

using a 29-marker mass cytometry panel. In-depth T-cell phenotypical analysis was performed 

upon TB treatment initiation, after two months and at completion of treatment. To examine 

the relation between mycobacterial clearance in hosts and changes in T-cell immune-profiles, 

the results of these analysis were compared in negative and positive sputum culture 

conversion patients after two months of treatment. 
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Results 

Study design and analysis strategy 

Between May 2019 and July 2020, 144 cell samples collected from 22 adult TB patients were 

analyzed (Bangladesh, n=4 and Georgia, n=18; DS- and DR-TB, n=11 each) (Supp. Figure 1). 

Patient demographic, microbiological and clinical characteristics are available in Supp. Table 1. 

All patients achieved microbiological cure at the end of treatment, but were retrospectively 

classified into two response groups according to their M. tuberculosis culture status at T1 

(after two months of treatment): fast converters (n=18; negative culture at T1 and T2) and 

slow converters (n=4; positive culture at T1 and negative culture at T2). Among the latter, 

three patients were treated for DS-TB and one for DR-TB. 

An overview of the data collection and analysis process is shown in Figure 1. Briefly, data from 

all samples were clustered automatically into subsets of homogeneous phenotypes to provide 

a framework for analysis. Clusters were then color-coded and plotted onto a two-dimension 

map to create a visual reference used throughout the paper (Figure 2). On this basis, 

automatically detected clusters were first quantified and analyzed dynamically throughout 

treatment to identify median clusters abundance variations associated with treatment 

completion (Figure 3). Cluster phenotypes were deduced from marker expression heatmaps, 

and hierarchical clustering was applied based on marker expression (Figure 4). In a supervised 

manner, clusters of similar abundance changes and immunophenotypes were then re-

grouped into larger subsets, in order to assess relevance of the detected abundance variations 

at the individual level, and consistency with manual gating (Figure 5). Finally, a cross sectional 

analysis was performed at T1 to identify which automatically detected clusters differentiated 

patients based on the microbiological response to the intensive phase of treatment (Mtb 

culture positivity at T1; Figures 6 and 7). 

 

Overall analysis of peripheral T lymphocyte subset abundance changes throughout TB 

treatment. 

First, a phenotype analysis was performed to identify the main expected T-cell 

subpopulations. As no apparent difference was seen in UMAP structures within samples from 

the different timepoints and stimulation conditions despite some marker expression 

differences between stimulation conditions (Supp. Figure 2; exact p-values and test statistics 

in Supp. Table 2), we performed the phenotype analysis on all single CD3+ events. The purpose 
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of this study was not to compare the stimulations, but rather to use them to uncover clusters 

that might be associated with treatment response and that would not be visible in 

unstimulated samples. FlowSOM automated clustering was performed on CD3+ events, 

revealing a total of 196 automatically detected clusters (Figure 2.A to 2.C). They were 

automatically grouped into 18 meta-clusters, which were assembled into 12 canonical T-cell 

subpopulations in a supervised manner (Figure 2.D and 2.E). FlowSOM clusters and meta-

clusters were then visualized on the initial UMAP to create a reference map of all 

automatically detected T-cell subsets (Figure 2.F and 2.G).  

To initiate the abundance analysis, variations of the main T-cell subpopulations throughout 

treatment were then studied using a stratification according to each stimulation condition. No 

significant change in the proportion of total CD4+, CD8+, γδ, double negative (DN, CD4- CD8) or 

double positive (DP, CD4+ CD8+) T-cells was observed throughout treatment in any stimulation 

condition (Supp. Figure 3). For all main studied subpopulations, no significant difference was 

observed between DS- and DR-TB patients (data not shown).  

 

Differential abundance of non-canonical T-cell subsets throughout TB treatment. 

To identify non-canonical T-cell subsets whose abundance changed throughout treatment, we 

calculated the percentage of each automatically determined FlowSOM cluster at each 

timepoint and in each stimulation condition. These clusters were then categorized into two 

groups: enriched or decreased after treatment completion. Abundance changes were studied 

between T0 and T1 and T0 and T2 to characterize the main clusters associated with response 

to treatment intensive phase and with treatment completion respectively. As these clusters 

represent non-canonical cell subpopulations, their frequencies among total CD3+ events were 

low (< 5% in most samples). Hence, the differences analyzed thereafter describe rare 

populations and warrant cautious analysis. 

When comparing the reference UMAP (Figure 2.G) to the UMAP of clusters which were 

increased between T0 and T1 (Supp. Figure 4.A), we observed that they were either DN T-cells, 

or effector memory (EM) or terminally differentiated effectors re-expressing CD45RA (TEMRA) 

cells from both CD4+ and CD8+ subpopulations. In unstimulated samples, significant increases 

were detected within three clusters corresponding to CD8+ and DN T-cell subsets (Supp. Figure 

4.B), whereas increases were detected in one CD4+ and one CD8+ cluster in TB2-stimulated 

samples (Supp. Figure 4.C) and only in CD4+ clusters in rmsHBHA samples (Supp. Figure 4.D). 
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Clusters that decreased between T0 and T1 (Supp. Figure 4.E)were detected only within CD8+ 

EM and TEMRA cells in all stimulation conditions (Supp. Figure 4.F to 4.H). 

Between T0 and T2, 11 increased clusters were detected (Figure 3.A). They corresponded 

mostly (8/11 clusters, 73%) to CD4+ EM and CM subpopulations rather than naïve subsets, 

regardless of the stimulation condition (Figure 3.B. to 3.D.). One DN cluster was increased in 

unstimulated samples (Figure 3.B. as well as one CD8+ TEMRA cluster and one γδ T-cell cluster 

in rmsHBHA stimulated samples (Figure 3.D.). One CD4+ CM cluster (number 38) increased 

significantly in samples from all three stimulation conditions. Clusters which decreased 

between T0 and T2 were detected in one CD8+ EM and two CD8+ TEMRA subsets, and in seven 

clusters within CD4+ subpopulations in all three stimulation conditions (Figure 3.E to 3.H). 

Regarding the latter clusters, no clear trend was observed regarding memory subset 

compartmentalization, which suggests that the abundance decrease spared memory 

functions and rather affected CD4+ T-cells in general. One γδ and one DN T-cell cluster also 

decreased significantly within Mtb-stimulated samples (Figure 3.G. and 3.H.). 

 

Antigen-driven cluster abundance changes during TB treatment show involvement of 

effector and memory T-cells. 

To further refine patterns in functional marker expressions within increased or decreased 

clusters, we then performed a detailed phenotype analysis using marker expression heatmaps 

and hierarchical clustering (Figure 4). Four subgroups of cellular subsets of similar abundance 

changes and similar immunophenotypes were identified (labeled from A to D). Subgroup A 

included four CD4+ T-cell clusters with naive (n=2) and CM (n=2) phenotypes, which decreased 

from T0 to T2 in rmsHBHA-stimulated samples. Subgroup B included five CD8+ T-cell clusters 

that decreased throughout treatment, two of them between T0 and T1 and three of them 

between T0 and T2. Consistently with the above results (Figure 3.E.), the latter were either 

EM or TEMRA cells, with low CD45RA levels and intermediate levels of perforin. The other two 

clusters were naïve clusters with low CCR7, CD45RA, and CD27 expression levels.  

In contrast, subgroup C and D included only CD4+ T-cell clusters, most of which (70%, 7/10) 

increased between T0 and T2. Subgroup C consisted in five clusters exhibiting a CM phenotype 

and expressing activation markers, detected in unstimulated and TB2-stimulated samples. 

Subgroup D clusters were detected in Mtb-stimulated samples (3 in rmsHBHA and 2 in TB2) 

and had an EM phenotype, except for cluster 69 that had a CM phenotype with low levels of 
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CCR7. These clusters co-expressed CD26, IL7Ra, CD7 and CD27. They were characterized by an 

absence of activation marker expression and an enhanced expression of exhaustion markers, 

in particular CTLA-4 and PD-1. Overall, we observed antigen-driven T-cell subset abundance 

changes between T0 and T2. In TB2 and rmsHBHA samples, CD4+ EM clusters mostly increased, 

while CD8+ EM clusters mostly decreased. 

 

Individual profiling confirms abundance changes in phenotypically homogeneous, 

correlated subsets after treatment in cured patients. 

As the differentially abundant clusters identified above accounted for a small fraction of CD3+ 

T-cells (<1%), we intended to identify the largest possible subsets of phenotypically 

homogeneous cells within which a significant abundance change was detectable (Figure 5). 

Within the subgroups of similar immunophenotypes and abundance change identified in 

Figures 3 and 4, we performed correlation analyses at baseline and pooled the best correlated 

clusters together within the subgroups identified in Figure 4 (Figure 5.A and 5.D). We then 

visualized the individual abundance change of these pooled subsets before and after 

treatment completion in cured patients (Figure 5.B-C and 5.D-E). Within rmsHBHA samples, a 

decrease in subgroup A and an increase in subgroup D were both detected in 93% (13/14) of 

cured participants (Table 1). Within unstimulated samples, a decrease in subgroup B and an 

increase  in subgroup C were recorded in 81% (13/16) and 88% (14/16) of patients 

respectively. This confirmed that the median trends observed previously were maintained 

individually in most patients. Finally, we visualized the immunophenotypes of these four 

subgroups of interest in comparison to cells from similar subpopulations which were not 

associated to cure (Figure 5.F). Subgroup A and subgroup C corresponded to CD4+ CM cells 

expressing CCR6, IL7Ra, CD27, and activation markers (CD40L, CD38). However, cells within 

subgroup A expressed HLA-DR while subgroup C did not; in addition, cells from subgroup C 

expressed high levels of CD26, as well as CCR4, CXCR3, and CD7.  Subgroup B corresponded to 

CD8+ CD7+ Perforin+ EM cells. Subgroup D corresponded CD4+ EM cells expressing high levels 

of CD26, as well as CCR4, CCR6, CXCR3, IL7Ra, CD7, and CD27. We then confirmed these 

findings by manually gating the identified subpopulations and comparing the percentages at 

T0 and T2 (Figure 5.G-K, representative dot plots). 
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Patients with persistent positive cultures at T1 show decreased peripheral CD8+ cytotoxic 

subsets and enriched peripheral CD4+ naïve subsets throughout treatment compared to 

patients with negative cultures at T1. 

Then, we aimed to detect a cellular signature associated with mycobacterial conversion. To 

do so, we analyzed individual cluster abundance in slow vs. fast converters throughout 

treatment. At T0, T1, and T2, respectively 21, 24, and 21 clusters with significantly different 

abundance in slow converters compared to fast converters were detected (quantification in 

Supp. Fig. 5). After phenotyping, the proportions of the main T-cell subpopulation phenotypes 

in each group of enriched or decreased clusters at T0, T1, and T2 were calculated and 

summarized in Table 2. 

Before treatment initiation, of 21 clusters with different abundance, 18 (86%) were decreased 

(Supp. Figure 5.A) and three (14%) were enriched (Supp. Figure 5.B) in slow compared to fast 

converters. Clusters which were under-represented in slow converters corresponded mostly 

to DN, γδ, and CD8+ T-cells (77%, 13/18 clusters), specifically γδ and CD8+ EM T-cell 

subpopulations (38%, 5/13 each); in addition, a majority of these clusters was perforin+ (67%, 

12/18) (Supp. Figure 6.A). In contrast, the three enriched clusters were naive CD4+ and CD8+ T-

cells, as well as one CD8+ TEMRA subset. 

At T1, of 24 clusters with significantly different abundance between slow and fast converters, 

15 (62%) were decreased (Figure 6.A and 6.C) and 9 (38%) were enriched in slow converters 

(Figure 6.B and 6.D). These clusters were mostly detected in TB2-stimulated samples (63%; 

15/24 clusters). Comparison to the reference UMAP (Figure 6.E) and hierarchical clustering 

(Figure 6.F) indicated that enriched and decreased subsets respectively had similar 

immunophenotypes. Clusters which were under-represented at T1 in slow converters were 

mostly perforin+ cells (67%, 10/15 clusters); mostly CD8+ TEMRA and DN T-cell phenotypes 

were represented (40%, 6/15 clusters respectively). In contrast, enriched clusters comprised 

a majority of CD4+ T-cells (78%, 7/9 clusters), with predominantly naïve phenotypes (45%, 

3/7). One CD8+ naive and one CD8+ EM cluster were also enriched in slow converters at T1, 

with the latter expressing ICOS. 

After treatment completion, of 21 clusters with significantly different abundance between 

slow and fast converters, 11 (52%) were decreased (Supp. Figure 5.C) and 10 (48%) were 

enriched in slow converters (Supp. Figure 5.D). The immunophenotype profile at T2 was 

similar to that of T1 for the enriched subsets: a majority of ICOS+ CD4+ naïve T-cell subsets 
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(50%, 5/10) were detected, as well as two CD8+ naïve clusters (Supp. Figure 6.B). Regarding 

the decreased subsets, no specific phenotype polarization was observed, and clusters were 

detected within diverse subsets (four CD8+ EM clusters, four CD4+ EM clusters, and three DN 

T-cells clusters). Similarly to the T1 immune profile, all of the above clusters were mostly 

detected in TB2-stimulated samples (67%, 14/21 clusters). 

 

Maturation markers and chemokine receptors, rather than activation or cytotoxic markers, 

discriminate slow from fast converters during treatment.  

Finally, we sought to assess more precisely which combinations of cellular markers were the 

most involved in the discrimination between fast and slow converters within the clusters 

identified in the prior section. A principal component analysis (PCA) was performed on marker 

expression data within these clusters. As a higher number of differentially abundant clusters 

had been detected in Mtb-stimulated samples than in unstimulated samples during treatment 

(T1 and T2), and because a complete overlap between the PCA profiles of fast and slow 

converters was observed in unstimulated samples, we focused on Mtb-stimulated samples 

(TB2 and rmsHBHA). PCA profiles were mostly separated when split by culture conversion 

group (Figure 7.a). Dimension 1 (Dim1) explained 37.3% of the total observed variance, versus 

12.5% for Dim2. The main markers accounting for variance described by Dim1 were markers 

of memory subset definition (CCR7 and CD45RA), lineage (CD4 and TCRγδ), maturation (CD27 

and CD7), chemokine receptors (CCR4 and to a lesser extent CXCR3) or other receptors or 

costimulatory molecules (e.g., CD26, CD161) (Figure 7.B. and 7.C). In contrast, variance 

described by Dim2 was mostly explained by cytotoxicity (Perforin, CD56, CD8), activation 

(CD38, CD40L, CD69), or exhaustion markers (CD152, PD-1) (Figure 7.B and 7.D). The PCA 

scores were significantly higher in slow converters than in fast converters at all timepoints for 

Dim1 (Figure 7.E), indicating that the immune profile of slow converters was more correlated 

to Dim1 than that of fast converters regardless of the timepoint. In contrast, no significant 

differences were detected at the end of treatment (T2) for Dim2 (Figure 7.F). When comparing 

these results with PCA analyses performed on total CD3+ T-cells, fast and slow converter 

profiles were less separated, but similar marker involvement was observed in Dim1 and Dim2 

respectively (Supp. Figure 7). 
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Discussion 

In a population of adults treated for TB, we observed a shift towards more differentiated 

profiles among peripheral CD8+ and CD4+ T-cell subsets driven by the timing of Mtb culture 

conversion, using a high-dimensional single cell approach after stimulation with standardized, 

IVD-level TB2 antigens. In particular, differentiated CD8+ cytotoxic effector subsets were 

under-represented in positive- versus negative-sputum culture patients after two months of 

treatment. 

Over the course of TB treatment, we observed as a general trend that non-canonical subsets 

within CM CD4+ and TEMRA CD8+ populations increased, whereas naïve CD4+ and naïve/EM 

CD8+ subsets decreased. This is consistent with prior works addressing T-cell differentiation 

and T-cell memory subsets during TB treatment (20–22). Mtb-specific CD4+ EM T-cells have 

been associated with active TB disease, whereas CM T-cells have been associated to latency 

and increased upon treatment (23, 24). In Mtb-specific CD8+ T-cells, an overall decrease in 

peripheral blood (25) and a decrease in CM cells (26) have been documented after treatment. 

In contrast, the central result of this study was to distinguish negative- from positive-sputum 

culture patients at two months, whether infected with a DS- or DR-Mtb strain, through 

differential peripheral T-cell populations. When retrospectively analyzing the T-cell profiles of 

fast and slow converters at diagnosis, a pre-existing difference in percentages of cytotoxic EM 

CD8+ T-cell subpopulations was already observed. After two months of treatment, this trend 

shifted into an under-representation of CD8+ TEMRA, which persisted after cure. These 

changes were revealed upon stimulation with QFT-P TB2 antigenic peptide pools. Although 

many studies characterizing T-cell subsets during treatment have clearly underlined the 

importance of Mtb-specific CD4+ T-cells (9, 13, 27), less is known about the role of CD8+ T-cells 

in TB resolution and the most appropriate epitopes to study them in this context (28, 29). Yet, 

effector CD8+ T-cells are known to secrete cytolytic and antimicrobial factors that kill Mtb-

infected macrophages in vitro (30), inhibit Mtb growth (28), and are required for long-term 

infection control in mice (31) and humans (32); perforin production by CD8+ T-cells is also 

higher in treated than in untreated TB patients (33). In addition, a 2012 study by Rozot and 

colleagues had associated Mtb-specific TEMRA CD8+ T cells to LTBI and EM cells to active TB 

(34). Here, although we cannot establish causality, a lower peripheral CD8+ TEMRA subset 

abundance may be associated with slower mycobacterial culture conversion. In relation with 

abundance changes during treatment, our study hints that the CD8+ T-cell phenotype shift 
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occurring during TB treatment would be delayed in patients with slower microbiological 

conversion. Consistently, it has been shown that CD8+ response importantly contributed to 

the control of other granulomatous infections such as Brucella (35). Regarding CD4+ T-cells, 

naïve subsets were over-represented in slow converters, which suggests a delayed 

differentiation within the CD4+ compartment as well. Previous work has shown that the IFN-

γ/IL-2/TNF-α functional profile of Mtb-specific CD4+ T-cells, which is key in anti-TB immunity 

(14), was correlated with their degree of differentiation (36). Taken together, these results 

support the hypothesis that CD4+ and CD8+ T-cell responses should be monitored together 

during TB treatment, as successful mycobacterial clearance involves CD8+ T-cell effectors, 

which in turn require CD4+ T-cell involvement (37). 

Although the aim of this study was not to compare stimulation conditions, but to use them to 

uncover cell clusters, our results suggest that the abundance changes observed throughout 

treatment are antigen-driven. This adds to previous work highlighting differential Mtb-specific 

CD8+ T-cells marker profiles according to the nature of the antigen stimulation (38). We used 

QFT-P TB2, which elicits cytotoxic CD8+ responses in addition to ESAT-6/CFP-10-induced CD4+ 

responses (39), as well as rmsHBHA, a recombinant Mtb protein exposing many different 

epitopes. The latter was included because the IFN-γ response to HBHA, to which both CD4+ 

and CD8+ cells participate (40), is impaired in active TB patients and restored during treatment 

(41–43). Here, changes during treatment in CD8+, CD4+, DN, and γδ T-cell subsets were 

detectable within unstimulated and TB2 samples, consistently with previous works (39). In 

contrast, in rmsHBHA-stimulated samples, significant abundance changes were mostly 

detected within CD4+ T-cells, suggesting a preferential CD4+ T-cell response to HBHA epitopes 

during treatment. This indicates that antigen-driven changes during the response to Mtb are 

part of a complex process involving a variety of different epitopes (26) that induce responses 

from phenotypically diverse T-cell subsets (38), despite well-described immunodominance 

features. Our results confirm that a major stake in discovering blood-based immune signatures 

of mycobacterial sterilization lies in finding the appropriate epitopes.  

Finally, our study enabled profiling of non-lineage markers. A CXCR3+ CCR6+ CD27+ CD4+ EM 

subset was increased in cured patients compared to pre-treatment, corresponding to a subset 

enriched in Th1/Th17 cells (44, 45). Consistently with previous work on LTBI (46), this suggests 

that an increase in these cells upon cure might be associated with infection control. Compared 

to the other CD4+ EM cells, this subset displayed higher CD26 and IL7Ra expression. CD26 
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participates in T-cell activation and proliferation (47), and correlates with Th1-like responses 

(48). In parallel, a significant decrease was also observed in a highly activated CCR6+ IL7Ra+ 

CD4+ CM subset, which expressed higher levels of CD40L, CD38, and HLA-DR than other CD4+ 

CM cells. Interestingly, an increase in another CD4+ CM subset – which differed from the latter 

because it expressed CD26 and CD27, but not HLA-DR – was observed simultaneously. This 

adds to previous works with previous works highlighting a decrease in CD38+ and HLA-DR+ 

Mtb-specific CD4+ T-cells in successfully treated TB patients (13, 49, 50). This suggests that 

upon TB treatment, differentiated Th1/Th17-like CD4+ subsets expressing high levels of CD26 

and IL7Ra are enriched in peripheral blood, likely at the expense of less differentiated subsets 

expressing high levels of CD27 and CD38. Finally, principal components analysis showed that 

within the subpopulations that differentiated slow from fast converters during treatment, 

differentiation markers and chemokine receptors contributed to most of the variance, 

followed by activation and cytotoxicity markers. CD27, CD26, and CCR4 were among the 

markers which best discriminated fast and slow responders, consistently with prior studies 

associating CD27 and CCR4 expression in Mtb-specific CD4+ T-cells with active TB compared to 

latent infection (51). HLA-DR and CD38 also contributed to a lesser extent, which adds to a 

recent study in which co-expression of CD27, HLA-DR, and CD38 on PPD-stimulated CD4+ T-

cells stratified fast and slow responders without restriction to IFN-γ-producing cells (52).  

This descriptive study has limitations. The number of patients included was low, resulting in 

few slow converters, consistently with treated TB course (15 to 20% of slow culture 

converters). In addition, the presence of within-host Mtb isolate micro-diversity has been 

recently proven in patients treated for DS-TB without culture conversion after two months of 

well-conducted TB treatment (53), suggesting that it could modulate the host response. We 

are currently conducting a larger validation study including DS-TB patients only, from whom 

Mtb isolates collected upon treatment initiation and at two months will be screened by whole 

genome sequencing. In addition, the analyses were not conducted on live cells, but on fixed, 

cryopreserved peripheral blood cells due to the design of the study using samples collected in 

lower-income, high TB prevalence settings. For the same reason, the study was conducted on 

peripheral blood, while the main infectious focus of TB is in the lungs. In addition, since the 

study required to IGRAs to be performed on the same blood samples prior to cell 

cryopreservation (41), we did not perform intracellular cytokine staining. Hence, the 

integrality of the observed cell phenotype changes may not be associated with Mtb-specific 
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responses. However, whether the bulk of anti-TB response relies purely on Mtb-specific cells 

is debated. Given the complexity of the immune response to TB, cellular and molecular 

interactions are likely to occur between Mtb-specific and non-specific subpopulations during 

mycobacterial clearance, and hence influence the overall T-cell profiles. In addition, the 

hypothesis that T-cells specific for immunodominant epitopes actually recognize Mtb-infected 

cells has been challenged by studies on mouse models (54), protective immunity post-BCG 

vaccination(55), and failures of vaccine candidates based on immunodominant antigens (56).  

These limitations are linked to the “bench to bedside” approach adopted in our study. They 

reflect the reality of the needs for novel TB management tools: accessible samples, simple 

experimental process, straightforward output. Here, we captured the complexity of T-cell 

profiles during treatment and narrowed it down to subpopulations of interest associated with 

cure at the individual level. Although mass cytometry requires complex equipment, 

experiments, and analyses, we have shown that relevant T-cell profiles could be identified in 

cryopreserved samples, obtained from small blood volumes, using manual gating analyses and 

a smaller number of core markers. Future validation studies might confirm the relevancy of 

simpler phenotypic signatures translatable in primary care settings. Importantly, our study 

revealed T-cell populations discriminating patient status based on culture conversion, which 

has a dual impact: on TB management, to better characterize the phenotypes of T-cells 

involved in TB clearance; and on biomarker research, further supporting that a diversity of 

epitopes is needed to fully disclose the spectrum of these cells. This work may help identify 

simpler prognostic biomarkers associated with mycobacterial clearance and the antigens 

appropriate for their discovery. 
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Materials and methods 

Experimental design 

Study design and research objectives 

This prospective cohort study was nested in a multicentered study coordinated by the Mérieux 

Foundation GABRIEL network (57). The primary objective was to investigate the association 

between sputum culture sterilization during active TB treatment and characteristic T-cell 

profiles obtained by high-dimensional phenotyping. The sample size was maximized based on 

availability of clinical samples. No prospective sample size calculations were performed. 

Recruitment centers and ethical considerations 

Recruitment centers were the National Center for Tuberculosis and Lung Disease (NTCLD) in 

Tbilisi, Georgia (approval of the Institutional Review Board of the NTCLD; IORG0009467); and 

the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) in Dhaka, 

Bangladesh (approval of the Research Review Committee and the Ethical Review Committee 

of icddr,b; PR-17076; Version No. 1.3; Version date: 04-01-2018). All participants provided 

written informed consent. 

Cohort recruitment, patient follow-up, and clinical data collection 

Patients were recruited if diagnosed with sputum culture confirmed pulmonary TB and older 

than 15 years old. Patients with HIV, immune deficiency, diabetes mellitus, and lost-to-follow-

up were excluded. Detailed procedures for microbiological diagnosis, drug susceptibility 

testing, and treatment regimens are described elsewhere (57). As antimicrobial resistance is 

a major challenge for TB management and treatment, both drug-susceptible (DS-TB) and drug-

resistant (DR-TB) patients were recruited to examine immune profiles in these settings. 

Patients were followed up: at inclusion (T0), after two months of treatment (T1), and at the 

end of TB treatment (T2; 6 months for DS-TB patients, 9 to 24 months for DR-TB patients). The 

T1 timepoint was chosen because it marks the moment after which antibiotic treatment is 

reduced during clinical DS-TB management. For DR-TB monitoring, the same timepoint was 

used for consistency. Patients were on Directly Observed Treatment (DOT) and received 

treatment according to standard protocols (2). Treatment regimens are detailed in Supp. 

Table 1. 

 

Whole blood stimulation and processing 
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Detailed whole blood collection and stimulation processes were described elsewhere (41). 

Briefly, at every follow-up visit, 1mL of whole blood was seeded directly into each 

QuantiFERON-TB Gold Plus (QFT-P, Qiagen) tube and incubated for 24 hours. Three 

stimulation conditions were used: NIL as unstimulated control; TB2 which tubes contain the 

M. tuberculosis antigenic peptides ESAT-6 (>15aa) and CFP-10 (8-13aa), which induce 

responses from CD4+ T lymphocytes (39), and an undisclosed peptide pool inducing CD8+ T 

lymphocyte stimulation (58); rmsHBHA which tubes contain recombinant M. tuberculosis 

heparin-binding hemagglutinin generated in M. smegmatis at a final concentration of 5µg/mL 

and graciously provided by the Delogu laboratory, UNICATT, Rome, Italy (59).  

After incubation, plasma separation, and red blood cell lysis, the resulting fixed white blood 

cells pellets were stored at -80°C. Cryopreserved samples were air-shipped in dry ice with 

freezing controls to the Mérieux Foundation Emerging Pathogens Laboratory in Lyon, France 

(International Center for Infectiology Research, INSERM U1111). 

 

Experimental procedure 

Sample preparation 

Cryopreserved cells were thawed and resuspended in phosphate buffer saline (PBS) to a 

concentration of 3.5x106cells/mL. Between 1 and 1.5x106 cells from each sample were 

aliquoted for staining. Cells were incubated 10 minutes with FcR Blocking Reagent (6µL/106 

cells; Miltenyi Biotec) and heparin sodium salt reconstituted in Millipore water (36µg/106 cells; 

Sigma-Aldrich) to reduce nonspecific staining (60). 

Panel design 

A 29-marker panel of metal-labeled antibodies was used. All antibodies were obtained from 

Fluidigm (Supp. Table 8). Briefly, the panel contained 28 T-cell oriented surface markers 

(lineage markers, chemokine receptors, activation markers, and exhaustion markers) and one 

intracellular target (perforin).  

Experimental design and barcoding 

As the study followed a longitudinal design, samples from a same patient were acquired in the 

same barcoded batch of 3 timepoints and 3 stimulation conditions to reduce experimental 

variation. Palladium barcoding (61) (Cell-ID 20-Plex, Fluidigm) was performed according to the 

manufacturer’s instructions for simultaneous staining and data acquisition. For each 

barcoding run, 18 patient T-cell samples were stained with unique combinations of 
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intracellular palladium isotopes (Figure 1). Patient batches were processed in a random order 

and investigators were blinded to patient sputum culture results during data collection.  

Staining procedure 

Extracellular staining was performed on pooled barcoded cells in Maxpar cell staining buffer 

(Fluidigm) for 30 minutes at room temperature. Intracellular staining (perforin) was 

performed in Maxpar Perm-S Buffer (Fluidigm) for 30 minutes at room temperature. Stained 

cells were then incubated for 10 minutes in 1.6% formaldehyde (FA) freshly prepared from 

16% stock FA (Sigma-Aldrich). DNA staining was performed by overnight incubation at 4°C in 

2mL of 125nM Cell-ID Iridium intercalator solution (Fluidigm). Cells were then washed, 

pelleted, and kept at 4°C until acquisition.  

Data acquisition 

Samples were analyzed on a CyTOF2 mass cytometer upgraded to Helios (Fluidigm) hosted by 

the AniRA cytometry facility (Structure Fédérative de Recherche Lyon Gerland, INSERM 

U1111, Lyon, France). Samples were filtered twice through a 50µm nylon mesh and 

resuspended in EQ™ Four Element Calibration Beads (Fluidigm) diluted to 0.5X in Maxpar 

ultra-pure water (Fluidigm), to reach an acquisition rate of 150-200 events per second (0.5 x 

106 cells/mL). Data were collected using the on-board Fluidigm software. 

 

Data analysis 

All data analyses were performed in RStudio (version 1.3.1073 with R version 4.0.3) and FlowJo 

(version 10.7.1). 

Data cleaning and preliminary manual gating 

Signal normalization, concatenation, debarcoding, and conversion into Flow Cytometry 

Standard (FCS) 3.0 format were performed using the Helios Software (Fluidigm). Debarcoded 

files were imported into FlowJo and arcsinh-transformed (cofactor = 5). Gaussian parameters 

of the Helios system were used for doublet exclusion (62), then 191Ir+ 193Ir+ single events were 

manually isolated, and debris (CD45- events) and calibration beads (140Ce+ events) were 

excluded). A preliminary manual gating analysis was then performed on CD45+ single events 

(Supp. Figure 8) to verify that the proportions of the main white blood cell subpopulations in 

biobanked samples were consistent with the expected proportions, and sufficient for 

downstream analysis. Samples with less than 1,000 CD3+ events, and batches with missing 

samples from a given timepoint were removed from the analysis to preserve a matched 



 
  101 

 

sample design. The exact number of available files per patient and per stimulation condition 

is provided in Supp. Table 1. 

Workflow for unsupervised analyses 

CD3+ single events were down-sampled to ensure equal contribution of each sample, exported 

into separate Comma Separated Value (.csv) files, and uploaded into R software (version 

4.0.3). Panel markers were defined as either lineage or functional markers for use as clustering 

channels in downstream analyses (Supp. Table 9). Lineage-defining markers included 

canonical surface markers such as CD4 which display a theoretically stable expression. 

Functional markers included markers of activation (e.g. CD69), proliferation (CD38), 

maturation (CD27), or migration (CCR7).  

Dimension reduction, automated clustering, and phenotyping 

After file concatenation, dimension reduction was performed with UMAP (Uniform Manifold 

Approximation and Projection; version 3.1) (63). UMAPs were created in R using the package 

Spectre (64). Unsupervised clustering was performed using FlowSOM (65) (version 2.7). 

FlowSOM meta-cluster phenotyping was assessed by visualizing the surface expression of 

lineage markers in each FlowSOM cluster (CD4, CD8, TCRgd, TCRVa7.2, CD56, CD25, IL7Ra, 

CD26, and CD161) on a heatmap and performing hierarchical clustering. Marker expression 

heatmaps were obtained in R using Spectre by plotting normalized, median arcsinh-

transformed mass signals. Biological consistency of FlowSOM meta-clusters with the main 

expected T-cell subpopulations (Supp. Table 3) was controlled, and manual reassignment of 

clusters which were in inconsistent meta-clusters was then performed when necessary (Supp. 

Figure 9). Meta-clusters with an abundance <1% of all events were pooled with the most 

phenotypically similar meta-cluster. Then, the proportion of corrected FlowSOM meta-

clusters in each node on the initial FlowSOM minimum spanning tree was visualized to control 

reassignment consistency (66). 

Statistical analysis 

The proportion (percent of CD3+) of each FlowSOM cluster was calculated. For all statistical 

analyses, exact p-values, test statistics and/or estimates of effect size are provided either in 

the figure legend or in indicated Supplementary Tables. Normality was assessed using the 

Shapiro-Wilk test. The evolution of cluster proportions over time corresponded to repeated 

measures of non-normal, non-independent continuous variables, and was analyzed in 

matched samples using the two-sided Friedman rank sum test with the Wilcoxon–Nemenyi–
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McDonald-Thompson post-hoc test (67). Independent, non-normal continuous variables were 

analyzed with the two-sided Mann–Whitney U test or the Kruskal–Wallis test with Dunn’s 

Kruskal–Wallis Multiple Comparisons post-hoc test (68) when more than two categories were 

compared. For discovery of clusters with significantly different abundance between slow and 

fast converters, conservative corrections for multiple comparisons (e.g. Benjamini-Hochberg 

(69)) were not used in order to minimize type II errors. Instead, all p-values were computed 

for each timepoint, and the p-value corresponding to the null hypothesis being rejected in 5% 

of all comparisons was used as the significance threshold instead of 0.05 (70). This novel 

significance threshold enabled to control type I error while maintaining an exploratory 

approach; its value was always inferior to 0.05 and is reported in the corresponding figure 

captions. 
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Figures 

 

 

Figure 1. Experimental and analytical workflow. 

NIL, TB2 and rmsHBHA refer to whole blood stimulation conditions. NIL: negative control. TB2: 

QuantiFERON TB2 tube (ESAT-6 + CFP-10 + undisclosed CD8+ T-cell stimulating peptide pool). 

rmsHBHA: heparin-binding hemagglutinin. T0, T1 and T2 refer to patient follow-up timepoints 

(T0: baseline. T1: T0 + 2 months. T2: end of treatment). Pd barcoding: palladium barcoding for 

unique sample identification before multiplexing. UMAP: Uniform Manifold Approximation 

and Projection. FlowSOM: self-organizing map. 
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Figure 2. Peripheral CD3+ T-cell unsupervised clustering and phenotyping.  

Peripheral whole blood samples were collected from active TB patients at three timepoints 

throughout treatment (n = 22). After whole blood stimulation with selected Mtb antigens or 

with a negative control, total white blood cells were extracted, and T-cells were analyzed with 

a 29-marker mass cytometry panel.  

A to E. FlowSOM automated clustering. The surface expression of selected lineage markers 

used for FlowSOM calculations was visualized in all CD3+ events (200,000 events from equally 
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down-sampled files) regardless of timepoint or stimulation. FlowSOM enabled automated 

repartition of all CD3+ events into 196 clusters according to the surface expression of selected 

lineage markers such as CD4 (A), CD8 (B), and CD45RA (C). Scales indicate arcsinh-transformed 

mass signal values. Clusters were automatically grouped into 18 meta-clusters of 

homogeneous phenotype, which were assembled into 12 canonical T-cell subpopulations in a 

supervised manner after meta-cluster phenotyping with heatmap visualization of normalized, 

arcsinh-transformed median mass signal values for each surface marker (D). Manual 

reassignment of clusters which were in biologically inconsistent meta-clusters was performed 

when necessary (Supp. Figure 2.H.). Then, the proportion of the identified T-cell 

subpopulations in each node on the initial FlowSOM minimum spanning tree was visualized 

to control phenotyping consistency (E). 

F and G. Reference mapping. Data were mapped onto two dimensions with UMAP and 

overlayed with automatically determined FlowSOM clusters (F) and meta-clusters (G) to 

generate a phenotype reference map. Cluster labels were not displayed for legibility. 

Abbreviations: CM: central memory. DN: double-negative CD4-CD8-. DN: double-positive CD4+ 

CD8+. EM: effector memory. MAIT: mucosal associated invariant T-cells. Tgd: gamma delta T-

cells. Treg: T-regulators. TEMRA: terminally differentiated effectors re-expressing CD45RA. 
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Figure 3. Significant abundance changes in non-canonical T-cell subsets throughout TB treatment.  

The evolution of FlowSOM cluster abundance was analyzed over time in unstimulated or Mtb-stimulated samples (TB2 or rmsHBHA), and only 

the clusters within which significant abundance changes were detected were displayed. CD4+ clusters were represented in red, CD8+ clusters in 

blue, γδ T-cell clusters in green, and CD4- CD8- clusters in grey. Number of matched data points per timepoint for all panels: NIL: n = 16. TB2: n 

= 18. rmsHBHA: n = 14. Data are represented as medians + interquartile range. 

A to D. Significantly increased clusters at treatment completion (T2) compared to treatment initiation (T0). Clusters within which a significant 

increase was detected between T0 and T2 were first visualized on the reference UMAP shown in Figure 3 (A). Cluster abundance quantification 

was then was performed in unstimulated (B), TB2-stimulated (C) or rmsHBHA-stimulated samples (D).  

E to H. Significantly decreased clusters at treatment completion (T2) compared to treatment initiation (T0). Mapping (E) and abundance 

quantification of clusters which increased between T0 and T2 in unstimulated (F), TB2-stimulated (G) or rmsHBHA -stimulated samples (H). 

Abbreviations: DN: double negative CD4- CD8-. Tgd: gamma delta T-cells. Statistical analysis: Friedman rank sum test and Wilcoxon-Nemenyi-

Thompson post-hoc for pairwise comparisons between non-independent observations at T0, T1, and T2. *: p<0.05. **: p<0.01. ***: p<0.001. 

Exact p-values and test statistics are available in Supp. Table 3.  
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Figure 4. In-depth phenotyping shows differential involvement of effector and memory T-

cells in antigen-driven cluster abundance changes during anti-TB treatment. Mean marker 

expression levels were visualized using heatmapping for clusters which increased (orange 

color code) or decreased (green color code) throughout treatment. Each line represents one 

cluster. Scales indicate normalized mass signal intensity. Black rectangles annotated from A to 

D indicate cluster subgroups with similar immunophenotypes and abundance changes. 
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Figure 5. Individual immunoprofiling confirms differential abundance of correlated subsets in cured patients after treatment. 

Cluster were stratified by type of significant abundance change: enrichment (A to C) or depletion (D to F) after treatment completion.  

A and D. Pearson’s correlations were calculated on cluster abundance at T0 and displayed on a heatmap with hierarchical clustering. Clusters 

with similar immunophenotypes (Figures 3 and 4) and positive correlation coefficients were grouped. Estimates of effect sizes are in Supp. Tables 

4  and 5.  

B, C, E, F. The abundance of each subgroup was visualized. Each dot represents data for one patient. Statistical analysis: Friedman rank sum test. 

*: p<0.05. **: p<0.01. Subgroup A: data from rmsHBHA samples (n =14), clusters 49, 50, 65, 154; p = 0.0013, Friedman’s Chi-Square (Fchisq) = 

10.3. Subgroup B: data from unstimulated samples (n =16), clusters 74, 102, 160; p = 0.020, Fchisq = 5.4. Subgroup C: data from unstimulated 

samples, clusters 37, 38, 70, 98; p = 0.0027, Fchisq = 9. Subgroup D: data from rmsHBHA samples, clusters 28, 54, 69; p = 0.0023, Fchisq = 9.3. 

 F. For each subgroup, normalized mean marker expression levels were compared with similar T-cell subsets.   

G to K. Manual gating analysis was performed to verify unsupervised results (representative plots, 500 to 1,000 events). Numbers indicate the 

percentage of gated cells among total CD3+ cells. Subgroup A: CD4+CCR7+CD45RA-CCR6+IL7Ra+CD27+CD40L+CD38+HLA-DR+. Subgroup B: 

CD8+CCR7-CD45RA-CD7+ Perforin+. Subgroup C: CD4+CCR7 CD45RA-CCR4+CCR6+CXCR3+CD26+IL7Ra+CD7+CD27+ CD40L+CD38+.  Subgroup D: 

CD4+CCR7-CD45RA-CCR4+CCR6+ CXCR3+CD26+IL7Ra+CD7 CD27+CD40L+CD38+ HLA-DR-. 
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Figure 6. Patients with slow microbiological culture conversion show decreased cytotoxic 

CD8+ and γδ enriched CD4+ naïve T-cell subsets before treatment initiation and after two 

months of treatment compared to fast converters. 
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Fast converters (n = 18) were defined as patients with permanently negative M. tuberculosis 

culture after two months of treatment (T1), whereas slow converters (n = 4) were defined as 

patients with persistently positive cultures at T1. The abundance of all FlowSOM clusters at 

baseline was compared between fast and slow converters. CD4+ clusters were represented in 

red, CD8+ clusters in blue, and γδ T-cell clusters in green. Clusters which were significantly 

decreased (A and C) or enriched (B and D) at T1 in slow converters compared to fast converters 

were compared to the reference UMAP (E). Normalized, arcsinh-transformed mean marker 

expression levels were visualized (F). Each row represents one cluster. Scales indicate 

normalized mass signal intensity. Boxplot data represent medians + interquartile range. 

Statistical analysis: Only clusters within which significant differences were detected were 

represented. Significance threshold: p<0.031 (Mann-Whitney U test). *: p<0.031. **: p<0.001. 

Exact p-values and test statistics are available in Supp. Table 6. 
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Figure 7. Non-lineage markers discriminate slow and fast responders within differentially 

abundant subsets. Principal Component Analysis (PCA) was performed on marker expression 

data from the clusters identified in Figure 6 within 96 Mtb-stimulated samples matched at T0, 

T1, and T2 (TB2: 54 samples; rmsHBHA: 42 samples). A. Explanation of the variance between 

fast converters (25 samples at each timepoint) and slow converters (7 samples at each 

timepoint). Each dot represents one patient. The color code represents the culture conversion 

group. Axes represent the principal components 1 (Dimension 1, Dim1) and 2 (Dim2) and 

percentages indicate their contribution to the total observed variance. Axis values represent 

individual PCA scores. Concentration ellipses correspond to 90% data coverage. B. 

Contribution of cellular markers to the variance described by Dim1 and Dim2. Axis values 

represent marker PCA scores. The color code represents broad marker functions. C. and D. 

Quantification of panel B. for Dim1 (C.) and Dim2 (D.). Contributions of each marker are 

expressed as a percentage of the dimensions. The red dashed line corresponds to the 

expected reference value if each marker contributed uniformly to the variance. Markers 

indicated in gray are below this reference value. E. and F. Distribution of individual PCA score 

values according to the culture conversion group and to the timepoint, for Dim1 (E.) and Dim2 

(F.). Data were compared with the Wilcoxon Rank Sum Test. ***: p<0.001. 
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Tables 

Table 1. Selected subset abundance changes before and after treatment completion. 

Sample Abundance between T0 and T2 (%, N) 

Subset A decreased 

NIL (n=16) 62% (10) 

TB2 (n=18) 67% (12) 

rmsHBHA (n=14) 93% (13) 

Subset B decreased 

NIL 81% (13) 

TB2 72% (13) 

rmsHBHA 71% (10) 

Subset C increased 

NIL 88% (14) 

TB2 72% (13) 

rmsHBHA 57% (8) 

Subset D increased 

NIL 69% (11) 

TB2 78% (14) 

rmsHBHA 93% (13) 

Footnotes: these data were obtained from Figure 5. 

Table 2. Proportions of the main T-cell subpopulations within enriched or decreased 
subsets in slow converters compared to fast converters. 

  T0 (21 clusters) T1 (24 clusters) T2 (21 clusters) 

Abundance in slow 
vs. fast converters 

Decreased Enriched Decreased Enriched Decreased Enriched 

86% (18) 14% (3) 62% (15) 38% (9) 52% (11) 48% (10) 

Total CD8+ and γδ 72% (13) 67% (2) 53% (8) 22% (2) 36% (4) 20% (2) 

γδ T-cells 38 (5) - - - - - 

CD8+ TEMRA 24 (3) 50 (1) 75 (6) - - - 

CD8+ EM 38 (5) - 25 (2) 50 (1) 100 (4) - 

CD8+ naïve - 50 (1) - 50 (1) - 100 (2) 

Total CD4+ 11% (2) 33% (1) 7% (1) 78% (7) 36% (4) 80% (8) 

CD4+ TEMRA - - - 14 (1) - - 

CD4+ EM 50 (1) - 100 (1) 29 (2) 100 (4) - 

CD4+ CM 50 (1) - - 14 (1) - 38 (3) 

CD4+ naïve - 100 (1) - 43 (3) - 62 (5) 

Total DN 17% (3) 0 40% (6) 0 27% (3) 0 

Footnotes: these data were obtained from Figure 6 and Supp. Figure 6. Data are given as percentage 
of clusters in each category (number of clusters in each category/total number of clusters). 
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4.2  From mass to full spectrum flow cytometry: technology transfer  

4.2.1  Cost-effectiveness comparison 

As exposed previously, our results confirmed that mass cytometry met two of the main 

experimental needs required for high-dimensional TB immunomonitoring and biomarker 

discovery: high resolution at a high numbers of parameters, reproduceable measurements 

appropriate for prospective study designs. However, we also fully experienced its low 

throughput, high cost, and low sample recovery. In September 2020, the latest 

implementation of full spectrum flow cytometry, the CYTEK Aurora spectral flow cytometer, 

which was first acquired in Lyon in its 5-laser version (violet, blue, yellow-green, red, and UV) 

along with three scatter detectors and 64 fluorescence detectors151. As one of the main 

background themes of this thesis was scientific sustainability and cost-effectiveness of high-

dimensional technologies for efficient translational research, a cost analysis of mass vs. full 

spectrum flow cytometry was performed on an indicative basis (Table 7).  

 

Table 7. From mass to spectral flow: a cost analysis. 
Original work with T. Andrieu. 

Technology Fluidigm Helios CYTEK Aurora 5-laser 

Maximal number of parameters 47-50 45 

Panel design 

Complex: limited to 30-40 parameters in practice 

Fast development 
Time consuming 
Multiple panel iterations 

Cells acquired per hour 1 million 30 million 

Sample efficiency 60-70% 95% 

Commercial range cost per tube1 €1,390 (with specimen multiplexing) €70.5 

Footnotes: 
1. The price per test tube includes the reagent costs for a 30-parameter panel and the running costs of each 
machine in our local facilities in Lyon necessary to stain and acquire 10 million cells. It was calculated as follows: 
(€ per antibody) + (cost of number of hours to acquire 10.106 cells)*(correction for sample efficiency). 

 

In this context, the overall cost of spectral flow cytometry data acquisition was nearly 20 times 

lower than that of mass cytometry. This was mainly because machine running costs were 

lower, but also because the maximal cell acquisition rate was much higher on Aurora. This 

reduced the sample acquisition duration from nine hours on average on Helios, to three hours 

on average Aurora for the same number of cells acquired, which is a major parameter to take 

into account when performing infectious disease immunomonitoring for clinical purposes. 
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4.2.2  Resolution comparison 

As a preliminary experiment, we then performed a comparison of the resolution obtained on 

a Helios mass cytometer and an Aurora 5-laser spectral flow cytometer with a 30-marker 

panel (Table 8).  

 

Table 8. From mass to spectral flow cytometry: a resolution analysis. 
Source: T. Andrieu. 

Parameters Fluidigm Helios CYTEK Aurora 5-laser 

rSD1 around 0 1.99 817 

DNR2 32,768 (15bits) 4,194,304 (22bits) 

Median of negative populations3 1.06 1,370 

Maximal resolution4 23,240 146,678 

Footnotes:  
1. The robust standard deviation (rSD) measures the signal spread around the median for each metal or 
fluorophore.  
2. The dynamic range (DNR) is defined as the ratio of the largest detectable signal to the smallest detectable 
signal. It depends on the cytometer’s detector system. Here, the value is also given in bits to reflect signal 
digitization.  
3. The median of negative populations is indicated because it plays a role in the overall resolution of the machine: 
the better the negative events are separated from the positive events, the higher the resolution.  
4. Here, the maximum resolution of this specific panel was calculated as follows: 

(𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝐷𝑁𝑅 − 𝑚𝑒𝑎𝑛(𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠)))/√𝑚𝑒𝑎𝑛(𝑟𝑆𝐷 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 

 

Because mass cytometry does not rely on fluorescence spectra and measures discrete 

masses, the robust standard deviation (rSD) of events that are negative for a given marker is 

very low, which explains the high resolution that is reach even when measuring high 

parameter numbers. However, at an equal number of parameters, we found that the maximal 

resolution attained on the Aurora spectral flow cytometer was approximately six times higher 

than that of the Helios mass cytometer. This is because the detection and signal digitization 

systems on Aurora yield a much higher dynamic range (DNR) and hence allow for improved 

separation of negative and positive events for a given marker. Thus, we adapted the Helios 

mass cytometry antibody panel used in the previous publication for use on a 5-laser Aurora. 

Preliminary results are exposed and discussed thereafter. 
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4.2.3  Proof of concept and technology transfer 

For the technology transfer, all antibody clones from the initial mass panel were conserved, 

except for one which was commercially unavailable, and an anti-CD19 antibody was added to 

improve T-cell gating (see Supp. Table 10 - Annex 3, p. 183). Antibody titration was graciously 

performed by CYTEK. 

4.2.3.i  Experimental procedures 

Briefly, between 1 and 1.5x106 cells were aliquoted and incubated for 10 minutes in FcR 

Blocking Reagent (6µL/106 cells; Miltenyi Biotec) and heparin sodium salt (36µg/106 cells; 

Sigma-Aldrich). Cells were stained in 50µL of BD Brilliant Stain Buffer (30 minutes, RT, in the 

dark). A 10-minute fixation step was performed in 300µL of freshly reconstituted 4% 

formaldehyde (FA) prior to intracellular staining (30 minutes, RT, in the dark, in 1X BD 

PhosFlow Perm/Wash Buffer I). Samples were fixed for 20 minutes in 300µL of 1% FA and kept 

at 4°C until acquisition at a maximal rate of 10,000 events per second on a CYTEK Aurora 5-

laser spectral analyzer, hosted by the CYLE flow cytometry core facility at the Cancer Research 

Center of Lyon (CRCL, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard). Quality control 

and spectral unmixing were performed using SpectroFlo software (CYTEK). Autofluorescence 

was extracted individually from an unstained aliquot of each patient sample. Unmixed, 

compensated data were cleaned in FlowJo (version 10.7.1) and analyzed in R software 

(version 4.0.3) using analysis pipelines adapted from those presented in Manuscript 3. 

 

4.2.3.ii  Preliminary results 

Between September and December 2020, optimization experiments and technical 

comparisons were performed. For canonical T-cell phenotyping purposes, similar results were 

obtained with Aurora and Helios, with a better spatial separation of phenotypically distinct 

subpopulations with Aurora (Figure 22), possibly because the dynamic range of full spectrum 

flow cytometry detectors is broader.  
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Figure 22. Preliminary comparison of basic T-cell phenotyping with spectral flow and mass cytometry. 
Aliquoted healthy donor cells from the same sample were acquired on Aurora (full spectrum flow cytometer) 
and Helios (mass cytometer). For each technique, a UMAP showing 80,000 CD3+ events was plotted using the 
same graphing and clustering parameters. Red squares indicate areas of the UMAP were spatial separation 
differs between Helios and Aurora. 

 

Then, between December 2020 and May 2021, 80 samples collected from 12 adult, 

culture-positive DS-TB patients from the Georgia and Lebanon HINTT cohorts were acquired 

(Georgia, n=8 and Lebanon, n=4) (Figure 23). All patients achieved microbiological cure at the 

end of treatment. Manual gating analysis was first performed to verify the proportions of the 

main expected CD45+ immune cell subpopulations on biaxial plots (Figure 24, representative 

plots).Then, CD3+ single events were analyzed using a workflow adapted from that of the 

mass cytometry project. The main subpopulations observed were similar to those found with 

mass cytometry, except for double negative CD4- CD8- T-cell subpopulations which were not 

detected with spectral flow (Figure 25 ). This might be sample- or staining-dependent and will 

be further investigated, as double negative T-cells usually represent 1 to 5% of peripheral 

lymphocytes152. 

Overall, we mainly aimed to validate the main result of manuscript 3 regarding T-cell 

subpopulations differentiating fast and slow converters. However, there were 3 slow 

converters (positive culture at T1 and negative culture at T2), two of which had cell samples 

insufficient event numbers for analysis. Overall, T-cell data remain to be fully examined in 

relation with patient clinical and microbiological characteristics and during treatment in 

general. In this study, B cell and NK cell phenotypes will be analyzed as well. 
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Figure 23. Flowchart of sample analysis. 
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Figure 24. Representative morphology and gating strategy for the main CD45+ non-granulocyte whole blood subpopulations in Aurora-acquired data. 
CM: central memory. EM: effector memory MAIT: mucosal-associated invariant T-cells. NK: natural killers. TEMRA: terminally differentiated effectors re-expressing CD45RA. 
Tgd: gamma delta T-cells. Treg: T regulators. 
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Figure 25. Unsupervised clustering and phenotyping of peripheral CD3+ T-cells using full spectrum flow 
cytometry. 
Peripheral whole blood samples were collected from 12 active DS-TB patients at diagnosis, after 2 months of 
treatment, and at the end of treatment. After whole blood stimulation with either QFT-P NIL, TB2, or rmsHBHA, 
T-cells were stained with a 30-marker panel and analyzed on a CYTEK Aurora 5-laser full spectrum flow 
cytometer. A total of 80,000 CD3+ events were recorded. FlowSOM enabled automated repartition of all CD3+ 
events 13 phenotypically similar meta-clusters (A.) corresponding to 196 clusters (B.). Meta-cluster phenotyping 
was conducted with heatmap visualization of normalized, biexponential-transformed median fluorescence 
intensity values for each surface marker (C.). Hierarchical clustering was performed to identify phenotypically 
similar FlowSOM meta-clusters. 
Abbreviations: CM: central memory. EM: effector memory. MAIT: mucosal associated invariant T-cells. Perf: 
perforin. Tgd: gamma delta T-cells. Treg: T-regulators. TEMRA: terminally differentiated effectors re-expressing 
CD45RA. Th1Th17: cells with a combined T helper 1/T helper 17 phenotype (co-expression of CXCR3 and CCR6). 
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PART C: DISCUSSION AND PERSPECTIVES 

 

“The title of the paper by Dr. Irving Willner in this issue of Diseases of the Chest is in the form 

of a question: “Can Tuberculosis Be Eradicated?”. This question is definitely answerable in the 

affirmative. If the title has been “Will Tuberculosis Be Eradicated?”, the answer would be 

“probably not for centuries, if ever”. This answer is because humans have never freed 

themselves from diseases for which much simpler and more specific methods of treatment 

and prevention have been available, including diphtheria, gonorrhoea, malaria, smallpox, and 

syphillis.”153. 

 If it had not been for the final mention of smallpox – eradicated in 1980 – this excerpt from 

a 1963 editorial would still fit perfectly in modern opinion takes on TB research. As exposed 

in Chapter 1, the causes for this are vastly multifactorial, but boil down to the following: 

because TB disproportionately affects people living in precarity, massive funding gaps cause 

active TB diagnostics, therapeutics, and monitoring tools to remain outdated despite scientific 

advances. This contributes to millions of missed cases and to low treatment adherence, which 

maintains disease transmission and worsens secondary drug resistance, which in turn 

requires harsher and more expensive treatment. Simultaneously, the estimated 25% of all 

humanity living with latent TB infection form a huge reservoir of potential progressors to 

active TB, generating a parallel need for widespread LTBI screening and possible prophylactic 

treatment. In addition to difficulties of public health and political nature, the slow growth of 

Mtb, the difficulty of accessing host samples at the site of infection, and our resulting 

incomplete knowledge of the immune response to TB have hindered innovation for these 

purposes.  

The work presented in this thesis bears witness to the complexity of the anti-TB immune 

response, and to the magnitude of the translational research that remains to be done to meet 

clinical needs. Despite the fact that we are not on track to eradicate TB by 2035 – an objective 

set by the WHO in its 2015 implementation of the END-TB strategy154 – improving TB 

management is concretely possible, and has succeeded in a decline of 14% in TB mortality 

rates since 2015155. Here, we focused on novel non-sputum-based, immune tools to monitor 

treatment. The stakes are many: advancing treatment monitoring methods helps improve 

treatment adherence and efficacy, but also brings new scientific insights translatable to 
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diagnostic tools, LTBI screening, discrimination between remote or recent infection, and TB 

“resister” phenotypes. Mainly, the current TB treatment immunomonitoring candidate tests 

lack specificity compared to sputum culture to be relevant during treatment, and require too 

much scientific instrumentation or expertise for rapid implementation in high-TB burden 

areas. Here, we adopted two types of approaches to advance TB immunomonitoring 

research. First, we evaluated simple, previously described host immune biomarkers with 

relatively inexpensive methods in high-TB burden settings. Then, we explored new cellular 

signatures of TB treatment using high-dimensional single-cell technologies. As our main 

results have already been discussed within the earlier publications, some selected additional 

aspects and final perspectives are reviewed thereafter. 
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1.  A multi-centered study in lower-income settings: how practical 
constraints guided our research 

The main characteristic of the HINTT study was its multicentered design, implemented in five 

lower-middle-income countries with high TB incidence: >20 TB cases per 100,000 inhabitants 

per year, with the exception of Lebanon (11 cases per 100,000 per year). This design was the 

greatest strength of the study, because it enabled evaluation of immunomonitoring tests in 

settings that were consistent with the current epidemiology of TB disease, in patients 

representative of those who bear most of the TB burden – excluding TB/HIV patients. Recent 

studies evaluating novel biomarkers of TB have often been conducted in middle- or high-

income settings with low TB incidence (e.g. Italy156, Canada157, Japan158), because patient 

follow-up and access to research infrastructures are considerably easier. There are numerous 

high-quality studies based in high-TB incidence areas, but they are mostly conducted in 

China129,159 or across the African continent, in particular in countries that have a history of TB 

research because large TB laboratories have long been implanted there (e.g. South 

Africa124,160–162, Tanzania163,164). Here, we have brought new data collected across three 

continents, in countries that have traditionally hosted fewer TB research studies despite a 

high TB burden (e.g. Madagascar, Paraguay). This is important to better understand the 

immunobiology of TB in ethnically diverse populations exposed to different TB strains, and to 

test the robustness and applicability of candidate immunomonitoring tests in these diverse 

settings.  

Moreover, the bulk of the patients enrolled in our study were recruited in Bangladesh and 

Georgia, across which the prevalence of DR-TB is particularly high. Bangladesh is among the 

WHO list of 20 high-MDR-TB burden countries ranked by absolute number165: in 2019, an 

estimated 11.7% of TB cases were registered as MDR/RR-TB, 0.7% of which were new cases. 

This corresponds to over 1,300 laboratory-confirmed MDR/RR-TB cases, although the actual 

burden is likely much higher. Dhaka – the capital city of Bangladesh, where our patients were 

recruited – is the most densely populated metropolitan area in the world, home to 

approximately 47,000 people per km2. This translates into an overall population of 21 million 

people, many of whom live in slums, have limited access to healthcare, and are exposed to 

malnutrition. Georgia, although less populated, has an extensive history of TB/HIV and is also 

hit hard by drug-resistant TB: in 2019, an estimated 12% of new TB patients and 32% of re-
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treated patients were infected with strains that were at least MDR-TB165. This corresponds to 

over 500 cases of MDR-TB enrolled by the Georgian national TB program yearly, over 10% of 

which are pre-XDR or XDR-TB. In our study, we have enrolled and followed 28 patients treated 

for either RR-TB, MDR-TB, pre-XDR-TB, and XDR-TB within the Bangladesh, Georgia, and 

Paraguay (1 patient) study sites. As drug resistance is on the rise worldwide, data for this part 

of the cohort are particularly valuable, since the follow-up of DR-TB patients – treated for 

longer periods, with harsher medication – is considerably more difficult than that of DS-TB 

patients. 

Hence, despite being this study’s greatest strength, this multicentered design in lower-income 

settings was also the reason for most its challenges, from patient recruitment to data analysis. 

In particular, we had expected important loss to follow-up (LTFU), which we experienced 

despite planning follow-up visits that coincided with national TB program planned visits, and 

especially despite all the extensive efforts deployed by healthcare staff and community health 

workers in partner study sites. Among the total HINTT cohort comprising 198 enrolled 

participants (see flowchart in Publication 1), 23% (46) were LTFU between enrolment (T0) and 

treatment completion (T2), and an additional 20% (40) between T2 and two months post-end 

of treatment (T3, which was outside of national TB program planned visits for all study sites). 

Between T0 and T2, LTFU was greatest in the Dhaka cohort, amounting for 20 patients (43% 

of all LTFU), 15 of whom were treated for DR-TB. This is due DR-TB treatment regimens being 

less well tolerated, coupled with the difficulty of keeping track of patients who live in the 

slums. For follow-up during treatment, we chose to implement a two-month follow-up visit 

(T1) over other clinically relevant, earlier timepoints often described in the literature (e.g. two 

weeks, one month) for several reasons. Firstly, the two-month timepoint was the only 

moment during treatment coinciding with a sputum collection visit planned by national TB-

programs in all study sites, which helped reduce loss to follow-up to 9% (19) between 

enrolment and two months. In addition, during clinical DS-TB management, the two-month 

timepoint is a critical step because it marks the end of the intensive phase, after which 

antibiotic treatment is reduced. The same timepoint was kept for monitoring of DR-TB 

patients for consistency, and to compare immune profiles despite heterogeneous treatment 

regimens. Here, all DR-TB patients benefitted from last-generation antituberculous agents 

(bedaquiline, linezolid) except for RR-TB patients, and 89% (25/28) had achieved definitive 

culture conversion after two months.  
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Downstream of patient enrolment and follow-up processes, this study also presented a 

number of logistic and technical challenges. In particular, as blood collection is challenging 

depending on local cultures and settings, collecting large volumes of peripheral blood was not 

a realistic option. We aimed for this work to be sustainable for partners and adapted to local 

constraints, while evaluating a variety of blood-based immunological tests. Hence, we had to 

adopt a parsimonious sample processing protocol making the most of 10mL of whole blood 

maximum per visit, which were split into CBC monitoring, qRT-PCR experiments (see Annex 5), 

and five different in vitro stimulation conditions for IGRAs and cytometry analyses. While this 

admittedly generated a number of data analysis limitations, it reflected the reality of the 

logistic needs for novel TB management tools, and was an opportunity to document the 

relevance of cheaper tests such as CBC and IGRA as previously discussed. 
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2.  Single-cell technology at the service of translational TB immunology 

Despite the constraints associated with in multicentered settings, we have applied high-

dimensional mass cytometry analyses in a subset of patients from the HINTT cohort to capture 

the complexity of T-cell profiles during TB treatment. As conventional flow cytometry is 

deeply engrained in the commercial supply and in users’ habits, in particular in infectious 

disease immunology, high dimensional cytometry is currently igniting passions among 

cytometrists. While conventional flow cytometry users praise the technology’s maturity, 

extensive use worldwide, and practicality of use, the other party criticizes the low parameter 

number or difficult panel design, with opinion pieces asking “is pain and anguish a necessary 

component of good flow cytometry?” or affirming that “current flow cytometers are the least 

advanced technologies in the field of spectroscopy, period.”166. Here, we have chosen to 

benefit from the analytical power of high-dimensional cytometry data to generate new, 

detailed insights on T-cell differentiation during TB treatment. However, we have also 

narrowed the most important features of the observed T-cell profiles down to simpler marker 

combinations, applicable to validation studies using conventional flow cytometry and 

eventually translatable to simpler techniques for treatment monitoring. Although we had to 

attribute a cellular identity to subsets of interest to understand their biological role, our data 

hint that rather than distinct cellular categories, the phenotypes of T-cells during treatment 

appear as a complex spectrum whose detection is conditioned by the antigenic stimulation used. 
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2.1  Insights on treatment monitoring 

Overall, we observed a shift towards more differentiated profiles among peripheral CD8+ and 

CD4+ T-cell subsets. We gained more insight on marker involvement within memory 

compartments during treatment by phenotyping in detail three peripheral T-cell 

subpopulations which were associated with cure at the individual level (despite 

heterogeneity) but were more frequent in peripheral blood than automatically detected 

clusters. We have shown that they could be identified in cryopreserved samples obtained 

from small blood volumes, using manual gating analyses. They require a smaller number of 

core markers to be isolated (13 surface markers), which would enable detection with cheaper, 

more accessible conventional cytometers, and without cytokine staining. Regarding in-depth 

phenotypic profiles, a CXCR3+ CCR6+ CD27+ CD4+ EM subset was increased in cured patients 

compared to pre-treatment. Although it is not possible to infer the full function of this subset 

without its cytokine expression profile, this phenotype possibly corresponds to a subset 

enriched in Th1/Th17 cells167,168, which have been shown to be the main peripheral CD4+ 

effectors involved in the TB response89,125. This is consistent with previous works that showed 

that peripheral Mtb-specific memory T-cells from latent TB patients were mostly CXCR3+ 

CCR6+ Th1169, and supports the hypothesis that an increase in these cells upon cure might be 

associated with infection control. This subset of interest also expressed CCR4 in lower levels, 

which has been observed previously in Th1/Th17 cells170. Compared to the other CD4+ EM 

cells, this subset of interest displayed higher CCR6, CD26, IL7Ra, and CD7 expression. CD26 is 

known to participate in T-cell activation, co-stimulation, and proliferation171, and its 

expression levels on CD4+ T-cells have been correlated with Th1-like immune responses172,173. 

However, its role in TB clearance is still unclear. Studies on PTB have mostly investigated CD26 

levels on CD8+ cells, showing that a CD26hi phenotype was restored on bacteria-reactive, 

peripheral MAIT cells during TB treatment174. In contrast, a recent nationwide cohort study 

highlighted an increased risk of active TB disease in diabetes patients treated with high-dose 

CD26 inhibitors175. Along with our results, this warrants further investigation on the role of 

CD26 expression on CD4+ T-cells in mycobacterial clearance during treatment.  

In parallel, a CCR6+ CD27+ CD4+ naïve subset was decreased. It expressed high levels of CD27 

and CD38. This is consistent with previous works documenting a decrease in purified protein 

derivative (PPD)-stimulated CD27+ CD38+ Mtb-specific CD4+ T-cells in treated TB176. Our 
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results suggest that this decrease in CD38+ cells may not be restricted to Mtb-primed T-cells, 

but could affect naïve cells, perhaps within the frame of general CD4+ T-cell differentiation 

during treatment. This subset also expressed low levels of CD26 and IL7Ra compared to the 

CD4+ EM subset analyzed previously. Taken together, these findings indicate that upon TB 

treatment, differentiated Th1/Th17-like CD4+ subsets expressing high levels of CD26 and 

IL7Ra are enriched in peripheral blood at the expense of less differentiated subsets expressing 

high levels of CD27 and CD38.  

Then, a main subset of interest we identified corresponded to CD8+ EM cells expressing CD7 

and perforin, but not CXCR3, that decreased upon cure. As CXCR3 is involved in effector cell 

recruitment to inflammatory sites177, it is possible that this reflects a contraction in peripheral 

cytotoxic CD8+ T-cells that were circulating as a consequence of the chronic inflammation 

generated by TB disease, but lacked the ability to migrate to the lung. However, as the role of 

CXCR3 in TB has mostly been investigated in CD4+ T-cells so far, these results call for further 

work on CXCR3+ CD8+ T-cells during TB resolution. Overall, to fully understand the underlying 

processes behind the prior observations, future works including analyses on lymphocytes 

harvested from broncho-alveolar lavage are needed. 
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2.2  Differentiating slow from fast converters 

Finally, our results suggested that T-cell differentiation during treatment was delayed in slow 

converters. Beyond the differentiation and memory functions discussed in the publication, 

our data showed that maturation markers and chemokine receptors discriminated slow from 

fast converters during treatment to a larger extent than activation and cytotoxicity markers. 

CD26 and CD27 were also the markers which were responsible for most of the variance 

observed between fast and slow responders during treatment, along with CCR4. CD27 and 

CCR4 in Mtb-specific CD4+ T-cells have previously been associated with active TB compared 

to latent infection87. In mouse models, CCR4 has also been shown to inhibit the suppressor 

function of Tregs and to play a role in TB control178. In addition, we observed that HLA-DR and 

CD38 also contributed to the discrimination between fast and slow converters. These results 

add up to the observations made by Vickers and colleagues who observed that co-expression 

of CD27, HLA-DR, and CD38 on PPD-stimulated CD4+ T-cells stratified fast and slow responders 

without restriction to IFN-γ-producing cells179. The fact that HLA-DR and CD38 accounted for 

a lesser fraction of the observed variance than CCR4, CD27, and CD26, is consistent with 

studies showing that there was no detectable relationship between bacterial loads and CD38 

or HLA-DR expression on total CD4 T-cells180. Interestingly, the study by Vickers et al. also 

highlighted a retrospective association between higher pre-treatment frequency of CD8+ 

CD27− IFN-γ+ CD8+ T-cells and CD27+ CD38+ HLA-DR+ CD4+ T-cells, and lack of culture 

conversion after two months of treatment179. A similar trend was also observed in more detail 

in our study, with a pre-existing under-representation of cytotoxic CD8+ EM T-cells and an 

over-representation of CD38+ CD27+ CD4+ naïve T-cells in slow converters at diagnosis (Supp. 

Figure 11 of Publication 3). In parallel, in successfully treated TB patients who experienced 

relapse, excessive in vitro cytolytic responses and upregulation of genes involved in cytotoxic 

cell-mediated killing have been observed at diagnosis and up to 4 weeks after treatment 

initiation181. Taken together, our results and prior works suggest that measuring these T-cell 

populations pre-treatment may possibly predict risks of treatment failure or relapse182. 

  



 
  142 

 

3.  Limitations 

The studies presented in this thesis share limitations, most of which are linked to the “bench 

to bedside” approach adopted in our study and to constraints specific to study sites in lower 

income settings. The number of slow converters and of treatment was low, which reflects the 

current epidemiology of TB in patients undergoing treatment. In addition, the DR-TB cohort 

was heterogeneous in terms of drug resistance patterns, treatment regimens, and duration. 

Some inter-patient variation factors could not be controlled, such as antibiotic regimens or 

malnutrition levels. The genetic background of patients in relation with ethnicity may also 

bias results, for example via polymorphisms in the IFNG gene183. In addition, although 

mycobacterial strain variation is known to impact the immune response184,185, Mtb 

genotyping could not be performed. Moreover, immune parameters may be influenced by 

other untested infections that are highly prevalent in the our study sites, such as parasitic 

infections that may impact CBC through eosinophilia, or arboviral diseases that may bias IFN-

γ levels. Regarding the cytometry study in particular, experiments were conducted on 

peripheral blood cells, which might induce an imbalance in T-cell proportions between blood 

and the lungs, the main infectious focus of TB. Due to the design of the study, cytometry 

analyses were not conducted on live cells, but on fixed, cryopreserved cells. Despite the fact 

that staining quality was controlled, fixation might induce bias, in particular regarding 

chemokine receptor expression as they are recycled between the endosomes and the cell 

membrane in live cells186. Cells were extracted from a small volume of blood and yielded a 

small number of analyzed events per sample, which may cause rare populations to have been 

undetected. In addition, only samples from the Bangladesh and Georgia cohorts were shipped to 

Lyon. Moreover, since IGRAs were conducted on the same blood samples prior to cell 

cryopreservation, intracellular cytokine staining was not performed. Hence, the integrality of 

the observed cell phenotype changes may not be associated with Mtb-specific responses. 

However, whether the bulk of anti-TB response relies purely on Mtb-specific cells is debated. 

Given the complexity of the immune response to TB, cellular and molecular interactions are 

likely to occur between Mtb-specific and non-specific subpopulations during treatment and 

mycobacterial clearance. Moreover, this study design enabled us to detect outcomes of 

interest in naïve compartments, and to gain insights on the involvement of T-cell 

differentiation in the global response during TB treatment.  
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4.  Ongoing validation studies and associated perspectives 

As the studies presented in this thesis warrant further investigation, their main results will be 

evaluated in a validation study for which recruitment and follow-up are currently ongoing at 

the Hospices Civils de Lyon: OPTI4TB (Optimization of Tuberculosis Diagnosis and 

Management Using Four Immunological Biomarkers). This study was designed to address 

some of the shortcomings discussed above, by targeting a population of 20 non-

immunocompromised adult DS-TB patients. Standardized disease severity assessment and 

chest X-rays are performed, and biological samples are collected at two additional timepoints 

during treatment compared to HINTT (at two weeks and one month post-treatment 

initiation). Whole genome sequencing of Mtb strains is performed at treatment initiation and 

after two months. Full spectrum flow cytometry analyses will be conducted on live PBMC 

instead of fixed white blood cells. 

In addition, the results obtained in the ensemble of this thesis may be translatable to other 

associated unmet needs in TB management. In particular, this applies to LTBI management, 

which is a major public health concern and represents one of the pillars of the WHO END-TB 

strategy154,187. In this context, our team within the Mérieux Foundation is currently 

conducting an associated study named APRECIT (Amélioration de la PRise En Charge de 

l’Infection Tuberculeuse latente en milieu communautaire). Its objective is to improve 

screening and overall management LTBI in partner institutions in Yaoundé, Cameroon, and 

Antananarivo, Madagascar, where LTBI screening and treatment are not routinely performed. 

In each study site, the aim is to include 125 index TB cases and 1250 TB household contacts 

(Figure 26). In household contacts, QFT-P and T-SPOT.TB are performed, and PBMC are 

collected. rmsHBHA IGRAs will also be performed in a subset of the cohort. In this context, an 

analysis of plasma IFN-γ and T-cell subset abundance changes using workflows similar to 

those conducted in this thesis is performed in LTBI and uninfected household contacts, to 

further characterize immune determinants of TB control. 
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Figure 26. Flowchart of inclusions and follow-up in the APRECIT study. 
Adapted from J. Hoffmann. 

 

In addition, an extension of APRECIT called APRECIT-BIS is currently being designed and has 

been submitted in September 2021 to a call for proposals hosted by the Agence Nationale de 

Recherches contre le SIDA et les hépatites virales | Maladies Infectieuses Emergentes. Its 

objective is to assess the diagnostic performances of novel immune tools to distinguish 

participants with remote LTBI from those with recent LTBI (< 2 years after Mtb primo-

infection), the latter being at higher risk of progressing to active TB188,189. For this purpose, 

the biobank collected in APRECT will be used retrospectively to (i) evaluate a flow cytometry 

tool measuring the surface expression of HLA-DR within Mtb-specific CD3+ IFN-y+ T cells, 

recently validated in a large-scale clinical study conducted by the South African Tuberculosis 

Vaccine Initiative (SATVI)161,190, and (ii) compare the diagnostic performances of this test to 

those of the RISK6 signature191 and of a novel plasma cytokine signature adapted from 

previous works192,193 and evaluated within the framework of HINTT. This work conducted in 

APRECIT-BIS could also help document the cellular and molecular immune characteristics of 

“TB resisters”, defined as individuals who do not develop LTBI despite long-term exposure to 

Mtb194,195.  
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ANNEXES 

1.  Supplementary data from original publications 

1.1  Annex 1 – Supplementary data from publication 1 

Drug resistant patients were recruited in Bangladesh (17/28, 60.7%), Georgia (10/28, 35.7%), and Paraguay (1/28, 3.6%). Among them, 2/28 (7.1%) 
were rifampicin-resistant (RR-TB), 4/28 (14.2%) were poly-resistant (PR-TB), 17/28 (60.7%) were MDR-TB, 4/28 (14.2%) were pre-extensively drug 
resistant (pre-XDR-TB), and 1/28 (3.7%) was XDR-TB. All pre-XDR-TB or XDR-TB patients were recruited in Georgia. 
 
Supplementary Table 1. Therapeutic regimens used in each study site. 

  Bangladesh (n = 38) Georgia (n = 33) Lebanon (n = 18) Madagascar (n = 36) Paraguay (n = 27) 

DS-TB 
patients 

New cases (n = 16) 
2HRZE/4HR1 

New cases (n = 15) 
Re-treated (n = 2) 

2HRZE/4HR1,4 
New cases (n = 16) 
Re-treated (n = 2) 

2HRZE/4HR1,4 

New cases (n = 31) 
Re-treated (n = 5) 

2HRZE/4HR1,4 

New cases (n = 20) 
Re-treated (n = 6) 

2HRZE/4HR1,4 Re-treated (n = 5) 
2SHRZE/1HRZE/5RHE2 

New cases (n = 5) 
2HRZE/4HRE5 

Poly-DR (isoniazid-resistant, n = 1) 
RZE6 

DR-TB 
patients 

New cases (n = 11) 
Re-treated (n = 6) 

4-6 Km-Mfx-Pto-Cfz-Z-HHigh 
dose-E/5-6 Mfx-Cfz-Z-E3 

New cases (n = 9) and re-treated (n = 1) 
 

RR-TB: H+E+Z+Km+Mfx+Pto+Cfz / Mfx+E+Z+cfz; 
MDR-TB: H+Z+Km+Lfx+cfz+Bdq / Z+Lfx+cfz+Bdq; 

Cm+Lfx+Pto+Cs+Cfz+H / Cm+Lfx+Cs+Bdq+Lzd / Lfx+Cs+Bdq+Lzd; 
Z)+Cm+Mfx+Cs+Pto+Cfz / Lfx+Cfz+Bdq+Lzd 

Pre-XDR-TB: (Z)+Lfx+Pto+Cfz+Bdq+Lzd / Cs+Cfz+Bdq+Lzd; 
Bdq+Cfz+Lfx+H+Pto+E+Z / Bdq+Cfz+Lzd+H+E / Bdq+Cfz+Lfx+H+Z / 

Bdq+Cfz+Lfx+E+Z; 
H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq; 

Cm+Lfx+Cs+Cfz+Bdq+Lzd / Lfx+Cs+Cfz+Bdq+Lzd 
XDR-TB: Bdq+Lzd+Cfz+Cs  

No cases No cases 
Re-treated (n = 1) 
4 Km-Hhigh dose-
12E-Z-Mfx-Pto-Cfz 

Footnotes: DS-TB: drug-susceptible. DR-TB: drug-resistant. RR-TB: rifampicin-resistant. MDR-TB: multi-drug resistant. XDR: extensively drug resistant. For treatment regimens, 
antibiotic abbreviations are summarized at the end of the manuscript. Numbers refer to the total duration in months for each drug. Drug regimens were prescribed according 
to each study site’s National TB program and could not be altered. 
  



 

1
4

6
 

Supplementary Table 2. Methods for microbiological diagnosis of tuberculosis, drug susceptibility testing, and cell count in each study site. 

 Sputum culture Smear microscopy Drug susceptibility testing (DST) Reference of cell counting machine 

Country MGIT LJ OK ZN Auramine O GeneXpert LPA LJ-DST MGIT-DST  

Bangladesh  X  X  X  X  Callatac ES Automated Hematology Analyzer, MEK-7300 
(Nihon Kohden) 

Georgia X X  X X X   X XT-20001 (Sysmex) 

Lebanon X X  X  X   X CELL-DYN Ruby (Abbott) 

Madagascar  X   X X X X  XT2100i and XN1000 (Sysmex) 

Paraguay   X X  X    XT-20001 (Sysmex) 

Footnotes: Crosses indicate the method(s) performed in each study site.MGIT: Mycobacteria Growth Indicator Tube (liquid medium). LJ: Löwenstein-Jensen (solid medium). 
OK: Ogawa Kudoh (solid medium). ZN: Ziehl-Neelsen staining. LPA: line probe assay. Smear microscopy was performed after NALC-NaOH decontamination. 
Critical drug concentrations used for DST: 
MGIT: Streptomycin 4.0 μg/mL, Rifampicin 40.0 μg/mL, Isoniazid 0.2 μg/mL, and Ethambutol 2.0 μg/mL. 
L-J: Streptomycin 1.0 μg/mL, Rifampicin 1.0 μg/mL, Isoniazid 0.1 μg/mL, and Ethambutol 5.0 μg/mL. 

 
 
 

Supplementary Table 3. Normality assessment of evaluated continuous variables. 

Timepoint T0 T1 T2 

  W value p-value W value p-value W value p-value 

Body mass index 0.947 >0.001 0.975 0.011 0.977 0.021 

Leucocytes (/mm3) 0.971 0.003 0.444 >0.001 0.575 >0.001 

Monocytes (%) 0.945 >0.001 0.964 0.001 0.966 0.001 

Lymphocytes (%) 0.957 >0.001 0.924 >0.001 0.976 0.009 

Age 0.881 >0.001 - - - - 

Footnotes: normality was assessed using the Shapiro-Wilk test. The H0 hypothesis of normality was rejected for p<0.05. 
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Supplementary Table 4. Sociodemographic characteristics of the cohort, stratified by country. 

  Bangladesh Georgia Lebanon Madagascar Paraguay p 
N 38 33 18 36 27  

Patient demographics       

Age (years), median  22 (18.2-28)G 35 (28-44)B,M,P 29.5 (22.2-36.5) 26 (19.7-36.7) 29 (23-39) >0.001 
Sex (male) 65.8% (25/38) 78.8% (26/33) 55.6% (10/18) 55.6% (20/36) 55.6% (15/27) 0.22 
Drug-resistant strain 44.7% (17/38)L,M,P 30.3% (10/33)M 0B,G 0B,G 3.7% (1/27)B >0.001 
BMI at inclusion, median  17.6 (16.3-20.7)G,L,P 20.3 (18.8-23.6)B,M 20.7 (19.4-21.4)B,M 17.1 (16.3-18.2)G,L,P 20.2 (17.8-22.4)B,M >0.001 
White blood cell absolute count at inclusion 
(/mm3) 

9500 (8050-10975) 9800 (7600-12000) 8455 (7297.5-10875) 9370 (5802.5-12002.5) 11110 (8590-12585) 0.29 

Lymphocyte proportion at inclusion (% of 
WBC) 

20 (18-26.7) 18 (15-22) 16.5 (14.3-19.5) 17.6 (12.6-24.2) 17 (13-21) 0.10 

Monocyte proportion at inclusion (% of 
WBC) 

3 (2-4)G,L,M,P 4 (4-6)B,L,M,P 7.26 (5.7-9.2)B,G,P 9.9 (6.8-11.3)B,G,P 0 (0-2)B,G,L,M >0.001 

Number of household contacts, median  4.5 (3-7) 4 (2.75-4.25) 5 (4-6) 5 (4-6) 5 (4-7) 0.056 
BCG 84.2% (32/38)G,L 36.6% (12/33)B,M,P 26.7% (4/15)B,M,P 94.3% (33/35)G,L 85.7% (18/21)G,L >0.001 

Risk factors and comorbidities       
Smoking 44.7% (17/38) 57.6% (19/33) 50% (9/18) 38.9% (14/36) 50% (13/26) 0.62 
Alcohol abuse 13.2% (5/38) 6.1% (2/33)M,P 5.6% (1/18) 41.7% (15/36)G 38.5% (10/26)G >0.001 
Injectable drug use 10.5% (4/38) 0 0 0 3.8% (1/26) 0.052 
Jail detention history 5.3% (2/38) 6.1% (2/33) 16.7% (3/18) 2.9% (1/34)P 26.9% (7/26)M 0.013 
Chronic HCV infection 0 6.1% (2/33) 0 2.8% (1/36) 0 - 
Other disease1 0 0 5.6% (1/18) 8.3% (3/36) 14.3% (3/21) - 

History of TB       
Previous TB 29.7% (11/37) 9.7% (3/31) 11.1% (2/18) 13.9% (5/36) 26.9% (7/26) 0.15 

Of which are documented 100% (11/11) 66.7% (2/3) 50% (1/2) 40% (2/5) 85.7% (6/7) 0.12 
Prior exposure to active TB patients 28.9% (11/38) 6.2% (2/32) 44.4% (8/18) 36.1% (13/36) 48% (12/25) 0.17 

Previous TB outcome       
Cured and completed 45.5% (5/11) 0 50% (1/2) 40% (2/5) 57.1% (4/7) - 
Treatment completed 18.1% (2/11) 0 0 0 14.3% (1/7) - 
Treatment failure 0 33.3% (1/3) 0 20% (1/5) 14.3% (1/7) - 
Outcome not evaluated or unknown 36.4% (4/11) 66.7% (2/3) 50% (1/2) 40% (2/5) 14.3% (1/7) - 

Current TB outcome       
Cured and completed 100% (38/38) 90.9% (30/33) 61.1% (11/18) 97.2% (35/36) 88.9% (24/27) 0.39 
Completed 0 3% (1/33) 38.9% (7/18) 0 0 - 
Treatment failure 0 6.1% (2/33) 0 2.8% (1/36) 7.4% (2/27) - 
Relapse or reinfection 0 0 0 0 3.7% (1/27) - 

Footnotes: BMI: body mass index. TB: tuberculosis. WBC: white blood cells. Data are given as % (N) or median (interquartile range). 
1: asthma, hypertension, inflammation. B, G ,L, M, P: initial of study sites that are different from each other (p<0.05). *: different from all other sites.  
Data were compared with Kruskal-Wallis’ test with Dunn’s post-hoc, or Fisher’s test with Bonferroni’s post-hoc when significant. 
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Supplementary Table 5. Characteristics of patients with treatment failure 

Demographics T0 T1 T2 

Drug susceptibility Country Age (years) Culture Smear Culture Smear Culture Smear 

S Georgia 31 + 2+ + Scanty + Scanty 

S Georgia 58 + Scanty Unavailable* - + - 

S Madagascar 45 + 3+ - 1+ + - 

S Paraguay 24 + 3+ - - + Unavailable** 

S Paraguay 29 + 3+ + - + Unavailable** 

Footnotes: T0: baseline. T1: T0 + 2 months. T2 : end of treatment. S: drug-susceptible. LTFU: lost to follow-up. + : positive. - : negative. *contamination during culture.  
**: not enough sputum.  

 
 
Supplementary Table 6. Receiver Operating Curve (ROC) analysis. 

Clinical parameters at baseline AUC Sensitivity Specificity Optimal threshold 

Absolute WBC counts (cells/mm3) 0.788 (0.664-0.912) 1 (0.8-1) 0.74 (0.57-0.84) 11435 (10105-12072.5) 

Lymphocyte proportions (% of WBC) 0.807 (0.671-0.943) 1 (0.8-1) 0.68 (0.58-0.93) 16.0 (10.5-16.5) 

Absolute WBC counts (cells/mm3) + lymphocyte proportions (%) 0.841 (0.723-0.959) 1 (0.8-1) 0.74 (0.62-0.94) - 

Footnotes: WBC: white blood cells. AUC: Area Under the Curve. AUC are given with the 95% confidence interval. 
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Supplementary Figure 1. Neutrophil proportions of total white blood cells during treatment. 
Data are given as median + interquartile range (total n = 129). Each dot represents one patient at one 
timepoint. Grey lines connect data points from a same patient. T0: baseline. T1: baseline + 2 months. 
T2: end of treatment. Data were analyzed using Friedman’s test, with the Wilcoxon-Nemenyi-
McDonald-Thompson test as a post-hoc correction for pairwise multiple comparisons. *: p<0.05. **: 
p<0.01. ***: p<0.001. 
 

 
Supplementary Figure 2. Evolution of the main white blood cell types during treatment in 
patients with high baseline sputum smear microscopy grades. 
White blood cell (WBC) absolute counts (A.), lymphocyte percent of WBC (B.); and monocyte percent 
of WBC (C.) were assessed over time in 74 patients with sputum smear microscopy grades of 2+ or 3+ 
(success, n = 70; failure, n = 4). Data are given as median + interquartile range. T0: baseline. T1: 
baseline + 2 months. T2: end of treatment. Data were analyzed using the Mann-Whitney U test. *: 
p<0.05. 
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1.2  Annex 2 – Supplementary data from publication 2 

Supplementary Table 1. Sociodemographic characteristics of the cohort, stratified by country. 

  Bangladesh Georgia Lebanon Madagascar Paraguay 
p 

N 38 31 7 36 20 

Patient demographics             

Age (years), median (IQR) 22 (18.25-28)G,P 34 (28-43) B,M 23 (20.5-28.5) 26 (19.75-36.75) 28.5 (22.5-38.25)B >0.001 
Sex (male), % (N) 65.8% (25/38) 77.4% (24/31) 42.9% (3/7) 55.6% (20/36) 55% (11/20) 0.23 

Drug resistance, % (N) 44.7% (17/38) M,P 32.3% (10/31) M 0 0B 5% (1/20)B >0.001 
Treatment failure, % (N) 2.6% (1/38) 6.5% (2/31) 0 2.8% (1/36) 0 0.72 
BMI at inclusion, median (IQR) 17.6 (16.3-20.7)G,L,P 20.3 (18.8-23.8)B,M 20.9 (20.2-21.2)B,M 17.1 (16.3-18.2)G,L,P 20.8 (18.5-22.7)B,M >0.001 
White blood cell absolute count at inclusion 
(/cumm) 9500 (8050-10975) 9800 (7000-12050) 8610 (6780-12450) 9370 (5802.5-12002.5) 

11180 (8690-13567.5) 
0.52 

Lymphocyte proportion at inclusion (% of WBC) 20 (18-26.75)L 18 (15-21.5) 13.4 (12.55-15.6)B 17.6 (12.6-24.28) 18.5 (15.5-23) 0.041 
Number of household contacts, median (IQR) 4.5 (3-7) 4 (3-4.75) 5 (4-5.5) 5 (4-6) 4 (4-6) 0.18 
BCG vaccination, % (N) 84.2% (32/38) 38.7% (12/31) 14.3% (1/7)* 91.7% (33/36) 94.1% (16/17) >0.001 

Risk factors and comorbidities           
Smoking, % (N) 84.2% (32/38) 38.7% (12/31) 14.3% (1/7) 91.7% (33/36) 50% (10/20) 0.49 
Alcohol abuse, % (N) 44.7% (17/38)M 58.1% (18/31)M,P 28.6% (2/7) 38.9% (14/36)B,G 35% (7/20)G 0.0010 
Injectable drug use, % (N) 13.2% (5/38) 6.5% (2/31) 0 41.7% (15/36) 5% (1/20) 0.10 
Jail detention history, % (N) 10.5% (4/38) 0 0 0 25% (5/20) 0.064 
Chronic HCV infection, % (N) 5.3% (2/38) 6.5% (2/31) 14.3% (1/7) 2.9% (1/34) 0 0.69 

Other disease1, % (N) 0 3.2% (1/31) 0 2.8% (1/36) 16.7% (3/18) 0.060 

History of TB       
Previous TB, % (N) 29.7% (11/37) 10.3% (3/29) 14.3% (1/7) 13.9% (5/36) 20% (4/20) 0.10 
Prior exposure to active TB patients, % (N) 28.9% (11/38) 6.7% (2/30) 42.9% (3/7) 36.1% (13/36) 45% (9/20) 0.36 

Previous TB outcome       
Cured and completed, % (N) 42.9% (3/7) 0 0 0 75% (3/4) 1 
Treatment completed, % (N) 28.6% (2/7) 0 0 0 0 1 
Outcome not evaluated or unknown, % (N) 0 66.7% (2/3) 0 0 25% (1/4) 1 
Treatment failure, % (N) 0 33.3% (1/3) 0 33.3% (1/3) 0 1 

Footnotes: BMI: body mass index. IQR: interquartile range. TB: tuberculosis. WBC: white blood cells.  
1: asthma, hypertension, inflammation. 
Data were compared with Kruskal-Wallis’ test with Dunn’s post-hoc, or Fisher’s test with Bonferroni’s post-hoc when significant. 
B, G ,L, M, P: initial of study sites that are different from each other (p<0.05). *: different from all other sites.  
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Supplementary Table 2. QFT-P or HBHA IFN-y levels in the different study sites. 

 

Parameter 
  

Timepoint 
  

All Bangladesh Georgia Lebanon Madagascar Paraguay p 
(countries) N = 132 N = 38 N = 31 N = 7 N = 36 N = 20 

TB1 [IFN-y] 
(IU/mL) 

T0 0.52 (0.11-1.78) 0.49 (0.08-1.9) 1 (0.24-2.42) 0.74 (0.33-1.8) 0.25 (0.02-1.04) 0.36 (0.24-0.74) 0.12 

T1 0.53 (0.1-1.73) 0.55 (0.18-1.4) 0.94 (0.17-4.49) 1.53 (0.53-1.78) 0.26 (0.05-1.54) 0.35 (0.11-1.47) 0.23 

T2 0.62 (0.12-2.07) 0.85 (0.17-2) 0.46 (0.16-1.68) 0.72 (0.47-2.15) 0.6 (0.12-2.21) 0.53 (0.08-1.99) 0.96 

TB2 [IFN-y] 
(IU/mL) 

T0 0.64 (0.27-2.06) 0.55 (0.18-1.98) 1.51 (0.33-3.88) 0.62 (0.5-1.76) 0.56 (0.1-1.29) 0.53 (0.3-0.91) 0.24 

T1 0.66 (0.12-2.91) 0.84 (0.2-3.6) 0.77 (0.12-3.83) 0.92 (0.68-1.62) 0.48 (0.04-2.08) 0.37 (0.12-1.7) 0.47 

T2 0.82 (0.11-3.43) 0.9 (0.12-3.29) 0.61 (0.11-4.17) 0.87 (0.5-2.55) 0.8 (0.1-2.33) 0.59 (0.08-3.75) 0.92 

MIT [IFN-y] 
(IU/mL) 

T0 10 (6.47-10) 10 (7.43-10) 10 (10-10)M 7.91 (5.12-10) 9.44 (1.98-10)G 10 (5.41-10) 0.0025 

T1 10 (8.07-10) 10 (6.53-10) 10 (10-10)M 10 (10-10) 9.54 (5.35-10)G 10 (7.72-10) 0.0075 

T2 10 (8.59-10) 10 (7.72-10)G 10 (10-10)B,M 10 (9.75-10) 9.87 (7.42-10)G 10 (7.09-10) 0.0095 

HBHA [IFN-y] 
(IU/mL) 

T0 0.08 (0.01-0.48) 0.16 (0.03-0.6)P 0.54 (0.08-4.14)M,P 0.04 (0.01-0.07) 0.05 (0.01-0.2)G 0.05 (0.01-0.07)B >0.001 

T1 0.37 (0.09-1.78) 0.6 (0.19-1.72)M,P 2.5 (0.48-8.71)L,M,P 0.14 (0.07-1.28)G 0.14 (0.03-0.31)B,G 0.09 (0.02-0.45)B >0.001 

T2 1 (0.12-5.24) 5.05 (1.25-10) * 4.65 (1.46-10) * 0.36 (0.08-0.92) 0.08 (0.01-0.31) 0.5 (0.18-1.09) >0.001 

 
Footnotes: T0: baseline. T1: baseline + 2 months. T2: end of treatment. All values are given after subtraction of NIL [IFN-y]. B, G ,L, M, P: initial of study sites that are different 
from each other (p<0.05). *: different from all other sites. Data were compared using Kruskal-Wallis’s non-parametric test with Dunn’s post-hoc when significant.  
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Supplementary Table 3. Blood count thresholds for stratified IFN-y analysis. 

 T0 T1 T2 

Q1 Q3 Q1 Q3 Q1 Q3 

WBC (cells/mm3) 7300 12000 5900 9500 4900 7400 

Neutrophils (% of WBC) 70 80 60 70 50 70 

Lymphocytes (% of WBC) 14 25 20 31 26 37 

 
Footnotes: T0: baseline. T1: baseline + 2 months. T2: end of treatment. Q1: first quartile. Q3: third quartile. 
WBC: total white blood cells. 

 
 
Supplementary Table 4. Assay performances of the QFT-P and rmsHBHA IGRAs compared 
to sputum culture. 

Test Thresholds Timepoint Sensitivity Specificity Accuracy 

Smear microscopy 
- T1 81.1 50 76.6 

 T2 92.9 33.3 91.5 

QFT-P IGRA  
TB1 ≥ 0.75 IU/mL and TB2 

≥ 0.71 IU/mL 

T1 45.3 35.3 43.8 

T2 45.7 66.7 46.2 

QFT-P TB2-TB1 ≥ 0.03 IU/mL 
T1 51.6 52.9 51.8 

T2 54.3 66.7 54.6 

HBHA IGRA ≤ 0.22 IU/mL 
T1 64.2 64.7 64.3 

T2 66.9 0 65.4 

HBHA and QFT-P 
IGRA 

- T1 86.3 23.5 76.8 

 T2 82.7 0 80.8 

HBHA and TB2-TB1 
- T1 80 35.3 73.2 

 T2 85 0 83.1 

 
Footnotes: T0: baseline. T1: baseline + 2 months. T2: end of treatment.  
For all IGRA variables, cutoffs adapted for this study on active TB patients were calculated using AUC 
analyses. Respective cutoffs are indicated in the “Threshold” column. The overall QFT-P test was 
considered positive if either TB1 or TB2 were above the indicated thresholds. The “HBHA and QFT-P 
IGRA” variable was defined as follows: positive when HBHA-IGRA results are negative and QFT-P 
results are positive; negative when HBHA-IGRA results are positive and/or QFT-P results are negative 
or indeterminate. The “HBHA and TB2-TB1” variable was defined as follows: positive when HBHA-IGRA 
results are negative and TB2-TB1 is strictly greater than the indicated threshold; negative when HBHA-
IGRA results are positive and/or TB2-TB1 is equal to or lesser than the indicated threshold. 
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Supplementary Table 5. Associations between time to culture conversion and WBC 
counts. 

 
Footnotes: Data are given as median (interquartile range) or % (N). WBC: white blood cells. T0: 
baseline. T1: baseline + 2 months. T2: end of treatment. Fast converters: culture conversion between 
T0 and T1. Slow converters: culture conversion between T1 and T2. Treatment failure: positive culture 
at T2 or T3 (end of treatment + 2 months). *: significantly different from both other groups (Kruskal-
Wallis test + Dunn’s post-hoc test). 

 

 

  

  Successfully treated patients with available T1 culture results (n = 112) 

  
Timepoint 

Fast converters Slow converters Failure or relapse p 

N 92 16 4   

Absolute WBC 
count (per mm3) 

T0 9500 (7302.5-11425) 9385 (7822.5-14325) 12200 (12082.5-13400) 0.077 

T1 7535 (6247.5-9367.5) 8500 (6220-10900) 10780 (9470-11300) 0.14 

T2 6190 (4742.5-7812.5) 6750 (4387.5-7687.5) 6050 (5595-7247.5) 0.97 

Neutrophil % of 
WBC  

T0 75 (68-79) 75 (71.97-78.25) 84 (81.5-86.5)* 0.022 

T1 67.55 (60-72.17) 67.5 (61.1-75) 79 (75-81.75)* 0.043 

T2 60.15 (54.75-68) 58.5 (51.75-66.97) 64.5 (59-71.75) 0.49 

Lymphocyte % of 
WBC 

T0 19 (15-26) 17.5 (12.8-19.5) 12.5 (9.2-15.2)* 0.017 

T1 25 (20.7-31) 23 (16.2-28.0) 15.5 (11-21.2)* 0.027 

T2 30 (25.9-36) 29.5 (23.5-36.2) 21 (17.7-26.5) 0.21 

High absolute WBC 
count (>3rd 
quartile) 

T0 21.7% (20/92) 31.2% (5/16) 75% (3/4) 0.050 

T1 20.7% (19/92) 43.8% (7/16) 75% (3/4)* 0.014 

T2 29.3% (27/92) 25% (4/16) 25% (1/4) 1 

High neutrophil % 
(>3rd quartile) 

T0 22.8% (21/92) 18.8% (3/16) 100% (4/4)* 0.0053 

T1 23.9% (22/92) 31.2% (5/16) 75% (3/4) 0.081 

T2 28.3% (26/92) 31.2% (5/16) 50% (2/4) 0.62 

Low lymphocyte % 
(<1st quartile) 

T0 14.1% (13/92) 37.5% (6/16) 50% (2/4)* 0.020 

T1 19.6% (18/92) 37.5% (6/16) 50% (2/4) 0.12 

T2 22.8% (21/92) 31.2% (5/16) 75% (3/4) 0.06 
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Supplementary Table 6. Sociodemographic characteristics and culture conversion profile 

  Fast converters Slow converters Failure or relapse 
p 

N 92 16 4 

Patient demographics        

Age (years), median (IQR) 26.5 (21-36.25) 33.5 (25.75-47.75) 38 (30.5-48.25) 0.099 

Sex (male), % (N) 63% (58/92) 62.5% (10/16) 100% (4/4) 1 

Drug resistance, % (N) 26.1% (24/92) 18.8% (3/16) 0 0.76 

Country of origin, % (N)     

Bangladesh 38% (35/92) 18.8% (3/16) 0 0.14 

Georgia 26.1% (24/92) 25% (4/16) 50% (2/4) 0.93 

Lebanon 5.4% (5/92) 0 0 0.34 

Madagascar 10.9% (10/92)* 56.2% (9/16)* 25% (1/4) >0.001 

Paraguay 19.6% (18/92) 0 25% (1/4) 0.053 

BMI at inclusion, median (IQR) 19.7 (17.3-21.4)* 17.0 (16.2-18.6)* 17.5 (15.9-20.2) 0.0088 

White blood cell absolute count at inclusion (/mm3) 9500 (7302.5-11425) 9385 (7822.5-14325) 12200 (12082.5-13400) 0.75 

Lymphocyte proportion at inclusion (% of WBC) 19 (15-26) 17.5 (12.8-19.55) 12.5 (9.25-15.25) 0.099 

Number of household contacts, median (IQR) 4 (3-6) 3.5 (3-5.25) 5.5 (4.75-8) 0.44 

BCG vaccination, % (N) 83.8% (62/74) 100% (13/13) 100% (2/2) 0.19 

Risk factors and comorbidities     

Smoking, % (N) 42.4% (39/92) 43.8% (7/16) 100% (4/4) 1 

Alcohol abuse, % (N) 17.4% (16/92) 12.5% (2/16) 50% (2/4) 0.32 

Injectable drug use, % (N) 4.4% (4/91) 0 0 1 

Jail detention history, % (N) 7.7% (7/91) 6.2% (1/16) 50% (2/4) 1 

Chronic HCV infection, % (N) 1.4% (1/71) 8.3% (1/12) 0 0.27 

Other disease1, % (N) 5% (4/80) 8.3% (1/12) 0 0.51 

History of TB     

Previous TB, % (N) 17.3% (16/92) 12.5% (2/16) 25% (1/4) 0.73 

Prior exposure to active TB patients, % (N) 26.4% (24/91) 12.5% (2/16) 75% (3/4) 1 

 

Footnotes: BMI: body mass index. IQR: interquartile range. TB: tuberculosis. WBC: white blood cells. 
1: asthma, hypertension, inflammation. Data were compared with the Kruskal-Wallis test and Dunn’s post hoc, 
or Fisher’s test. *: groups significantly different from each other. 
 

Supplementary Table 7. Associations between time to culture conversion and IFN-y 
response. 
 

Footnotes: T0: inclusion. T1: T0 + 2 months. T2: end of treatment. OR: odds ratio. aOR: adjusted odds ratio. 
CI: confidence interval. WBC: white blood cells. C: model C statistic. AIC: Akaike Information Criterion. Slow 
culture conversion was defined as a persistently positive culture result at T1 followed by a culture conversion at 
T2. TB1, TB2 and HBHA IFN-y levels were measured in IU/mL. For continuous independent variables, associations 
were calculated for each unit increase. 1: models were adjusted for age, sex, country of origin, drug resistance 
strain, body mass index at inclusion, and BCG vaccination rate. 
 

Parameter Timepoint Univariate analysis Multivariate analysis1 
  OR (95%CI) p aOR (95%CI) p C AIC 

TB1 IFN-y  

T0 0.87 (0.611 - 1.09) 0.32 0.914 (0.652 - 1.213) 0.55 0.62 67.1 

T1 0.879 (0.646 - 1.08) 0.30 1.051 (0.74 - 1.392) 0.74 0.61 67.4 

T2 1.01 (0.831 - 1.18) 0.91 1.365 (1.002 - 1.943) 0.058 0.66 63.6 

TB2 IFN-y 

T0 0.81 (0.543 - 1.03) 0.17 0.856 (0.592 - 1.143) 0.33 0.65 66.4 

T1 0.874 (0.659 - 1.07) 0.25 0.992 (0.715 - 1.289) 0.96 0.62 67.5 

T2 0.99 (0.818 - 1.15) 0.90 1.162 (0.911 - 1.493) 0.22 0.62 66.0 

HBHA IFN-y 

T0 0.336 (0.023 - 0.916) 0.25 0.241 (0.004 - 1.068) 0.36 0.68 64.8 

T1 0.989 (0.814 - 1.15) 0.89 1.068 (0.746 - 1.515) 0.69 0.61 67.3 

T2 0.843 (0.674 - 0.993) 0.072 0.983 (0.712 - 1.333) 0.91 0.64 67.5 
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Supplementary Table 8. Associations between time to culture conversion and IFN-y 
response, adjusted for neutrophil and monocyte proportions at baseline. 

Parameter Timepoint Multivariate analysis1 

    aOR (95% CI) p C AIC 

TB1 IFN-y 

T0 0.939 (0.642 - 1.34) 0.73 0.62 68.0 

T1 0.957 (0.636 - 1.32) 0.80 0.61 68.0 

T2 1.42 (1.027 - 2.08) 0.054 0.68 63.6 

TB2 IFN-y 

T0 0.844 (0.563 - 1.206) 0.36 0.64 67.2 

T1 0.928 (0.64 - 1.247) 0.64 0.62 67.8 

T2 1.19 (0.927 - 1.57) 0.16 0.67 66.1 

HBHA IFN-y 

T0 0.341 (0.006 - 1.185) 0.45 0.66 66.4 

T1 1.133 (0.779 - 1.661) 0.49 0.62 67.6 

T2 1.004 (0.723 - 1.39) 0.98 0.62 68.1 

MIT IFN-y 

T0 0.62 (0.391 - 0.857) 0.013 0.74 58.7 

T1 0.711 (0.498 - 0.954) 0.034 0.70 62.8 

T2 0.799 (0.555 - 1.122) 0.19 0.63 66.3 

Positive QFT-P IGRA 

T0 0.045 (0.002 - 0.404) 0.022 0.75 59.5 

T1 0.279 (0.036 - 1.631) 0.17 0.66 66.1 

T2 2.69 (0.462 - 21.2) 0.29 0.66 66.9 

Positive HBHA IGRA 

T0 0.551 (0.057 - 4.366) 0.57 0.61 67.8 

T1 0.075 (0.003 - 0.689) 0.045 0.72 62.7 

T2 0.623 (0.098 - 4.45) 0.62 0.61 67.8 

Lymphocyte % of WBC 

T0 0.89 (0.482 - 1.685) 0.71 0.61 67.9 

T1 0.898 (0.788 - 0.988) 0.055 0.66 63.0 

T2 1.00 (0.915 - 1.09) 0.98 0.61 68.1 

Body mass index T0 0.912 (0.578 - 1.35) 0.66 0.64 66.1 

Footnotes: T0: inclusion. T1: T0 + 2 months. T2: end of treatment. aOR: adjusted odds ratio. CI: confidence 
interval. WBC: white blood cells. C: model C statistic. AIC: Akaike Information Criterion. Slow culture conversion 
was defined as a persistently positive culture result at T1 followed by a culture conversion at T2. TB1, TB2 and 
HBHA IFN-y levels were measured in IU/mL. 1: models were adjusted for age, sex, country of origin, drug 
resistance strain, body mass index at inclusion, BCG vaccination rate, and neutrophil and monocyte proportion 
at baseline.  
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Supplementary Figure 1. Dynamics of plasmatic IFN-y response to QFT-P and HBHA stimulations 
over the course of TB therapy. Data are given as median + interquartile range. A. Evolution of the 
HBHA/TB1 and HBHA/TB2 IFN-y ratios throughout treatment. B. Evolution of the TB2-TB1 IFN-y 
response (QFT-P CD8+ T cell response) throughout treatment. Stratification per study site of the 
HBHA/TB1 (C.) and HBHA/TB2 (D.) ratios. Bangladesh (n = 38), Georgia (n = 31), Lebanon (n = 7), 
Madagascar (n = 36), Paraguay (n = 20). Each black dot represents one patient at one timepoint. Grey 
lines connect data points from a same patient. T0: baseline. T1: baseline + 2 months. T2: end of 
treatment. Data were compared using Friedman’s Exact Test with the Wilcoxon-Nemenyi-McDonald-
Thompson post-hoc, or the Mann-Whitney U test (panel B). *: p<0.05; **: p<0.01; ***: p<0.001. 
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1.3  Annex 3 – Supplementary data from publication 3 

 

 

Supp. Figure 1. Flowchart of patient inclusions. 
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Supp. Figure. 2. Impact of in vitro whole blood stimulation with Mtb antigens on surface marker expression in the main T-cell subpopulations. 

The surface expression of all panel markers was compared between the three stimulation conditions (unstimulated (NIL), TB2, and rmsHBHA) in CD4+ (A), CD8+ (B), gamma-

delta (Tgd; C), or double negative (DN) T-cells (D). MMS: median mass signal. Only the markers for which a significant difference was observed were represented. Statistical 

analysis: two-sided Kruskal-Wallis test with Dunn’s Kruskal–Wallis Multiple Comparisons post-hoc at T0, T1, and T2. *: p<0.05. **: p<0.01. Number of data points per timepoint 

for all panels: NIL: n = 16. TB2: n = 18. HBHA: n = 14. Exact p-values and test statistics are available in Supp. Table 2. 
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Supp. Figure. 3. Frequencies of the main peripheral T-cell subpopulations throughout anti-TB treatment.  
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Evolution of the frequency of canonical T-cell subsets identified through FlowSOM meta-clustering and corresponding respectively to CD4+ phenotypes (A), CD8+ phenotypes 

(B), or other cell subsets (C). Number of data points per timepoint for all panels: NIL: n = 16. TB2: n = 18. HBHA: n = 14. Data are given as median + interquartile range. 

Abbreviations: CM: central memory. DN: double-negative CD4-CD8-. DP: double-positive CD4+ CD8+. EM: effector memory. HBHA: recombinant M. tuberculosis heparin-binding 

hemagglutinin. MAIT: mucosal associated invariant T-cells. NIL: unstained control. TB2: M. tuberculosis antigenic peptide pool. Tgd: gamma delta T-cells. Treg: T-regulators. 

TEMRA: terminally differentiated effectors re-expressing CD45RA. No statistically significant differences were detected (pairwise comparisons between non-sindependent 

observations at T0, T1, and T2: two-sided Friedman rank sum test and Wilcoxon-Nemenyi-Thompson post-hoc for pairwise comparisons between non-independent 

observations at T0, T1, and T2). 
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Supp Figure 4. Significant abundance changes in non-canonical T-cell subsets after the intensive phase of 

treatment. The evolution of FlowSOM cluster abundance was analyzed over time in unstimulated or Mtb-

stimulated samples (TB2 or rmsHBHA), and only the clusters within which significant abundance changes were 

detected were displayed. CD4+ clusters were represented in red, CD8+ clusters in blue, γδ T-cell clusters in green, 

and CD4- CD8- clusters in grey. Number of matched data points per timepoint for all panels: NIL: n = 16. TB2: 

n = 18. rmsHBHA: n = 14. Data are given as median + interquartile range. 

A and B. Significantly increased clusters at the end of the intensive phase of treatment (T1) compared to 

treatment initiation (T0). Clusters within which a significant increase was detected between T0 and T1 were first 

visualized on the reference UMAP (A). Cluster abundance quantification was then was performed in 

unstimulated, TB2-stimulated or rmsHBHA-stimulated samples (B). 

C and D. Significantly decreased clusters at the end of the intensive phase of treatment (T1) compared to 

treatment initiation (T0). Mapping (C) and abundance quantification of clusters which decreased between T0 and 

T1 in unstimulated, TB2-stimulated, or rmsHBHA-stimulated samples (D). 

Statistical analysis: two-sided Friedman rank sum test and Wilcoxon-Nemenyi-Thompson post-hoc for pairwise 

comparisons between non-independent observations at T0, T1, and T2. *: p<0.05. **: p<0.01. ***: p<0.001. Exact 

p-values and test statistics are available in Supp. Table 3 (associated Excel file). 
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Supp. Figure. 5. Patients with slow microbiological culture conversion show decreased CD8+ and γδ and enriched CD4+ naïve peripheral T-cell subsets during treatment. 

Clusters with differential abundance between patients with positive mycobacterial cultures at T1 (slow converters, n = 4) or with negative cultures at T1 (fast converters, 

n = 18). Data are shown as median + interquartile range. 

A and B. At treatment initiation (T0). Clusters significantly decreased (A) and increased (B) in slow converters compared to fast converters. 

C and D. At treatment completion (T2). Clusters significantly decreased (C) and increased (D) in slow converters compared to fast converters. 

CD4+ clusters are represented in red, CD8+ clusters in blue, Tgd clusters in green, and DN clusters in grey. The lighter shade of each color code corresponds to data from the 

slow converters. Statistical analysis: two-sided Mann-Whitney U-test. For all represented clusters: P<0.025 at T0; P<0.013 at T2. Significance stars were not displayed for 

readability. Exact p-values and test statistics are available in Supp. Table 6 (associated Excel file). 
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Supp. Figure 6. Patients with slow microbiological culture conversion show decreased cytotoxic CD8+ and γδ 

and enriched CD4+ naïve T-cell subsets before treatment initiation and after treatment completion compared 

to fast converters. Fast converters (n = 18) were defined as patients with permanently negative M. tuberculosis 

culture after the intensive phase of treatment (T1), whereas slow converters (n = 4) were defined as patients 

with persistently positive cultures at T1. The abundance of all FlowSOM clusters at baseline was compared 

between fast and slow converters. Only clusters within which significant differences were detected were 

represented (T0: p<0.026. T2: p<0.013; two-sided Mann-Whitney U test; see Supp. Figure 5). 

A. Before treatment initiation (T0). Clusters which were significantly decreased (green) or increased (orange) at 

T0 in slow converters compared to fast converters were represented. Normalized, arcsinh-transformed mean 

marker expression levels were visualized). Each line represents one cluster. Scales indicate normalized mass 

signal intensity. 

B. After treatment completion (T2). Clusters which were significantly increased or decreased at T2 in slow 

converters compared to fast converters were represented and marker expression levels were visualized. All 

patients achieved microbiological cure at T2. 
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Supp. Figure 7. Variance between fast and slow responders within all Mtb-stimulated CD3+ T-cells. Principal 

Component Analysis (PCA) was performed on marker expression data within all CD3+ T-cells from 96 Mtb-

stimulated samples matched at T0, T1, and T2 (TB2: 54 samples; rmsHBHA: 42 samples).  

A. Explanation of the variance between fast converters (25 samples at each timepoint) and slow converters (7 

samples at each timepoint). Each dot represents one patient. The color code represents the culture conversion 

group. Axes represent the principal components 1 (Dimension 1, Dim1) and 2 (Dim2) and percentages indicate 

their contribution to the total observed variance. Axis values represent individual PCA scores. Concentration 

ellipses correspond to 90% data coverage.  

B. Contribution of cellular markers to the variance described by Dim1 and Dim2. Axis values represent marker 

PCA scores. The color code represents broad marker functions.  

C and D. Quantification of panel B. for Dim1 (C) and Dim2 (D). Contributions of each marker are expressed as a 

percentage of the dimensions. The red dashed line corresponds to the expected reference value if each marker 

contributed uniformly to the variance. Markers indicated in gray are below this reference value. 

E and F. Distribution of individual PCA score values according to the culture conversion group and to the 

timepoint, for Dim1 (E) and Dim2 (F). Data were compared with the two-sided Wilcoxon Rank Sum Test. *: 

p<0.05; **: p<0.01. Exact p-values and test statistics are available in Supp. Table 7. 
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Supp. Figure 8. Main CD45+ non-granulocyte whole blood subpopulations and T-cell oriented gating strategy. 

CM: central memory. EM: effector memory MAIT: mucosal-associated invariant T-cells. NK: natural killers. 

TEMRA: terminally differentiated effectors re-expressing CD45RA. Tgd: gamma delta T-cells. Treg: T regulators.
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Supp. Figure 9. Control of automated FlowSOM metaclustering.  

A. Expression of selected lineage markers in 18 automatically detected FlowSOM meta-clusters within total CD3+ events. A higher number of meta-clusters than expected 

was chosen in order to detect all expected cell subpopulations (see Supp.Table 9). B. List of meta-clusters which were reassigned to other phenotypically similar meta-clusters. 

Abbreviations: CM: central memory. DN: double-negative CD4-CD8-. DN: double-positive CD4+ CD8+. EM: effector memory. HBHA: recombinant M. tuberculosis heparin-

binding hemagglutinin. MAIT: mucosal associated invariant T-cells. NIL: unstained control. TB2: M. tuberculosis antigenic peptide pool. Tgd: gamma delta T-cells. Treg: T-

regulators. TEMRA: terminally differentiated effectors re-expressing CD45RA. 
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Supplementary Table 1. Sociodemographic and clinical characteristics of the cohort.  

  Nb of cell samples Drug susceptibility 

ID NIL TB2 HBHA 
Phenotypic drug 

susceptibility 
Treatment regimen Country 

01DSGE 3 3 3 DS 2HRZE/4HRE GEO 

02DSGE 3 0 3 DS 2HRZE/4HRE GEO 

03DSGE 3 3 3 DS 2HRZE/4HR GEO 

04DSGE 3 0 0 DS 2HRZE/4HR GEO 

05DSGE 3 3 3 DS 2HRZE/4HR GEO 

06DSB 3 3 0 DS 2HRZE/4HR BD 

06DSGE 3 3 0 DS 2HRZE/4HRE GEO 

07DSGE 3 3 3 DS 2HRZE/4HRE GEO 

08DSB 3 3 0 DS 2HRZE/4HR BD 

08DSGE 3 3 3 DS 2HRZE/4HRE GEO 

21DSB 0 3 3 DS 2HRZE/4HR BD 

01DRGE 0 3 0 MDR H+Z+Km+Lfx+cfz+Bdq / Z+Lfx+cfz+Bdq GEO 

02DRGE 3 3 3 MDR Cm+Lfx+Pto+Cs+Cfz+H / Cm+Lfx+Cs+Bdq+Lzd / Lfx+Cs+Bdq+Lzd GEO 

03DRGE 3 0 3 Pre-XDR (Z)+Lfx+Pto+Cfz+Bdq+Lzd / Cs+Cfz+Bdq+Lzd GEO 

04DRGE 0 3 0 Pre-XDR 

Bdq+Cfz+Lfx+H+Pto+E+Z / Bdq+cfz+Lzd+H+E / Bdq+Cfz+Lfx+H+Z / 

Bdq+Cfz+Lfx+E+Z GEO 

05DRGE 3 3 0 Pre-XDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq  GEO 

06DRGE 0 3 3 RR H+E+Z+Km+Mfx+Pto+Cfz / Mfx+E+Z+cfz GEO 

07DRGE 3 3 3 XDR Bdq+Lzd+cfz+Cs GEO 

09DRB 3 3 3 MDR 4-6 Km-Mfx-Pto-Cfz-Z-HHigh dose-E/5-6 Mfx-Cfz-Z-E3 BD 

09DRGE 0 0 3 MDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO 

10DRGE 0 3 0 MDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO 

14DRGE 3 3 3 Pre-XDR H+Z+Km+Lfx+Cfz+Bdq / Z+Lfx+Cfz+Bdq GEO 

Nb of patients: 16 18 14    
Number of samples: 48 54 42    
Total number of samples: 144    

Footnotes: Three samples per patient were collected in each stimulation condition, corresponding to each timepoint: T0: baseline. T1: T0 + 2 months. T2: end of 
treatment.Samples with < 1,000 CD3+ events, and batches with missing samples from a given timepoint were removed from the analysis. Abbreviations: BD: Bangladesh. 
GEO: Georgia. DS: drug susceptible. MDR: multi-drug resistant. RR: rifampicin resistant. XDR: extensively drug resistant. Abbreviations for anti-TB drugs: E: Ethambutol. H: 
Isoniazid. R: Rifampicin. S: Streptomycin. Z: Pyrazinamide. Bdq: Bedaquiline. Cfz: Clofazimine. Cs: Cycloserine. Km: Kanamycin. Lfx: Levofloxacin. Lzd: Linezolid. Mfx: 
Moxifloxacin. Pto: Prothionamide. Numbers indicate months of treatment when the information was available 
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Supplementary Table 1 - continued 

Baseline identification Microbiological evolution 

ID Gender Age Occupation HIV Diabetes BCG QFT-P GeneXpert 
GeneXpert 

RIFR 

Mtb culture AFB Treatment 

response 

group T0 T1 T2 T0 T1 T2 

01DSGE M 28 Small business n n  + + - + - - scanty scanty - Fast 

02DSGE M 26 Student n n y + + - + - - - - - Fast 

03DSGE M 37 Small business n n y + + - + - - - - - Fast 

04DSGE M 24 Day Laborer n n y + + - + - - - - - Fast 

05DSGE M 63 Unemployed / Retired n n  + + - + - - 2+ 2+ - Fast 

06DSB M 16 Day Labour n n y + + - + - - 2+ scanty - Fast 

06DSGE M 58 Unemployed / Retired n n  - + - + + - 1+ 1+ scanty Slow 

07DSGE M 50 Unemployed / Retired n n  + + - + + - scanty scanty - Slow 

08DSB M 60 Small business n n y - + - + - - 1+ - - Fast 

08DSGE F 29 Small business n n y + + - + + - scanty scanty - Slow 

21DSB F 20 Student n n y + + - + - - 2+ - - Fast 

01DRGE M 42 Farmer n n  - + - + - - 1+ - - Fast 

02DRGE F 34 Housewife n n y - + + + + - - - - Slow 

03DRGE M 26 Business n n y + + - + - - 2+ - - Fast 

04DRGE M 37 Private Service n n  + + - + - - - 1+ - Fast 

05DRGE M 42 Unemployed n n  + + - + - - 3+ scanty - Fast 

06DRGE F 33 Unemployed n n  + + + + - - 2+ - - Fast 

07DRGE F 20  n n y - + + + - - 2+ - - Fast 

09DRB F 15 Garments worker n n y - + + + - - 3+ - - Fast 

09DRGE F 28  n n  + + - + - - 2+ - - Fast 

10DRGE F 25  n n  - + + + - - - - - Fast 

14DRGE M 31   n n   + + + + - - scanty scanty scanty Fast 

Footnotes: BCG: Bacille Calmette-Guérin vaccination. QFT-P: QuantiFERON-TB Gold Plus. AFB: Acid Fast Bacilli detection (sputum smear microscopy). BMI: body mass index. 

Mtb: Mycobacterium tuberculosis. Throughout the table, "+" and "-" indicate positive or negative results to the indicated test. For AFB results,  1+, 2+, or 3+ quantify the 

amount of bacilli observed.   



 
 

1
7

2
 

 

Supplementary Table 1 - continued 

Weight evolution TB risk factors 

ID 
Weight (kg) BMI 

Smoking Alcohol Intraveinous drug use Prison TB contact Previous TB 
T0 T1 T2 T0 T1 T2 

01DSGE 72 72 73 20.8 20.8 21.1 n n n n n n 

02DSGE 59 61 64 20.1 20.8 21.8 n n n n n n 

03DSGE 65 66 71 24.1 24.5 26.3 y n n n n n 

04DSGE 59 60 64 19.9 20.2 21.6 y n n n n n 

05DSGE 66.7 67 68 24.2 24.3 24.6 n n n n n n 

06DSB 42.2 43.3 48.1 16.4 16.9 18.7 n n y n n n 

06DSGE 64.2   18.3    y  n n n n 

07DSGE 64 64 67 19.7 19.7 20.6 y n n n n n 

08DSB 52.5 57.5 59 18.1 19.8 20.4 y n n n n n 

08DSGE 60 61 67 24.3 24.7 27.1 n n n n n y 

21DSB 36.7 37 44.5 13.3 13.4 16.1 n n n n n n 

01DRGE 66 66 69 23.9 23.9 25.0 y y n n n n 

02DRGE 48 52 54 18.7 20.3 21.0 n n n n n n 

03DRGE 54 58 71 17.2 18.5 22.6 y n n n n   

04DRGE 71 72 73 20.5 20.8 21.1 y n  n n n 

05DRGE 60 62 65 19.8 20.4 21.4 y n n n n y 

06DRGE 48 52 56 18.7 20.3 21.8 n n n n n n 

07DRGE 54 57 61 19.5 20.6 22.1 n n n n n n 

09DRB 43.2 45.5 44.9 17.9 18.9 18.6 n n n n y y 

09DRGE  60 60     n n n n n n 

10DRGE 59 59 63 19.9 19.9 21.2 n n n n  n 

14DRGE 60 62 66 20.7 21.4 22.8 y n n n y n 

Footnotes: BMI: body mass index. 
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Supplementary Table 2. Exact p-values and test statistics for marker expression comparisons 

between stimulation conditions, presented in Supplementary Figure 2. 

Population Marker Timepoint 
Stimulation 

comparison 

Kruskal 

p-value 

Kruskal-Wallis 

Chi-Square 

Degrees of 

freedom 

Dunn's 

p-value 

Dunn's 

statistic 

CD4+ CD7 T0 NIL-HBHA 0.012 8.75 2 0.0095 -2.95 

CD4+ CD7 T1 NIL-HBHA 0.029 7.03 2 0.031 -2.56 

CD4+ CCR7 T1 NIL-HBHA 0.036 6.62 2 0.035 -2.51 

CD8+ CD7 T0 NIL-HBHA 0.031 6.93 2 0.038 -2.49 

Tgd CD7 T0 NIL-HBHA 0.036 6.62 2 0.042 -2.45 

Tgd CD152 T2 NIL-TB2 
0.016 8.26 2 

0.045 -2.43 

Tgd CD152 T2 TB2-HBHA 0.033 2.54 

DN CD152 T2 TB2-HBHA 0.030 6.95 2 0.030 2.57 

Footnotes: here, independent, non-normal continuous variables were analyzed with the two-sided Kruskal–

Wallis test with Dunn’s Kruskal–Wallis Multiple Comparisons post-hoc. 
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Supplementary Table 3. Exact p-values and test statistics for cluster abundance comparisons during 

treatment, presented in Figure 3 and Supplementary Figure 4. 

 

Cluster Timepoints 
Friedman  

p-value 

Friedman Chi-

Square 

Degrees of 

freedom 
Post-hoc p-value Post-hoc statistic 

NIL (n = 16 at each timepoint) 

175 T0-T1 0.012 8.78 2 0.008 16 

62 T0-T1 0.014 8.49 2 0.008 16 

119 T0-T1 0.025 7.35 2 0.045 13 

171 T0-T1 0.044 6.26 2 0.038 12.5 

114 T0-T1 0.015 8.4 2 0.019 15 

98 T0-T2 0.006 10.0 2 0.049 12 

38 T0-T2 0.004 11.2 2 0.021 14.5 

176 T0-T2 0.028 7.12 2 0.023 14 

82 T0-T2 0.033 6.82 2 0.031 14 

48 T0-T2 0.015 8.37 2 0.032 13.5 

102 T0-T2 0.003 11.6 2 0.019 14.5 

TB2 (n = 18 at each timepoint) 

164 T0-T1 0.015 8.41 2 0.024 14 

190 T0-T1 0.002 12.5 2 0.013 16 

16 T0-T1 0.055 5.81 2 0.046 13.5 

38 T0-T2 0.007 9.94 2 0.025 15 

70 T0-T2 0.001 13.7 2 0.016 14.5 

28 T0-T2 0.013 8.68 2 0.012 16.5 

37 T0-T2 0.007 9.81 2 0.009 16.5 

137 T0-T2 0.001 14.9 2 0.005 18 

74 T0-T2 0.012 8.82 2 0.015 16.5 

102 T0-T2 0.022 7.61 2 0.024 15.5 

77 T0-T2 0.014 8.57 2 0.015 16 

HBHA (n = 14 at each timepoint) 

56 T0-T1 0.023 7.53 2 0.016 14 

27 T0-T1 0.046 6.15 2 0.04 12.5 

128 T0-T1 0.013 8.74 2 0.014 14 

69 T0-T2 0.041 6.37 2 0.03 13 

26 T0-T2 0.02 7.84 2 0.018 14 

38 T0-T2 0.026 7.28 2 0.045 12.5 

54 T0-T2 0.03 7.03 2 0.019 13.5 

172 T0-T2 0.044 6.26 2 0.038 12.5 

91 T0-T2 0.018 8.04 2 0.027 12.5 

154 T0-T2 0.006 10.1 2 0.002 16.5 

50 T0-T2 0.039 6.49 2 0.032 13 

94 T0-T2 0.001 14.3 2 0,00 19 

49 T0-T2 0.008 9.69 2 0.008 15 

160 T0-T2 0.041 6.37 2 0.034 13 

65 T0-T2 0.039 6.50 2 0.04 12 

Footnotes: For pairwise comparisons between non-independent observations at T0, T1, and T2: the two-sided 

Friedman rank sum test was performed followed by the Wilcoxon-Nemenyi-Thompson post-hoc.Only clusters 

within which significant differences were detected were represented. 
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Supplementary Table 4. Pearson’s correlation effect sizes (r) presented in Figure 5 for increased clusters. 

 Clus 98 Clus 38 Clus 176 Clus 37 Clus 28 Clus 70 Clus 69 Clus 26 Clus 172 Clus 91 Clus 54 

Clus 98 1 0.228 -0.203 0.643 0.045 0.803 0.353 -0.102 -0.239 -0.132 0.032 

Clus 38 0.228 1 0.042 0.364 0.282 0.263 0.356 -0.043 -0.152 0.224 0.572 

Clus 176 -0.203 0.042 1 -0.042 -0.049 -0.128 -0.131 -0.065 -0.116 0.018 -0.215 

Clus 37 0.643 0.364 -0.042 1 0.261 0.444 0.114 -0.245 -0.183 0.135 -0.056 

Clus 28 0.045 0.282 -0.049 0.261 1 0.214 0.184 0.483 0.374 0.367 0.39 

Clus 70 0.803 0.263 -0.128 0.444 0.214 1 0.691 0.207 -0.259 0.048 0.279 

Clus 69 0.353 0.356 -0.131 0.114 0.184 0.691 1 0.561 -0.154 0.068 0.647 

Clus 26 -0.102 -0.043 -0.065 -0.245 0.483 0.207 0.561 1 0.543 0.157 0.471 

Clus 172 -0.239 -0.152 -0.116 -0.183 0.374 -0.259 -0.154 0.543 1 -0.081 0.039 

Clus 91 -0.132 0.224 0.018 0.135 0.367 0.048 0.068 0.157 -0.081 1 0.155 

Clus 54 0.032 0.572 -0.215 -0.056 0.39 0.279 0.647 0.471 0.039 0.155 1 

Footnotes: Values indicate Pearson’s r. Correlations were calculated based on each cluster’s abundance (percent of total CD3+) in samples from all stimulation conditions at 

treatment initiation (T0). Clus: clusters. Clusters in bold indicate the clusters that were grouped together in Figure 5 for manual analysis. The associated r values are highlighted 

(orange: subgroup C corresponding to clusters, 37, 38, 70, 98; green: subgroup D corresponding to clusters 28, 54, 69). 
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Supplementary Table 5. Pearson’s correlation effect sizes (r) presented in Figure 5 for decreased clusters. 

 Clus 48 Clus 82 Clus 102 Clus 137 Clus 77 Clus 74 Clus 154 Clus 50 Clus 94 Clus 49 Clus 160 Clus 65 

Clus 48 1 0.377 0.412 0.137 0.462 0.725 0.485 -0.093 0.711 0.565 0.286 0.372 

Clus 82 0.377 1 -0.006 0.189 0.064 0.48 0.456 0.318 0.615 0.424 0.114 0.686 

Clus 102 0.412 -0.006 1 -0.062 0.635 0.485 0.093 -0.365 0.206 -0.027 0.585 -0.087 

Clus 137 0.137 0.189 -0.062 1 -0.072 -0.054 0.226 -0.113 0.066 0.237 -0.008 -0.076 

Clus 77 0.462 0.064 0.635 -0.072 1 0.614 0.189 -0.239 0.352 0.076 0.6 -0.027 

Clus 74 0.725 0.48 0.485 -0.054 0.614 1 0.261 -0.048 0.678 0.311 0.318 0.375 

Clus 154 0.485 0.456 0.093 0.226 0.189 0.261 1 0.288 0.471 0.513 0.145 0.64 

Clus 50 -0.093 0.318 -0.365 -0.113 -0.239 -0.048 0.288 1 0.124 0.263 -0.199 0.673 

Clus 94 0.711 0.615 0.206 0.066 0.352 0.678 0.471 0.124 1 0.324 0.241 0.637 

Clus 49 0.565 0.424 -0.027 0.237 0.076 0.311 0.513 0.263 0.324 1 -0.063 0.452 

Clus 160 0.286 0.114 0.585 -0.008 0.6 0.318 0.145 -0.199 0.241 -0.063 1 -0.017 

Clus 65 0.372 0.686 -0.087 -0.076 -0.027 0.375 0.64 0.673 0.637 0.452 -0.017 1 

Footnotes: Values indicate Pearson’s r. Correlations were calculated based on each cluster’s abundance (percent of total CD3+) in samples from all stimulation conditions at 

treatment initiation (T0). Clus: clusters. Clusters in bold indicate the clusters that were grouped together in Figure 5 for manual analysis. The associated r values are highlighted 

(green: subgroup A corresponding to clusters, 49, 50, 65, and 154; blue: subgroup B corresponding to clusters 74, 102, 160). 
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Supplementary Table 6. Exact p-values and test statistics for cluster abundance comparisons 

between fast and slow converters, presented in Figure 6 and Supplementary Figure 5. 

 

Cluster Timepoint Stimulation N (fast converters) N (slow converters) U statistic p 

T0 - significance threshold set at p < 0.026 

117 T0 NIL 12 4 45.5 0.0094 

132 T0 NIL 12 4 46 0.0079 

134 T0 NIL 12 4 45.5 0.0099 

147 T0 NIL 12 4 43 0.023 

148 T0 NIL 12 4 43.5 0.019 

186 T0 NIL 12 4 3.5 0.0089 

48 T0 NIL 12 4 44 0.017 

62 T0 NIL 12 4 46 0.0087 

76 T0 NIL 12 4 43.5 0.020 

88 T0 NIL 12 4 43.5 0.020 

105 T0 TB2 14 4 54 0.0061 

118 T0 TB2 14 4 51.5 0.012 

134 T0 TB2 14 4 52.5 0.010 

147 T0 TB2 14 4 50 0.021 

148 T0 TB2 14 4 49.5 0.025 

32 T0 TB2 14 4 50 0.020 

74 T0 TB2 14 4 49.5 0.025 

75 T0 TB2 14 4 54.5 0.0053 

89 T0 TB2 14 4 50 0.020 

90 T0 TB2 14 4 52 0.010 

102 T0 HBHA 11 3 32 0.018 

132 T0 HBHA 11 3 31.5 0.021 

134 T0 HBHA 11 3 31.5 0.023 

148 T0 HBHA 11 3 33 0.012 

182 T0 HBHA 11 3 2 0.015 

183 T0 HBHA 11 3 0 0.010 

52 T0 HBHA 11 3 31.5 0.023 

62 T0 HBHA 11 3 32.5 0.015 

75 T0 HBHA 11 3 31.5 0.021 
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Supplementary Table 6 - continued 

T1 - significance threshold set at p < 0.031 

116 T1 NIL 12 4 43 0.023 

120 T1 NIL 12 4 43.5 0.019 

180 T1 NIL 12 4 6 0.023 

75 T1 NIL 12 4 43.5 0.020 

11 T1 TB2 14 4 7.5 0.031 

117 T1 TB2 14 4 50 0.021 

119 T1 TB2 14 4 49 0.027 

125 T1 TB2 14 4 5.5 0.018 

132 T1 TB2 14 4 49.5 0.025 

134 T1 TB2 14 4 55 0.0047 

146 T1 TB2 14 4 49.5 0.025 

147 T1 TB2 14 4 53.5 0.0075 

148 T1 TB2 14 4 52.5 0.010 

166 T1 TB2 14 4 7.5 0.019 

171 T1 TB2 14 4 6 0.021 

178 T1 TB2 14 4 6 0.020 

180 T1 TB2 14 4 7.5 0.028 

4 T1 TB2 14 4 6 0.021 

57 T1 TB2 14 4 5 0.016 

62 T1 TB2 14 4 51 0.016 

64 T1 TB2 14 4 49.5 0.025 

76 T1 TB2 14 4 51 0.016 

89 T1 TB2 14 4 49.5 0.023 

117 T1 HBHA 11 3 33 0.011 

12 T1 HBHA 11 3 1.5 0.022 

147 T1 HBHA 11 3 31.5 0.021 

180 T1 HBHA 11 3 1.5 0.020 

34 T1 HBHA 11 3 31 0.028 

62 T1 HBHA 11 3 32 0.018 
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Supplementary Table 6 - continued 

T2 - significance threshold set at p < 0.013 

112 T2 NIL 12 4 2 0.0073 

12 T2 NIL 12 4 2 0.0052 

134 T2 NIL 12 4 46.5 0.0074 

14 T2 NIL 12 4 2 0.0073 

169 T2 NIL 12 4 0 0.0031 

181 T2 NIL 12 4 3 0.012 

182 T2 NIL 12 4 0.5 0.0021 

183 T2 NIL 12 4 1 0.0049 

60 T2 NIL 12 4 45 0.012 

62 T2 NIL 12 4 47 0.0063 

66 T2 NIL 12 4 45.5 0.010 

67 T2 NIL 12 4 45 0.012 

74 T2 NIL 12 4 47 0.0059 

81 T2 NIL 12 4 45 0.012 

112 T2 TB2 14 4 4 0.012 

12 T2 TB2 14 4 3 0.0085 

134 T2 TB2 14 4 52 0.012 

148 T2 TB2 14 4 53 0.0088 

166 T2 TB2 14 4 2 0.0045 

169 T2 TB2 14 4 4 0.011 

180 T2 TB2 14 4 2 0.0062 

181 T2 TB2 14 4 1.5 0.0055 

182 T2 TB2 14 4 1 0.0035 

183 T2 TB2 14 4 3 0.0064 

62 T2 TB2 14 4 55 0.0047 

88 T2 TB2 14 4 52 0.012 

94 T2 TB2 14 4 54 0.0059 

98 T2 TB2 14 4 3.5 0.010 

183 T2 HBHA 11 3 0 0.011 

Footnotes: For comparisons between non-normal, independent continuous variables  at T0, T1, and 

T2 separately, the two-sided Mann-Whitney U test was performed. For discovery of clusters with 

significantly different abundance, conservative corrections for multiple comparisons (e.g. Benjamini-

Hochberg) were not used in order to minimize type II errors. Instead, all p-values were computed for 

each timepoint, and the p-value corresponding to the null hypothesis being rejected in 5% of all 

comparisons was used as the significance threshold instead of 0.05. This novel significance threshold 

enabled to control type I error while maintaining an exploratory approach. Only clusters within which 

significant differences were detected were represented. 
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Supplementary Table 7. Exact p-values and test statistics for comparison of PCA scores between fast 

and slow converters, presented in Figure 7 and Supplementary Figure 7. 

Timepoint N(fast converters) N(slow converters) U statistic p-value 

Figure 7 - within selected clusters 

Component 1 

T0 25 7 34 0.013 

T1 25 7 28 0.0051 

T2 25 7 25 0.0029 

Component 2 

T0 25 7 130 0.0542 

T1 25 7 72 0.503 

T2 25 7 146 0.00602 

Supp. Figure 7 - within all CD3+ events 

Component 1 

T0 25 7 24 0.00247 

T1 25 7 30 0.00709 

T2 25 7 22 0.00166 

Component 2 

T0 25 7 70 0.447 

T1 25 7 101 0.562 

T2 25 7 58 0.191 

Footnotes: For comparisons between non-normal, independent continuous variables at T0, T1, and T2 

separately, the two-sided Mann-Whitney U test was performed. 

  



 
  181 

 

Supplementary Table 8. Mass cytometry panel components. 

Cellular target Clone Metal tag Volume for 106 cells in 100µL total 

CD45 HI30 89Y 1,5 

CD196/CCR6 11A9 141Pr 0,5 

CD69 FN50 144Nd 1 

CD4 RPA-T4 145Nd 1 

CD8 RPA-T8 146Nd 0,7 

CD7 CD7-6B 147Sm 1 

CD278/ICOS C398.4A 148Nd 0,7 

CD25 2A3 149Sm 1 

CD14 RMO52 151Eu 1,5 

TCRgd 11F2 152Sm 1 

TCRVa 7.2 3C10 153Eu 1,5 

CD3 UCHT1 154Sm 1 

CD279/PD-1 EH12.2H7 155Gd 1 

CD183/CXCR3 G025H7 156Gd 1 

CD194/CCR4 L291H4 158Gd 1 

CD197/CCR7 G043H7 159Tb 1 

CD26 BA5b 161Dy 1 

CD27  L128 162Dy 1 

CD161 HP-3G10 164Dy 1 

CD127/IL-7Ra A019D5 165Ho 0,7 

CD38 HIT2 167Er 1 

CD154/CD40L 24-31 168Er 1 

CD45RA HI100 169Tm 1 

CD152/CTLA-4 14D3 170Er 1 

CD185/CXCR5 RF8B2 171Yb 1 

HLA-DR L243 173Yb 0,7 

Perforin B-D48 175Lu 1 

CD56 NCAM16.2 176Yb 1 

CD16 3G8 209Bi 1 

Footnotes: all antibodies were supplied by Fluidigm. 
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Supplementary Table 9. Definition of clustering channels and expected cell subpopulations for 

dimension reduction and automated clustering of CD3+ T-cells. 

Clustering channels Expected cell subpopulations Phenotype 

CD4, CD8, CCR7, 

CD45RA, CD161, 

CD26, TCRgd, 

TCRVa7.2, CD25 

Gamma delta T-cells CD3+ TCRγδ+ 

MAIT-cells CD3+ CD4- CD8+ CD26+ CD161+ TCRVα7.2+ 

Naive CD8+ T-cells CD3+ CD4- CD8+ CCR7+ CD45RA+  

Effector memory CD8+ T-cells CD3+ CD4- CD8+ CCR7- CD45RA-  

Central memory CD8+ T-cells CD3+ CD4- CD8+ CCR7+ CD45RA-  

TEMRA CD8+ T-cells CD3+ CD4- CD8+ CCR7- CD45RA+  

Naive CD4+ T-cells CD3+ CD4+ CD8- CCR7+CD45RA+  

Effector memory CD4+ T-cells CD3+ CD4+ CD8- CCR7-CD45RA-  

Central memory CD4+ T-cells CD3+ CD4+ CD8- CCR7+CD45RA-  

TEMRA CD4+ T-cells CD3+ CD4+ CD8- CCR7- CD45RA+  

Treg CD3+ CD4+ CD25+ IL7Ra- 

Double negative T-cells CD3+ CD4- CD8- 

Footnotes: only lineage-defining markers are presented in this table. MAIT: mucosal-associated invariant T-cells. 
TEMRA: terminally differentiated effectors re-expressing CD45RA. NK: natural killer cells. NKT: natural killer T-
cells. Treg: T regulators. 
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Supplementary Table 10. Spectral flow cytometry panel components. 

ANTIBODIES1 AURORA 

Cellular target Clone Fluorochrome Supplier Single staining2 

CD45RA HI100 BUV395 BD Cells 

CD8 RPA-T8 BUV496 BD Cells 

CD141 RMO52 BUV563 BD Cells 

CD27 L128 BUV661 BD Cells 

CD56 NCAM16.2 BUV737 BD Beads 

CD4 RPA-T4 BUV805 BD Cells 

CD197/CCR7 G043H7 BV421 Biolegend Cells 

CD191 HB19 SB436 Thermofisher Cells 

HLA-DR L243 e450 Thermofisher Beads 

TCRgd 11F2 BV480 BD Beads 

TCRVa 7.2 3C10 BV510 Biolegend Beads 

CD16 3G8 BV570 Biolegend Cells 

CD194/CCR4 L291H4 BV605 Biolegend Cells 

CD183/CXCR3 G025H7 BV650 Biolegend Cells 

CD196/CCR6 11A9 BV711 BD Beads 

CD185/CXCR5 RF8B2 BV750 BD Beads 

CD279/PD-1 EH12.2H7 BV785 Biolegend Cells 

CD26 BA5b FITC Biolegend Cells 

CD3 UCHT1 A532 Thermofisher Cells 

CD45 HI30 PerCP BD Cells 

Perforin B-D48 PerCP-Cy5.5 Biolegend Beads 

CD69 FN50 PerCP-eFluor710 Thermofisher Cells 

CD25 2A3 PE BD Beads 

CD278/ICOS C398.4A PE Dazzle594 Biolegend Beads 

CD154/CD40L 24-31 PE-Cy5 Biolegend Cells 

CD152/CTLA-4 14D3 PE-Cy7 Thermofisher Cells 

CD161 HP-3G10 APC Biolegend Cells 

CD127/IL-7Ra A019D5 AF647 Biolegend Cells 

CD7 CD7-6B AF700 BD Cells 

CD38 HIT2 APC e780 Thermofisher Cells 

Footnotes:  
1 All CyTOF and Aurora antibody clones were the same except for anti-CD14 (Aurora: clone M5E2; only 
availability in this color), and anti-CD19, which was not included in the CyTOF panel. 
2 This column indicates which single stainings for unmixing reference controls were bright enough to 
be performed on fixed white blood cell samples, or had to be performed on UltraComp eBeads Plus 
compensation beads (ThermoFisher Scientific). 
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2.  Other original publications 

2.1  Annex 4 – MDR-TB surveillance in Haiti  

 

 

 

Drug-resistant TB prevalence study in 5 health institutions in Haiti 

Jonathan HOFFMANN, Carole CHEDID, Oksana Ocheretina, Chloé Masetti, 

Patrice Joseph, Marie-Marcelle Mabou, Jean-Edouard Mathon, Elie Maxime 

François, Juliane Gebelin, François-Xavier Babin, Laurent Raskine, Jean William 

Pape. 

PLoS ONE 2021; 16(3); 1-12. 
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Supplementary data 
 

Table 1S. Summary of resistance profiles of DR-TB isolates identified in new TB cases, 
relapse, treatment after failure or treatment after interruption. 

Resistance profiles 
New 
cases  
N (%) 

Relapse  
N (%) 

Treatment 
after 

failure  
N (%) 

Treatment 
after 

interruption  
N (%) 

P 
Total 
N (%) 

  NT=2,401 NT=236 NT=30 NT=110   NT=2,777 

Resistant to INH* 56 (2.3) 8 (3.4) 1 (3.3) - 0.148 65 (2.3) 

Resistant to RIF* 57 (2.4) 10 (4.2) 1 (3.3) - 0.053 68 (2.4) 

Resistant to EMB* 24 (1.0) 2 (0.8) 1 (3.3) - 1.000 27 (1.0) 

Resistant to STR* 15 (0.6) 3 (1.3) - - 0.431 18 (0.6) 

Resistant to ETH* 11 (0.5) 1 (0.4) - - 0.846 12 (0.4) 

Resistant to PAS* 1 (0.0) - - - 1.000 1 (0.0) 

Resistant to PZA* 23 (1.0) 2 (0.8) - - 0.720 25 (0.9) 

Monoresistant to INH 2 (0.1) 1 (0.4) - - 0.448 3 (0.1) 

Monoresistant to RIF 6 (0.2) 3 (1.3) - - 0.084 9 (0.3) 

Monoresistant to EMB - - - - 1.000 - 

Monoresistant to STR - - - - 1.000 - 

Monoresistant to ETH - - - - 1.000 - 

Monoresistant to PAS - - - - 1.000 - 

Monoresistant to PZA - - - - 1.000 - 

Resistant to 1 AB** 8 (0.3) 4 (1.7) - - 0.067 12 (0.4) 

Resistant to 2 AB** 18 (0.7) 2 (0.8) - - 0.893 20 (0.7) 

Resistant to 3 AB** 11 (0.5) 3 (1.3) 1 (3.3) - 0.172 15 (0.5) 

Resistant to 4 AB** 13 (0.5) 1 (0.4) - - 1.000 14 (0.5) 

Resistant to 5 AB** 12 (0.5) 1 (0.4) - - 1.000 13 (0.5) 

Footnotes : *comprises all drug-resistant isolates to the respective drugs (irrespective of other associated resistances). INH (isoniazid), RIF 

(Rifampin), EMB (ethambutol), STR (streptomycin), ETH (ethionamide), PAS (para-aminosalicylic acid) or PZA (Pyrazinamide), 

respectively.** Strains resistant to 1, 2, 3 or 4 of the tested antibiotics (AB)  
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Table 2S. Mono-resistance profile of DR-TB isolates identified in new TB cases, relapse, 
treatment after failure, treatment after interruption. 

TB strain 
resistance 

profile 

Antibiotic resistance profile New cases  Relapse  
Treatment 

after 
failure 

 
Treatment 

after 
interruption 

 TOTAL 

 N %  N %  N %  N %  N % 

Mono-
drug 
resistant 
TB 
  
  
  
  

INH 2 25   1 25   0 -   0 -   3 25 

RIF 6 75   3 75   0 -   0 -   9 75 

STR 0 0   0 0   0 -   0 -   0 0 

EMB 0 0   0 0   0 -   0 -   0 0 

PZA 0 0   0 0   0 -   0 -   0 0 

Total mono-drug resistant isolates 8 100   4 100   0 -   0 -   12 100 

 

Table 3S. Multi-resistant profile of DR-TB isolates identified in new TB cases, relapse, 
treatment after failure, treatment after interruption. 

  
 New cases  Relapse  

Treatment 
after 

failure 

 
Treatment 

after 
interruption 

 TOTAL 

   N %  N %  N %  N %  N % 

Multi-
drug 
resistant 
TB 

INH + RIF 16 29.6   2 28.6   0 0.0   0 -   18 29.0 

INH + RIF + STR 0 0.0   2 28.6   0 0.0   0 -   2 3.2 

INH + RIF + EMB 2 3.7   0 0.0   1 100.0   0 -   3 4.8 

INH + RIF + EMB + PZA 5 9.3   1 14.3   0 0.0   0 -   6 9.7 

INH + RIF + EMB + PZA + ETH 3 5.6   0 0.0   0 0.0   0 -   3 4.8 

INH + RIF + PZA 6 11.1   1 14.3   0 0.0   0 -   7 11.3 

INH + RIF + ETH 2 3.7   0 0.0   0 0.0   0 -   2 3.2 

INH + RIF + STR + EMB 5 9.3   0 0.0   0 0.0   0 -   5 8.1 

INH + RIF + STR + EMB + ETH 3 5.6   1 14.3   0 0.0   0 -   4 6.5 

INH + RIF + PZA + KM 1 1.9   0 0.0   0 0.0   0 -   1 1.6 

INH + RIF + PZA + ETH 2 3.7   0 0.0   0 0.0   0 -   2 3.2 

INH + RIF + STR + EMB + PZA 6 11.1   0 0.0   0 0.0   0 -   6 9.7 

INH + ETH + PAS 1 1.9   0 0.0   0 0.0   0 -   1 1.6 

ETH + INH 1 1.9   0 0.0   0 0.0   0 -   1 1.6 

STR + INH 1 1.9   0 0.0   0 0.0   0 -   1 1.6 

Total multi-drug-resistant isolates 54 100.0   7 100.0   1 100.0   0 -   62 100.0 
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Table 4S. Summary of resistance profiles of DR-TB isolates identified in new TB cases, 
relapse, treatment after failure, treatment after interruption. 
 

    
New cases  Relapse  

Treatment 
after 

failure 

 
Treatment 

after 
interruption 

 TOTAL 

    N %  N %  N %  N %  N % 

Mono-drug resistant TB  8 12.9   4 36.4   0 0.0   0 -   12 16.2 

Multi-drug resistant TB 54 87.1   7 63.6   1 100.0   0 -   62 83.8 

Total drug-resistant isolates 62 100.0   11 100.0   1 100.0   0 -   74 100.0 

 

 

 

Table 5S. Distribution of DR-TB lineages (SIT) among new TB cases, relapse and treatment 
after failure. 

SIT New cases 

N (%) 

Relapse 

N (%) 

Treatment 

after failure 

N (%) 

  

  NT=62 NT=11 NT=1 P 

2 1 (1.6) 1 (9.1) 1 (100.0) <0.001 

5 4 (6.5) 1 (9.1) - (-) 0.177 

6 1 (1.6) - (-) - (-) 0.196 

7 2 (3.2) - (-) - (-) 0.398 

17 1 (1.6) - (-) - (-) 0.196 

20 4 (6.5) - (-) - (-) 0.818 

42 8 (12.9) 2 (18.2) - (-) 0.381 

50 2 (3.2) - (-) - (-) 0.398 

51 2 (3.2) - (-) - (-) 0.398 

53 6 (9.7) 1 (9.1) - (-) 0.947 

77 2 (3.2) 1 (9.1) - (-) 0.648 

91 5 (8.1) - (-) - (-) 0.595 

93 5 (8.1) 2 (18.2) - (-) 0.543 

137 5 (8.1) 1 (9.1) - (-) 0.950 

294 2 (3.2) - (-) - (-) 0.398 

373 1 (1.6) - (-) - (-) 0.196 

408 1 (1.6) - (-) - (-) 0.196 

455 2 (3.2) 2 (18.2) - (-) 0.126 

578 1 (1.6) - (-) - (-) 0.196 

714 1 (1.6) - (-) - (-) 0.196 

909 1 (1.6) - (-) - (-) 0.196 

1624 1 (1.6) - (-) - (-) 0.196 

UKN 4 (6.5) - (-) - (-) 0.196 

New SIT detected in the present study are in bold.   
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Figure 1S. Description of DR-TB strains phenotypes among all patients with available DST results. 
A total of 74 DR-TB strains were analyzed, including 12 mono-drug resistant strains and 62 multi-drug 
resistant TB strains. GHESKIO (INLR): n = 34. IMIS: n = 34. HUM: n = 3. HUJ: n = 2. HIC: n = 1. I: Isoniazid. 
R: Rifampin. S: Streptomycin. E: Ethambutol. PZA: Pyrazinamide. KM: Kanamycin. 
 
 
 

 
Figure 2S. rpoB genotypic diversity of DR-TB isolates (n = 74).  
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Figure 3S. Frequency of detected rpoB mutation in each identified drug-resistant 
M. tuberculosis lineage (n=74). Data are given for all patients with known spoligotypes. 
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2.2  Annex 5 – Multi-country evaluation of the blood transcriptomic signature RISK6 

 

 

 

Multi-country evaluation of RISK6, a 6-gene blood transcriptomic signature, 

for tuberculosis diagnosis and treatment monitoring 

 

Rim Bayaa, Mame Diarra Bousso Ndiaye, Carole Chedid, Eka Kokhreidze, Nestani 

Tukvadze, Sayera Banu, Mohammad Khaja Mafij Uddin, Samanta Biswas, 

Rumana Nasrin, Paulo Ranaivomanana, Antso Hasina Raherinandrasana, Julio 

Rakotonirina, Vohangy Rasolofo, Giovanni Delogu, Flavio De Maio, Delia Goletti, 

Hubert Endtz, Florence Ader, Monzer Hamze, Mohamad Bachar Ismail, 

Stéphane Pouzol, Niaina Rakotosamimanana, Jonathan Hoffmann. 

 

Scientific reports 2021; 11(1); 1-12. 
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Supplementary data 

 

Supplementary Figure 1. Ability of RISK6 signature to stratify TB patients according to ultimate 
treatment outcome. Longitudinal kinetics of RISK6 signature scores across TB treatment time (T0: 
baseline; T2: 2 months after initiation and T2: at the end of treatment) in patients with cure and those 
with a treatment failure, stratified into drug-susceptible (n= 95) and drug-resistant TB cases (n= 11). 
Dots depict medians and error bars represent the IQR. 
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3.  Oral communications 

July 11, 2021: 31st ECCMID (European Congress of Clinical Microbiology & Infectious Diseases; 

virtual). 

January 19, 2021: CYTEK User Meeting, Europe-Middle East-Asia region (virtual). 

February 5 – 7, 2020: 2nd Swiss Cytometry Meeting (Ecole Polytechnique Fédérale de 

Lausanne, Switzerland). 

January 21, 2020: Infectious Diseases Theme Day (Istituto Nazionale per le Malattie Infettive 

“Lazzaro Spallanzani”, Rome, Italy). 

April 25, 2019: DécrypThèse – PhD day of the E2M2 doctoral school (Lyon, France). Award for 

the best oral communication. 
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CFP-10: 10kDa culture filtrate protein 
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HBHA: heparin-binding hemagglutinin 

IFN-γ: interferon gamma 

IGRA: Interferon gamma release assay 

IL-2: interleukin 2 
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PTB: pulmonary tuberculosis 
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First line drugs:  

E: Ethambutol.  

H: Isoniazid.  

R: Rifampicin.  

S: Streptomycin.  

Z: Pyrazinamide.  

 

Second line drugs:  
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Résumé en français 
 

Contexte : La tuberculose (TB) est une des maladies infectieuses les plus meurtrières au 

monde, avec plus d’un million de morts en 2020. Délaissée dans les politiques sanitaires 

internationales, elle touche principalement les pays en voie de développement et les 

personnes en situation de précarité. Son traitement nécessite des multithérapies 

antibiotiques aux effets secondaires toxiques. Concernant la TB pulmonaire en particulier, il 

existe un besoin clinique pour de nouveaux tests de suivi du traitement plus rapides et 

adaptés à des échantillons accessibles plus régulièrement que les crachats. Dans ce contexte, 

les biomarqueurs sanguins immunologiques représentent des options prometteuses.  

 

Objectifs : L'objectif principal de cette thèse était d'évaluer la pertinence clinique de tests 

immunologiques sanguins pour le suivi du traitement anti-TB par rapport à l’évolution 

microbiologique mesurée par la culture de Mycobacterium tuberculosis (Mtb). Pour ceci, une 

étude prospective multicentrique a été menée dans cinq pays à forte incidence de TB 

(Bangladesh, Géorgie, Liban, Madagascar, Paraguay). Elle comportait un volet d’évaluation de 

deux outils simples (une numération sanguine et deux tests plasmatiques), et un volet 

exploratoire utilisant des techniques de cytométrie à hautes dimensions. 

 

Résultats : Nous avons recruté 152 patients adultes atteints de TB pulmonaire sensible ou 

résistante aux antibiotiques et prélevé des échantillons de sang et de crachats à l'inclusion, 

après deux mois (T1), et à la fin du traitement (6 à 24 mois). Nous avons observé qu’un 

nombre de leucocytes élevé et une faible proportion de lymphocytes à l’inclusion, mesurés 

lors de numérations sanguines de routine, avaient une valeur prédictive de l’échec du 

traitement. Puis, une combinaison de deux IFN-γ release assays (QuantiFERON-TB Gold Plus 

et heparin-binding hemagglutinin ; HBHA) a été évaluée. Chez un sous-groupe de patients 

dont les cultures étaient restées positives à T1, un schéma clinique commun à l’inclusion a 

été observé (neutrophilie, lymphopénie, faible indice de masse corporelle, faibles réponses 

QFT-P IFN-γ) ainsi qu’une faible réponse IFN-γ à HBHA pendant le traitement. Enfin, dans un 

sous-groupe de 22 patients, la diversité phénotypique des lymphocytes T (LT) dans le sang a 

été caractérisée par cytométrie de masse et de flux spectral. La comparaison des immuno-

profils des patients ayant une culture négative à T1, par rapport à ceux dont les cultures 
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étaient restées positives, a révélé chez ces derniers une sous-représentation de LT CD8+ 

cytotoxiques différenciés et une sur-représentation de LT CD4+ naïfs après deux mois de 

traitement. Ceci suggère un lien entre le stade de différenciation de certaines sous-

populations de LT et la clairance mycobactérienne au cours du traitement. Un phénotypage 

détaillé des sous-populations concernées a permis d’isoler les marqueurs cellulaires 

permettant la meilleure différenciation des patients en fonction de leur culture de Mtb.  

 

Perspectives : Ces travaux ont documenté la pertinence clinique de deux tests de suivi simples 

et rapides, adaptés aux zones à forte incidence de TB. Ils ont généré de nouvelles données 

sur l’immunobiologie des lymphocytes T lors de l’infection tuberculeuse, chez des patients 

représentatifs des populations les plus touchées. Ceci a permis de faire émerger de nouvelles 

cibles cellulaires pour le suivi du traitement. Ces résultats pourront avoir des applications 

directes dans d’autres enjeux majeurs de la prise en charge de la TB, notamment la détection 

de l’infection tuberculeuse latente, l’identification des patients les plus susceptibles de 

progresser vers une TB active, et la prédiction des risques de rechute post-traitement. 

 


