
HAL Id: tel-04913269
https://theses.hal.science/tel-04913269v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of micro-architecture for security with gem5
Quentin Forcioli

To cite this version:
Quentin Forcioli. Modeling of micro-architecture for security with gem5. Embedded Systems. Institut
Polytechnique de Paris, 2024. English. �NNT : 2024IPPAT033�. �tel-04913269�

https://theses.hal.science/tel-04913269v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

T
03

3

Modeling of micro-architecture for security
with gem5

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Telecom Paris

École doctorale n◦626 École Doctorale de l’Institut Polytechnique de Paris (IP Paris)
Spécialité de doctorat: Réseaux, Informations et Communications

Thèse présentée et soutenue à Palaiseau, le 21/11/2024, par

Quentin Forcioli

Composition du Jury :

Lilian Bossuet
Professeur des université, Laboratoire Hubert Curien (UMR 5516) Président/Examinateur
Gilles Sassatelli
Directeur de recherche, Laboratoire dInformatique, de Robotique et de
Microélectronique de Montpellier (UMR 5506) Rapporteur
Guillaume Hiet
Professeur, CentraleSupélec, IRISA (UMR 6074) Rapporteur
Damien Couroussé
Ingénieur de recherche, CEA-LIST Examinateur

Jean-Luc Danger
Professeur des université, Telecom Paris (UMR 5141) Directeur de thèse
Sumanta Chaudhuri
Maitre de conference, Telecom Paris (UMR 5141) Directeur de thèse

Abstract

Embedded systems are the target of a wide variety of attacks, software, and hardware levels. Among these, micro-
architectural attacks stand out as particularly challenging to investigate. Taking advantage of specific System-on-Chips
behaviors, often not visible from an Instruction Set Architecture perspective, these attacks allow an attacker to gain
control of protected resources, bypassing the mechanisms that are set up by the OS to isolate different processes. These
attacks can target all the parts of a SoCs: CPU (flow control units, operators,...), caches, memory, accelerators (FPGA,
GPU,), interfaces, etc. Understanding, replicating, and instrumenting these attacks and their associated scenario, greatly
benefit from simulation. The Archisec project adopts this simulation-for-security methodology[For+21] leveraging the
gem5 simulator as a foundation to develop a virtual platform capable of reproducing typical micro-architectural attacks,
thereby advancing research in this domain. A critical aspect of SoC security lies in its Trusted Execution Environment
(TEE). In the TEE, specific tasks run isolated within secure enclaves, safeguarding them from attacks even if the OS
is compromised. The TEE plays a vital role in safeguarding applications such as device updates, banking operations,
etc. However, attackers are actively seeking ways to circumvent these protections, as documented instances of micro-
architectural attacks against TEEs reveal.

For this reason, the Archisec platform needs to support TEEs while simulating micro-architectures. As the project
focuses on ARM, we also decided to use ARMv8-A and its associated security framework TrustZone. With TrustZone, a
TEE can be deployed on ARMv8-A and ARMv7-A platforms. We chose OP-TEE an open-source, TrustZone-compatible
TEE.

As a contribution to the platform, I created a cache-timing attack library for ARMv8-A to compare cache-timing
results between gem5 and a raspberry PI. I also improved the ARM ISA implementation in gem5 and created a compatible
TEE-enable bootrom with OP-TEE. I created attack scenarios against OP-TEE that leverage the gem5 simulator
environments, to study them. After improving the GDB remote debugger in gem5, I developed an interface that uses
GDB scripts and a programmable stub to study and analyze attack scenarios, extracting cache states and re-configuring
the simulator on-the-fly. Utilizing this interface alongside existing gem5 tools, we proposed a first contribution that uses
the platform to study Third-party IP and cryptographic library [FDC23].

My second contribution is TEE-Time [FDC24b] a tool that analyzes cache-timing side-channel using my gem5-
GDB interface. This tool uses Key Execution Points (KEP) that encompass all algorithmic knowledge, without any
assumptions about the specific CPU architecture. Presumably, if an attacker could detect these KEPs, it would be able
to reconstruct the totality or part of the secret. To evaluate how practical it would be for an attacker to spot these
KEPs, and thus, how weak is a Victim application, TEE-Time produces reports that describe and assess an ideal attack
scenario to retrieve KEPs. Then, an attack monitoring script, using the same GDB-interface, verifies the attack scenario
described in the report. To achieve this, it produces labels for the attack traces to help identify KEP signals in cache
timings. This two-step process was validated against toy attacks and then against standard cryptographic applications
using RSA crypto-services in OP-TEE.

To validate my methodology against an actual system, I developed a virtual platform to simulate the RK3399 SoC
from Rockchip, present on the RockPi4 board. The RK3399 features TrustZone memory protection, secure fuses, secure
boot, and a lockable JTAG debugger. Given these functionalities, our simulation platform became indispensable for
investigating cache-timing attacks on the RK3399. To build the RK3399 virtual platform, I developed a new fast-
prototyping tool for gem5 called PyDevices that uses gem5 ’s Python interface to implement hardware devices. With
PyDevices and Ghidra, I retro-engineered the RK3399 BootROM and configured the simulation platform to accurately
imitate the RK3399 to the extent of booting the same SD card image across both physical and simulated platforms.
Using my aforementioned attack library, I found out that the RK3399 used an ARM-specific cache protocol called
AutoLock. Incorporating this mechanism into gem5 and refining the TEE-Time scripts, I reproduced an ideal attack
scenario against OP-TEE RSA crypto services. This is my third contribution [FDC24a], which demonstrates a real-world
attack built upon my simulation methodology. In this attack scenario, OP-TEE uses mbedTLS bignum exponentiation
that implements the sliding-window exponentiation. Based on Bernstein et al.[Ber+17], I configured the VicitimScan
tool to tailor a cache-timing attack. The attack was then verified in the simulated environment using the monitoring
script. Running the same attack without any modification on a RockPi4, successfully leaked on average ∼ 1/3 of the
RSA key bits.

This final contribution serves as a pivotal step in bridging the gap between simulation and real hardware, thereby
fulfilling a key goal for the Archisec project.

1

Résumé en français

Les systèmes embarqués sont la cible d’une grande variété d’attaques, tant au niveau logiciel que matériel. Parmi celles-
ci, les attaques micro-architecturales se révèlent particulièrement difficiles à étudier. Tirant parti des comportements
spécifiques des System-on-Chips (SoC: systèmes sur puce), souvent invisibles du point de vue du jeu d’instruction (ISA),
ces attaques permettent à un attaquant de prendre le contrôle des ressources protégées, en contournant les mécanismes mis
en place par le système d’exploitation (OS) pour isoler les différents processus. Ces attaques peuvent tirer parti de toutes
les parties d’un SoC : CPU (flow control units, opérateurs,...), caches, mémoire, accélérateurs (FPGA, GPU,), interfaces,
etc. La compréhension, la reproduction et l’instrumentation de ces attaques et de leurs scénarios associés, bénéficient
beaucoup de la possibilité de les simuler sur plate-forme virtuelle. Le projet Archisec adopte cette méthodologie simulation
pour la sécurité[For+21] en s’appuyant sur le simulateur gem5 pour développer une plate-forme virtuelle capable de
reproduire des attaques micro-architecturales. L’un des aspects essentiels de la sécurité d’un SoC réside dans son Trusted
Execution Environment (TEE: environment d’exécution de confiance). Dans le TEE, des tâches spécifiques sont exécutées
de manière isolée dans des enclaves sécurisées, ce qui les protège des attaques, même lorsque le système d’exploitation
est compromis. Le TEE joue ainsi un rôle essentiel dans la protection des applications telles que les mises à jour du
logiciel intégré, les opérations bancaires, etc. Cependant, les attaquants cherchent activement des moyens de contourner
ces protections, comme le montrent les cas documentés d’attaques micro-architecturales contre les TEE.

C’est pourquoi la plate-forme Archisec doit prendre en charge les TEEs tout en simulant la micro-architecture. Le
projet étant axé sur ARM, nous avons choisi d’utiliser OP-TEE, un TEE open-source standard pour ARM. Pour déployer
OP-TEE sur une plate-forme ARMv8-A, elle doit supporter TrustZone, le framework de sécurité propre à ARMv8-A et
ARMv7-A.

Pour évaluer cette plate-forme, j’ai créé une bibliothèque d’attaques de cache-timing pour ARMv8-A afin de comparer
les résultats de cache-timing entre gem5 et raspberry PI. Dans ce même objectif, j’ai amélioré le support de l’ISA ARM
et de TrustZone dans gem5 pour faire tourner une bootrom contenant OP-TEE, compilée pour l’occasion. Afin d’étudier
les vulnérabilité des TEEs, j’ai créé des scénarios d’attaque contre OP-TEE en utilisant les simulations de gem5. Après
avoir amélioré le module du débogueur GDB intégré dans gem5, j’ai développé une interface qui utilise le module GDB
dans gem5 au travers de scripts GDB. Ces scripts analysent des scénarios d’attaque, via l’extraction les états des caches
et la reconfiguration du simulateur à la volée. En utilisant cette interface, et avec les outils gem5 existants, j’ai construit
une première contribution qui utilise gem5 pour étudier des IPs third-party et des librairies cryptographiques [FDC23].

Ma deuxième contribution est TEE-Time [FDC24b], un outil qui analyse automatiquement les side-channels cache-
timing en utilisant mon interface gem5-GDB. Cet outil opère à partir de Key Execution Points (KEP) qui englobent toutes
les connaissances sur algorithme cryptographique, sans faire d’hypothèse sur l’architecture spécifique du processeur. On
peut supposer que si un attaquant parvient à détecter ces KEPs, il sera en mesure de reconstituer tout ou partie du
secret. Pour évaluer dans quelle mesure il serait possible pour un attaquant de repérer ces KEPs, et donc, compromettre
l’application victime, TEE-Time produit des rapports qui décrivent et évaluent un scénario d’attaque idéal pour récupérer
les KEPs. Ensuite, un script d’attack monitoring, utilisant la même interface GDB-gem5, valide le scénario d’attaque
décrit dans le rapport. Pour ce faire, ce script rajoute aux traces de cache-timing des marques correspondant aux KEPs
pour identifier des motifs dans les traces de cache. Ce processus en deux étapes a été validé contre des applications
démos, puis contre des applications cryptographiques standards utilisant les services cryptographiques RSA présents
dans OP-TEE.

Pour valider les prédictions de cette méthodologie sur un système réel, j’ai développé une plate-forme virtuelle capable
de reproduire le SoC RK3399 de Rockchip, au cur de la carte RockPi4. Le RK3399 est doté d’une protection mémoire
TrustZone, de fusibles sécurisés, d’un démarrage sécurisé et d’un débogueur JTAG verrouillable. Pour construire la
plate-forme virtuelle du RK3399, j’ai développé un nouvel outil de prototypage rapide pour gem5 appelé PyDevices
qui utilise l’interface Python de gem5 pour implémenter des blocs matériels. Avec mes PyDevices et Ghidra, j’ai rétro-
ingénerer la BootROM du RK3399 et j’ai ainsi pu construire une plate-forme de simulation qui imite fidèlement le RK3399.
La plates-forme virtuelle peut ainsi booter la même image de carte SD que celle chargée sur la plate-forme réelle. En
utilisant mes outils d’attaque cache, j’ai découvert que le RK3399 réel utilisait un protocole de cache spécifique à ARM
appelé AutoLock. Avec l’incorporation de ce mécanisme dans gem5 et l’amélioration les scripts de TEE-Time, j’ai validé
un scénario d’attaque idéal contre les services cryptographiques RSA de l’OP-TEE sur la plate-forme simulée et sur la
carte RockPi4 réelle. Il s’agit ici de ma troisième contribution [FDC24a]. Elle présente une attaque réelle développée
en utilisant ma méthodologie basée sur la simulation. Dans ce scénario d’attaque, OP-TEE utilise l’exponentiation de
grand nombre entier (bignum) de la libraire mbedTLS qui met en uvre l’exponentiation modulaire dite "sliding-window".
Sur la base de [Ber+17], j’ai configuré l’outil TEE-Time pour confectionner une attaque de cache-timing. L’attaque a
ensuite été vérifiée dans l’environnement simulé à l’aide du script attack monitoring. En exécutant la même attaque sans
aucune modification sur un RockPi4, j’ai réussi à faire fuir en moyenne ∼ 1/3 des bits de la clé RSA, contournant ainsi
la protection d’OP-TEE.

Cette dernière contribution constitue une étape cruciale pour combler le fossé entre simulation d’attaque et leur
application sur du matériel réel, remplissant ainsi un objectif clé du projet Archisec.

2

Acknowledgements
Writing this thesis was only possible thanks to the support of many people in my research environment and
in my relatives. I first want to thank my advisors Jean-Luc Danger and Sumanta Chaudhuri who guided me
in my research. Their expertise and ability to channel my efforts into meaningful and impactful research
have been instrumental in shaping my work into proper academic publications.

I am also profoundly thankful to Chadi Jabbour, Florent Brugier, Guillaume Duc, Taric Graba for trusting
me to teach and supervise lab classes. Their confidence in me allowed me to develop and refine my teaching
and supervisory skills, testing them against the reality of the field. Additionally, I wish to thank Arnaud
Varillon and Julien Béguinot, fellow PhD students, for the insightful discussions and collaborative exchanges
we shared. Their input and perspectives have greatly contributed to my research. I am also grateful for
their initiative in organizing the SSH seminar, where I had the opportunity to present and refine some of
my work.

I would also like to extend my heartfelt thanks to Lilian Bossuet, David Novo, Maria Mushtaq, Clé-
mentine Maurice, Philippe Nguyen, and Florent Bruguier, as well as their students Walid J. Ghandour,
Carlos Andres Lara Niño, Loïc France, Pierre Ayoub, and Sammy Plat, for their trust in our collaboration
for the Archi-Sec ANR project. The feedback and insights they provided during our regular meetings were
invaluable, helping me refine my ideas and guiding my contributions toward our shared goal of developing
a platform for embedded systems security.

I also wish to thank the Electrical Engineering Department at ENS Paris-Saclay, where I completed my
graduate program. The department not only provided a supportive academic environment but also played
a pivotal role in developing my engineering skills and broadening my knowledge of the field.

I am deeply grateful to Guillaume Hiet and Gilles Sassatelli for reviewing my thesis and providing essential
feedback that allowed me to significantly improve my manuscript. Their detailed critiques and valuable
suggestions were crucial in enhancing the quality and clarity of my work. I also wish to thank Damien
Couroussé for participating as an examiner in my thesis jury and contributing his expertise to the evaluation
process.

A special acknowledgement goes again to Lilian Bossuet for serving as the president of my thesis jury
and for his insightful feedback through my thesis which greatly contributed to refining my work. Finally, I
express my regrets that Clémentine Maurice, although invited, could not participate as an examiner in my
jury due to unforeseen circumstances.

A final word of gratitude goes to my family, who provided me with a home and support throughout my
thesis, especially during the challenges posed by the COVID-19 pandemic. I would also like to express my
deep appreciation to my girlfriend, Sophie, for her unwavering support, despite the demanding nature of
thesis work and the impromptu tasks it often entails.

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR), under
grant ANR-19-CE39-0008 (project ARCHI-SEC)

3

Contents
abstract 1

Résumé en français 2

Acknowledgements 3

Glossary 7

1 Introduction 8
1.1 Context . 9

1.1.1 Trusted Execution Environment . 9
1.1.2 Micro-architectural attacks . 10
1.1.3 Archisec Project . 10

1.2 Scope: The Archisec Virtual Platform . 11
1.3 Motivations . 11
1.4 Key contributions . 12
1.5 Thesis organization . 12

2 State of the art: security and simulation for embedded systems 13
2.1 Introduction . 14
2.2 System-on-Chip simulation . 14

2.2.1 Simulators . 14
2.2.2 gem5 : the SoC simulator . 16

2.2.2.1 Principle . 16
2.2.2.2 SimObjects: gem5 primitives . 17
2.2.2.3 Models advantages and limits . 18
2.2.2.4 Memory model . 20

2.2.3 System element modeling . 21
2.2.4 gem5 for security in literature . 23

2.3 Security in embedded systems . 23
2.3.1 Operating system security . 23
2.3.2 Attack scenarios . 24
2.3.3 Execution Privileges . 25
2.3.4 Trusted Execution Environment . 26

2.4 Micro-architectural attacks . 27
2.4.1 Side-channel attacks . 27

2.4.1.1 Cache timing attacks . 27
2.4.1.2 Higher-level cache attacks . 28
2.4.1.3 Static and dynamic cache analyzer . 29
2.4.1.4 Other side-channel attacks . 29

2.4.2 Transient execution attacks . 29
2.4.3 Fault injection attack . 30

2.4.3.1 Typical fault injections . 30
2.4.3.2 Hadware memory corruption: RowHammer . 31

2.4.4 Accelerator attacks . 31
2.4.5 Trusted Execution Environment attack in literature . 32

2.5 Conclusion . 32

3 Virtual platform on gem5 for ARMv8-A, TrustZone, and OP-TEE 33
3.1 Introduction . 34
3.2 Platform and instrumentation with gem5 . 34

3.2.1 Building a platform in gem5 . 34
3.2.1.1 Writing a new config file . 35

4

3.2.1.2 Adding new SimObject . 35
3.2.2 Classical instrumentation on gem5 . 37

3.2.2.1 DebugFlag . 37
3.2.2.2 m5 instructions . 38
3.2.2.3 CxxMethod . 38

3.2.3 Our improvement to GDB in gem5 . 39
3.2.3.1 GDB monitor call . 39
3.2.3.2 Interactive debug with GDB . 40

3.3 ARMv8-A security on gem5 . 41
3.3.1 aarch64 and its gem5 model . 41

3.3.1.1 aarch64 generalties . 42
3.3.1.2 gem5 ARM platform model . 42
3.3.1.3 ARM cache model and AutoLock . 42

3.3.2 Cache timing attack on aarch64 . 43
3.3.2.1 Flush+Reload . 43
3.3.2.2 Prime+Probe . 44
3.3.2.3 Prime+Probe direction and self-eviction . 45

3.3.3 Our baremetal prospects . 46
3.3.3.1 Principle . 46
3.3.3.2 Results . 47

3.4 ARM TrustZone and OP-TEE on gem5 . 48
3.4.1 TrustZone . 48
3.4.2 Platform and boot model . 49
3.4.3 OP-TEE software model . 51
3.4.4 Refining TrustZone implementation in gem5 to support OP-TEE 53
3.4.5 Our typical OP-TEE scenarios . 54
3.4.6 Third Party IP simulation . 54

3.5 Conclusion . 58
3.A Appendix . 59

3.A.1 GDB API in gem5 -Python . 59
3.A.2 ARM system devices in gem5 . 59
3.A.3 Timing gadget on ARM . 60

4 TEE-Time: Simulating to get security insights 61
4.1 Introduction . 62
4.2 Key issues . 62

4.2.1 Cache timing attacks on Trusted Execution Environments . 63
4.2.2 Exploring attack complexity . 63

4.3 TEE-Time methodology . 64
4.3.1 Overview of TEE-Time process . 64
4.3.2 Key Detectable States . 65

4.3.2.1 VictimScan policy: 1hit . 66
4.3.2.2 VictimScan policy: nhit . 66
4.3.2.3 VictimScan policy: nhit_inclusive . 66

4.3.3 Ranking methodology . 67
4.3.4 Attack configuration and Key Detectable States . 67

4.4 TEE-Time implementation . 69
4.4.1 Instrumenting the attack scenario . 69
4.4.2 Dedicated GDB scripts . 69

4.4.2.1 VictimScan . 70
4.4.2.2 Attack Monitoring . 73

4.5 Example: demo cryptographic function . 74
4.5.1 Demo: VictimScan . 74
4.5.2 Demo: Attack Monitoring . 75
4.5.3 TEE-Time: Code coverage . 76

4.6 Attack against RSA signing in OP-TEE . 76
4.6.1 mbedTLS bignum exponentiation . 76

5

4.6.2 RSA: VictimScan . 78
4.6.3 RSA: Attack Monitoring . 78

4.7 Conclusion . 80

5 Rockchip-platform: An accurate simulation model for a real TEE hardware 81
5.1 Introduction . 82
5.2 About the RockPi4 and its RK3399 . 82

5.2.1 CPUs, caches, and bus topology . 82
5.2.2 RK3399 boot process . 83
5.2.3 Security features . 84

5.3 PyDevices: fast prototyping with gem5 . 85
5.3.1 PyDevices: programming model . 85
5.3.2 Building a RockPi4 in gem5 . 86
5.3.3 Retro engineering with PyDevices and Ghidra . 87

5.3.3.1 Bootstraping until the OS . 88
5.3.3.2 PyPowerState and Power Management Unit . 89

5.3.4 Rockchip-platform environment . 89
5.4 Using TEE-Time and Prime+Probe on the Rockchip-platform . 90

5.4.1 Detecting cache configuration . 90
5.4.2 AutoLock and Prime+Probe . 91
5.4.3 Pseudo-LRU: LRU implementation on real hardware . 92
5.4.4 Running an attack on the RK3399 . 92

5.5 A bridge between theory and real-world: attacking OP-TEE on a RK3399 93
5.5.1 Instrumented scenario . 93
5.5.2 Using TEE-Time to search for weaknesses . 94

5.5.2.1 Finding good KEPs against AutoLock . 94
5.5.2.2 Attack Monitoring and real hardware results . 96

5.5.3 Extracting a key from real traces . 96
5.6 Conclusion . 98

6 Conclusion and Perspectives 100
6.1 Introduction . 101
6.2 Overview of contribution . 101

6.2.1 Contributing to gem5 : Trusted Execution Environment and GDB 101
6.2.2 Virtual Security Platform . 101
6.2.3 TEE-Time tools . 101
6.2.4 PyDevices: building the Rockchip-platform . 102
6.2.5 Attacks against hash signing RSA scenarios with TEE . 102

6.3 Future works . 103
6.4 Concluding remarks . 103

Bibliography 105
My publications . 105
Other publications . 105

A Appendix 113
A.1 About gem5 . 114
A.2 About PyDevices . 116
A.3 About ARM . 116
A.4 About RK3399 . 118

A.4.1 Retro-engineering . 118
A.4.2 Covert-channel results . 120

List of Figures 122

List of Tables 126

6

Glossary

SoC : System-on-Chip

ISA : Instruction Set Architecture

TEE : Trusted Execution Environment

REE : Rich Execution Environment

TA : Trusted Application

Trustlet : trusted application

bignum : Large integer (arithmetic)

Vexpress : ARM Versatile Express Platform

KEP : Key Execution Point

KCL : Key Cache Line

KDS : Key Detectable State

WB : WriteBack

ROB : ReOrder Buffer

MMU : Memory Management Unit

DVFS : Dynamic Voltage and Frequency Scaler

RSA-CRT : RSA-Chinese Reminder Theorem

CLI : Command Line Interface

DTB : Device Tree Blob

GIC : General Interrupt controller

EL : Exception Level

LRU : Least Recently Used.

IRQ : Interrupt request

FIQ : Fast Interrupt request

BL : Boot Loader

TFA : TrustedFirmware-A

PMCCNTR : Performance Monitors Cycle Count Register

CNTPCT : Counter-timer Physical Count

ROI : Region-of-Interest

API : Application programming interface

SimObject : gem5 system primitives using Python and C++.

CcObject : C++ element of SimObject.

7

Chapter 1

Introduction

Contents
1.1 Context . 9

1.1.1 Trusted Execution Environment . 9
1.1.2 Micro-architectural attacks . 10
1.1.3 Archisec Project . 10

1.2 Scope: The Archisec Virtual Platform . 11
1.3 Motivations . 11
1.4 Key contributions . 12
1.5 Thesis organization . 12

8

1.1 Context
Systems-On-Chip are single package computing elements that contain all the elements needed to build an embedded
system: CPUs and core complexes (caches, TLB, MMU, interfaces), IO(DRAM controller, UART, etc.), Accelera-
tors(GPUs). . .

Systems-on-Chip (SoC) are used ubiquitously in consumer electronics: fridges, cars, smartphones, laptops, etc. In
some of these devices, typically smartphones, but in increasingly more devices, SoCs present complex user interfaces
(CarPlay, etc.) with non-monolithic firmware, often running a full operating system. These SoCs are hybrids between
high-performance computing and embedded devices. these SoCs typically uses ARMv7-A, ARMv8-A and now RISC-V
as their Instruction Set Architecture (ISA). To simplify development, the same SoCs can also be used in industrial
settings. These SoCs usually rely on a full Operating System (OS), generally Linux. This development model is fully
modular: their OS has modules and runs multiple applications and daemon. All of these elements can have their own
update path, maintainer, and sources. These systems are generally locked down and strongly control what the user can
do and run on them. This strongly isolates applications, allowing them to trust the system.

A weakness in one of the system elements could be leveraged to gain full control, thwarting any protection and
isolation. This makes embedded devices a target for nefarious actors and their security a stake when designing their
hardware and software.

1.1.1 Trusted Execution Environment
To strengthen security in embedded systems, new hardware, and ISA frameworks have been developed in modern systems.
These frameworks, known commercially as Intel SGX [CD16] or ARM TrustZone[Nga+16], allow the deployment of a
Trusted Execution Environment (TEE)[SAB15]. With a TEE, it is possible to protect an application against a privileged
escalation[Dav+11]. Applications running in a TEE are called Trusted Applications (TAs)(figure 1.1), also known as
trustlets.

Hardware Platform

Trusted
Application

DRM

Trusted OS component

HW Keys, Storage, TUI peripherals
(Screen and Keyboard), Secure Element

HW secure Resources

TEE Client API

TEE Internal APIs

Rich OS

Trusted Execution EnvironementRich OS Application Environement

Trusted
Application
Corporate

Trusted
Core

Framework
Trusted
Drivers

TEE
Comm.
Agent

Trusted
Application

Payment

Figure 1.1: Overview of Trusted Execution Environment typical use cases.

9

TEEs are typically used by a wide range of applications: Digital-Right-Management (DRM), banking applications,
secure web browsing, cryptographic libraries, etc. A Trusted Execution Environment generally guarantees for trusted
application:

• Integrity: A trusted application cannot be tampered with after it has been packaged by its developers.

• Confidentiality: The data manipulated by a trusted application should not be accessed and/or altered by other
applications (trusted or not).

• Authentication: Provenance of the trusted application can be validated with a system of signature.

Moreover, the different APIs used by a Trusted Execution Environment (on the rich OS side and on the TEE side) are
thoroughly checked for any potential vulnerabilities. For example, SGX uses a system of encrypted enclaves to enforce
these properties: the code and the data in the enclave are encrypted and decrypted on-the-fly by the CPU (using specific
hardware mechanisms).

Other examples of TEEs are: Trusty[And16], Samsung Knox[Sam15], OP-TEE[YL20], Qualcomm QTEE[Qua15].
Besides Trusty, they all use the GlobalPlatform API definition.[lea21]

1.1.2 Micro-architectural attacks
Indeed, bugs and incorrect implementations of features are sources of weaknesses: such as buffer overflow[One96], use-
after-free[Lee+15], ...; They have been commonly used and patched in OS and critical applications. Countermea-
sures[Cow+98] and design choices have even been developed to mitigate them. Indeed, Trusted Execution Environments
are, by design, less prone to this type of vulnerability as they reduce their interface to the Rich Execution Environ-
ment. On the other hand, Micro-architectural attacks fixes and countermeasures are more complex to deploy. Indeed,
micro-architectural attacks are tightly linked with the platform on which they are used. They take advantage of spe-
cific System-on-Chips behaviors. This behavior might be present as an error in the ISA or something not specified by
it(like instruction latency). These attacks can target all the parts of a SoCs: CPU (flow control units, operators,...),
caches[Per05], memory[GMM16], FPGA[Cha17], GPU[Lad+13], networks interface[DPM11]. etc.

Attacks on CPU cores include the famous Meltdown [Lip+18] which exploits an out-of-order execution vulnerability
in modern Intel processors, and Spectre [Koc+19] which exploit branch prediction for speculative execution. Other
well-known attacks in this class are Zombieload [Sch+19b], Fallout [Min+19], RIDL [Sch+19a]. Caches are also a weak
element that has been exploited: Prime+Probe [Liu+15], Flush+Reload [YF14; Gru+16b] and Evict+Time[OST06].
Both Spectre and Meltdown use Flush+Reload [YF14] attack to retrieve the data. Indeed, these attacks have been
demonstrated against TEEs: “Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s TrustZone”[Rya19].

1.1.3 Archisec Project
To study these micro-architectural attacks and the security of SoC platforms, classical tools like binary instrumentations
are not enough. We need a full simulation platform to reproduce and study this attack in a controlled environment. This
platform also allows the development and testing of countermeasures against these attacks. This is the main objective
of the Archisec Project,studying SoC security with the aid of a virtual platform. This project covers (figure 1.2):

• Cache timing attacks.

• Trusted Execution Environment (TEE).[FDC23] [For+21] [FDC24b]

• Power side-channel attack[BGL23][BL23a]

• Speculative execution.[AM21]

• FPGA related attacks.[BL23b][FBL23]

• DRAM attacks [Fra+22][Fra+21a][Fra+21b] and Emerging technology.

This project has multiple aims:

• Producing reports and surveys about micro-architectural attacks on embedded system and their reproducibility.

• Developing a virtual platform to study said attacks.

Regarding ISA and manufacturers, considering the project’s focus on embedded security, most of the work has been done
on ARM platforms (ARMv7-A and ARMv8-A). Although, the project also mentions RISC-V. With the virtual platform,
Archisec also aims to discover and demonstrate new attacks, using the platform to gain insight into vulnerabilities to
finally demonstrate them on real hardware.

10

L1DL1I

L2

CORE #1 TZ

L1DL1I

L2

CORE #2 TZ

Shared LLC

Memory

Processing System MemoryHardware Accelerators

GPU / FPGA / HW IP

Gem5 SoC model

Power Managment

Attacks from Accelerators GPU/
FPGA and Countermeasures

Cache Timing Attacks & The
Cachyzr Tool

 Attacks on Main Memory and
Emerging memory technology

 Attacks on Core/TrustZone and
Countermeasures

Gem5 SoC modelGem5 SoC modelGem5 SoC model / SoC FPGA Prototype

Gem5 SoC model

Development of A Virtual
Platform for Security Evaluation /

Penetration Testing

Figure 1.2: Scope of the Archisec project

1.2 Scope: The Archisec Virtual Platform
The simulator gem5 [Low+20] has been chosen, to serve as a base for the platform (figure 1.3).

Secure OS

Kernel

Bootrom

Disk Image

Host Trusted
App

Attack

Secure
Workload

GDB

attack_output.log
security_report.txt

attack_labels.log

victim_scan.py
attack.py

*.py

GDB STUB

Read/write

Monitor

Breakpoint

Analyze

Configure

Supervise

config.py

gem5
python

primitive

User-defined
Python implementation

 for system devices

Platform
dynamic

instrumentation
&

User-defined
GDB monitor

functions

Configurable
ARMv8-A

 CPU
& Cache
model

On-chip memory bus
 architecture modeling

Map
into

Produce

Figure 1.3: Overview of the Archisec platform, instrumentation tools,
and simulation capabilities

Its industry-standard status and modularity
were deciding factors for that. (please see sec-
tion 2.2 for more detail). Most of the work
of this thesis has been done using gem5 and
comparing its results against real platforms
when necessary. Although gem5 support a
wide variety of ISA (X86, ARMv8-A, RISC-
V, ...), this thesis only focuses on ARMv8-
A. More specifically, my examples and attacks
use aarch64 instructions. As I was in charge
of developing the TEE component of the plat-
form, this thesis mainly covers its implemen-
tation in gem5 and the research related to
it. Attack-wise, most of the thesis leverages
cache timing attacks. With this platform, de-
scribed in figure 1.3, we can integrate a real
secure workload in a Python programmable
SoC model using a wide variety of primitives
which integrate with the gem5 simulator. We
can then use GDB, in tandem with the plat-
form, to follow the execution of our unmodi-
fied secure workload and analyze its behavior in a simulated environment.

1.3 Motivations
On customer devices, Trusted Execution Environments deployment and development is the privilege of the original
equipment manufacturer. This is necessary to prevent any tempering once the device is in use. If the end user can deploy
applications and use the TEE, they do not have full access to debug information and can not study an application that
they did not create. In that regard, it becomes harder to study the security properties of TEE, although static analysis is
still possible. However, micro-architectural attacks are intricate attacks and are demonstrated in proof of concept which
often requires precise knowledge of how an application is deployed. This type of attack is thus complicated to study
statistically without gathering information about their execution environments. Trying to deploy such attacks without
any certainty of an expected result is illusory. With these assumptions, it seems that such attacks can be efficiently

11

demonstrated only by the original equipment manufacturer. To bypass this security by obscurity scheme, we proposed to
leverage a configurable simulation model to imitate the micro-architectural behavior of the real hardware while keeping
the same binary workloads (trusted applications, disk-image, bootrom, etc.). And, since simulation is widely slower
than the real hardware, we have to design new methodologies that simplify the attack exploration without requiring too
many simulation runs. In that regard, we can leverage the possibilities of a simulation environment to access internal
micro-architectural states and exposed them to external tools for study.

1.4 Key contributions
In this thesis, I present the following contributions, which have been presented to peer-reviewed conferences and journals:

• For the first time (to my knowledge), I developed an open-source virtual platform capable of booting GlobalPlatform-
compliant TEEs and rich OSes (Linux). (presented in [FDC23])

• Thanks to the gem5 GDB -integration, I opened up the possibility of gathering and analyzing cache traces on the
fly during simulation. (presented in [FDC23])

• I built TEE-Time, a cache analyzer relying on this principle and demonstrated it against a real cryptographic
implementation. (presented in [FDC24b])

• I developed using gem5 a fast-prototyping method in order to port the RK3399 [Roc21] platform to gem5. (presented
in [FDC24a])

• I used this RK3399 virtual platform and TEE-Time to build an attack against the RSA implementation in OP-TEE
running on a real RockPi4. (presented in [FDC24a])

1.5 Thesis organization
In the first chapter, we present the state-of-art related to SoC and their simulation, specifically gem5 and how it is
used to study security issues. We then detail the typical security features of embedded systems. Finally, we cover the
typical micro-architectural attacks that circumvent these security features. In the second chapter, we detail how we built
our gem5 virtual platform for security. In this chapter, we focus on three aspects. The platform: how to leverage the
simulation environments in gem5 to study security issues, the attacks: how to implement and run real aarch64 attacks
in gem5, the TEEs: how to run in gem5 a Trusted Execution Environment that can represent how victim applications
are protected in typical systems. Then, in the third chapter, we present a new methodology that leverages the platform
and tools we built to study more efficiently a victim using all the information that can be extracted from gem5 (cache
states, internal CPU states, ...). This methodology generally allows to dynamically reconfigure gem5 using GDB. This
technology was proposed in multiple papers under different names: VictimScan or TEE-Time published in [FDC23] and
[FDC24b]. It is a demonstration of the gem5 virtual platform for security possibilities. In the final chapter, we cover
how we improved our platform to simulate a typical attack scenario against a RSA application using recommended
security practices without any modification. We explain then how we leverage the tools we presented in the third
chapter to configure an attack . This attack successfully extracts a partial key in both simulation and on a real RockPi4
board. Finally, we conclude on all the possibilities rendered open by our new and now-proven methodologies and virtual
platforms.

12

Chapter 2

State of the art: security and simulation for
embedded systems

Contents
2.1 Introduction . 14
2.2 System-on-Chip simulation . 14

2.2.1 Simulators . 14
2.2.2 gem5 : the SoC simulator . 16

2.2.2.1 Principle . 16
2.2.2.2 SimObjects: gem5 primitives . 17
2.2.2.3 Models advantages and limits . 18
2.2.2.4 Memory model . 20

2.2.3 System element modeling . 21
2.2.4 gem5 for security in literature . 23

2.3 Security in embedded systems . 23
2.3.1 Operating system security . 23
2.3.2 Attack scenarios . 24
2.3.3 Execution Privileges . 25
2.3.4 Trusted Execution Environment . 26

2.4 Micro-architectural attacks . 27
2.4.1 Side-channel attacks . 27

2.4.1.1 Cache timing attacks . 27
2.4.1.2 Higher-level cache attacks . 28
2.4.1.3 Static and dynamic cache analyzer . 29
2.4.1.4 Other side-channel attacks . 29

2.4.2 Transient execution attacks . 29
2.4.3 Fault injection attack . 30

2.4.3.1 Typical fault injections . 30
2.4.3.2 Hadware memory corruption: RowHammer . 31

2.4.4 Accelerator attacks . 31
2.4.5 Trusted Execution Environment attack in literature . 32

2.5 Conclusion . 32

13

2.1 Introduction
Security and simulation technologies are widely explored themes on their own. To understand how micro-architectural
attack works and how to simulate them: We will also have to cover the basic elements of system security.

2.2 System-on-Chip simulation
To thoroughly investigate the properties of a program’s execution, particularly its interactions with hardware, leveraging
a fully virtualized environment offers unprecedented opportunities for instrumentation. Unlike real hardware, constrained
by the visibility afforded by integrated debuggers (if available), a virtual platform can simulate program executions while
meticulously observing specific interactions with the hardware. This capability renders simulators indispensable tools
for in-depth security analyses.

2.2.1 Simulators

AI B
1 3

42

clk

clk

A
2
3

B

4

4

I
1

Event sensibility
for combinatorial computation

Figure 2.1: RTL simulator: when input is updated, all the
logical gates that depend on it are computed, w.r.t clock-
edge sensibility. Intermediate signal are stored for future
computation, as any signal update is generally considered
atomic.

Simulators try to replicate how a SoC executes a workload.
They can model components at different level ([Vah10]):

• Register Transfer Level (figure 2.1): It represents
a logical element as sets of net, registers, gates,
and memory. It can be generated by a synthe-
sis phase from a HDL (Hardware Description Lan-
guage). RTL simulator models how signal and reg-
ister states evolved in response to outside signals.
An RTL model can represent a simple component
(e.g., a PWM controller, a UART PHY, etc.) or a
complex one (e.g., an out-of-order CPU) up to a full
System-on-Chip. For that, RTL simulators use an
event-driven approach that uses time at ps scale to
organize events way below cycle time length. Fig-
ure 2.1 illustrates how the RTL simulators compute
signal updates using sensitivity lists for each combinatorial operator. RTL model can encompass information about
a placed and routed standard cell implementation. In this case, simulators can account for considerations related
to an ASIC or FPGA design (clock analysis, power analysis, etc.) RTL simulators are typically integrated into
synthesis tools like Platform Architect/VCS from Synopsys[Syn21]. They are generally closed-source.

data data data data

datadatadata

packet

packet

request

response

response

requestDevice

GPU

membusCPU

pipeline model

fetch DEC EXEC

Figure 2.2: Behavioral simulator: component with different
model types, exchange messages.

• Behavioral level (figure 2.2): At this level, SoC
elements are represented as behavioral descrip-
tions. They detail, in Hardware Description Lan-
guage(HDL) or other system languages (like sys-
temC), how an element of a SoC behaves in response
to outside signals. The same description can be used
to generate a RTL model. On the contrary, behav-
ioral level models can be abstract, unsynthesizable,
only giving a higher-level view of actual hardware.
Behavioral level models are simulated at the cycle
level and below using an event-driven simulation.
However, the simpler the model the faster the sim-
ulation is. This is why, outside of HDL verification,
abstract models are preferred. As they still repre-
sent signal evolution at clocked interfaces, abstract
models can be used to verify performances (typically
operation per cycle). They can also model more efficiently a component at the interface of a synthesizable model

14

or a RTL simulation. This diversity of model is illustrated on figure 2.2 in which abstract C models for devices
and GPU interact with a SystemVerilog model for the CPU and a SystemC model for the bus. An example of a
behavioral simulator is Verilator[Sny13], which can simulate Verilog. SystemC[Swa01] was designed with system
simulation in mind to simulate a full system: It contains both abstract and synthetizable models. SystemC is both
a language and a library, with implementation in both open-source and closed-source tools.

SoC model

Simulator

bin

Memory

Devices
Model

CPU
ISA

Virtual
Bus

binWorkload

Platform
Model

Emulator

bin

ISA
ModelHost

CPU

Recompiler

Use &
Update

Figure 2.3: Emulator: an emulator only reproduces the func-
tional effect of the ISA and system components. Aspects of
systems that are platform dependant (performances, ran-
domness, etc.) are not reproduced

• ISA level (figure 2.3): At the Instruction Set Ar-
chitecture level, models only account for the func-
tional effect of instructions including visible effects
on peripheral devices (video output, terminal mes-
sage, etc.). For example, emulators simulate CPUs
at the ISA level, ignoring pipeline effects. As they
only model the effect of instruction on the ISA state,
they are used to test ISA and develop software. In
that context, they are called Virtual Model. Be-
cause of their simpler nature, their simulations are
marginally faster than behavioral models. In some
cases, these models are integrated into behavioral
and RTL simulators to accelerate simulation. They
are often described as Functional Model. ARM Fast-
Models[ARM21b] are examples of virtual models for
ARMv8-A architecture. QEMU [Bel05] is an exam-
ple of an open-source emulator. It can simulate dif-
ferent ISA and platform features by implementing
functional models of peripheral devices. It uses ASM
recompilation to accelerate emulation through its Tiny Code Generator. On figure 2.3, we compared the architec-
ture of simulator (like gem5) which contains models for internal SoC elements and an emulator (like QEMU), which
translates the binary to natively run on the host machine CPU with a recompiler. To reproduce the functional
effects of the binary executions from the original platform, the emulator contains an ISA model that is updated by
the recompiled binary. However, the original platform’s unintended behaviors are lost because of the translation.

This different type of simulation can be integrated into mixed simulators that simulate different parts of Systems-on-Chip
with different precision to only study specific properties. In [Smi97], Smith describes lower-level simulations for ASICs:
Gate-level simulation, switch-level simulation, and transistor-level simulation.

Our suggested simulator, gem5 [Low+20], is widely used in computer architecture research. It is a system simulator,
which means it simulates a complete system and not specific logic components. It mostly uses abstract models to model
CPU, caches, and RAM. On the other hand, it uses functional models for peripheral devices. Considering that our
requirements for our virtual platform are:

• To run full SoC workloads which interact with secure enclaves.

• To provide accurate models for the micro-architectural attacks that reproduce observable effects of real hardware.

• To instrument the model used for the simulation to gain more insight into security properties than what is possible
on a real platform.

• To perform efficiently for the scenarios we want to reproduce.

In table 2.1, we compared different simulators to make educated choices on which simulator is suitable for our project.
When factoring our ISA constrain (ARMv8-A) and open-source requirement, considering that we need to be able to
modify the simulator, we concluded that gem5 was the most adequate choices for our project.

15

Real Platform gem5 [Low+20] QEMU[Bel05] SystemC Cycle
Model[ARM17b]

Easy to use
� : standard use
case.

− : have to be con-
figured to operate
like our real plat-
form.

� : is compatible
with most software

� : we need to find
or write a model
for our real plat-
form.

Speed
� :fastest − :slow � :fast � :slowest

Modifiable/Adaptable
� : cannot be
modified

� : highly cus-
tomizable

� : customizable
but no separate
config files

− : modifiable but
requires complex
SystemC model.

Accuracy
� :model for accu-
racy

− : model micro-
arch to an extent

� : does not model
micro-arch

� : only omit ther-
mal effects and in-
terface noises

Instrumentation
� : JTAG are
locked on secure
platforms

� : designed to ex-
tract architecture
statistics using in-
strumented work-
loads

� : implement
hooks to dynam-
ically instrument
binaries

− : JTAG interface
is available.

Table 2.1: Comparison between simulators and the real platform as a reference. We can see that gem5 is a suitable tool for
our use case.

2.2.2 gem5 : the SoC simulator
gem5 [Low+20] is an open-source simulator that comes from the fusion of m5[Bin+06] and GEMS[Mar+05] simulator.
It is widely used in the computer architecture community to test and demonstrate functionalities and design, checking
the effect on performance and software behavior.

2.2.2.1 Principle

As gem5 separates hardware models and ISA, it features implementation for classical ISA (x86_64, ARMv8/v7, RISC-V,
MIPS,...) [Low18] which can be applied to any CPU model (in-order, out-of-order,....).

It works as a Python interpreter that can be used to build a full architecture in Python and then simulate its behavior
by invoking a Python function. It can be provided with Python files called Config Files or Config Scripts. They use the

m5 implemented by gem5 using pybind11 [JRM17]. When run by gem5, Config Files use the specific primitives
provided in m5 to: configure a SoC architecture, connect all the elements, run the simulation loops and react to its
return value (e.g. taking checkpoints, compiling statistics). For all other considerations, these config files are normal
Python files that can use other Python libraries. gem5 has two main simulation modes:

• SystemCall Emulation (SE): gem5 runs a Linux/BSD application while only emulating the system calls (High-Level
Emulation).

• FullSystem (FS): gem5 simulates the complete system. The loaded binaries are firmware and bootroms.

gem5 can also be implemented as a library. gem5 simulation uses an event-based simulation with event queues behaving
as a priority queue. Events can be scheduled at ticks, which organizes them in the queue. In each simulation loop, the
event scheduled at the earliest ticks executes its workload, which corresponds to the model of a certain SoC element.
This event is then retired, and the process can continue to the next simulation loop. These event queues are represented
on figure 2.4. Each event is symbolized by a square and is ordered by tick. We see Object4 scheduling an event on queue
1. Its event is inserted in the queue using its scheduled tick. Events are then popped out of the queue from the lowest
tick, which corresponds to the queue CurTick. As shown on figure 2.9 and figure 2.8, when they are popped out of the
queue, the event’s process() method is called. This method triggers functions in their related object which in turn
can interact with other objects and schedule other events (with schedule(event, latency)).

16

Object1(id=0)

Object1(id=0)

Object1(id=0)

Queue 0 Queue 1

curTick: 5 curTick: 15

5
10
10
20 25 Object4(id=1)

Object5(id=1)

30

15
15
15

30
Scheduling event

Figure 2.4: Simplified representation of gem5 event queue (gem5 only use the queue 0)

gem5 can be compiled in different binary depending on the optimization wanted:

• gem5.debug : Debug version with few optimizations

• gem5.opt : Classically optimized but with debug messages

• gem5.fast : Most optimized version, no debug message.

2.2.2.2 SimObjects: gem5 primitives

SimObjects are the basic component of the gem5 simulation. They are the main gem5 primitives. Everything in a gem5
simulation, CPUs, memory, cache, devices, etc. are SimObjects. SimObjects are assembled and linked in the Python
config file. In the same .py file, SimObjects are then instantiated using a dedicated Python function. SimObjects consist
of :

• Python Class: It is used in the Python config file to build the architecture

• Param Class: An automatic generated C++ class that goes with this Python class.

• CcObject Class: A manually written C++ class that is instantiated using the Param Class Object. (also called
CxxClass)

Most of gem5 ’s execution is made of compiled C++ code, either in SimObjects or helper objects that are not visible
from Python. In the config file, through explicit and hidden attributes, SimObjects constitute a tree of objects, with
a special Root SimObject as the root of the tree. On figure 2.5, we represent this operation performed by gem5 which
build a SimObject tree when it runs the config file using libpython.

The node of this tree, SimObjects, can be configured using an attribute called Params in gem5. On figure 2.5, we see
their affectation in Python as attributes of their SimObject. Params can be:

• Classical variable type: String, Int, ...

• Simulation-related variable type: Tick, AddrRange, Enum, ...

• Other SimObject Python classes.

• Port of different types that have to be paired with same-typed ports.

It is this SimObject as a Param relation that creates the SimObject tree. In addition, it is also possible to provide proxy
values to this attribute, this is represented on figure 2.5 using the cpu_clk SimObject and its proxy alias clk. These
proxies can also automatically search in the SimObject tree for a correct value for the attribute and then forward it. The
proxy link is only resolved at the start of the exponentiation. When the architecture is completely defined, meaning that
all the SimObject attributes have been filled in the config file. The user can called m5.instantiate to instantiate
all the SimObject :

1. The Python class object transfers all the Params to the Param Class object.

17

memSidePort
cpuSidePort

port memSidePort
cpuSidePort

system

Root

CPU

Membus
<XBar>

L2_Cache
<Cache>

cpu_clk
<ClockDomain>

clk
<ClockDomain>

CPU

L1I_Cache

DRAM
libpython

<system>

<X86O3CPU> <X86O3CPU>
EtoFcycle

frequency

config InstPort
DataPort

size

memSidePort
cpuSidePort

L2_XBar
<XBar>

memSidePort
cpuSidePort

L1D_Cache
size

memSidePort
cpuSidePort

X86ISA

config.py

proxy link

Proxy
SimObject

Figure 2.5: Image of the tree of SimObject and Params that is created by config files in gem5

2. The Param Class machinery produces the CcObject class, by using itself as arguments for its CcObject constructor.

3. Ports at the C++ level are paired with the one they are paired with in the config file.

config.py
#instantiating root (the first SimObject)
root=Root(full_system=True)
#this function adds children SimObject to the

root.↪→

add_children(root)

#this instantiates all the children and resolves
the proxies↪→

m5.instantiate()

#launch the simulation
m5.simulate()

Figure 2.6: Typical config file for gem5 written in Python.

When all the objects are ready, the user can call
m5.simulate() to launch the simulation. The
startup() function will be called for each SimOb-

ject at the first simulation loop. As we explained, SimOb-
jects can then interact with the event queue by schedul-
ing events (see figure A.1). Each SimObject schedules
events on a queue that is automatically determined by
parent SimObjects on the queue or user-specified manu-
ally. However, multiple event queues are generally a source
of crashes and should not be used for closely interacting
SimObjects. On figure 2.6 is a simplified typical gem5 con-
fig file. These files are organized as we mentioned, with a
part building the SimObject tree starting from the root,
a called to m5.instantiate() to instantiate all the
C++ models. and finally a called to m5.simulate()
to launch the simulation. This last function terminates when specific events (simulation exit events) are reached or when
there are no longer any event in the event queues.

2.2.2.3 Models advantages and limits

gem5 splits hardware models and the ISA implementation, which allows the CPU model to be independent of the
ISA used. gem5 provides different CPU models. We provided an illustration for each of them on figure 2.7 and a
demonstration of their execution behavior:

• SimpleCPUs: called AtomicSimple and TimingSimple, these CPUs only have one pipeline stage, which is artificially
separated inside between fetch, decode, and execute. It interacts with the two ports (instruction port and data
port). This stage is triggered at each clock tick (program with a scheduled event), which is postponed if a memory
transaction latency needs more time. Instructions can only be executed in order.

• Minor: an in-order CPU model. It uses a basic pipeline. Each stage is independently ticked and is only stalled by
the further stages being busy. Each stage has an independent latency and throughput. Moreover, the execution

18

IF DEC EXE
IF DEC EXE EXE:LSQ

IF1 IF2 DEC
DEC

DEC
IF2

IF2

EXE

EXE

EXE

FETCH
1

FETCH
2

DECODE

Load
Store
Queue

EXECUTE

Registers

WB

WB
regs

Data
Port load/store

FETCH
DECODE RENAME

ROBs

Load
Store
Queue

EXECUTE

COMMIT

Data
Port load/store

WB

WB

Instruction
Port

Wide
Fetch

clk

SimpleCPU
1-stage CPU

Minor
in-order pipelined CPU

O3
out-of-order pipelined CPU

IF EXE
EXE:LSQ

EXE

DEC REN
RENDEC
DEC REN COM

COM
COM

IF
IF

REN

clk

scheduleData
Portload/store

Fetch
Decode
Execute

Instruction
Port fetch

Instruction
Port

Wide
Fetch

Figure 2.7: Overview of CPU models in gem5. They represent typical CPU architecture. Their pipelines tick following a clock
which is modeled using regular events

stage can have a different latency and throughput for each type of instruction. This latency difference can create
bubbles in the pipeline, as shown on figure 2.7. This CPU model can perform wide instruction fetch, which is then
separated into multiple instructions by the Fetch2 phase. ARM proposes their special configuration for Minor:
HPI and ex5_little. Their latency and throughput have been fine-tuned to resemble ARM CPUs.

• O3: an out-of-order CPU model. It features a full out-of-order pipeline that can independently tick each stage
and schedule instructions to be executed on the different execution units at the same time, out-of-order. Similarly
to Minor, it can be configured independently of the ISA. For example, the count of ReOrder Buffer (ROB) and
internal registers for renaming can be tuned using Params. It also supports branch predictor defined as a Param
SimObject, which allows the user to propose their own branch predictor (see section 3.2.1.2). ARM also proposes
its special implementations: ex5_big. It imitates a Samsung Exynos 5 "big" CPU.

These CPU models are not monolithic SimObjects and contain sub-SimObjects that handle some functionalities. These
sub-SimObjects can be selected independently to specify these behaviors. In addition to the branch predictor we men-
tioned about O3, all the CPU models have a dedicated SimObject for the MMU which is, by default, the one provided for
the associated ISA. gem5 also proposes power models, taking the thermal feedback loop into account. These models have
been built using theoretical knowledge of CPU design. They are not a close representation of any real CPU. Furthermore,
although these model can be customized, their results, especially their performance, are not representative of a specific
real platform. These models have to be used knowing the effects researched.

We mainly rely on gem5 ’s ability to model cache behavior and its interaction with speculative execution. To model
cache, gem5 contains parametrizable simple cache models. By connecting them with CPUs inside a SubSystem
SimObject, they can model multi-level cache systems. Inside this cache model, there are other sub-SimObject that
handle functionalities and that can be selected independently:

• Replacement policies: which select which cache line should be evicted among all the possibilities.

• Cache tags: which describes where a cache line is stored and what are all the possible aliases for this cache line.

• Hardware prefetcher: which describes how the caches prefetch line (it can also be absent).

Basic cache properties (associativity, size, latency, etc) are defined using simple Param value. Another complex cache
system is also provided by gem5 : it is called RUBY. Using a specific language called SLICC, the cache-coherency protocol
is described and compiled. gem5 then produces SimObject representing not only cache, controller and interconnect. They
can be assembled to create a full cache system interfaced with their own type of port. The RUBY cache system can
then be connected with the normal port system between memory and CPUs.

19

Figure 2.8: Atomic model: two memory transactions through ports between SimObjects1 and SimObjects2. A SimObjects1
event is processed, which requires sending a packet to SimObjects2.

2.2.2.4 Memory model

In gem5, the memory hierarchy is represented using port Param, we detailed in section 2.2.2.2. Memory SimObjects,
like caches, memory-mapped devices, or membuses, come with ports which can be connected to represent a memory
connection between two devices. During simulation, these ports pass packets representing memory transactions[Low24a].
However, the responses are not handled in the same way and are just provided to the requesters (CPU, cache, ...) by
editing the packet and transforming it into a response packet. This response packet can, however, be transmitted to other
SimObject in its "way" back to its original requester to account for cache coherency (e.g. snooping response packet).
This memory protocol, and by extension the port Params associated with it, is called the packet protocol. There are
two modes for handling timing:

• Atomic (figure 2.8): The communication between CPU and memory traveled once through caches with only one
event scheduled. Latency is added along the way, with each device in the memory transaction adding its own
latency. Then, the CPU decides how this latency is implemented (AtomicCPU, for example, postpones the next
cycle if latency is bigger than a cycle length). On figure 2.8, we represented a simple atomic transaction between
SimObjects1 and SimObjects2.

• Timing (figure 2.9): At each step between two memory devices, some events are scheduled that take into account
each device’s added latency. So each device event handling function (process()) finishes when they have to
communicate with another device. In that context, the receiving device has to schedule a new event to handle the
rest of the transmission. This process continues until the transmission reaches its final destination, and then the
response follows the same process but in reverse. On figure 2.9, we represented the different communication scheme
between SimObjects1 and SimObjects2. First, a successful packet transmission from SimObjects1 to SimObjects2.
SimObjects2 schedules an event to respond later. The second transaction is a back-pressured transmission from
SimObjects1 to SimObjects2 ; SimObjects1 wait until the SimObjects2 authorized a retry. The third transaction
is a response from SimObjects2 to SimObjects1 for the first transaction, which is then followed by a retry event,
which will be in charge of warning SimObjects1 that it can send the pending packet. Finally, the last transaction
corresponds to the SimObjects2 sending a retry request which is immediately followed by the SimObjects1 sending
its packet again and SimObjects2 scheduling a respond event which will be similar to the third transaction.

There is a third mode called Functional that can be used in addition to other modes to only account for the functional
effects of memory accesses. This mode generally behaves like an atomic access with no latency. The caches that use
the packet protocol rely on snooping packets inside the crossbar that connects them. This snooping system represents a
basic cache-coherency protocol. For example, it allows caches to share lines with other same-level caches.

20

Figure 2.9: Timing model: two memory transactions through ports between SimObjects1 and SimObjects2, the second one
get back-pressured.

2.2.3 System element modeling
Full system workloads also contain interaction with other embedded devices. These devices, either memory-mapped or
accessed through buses handled by other devices, mostly represent interfaces to the outside world for SoC (UART, GPU,
disk, etc.). They also handle behaviors that are necessary for a system to function (timers, power controllers, etc.).

Indeed, gem5 proposes a functional model for these devices in order to run their associated full system workloads. If
we take, for example, the BCM2837[Pi22] from a Raspberry Pi 3B, we can identify how gem5 would model each of its
devices. It features :

• UART0, UART1: They allow connection to the Raspberry Pi using a serial port. For that gem5, contains multiple
implementations of UART, they all connect to a Terminal Object which makes them accessible from a telnet

21

connection from the host running the simulation. Otherwise, they store everything printed to the terminal in a file
in the m5out folder1 .

• Integrated memory: They are integrated SRAM or ROM. gem5 models them using SimpleMemory which can
be preloaded with specific binary.

• GPU or other graphical devices: gem5 proposes a MALI GPU from ARM implementation using the nomali library.
It also features an ARM HDLcd controller. This is generally not used in gem5.

• Interrupt controller handles interrupts and can be configured to distribute them specifically if it is mostly a
memory-mapped device on the BCM2837 (GiC), its main model in gem5 is integrated into CPUs. CPUs models
in gem5 use an abstract interface for interrupt controllers. This way any ISA implemented in gem5 can provide,
as an ISA device, an implementation for its own interrupt controllers.

• Timers: They interface with the interrupt controller. In gem5, there are timer implementations that generally
target a specific ISA, but they are implemented as normal devices. They interface with the interrupt controller in
gem5 using a Pin object which links them with a specific interrupt number.

• USB: Through a USB controller, devices can be accessed and communicate with a system. gem5 can simulate a
keyboard input, but it does not use USB and prefers to simulate a PS/2 interface. Besides that, gem5 does not
model USB devices.

• eMMC, SD card: These interfaces are used to connect storage mediums. They are handled by an integrated
controller. On the Raspberry Pi board, an SD card can be connected using an SDMMC controller. On gem5,
disks can be connected using VirtIO devices(Virtio is a simplified interface for devices exposed by a hypervisor).
gem5 also supports IDE controllers as PCI devices to connect drives in a simulated IDE environment. gem5
ARM implementation also provides a Universal Flash Storage (UFS) implementation through a memory-mapped
controller.

Similarly, on other systems, storage mediums can be connected using SATA or NVMe.

• DMA controller: This controls how devices access memory and allows programming transfer between different
memory spaces. Some devices on gem5 can have access to memory through DMA requests. These devices inherit
from the DmaDevice class. They are, however, no specific controller that can monitor device access to memory.

• I2C, SPI0, SPI1, SPI2, Pci-express: using integrated controller the BCM2837 can handle these different type of
buses. They can connect to memory, sensors, probes, storage, actuators, etc. gem5 only models I2C and PCI
controllers and, besides the aforementioned IDE controller, gem5 only models: A copy engine, an AMD GPU, and
an ethernet controller (no I2C devices are modeled).

• PCM/I2S: IšS is used to connect a system to audio devices by sending Pulse-Code Modulation data (PCM). This
information can be used to play sound in a remote digital-to-analog converter. Audio-wie, gem5 only proposes a

PcSpeaker model, which does not account for audio output.

• GPIO & PWM: To connect more directly to sensors and actuators, General-Purpose IO and Pulse Wave Modulation
can be used on configurable SoC physical pins. GPIO and PWM are not modeled by gem5.

• PowerManagementUnit & Dynamic Voltage and Frequency Scaler: they are used to monitor the power envelope
of the SoC and adapt frequency and voltage to avoid overheating. In gem5 a power model can be connected to
CPU and GPU models to account for the relation between used processor cycles and thermal power dissipated.
By connecting power models to a thermal model, gem5 can simulate SoC temperature. Conjointly with a DVFS
controller model, gem5 can model DVFS retro-action on frequency and voltage.

In gem5, all of these devices are children of Platform SimObject which represents the type of hardware platform
that gem5 currently models. For X86, it is called PC . To run a FullSystem workload, we have to verify that it is
compatible with the platform SimObject implemented in gem5. If not, we have to create our own platform, which may
require our own devices.

1we explain more about this gem5 output folder in section 3.2.2.

22

2.2.4 gem5 for security in literature
Several usages of gem5 for security evaluation can be found in the literature. They can be divided into hardware and
software categories. Firstly, gem5 has been used to identify software vulnerabilities related to micro-architecture, such as
cache timing. [Wu+18] presents such an approach. CacheD [Wan+17] is another static analysis tool for software cache
information leakage, which uses gem5 simulation to validate the results.

GDB

Victim Attack

Special
Model

Binary

GEM5
GEM5

GEM5

Scripts Binary

(A) (B) (C)

m5

Figure 2.10: methodology comparison between article; Ours
is (C)

For hardware vulnerabilities, [BY19] demonstrates a
denial-of-service attack targeting writeback cache buffers,
on gem5. [KDG20] demonstrates a covert channel using
gem5. [Yan+19] reproduces Spectre attack in gem5 sim-
ulator and proposes a countermeasure by adding a specu-
lative buffer, changing the coherence protocol, and the D-
TLB operation. Similarly, [FFY19] proposes a hardware/-
software combined countermeasure, by modifying the out-
of-order processor model and the Linux kernel to map non-
speculative pages. [AJ20] is another countermeasure for
Spectre demonstrated on gem5. [Wer+19] evaluates cache

set randomization as a countermeasure for cache attacks on gem5. [Yu+19] is a work based on gem5, which explores
the effect of various cache parameters and policies on information leakage.

There are two typical way to use gem5 in the literature (figure 2.10):

(A) uses gem5 as a special simulator by adding function or using m5 instructions to monitor directly the binary

(B) uses gem5 as a way to simulate an attack, sometimes with a countermeasure implemented in gem5.

This thesis proposes a third method:(C). In this method, monitoring is offloaded outside gem5, using it as a simulator
(like B) while monitoring execution (like A).

2.3 Security in embedded systems
Compared to simpler micro-controllers, modern SoCs can run Operating Systems (OSs) and thus feature internal mech-
anisms to enforce process isolation. Without being necessary multi-tenant, a modern embedded system can run code
provided by diverse actors, some being potentially nefarious or compromised.

In this section, we cover the common security features in a SoC. These are the tools that create isolation layers
between programs/operating systems and secure monitors.

2.3.1 Operating system security
Tools to build an Operating System (OS) are integrated in most modern ISAs. These tools allow isolating user applications
from the kernel through the implementation of virtual memory. This possibility is the main difference between ARM-M
(ARMv8-M), which only allows baremetal programming, and ARM-A, which features a Memory Management Unit. For
each application, the MMU creates a virtual memory space with its own page table base. An application can only access
what is in its virtual memory. page table base points to an array of pages indexed by virtual addresses and pointing to
physical pages. Each page can be either a last-level entry (with different page sizes depending on the level 4kB, 2MB,
1GB) or point to sub-page tables. The page table is explored either manually by the OS, which registers the translation
in the MMU, or by a hardware page walker like on ARMv7-A and v8-A, which only requires OS intervention if page
walking fails. The pagetable base is held in a dedicated MMU register, which is swapped when the OS switches between
applications (applications page tables can have pages in common).

As access to MMU registers would allow an application to have access to all the memory space (including memory-
mapped devices), the operating system keeps control over the MMU. It keeps its own pagetable in a dedicated MMU
register. This is done through the execution privilege system. This page is only active when the OS takes over execution
through interruptions (IRQ) and is disabled when switching back to unprivileged applications. As shared libraries are
often made accessible to applications through shared page entries, MMU needs to enforce strict read-only access to their
pages. This is done through read-only flags present on page table entries. In addition, to protect applications from
buffer-overflow attacks[One96], the MMU also implements a strict NX flag (No eXecute) in pagetable entries. This flag
prevents an application from executing data placed in an NX-flagged page. The OS prevents all pages from having none
of the read-only or NX flags, implying that a page should always be either read-only or not executable.

23

However, buffer overflows are still possible with NX bit using execution gadget[One96] already present in executable
pages. With these gadgets, an attacker-controlled executable page can be created in a victim application memory. OS
made these types of attacks impractical by randomizing virtual memory layouts with Address Space Layout Random-
ization (ASLR)[NZ19]. Generally, it is not possible for a process to access any information about its own page table
mappings.

App App App App
Kernel Kernel

Hyperviser

Secure Firmware

Figure 2.11: Execution priv-
ilege: using MMU isolation,
multiple levels of application
can run on a single system.

As last-level CPU caches are generally physically indexed, this can represent an issue
when trying to control cache content from a process with minimum privileges. In fact,
on ARMv8-A, all the caches are Physically Indexed, Physically Tagged (PIPT) as the
MMU operates before caches. Above the OS privilege level, there exist higher execution
privileges, represented on figure 2.11. They also use the MMU for their own isolation:

• An hypervisor supervises hardware isolation for multiple OS. With a new stage of
MMU address translation, it gives each OS a virtual memory space that they can
redistribute using their usual MMU address translation. This is reserved for server
environments and is usually not present on embedded systems.

• A secure firmware: above hypervisor, it supervises system security features. It uses
these security features to control workload validity at boot time. It tightly locks
these functionalities to prevent any tampering from a potentially compromised OS.

2.3.2 Attack scenarios
The committee on National Security Systems[DUK15] defines an attack as any kind
of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information system resources or the
information itself. An attack can be an attempt to access data, functions, or other restricted areas of the system without
authorization. An attacker can also monopolize or destroy the resources they were supposed to share with other users,
typically in the case of a denial-of-service attack [BY22]. Indeed, an attacker can use a variety of ways to reach their
goal: physical attacks, remote attacks, etc... [PMB15]

Software Interface
Sy
st
em
 &
 C
PU

Attack Surface

V
Firmware & OS

A

Hardware bugs

Ph
ys

ic
al

si

de
-c

ha
nn

el

Si
de

-c
ha

nn
el

Weaknesses

Fault Injection

Fuzzing

A

Local
Deploy

Remote
Deploy

Attacker
Figure 2.12: Embedded attack scenarios: An attacker tries
to attack a program running in an embedded system (V).
It can run an attack program (A) on the target or use a
physical medium (black arrows) to attack the victim (V)
in order to bypass its interfaces (puzzle pieces around the
victim). These constitute the victim attack surface.

However, as we mainly focus on embedded systems,
we discuss attack scenarios that are related to those. As
shown in figure 2.12, typical attack scenarios against em-
bedded systems, imply:

• A secret or functionality held by an application, the
OS, or any system element that will be targeted by
the attack. The target of the attack is called the vic-
tim. Generally, there are specific use cases circum-
vented by the attack: Some applications normally
have access to this secret or functionality, but the at-
tacker should not. A typical secret is a cryptographic
key. This victim is protected from intruders using
different system functionalities working in tandem to
create an interface isolating the victim’s secret: the
victim software interface is programmed using the
firmware and OS primitive implemented using the
CPU and system functionalities. This green shielded
V is used throughout the thesis to represent this idea
of victim program.

• The attacker can have physical (black arrow) or re-
mote access (white arrow) to the victim system. In
our scenario, an attacker has execution rights but
not at the highest privilege. The attacker can run
an attack on the target system, but some system
functionalities are not accessible to it. We represent
this attack program as a black virus, like on figure 2.12. For physical attacks, the attacker may not even be able
to run programs on the target system using physical side-channels.

24

• The attacker uses the direct or indirect interfaces it has with the victim. It circumvents their intended behavior
to gain access to the secret or functionality it seeks. These interfaces from which the victim can be attacked are
called attack surfaces or attack vectors. To explore interface limits, security researchers use Fuzzing [Dua+23] to
detect security-compromising behaviors of incorrect requests. The attacker can also leverage hardware bugs or fault
injection to bypass software-implemented behavior, as shown on figure 2.12. Finally, the attacker can use side-effect
produced by the victim to recover its secrets. Represented by red semicircles on figure 2.12, these side-effects can
be measured by an attack running in the target system or by performing physical measures on the target system.

Enumerating what the attacker can do and to what interfaces it can have access to is important to delimit and prioritize
threats. Indeed, this guides the countermeasures to implement. Of course, an omnipotent attacker can generally bypass
any protection. So, studying the security of an application starts by defining a threat model. A threat model proposes a
model of an attacker and lists what functionalities and interfaces it can access.

For the attack scenario in this thesis, the attacker is assumed to be able to execute on the victim system:

• Natively or as an application.

• In a browser or any interpreter.

2.3.3 Execution Privileges

MMU

Hypervisor

IOMMU
vMMU

Kernel

Secure Firmware

Secure
device

device

filesystem
modules

IRQ

memory

BootROM Secure
enclave

Secure monitor

App

App

Hardware isolation

 Mechanism
scheduler

A

user
system
Software access API

KK

Figure 2.13: Execution privileges: Different execution privi-
leges control access to system elements. Each creates isola-
tion layers using hardware mechanisms. The tenant software
in higher privilege levels can grant access to their elements
using an API that restricts what interactions are allowed.
An attacker, wanting to have unrestricted access to a sys-
tem element, will try to bypass hardware mechanisms or find
vulnerabilities in the access API.

The OS uses privilege systems at the hardware level that
restrict access to hardware resources (like the MMU), to
isolate privilege levels. These privilege levels are repre-
sented as different colored circled on figure 2.13. There-
fore, compromising the OS is a simple way to access infor-
mation held by any application running below it. Indeed,
OS are complex software elements with multiple compo-
nents, e.g., kernel module on Linux. These modules can
be loaded at run times and can be developed by differ-
ent sources. As these components run at the same privi-
leged level as the kernel, compromising any of these com-
ponents gives access is enough to gain control over the
OS. It widens all the possible vectors that can be used
to compromise an OS’s security. These attacks are called
privilege escalation[Son+06]. The two black arrows on fig-
ure 2.13 represent two possible vectors for an attacker pro-
gram: circumventing the hardware mechanism or finding
vulnerabilities in the access API. For embedded devices,
the root user is generally locked by the Original Equipment
Manufacturer (OEM). As a matter of fact, gaining access
to this user gives full control over the kernel: Devices for
which this mode has been unlocked for the end-user are
called root’ed. For Android smartphones and tablets, this
is a frequent threat[Dav+11][Ran+14]. In these devices,
an application that uses this vulnerability could take over
the OS and spy on any Android apps. On figure 2.13, we
also represented functionalities (IRQ, MMU, scheduler,...)
that are controlled by each privilege level and to which
a privilege escalation can give access. Operating systems
on embedded devices are also attacked through the phys-
ical media storing them: the bootrom. In fact, bootrom
contains multiple elements:

• A firmware that handles basic hardware functionalities. It is where execution starts when booting.

• A bootloader that can contain multiple steps and that can load OS from filesystems.

• An operating system which can be updated independently of the rest of the bootrom.

25

To prevent any tampering with the bootrom, the earliest stages of the firmware, or the CPU itself, verify the bootloader
integrity and validity[And19]. To protect this stage against attacks, it executes at a higher privileged level than the
OS (and hypervisor). This privilege level is called secure firmware or secure monitor. Although the secure monitor is
responsible for the first bootloader stage, it can remain active after the OS boot and safeguard functionalities relative to
system integrity: Like CPU wake-up handler and bootrom update mechanism. To ensure that system updates cannot be
reverted (to restore a patched out security vulnerability) the secure monitor often implements rollback protection[AIM22].
Integrated fuse-boxes in the SoCs are typically used to implement rollback protection. The attacks thwarting rollback
protection, or lack thereof, are called downgrade attacks[Che+17]. Some of these hardware and software features, meant
to be used by the secure monitor, are represented on figure 2.13, in the upper rightmost circle.

2.3.4 Trusted Execution Environment
To share the protection provided by the secure monitor in order to mitigate the effect of a privileged escalation attack
at the OS-level, Trusted Execution Environments allow user-level or OS-level applications to perform operations in a
more secure environment. Inside TEEs, these operations are handled by Trusted Applications (TAs) that can be user-
developed or provided by the manufacturer. In some cases, only the former can develop applications which are then
validated by the TEE with a signature system.

As we mentioned in the introduction, TEEs generally enforce three properties for these applications :

• Integrity

• Confidentiality

• Authentication

Integrity is generally enforced using an application packaging mechanism that encrypts the application to prevent
tampering using the TEE internal key. The application is only decrypted inside the TEE. The privilege of signing
applications for the TEE can be reserved for the OEM to improve security.

Confidentiality is enforced using a separate execution environment. Indeed, the TEE is isolated from the Rich
Execution Environments (REE), typically Linux. This separation relies on either a specific ISA-level execution mode or
on physical separation using a different CPU, creating a secure enclave. With this enclave mechanism, they split the
execution world in 2:

• The normal world or unsecure world, where the classical operating system and user application runs. The OS
running in the normal world is called rich OS and generally is responsible for communication with the secure
world.

• The secure world is where trusted applications runs. This world often has its own operating system called a trusted
OS or secure OS.

To set up the secure world (initializing CPU and booting the trusted OS), the system generally relies on a secure boot
mechanism that, when the device is powered on, verifies the original bootrom (BIOS, UEFI, etc.) and configure the TEE.
This way, the OS is not responsible for the TEE initialization. As it is the bootrom that handles secure world initialization
and also secure-boot it is considered as the Root-of-Trust for the system. This makes it the target of simulation attacks,
cold-boot attacks, and downgrade attacks [Che+17]. To counter these attacks, a verification mechanism is sometimes
incorporated in the SoC to verify the first stage of the boot: i.e., the bootrom.

TEE security is enforced by having the boundaries between the secure world and the normal world tightly closed
through the use of:

• Different memory hierarchies (cache and RAM).

• Specific secure labeling for memory transaction: thus the caches and the RAM can physically separate memory
space.

• Minimalist interfaces.

• Flushing caches when transitioning between REE and TEE if they share the same CPU.

With all these mechanisms, the attack surface is kept at a minimum for TEE and the TAs running in it.

26

2.4 Micro-architectural attacks
As we have seen in the section 2.3, system designers and OS architects use ISA elements to provide isolation between
processes. As a result, attack surfaces for a victim module or application are supposed to be restrained to the interfaces
it can have with an attacker. In this context, micro-architectural attacks allow to circumvent the intended interfaces,
by using properties of the architecture. Shared medium, transient behavior, assumptions on valid programs, physical
effects, etc., can be leveraged to detect data and/or hinder execution.

2.4.1 Side-channel attacks
Side-channel attacks rely on side effects due to computations using a secret, illustrated on figure 2.14. Detecting these
side effects allows an attacker to reconstruct the secret. Side effects can be detected either using a shared resource
between victims and attackers(e.g., caches) or using hardware probes (power metrics, frequency, etc.). As represented
in figure 2.14, we symbolize throughout this thesis operations and functions as gears and secret as keys. Performing
these operations and accessing the keys monopolizes unique resources marked as small squares. Sometimes, the victim
resources footprint is unique to certain operations and can be used to detect which are performed or some properties of
the secrets. Indeed, with the unique resources being monopolized, an attacker program will suffer performance loss if
it tries to use the very same resources. As we illustrated on figure 2.14, the attacker can detect these changes, detect
victims’ operations, and extract critical information from them. On the other hand, physical resource usage can also
have physical side effects (ex: electromagnetic emissions), which can be detected to determine a usage footprint. As we
illustrated on figure 2.12, this medium can be used by an attacker program or by a physical attacker.

t

perf(t)V A

Shared Resources

Store secrets

Perform sensitive
operations

Attack access
is disturbed

Physical resources
create physical side effects

Monitor resource
 performance

Figure 2.14: Representation of a side-channel: an attack
program and a victim program use the same shared resource.

2.4.1.1 Cache timing attacks

Caches’ side channel relies on victims and attackers shar-
ing the same CPU caches. It can be any level of cache:

• L1I/L1D: applications sharing the same core
through multi-tasking.

• Last level caches: applications that execute in par-
allel (cross-core cache attacks)

Cache-timing attacks use cache side effects caused by the
victim’s computation to gain information about it. They
take advantage of the difference between having a piece of
data in cache, a cache hit and not having it in cache a miss,
to detect the cache side-effect. At the hardware level, it
means that an instruction that interacts with data from
memory, can take a different amount of time, depending
on cache states. For example, a load instruction takes
less time on a cache hit than on a cache miss. Other
instructions, like cache-maintenance instructions, can also
be used [Gru+16a]. By measuring the time that a specific
instruction takes, it is possible to know some information
about the cache state. As the cache is shared between

processes and privilege levels, its state can leak information about other processes. At any time, cache lines from
different processes and from the kernel are present in the caches. To set up an ideal situation for attack, the cache is
placed in a control space by the attacker.

27

Cache
way→

index→

Cache
way→

index→

VV
Cache

way→

index→

CacheCache
way→

index→

one line is
 missing

one line is
superfluous

set is
empty

set is
full

A

A

Prime+ProbeFlush+Reload

Victim program
operations generate

cache side-effect

attack
sets up
cache

attack
sets up
cache

Figure 2.15: Comparison between Flush+Reload and
Prime+Probe: We can see they exploit different cache
set-up

The two typical cache attacks: Flush+Reload [YF14],
Prime+Probe[Liu+15], have two opposite cache set up. We com-
pare then in figure 2.15:

• Flush+reload: the attacker removes a line that it knows
the victim will access. It can then use cache-timing to
determine if the victim accessed it.

• Prime+Probe: The attacker fills all possible slots in a
cache for a specific line using a set of lines called prime
set. It can then check if one of the lines in the prime set
is missing, using cache timing. It indicates that the victim
accessed the targeted line.

Of course, these attacks rely on the victim being the only other
thread to conflict with the attacker. So, in practical situations,
it may require multiple measures. These measures of cache-
timing/activity are called traces.

When implementations are weak to cache timing attacks,
they show differences in memory accesses that are influenced by a secret in the algorithm. Figure 2.16 lists differ-
ent sources of memory accesses that can result in a cache line being allocated in the l2 unified cache. Each type of
leak can be linked to specific operations (represented as gears) or secret values (represented as keys) to determine a
cache footprint. The CPU fetching multiple instruction lines, also known as a wide fetch, is typically something that
must be taken into account to determine a cache footprint for a specific operation. Depending on the length of the time
window during which these differences can be detected, it can be possible to carry on a cache timing attack from an
interpreted environment like a web browser[Ore+15]. ARMageddon[Lip+16] is a survey documenting cache attacks on
mobile devices. It mentioned various variations on the typical Prime+Probe and Flush+Reload : Flush+Flush[Gru+16a],
Evict+Reload [GSM15].

2.4.1.2 Higher-level cache attacks

Cache-timing attacks can also be used at a higher level: these attacks target the victim as a whole without specifically
trying to detect directly an elementary computation in the victim. Examples of higher level cache attacks are:

• Cache template attack[GSM15]: by studying how Prime+Probe traces evolve depending on the secret, a cache
template attack proposes points of interest in traces that can be used to determine the value of each bit of the key.

• Evict+Time [OST06]: By evicting different cache sets or cache lines, and measuring the execution time of a
cryptographic process, an attacker can retrieve some bits from the key.

CPU

V
data

Instruction

L1D

HardPrefetch

L1I

MMU
**

*

L2 Unified Cache

wide fetch

Data access

Instruction Fetch

Automatic
pagetable walk

guessing prefetch

Figure 2.16: A weak implementation can leak information in the cache through a variety of means: data access, instruction
fetch, MMU table walk, or hardware prefetcher.

28

• Fingerprinting cache. [Shu+21]: Using a Prime+Probe traces for certain cache sets, it is possible to correctly
identify specific activities, in that case, which websites are currently loading in a browser tab.

These attacks may also use machine learning to reconstruct a secret from the full traces. In this situation, supervised
learning is possible using traces labeled with the secret in order to train a model to reconstruct the secret for an unlabeled
trace[Per+21].

2.4.1.3 Static and dynamic cache analyzer

Cache analyzers are tools that are used to scan for potentially vulnerable code for patterns that leak secrets in the
way they access memory, explicitly (load instruction, etc.) and implicitly (instruction fetch, etc.). We compared how
cache-analyzers from [Gei+23] model CPUs and caches with gem5 ’s model. These tools can scan the code statically or
analyze how it behaves when the application is running:

• Static cache analyzer: CacheAudit [Doy+15] is an example of static analyzer. It uses its own model for the CPU
that can fail to predict leaks caused by the architecture (such as prefetching or automatic table walking). Because
we use gem5 to model our CPU, we have an accurate enough model that represents these types of phenomena. On
the contrary, we need to run an application to study how it uses cache, and we also need our execution trajectory to
be representative of what can happen. Static analyzers, like CacheAudit because they analyze dependency directly
in the code, are able to see theoretical leaks that dynamic analyzers will not see because they rarely happen. Well-
known static cache analyzers, ct-verif [Alm+16],Binsec/Rel [DBR20], or CaSym[Bro+19] share the same downside
when compared to a gem5 simulation.

• Dynamic cache analyzer: Dynamic cache analyzers, like [Bos+16], use incomplete CPU/cache models that do not
take into account some modern CPU features like branch prediction. Also, the fact that we use gem5 allows us
to directly test the effect of the countermeasures that are implemented with it. On the other hand, gem5 is a
vastly more complicated model that may be harder to debug and analyze. Some dynamic cache analyzers, like
CacheD [Wan+17] or "Dude, is my code constant time?" [RBV17], do not include an execution model and directly
work on execution traces to detect leakage due to control flow or secret-dependent memory traffic. Other dynamic
analyzers, like ABSynthe[Gra+20] propose their own CPU model with specific focus,

2.4.1.4 Other side-channel attacks

Side-channel attacks can be generalized to any internal buffer or side-effect [Lav+21]. If a side-effect of any nature is
correlated with a specific operation or value and detectable from an attacker standpoint, it can be used to build a side-
channel attack. A weaker version of these attacks is covert channels attacks in which two isolated processes collaborate
to pass data using hardware side effects. For cache, [Mau+17] uses Prime+Probe to exchange information between a
sender and a receiver process. Examples of hardware side-effects that can be used to extract data are:

• Power side-channel and physical side-channel: Attackers use power consumption to detect which operation is
currently being processed in a CPU or in dedicated hardware. [ZS18] uses power consumption, to perform a power
analysis attack against a RSA crypto module in an FPGA.

• Dynamic Voltage and Frequency Scaler (DVFS) can also be used to leak information using frequency or voltage
switching in response to a workload modification. It is used as a covert channel in[Ala+17].

• Instruction micro-op buffer, which is integrated into the CPU decoder. An attacker can use the instruction decode
delay to detect if a similar instruction was decoded recently[Ren+21].

For Archisec, Bossuet, Grosso, and Lara-Nino have shown that power can be used as covert channels in modern SoCs
like the Zynq UltraScale[BL23a] and that gem5 can be used to simulate power side-channel attacks[BGL23].

2.4.2 Transient execution attacks
Most modern processors feature a speculative execution system to improve performance. The CPU can execute in-
structions speculatively, and if its assumption is shown wrong, speculatively executed instructions are not committed to
memory, and all the ISA-level effects (registers, PC state,...) are reverted. However, the side effects of these instructions
on the microarchitecture (buffer, caches, etc..) are not reverted. Transient execution attacks use this speculative execu-
tion process to execute code and create a pattern that causes deterministic side effects on the architecture. The most
famous transient execution attack are Meltdown: [Lip+18] and Spectre:[Koc+19]

29

spectre.c
struct_t kernel_level_function(int user_ind){

if(user_ind<SIZE){
struct_index kern_index=user_ind_to_kernel_ind[user_ind];
/* if user_ind is illegal, we can access the full kernel memory*/
return struct_tab[kern_index];//loading real data using something that can be a secret;

}else{
return NULL;

}
}

Figure 2.18: Typical Spectre Gadget

Figure 2.17: Spectre attack representation

Meltdown allows an instruction that would cause a
Fault, typically a Data Abort(or Page Fault) to proceed
speculatively. Although the instructions are reverted, as
we mentioned above, the side-channel effects on the cache
are not. Thus, an attacker can perform an illegal memory
access (outside its own memory) to load a secret and then
directly load from memory at an address offset’ed by this
secret. This creates a cache-side effect directly function of
the secret that will not be reverted when the CPU realizes
that a data abort has happened, and it triggers an inter-
rupt. This cache side-effect can then be detected using a
cache-timing attack. This way, the attacker can recover
the secret by determining which address offset was used
to cause the side-effect. Spectre types attack relies on a
specific fragment of code in the victim called a gadget (see
figure 2.18). These gadgets are necessary to create secret-
dependent memory access, which will then be detected by
the attack. With Spectre, a branch in the gadget is incor-
rectly taken and causes erroneous access (see figure 2.17). This can be forced reliably by poisoning the branch predictor
to force it to make the desired incorrect prediction. The gadget on figure 2.18 can leak elements of the kernel memory
by poisoning the branch predictor to bypass the if(user_ind<SIZE) check and proceeds in spite of an incorrect

user_ind . By carefully choosing this incorrect user_ind data from the secret zone shown on figure 2.17, is
used as an offset and allocates an offset-dependent cache line. Although the execution will be rollbacked by the CPU,
the allocated cache line remains which can be detected by the attacker using Prime+Probe as shown in figure 2.17. This
access causes a cache-side channel which can be detected. If this gadget load depends on secret data, which is possible
even if the code checked for out-of-bound accesses, as this happens in a speculative execution, the side-effect caused will
depend on said secret. Like Meltdown, this effect can be used to leak a secret from a victim. Since Spectre and Meltdown,
a wide variety of transient execution attacks have been discovered: [Can+19] keeps a list of Spectre and meltdown-derived
attacks.

For Archisec,Ayoub and Maurice demonstrated the possibilities and benefits of using gem5 to model Spectre-like
attack in [AM21].

2.4.3 Fault injection attack
As CPUs are physical systems, it is possible to disturb their inner workings by causing physical fault inside them. These
faults manifest themselves generally as transient bitflips. Correctly used in an attack, these bitflips can cascade into a
security bypass[Bak+22]: corrupting memory resources, altering results, skipping instructions, etc.

2.4.3.1 Typical fault injections

To inject fault in a CPU, different medium can be used [Bak+22]:

• Laser, ion, or electromagnetic radiation-based. With a focused beam, it is possible to localize fault up to a single
transistor[Anc+17]. This could be used to corrupt the content of a RAM or EEPROM[Anc+17]. With less focus

30

ro
w

de
co

de
r

Victim row

Victim row

Aggressor

hammer:
 LDR X0, [X1]
 LDR X0, [X2]
 DC CIVAC, X1
 DC CIVAC, X2
 DSB SY
 ISB
 B hammer

Figure 2.19: RowHammer effect and DRAM structure

energy beam, using radio waves, it is possible to cause glitches [Mor+13] in the execution of an ARM Cortex-M3
processor.

• Power or clock-based: using glitch or underfeeding can cause transient faults. For example, [Dob+18] uses clock-
glitch to attack an AES co-processor, while [OFl16] uses power-glitch to attack an AVR 8-bit controller and a
FPGA.

These fault injection attacks require physical access to the hardware to be performed.

2.4.3.2 Hadware memory corruption: RowHammer

RowHammer [Kim+14] is a memory corruption bug present in DRAM that manifests itself as bitflip. It is caused by
adjacent rows influencing the capacitor charge, making it deep below the valid voltage level (see figure 2.19). As it is
caused by memory accesses, it can be used remotely and does not require physical access. It is possible for an attacker to
reliably trigger this bug by forcing the memory controller to repeatedly access the same row, this can be done in multiple
ways (figure 2.19):

• Using cache flush [Kim+14] as represented on code extract in figure 2.19.

• Using uncached memory [Van+16].

• Using cache eviction [GMM16].

By choosing specific data to target specific rows, the attacker can control which row the bitflip happens in. This bitflip
creates a memory corruption, which can then be used in a variety of ways:

• [SD15] uses the RowHammer to corrupt the page table in order to alter the attacker’s pages so it can access kernel
memory space, creating a privilege escalation for the attacker.

• [Car17] uses the RowHammer to create a bitflip the key to then uses the incorrect behavior of the RSA algorithm
to reconstruct the key using the encrypted data: This is the Bellcore attack.[BDL97]

For Archisec, France et al. implemented the RowHammer effect in gem5 [Fra+22; Fra+21a]. France et al. uses said
model in gem5 to assess vulnerabilities using machine learning. This model is always integrated into our gem5, but it is
rarely used in this research.

2.4.4 Accelerator attacks
Accelerators, as their name suggests, are specific processors that can be programmed to accelerate tasks. GPU and
FPGA are typically used in embedded applications. However, an attacker can use them to target a victim running in the
main CPU or to attack another component of the main SoC. Accelerator attacks are harder to generalize as accelerators
can be widely different. Accelerator attack can also use the same type of attack we mentioned before but executed from
the FPGA: Cache-timing (through the ACP port [ARM17a]), RowHammer [Wei+19], etc. Some examples of accelerator
attacks are:

• [Lad+13] and [VPI15] use GPU to attack applications running in the main CPU. They have a malware program
running in the GPU to spy on user activity.

31

• [Jac+17] uses a malicious IP integrated into an FPGA, which overrides memory sections. This trojan IP can then
tamper with the system update verification by replacing a public key used to verify the system.

For Archisec, Fellah-Touta, Bossuet, and Lara-Nino[FBL23] uses FPGA to attack an AES application using the power
domain they share with the main CPU core.

2.4.5 Trusted Execution Environment attack in literature
Trusted Execution Environments have smaller attack surfaces than operating systems, Although they still are weak
to classical attacks[Ben17][Che+17] mentioned in section 2.3, they have become increasingly more resistant to them.
Indeed, they are generally attacked using micro-architectural attacks or other types of hardware attacks, bypassing the
constraints of their interfaces.

Some examples of micro-architectural attacks against TEE are:

• [Rya19] uses cache-timing attacks and Spectre attacks to analyze cache traces from L1D and BTB to attack
ECDSA[JMV01] in Qualcomm TEE. This relies on the TEE and the attack sharing the same CPU at different
time slices. It uses interrupts to force the secure monitor and the TEE to transfer execution to the attack in the
normal world (without any cache flush).

• [LW18] uses a Prime+Probe and Flush+Reload to attack Samsung TrustZone Keymaster (in Trustonic’s Kinibi
Secure OS). They reverse-engineered the Galaxy S6 bootrom to study the AES implementation in the Keymaster
truslet. It relies on the attack running in the same time-sliced CPU and the shared memory between normal and
secure world.

• [BBA19] demonstrates how FPGA can be used to attack TrustZone. Using specifically designed IPs, it is possible
to access trusted memory spaces or devices by tampering with AXI interconnects. [Gro+22] uses a similar principle
to break secure boot and TA authentication.

• [Car17] uses RowHammer to attack Trusty RSA implementation using corruption in the key to trigger a Bellcore
attack [BDL97].

• [Kou+21] and [KOU+23] attacks the RSA implementation in the mbedTLS library incorporated into a trusted
application. [Kou+21] developed a novel attack, flush-evict, using ARM CCI (Cache Interconnect Interface) per-
formance metrics. Because the CCI reports the eviction count, it can be used as a probe to detect line conflict
caused by the loading of prime sets. [KOU+23] elaborate on the weakness in RSA implementation in cryptographic
libraries that are leveraged by TEE attacks.

These attacks rely on weak implementations of the TEE and are not possible on OP-TEE[YL20], our open-source TEE,
except [Car17] and [Kou+21; KOU+23] which ignore or disable OP-TEE protections.

2.5 Conclusion
We have seen what are micro-architectural attacks and how they have been used in literature. Specifically, we showed
that such attacks have been demonstrated against Trusted Execution Environments. However, we see that there is a
gap between how they have been demonstrated and how they can be practically used. As there exists uncharted lands
at the junction between TEE, attack, and simulation, we suggest that we could leverage simulation to study TEE more
efficiently. In the following part, we will present our prospects for building such a simulation platform.

32

Chapter 3

Virtual platform on gem5 for ARMv8-A,
TrustZone, and OP-TEE

Contents
3.1 Introduction . 34
3.2 Platform and instrumentation with gem5 . 34

3.2.1 Building a platform in gem5 . 34
3.2.1.1 Writing a new config file . 35
3.2.1.2 Adding new SimObject . 35

3.2.2 Classical instrumentation on gem5 . 37
3.2.2.1 DebugFlag . 37
3.2.2.2 m5 instructions . 38
3.2.2.3 CxxMethod . 38

3.2.3 Our improvement to GDB in gem5 . 39
3.2.3.1 GDB monitor call . 39
3.2.3.2 Interactive debug with GDB . 40

3.3 ARMv8-A security on gem5 . 41
3.3.1 aarch64 and its gem5 model . 41

3.3.1.1 aarch64 generalties . 42
3.3.1.2 gem5 ARM platform model . 42
3.3.1.3 ARM cache model and AutoLock . 42

3.3.2 Cache timing attack on aarch64 . 43
3.3.2.1 Flush+Reload . 43
3.3.2.2 Prime+Probe . 44
3.3.2.3 Prime+Probe direction and self-eviction . 45

3.3.3 Our baremetal prospects . 46
3.3.3.1 Principle . 46
3.3.3.2 Results . 47

3.4 ARM TrustZone and OP-TEE on gem5 . 48
3.4.1 TrustZone . 48
3.4.2 Platform and boot model . 49
3.4.3 OP-TEE software model . 51
3.4.4 Refining TrustZone implementation in gem5 to support OP-TEE 53
3.4.5 Our typical OP-TEE scenarios . 54
3.4.6 Third Party IP simulation . 54

3.5 Conclusion . 58
3.A Appendix . 59

3.A.1 GDB API in gem5 -Python . 59
3.A.2 ARM system devices in gem5 . 59
3.A.3 Timing gadget on ARM . 60

33

3.1 Introduction
Our goal was to develop a platform that could reproduce a state-of-the-art embedded platform, being able to re-create
the countermeasures and the attacks that such a platform would have in reality and anticipate the potential threats by
finding vulnerabilities at microarchitecture level. However, this platform, besides being able to run realistic scenarios with
as little modifications as possible while supporting typical hardware countermeasure, should also be used to gain more
information and control on these scenarios: to study, reproduce, and defeat "security by obscurity" countermeasures. In
this part, we highlight an exploratory process that reassembles the different axes present in the state-of-the-art. Each axis
element in the context of the virtual platform (gem5, OP-TEE, and ARM) is detailed and linked with their state-of-art
before developing my contribution for each of them. Finally, they can be re-aggregated to assemble our virtual security
platform. This structure is represented on figure 3.1.

Platform Instrumentation

m5 inst

cxxMethod

GDB
Instrumetation

Baremetal
Attacks gem5

support

Armv8-A
&

gem5

Cache
Timing

on
ARM

TrustZone Software
Model

Platform
Boot

Model

gem5 ARM security OP-TEE

Virtual
Security
Platform

Simulating
TEE Attack
on gem5

Figure 3.1: Structure of Chapter 3: white circles represent the key contributions for each of the subject axis.

3.2 Platform and instrumentation with gem5
gem5 provides simple config files stored in the config folder. These config scripts provide a basic platform to test
directly binaries and produce basic statistics based on what models (SimObjects) are used. Typically used config scripts
are provided by gem5 in the configs/example folder (see section 2.2.2.1):

• se.py: This script configures a SystemCall Emulation config.

• fs.py: This script configures a FullSystem config using command-line arguments to specify

However, gem5 encourages building your own config script, and in the following part, we detail how to build one.
And then, with our own config script, we explain how to implement, customize, and use gem5 simulation and its
instrumentation tools. In this part, we also detail our contribution to instrumentation with gem5.

3.2.1 Building a platform in gem5
gem5, after a short initialization, runs the provided Python config file in its command line argument. Indeed gem5 acts
like a Python interpreter running the config file, which can import other modules from other .py files. Command-line

34

arguments are split between those intended for gem5 and those intended for the config file (which can be processed with
the argparse Python module.)

gem5.opt <--gem5 arguments--> config_file.py <--config file argument-->

The config file can use its command line arguments to configure the platform it builds, while gem5, command argument
mainly configures how the simulator primitives (SimObjects, etc.) behave. To build gem5 executable, scons[Fou24] have
to be used. For example, the following builds gem5.opt build with only the ARM ISA included:

scons build/ARM/gem5.opt

3.2.1.1 Writing a new config file

m5 module provides the necessary primitives which are implemented through the _m5 module. This module
contains the pybind implementation for Param Class and CcObject class Python interface. These implementations are
generally hidden in config files, and only Python Classes are used. As config files are executed by gem5 they have several
purposes:

• SimObject can be defined directly in config files, they have to inherit from a m5 imported SimObject. These new
config-defined SimObjects can implement methods to automatize their deployment, configuration, or exploitation.
(e.g. Cache can be used to implement L2Cache directly in config)

• Starting from the Root SimObject, a tree of SimObjects have to be built using Python Classes. Among Params, each
SimObject expects other SimObjects as attributes. They are called children (e.g. a cache expects a tag SimObject
as a child). In this context, a device is a child of a platform, which in turn is a child of a system. This hierarchical
relation gives a SimObject its unique name (e.g. system.cpu1.dcache.tags).

• Independently of the hierarchical relationship between SimObjects, some SimObjects have ports that must be con-
nected to other SimObjects’(see figure A.3). There are two types of ports: cpu_side (master) mem_side (slave).
Each SimObject cpu_side has to be connected to a mem_side port. Ports can be vector ports to represent
buses.

• When the SimObject tree is complete and connected, we can request gem5 instantiation of CcObject Classes
corresponding to each of our Python Classes. Using m5.instantiate , we can optionally provide a checkpoint.
This checkpoint is handled per SimObject. They are expected to restore the data that they serialized in the
checkpoint. This data is conveyed to the right SimObject in the tree using its name (e.g., system.cluster0.cpu1).

• When SimObjects are instantiated, gem5 can no longer modify the tree structure outside well-defined functions
(e.g. m5.cpuSwitch()). Config files can only launch the simulation using m5.simulate for an explicit
amount of ticks or implicitly until the max possible number of ticks (264). gem5 will process Events scheduled
by SimObject until a SimLoopExitEvent is encountered. This SimLoopExitEvent can be scheduled by
SimObjects to halt the simulation at a specific tick, providing a reason for the termination. As it returns because
of the simulation exit event, the result of the m5.simulate function carries the reason given by the SimObject.
Thus, this reason can be exploited directly in the Python config file. While the simulation is stopped, the config file
can interact with SimObjects or gem5 instrumentation tools depending on the reason provided for the simulation
exit. After utilizing the ExitEvent, the config file can recall m5.simulate to continue the simulation or exit
gem5 like any Python interpreter (exit).

Therefore, config files represent more than just a platform memory bus architecture: They represent its detailed
configuration, its initialization, its integrated tools, and how it reacts to events in simulations. To implement TEE
security functionalities in gem5, we can not ignore the possibilities provided by writing our own config files.

3.2.1.2 Adding new SimObject

The SimObjects that we manipulated in our config files mostly rely on a C++ implementation. During the simulation
loop, execution does not leave the C++-compiled code to take advantage of C++ compiled code speed. To allow this
system of flexible configuration system, while keeping the C++ efficiency, SimObjects use a system of base classes that
define interfaces between C++ classes, allowing them to be assembled into full systems. This system of interfaces allows
a user to modify directly the simulator to add new SimObjects. For a slot in a parent SimObject class, the user can
propose its own model.

35

MySimObject.py
class MySimObject(SimObject):

type = 'MySimObject'
cxx_header = "my_sim_object.hh"
cxx_class = 'gem5::MySimObject'
addr = Param.Addr("Device Address")

my_sim_object.hh
class MySimObject: public SimObject{

Addr addr1;
Addr addr2;
public:
PARAMS(MySimObject);//using

Params=MySimObjectParams;↪→

MySimObject(const Params &p);//launch at
initialization↪→

void startup();//launch at the fist
simulation↪→

}

Figure 3.2: Minimalist SimObject definition and declaration in gem5

An example of that is cache replacement policies: the cache SimObjects expect a replacement_policy SimObject
that inherits from gem5::replacement_policy::Base . A user can thus implement its own replacement policy, which
can then be used in place of already implemented policies. To create a new SimObject, we only need to create two elements:

• A CcObject Class: A C++ class which has to inherit from the correct interfaces class or at least from the
SimObject class which is all SimObject base class. This is the MySimObject from my_sim_object.hh

in figure 3.2.

• A Python class which referenced the CcObject class header and which has to also inherit from the same equivalent
Python class that corresponds to the CcObject class parent. This Python class is what config files manipulate.
Therefore, it is where all Params are defined. This is the MySimObject from MySimObject.py in figure 3.2.

gem5 uses scons1 as its build automation system. It creates macros to simplify incorporating new SimObject into gem5.
In the src folder, each subfolder contains Sconscript files which control what adjacent files will be included in
gem5 and to what SimObject they correspond. To compile a SimObject in gem5, we have to add it to its coincident

Sconscript (see figure A.2).
Scons will automatically generate the Param Class C++ implementation mentioned in section 2.2.2 with its Python

binding and the CcObject using pybind11. For MySimObject , the Param Class is MySimObjectParams . Scons
only uses the Python class to create the Param Class. It exposes through its C++-binding equivalent to all the Param
defined in the Python Class. This means that the C++ variables that correspond to the Param can be set directly from
Python. The only CcObject constructor argument is an object from the Param Class containing all the Params. (e.g.

MySimObject(const Params &p);) SimObject ports behave differently from the other Params. They are directly
referenced in the CcObject definition in C++. Ports also have to be linked when initialized by their constructor using
their Param name. After being added to gem5, our SimObject on figure 3.2 can then be used in config files. Each instance
provides Params as keyword argument (obj=MySimObject(addr=0x1000)). When calling m5.instantiate() ,
all the CcObjects associated with SimObject descendants from the Root SimObject in Python are created using the
following process:

• SimObjects try to resolve the Param proxy.

• If a SimObject has all its Params resolved, its related Param Object is instantiated in Python and attributes are
filled with params and corresponding CcObject for SimObject descendants.

• the Param Object create() Python method is used to instantiate the CcObject. This method calls the
CcObject constructor with the Param Object as argument and returns the constructed object.

• The SimObject is not fully instantiated and can be used to resolve pending proxies. Param Object and CcObject
are stored in the Python SimObject respectively in _ccParams and _ccObject attributes.

At the end of this phase, all the SimObject have been initialized. Simulation can now start using m5.simulate() .
During simulation, SimObject methods can be called in two context:

• They Schedule an event in the event queue that calls their method at a specific tick2.
1scons is a Python-based build automation system similar to cmake or graddle . It handles building object files (*.o) and linking them

to build a program.
2a SimObject event queue is specified in the eventq_index SimObject attribute (Param). Although this usage creates instabilities, gem5

supports multiple event queues

36

31000:system.cluster0.cpus0:T0: 0x...fdf0: movz x2, #192, #0 :IntAlu:D=0x00000000000000c0
32000:system.cluster0.cpus0:T0: 0x...fdf8: add x0, sp, #32 :IntAlu:D=0xffff000974737970
33000:system.cluster0.cpus0:T0: 0x...fdfc: bl 0xffff80001047b640 :IntAlu:D=0xffff80001006fe00

Figure 3.4: Sequence of executed instructions when the DebugFlag:Exec is set

• They can be called by another SimObject method which was scheduled in their event queue.

All the SimObjects are also visited at tick 0 of simulation calling void startup() method. This is when SimObjects
can schedule their first event. SimObjects are responsible for rescheduling events, if they do not have any event in the
queue, only other SimObjects scheduled events are able to interact with their methods. Therefore, when the event queue
is empty gem5 instantly stops the simulation and returns from m5.simulate

3.2.2 Classical instrumentation on gem5
gem5 provides multiple tools to instrument a simulation. They serve 3 purposes:

• Debug gem5 to verify how a feature (often represented as a new SimObject) behaves.

• Produce data to study how a feature behaves when running a specific scenario.

• Adapt or configure a feature to specific parts of a scenario. (e.g. having a performance-costing feature only enabled
for a Region-of-Interest (ROI))

When running gem5, you can define a m5out folder using the command line (--outdir=|$m5out$|). this folder
is the preferred folder for gem5 to store all the reports and results it produces for the simulation. For example, gem5
will store reports that contain the configuration used in human-readable format or as figures (like figure A.3). gem5 also
allows SimObject to monitor statistics. These are implemented using variables in C++ that SimObject can update to
compute totals, averages, etc. At the end of the simulation, these statistics are reported in a result file stored in the
m5out directory.

In this section, we present the different instrumentation tools present in gem5 and how we use them in our scenario.
This section highlights functionalities that are not necessarily documented properly and highlighted in gem5 tutorial.
As we did not make use of statistics in our instrumentation, they are only mentioned here for exhaustivity.

3.2.2.1 DebugFlag

debug_flag.py
import m5
m5.debug.flags["Fetch"].enable()
m5.debug.flags["Fetch"].disable()

Figure 3.3: Enabling and disabling DebugFlag
from config files

DebugFlags are key elements in using and debugging gem5 : they
allow the activation of specific debug messages related to a specific
feature. These messages are printed in the gem5 console (stdout).
For example, the Fetch DebugFlag activates messages related to CPU
fetching instructions. In gem5 C++ source code, these latent messages
are made using DPRINTF :

DPRINTF(Fetch, "Fetch: Inst PC:%08p, Fetch PC:%08p\n",
instAddr, fetchPC);↪→

They also track the object that triggered the DPRINTF and add it to the message:

31000:system.cluster0.cpus0:Fetch: Inst PC:0x00002334, Fetch PC:0x00002338

DebugFlags are not available in the gem5.fast binary only in gem5.opt and gem5.debug. To activate the them, the
--debug-flags= gem5 command-line argument have to be used, with a comma-separated list of flags.

gem5.opt --debug-flags=Fetch,Exec config.py --cpu 4 test.bin

Although not documented, DebugFlags can also be activated and deactivated directly from the Python config file as
shown in figure 3.3. This is done using a Python dictionary containing all the DebugFlags located in the m5 module
in gem5. In this context, they can be enabled and disabled dynamically between m5.simulate() call. For example,
in response to a CPU switch or a m5 instruction.

37

3.2.2.2 m5 instructions

m5 instructions are gem5 -specific instructions that are integrated into the workloads’ binaries through a static-link
library. They are also accessible in a dedicated executable (m5) for command-line usage. These instructions allow a
program to communicate with the simulator either directly or in the Python config script by exiting the simulation loop.
With them, instructions can pass messages between the host and simulated environments dynamically upon request by
the simulated program. All m5 instructions are listed in table A.1, including m5_env that we added. m5 instructions
can also be used directly in a bash script inside the simulation, using the m5 tool (also mentioned in table A.1). Some m5
instructions exit the simulation and require their intended behavior to be implemented in the config file. This is done as
follows in config files: When an exit event caused by m5 instruction has been received, m5.simulate() exits returning
the event. The config file can then use event.getCause() and event.getCode() to dispatch and handle the
event appropriately before calling m5.simulate() and resuming the simulation where it exited. For example, in
figure 3.5, a m5_exit causes the simulation to exit with "m5_exit instruction encountered" which is handler
by the config file by a exit(0) which closes gem5.

checkpoint.py
m5.drain()#draining simulation
ckpt = _m5.core.getCheckpoint(ckpt_dir)
for obj in root.descendants():

obj.loadState(ckpt)
print("Checkpoint restored")
for obj in root.descendants():

obj.startup()

Figure 3.6: Internal logic for gem5 to restore a checkpoint
from ckpt_dir.

As shown in figure 3.5, taking checkpoint uses
m5.checkpoint(cpkt_save_folder) from the m5

module. We exposed its internal logic on fig-
ure 3.6. First, this function causes all the SimOb-
ject to be drained before taking the checkpoint: Drain-
ing forces all the SimObject to advance their inter-
nal pipeline until it is emptied and push all pend-
ing data to non-volatile memory. Then, this function
saves the simulation state using functions implemented
in the CcObjects (serialize(CheckpointOut &cp)
method). A checkpoint can be restored using

m5.instantiate(ckpt_folder) providing the check-
point folder to the m5.instantiate method. After the normal instantiation, any data that was
serialized during checkpointing by CcObject will be provided back to the SimObject using the method

unserialize(CheckpointIn &cp) . This manner of restoring checkpoint is only possible at startup (before any
simulation loop with m5.simulate). We exploring restore a checkpoint manually at any point by directly using the
m5 internal logic, presented on figure 3.6. This enabled us to restore checkpoints in the middle of the simulation. Con-
sidering that it sometimes caused crashes and lacked a use case for this functionality, we only use checkpoint restoration
at the start of a simulation run.

3.2.2.3 CxxMethod

Not mentioned in gem5 presentation of SimObject, cxxmethod is a Python decorator3 that can be used inside the
SimObject Python definition, allowing a C++ function to be called from the Python config files. With these functions,
we can implement methods to dump information or change SimObject behavior on demand (figure 3.7).

main.py
while True:

event=m5.simulate()
exit_msg = event.getCause()
code=event.getCode()
if exit_msg == "checkpoint":

#here we have to handle the m5_checkpoint instruction
m5.checkpoint(cpkt_save_folder)

elif exit_msg == "m5_exit instruction encountered"
#receive a M5 exit so we stop the simulation loop
exit(0)

Figure 3.5: Extract from a config file which handles the simulation loop. It follows the building and configuration of the system
model and its instantiation.

3In Python, a decorator is a design pattern that allows you to modify the functionality of a function by wrapping it in another function. The
outer function is called the decorator, which takes the original function as an argument and returns a modified version of it. The @ symbol can be
used to automatically decorate a function, replacing it with its decorated variant.

38

MySimObject.py
class MySimObject(SimObject):

type = 'MySimObject'
cxx_header = "my_sim_object.hh"
cxx_class = 'gem5::MySimObject'
addr = Param.Addr("Device Address")
@cxxmethod
def dump_state(self,format):

pass

my_sim_object.cc
class MySimObject: public SimObject{

Addr addr1;
Addr addr2;
PARAMS(MySimObject);//using Params=MySimObjectParams;
MySimObject(const Params &p);//launched at

initialization↪→

void startup();//launch at the fist simulation
std::string dump_state(std::string format);

}

Figure 3.7: How to use cxxmethod decorator to implement Python callable C++ methods

main.py
#launch the simulation
exit_event=m5.simulate()
msg= exit_event.getCause()
if msg == "m5_exit":

print(my_sim_object.dump_state())

Figure 3.8: Example of GDB monitor call handling in
gem5 config files

This decorator exposes the C++ method that shares the
same name as the decorated method using the Python binding for
the CcObject. The SimObject Python implementation then au-
tomatically calls the bound C++ method when the correspond-
ing Python method is used, and it transfers its arguments and
return values between C++ and Python. Because the CcOb-
jects need to be initialized for this method to be called, it can
be called only after stopping the simulation. If the simulation
stops, it means that the m5.simulate command returns,

and we can react to its exit message. On figure 3.7, we show how to add a dump_state(self,format) method to a
SimObject, which can then be called in Python config files, like the following example on figure 3.8. In this example, the
CxxMethod is called when the execution reaches a m5_exit instruction. With CxxMethod, we can configure and extract
from SimObject dynamically in response to simulation events. To enable more interaction with gem5 mid-simulation,
we added CxxMethod to gem5 standard SimObjects, giving us direct access to their internal states when the simulation
is paused.

3.2.3 Our improvement to GDB in gem5
gem5 features a stub (represented on figure 3.9) that allows connecting GDB to the simulation, similar to a development
board. On a development board, SoCs can implement specific functions inside their stub and integrate them into GDB
as monitor queries. By default, the GDB stub in gem5 allows a remote GDB to debug the program running in gem5.

Host PC

GDB

SoC

Debugging stub

JTAG/USB/ETH

Figure 3.9: A GDB-stub in a SoC or
in gem5 connected to GDB

This gem5 stub supports:

• Connecting to a remote GDB running on the host machine using localhost
TCP port.

• Debugging the program running in gem5 : in FullSystem mode and in Sys-
temCall Emulation mode.

GDB also supports scripting in Python using the gdb module, importable in
Python files run from GDB. We fixed several issues in the GDB-stub implementa-
tion in gem5 :

• Multi-thread implementation was incomplete.

• CPU-switch was not compatible with using GDB.

• We added memory watchpoint support (which are breakpoints triggered by
memory accesses to specific addresses)

3.2.3.1 GDB monitor call

Development boards, or more specifically, development SoCs can implement specific functions inside their stub and
integrate them into GDB using the monitor queries. In our gem5 build for our virtual platform, we implemented the
monitor query in GDB such that it results in a new cause for exiting the main gem5 simulation m5.simulate()
thread. As illustrated on figure 3.11, monitor query sends a message from GDB to gem5 to which gem5 can then respond.
As shown on figure 3.10 and figure 3.11, we used the Python interpreter inside gem5 to parse the message and respond

39

to it using Python methods. This Python methods have access to CxxMethod, such as obj.dump_state(format)
described in figure 3.7, to configure and extract from the simulation state.

main.py
while true:

exit_event=m5.simulate()
msg= exit_event.getCause()
if "GDB_MONITOR" in msg:

handle_gdb_msg(msg)

Figure 3.10: GDB monitor message reception and handling in
gem5 config files.

GDB

Memory

SystemStub

config.py

Figure 3.11: GDB monitor command: sending and receiving
message during the simulation.

As a contribution, we also added this feature to the stable branch of gem5. It was presented in [Forne].

3.2.3.2 Interactive debug with GDB

With the Python API, more than simple console commands, a full interactive debugging session can be set up between
gem5 and Python.

(1)

(2)

(3)
(4)

(5)
(6)

(7)

(8)

(9)

Figure 3.12: Simulation scripting: we use GDB to
modified simulation parameters on-the-flight, the bi-
nary is never modified.

It contains two Python interpreters running a program:

• gem5-Python running a config file which implement moni-
tor commands to modify and extract information from the
simulation.

• GDB with a real user or with GDB-Python running a spe-
cific script file: In both cases, monitor commands can be
issued to communicate with gem5.

With a script file in GDB-Python, it is possible to fully autom-
atize a monitoring process. In an interactive debugging session,
the monitor call can be used to control the simulation from
GDB, more specifically to change the precision/speed of simu-
lation, change to simpler CPU models, access the performance
counters, for text I/O through a terminal, to flush caches, to
dump cache/execution traces, etc. These monitor calls are im-
plemented directly in gem5-Python with the GDB API described
in section 3.A.1. With this GDB API, gem5-Python can control
the GDB stub to implement functionalities like the ones illus-
trated on figure 3.13.

Figure 3.12 shows the typical interactions between gem5-
Python and GDB-Python, the sequence is as follows:

(1) gem5-Python sets up the system and call
m5.simulate() to start the simulation

(2) The system waits for a GDB to connect before starting.
Multiple breakpoints can then be set through GDB.

(3) The system loads a bash script, bash.rcS , from out-
side the simulation.

(4) After reaching a breakpoint, either the user or an automated Python script can debug the simulation.

(5) Using the monitor command, they can send specific commands to the gem5-Python.
(e.g. monitor dumpCache)

(6) On the the gem5-Python side, the m5.simulate() command finishes with an event that contains the monitor
message.

(7) This message is then interpreted using gem5-Python and the method implemented in the SimObjects in C++.

40

(8) The gem5-Python can then process this data and respond to the GDB. Before recalling m5.simulate() .

(9) GDB can then allow the simulation to progress.

As one can see, the binary workloads are never modified and can be configured dynamically with GDB and the loaded
bash.rcS script. This methodology resembles what Mihajlovi, ili, and Gross [MG14] called GDB instrumentation.

While theirs was integrated directly inside QEMU source code, our implementation mostly uses gem5-Python interpreter
to dispatch and execute the commands sent by GDB.

With an interactive debugging session and the right monitor commands, the gem5 user can then:

• Take checkpoint manually before a critical event.

• Automatically dump the content of the L2 cache when a specific function is executed.

• Switch CPU types only inside a specific function in a binary loaded from the OS.

• Enable and disable DebugFlag manually on the fly through GDB.

• Use any CxxMethod of your SimObjects on the fly. By implementing a monitor exec command, Python code can
be sent directly to be executed by gem5-Python from GDB.

System

Memory

StubBreakpoint

GDB_MONITOR:checkpoint

GDB

CPU

GDB
Stub System

Memory

Breakpoint

GDB_MONITOR:memFast=True

GDB
Stub System

CPU

printToGdb(branch_data)

GDB_MONITOR:extractBranch1

Breakpoint

Figure 3.13: Typical use case for the interactive debugging session between GDB and gem5

3.3 ARMv8-A security on gem5
ARMv8-A is the most predominant ISA on smartphones. Contrary to the M variant, it can support classical OS like
Linux as it features a MMU. It support a 64bit and a 32-bit mode:

• aarch32 is the 32-bit mode and is similar to ARMv7. its associated GCCs have generally the arm prefix.

• aarch64 is the 64-bit mode. It is the default ISA for ARMv8 and its associated GCCs generally have the aarch64
prefix.

We decided to mainly cover aarch64 attack scenarios, as they are the most representative of modern threats and still
similar to ARMv7 and aarch32 scenarios.

3.3.1 aarch64 and its gem5 model
To simulate these scenario, we use the ARMv8-A implementation in gem5. This implementation is also ARMv7-A
compatible. This ARMv8-A implementation can thus run aarch64 and aarch32 binaries.

41

3.3.1.1 aarch64 generalties

ARMv8-A has multiple privilege levels called Exception Level (EL) from EL0 to EL3 the higher the number, the more
privileged the exception level is. Each exception level has a specific role for the system:

• EL0: User applications

• EL1: Kernel Level

• EL2: Hypervisor

• EL3: Firmware

Each EL can have its own exception handling (exception vector) and Service Call instructions : SVC for EL1, HVC for
EL2, SMC for EL3. MMU settings and pagetables are also unique for each EL. aarch64 has a set of 31 work-registers,
from x0-x31 which can be accessed by in both 32bit (w0-w31) and 64bit (x0-x31) mode. X31 is denoted as SP and is used
as the stack pointer. X30 is denoted as LR and is used as link-register. It is automatically set to the return address when
doing a Branch-with-Link (BL). The aarch64 ABI uses x0 as the return register and x0 to x7 for parameters. These
registers have to be saved manually when transitioning ELs. Exception Levels (ELs) are configured using system register.
In aarch64, the system registers’ names contain the EL they apply to: VBAR_EL3, VBAR_EL1, etc. System registers are
accessed and modified using MSR/MRS (usage for these instructions is detailed in figure A.6) In gem5, the support
for aarch64 is implemented in arch/arm/isa.cc . In this file, readMiscRegs and setMiscRegs implement
system registers behavior. These functionalities are integrated into the ArmISA SimObject. This Object is present as a
sub-SimObject in each CPU object.

gem5 ARM implementation also includes other system device models for ARM MMU (including its automatic table
walker) and ARM configurable interrupt controller called General Interrupt Controller (GIC). We give more detail on
these devices in section 3.A.2.

3.3.1.2 gem5 ARM platform model

On ARMv7-A and ARMv8-A, device discovery is implemented using a Device Tree Blob (DTB). The DTB is a binary file
compiled from a readable device tree. This is a tree structure that organizes devices as nodes in the tree, which can have
properties that describe them and other sub-nodes/sub-devices. The DTB is provided to Linux by the bootloader. The
different drivers (or modules) loaded by Linux parse the DTB, searching for compatible devices (using the compatible
properties in DTB nodes). Each compatible devices are then initialized using the driver implementation and will then
be visible in Linux, typically in /dev . The DTB allows ARM to have modularity on how ARM processors BOOT
and what devices they have at their disposal. These platforms and the way they boot can be organized in categories
that only differ by the devices they implement. gem5 ARM implementation is thus part of the ARM Versatile express
(Vexpress) family, which contains mostly development boards (e.g., CoreTile Express boards) and Virtual Models (e.g.
Versatile Express Fixed Virtual Platforms). Some key characteristics of the Vexpress platform are:

• Vexpress platform boot from a memory-mapped bootrom that contains all the bootloader elements needed before
Linux (figure 3.25).

• The Vexpress platform in gem5 uses the Fixed Virtual Platforms Base_PowerController (FVPBasePwrCtrl).
This controller directly interacts with the GIC to handle the Power State Coordination Interface (PSCI).

• gem5 Versatile express memory map is based on the Versatile Express RS1 (V2M-P1), with both off-chip devices
and on-chip devices (based on those featured on the ARM CoreTile Express A15x2 daughterboard (V2P-CA15)).

3.3.1.3 ARM cache model and AutoLock

On ARMv8-A, caches are split into two domains: inner and outer. For each domain, each page in the pagetable has
dedicated cachability and ordering behavior. In gem5, aarch64 pages are either assumed to be uncachable-strictly-order
or cachable with read or write allocability determined by the cache model used. Write-back or write-through behavior,
which is also normally defined by the page table entry, is not implemented in the aarch64 gem5 model and is instead
determined by cache models. This is generally not an issue, as this is how Linux and OP-TEE configure caches. In gem5,
inclusivity and exclusivity have a simple implementation. They differ only on how they treat requests:

• Inclusivity makes both read and write allocating for the caches.

42

https://developer.arm.com/documentation/ddi0601/2023-12/AArch64-Registers

L2 Unified Cache

L1ICore
0

Core
1

At most, 1 lock per L1 way
can be on the same L2 set

L1D L1D

L1I

Each L1 cache line can
lock a L2 entry

A entry is locked as long as
its L1 entry is not evicted

Figure 3.14: AutoLock: This cache replacement policy prevents eviction of L2 lines that are still present in a cache L1. This
lock is set up when a cache L1 receive a miss response from the L2. This lock on the L2 line is opened when all the L1 lines
that lock a L2 line are evicted.

• Exclusivity makes all the read request "read and clean" requests, preventing caches from responding with dirty-lines.

Cache on ARM can be inclusive or exclusive. However, gem5 can not accurately model certain caches for ARMv8
because they enforce inclusivity in a stronger sense than gem5 ’s cache implementations. This is called AutoLock [Gre+17]
(figure 3.14). For example, it is present in the RK3399 on its A72 core complex.

AutoLock, as described by [Gre+17], is an ARM-specific replacement policy designed to enforce inclusivity by pre-
venting the eviction of L2 cache entries if they are present in a connected L1 cache (see figure 3.14). This policy ensures
that L2 entries remain locked until they are evicted from the L1 caches. Only after their eviction from the L1 caches
can they be considered for eviction from the L2 cache. Consequently, up to one entry per associativity of L1 caches
can be locked in the L2 cache (illustrated in figure 3.14). For a complete eviction of a L2 cache set (i.e., all ways not
locked), the L1 entries corresponding to the current L2 entries must have been evicted by lines that share the same L1
index but not the same L2 index. This scenario is much less likely to occur with AutoLock, resulting in L2 sets rarely
being fully evictable. To reproduce this behavior, we implemented AutoLock as a replacement policy in gem5. AutoLock
in gem5 couple L1 and L2 replacement policies (which have to be AutoLock enabled) and when evicting cache line will
automatically avoid lines that are in lower level caches.

3.3.2 Cache timing attack on aarch64
Cache timing attacks have been studied on ARM and, more specifically, on aarch64 [Lip+16]. The two classical examples
are:

• Flush+Reload [ZXZ16] (or its variant Evict+Reload [GSM15])

• Prime+Probe[LJ18][Rei+16]

These two examples require a way to measure execution time for a specific LOAD instruction. We detailed the needed
gadget in section 3.A.3

3.3.2.1 Flush+Reload

Flush+Reload requires the attacker to be able to flush the victim lines (figure 3.15). The attack processes as follows:

1 Loading Shared memory spaces: The attacker have to add to its memory space a section that it can share with
the victim: generally a dynamic library shared between the two by Linux as represented on figure 3.15.

2 Flushing a target address in the shared memory space is flushed while the victim is computing. This address is
linked to the key as the loading of this target address only happens if certain conditions on the secret value are
met, typically a branch. After the memory is flushed, the attacker knows that the target address is no longer in
caches. On figure 3.15, this target address is associated with a function represented as a magenta-colored gear,
highlighted in red.

3 Reloading a target address in the shared memory space while measuring access time. If it takes less time (a cache
hit), it means that the victim "accessed" the target address: implying certain constraints on the secret value. On
figure 3.15, we represented the attacker measuring the magenta gear function access time as a red plot on the
bottom plot. If the branch is taken, the access time is measured with a lower value corresponding to the solid

43

V

A

Cache

➀
Attack
loads
library

[i]==1
Victim
computes

 computes
using function
and/or memory

V

Victim
loads
library

 access time
traces

Cache
Shared
library*.so

Attack
flushes
regularly

➁

Cache

Cache

is absent from cache is loaded by the
in spite of flushingA

V

Attack loads regularly➂

Figure 3.15: Representation of how a Flush+Reload works. The attacker knows that the victim took the branch because it
detected the victim loaded the magenta gear.

line because the magenta gear function is used. If the branch is not taken, the timing measured correspond to the
dotted line and is not changed because the gear operation used is not the Flush+Reload function. This access time
measure is done using the primitive described on figure 3.36.

3.3.2.2 Prime+Probe

For Prime+Probe: the attacker only needs to know in which cache index the victim address will be put. The attack
proceeds as follows:

1 Allocating: We allocate our prime set. A prime set consists of data with addresses specifically chosen to share the
same cache index as the victim address4. There is an entry in the prime set for each associative way in the cache.
(i.e. if the cache is 16-way associative, we need 16-entries prime set). If there are multiple victim addresses, each
needs its own prime set.

2 Priming We access our prime set for the victim address we want to attack. This way, our prime set fills each
possible alias for this victim address in the cache. Thus, the victim address is forced to evict one of the entries to
be cached.

3 Probing Measuring access time to all the lines in our prime set to check if one was evicted by our victim. To do
that, we use the code as illustrated in figure 3.36.

since Probing also fills the cache with the prime set like Priming would do. We do not need to Prime after Probing as
long as we are only doing that.

We implemented our own Prime+Probe to ensure minimum noise and maximum performance. Following [TOS10]
recommendation, we use a double-linked list data structure:

With the structure on figure 3.16, we can probe the set as we are going through it and directly store the timing result
in startT (timestamp before the load happened) and endT (timestamp after the load happened) without
interacting with any other cache lines. Each entry of the prime set fully uses its line of cache to store all the necessary
properties for traversing it. Figure 3.17 shows how we probe each entry of the prime set. We start from the last entry we
probed, knowing it is in our cache set, since all entries of the prime set share the same set index (here 0x38). To continue
to the next entry, we first have to probe it as we are not sure if it is still in the cache since last probe or prime. Using
the code on figure 3.36, we measure the ASM LDR execution time for the next entry in the prime set using the next
pointer. When this probe measurement is complete, we know that the associated entry is in the cache set. Thus, we

4

As ARM SoCs have physically indexed caches, we can use /proc/self/pagemap to reconstruct physical addresses (require root to access
physical mapping information since Linux 4.0). Otherwise, we have to probe timings to verify that our prime set effectively filled the cache index.

44

Entry@0xaaaadec0
head: Entry*(8)

startT: time_t(8)
endT: time_t(8)
props: enums(8)

next: Entry*(8)
prev: Entry*(8)

phyaddr: int64(8)

vic_addr: int64(8)

Entry[1]
head
next
prev

Entry[2]
head
next
prev

Entry[15]
head
next
prev

cache set: 0x38
way 0 1 2 33 4 5 6 7 8 9 a b c d e f

1 cache line
64 bytes

Figure 3.16: Our prime set uses a double-linked list. Its elements are allocated in such a way that they have all the same cache
index (here is 0x38). If enough are allocated, they fill out all the possible ways for their index.

can store the result of this measurement directly in this entry. We then use the head and next pointer to
determine if we have finished. Otherwise, we proceed to the next entry as we described before.

When the prime set has been traversed and probed, its results are transferred to the result table. Each result point
is stored in a single cache line to ensure minimum noise. They contain: start-time, length, id (to identify which cache
set it belongs to), entry count, and entries (time length of each LOAD operation result of the probe).

3.3.2.3 Prime+Probe direction and self-eviction

Already mention in [Liu+15], under the name thrashing, self-eviction happens when probing a prime set entry evicts
another prime set entry. It can cause an entry to be wrongfully considered as been evicted by the victim. Figure 3.18
presents a situation in which Prime+Probe can cause self-eviction depending on the direction of probing. After priming,
a victim evicts some element from the prime set (0 and 1) with its lines labeled "V". The cache handle this process using
Least-Recently-Used replacement policy, whose timestamps are represented as small clocks on figure 3.18. The figure
then presents the two directions for probing, Forward and Reverse, and how they interact with victim lines:

• Forward: Probing is always done in the same direction. If a miss is encountered, the following element will be
bumped out of the cache due to self-eviction, and therefore all the following entries will be misses. On figure 3.18,
the victim lines from the victim are not evicted first by the prime set because they were accessed the most recently.
Instead, the prime set evicts all its lines until it reaches the end to finally evict the victim lines. This produces all
the red timing values indicating all the entries in the prime set missed.

startT
endT

Entry[1]
head
next
prev

startT
endT

Entry[0]
head
next
prev

cache set: 0x38
way 0 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ??

startT
endT

Entry[2]
head
next
prev

executed

 At this point,
2 is in cache

We are not sure
 if is in cache

2
 Therefore, storing results
does not have cache side effect

➄Previous Entry ensured
 is in cache1

2 We can compare
 head and next to
know if we finish
 traversing the set

head next

➀

➁

measuring
execution time

➂
➃

➅

Figure 3.17: With the structure on figure 3.16, we can probe the set while traversing it. Timing measures for a prime entry
are directly stored in it

45

CPU Cache

0 1
2 3 4 5 6 7 8 9 a b c d e f

Replacement Policy: Least Recenlty Use(LRU)
evicting: min()=

 accesses 2 cache lines
 with a 0x38 index
V

V
V

Prime

V V

evicted: non longer in cache

Probe

0 1

0 1

0 1 2 3 4 5 6 7 8 9 a b c d e f0x38

start

Reverse

Forward

0 1
2 3 4 5 6 7 8 9 a b c d e f

2 3 4 5 6 7 8 a b dc9V V
0 1

1
start

0

Victim lines causes
the prime set evict itself

0 1
2 3 4 5 6 7 8 9 a b c d e fV V

0 1 start

111119 113 113 107 110 112 106105 103 102 108 113 111 204203
access
time

access
time 209213 195 206 205203 206201208205 198 200 199204203 203

Prime set is accessed
and completly fills the

cache set

Cache state
before probing

Figure 3.18: How direction of probing control self-eviction: after a victim accessed two lines, different probe directions produce
different results.

• Reverse We change direction each time we finish probing. Thus, elements are never bumped, and we can observe
the sensibility of each element. On figure 3.18, no additional entries are evicted because the entry accessed is always
the next one that would be evicted. Thus, the victim lines are accessed last. This produces the green timing values
(indicating the entries in the prime set hit) followed by two red timing values associated with the two prime set
entries that missed because of the victim lines.

Depending on the victim we want to observe, we can choose between the two directions of probe. Using the forward
probing creates bumping, which improves the Signal-to-Noise ratio[TOS10] 5. On the other hand, reverse probing allows
measuring if each element of the prime set is present or has been evicted by the victim. Therefore, with reverse probing,
we can count how many victim lines share the same index have been used6.

3.3.3 Our baremetal prospects

Figure 3.19: Comparison of the
timing result for the cache tim-
ing attack between a Raspberry Pi
3B+(left) and gem5(right)

We propose first to run an attack on baremetal comparing a Raspberry PI and
gem5 : to verify if the gem5 platform can simulate cache timing attacks.

For that, we use a small micro-kernel. To allow simulation of the attack, this
kernel needs to:

• Transfer execution to EL1 as the SoC starts in EL3 which does not allow
cachability.

• Set up the Memory Management Unit (MMU) to allow the cachability of
certain parts of the memory using the pagetable properties.

• Configure automatically the UART and memory using the DTB provided by
both systems.

The program can be run both in gem5 and on Raspberry Pi without any
modification.

3.3.3.1 Principle

Using our baremetal kernel, we can run a basic Flush+Reload attack. This is the function we are trying to attack:

5This bigger signal can be seen in the top plot of figure 4.5
6The different signal associated with each number of lines evicted is visible on the bottom plot of figure 4.5

46

Figure 3.20: Result obtained with a baremetal attack (on the left) and a fast treatment to make result more visible on the
right

victim_fun.c

for(int i=0;i<SECRET_SIZE;i++){
if(!secret[i]){

/* Branch 0 */
}else{//Branch 0 and 1 do not share a line

/*Branch 1*/
}

}

We propose a first synchronous variant of our Flush+Reload attack to demonstrate the similarities between a gem5
simulation and a Raspberry Pi 3B+ run. On figure 3.19, we present the results of Flush+Reload attack running in
baremetal compared between gem5 (right) and a Raspberry Pi 3B+(left). This demonstrates gem5 ability to simulate
cache timing attacks.

We also designed an asynchronous variant of the attack to test further on gem5. We experimented with the trace
data generated by this asynchronous variant.

3.3.3.2 Results

In this demo, we use the BasicTimingCPU model for our CPUs. The traces we have for the asynchronous method allow
us to rebuild the secrets easily through basic thresholding methods. On figure 3.20, we plotted timing results for our
Flush+Reload attack running in gem5 in baremetal. We extracted the right figure using basic thresholding on the raw
result present in the left figure. We then proposed to consider the noise that could be added by having others CPU works
in parallel and use the last-level cache. We built a success matrix and plotted the success rate of our methods when
we changed the number of added CPU cores generating noise (figure 3.21). On this matrix, we see for different keys on
the y-axis, if it was possible (blue squares) or not (red squares) to correctly recover the key while having other CPUs
working in parallel and using the last-level cache (x-axis). This effect of noisy CPUs on our attack is represented on the
right plot in (figure 3.21), which represents the success rate of our attack depending on the number of added CPU cores
generating noise.

We also tested machine learning model attacks to have a more automatic and less ad hoc approach for the attack.
We reached a 75% success rate on test data with (8000 traces for the training) The ML model we used mainly relied
on convolution neural networks and ReLU/logistic activation functions (5 convolutions with a 3x3 kernel followed by a
linear sum to produce the full key). We took the traces as a whole as an entry and output a possible password.

These experiments demonstrate that gem5 can be used to model cache timing attacks but they also show the limits
of using gem5 to generate data for ML, since gem5 is vastly slower even when running multiple simulations in parallel.

47

Figure 3.21: Success of the attack when multiple CPUs are generating noise

3.4 ARM TrustZone and OP-TEE on gem5
As we mentioned in section 2.3.4, there are multiple TEEs developed for ARMv7-A and ARMv8-A. For our project, we
chose OP-TEE [YL20], which is an open-source TEE that follows the GlobalPlatform specifications [lea21]. It is now
maintained directly by ARM as a part of the TrustedFirmware-A Project [Lin23c]. Like other TEEs on ARMv8-A, it
uses TrustZone to operate.

3.4.1 TrustZone

app app . . . app

Kernel other OS

app app

Hypervisor

Trusted Firmware

secure OS

TA . . . TAEL0

EL1
Secure ELs

EL2

EL3

Figure 3.22: ARMv8-A Exception Levels

TrustZone is the commercial name for all
the software and hardware elements that are
needed to implement a secure enclave in ARM.
It mainly relies on a specific execution mode.
On ARMv8-A, they are called Exception Lev-
els (EL) (see figure 3.22). To support Trust-
Zone, ARM implementations add secure EL
variants to EL0 and EL1 (and sometimes to
EL2). These variants are called EL0S and
EL1S (and EL2S). ARM also adds an EL3
level. The EL3 level is always considered secure with TrustZone and becomes responsible for switching between se-
cure EL and unsecure EL. On figure 3.22, we represented the different ELs, showing what system program they are
designed to run and which are secure. The program running in EL3 level is called secure monitor or trusted firmware.
These secure ELs are all included in the secure world. By contrast, the unsecure ELs are considered in the normal world.
In the secure world, MMU translation tables (section 2.3.1) and their associated TLB/page entries have an extra bit to
indicate security. This bit is the NS bit which indicates, only in secure EL, that the page is assumed not secure. In that
context, pages that are not flagged with NS are thus assumed secure. This secure bit is then used to label any memory
request that uses this entry.

This secure bit is kept throughout the full memory transaction until it reaches its destination. We represented
an example of a full memory transaction on figure 3.23. In this TrustZone memory model, the secure and unsecure
transactions can share the same interconnect and use the secure bit to be distinguished by devices. For example, this
secure bit is present in the AXI protocol in AxPROT vector (see the AXI manual extract on figure 3.24). The final device
can then react to a possibly unauthorized memory request by checking if the secure bit is set and reacts appropriately
(see the discarded transaction on figure 3.23). The key idea behind TrustZone is that the CPU starts in the bootrom
running in EL3 and uses secure devices to verify the booting process and configure system elements. The bootrom then
transfers execution to the OS, which runs in the normal world. The secure monitor in EL3 can still provide services
to the OS using its dedicated SystemCall called Secure Monitor Call with the instruction ASM SMC . For example, the

48

CPU
Secure

Caches Memory
Protection Unit

RAM

Devices

Trusted RAM

Trusted Device

Normal

TZAC/XilinxMPU

Configure

 Normal RAM

Discarding
Illegal
Transaction

Entry
Entry
Entry

Figure 3.23: TrustZone memory model: secure labeling is propagated along the memory hierarchy.

Secure Monitor typically handles waking up and putting CPUs to sleep through ASM SMC , using the Power State Control
Interface (PSCI) interface.

Table A4-6 Protection encoding

AxPROT Value Function

[0] 0 Unprivileged access

1 Privileged access

[1] 0 Secure access

1 Non-secure access

[2] 0 Data access

1 Instruction access

Figure 3.24: explanation of the Ax-
PROT signal from the AXI4 norm
[ARM21a]

TrustZone also specifies a set of devices that can interact with secure EL and
secure transactions:

• TrustZone Memory Access (TZMA) or TrustZone Access controller (TZAC)
which acts as an access control between CPUs and the system bus. It allows
any device to be put behind a TrustZone memory protection dynamically.

• Generic Interrupt Controller (GIC) directly takes CPU EL into account
through the GIC interface in the CPU. When accessed through its memory-
mapped interfaces, security is also checked. It also allows the system to route
certain interrupts to the secure world.

• Caches account for secure labeling by distinguishing lines that have different
secure labels: This means that two lines that share the same addresses but
have different secure labels are considered different by ARM caches.

Of course, manufacturers can implement their own secure devices, typically fuse
devices.

The set of features implemented by TrustZone-enabled devices vary widely. For
example, the Raspberry PI, although it supports TrustZone at an ISA level, does not provide any memory protection:
memory transactions are not blocked: All the memory and all the devices are accessible from both worlds.

3.4.2 Platform and boot model
As we mentioned in section 3.3, gem5 boot and platform imitate ARM Versatile Express Platform (Vexpress). On
this platform, the CPU starts in EL3. It is a secure Exception Level (EL); thus, the CPU cannot directly start in
U-Boot [Eng23] or Linux. It needs a special bootrom called the trusted firmware. For ARMv8-A, there is a standard open
source trusted firmware called TrustedFirmware-A[Lin23c]7. TrustedFirmware-A supports Vexpress platform, producing
a full bootrom (from system start to OS bootloader).

7Other platforms, like the Samsung SoC, can use proprietary trusted firmware to deploy their TEE (e.g.: S-boot[sof19] for Samsung Tee-
gris[Sam20]).

49

Figure 3.25: Representation of the trusted boot
process for Vexpress platforms

This firmware contains different bootloaders called BL1, BL2,
BL31, etc.. These elements and the boot flow between them is repre-
sented on figure 3.25. The TrustedFirmware-A bootrom can optionally
integrate:

• BL33: A typical bootloader like U-Boot [Eng23] which run in
EL2 (not in the secure world).

• BL32: A secure payload like OP-TEE secure OS : which will
be deployed in EL1S. OP-TEE secure OS is the operating sys-
tem responsible for the Trusted Execution Environment inside
which TA runs. Besides OP-TEE, TrustedFirmware-A can de-
ploy [Lin23b]: Trusty[And16], Trusted Little Kernel[Nah12] and
ProvenCore[Les15]

The TrustedFirmware-A as a whole runs from a trusted RAM. Each
bootloader step has different functions:

• BL1: AP Boot ROM which configure the platform to load the
BL2 or perform a firmware upgrade (FWU).

• BL2: Boot Trusted Firmware which loads all the BL3X payloads,
configuring memory if needed. It then passes the information about all the loaded payloads to the BL31.

• BL31:EL3 Runtime Firmware: This will remain in the trusted RAM after the boot process is finished. During
boot, it initializes its own services before booting the BL32 payload that BL2 prepared. When BL32 returns, after
finishing its own boot process, BL31 continues with BL33.

The BL33 for our gem5 platform is U-Boot. It has to load the kernel image and Device Tree Blob (DTB), which lists all
the platform properties to allow Linux to discover devices (loading their associated driver). It loads them from a classical
file system (e.g., EXT2). U-Boot will then boot Linux with the right boot arguments, including the DTB.

The BL31, EL3 Runtime Firmware, is the element in the TrustedFirmware-A, which functions as the secure monitor.
As mentioned before, It stays in a trusted DRAM while Linux is running. It provides services to rich OSes and secure
OSes:

• SMC Calling Convention (SMCCC): Secure Monitor Calls (SMC) are instructions that trigger a synchronous abort
like SVC but are routed to EL3. They are used to implement communication between secure OSes, rich OSes, and
secure monitors. The SMC Calling Convention specifies how to use the SMC instruction in link with other work
registers in order to send messages.

• Power State Control Interface (PSCI) is one of the possible destinations for SMCCC messages. It handles putting
CPUs to sleep (using platform-specific hardware) and waking up CPUs. CPU that wakes up will start in a warm
boot state in BL31 and will be redirected to Linux.

vexpress.dts

firmware {
optee {

compatible = "linaro,optee-tz";
method = "smc";

};
};

Figure 3.26: Node to add to DTB which declare SMC as a
way to access OP-TEE

While Linux is booting, it probes for BL31 functional-
ities if they are mentioned in the DTB. OP-TEE is men-
tioned here as firmware node. This firmware node is com-
piled in the DTB from the source on figure 3.26. This node
is necessary to enable OP-TEE functionalities in Linux.
A root partition is also mentioned in the Linux command
line provided by U-Boot. Then, Linux mounts this parti-
tion at root (/). For OP-TEE, Buildroot can be used to
build a root disk image, which can then be loaded into an
SD card, for example. Buildroot creates a BusyBox distri-
bution that contains basic tools to run a C program and
which can also be configured to include a wide variety of
packages (compiler, editor, sound, graphics, etc.). OP-TEE integrates itself as a package for Buildroot. This ensures
that the necessary libraries are available and that the necessary daemons are started using init.d . The OP-TEE
packages can also integrate development tools into the generated root image.

50

3.4.3 OP-TEE software model

EL1S
EL0S

EL1
EL0

Secure Monitor
TrustedFirmware-A BL31

EL3

Linux
Kernel

OP-TEE
OS

Trusted
Applications

optee daemon
TEE Internal

Core APITEE Client API
OP-TEE
Module

Secure OS

S
M
C

S
M
C

User
Kernel

Client Linux
Applications

Normal World Secure World

S
V
C

S
V
C

Internal Library
(mbedTLS, ...)

Key Manager

Figure 3.27: OP-TEE programming model: how TA com-
municates with Linux client applications

OP-TEE mainly relies on TrustZone to implement its
Trusted Execution Environment (TEE). figure 3.27 rep-
resents how OP-TEE uses TrustZone exception level to
isolate trusted applications. It utilizes EL1S and EL0S to
create an execution environment that is isolated from the
normal OS. The normal OS, which is Linux for OP-TEE, is
called rich OS. Linux applications execute in the Rich Ex-
ecution Environment, which uses EL0. OP-TEE’s trusted
applications run in the Trusted Execution Environment,
which uses EL0S. The EL1S is used to run a secure OS,
which is responsible for configuring the EL0S exception
level. Like a normal OS, trusted applications running in
EL0S have access to service calls through libraries such as
libc and libutee. OP-TEE’s secure OS is called OP-TEE
OS. It is initialized by the secure monitor before booting
Linux. After it has booted, it can only resume execution
in two cases:

• Linux emits a request for OP-TEE through SMCCC.

• A secure IRQ is triggered and is routed to the secure
OS.

.o.o*.o

User object files
& libraries

.o.o*.a

Entry Points

TA Header uuid
TEE signature

TA properties

heap/stack size

libutee.a+

Optional
encryption

Trusted
Application

Figure 3.28: Structure of a Trusted Application (TA): User
object files and libraries are bundled in a signed container.
It provides the element to verify its content and load it in
OP-TEE.

These two situations are handled by the secure moni-
tor as shown on figure 3.27. To use these communication
methods, our Linux kernel contains an OP-TEE module.
This module provides hooks to send and receive messages
to and from the secure OS. To do that, It uses the SMCCC
module in the secure monitor (as declared in figure 3.26).
SMCCC uses Secure Monitor Calls, which means that the
CPU handling the request changes from EL1 to EL3. The
SMCCC handler will then deliver the message using an ex-
ception return (ASM ERET), but not before saving the rich
OS execution context. CPU has now resumed in the secure
OS EL1S, which can service the request from the rich OS
OP-TEE module. The same exception path can be done
in reverse to return the secure OS response to the rich
OS message. At startup, this message exchange is used
by the OP-TEE kernel module to probe the secure OS
and determine its features. At runtime, this mechanism
is mainly used by client applications running on Linux to
start trusted applications and then exchange with them
using commands. This message exchange is also used in
reverse, from the secure OS to the rich OS, allowing the
secure OS to use OP-TEE’s Linux daemon services. Illus-
trated on figure 3.27, this daemon is started as a Linux ser-
vice by init.d . Called tee-supplicant , it pro-
vides:

• Rich filesystem access for the secure OS, to load TA
or simple files from the TEE. It also includes access
to replay-protected memory blocks on a MMC8. This
is a key feature to implement rollback protection as
mentioned in section 2.3.3.

8Replay Protected Memory Blocks (RPMB) is provided as a means for a system to store data in a specific memory area in an authenticated and
replay-protected manner and can only be read and written via successfully authenticated read and write accesses. The data may be overwritten by
the host but can never be erased. This is implemented by the UFS specification [ASS12].

51

• Network access for the secure OS, which can then
open IP sockets.

• Shared memory allocations which can only be done by the rich OS.

• User-defined plugins that can be integrated into the supplicant. These can then be accessed from the TA using the
GlobalPlatform API.

This software architecture is detailed in figure 3.27. To help TA and TEE development, OP-TEE also provides a
command-line tool, xtest , found in the optee_test GitHub. Following GlobalPlatform specifications[lea21], as shown
on figure 3.27, OP-TEE provides one API for each execution environnement:

• The TEE Client API allows a Linux application to invoke and communicate with a trusted application identified
by its UUID. This is provided to Linux applications through libtee.

• The TEE Internal Core API specifies how to implement a trusted application. It also specified what services should
be provided by the TEE and their interfaces with the TA. This is provided to TA through libutee.

While the TEE Client API mainly specified communication with TA, the TEE Internal Core API also specified
services that the TA can use:

• The Trusted Core Framework API defines basic application tools (e.g. memory management). It also defines TA
interfaces with the client and with data directly incorporated into the TA package.

• The Trusted Storage API for Data and Keys provides primitive storage to manipulate complex data in the TA.
Using these primitives, it is possible to handle data persistence using the Trusted Storage mechanism (which
provides rollback protection for these objects).

• The Cryptographic Operations API provides Cryptographic tools for standard Cryptography Operations: Hashing,
Symmetric and Asymmetric cryptography, Message Authentication Codes(MACs), Key Generation and Deriva-
tion,... These tools are directly implemented in the TEE and are invoked using SystemCalls. Therefore, they can
benefit from hardware primitives to improve their performance and security.

• The TEE Time API provides tools to access System Time. System Time can rely on secure devices, preventing
any tampering from the REE. TA can also verify if the TEE supports this feature.

• The TEE Arithmetical API provides tools to interact with Big Integer (integer larger than the register size). These
can leverage integrated cryptographic hardware.

• The Peripheral and Events API: It provides tools to interact directly with hardware devices (camera, NFC, finger-
print sensors, etc.). This feature prevents any tampering from the REE when interacting with hardware devices
and performing critical operations (e.g., NFC payment).

These APIs are implemented using secure OS service calls in the TA. These service calls are integrated into the
libraries that are incorporated in TAs. GlobalPlatform also specifies TA entry points, which are where a TA begins after
a session was started by a Linux application or when a command is invoked during a session (these entry points are listed
in figure 3.28). TAs are built using the development kit produced when compiling the OP-TEE OS. This development
kit is in charge of:

• Integrating the libraries needed for the GlobalPlatform (presented as libutee in figure 3.28.)

• Linking and assembling the TA, ensuring it follows the correct binary layout (as described in figure 3.28, the
different *.o and *.a files have to integrate the entry points).

• Integrate the TA in its secure package, which includes descriptors for the OP-TEE OS. It also includes a final
signing, which protects the TA from tampering (these descriptors go in the TA header visualized in figure 3.28).

52

host.c

//Opening a TAA session from the HOST
res = TEEC_OpenSession(&ctx, &sess, &uuid,

TEEC_LOGIN_PUBLIC, NULL, NULL, &eo);
//Preparing TA commands parameters
op.paramTypes = TEEC_PARAM_TYPES(

TEEC_MEMREF_TEMP_INPUT,
TEEC_MEMREF_TEMP_OUTPUT,
TEEC_NONE, TEEC_NONE);

op.params[0].tmpref.buffer = inbuf;
op.params[0].tmpref.size = inbuf_len;
op.params[1].tmpref.size = 0;
//Invoking the TA command (the execution go to

the secure OS)↪→

res = TEEC_InvokeCommand(sess,
TA_ACIPHER_CMD_ENCRYPT,
&op, &eo);

Figure 3.29: Opening a TA session and launching command
from Linux

Each TA is identified by its UUID (Universally Unique
IDentifier). To interact with TA, a Linux application
has to include the OP-TEE client library which imple-
ments the GlobalPlatform Client API. We give an exam-
ple of a client Linux source code in figure 3.29. Using
the GlobalPlatform Client API, the client Linux appli-
cation can start a session using the UUID of the TA it
wants to interact with. When the session has started, the
client Linux application can invoke commands in the TA.
When the TA has finished processing the required com-
mand, it returns a success value, which the Linux appli-
cation will receive in the form of the return value of the

TEEC_InvokeCommand function. Trusted applications
can be loaded from the rich file system through OP-TEE
daemon (tee-supplicant). Otherwise, they are di-
rectly integrated in OP-TEE either inside the secure OS
blob next to the secure OS binary, these are early TAs,
or as specific UUID directly in the secure OS,These are
pseudo-TAs. Pseudo-TAs’s functionalities (sessions and message dispatch) are directly integrated as secure OS func-
tions: No real TAs are deployed when a client opens a session.

The Linux application can send parameters with the command invocation, which can contain references to non-secure
memory, which can be accessed from the TA in the secure world without issues. Of course, it is recommended for TAs
to copy any data provided by the Linux applications to their own secure memory.

3.4.4 Refining TrustZone implementation in gem5 to support OP-TEE
As we showed in section 3.3, the gem5 model supports the EL3 firmware level. Supporting this level implies it supports
the secure extension of ARM ISA, which is the ISA part of TrustZone. Therefore, gem5 also supports EL1S and EL0S
as expected. Moreover, gem5 ARM MMU supports secure labeling, and it can use the NS bit to access unsecure regions
from secure Exception Levels (EL). Although it seems to support TrustZone at the ISA level, TrustZone workloads
designed for the Vexpress platform expect devices that are not present in gem5 implementation. Thus, to support the
booting of unmodified TEE binaries in gem5, we have made the following changes in the standard gem5 boot flow:

• We use the Semihosting feature of U-Boot which enables the user of an embedded system to load files from the
host computer. With Semihosting, gem5 loads Linux kernel and DTB. DTBs for gem5 Vexpress are generated
directly using the Python config files.

• We added a secure DRAM to the hardware configuration, and a simple secure memory system to gem5 that makes
our trusted memory refuse unsecure transactions.

• We modified the packet protocol (see section 2.2.2.4) inside gem5 and allowed GDB memory transactions to be
considered as both secure and unsecure.

• We also corrected the following bugs in gem5 :

– The deactivation of EL2S was not correctly handled. This stayed undetected in gem5 as it could not boot a
proper TEE.

– The generic ARM interrupt controller was not correctly synchronized when switching between secure and
unsecure ELs.

These modifications have been committed to gem5 stable git branch 21.1. OP-TEE needs to be built into the bootrom.
We use TrustedFirmware-A [Lin23c] for that matter. We also need a bootloader program to load the kernel, and we
chose U-Boot [Eng23]. U-Boot enables us to use Semihosting, a feature that allows an embedded system to load files
from the host computer (which is supported by gem5). In our case, we load the Linux image and the Device Tree Blob
(The DTB is used by Linux to probe the platform and detect all its devices on ARMv8) using Semihosting. We also
built a dedicated Buildroot disk image, which is configured to have all the OP-TEE tools. The Linux version we load
features a specific driver and is provided by Linaro [Lin23a], which is the main OP-TEE maintainer. All of this process
is automated in a makefile that imports everything from their dedicated repository and then builds the disk image,

53

the bootrom, and the kernel. When bootstrapping a TA, OP-TEE randomly places the TA into the address space. So we
need GDB to grab from OP-TEE the offset to be able to debug the TA. Using our packet protocol fixes, we implemented
TA ELF loading in GDB.

3.4.5 Our typical OP-TEE scenarios
To analyze security, we developed simple OP-TEE scenarios that demonstrate how OP-TEE can be used to secure critical
applications. These scenarios that leverage OP-TEE functionalities were made building upon optee_example.

bash.rcS

xtest --install-ta /mnt/ta

Figure 3.30: xtest allows to install
TA at run time. /mnt/ta is a folder
containing the TA to install

We have two scenarios that use a TA to implement a secure critical function-
ality:

• sec-store: A secure storage implementation (figure 3.31) that reads and
writes files from the REE-filesystem using the OP-TEE Daemon and de-
crypts/encrypts them using an integrated key in OP-TEE. This mechanism
allows OP-TEE to store files in the REE-filesystem without any risk to their
integrity. These functions are integrated into a TA that a host calls to access
the OP-TEE-secured files.

• sec-sign: A secure signing application (figure 3.32) that uses an OP-TEE crypto service to hash a message and
sign it. This is implemented in a TA to which a host sends commands to configure the key and send the message
to be signed. A RSA key is used to sign the message. Signing and hashing are implemented in the GlobalPlatform
API and are used by the TA through service calls.

In gem5, all these scenarios start from a past-boot checkpoint: we called it BootPoint or boot-checkpoint. This
checkpoint is produced using m5 checkpoint in a init.d script. The init.d script loads the scenario-
specific bash script after the checkpoint is restored using: m5 readfile | sh . The scenario-specific bash script is
provided by gem5 when relaunching gem5 and restoring from the boot-checkpoint. The boot phase, which takes theboot-
checkpoint, is done using a simpler CPU model (atomic). Runtimes for the boot phase that generates the BootPoint
are listed in table 3.1. We also listed runtimes for the previous scenario and the demo function showed in section 4.5.
In the scenarios’ bash script, we mount a second disk that contains all the elements necessary for the scenario. Indeed,
the root disk is left unchanged between scenarios and runs because if it was modified, it would require regenerating the
boot-checkpoint.

Configurations
gem5 version 21.2
Software Stack optee-3.21.0 (based on Linux v6.2-rc3)

U-Boot : v2020.07-rc3
ARM TrustedFirmware-A v2.7

OP-TEE CFG_CORE_WORKAROUND_NSITR_CACHE_PRIME=y
noticeable flags Adds protection against a tool like Cachegrab

(https: // github. com/ nccgroup/ cachegrab),
which uses non-secure interrupts
to prime and later analyze the L1D,
L1I and BTB caches to gain
information from secure world execution.

CFG_CRYPTOLIB_NAME=tomcrypt
By default use tomcrypt as the main crypto
lib providing an implementation
for the API in <crypto/crypto.h>
CFG_CRYPTOLIB_NAME is used as libname
when compiling the library
It’s also possible to configure to use
mbedtls instead of tomcrypt.
Then the variables should be assigned as
CFG_CRYPTOLIB_NAME=mbedtls

Runtimes
boot 2244.26s (1.042778s in simulation)
sec-sign scenario 4805.94s (4.33s in simulation)
sec-store scenario 1332.58s (4.332691s in simulation)
demo-function scenario 982.60s (4.34s in simulation)

Table 3.1: Simulation Configuration and Runtime. Times mea-
sured by gem5. No GDB acceleration is used in these runs. We
run our examples on a Intel(R) Xeon(R) Gold 6128 with 256GB
of DDR4

This disk contains the TA and a host that will in-
voke commands in the TA that runs in OP-TEE in the
secure world. The TA can be installed at run times us-
ing the xtest (presented on figure 3.30) program from
optee_test. The host program can then interact with the
TA by starting a session using its dedicated UUID. Com-
mands can then be invoked, the TA being responsible for
decoding and dispatching them as they all arrive at the
same entry point. The scenarios’ disk also contains an
attack implemented using the aarch64 attack tools men-
tioned before in section 3.3. This attack can be configured
to attack the OP-TEE scenario. As we can see, in fig-
ure 3.32, OP-TEE reverts cache side-effects when return-
ing to the REE. This countermeasure requires our attack
to run in parallel. This makes interrupt-driven attacks de-
scribed against other TEEs [Rya19] [LW18]. Kou et al.
[Kou+21][KOU+23] uses interrupt-driven attacks against
OP-TEE but does not mention bypassing this security fea-
ture.

3.4.6 Third Party IP simulation
Almost all hardware IP vendors provide a SystemC TLM
model of their IPs, which can be assembled in a tool like
Platform Architect [Syn21] or in an ad-hoc manner to gen-
erate virtual platforms. This is the main virtual prototyping technology in use among the industrial players. For this

54

https://github.com/nccgroup/cachegrab

TrustZone

TrustZone

TrustZone

CPU-isolation

CPU-isolation

CPU-isolation

Message to normal world

Using key to decrypt file

Reading from file

Using key to encrypt file

CPU-isolation

Writing file fragment

received by daemon

CPU-isolation

Message to normal world

Writing to file

Passing commmand to TA

Passing results

CPU-isolation

Launching secure storage TA operation

reading from secure storage

Reading file fragment

received by daemon

writing to secure storage

TEE SUCCESS

Client tee-supplicant TF-A/optee_os OPTEE-ServiceCall TA

This isolation tries
to hide side-effects
created by the secure
world

This symetric key
can be included in
the firmware or

hidden inside the
SoC

Extract data from file

Updating data

Figure 3.31: Implementation of the sec-store TA in OP-TEE: It tests reading and writing from secure storage. It thus uses
the tee-supplicant to access the REE filesystem without exposing the encryption key.

reason, and due to an increasing number of security vulnerabilities emanating from 3rd party IPs [VPI15; Lad+13;
DPM11; SB13] it is highly desirable to provide an interface in gem5 to integrate them.

Fortunately, the gem5 simulator and SystemC TLM have strikingly similar simulation mechanisms, although using
different terminologies. SystemC TLM 2.0 uses initiator and target sockets while gem5 uses master/slaves with requestor
and responder port. SystemC TLM has three different timing modes, namely blocking, non-blocking, debug, which
corresponds to gem5 atomic, timing, and functional modes. TLM also has a DMI, Direct Memory Interface mode, which
has no counterpart in gem5.

We show the correspondence between the timing modes in gem5 and TLM in figure 3.34. The gem5 atomic mode is
clearly equivalent to the blocking transport mode in TLM, also known as Loosely Timed. Since each memory transaction
is modeled with a fixed latency. The timing mode in gem5 is almost equivalent to TLM non-blocking mode, which
models a memory transaction with backpressure. The gem5 timing uses retries to handle backpressure, whereas TLM
uses four distinct phases for the same. This is also known as approximately timed,see ref [Men+17] for more detail.

The recent version of gem5 [Low+20] provides two different ways of interfacing with SystemC TLM 2.0 blocks.

• gem5 to SystemC Bridge: The co-simulation is achieved by hosting the gem5 executable within a standard SystemC
simulation. The gem5 is compiled as a shared library, which is called by the SystemC simulation and becomes
another SystemC process. A set of translators translate the gem5 packets to TLM 2.0 generic payload and vice-versa
as shown in 3.33.

• SystemC in gem5: Alternatively, the TLM IPs have to be recompiled with gem5 ’s SystemC header files which
represent gem5 ’s own TLM2.0 implementation. In this way, the co-simulation is achieved natively in gem5 and
can benefit from gem5 dynamic reconfiguration mechanism using Python script.

Although the second approach is better from the gem5 point of view, we have chosen to use the first approach
since it allows integration of IPs/models in standard SystemC TLM 2.0 provided by vendors. In the future, it might be

55

TrustZone

TrustZone

CPU-isolation

secure_malloc()
allocating TA buffers

get the private key

Passing command to TA

passing result

CPU-isolation

Initializing TA

Passing secure buffer

Preparing data to be signed

CPU-isolation

Registering shared memory

using crypto function
Passing command to TA

passing result

handling ouptut memory

CPU-isolation

Calling TA with this data

returning signed data

Client TF-A/optee_os OPTEE-svc TA

Private key can be
generated from RNG
or using OPTEE
Chain of Trust This part is where

the key is used to sign
data.
Using the key, can leak
some information
about it

This isolation tries to
hide micro-architectural
side effect created
by the secure enclave

Figure 3.32: Implementation of the sec-sign TA in OP-TEE: the TA prepares a buffer
for the client. In this buffer, the client loads a message, which is then sent back to the
TA to be signed using a RSA key never exposed to the client.

SystemC Main

gem5 event loop

wait N ticks

Restore

@N ticks

\nb_ sendTiming

recvTimingnb_

TLM gem5\s
m

al
l{T

LM
 to

 g
em

5
}

\s
m

al
l{s

ig
na

l t
o

TL
M

 }

AXI RD

AXI RD

Verilog/ SystemC gem5

config.ini

Elaboration

Checkpoint

ADDR
Channel

Channel

/SystemC

transport_fw()

transport_bw()

Event
Queues

Event
Queues

Req()

Resp()

Figure 3.33: gem5 platform configuration to
emulate 3rd Party IPs.

beneficial to translate these off-the-shelf IPs/Models to gem5 native description. Following the first approach, we achieve
co-simulation of 3rd-Party IPs and gem5 booting unmodified OP-TEE. We used the process described on figure 3.33:

• We build gem5 both in executable and shared library format.

• First, we use standard gem5 executable with Python configuration script to boot OP-TEE and save a checkpoint.
We also note the gem5 ticks necessary to arrive at this checkpoint (let’s say N).

• Next, we launch the SystemC simulation calling the gem5 shared library.

• We wait for N ticks to synchronize the SystemC and the checkpoint time. This phase is quite fast since it does not
simulate any transactions.

• We restore the checkpoint, and at this point, we have a fully functional processor subsystem running OP-TEE and
third-party IPs in SystemC TLM.

The models for third-party IPs can be obtained in the following fashion

• From the IP vendor in standard TLM 2.0 format.

• IPs in RTL format can be converted to SystemC using Verilator [Sny13]. Then, a Signal-to-TLM bridge can be
used to integrate these IPs in the simulation (figure 3.33).

With this platform, we made an experimental attack. Using our secure storage TA, sec-store (see figure 3.31), we
reproduce the attack on OP-TEE secure storage functionality from a SocFPGA as described in [Gro+22]. Trusted

56

sendTimingResp

recvTimingResp

recvTimingReqsendTimingReq

recvRespRetry

sendTimingResp

recvTimingResp

sendReqRetryrecvReqRetry

recvTimingReqsendTimingReq

BUSY

BUSY

Master

TRUE

TRUE

FALSE (BUSY)

FALSE (BUSY)

sendRespRetry

TLM_ACCEPTED

Initiator Target

BUSY

BUSY

nb_transport_fw (....., BEGIN_REQ,....)

nb_transport_bw (....., END_REQ,....)

TLM_ACCEPTED

nb_transport_bw (....., END_REQ,....)

TLM_ACCEPTED
nb_transport_fw (....., END_REQ,....)

TLM_ACCEPTED

gem5 Packet in timing mode

TLM II generic payload and blocking transport.

Slave

SlaveMaster

Slave Latency

TargetInitiator

WAIT(Slave Latency)

gem5 Packet in atomic mode

TLM II generic payload and non-blocking transport

b_transport (t)

b_transport (t)
Return

(Loosely Timed)

(Approximately Timed)

Figure 3.34: Different timing modes for gem5 taken from [Low24b]. The atomic mode closely resembles the SystemC Loosely
Timed(LT), and the timing mode resembles the approximately timed(AT).

Storage is a required functionality defined in the GlobalPlatform TEE Internal Core API (see section 3.4.3). The UML
sequence diagram for the secure storage TA is shown in figure 3.31.

• The REE client provides an encrypted file, initialization vector, and a key ID.

• The trustlet (TA) first reads the encrypted file. It also gets the key required to decrypt the file based on key ID.
The File Encryption Key (FEK) is derived from the device-specific secure storage key, which again is derived from
the Hardware Unique Key (HUK) and chip identification. [Gro+22]

• Internally OP-TEE uses libtomcrypt [lib23] for AES, and since libtomcrypt uses a precomputed key schedule in
memory, this structure is observable in the memory dump of the secure memory.

This is a direct memory access attack performed from the SoCFPGA ACP (Accelerator Coherency Port). Due to a bug
in Xilinx FPGAs [Gro+22] ACP is able to access the secure memory. In our experiment, we model the third-party IP
from FPGA using the ACP port with TLM. The attack is then performed in the following fashion:

• We assume that the attacker is able to run an IP in the FPGA accessing the ACP port, and she has access to an
encrypted file.

• The goal of the attacker is to find the encryption key.

• After calling the trustlet for decryption, the attacker performs a memory dump of the secure world memory(32MB),
which contains the precomputed key schedule.

• By following the scanning method presented in [Gro+22; Hal+08], she finds the original key.

In table 3.1, we present the gem5 configuration parameters and the runtime of this experiment (listed under sec-store
scenario). Since it is an in-vivo experiment, it has been performed in FullSystem mode.

57

3.5 Conclusion
When we combine work from our study of aarch64, our study of gem5 tools, and finally enabling OP-TEE on agem5
platform, we create the first TEE-enable simulation platform. This platform required multiple fixes to gem5 implemen-
tation and a dedicated config script, which create an OP-TEE-compatible Vexpress model. As we confirm using our
experimentation with aarch64 attacks on gem5 and a Raspberry Pi, cache-timing attacks can be simulated using our
gem5 platform. Therefore, since we are assured that cache-timing attacks can be simulated we are now ready to propose
an example of such attacks against OP-TEE using our aarch64 attack tools. To find these attacks, we can create a
rigorous methodology that leverage our simulated environment. To implement this methodology, we can take advantage
of the instrumentation we developed for our simulation platform. It gives us access to micro-architectural information
that would be otherwise inaccessible. Using our GDB interface, a tool developed as a GDB-Python script, could leverage
this information to study an unmodified TA to find weaknesses that an aarch64 cache-timing attack could then use.
Another tool could also study how an aarch64 cache-timing attack interacts with a victim TA, combining execution and
micro-architectural information from both secure world and normal world. Indeed, this is the main use case for a vir-
tual security platform, creating rigorous automation that automatically discovers vulnerabilities at the microarchitecture
level. We also demonstrated the ability of our platform to reproduce vulnerabilities due to trojan IPs using gem5 TLM
models.

58

3.A Appendix
This appendix contains technical elements that can help understand how our virtual security platform works.

3.A.1 GDB API in gem5 -Python
RemoteGDB is the GDB-stub class in gem5. RemoteGDB is the GDB-stub class in gem5. It is not a SimObject but

a helper object initialized by the Workload SimObject. Using the CxxMethod in Workload , we implemented a
GDB API to be used in config files. There are three main methods in this API:

• sendToGdb(self,message) : to print a message in the GDB terminal.

• triggerGDB(self,signal,ctx_id,stopReason,skipped_inst)
which set up an instruction counting event which will then trigger a hardware breakpoint in GDB after skipped_inst
instruction.

• getGDBStopReason(self) : recovering stop reason for a currently pending breakpoint. This information is not
accessible by the user in GDB.

With these functions, we can write elaborate config scripts that handle the GDB_MONITOR exit events and respond to
them. Figure 3.13 described message exchange between GDB and gem5 to implement typical use cases for this interface.
In tandem with GDB monitor call, the GDB API that can be used to:

• Interact with the simulator functions using GDB console (enabling DebugFlags, triggering checkpoints, CPU-
switching...).

• Configure the SimObjects with cxxmethod or with dynamically referenced parameters.

• Extracts data from the SimObjects, using a cxxmethod and then sending the data to GDB using sendToGdb .

• Creating other type of hardware breakpoints using triggerGDB and getGDBStopReason .

All of these functionalities can be hidden in command using the Python API in GDB which can then use:
gdb.execute("monitor cmd",to_string=True) It executes a monitor command and retrieves what is printed to

the GDB console by gem5 to place it into a variable for use by the Python script in GDB

3.A.2 ARM system devices in gem5

Core 0

Figure 3.35: GIC architecture in gem5 and ARMv8-A: each
CPU as an interface which communicates the GICv3. There
are only two types of interrupts FIQ and IRQ. The GIC dis-
tributes interrupts to the interface and controls to which
CPU an interrupt will be routed and what type of CPU in-
terrupts will be used.

ARMv8-A model in gem5 includes ARM’s MMU and its
automatic table walker. With the table walker, the MMU
automatically goes through the pagetable structure to up-
date the TLB entries. ARMv8-A has different granular-
ity for pages which allows different number of page-level.
Generally, a 4k-granule mode is used: which makes the
smallest page size 4096 bytes. ARMv8-A also supports
HUGEPAGES with 2MB and 2GB size when in 4k-granule
mode. ARMv8-A page entries contain classical write, read,
and execute permissions but also feature privilege control
flags (PXN and UXN) which prevent execution in EL0
(unprivileged) or in EL1, EL2, and EL3 (privileged) mode.
ARMv8-A has 4 types of exceptions that are handled by
the exception vector (interrupt table):

• Synchronous: Exception by the MMU or the CPU
(service calls, illegal instruction, translation error,
...)

• FIQ: Fast Interrupt request.

• IRQ: Normal interrupt request.

59

• SEerror: System error/memory bus error.

These 4 types each have a dedicated handler in the exception vector. FIQ and IRQ are generated by the GIC and its
local interface in each CPU. The General Interrupt Controller (GIC) is a memory-mapped device that controls: interrupt
priority and routing. It also provides inter-processor interrupt. With the GIC, an interrupt can be routed to a specific
CPU. It can also choose which of the FIQ or IRQ handlers is used depending on the current EL running in the CPU. It
has a similar architecture in gem5. This different element present in both gem5 as SimObject and in real hardware as IP
are detailed on figure 3.35. Each CPU has its CPU interface which triggers the assigned CPU IRQ trigger signal (either
FIQ or IRQ), which can depend on CPU current EL. These CPU interfaces are connected to redistributor which handle
Per Processor Interrupt (PPI) and Locality-specific Peripheral Interrupts (LPI) from the Interrupt Translation Service
(ITS). The ITS is a memory-mapped device that allows other peripherals to trigger interrupts through the memory
interconnect. Finally, the distributor routes all wired-bases interrupts, called Shared Peripheral Interrupts(SPIs). It also
distributes the Software Generated Interrupts (SGI) produced by CPU interfaces and that are used as Inter-Processor
Interrupts (IPI)9.

3.A.3 Timing gadget on ARM

ASM timings.S
DSB SY
ISB
MRS x15, PMCCNTR_EL0 # Start time in x15
DSB SY
ISB
LDR x16,[%[addr]]
DSB SY
ISB
MRS x17, PMCCNTR_EL0 # End time in x17

Figure 3.36: Gadget to measure access time: using memory
barriers (DSB SY) and instruction barriers ISB , the
execution time of a single LDR instruction is measured.

Cache timing attack requires a way to measure execu-
tion time for a specific LOAD instruction. To measure
time, ARM provides two timing sources:

• ASM CNTPCT_EL0 (or ASM CNTVCT_EL0): This reg-
ister is provided by the mandatory system timer. It
can be accessed in EL0 as long as EL2 does not pro-
hibit its access (This is generally the case). It gen-
erally uses a 24MHz clock.

• ASM PMCCNTR_EL0 : This is a register that is located
in the Performance Monitor Unit (PMU). It counts
the core cycle and thus the core clock. However, ac-
cessing this register requires authorization from EL1
(Linux): ASM PMUSERENR_EL0 has to be set to 1 in
EL1. This generally requires OS-level access: which
means on Android, a rooted device.

As an alternative to native timing sources, we could use a different thread to increment a counter[LW18]. As
ASM PMCCNTR is more precise than the ASM CNTPCT , we chose to use the former to measure time. To measure the

time taken by a LOAD instruction (ASM LDR), we use the code as illustrated in figure 3.36. This code uses mem-
ory barriers (ASM DSB SY) and instruction barriers (ASM ISB) to ensure that the LOAD instruction is executed af-
ter the first time stamp is taken (with ASM MRS x15, PMCCNTR_EL0) and before the second time stamp is taken
(ASM MRS x17, PMCCNTR_EL0). This primitive is used in our implementation of Flush+Reload and Prime+Probe.

9For example, signals between processes running in different CPU use IPIs, in Linux.

60

Chapter 4

TEE-Time: Simulating to get security insights

Contents
4.1 Introduction . 62
4.2 Key issues . 62

4.2.1 Cache timing attacks on Trusted Execution Environments . 63
4.2.2 Exploring attack complexity . 63

4.3 TEE-Time methodology . 64
4.3.1 Overview of TEE-Time process . 64
4.3.2 Key Detectable States . 65

4.3.2.1 VictimScan policy: 1hit . 66
4.3.2.2 VictimScan policy: nhit . 66
4.3.2.3 VictimScan policy: nhit_inclusive . 66

4.3.3 Ranking methodology . 67
4.3.4 Attack configuration and Key Detectable States . 67

4.4 TEE-Time implementation . 69
4.4.1 Instrumenting the attack scenario . 69
4.4.2 Dedicated GDB scripts . 69

4.4.2.1 VictimScan . 70
4.4.2.2 Attack Monitoring . 73

4.5 Example: demo cryptographic function . 74
4.5.1 Demo: VictimScan . 74
4.5.2 Demo: Attack Monitoring . 75
4.5.3 TEE-Time: Code coverage . 76

4.6 Attack against RSA signing in OP-TEE . 76
4.6.1 mbedTLS bignum exponentiation . 76
4.6.2 RSA: VictimScan . 78
4.6.3 RSA: Attack Monitoring . 78

4.7 Conclusion . 80

61

4.1 Introduction
In this part is detailed how we use gem5 to study attackability of applications running in a Trusted Execution Environ-
ment. The tool that analyzes this attack scenario is called TEE-Time. It consists of two phases: VictimScan and Attack
Monitoring. VictimScan extracts information from gem5 while it is running a potentially weak scenario: A scenario
where an attack running in parallel could spy on a victim program. VictimScan will then produce a report using the data
gathered during the execution of the victim process. This report documents the attackability of a specific implementation
of a cryptographic algorithm. As illustrated on figure 4.1, VictimScan uses a ranking methodology based on cache dumps
to evaluate these properties. After that, Attack Monitoring can use the VictimScan report to verify if a simulated attack
build upon VictimScan findings produces the expected results.

4.2 Key issues
To carry on cache timing attacks or, more generally, any side-channel attacks, We have to identify two things:

• A small code extract that can be linked to a secret in our victim algorithms, generally the key.

• How this small code can be detected using the shared medium between attacker and victim. In cache timing
attacks, this shared medium is generally the last-level cache.

The first part has been widely explored in the literature: cache static analyzers can determine if a certain algorithm
implementation is not Time constant. For example, CacheAudit[Doy+15] uses a formal model to study information
propagation in the algorithm implementation. With a cache analyzer, it is possible to study in-vitro potential victims
and find out if they are attackable.

The second part, identifying how to detect these leaks, is harder to generalize. In fact, this largely depends on
the platforms and how the CPU and caches fetch lines. For example, AutoLock [Gre+17] complicates the victim’s leak
detection, although it remains possible. In addition, we have to account for other sources of noise that would consistently
obscure the data. Therefore, fine-tuning an attack to work on a specific platform requires a specific model. This leads
attack demonstrations to be hardly scalable in more practical use cases. These issues culminate in Trusted Execution
Environments which prevent most of the tricks used to deploy attacks more easily:

• Sharing CPU between victim and attacker : The Trusted Execution Environment will preempt the core for its
execution and only release it after it is finished and has flushed all caches.

♣

-100

+50

♠♠
♣

♣

SOURCE CODEKEP CACHE DUMPSRanking of Lines
at each KEP

Figure 4.1: Illustration of the VictimScan component in TEE-Time. Using simulator access to cache dump, VictimScan
evaluates vulnerabilities using the source code.

62

• Being able to gather multiple traces without knowing what we are searching for.

• Being able to study the victim directly on real hardware: TEE can block the debugger on ARMv8-A.

All these elements without making attack impossible, largely hinder attack deployment, and therefore, security studies
on real hardware.

4.2.1 Cache timing attacks on Trusted Execution Environments
For our threat model, we assume that our attacker does not have access to the TEE, it can only run applications in Linux.
This consideration already prevents the attacker from using Flush+Reload as caches consider lines with different security
attributes as being different. Therefore, a rich OS application can not have cache ’hits’ for a trusted application address.
Moreover, when transitioning from rich OS to secure OS, all the caches are flushed. Thus, only a Prime+Probe attack
is possible (see section 3.4.4). This distinguishes our threat model from other cache-attack in literature [Rya19], [LW18],
[Kou+21] and [KOU+23] which uses the same CPU core shared between attack and victim, leveraging interrupts to
preempt OP-TEE while it is running and execute the attack on the same CPU. To measure cache-side effects during the
execution of OP-TEE, our Prime+Probe attack has to run in parallel to our victim while sharing the last-level caches.
To be able to control which CPU the TEE runs in, the attacker has to control on which thread the host application
invoking the TA runs in Linux. This assumes being able to call this application or just filling CPU occupancies with
dummy thread to constrain the victim to the only remaining CPU.

L1I L1D L1I L1D

L2 Unified Cache

Core 0 Core 1

Victim line

Prime
Set

A prime line
is evicted

Figure 4.2: Cross-core Prime+Probe attacks: an attack running
in CPU1 is trying to attack the TEE in CPU0.

For this reason, our attack scenario is a cross-core
Prime+Probe attack (as shown in figure 4.2). In this
type of attack, victim and attacker run on different CPUs
and the last-level cache (here the L2) is used as the side-
channel. Therefore, the Prime+Probe set has to fill the
last level cache and thus contains at least as many entries
as its associativity.

In our scenarios, the attack program is run while a
host first installs a TA (using xtest --install-ta)
and then opens a session with the TA it just installed.
In that session, the host client app in Linux will use the
TA by sending commands for a critical operation that we
want to attack using our cross-core Prime+Probe attack.
The attack program, which was waiting in the background,
starts monitoring caches using Prime+Probe just before
the victim execution enters the trusted OS area. To do
that, the Linux host is instrumented to communicate with the attack. It signals the attack when it is about to start the
critical TA commands. This is possible as the Linux host application can be modified by the attacker, whereas the TA
is unalterable. Indeed, this threat model introduces complexity(synchronization, memory placement,...) that can only
be resolved through an automatic cache analyzer like TEE-Time.

4.2.2 Exploring attack complexity
To deploy our Prime+Probe attack, we have to choose which cache set to attack. A cryptographic algorithm is, generally,
the target for our attack. So, our goal is to recover the key (or secret) using differences in timing. This problem is shown
in figure 4.3, which illustrates how a Prime+Probe attack can be used to detect a branch. To do so, we have to choose the
right cache set to attack in order to effectively detect the branch taken by the victim. This cache set has to be accessed
by an operation (symbolized as gears) happening in the branch. By monitoring the cache set, the attack produces a
signal that, if done correctly, only corresponds to the branch being taken. If this cache set is also part of an operation
footprint outside the branch, it creates additional signals that have to be ignored. As we can see on the red plot in
figure 4.3 if we do not choose carefully the monitored cache set, the cache timing traces can contain additional signals
that do not correspond to the branch. This red signal is incorrect as it presents when the branch is not taken and when
the yellow gear is used. On the other hand, the green signal is only present when the branch is taken.

A cryptographic algorithm that is leaking information through cache and thus attackable, is considered non-constant
time. To be constant time, an algorithm has to:

• Take all the branches independently of the key.

• Do not use any key-offset’ed memory access.

63

V

A

Cache Cache

Attack
probes

Cache

[i]==1

Cache

Victim
computes

Attack has
to chose a set

to probe

Cache
all bits
are accessed

(t)

(t)cache timing
trace

 only registers
if takes the branchV

 computes
using function
and/or memory

V Cache

 also registers if
does not take the branch

V

 registers without regards
 if V takes the branch V

Figure 4.3: An attacker uses a cache timing attack to determine which branch a victim takes. To do that, it has to choose
the right line to detect only an operation that happens in that branch.

To find these sources of weaknesses, a static cache analyzer can be used (e.g., FlowTracker [RQA16], CacheAudit [Doy+15]).
These tools rely on static analysis to find the vulnerabilities, propagating information through the program to find non-
time constant parts. Some static cache analyzers, with the help of cache model can also suggest the associated cache set.
A dynamic cache analyzer, like [Ira+17], can also detect cache sets responsible for a cache leak. They rely generally on
differential analysis to find differences between two runs with different keys.

Another possibility to find these cache vulnerabilities is to study arbitrary attack traces for different cryptographic
keys. Called template attacks, they study a large amount of traces to propose correct cache sets associated with points-of-
interest in said traces. These points-of-interest correspond to time instants in traces where differences in timing represent
bits values for a key (red and green bumps on the figure 4.3).

To explore attack complexity and find the right configuration to attack a specific cryptographic algorithm, we can
leverage using our platform described in Chapter 3 and its precise CPU and cache model. But we can take advantage
of our knowledge of the algorithm and our access to a micro-architectural debugger in a secure environment. Bypassing
the need to produce millions of traces, we can directly propose points-of-interest based, for example, on code segments
we want to detect (like the branches on figure 4.3). Through automation, we can monitor and trace an algorithm’s
micro-architectural states without any human interventions. This last point solves the problem with the largely slower
execution speed that comes with simulation: with basic assumption on the algorithm leakage model, we can gather as
much information in a single unattended run as what could be done in millions of cache template profiling runs.

This is our tool, TEE-Time. It deduces from potentially non-constant time section, which cache set to attack and
what signal to expect for the non-constant time section we want to detect.

4.3 TEE-Time methodology
TEE-Time is first designed as a methodology that leverages a simulation environment while trying to overcome the
limitations caused by said simulation environment. In this section, we present the core concepts and model that shape
the TEE-Time methodology.

4.3.1 Overview of TEE-Time process
TEE-time uses a three-step methodology (see figure 4.4) to propose a reasonable attack that can be run on a real
platform:

I : Choosing KEPs: Based on the knowledge of the underlying algorithm, we propose points of interest in the
algorithm called Key Execution Point (KEP) which potentially leaks information about the key. These points are
regrouped in KEP classes that denote similar operations.

II : VictimScan: During an automatic/interactive debug session, the victim running in gem5 is analyzed to extract
key features associated with each class of KEPs, with respect to an attack information model. We call this
information model a VictimScan policy. These key features are called Key Detectable States (KDS), and can be
used to configure a cache timing attack.

64

+ GDB

VictimScanChoosing
KEPs

+ GDB

Attack
Monitoring

IIIIII

poor KDS found
for KEPs

poor correlation
between KEP

and attack traces

VictimScan
policy

Configurable
Attack

Real Hardware

KDSesKEPs

Figure 4.4: Overview of TEE-Time: With this process we use our simulation platform (gem5+GDB) to craft an attack that
we can test on real hardware.

III : Attack Monitoring: During an automatic interactive debug session, the attack scenario (victim + attack) running
in gem5 is monitored to supplement the traces of an attack with victim KEP execution data. These information
can then be processed to confirm the correlation between KEPs and attack results.

TEE-time introduces two concepts that serve at the interface between our three steps:

• Key Execution Points (KEP): They mark the non-constant time section we want to detect. They symbolize potential
cache timing weaknesses associated with an execution path and/or a specific variable value. Representing point-
of-interest directly in code or in disassembled binaries, We denote them as ♠,♥,♣, [S] or [M]. KEPs sharing the
same label are considered in the same class. KEPs in the same class represent similar information at the algorithm
level: e.g. which S-box is used for AES, which operation is performed by the square and multiply algorithm, etc.
Often symbolized as breakpoints, KEPs are chosen by the user to control the behavior of VictimScan during step
I.

• Key Detectable States (KDS): produced by VictimScan from a set of KEPs, they represent key features or properties
of the cache states associated with each class of KEPs. A KDS is, therefore, a property of a cache state, which
directly corresponds to a specific attack outputting a characteristic signal when this cache state occurs. Therefore,
with a KDS, an attack can be tuned to recover its associated signals without interferences from different KDS.
Indeed, different attacks and cache replacement policies have different associated KDS definitions and sets. This
definition is provided in a VictimScan policy on figure 4.4, which has to correspond to the attack provided in step
III.

KDS are extracted from cache states in the vicinities of KEPs. These cache states are acquired using cache dumps or
by tracking the cache state for the length of the KEP segment. These different possible behaviors are controlled by a
KEP toolbox, detailed in section 4.4.2.1.

4.3.2 Key Detectable States
To define what are the key features in cache state, we developed a model for the relation between cache states and
attack traces. With this model, we exploit the dumps produced on each KEPs to produce a set of Key Detectable States
(KDS). This model is integrated into VictimScan as different VictimScan policies. Let D be the cache dump entry set.
An element d of the cache dump set D represents the state of a specific way w from a cache set with index i occupied by
a line which corresponds to the address a is a 3-tuple as follows:

d = (i, w, a) ∈ D (4.1)

Each dump produced, Du, is a set of d ∈ D which we call U, the set of cache dumps, such that Du ∈ U. Therefore, we
have:

∀Du ∈ U, Du = {d1, d2, d3, ..., dn} with (d1, d2, d3, ..., dn) ∈ Dn (4.2)
A VictimScan policy x is thus a function fx of U to a set of elements from a simpler set called Kx, the key detectable
state set.

fx : Du ∈ U 7→ {k1, k2, ..., kn} with (k1, k2, ..., km) ∈ Km
x (4.3)

65

Each element of k ∈ Kx can be distinguished using an attack Ak ∈ Ax, with Ax being the set of attacks that can be
configured to detect an element of Kx. This attack Ak produces traces along the execution of the victim, influenced by
the shared cache state. For a given point of execution p, we can define the result of the attack:

Ak : p 7→ TA (4.4)

TA is the A attack output space, such as Ak(p) ∈ TA is the output of the attack for a point p. An attack trace is therefore
a list of execution points {p1, p2, ...}, and attack result {Ak(p1), Ak(p2), ...}. In that regard, key execution points (p♠1)
are specific points in the execution that can be organized into classes that the attacker wants to distinguish using the
output of the attack (Ak(p♠1)).
KDS Property: Given two KEPs, p♠ from KEP class ♠ and p♥ from KEP class ♥ that each produced a dump, Du♠
and Du♥, Ak ∈ Ax with fx its associated VictimScan policy, is equivalent to the following:

∀k′ ∈ Kx, k
′ ∈ fx(Du♠) and k′ /∈ fx(Du♥) ⇒ Ak′(p♠) 6= Ak′(p♥). (4.5)

if the property 4.5 is true for an attack Ak, and therefore Ak ∈ Ax, it means that it can be used to detect KEPs using
KDS k from the image of their dump through the policy x.

With these settings, the VictimScan ranking proposes a set of attack configuration (Ak), one for each KEP class
which can be used in tandem to detect and distinguish KEPs. To represent our cache timing attacks, we define the
following VictimScan policies.

4.3.2.1 VictimScan policy: 1hit

1hit is the simplest VictimScan policy. In [FDC23] and [FDC24b], this type of KDS was called Key Cache Lines (KCL)
and represented the minimum configuration for a Prime+Probe attack. With this policy, KDS are only made of non-
empty cache indices (0x1, 0x23, ...) with no regard for the number of occupied ways or set occupancy. Their associated
f1hit function is as follows:

f1hit : Du ∈ U 7→ {k, ...}
f1hit(Du) = {(i)|∃(w, a), (i, w, a) ∈ Du}

(4.6)

The attacks A1hit
(i) for this policy are attacks which can distinguish between hit and miss for a specific set with index i.

4.3.2.2 VictimScan policy: nhit

nhit is the second VictimScan policy which takes into account set occupancy. For each cache dump, the KDS, that it
produces are composed of: a cache index and the number of occupied ways for this index ((0x1,1), (0x23,4), ...). Given
Oi(Du) = {w|∃a, (i, w, a) ∈ Du}, their associated fnhit function is as follows:

fnhit : Du ∈ U 7→ {k, ...}
fnhit(Du) = {(i, card(Oi(Du)))|card(Oi(Du)) > 1}

(4.7)

The attacks Anhit
(i,o) for this policy are attacks which can distinguish between different occupancies o (the number of ways

filled) for a set of index i.

4.3.2.3 VictimScan policy: nhit_inclusive

This is a derived VictimScan policy from the nhit policy. For each cache dump, its KDS have the same definition as
nhit. However, for each nhit KDS, additional KDS are added for included occupancies: For (0x23,4), (0x23,3), (0x23,2),
and(0x23,1) are also emitted. Their associated fnhit_inclusive function is as follows:

fnhit_inclusive : Du ∈ U 7→ {k, ...}
fnhit_inclusive(Du) = {(i, oth)|(i, w) ∈ fnhit(Du), oth ∈ [1, w]}

(4.8)

The attacks A
nhit_inclusive
(i,oth)

can be seen as a variation on Anhit
(i,o). This means that an attack A

nhit_inclusive
(i,oth)

which has a
number of filled ways for set index i of at least an occupancy threshold oth, can be defined using a sum of Anhit

(i,w), with
assoc the cache associativity:

A
nhit_inclusive
(i,oth)

=

assoc−1∑
w=oth

Anhit
(i,w) (4.9)

66

4.3.3 Ranking methodology
With KDS isolated for each KEP ’s dump, we want to determine which KDS is ideal to detect a class of KEPs. Our
goal is thus to identify which KDS are more likely to be triggered around a KEP and are less likely to be triggered by
other KEPs or randomly. If no such KDS can be found, we can safely declare the associated KEP is not detectable by
Prime+Probe attacks. For that, we use a simple scoring system that is computed along the execution, i.e., each time a
new cache dump is collected on a KEP.

Given S is the set of all KEPs: S = {♠,♥}
Given hx(k) which is the number of times a KDS k is present in cache dump corresponding to a KEP class x.
Given wx which is the number of times a KEP of class x has been found and thus, a cache dump has been made.
This score function presented in equation 4.10 has three components:

• hx(k)
wx

: The KDS which are present in the cache dump during the KEP gets a positive score, normalized by the
number of times the associated KEP has been triggered.

• h (k)
w : The KDS present in random dump get a negative score, normalized by the number of times this random

dump has been done.

•
∑

s∈S,s6=x

hs(k)

wx × card(S)
: is the conflict contribution: The KDS which are found in other KEPs get a negative score and

are normalized by their related KEP ’s trigger count and by the number of KEPs’ classes.
Overall, the score function is given by:

scorex(k) =
hx(k)

wx
− h (k)

w
−

∑
s∈S,s6=x

hs(k)

wx × card(S)
(4.10)

This score is also generally indicative of how much a class of KEPs is identifiable using a cache timing attack configured
with KDS k. A negative score indicates that the class of KEPs cannot be identified.

4.3.4 Attack configuration and Key Detectable States
This score function can be used to rank KDS for each class of KEPs. The highest ranked KDS for each class of KEPs
can then be used to configure an attack, in our case, a cross-core Prime+Probe attack. This attack is then supposed
to detect KEP using the signal associated with its KDS. Depending on the KDS, different attacks can be configured to
detect it.

Our different KDS definitions in section 4.3.2 account in fact for the different ways of using a Prime+Probe attack.
A Prime+Probe attack is configured using a prime set index i, which corresponds to a 1hit KDS (ki) or the first element
of nhit KDS (k(i,o)). Indeed, the output of Prime+Probe for each execution point p is the access time for each element
of the prime set. Given assoc the last-level cache associativity, we have:

APrime+Probe
ki

(p) = {t0, t1, .., tassoc−1}︸ ︷︷ ︸
assoc

(4.11)

Making abstraction of noise, we can propose a model for these expected timing results depending on the probing direction.
When probing forward, due to self-eviction, all the access timing for the prime set will have the same value, either

thit or tmiss. Thus, Prime+Probe forward can output only two possible value Tmiss or Thit

Tmiss = {tmiss, tmiss, .., tmiss}︸ ︷︷ ︸
assoc

Thit = {thit, thit, .., thit}︸ ︷︷ ︸
assoc

(4.12)

This means that when probing forward, the Prime+Probe attack can only reliably detect between a set being empty and
being filled with one or more entries. This behavior links the Prime+Probe attack to the 1hit VictimScan policy. In that
context, KDS are made of only a single index. And if we take two points of execution p1 and p2 whose dumps only differ
by a single cache line in an otherwise empty cache set with index i. We have ki ∈ f1hit(Dumpp1

) and ki /∈ f1hit(Dumpp2
)

and our attack APrime+Probe-forward
ki

produce the following results:

APrime+Probe-forward
ki

(p1) = Tmiss

APrime+Probe-forward
ki

(p2) = Thit
(4.13)

Therefore, we have APrime+Probe-forward
k ∈ A1hit. This property is still valid when using the sum of timing over the prime

set. In that, case we have
∑

Tmiss = assoc× tmiss and
∑

Thit = assoc× thit. Therefore, we can plot only the sum of the
timing without losing information.

67

Figure 4.5: Prime+Probe directions: above are
Prime+Probe forward and below are Prime+Probe
reverse. The victim uses cache occupancy, indicated as
colored rectangles, to send a stair signal clearly visible on
pp-reverse.

On the other hand, for Prime+Probe in reverse, timing
values can differ between entries in the set. Each entry can
be a hit or a miss. However, due to the LRU (Least Re-
cently Used) cache replacement policy and the direction of
probing, the victim program evicts elements of the prime
set in order, from the least recently probed to the most
recently probed. This results in all entries after the first
miss being misses because the prime set is evicted from
the extremity where the last probe started. Consequently,
the number of prime set entries evicted is directly linked
to the number of occupied cache ways o by the victim for
their associated index. Thus, we can define:

Thit-miss(o) = {thit, .., thit︸ ︷︷ ︸
assoc−o

, tmiss, .., tmiss︸ ︷︷ ︸
o

} (4.14)

For o ∈ [0, assoc − 1[, Thit-miss(o) represents all
possible outputs for the Prime+Probe reverse attack
(APrime+Probe-reverse

ki
). Each of these outputs is linked with

a number of occupied ways o for the cache index i which
was used to allocate the prime set. The attack has, there-
fore, a different output for each occupancy of the cache
set. This behavior links the Prime+Probe reverse at-
tack to the nhit VictimScan policy. In that context, KDS
made of index i and occupancy o correspond to the attack
APrime+Probe-reverse

ki
outputting Thit-miss(o).

Given two execution points, p1 and p2, whose dumps
differ by only a single cache line in cache set i. In p2, this
cache line occupies an additional way o, assuming that all
ways from 0 to o− 1 are already filled. We have: k(i,o) ∈ fnhit(Dump(p1)) and k(i,o) /∈ fnhit(Dump(p2)) and our attack
APrime+Probe-reverse

k(i,o)
= APrime+Probe-reverse

ki
produces the following results:

APrime+Probe-reverse
k(i,o)

(p1) = APrime+Probe-reverse
ki

(p1) = Thit-miss(o)

APrime+Probe-reverse
k(i,o)

(p2) = APrime+Probe-reverse
ki

(p2) = Thit-miss(o− 1)
(4.15)

Therefore, we have APrime+Probe-reverse
k ∈ Anhit. This property is still valid when using the sum of timing over the prime

set. In that case, we have: ∑
Thit-miss(o) = o× tmiss + (assoc− o)× thit

= (tmiss − thit)× o+ (assoc× thit)
(4.16)

Therefore, if we use as an attack trace the sum of the prime set timing values, there will be a distinct trace point value
for each Thit-miss(o).

The nhit_inclusive policy, is similar and shares the same KDS definitions as the nhit policy. Indeed, we have
Anhit ⊂ Anhit_inclusive. In that regard, nhit_inclusive mostly differs on what attack from Anhit_inclusive is searching for.
Whereas attacks from Anhit search for exact Thit-miss(o) values associated with the KDS (i, o), attacks from Anhit_inclusive
search for Thit-miss(w) higher with w higher than a certain oth associated with the KDS (i, oth). For Prime+Probe
reverse, this can be computed as a

∑
Thit-miss(oth) threshold value for the acquired

∑
Thit-miss(w). In that case, a∑

Thit-miss(w) ≥
∑

Thit-miss(oth) is our signal for the KDS (i, oth).
We sum up the link between policies and Prime+Probe direction in the table 4.1. It also contains the trace points

we use, and how it is linked with the KDS we want to detect. In this table, we also give the signal we are searching for
to detect a KDS, although in real measures, we would have to account for the noise.

We propose the figure 4.5 to visualize, the different output values for Prime+Probe forward and reverse and their
correspondence with KDS. On the bottom, which corresponds to Prime+Probe reverse traces, each stair level corresponds
to a

∑
Thit-miss(o) (with o from 0 to 7) associated with a cache occupancy o. Each

∑
Thit-miss(o) for the set i is associated

with the nhit KDS (i, o). The same victim behavior produces the trace on the top when using Prime+Probe forward,
with only two values

∑
Thit, the lowest, and

∑
Tmiss, the highest.

∑
Tmiss for the set i is associated with the 1hit KDS

(i).

68

Policy KDS Attack Output Trace (Σ) Signal
1hit (i) Prime+Probe Thit or

∑
Thit or

∑
T =

forward Tmiss
∑

Tmiss
∑

Tmiss
nhit (i, o) Prime+Probe Thit-miss(w)

∑
Thit-miss(w)

∑
Thit-miss(w) =

reverse w ∈ [0, assoc[w ∈ [0, assoc[
∑

Thit-miss(o)
nhit_inclusive (i, oth) Prime+Probe Thit-miss(w)

∑
Thit-miss(w)

∑
Thit-miss(w) ≥

reverse w ∈ [0, assoc[w ∈ [0, assoc[
∑

Thit-miss(oth)

Table 4.1: Correspondence between VictimScan policy and Prime+Probe

4.4 TEE-Time implementation
TEE-Time is implemented in instrumentation scripts running in GDB-Python (section 3.2.3.2). These scripts connect
to the gem5 platform to analyze an attack scenario.

4.4.1 Instrumenting the attack scenario
We implemented certain elements in the simulated image to allow GDB to configure the attack scenario at run time.
An attack scenario run starts at a checkpoint that happened in an init.d script. After the checkpoint, this script
continues: It loads, then executes a bash script using m5 readfile . This bash script is controlled directly by gem5
and allows us to modify the scenario without having to re-build the boot checkpoint (BootPoint). To avoid issues with
the root disk image, we have to manually mount another disk that contains all the necessary tools needed for our attack
scenario and that we are likely to modify (Linux client, TA, attack, etc.).

bash.rcS

attack_cli=$(m5 env attack_cli)
victim_cli=$(m5 env victim_cli)

Figure 4.6: m5 env : our new m5 instruction to load
environment variable at runtime

Our scenario is described as a bash script loaded
in the simulation with m5 readfile . To configure
this scenario through GDB at run time, we use the

m5 env (presented on figure 4.6) in our script to load
environment variables. These variables are contained in
a dict in gem5-Python, which we set using GDB-Python.
They specify for the rest of the bash script:

• If the attack should be run

• The command line of the victim.

• The command line of the attacks.

• In which thread to launch the attack and the victim.

GDB changes its current directory to correspond with the gem5 m5out directory. It gets this information using the
GDB-instrumentation interface. This setup allows the use of the same gem5 configuration, platform, and disk images
for different behaviors configured by GDB. Each gem5 run only differs by the m5out directory: It makes simulation runs
independently of each other. After this initialization phase, in which GDB-Python also creates breakpoints to monitor
the attack and the victim, the attack scenario proceeds normally, only interrupted by GDB breakpoints. During these
breakpoints, GDB-Python can use the GDB-instrumentation to extract information or reconfigure the simulator, but it
can no longer modify the attack scenario. To improve run times the GDB-Python script can command gem5 to perform
a CPU switch: gem5 temporally changes the CPU model for a faster but less precise model (atomic model). When the
victim program starts, GDB-Python commands gem5 to switch back to the more precise CPU model. Finally, to make
results more accessible, the attack can use m5_writefile to output traces directly in the host directory (m5out)

4.4.2 Dedicated GDB scripts
To use TEE-Time, a dedicated Python script is loaded in GDB, while execution starts in gem5 (gem5 can wait for a GDB
connection before starting the simulation). This dedicated script connects automatically to gem5, loads ELF images in
GDB, configures environment variables in gem5, initializes breakpoints, and then resumes simulation. TEE-Time uses
two different GDB instrumentation scripts, one for each step of the process (see figure 4.4):

69

• VictimScan uses the KEPs provided as a CSV file, gathers dump as the victim program is running on gem5, and
finally produces a report that summarizes the information contained in dumps. This report’s main feature is a Key
Detectable State (KDS) ranking using the score described in section 4.3.3.

• AttackMonitor monitors an attack scenario. It adds label points based on a set of KEPs to the cache traces
produced by the attack in order to verify the correlation between KEP and attack timing traces.

These two scripts load the same label file containing KEPs to initialize breakpoints associated with each KEP ; they only
differ in the behaviors associated with each KEP type. Each script has to be launched from the start of a gem5 run,
which represents an attack scenario.

4.4.2.1 VictimScan

victim_scan.py

VictimScan
RankingVictimScan

Report

Acquire

CacheData

FormatedDump

GDB

VictimScan Policy
KDS=(index, way)

KEP
Breakpoints

Figure 4.7: Structure of VictimScan: running in GDB; Vic-
timScan programs breakpoint on KEP in gem5. From these
breakpoints, VictimScan extracts raw cache data which are
formatted using VictimScan policy. These formatted dumps,
now made of a set of KDS, can be presented to the rank-
ing algorithm. These KDS are processed to produce the
VictimScan report

The VictimScan is handled by a dedicated GDB-Python
script: victim_scan.py. Its inner workings and interac-
tions with gem5 are represented in figure 4.7. Victim-
Scan uses the KEP chosen by the user to delimit poten-
tially non-constant-time or critical code segments handling
the secret/key. VictimScan creates breakpoints to extract
cache states for each KEP. The user can choose how Vic-
timScan gathers cache data around KEP using the KEP
toolbox that describes multiple types of KEP with dif-
ferent behaviors. The KEP toolbox can also deploy ran-
dom points to deploy noise KEPs. Noise KEPs generate
dumps that are used as references to reject cache states
correlated with random execution points and not specific
KEPs. These dumps contain reconstructed address data,
which allows tracking each cache line to its correspond-
ing source. As we illustrated in figure 2.16, cache states
depend on a wide variety of sources:

• Data access

• Instruction fetch (wide fetch can fetch instruction
speculatively).

• MMU table walk: o ARMv8-A the MMU has a hard-
ware table walker that automatically tries to fill the
TLB by exploring the page table.

• Hardware prefetcher: caches have prefetchers that
can preventively fetch lines.

Thanks to our virtual platform modeling all these sources,
TEE-Time can account for cache states that other ana-
lyzers might have missed. These sources follow the cache
state and then their related KDS along the process to
propose causes for KEP detectability (e.g., specific mem-
ory access that frequently causes a line to be present in
caches). Independently of the KEP breakpoints’ internal
behavior, a unique cache dump is produced containing one
or more cache states. To extract KDS from the cache state needed to classify its contents with respect to a cache timing
attack, a VictimScan policy arranges the information from the dumps producing one or more formatted dumps, each
containing a set of KDS. The user can choose between different VictimScan policy that we described in section 4.3.2.
Each formatted dump is associated with a KEP class. As mentioned before, these KDS come with one or more source
addresses that designate a reason for the associated cache state. Using this set of KDS, the ranking can be updated
using the score function described in section 4.3.3. This ranking orders KDS for each class of KEP such as:

• The best KDS can be used to distinguish between two classes. It is rarely present in other classes.

70

• The best KDS is not present in random/noise KEP classes (, , etc.). KDS present in random KEP classes are
triggered randomly and therefore can not be used to distinguish and detect a KEP.

To consider different types of KEP -cache state correlation, The KEP toolbox proposes different Key Execution Point
types:

• Punctual Key Execution Point : Only study current cache states (using a cache dump) when the point occurs. This
KEP is followed by a flush to ensure the same cache state is not registered by multiple KEPs if it did not re-enter
the cache.

• Delay Key Execution Point : Study what is in the cache but only after a certain number of instructions.

• Scope Key Execution Point : Study the difference between what was in caches when the point occurred and what
is in caches when leaving a scope.

• Tracker Key Execution Point : study what entered and leaves the cache in a section (using scope breakpoint or
normal breakpoints). When entering a tracker section, a cache flush is generally performed to force a line to re-enter
the cache.

In VictimScan, cache flushes use a CxxMethod to flush all the evictable lines to be evicted, imitating what a Prime+Probe
attack could do. This forces potentially leaking lines to be evicted, allowing them to be fetched again only if they are
linked with the KEP we are trying to monitor. As mentioned before, KEPs are identified by their name which represents
the event they want to spot. Thus, each KEP implemented by the KEP toolbox has a name (this name can be a
parameter of local variable values). In the toolbox, KEPs’ positions are represented as a breakpoint location in GDB :
demo.c:2, mbeltls_mul, etc.

[i]==1

Cache

Cache

Cache Cache

V 1

0

KEPs flush
cache after
dumping

KEPs label
cache dumps

and accumulate
them

Figure 4.8: Classifying cache data on whether the victim
function takes a branch using Punctual Key Execution Point

KEPs have to be placed precisely to correctly organize
cache data. Their position around a function is important
to account for different types of cache signals that could
leak the victim function secret. Therefore, depending on
the assumption made on the victim handling of the secret,
we have to deploy KEP different type of KEP setup:

• Punctual event: We could assume that leaking com-
putations happen at a single instant of the victim
computation, which could be directly linked to the
secret leak. In that case, we can deploy punctual
KEP after the computations. These KEPs will clas-
sify the cache data with the assumption that it still
contains the data from the previous computation.
Therefore, KEPs are named depending on the se-
cret the computation was leaking. A cache flush is
done on each KEP after gathering the data to ensure that the acquired data is no longer in caches. Otherwise, the
same access could be counted by multiple KEP triggers. This typically happens when a victim performs compu-
tations that have different cache access patterns in a branch, like the situation represented on figure 4.8. In this
situation, we deploy a Punctual KEPs after the computation in each branch (represented as colored gears). Each
KEPs classifies the cache contents (which have been altered by the computation), using its name (♥ or ♠). These
cache states are archived in their two categories to be then processed by the VictimScan policy to extract their
KDS. Cache state is then flushed to avoid archiving the same cache state multiple times.

Code associated with the situations described by figure 4.8

if(key[i]==1){
do_1();//KEP:♥ here

}else{
do_0();//KEP:♠ here

}

71

[i]==1

Cache

0 1

1

Cache

Cache Cache

0

V 1

0

This function choses
which to use

depending on the

Cache is flushed
& labeled

Cache is flushed
& labeled

0

1/0

Cache

1

Scoped KEPs flush cache
and preventively label
 future dump

Scoped End KEPs classify dumps
using previous label

Figure 4.9: Classifying cache data on whether a victim func-
tion takes branch when the leaking computation happens
after the branch.

• Scoped event: We could assume that the leaking
computation happens after the secret access, in a
scope that can not be easily linked to the secret it
leaks. In that case, dual KEPs have to be deployed.
Either manually, by putting them where we could
determine the secret after the leak happened, or au-
tomatically if this happens when entering and leav-
ing a scope (branch, function, etc.). In this context,
one KEP defines the name of the section, which is
associated with the secret it leaks, and another KEP
defines the end of the section where cache data are
linked with the secret. A cache flush is done on en-
tering the KEP -scoped section to ensure that the
detected KDS can only be caused by the scoped sec-
tion. Cache tracker KEPs can also be used in this
context as they can register all the internal cache
states while in the scope section. This typically happens when a function is called with an argument that depends
on a secret and behaves differently cache-wise depending on this secret, like the situation represented on figure 4.9.
In this situation, the victim function only prepares which function or data it will use in the branch (represented as
key-labeled gear) and effectively uses them outside the branch (represented as the two-colored gear in the execution
line). To correctly classify this situation, we use three KEPs. Two KEPs in the branch (♥ and ♠) labels that cache
state in advances and perform a cache flush. A final KEP, after the leaking computation, archived the current
cache state, using the label previously defined by one of the first KEP. This setup ensures that the cache state is
put in the category corresponding to the branch it traversed. The VictimScan policy will then try to extract KDS,
which can highlight a possible correlation between cache state after the leaking computation and the branch taken.
These KEPs can also be cache trackers to follow all the cache state between the start KEPs in the branches and
the end KEP after the leaking computation.

Code associated with the situations described by figure 4.9

if(key[i]==1){
x=f1;//start scope KEP:♥

}else{
x=f0;//start scope KEP:♠

}
do_(x);//scope end KEP

==1

Cache

0 1

Cache

Cache

0

Cache

Cache

1
11

0

1

0

1/0

"Backward Scope Start"
flush the cache
and prepare dump

V

0

Key secret is accessed
in advance here
to build

1

0KEPs are placed when we can determine
secret value to classify cache dumps

Cache

1
1/0

0

After the function
Cache state cannot
be used to find

Figure 4.10: Classifying cache data on whether a victim
takes branch when the leaking computation happens before
the branch was taken

• Backward scoped event: Coincidentally, we could as-
sume that the leaking computation happens before
we can determine the value of the secret. In fact, a
preparatory computation might be necessary to ac-
cess the secret. This preparatory computation may
have a different internal cache access pattern while
still having its final cache state not correlated with
the key. In such cases, when the secret is deter-
minable, the cache state does not show any corre-
lation with it. In this situation, we rely on cache
tracker KEPs. One KEP starts the sections with
a placeholder name, and another KEP names the
cache data accumulated to classify it. A cache flush
is done on entering the KEP -scoped section to en-
sure that the detected KDS can only be caused by
the scoped section. This typically happens when a

72

function is used to determine the value of the secret, and such a function has different cache pattern access de-
pending on the value of the secret. This corresponds to the situation on figure 4.10. In this function, the victim
prefetches or pre-computes a gear (yellow or pink), depending on the value of the key. It then performs a constant
time operation (green gear) that ensures that the cache state contains both gears, however the first computing
operation (green gear overlaid on a two-colored gear) leaks which operation will be performed in the constant time
section. In this context, we can use three KEPs to classify the cache states. A first KEP is deployed before the
leaking pre-compute operation. This KEP does not have a name and prepares the future dump by flushing the
cache and starting the tracker if it is a Tracker KEP. Two following KEPs are then deployed before the constant
time operation. In the branches, these two KEPs will label the pending cache data and archive it in their respective
categories (♥ and ♠). If they are trackers, they end the cache tracking process and archive all the cache states that
happened between the first KEP and them. This way, the cache states that are passed to the VictimScan policy
contains the effect of the pre-compute operation (two-colored gear) but not the constant time operation (green
gear). The deduced KDS can thus show a correlation between the pre-compute operation cache side effect and
branch taken.

Code associated with the situations described by figure 4.10

//Scope start KEP
k=access_k(key,i);
if(k==1){

//Scope end KEP:♥
do_ct1(k);

}else{
//Scope end KEP:♠
do_ct0(k);

}

Although, on figure 4.8, figure 4.9 and figure 4.10, cache states correlated with secrets are trivially determinable, Vic-
timScan can account for all the causes on figure 2.16 which may be harder to apprehend only by studying victim binary
images. We can also define KEPs’ name (the class to which they register their associated dump) to be dependent on
the value of a GDB accessible variable. These are parametric KEPs. In some cases, we can choose to also run an
unconfigured attack while Victim Scanning as attack cache behavior might disturb some victim signals, making them
less detectable.

VictimScan policies can also be configured to exclude unsecure lines when monitoring a secure OS operation. In
that case, they produce a new noise KEP dump entry (that we noted). This is called REJECT_UNSECURE. With
that settings, for each dump produced on KEP, the produced KDSes are separated between the real KEP (♠,♥, ...)
contribution (secure cache lines), and the noise () contribution (unsecure cache lines). It improves VictimScan KDS
detection performance by depreciating KDS that are linked with unsecure access. At the end, VictimScan produces
a report that contains all the information it gathered and a KDS ranking, linking each KDS to its reported sources
(addresses, prefetch, ...).

4.4.2.2 Attack Monitoring

Attack Monitoring is performed by a Python script called attack_monitor.py. This script is loaded in GDB and
configured breakpoints using the same KEPs as VictimScan. This script automatically loads environment variables
using m5 env . It adds additional environment variables containing the attack configuration. It chooses them using
the last VictimScan report. Indeed, the Attack Monitoring phase is used in a new run after the VictimScan run to verify
its results and the KDS it found.

This GDB script automatically monitors the attack program while also monitoring the victim. When a KEP is
triggered by the victim, the script logs when it happens using the attack time counter. The script can also extract the
attack timing results while they are being gathered by the attack, or at the end of the runs. Using cache timings results,
and KEP logged by GDB, we can produce annotated attack traces which plot on the same time graph: the attack timing
results and when KEP are encountered by the victim. With this graph, we can study if an attack configured with KDS
found by VictimScan effectively results in a correlation between their associated timings and KEPs being triggered.

With the KEP instant recorded, we can plot timing results w.r.t. each KEP class trigger. Using that plot, we can
observe if timings results behave consistently around KEP, which demonstrates KDS ’s effectiveness in detecting and
distinguishing said KEPs. Indeed, using Attack Monitoring before running the attack on an actual platform helps to
verify key properties of the attack. It gives the necessary confidence in case this correlation is not visible on the actual
platform that it can still be present statistically and therefore require multiple traces to be observed.

73

4.5 Example: demo cryptographic function
We propose the following function, which is reminiscent of the Square and Multiply Algorithm as an example to show
how TEE-Time works. It is placed inside a trusted application and launched from Linux using a host application.

src/ta/crypto_f.c

17 void crypto_f(big_int_t* A, big_int_t* B,big_int_t* E){
18 for(size_t i=0;i<BIG_N_B;i++){
19 if(bit(E,i)){
20 add(A,B,A);//♠
21 }
22 add(B,B,B);//♥
23 }}

KEP type pos
♥ scoped demo_fun.c:22
♠ scoped demo_fun.c:20

The host application initializes and launches the TA while an attack is notified. The attack being notified that the
victim started, it can begin its Prime+Probe process. In this application, we used scoped KEPs as we want to detect the

add functions, without any assumption on the previous cache state. For this demo we are using 1hit VictimScan
policy and its associated attack Prime+Probe forward as described in table 4.1.

4.5.1 Demo: VictimScan
The KEPs in this function, based on typical square and multiply algorithm weaknesses, are represented as ♥ and ♠.
Because we use the GDB format, we can generate them from typical IDEs (like VsCode). They are provided as a CSV
file to the VictimScan script running in GDB.

In this example, we have two classes of KEPs: ♥ and ♠, with each only containing one KEP. With this configuration,
VictimScan produces the report in figure 4.11. VictimScan suggests the best KDS to attack. Here, we only displayed
the top two for the two classes of KEPs. Thanks to gem5 integration, we are able to trace the main source for KDS :
Attributing it to an address (virtual and physical) and, if possible, a code line. We added this information to gem5
packets and stored it in the cache model in their associated cache line. In most situations, VictimScan also finds KDS
that have hidden causes, like:

• Automatic translation table walking: Address sources are table addresses.

• Prefetching: Sources are instructions outside the function.

• Heap and stack addresses: Sources are typically in the function accesses around the KEP.

m5out/report.txt

♥->max_hit:('0x212', 64)
(1):0x210

score:0.6666666666666667
hit_count:64
top_addr:
1@128=S#0x40093400[S#0x30218400]:add + 76 in section .text

(2):0x211
score:0.6666666666666667
hit_count:64
top_addr:
1@128=S#0x40093440[S#0x30218440]:add + 140 in section .text

♠->max_hit:('0x20e', 35)
(1):0x58

score:1.0
hit_count:35
top_addr:
1@70=S#0x400fc600[S#0x30281600]:__ta_no_share_heap + 130992 in section .bss

(2):0x210
score:0.6666666666666667
hit_count:35
top_addr:
1@70=S#0x40093400[S#0x30218400]:add + 76 in section .text

Figure 4.11: Typical report from VictimScan, showing the KEPs classes, and the associated KDS with their scores; ranked in decreasing
order. Each KDS also specifies the corresponding address in the binary, e.g. instructions from .text section, or variables in the heap.

74

These causes reflect what was described in figure 2.16. In the report in figure 4.11, KDSes correspond to cache lines
present in cache dumps that we define in section 4.3.2 as 1hit KDS. By checking top_addr, which reports the cache state
sources, we can see that: 0x210 is due to an instruction in the add function and 0x58 is due to a heap variable
(__ta_no_share_heap).

4.5.2 Demo: Attack Monitoring
Once the KDS are detected and ranked, TEE-Time proceeds to the Attack Monitoring phase (Step III). During this
phase, TEE-Time configures the attack using the best candidate KDS and then simulates it, producing real-attack traces.
In the context of 1hit, the Prime+Probe attack is configured to target the cache sets associated with each KDS. The
attack traces are shown in figure 4.12. The bottom figure is zoomed for better visibility. The attack is automatically
configured using the VictimScan report shown in figure 4.11, with the highest ranked KDS. ♥:0x210 and ♠: 0x58. Cache
set uses the prime-set signal described in table 4.1 for 1hit which corresponds to the sum over the prime set (

∑
T).

Attack Monitoring combines cache timing results from the Prime+Probe attack and the victim monitoring information
from GDB to produce the traces in figure 4.12. On figure 4.12 and figure 4.13 the cache timings are referred by the
KDS they are trying to detect. TEE-Time uses the KEPs events (shown in figure 4.12 as vertical bars) to create a
window around each KEP. All the windows belonging to the same KEP are then superposed and we obtain one graph
per class of KEP. This graph for the example attack is shown in figure 4.13. It shows the relation between cache timing
and labels: we expect that, if a KDS is really linked with a KEP, its associated cache timings will rise around the KEP
while resting at a low value everywhere else. As expected, we can easily see in figure 4.13 that there are KDS whose
associated cache timing values are higher around KEPs. This demonstrates that VictimScan effectively found KDS that
can be used to detect the KEPs. However, we see an asymmetric conflict since 0x210 is triggered by both KEPs. This
is not an issue and is a consequence of the conflict contribution in the equation 4.10. This is one of the reasons for the
sign of the contribution in the equation. So for our demo function:

• 0x210 will be used to characterize both ♥ and ♠

• 0x58 will be used to distinguish between ♥ and ♠

Sometimes, the Attack Monitoring step fails to show a clear correlation even when traces are generated with the
highest ranking KDS. It could be because of noise or countermeasures. For this reason, both steps of TEE-Time are
necessary to find and assess a cache timing vulnerability. Though it depends on the complexity of the function analyzed,
VictimScan is a rather quick process. Meanwhile, Attack Monitoring is noticeably slower (as seen on table 4.2). This
is why overseeing results in the report produced by VictimScan is important before continuing the process. Table 4.2
shows the experimental configurations and the corresponding run times.

Figure 4.12: Cache timing traces for the simple example, the bottom figure being the top zoomed. The X-axis is the time. The
moments when execution reaches a KEP are indicated with vertical lines. Prime set timings are shown with colored dots, with their
Y-value corresponding to the sum access time for the prime set (

∑
T).

75

Figure 4.13: Zoomed in timing traces plotted relatively to KEPs. The attack traces for 0x210 sense a signal for both ♥ and ♠. The
attack traces for 0x268 sense a signal for only ♠. The black vertical lines mark the moment the KEP was triggered and the timings are
plotted relative to this moment.

4.5.3 TEE-Time: Code coverage

Runtimes
Demo Victim TA 1212.52 s
Victim TA + VictimScan (GDB) 1809.89 s
Victim TA + Attack Monitoring (GDB) 2680.65 s
Victim TA + Attack 2359.49 s

Table 4.2: Simulation runtime. Times measured by gem5. When
using GDB, the acceleration methodology is used. We run our
examples on a Intel(R) Xeon(R) Gold 6128 with 256GB of DDR4.

For a production-quality TA, full code coverage for cache
timing vulnerabilities is required. Here is a brief outline
of the method to achieve such complete code coverage:

• First, we can eliminate lines in the code that do not
depend on any secret information(e.g. cryptographic
key). This step can be done using static analysis.

• We can designate the remaining lines as KEPs be-
longing to a particular class of KEP (label).

• By running VictimScan, we can check if these KEPs
are secure (a negative score) or vulnerable.

The negative scores can be the result of a software countermeasure or hardware optimization. If TEE-Time fails for
these reasons, as described in figure 4.4, we have to go back to the previous step and change its configurations: changing
VictimScan policies, changing KEPs or their implementation with the KEP toolbox.

4.6 Attack against RSA signing in OP-TEE
Our sec-sign TA uses RSA to sign a hash. This service can be used by a Linux application to hash and sign a message as
shown in the UML diagram on figure 3.32. We propose to use TEE-Time to analyze this TA security against an attacker
trying to recover the private key using Prime+Probe. As recommended, our sec-sign TA uses the GlobalPlatform API’s
cryptographic functions to implement hash signing. To sign a hash, OP-TEE uses the function rsa_exptmod in
libtomcrypt directly incorporated in OP-TEE. To sign, rsa_exptmod will use the private exponent which should be
kept secret. If the key provided does not contain RSA-CRT factors (dQ, dP , qP , Q and P), rsa_exptmod uses a
simple bignum exponentiation provided by libmbedTLS after blinding the base. When RSA-CRT factors are provided,
two bignum exponentiation are used with dP and dQ. We chose to only provide basic RSA factors D, E, and N , to
simplify our study. In this situation, libtomcrypt perform a single operation with D using libmbedTLS bignum:

blind_sign = blind_hashDmod N (4.17)

Blinding and unblinding is done using E and N .

4.6.1 mbedTLS bignum exponentiation
The exponentiation function in mbedTLS, mbedtls_mpi_exp_mod, uses the sliding-window algorithm to compute the
bignum exponentiation [MOV01], shown in figure 4.14(a). In our case, the exponent is the private exponent (D). This

76

Sliding-window exponentiation
Require: E ≥ 0
Ensure: X = AE

X ← 1
while i ≥ 0 do

if ni = 0 then
X ← X ×X
i← i− 1

else
s← max {i− k + 1, 0}
for h = [1; (i− s+ 1)] do

X ← X ×X
end for
wbits← (ni . . . ns) . i− s+ 1 ≤ wsize
X ← X ×Awbits

i← s− 1
end if

end while
return X

(a) Sliding window algorithm

optee_os/lib/libmbedtls/mbedtls/library/bignum.c
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi

*A, const mbedtls_mpi *E, const mbedtls_mpi *N){↪→

/* Preparing W :
W[I]= X^I */
state=1;wsize=6 nbits=0;
int i=Skip_leading_zeros(E,X);
while(1){

if(is_Finished(i))
break;

ei = (E[i]) & 1;//E[i] is i-th bit of E
if(ei == 0 && state == 1) {

/*X=X * X*/
mbedtls_mpi_montmul(X, X, N, mm, &T);
continue;

}
state = 2; nbits++;
wbits |= (ei << (wsize - nbits));//
//
if(nbits == wsize){

/* X = X^wsize R^-1 mod N*/
for(i = 0; i < wsize; i++)//

mbedtls_mpi_montmul(X, X, N, mm, &T);
/* X = X * W[wbits] R^-1 mod N */
mpi_select(&WW, W, (size_t) 1 << wsize, wbits);
mbedtls_mpi_montmul(X,&WW,N,mm,&T);
state=1; nbits = 0; wbits = 0;//

}
}
/* process the remaining bits */
return(ret);

}

Window section

Square

Square

Multiply

(b) Sliding window implementation: we call the section in red the window section.

Figure 4.14: Algorithm and implementation from mbedTLS for the sliding window exponentiation algorithm from [MOV01].

algorithm exploits a window (wbits) to accumulate multiple bits of the key (ni) together and then uses them to do the
exponentiation using a precomputed value (Awbits). When a leading 1 is found, the following wsize bits are accumulated
in wbits the associated precomputed value is then multiplied with X: X ← X ×Awbits. Zeros outside the accumulation
phase are skipped by just squaring X.

This algorithm implementation (taken from OP-TEE 3.21) is presented on figure 4.14. The following function is from
the implementation on figure 4.14(b):

mpi_select(&WW, W, (size_t) 1 << wsize, wbits);

Accumulate Accumulate

Computation

0x3A27...

bits

Code Segment (KEP)
extractable bits XXXXX XXXXX

Figure 4.15: S are square operation and M are multiply op-
eration

It ensures that accessing the precomputed window us-
ing the accumulated window bits is time-constant. This
is called multiplier obfuscation by KOU et al.[KOU+23].
This function uses a conditional move operation and ac-
cesses all the possible windows. It was changed since the
first experiment, we did in OP-TEE 3.12. However, this
algorithm is known to leak some information about the
key. [UH23] and [Ber+17] suggest detecting montgomery
multiplication call and categorizing them: square([S]) or
multiply([M]). These are the KEPs that we will use to
extract the partial keys, which can be then used to re-
construct the key as mentioned by [UH23]. The series of
square and multiply can then be used to extract a partial
key as represented on figure 4.15. This figure represents how our KEP segments divide the execution in order to allow
us to retrieve

77

optee_os/lib/libmbedtls/mbedtls/library/bignum.c
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const

mbedtls_mpi *N){↪→

/* Preparing W :
W[I]= X^I */
state=1;wsize=6 nbits=0;
int i=Skip_leading_zeros(E,X);
while(1){

if(is_Finished(i))
break;

ei = (E[i]) & 1;//E[i] is i-th bit of E
if(ei == 0 && state == 1) {

/*X=X * X*/
mbedtls_mpi_montmul(X, X, N, mm, &T);
continue;

}
state = 2; nbits++;
wbits |= (ei << (wsize - nbits));

if(nbits == wsize){
/* X = X^wsize R^-1 mod N*/
for(i = 0; i < wsize; i++)

mbedtls_mpi_montmul(X, X, N, mm, &T);
/* X = X * W[wbits] R^-1 mod N */
mpi_select(&WW, W, (size_t) 1 << wsize, wbits);
mbedtls_mpi_montmul(X,&WW,N,mm,&T);
state=1; nbits = 0; wbits = 0;//

}
}
/* process the remaining bits */
return(ret);

}

[S]

[M]

Figure 4.16: These are the Key Execution Points, we use to scan mbedtls_mpi_exp_mod . They are all scoped key
execution points defined by the highlighted sections.

4.6.2 RSA: VictimScan
Based on [Ber+17], we propose the KEPs shown in figure 4.16 as red sections. These KEPs correspond to different types
of multiplication:

[S] is the squaring multiplication outside the window.

[M] is the multiplication with the precomputed window.

For this demo, we are using 1hit VictimScan policy and its associated attack Prime+Probe forward as described in
table 4.1.

In fact, the series of [S] and [M] that the algorithm goes through contains information about the key. Using TEE-Time,
we found the following KDS as shown in the report of figure 4.17:

[S] :0x289

[M] :0x2a9

Both of these KDS correspond to set indices used by instructions around each KEP.

4.6.3 RSA: Attack Monitoring
With these results, we can proceed to the Attack Monitoring phase (Step III). TEE-Time automatically configures the
Prime+Probe attack with the two KDS on report figure 4.17. The results from the Prime+Probe attack are compiled
with Attack Monitoring information to produce the trace on figure 4.18.

In figure 4.19, we plot each KEP window from the cache timing traces from figure 4.18 in a superposed manner. This
way, we have the corresponding relative cache timings to KEP, for the mbedtls_mpi_exp_mod function. In this
figure, we can see that the timing associated with the prime set 0x289 is only at a high value around [M]. On the other
hand, although the timing associated with the prime set 0x2a9 produces spikes around the two KEPs. However, it only

78

m5out/report.txt
[M]->max_hit:(0x2ab, 149)
(1):(0x289)

score:1.0
hit_count:149
top_addr:

1@149=S#0x3008a240[S#0x3008a240]:mpi_select + 12 in section .text
[S]->max_hit:(0x2a9, 129)
(1):(0x2a9)

score:0.9818933404586392
hit_count:129
top_addr:

1@129=S#0x3008aa40[S#0x3008aa40]:mbedtls_mpi_exp_mod + 1884 in section .text
2@0=S#0x5aa40[S#0x5aa40]:UKN
3@0=0xffff80000a51aa40[0x471aa40]:UKN

Figure 4.17: TEE-Time report generated for mbedTLS and the KEP specified in the code extract. UKN implies that the cache line
belongs to code outside GDB knowledge (e.g Linux kernel)

produces two spikes around [S]. We can see that these spikes always happen by noticing that the 0x2a9 is never at a
low value for these two instants. By using the method proposed in [UH23] on these traces a partial key can be recovered
which can be used to rebuild the full key. So, we conclude that, with these lines, we can perfectly follow the execution
of the mbedTLS function only using a Prime+Probe attack. [UH23] guarantees us that with these points (our KEPs),
we can get a partial key that can be used to rebuild the full key using [MH20]. This way we have the configuration
to do an attack against this OP-TEE trusted application. This theoretical attack can also be used to study how gem5
parameters affect attackability, reproducing different platforms to tailor the attack and scenario for them (sharing CPU
clusters with other processes, interruption, etc.).

Figure 4.18: Cache timing traces for the mbedTLS attack, the bottom figure being the top zoomed. The X-axis is the time. The
moments when execution reaches a KEP, are indicated with ticks. Prime+Probe timings are shown with colored dots, with their Y-value
corresponding to the sum access time for the prime set (

∑
T).

79

Figure 4.19: Zoomed in timing traces plotted relatively to KEPs. The black vertical lines mark the moment a KEP was triggered.
Timings are plotted relative to this moment.

4.7 Conclusion
Built upon our virtual Platform, TEE-Time shows how we can use simulation and instrumentation to build tools that
allow us to gain insight into the security properties of complex cryptographic scenario. It creates an environment where
we can easily explore attack complexity and build demonstration attacks against cryptographic implementations that
would have seen otherwise impossible to study. With this environment, TEE-Time can propagate algorithm security
properties symbolized by Key Execution Points (KEP) to properties observable in the simulator caches without any
human intervention. The first phase of TEE-Time, VictimScan, tries to find cache states that would allow detection of
these KEPs, breaching the security properties of the scanned algorithm. This is possible thanks to a theoretical model
of cache timing attacks, which exploit key features of cache dumps called Key Detectable States (KDS). These KDS can
then be linked to Prime+Probe attack configurations. This way, VictimScan proposes an attack configuration aiming at
detecting our set of KEPs. The second phase of TEE-Time, Attack Monitoring, verifies that the previously found cache
timing attack can be used by an attacker to detect KEPs in the victim algorithm. It runs an attack in the simulated
environment and combines its results with direct victim monitoring. These two phases can be used on any program
running in the TEE to automatically verify if it is leaking information and propose an attack that can be used to verify
that. Indeed, we demonstrated them first on a small demo and then on a real cryptographic function (a large integer
exponentiation). To further our research, we have to choose a real platform that applies security through obscurity to
demonstrate that our findings with TEE-Time can scale to real hardware.

80

Chapter 5

Rockchip-platform: An accurate simulation
model for a real TEE hardware

Contents
5.1 Introduction . 82
5.2 About the RockPi4 and its RK3399 . 82

5.2.1 CPUs, caches, and bus topology . 82
5.2.2 RK3399 boot process . 83
5.2.3 Security features . 84

5.3 PyDevices: fast prototyping with gem5 . 85
5.3.1 PyDevices: programming model . 85
5.3.2 Building a RockPi4 in gem5 . 86
5.3.3 Retro engineering with PyDevices and Ghidra . 87

5.3.3.1 Bootstraping until the OS . 88
5.3.3.2 PyPowerState and Power Management Unit . 89

5.3.4 Rockchip-platform environment . 89
5.4 Using TEE-Time and Prime+Probe on the Rockchip-platform . 90

5.4.1 Detecting cache configuration . 90
5.4.2 AutoLock and Prime+Probe . 91
5.4.3 Pseudo-LRU: LRU implementation on real hardware . 92
5.4.4 Running an attack on the RK3399 . 92

5.5 A bridge between theory and real-world: attacking OP-TEE on a RK3399 93
5.5.1 Instrumented scenario . 93
5.5.2 Using TEE-Time to search for weaknesses . 94

5.5.2.1 Finding good KEPs against AutoLock . 94
5.5.2.2 Attack Monitoring and real hardware results . 96

5.5.3 Extracting a key from real traces . 96
5.6 Conclusion . 98

81

5.1 Introduction
To validate our methodology and our tool TEE-Time, we have to apply it to real hardware. This way, we could compare
our simulation results with those of a real-world device. We had multiple expectations for this platform: it needs to be
supported by OP-TEE to implement a secure memory protection scheme, to be used in actual consumer devices, and
finally, to have available documentation.

This is why we chose the RockPi4 from RadXA with RK3399 SoC from Rockchip. The RK3399 is part of a line-up of
chips from Rockchip with similar design and features: RK3288, RK3399-T, RK3399PRO and OP1, RK3588. They share
similar system devices and mostly differ in their memory layout. Moreover, the RK3399-T and the OP1 are functionally
identical to the RK3399. The RK3399 is used in multiple devices :

• Chromebooks: Samsung Chromebook Plus, ASUS Chromebook Flip C101PA,. . .

• Android TV boxes: H96 MAX RK3399.

• Tablet: Acer D651N-K9WT 9.7IN 4GB 32GB OP1.

RK3399 Technical Reference Manual(TRM) is widely available. We can also rely on the U-Boot source code for the
RK3399 which mentions hidden devices that are absent from the TRM.

5.2 About the RockPi4 and its RK3399

Figure 5.1: Image of the RockPi4 C plus. It has GPIO pins
like the Raspberry Pi, which can be used to access a UART.

The RockPi4 variant we use is the RockPi4 C plus. It
uses the RK3399-T, which is identical to RK3399 in every-
thing but CPU clock and voltages. The RK3399 uses the
ARM BIG.little architecture with a Cortex-A53 aimed at
power efficiency and a Cortex-A72 aimed at performance.
The RK3399 also features: two Cortex M0, ARMv8-M
CPU to be used for low-energy sleep, and a Mali T860MP4
GPU for rendering to one of the multimedia interface ports
(HDMI, DP, ...). Figure 5.1 is a photo of our RockPi4 C
plus, with visible RK3399 heatspreader, DRAM chips and
wifi antenna. Like the Raspberry Pi, it has a wide variety
of digital high-speed interfaces (Ethernet, USB, ...) and
industrial/GPIO interfaces (SPI, UART, I2C, etc.). In the
RK3399 TRM manual, we can find a memory map of all
the devices in the RK3399 (see figure A.7(a)).

To reproduce the RockPi4 C and its RK3399 in gem5,
we noted several things. First, the RockPi4 is equipped
with 4GB of RAM. They are located at the start of the
address space. This differs from the Vexpress platform1,
used by default in gem5 (mentioned in section 3.3.1.1). The GIC used in the RK3399 is the GIC500 which is compatible
with GICv3 standard used by OP-TEE and implemented in gem5 (described in section 3.A.2). To reproduce the GIC
in the RK3399, we can use the GIC SimObject, instantiating it at the expected RK3399 address instead which differ
from Vexpress. The RK3399 also contains 2 integrated SRAMs2. We can reproduce them using the SimpleMemory
model. RK3399 contains a bootrom, noted BootROM, mapped at two different addresses. If we extract this bootrom,
we can reproduce its implementation in gem5 also using SimpleMemory mapped at the two addresses and set as
read-only memories. Finally, we can exclude the two Cortex M0 and Mali T860MP4 GPU from our model as they are
not used in our OP-TEE demos. Thus, communication with the RockPi4 is only done using the UART2 through GPIOs
and a RS232 adapter.

5.2.1 CPUs, caches, and bus topology
By combining the TRM manual and ARM documentation for the Cortex-A53 and Cortex-A72 CPU clusters, we can
have an overview of the CPU and cache topology of the RK3399-T, detailed in table 5.1 and figure 5.2.

1Vexpress DRAM starts at 0x80000000
2named INTMEM0 and INTMEM1

82

RK3399-T
Cortex-A53 4 CPUs at 1GHz

In-order CPUs:
-Armv8-A ISA including NEON and Crypto ext.
-2 instructions fetch per cycle

Split L1 cache:
-instruction: 32kB L1(4-way)
-data: 32kB L1(4-way)
-Replacement policy: pseudo-random

L2 cache:
-512kB (16-way)
-Cache coherency: exclusive (enforced)
-Replacement policy: pseudo-least-recently-used

Cortex-A72 2 CPUs at 1.5 GHz
Out-of-order:

-Armv8-A ISA including NEON and Crypto ext.
-Variable-length pipeline & Dynamic Branch Prediction

Split L1 cache:
-Instruction: 48kB (3-way)
-Data: 32kB (2-way)

L2 cache:
-1MB (16-way)
-Cache coherency: inclusive (AutoLock[Gre+17])
-Replacement policy: pseudo-least-recently-used

Cache line 64 bytes

Table 5.1: RK3399-T: CPU and cache information gathered
from ARM and Rockchip TRM documentation.

A53

L2
L1I L1D

A53
L1I L1D

A53
L1I L1D

A53
L1I L1D

MemBus

DDR

Memory
protecion DMAPIO IRQ

mmc

DMAPIO IRQ

PMU
A72
L1I L1D

A72
L1I L1D

L2

A53

L2
L1I L1D

A53
L1I L1D

A53
L1I L1D

A53
L1I L1D

A72
L1I L1D

A72
L1I L1D

L2

MemBus

DDR

Memory
protecion DMAPIO IRQ

mmc

DMAPIO IRQ

PMU

Figure 5.2: CPU architecture and cache hierarchy

Peri Interconnect/QoS Main Interconnect/QoS

cci
m0 m1

dmac0dmac1dcfcrypto0crypto1peri
CM0

pmu
CM0

debug

usb
otg0

usb
otg1 sdio

gic

usb
host0

usb
host1 sdmmcemmcgmac hsicpcie gpu video

m0 m1
rga

iep vopb voplisp0 isp1 hdcp

ddrc0 ddrc1

corel coreb
perilp

perihp

lpslv_nsp

lp_nsp

hp_nsp msch0 msch1

DRAM0 DRAM1

Figure 5.3: System bus structure of the RK3399, it feature
two interconnects which links CPU with all the memories
and devices.

The two clusters interface with the system bus us-
ing AXI Coherency Extension Protocol (ACE). They
interface with the CCI500, which is responsible for
cache coherency between the two clusters. The CCI500
then interfaces with all the devices using two network-
on-chip (figure 5.3). Among all the devices, we
see two DRAM controllers located on the main in-
terconnects. These DRAM controllers, which support
DDR3/DDR3L/LPDDR3/LPDDR4, have to be config-
ured to use the installed RAM chips through internal reg-
isters. Consequently, the memory hierarchy of the RK3399
is more complex than the Vexpress platform (mentioned in section 3.3.1.1) and its implementation in gem5. But as a
starting point, to reproduce the RK3399 in gem5, we can keep using the same CPU (in-order and out-of-order), caches,
and memory model and then relying upon Params to configure them to be closer to RK3399 ’s expected results. Then, we
can also leverage simpler models to explore RK3399 and only simulate accurately what we need for our attack (typically
the Cortex-A72 cluster as it contains fewer CPUs). Similarly, the gem5 DRAM controller model can be configured to
imitate timing (refresh, CAS, etc.) of JEDEC-compliant3 RAM controllers. As we know how our RockPi4 configures
the RK3399 DRAM controller, we can just use its final configurations as our static DRAM model for our simulation.
However, for our cache-timing endeavor, we can no longer ignore the specific ARM cache replacement policies. This is at
this point that we added our AutoLock implementation in gem5 in case it was needed to reproduce faithfully RK3399 ’s
results (see section 3.3.1.1)

5.2.2 RK3399 boot process
The RK3399 was also chosen because it can be configured to use OP-TEE. It contains a simple bootrom (noted BootROM)
at address 0xffff0000. This integrated BootROM can load the next bootloader steps from multiple sources. It checks
them in this order: 1 SPI, 2 eMMC , 3 SD card, 4 USB development tools. Using the integrated eFUSE, it is
possible to force the loaded bootloaders to be signed with a key contained in the same fuse.

The first boot step is loaded in the on-chip SRAM as DRAM has not yet been initialized. We use the boot process
detailed on figure 5.4. It starts from the BootROM and uses bootloaders included on the SD card at specific block addresses
indicated on figure 5.4. These bootloaders are:

1 U-Boot TPL: it configures the DRAM from the SRAM, it then returns to the BootROM which loads U-Boot SPL
in the DRAM.

3JEDEC[JED58] issues the widely adopted standard for DRAM chip and controller

83

BootROM

0x40 0x2000 0x4000 0x10000

U-Boot TPL

U-Boot SPL

TFA-BL31

OP-TEE OS

U-BOOT

0x48000
binbin EXT2EXT2

Linux Kernel

/boot

Device Tree Blob

U-Boot script
/example

Linux Root

OP-TEE tools

EXT2

/

Victim TA

Victim Client

Attack tools

off-chip DDR RAM
Pass

execution

Load/run
stage

Configure

Set up and remain
in secure memory

Figure 5.4: U-Boot assembled RK3399 boot process. While the BootROM is embedded in the SoC, all bootloader stages are
included in the SD card.

2 U-Boot SPL: it loads the steps 3,4 & 5 in DRAM and the SRAM.

3 the TrustedFirmware-A BL31: our secure monitor starts by configuring the device. It then dispatches OP-TEE and
our last U-Boot. The RK3399 only uses the BL31 EL3 Runtime Firmware from TrustedFirmware-A (mentioned
in section 3.4.2).

4 OP-TEE secure OS: it boots, configuring its kernel and setting up the DRAM protection.

5 U-Boot as bootloader: It adds the memory node to the DTB using platform registers. Finally, it loads from an
EXT2 partition, the Linux kernel, and its DTB into the DRAM.

6 Linux: it boots while interacting with the TrustedFirmware-A and OP-TEE using the OP-TEE driver.

As we see on figure 5.4, all the bootloader steps are included on the SD card which is programmed using a single
disk image. Most bootloader binaries are directly written in the image without using a filesystem. The SD card also
contains two EXT2 partitions, the /boot partition, which contains the Linux kernel and DTBs, and a Buildroot partition
containing the system root (/). This Buildroot partition is similar to the one used by the Vexpress platform and contains
the OP-TEE library and daemon.

This single disk image can be written on an SD card. Loaded in the SD card slot of the RockPi4 board, the RK3399
boots as expected while printing debug information to the UART2. This UART is accessible through the PIN header
present on the board. Linux automatically mounts the root partition that we made using Buildroot. When the boot is
finished, we can interact with the Linux command line using the UART.

5.2.3 Security features
The RK3399 has multiple devices reserved for a secure OS running in TrustZone. As mentioned before, it contains
a secure eFUSE (efuse1). They are used by the original integrated BootROM to verify the first boot-loaded stage in
our scenario from the SD card. The RK3399 features a programmable access controller that can protect memory and
devices to ensure they are only accessible from the secure world (EL1S or EL3). This programmable access controller
is used to protect the Trusted-Firmware BL31, which remains the integrated SDRAM. It is also configured by OP-TEE
to create a secure 32ăMB partition in the DRAM memory4. OP-TEE secure OS, and TAs reside in this memory region
which can not be accessed from the Rich OS. This access protection which enforces TrustZone security properties is not
necessarily present in OP-TEE-supported platforms. To configure these functionalities, OP-TEE, and the bootrom uses
specific devices5 only accessible from the secure world (EL1S or EL3). Indeed, OP-TEE reports that it is using memory
protection:

D/TC:0 0 platform_secure_ddr_region:35 protecting region 1: 0x30000000-0x32000000

4Up to 8 DRAM regions (RGN0 to RGN7) can be defined with the RK3399 access controller.
5The PMUSGRF and SGRF features register to configure access protection and CPU wake up in EL3, see table A.7(c) for system peripheral

name and definition.

84

 ArmISA::WfiInst

GicV3

RealViewCtrlPl011

Pl050
<PS/2>

Sp804

PL031

<timer>

<RTC>

GenericTimer

<watchdog>
Sp805

IdeController

<uart> <PlatformCtrl>

EnergyCtrl
<DVFS>

ArmSystem

Gicv3CPUInterface[n]

FVPBasePwrCtrl
Called when CPU execute
a WFI instruction

Called when the GIC
post an interrupt to a CPU "cpu"

Called by the redistributor when
it wakes up or put asleep its
related CPU.

ARM ISA Platform-generic implemtation Versatile express specific devices

Figure 5.5: To support Versatile express platforms (Vexpress), gem5 ARM ISA implementation contains specific devices that
behave like memory map IO. They can be connected to the system bus using ports in config files. However, to implement the

FVPBasePwrCtrl , gem5 integrates some of its functions directly into more general ARM ISA implementation in C++.

For example, the Raspberry Pi does not feature such protection, and OP-TEE Memory is accessible from Linux. On
RK3399, a secure timer is also present. It is started by the BL31 but stays unused.

5.3 PyDevices: fast prototyping with gem5
ARMv8-A has a wide variety of platforms with different devices, different memory maps, and different boot methods.
On gem5, only the Versatile express-type platform (Vexpress) was implemented (described in section 3.3.1.1). This
type of platform is mainly represented as a demonstration board from ARM and also virtual models like the ARM
FastModels. The BCM283X for the Raspberry PIs and RK339X from Rockchip are completely different platform types
and have different memory maps and booting processes. The Vexpress platform in gem5 is implemented through
specific devices provided as SimObjects (UART, WatchDog, etc..) and directly in assumptions, made in ARM ISA
implementations (ArmSystem and Vexpress PowerControler are directly linked) and in generic ARM devices
(GICs) implementations. This way the ARM implementation creates a direct link with other devices to follow the
Vexpress specifications highlighted on figure 5.5.

Implementing a different platform would require writing a SimObject for each device and each modification would
require a lengthy compilation. Taking this into consideration, we designed a fast prototyping interface in gem5 : PyDe-
vices.

5.3.1 PyDevices: programming model
PyDevices use the Python interpreter already integrated into gem5 to implement the device and platform behavior.
Thus, they use the Python class inside config files and its associated Python Object to not only hold parameters for
the Param Class and CcObject but to also contain the method associated with the device. These methods are directly
implemented in Python inside the config file. This way, they are loaded at runtime and not at compile time. This
allows the fast prototyping of devices in gem5. To implement a platform-specific device, a Python class inheriting from
PyDevices classes can be used. In that context, memory-mapped devices all inherit from the BasicPioDevice class
which provides the base logic for a memory map device and the Param related to that concept: device address range,
device memory latency, and a device port to connect the device to a bus. These parameters can be tuned to propose
multiple instances of the same device at different addresses.

PyDevices also have at their disposal different sets of functionalities, each corresponding to one of three classes of
SimObjects from which a Python config class can inherit:

• PyPio: These are the basic devices. They implement a memory-mapped IO device. They only require the imple-
mentation of two methods: read and write . They will be called respectively, when the device receives a
read request or a write request.

• PyDMA: It includes PyPio functionalities, providing additional services. They implement DMA transfer as
CxxMethod : dmaRead and dmaWrite methods can be used in Python to read and write from the physical
memory.

• PyInt: It provides the ability to raise and cancel an interrupt using CxxMethod.

85

PyPio
<BasicPioDevice>

Me
mb
us

ReadPacket
-addr
-secure

WritePacket
-addr
-secure

ResponsePacket

/
ResponsePacket

RK_PioDevice:PyPio

data filled
in Python

Compiled in Run-time loaded config files

Figure 5.6: Representation of execution flow between C++ gem5 code and Python config file code for PyPio.

These three classes are globally known as PyDevices classes. Thereby, PyDevices introduces a significant change from
CxxMethod in gem5 by allowing C++ to directly call config files-defined Python functions.

With the pybind API, mentioned in figure A.4 and figure A.5, it is possible to override the read and write
method expected by the BasicPioDevice CcObject, redirecting their functions to the Python code in the config file
which can then fully implement the device behavior in a runtime-defined manner. The execution flow of PyPio devices
is illustrated on figure 5.6. Following gem5 typical behavior, a packet addressed to the PyDevice arrives and is handled
in the C++ implementation. In figure 5.6, this packet arrived from the membus to which the port of the PyPio object is
connected. In the PyPio implementation, the read and write methods retrieves the Python SimObject. Then,
they transform the packet and transfer it to the Python code in the config files for read and write . This way,
the CcObject delegates the implementation of read and write responses to the Python code in the config files. This
Python implementation is in charge of filling the data for read packet, as shown on figure 5.6. Since the device’s detailed
implementation is loaded at run time, it can be easily updated to polish the device implementation.

In addition, PyDevices also provide two special Params:

• regs: which maps a string to 64bit unsigned integer. It holds the value for all the device registers.

• saved: which maps a string to another string. It holds other values to be saved in gem5 checkpoints.

These two parameters are taken as references to the Python value by the CcObject. This allows these parameters to be
saved in checkpoints. This makes PyDevices fully checkpoint-able.

To implement certain devices, typically an SD memory controller, we have to implement a DMA interface for our Py-
Devices. As mentioned before, these functions are contained in the PyDMA SimObject : dmaRead and dmaWrite .
However, because we wanted to keep the Python code for devices simple, we enforced the atomicity of DMA read and
write in PyDevices. This allows DMA functions to be simple function calls that return the result of the memory access
to be used in the same Python context (e.g. data=dmaRead(addr)). Otherwise, they would have required the use
of callback functions for DMA responses (e.g. dmaRead(addr,call_when_read_done)).

Therefore, timing memory mode (section 2.2.2.4) can not be implemented in PyDMA. Thus, it uses atomic memory
transaction when gem5 is in atomic mode and functional memory transaction when in timing mode.

The implementation on figure 5.7 is an example using PyPio class. This RK_efuse can be instantiated in con-
fig files with efuse0=RK_efuse(pio_addr=<device address>,pio_size=<device size>,secure=True) . Indeed,
multiple instances of the same device model can be created using a single implementation with different details passed
as Param to the CcObject or just used as simple attributes for the Python implementation. In RK_efuse case, we
have secure and unsecure efuse at different addresses.

5.3.2 Building a RockPi4 in gem5
With PyDevices and the rather complete TRM manual for the RK3399 [Roc21], we can start implementing the necessary
devices to boot our RockPi4 workload in gem5. This workload is made of two elements: our SD card image that we
created and the integrated BootROM included in the RK3399. Thus, we had to extract this BootROM using a modified
TPL to output its content to the UART2. We then designed new config files, to start reproducing the RK3399 platform
in gem5 by integrating both already existing SimObject (RAM, CPU, GIC, etc.) and new PyDevices-implemented
SimObject(UART, fuse, etc.).

86

rk_efuse.py
class RK_efuse(PyPio):

_REG_NAMES={
0x0000: "EFUSE_CTRL" ,#efuse control register default:0x00000000
0x0004: "EFUSE_DOUT" ,#efuse data out register default:0x00000000
0x0008: "EFUSE_RF" ,#efuse redundancy bit used indicator register default:0x00000000
0x0010: "EFUSE_JTAG_PASS" ,#Jtag password default:0x0cf7680a
0x0014: "EFUSE_STROBE_FINISH_CTRL" ,#efuse strobe finish control register default:0x00009003

}
_REG_DEFAULT={

"EFUSE_CTRL":0x0,"EFUSE_DOUT":0x0,"EFUSE_RF":0x0,
"EFUSE_JTAG_PASS":0x0cf7680a,"EFUSE_STROB_FINISH_CTRL":0x00009003,}

def __init__(self, amba_id=0x0,secure=False,**kwargs):
super(RK_efuse,self).__init__(amba_id=amba_id,**kwargs)
self.regs=self._REG_DEFAULT.copy()#passing the regs default value
#this value is replaced if we load a checkpoint.
self._secure=secure#saving if efuse device instance is secure

def read(self,daddr,data,secure):
if not daddr in self._REG_NAMES.keys():

self.print(self,"error unknown register:",hex(daddr))
return False

reg=self._REG_NAMES[daddr]
if reg=="EFUSE_DOUT":

#Do something specific
else:

set_int(data,self.regs[reg])#classical "reading a register" behavior
self.print_dbg_reg(data,daddr,reg)

return True

Figure 5.7: Typical PyDevices implementation. A system can have multiple instances of the same devices with different
settings.

Name Offset Size
Reset

Value
Description

EFUSE_CTRL 0x0000 W 0x00000000 efuse control register

EFUSE_DOUT 0x0004 W 0x00000000 efuse data out register

EFUSE_RF 0x0008 W 0x00000000 efuse redundancy bit used indicator register

EFUSE_ J TAG_PASS 0x0010 W 0x0cf7680a J tag password

EFUSE_STROBE

_FINISH_CTRL
0x0014 W 0x00009003 efuse strobe finish control register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W- WORD (32 bits) access

Figure 5.8: Extract from the RK3399 TRM[Roc21]: register description for the efuse

5.3.3 Retro engineering with PyDevices and Ghidra
Ghidra is a retro-engineering tool that provides an IDE to disassemble a compiled binary[Roh19].

Ghdira can connect to GDB to follow an execution to better understand how it works. It uses MI6 to interact with
an already-started GDB :

new-ui mi2 /dev/pts/1024

We can use the RK3399 memory map described in the TRM (figure A.7(a)), to instantiate all the memory-mapped
devices. We can then use their register definitions when they are described in the TRM. For example, the TRM extract on
figure 5.8 lists all the registers for the integrated fuse module, called efuse. It has been used to build the PyPio example
shown on figure 5.7, providing the value of _REG_NAMES and _REG_DEFAULT . This table format is kept through
the TRM for other devices which allowed us to write dummy device implementations with register usage reporting.
When this definition is not available, we can use a dummy device to fill the memory space. These definitions are runtime
loaded and can be updated to implement read and write behavior for each register of devices. In addition,
because we are writing the device implementations directly in Python, we can use the GDB API (see section 3.A.1) that
we developed for config files. With this API we can:

• Stop execution when a specific device or memory map register is accessed.
6Machine Interface is a text-based protocol developed by GDB that allows a debugger to be used as a separate component of a larger system.

87

• Print in the Ghidra console the information we have about any memory access to a memory-mapped device (data,
read-or-write, register name, etc.).

Thus, as the Ghidra console is connected to GDB, we can have information directly in Ghidra about memory-mapped
registers and devices (figure A.9). This was a key element to retro-engineered part of the first stage of the bootrom.
Indeed, using the GDB API we can stop the Ghidra-monitored execution when an unimplemented device is accessed
while reporting which register was accessed. We can then upgrade the config files implementation for the needed registers
(using the TRM and Ghidra execution context), adding new behavior to read and write functions. We can
then verify that the new behavior allows the boot process to progress further by restarting the simulation without needing
to recompile gem5. With this fast-prototyping process, we can implement new SoC in gem5.

5.3.3.1 Bootstraping until the OS

With our retro-engineering environment set up, it is now possible to progress in the boot phase, implementing devices
when they are needed relying on the Rockchip TRM manual[Roc21]. In this subsection, we follow along the RK3399
boot process to highlight issues we faced and what we implemented with PyDevices to overcome them. Unused devices
only have dummy implementation in our virtual platforms. As mentioned in the manual, only the CPU0 (the first CPU
of the A53) is running when the RK3399 is powered on. Other CPUs stay powered off until Linux starts booting.

After multiple calls to the eFuse which do not block the simulation, the boot process goes through all the boot devices.
As we are booting using an SD card, we only need to implement the SDMMC. Indeed, after unsuccessful interaction
with the SPI and the eMMC as their implementations are incomplete, the BootROM tries to use the SDMMC to load the
first boot image.

At this point, we implemented the SDMMC using the PyDevices in order to imitate the SD card. To do that, we
kept the disk image which was written on the real SD card. Our SDMMC implementation recreate:

• SDMMC registers which are used to configure an interface to send and receive commands from the SD card. Our
SDMMC implementation provides the proper response for the command using our disk image.

• Integrated FIFO which is used to pull data sequentially from the SD card.

• DMA access to automatically copy data from the SD card using the PyDMA. They are used to implement SDMMC
DMA operation called: IDMAC7.

• SD registers which are accessed using commands. They are used to detect the size and settings of the SD card.
They are configured to be identical to the real platform if the disk-image perfectly fit in the SD card. Thus, we
imitated a 1GB SD card.

• Interrupts which are needed for the SD-MMC to work properly in Linux.

With the SD card implemented, our boot process can progress until the Linux image boots. To follow this boot
process, we use the UART28 accessible through a RS232 adapter on the real board and GDB (and a text log) for our
simulation. However, since we are not using the configurable DRAM model, but a static model proposed by gem5, we
have to completely ignore the DRAM initialization process. Avoiding this phase created an issue as it is used to detect
the DRAM configuration. It is then kept in a device register9 to be used by other boot stages. To circumvent this issue,
we overrode the default value with one extracted from the real platform. Another issue faced in the boot process happens
in the TF-A BL31, It sets a reset address, RESET_ADDR10 which will be used for other CPUs which are still asleep. This
is called warm boot. We had to modify gem5 to allow this reset address to be changed after the simulation started11.
We did not find any issues with OP-TEE secure OS in the boot. OP-TEE boots after the TF-A BL31 finishes setting up
the platform. OP-TEE does not use more devices than in previous phases. As we mentioned in section 5.2.3, OP-TEE
configures its memory region to be secure using the SGRF.

Linux is loaded by the last U-Boot bootloader. After its initialization, it relocates itself to make spaces for the
kernel image in the DRAM. It then initializes all the devices to prepare for bootloading Linux from the MMC. To Load
Linux, U-Boot executes an integrated U-Boot command line using the U-Boot shell. We modified the default U-Boot
configuration for the RK3399 to load a U-Boot script that we placed in the /boot EXT2 partition. This script is in
charge of loading Linux from the /boot partition and running it. Our script contains a customized Linux command line,

7Internal Direct Memory Access Controller from the Synopsyső DesignWareő Mobile Storage Host (SD/MMC controller) controller.
8This UART follows the 8250 specifications[L B24]
9 ASM PMUGRF_OS_REG2 in the PMUGRF (see table A.7(c) for system peripheral name and definition.)

10This register is in the PMUSGRF (see table A.7(c)).
11Using CxxMethod we added in the System SimObject.

88

to specify the root partition UUID and enable specific scheduling features. All the other boot stage binaries are in their
default RK3399 configuration. When Linux has been loaded, it begins its own boot, configuring pagetable and detecting
devices using the DTB from /boot partition. Until this point, only one CPU is needed and all the other CPUs have to
stay suspended.

5.3.3.2 PyPowerState and Power Management Unit

At some point in Linux, other CPUs are launched using the PSCI interface which is called using the SMCCs as it is
implemented in the secure monitor (TF-A BL31). The TF-A BL31 uses the PMU (Power Management Unit) to start
the secondary CPUs. Indeed, the PMU controls the power domains in the RK3399. When the power domain associated
with a CPU is switched on, this CPU starts at an address set in the SGRF: RESET_ADDR. As the PMU interface is
completely different from Vexpress, we had to implement dedicated power control mechanisms to change CPU behaviors
in response to PyDevices register modifications. To control the power state of CPUs, gem5 uses a PowerState , an
integrated SimObject that controls the power status of the SimObject holding it (i.e. sim_object.power_state). To
implement these power domains in Python, we created PyPowerState . They gave the Python environment methods
to access and set PowerState . They also require a callback method to be implemented. This method is called by
every PowerState update done in gem5 C++ code in order to allow the PyPowerState to override it. The
PMU in the RK3399 provides registers to control power domains: for most power domains, we only track domain state
but, for CPUs, we have to implement the effect of CPUs being switched on and switched off (figure A.7(c)).

For CPU power domains, we used CxxMethod in CPUs to start and resume execution when power domains are
switched on and off. We specifically, implemented a FORCED_OFF gem5 power state to prevent CPU from turning
back on, when the power domains are manually switched off. When resuming execution, we also have to reset CPUs
(which implies an ISA state reset). In that case, we use the RESET_ADDR set by BL31 to enable warm boot.

Finally, the PMU is used to implement PSCI (Power State Coordination Interface)in the BL31 : specific registers
are used to enable CPU power domains to be switched off when the CPU encounters a WFI instruction (Waiting For
Interrupt), and being switched back on when receiving an interruption from the GIC. As we can see in figure 5.5, on gem5
Vexpress platform, the GIC directly interacts with WFI instruction and the FVP power controller(FVPBasePwrCtrl)
through the ArmSystem . We modified gem5 to allow our Python implementations to react to these events and
provide their own responses, With our modifications, gem5 transmits these events to Python methods implemented in
the PyPowerState associated with their respective CPUs:

• setStandByWfi() is called when the associated CPU enters WFI

• clearStandByWfi() is called when the associated CPU leaves WFI

• setWakeRequest() is called when the GIC wants to wake the associated CPU. it can return true to trigger a
CPU reset as the CPU wakes up.

• clearWakeRequest() is called when the GIC wants to clear a pending wake request to the associated CPU.

With these in PyPowerState , we can implement the PMU and the CPU power domains. With our PMU simulation,
the first CPU can wake up secondary CPUs during boot and all the CPUs can correctly respond to GIC wake requests,
which allows them to support PSCI implementation in the BL31. CPUs can now sleep and wake up naturally which
allows the boot to progress until the Linux shell command line (figure A.8).

5.3.4 Rockchip-platform environment
Now that we can boot the same disk image in both real-platform and simulation, we have to set up how to run programs
compiled on our host machine and interact with them using our GDB -debug sessions. Indeed, we want to keep our
previous use cases, as they were compatible with TEE-Time and were representative of what a real attacker could do
against a client-TA scenario. But we also want to share the same disk image and scripts between the simulation and
real platforms. To reconcile these two conflicting ideas, we choose to implement a dummy device called m5_device,
using PyDevices. This device is located in an unused memory space (0xFF17000) of the RK3399. It allows us to
distinguish between simulation and real platform, using shell command devmem . devmem 0xFF17000 32 returns
0xdeadbeef only in simulation, on the real platform it returns 0 . With this function, we modified our init.d script

to perform some operations only in simulations:

• Taking the boot checkpoint, as we still want to avoid having to simulate the boot phase each time we want to run
a new simulation. This checkpoint is still known as BootPoint.

89

Last Level Cache
0 1 2 3 4 5 6 7 8 9 a b c d e f0 00x38

A
CPU0

A
CPU1

0

1

0 1 2 3 4 5 6 7

89abcdef

PROBE

attack
flush
regularly

0 1 2 3 4 5 6 7

9abcdef 8

SIGNAL 1

Last Level Cache
0 1 2 3 4 5 6 7 8 9 a b c d e f0 00 1 2 3 4 5 6 71 1

Last Level Cache
0 12 3 4 5 6 7 8 9 a b c d6 7 0 01 1

0 1 2 3 4 5 6 7

89abcdef

PRIME

Autolocked
entries

Figure 5.9: Covert channel primitives used to detect AutoLock on our RockPi4 and our rockchip platforms. This figure shows
how this signal primitives works when AutoLock is active. CPU1 sends a 1 by priming 8 entries of its prime set. CPU0 checks
if it receives a bit using Prime+Probe (with its own prime set).

• Importing our initial script using m5 readfile , which is not located in the disk image but on the host and
thus can be changed between runs.

Indeed, we kept our Buildroot configuration that adds OP-TEE tools and m5 executable. But, as we have only,
one disk medium available, we have to put our attack scenario (attack, client, TA, scripts, etc.) on the same disk image
as the root partition. We therefore created a partition that fills the rest of our SD card (1GB). This partition called
/example on figure 5.4, is dedicated to our attack scenario and is only mounted after the boot checkpoint in order to
avoid issues with modified filesystem nodes. To reproduce the same attack scenario, between the two platforms, we
use a shell script file that performs our scenario when run. This attack scenario’s script is executed differently between
simulation and real platform:

• On the simulation platforms: our init.d uses m5 readfile to load a initial script. Since this initial script is
loaded using m5 readfile , it can be different between runs without having to regenerate our BootPoint. This
initial script is responsible for configuring and executing the attack scenario’s script.

• On the real platform: our init.d automatically mounts the secondary partition and then waits in the Linux shell
(figure A.8). The attack scenario’s script has to be run manually.

This use case is the base of the Rockchip-platform. It combines virtual and physical platforms to build scenario com-
patible with both environments. With our Rockchip-platform a scenarior can run in RockPi4 and gem5 without any
modifications. Furthermore, we can still override attack and victim parameters in simulation settings to test different
configurations.

With our Rockchip-platform, we can run demonstration programs to compare results between our simulated and real
RK3399. Since we want to perform cache timing attacks, we need to tune our simulation to closely resemble our RockPi4
cache-wise. By running the same example on both simulation and real platform, we can thus tune the cache and CPUs
SimObject Params (tag_latency , data_latency , response_latency , etc.) to have similar timing results
between simulated and real platforms.

5.4 Using TEE-Time and Prime+Probe on the Rockchip-platform
To run our attack scenario, we chose to use the Cortex-A72. The attack runs on one CPU while the victim program
runs on the other. We thus need to fine-tune the A72-L2 cache model and L1 cache models to correctly reproduce its
behavior in our simulation platform.

5.4.1 Detecting cache configuration
To study the Cortex-A72 cache hierarchy, we use a demo Prime+Probe attack that demonstrates a cache-covert channel
between two of its threads that share the same L2 cache in the Cortex-A72. using different transmitting primitives

90

Figure 5.10: How Prime+Probe interacts with AutoLock: above are Prime+Probe forward and below are Prime+Probe
reverse. On the left, without AutoLock, and on the right, with AutoLock. The victim uses cache occupancy, indicated as
colored rectangles, to send a stair signal clearly visible on pp-reverse.

that fill the cache (figure 5.9), the sender thread communicates with the receiver thread. The receiver thread detects
these cache states using specific Prime+Probe direction. This means that for the receiver, a 1 corresponds to a specific
timing value for the prime set and a 0 to a different one. The sender primitives thus create different cache occupancy
patterns, which are of course influenced by the actual cache replacement policy. Thus, we chose these primitives to show
different behavior between when AutoLock(see section 3.3.1.1) is used and when it is not. On figure 5.9, we represented
locked entries for each CPU. The Probe phase shows different results because of the blue padlocks line. They represent
lines locked because of the CPU1 L1 cache on which the sender thread runs. We run the covert-channel demo in both
simulation and real platforms, between the two CPUs in the Cortex-A72 cluster (figure A.10).

With these results, we confirm that the RK3399 uses AutoLock in its Cortex-A72 cluster. Indeed, we see the two
lines being locked on figure A.10. These lines cannot be evicted because of AutoLock since the sender CPU holds them
in its L1D. Indeed as we mentioned in section 3.3.1.3, AutoLock prevents lines in a L2 cache from being evicted if they
are held in a L1 (see figure 3.14). We have already implemented an AutoLock model that we can enable in our gem5
platform. After enabling it and tuning the cache model Params, we got the result on the right of figure A.10.

Although we now have a simulation platform that produces similar cache timing results to our real RockPi4 platform,
AutoLock modifies our assumption on the cache model with regard to Prime+Probe. This implication suggests that we
review our TEE-Time configuration, under the light of AutoLock.

5.4.2 AutoLock and Prime+Probe
As explained in section 5.4.1, AutoLock prevents the eviction of lines already present in L1. This mechanism prevents
some elements of the prime set from being hit because they can never evict the victim cache lines. This means that certain
attack output values become less likely because some element of the prime set entry may be forced to be misses. We
propose the figure 5.10 to visualize, that complements the figure 4.5, by comparing the different directions of probing,
with and without AutoLock. On the bottom left, which corresponds to Prime+Probe reverse traces, each stair level
corresponds to a

∑
Thit-miss(o) (with o from 0 to 7) associated with a cache occupancy o. The same victim behavior

produces the trace on the top left when using Prime+Probe forward, with only two value
∑

Thit, the lowest, and
∑

Tmiss,
the highest.

When we enable AutoLock, we have the two plots on the right of figure 5.10. On them, because of AutoLock, the Thit
output and Thit-miss(o) for o ≤ 2 are no longer distinguishable. This is caused by the 2-way cache L1. Consequently,

91

AutoLock hides some Thit outputs from Prime+Probe forward. For this reason, to still be able to use Prime+Probe
despite AutoLock, we have to use Prime+Probe reverse.

From these considerations, we conclude which configuration should be used for TEE-Time on the RK3399 : nhit
VictimScan policy and its associated attack, Prime+Probe reverse.

5.4.3 Pseudo-LRU: LRU implementation on real hardware
Real hardware platforms implement variations of the LRU cache replacement policy, called pseudo-LRU. In gem5 LRU
is implemented using using "simulation tick" timestamp to choose eviction victims. On the contrary, pseudo-LRUs
on real hardware approximate the LRU behavior using simplifications that do not require timestamps and are also
quicker to compute. These implementations still statistically behave like LRU. However, they do impact Prime+Probe
by unexpectedly evicting prime set entries. This is visible in outputs, with entries being swapped and no longer being
split between miss and hit (like in equation 4.14).

{thit, .., thit︸ ︷︷ ︸
assoc−o

, tmiss, .., tmiss︸ ︷︷ ︸
o

} → {thit, tmiss, tmiss, thit, tmiss, thit, ..., thit} (5.1)

This effect can be mitigated by using the sum of individual traces because it does not change with set entries
permutations.

On figure 5.10, we see that
∑

Thit-miss(o) acts as a minimum threshold for real measures. This minimum threshold
is not affected by pseudo-LRU cache replacement policies. However, pseudo replacement policy can also sometimes
evict more entries than expected, due to entry permutation causing self-eviction. In that case, the measured timing is
higher. This means that, in this situation, the lower threshold is statistically more accurate than searching for an exact
value (w.r.t noise). To verify that the Cortex-A72 L2 cache uses a pseudo-LRU, we can study our cover-channel demo,
searching for disorganized timings that resemble what is shown on equation 5.1. This is clearly visible on figure A.10:
timings on the left do not regroup in two block of hits(green) and misses(red), instead they are randomly distributed
among all the prime set entries.

gem5 proposes a pseudo-LRU model called Tree-LRU(TLRU) or Tree-Pseudo-LRU (TPLRU). This implementation
uses a binary search tree which is updated to point away from the last accessed entry. We can run our covert channel
using gem5 Tree-LRU, which produces the result on figure A.11. On this figure, we see that the hits and misses in the
results from the real platform are not distributed in the same way as in gem5 simulation. Although both of them have
the same number of hits and misses and also show the scrambling behavior show on equation 5.1, they have differences
in the way entries are scrambled. This difference can be due to two reasons: gem5 TLRU differs from actual Cortex-A72
pseudo-LRU or both pseudo-LRU are similar but their statistical trajectory have diverged because of variations between
simulation and real platforms. In both situations, using gem5 TLRU will not benefit TEE-Time. However, pseudo-LRUs
behave statistically like LRU[TOS10]. In the best-case scenario, using gem5 TLRU does not give more information about
the real platform pseudo-LRU behavior than using gem5 perfect LRU.

For this reason, we chose to use nhit_inclusive VictimScan policy to take into account the pseudo-LRU behavior.
However, we keep using LRU for our simulation platform cache replacement policy as using gem5 TLRU will only come
with drawbacks and fewer possibilities of generalization.

5.4.4 Running an attack on the RK3399
Running an attack on the RK3399 is more complicated than on gem5, software constraints for our time measurement
methods can no longer be ignored. As mentioned in section 3.3, the access to the ASM PMCCNTR is locked. To enable this
register, we developed a small kernel module that exposes through sysfs module. With this module, the attack program
has access to:

• The ASM PMUSERENR to enable the performance monitor (PMU) access in EL0.

• The ASM CLIDR and ASM CSSIDR 12 to access cache properties and configure the attack automatically.

• Uncached memory source device to be used for the result vector.

This kernel module, attack_mod.ko, still respects our threat model as we assumed that the attacker could compromise
the OS but not the secure environment.

To run attacks efficiently on a realistic platform, we also use the following tricks:
12The ASM CLIDR (Cache Level ID Register) and ASM CSSIDR (Cache Size ID Register) are ARM system registers accessible through ASM MSR

instructions (see section 3.3.1.1) that provides information about the cache architecture (size, associativity, level, etc.)

92

• Changing the scheduling policy to real-time(SCHED_FIFO). This guarantees an advantageous scheduling for
our attack, giving it more execution time.

• Changing OS configuration for the real-time period to 1000 seconds
(echo 1000000000 > /proc/sys/kernel/sched_rt_period_us) while disabling RT throttling:

echo -1 > /proc/sys/kernel/sched_rt_runtime_us 13

• Disabling idling for the attack CPU. This ensures that the attack CPU is not powered off by the scheduler.
echo 1 >/sys/devices/system/cpu/cpu<i>/cpuidle/state<n>/disable can disable a specific idle state n.

5.5 A bridge between theory and real-world: attacking OP-TEE on a RK3399
As we are now able to run an attack on the RK3399 and have a compatible simulation platform for TEE-Time to
function, we can go back to our RSA attack (presented in section 4.6) and try porting it to our RockPi4. However,
as we demonstrated in section 5.4.3 and section 5.4.1, the RK3399 uses AutoLock and an unknown pseudo-LRU cache
replacement policy. To account for that, we have to configure TEE-Time with the nhit_inclusive VictimScan policy
and use its associated attack Prime+Probe reverse. Although, for our real platform attack, we kept our Linux client
application, the same TEE system calls (from the Cryptographic Operations API mentioned in section 3.4.3) are also used
when OP-TEE is registered as a cryptographic engine for OpenSSL. This is possible thanks to the PKCS#11 pseudo-TA
incorporated inside OP-TEE.

OP-TEE integration in openssl

openssl
OpenSSL> engine dynamic -pre SO_PATH:/usr/lib/engines-1.1/pkcs11.so -pre ID:pkcs11 \
-pre LIST_ADD:1 -pre LOAD -pre MODULE_PATH:/usr/lib/engines-1.1/libckteec.so.0.1.0
(dynamic) Dynamic engine loading support
[Success]: SO_PATH:/usr/lib/engines-1.1/pkcs11.so
[Success]: ID:pkcs11
[Success]: LIST_ADD:1
[Success]: LOAD
[Success]: MODULE_PATH:/usr/lib/engines-1.1/libckteec.so.0.1.0
Loaded: (pkcs11) pkcs11 engine
OpenSSL> genrsa -engine pkcs11 -out priv_key.pem 2048
engine "pkcs11" set.
Generating RSA private key, 2048 bit long modulus (2 primes)
..+++++
.......................................+++++
e is 65537 (0x010001)

Indeed, our client application reproduces a more general use case. In this context, our attack could scale to any
program that uses libSSL to perform a RSA private key exponentiation on a RK3399 SoC.

5.5.1 Instrumented scenario
To re-use our RSA-attack scenario in the RK3399, we have to update it to follow our template for RK3399 attack
scenarios, presented as Rockchip-platform in section 5.3.4. The Rockchip-platform requires to use the same script and
disk image to:

• Perform the attack on the real RK3399 without any intervention.

• Configure the scenario in the simulated environment using the GDB interface, changing attack and victim arguments
and potentially disabling them.

Using our dummy m5 device (see section 5.3.4), we can enable specific functionalities for our attack scenario when
it runs on a simulation platform. This way, when it runs on gem5, our attack can be configured by GDB and output
its results on the host. This is passed as a --m5 argument to the attack programs This argument allows the attack
to use the m5_writefile to output the trace results on the host and not in the temporary disk image. Thus, the
disk image is never altered between runs. To be at the same time configurable by TEE-Time and automatic on the real
platform, we also have to integrate a default argument for the victim and the attacks into our attack scenario bash script.
These arguments are overridden by m5 env environment variable in gem5.

13if RT throttle is disabled, the kernel should not output: sched: RT throttling activated

93

m5out/report.txt
Score ranking:
»»M->max_hit:(('0x38', 1), 146)
(1):('0x38', 1)

score:0.9944598337950139
hit_count:146
top_addr:

1@146=S#0x300d0e00:data + 39160 in section .bss
2@0=0x53a60e00:UKN

»»S->max_hit:(('0x346', 1), 66)
(1):('0x346', 1)

score:0.4925373134328358
hit_count:66
top_addr:

1@66=S#0x300cd180:data + 23672 in section .bss
2@66=NoMMU;:maybe_tag_buf + 40 in section .text
3@66=S#0x300dd180:__heap1_start + 41112 in section .heap1

Figure 5.11: First VictimScan report for the sec-sign TA with KEPs from figure 4.16, using an improved KEP toolbox
implication and using the nhit_inclusive policy.

5.5.2 Using TEE-Time to search for weaknesses
With our TEE-Time-compatible instrumented scenario, we can search for potential weaknesses that can be leveraged for
an attack against the sec-sign TA, running on the RockPi4. TEE-Time is configured with the nhit_inclusive VictimScan
policy, and we are thus using its associated attack Prime+Probe reverse. We can then run this Prime+Probe reverse
attack on our real RockPi4 using the configuration verified by TEE-Time. The runtime comparison between TEE-Time
on the simulated platform and the attack scenario on the RockPi4 can be found on table 5.2.

5.5.2.1 Finding good KEPs against AutoLock

AutoLock has changed how the victim behaves and how we can detect the KEPs shown on figure 4.16 that we used in
our first RSA attack (see section 4.6). As our instrumented sec-sign scenario is now run on our new RK3399 simulation
platform, we have to go through the TEE-Time process from the start (see figure 4.4). VictimScan will try to find KDS,
that we can use to detect our already defined-KEPs despite AutoLock. In that context, we are using nhit_inclusive
VictimScan policy, contrary to section 4.6, to account for AutoLock and RK3399 pseudo-LRU policy. Thus, the resulting
KDSes are made of two elements: a cache index and a set’s way occupancy.

With the KEPs on figure 4.16, VictimScan produces the results on figure 5.11. It proposes the following nhit_inclusive
KDS :

• for [M]: (0x38, 1) with score 0.994459.

• for [S]: (0x346, 1) with score 0.49253731.

From the report on figure 5.11, we see that the [S]-KEP can not be accurately detected using these KEPs: with a
score of less than 0.5, [S] can not be distinguished from [M], (pl. see section 4.3.3) bor is obscured by other sources of
cache activity.

Despite the low score, we can use Attack Monitoring to generate traces to have a better understanding of what the
attacker sees. Attack Monitoring uses our two KDS to configure the Prime+Probe reverse attack. Considering the score
on figure 5.11, we expect it to detect [M], but not [S].

Attack Monitoring produces the results on figure 5.12. It shows how the cache timings behave in the vicinity of
each KEP. On figure 5.12, we see that the timing associated with [S]-KDS (0x346) does not stay low when leaving its
associated section. It seems because of AutoLock, an attacker cannot detect a single squaring operation and can only
detect the start of a series of [S]KEPs.

We can see this because [S] cache line timing rises when entering [S] section, but it does not return unless we enter
[M]-section.

We propose to use different KEP implementations using KEP toolbox to better model how the victim behaves:

• We can use a normal scoped cache tracker(see section 4.4.2.1) for the multiply.

• We can use a backward scoped cache tracker (see section 4.4.2.1) for the squaring phase, which is registered only
if a square happens during the scoped sections. The scoped entry is placed at the end of the window while the

94

Figure 5.12: Zoomed in timing traces plotted relatively to KEPs. Two sets (cache set with index 0x38 and 0x346) are used
in order to distinguish between the two KEPs ([S] and [M]). However, we see that we cannot detect [S].

m5out/report.txt
Score ranking:
»»M->max_hit:(('0x38', 1), 148)
(1):('0x38', 1)

score:1.0
hit_count:148
top_addr:

1@148=S#0x300d0e00[S#0x300d0e00]:data + 39160 in section .bss
»»S->max_hit:(('0x346', 1), 66)
(1):('0x346', 3)

score:1.0
hit_count:66
top_addr:

1@66=NoMMU;[S#0x3008d180]:maybe_tag_buf + 40 in section .text
2@66=S#0x300cd180[S#0x300cd180]:data + 23672 in section .bss
3@66=S#0x300dd180[S#0x300dd180]:__heap1_start + 41112 in section .heap1

Figure 5.13: VictimScan report for the sec-sign TA with KEPs from figure 4.14(b) redefined, using the nhit_inclusive policy.

scope labeling KEP is placed after the mbedtls_mpi_montmul in with the [S] section. This last one better
represents the section behavior with a line only loaded the first time the section is used.

With these KEPs, we can detect:

• When we enter the multiply phase and leave the multiply phase.

• When we are in a squaring phase.

These improved KEPs produce the report on figure 5.13. It proposes the following nhit_inclusive, KDSes:

• for [M]: (0x38, 1) with score 1.0.

• for [S]: (0x346, 3) with score 1.0.

Both have a 1.0 score, which guarantees that they can be detected and distinguished. However, with these points,
we can only detect the end of windows. If we are out of a window section, we must be in a squaring section of the
exponentiation function. We can still try to reconstruct the [S] information by using the fact that the multiply window
contains seven (wsize+ 1) mbedtls_mpi_montmul which all take the same time as they are done with the same modulo
(see figure 4.14(b)). We call this window measurement, presented on figure 5.14. We compare the time difference between
two of our [M]-segments. These [M]-segments are detected using the [M]-related cache line helped by the [S]-relate cache
line. We know that among these time differences, there is at least one that only contains the window section and no
extra squaring phase ([S]). We know that because the first operation cannot be a [S] and is necessarily a window.

95

Figure 5.14: We can measure the time between peaks in 0x38 or 0x346. With this measurement, by comparing them with
the minimum difference between two of these peaks, we can design a system of units to reconstruct the series of [S]and [M].

5.5.2.2 Attack Monitoring and real hardware results

Run times(s)
Simulation on gem5

Boot (only needed once) 2360.58
VictimScan 10603.99
Attack Monitoring 10006.69

Real platform
Attack 1.080240
Export to SD card 5.394986

Table 5.2: Execution time for Rockchip platform
comparing the simulated gem5 model and the
real platform.

We ran the same attack scenario on the RockPi4 and on the simulated
platform using the configuration produced by TEE-Time. This sce-
nario is run multiple times on the real hardware to compare different
runs. We observe that attack results from the real platform are similar
to the simulation ones in certain instances (figure 5.15) and different in
others(figure 5.16) inside a single traces. When we compared different
traces acquired from the real platform, we saw that different parts of
the traces were identical to the simulation, while the others were just
noise. These differences are due to the gem5 simulation using per-
fect LRU while the real platform uses a pseudo-LRU (as mentioned in
section 5.4.3). We confirmed this assumption by configuring our sim-
ulation to use Tree-LRU with AutoLock (middle trace on figure 5.16).
The transient "stuck" timings appear in both Tree-LRU simulation
traces (middle trace in figure 5.16) and real platform traces (bottom
trace in figure 5.16). However, in detail, simulation Tree-LRU and real platform pseudo-LRU still behave differently,
either because of randomness or small differences between model and reality.

We can remedy this issue by cumulating multiple real traces to reproduce the information contained in simulation
traces. Using multiple traces is possible as OP-TEE uses libtomcrypt [lib23] with libmbedTLS only as bignum operation
provider. libtomcrypt only implements base blinding. This attack would be more complex if OP-TEE used mbedTLS
RSA implementation, which implements exponent blinding [UH23; KOU+23]. However, if we choose to do that, the
short burst caused by set 0x38, which is used to detect [M]will likely be lost by the averaging. For this reason, we solely
rely on the 0x346 set to recover the window start points that correspond to our [M] KEPs. This is possible because the
[S] KDS was chosen to distinguish [S] from [M] and in thus not present around [M]. We call these points associated
with the [M] code segment: [M]-points. With them, we can perform the window measurement on the real traces.

5.5.3 Extracting a key from real traces
After accumulating 50 traces, we fused them and then filtered them using a gaussian filter. To recover our [M]-points
from these traces, we used a peak detection algorithm, each [M]-points corresponding to a peak in the 0x346 filtered

Figure 5.15: Comparison between simulation (left) and real hardware (right): centered around a similar pattern.

96

Figure 5.16: We compared traces between (from top to bottom): gem5 simulation using LRU, gem5 simulation using Tree-
LRU and the real platform. We can see that there is the same behavior during which a prime set gets "stuck" in an occupied
state between simulated Tree-LRU and the real platform.

Figure 5.17: Accumulation of 50 real traces. These traces took 4 minutes to complete, with most of the time spent exporting
data to the SD card. They have been fused and filtered with a gaussian filter. We used a peak detection algorithm to find the
peaks associated with [M], marked with stars.

trace. We automatically tune this algorithm knowing roughly the number of peaks in a trace: For a 1024 bits-private
key, as our mbedtls_mpi_exp_mod function uses a 6 bit window, they cannot be more than 1024/6 u 171 peaks. We
facilitate this process using the 0x38 to determine a region of interest when it has a lower value. Using this algorithm on
the traces on figure 5.17, we added the black line marking the region of interest and stars marking the peaks associated
with [M]-points. Each star represents a peak that will be used to perform the window measurement. From the peaks in
this figure, we can retrieve the [M]-points. With the [M]-Points retrieved, we can now carry on window measurement :

• We determine the time length of a single window using the smallest difference between [M]-points.

• With this single window, we find the length of a single Montgomery multiplication (mbedtls_mpi_montmul).

• We then try filling each time difference between [M]-points with one window and then as much multiplication([S])
as needed.

• We also treat specifically the difference between the last [M]-point and the end of the region-of-interest to find the
trailing multiplication.

• For each multiplication, we count a "[S]"(possibly none) that will then be followed by a [M].

• This makes our [S][M]-series, which we showed, can be used to recover a partial key (see figure 4.15). [M] indicates
1 followed by 5 Xs (window_size−1), [S] each indicates single 0 and trailing [S]s (at the end of the exponent) each
indicates single a X (either a 1 or a 0)

97

Figure 5.18: Attack on the real platform against the sec-sign TA: 1 and 0 are bits from the private key that we identified using
the [S][M]-series; the X corresponds to bits that we do not know, and that can be either a 1 or a 0.

As the sliding window exponentiation skipped zeros at the start of the exponent, we know that all missing bits are
leading zeros. We also know that D, the private exponent, cannot be even. Therefore, the last bit is necessary a 1
(ED = 1 mod(p− 1)(q − 1) implies that D is necessary odd because E is odd.). We can overlay all this process on the
traces, which gives us the full figure 5.18. In this figure, we can see the partially reconstructed key overlaid above its
trace. Each blue rectangle corresponds to a [M]-section, and each orange rectangle corresponds to a single [S]-sections.
The corresponding key bits are written on each of the rectangles. We performed the same operation for other keys and
compared how many bits we recovered using our window measurement method (see table 5.3).

With these partial RSA keys, [UH23; MH20] and [KOU+23] suggest that we can use Branch and Prune algorithm
to recover the rest of the keys. With this last phase, we would be able to extract a full RSA key from a state-of-the-art
TEE implementation of a RSA signing application.

5.6 Conclusion
To build a new platform model from scratch, we had to create an efficient way of implementing devices without having
to recompile gem5 and with a simpler development approach. Having already leveraged config files’ Python interface to
implement key features of the GDB stub used in TEE-Time, we proposed PyDevices to leverage the same environment
for peripheral devices. With this efficient approach, we explored the RK3399 BootROM with Ghidra, implementing in
PyDevices what was needed to progress. Going through the bootloaders until we reached the Linux user shell (figure A.8),
we implemented the necessary devices, including power management and CPU wakeup mechanisms. With this simulation
model, which can boot an unmodified SD card image, we developed a toolchain called Rockchip-platform, able to run
the same disk image and programs on our gem5 simulation platform and on our RockPi4 board. With this platform, we
ran cache timing attack demos to tune our gem5 RK3399 model by comparing its results with real hardware. Through

keys [S] [M] total bits in [S][M] known bits
key 1 145 146 1021 294
key 2 164 143 1022 310
key 3 134 148 1022 284

Table 5.3: Example of D reconstruction using [S][M]-series.

98

this testing, we confirmed that the Cortex A72 in the RK3399 uses AutoLock with pseudo-LRU as its cache replacement
policy. Taking this cache model into account, we propose a TEE-Time configuration able to deploy a Prime+Probe
attack on the Cortex A72 in spite of AutoLock, with a Prime+Probe reverse attack. Using the Rockchip-platform, we
ran TEE-Time against sec-sign, our secure signing scenario mentioned in section 3.4.5 and section 4.6. Using the KEP
configuration used in section 4.6, TEE-Time proposed a Prime+Probe configuration able to retrieve a partial RSA key.
Building upon this information presented by Attack Monitor, we proposed a method to extract from attack traces some
bits of the RSA keys. Leveraging the Rockchip-platform, we ran the same attack configuration in the very same attack
scenario on our RockPi4. By comparing attack traces between simulated and real hardware, we assessed the validity of
our model with respect to this attack. With this consideration, we fused multiple real hardware traces to extract the
partial key using the method mentioned earlier. This finally verifies TEE-Time methodologies and models against real
hardware. But beyond this simple RK3399 virtual platform, this use case demonstrates a methodology that leverages our
PyDevices to retro-engineer secure platforms. In combination with TEE-Time, we could study the micro-architectural
security of TEEs running on a secure platform without having access to a debugger.

99

Chapter 6

Conclusion and Perspectives

Contents
6.1 Introduction . 101
6.2 Overview of contribution . 101

6.2.1 Contributing to gem5 : Trusted Execution Environment and GDB 101
6.2.2 Virtual Security Platform . 101
6.2.3 TEE-Time tools . 101
6.2.4 PyDevices: building the Rockchip-platform . 102
6.2.5 Attacks against hash signing RSA scenarios with TEE . 102

6.3 Future works . 103
6.4 Concluding remarks . 103

100

6.1 Introduction
Security operations performed in SoC are scrutinized by both attackers and system designers. These operations are
protected by system and ISA primitives that enforce the isolation of these critical tasks from potentially malicious
code running on the same hardware. While some weaknesses can be found directly in the software in vitro: user-after-
free[Lee+15], buffer-overflow[One96], etc, weaknesses at the micro-architectural level that breach this isolation can only be
found in vivo while running on the real system. Such weaknesses, like cache timing attacks or transient execution attacks,
have been discovered using extensive knowledge of the SoC architecture and deep access to the hardware. Leveraging such
weakness against a real application requires tight control over the execution environment and the hardware underlying
it to ensure the stability of micro-architectural weaknesses effects. However, since the tool to study such vulnerabilities
could be used to attack directly a critical operation, they are often blocked from accessing the most secure environment
of a SoC. Thereby, in Trusted Execution Environments (TEE), security through obscurity extends to micro-architectural
aspects. And although vulnerabilities have been found in commercial TEE [Rya19], such attacks methodology become
hard to reproduce as the knowledge and setup that was used to deploy and carry on, this type of attack might not be
available to the large public.

Considering these needs, I designed the TEE aspect of Archisec Project Virtual Platform, such as it could allow to
study a security through obscurity platform, allowing the study of how TEE workloads interact with specific architecture
when their access is barred on the real platform in order to discover vulnerabilities at the microarchitecture level.

6.2 Overview of contribution
This platform, built between multiple partners, is based on gem5 with OP-TEE on ARM as our TEE of choice. But to
correctly, not only simulate a TEE environment but also deploy the necessary tools to analyze attacks and weaknesses
and ensure that their findings can scale to a real platform, I needed to improve gem5 ARM implementation and create
tools that can study the ARM microarchitecture interaction with the TEE environment. This gem5 improvement and
tools are the key contributions of this thesis, as they are at the center of the methodology in the articles I published
(figure 6.1).

6.2.1 Contributing to gem5 : Trusted Execution Environment and GDB
As gem5 ARM ISA implementation is modeled after a Vexpress platform which is supported by OP-TEE, it only needed
to completely support the security extension, to run OP-TEE. But, as this was not a typical use case of gem5, this aspect
was incomplete. Therefore, I fixed this implementation until OP-TEE was able to fully boot on gem5. While improving
gem5, I also fixed several aspects of its GDB implementation in order to ease my exploration of the microarchitecture.
These contributions have been submitted to the gem5 community and are now integrated into the gem5 open-source
project.

6.2.2 Virtual Security Platform
As I extensively used GDB to explore and analyze TEE workload as they run on gem5, to understand issues in gem5
implementation of ARM ISA, I saw the possibilities which could be leveraged directly from GDB to access gem5 model
states. By implementing a suitable monitor command in GDB and creating API to respond to it from gem5, I opened
new perspectives to use GDB and gem5 in integrating debugging sessions, which could be programmed in a more
expressive and accessible Python environment.

With this interactive debugging session, I built a way to use our gem5 simulator as a virtual security platform, which
provides API to develop micro-architectural security tools. With this API, tools can make micro-architectural effects
visible from a source code point of view thanks to GDB source code visualization.

6.2.3 TEE-Time tools
With the GDB-gem5 API and GDB-instrumentation, I proposed a tool that could study OP-TEE workload and search
for cache timing weaknesses that could be leverage by a cross-core Prime+Probe attacks. This tool called VictimScan
analyzes the correlation between key points in victim source code, directly linked with algorithmic knowledge called
Key Execution Point (KEP), and cache state, in order to find cache line and indices, which could be used to attack
the TEE application. To verify VictimScan results, I designed a Prime+Probe attack which I monitored with another
GDB-Python script to compare cache timing results measured by the attacks and victim execution point. This script

101

config_XYZ_platfom.py

gem5
python
primitive

User-defined
Python implementation

 for system devices

Platform
dynamic

instrumentation
&

User-defined
GDB monitor

functions

Configurable
ARMv8-A

 CPU
& Cache
model

On-chip memory bus
 architecture modeling

FullSystem
Secure Workload

V
Ma

p

into

Real
Platform

FullSystem
Secure Workload

V TEETEE

Extracting
Workload

FullSystem
Secure Workload

V A

config_XYZ_platfom.py

Leveraging
Simulation

Fast Prototyping
Iteration over

Platform

Automatized
scripts

Dy
nami

c

Re

co
nf
igur

ation

Micro-archi state

 Extraction

A

Deploying
attack on Real Hardware

Figure 6.1: Overview of the methodology deployed in the thesis: Starting from a real platform, we extract a workload that
uses a TEE to run it on gem5. Using Ghidra and GDB, we are able to improve the config files in gem5 to boot and execute
the workload. Now that we can simulate the workload, we use automatized script in GDB to study it and find vulnerabilities.
We can leverage these vulnerabilities in attacks, which we evaluate in simulation. Finally, these attacks can be deployed on
the real platform to conventionally verify the vulnerabilities.

verifies the correlation between KEP and attack results, confirming this attack could be used to detect them. These
two tools form together TEE-Time which is presented as A Dynamic Cache Timing Analysis Tool for Trusted Execution
Environment [FDC24b].

6.2.4 PyDevices: building the Rockchip-platform
To verify TEE-Time results, beyond the Vexpress ARM virtual platform, we had to model inside gem5 a real OP-TEE-
supported SoC. We chose the RockPi4, a development board from RADXA, and its RK3399 from Rockchip. With an
available TRM manual, we used gem5 tools and methodologies to reproduce its cache and CPU topology inside gem5.
To ease the integration of RK3399 mandatory devices and accelerate their development cycle, I implemented a new way
to write system devices in gem5 that I called PyDevices. With PyDevices, system devices can be entirely written in
Python, removing the need for recompiling gem5 to add devices. These PyDevices implementations can also leverage the
GDB API to communicate debug information to GDB or Ghidra in order to retro-engineer bootrom. With PyDevices,
I develop a RockPi4 model in gem5 capable of running the same SD card disk image as the real platform. With the
Rockchip-platform, I can target both real and simulation platforms simultaneously.

6.2.5 Attacks against hash signing RSA scenarios with TEE
As OP-TEE RSA services use mbedTLS bignum exponentiation they are known to be attackable with Prime+Probe.
However, such attacks can be complex to deploy as it requires knowing the exact set to attack which may depend
between implementation and platform. This is exactly a TEE-Time use case: I used TEE-Time to analyses the security
of an RSA hash-signing trusted application using OP-TEE crypto services. With the correct KEP in the sliding window
exponentiation function from mbedTLS, TEE-Time proposed cache lines that can be used to perform an attack. With a

102

similar KEP configuration, we run a TEE-Time analysis in both our Vexpress platform and our Rockchip platform, which
resulted in a validated correlation between attack timing traces and KEPs. As our Rockchip implementation includes an
AutoLock model to imitate the cache replacement policy present on the real RK3399, it found different results. But as
the Rockchip implementation was still attackable, we tried to use the same attack on our real platform. While a single
run contained too much noise compared to the simulation to extract information. By combining 50 attack traces, we
were able to extract all the information contained in the KEPs. Thereby, we retrieved a partial RSA private key with
≈ 30% of the bits.

6.3 Future works
This methodology and its associated platform can be improved and extended in multiple ways:

• Attacking RSA with exponent blinding: As I mentioned in section 5.5, mbedTLS in libtomcrypt does not use
exponent-blinding. This can be considered an obvious weakness that could be easily fixed by directly using mbedTLS
without libtomcrypt. Although [KOU+23] demonstrated that such attacks are only possible if performed using a
single trace, [UH23] proposed a method that could use multiple traces. In both situations, I could improve either
the attack setup or post-processing to try to reproduce an attack against OP-TEE using a stronger cryptographic
implementation on the RK3399.

• Bootrom extraction and PyDevice: Our Rockchip platform and attacks used a mostly open source workload with
only the bootrom being closed-source. But the methodology I used to build the RK3399 model in gem5, such as it
could execute a closed source bootrom. It could also be reproduced for a bigger bootrom, which would contain the
TEE binary. As long as we can find a TRM manual that describes most of the memory map, we could use Ghidra
to retro-engineer any bootrom and build a platform model in gem5 using PyDevices. Typically, the Nvidia Tegra
X1 used in the Nintendo Switch has its Technical Reference Manual (TRM) widely available. Then, we would have
to use Ghidra to find a cryptographic function to attack we would then be able to use TEE-Time to analyze this
function and potentially build an attack that we would be able to run on the real platform for comparison. Thus,
we would have an even more realistic approach to embedded system security.

• RowHammer dynamic analysis: As [Fra+22] added a RowHammer -supporting DRAM model to our virtual security
platform, we could use said model to simulate RowHammer attacks. We could then deploy the same mechanism
used in TEE-Time to detect possibilities of attack against cryptographic systems by tracking memory addresses
of Keys and secrets through cryptographic algorithm execution and linking them with user-accessible DRAM
rows which could be leveraged to perform RowHammer. This would allow automatizing RowHammer weaknesses
research.

• Transient execution attack tools similar to TEE-Time: Transient execution attack relies on specific gadgets that
have a peculiar speculative transient behavior. Researching such gadgets in binaries could be complex as they often
depend on execution paths before reaching the gadget. In this context, gem5 could be modified to track transient
CPU pipeline states to detect promiscuous states and report them to GDB which could then organize and compile
the results. We could then configure an attack with these results and, a la Attack Monitoring, control that transient
execution happens as expected from GDB.

• Software and Hardware countermeasure: Now that TEE-Time has been verified with real hardware, we could use
the report results as a metric to assess and compare different countermeasures both hardware, implementing them
inside gem5, and software, using gem5 and the real hardware as a demonstration platform.

6.4 Concluding remarks
In this thesis, we presented:

• A Virtual security platform that could be used to study in-vivo micro-architectural security against the state-of-
the-art implementation of protected application: Trusted Executions Environment.

• TEE-Time, A methodology implemented in tool sets that connect to our Virtual security platform and automatically
deduce and verify Prime+Probe weaknesses.

103

• A proof of concept, built upon new fast-prototyping tools, that demonstrates scalability of our virtual security
platform findings by successfully predicting a cache timing attack against a TEE-protected RSA application running
on a RockPi4.

Therefore, we demonstrated that, in spite of drawbacks when compared to a real platform, in terms of model accuracy
and execution speed, a virtual platform built on gem5 could be leveraged to study micro-architectural security. And
considering limitations that are brought by Trusted Execution Environments to prevent debugging tools from accessing
secure enclaves. Simulation platforms may, in that regard, be the most adequate for studying TEE security. We could
hope that similar endeavors will shake the foundations of one of the last bastions of security through obscurity, ushering
in a new era for more open secure enclaves and Trusted Execution Environments.

104

Bibliography
My publications

[For+21] Quentin Forcioli et al. “Virtual Platform to An-
alyze the Security of a System on Chip at Mi-
croarchitectural Level”. In: EuroS&PW 2021 -
IEEE European Symposium on Security and Pri-
vacy Workshops. Vienne, Austria, Sept. 2021,
pp. 96–102. doi: 10 . 1109 / EuroSPW54576 .
2021.00017. url: https://hal.archives-
ouvertes.fr/hal-03353878.

[FDC23] Quentin Forcioli, Jean-Luc Danger, and Sumanta
Chaudhuri. “A gem5 based Platform for Micro-
Architectural Security Analysis”. In: Proceedings
of the 12th International Workshop on Hard-
ware and Architectural Support for Security and
Privacy. HASP ’23. Toronto, Canada: Associa-
tion for Computing Machinery, 2023, pp. 91–99.
isbn: 9798400716232. doi: 10.1145/3623652.

3623674. url: https://doi.org/10.1145/
3623652.3623674.

[FDC24a] Quentin Forcioli, Jean-Luc Danger, and Sumanta
Chaudhuri. “Defeating AutoLock: From Sim-
ulation to Real-World Cache-Timing Exploits
against TrustZone.” In: In submission (July
2024).

[FDC24b] Quentin Forcioli, Jean-Luc Danger, and Sumanta
Chaudhuri. “TEE-Time: A Dynamic Cache Tim-
ing Analysis Tool for Trusted Execution Environ-
ments”. In: ISQED 2024: The 25th International
Symposium on Quality Electronic Design (Apr.
2024).

[Forne] Q. Forcioli. “ISCA 2022: GEM5 USERS’ WORK-
SHOP”. In: June 2022 [Online]. url: https://
www.gem5.org/events/isca-20225.

Other publications

[JED58] JEDEC. Joint Electron Device Engineering Coun-
cil. 1958. url: https://www.jedec.org/.

[One96] Aleph One. “Smashing the Stack for Fun and
Profit”. In: Phrack 7.49 (Nov. 1996). url: http:
//www.phrack.com/issues.html?issue=49&
id=14.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard
J Lipton. “On the importance of checking
cryptographic protocols for faults”. In: Inter-
national conference on the theory and appli-
cations of cryptographic techniques. Springer.
1997, pp. 37–51.

[Smi97] M.J.S. Smith. Application-specific Integrated
Circuits. Addison-Wesley VLSI systems series.
Addison-Wesley, 1997. isbn: 9780201500226.
url: https://books.google.fr/books?id=
3hxTAAAAMAAJ.

[Cow+98] Crispan Cowan et al. “Stackguard: automatic
adaptive detection and prevention of buffer-
overflow attacks.” In: USENIX security sympo-
sium. Vol. 98. San Antonio, TX. 1998, pp. 63–
78.

[JMV01] Don Johnson, Alfred Menezes, and Scott Van-
stone. “The Elliptic Curve Digital Signature Al-
gorithm (ECDSA)”. In: Int. J. Inf. Secur. 1.1
(Aug. 2001), pp. 36–63. issn: 1615-5262. doi:

10.1007/s102070100002. url: https://doi.
org/10.1007/s102070100002.

[MOV01] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 2001. url: http://www.
cacr.math.uwaterloo.ca/hac/.

[Swa01] Stuart Swan. “An introduction to system level
modeling in SystemC 2.0”. In: Cadence Design
Systems, Inc., draft report (2001).

[Bel05] Fabrice Bellard. “QEMU, a fast and portable dy-
namic translator.” In: USENIX annual technical
conference, FREENIX Track. Vol. 41. Califor-nia,
USA. 2005, p. 46.

[Mar+05] Milo MK Martin et al. “Multifacet’s gen-
eral execution-driven multiprocessor simulator
(GEMS) toolset”. In: ACM SIGARCH Computer
Architecture News 33.4 (2005), pp. 92–99.

[Per05] Colin Percival. “Cache missing for fun and profit”.
In: Proc. of BSDCan 2005. 2005.

[Bin+06] Nathan L Binkert et al. “The M5 simulator: Mod-
eling networked systems”. In: Ieee micro 26.4
(2006), pp. 52–60.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
“Cache attacks and countermeasures: the case
of AES”. In: Proceedings of the 2006 The Cryp-
tographers’ Track at the RSA Conference on

105

https://doi.org/10.1109/EuroSPW54576.2021.00017
https://doi.org/10.1109/EuroSPW54576.2021.00017
https://hal.archives-ouvertes.fr/hal-03353878
https://hal.archives-ouvertes.fr/hal-03353878
https://doi.org/10.1145/3623652.3623674
https://doi.org/10.1145/3623652.3623674
https://doi.org/10.1145/3623652.3623674
https://doi.org/10.1145/3623652.3623674
https://www.gem5.org/events/isca-20225
https://www.gem5.org/events/isca-20225
https://www.jedec.org/
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://books.google.fr/books?id=3hxTAAAAMAAJ
https://books.google.fr/books?id=3hxTAAAAMAAJ
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/

Topics in Cryptology. CT-RSA’06. San Jose,
CA: Springer-Verlag, 2006, pp. 1–20. isbn:
3540310339. doi: 10.1007/11605805_1. url:
https://doi.org/10.1007/11605805_1.

[Son+06] Xinyue Song et al. “A Qualitative Analysis of
Privilege Escalation”. In: 2006 IEEE International
Conference on Information Reuse & Integration.
2006, pp. 363–368. doi: 10.1109/IRI.2006.
252441.

[Hal+08] J. Alex Halderman et al. “Lest We Remember:
Cold Boot Attacks on Encryption Keys”. In: 17th
USENIX Security Symposium (USENIX Security
08). San Jose, CA: USENIX Association, July
2008.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir.
“Efficient cache attacks on AES, and counter-
measures”. In: Journal of Cryptology 23 (2010),
pp. 37–71.

[Vah10] F. Vahid. Digital Design with RTL De-
sign, VHDL, and Verilog. Wiley, 2010. isbn:
9780470531082. url: https : / / books .
google.fr/books?id=-YayRpmjc20C.

[Dav+11] Lucas Davi et al. “Privilege escalation attacks on
android”. In: Information Security: 13th Interna-
tional Conference, ISC 2010, Boca Raton, FL,
USA, October 25-28, 2010, Revised Selected Pa-
pers 13. Springer. 2011, pp. 346–360.

[DPM11] Loc Duflot, Yves-Alexis Perez, and Benjamin
Morin. “What if You Can’T Trust Your Net-
work Card?” In: Proceedings of the 14th Inter-
national Conference on Recent Advances in In-
trusion Detection. RAID’11. Menlo Park, CA:
Springer-Verlag, 2011, pp. 378–397. isbn: 978-
3-642-23643-3. doi: 10 . 1007 / 978 - 3 - 642 -
23644-0_20. url: http://dx.doi.org/10.
1007/978-3-642-23644-0_20.

[ASS12] JEDEC SOLID STATE TECHNOLOGY ASSO-
CIATION. JESD220A: Universal Flash Storage.
hhttps://www.jedec.org/sites/default/
files/docs/JESD220A.pdf. 2012.

[Nah12] Hadi Nahari. TLK: A FOSS Stack for Secure
Hardware Tokens. NVIDIA, 2012.

[Lad+13] Evangelos Ladakis et al. “You can type, but you
cant hide: A stealthy GPU-based keylogger”. In:
Proceedings of the 6th European Workshop on
System Security (EuroSec). Citeseer. 2013.

[Mor+13] Nicolas Moro et al. “Electromagnetic Fault Injec-
tion: Towards a Fault Model on a 32-bit Micro-
controller”. In: 2013 Workshop on Fault Diagno-
sis and Tolerance in Cryptography. 2013, pp. 77–
88. doi: 10.1109/FDTC.2013.9.

[Sny13] Wilson Snyder. “Verilator: Open simulation-
growing up”. In: DVClub Bristol (2013).

[SB13] Patrick Stewin and Iurii Bystrov. “Understand-
ing DMA Malware”. In: Proceedings of the 9th
International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment.
DIMVA’12. Heraklion, Crete, Greece: Springer-
Verlag, 2013, pp. 21–41. isbn: 978-3-642-37299-
5. doi: 10.1007/978-3-642-37300-8_2. url:
http://dx.doi.org/10.1007/978-3-642-
37300-8_2.

[Kim+14] Yoongu Kim et al. “Flipping bits in memory with-
out accessing them: an experimental study of
DRAM disturbance errors”. In: SIGARCH Com-
put. Archit. News 42.3 (June 2014), pp. 361–
372. issn: 0163-5964. doi: 10.1145/2678373.
2665726. url: https://doi.org/10.1145/
2678373.2665726.

[MG14] Bojan Mihajlovi, eljko ili, and Warren J. Gross.
“Dynamically Instrumenting the QEMU Emula-
tor for Linux Process Trace Generation with the
GDB Debugger”. In: ACM Trans. Embed. Com-
put. Syst. 13.5s (Dec. 2014). issn: 1539-9087.
doi: 10.1145/2678022. url: https://doi.
org/10.1145/2678022.

[Ran+14] Mohammed Rangwala et al. “A taxonomy of priv-
ilege escalation attacks in Android applications”.
In: International Journal of Security and Net-
works 9.1 (2014), pp. 40–55.

[YF14] Yuval Yarom and Katrina Falkner.
“FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack”. In: Pro-
ceedings of the 23rd USENIX Conference on
Security Symposium. SEC’14. San Diego, CA:
USENIX Association, 2014, pp. 719–732. isbn:
978-1-931971-15-7. url: http://dl.acm.org/
citation.cfm?id=2671225.2671271.

[Doy+15] Goran Doychev et al. “CacheAudit: A Tool for
the Static Analysis of Cache Side Channels”. In:
ACM Trans. Inf. Syst. Secur. 18.1 (June 2015).
issn: 1094-9224. doi: 10.1145/2756550. url:
https://doi.org/10.1145/2756550.

[DUK15] CURTIS W. DUKES. Committee on National
Security Systems (CNSS) Glossary. 2015. url:
https://rmf.org/wp-content/uploads/
2017/10/CNSSI-4009.pdf.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Man-
gard. “Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches”. In: 24th
USENIX Security Symposium (USENIX Secu-
rity 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 897–912. isbn: 978-1-939133-
11-3. url: https : / / www . usenix . org /
conference/usenixsecurity15/technical-
sessions/presentation/gruss.

106

https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/IRI.2006.252441
https://doi.org/10.1109/IRI.2006.252441
https://books.google.fr/books?id=-YayRpmjc20C
https://books.google.fr/books?id=-YayRpmjc20C
https://doi.org/10.1007/978-3-642-23644-0_20
https://doi.org/10.1007/978-3-642-23644-0_20
http://dx.doi.org/10.1007/978-3-642-23644-0_20
http://dx.doi.org/10.1007/978-3-642-23644-0_20
hhttps://www.jedec.org/sites/default/files/docs/JESD220A.pdf
hhttps://www.jedec.org/sites/default/files/docs/JESD220A.pdf
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1007/978-3-642-37300-8_2
http://dx.doi.org/10.1007/978-3-642-37300-8_2
http://dx.doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678022
https://doi.org/10.1145/2678022
https://doi.org/10.1145/2678022
http://dl.acm.org/citation.cfm?id=2671225.2671271
http://dl.acm.org/citation.cfm?id=2671225.2671271
https://doi.org/10.1145/2756550
https://doi.org/10.1145/2756550
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

[Lee+15] Byoungyoung Lee et al. “Preventing Use-after-
free with Dangling Pointers Nullification.” In:
NDSS. 2015.

[Les15] Stéphane Lescuyer. “ProvenCore: Towards a Ver-
ified Isolation Micro-Kernel.” In: MILS@ HiPEAC.
2015.

[Liu+15] F. Liu et al. “Last-Level Cache Side-Channel At-
tacks are Practical”. In: 2015 IEEE Symposium
on Security and Privacy. May 2015, pp. 605–622.
doi: 10.1109/SP.2015.43.

[Ore+15] Yossef Oren et al. “The Spy in the Sandbox:
Practical Cache Attacks in JavaScript and their
Implications”. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Com-
munications Security. CCS ’15. Denver, Col-
orado, USA: Association for Computing Machin-
ery, 2015, pp. 1406–1418. isbn: 9781450338325.
doi: 10.1145/2810103.2813708. url: https:
//doi.org/10.1145/2810103.2813708.

[PMB15] Dorottya Papp, Zhendong Ma, and Levente
Buttyan. “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy”. In: 2015
13th Annual Conference on Privacy, Security and
Trust (PST). 2015, pp. 145–152. doi: 10.1109/
PST.2015.7232966.

[Qua15] Qualcomm. https : / / www . qualcomm . com /
content/dam/qcomm-martech/dm-assets/
documents / guard _ your _ data _ with _ the _
qualcomm_snapdragon_mobile_platform2.
pdf. 2015.

[SAB15] Mohamed Sabt, Mohammed Achemlal, and Ab-
delmadjid Bouabdallah. “Trusted execution envi-
ronment: what it is, and what it is not”. In: 2015
IEEE Trustcom/BigDataSE/Ispa. Vol. 1. IEEE.
2015, pp. 57–64.

[Sam15] Samsung. https://docs.samsungknox.com/
admin/whitepaper/kpe/samsung-knox.htm.
2015.

[SD15] Mark Seaborn and Thomas Dullien. “Exploiting
the DRAM rowhammer bug to gain kernel privi-
leges”. In: Black Hat 15 (2015), p. 71.

[VPI15] Giorgos Vasiliadis, Michalis Polychronakis, and
Sotiris Ioannidis. “GPU-assisted Malware”. In:
Int. J. Inf. Secur. 14.3 (June 2015), pp. 289–297.
issn: 1615-5262. doi: 10.1007/s10207-014-
0262-9. url: http://dx.doi.org/10.1007/
s10207-014-0262-9.

[Alm+16] José Bacelar Almeida et al. “Verifying {Constant-
Time} Implementations”. In: 25th USENIX Se-
curity Symposium (USENIX Security 16). 2016,
pp. 53–70.

[And16] Android. https : / / source . android . com /
docs/security/features/trusty/. 2016.

[Bos+16] Joppe W Bos et al. “Differential computation
analysis: Hiding your white-box designs is not
enough”. In: Cryptographic Hardware and Em-
bedded Systems–CHES 2016: 18th International
Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings 18. Springer. 2016,
pp. 215–236.

[CD16] Victor Costan and Srinivas Devadas. “Intel SGX
explained”. In: Cryptology ePrint Archive (2016).

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. “Rowhammer.js: A remote software-
induced fault attack in javascript”. In: DIMVA.
2016.

[Gru+16a] Daniel Gruss et al. “Flush+ Flush: a fast and
stealthy cache attack”. In: Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th
International Conference, DIMVA 2016, San Se-
bastián, Spain, July 7-8, 2016, Proceedings 13.
Springer. 2016, pp. 279–299.

[Gru+16b] Daniel Gruss et al. “Prefetch Side-Channel At-
tacks: Bypassing SMAP and Kernel ASLR”. In:
CCS. 2016.

[Lip+16] Moritz Lipp et al. “ARMageddon: Cache At-
tacks on Mobile Devices”. In: 25th USENIX
Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, Aug. 2016,
pp. 549–564. isbn: 978-1-931971-32-4. url:
https : / / www . usenix . org / conference /
usenixsecurity16 / technical - sessions /
presentation/lipp.

[Nga+16] Bernard Ngabonziza et al. “Trustzone explained:
Architectural features and use cases”. In: 2016
IEEE 2nd International Conference on Collabora-
tion and Internet Computing (CIC). IEEE. 2016,
pp. 445–451.

[OFl16] Colin O’Flynn. “Fault injection using crowbars
on embedded systems”. In: Cryptology ePrint
Archive (2016).

[Rei+16] Cezar Reinbrecht et al. “Side channel attack
on NoC-based MPSoCs are practical: NoC
Prime+Probe attack”. In: 2016 29th Sympo-
sium on Integrated Circuits and Systems Design
(SBCCI). 2016, pp. 1–6. doi: 10.1109/SBCCI.
2016.7724051.

[RQA16] Bruno Rodrigues, Fernando Magno Quintão
Pereira, and Diego F Aranha. “Sparse represen-
tation of implicit flows with applications to side-
channel detection”. In: Proceedings of the 25th
International Conference on Compiler Construc-
tion. 2016, pp. 110–120.

107

https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://doi.org/10.1007/s10207-014-0262-9
https://doi.org/10.1007/s10207-014-0262-9
http://dx.doi.org/10.1007/s10207-014-0262-9
http://dx.doi.org/10.1007/s10207-014-0262-9
https://source.android.com/docs/security/features/trusty/
https://source.android.com/docs/security/features/trusty/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://doi.org/10.1109/SBCCI.2016.7724051
https://doi.org/10.1109/SBCCI.2016.7724051

[Van+16] Victor Van Der Veen et al. “Drammer: Determin-
istic rowhammer attacks on mobile platforms”.
In: Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security.
2016, pp. 1675–1689.

[ZXZ16] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang.
“Return-Oriented Flush-Reload Side Channels on
ARM and Their Implications for Android De-
vices”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications
Security. CCS ’16. Vienna, Austria: Association
for Computing Machinery, 2016, pp. 858–870.
isbn: 9781450341394. doi: 10.1145/2976749.
2978360. url: https://doi.org/10.1145/
2976749.2978360.

[Ala+17] Murugappan Alagappan et al. “DFS covert chan-
nels on multi-core platforms”. In: 2017 IFIP/IEEE
International Conference on Very Large Scale In-
tegration (VLSI-SoC). 2017, pp. 1–6. doi: 10.
1109/VLSI-SoC.2017.8203469.

[Anc+17] Stéphanie Anceau et al. “Nanofocused X-ray
beam to reprogram secure circuits”. In: Crypto-
graphic Hardware and Embedded Systems–CHES
2017: 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings.
Springer. 2017, pp. 175–188.

[ARM17a] ARM. Cortex A9 MPCore Accelerator Coherency
Port. Accessed: 2017-04-12. 2017. url: http:
//infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0407e/CACGGBCF.
html.

[ARM17b] ARM. SystemC Cycle Models User Guide Version
10.0. 2017. url: https://developer.arm.
com/documentation/101124/1000.

[Ben17] Gal Beniamini. “Trust issues: Exploiting trust-
zone tees”. In: Google Project Zero Blog (2017).

[Ber+17] Daniel J Bernstein et al. “Sliding right into disas-
ter: Left-to-right sliding windows leak”. In: Inter-
national Conference on Cryptographic Hardware
and Embedded Systems. Springer. 2017, pp. 555–
576.

[Car17] Pierre Carru. “Attack ARM TrustZone using
Rowhammer”. In: GreHack, 2017. 2017.

[Cha17] Sumanta Chaudhuri. “Cache Timing Attacks
from The SoCFPGA Coherency Port (Abstract
Only)”. In: ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays
(FPGA). 2017.

[Che+17] Yue Chen et al. Downgrade Attack on TrustZone.
2017. arXiv: 1707.05082 [cs.CR].

[Gre+17] Marc Green et al. “AutoLock: Why Cache At-
tacks on ARM Are Harder Than You Think”.
In: 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Associ-
ation, Aug. 2017, pp. 1075–1091. isbn: 978-1-
931971-40-9. url: https://www.usenix.org/
conference/usenixsecurity17/technical-
sessions/presentation/green.

[Ira+17] Gorka Irazoqui et al. Did we learn from LLC Side
Channel Attacks? A Cache Leakage Detection
Tool for Crypto Libraries. 2017. doi: 10.48550/
ARXIV.1709.01552. url: https://arxiv.
org/abs/1709.01552.

[Jac+17] Nisha Jacob et al. “Compromising FPGA SoCs
using malicious hardware blocks”. In: Design, Au-
tomation & Test in Europe Conference & Exhi-
bition (DATE), 2017. 2017, pp. 1122–1127. doi:
10.23919/DATE.2017.7927157.

[JRM17] Wenzel Jakob, Jason Rhinelander, and Dean
Moldovan. “pybind11–Seamless operability be-
tween C++ 11 and Python”. In: URL:
https://github. com/pybind/pybind11 (2017).

[Mau+17] Clémentine Maurice et al. “Hello from the Other
Side: SSH over Robust Cache Covert Channels in
the Cloud.” In: NDSS. Vol. 17. 2017, pp. 8–11.

[Men+17] Christian Menard et al. “System simulation with
gem5 and SystemC: The keystone for full in-
teroperability”. In: 2017 International Confer-
ence on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS).
2017, pp. 62–69. doi: 10.1109/SAMOS.2017.
8344612.

[Moh+17] Alian Mohammad et al. “dist-gem5: Distributed
simulation of computer clusters”. In: 2017 IEEE
International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS). 2017,
pp. 153–162. doi: 10 . 1109 / ISPASS . 2017 .
7975287.

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Ver-
bauwhede. “Dude, is my code constant time?”
In: Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2017. IEEE. 2017,
pp. 1697–1702.

[Wan+17] Shuai Wang et al. “{CacheD}: Identifying
{Cache-Based} timing channels in production
software”. In: 26th USENIX security symposium
(USENIX security 17). 2017, pp. 235–252.

[Dob+18] Christoph Dobraunig et al. “SIFA: exploiting in-
effective fault inductions on symmetric cryp-
tography”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems
(2018), pp. 547–572.

108

https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1109/VLSI-SoC.2017.8203469
https://doi.org/10.1109/VLSI-SoC.2017.8203469
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
https://developer.arm.com/documentation/101124/1000
https://developer.arm.com/documentation/101124/1000
https://arxiv.org/abs/1707.05082
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/green
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/green
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/green
https://doi.org/10.48550/ARXIV.1709.01552
https://doi.org/10.48550/ARXIV.1709.01552
https://arxiv.org/abs/1709.01552
https://arxiv.org/abs/1709.01552
https://doi.org/10.23919/DATE.2017.7927157
https://doi.org/10.1109/SAMOS.2017.8344612
https://doi.org/10.1109/SAMOS.2017.8344612
https://doi.org/10.1109/ISPASS.2017.7975287
https://doi.org/10.1109/ISPASS.2017.7975287

[LW18] Ben Lapid and Avishai Wool. “Navigating the
samsung trustzone and cache-attacks on the key-
master trustlet”. In: European Symposium on
Research in Computer Security. Springer. 2018,
pp. 175–196.

[LJ18] Bo Li and Bo Jiang. “Cache Attack on AES
for Android Smartphone”. In: Proceedings of
the 2nd International Conference on Cryptogra-
phy, Security and Privacy. ICCSP 2018. Guiyang,
China: Association for Computing Machinery,
2018, pp. 138–143. isbn: 9781450363617. doi:
10.1145/3199478.3199488. url: https://
doi.org/10.1145/3199478.3199488.

[Lip+18] Moritz Lipp et al. “Meltdown”. In: USENIX Se-
curity. 2018.

[Low18] Jason Lowe-Power. gem5 Architecture Sup-
port. 2018. url: https : / / www . gem5 .
org / documentation / general _ docs /
architecture_support/s.

[Wu+18] Meng Wu et al. “Eliminating timing side-channel
leaks using program repair”. In: Proceedings of
the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21,
2018. Ed. by Frank Tip and Eric Bodden. ACM,
2018, pp. 15–26. doi: 10 . 1145 / 3213846 .
3213851. url: https://doi.org/10.1145/
3213846.3213851.

[ZS18] Mark Zhao and G. Edward Suh. “FPGA-Based
Remote Power Side-Channel Attacks”. In: 2018
IEEE Symposium on Security and Privacy (SP).
2018, pp. 229–244. doi: 10.1109/SP.2018.
00049.

[And19] Android. Android Verified Boot. https : / /
source . android . com / docs / security /
features/verifiedboot/avb. 2019.

[BY19] Michael Garrett Bechtel and Heechul Yun.
“Denial-of-Service Attacks on Shared Cache in
Multicore: Analysis and Prevention”. In: 25th
IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2019, Montreal,
QC, Canada, April 16-18, 2019. Ed. by Björn B.
Brandenburg. IEEE, 2019, pp. 357–367. doi: 10.
1109/RTAS.2019.00037. url: https://doi.
org/10.1109/RTAS.2019.00037.

[BBA19] E. M. Benhani, L. Bossuet, and A. Aubert.
“The Security of ARM TrustZone in a FPGA-
based SoC”. In: IEEE Transactions on Comput-
ers (2019), pp. 1–1. issn: 0018-9340. doi: 10.
1109/TC.2019.2900235.

[Bro+19] Robert Brotzman et al. “CaSym: Cache aware
symbolic execution for side channel detection and
mitigation”. In: 2019 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE. 2019, pp. 505–521.

[Can+19] Claudio Canella et al. “A Systematic Evaluation
of Transient Execution Attacks and Defenses”. In:
USENIX Security Symposium. extended classifi-
cation tree at https://transient.fail/. 2019.

[FFY19] Jacob Fustos, Farzad Farshchi, and Heechul Yun.
“SpectreGuard: An Efficient Data-centric De-
fense Mechanism against Spectre Attacks”. In:
Proceedings of the 56th Annual Design Automa-
tion Conference 2019, DAC 2019, Las Vegas, NV,
USA, June 02-06, 2019. ACM, 2019, p. 61. doi:
10.1145/3316781.3317914. url: https://
doi.org/10.1145/3316781.3317914.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting
Speculative Execution”. In: 2019 IEEE Sympo-
sium on Security and Privacy (SP). 2019, pp. 1–
19. doi: 10.1109/SP.2019.00002.

[Min+19] Marina Minkin et al. Fallout: Reading Kernel
Writes From User Space. 2019. arXiv: 1905 .
12701 [cs.CR].

[NZ19] Stefan Nicula and Razvan Daniel Zota. “Exploit-
ing stack-based buffer overflow using modern day
techniques”. In: Procedia Computer Science 160
(2019). The 10th International Conference on
Emerging Ubiquitous Systems and Pervasive Net-
works (EUSPN-2019) / The 9th International
Conference on Current and Future Trends of In-
formation and Communication Technologies in
Healthcare (ICTH-2019) / Affiliated Workshops,
pp. 9–14. issn: 1877-0509. doi: https://doi.
org/10.1016/j.procs.2019.09.437. url:
https://www.sciencedirect.com/science/
article/pii/S1877050919316527.

[Roh19] Roman Rohleder. “Hands-On Ghidra - A Tutorial
about the Software Reverse Engineering Frame-
work”. In: Proceedings of the 3rd ACM Work-
shop on Software Protection. SPRO’19. London,
United Kingdom: Association for Computing Ma-
chinery, 2019, pp. 77–78. isbn: 9781450368353.
doi: 10.1145/3338503.3357725. url: https:
//doi.org/10.1145/3338503.3357725.

[Rya19] Keegan Ryan. “Hardware-Backed Heist: Extract-
ing ECDSA Keys from Qualcomm’s TrustZone”.
In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Secu-
rity. CCS ’19. London, United Kingdom: Associ-
ation for Computing Machinery, 2019, pp. 181–
194. isbn: 9781450367479. doi: 10 . 1145 /
3319535.3354197. url: https://doi.org/
10.1145/3319535.3354197.

[Sch+19a] Stephan van Schaik et al. “RIDL: Rogue In-Flight
Data Load”. In: 2019 IEEE Symposium on Secu-
rity and Privacy (SP). 2019, pp. 88–105. doi:
10.1109/SP.2019.00087.

109

https://doi.org/10.1145/3199478.3199488
https://doi.org/10.1145/3199478.3199488
https://doi.org/10.1145/3199478.3199488
https://www.gem5.org/documentation/general_docs/architecture_support/s
https://www.gem5.org/documentation/general_docs/architecture_support/s
https://www.gem5.org/documentation/general_docs/architecture_support/s
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1109/SP.2018.00049
https://source.android.com/docs/security/features/verifiedboot/avb
https://source.android.com/docs/security/features/verifiedboot/avb
https://source.android.com/docs/security/features/verifiedboot/avb
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/TC.2019.2900235
https://doi.org/10.1109/TC.2019.2900235
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1109/SP.2019.00002
https://arxiv.org/abs/1905.12701
https://arxiv.org/abs/1905.12701
https://doi.org/https://doi.org/10.1016/j.procs.2019.09.437
https://doi.org/https://doi.org/10.1016/j.procs.2019.09.437
https://www.sciencedirect.com/science/article/pii/S1877050919316527
https://www.sciencedirect.com/science/article/pii/S1877050919316527
https://doi.org/10.1145/3338503.3357725
https://doi.org/10.1145/3338503.3357725
https://doi.org/10.1145/3338503.3357725
https://doi.org/10.1145/3319535.3354197
https://doi.org/10.1145/3319535.3354197
https://doi.org/10.1145/3319535.3354197
https://doi.org/10.1145/3319535.3354197
https://doi.org/10.1109/SP.2019.00087

[Sch+19b] Michael Schwarz et al. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. 2019. arXiv:
1905.05726 [cs.CR].

[sof19] I hate software. Reverse-engineering Samsung
Exynos 9820 bootloader and TZ. http : / /
allsoftwaresucks . blogspot . com / 2019 /
05/reverse-engineering-samsung-exynos-
9820.html. 2019.

[Wei+19] Zane Weissman et al. “JackHammer: Efficient
Rowhammer on Heterogeneous FPGA-CPU Plat-
forms”. In: CoRR abs/1912.11523 (2019). arXiv:
1912.11523. url: http://arxiv.org/abs/
1912.11523.

[Wer+19] Mario Werner et al. “ScatterCache: Thwart-
ing Cache Attacks via Cache Set Random-
ization”. In: 28th USENIX Security Sympo-
sium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019. Ed. by Na-
dia Heninger and Patrick Traynor. USENIX As-
sociation, 2019, pp. 675–692. url: https :
/ / www . usenix . org / conference /
usenixsecurity19/presentation/werner.

[Yan+19] Mengjia Yan et al. “InvisiSpec: Making Specu-
lative Execution Invisible in the Cache Hierar-
chy (Corrigendum)”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH,
USA, October 12-16, 2019. ACM, 2019, p. 1076.
doi: 10.1145/3352460.3361129. url: https:
//doi.org/10.1145/3352460.3361129.

[Yu+19] Xiaodong Yu et al. “Comparative Measurement
of Cache Configurations’ Impacts on Cache Tim-
ing Side-Channel Attacks”. In: 12th USENIX
Workshop on Cyber Security Experimentation
and Test, CSET 2019, Santa Clara, CA, USA,
August 12, 2019. Ed. by Rob Jansen and Pe-
ter A. H. Peterson. USENIX Association, 2019.
url: https://www.usenix.org/conference/
cset19/presentation/yu.

[AJ20] Sam Ainsworth and Timothy M. Jones. “Muon-
Trap: Preventing Cross-Domain Spectre-Like At-
tacks by Capturing Speculative State”. In: 47th
ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. IEEE, 2020,
pp. 132–144. doi: 10.1109/ISCA45697.2020.
00022. url: https : / / doi . org / 10 . 1109 /
ISCA45697.2020.00022.

[DBR20] Lesly-Ann Daniel, Sébastien Bardin, and Tamara
Rezk. “Binsec/rel: Efficient relational symbolic
execution for constant-time at binary-level”. In:
2020 IEEE Symposium on Security and Privacy
(SP). IEEE. 2020, pp. 1021–1038.

[Gra+20] Ben Gras et al. “ABSynthe: Automatic Blackbox
Side-channel Synthesis on Commodity Microar-
chitectures.” In: NDSS. 2020.

[KDG20] Mohammad Nasim Imtiaz Khan, Asmit De, and
Swaroop Ghosh. “Cache-Out: Leaking Cache
Memory Using Hardware Trojan”. In: IEEE Trans.
Very Large Scale Integr. Syst. 28.6 (2020),
pp. 1461–1470. doi: 10.1109/TVLSI.2020.
2982188. url: https://doi.org/10.1109/
TVLSI.2020.2982188.

[Low+20] Jason Lowe-Power et al. The gem5 Simula-
tor: Version 20.0+. 2020. arXiv: 2007 . 03152
[cs.AR].

[MH20] Gabrielle De Micheli and Nadia Heninger. Re-
covering cryptographic keys from partial informa-
tion, by example. Cryptology ePrint Archive, Pa-
per 2020/1506. https://eprint.iacr.org/
2020 / 1506. 2020. url: https : / / eprint .
iacr.org/2020/1506.

[Sam20] Samsung. Samsung TEEGRIS. https : / /
developer . samsung . com / teegris /
overview.html. Accessed: September 22, 2020.
2020.

[YL20] Heedong Yang and Manhee Lee. “Demystify-
ing ARM TrustZone TEE Client API Using
OP-TEE”. In: The 9th International Conference
on Smart Media and Applications. SMA 2020.
Jeju, Republic of Korea: Association for Com-
puting Machinery, 2020, pp. 325–328. isbn:
9781450389259. doi: 10 . 1145 / 3426020 .
3426113. url: https://doi.org/10.1145/
3426020.3426113.

[ARM21a] ARM. AMBA AXI and ACE Protocol
Specification. 2021. url: https : / /
documentation-service.arm.com/static/
602a9df190ee6824a1e02b98?token=.

[ARM21b] ARM. Fast Models Fixed Virtual Platforms
(FVP) Reference Guide. 2021. url: https :
/ / developer . arm . com / documentation /
100966/latest/.

[AM21] Pierre Ayoub and Clémentine Maurice. “Repro-
ducing spectre attack with gem5: How to do
it right?” In: Proceedings of the 14th European
Workshop on Systems Security. 2021, pp. 15–20.

[Fra+21a] Loc France et al. “Implementing rowhammer
memory corruption in the gem5 simulator”. In:
2021 IEEE International Workshop on Rapid Sys-
tem Prototyping (RSP). IEEE. 2021, pp. 36–42.

[Fra+21b] Loc France et al. “Vulnerability assessment of the
rowhammer attack using machine learning and
the gem5 simulator-work in progress”. In: Pro-
ceedings of the 2021 ACM workshop on secure
and trustworthy cyber-physical systems. 2021,
pp. 104–109.

110

https://arxiv.org/abs/1905.05726
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
https://arxiv.org/abs/1912.11523
http://arxiv.org/abs/1912.11523
http://arxiv.org/abs/1912.11523
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/3352460.3361129
https://doi.org/10.1145/3352460.3361129
https://doi.org/10.1145/3352460.3361129
https://www.usenix.org/conference/cset19/presentation/yu
https://www.usenix.org/conference/cset19/presentation/yu
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/TVLSI.2020.2982188
https://doi.org/10.1109/TVLSI.2020.2982188
https://doi.org/10.1109/TVLSI.2020.2982188
https://doi.org/10.1109/TVLSI.2020.2982188
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://developer.samsung.com/teegris/overview.html
https://developer.samsung.com/teegris/overview.html
https://developer.samsung.com/teegris/overview.html
https://doi.org/10.1145/3426020.3426113
https://doi.org/10.1145/3426020.3426113
https://doi.org/10.1145/3426020.3426113
https://doi.org/10.1145/3426020.3426113
https://documentation-service.arm.com/static/602a9df190ee6824a1e02b98?token=
https://documentation-service.arm.com/static/602a9df190ee6824a1e02b98?token=
https://documentation-service.arm.com/static/602a9df190ee6824a1e02b98?token=
https://developer.arm.com/documentation/100966/latest/
https://developer.arm.com/documentation/100966/latest/
https://developer.arm.com/documentation/100966/latest/

[Kou+21] Zili Kou et al. “Load-Step: A Precise TrustZone
Execution Control Framework for Exploring New
Side-channel Attacks Like Flush+Evict”. In: 2021
58th ACM/IEEE Design Automation Conference
(DAC). 2021, pp. 979–984. doi: 10 . 1109 /
DAC18074.2021.9586226.

[Lav+21] Corentin Lavaud et al. “Whispering devices: A
survey on how side-channels lead to compromised
information”. In: Journal of Hardware and Sys-
tems Security 5 (2021), pp. 143–168.

[lea21] GlobalPlatform leadership. Global Platform.
https://globalplatform.org/. 2021.

[Per+21] Thomas Perianin et al. “End-to-end automated
cache-timing attack driven by machine learning”.
In: Journal of Cryptographic Engineering 11.2
(2021), pp. 135–146.

[Ren+21] Xida Ren et al. “I See Dead ţops: Leaking Se-
crets via Intel/AMD Micro-Op Caches”. In: 2021
ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). 2021,
pp. 361–374. doi: 10.1109/ISCA52012.2021.
00036.

[Roc21] Rockchip. Rockchip RK3399 Technical Refer-
ence Manual. 2021. url: https://rockchip.
fr / Rockchip % 20RK3399 % 20TRM % 20V1 . 3 %
20Part1 . pdf , %20https : / / rockchip .
fr / Rockchip % 20RK3399 % 20TRM % 20V1 . 3 %
20Part2.pdf.

[Shu+21] Anatoly Shusterman et al. “Website Fingerprint-
ing Through the Cache Occupancy Channel and
its Real World Practicality”. In: IEEE Transac-
tions on Dependable and Secure Computing 18.5
(2021), pp. 2042–2060. doi: 10.1109/TDSC.
2020.2988369.

[Syn21] Synopsys. Platform Architect. 2021. url:
https : / / www . synopsys . com / cgi -
bin / proto / pdfdla / docsdl / platform _
architect _ ds . pdf ? file = platform _
architect_ds.pdf/.

[AIM22] Paolo Amato, Niccolò Izzo, and Carlo Meijer.
“Mobile Systems Secure State Management”. In:
2022 25th Euromicro Conference on Digital Sys-
tem Design (DSD). 2022, pp. 564–571. doi: 10.
1109/DSD57027.2022.00081.

[Bak+22] Anubhab Baksi et al. “A Survey on Fault Attacks
on Symmetric Key Cryptosystems”. In: ACM
Comput. Surv. 55.4 (Nov. 2022). issn: 0360-
0300. doi: 10 . 1145 / 3530054. url: https :
//doi.org/10.1145/3530054.

[BY22] Michael Bechtel and Heechul Yun. “Denial-of-
Service Attacks on Shared Resources in Intels
Integrated CPU-GPU Platforms”. In: 2022 IEEE
25th International Symposium On Real-Time
Distributed Computing (ISORC). 2022, pp. 1–9.
doi: 10.1109/ISORC52572.2022.9812711.

[Fra+22] Loc France et al. “Modeling Rowhammer in
the gem5 simulator”. In: CHES 2022-Conference
on Cryptographic Hardware and Embedded Sys-
tems. 2022.

[Gro+22] Mathieu Gross et al. “Breaking TrustZone mem-
ory isolation and secure boot through malicious
hardware on a modern FPGA-SoC”. In: J. Cryp-
togr. Eng. 12.2 (2022), pp. 181–196. doi: 10.
1007/s13389-021-00273-8. url: https://
doi.org/10.1007/s13389-021-00273-8.

[Pi22] Raspberry Pi. BCM2837. 2022. url: https://
github.com/raspberrypi/documentation/
blob / develop / documentation / asciidoc /
computers/processors/bcm2837.adoc.

[BGL23] Lilian Bossuet, Vincent Grosso, and Carlos An-
dres Lara-Nino. “Emulating Side Channel Attacks
on gem5: lessons learned”. In: 2023 IEEE Euro-
pean Symposium on Security and Privacy Work-
shops (EuroS&PW). 2023, pp. 287–295. doi:
10.1109/EuroSPW59978.2023.00036.

[BL23a] Lilian Bossuet and Carlos Andres Lara-Nino. “Ad-
vanced Covert-Channels in Modern SoCs”. In:
2023 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST). 2023,
pp. 80–88. doi: 10.1109/HOST55118.2023.
10133626.

[BL23b] Lilian Bossuet and Carlos Andres Lara-Nino.
“Emulating Covert Data Transmission on Het-
erogeneous SoCs”. In: 2023 Asian Hardware Ori-
ented Security and Trust Symposium (Asian-
HOST). 2023, pp. 1–6. doi: 10 . 1109 /
AsianHOST59942.2023.10409377.

[Dua+23] Guoyun Duan et al. “TEEFuzzer: A fuzzing
framework for trusted execution environments
with heuristic seed mutation”. In: Future Gen-
eration Computer Systems 144 (2023), pp. 192–
204.

[Eng23] DENX Software Engineering. U-boot. https://
www.denx.de/wiki/U-Boot. Accessed: 2023-
16-01. 2023.

[FBL23] Anis Fellah-Touta, Lilian Bossuet, and Carlos An-
dres Lara-Nino. “Combined Internal Attacks on
SoC-FPGAs: Breaking AES with Remote Power
Analysis and Frequency-based Covert Channels”.
In: 2023 IEEE European Symposium on Secu-
rity and Privacy Workshops (EuroS&PW). 2023,
pp. 281–286. doi: 10 . 1109 / EuroSPW59978 .
2023.00035.

111

https://doi.org/10.1109/DAC18074.2021.9586226
https://doi.org/10.1109/DAC18074.2021.9586226
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/ISCA52012.2021.00036
https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part1.pdf,%20https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part2.pdf
https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part1.pdf,%20https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part2.pdf
https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part1.pdf,%20https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part2.pdf
https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part1.pdf,%20https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part2.pdf
https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part1.pdf,%20https://rockchip.fr/Rockchip%20RK3399%20TRM%20V1.3%20Part2.pdf
https://doi.org/10.1109/TDSC.2020.2988369
https://doi.org/10.1109/TDSC.2020.2988369
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/platform_architect_ds.pdf?file=platform_architect_ds.pdf/
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/platform_architect_ds.pdf?file=platform_architect_ds.pdf/
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/platform_architect_ds.pdf?file=platform_architect_ds.pdf/
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/platform_architect_ds.pdf?file=platform_architect_ds.pdf/
https://doi.org/10.1109/DSD57027.2022.00081
https://doi.org/10.1109/DSD57027.2022.00081
https://doi.org/10.1145/3530054
https://doi.org/10.1145/3530054
https://doi.org/10.1145/3530054
https://doi.org/10.1109/ISORC52572.2022.9812711
https://doi.org/10.1007/s13389-021-00273-8
https://doi.org/10.1007/s13389-021-00273-8
https://doi.org/10.1007/s13389-021-00273-8
https://doi.org/10.1007/s13389-021-00273-8
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/processors/bcm2837.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/processors/bcm2837.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/processors/bcm2837.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/processors/bcm2837.adoc
https://doi.org/10.1109/EuroSPW59978.2023.00036
https://doi.org/10.1109/HOST55118.2023.10133626
https://doi.org/10.1109/HOST55118.2023.10133626
https://doi.org/10.1109/AsianHOST59942.2023.10409377
https://doi.org/10.1109/AsianHOST59942.2023.10409377
https://www.denx.de/wiki/U-Boot
https://www.denx.de/wiki/U-Boot
https://doi.org/10.1109/EuroSPW59978.2023.00035
https://doi.org/10.1109/EuroSPW59978.2023.00035

[Gei+23] Antoine Geimer et al. “A Systematic Evaluation
of Automated Tools for Side-Channel Vulnera-
bilities Detection in Cryptographic Libraries”. In:
Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security.
2023, pp. 1690–1704.

[KOU+23] Zili KOU et al. “Cache Side-channel Attacks and
Defenses of the Sliding Window Algorithm in
TEEs”. In: 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2023,
pp. 1–6. doi: 10 . 23919 / DATE56975 . 2023 .
10137116.

[lib23] Team libtom. libtomcrypt. https://github.
com/libtom/libtomcrypt. 2023.

[Lin23a] Linaro. Linaro. https : / / www . linaro . org/.
Accessed: 2023-16-01. 2023.

[Lin23b] Linaro. Trusted-Firmware A: Secure Payload Dis-
patcher (SPD). https://trustedfirmware-
a.readthedocs.io/en/latest/components/
spd/index.html. Accessed: 2023-16-01. 2023.

[Lin23c] Linaro. TrustedFirmware A. https : / / www .
trustedfirmware.org/projects/tf-a/. Ac-
cessed: 2023-16-01. 2023.

[UH23] Rei Ueno and Naofumi Homma. “How Secure is
Exponent-blinded RSA–CRT with Sliding Win-
dow Exponentiation?” In: IACR Transactions on
Cryptographic Hardware and Embedded Systems
(2023), pp. 241–269.

[Fou24] SCons Foundation. 2024. url: https://scons.
org/.

[L B24] 0:1 L Break Into Program. 8250 UART. 2024.
url: http://www.breakintoprogram.co.uk/
hardware/components/8250-uarts.

[Low24a] Jason Lowe-Power. gem5 Memory system.
2024. url: https : / / www . gem5 . org /
documentation / general _ docs / memory _
system/.

[Low24b] Jason Lowe-Power. Learning gem5. https://
gem5 . googlesource . com / public / gem5 -
website / + / refs / heads / stable / _pages /
documentation / learning _ gem5/. Accessed:
2024-05-03. 2024.

112

https://doi.org/10.23919/DATE56975.2023.10137116
https://doi.org/10.23919/DATE56975.2023.10137116
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://www.linaro.org/
https://trustedfirmware-a.readthedocs.io/en/latest/components/spd/index.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/spd/index.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/spd/index.html
https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-a/
https://scons.org/
https://scons.org/
http://www.breakintoprogram.co.uk/hardware/components/8250-uarts
http://www.breakintoprogram.co.uk/hardware/components/8250-uarts
https://www.gem5.org/documentation/general_docs/memory_system/
https://www.gem5.org/documentation/general_docs/memory_system/
https://www.gem5.org/documentation/general_docs/memory_system/
https://gem5.googlesource.com/public/gem5-website/+/refs/heads/stable/_pages/documentation/learning_gem5/
https://gem5.googlesource.com/public/gem5-website/+/refs/heads/stable/_pages/documentation/learning_gem5/
https://gem5.googlesource.com/public/gem5-website/+/refs/heads/stable/_pages/documentation/learning_gem5/
https://gem5.googlesource.com/public/gem5-website/+/refs/heads/stable/_pages/documentation/learning_gem5/

Appendix A

Appendix

Contents
A.1 About gem5 . 114
A.2 About PyDevices . 116
A.3 About ARM . 116
A.4 About RK3399 . 118

A.4.1 Retro-engineering . 118
A.4.2 Covert-channel results . 120

113

A.1 About gem5

my_sim_object.cc

Event* event= new EventBaseType(this);//creating an event
schedule(event, latency);//scheduling said event in *latency* time quantum

Figure A.1: gem5 event scheduling in CcObject implementation.
Sconscript

Import('*')
#Adding a new SimObject Python file
SimObject('MySimObject.py', sim_objects=[

'MySimObject',])#declare all the SimObject present in the files
#Declare a source C++ file
Source('my_sim_object.cc')
#declare a debug flag named: 'MySimObject'
DebugFlag('MySimObject')

Figure A.2: Integrating a new SimObject in gem5 build system: Scons
new instruction purpose handling

m5_arm(address) Increment the arm statistic in the associated Workload Object handled by gem5
m5_quiesce() Quiesce the calling core/thread handled by gem5
m5_quiesce_ns(ns) Quiesce the calling core/thread for ns ns handled by gem5
m5_quiesce_cycle(cycles) Quiesce the calling core/thread for cycle cycles handled by gem5
m5_quiesce_time() Return the a CPU has been quiesced handled by gem5
m5_rpns() Return gem5 internal tick handled by gem5
m5_wake_cpu(cpuid) Wake up a potentially suspended or quiesced CPU identified by cpuid handled by gem5
m5_exit(ns_delay) Exit gem5 after ns_delay ns exit with m5_exit instruction encountered

m5_fail(ns_delay, code) Exit gem5 ns_delay ns with a fail code exit with m5_fail instruction encountered and the code
m5_sum(a,b,c,d,e,f) Return the sum of a, b, c, d, e, f handled by gem5
m5_init_param(key_str1,key_str2) Access a init_param from gem5 (generally set up by python) handled by gem5
m5_checkpoint(ns_delay,ns_period) Create a periodic checkpoint after ns_delay ns with period ns_period exit with checkpoint

m5_reset_stats(ns_delay,ns_period) Reset statistics after ns_delay ns regularly at a period of ns_period ns handled by gem5
m5_dump_stats(ns_delay,ns_period) Dump statistics after ns_delay ns regularly at a period of ns_period ns handled by gem5
m5_dump_reset_stats(ns_delay,ns_period) Dump and reset statistics after ns_delay ns regularly at a period of ns_period ns handled by gem5
m5_read_file(buffer,len,offset) Write the content of a host file provided by the config file to the buffer handled by gem5
m5_write_file(buffer,len,offset,filename) Write buffer to the file filename on the host handled by gem5
m5_debug_break() Trigger a breakpoint in gem5 if it is currently being debugged (running gem5 in GDB) handled by gem5
m5_switch_cpu() Switch CPU, changing the CPU model use exit with switchcpu

m5_dist_toggle_sync() Toggle sync between different gem5 process (used in dist-gem5 [Moh+17]) handled by gem5
m5_add_symbol(addr,symbol) Add symbol symbol with address addr to gem5 (this is used by Exec DebugFlag) handled by gem5
m5_load_symbol() Load the symbol file provided in symbolfile System SimObject Param in gem5 handled by gem5
m5_panic() Panic the simulator, stopping the simulation handled by gem5
m5_work_begin(workid,threadid) Start a statistic automatic separation and create a checkpoint handled by gem5 besides checkpoint
m5_work_end(workid,threadid) End a statistic automatic separation and create a checkpoint handled by gem5 besides checkpoint
m5_workload() Call a gem5 event (which can be implemented in Python) associated with the workload) user-defined in python
m5_env(buffer,len,varname) Recover in a buffer the string associated with the key varname in a config python dict handled by gem5

Table A.1: List of all the m5 instructions. "Exit with" indicates that the m5.simulate() function returns with an event
that contains a given message and/or code. Checkpointing always uses m5_checkpoint handling which is exiting the
simulation with the m5_checkpoint message. The m5_env instruction is a new m5 instruction, we added in our gem5 build.

114

ro
ot

: R
oo

t

sy
st

em
: O

pt
ee

Sy
st

em

re
al

vi
ew

: V
Ex

pr
es

s_
GE

M
5_

Fo
un

da
tio

n

gi
c

: G
icv

3
tr

us
te

d_
dr

am
: S

im
pl

eM
em

or
y

bo
ot

m
em

: S
im

pl
eM

em
or

y
Ła

sh
0

: S
im

pl
eM

em
or

y
tr

us
te

d_
sr

am
: S

im
pl

eM
em

or
y

no
n_

tr
us

te
d_

sr
am

: M
m

io
SR

AM
el

2_
wa

tc
hd

og
: G

en
er

icW
at

ch
do

g
tr

us
te

d_
wa

tc
hd

og
: S

p8
05

ge
ne

ric
_t

im
er

_m
em

: G
en

er
icT

im
er

M
em

sy
st

em
_w

at
ch

do
g

: S
p8

05

pi
o

po
rt

po
rt

po
rt

po
rt

po
rt

pi
o

pi
o

pi
o

fr
am

es
0

: G
en

er
icT

im
er

Fr
am

e

pi
o

fr
am

es
1

: G
en

er
icT

im
er

Fr
am

e

pi
o

pi
o

sp
81

0_
fa

ke
: A

m
ba

Fa
ke

pi
o

clc
d

: P
l11

1

dm
a

pi
o

pc
i_h

os
t

: G
en

er
icA

rm
Pc

iH
os

t

pi
o

re
alv

ie
w_

io
: R

ea
lV

ie
wC

tr
l

pi
o

ua
rt

0
: P

l0
11

pi
o

ua
rt

1
: P

l0
11

pi
o

ua
rt

2
: P

l0
11

pi
o

ua
rt

3
: P

l0
11

pi
o

km
i0

: P
l0

50

pi
o

km
i1

: P
l0

50

pi
o

wa
tc

hd
og

: S
p8

05 pi
o

rt
c

: P
L0

31

pi
o

en
er

gy
_c

tr
l

: E
ne

rg
yC

tr
l

pi
o

pw
r_

ct
rl

: F
VP

Ba
se

Pw
rC

tr
l

pi
o

vi
o0

: M
m

io
Vi

rt
IO

pi
o

vi
o1

: M
m

io
Vi

rt
IO

pi
o

Ła
sh

1
: C

ŀM
em

or
y

po
rt

vr
am

: S
im

pl
eM

em
or

y

po
rt

m
em

_c
tr

ls0
: M

em
Ct

rl

po
rt

m
em

_c
tr

ls1
: M

em
Ct

rl

po
rt

sy
st

em
_p

or
t

m
em

bu
s

: M
em

Bu
s

ba
da

dd
r_

re
sp

on
de

r
: B

ad
Ad

dr

cp
u_

sid
e_

po
rt

s
m

em
_s

id
e_

po
rt

s
de

fa
ul

t

pi
o

io
br

id
ge

: B
rid

ge

io
bu

s
: I

OX
Ba

r

m
em

_s
id

e_
po

rt
s

cp
u_

sid
e_

po
rt

s

cp
u_

sid
e_

po
rt

m
em

_s
id

e_
po

rt

io
ca

ch
e

: I
OC

ac
he

m
em

_s
id

e
cp

u_
sid

e

cp
u_

clu
st

er
: C

pu
Cl

us
te

r

to
L2

Bu
s

: L
2X

Ba
r cp

u_
sid

e_
po

rt
s

m
em

_s
id

e_
po

rt
s

cp
us

0
: H

PI

m
m

u
: H

PI
_M

M
U

itb
_w

alk
er

: A
rm

Ta
bl

eW
alk

er
dt

b_
wa

lke
r

: A
rm

Ta
bl

eW
alk

er
st

ag
e2

_it
b_

wa
lke

r
: A

rm
St

ag
e2

Ta
bl

eW
al

ke
r

st
ag

e2
_d

tb
_w

alk
er

: A
rm

St
ag

e2
Ta

bl
eW

al
ke

r

ica
ch

e
: H

PI
_IC

ac
he

dc
ac

he
: H

PI
_D

Ca
ch

e

ica
ch

e_
po

rt

cp
u_

sid
e

dc
ac

he
_p

or
t

cp
u_

sid
e

po
rt

po
rt

po
rt

po
rt

m
em

_s
id

e
m

em
_s

id
e

cp
us

1
: H

PI

m
m

u
: H

PI
_M

M
U

itb
_w

alk
er

: A
rm

Ta
bl

eW
alk

er
dt

b_
wa

lke
r

: A
rm

Ta
bl

eW
alk

er
st

ag
e2

_it
b_

wa
lke

r
: A

rm
St

ag
e2

Ta
bl

eW
alk

er
st

ag
e2

_d
tb

_w
alk

er
: A

rm
St

ag
e2

Ta
bl

eW
alk

er

ica
ch

e
: H

PI
_IC

ac
he

dc
ac

he
: H

PI
_D

Ca
ch

e

ica
ch

e_
po

rt

cp
u_

sid
e

dc
ac

he
_p

or
t

cp
u_

sid
e

po
rt

po
rt

po
rt

po
rt

m
em

_s
id

e
m

em
_s

id
e

cp
us

2
: H

PI

m
m

u
: H

PI
_M

M
U

itb
_w

al
ke

r
: A

rm
Ta

bl
eW

al
ke

r
dt

b_
wa

lke
r

: A
rm

Ta
bl

eW
alk

er
st

ag
e2

_it
b_

wa
lke

r
: A

rm
St

ag
e2

Ta
bl

eW
al

ke
r

st
ag

e2
_d

tb
_w

al
ke

r
: A

rm
St

ag
e2

Ta
bl

eW
al

ke
r

ica
ch

e
: H

PI
_IC

ac
he

dc
ac

he
: H

PI
_D

Ca
ch

eica
ch

e_
po

rt

cp
u_

sid
e

dc
ac

he
_p

or
t

cp
u_

sid
e

po
rt

po
rt

po
rt

po
rt

m
em

_s
id

e
m

em
_s

id
e

cp
us

3
: H

PI

m
m

u
: H

PI
_M

M
U

itb
_w

alk
er

: A
rm

Ta
bl

eW
alk

er
dt

b_
wa

lke
r

: A
rm

Ta
bl

eW
alk

er
st

ag
e2

_it
b_

wa
lke

r
: A

rm
St

ag
e2

Ta
bl

eW
alk

er
st

ag
e2

_d
tb

_w
alk

er
: A

rm
St

ag
e2

Ta
bl

eW
alk

er

ica
ch

e
: H

PI
_IC

ac
he

dc
ac

he
: H

PI
_D

Ca
ch

eica
ch

e_
po

rt

cp
u_

sid
e

dc
ac

he
_p

or
t

cp
u_

sid
e

po
rt

po
rt

po
rt

po
rt

m
em

_s
id

e
m

em
_s

id
e

l2
: H

PI
_L

2

m
em

_s
id

e
cp

u_
sid

e

Fi
gu

re
A.

3:
Si

m
O

bj
ec

t
tre

e
an

d
po

rt:
ge

m
5

ca
n

au
to

m
at

ica
lly

ge
ne

ra
te

a
di

ag
ra

m
to

re
pr

es
en

t
m

em
or

y
bu

s
ar

ch
ite

ct
ur

e.
Si

m
O

bj
ec

t
Tr

ee
is

re
pr

es
en

te
d

by
bo

x
in

clu
sio

n
(c

hi
ld

re
n

ar
e

in
clu

de
d

in
pa

re
nt

s)
wh

ile
po

rt
co

nn
ec

tio
ns

ar
e

re
pr

es
en

te
d

as
ar

ro
ws

(fr
om

cp
u_

si
de

to
me

m_
si

de
).

Th
is

on
e

re
pr

es
en

ts
an

AR
M

Ve
rsa

til
e

Ex
pr

es
sp

lat
fo

rm
Si

m
O

bj
ec

t.

115

A.2 About PyDevices

sim_object.cc
namespace py = pybind11;
SimObject::PyObj& SimObject::pyObj(){

if(_pyObj!=nullptr)
return *_pyObj;

py::module_ m5 = py::module_::import("m5.object.SimObject");
py::object obj=m5.attr("instanceDict").attr("__getitem__")(name());
_pyObj=new py::object(std::move(obj));
return *_pyObj;
panic("_pyObj is not defined");

}

Figure A.4: How to get the Python object associated with the CcObject using pybind11
py_pio.cc

namespace py = pybind11;
py::object& obj=pyObj();
py::object f=obj.attr("read");
PyData vec{std::vector<uint8_t>(pkt->getPtr<char>(),pkt->getPtr<char>()+pkt->getSize())};
//From Python read(self,daddr,data,secure)
bool ret=f(daddr,vec,pkt->isSecure()).cast<bool>();

Figure A.5: Calling a Python method using A.4

A.3 About ARM

ASM msr.S

MRS x0, VBAR_EL1 // moving the content of VBAR_EL1 to x0
MSR VBAR_EL1, x0 // moving the content of x0 to VBAR_EL1

Figure A.6: Accessing ARM system registers with MSR and MRS .

116

CCI500
(1M)

WDT2
(64K)

FF38_0000

PMUTIMER0~1
(64K)

GPIO0
(64K)

FF74_0000

CRU
(64K)

FF76_0000

TCPD0
(64K)

TYPEC_PHY0
(256K)

WDT1
(32K)

FF78_8000

FF7C_0000

FF84_8000

FF85_0000

TIMER6~11(6ch)
(32K)

STMIER6~11(6ch)
(32K)

FF92_0000

GPIO3
(32K)

FF7A_0000

HDCPMMU
(64K)

HDMI
(128K)

FF94_0000

FF96_0000

DSI_HOST0
(32K)

FF97_0000

GPIO2
(32K)

FF78_0000

GPU
(64K)

FF97_8000

FFB0_0000

ISP0
(64K)

VOP_BIG
(64K)

FF90_0000

FF91_0000

ISP1
(64K)

FF93_0000

0000_0000

I2C2
(64K)

FF10_0000

FF18_0000

I2C6
(64K)

CRYPTO0
(32K)

DDR
(4G-128M)

SAR-ADC
(64K)

FF11_0000

I2C1
(64K)

FF12_0000

FF13_0000

I2C3
(64K)

FF15_0000

I2C7
(64K)

Reserved
(64K)

FF16_0000

FF17_0000

I2C5
(64K)

FF14_0000

UART4
(64

K

)

Reserved
(640k)

GPIO1
(64K)

FF73_0000

FFA5_0000

FF9A_0000

FF77_0000

INTMEM0
(192K)

FF8C_0000

EFUSE1
(64K)

Service NoC
(192k)

FFFB_0000

FFFA_0000

SDMAC0
(64K)

FFFC_0000

STIMER0~5(6ch)
(32K)

FF86_8000

WDT0
(32K)

FF84_0000

FF86_0000

HDCP2.2
(32K)

FF98_8000

FF99_0000

DSI_HOST1
(32K)

FF96_8000

SDMAC1
(64K)

Reserved
(64KB)

BOOTROM/
INTMEM0

(64KB)

FFFE_0000

FFFF_0000

FFFF_FFFF

Reserved
(64K)

VOP_LIT
(64K)

FF8F_0000

FF37_0000

FF36_0000

GIC500
(2MB)

SPI3
(64K)

FF39_0000

Reserved
(192K)

FF6F_0000

FF72_0000

TYPEC_PHY1
(256K)

FF80_0000

eDP
(32K)

Reserved
(64K)

BOOTROM
(64KB)

FFFD_0000

FF9B_0000

FE00_0000

Reserved
(3MB)

F800_0000

PCIe
(96MB)

GMAC
(64K)

SDMMC
(64K)

USB3.0/2.0_OTG0
(1M)

FE30_0000

FE32_0000

FE80_0000

USB2.0_HOST1
(256K)

FE33_0000

SDIO
(64K)

FE31_0000

HSIC PHY
(64K)

FE38_0000

DEBUG
(4MB)

eMMC
(64K)

FE37_0000

FE40_0000

FE3C_0000
USB2.0_HOST0

(256K)

FE90_0000

USB3.0/2.0_OTG1
(1M)

FEA0_0000

MAILBOX1
(64K)

FF3A_0000

Reserved
(64K)

FF3B_0000

INTMEM1
(64K)

FF3D_0000

Reserved
(2M)

FEC0_0000

HSIC
(192K)

FE34_0000

TCPD1
(64K)

FF7B_0000

FFA8_0000

DDRC0
(16k)

FFA8_8000

DDRC1
(16k)

FFA9_0000

Service NoC
(448k)

FFA8_4000

Service NoC
(16k)

FFA8_C000

Service NoC
(16k)

I2C4
(64K)

FF3E_0000

I2C8
(64K)

FF3F_0000

Reserved
(192K)

FF42_0000

PWM(4CH)
(64K)

FF43_0000

Reserved
(1984K)

FF62_0000 FF85_8000
TIMER0~5(6ch)

(32K)

FF75_0000
Reserved

(64K)

DP
(1M)

FED0_0000

Reserved
(1M)

FEE0_0000

FF00_0000

Reserved
(1MB)

PMUCRU
(64K)

FFC0_0000

Reserved
(3712KB)

GPIO4
(32K)

FF79_0000

INTR_ARB0
(16K)

FF79_8000

FF3C_0000

I2C0
(64K)

GRF
(64K)

CRYPTO1
(32K)

FF8B_8000

INTR_ARB1
(16K)

FF79_C000

CIC
(64K)

DFI_MONITOR
(64K)

Reserved
(64K)

FF63_0000

FF64_0000

FF66_0000

VIDEO_DECODER
(64K)

IEP
(64K)

RGA
(64K)

FF67_0000

FF68_0000

FF69_0000

FF69_0000

EFUSE0
(64K)

FF6A_0000

DCF
(64K)

MAILBOX0
(64K)

Reserved
(64K)

FF6B_0000

FF6C_0000

VIDEO_ENCODER
(64K)

FF65_0000

FF6E_0000

DMAC1
(64K)

DMAC0
(64K)

FF6D_0000

FF87_0000

UART2
(64K)

Reserved
(320K)

Reserved
(640K)

FF1B_0000

TS-ADC
(64K)

FF1C_0000
UART3
(64K)

SPI0
(64K)

FF26_0000

FF31_0000

FF20_0000

FF27_0000

SPI1
(64K)

FF1D_0000

SPI2
(64K)

FF1E_0000

SPI4
(64K)

FF1F_0000

SPI5
(64K)

FF21_0000

PMUGRF
(64K)

FF32_0000
PMU
(64K)

Reserved
(64K)

FF35_0000

FF34_0000
PMUSGRF

(64K)
FF33_0000

FF1A_0000
UART1
(64K)

UART0
(64K)

FF19_0000

I2S0(8CH)
(64K)

FF88_0000

I2S1(8CH)
(64K)

FF89_0000

FF8B_0000

SPDIF
(64K)

I2S2(8CH)
(64K)

FF8A_0000

FF1C_0000 FF8B_0000

(a) RK3399 memory map

RK3399-T

1MB L2 Cache

Multi-Media Interface

External Memory Interface

DDR3/DDR3L/LPDDR3/LPDDR4

SD3.0/MMC4.5eMMC5.1 I/F

ConnectivitySystem Peripheral

SRAM

ROM

Secure eFuse

Cortex-A72 Dual-Core
(48K/32K L1 I/D Cache)

Embedded Memory

Multi-Media Processor

512KB L2 Cache

Cortex-A53 Quad-Core
(32K/32K L1 I/D Cache)

Dual-cluster Core

Non secure eFuse

CCI500

USB OTG0 3.0/2.0

USIC

I2S/PCM x 3

SPDIF(8ch)

Giga-Ethernet

SDIO 3.0

GPIO x 122

CoreSight

Hardware-based DDR frequency scaling

USB HOST0 2.0

Type-C x 2

UART x 5

SPI x 6

I2C x 9

USB HOST1 2.0

USB OTG1 3.0/2.0

Cortex-M0 Dual-Core

Dual Display Controller

HDMI2.0 3 Lane with HDCP2.2

DP1.2 4 Lane with HDCP2.2

Dual MIPI-DSI 4 Lane

eDP1.3 4 Lane

Dual MIPI-CSI 4 Lane

Mailbox x 2

PVTM x 5

DMAC x 2

Interrupt Controller

TS-ADC

SAR-ADC

Crypto x 2

Watchdog x 3

PMW(4ch)

Timer x 26

System register

PLL x 8

PMU

Clock & Reset

4K Video Decoder1080p Video Encoder

Dual pipe ISPImage Enhancement
Processor

JPEG DecoderJPEG Encoder

2D Graphics EngineMali-T860MP4 GPU
(256K L2 Cache)

(b) Global features of the RK3399-T

System peripheral
Abbr. Definition
CRU Clock & Reset Unit
PMUCRU Power Management Unit, Clock & Reset Unit

The CRU is an APB slave module that is designed for generating all of the internal and system
clocks, resets of chip. CRU generates system clock from PLL output clock or external clock
source, and generates system reset from external power-on-reset, watchdog timer reset or software reset.

GRF General Register Files
PMUGRF Power Management Unit General Register Files

The general register file will be used to do static set by software, which is composed of many registers
for system control. The GRF is divided into two sections:
GRF (used for general non-secure system) & PMUGRF (used for always-on system)
The function of general register file is: IOMUX control, Control the state of GPIO in power-down mode,
GPIO PAD pull down and pull up control, Used for common system control, & Used to record the system state

SGRF Secure General Register Files
PMUSGRF Power Management Unit Secure General Register Files

These are the General registers only accessible through Secure memory transactions (in EL3 or EL1S).
They control: DDR secure regions, peripheral security(block unsecure accessed to devices),
DMA controller security related flags, other security functions, and RESET_ADDR registers.

PMU Power Management Unit
It contains registers controlling power domains. With its registers, power domains can be switched on and off.
It is needed to implement PSCI using automatic power mode switch for CPU domains.

(c) System peripheral in the RK3399, they contains memory mapped registers (see on figure A.7(a)). Their register’s
names are prefixed with their abbreviation

Figure A.7: Extracts from the RK3399-T TRM manuals

117

A.4 About RK3399

A.4.1 Retro-engineering
UART2 serial port

[0.959803] EXT4-fs (mmcblk0p5): warning: mounting unchecked fs, running e2fsck is
recommended↪→

[0.966967] EXT4-fs (mmcblk0p5): re-mounted 31ec842f-def1-467a-9b3b-0f9746868327. Quota
mode: none.↪→

Starting syslogd: OK
Starting klogd: OK
Running sysctl: OK
Initializing random number generator: OK
Saving random seed: [7.201199] random: crng init done
OK
Set permissions on /dev/tee*: OK
Create/set permissions on /data/tee: OK
Starting tee-supplicant: Using device /dev/teepriv0.
D/TC:? 0 tee_ta_init_session_with_context:624 Re-open TA

7011a688-ddde-4053-a5a9-7b3c4ddf13bOK↪→
8
D/TC:? 0 tee_ta_close_session:529 csess 0x300dff30 id 1
D/TC:? 0 tee_ta_close_session:548 Destroy session
Starting network: OK
devmem 0xFF170000 32: 0x00000000
Launching m5 test function
is_m5: false
We are not in gem5
mounting /dev/mmcblk0p6 on /mnt
[7.449708] EXT4-fs (mmcblk0p6): warning: mounting unchecked fs, running e2fsck is

recommended↪→

[7.464393] EXT4-fs (mmcblk0p6): mounted filesystem 90411e9d-c3db-436b-a537-3c777d969169
without journal. Quota mode: none.↪→

[10.735720] platform ff320000.syscon:io-domains: deferred probe pending
[10.736327] platform ff770000.syscon:io-domains: deferred probe pending
[10.736915] platform cpufreq-dt: deferred probe pending
[10.737411] platform sdio-pwrseq: deferred probe pending
Welcome to Buildroot, type root or test to login
buildroot login: root
#

Figure A.8: Image of the shell Linux command line interface

118

Figure A.9: Ghidra interface when it is connected to gem5 featuring PyDevices: the integrated console displays messages from
the PyDevices indicating which register was accessed.

119

A.4.2 Covert-channel results

AutoLock covert channel on the RockPi4
pass[16]=0
Result from VicC@fffff7600240:

-startT=0x1a960e6, endT=0x1a972ae
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:211, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1805, av:112, max:236

pass[17]=1
Result from VicC@fffff7600240:

-startT=0x1aa6c76, endT=0x1aa814b
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:236, [10]:302, [11]:225, [12]:193, [13]:283, [14]:200, [15]:194,
-sum:2586, av:161, max:302

pass[18]=0
Result from VicC@fffff7600240:

-startT=0x1ab7b4f, endT=0x1ab8d16
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1804, av:112, max:236

pass[19]=1
Result from VicC@fffff7600240:

-startT=0x1ad0cf0, endT=0x1ad21bd
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:225, [10]:200, [11]:368, [12]:207, [13]:236, [14]:194, [15]:195,
-sum:2578, av:161, max:368

pass[20]=0
Result from VicC@fffff7600240:

-startT=0x1ae1c05, endT=0x1ae2dcc
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1804, av:112, max:236

pass[21]=0
Result from VicC@fffff7600240:

-startT=0x1af2590, endT=0x1af374d
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:211, [11]:97, [12]:225, [13]:97, [14]:97, [15]:97,
-sum:1794, av:112, max:225

pass[22]=1
Result from VicC@fffff7600240:

-startT=0x1b031d2, endT=0x1b04609
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:223, [10]:200, [11]:236, [12]:193, [13]:236, [14]:194, [15]:193,
-sum:2428, av:151, max:236

pass[23]=1
Result from VicC@fffff7600240:

-startT=0x1b1431f, endT=0x1b1579b
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:188,
-[8]:97, [9]:237, [10]:212, [11]:236, [12]:193, [13]:254, [14]:194, [15]:207,
-sum:2497, av:156, max:254

pass[24]=0
Result from VicC@fffff7600240:

-startT=0x1b25600, endT=0x1b267bc
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:225, [13]:97, [14]:97, [15]:97,
-sum:1793, av:112, max:225

pass[25]=1
Result from VicC@fffff7600240:

-startT=0x1b3624a, endT=0x1b376d8
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:188,
-[8]:97, [9]:225, [10]:279, [11]:225, [12]:200, [13]:236, [14]:193, [15]:193,
-sum:2515, av:157, max:279

pass[26]=1
Result from VicC@fffff7600240:

-startT=0x1b47298, endT=0x1b4873a
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:180,
-[8]:97, [9]:225, [10]:193, [11]:350, [12]:192, [13]:225, [14]:200, [15]:194,
-sum:2535, av:158, max:350

AutoLock covert channel on the simulated RK3399 in
gem5 using LRU+AutoLock

pass[16]=0
Result from VicC@fffff7a02100:

-startT=0xba3d05f, endT=0xba3e311
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:93, [11]:93, [12]:93, [13]:93, [14]:210, [15]:210,
-sum:1722, av:107, max:210

pass[17]=1
Result from VicC@fffff7a02100:

-startT=0xba9a27a, endT=0xba9b7ea
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:209, [9]:210, [10]:210, [11]:210, [12]:210, [13]:210, [14]:211, [15]:210,
-sum:2424, av:151, max:211

pass[18]=0
Result from VicC@fffff7a02100:

-startT=0xbaf595e, endT=0xbaf6c11
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:93, [11]:93, [12]:93, [13]:93, [14]:210, [15]:211,
-sum:1723, av:107, max:211

pass[19]=1
Result from VicC@fffff7a02100:

-startT=0xbb53c03, endT=0xbb55174
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:210, [12]:210, [13]:210, [14]:211, [15]:210,
-sum:2425, av:151, max:211

pass[20]=0
Result from VicC@fffff7a02100:

-startT=0xbd0b11e, endT=0xbd0c3d0
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:93, [11]:93, [12]:93, [13]:93, [14]:210, [15]:210,
-sum:1722, av:107, max:210

pass[21]=0
Result from VicC@fffff7a02100:

-startT=0xbd68889, endT=0xbd69b3b
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:93, [11]:93, [12]:93, [13]:93, [14]:210, [15]:210,
-sum:1722, av:107, max:210

pass[22]=1
Result from VicC@fffff7a02100:

-startT=0xbdc6962, endT=0xbdc7ed4
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:211, [12]:210, [13]:210, [14]:211, [15]:210,
-sum:2426, av:151, max:211

pass[23]=1
Result from VicC@fffff7a02100:

-startT=0xbe25a51, endT=0xbe26fc3
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:210, [12]:211, [13]:210, [14]:210, [15]:211,
-sum:2426, av:151, max:211

pass[24]=0
Result from VicC@fffff7a02100:

-startT=0xbe83fbc, endT=0xbe8526e
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:93, [11]:93, [12]:93, [13]:93, [14]:210, [15]:210,
-sum:1722, av:107, max:210

pass[25]=1
Result from VicC@fffff7a02100:

-startT=0xbee16f2, endT=0xbee2c64
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:210, [12]:211, [13]:210, [14]:210, [15]:211,
-sum:2426, av:151, max:211

pass[26]=1
Result from VicC@fffff7a02100:

-startT=0xbf3ff89, endT=0xbf414fb
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:211, [11]:210, [12]:210, [13]:211, [14]:210, [15]:210,
-sum:2426, av:151, max:211

Figure A.10: Comparison between results on the RockPi4 and in simulation after it was tuned: the sender occupies 8 ways to
send a 1 and 0 to send a 0

120

AutoLock covert channel on the RockPi4
pass[16]=0
Result from VicC@fffff7600240:

-startT=0x1a960e6, endT=0x1a972ae
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:211, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1805, av:112, max:236

pass[17]=1
Result from VicC@fffff7600240:

-startT=0x1aa6c76, endT=0x1aa814b
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:236, [10]:302, [11]:225, [12]:193, [13]:283, [14]:200, [15]:194,
-sum:2586, av:161, max:302

pass[18]=0
Result from VicC@fffff7600240:

-startT=0x1ab7b4f, endT=0x1ab8d16
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1804, av:112, max:236

pass[19]=1
Result from VicC@fffff7600240:

-startT=0x1ad0cf0, endT=0x1ad21bd
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:225, [10]:200, [11]:368, [12]:207, [13]:236, [14]:194, [15]:195,
-sum:2578, av:161, max:368

pass[20]=0
Result from VicC@fffff7600240:

-startT=0x1ae1c05, endT=0x1ae2dcc
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:236, [13]:97, [14]:97, [15]:97,
-sum:1804, av:112, max:236

pass[21]=0
Result from VicC@fffff7600240:

-startT=0x1af2590, endT=0x1af374d
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:211, [11]:97, [12]:225, [13]:97, [14]:97, [15]:97,
-sum:1794, av:112, max:225

pass[22]=1
Result from VicC@fffff7600240:

-startT=0x1b031d2, endT=0x1b04609
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:177,
-[8]:97, [9]:223, [10]:200, [11]:236, [12]:193, [13]:236, [14]:194, [15]:193,
-sum:2428, av:151, max:236

pass[23]=1
Result from VicC@fffff7600240:

-startT=0x1b1431f, endT=0x1b1579b
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:188,
-[8]:97, [9]:237, [10]:212, [11]:236, [12]:193, [13]:254, [14]:194, [15]:207,
-sum:2497, av:156, max:254

pass[24]=0
Result from VicC@fffff7600240:

-startT=0x1b25600, endT=0x1b267bc
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:97,
-[8]:97, [9]:97, [10]:210, [11]:97, [12]:225, [13]:97, [14]:97, [15]:97,
-sum:1793, av:112, max:225

pass[25]=1
Result from VicC@fffff7600240:

-startT=0x1b3624a, endT=0x1b376d8
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:188,
-[8]:97, [9]:225, [10]:279, [11]:225, [12]:200, [13]:236, [14]:193, [15]:193,
-sum:2515, av:157, max:279

pass[26]=1
Result from VicC@fffff7600240:

-startT=0x1b47298, endT=0x1b4873a
-[0]:97, [1]:97, [2]:97, [3]:97, [4]:97, [5]:97, [6]:97, [7]:180,
-[8]:97, [9]:225, [10]:193, [11]:350, [12]:192, [13]:225, [14]:200, [15]:194,
-sum:2535, av:158, max:350

AutoLock covert channel on the simulated RK3399 in
gem5 using LRU+AutoLock

pass[16]=0
Result from VicC@fffff7a02100:

-startT=0xba474f0, endT=0xba487a3
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:211, [11]:210, [12]:93, [13]:93, [14]:93, [15]:93,
-sum:1723, av:107, max:211

pass[17]=1
Result from VicC@fffff7a02100:

-startT=0xbaa21bc, endT=0xbaa372f
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:211, [9]:210, [10]:211, [11]:210, [12]:210, [13]:211, [14]:210, [15]:210,
-sum:2427, av:151, max:211

pass[18]=0
Result from VicC@fffff7a02100:

-startT=0xbb007a7, endT=0xbb01a5a
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:210, [11]:211, [12]:93, [13]:93, [14]:93, [15]:93,
-sum:1723, av:107, max:211

pass[19]=1
Result from VicC@fffff7a02100:

-startT=0xbb5ea1e, endT=0xbb5ff90
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:211, [11]:210, [12]:210, [13]:211, [14]:210, [15]:210,
-sum:2426, av:151, max:211

pass[20]=0
Result from VicC@fffff7a02100:

-startT=0xbd125d9, endT=0xbd1388d
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:211, [11]:211, [12]:93, [13]:93, [14]:93, [15]:93,
-sum:1724, av:107, max:211

pass[21]=0
Result from VicC@fffff7a02100:

-startT=0xbd7032e, endT=0xbd715e0
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:210, [11]:210, [12]:93, [13]:93, [14]:93, [15]:93,
-sum:1722, av:107, max:210

pass[22]=1
Result from VicC@fffff7a02100:

-startT=0xbdce986, endT=0xbdcfef8
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:210, [12]:211, [13]:210, [14]:210, [15]:211,
-sum:2426, av:151, max:211

pass[23]=1
Result from VicC@fffff7a02100:

-startT=0xbe2d929, endT=0xbe2ee9c
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:211, [10]:210, [11]:210, [12]:211, [13]:210, [14]:211, [15]:210,
-sum:2427, av:151, max:211

pass[24]=0
Result from VicC@fffff7a02100:

-startT=0xbe89004, endT=0xbe8a2b6
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:93, [9]:93, [10]:210, [11]:210, [12]:93, [13]:93, [14]:93, [15]:93,
-sum:1722, av:107, max:210

pass[25]=1
Result from VicC@fffff7a02100:

-startT=0xbee6e00, endT=0xbee8372
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:210, [9]:210, [10]:210, [11]:210, [12]:211, [13]:210, [14]:210, [15]:211,
-sum:2426, av:151, max:211

pass[26]=1
Result from VicC@fffff7a02100:

-startT=0xbf45d6d, endT=0xbf472e0
-[0]:93, [1]:93, [2]:93, [3]:93, [4]:93, [5]:93, [6]:93, [7]:93,
-[8]:211, [9]:210, [10]:211, [11]:210, [12]:210, [13]:211, [14]:210, [15]:210,
-sum:2427, av:151, max:211

Figure A.11: Comparison between results on the RockPi4 and in simulation after it was tuned using gem5 Tree-LRU imple-
mentation: the sender occupies 8 ways to send a 1 and 0 to send a 0

121

List of Figures
1.1 Overview of Trusted Execution Environment typical use cases. 9
1.2 Scope of the Archisec project . 11
1.3 Overview of the Archisec platform, instrumentation tools, and simulation capabilities 11

2.1 RTL simulator: when input is updated, all the logical gates that depend on it are computed, w.r.t clock-
edge sensibility. Intermediate signal are stored for future computation, as any signal update is generally
considered atomic. 14

2.2 Behavioral simulator: component with different model types, exchange messages. 14
2.3 Emulator: an emulator only reproduces the functional effect of the ISA and system components. Aspects

of systems that are platform dependant (performances, randomness, etc.) are not reproduced 15
2.4 Simplified representation of gem5 event queue (gem5 only use the queue 0) 17
2.5 Image of the tree of SimObject and Params that is created by config files in gem5 18
2.6 Typical config file for gem5 written in Python. 18
2.7 Overview of CPU models in gem5. They represent typical CPU architecture. Their pipelines tick following

a clock which is modeled using regular events . 19
2.8 Atomic model: two memory transactions through ports between SimObjects1 and SimObjects2. A SimOb-

jects1 event is processed, which requires sending a packet to SimObjects2. 20
2.9 Timing model: two memory transactions through ports between SimObjects1 and SimObjects2, the second

one get back-pressured. 21
2.10 methodology comparison between article; Ours is (C) . 23
2.11 Execution privilege: using MMU isolation, multiple levels of application can run on a single system. . . . 24
2.12 Embedded attack scenarios: An attacker tries to attack a program running in an embedded system (V).

It can run an attack program (A) on the target or use a physical medium (black arrows) to attack the
victim (V) in order to bypass its interfaces (puzzle pieces around the victim). These constitute the victim
attack surface. 24

2.13 Execution privileges: Different execution privileges control access to system elements. Each creates iso-
lation layers using hardware mechanisms. The tenant software in higher privilege levels can grant access
to their elements using an API that restricts what interactions are allowed. An attacker, wanting to have
unrestricted access to a system element, will try to bypass hardware mechanisms or find vulnerabilities in
the access API. 25

2.14 Representation of a side-channel: an attack program and a victim program use the same shared resource. 27
2.15 Comparison between Flush+Reload and Prime+Probe: We can see they exploit different cache set-up . . 28
2.16 A weak implementation can leak information in the cache through a variety of means: data access,

instruction fetch, MMU table walk, or hardware prefetcher. 28
2.18 Typical Spectre Gadget . 30
2.17 Spectre attack representation . 30
2.19 RowHammer effect and DRAM structure . 31

3.1 Structure of Chapter 3: white circles represent the key contributions for each of the subject axis. 34
3.2 Minimalist SimObject definition and declaration in gem5 . 36
3.4 Sequence of executed instructions when the DebugFlag:Exec is set . 37
3.3 Enabling and disabling DebugFlag from config files . 37
3.6 Internal logic for gem5 to restore a checkpoint from ckpt_dir. 38
3.5 Extract from a config file which handles the simulation loop. It follows the building and configuration of

the system model and its instantiation. 38
3.7 How to use cxxmethod decorator to implement Python callable C++ methods 39
3.8 Example of GDB monitor call handling in gem5 config files . 39
3.9 A GDB-stub in a SoC or in gem5 connected to GDB . 39
3.10 GDB monitor message reception and handling in gem5 config files. 40
3.11 GDB monitor command: sending and receiving message during the simulation. 40
3.12 Simulation scripting: we use GDB to modified simulation parameters on-the-flight, the binary is never

modified. 40
3.13 Typical use case for the interactive debugging session between GDB and gem5 41

122

3.14 AutoLock : This cache replacement policy prevents eviction of L2 lines that are still present in a cache
L1. This lock is set up when a cache L1 receive a miss response from the L2. This lock on the L2 line is
opened when all the L1 lines that lock a L2 line are evicted. 43

3.15 Representation of how a Flush+Reload works. The attacker knows that the victim took the branch because
it detected the victim loaded the magenta gear. 44

3.16 Our prime set uses a double-linked list. Its elements are allocated in such a way that they have all the
same cache index (here is 0x38). If enough are allocated, they fill out all the possible ways for their index. 45

3.17 With the structure on figure 3.16, we can probe the set while traversing it. Timing measures for a prime
entry are directly stored in it . 45

3.18 How direction of probing control self-eviction: after a victim accessed two lines, different probe directions
produce different results. 46

3.19 Comparison of the timing result for the cache timing attack between a Raspberry Pi 3B+(left) and
gem5 (right) . 46

3.20 Result obtained with a baremetal attack (on the left) and a fast treatment to make result more visible on
the right . 47

3.21 Success of the attack when multiple CPUs are generating noise . 48
3.22 ARMv8-A Exception Levels . 48
3.23 TrustZone memory model: secure labeling is propagated along the memory hierarchy. 49
3.24 explanation of the AxPROT signal from the AXI4 norm [ARM21a] . 49
3.25 Representation of the trusted boot process for Vexpress platforms . 50
3.26 Node to add to DTB which declare SMC as a way to access OP-TEE . 50
3.27 OP-TEE programming model: how TA communicates with Linux client applications 51
3.28 Structure of a Trusted Application (TA): User object files and libraries are bundled in a signed container.

It provides the element to verify its content and load it in OP-TEE. 51
3.29 Opening a TA session and launching command from Linux . 53
3.30 xtest allows to install TA at run time. /mnt/ta is a folder containing the TA to install 54
3.31 Implementation of the sec-store TA in OP-TEE: It tests reading and writing from secure storage. It thus

uses the tee-supplicant to access the REE filesystem without exposing the encryption key. 55
3.32 Implementation of the sec-sign TA in OP-TEE: the TA prepares a buffer for the client. In this buffer, the

client loads a message, which is then sent back to the TA to be signed using a RSA key never exposed to
the client. 56

3.33 gem5 platform configuration to emulate 3rd Party IPs. 56
3.34 Different timing modes for gem5 taken from [Low24b]. The atomic mode closely resembles the SystemC

Loosely Timed(LT), and the timing mode resembles the approximately timed(AT). 57
3.35 GIC architecture in gem5 and ARMv8-A: each CPU as an interface which communicates the GICv3.

There are only two types of interrupts FIQ and IRQ. The GIC distributes interrupts to the interface and
controls to which CPU an interrupt will be routed and what type of CPU interrupts will be used. 59

3.36 Gadget to measure access time: using memory barriers (DSB SY) and instruction barriers ISB ,
the execution time of a single LDR instruction is measured. 60

4.1 Illustration of the VictimScan component in TEE-Time. Using simulator access to cache dump, Victim-
Scan evaluates vulnerabilities using the source code. 62

4.2 Cross-core Prime+Probe attacks: an attack running in CPU1 is trying to attack the TEE in CPU0. 63
4.3 An attacker uses a cache timing attack to determine which branch a victim takes. To do that, it has to

choose the right line to detect only an operation that happens in that branch. 64
4.4 Overview of TEE-Time: With this process we use our simulation platform (gem5+GDB) to craft an

attack that we can test on real hardware. 65
4.5 Prime+Probe directions: above are Prime+Probe forward and below are Prime+Probe reverse. The victim

uses cache occupancy, indicated as colored rectangles, to send a stair signal clearly visible on pp-reverse. . 68
4.6 m5 env : our new m5 instruction to load environment variable at runtime 69
4.7 Structure of VictimScan: running in GDB ; VictimScan programs breakpoint on KEP in gem5. From

these breakpoints, VictimScan extracts raw cache data which are formatted using VictimScan policy.
These formatted dumps, now made of a set of KDS, can be presented to the ranking algorithm. These
KDS are processed to produce the VictimScan report . 70

4.8 Classifying cache data on whether the victim function takes a branch using Punctual Key Execution Point 71

123

4.9 Classifying cache data on whether a victim function takes branch when the leaking computation happens
after the branch. 72

4.10 Classifying cache data on whether a victim takes branch when the leaking computation happens before
the branch was taken . 72

4.11 Typical report from VictimScan, showing the KEPs classes, and the associated KDS with their scores; ranked in
decreasing order. Each KDS also specifies the corresponding address in the binary, e.g. instructions from .text
section, or variables in the heap. 74

4.12 Cache timing traces for the simple example, the bottom figure being the top zoomed. The X-axis is the time.
The moments when execution reaches a KEP are indicated with vertical lines. Prime set timings are shown with
colored dots, with their Y-value corresponding to the sum access time for the prime set (

∑
T). 75

4.13 Zoomed in timing traces plotted relatively to KEPs. The attack traces for 0x210 sense a signal for both ♥ and
♠. The attack traces for 0x268 sense a signal for only ♠. The black vertical lines mark the moment the KEP was
triggered and the timings are plotted relative to this moment. 76

4.14 Algorithm and implementation from mbedTLS for the sliding window exponentiation algorithm from
[MOV01]. 77

4.15 S are square operation and M are multiply operation . 77
4.16 These are the Key Execution Points, we use to scan mbedtls_mpi_exp_mod . They are all scoped key

execution points defined by the highlighted sections. 78
4.17 TEE-Time report generated for mbedTLS and the KEP specified in the code extract. UKN implies that the cache

line belongs to code outside GDB knowledge (e.g Linux kernel) . 79
4.18 Cache timing traces for the mbedTLS attack, the bottom figure being the top zoomed. The X-axis is the time. The

moments when execution reaches a KEP, are indicated with ticks. Prime+Probe timings are shown with colored
dots, with their Y-value corresponding to the sum access time for the prime set (

∑
T). 79

4.19 Zoomed in timing traces plotted relatively to KEPs. The black vertical lines mark the moment a KEP was
triggered. Timings are plotted relative to this moment. 80

5.1 Image of the RockPi4 C plus. It has GPIO pins like the Raspberry Pi, which can be used to access a UART. 82
5.2 CPU architecture and cache hierarchy . 83
5.3 System bus structure of the RK3399, it feature two interconnects which links CPU with all the memories

and devices. 83
5.4 U-Boot assembled RK3399 boot process. While the BootROM is embedded in the SoC, all bootloader

stages are included in the SD card. 84
5.5 To support Versatile express platforms (Vexpress), gem5 ARM ISA implementation contains specific de-

vices that behave like memory map IO. They can be connected to the system bus using ports in config
files. However, to implement the FVPBasePwrCtrl , gem5 integrates some of its functions directly into
more general ARM ISA implementation in C++. 85

5.6 Representation of execution flow between C++ gem5 code and Python config file code for PyPio. 86
5.7 Typical PyDevices implementation. A system can have multiple instances of the same devices with different

settings. 87
5.8 Extract from the RK3399 TRM[Roc21]: register description for the efuse 87
5.9 Covert channel primitives used to detect AutoLock on our RockPi4 and our rockchip platforms. This figure

shows how this signal primitives works when AutoLock is active. CPU1 sends a 1 by priming 8 entries of
its prime set. CPU0 checks if it receives a bit using Prime+Probe (with its own prime set). 90

5.10 How Prime+Probe interacts with AutoLock : above are Prime+Probe forward and below are Prime+Probe
reverse. On the left, without AutoLock, and on the right, with AutoLock. The victim uses cache occupancy,
indicated as colored rectangles, to send a stair signal clearly visible on pp-reverse. 91

5.11 First VictimScan report for the sec-sign TA with KEPs from figure 4.16, using an improved KEP toolbox
implication and using the nhit_inclusive policy. 94

5.12 Zoomed in timing traces plotted relatively to KEPs. Two sets (cache set with index 0x38 and 0x346) are
used in order to distinguish between the two KEPs ([S] and [M]). However, we see that we cannot detect
[S]. 95

5.13 VictimScan report for the sec-sign TA with KEPs from figure 4.14(b) redefined, using the nhit_inclusive
policy. 95

5.14 We can measure the time between peaks in 0x38 or 0x346. With this measurement, by comparing them
with the minimum difference between two of these peaks, we can design a system of units to reconstruct
the series of [S]and [M]. 96

5.15 Comparison between simulation (left) and real hardware (right): centered around a similar pattern. . . . 96

124

5.16 We compared traces between (from top to bottom): gem5 simulation using LRU, gem5 simulation using
Tree-LRU and the real platform. We can see that there is the same behavior during which a prime set
gets "stuck" in an occupied state between simulated Tree-LRU and the real platform. 97

5.17 Accumulation of 50 real traces. These traces took 4 minutes to complete, with most of the time spent
exporting data to the SD card. They have been fused and filtered with a gaussian filter. We used a peak
detection algorithm to find the peaks associated with [M], marked with stars. 97

5.18 Attack on the real platform against the sec-sign TA: 1 and 0 are bits from the private key that we identified
using the [S][M]-series; the X corresponds to bits that we do not know, and that can be either a 1 or a 0. 98

6.1 Overview of the methodology deployed in the thesis: Starting from a real platform, we extract a workload
that uses a TEE to run it on gem5. Using Ghidra and GDB, we are able to improve the config files in
gem5 to boot and execute the workload. Now that we can simulate the workload, we use automatized
script in GDB to study it and find vulnerabilities. We can leverage these vulnerabilities in attacks, which
we evaluate in simulation. Finally, these attacks can be deployed on the real platform to conventionally
verify the vulnerabilities. 102

A.1 gem5 event scheduling in CcObject implementation. 114
A.2 Integrating a new SimObject in gem5 build system: Scons . 114
A.3 SimObject tree and port: gem5 can automatically generate a diagram to represent memory bus archi-

tecture. SimObject Tree is represented by box inclusion (children are included in parents) while port
connections are represented as arrows (from cpu_side to mem_side). This one represents an
ARM Versatile Express platform SimObject. 115

A.4 How to get the Python object associated with the CcObject using pybind11 116
A.5 Calling a Python method using A.4 . 116
A.6 Accessing ARM system registers with MSR and MRS . 116
A.7 Extracts from the RK3399-T TRM manuals . 117
A.8 Image of the shell Linux command line interface . 118
A.9 Ghidra interface when it is connected to gem5 featuring PyDevices: the integrated console displays mes-

sages from the PyDevices indicating which register was accessed. 119
A.10 Comparison between results on the RockPi4 and in simulation after it was tuned: the sender occupies 8

ways to send a 1 and 0 to send a 0 . 120
A.11 Comparison between results on the RockPi4 and in simulation after it was tuned using gem5 Tree-LRU

implementation: the sender occupies 8 ways to send a 1 and 0 to send a 0 121

125

List of Tables
2.1 Comparison between simulators and the real platform as a reference. We can see that gem5 is a suitable

tool for our use case. 16

3.1 Simulation Configuration and Runtime. Times measured by gem5. No GDB acceleration is used in these runs.
We run our examples on a Intel(R) Xeon(R) Gold 6128 with 256GB of DDR4 54

4.1 Correspondence between VictimScan policy and Prime+Probe . 69
4.2 Simulation runtime. Times measured by gem5. When using GDB, the acceleration methodology is used. We run

our examples on a Intel(R) Xeon(R) Gold 6128 with 256GB of DDR4. 76

5.1 RK3399-T: CPU and cache information gathered from ARM and Rockchip TRM documentation. 83
5.2 Execution time for Rockchip platform comparing the simulated gem5 model and the real platform. 96
5.3 Example of D reconstruction using [S][M]-series. 98

A.1 List of all the m5 instructions. "Exit with" indicates that the m5.simulate() function returns with
an event that contains a given message and/or code. Checkpointing always uses m5_checkpoint
handling which is exiting the simulation with the m5_checkpoint message. The m5_env instruction is a
new m5 instruction, we added in our gem5 build. 114

126

Titre: Modélisation des micro-architectures pour la sécurité avec la plate-forme gem5

Mots clés: Cybersécurité, Système-sur-Puce (SoC), Attaques Micro-Architecturales, Environnement d’exécution de
confiance (TEE), Retro-ingénierie, Platforme virtuelle

Résumé: Les systèmes embarqués sont la cible d’une
grande variété d’attaques, tant au niveau logiciel que
matériel. Parmi celles-ci, les attaques micro-architecturales
sont particulièrement difficiles à étudier. En effet, en
tirant parti des comportements spécifiques des systèmes sur
puce (System-on-Chip (SoC)), ces attaques permettent à
un attaquant de prendre le contrôle d’un système ou de
ressources protégées, en contournant les mécanismes d’iso-
lation entre processus. Ces attaques peuvent cibler toutes
les parties d’un SoC : CPU, caches, mémoire, accélérateurs
(FPGA, GPU,), interfaces, etc. L’environnement d’exécu-
tion de confiance (TEE), au cur de la sécurité des SoC
modernes, impliqué dans la sécurisation d’applications ban-
caire, est lui aussi la cible d’attaques micro-architecturales.
Dans cet thèse, j’adopte une approche basée la simula-
tion pour la sécurité: au travers d’une plate-forme virtuelle
basée sur gem5, je reproduis et étudie les attaques micro-
architecturales contre les SoCs. Pour ce faire, j’ai amélioré
le support de gem5 pour les TEEs, rendant possible l’utilisa-
tion d’un TEE open-source (OP-TEE) et le débogueur GDB

présent dans gem5 pour permettre ainsi l’étude des scénar-
ios d’attaque, tirant partie du simulateur. Avec cette inter-
face, j’ai créé TEE-Time, un outil qui analyse les faiblesses
cache-timing. Grâce à TEE-Time, j’ai trouvé des vulnéra-
bilités dans des implémentations cryptographiques standard
de RSA dans OP-TEE. Je les ais validées par des attaques
cache-timing simulées avec gem5. Pour étendre ces at-
taques à un système réel, j’ai développé une plate-forme
virtuelle reproduisant la carte RockPi4. Pour simuler son
SoC RK3399 designé par Rockchip, j’ai développé les Py-
Devices des outils de prototypage-rapide utilisant l’interface
Python de gem5. A travers la simulation d’attaque cache,
j’ai découvert que le RK3399 utilisait AutoLock, un proto-
cole de cache spécifique à ARM. En incorporant AutoLock
dans gem5, j’ai simulé un scénario d’attaque ciblant le RSA
d’OP-TEE sur le RK3399. En exécutant cette même at-
taque sans aucune modification sur un RockPi4, j’ai réussi
à faire fuir en moyenne ∼30% des bits de la clé RSA, faisant
ainsi le lien entre attaques cache et leur exploitation dans
un vrai système.

Title: Modeling of micro-architecture for security with gem5

Keywords: Cybersecurity, System-On-Chip, Micro-Architectural Attacks, Trusted Execution Environnement, Retro-
engineering, Virtual Platform

Abstract: Embedded systems are the target of a wide va-
riety of attacks, both software and hardware level. Microar-
chitectural attacks are particularly difficult to study. By
taking advantage of the specific behaviors of systems-on-a-
chip, these attacks enable an attacker to take control of a
system or protected resources, bypassing process isolation
mechanisms. These attacks can target all element in an
SoC: CPU, caches, memory, accelerators (FPGA, GPU), in-
terfaces, etc. The Trusted Execution Environment (TEE),
key element of SoC security and involved in securing bank-
ing applications, is also the target of micro-architectural at-
tacks. In this thesis, I adopt a simulation-based approach to
security: through a virtual platform based on gem5, I repro-
duce and study micro-architectural attacks against TEEs.
To achieve this, I improved gem5’s support for TEEs, al-
lowing the use of an open-source TEE (OP-TEE) I also
augmented the GDB debugger present in gem5 to allow
the study of attack scenarios, leveraging the simulator en-

vironment. With this interface, I created TEE-Time, a tool
to analyze cache-timing weaknesses. Thanks to TEE-Time,
I found vulnerabilities in standard RSA implementations in
OP-TEE, I validated this vulnerabilities with cache timing
attacks simulated using my virtual platform. To further val-
idate these attacks on a real system, I developed a virtual
platform reproducing the RockPi4 board. To simulate the
Rockchip RK3399 SoC on the RockPi4, I developed PyDe-
vices fast-prototyping tools for system devices using gem5’s
Python interface. Through cache timing simulation, I dis-
covered that the RK3399 uses AutoLock, an ARM-specific
cache protocol. Compiling AutoLock into gem5, I ran my
attack scenario targeting OP-TEE’s RSA implementation
on the RK3399 simulation. By executing this same attack
without any modification on a RockPi4, I managed to leak
an average of 30% of the RSA key bits, thus making the
link between cache attacks and their exploitation in a real
system.

Institut Polytechnique de Paris
91120 Palaiseau, France

	abstract
	Résumé en français
	Acknowledgements
	Glossary
	Introduction
	Context
	Trusted Execution Environment
	Micro-architectural attacks
	Archisec Project

	Scope: The Archisec Virtual Platform
	Motivations
	Key contributions
	Thesis organization

	State of the art: security and simulation for embedded systems
	Introduction
	System-on-Chip simulation
	Simulators
	gem5: the SoC simulator
	Principle
	SimObjects: gem5 primitives
	Models advantages and limits
	Memory model

	System element modeling
	gem5 for security in literature

	Security in embedded systems
	Operating system security
	Attack scenarios
	Execution Privileges
	Trusted Execution Environment

	Micro-architectural attacks
	Side-channel attacks
	Cache timing attacks
	Higher-level cache attacks
	Static and dynamic cache analyzer
	Other side-channel attacks

	Transient execution attacks
	Fault injection attack
	Typical fault injections
	Hadware memory corruption: RowHammer

	Accelerator attacks
	Trusted Execution Environment attack in literature

	Conclusion

	Virtual platform on gem5 for ARMv8-A, TrustZone, and OP-TEE
	Introduction
	Platform and instrumentation with gem5
	Building a platform in gem5
	Writing a new config file
	Adding new SimObject

	Classical instrumentation on gem5
	DebugFlag
	m5 instructions
	CxxMethod

	Our improvement to GDB in gem5
	GDB monitor call
	Interactive debug with GDB

	ARMv8-A security on gem5
	aarch64 and its gem5 model
	aarch64 generalties
	gem5 ARM platform model
	ARM cache model and AutoLock

	Cache timing attack on aarch64
	Flush+Reload
	Prime+Probe
	Prime+Probe direction and self-eviction

	Our baremetal prospects
	Principle
	Results

	ARM TrustZone and OP-TEE on gem5
	TrustZone
	Platform and boot model
	OP-TEE software model
	Refining TrustZone implementation in gem5 to support OP-TEE
	Our typical OP-TEE scenarios
	Third Party IP simulation

	Conclusion
	Appendix
	GDB API in gem5-Python
	ARM system devices in gem5
	Timing gadget on ARM

	TEE-Time: Simulating to get security insights
	Introduction
	Key issues
	Cache timing attacks on Trusted Execution Environments
	Exploring attack complexity

	TEE-Time methodology
	Overview of TEE-Time process
	Key Detectable States
	VictimScan policy: 1hit
	VictimScan policy: nhit
	VictimScan policy: nhit_inclusive

	Ranking methodology
	Attack configuration and Key Detectable States

	TEE-Time implementation
	Instrumenting the attack scenario
	Dedicated GDB scripts
	VictimScan
	Attack Monitoring

	Example: demo cryptographic function
	Demo: VictimScan
	Demo: Attack Monitoring
	TEE-Time: Code coverage

	Attack against RSA signing in OP-TEE
	mbedTLS bignum exponentiation
	RSA: VictimScan
	RSA: Attack Monitoring

	Conclusion

	Rockchip-platform: An accurate simulation model for a real TEE hardware
	Introduction
	About the RockPi4 and its RK3399
	CPUs, caches, and bus topology
	RK3399 boot process
	Security features

	PyDevices: fast prototyping with gem5
	PyDevices: programming model
	Building a RockPi4 in gem5
	Retro engineering with PyDevices and Ghidra
	Bootstraping until the OS
	PyPowerState and Power Management Unit

	Rockchip-platform environment

	Using TEE-Time and Prime+Probe on the Rockchip-platform
	Detecting cache configuration
	AutoLock and Prime+Probe
	Pseudo-LRU: LRU implementation on real hardware
	Running an attack on the RK3399

	A bridge between theory and real-world: attacking OP-TEE on a RK3399
	Instrumented scenario
	Using TEE-Time to search for weaknesses
	Finding good KEPs against AutoLock
	Attack Monitoring and real hardware results

	Extracting a key from real traces

	Conclusion

	Conclusion and Perspectives
	Introduction
	Overview of contribution
	Contributing to gem5: Trusted Execution Environment and GDB
	Virtual Security Platform
	TEE-Time tools
	PyDevices: building the Rockchip-platform
	Attacks against hash signing RSA scenarios with TEE

	Future works
	Concluding remarks

	Bibliography
	My publications
	Other publications

	Appendix
	About gem5
	About PyDevices
	About ARM
	About RK3399
	Retro-engineering
	Covert-channel results

	List of Figures
	List of Tables

