
HAL Id: tel-04913709
https://theses.hal.science/tel-04913709v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MPC base sur des réseaux de neurones pour une
autoconsommation optimale d’énergie photovoltaïque

Irati Zapirain

To cite this version:
Irati Zapirain. MPC base sur des réseaux de neurones pour une autoconsommation optimale d’énergie
photovoltaïque. Physics [physics]. Université de Bordeaux; Universidad del País Vasco, 2024. English.
�NNT : 2024BORD0478�. �tel-04913709�

https://theses.hal.science/tel-04913709v1
https://hal.archives-ouvertes.fr


 

 

 

 

 

THÈSE EN COTUTELLE PRÉSENTÉE  

POUR OBTENIR LE GRADE DE 

 

DOCTEURE DE 

L’UNIVERSITÉ DE BORDEAUX 

ET DE L’UNIVERSITE UPV/EHU  

 
 ÉCOLE DOCTORALE  

DES SCIENCES PHYSIQUES ET DE L'INGENIEUR 

 
ÉCOLE DOCTORALE PARTENAIRE : 

SYSTEMS ENGINEERING AND AUTOMATION 

 
Automatique, productique, signal et image,  

Ingénierie cognitique 

 
 

Par Irati ZAPIRAIN 
 

NEURAL NETWORK BASED MODEL 
PREDICTIVE CONTROL  

FOR AN OPTIMAL PHOTOVOLTAIC 
ENERGY SELF-CONSUMPTION 

 
Sous la direction de : 

Octavian CUREA 
Haritza CAMBLONG 

 
 

Soutenue le 16/12/2024 
 

Membres du jury :  
Mme Matilde SANTOS PEÑA,  Professeure des universités, Universidad Complutense de Madrid,  Présidente  
Mme Maider SANTOS-MUGICA,  Directrice de recherche, Tecnalia Research & Innovation,   Examinatrice 
M Aitzol EZEIZA RAMOS,   Professeur associé, Universidad del País Vasco,    Examinateur 
M Tudor-Bogdan AIRIMITOAIE,  Professeur associé, Université de Bordeaux,    Examinateur 
Mme Najiba MRABET BELLAAJ,  Professeure des universités, University of Tunis El Manar,   Examinatrice 

 
Rapporteurs : 
M Mahamadou ABDOU TANKARI Professeur associé, Université Paris-Est Créteil 
M Ramon ZAMORA   Professeur associé, Auckland University of Technology



 



2 

 

 

 

 

 

 

 

 

 

Amama, aitite, amona eta aitonari,  
por haber sido el ejemplo del trabajo duro y el sacrificio.  

Os lo debo todo. 
 



 

3 
 

ACKNOWLEDGMENTS 

First of all, I would like to thank the UPV/EHU and the Université de Bordeaux for giving me the 

opportunity to do my Thesis in cotutelle. I have had the opportunity to learn first-hand about the 

excellent cooperation between the two universities. In this regard, thanks to Euskampus for all 

the work of organising events and workshops that has helped to materialise this cooperation. I 

would also like to thank the ESTIA Recherce group from ESTIA Institute of Technology for 

hosting me for long days and for giving me a hand whenever I needed it. 

 

I would like to thank Tavi for having supported me all these years and for having helped me 

whenever I found myself in dead ends. Zer esanik ez Haritzari, 4 urte hauen ondoren, ez baititut 

esker onekoak ez diren beste hitzik zuretzat. Eskerrik asko nirekin izandako pazientziagatik eta 

zure lanerako prestutasunagatik, asko ikasteaz gain, lankide eta bidelagun izateagatik. Millesker 

tesiaren etapa bakoitzean zehar zuen denbora eskeini didazuen guztioi, Juanjo, Unai, Zina, 

Tudor…. Eta nola ez eskertu Garaziri, momentu askotan nire penak entzun eta ulertu zezakeen 

bakarrenetakoari. Eskerrik asko hirugarren urte gogor hortan eguna alaitzen zenidaten 

laborategiko guztiei, bereziki Juleni, lanean eta kalean beti eguna pixka bat hobea egiteagatik.  

 

Millesker nire lagunei bizitza oso bat nire ondoan egoteagatik, itzultzen naizen bakoitzean etxean 

sentiarazteagatik. Eskerrak eman nahi dizkiot ere nire familiari, beti babestu eta ni zaintzearren. 

Bereziki nire ama, aita eta Pauleri, nigan sinesteagatik, beti aurrera begiratzen erakusteagatik eta 

gauzak zail jartzen direnean nirekin egoteagatik. Zuek gabe ezin izango nuen lan hau inola ere 

amaitu.  

 

Para terminar, quiero dar las gracias a todos esos leales siempre que me habéis enseñado a no 

rendirme, a perseverar y no conformarme con migajas. Eskerrik asko, bihotzez. 

 

  



4 

ABSTRACT 

Digitisation and decentralisation are two key concepts guiding and driving the energy transition, 

a fundamental shift towards decarbonising our energy systems. These trends are encouraging the 

transformation of energy systems into cleaner, more sustainable and efficient models. Among the 

various approaches emerging in this context, self-consumption (SC) of photovoltaic (PV) energy 

has gained significant attention as a viable strategy to enhance decentralised electricity generation 

and consumption. Self-consumption facilitates the integration of renewable energy sources 

(RES), contributing to the decarbonisation of the energy mix. 

A key enabler in this context are Energy Management Systems (EMS), which provide the 

necessary technological framework to effectively manage energy flows within a SC scheme. EMS 

can act on flexible loads (FLs) to adapt the consumption curve, so that it follows the PV 

production curve as closely as possible. 

The objective of this PhD Thesis is to develop a Model Predictive Control (MPC) type EMS 

applied to a real building within a SC framework. The optimisation-based EMS is designed to 

control the heating ventilation and air conditioning (HVAC) system of a building by adjusting 

the set point temperature in order to maximise the self-consumption rate (SCR), ensuring 

occupant thermal comfort and minimising computational cost. 

The scientific literature shows that integrating predictions into an EMS can improve its 

performance. In this work, the EMS forecasts, one day ahead, (1) the building's energy 

consumption without considering the consumption of the HVAC system, and (2) the PV 

production of the SC. To make both predictive models computationally less demanding, 

predictive models based on the nonlinear autoregressive with exogenous inputs (NARX) neural 

network have been proposed, a simple type of machine learning model that has been trained with 

a reduced dataset. 

Additionally, the MPC uses linear models of the building's thermal behaviour and heat pumps. 

The thermal model represents the building's thermal dynamics. A NARX model trained with 

excitation tests data has been designed to capture the nonlinearities of the HVAC system. The 

NARX has been linearised at operation points of interest to minimise the computational cost of 

the MPC. Finally, the linear NARX models have been compared to a linear model identified with 

the excitation tests data. 

This Thesis concludes by the development of the EMS optimisation problem and the validation 

of its performance by the increase in SCR achieved. 
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RÉSUMÉ 

La numérisation et la décentralisation sont deux concepts clés qui guident et stimulent la transition 

énergétique, une transition fondamentale pour atteindre la décarbonation du modèle énergétique. 

Ces tendances poussent à transformer les systèmes énergétiques vers des modèles moins 

polluants, plus durables et plus efficaces. Parmi les différentes approches qui émergent dans ce 

contexte, l'autoconsommation (AC) d'énergie photovoltaïque (PV) a gagné une attention 

significative comme stratégie viable pour améliorer la génération et la consommation 

décentralisées d'électricité. L'autoconsommation favorise l'intégration des sources d'énergie 

renouvelable (ENR), contribuant ainsi à la décarbonation du mix énergétique. 

Un élément facilitateur clé dans ce contexte est le Système de Gestion de l'Énergie (SGE), qui 

fournit le cadre technologique nécessaire pour gérer efficacement les flux d'énergie au sein d'un 

schéma d'AC. Les SGE peuvent agir sur des charges flexibles (CFs) pour adapter la courbe de 

consommation, de manière à suivre au mieux la courbe de la production PV. 

L'objectif de cette thèse de doctorat consiste à développer un SGE de type MPC (Contrôle 

Prédictif Basé sur Modèle) appliqué à un bâtiment réel dans le cadre de l'AC. Le SGE basé sur 

l'optimisation est conçu pour contrôler le système de climatisation d'un bâtiment en ajustant la 

température de consigne afin de maximiser le taux d'autoconsommation (TAC), en assurant le 

confort thermique des occupants et en minimisant le coût computationnel. 

La littérature scientifique montre que l'intégration de prédictions dans un SGE peut améliorer ses 

performances. Dans ce travail, le SGE effectue une prévision à un jour de : (1) la consommation 

énergétique du bâtiment sans prendre en considération la consommation du système de 

climatisation et (2) la production PV de l'ACC. Afin que les deux modèles prédictifs soient moins 

exigeants en termes de calcul, des modèles prédictifs basés sur le réseau neuronal nonlinear 

autorregressive with exogenous inputs (NARX) ont été proposés, un type de modèle 

d'apprentissage automatique simple qui a été entraîné avec un ensemble de données réduit. 

De plus, le MPC utilise des modèles linéaires du comportement thermique du bâtiment et des 

pompes à chaleur. Le modèle thermique représente la dynamique thermique du bâtiment. Un 

modèle NARX entraîné avec des données de tests d'excitation a été conçu afin de capturer les 

non-linéarités du système de climatisation. Le NARX a été linéarisé autour de points de 

fonctionnement pertinentes afin de minimiser le coût computationnel du MPC. Enfin, les modèles 

linéarisés du NARX ont été comparés à un modèle linéaire identifié avec les données des tests 

d'excitation. 
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Cette thèse se conclut avec le développement du problème d'optimisation du SGE et la validation 

de ses performances avec l'augmentation du TAC obtenue. 
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RESUMEN 

La digitalización y la descentralización son dos conceptos clave que guían e impulsan la transición 

energética, una transición fundamental para alcanzar la descarbonización del modelo energético. 

Estas tendencias están impulsando la transformación de los sistemas energéticos hacia modelos 

menos contaminantes, más sostenibles y más eficientes. Entre los diversos enfoques que surgen 

en este contexto, el autoconsumo (AC) de energía fotovoltaica (FV) ha ganado una atención 

significativa como una estrategia viable para mejorar la generación y el consumo descentralizados 

de electricidad. El autoconsumo ayuda a la integración de fuentes de energía renovable (FER), 

contribuyendo a la descarbonización del mix energético. 

Un facilitador clave en este contexto es el Sistemas de Gestión de la Energía (SGE), que 

proporciona el marco tecnológico necesario para gestionar eficazmente los flujos de energía 

dentro de un esquema de AC. Los SGE pueden actuar sobre cargas flexibles (CFs) para adaptar 

la curva de consumo, de manera que siga lo mejor posible la curva de la producción FV. 

El objetivo de esta tesis doctoral consiste en el desarrollo de un SGE de tipo MPC (Control 

Predictivo Basado en Modelo) aplicado a un edificio real en el marco del AC. El SGE basado en 

la optimización está diseñado para controlar el sistema de climatización de un edificio mediante 

el ajuste de la temperatura de consigna con el fin de maximizar la tasa de autoconsumo (TAC), 

asegurando el confort térmico de los ocupantes y minimizando el coste computacional.  

La literatura científica muestra que la integración de predicciones en un SGE puede mejorar su 

rendimiento. En este trabajo, el SGE realiza la previsión a un día de: (1) el consumo energético 

del edificio sin tomar en consideración el consumo del sistema de climatización y (2) la 

producción FV del AC. Con el objetivo de que ambos modelos predictivos sean 

computacionalmente menos exigentes, se han propuesto modelos predictivos basados en la red 

neuronal nonlinear autorregresive with expogenous inputs (NARX), un tipo de modelo de 

aprendizaje automático simple y que ha sido entrenado con un conjunto de datos reducido. 

Además, el MPC utiliza modelos lineales del comportamiento térmico del edificio y las bombas 

de calor. El modelo térmico representa la dinámica térmica del edificio. Se ha diseñado un modelo 

NARX entrenado con datos de tests de excitación con el objetivo de captar las no linealidades del 

sistema de climatización. El NARX ha sido linealizado en puntos de operación de interés con el 

objetivo de minimizar el coste computacional del MPC. Por último, los modelos lineales del 

NARX han sido comparados con un modelo lineal identificado con los datos de los tests de 

excitación. 
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Esta Tesis concluye con el desarrollo del problema de optimización del SGE y la validación de 

su rendimiento mediante el aumento de la TAC logrado. 
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LABURPENA 

Digitalizazioa eta deszentralizazioa energia-trantsizioa gidatzen eta bultzatzen duten funtsezko bi 

kontzeptu dira, energia-ereduaren deskarbonizazioa lortzeko funtsezko trantsizioa. Joera horiek 

energia-sistemak gutxiago kutsatzen duten, iraunkorragoak diren eta eraginkorragoak diren 

ereduetara eraldatzea bultzatzen ari dira. Testuinguru horretan sortzen diren hainbat ikuspegiren 

artean, energia fotovoltaikoaren (FV) autokontsumoak arreta handia lortu du elektrizitatearen 

sorkuntza eta kontsumo deszentralizatua hobetzeko estrategia bideragarri gisa. Autokontsumoak 

energia-iturri berriztagarriak integratzen laguntzen du, mix energetikoa deskarbonizatzen 

lagunduz. 

Testuinguru horretan, Energia Kudeatzeko Sistema (EKS) funtsezko bideratzailea da, 

autokontsumo kolektiboko eskema baten baitan energia-fluxuak eraginkortasunez kudeatzeko 

behar den esparru teknologikoa ematen baitu. EKSek karga malguetan eragin dezakete kontsumo-

kurba egokitzeko, FV ekoizpenaren kurbari ahalik eta ondoen jarraitzeko. 

Doktore-tesi honen helburua MPC (Ereduan Oinarritutako Kontrol Prediktibo) motako EKS bat 

garatzea da, autokontsumoaren esparruan, benetako eraikin bati aplikatuta. Optimizazioan 

oinarritutako EKSa eraikin baten klimatizazio-sistema kontrolatzeko diseinatuta dago, kontsigna-

tenperatura doituz, autokontsumo-tasa maximizatzeko, okupatzaileen erosotasun termikoa 

ziurtatuz eta kostu konputazionala minimizatuz. 

Literatura zientifikoak erakusten du iragarpenak EKS batean integratzeak errendimendua hobetu 

dezakeela. Lan horretan, EKSak egun baterako aurreikuspena egiten du: (1) eraikinaren energia-

kontsumoa klimatizazio-sistemaren kontsumoa kontuan hartu gabe, eta (2) Autokontsumoren FV 

ekoizpena. Bi eredu prediktiboak konputazionalki ez hain pisutsuak izateko helburuarekin, 

neurona-sarean oinarritutako eredu prediktiboak proposatu dira, nonlinear autoregresive with 

expogenous inputs (NARX) motakoak. Ikasketa automatiko eredu sinple bat da eta datu-multzo 

txiki batekin trebatua izan da. 

Gainera, MPCak eraikinaren joera termikoaren eta bero-ponpen eredu linealak erabiltzen ditu. 

Eredu termikoak eraikinaren dinamika termikoa adierazten du. Kitzikapen-testen datuekin 

entrenatutako NARX eredu bat diseinatu da, klimatizazio-sistemaren ez-linealtasunak 

atzemateko. NARXa intereseko funtzionamendu puntuen inguruan linealizatu da, MPCren kostu 

konputazionala minimizatzeko helburuarekin. Azkenik, NARXen eredu linealak eszitazio-testen 

datuekin identifikatutako eredu lineal batekin alderatu dira. 

Tesi honen amaieran, EKSren optimizazio-arazoa garatzen da eta haren errendimendua 

baliozkotzen da, lortutako autkontsumo tasaren gehikuntzaren bidez.  
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 Maximum power of new PV 
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1. CHAPTER 1 

1. INTRODUCTION 

 

This first chapter serves as an introduction to the work carried out and presented in the following 

pages. The problem has been introduced, first contextualising it in general terms and then 

presenting the possible proposed solutions.  

This chapter is divided into six parts. First, the problem statement is addressed, attempting to 

reflect on the reasons that have given rise to this Doctoral Thesis. 

Secondly, a general introduction of Energy Management Systems (EMSs) has been carried out in 

order to give context to the work developed in this first chapter.  

Thirdly, the most general aspects of the case study and the EMS proposal have been introduced.  

Finally, general objectives of the Thesis are provided together with a brief description of the 

chapters that form the entirety of the Thesis manuscript. 
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1.1 PROBLEM STATEMENT 

The energy model of a country is one of the most important pillars for its independence and 

stability. For some years now, the debate has transcended the political sphere to enter the social 

scope, largely due to the undeniable rise in social awareness regarding environmental issue, which 

has led to debates such as dependency on fossil energy sources or issues related to the need to 

reduce energy consumption and the emission of harmful gases. Alongside this, the unprecedented 

rise in electricity prices has had a strong influence on the social debate where the current energy 

model has been questioned. 

In this context, an energy transition is being promoted that leads on the gradual abandonment of 

fossil sources and is therefore going towards the decarbonisation of the energy model.  

Decarbonisation of the energy model involves starting to promote a hybrid model (better known 

as an energy mix) based on the combination of fossil and renewable sources, which will tend to 

dispense with fossil sources in favour of renewables and thus reduce greenhouse gas (GHG) 

emissions. The integration of Renewable Energies Sources (RES) into the grid is one of the key 

issues for this transition, as well as one of the greatest challenges we face as society. 

European institutions have established a strong legal framework for more ambitious renewable 

energy targets. Currently, the European Union (EU) is a leader in renewable energy in terms of 

its development and implementation. Nonetheless, to accelerate the transition to clean energy, it 

was decided to review the Renewable Energy Directive EU/2018/2001 [1] in 2023. The review 

(Directive (EU) 2023/2413 [2]) sets the target of a minimum 42.5% share of renewable energy at 

the EU level before 2030, with the possibility of extending to 45% aiming the total independence 

before the mentioned year to the Russian fossil fuels. Moreover, a robust political framework is 

established that promotes the electrification of certain sectors, setting new, more ambitious 

renewable targets for transport, heating and cooling, industry, and buildings. 

Furthermore, a higher share of renewables in the grid leads to changes in the traditional electricity 

grid. The need for a more flexible, intelligent, and efficient electrical grid makes it essential to 

carry out a transformation. 

The traditional centralised grid approach consists mainly of three elements: (a) large power 

generation plants from various sources (natural gas, nuclear, coal, oil, etc.), (b) transmission lines 

whose purpose is to transport electrical energy from the generating plants to the point of demand, 

and (c) points of consumption. In centralised grids, the energy flow is unidirectional, from 

generation to demand and transmission lines represent a significant point of energy loss. 
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The energy loss in transmission lines is proportional to their length, providing another reason to 

promote distributed generation (DG) or small-scale generation. There is generally a clear trend 

towards a less centralised and more distributed grid, where both the production and consumption 

of electrical energy occur in a more localised area (see Figure 1.1).  

 

Figure 1.1. Comparative diagram of the traditional network vs the network with distributed generation [3]. 

This trend has promoted, among other things, the emergence of elements such as Microgrids and 

Smart Buildings (SBs) that are perfectly adapted to this type of more decentralised grid. Both 

facilitate the integration of RES, and more specifically photovoltaic (PV) installations, mainly 

due to the possibility of installing them on building rooftops [4], thus increasing the injection ratio 

of energy from renewable sources into the grid.  

1.1.1 Microgrids  

Microgrid concept consists of a group of loads and power sources that operate as a single 

controllable system supplying both power and heat to their local area. This concept provides a 

new paradigm for defining the operation of distributed generation [5]. 

The remarkable advances in control strategies and the technological maturity that exists [6], make 

Microgrids a reality. However, there are several important aspects to highlight when 

implementing a Microgrid in a real application.  

Microgrid must be technically prepared so that at any given moment can be disconnected from 

the grid and operate isolated perfectly. From the point of view of the consumer who participates 

in the Microgrid, its ability to isolate itself is a clear advantage, since it will hardly see any 

consequences in the event of a failure or black out of the electricity grid. However, in order to be 

able to isolate itself, the Microgrid must be equipped with Energy Storage Systems (ESS), which 

require a higher economic investment, as well as making energy management tasks more difficult. 



INTRODUCTION 

26 

This is why Microgrids are nowadays justifiable and are mainly developed in areas where the 

electricity grid does not reach or does not work as it should. In places where the electricity grid 

reaches and operates normally, it is more common to find self-consumption (SC) or collective 

self-consumption (CSC), which do not require the need for isolation and can provide a high degree 

of independence from the electricity grid as well as facilitate the integration of RES.  

1.1.2 Smart Buildings (SBs) 

Buildings are among the main energy consumers, accounting for 43% of total consumption in the 

EU alone [7]. Additionally, the concept of energy efficiency within the building sector was 

introduced few years ago, more specifically in 1970 with the oil crisis [8]. For instance, in Spain, 

58% of buildings were constructed before the first regulation introducing minimum energy 

efficiency criteria [9]. In addition to the fact that energy efficiency has come to play a key role in 

the building construction process (thermal insulation of walls, new materials...), it has also led to 

a massive installation of smart meters in public, commercial, residential and industrial buildings 

[10]. Smart meters have significantly increased the understanding of the electrical and thermal 

behaviour of buildings. Since the adoption of Directive 2006/32/EC on energy services, which 

urged that customers be provided with meters that accurately reflect actual energy consumption 

and real-time usage information [11], Internet of Things (IoT) technology, along with the concept 

of Demand Response (DR) and Energy Management System (EMS), has been promoted by 

institutions [12]. 

In 2023, the new European Energy Efficiency Directive (Energy Efficiency Directive (EU) 

2023/1791 [13]) came into force, aiming to achieve the legislative proposals adopted by the 

European Commission in July 2021, which are part of the “Fit for 55” package and its 

complement, the REPowerEU plan in 2022. This new directive leads on more ambitious targets. 

Particularly regarding the cumulative final energy use savings and increased requirements for 

energy certificates for buildings. Both new and existing buildings will now need to achieve a 

better energy rating, needing massive renovations of low-efficiency buildings and the 

construction of new buildings where energy efficiency becomes an essential aspect. Furthermore, 

there is a clear promotion to transform buildings into nearly Zero Energy Buildings (nZEB), with 

a specific package of measures already underway to convert public buildings into nZEBs [14]. 

The concept of the Smart Building is promoted within this context. A SB is defined in various 

ways in the literature, one of which is: “buildings whose installations and systems (for example 

Heat, Ventilation and Air Condition (HVAC), lighting, electricity, security, telecommunications, 

multimedia, IT, access control, etc.) enable integrated and automated management and control, 

aimed at increasing energy efficiency, security, usability, and accessibility of the building” [15]. 
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One of the strengths of SBs is the ability to detect, interpret, communicate and respond efficiently 

to changing conditions [16]. 

The EU, always aiming to improve energy efficiency, reduce GHG emissions, and create more 

sustainable urban environments, has been promoting the SBs in recent years, providing both legal 

and technical frameworks for it. An example of EU policies related to the Smart Building concept 

includes the “Energy Efficiency Directive”. This Directive addresses the importance of installing 

smart technologies to improve the efficiency of integrated energy systems [13]. Also “Energy 

Performance of Buildings Directive (EPBD)”, which establishes the framework for building 

performance [17] along with “The revised Energy Efficiency Directive”[13]; and finally, the 

“Action plan to digitalize the energy system”, which highlights the important role of integrating 

renewable energy into the traditional grid [18]. 

The ultimate goal is to achieve nZEB. As defined by the UK Green Building Council (UKGBC) 

in the Net Zero Carbon Buildings Framework [19], these are “buildings that are highly energy-

efficient and powered by on-site and/or off-site renewable energy sources, compensating for any 

remaining carbon balance”. The International Energy Agency (IEA) report [20] outlines the 

timeline to achieve the goals set by the Paris Agreement. Among them, the IEA sets 2030 as the 

deadline for new buildings to be prepared to produce zero carbon emissions. Similarly, by 2040, 

50% of existing buildings should be adapted to be zero-energy emission buildings, with 2050 set 

as the deadline for 85% of buildings to be prepared to zero carbon emissions. 

1.1.3 Self-Consumption (SC) 

SC refers to the practice of using energy that is produced locally, often from renewable sources 

[21]. SC can be remarkable solutions for consumers in the face of more decentralised grid models. 

In fact, they are a more than appropriate systems to favour the integration of RES. In a SC, the 

aim is to adapt consumption to the generation of RES by, for example, acting on the flexible loads 

(FLs) of a building. FLs refer to electricity consuming elements, such as household appliances, 

heating and cooling systems, etc. that in order to shift the timing of electricity demand, their use 

is strategically modified. 

Concerning the advantages provided by SC to consumers, unlike in Microgrids, large ESS are not 

necessary, significantly reducing the value of the investment. Likewise, this approach reduces the 

dependence of consumers on the electrical grid, decreasing the energy exchanged with the grid 

[22], and potentially lowering the cost of electricity. This will be guaranteed as long as a high 

self-consumption rate (SCR) is achieved, calculated by Equation (1.1). 
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SCR =

∑𝐸𝐸𝑓𝑓𝑇𝑇𝐸𝐸𝑓𝑓𝐸𝐸𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
∑𝐸𝐸𝑓𝑓𝑇𝑇𝐸𝐸𝑓𝑓𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝

 (1.1) 

where 𝐸𝐸𝑓𝑓𝑇𝑇𝐸𝐸𝑓𝑓𝐸𝐸𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 is the energy consumed by all consumers and 𝐸𝐸𝑓𝑓𝑇𝑇𝐸𝐸𝑓𝑓𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 is the 

total energy produced by the generating installation(s). 

Furthermore, consumers can remain connected to the public distribution network, so no additional 

equipment is required to adopt this model. 

1.1.3.1 Collective self-consumption (CSC) 

The concept of CSC is a modality of SC gaining popularity. As explained by EDF, “CSC allows 

locally produced electricity to be shared between producers and consumers connected to the 

public distribution network within the same geographical area” [23]. Considering the application 

of an EMS, in either SC or CSC context, there would be no difference. The EMS in a CSC can 

perform energy management, for example, between the consumption of several buildings and the 

production of one or several PV plants. In a SC framework, the EMS manages the building's 

consumption where it is applied to be supplied by the energy produced. 

The participants of CSC define the rules for distributing the produced electricity among 

themselves, and consumers benefit from the locally assigned production (see Figure 1.2). This 

makes CSC an ideal model applicable to Energy Communities (ECs). Moreover, the additional 

energy supply needed to meet their requirements, together with the use of the distribution grid, is 

billed by their electricity provider [23]. 

 

Figure 1.2. Simplified scheme of a collective self-consumption [24]. 

As stated in [25], SC has limitations, especially regarding the potential investment that must be 

made in, for instance the installation of a PV production plant. If a group of consumers is 
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organised, for example in an EC, the amount invested in a PV installation could be in absolute 

terms higher, thus increasing the amount of energy produced and collectively self-consumed. 

Achieving a high SCR would translate into greater energy savings and a potentially significant 

reduction in the electricity bill for associated consumers. 

Regarding existing legislation in France and Spain on CSC, in France, the term CSC was 

introduced into legislation in 2016. CSC is defined in article L.315-2 of the Energy Code. It was 

in 2018 when Royal Decree 15/2018 recognised the right to CSC in Spain. In the same Royal 

Decree the right to be able to self-consume electricity without charges being applied was also 

introduced [26]. 

Concerning the differences between French and Spanish legislation, one major distinction is the 

type of generated energy distribution considered by the law. Today, in France, there are different 

distribution modalities: (a) fixed distribution, (b) predetermined dynamic distribution, and (c) 

personalised dynamic distribution. 

As the name suggests, fixed distribution means that the proportion of produced energy assigned 

to each consumer is fixed and does not change. Predetermined or default dynamic distribution is 

done in proportion to the actual consumption of each consumer. Personalised dynamic 

distribution is based on a formula where the user can customise the distribution. From the 

perspective of optimising energy distribution in a CSC, dynamic distribution offers greater 

advantages than fixed distribution. The distribution is calculated a posteriori every 30 minutes in 

France and every hour and a priori in Spain.  

However, in the Spanish case there was only a fixed distribution modality until 2023, so that the 

distribution among the participants was rigid. For the first time, the amendment to Annex I of 

Royal Decree 244/2019, through order TED/1247/2021 [27], includes a variable modality. This 

modality introduces the possibility of changing the value of the distribution coefficients several 

times a year, at intervals of no less than four months. This allows better use to be made of CSC 

initiatives. 

As noted by Instituto para la Diversificación y Ahorro de la Energía (IDAE) in the Self-

Consumption Guide published in June 2023 [28] which refers to the distribution coefficient 

corresponding to each associated consumer as β, the individualised net energy calculated hourly 

(𝐼𝐼𝐼𝐼𝐸𝐸ℎ,𝑖𝑖) is established by Equation (1.2).  

 𝐼𝐼𝐼𝐼𝐸𝐸ℎ,𝑖𝑖 = 𝛽𝛽ℎ,𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐸𝐸ℎ (1.2) 

being 𝐼𝐼𝐼𝐼𝐸𝐸ℎ,𝑖𝑖 the individualised net hourly energy generated for the hour h corresponding 

to consumer i. 𝛽𝛽ℎ,𝑖𝑖 is the distribution coefficient in the hour h for consumer i and 𝐼𝐼𝐼𝐼𝐸𝐸ℎ the total 

net hourly energy produced by the generator(s). 
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Currently, Enedis, the French energy distributor [29], also offers the possibility of a new 

distribution modality: a full personalised dynamic distribution, i.e., ungrouped [30]. This new 

modality aims to improve the simple personalised dynamic distribution (the third modality 

mentioned). Before the introduction of this new modality, dynamic distribution was defined by 

considering all PV generation involved in CSC as if it were from a single entity. With this fourth 

modality, it is possible to apply personalised dynamic distribution to each of the production 

installations within the CSC, regardless of whether the installations belong to one or more entities 

[31]. This will allow for even more precise optimisation of the distribution. 

Table 1.1 provides a summary of the advantages and disadvantages of the distribution modalities 

mentioned above. 

Table 1.1. Summary of the characteristics, advantages and disadvantages of the distribution methods established in 
France. 

Type Description Strengths Drawbacks 

Static 

Constant allocation 
coefficients at each 30-
minute time step, 
defined in advance by 
the PMO*. 

Ease use for PMOs*. 

 Non-optimal 
distribution of 
production. 

 High risk of 
surplus 
production. 

 

Dynamic by default 

Variable allocation 
coefficients at each 30-
minute time step, 
automatically 
calculated by Enedis in 
proportion to de 
consumption of each 
participant. 

 Automatic 
optimisation 
of maximum 
production 
allocation. 

 No values to 
communicate 
to Enedis. 

 

 Benefits large 
consumers and 
disadvantages 
of small 
consumers. 

 Not 
customizable. 

 

Dynamic customised 

Variable distribution 
coefficients at each 30-
minute time step 
defined by the PMO* a 
posteriori and sent to 
Enedis. 

 Optimisation 
possible with 
maximum 
production 
allocation. 

 Production 
allocation can 
be prioritised. 

 

Every month Enedis 
must be informed of the 
values of the 
distribution coefficients 
to be applied every 30-
minutes. 

*Personne Moral Organisatrice (PMO) 

Another advantage of the French framework is related to the perimeter of CSC. In France, CSC 

can be implemented within a 2 km diameter circumference, whereas in Spain it is limited to 500 

m. 
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Furthermore, within the context of CSC and concerning economic efficiency, one of the most 

critical aspects is related to electricity consumption tariffs. In France, there are at least 4 or 5 

different tariffs throughout the year for connections with medium voltage overhead lines (HTA): 

tariffs for off-peak and peak hours in winter and summer, and another tariff for peak hours (HTA 

connection). Additionally, the legislation allows the utilisation of some daily tariff intervals 

provided by Linky smart meter. These bands are designed to enable the Distribution System 

Operator (DSO) and Transmission System Operator (TSO) to influence user consumption. This 

allows, depending on the supplier, each consumer to select different tariffs for various time 

periods and seasons of the year. 

Analysing the literature, numerous case studies demonstrate the application of CSC in individual 

SBs [32], in apartment blocks [33], [34], [35], in several single-family residences [36], in cases 

where apartment blocks and commercial activity consumption points are combined [37] or even 

applied in simulation based Microgrids created for industrial parks and university campuses [38]. 

It has been proven that CSC is applicable and effective in different scenarios despite having 

various types of consumers and considering different optimisation strategies. 

It is worth mentioning that in the Spanish context, given the substantial rise in energy prices, CSC 

becomes a cost-effective solution. This is demonstrated in [39], where a CSC model applied in 

Spain is proposed, analysing three different aspects: the sizing of the CSC installation, the use of 

smart appliances to shift consumption to more profitable times and the distribution of the 

renewable energy generated by the installation among the consumers participating in CSC. All 

this is analysed through two models and evaluated in terms of profitability. In this paper, two 

conclusions should be emphasised. On the one hand, a SC system with surpluses is much more 

profitable than a self-consumption system without surpluses. On the other hand, it is concluded 

that a collective installation is more profitable than an individual one.  

Due to the significant push CSC have received throughout Europe, grid-connected PV systems 

have undergone a remarkable transformation, which have evolved from occupying a small market 

niche to being in several countries one of the primary annual additions in generation capacity 

[40]. Furthermore, as legislation in various European countries has either reduced or eliminated 

feed-in tariffs for PV, SC has gained interest to maximise the profitability of the energy generated 

by PV installations.  
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1.2 ENERGY MANAGEMENT SYSTEM (EMS) 

Self-consumption will always be of particular interest if an acceptable SCR can be achieved. 

EMSs play a key role in saving and managing energy in the systems they operate in. Over the 

years, extensive research has been conducted on these systems and the enhancement functions 

they can perform. 

The review conducted in [41] showcases works focused on EMS aimed at monitoring and 

analysing building energy consumption using data processing technology. One notable example 

is the work in [42], which proposes an energy usage monitoring method, aiming for energy and 

cost reduction for building occupants. Thanks to the proposed method for monitoring a group of 

equipment in a commercial building, the proper use of the equipment can be predicted in order to 

achieve the above-mentioned objectives. 

Recent articles primarily focus on increasing energy savings, especially due to the latest EU 

requirements demanding greater efficiency and energy savings in the building sector. An example 

of the increasing number of works in the literature focused in this direction is the review in [43], 

where articles solely focused on reinforcement learning of EMS applied to buildings are analysed 

to ensure increased energy savings ratios. Likewise, [44] presents an EMS approach seeking to 

outline a savings plan based on predictions. The EMS is applied to a university campus within a 

simulation-based Microgrid, and this proposal is seen as highly beneficial in a campus with 

multiple buildings, to manage energy use and optimize both daily operations and scheduling 

energy use for an entire semester.  

One of the objectives of many EMS is to promote SC in buildings. There are numerous articles 

seeking to reduce the amount of electricity purchased from the distribution grid by optimizing the 

use of PV production [45], [46]. The work developed in [47] is a good example of how greater 

profitability and efficiency are achieved thanks to an EMS that not only seeks maximum 

utilization of PV production but also manages the heat pump operation to minimize costs while 

respecting the thermal comfort of the building users. [45] adds another element to the equation, 

which is shared ESS that will also be used to increase SC based on PV generation, concluding 

that integrating the designed storage system increases the SCR by 11%. There are also numerous 

articles integrating Electric Vehicles (EVs) as FLs where EMS acts aiming the increase of SCR 

[48], [49]. It is interesting to see the conclusions drawn in [50], where the impact of EVs on the 

SC levels of a home integrating a PV generation facility is analysed. It is concluded that using 

EVs to store PV energy achieves the self-consumption levels that would be achieved by 

integrating a battery-based storage system. 
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Although analysing the literature reveals that the majority of cases where an EMS is proposed are 

in buildings [51], [52], [53], [54], it is very common to see EMS applied to the e-mobility sector 

[55], [56], [57] or applied to Microgrids [58], [59], [60], [61]. Also to ECs, which are currently 

in vogue [62], [22].  

Furthermore, it is interesting to analyse the types of EMSs being used for energy management in 

buildings. Despite having stated that there are countless cases of EMS applied to buildings, few 

works can be found in the literature where EMS is implemented and validated in a real building. 

Demand or load flexibility refers to the practice of adjusting energy using appliances to try to 

match the electricity supply [63]. Therefore, it is worth noting the importance of identifying 

potential FLs in buildings beforehand since the energy management strategy will be different. 

EVs or batteries are a possible FL that have demonstrated to provide a high degree of flexibility 

to energy optimisation in buildings [64].  

One of the main FLs used in Demand Side Management (DSM) or DR is the HVAC system. 

Associated with the HVAC system, the thermal capacity of the building itself is also an important 

FL to consider because the thermal inertia of the building will affect HVAC-related consumption. 

In some cases, Domestic Hot Water (DHW) and its associated tank, which constitute a significant 

source of consumption in a residential building, are also considered FLs. The mentioned FLs have 

the advantage over ESSs in that they are already installed in most buildings, while batteries need 

to be purchased and installed. 

Regarding the type of EMS, the most basic EMS are rule-based EMS (RB-EMS) [65]. As RB-

EMS is a simple control method, numerous works can be seen where this type of EMS is used to 

manage systems of not too much complexity. However, for scenarios where control may entail 

some complexity in terms of the function to be optimised and variables to be controlled, there are 

other types of EMS such as optimisation-based EMS. 

1.2.1 Rule-based EMS (RB-EMS) 

Starting with RB-EMS, there is a wide selection of papers in the literature employing this type of 

EMSs to increase the SCR. For example, in [66] an EMS is proposed which combines fuzzy logic 

with a rule-based algorithm aiming to maximise SC and minimize energy exchange with the grid. 

Similarly, [67] demonstrates a RB-EMS applied to CSC where the rules are individually defined. 

In each time step, the building's production is self-consumed as a priority. Then, any surplus is 

used to charge the battery, and finally, it is exported to the grid if the storage system is full. 

As said, in terms of defining the FLs of the building, the HVAC system in relation to the 

associated thermal capacity should be highlighted. The authors of [68] demonstrate the 
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advantages of optimizing the operating costs of heat pumps, achieving a cumulative cost savings 

of 18% at the end of the test period (2 weeks). [69] compares two control strategies applied solely 

to the optimisation of the air conditioning system in an office building. It is concluded that a basic 

control strategy such as the on/off strategy of the HVAC system can achieve a consumption 

reduction of 24.56%. The building's flexibility could even be increased by using heat pumps to 

heat water at convenient times, so that DHW can be available, avoiding peak load hours. 

Regarding the thermal capacity of the building itself, numerous papers go into detail on building 

thermal models to characterize its thermal behaviour and use it as a FL in a RB-EMS. In [70], a 

model based on building energy simulation software EnergyPlus is used to simulate the energy 

and thermal behaviour of the building and use it in a proposed EMS strategy to optimize energy 

cost and thermal comfort.  

Similarly, numerous papers include battery systems as FLs in which an RB-EMS operates. The 

authors of [71] propose an RB-EMS that aims to maximise net benefit and minimize incurred 

energy cost by controlling the power used from the Battery Energy Storage System (BESS) to 

regulate energy consumption from the grid. In [72], a RB-EMS is proposed that considers, in 

addition to a battery system, a PV energy generation system and prioritizes the consumption of 

PV energy as well as optimize battery charging scheduling to extend its lifespan. 

Unlike HVAC systems or the building's own thermal inertia, BESSs have to be purchased and 

installed. This has a huge impact on the initial capital investment, as well as the environmental 

and, in some countries, social implications of lithium mining, among other issues. 

1.2.2 Optimisation-based EMS 

The complexity of the management to be performed by the EMS, as well as the processing time, 

are two very important factors for choosing the type of EMS to implement. Although it is true 

that in general optimisation-based EMS require more processing time than RB-EMS [73] in order 

to effectively carry out energy management in certain scenarios, optimisation is necessary and 

more than compensates for the fact that it takes more computational time.  

Model Predictive Control (MPC) is one of the most common control methods used in 

optimisation-based EMS. MPC can handle more than efficiently the dynamics of nonlinear 

systems and strict input constraints. As well, it is able to take into account performance criteria 

[74]. In [75] a single input single output-(SISO) MPC is implemented in the context of a smart 

grid, which encompasses energy management along with real-time electricity price optimisation. 

The SISO-MPC allows controlling electricity usage in commercial buildings while saving energy 

and managing the energy demand.  
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MPC can also be applied to energy management in an EC. This is the case in [76] where a 

Hierarchical Centralized Energy Management System (HCEMS), based on an MPC, is proposed 

to facilitate energy buying/selling between producers and consumers associated with a 

community. One of the most important contributions of this work is the demonstration that a 

greater reduction in the annual energy costs of each dwelling is achieved compared to individual 

operation. Given the high electricity prices today, the proposal of association in an EC becomes 

a viable and economical alternative. 

Likewise, [77] proposes a MPC-based strategy with the dual objective of minimizing operating 

costs and maximizing the use of renewable energy in the context of a single building. To reduce 

the complexity of the building model, it proposes replacing the building with a Microgrid 

connected to the electrical grid composed of PV panels, BESS and controllable and critical loads. 

Three types of strategies are compared of which two of them use predictions, while the last one, 

and used as a benchmark, not. It has been shown that the proposed strategy which includes 

forecasts can reduce the operating costs of the Microgrid as well as maximise the use of 

renewables compared to the strategy which does not include forecasts.   

Although many of the works found in the literature develop MPCs with the aim of minimizing 

operational costs, this goal is often combined with a second objective. For example, the work 

[78], seeks through predictive models and a Sampling-based MPC (SB-MPC) to minimize the 

total operation cost as well as minimizing harmful gas emissions. They also develop a MPC 

implemented in a single building that takes into consideration, in addition to cost savings, various 

environmental aspects and DR. Similarly, in [79] an MPC is employed that includes optimal 

energy scheduling and predictive models of PV production and building thermal model, aiming 

to minimize the electricity bill along with ensuring occupants' thermal comfort. The authors of 

article [80], propose as well, a predictive control strategy based on Artificial Neural Networks 

(ANNs) for managing electrical consumption and two comfort criteria in an intelligent building. 

This learning-based MPC, specifically based on ANN models, is compared with conventional 

MPC, yielding better results with the "intelligent" model. 

In cases where SC or CSC is considered, it is more common to design an optimisation-based EMS 

with the main objective of increasing SCR. This is the case in [81], where the MPC seeks to 

maximise SCR along with minimizing battery system degradation and grid congestion. As 

another example, [82] analyses an EC composed of uncontrollable loads (NCLs) and controllable 

loads (CLs), a community BESS, and shared RES. A MPC is proposed and compared with a 

standard deterministic optimal control approach. Both have a dual objective, on the one hand, cost 

minimization and on the other hand, SCR maximisation. The MPC achieves better performance 

in cost reduction and SCR maximisation.  
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In summary, it could be stated that it is usually very helpful to implement an EMS in the 

framework of a SC, because an EMS will ensure a high ratio of SC, which is essential to ensure 

savings for the CSC participants. Although it may be feasible to propose a simpler RB-EMS, most 

papers in the literature stand for EMS that include optimisation algorithms because of its better 

performance when performing more complex systems.  

It is important to highlight the significance of identifying the FLs on which the EMS acts, in order 

to provide a margin of flexibility to, for example increase de SCR of the building. Associated to 

the building thermal inertia, HVAC has proven to be one of the most interesting FL on which 

EMS can act because it represents the system with the highest consumption typically found in 

residential and commercial buildings.  

Finally, it is increasingly common to find optimisation-based EMS proposals that include 

predictive modelling. Forecasts of consumption and production for the next day can be decisive 

for making decisions and managing energy as efficiently as possible. 
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1.3 CASE STUDY 

The case study on which the Thesis work is based falls within a project called EKATE, which 

consist on "Photovoltaic Electric Energy Management and Shared Self-Consumption in the 

France-Spain border area, using Blockchain technology and Internet of Things (IoT)." EKATE 

has been funded under the 3rd call of the INTERREG V-A Spain-France-Andorra Program 

(POCTEFA 2014-2020).  

The specific objective of EKATE is to promote the development of innovative technologies in 

natural resources through cooperation, in this case within the POCTEFA territory [83]. A 

consortium that brings together partners from both sides of the Pyrenees, forming a 

multidisciplinary group, has carried out EKATE. The consortium includes ESTIA (Nouvelle-

Aquitaine), UPV/EHU (Basque Country), Enercluster (Navarre), Centre Internacional de 

Mètodes Numèrics a l’Enginyeria - CIMNE (Catalonia), Développement des Energies 

Renouvelables dans le Bâtiment et l’Industrie – DERBI (Perpignan), and TECSOL (Perpignan). 

Within the framework of EKATE, UPV/EHU research team has developed a pilot action. This 

pilot project has been used as the case study of the Thesis.  

The Izarbel pilot action located in Bidart (France) includes buildings that are part of École 

Supérieure des Technologies Industrielles Avancées (ESTIA) (see Figure 1.3). 

 

Figure 1.3. Image of the buildings involved in the Izarbel SC. 

 

ESTIA 1 

ESTIA 2 
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The demonstrator aims to implement an innovative EMS in buildings, in a CSC operation. 

Initially, newly constructed ESTIA 3 building wanted to be considered. However, since this 

building is already involved in an individual SC project funded by the Nouvelle Aquitaine region, 

it could not be included in the CSC perimeter. Therefore, instead of implementing the EMS in a 

CSC operation, the demonstrator consisted of implementing an EMS in a SC scenario in which 

the buildings of ESTIA 1 (yellow square) and ESTIA 2 (green square) are included. However, 

the proposed EMS approach is also valid for implementation in a CSC operation.  

There is a PV installation (see Figure 1.4) located on the roof of ESTIA 1. This area is oriented 

to the southeast and has a slope of 20%. 

 

Figure 1.4. Drawing of the 5,6 kWp PV installation in the ESTIA 1 building. 

Within the EKATE project, it has been intended to enable the buildings that are part of the 

engineering school to be equipped with 286 kWp of PV installation. Thanks to the project, the 

necessary funds were raised to carry out the installation. Initially it was expected to increase the 

existing installation in ESTIA 1 to 117.17 kWp, and the rest were planned to be installed in ESTIA 

2 and ESTIA 4 buildings. However, due to delays in the installation, the data of the current 

installation from 2004 with an installed power of 5.6 kWp was used. However, when validating 

the EMS through a case study (Chapter 5), the optimisation problem considered the total PV 

power to be installed in ESTIA 2 building in the short term, i.e. 117.17kWp. Therefore, the 

measurement of the electricity produced by the existing panels in ESTIA 1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1, has been 

multiplied by a gain, 𝐺𝐺𝑃𝑃𝑃𝑃. The gain has been calculated by dividing 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
, the maximum 

power that the new panels would produce according to the PV Syst software [84], i.e. 93.2 kW, 

by the maximum power produced in 2021 by the current panels, 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1𝑀𝑀𝑀𝑀𝑀𝑀
, i.e. 4.65 kW.  



INTRODUCTION 

39 

 

 
𝐺𝐺𝑃𝑃𝑃𝑃 =

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀
(𝑊𝑊)

𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1𝑀𝑀𝑀𝑀𝑀𝑀
(𝑊𝑊)

=
93200
4650

≈ 20 (1.3) 

The resulting photovoltaic gain was approximately 20 so it has been decided to multiply by 20 

times the PV production to show a more realistic scenario. 

There will be an organising entity assigned by all the CSC partners, which will be responsible for 

allocating the production to the different consumption points and for sending the selected 

distribution coefficients to Enedis, the French distribution grid operator.  

The distribution of PV production between the ESTIA buildings is carried out using a 

personalised dynamic allocation key, i.e. the modality based on a formula where the user can 

customise the distribution. The distribution coefficients are going to be sent to Enedis and 

accounted for with a time step of 30 minutes.  

During the following section, the intelligent EMS proposal adopted for implementation in the 

presented case study has been developed. 
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1.4 EMS PROPOSAL 

As said, the proposed EMS model is applied to a SC framework where there can be different 

approaches to energy management for improving the SCR. On the one hand, the sharing of PV 

production between one or, in case of CSC operation, several buildings can be managed according 

to some chosen criteria. On the other hand, it is possible to implement an EMS that acts on the 

building FLs and optimises their operation according to some criteria that could be different from 

those considered for the PV energy distribution operation. This second approach is the one 

developed in this Thesis.  

The EMS proposed is a MPC type EMS. It is intended to control the heat consumption of the 

ESTIA 2 building to maximise the SCR by means of the control variable that is the set point 

temperature (output of the optimisation module). Therefore, by optimally generating the set point 

temperature, the operation of HVAC system is optimised in order to maximise the SCR of the 

building.  

The optimisation module therefore seeks to increase the SCR to the maximum, but it has always 

to ensure thermal comfort of ESTIA 2 users. In order to determine what temperature range should 

be covered by thermal comfort, the adaptive thermal comfort model proposed by Dear and Brager 

[85] has been used as a reference. This model was developed as a basis for the standards of the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). More 

details have been given in Chapter 5. 

As depicted in Figure 1.5, the EMS employs the predictions of the ESTIA 2 building consumption 

without considering HVAC system consumption and the PV production. As demonstrated in [77], 

EMS integrating predictions could improve the optimisation results compared to an EMS that 

operates without predictions. The predictive model in charge of performing the building energy 

consumption forecasting is presented in Chapter 2. The PV production forecasting is introduced 

in Chapter 3.  

The control model of the MPC is the model of the FL in which the EMS acts. The FL considered 

is the HVAC system associated with the thermal capacity of the building, i.e. building thermal 

model. The modelling of HAVC system and building thermal capacity is depicted in Chapter 4.  

The prediction models are updated when the season change, that is to say, even if the models are 

daily trained, the model hyperpareameters adjustment is done when the season changes. In 

addition, the building thermal model is updated daily.  
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Figure 1.5. Flowchart of the proposed optimisation-based EMS. 

The forecasting of consumption and PV generation, as well as the thermal modelling of the 

building and the modelling of HAVC system have been carried out by means of data-driven 

models. The data used as inputs to the models have required a pre-processing stage prior to their 

construction, where modifications have been applied to data to meet the requirements of each 

model. In this process, missing data or measurement errors have been identified and corrected by 

interpolation. Then, as not all raw data have the sampling time required by the model, the 

sampling time has been adjusted, if necessary by averaging or interpolating the original data. The 

data has been then normalised.  

Likewise, as the MPC has to control the consumption of the HVAC system, the prediction of the 

building's electricity consumption should not include the effect of the HVAC system. Therefore, 

in the pre-processing stage, the consumption corresponding to the HVAC system has been 

removed from the total consumption curve of the building. 

The aim of the PhD Thesis has been to develop a MPC based on simple models that require a low 

computational cost. This is why, with regards to the optimisation phase, it has been decided, on 

the one hand, to use linear models to thermally characterise the building and, on the other hand, 

to work with predictive models that do not require large amount of data to conduct predictions.  
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1.5 DEFINITION OF GENERAL OBJECTIVES 

The objectives of the Thesis have been framed within an innovative scheme for the use of locally 

produced energy, namely SC.  

The general approach of the Thesis aims primarily to develop an intelligent EMS based on 

forecasting models and implemented in a single building. The EMS must supply the consumption 

demand of ESTIA 2 building through the PV installation located in ESTIA 1 in order to maximise 

the SCR of the SC.  

Under this general approach, the secondary objectives are described below: 

 The design of data-driven predictive models to carry out day-ahead predictions of the 

consumption of ESTIA 2 building and the production of the PV installation located in 

ESTIA 1. 

 The identification and subsequent modelling of the FL of ESTIA 2 building, on which 

the optimisation-based EMS will act. 

 The design of an optimisation problem in order to maximise the SCR by controlling the 

set point temperature.  

 Ensure at all times that the thermal comfort of ESTIA 2 users is respected. 

 The development of prediction and optimisation techniques that have low computational 

cost. 
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1.6 STRUCTURE OF THE THESIS  

The present Thesis consists of five chapters in addition to this introductory chapter. 

Each chapter documents the research conducted during each phase of the Thesis, all of which are 

complementary and essential for the development of the fifth chapter, where the MPC has been 

developed.  

Chapter 2 analyses a predictive model based on an ANN, which forecasts the energy consumption 

for the next 24 hours of ESTIA 2 building. Chapter 3 introduces an ANN model too but in this 

third chapter the purpose of the model has been the day-ahead forecasting of the production of 

the PV installation of ESTIA 1 building. Chapter 4 is dedicated to the design of the thermal model 

for the building under analysis. The Chapter 5 presents the optimisation problem developed for 

the purpose of completing the design of the proposed EMS. The last Chapter 6 is dedicated to 

underline the most important conclusions that have been drawn during the work and the future 

research lines are enlisted. 

Finally, the annexes provide supplementary material, offering a more detailed development of the 

complementary models studied throughout the Thesis, like statistical analysis models or recurrent 

neural networks (RNNs) in general, and nonlinear autoregressive with exogenous input (NARX) 

in particular. 

  



INTRODUCTION 

44 

 



BUILDING ENERGY CONSUMPTION FORECASTING 

45 

 

 

 

 

 

2. CHAPTER 2 

3. BUILDING ENERGY CONSUMPTION 
FORECASTING 

 

In this second chapter, a data driven predictive model is presented, in particular a nonlinear 

autoregressive with exogenous input (NARX) type NN. The NARX model aims to perform an 

hourly day-ahead consumption forecasting of a single building. 

Initially, this chapter presents the results of an extensive literature review, justifying the proposed 

model and methodology. Following the literature study, the chapter outlines the objectives and 

contributions.  

After presenting more in detail the case study the methodology has been introduced. As shown in 

the methodology section, the work has been carried out in two phases. In the first phase, 

consumption has been predicted taking into account the effect of the HVAC system and using 

measured data as inputs to the model. In the second phase, the research has been extended by 

removing the effect of the heating and cooling system from the consumption curve and using 

predicted data as inputs. Both phases lead to an analysis of the results obtained under both phases. 

The performance of the proposed NARX model is compared with other ML models. The chapter 

concludes with a summary of the conclusions. 
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2.1 PROBLEM STATEMENT 

Nowadays our society is facing an unprecedented energy transition process where 

decarbonisation and digitalisation form two fundamental axes of change. 

Energy conservation in building is one of the major topics in Sustainable Development Goals 

(SDGs). Integration of RES has also been a key issue in the legislation framed within the energy 

transition. In this context, there is a growing interest in SC and CSC, which makes it possible to 

integrate RES in a local way and to use the renewable energy produced to supply the demand of, 

for example, surrounding buildings. 

Buildings are responsible for a significant portion of total energy consumption [86]. As of today, 

75% of buildings in Europe remain inefficient [87]. In Spain, 30% of the total energy consumed 

is associated with the building sector, which despite being 10 points lower than in the EU, this 

percentage is increasing year by year. According to the report of the French Ministry of Energy 

Transition [88], as in Spain, buildings account for 30% of total consumption in France, and this 

percentage is rising, although at a slower pace (see Figure 2.1). 

 

Figure 2.1. France final energy consumption by sector [88]. 

This makes building sector a key element in contributing to the reduction of energy consumption. 

Furthermore, buildings offer the possibility of installing PV systems, allowing for the integration 

of RES and thereby reducing GHG emissions generated by the combustion of fossil energy 

sources. 

To achieve these objectives, energy consumption forecasting might be helpful, not only in the 

building sector but also in the electrical system. The electrical system hosts many participants 

who can be affected by inaccurate predictions of the energy that will be consumed next day. 

Contingency plans, management strategies, and marketing strategies directly depend on 

consumption forecasts, and prediction errors translate into increased operational costs [89].  
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Focusing on buildings, it is important to highlight the significance for, for example, an EMS, of 

including the building's consumption forecast to make optimal decisions regarding energy 

management. In addition, data used as predictor for performing the forecasting needs to be 

reliable. Until a few years ago, the meters installed in buildings were far from providing high-

quality data. Today, thanks to efforts to equip buildings with IoT technology, data availability is 

much greater, facilitating modelling tasks and resulting in more reliable and robust models.  

However, consumption forecasting is often not an easy task and requires knowledge not only of 

the modelling process, but also of the characteristics of the data to be used. 

The consumption profile generally follows a cyclical and seasonal pattern due to its high 

dependence on meteorology and users activity and can be represented by a time series of real 

values [90].  

Time series always arise from something observed over time [91] and can be seen in numerous 

contexts including the measurement of temperature at a meteorological station, the amount of 

imports or exports of a country, the stock price of any product, annual electricity generation of a 

PV plant, and so on. 

A time series curve can show upward or downward trends, as well as patterns that repeat (seasonal 

variation) which can be used to predict future values. To take advantage of these patterns and 

trends for forecasting tasks, numerous prediction methods and models have been proposed. 

2.1.1  Classification of forecasting models 

One of the characteristics that influences the selection of the model is the prediction horizon 

(PH) time. Electric load forecasting has been categorised into four types related to the temporal 

domain of the forecast: long-term load forecasting (LTLF), medium-term load forecasting 

(MTLF), short-term load forecasting (STLF), and very short-term load forecasting (VSTLF) [92]. 

LTLF focuses on the demand forecast horizon of more than one year, including the planning of 

demand for various electrical systems. MTLF deals with forecast horizons ranging from one 

month to one year and typically covers network maintenance analysis, electricity price variability, 

or the organisation of energy distribution on a larger scale [93]. STLF operates within periods 

ranging from a few minutes to hours or days. It is a factor to consider for daily planning, especially 

for an electricity company. It is also a critical factor to consider for the implementation of an EMS 

in a building [93]. Lastly, VSTLF, with a prediction range of between a few minutes and an hour, 

can be of particular interest for use in Smart Grids and DR applications where real-time electricity 

deployment is required [94].  
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However, in most cases found in the literature, PH used for consumption forecasting usually 

exceeds 15 minutes, sometimes extending to days or weeks. Hence, studies in the literature 

generally propose STLF instead of VSTLF. 

Nevertheless, the most common classification that can be seen in the literature is the one presented 

in the Figure 2.2. This classification is carried out according to the type of model and are 

distinguish mainly three major groups: white-box or physical models, grey-box, and finally, 

black-box or data-driven models [95].  

 

Figure 2.2. General classification of forecasting models. 

Physical models are those based on mathematical equations that describe physical principles used 

to calculate energy consumption, for example of a building. As these are complex mathematical 

models where numerous parameters and formulas must be included, it is common to use specific 

software to calculate the consumption. The most common softwares used for calculating the 

energy consumption of a building are EnergyPlus and TRANSYS (Transient System Simulation 

program). These software are applicable to various scenarios where building consumption needs 

to be estimated. In [96], for example, TRANSYS software is used to predict the energy demand 

of a building, evaluating how different parameter values adjustment affect the final result. It is 

concluded that in general the proposed models achieve a coefficient of variation (CV) of root 

mean square error (RMSE) less than 10%. EnergyPlus software has also been used in cases where 

the consumption behaviour of a building under different climatic conditions has been simulated 

[97].  

Grey-box are based on the combination of physical models and data-driven models. They are 

primarily created to simplify the design process of physical models used to predict building 

consumption [95]. An example of a grey-box model is one that uses data-driven models to 
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optimise specific parameters of a physical model [98]. There are also numerous studies where, 

due to insufficient data to feed a black-box model, EnergyPlus or other softwares are used to 

generate the necessary input data to fed the black-box model which will predict the building's 

energy consumption [99].  

The last category comprises data-driven models, also known as black-box models. They are 

called black box models because they do not establish the relationship between the inputs and 

outputs of the model; that is, they do not describe the physical principles underlying the system. 

This characteristic can also be an advantage, as detailed information about the building's physical 

characteristics and detailed knowledge of the physical phenomena affecting the building's 

electricity consumption are not required.  

These models typically use historical data, in this case for example the electricity consumption of 

a building, along with external variables (weather data, occupancy data, etc.), to predict the 

building's consumption.  

Several classifications can be find in literature based on model type, but the classification 

proposed in [98] has been followed.  

Data-driven models are divided in three groups (see Figure 2.3):  

(a) Statistical Analysis (SA): This is based on the use of statistics to represent some data 

and study the relationship between variables in the form of time series. The most popular 

SA methods used for prediction purposes have been regression analysis (RA) and 

autoregression (AR). 

(b) Machine Learning (ML): Machine learning is a method of approximating a function 

that maps input space to output space by extracting information from data samplings 

[100]. Supervised and unsupervised learning are two types of ML. In supervised learning, 

the training of the model is carried out with labelled data, which means that the input data 

is paired with the desired output data. By contrast, unsupervised learning is based on 

models that use unlabelled input data for training. Supervised learning is often used for 

classification or regression while unsupervised learning is used for clustering or anomaly 

detection tasks in addition to classification [101]. 

(c) Deep Learning (DL): DL is a subset of ML that uses interconnected neural networks 

to extract patterns from processed or unprocessed data. It is distinguished from ML 

models because ML requires expert knowledge to convert raw data into data appropriate 

for the internal representation of the specific model. In contrast, most of DL models can 

use raw data. DLs are particularly useful for analysing complex, rich and 

multidimensional data [102]. 
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Figure 2.3. Classification of data-driven models including some examples. 

Due to their significant impact on the field of energy consumption prediction for buildings, it is 

important to highlight, on one hand, statistical analysis-based models, more specifically, 

autoregressive models, and on the other hand, ML models such as ANN or support vector 

regression (SVR), or neural networks like long-short-term memory (LSTM), typically classified 

as DL.  

The hybrid models have gain significant presence in the literature. These models are those that 

combine different types of models aiming to improve the performance of the models taken 

individually. This approach aims to compensate the weaknesses of one model with the advantages 

of the other. 

2.1.2  Statistical Analysis (SA): Autoregressive models (AR) 

Autoregressive models, along with exponential smoothing models, have long been the reference 

for predicting time series [91]. Autoregressive models have been widely used for many years due 

to their simplicity in practical implementation for making predictions [90].  

Statistical models as a whole have been evaluated by many researchers over the years and in 

various applications for predictive purposes, yielding more than satisfactory results. Notably, 

autoregressive integrated moving average (ARIMA) models are an extended version of the 

autoregressive moving average (ARMA) model. ARIMA models are among the most popular 

types for time series prediction due to their standard level of short-term accuracy [103]. Moreover, 

thanks to the Box-Jenkins method, which identifies, estimates and diagnoses mainly ARIMA type 

models, which allows to increase the accuracy of the predictions. An example can be seen in the 

work done in [104] where the price of electricity for next 24 hours is predicted using data from 

the previous three days through the Box-Jenkins method. Using a simple ARIMA model adjusted 
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with the SPSS program, the electricity price is predicted with a mean absolute percentage error 

(MAPE) of 3.55%.  

More specifically, researchers have also extensively studied the prediction of building electricity 

consumption based on statistical models for many years. In [105], for example, a seasonal 

autoregressive integrated moving average (SARIMA) model is used, identified through the Box-

Jenkins method, to perform STLF for one of the buildings at Chulalongkorn University 

(Thailand). The SARIMA model is able to predict weekdays with an average MAPE of 18.82%.  

There are even current studies using statistical analysis not only to predict the total consumption 

of a building but also to predict consumption by zones or rooms of individual buildings. This is 

the case in the work developed in [106]. Here an ARIMA model is used to predict the consumption 

of each of the five laboratories analysed. The ARIMA model for one of the laboratories in the 

building is able to predict its consumption with a RMSE of 0.004247, a more than satisfactory 

result for an ARIMA model. 

The main disadvantage of autoregressive models is that their use is limited to systems that don’t 

present nonlinearities. When the case study involves a nonlinear system the application of this 

type of model becomes difficult.  

Moreover, these models require the identification of the correct model order. Therefore, it is not 

easy to construct an autoregressive model without training in statistical analysis and a good 

understanding of the methodology.  

Considering all this, and having examined various literature reviews related to the prediction of 

building electricity consumption, it is clear that there is a rising trend in the use of ML techniques 

over more classical techniques such as autoregressive methods. 

2.1.3 Machine Learning (ML) 

The increase in literature of ML models for prediction purposes is due to several factors, such as 

the increasingly easy access to building consumption data and the significant advantage that ML 

models offer in capturing nonlinearities. In addition, the advanced learning algorithms of ML 

models and their capability of capturing stationarity of time series are other mayor advantages 

that present ML models against physical or statistical analysis models.  

Several reviews evidence the rising trend of ML models for predicting building electricity 

consumption. Notably [95] highlights the predominant methods in the literature, focusing on and 

classifying them according to various characteristics such as input data and data pre-processing 

methods, building typologies, final energy uses, and forecasting horizons, as well as the 

evaluation of accuracy. It particularly emphasises the types of models used for this purpose, which 
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from more than 80 articles analysed, ranging from 2007 to 2019, the vast majority propose ML 

models to solve the prediction problem.  

A more recent paper published in 2023 [107] compiles over 60 articles and reviews data-driven 

models for predicting building energy consumption. In this case, it includes ARIMA and linear 

regression (LR) models within the study and compares the number of papers proposing both of 

them against those proposing ANN, support vector machine (SVM), and Random Forest (RF) 

models. Although the conclusion is that no single type of model consistently performs better under 

all conditions, it is stated that ML models produce better results in more studies than statistical 

tools.  

One of the most interesting contributions of this review is its proposal of guidelines for selecting 

the type of model to use for prediction. These guidelines are designed after analysing the results 

obtained by each type of model under different situations (data properties, type of energy 

considered, and type of building explored) and deducing in which conditions each is most 

appropriate to use, depending on the accuracy of the results obtained. Regarding statistical 

models, some considerable disadvantages are mentioned, such as ARIMA model's inability to 

handle independent and correlated inputs, as they can tend towards overfitting and unstable 

estimates. Similarly, the inability of LR to manage the temporal dependency of the data is 

highlighted, an important issue when predicting the electricity consumption of a building, as it is 

a time series.  

That said, and in order to see how ML models operate compared to more classical models like 

AR, dozens of articles can be found in the literature that make the comparison in specific case 

studies. 

2.1.4  Comparison between SA and ML models 

Before comparing both models, an important aspect that reviews touch on is the metrics used to 

compare the various types of models presented. Evaluation metrics provide objective criteria for 

measuring predictive capability, generalisation ability, or overall model quality. Notably [95] 

breaks down a total of nine different evaluation metrics used in the reviewed papers. Two in 

particular stand out: MAPE and coefficient of determination (R2). 

The former is represented by Equation (2.1) and evaluates the uniform forecast error in percentage 

terms [103]. 

 
𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸 =

1
𝑓𝑓
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�𝐸𝐸𝑗𝑗 − 𝐸𝐸𝚥𝚥� �
𝐸𝐸𝑗𝑗

𝑁𝑁
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where 𝐸𝐸𝑗𝑗 and 𝐸𝐸𝚥𝚥�  are the measured and corresponding predicted values. 𝑓𝑓 is the total 

number of data in the data set considered for performance evaluation. 

 

Equation (2.2) calculates the coefficient of determination. 

 

 
𝑅𝑅2 = 1 −

𝑀𝑀𝑀𝑀𝐸𝐸 (𝐸𝐸𝑗𝑗 ,𝐸𝐸𝚥𝚥� )
𝑉𝑉𝑉𝑉𝐸𝐸(𝐸𝐸𝑗𝑗)

= 1 −
∑(𝐸𝐸𝑗𝑗 − 𝐸𝐸𝚥𝚥� )2

∑(𝐸𝐸𝑗𝑗 − 𝑚𝑚𝑇𝑇𝑉𝑉𝑓𝑓(𝐸𝐸𝑗𝑗))2
 (2.2) 

 being 𝑀𝑀𝑀𝑀𝐸𝐸 (𝐸𝐸𝑗𝑗 ,𝐸𝐸𝚥𝚥� ) mean square error between measured and predicted values and 

𝑉𝑉𝑉𝑉𝐸𝐸(𝐸𝐸𝑗𝑗) the variance value of the measured data set. 

A value for R2 of 1 means a perfect fit between measured and predicted values. A R2 of zero 

means that there is not relationship between the dependant (output) and independents (input) 

values, or in other words, the regression line between both is completely horizontal [108] (see 

Equation (2.3)).  

 0 ≤ 𝑅𝑅2 ≤ 1 (2.3) 

Comparing SA and ML models, the work introduced in [109] has carried out building 

consumption predictions of three types of building using an ARIMA model and a SVR model. 

The most accurate prediction among the two types of models is made by the SVR, with an R2 

between 0.07 and 0.1 higher than that of the designed ARIMA models.  

In [110] the comparison is extended, and models based on ANN, SVM, and finally, an ARIMA 

model are designed. Three summer months are used to train the models, and predictions are 

validated in an office building. It is concluded that the ANN best predicts consumption, achieving 

a MAPE of 0.1710. The SVM follows with quite similar, though not better, results. The ARIMA 

model, despite obtaining results very similar to the SVM in predicting weekday consumption, 

shows a significant increase in error during holidays when consumption remains in standby mode.  

More specifically, ANNs have become widely used in recent years for all types of predictions, as 

evidenced by numerous papers in the literature that position this model type as superior to more 

classical models. For example, the performance comparison of a traditional autoregressive 

moving average with exogenous input (ARMAX) model and a NARX neural network, along with 

a state-space model and a simple FFNN, has been carried out in [89]. Despite all four models 

obtaining very satisfactory results for predicting the next 24 hours of electricity consumption, the 

NARX achieves the best MAPE, 0.85%. Similarly, in [111] a comparison is made but this time 

using, besides the NARX, an Elman neural network (ENN), and an ARMA model to perform a 

STLF of Jordan's electrical system. The prediction is made using one year of training data (2018 

data), and it is concluded that although three types of models are capable of predicting with a 
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MAPE range between 3.42% and 5.53%, the two types of NN surpass the ARMA. The ARMA 

presents considerable deviations in its prediction from the consumption curve. From the results, 

it is derived that the ENN most closely matches the consumption curve and therefore provides the 

best prediction. 

In order to improve the errors that models like ARIMA or ARMA typically produce when 

predicting time series with seasonal variation, some studies propose a SARIMA model, which 

includes a term to capture the seasonality of the time series. This is the case in [112], where 

predictions are made for both one month ahead and the next day for a six-story building using 

two models: a SARIMA model and a feedforward NN (FFNN) model. Despite having proposed 

a SARIMA model to capture the seasonality of the consumption data, the ANN predicts with 

greater accuracy and consistency for both one month and one day ahead.  

There is no doubt that, in general, ML models often far exceed the predictive capacity of statistical 

models.  

2.1.5  STLF using ML models 

STLF can be carried out at different scales, from predicting the consumption of entire regions to 

predicting the electricity consumption of a single building. In [113], STLF is conducted in two 

real case studies, predicting the total consumption of Jiangxi Province (China) and the state of 

California. The authors use an improved SVR model through the sequential-grid-approach (SGA) 

technique. The results demonstrate that the SGA-SVR significantly improves the prediction 

accuracy of a standard SVR, particularly for STLF. In the case introduced in [114], the employed 

prediction model, a hybrid PSO-FFNN model, is validated using consumption data from the New 

England grid. Here, an hourly prediction is made for different seasons, achieving an 

extraordinarily high R2 coefficient of 0.9923.  

Predicting at Microgrid scale, numerous articles predict short-term industrial load consumption 

using ML techniques [93]. For example, in [115] an hourly prediction is made one month in 

advance using a model combining a NARX NN and a more refined model based on LSTM NN. 

This new combined method is compared with the independent NARX and LSTM models, 

concluding that the proposed combined method can predict the month with an RMSE 16 times 

lower (0.0244) than the best LSTM model, which achieves an RMSE of 0.4103. 

If the literature search on STLF cases is narrowed down further, a considerable number focus on 

predicting the load of residential and commercial buildings. In [116], predictions are made one 

hour and one day ahead for a district comprising residential, commercial, and educational 

buildings. An ANN based on MLP is employed, comparing its performance with different 



BUILDING ENERGY CONSUMPTION FORECASTING 

55 

numbers of layers, neurons, and learning algorithms. Better MAPEs are achieved when 

forecasting the individual loads of buildings instead of predicting the entire district's load directly. 

When predicting residential buildings, it's worth noting the strong dependence of the consumption 

curve on human activity within the building under study. This volatility in the consumption curve 

can pose challenges for accurate STLF. However, it has been demonstrated that this issue can be 

overcome using NN-based models. An example is [117], where with the aim to mitigate 

residential building consumption volatility, LSTM and FFNN are proposed, with inputs including 

consumption curves of household appliances. It has concluded that prediction accuracy can be 

improved by incorporating the consumption sequences of the building's most energy-intensive 

household appliances, with LSTM achieving the best prediction with a MAPE of 21.99%. 

Commercial buildings have also been studied for STLF. The work introduced in [118] presents a 

hybrid convolutional neural network (CNN) and LSTM model proposal that predicts consumption 

curves for two types of buildings—residential and commercial—in Korea. CNN is used to extract 

input features, feeding into a first LSTM encoder that generates encoded sequences. These 

sequences then feed into a second LSTM decoder. Results show that the proposed model achieves 

a MAPE of 0.76%, outperforming other ML models such as SVR with 1.29% MAPE or Gaussian 

Process (GP) with 0.82% MAPE. 

2.1.6 Conclusions 

It can be observed that the proposals in the vast majority of papers predicting short-term electrical 

load for both multiple buildings and individual buildings involve designing highly complex NNs. 

The complexity is especially evident in the network structure itself; for example, in the 

aforementioned paper [116] multiple layer perceptron (MLP)-type networks are proposed with 

12 inputs, adjusted between 24 and 48 neurons, and 2 or 3 hidden layers. This complex structure 

results in the network predicting with a MAPE of 1.71%, requiring 14 hours of training. The same 

complexity is seen in the previously introduced work where an LSTM with 512 neurons achieves 

a far from excellent MAPE of 21.99%. Alternatively in [118], where a CNN combined with a 

double LSTM comprises a staggering 10 layers and over 33,000 parameters. While the MAPE 

obtained is excellent, the training time is extremely high. 

Furthermore, although there are case studies focusing on STLF using NN models for single 

buildings, the majority in the literature aggregate consumption curves from groups of buildings 

or even entire cities, regions, or countries. In these cases, the consumption curve appears much 

flatter and less variable, which simplifies the prediction process. 

There are works such as the one introduced in [119] where an ANN-based model is trained with 

a TW of only 3 days and, in addition, the prediction of the small-scale loads of a building is carried 
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out instead of the entire building consumption forecast. In this way a MAPE of 7.0527% has been 

obtained. In spite of this, in general, ML models and specifically NNs, when used for predictions, 

are trained on large amounts of data. Most of the literature reviewed utilizes a minimum of 1 

year of data to train NN-based models. Moreover, the data used are typically historical measured 

data, that is, real data. However, in a real scenario the predictive model should not use historical 

measured data, but predicted data.  

Many case studies often involve newly constructed buildings, which, despite having smart meters, 

may lack sufficient long-term data for model training. Initially it might seem worthwhile in such 

cases to rely on physical models rather than data-driven models for consumption forecasting 

because more physical data of new construction buildings might be available. Anyway, it should 

be considered that physical models may become, over the long term, invalid due to, for example, 

multiple changes such as the installation of high consuming system occurring in the building 

[120].  
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2.2 OBJECTIVES AND CONTRIBUTIONS 

After analysing the literature and identifying the current trends in using models to predict short-

term building consumption, several gaps have been highlighted within the literature.  

In this regard, the main objective pursued in this chapter has been to predict the hourly electricity 

consumption for the next 24 hours of a single building using a NARX-type neural network trained 

on a small data set.  

There are two reasons why the available dataset is limited and therefore the training must be 

carried out with a small data set: 

 The smart meter of ESTIA 2 was activated at the end of 2019. Moreover, due to the 

pandemic situation, the building's electricity consumption is not representative during 

certain periods. 

 Using a small dataset for training prediction models allows for frequent updates due to 

low computational demand. Unlike models trained once with several years of data, 

NARX can account for changes in consumption due to unexpected modifications, such 

as the introduction of new high-consumption appliances. 

The secondary objective has been to perform the predictions as they would be performed in a real 

system. Thus, predicted data have been used as inputs to the predictive models. In addition, the 

consumption of the HVAC system has been removed from the overall building consumption. The 

reason for this removal is that the proposed EMS aims to control the heat from the HVAC system 

and therefore, the total building consumption cannot include the consumption associated with the 

HVAC system (see Chapter 5). 

In this context, the contributions of the research developed in this chapter need to be noted.  

As reflected in the literature analysis, most studies proposing different types of NNs use large 

data sets for training models which are often quite complex predictive models. In this chapter, a 

simply structured NARX-type NN has been designed and trained on a small data set, which 

allows the possibility of using NNs without the need for extensive data availability. 

Furthermore, the performance of NARX is compared with the performance of a LSTM NN, a 

more complex NN, and with a SVR. The designed models have forecasted electricity consumption 

for a single building during two different seasons: winter and summer. 

In this chapter, has also included the comparison between using an approximate occupancy signal 

and a workday/weekend signal. This latter signal is frequently used in the scientific literature due 

to a lack of occupancy data.  
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2.3 CASE STUDY 

2.3.1 ESTIA 2 building description 

The electricity consumption prediction has been conducted in the ESTIA 2 building (see Figure 

2.4), located in Izarbel Technology Park in Bidart, France. The building comprises four floors: 

basement, ground floor, first floor, and second floor. It is one of the three current buildings on the 

ESTIA Institute of Technology campus, where the SC must be implemented (section 1.3 of 

Chapter I). 

 

Figure 2.4. ESTIA 2 building. 

As said, the building is part of the Engineering School and hosts various activities, 

accommodating different types of users. It includes areas for research teams, university 

classrooms for student lectures, and spaces for small start-ups with several employees. 

Considering the diverse schedules and usage patterns of the users, the consumption curve is 

expected to vary significantly throughout the year. 

The building features several sources of electricity consumption, including computers, various 

laboratory machines (not high-consumption), lighting, and most notably, the HVAC system. This 

system provides both heating and cooling for the entire building, consisting of 10 external heat 

pumps connected to 73 internal units. Each external unit supplies heating or cooling to multiple 

rooms via a heat transfer fluid and fans. 

This detailed description sets the context for understanding the varied consumption patterns and 

the significant role of the HVAC system in the ESTIA 2 building, crucial for developing accurate 

electricity consumption predictions.  
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2.3.2 Used data analysis 

The proposed prediction model for this case study is a NARX model, which is a data-driven type 

model. The quantity and quality of the input data is crucial for achieving high prediction accuracy. 

Therefore, data processing, which involves preparing the data to meet the model's requirements, 

is a fundamental step before starting the model design process. 

An initial analysis must be conducted to determine the type and quantity of available data. At this 

stage, it has been observed that three types of data are available: historical measured consumption 

data, measured weather data, and building use related data. 

2.3.2.1 Consumption data 

Building's consumption data has been used to train the prediction model. These data have been 

provided by the PME/PMI smart meter installed in ESTIA 2 building and has been registered with 

a time step of 10 minutes. 

a. First phase  

In a first phase, only data from late 2019 (smart meter installation date) until December 2020 has 

been available (see Figure 2.5). 

 

Figure 2.5. ESTIA 2 building consumption curve of 2020 without pre-processing. 

An important factor affecting the quality and reliability of this data is the COVID-19 pandemic 

lockdowns. Specifically, from mid-March to late May 2020 and again from late October to late 

December of the same year, most individuals who regularly work at ESTIA 2 had to work 

remotely. This has resulted in a significant amount of data not accurately representing the 

building's actual operations. 
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As previously mentioned, two representative months of the year, one from the winter period and 

one from the end of summer period, have been selected. September and not another summer 

month has been chosen because of two reasons. On the one hand, there is no normal activity in 

the months of July and August due to the summer holidays of students and workers. On the other 

hand, the meteorological data of those months was full of lack of registrations and outliers.  

The consumption used in this first phase is the electric consumption with the effect of the HVAC 

system. It should be mentioned that in the ESTIA 2 building, the users have the possibility to 

change the set point temperature ( 𝑇𝑇𝑐𝑐𝑝𝑝) freely in each office or room of the building and thus 

leading to chaotic operation of the heat pumps. At first glance, several issues can be observed in 

Figure 2.6. During February, the peaks reach considerably higher consumption values compared 

to September. Although the week of 14th September sees consumption slightly exceeding 40kW, 

the average consumption for the entire month remains around 14kW, whereas in winter it rises to 

22kW.  

 

Figure 2.6. 2020 February and September consumption data without normalisation. 

It is also worth highlighting the difference in night-time consumption between the two months 

analysed. In winter, due to lower temperatures, night-time consumption remains between 15kW 

and 20kW. In contrast, during the summer, consumption stays around 10kW.  

Both the night-time period and weekends in February indicate the significant influence of the 

HVAC system on the building's overall consumption. Despite the building being unoccupied 

during the night and weekends, the consumption shows peaks and variations that might initially 

be attributed to the heating system being activated to face low temperatures. 
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b. Second phase 

In the second phase, one of the members of the research team has developed a programme to pre-

process the data automatically. The consumption related to the HVAC system has been removed 

from the overall consumption curve and the sampling time has been fixed in 1 hour (see Figure 

2.7).  

 

Figure 2.7. 2023 April consumption without HVAC system effect and without normalisation. 

The reduction in consumption that can be seen in Figure 2.7 compared to the September graph in 

Figure 2.6 is remarkable. Both, the consumption peaks and the ‘base’ consumption that can be 

seen during the nights demonstrate this. This proves the importance of the HVAC system in the 

overall ESTIA 2 consumption. 

2.3.2.2 Meteorological data 

a. First phase 

Due to the influence of meteorological conditions on the consumption, possible weather variables 

have been considered as inputs to the model. 

Meteorological data has been obtained from Meteo France (MF), which stores measured data 

from the weather station located at Biarritz Airport, approximately 3 km far from ESTIA 2. The 

downloaded data corresponds to the external temperature (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒) readings from the year 2020, 

sampled at hourly intervals.  

Figure 2.8 shows the 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 data to be considered for the daily consumption prediction during both 

winter and summer periods. 
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Figure 2.8. February and September 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 data without normalisation. 

Looking at Figure 2.8, the difference between summer and winter temperatures is clear. 

September temperatures are rather warm and probably the use of air conditioning will be lower 

than in February, in order to maintain thermal comfort in the building. This would explain the 

flatter curves seen in the September consumption profile (see Figure 2.6). In the same way, bigger 

consumption peaks when the temperature increases above 30ºC can be observed, more 

specifically, the 13th or 14th of September. 

b. Second phase 

The meteorological data used in the second phase has been predicted temperature obtained from 

Meteo Galicia (MG). The acquisition and pre-processing of the predicted data has been carried 

out in order to be able to work on a real system. Figure 2.9 shows the predicted 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 during the 

month of April. 

 



BUILDING ENERGY CONSUMPTION FORECASTING 

63 

 

Figure 2.9. 2023 April 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 obtained from MG. 

It might be mentioned that being temperatures from the first half of April similar to temperatures 

in February, the consumption registered on February 2020 is significantly higher than the 

consumption measured on the first half of April, proving again the significance of the HVAC 

system in the global consumption. 

2.3.2.3 Building use related data 

Possible inputs related to building use have also been considered. On one hand, an array has been 

created to differentiate between workdays ('1') and weekends or holidays ('0') named 

workday/weekend signal. 

On the other hand, using information regarding the schedules of ESTIA 2 users provide by ESTIA 

Institute of Technology, a daily curve of average building occupancy during workdays (𝑂𝑂𝐶𝐶𝐶𝐶) has 

been designed. Same signal has been used in first and second phases of the work. 

The occupancy data reflect two peaks which represent the occupancy of the building at ratio 1 

(see Figure 2.10). The decrease around midday corresponds to most users leaving the building for 

lunch. 
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Figure 2.10. Occupancy curve of a single day of ESTIA 2 building. 

During weekends and holidays, the occupancy curve has a value of zero. Despite the possibility 

of specific days, such as Saturdays or certain holidays, when some workers, especially those from 

start-ups, come to work, the occupancy rate hardly changes.  
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2.4  METHODOLOGY 

2.4.1 Methodology description 

In this subsection, a description of the methodology followed during the research work is 

provided. In accordance to the objectives depicted in section 2.2, two phases have been divided.  

2.4.1.1 First phase 

With a time step of 1 hour, the prediction for the following 24 hours has been conducted over a 

one-month of the end of summer (September) and one month in winter (February). More 

specifically, the prediction of the average hourly power has been carried out. Both seasons have 

been considered because consumption patterns vary significantly due to differences in weather. 

The aim has been to validate the NARX model and to evaluate and compare the accuracy with 

which NARX, and two more ML models (LSTM and SVR) are able to forecast summer and 

winter months. The performance of the three models has been assessed and compared based on 

the minimisation of the mean absolute percentage error (MAPE). 

The steps that have been followed in the first phase are illustrated in Figure 2.11.  

 

Figure 2.11. Flowchart of followed methodology in first phase. 

First, inputs for the models have been selected by carrying out a correlation analysis and then, by 

making predictions with all possible input combinations.  
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Regarding the training of the models, a certain Time Window (TW) has been selected. This TW 

defines the number of days selected to perform the model training. The ML models have been 

trained with a defined TW on a daily basis to predict the day-ahead consumption. After predicting, 

for example, the consumption on the 1st day of September, the initial TW is shifted by one day 

and trained again to predict the 2nd day of September. And so on and so forth until the prediction 

period is completed.  

Taking into account that when training a NN-type model, the initialisation of the weights is 

executed randomly, we wanted to establish a criterion for the selection of the hyperparameters. 

As said, the NARX forecasts the entire month, so the NARX predicts three times the entire month 

on daily training basis. The month average MAPE is calculated each of those three times. This 

process is repeated for each combination of hyperparameter values i.e. for each model 

constructed, and the model that the lowest MAPE obtains is selected.  

For the design of SVR, Bayesian optimisation has been used to find the optimal hyperparameter 

values. 

2.4.1.2 Second phase 

The second phase can be seen as an extension of the first phase. In this second phase, a day-ahead 

forecasting of ESTIA 2 average hourly power has been performed with a NARX model. With the 

sampling time of 1 hour, the prediction of the following 24h is carried out during one week of 

April.  

In this case, the HVAC system effect has been removed from the global consumption curve. 

Furthermore, in the second phase the data used as predictors of the model have been predicted 

and not measured. Additionally, data acquisition and pre-processing have been performed 

automatically, as would be done in a real-time scenario. Together with the NARX model, the 

SVR model is designed and both have been evaluated and compared based on the minimisation 

of MAPE.  

Therefore in this second phase, the acquisition and pre-processing of data has been automated so 

that these steps can be executed in real time. With regard to the selection of inputs and the TW, 

i.e. the structure of the model, it has been decided to use the analysis carried out in first phase as 

a reference. However, this time a time vector has been included as input to the SVR model. In 

addition, LSTM model is not included between the predictive models analysed. 

Same criterion as in the first phase has been followed in order to adjust the hyperparamenters of 

the NARX model. For the design of SVR, Bayesian optimisation has also been employed for 

optimizing SVR hyperparameters. 
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2.4.2 Application of methodology 

2.4.2.1 First phase 

a. Data pre-processing 

The consumption data from 2020 underwent several processing steps. Initially, deficiencies in the 

consumption records were identified. Several instances were observed where consumption 

suddenly dropped to very low levels, such as on the afternoons and evenings of February 20th, as 

well as the 15th and 26th of that month. Linear interpolation has been used to address these outliers. 

As mentioned earlier, consumption is recorded at 10-minute intervals, while predictions have 

been made for each hour of the following day. Therefore, as next step in data pre-processing, the 

hourly mean value of the load has been calculated. 

The final step is the normalisation step. The data has been normalised to the range [0, 1] ([0W, 

100kW]). There are several normalisation techniques that are implemented to normalise the input 

and target data of NNs, such as min-max Normalisation, Z-Score normalisation or Decimal 

Scaling Normalisation [121]. It is the min-max Normalisation that is most commonly used in the 

literature (see Equation (2.4)) [122]. 

 𝑇𝑇𝑖𝑖 =
𝑇𝑇 − min (𝑇𝑇)

max (𝑇𝑇) − min (𝑇𝑇)
 (2.4) 

Regarding 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, no outliers were detected. The data has been directly normalised ([0, 1]), taking 

into account historical minimum and maximum values in the studied location ([-10ºC, 40ºC]). 

Neither the signal differentiating workdays and weekends nor the occupancy curve needed pre-

processing. 

b. Input selection 

The input combination selection that best characterise the building's consumption behaviour has 

been carried out in two steps.  

First, a linear correlation analysis has been conducted to determine which variables among 

external temperature, workday/weekend array and occupancy are most correlated with the 

building's consumption. Pearson's correlation coefficient has been used for this purpose (see 

Equation (2.5)). 
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𝐸𝐸 =

∑(𝑇𝑇 − �̅�𝑇)(𝐸𝐸 − 𝐸𝐸�)

�∑(𝑇𝑇 − �̅�𝑇)2 (𝐸𝐸 − 𝐸𝐸�)2
 (2.5) 

where 𝑇𝑇 and 𝐸𝐸 are two different variables and �̅�𝑇 and 𝐸𝐸� are the mean values of both. 

The Pearson correlation coefficient, r, is a measure of the linear correlation between two data sets, 

ranging from -1 to 1. A positive correlation means that as one variable increases, the other also 

tends to increase, whereas a negative or inverse correlation indicates that as one variable 

increases, the other tends to decrease. A correlation is considered strong when the absolute value 

of the Pearson coefficient is close to ±1. 

The correlation analysis has been conducted separately for winter and summer months. Figure 

2.12 displays the scatter plot of the calculated coefficients for each season and variable. 

Additionally, weekends were not considered due to their limited relevance in understanding how 

potential input variables affect the building's electricity consumption. 

 

Figure 2.12. Daily lineal correlation analysis of possible inputs and consumption curve in different seasons. 

First of all, analysing the scatter plot that corresponds to the correlation coefficients between 

consumption and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, it can be observed that on most days there is a significant correlation, 

where a Pearson coefficient between 0.6 and 0.9 is obtained. It is also noteworthy linear 

correlation between consumption and building occupancy, with a coefficient greater than 0.8 

being obtained practically every day, both in winter and summer.  

In the case of winter, it can be strange not to see negative values of the coefficient, i.e. not to see 

an inverse correlation, in case of consumption and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒. In winter, by basic logic, as external 

temperatures fall, consumption increases. What happens is that having analysed the correlation 

on a daily basis, temperatures during the day increase during the morning and start to fall during 

the evening hours, as does the consumption curve according to the use of the building. This makes 

the daily correlation between the two variables positive.  

Anyway, to corroborate this, a second correlation study has been performed during the entire 

month of February, taking into account the maximum daily value of  𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, and the average 
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consumption. The correlation coefficient obtained is 𝐸𝐸 = −0.609, concluding that there is indeed 

a global and inverse correlation between both variables when analysed more broadly.  

Although the correlation study gives us a preliminary idea of the potential that both 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑂𝑂𝐶𝐶𝐶𝐶 

may have as predictors of consumption, a second study has been carried out where we predict 

with different combinations of inputs with the aim of minimising the MAPE. 

Among the different combinations of inputs, the main interest has been to compare the accuracy 

of the forecasts obtained with, on the one hand, the workday/weekend array and, on the other 

hand, the 𝑂𝑂𝐶𝐶𝐶𝐶 curve. The results of this study are given in Table 2.1.  

Table 2.1. Comparison between input combinations with three prediction models (default hyperparameters). 

Input combinations 
Time 

Window 

MAPE Winter MAPE Summer 

NARX LSTM SVR NARX LSTM SVR 

Temperature + 

workday/weekend array  14 days 
25.6 31.4 20.08 21.7 25.84 17.19 

Temperature + Occupancy 18.3 19.58 20.00 13.9 13.58 15.19 

 

The forecasting accuracy achieved with 𝑂𝑂𝐶𝐶𝐶𝐶 data is much better than the one obtained with 

workday/weekend array, regardless of the type of model used. Therefore, 𝑂𝑂𝐶𝐶𝐶𝐶 and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 have been 

considered as inputs of the designed forecasting models. 

c. Model hyperparameter adjustment 

The process of adjusting the hyperparameters of the three ML models has been carried out 

similarly for both seasons, summer and winter. Particular attention has been given to the design 

process of the NARX model, as the LSTM and SVR models have been developed by other 

members of the research team.  

For the NARX model, three different hyperparameters have been adjusted to achieve the lowest 

MAPE: i) input and feedback delays, ii) number of neurons in the single hidden layer, and iii) 

activation function for the hidden and output layers. A simulation plan has been designed 

accordingly.  

All possible values for each of the hyperparameters gathered in Table 2.2 have been combined 

with four TWs that can capture the weekly consumption trend. Each of the possible combinations 

of the hyperparameter values defined in Table 2.2 constitutes a NARX model.  
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Table 2.2. Simulation plan for NARX model design for first phase. 
N

A
R

X
 

Training 
characteristics 

Model structure Model hyperparameters 

Input 
combinati

on 

Time 
Window 

(TW) 
Activation function neurons 

input & 
feedback 

delays 

Learning 
algorithm: 
Levenberg-
Marquardt 

Optimal 
input 

combination 

7 Hidden = { sigmoid, tansig} 

Output = { sigmoid, tansig, linear} 

[2, 3, 4, 5, 
10] [2, 5, 10] 

Error = MSE 14 
Hidden = { sigmoid, tansig} 

Output = { sigmoid, tansig, linear} 
[2, 3, 4, 5, 

10] [2, 5, 10] 

Daily NARX 
training = 3 times 

21 
Hidden = { sigmoid, tansig} 

Output = { sigmoid, tansig, linear} 
[2, 3, 4, 5, 

10] 
[2, 5, 10] 

28 
Hidden = { sigmoid, tansig} 

Output = { sigmoid, tansig, linear} 
[2, 3, 4, 5, 

10] [2, 5, 10] 

 

Regarding the selection of the learning algorithm in order to prioritise fast training and low 

computational time, the Levenberg-Madquart algorithm has been used. 

Regarding the tune of the delays it has been observed that increasing the delay value does not 

affect the MAPE result. Therefore, a delay of 2 steps has been set for both, input and feedback.  

A general conclusion can be underlined regarding NARX model results gathered in Table 2.3: 

regardless of the used TW, the best results have been obtained with 5 neurons. As for the 

activation functions, the hyperbolic tangent (tansig) function has been set in the hidden layer and 

linear function in the output layer. 

Table 2.3. MAPE results obtained with NARX combining different TW and number of neurons in the hidden layer. 

Input 

combinations 

Time 

Window 
Nº Neurons 

LSTM MAPE 

Winter Summer 

Temperature + 

Occupancy 

7 days 2 21,3 17,6 

7 days 3 19,65 16,4 

7 days 4 23,1 16,75 

7 days 5 19,4 14,3 

7 days 10 19,86 42,45 

14 days 2 18,25 14,6 

14 days 3 21,5 14,3 
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14 days 4 18,9 15,15 

14 days 5 14,0 14,7 

14 days 10 16,60 14,71 

21 days 2 18,55 15,2 

21 days 3 16,0 12,3 

21 days 4 15,2 15,35 

21 days 5 14,9 13,0 

21 days 10 15,69 15,52 

28 days 2 17,0 12,4 

28 days 3 15,4 14,5 

28 days 4 15,3 14,9 

28 days 5 14,7 14,2 

28 days 10 14,59 14,97 

 

Finally, the selected model characteristics are described in Table 2.4. 

Table 2.4. NARX proposed model hyperparameter values for energy consumption forecasting of first phase. 

Hyperparameters of NARX  

Hidden layers 
nº of hidden layers = 1 

number of neurons = 5 

Delay vectors 
Input = 2 

Feedback = 2 

Activation function 
Hidden layer = Hyperbolic tangent 

Output layer = Linear function 

Training parameters Learning algorithm: Levenberg-Marquardt 

 

Same procedure has been carried out when designing LSTM neural network. First, the learning 

rate parameter has been adjusted. Different values ranges (1, 0.1, 0.01, 0.001, 0.0001 and 0.00001) 

have been considered in order to achieve the lowest MAPE. The lowest value has been obtained 

with a learning rate of 0.1. Therefore, the adjustment of the number of neurons has been performed 

with this value. The MAPE values obtained with different TWs and number of neurons have been 

gathered in Table C.2 of Annex C. Winter results show that the most appropriate number of 
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neurons is 15, as the lowest MAPE (around 19%) is obtained for the three largest TW ranges. 

Regarding the summer season, the values remain fairly constant for the range of the analysed 

neurons number (MAPE around 14%). Summarising, a learning rate of 0.1 and 15 neurons have 

been selected to perform the forecast of the consumption with LSTM model.  

The design process for the SVR model differs from the previous two models. This type of model 

has three hyperparameters: 𝐶𝐶 is the regularization parameter, ɛ determines the margin of the 

bounding decision, and 𝛾𝛾 determines so far, the influence of a single training example reaches. 

Each combination of these hyperparameters constitutes a SVR model configuration. The 

hyperparameters have been tuned using Bayesian optimisation [123] and time-sensitive cross-

validation. Similar to the NARX and LSTM models, model selection is based on estimating the 

performance of different configurations to choose the best one. Table C.3 of Annex C reflects the 

values of C and γ that achieve the most accurate prediction model for the four TW selected. 

d. TW Selection 

For the selection of the TW, the MAPE of each model has been analysed with TW values of 7, 

14, 21, and 28 days in the months of September and February.  

Having a look to Figure 2.13, can be concluded that in almost all cases, there is a significant 

improvement when moving from a TW of 7 days to a TW of 14 days. Similarly, better MAPE 

values have been obtained in five out of six cases when moving from a 14-day TW to a 21-day 

TW. This is not the case when increasing the TW to 28 days, as despite achieving a reduction in 

MAPE with the SVR and LSTM in summer, in most cases no further reduction in MAPE can be 

seen than with 21-days TW. Therefore, a TW of 21 days has been selected. 

Consequently, 504 data points have been introduced to the models for training in order to forecast 

next 24 values. Of these 504 data points, 80% have been employed for training the model and 

20% for validation. 
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Figure 2.13. MAPE values of the three models for different TWs in February and September. 

To summarize, Table 2.5 captures the structure and optimal hyperparameter values selected for 

each model. 

Table 2.5. Final structure and optimal hyperparameter values of forecasting models. 

Inputs TW 

NARX LSTM SVR 

delays neurons 
learning 

rate 
neurons Summer Winter 

 

Temperature 

+ Occupancy 

 

21 2 5 0.1 15 

C  γ C γ 

3.9961 2.0133 14.4654 0.0600 

 

2.4.2.2 Second phase 

The second phase has started by acquiring data from MG and pre-processing it. As said, another 

PhD student has been in charge of developing a programme to pre-process the data automatically.  

The inputs chosen in the first phase have been taken as reference adding the time vector that has 

been included to the SVR model Furthermore, the selection of TW has also been done based on 

the first phase, so 21 days have been employed for training the models. Therefore, 504 data points 

have been introduced to the models for training in order to forecast next 24 values. Of these 504 

data points, 80% have been employed for training the model and 20% for validation. 
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a. Model hyperparameter adjustment 

In this section, particular attention is given to the design process of the NARX model as SVR 

model has been developed by another member of the research team.  

Same NARX hyperparameters as defined in the first phase have been adjusted in this case. The 

simulation plan described in Table 2.6 has been designed accordingly.  

Table 2.6. Simulation plan for NARX model design for second phase. 

N
A

R
X

 

Training 
characteristics 

Model structure Model hyperparameters 

Input 
combination 

Time 
Window 

(TW) 
Activation function neurons 

input and 
feedback 

delays 

Learning 
algorithm: 
Levenberg-
Marquardt 

Temperature 
+ Occupancy 21 

Hidden = { sigmoid, tansig} 

Output = { sigmoid, tansig, 
linear} 

[2, 3, 4, 5, 10, 15] [2, 4, 6, 8, 10] Error = MSE 

Daily NARX 
training = 3 

times 

 

The criterion in order to adjust the hyperparameters of NARX has been the same to phase one: 

minimisation of mean MAPE of the entire predicted period, in this case an entire week. The 

selected model characteristics are described in Table 2.7. 

Table 2.7. NARX model hyperparameter values for energy consumption forecasting of second phase. 

Hyperparameters of NARX  

Hidden layers 
nº of hidden layers = 1 

number of neurons = 4 

Delay vectors 
Input = 5 

Feedback = 5 

Activation function 
Hidden layer = Hyperbolic tangent 

Output layer = Linear function 
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Training parameters Learning algorithm: Levenberg-Marquardt 

 

Regarding SVR, the optimal hyperparameters values have been gathered in Table 2.8. 

Table 2.8. SVR model hyperparameters values for energy consumption forecasting of second phase. 

Input combinations TW C 𝜺𝜺 𝜸𝜸 

Temperature + 

Occupancy + Hour vector 
21 10−0.93 10−3 100.36 
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2.5 RESULTS AND DISCUSSION 

The forecasting results are presented in the following subsection. The subsection has been divided 

into two parts corresponding to the first and second phases respectively. 

2.5.1 First phase 

2.5.1.1 Winter results 

MAPE has been calculated for each predicted day. In order to simplify the interpretation of results, 

it has been decided to calculate the average MAPE for each day of the week that is obtained 

during the month of February. The MAPE values are presented in Table 2.9. 

Table 2.9. MAPE mean values of each day of the week in winter season. 

 WINTER 

MAPE  

NARX LSTM SVR 

Monday 13.52 18.12 15.30 

Tuesday 14.76 24.37 19.03 

Wednesday 14.21 22.25 17.64 

Thursday 15.45 23.37 16.30 

Friday 13.08 19.64 14.65 

Saturday 15.63 18.25 23.77 

Sunday 12.32 13.43 11.98 

 

Results show how NARX model performs better than LSTM and SVR models. Average MAPE 

obtained in February by each forecasters is 13.98% with NARX, 18.31% with LSTM and 16.96% 

with SVR. 

On the one hand, LSTM clearly predict with lower accuracy. The MAPEs obtained with the 

LSTM may be derived from the fact that it is not a NN used for cases where a small amount of 

data is available, but is more suitable for large training data sets.  

As for the SVR model, the MAPEs obtained are closer to those obtained with NARX but still do 

not exceed them. This may be due to the absence of a recurrent term in the SVR model, which is 
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important when making a short-term prediction such as this one, since the 24-hour consumption 

ultimately depends on the previous values entered into the model.  

It is also interesting to observe the difference in MAPE according to the day of the week, and in 

particular, the values obtained in the case of the three models for the average of Sunday days. The 

models are able to follow the consumption curve more precisely on Sundays because there is a 

high probability on these days that the HVAC system is not in operation and, therefore, the 

stochastic effect that this system introduces can be eliminated from the equation. 

Regarding February week plotted on Figure 2.14, it can be observed that all the forecasting models 

are able to detect both the trend over a full day and the difference between workdays and 

weekends.  

 

Figure 2.14. First phase: prediction of one week's energy consumption of winter season. 

The average MAPE value for Saturdays in February deserves special attention. It is notably worse 

than that obtained on Sundays, even though the prediction curve is very similar. Looking at Figure 

2.14, it can be concluded that this may be due to the fact that the models are not able to follow 

the variation that exists on Saturday. This variation may be due to the HVAC system, since, due 

to the low temperatures, the heating may have been activated to maintain a minimum temperature. 

Anyway, the best prediction results with NARX model have been obtained during workdays, 

being this important because it will be the workday prediction that will be taken into account in 

the EMS. 

The prediction of the three models differ in particular when consecutive abrupt changes in power 

consumption occur, especially during the night. These sudden night-time variations could be 

explained by the on/off behaviour of HVAC units in operation with constant set points but large 

hysteresis. 
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2.5.1.2 Summer results 

The summer month consumption curve does not show as much variability during the day as the 

winter consumption curve, and the consumption peaks are not as pronounced. Therefore, it is 

interesting to see if the models are able to follow it more precisely and improve the error obtained 

in the prediction of the winter month.  

Table 2.10 presents the MAPE calculated by averaging for each day of the week in September. 

Table 2.10. MAPE mean values of each day of the week of summer season. 

SUMMER 

MAPE  

NARX LSTM SVR 

Monday 15.36 16.27 17.81 

Tuesday 17.92 13.25 13.34 

Wednesday 16.38 13.94 9.76 

Thursday 9.54 10.82 12.01 

Friday 10.54 9.70 11.82 

Saturday 8.62 12.51 15.15 

Sunday 5.67 16.40 21.14 

 

As before, NARX model performs the best prediction, with an average MAPE of 12.08%, while 

the average MAPE of the LSTM model is 14.49% and that of the SVR model is 14.43%.  

The three models agree on the quite high error values in the prediction of the first day of the week. 

This is because in September, when the external temperatures are somewhat high, the building 

overheats and on Mondays a large part of the consumption is related to the switching on of the 

HVAC system, which, as has already been pointed out, has a stochastic behaviour that makes it 

difficult to predict. 

Even so, compared to the MAPE values obtained in winter, the improved results during 

September can be explained by the reduced use of the HVAC system. Indeed, in September, 

external temperatures are more moderate and there is less need to cool the building. This fact is 

very interesting, since the summer season is when there is usually more PV production, and 

therefore, the EMS will be more efficient in increasing the ratio of self-consumed energy.  
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Regarding Figure 2.15, it can be concluded that the predictive models are capable of capturing 

the two types of daily trends that occur during the week: workdays and weekends. 

 

Figure 2.15. First phase: prediction of one week's energy consumption of summer season. 

The measured consumption curve in this case shows much less variation than in the case of the 

winter month. Night-time consumption does not have the sharp shape it did in the winter months. 

The reduced use of the HVAC system mentioned above clearly influences the consumption curve, 

leading to a decrease in the amplitude of the saw-tooth behaviour.  

The models still do not respond perfectly when there are abrupt changes in consumption, for 

example, during the first hours of the morning, where none of the models is able to foresee the 

first increase in consumption that occurs between 08:00 and 09:00 am. 

Finally, in most days the three models have problems to reach the consumption peaks and predict 

the midday drop in consumption associated with lunchtime, which clearly does not occur with 

such abruptness in the month analysed.  

2.5.2 Second phase 

In order to be able to compare both NARX and SVR models performance, Table 2.11 records the 

MAPE values that have obtained the models each predicted day.  
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Table 2.11. Second phase: MAPE values of each day of the week. 

 
MAPE  

NARX SVR 

Day 1: 24/04/2023 12.85 11.30 

Day 2: 25/04/2023 12.39 11.41 

Day 3: 26/04/2023 14.08 8.14 

Day 4: 27/04/2023 10.78 8.62 

Day 5: 28/04/2023 13.00 13.92 

Day 6: 29/04/2023 20.16 8.23 

Day 7: 30/04/2023 14.51 13.49 

 

MAPE results clearly show how SVR outperforms NARX model on most days. Considering the 

mean MAPE obtained by both models during the week, SVR performs 3.62% better than NARX. 

Despite not being a huge accuracy difference, SVR is clearly better following the curve of 

consumption can be seen in Figure 2.16. 

 
Figure 2.16. Second phase: prediction of one week's energy consumption. 

The NARX model clearly has difficulties in correctly predicting the consumption curve at night. 

Moreover, it is not able to see the small peaks of 2kW of the weekend. It can be seen how the 

SVR predicts more accurately the weekend peaks, and its prediction does not differ so much 

from the actual curve during the night. 
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2.6 CONCLUSIONS 

In the first phase of this work, NARX, LSTM and SVR machine learning techniques have been 

used to predict the ESTIA 2 building hourly power consumption for the next 24 hours with a 

small set of data. For that, external temperature and occupancy of the building have been used as 

inputs to the model. 

The first conclusion that can be drawn is that, in the first phase, the highest accuracy is obtained 

with the NARX model in both, winter and summer seasons, obtaining a MAPE of 13.98% and 

12.08% respectively. The global average MAPE for the NARX model is therefore, 13.03%. Thus, 

in first phase, the NARX model performs 26% better than the LSTM model and 21% better than 

the SVR model. 

Regardless of the used type of model, the prediction of consumption in the summer month is 

achieved with a higher accuracy. In the case of LSTM model for example, the MAPE in winter is 

more than 5% higher than in summer. The better results obtained during the summer month are 

directly related to the use of the HVAC system. This system has a stochastic behaviour, which 

makes the prediction of consumption a more complicated task. As the use of the HVAC system 

is higher in winter months, the prediction is less accurate than in summer. The curves of Figure 

2.6 gave from the beginning an idea of the difference in the prediction results between the two 

periods. 

As the EMS requires the HVAC effect to be removed from the overall building consumption, a 

second phase has been carried out where the data pre-processing stage has been automated and 

the HVAC related consumption has been removed from the building's electricity consumption 

curve. In addition, predicted external temperature data has been used as input to the model, as it 

should be done in a real scenario. 

Comparing the NARX results with those of the first phase, it can be seen that the results have not 

worsened substantially despite the use of predicted temperature data as input. The new curves 

having less variability, may have helped the model to predict better.  

As for the SVR model, there is a clear improvement in the MAPE values compared to those 

obtained in the first phase. This improvement might be related to the introduction of an hourly 

vector in the second phase. This input has been able to give the recurrence it lacked in the first 

phase, which is essential for time series predictions. The SVR is able to predict April week 3.62% 

better than the NARX. 

To sum up, a NARX-based model has been developed. It is not only able to predict a high 

variability curve with nonlinear characteristics, but also uses a small data set for training and 
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obtains satisfactory results. Likewise, it is worth highlighting the importance of the input choice 

and their combination for acceptable prediction. A very substantial improvement has been 

achieved by introducing, together with the temperature, the occupancy rate of the building instead 

of the binary array that distinguished only workdays and weekends/holidays.  
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3 CHAPTER 3 

2. PV PRODUCTION FORECASTING 

 

The third chapter discusses the development of a second model based on a NARX-type NN, 

designed for performing day-ahead forecasting of PV production.  

The chapter begins with a comprehensive literature review of modelling techniques used for the 

purpose of short-term PV production forecasting, aiming the identification of best-suited model 

to the specific case study. The literature review has followed by the definition of the objectives 

of this chapter. 

The case study is detailed in a subsequent section, followed by a presentation of the methodology 

used for designing the predictive model. This section presents two subsections corresponding to 

the two phases in which the work has been developed. In the first phase, the NARX model has 

been trained using measured data as inputs. NARX model has been compared with other two ML 

models and an analytical model (AnM). The second phase is an extension of the first phase, which 

consisted of developing same models as in first phase to predict the next day's PV production, but 

in this case, training the models with predicted data from two meteorological agencies. The 

chapter continues with the presentation of the results and the corresponding discussion followed 

by a summary of the main conclusions. 
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3.1 PROBLEM STATEMENT 

Due to, among other things, the electrification of various sectors such as transport and building, 

global electricity consumption is increasing year by year [124]. Until not so long ago, coal, oil or 

natural gas were used to generate electricity, i.e. energy from fossil fuels. However, this practice 

has been called into question due to two problems; firstly, the massive use of fossil fuels has led 

to their progressive depletion, and secondly, the major environmental problem caused by the 

GHGs emitted [125]. 

RES are presented as an alternative due to their inexhaustible and environmentally friendly nature 

[126], [127]. Although there are numerous types of systems based on renewable energies, PV 

energy source has attracted most attention. Proof of this is the high penetration rate of PV systems 

in national electricity markets (see Figure 3.1) and the more than significant increase in installed 

capacity year after year (see Figure 3.2).  

 

Figure 3.1. Total top 10 countries in 2023 based on total PV installed [128]. 

According to IRENA report “Renewable Energy Statistics 2024” [128], the global installed 

capacity of PV power in 2023 reached 1411 GW, seeing an increase of 24.73% compared to 2022. 

Several studies indicate an exponential growth of installed capacity by 2030 [129].  
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Figure 3.2. Global growth and projection of solar installations by country (2022) [129]. 

PV energy has a huge potential in both rural and urban environments due to the possibility of 

installing smaller PV systems in roofs or gardens [130], [131]. However, the high presence of 

renewable energy installations in the electricity system also has disadvantages. The power output 

of a PV system changes over time due to the variability of several environmental factors such as 

solar irradiance, external and PV module temperature, wind speed and direction, etc. The 

stochastic and unpredictable nature of solar energy can cause problems such as voltage and 

frequency fluctuations or even system outages [132], ultimately making difficult to manage 

energy, and more specifically to balance consumption and production [133]. For example, on 

cloudy days the solar irradiance that the PV system receives fluctuates depending on cloud cover 

(CC), or rather cloud movements. These random fluctuations have a noticeable effect on the 

electricity production. 

Several measures have been taken to avoid this problem, such as the integration of battery energy 

storage systems (BESSs) or the development of DR [134], but there are limitations to both. The 

high cost of batteries makes large-scale battery installation unfeasible in many cases, and the 

frequent lack of consumer behaviour data makes the application of DR difficult.  

It is in this context that the forecasting of PV production gains the attention of the research 

community. Accurate prediction of PV production can be vital for grid energy planning, as well 

as to improve system reliability and greatly reduce the effect of uncertainty introduced by the 

intermittent nature of PV systems [135]. 

The prediction of PV production has driven a large number of studies where prediction models 

have been developed for all kind of contexts. Even more with the increasing presence of grid-
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connected Microgrids or SBs, which have led to the need to foresee the power generated by PV 

systems at smaller scales.  

Many reviews can be found by analysing the literature in this direction. Among the most 

interesting is [136] that points out the advantages and disadvantages of the different types of 

models used for forecasting PV production. As well as the work done in [137], where in addition 

to briefly highlighting the classification of the type of predictive models, it points out strategies 

and indicators for the choice of one type of model or another. This last point can be of great 

interest especially for taking the first steps in the study and design of predictive models.  

In order to be able to make an accurate prediction, special attention must be paid to the data that 

is used as inputs, i.e. the predictors. Generally, inappropriate inputs can cause forecasting errors 

in a system, such as time delay or cost and computational complexity [138]. The correlation 

between model inputs and outputs can also affect the performance of the prediction model, so it 

is useful to analyse the correlation between PV production and different meteorological factors 

[138]. Nevertheless, the variable that has the greatest influence on PV production is undoubtedly 

solar irradiance [139]. 

The scientific community has paid special attention to the forecasting of solar irradiance. The 

study of solar irradiance spans several disciplines and different fields of knowledge such as 

atmospheric science, climatology, statistics or data science must be combined [140]. The large 

effect of solar irradiance on PV production means that the accuracy with which the former is 

predicted greatly affects the accuracy with which the latter can be predicted. There are different 

ways of obtaining the data necessary for the determination of solar irradiance. 

(a) Satellite Images: High altitude geostationary satellite images are taken and combined 

with physical models to determine solar irradiance [141]. 

(b) All-Sky Imagers (ASI): Cameras capable of photographing the sky with a 180° field 

of view are used to detect cloud motion and altitude. The aim is to determine the 

future position of clouds in order to predict solar irradiance [142]. 

(c) Sensor Networks: It consists of creating networks of illuminance meter-type sensors 

capable of detecting the movement of cloud shadows, thus being able to create 

models for the prediction of solar irradiance [143]. 

(d) Numerical Weather Prediction (NWP): They are physical models made up of 

differential equations that represent physical and thermodynamic phenomena and 

serve to model conditions over large areas. The generated data can be used both to 

predict solar irradiance [144], or solar irradiance data can even be generated directly 

to, for example, feed into a model for predicting PV production [145]. 
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Independently of these physical techniques for obtaining predicted solar irradiance data, there are 

many papers in the literature that encourage the use of ML models to predict solar irradiance 

[146], [147], [148], [149].  

The effect of other meteorological variables in addition to solar irradiance can also be significant. 

When constructing a forecasting model for solar power, numerous predictors have been used, 

such as external temperature in conjunction with solar irradiance [150], as well as wind speed 

[151]. The latter variable has sometimes been used together with wind direction, as both are 

related to the variation of module temperature [152]. Module temperature has also been used 

directly as a predictor, sometimes in combination with wind speed [153]. There are also papers 

using data such as CC [154] which is often used due to the lack of irradiance data: solar irradiance 

data can be generated by applying CC to a Clear Sky model. Finally, other predictors such as 

relative humidity or irradiance intensity, which depend on the time of year or CC, have also been 

taken into account to predict PV production [155], [156].  

An important aspect to take into consideration when analysing predictors is the quality and 

quantity of data. Many models need inputs that meet certain requirements, which sometimes the 

available raw data do not. In these cases pre-processing techniques are applied to the data. Among 

the best known and employed in the literature is Principal Component Analysis (PCA), a method 

used to reduce the spatial dimension of the inputs [157]. The reduction is achieved by 

transforming the current data into a new set of variables, which will be called principal 

components. Other techniques that can be seen in the literature are the wavelet transform (WT) 

[158], [159] or normalisation [121]. As for normalisation, it is widely used especially in NN based 

models, to improve convergence during NN training and to avoid the large impact of some inputs 

due to their high values [160] (see Equation (2.4) of Chapter 2). 

It needs to be noted that when pre-processing is applied, sometimes the data needs to be post-

processed. As a clearer example, when normalising the data, these data needs to be denormalised 

after prediction [161]. 

3.1.1 Classification of forecasting models 

The models used to forecast PV production could be classified on the basis of various criteria. 

The first classification can be placed on the difference between models that make deterministic 

or probabilistic predictions. The probabilistic approach approximates all possible outcomes of PV 

energy prediction [162]. In contrast, models that predict from the deterministic approach do so 

without taking into account the uncertainties of the predicted points. Similarly, the evaluation 

metrics used to determine the performance of models predicting with a deterministic or 

probabilistic approach are different. Metrics such as MAE, RMSE, MAPE, Pearson correlation 
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coefficient (𝐸𝐸) or R2 among others are used for deterministic predictions, as well as, distribution 

evaluation, quantile evaluation or interval evaluation are used for cases where probabilistic 

prediction is carried out [163].  

Evaluation metrics play an important role in determining the validity of a model to perform a 

prediction task. Among the most commonly used metrics in papers dealing with PV generation 

predictions are mean absolute error (MAE), root mean square error (RMSE) and R2.  

MAE provides the average in absolute terms of the prediction errors following Equation (3.1) 

[103]. 
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 (3.1) 

 where 𝐸𝐸𝑗𝑗 and 𝐸𝐸𝚥𝚥�  are the measured value and its corresponding prediction. 𝑓𝑓 is the total 

number of data in the data set used for the evaluation of model performance. 

RMSE is represented by Equation (3.2) and can be a useful metric when there is interest in 

identifying huge outliers of the model output, as the square helps to highlight them. 
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Finally, R2 is represented by Equation (2.2) included in section 2.1.4 of Chapter 2. 

Another criterion for classifying the various models that exist for predicting PV production is the 

prediction horizon (PH). The forecasting horizon can be considered as the period of time in the 

future in which the forecast should be made [164].  

Four categories can be distinguished according to the length of the PH: (a) very short term, (b) 

short term, (c) medium term and (d) long term. The characteristics of each of the PH are specified 

in section 2.1.1 of Chapter 2. However, there are works that prefer to use another classification 

according to the prediction horizon that overlaps the aforementioned classification and which 

consists of dividing the predictive models into (a) between hours, (b) between days and (c) next 

day [126].  

There is a third classification of models, which is the most widely adopted classification in 

reviews dealing with PV production [138], [161], [165], [126]. The classification consists of 

differentiating the models according to their typology. In this regard, the classification of three 

types of predictive models represented in Figure 2.2 of Chapter 2 is respected: (a) physical 

models, (b) grey-box models and (c) black-box or data-driven models. 
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Physical or analytical models (AnM) are based on mathematical equations that relate 

meteorological variables and PV production. Many of the papers reviewed make use of NWP 

models. In [166], for example, an extended study is made of multiple physical models that 

calculate PV production using data obtained from a NWP model. The models are tested for 16 

different PV plants with intra-day and day-ahead prediction. It is concluded that the average range 

of the best and the worst models predict with a nRMSE of 46.1% and 52.1%, being of 12% the 

relative difference between both. 

The accuracy with which AnM predict varies not only by the type of model used, but also to a 

large extent by the quality of the meteorological data used. The paper [151] introduces a 

comparison of three physical models which predict PV generation with very good results (< 2% 

error). Date time array to determine sun position, external temperature, wind speed and solar 

irradiance, together with the PV cell characteristics obtained from measurements or datasheet 

have been used as inputs to the model. It is concluded that, although these models do not need a 

training period and the coefficients could be recalibrated every year, they are highly dependent 

on the data used in the calibration of the coefficients and the type of approach adopted to calculate 

the cell temperature. The inability of these models to predict the drop in production due to CC is 

also discussed, which is a very important issue especially when predicting in short and very short- 

terms. 

Grey-box models are built with a combination of physical and data-driven models. It is therefore 

not uncommon to see papers where ML models are fed with meteorological data obtained, for 

example, from a physical model such as NWP or Satellite Imagery [167]. 

Finally, black-box or data-driven models are of particular interest in research community. As 

explained in section 2.1.1 of Chapter 2, they do not consider the underlying physical relationships 

of the system, so their interpretability might be difficult. Furthermore, they are based on training 

using historical data. Within this type of models, a classification is made as shown in Figure 2.3 

of Chapter 2: (a) Statistical Analysis (SA), (b) Machine Learning (ML), (c) Deep Learning (DL) 

and (d) Hybrid models.  

Also noteworthy are the benchmark models used in many papers. These models are used as a 

reference to compare more complex models. Normally if a type of model, e.g. a ML model, is not 

able to improve the prediction made by a benchmark model, it is discarded. The persistence model 

is used as one of a standard model to test any type of prediction model and therefore acts as a 

benchmark model [126]. In a persistence model, the future value of a time series is calculated 

under the assumption that nothing changes between the current time and the forecast time [168], 

therefore, the future PV power will be the same as the current time. This technique is mostly used 

in short-term forecasting because as the PH increases, so does the output error of the persistence 
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model [169]. Random model is also used as a reference model. The random model chooses values 

from the past at random from the time to be predicted. Therefore, in the case of wanting to predict 

the PV production at 08am of the next day, the model randomly chooses a value of any day from 

the database recorded at 08am. The random model can present problems during the year, as 

sunrise and sunset vary. 

3.1.2 Statistical Analysis (SA): Autorregressive models (AR) 

Statistical models are based on the concept of stochastic time series and that is why they have 

been widely used for time series forecasting in recent years. Among these models, the most widely 

used are AR models, which are characterised by a regressive term that makes it possible, for 

example, to take into account the seasonality of the data. Even so, these models are not able to 

deal with time series involving nonlinearities. This makes the use of statistical models limited for 

predicting PV production, due to their nonlinearity introduced by the uncertainty of climatic 

conditions [135].  

Models such as ARIMA, which thanks to its integrated term/part (I) able to erase any form of 

non-stationarity from the time series [170], has proven to be a more than valid model for 

forecasting PV generation [171]. The seasonal ARIMA model (SARIMA) has shown to be a very 

interesting variant of the ARIMA model for predicting PV production, proving that in some cases 

it can even forecast more accurately than an ANN. This is the case in [172], where a SARIMA 

model that includes external solar irradiance data outperforms current SARIMA model and also 

two ANN that also have been proposed, succeeding to perform day-ahead forecasting with a 

nRMSE of 11.12%. 

3.1.3 Machine Learning (ML) 

Although initially physical and statistical models started to be used to predict PV production, ML 

models are gaining more and more prominence in scientific literature mainly due to their ability 

to deal with nonlinear behaviours. 

Reviewing the literature, the most popular type of ML models for predicting PV generation are 

both ANN and SVR models.  

Starting with SVR models, thanks to the fact that its algorithm works by mapping nonlinear 

inputs, it is an interesting model to solve the problem of predicting PV generation. In [173], a 

SVR model is used to predict PV generation with a prediction horizon of 30 days. Two SVR 

models are proposed for sunny and cloudy days and although the models and parameters vary for 

each available data set (6 data sets), the overall performance remains in the same range of 

accuracy MSE below 0.000587. 
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Furthermore, this model is governed by a principle called structure risk, which consists of 

balancing the fit of the training data with the complexity of the model to avoid overfitting [173]. 

Due to this advantage, it has been widely compared to various ANN structures, a type of model 

susceptible to the problem of overfitting.  

As exemplified in [174], it is important to analyse the performance of predictive models not with 

measured data, but to employ predicted data to train them. In [150], using a SVR model, the 

energy production of a PV plant in Italy is predicted. Measures and predictions of irradiance and 

external temperature data are used to predict PV production. It is concluded that the results are 

highly dependent on the errors of the input data. If the prediction errors of the meteorological data 

are large, the prediction of solar power generation will not be accurate. In spite of this, not many 

papers can be found in the literature that make use of predicted meteorological data. 

Regarding ANN models, one of the simplest NN models adopted for PV generation prediction is 

the feedforward neural network (FFNN). This type of NN does not have a feedback loop [175], it 

is not recurrent. Nevertheless, it can be interesting for the prediction of PV generation by 

incorporating an input containing temporal information. This is the example of [176], where a 

comparison is made between an Elman Neural Network (ENN) model and a FFNN to predict PV 

generation. Four different models have been created for each NN describing four different cases 

that differ from each other by the selected TW. It is observed that the FFNN is able to predict 

with a very low MSE of even 0.00097 using only one day of TW and including a time vector. 

Although the use of simple FFNN for the purpose of solar power prediction can be feasible and 

interesting results can be obtained, many works propose hybrid models, where not only a FFNN 

is used but it is combined with other models in order to take advantage of the benefits of both 

models [177]. 

NARX models, which do have a recurrent term that allows for better handling of system 

dynamics, have also been applied to predict PV generation. In [178] a nonlinear autoregressive 

model (NAR), a nonlinear input-output model (NIOP) and a NARX are compared to predict a full 

year of PV production of a 78MWp installation. It is found that the NARX with the Bayesian 

Regularization training algorithm is indeed able to predict with a R2 of 0.748 and a nRMSE of 

15.5%. The comparison of NARX with more basic models such as NAR, can show that sometimes 

a more complex model, where it has to make use of external variables, is necessary to be 

implemented in certain situations.  

Despite this, there are works such as [179] where the NARX is compared with a more complex 

models classified as DL like LSTM NN. After comparing NARX and LSTM for performing 

forecasting 1.5 hours-ahead, it is concluded that NARX gives the best results, being both trained 

with three month data set. The LSTM with three hidden layers and a total of 85 neurons predicts 
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with a MSE of 0.0279063, compared to the NARX with one hidden layer and 7 neurons which 

achieves a MSE of 6.52316e-4. It can be seen that the NARX with a simpler structure predicts 

more accurately.  

3.1.4 Deep Learning (DL) 

However, DNNs can be a possible solution for PV output prediction problems. An example of 

this is the work introduced in [180] where CNN, LSTM and a Bidirectional LSTM (biLSTM) 

models are proposed to predict PV output with a not very common input used for prediction: the 

level of dust accumulation. It is concluded that either without dust accumulation or with high dust 

levels, it is the BiLSTM that outperforms both, with an R2 of 0.94 and 0.919 respectively. It is in 

[181] where DNN models are also used to predict PV production including a PV installation 

ageing model that provides valuable information on the deterioration of production accuracy in 

the long term. In this case, in addition to proposing a LSTM and CNN model, the authors propose 

an Autoencoder and gate recurrent unit (GRU) NN. It is concluded that in general, it is the LSTM 

and GRU models that most effectively capture long-run dependencies. They predict with a RMSE 

of 0.1025 and 0.1159 respectively. The CNN presents problems in capturing long-term time series 

dependencies despite being a powerful model both for spatial data analysis and for extracting 

features from the input data [182].  

DNN models have one thing in common; they need large data sets for training. Proposals can be 

seen in literature such as [183], where models that can solve lack of data problem in large data 

sets are proposed. However, there are not many works that propose models able to predict without 

having large data sets.  

3.1.5 Conclusions 

In summary, after having analysed the available literature on the prediction of PV generation, 

some aspects stand out. On the one hand, given the large effect of solar irradiance on PV 

production, it is necessary for solar irradiance forecasting to be as accurate as possible. Thus, it is 

difficult to find references in the literature comparing different sources of predicted 

meteorological data, to see which ones provide reliable and accurate data. 

As has been proven in [166] the selection of a good prediction model can overcome the errors 

that can be found in the solar irradiance prediction data. Therefore, it is important to compare 

different types of predictive models, as well as to contrast these models with simple and well-

known benchmark models. Since more complex models such as ML models will only be justified 

if they are able to improve the operation of the reference models. 
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In the literature, it has been found that there are repeated cases of ML being used for the prediction 

of PV generation trained with large data sets. This contrasts with many of the real cases where 

the accessibility or quality of the data is limited. So it might be of interest to see if the use of ML 

models can be interesting also in the cases of limited data availability. 
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3.2 OBJETIVES 

Starting with the immediate general objective, this Chapter is related to the development of day-

ahead forecasting of PV production using a NARX-type NN model trained with small data set. 

The designed predictive model is then integrated into the optimisation-based EMS developed in 

Chapter 5 (as explained in section 1.4 of Chapter 1). 

In this context, three secondary objectives have been set: 

 The identification of the model capable of predicting PV generation with the highest 

accuracy. Three type of ML models and one analytical model (AnM) have been proposed. 

The aim has also been to analyse whether the proposed models can outperform 

benchmark models. 

 

 The proposed models have been trained not only with measured data but also with 

predicted data from two different meteorological agencies. The objective consists of 

analysing which meteorological agency provides the best predicted solar irradiance data 

for day-ahead forecasting of PV generation.  

 

 The analysis of whether the ML models are able to compensate the errors of solar 

irradiance predictions obtained from the two meteorological agencies. This should be 

seen by comparing the results of the ML models trained on predicted data with the results 

of the analytical model built on the same data. 

The selection of a good prediction model can overcome the errors of predicted meteorological 

data. Therefore, ML and in particular NARX models have been proposed as they are models that 

are able to model nonlinear systems without prior knowledge of the system operation. Moreover, 

the aim has been to design simple structure ML models trained with small data sets appropriate 

for the low-computational cost of the MPC that need to be designed.  

The accuracy with which the models predict has been shown to be highly dependent on the quality 

of the predicted input data. Unlike analytical models, ML models may be able to predict PV 

prediction by taking into consideration the error embedded in the predicted solar irradiance data.  
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3.3 CASE STUDY 

Within the EKATE project, a SC applied to ESTIA Institute of Technology has been proposed 

(see section 1.3 of Chapter I). As mentioned in the same section, the PV installation, which is 

intended to supply the consumption demand of ESTIA 2 building, is located on the roof of the 

ESTIA 1 building (see Figure 3.3). 

 

Figure 3.3. ESTIA 1 building. 

3.3.1 Used data analysis 

Two type of data has been used, the PV production data and the meteorological data, more 

specifically solar irradiance, external temperature and wind speed and direction data.  

3.3.1.1 PV production data 

PV production data started to be recorded in April 2021 via Linky smart meter. Data is recorded 

every 10 minutes and stored in a local database. 

For the first phase, the forecasting of July 2021 month has been performed, being the PV 

production curve the one plotted in Figure 3.4.  
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Figure 3.4. PV production curve of July 2021. 

Regarding second phase, Figure 3.5 shows two different graphs from August and November 

months in which forecasting has been performed. The yellow curve shows the PV production 

curve recorded by Linky meter from 16th to 30 of August. In this period, peak production exceeds 

4kW, a high value considering the installed power (5.6kWp) and the age of the installation (20 

years). In contrast, the red curve shows the PV production in the second half of November. It can 

be seen that in this period the highest peak recorded is 3kW, but with a big difference compared 

to other days when it barely reaches 400W.  

 

Figure 3.5. PV production curves of 15 days of August and November months. 

3.3.1.2 Meteorological data 

The recording was carried out at the meteorological station located at Biarritz airport (Bidart, 

France) which is only 3.5km far from ESTIA 1 PV installation. This distance of more than 3km 
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means that the irradiance recorded at the airport and the irradiance perceived by the PV 

installation will differ due in particular to the difference in CC of the two locations. This can lead 

to an error when predicting PV production. 

Meteorological variables have been obtained from Meteo France (MF) with one hour of sampling 

time. These data is measured, i.e. real data.  

a. Temperature, wind speed and direction data 

The external temperature (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒) can directly affect the PV module temperature and if the latter is 

too high it can considerably reduce the efficiency of the PV array.  

The wind speed can also be a possible input for the models, as it can vary the temperature of the 

PV modules and, therefore, buffer the efficiency reduction in periods of high temperatures.  

In addition, to the wind speed another vector has been propose as the wind speed goes hand in 

hand with the wind direction. Only the wind coming from the direct direction of the PV panels 

has been considered. Taking into account that the panels are at a 20% inclination and oriented 

towards the southwest 150º with respect to the north, only the wind entering between 60º and 240º 

with respect to the north has been considered (see Figure 3.6). Thus, the vector takes on a value 

of 1 when the wind comes from the aforementioned range and zero when it comes from outside 

the range. 

 

Figure 3.6. PV panels orientation and wind direction considered. 

 

b. Solar irradiance data 

Solar irradiance is considered to be the variable that most affects solar PV production, so the 

quality of solar irradiance data can be the key to obtaining accurate predictions. In this regard, in 
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a first phase measured irradiance data from MF has been considered, in concrete, data of July 

2021 (see Figure 3.7). 

Certainly having collected data from the airport of Biarritz, light pollution can affect the measured 

values of irradiance, especially at night when the high intensity lights must be switched on. This 

means that, during night-time periods, the measured irradiance curves show positive values. To 

overcome this problem, the sunrise and sunset times in both November and August have been 

checked to determine a night time window (Table C.4 and Table C.5 of Annex C). A filter has 

been applied to this time band to keep the solar irradiance values at 0. The same filter is applied 

to the predicted PV power curves, i.e. the PV production data is post-processed. 

 

Figure 3.7. Meteo France measured irradiance curves of July 2021. 

In a second phase, data from three different meteorological agencies has been obtained. They 

have all their own data handling processes and models for predicting solar irradiance.  

Figure 3.8 shows the solar irradiance curve measured by MF over a short period of 15 days of 

August and November days. More specifically, it shows the solar irradiance from 16th to 30 

August and from 16th to 30 November 2021. There is indeed a strong correlation between 

production and solar irradiance. Regarding the analysed periods, the measured irradiance is 

significantly different. While in August (yellow curve) the irradiance curves exceed 800W on 

many days, in November the solar irradiance reaches a maximum of 440W and on only two days. 

In most days, the irradiance in August is almost an ideal bell-shaped curve. This explains the 

production curves analysed in Figure 3.5.  
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Figure 3.8. Meteo France measured irradiance curves of 15 days of both August and November months. 

Figure 3.9 and Figure 3.10 show the MG and ECMWF solar irradiance prediction data 

respectively for the same August and November months. 

 

Figure 3.9. Meteo Galicia predicted irradiance curves of 15 days of both August and November months. 
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Figure 3.10. ECMWF predicted irradiance curves of 15 days of both August and November months. 

A priori, it can be seen that the data from each meteorological service differs notably. The 

irradiance predicted by ECMWF shows, especially in November, very irregular curves, and in 

many cases almost zero values. As it is evident, the measured MF irradiance data is the closest to 

the PV production of both months.  
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3.4 METHODOLOGY 

3.4.1 Methodology description 

The methodology followed to carry out the PV production forecasting has been designed in 

accordance with the objectives set out in section 3.2. As said, two phases have been differentiated 

according to the different objectives pursued. 

3.4.1.1 First phase 

The first phase consists on performing a day-ahead prediction of solar PV generation with a 

NARX model using measured data of MF. The objective has been to validate the NARX model 

and to evaluate and compare the accuracy with which this model, two more ML models (FFNN 

and SVR) and an AnM are able to predict a summer month, namely the month of July 2021. 

Special attention has been paid to the design process of the NARX model, as the FFNN, SVR and 

analytical models have been developed by other PhD students of the research team. 

A description of the methodology followed is shown in Figure 3.11. 

 

Figure 3.11. Flowchart of followed methodology in the first phase. 

Solar irradiance, temperature and the vectors that consider wind speed and direction have been 

included as possible inputs for the predictive models. In order to see which of these variables 

provide the most information for predicting PV generation, the predictions have been made with 

each combination of inputs and the accuracy with which the three proposed ML models predict 
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has been calculated. In this first phase, the inputs have been introduced with a sampling time of 

30 minutes, so that the model predicts 48 solar generation samples of the next day.  

After the inputs, the optimal TW has been selected for the three ML models to see if the number 

of days introduced to train the model contributes to improve the accuracy of the prediction. 

Finally, the hyperparameters of each model have been adjusted obtaining the best model of 

NARX, SVR and FFNN. The selection of inputs, the choice of the TW and the search for the best 

values for the hyperparameters of both NN models have been carried out following the same 

criterion as in Chapter 2 when designing the models to predict the ESTIA 2 building energy 

consumption: the model is trained daily and performs day-ahead forecasts. Each time it is trained, 

the weights of the NN are randomly initialised. As mentioned above, the network predicts the 

entire month of July, therefore, the network has predicted the entire month three consecutive times 

in a daily training basis. The average monthly R2 obtained each of the three times is calculated. 

The process is repeated for each combination of hyperparameter values, i.e. for each model 

constructed. The model with the lowest average R2 is selected. 

Due to the characteristics of the AnM, the design process is completely different. It is based on 

known mathematical equations. Therefore, the correctness of its design is based on the accuracy 

of the knowledge-based model parameters.  

3.4.1.2 Second phase 

In the second phase, day-ahead prediction of solar PV generation has been carried out again with 

a NARX model, as well as with SVR, FFNN and an analytical model. However, in this phase, the 

prediction has not only been based on measured inputs obtained from MF, but also on predicted 

input data obtained from other two meteorological agencies: MG and ECMWF. In addition, the 

study has been extended by carrying out the prediction in August and November months. In this 

case too, special attention has been paid to the design process of the NARX model. The rest of 

the models have been developed by other PhD students of the research team. 

Figure 3.12 shows the methodology followed in this second phase.  
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Figure 3.12. Flowchart of followed methodology in the second phase. 

As described in Figure 3.12, the analysis started by looking at the possible inputs for the predictive 

models and proceeding to pre-process the data from the three meteorological agencies. Then, the 

structure of the three ML models have been defined, by choosing the combination of inputs to be 

introduced and the TW for training. The last step has consisted of adjusting the hyperparameters 

of the models. The criterion used for the construction of the predictive models has been the same 

as in first phase. 

In this second phase, the sampling time has been of 1 hour instead of 30 minutes because predicted 

meteorological data is available with a sampling time of 1 hour. Therefore, the model predicts 24 

data points of the following day.  

3.4.2 Developed models: ML and AnM 

The NARX model, due to its ability to model nonlinear systems and to handle time series thanks 

to its recurrent term, has been one of the ML models to be modelled to forecast PV generation. 

Both the design and operation of NARX have been detailed in Annex A. 
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Another ML model proposed is the SVR. The SVR, as explained in Annex A, is also made up of 

hyperparameters and their adjustment is performed by means of Bayesian Optimisation, an 

automatic search algorithm based on the Gaussian process [184]. 

The performance and characteristics of the AnM as well as the FFNN can be consulted in [184].  

3.4.3 Application of methodology 

3.4.3.1 Data pre-processing 

Data pre-processing has involved reviewing the data provided by the meteorological agencies 

and, according to the requirements of the models, preparing them to meet these requirements. 

First, both PV production and meteorological data have been analysed to detect and repair 

possible outliers by linear interpolation. Repeated data has been removed and missing data has 

been added by linear interpolation. 

In the first phase, it has been decided to use a sampling time of 30 minutes, so being PV production 

data registered every 10 minutes, mean value every 30 minutes has been calculated. In the second 

phase, a sampling time of 1 hour has been fixed, therefore, production data has been modified by 

calculating mean hour values. 

Finally, the data has been normalised between the range [0, 1] in order to use it in ML models. 

The data from the three meteorological agencies has been normalised using the ranges of Table 

3.1. 

Table 3.1. Normalisation ranges for all possible inputs. 

Normalisation 
MF MG ECMWF 

[min, max] [min, max] [min, max] 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 [0, 4430](W) [0, 4430](W)  [0, 4430](W)  

𝑺𝑺𝑷𝑷𝑺𝑺𝑺𝑺𝑷𝑷 𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝒊𝒊 [0, 984](W) [0, 950](W) [0, 935](W) 

𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 [-4, 43](ºC) [-3, 38](ºC) [-1, 34](ºC) 

𝑾𝑾𝑷𝑷𝑷𝑷𝑷𝑷 𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝑷𝑷   [0, 20.5](m/s) [0, 22](m/s) [0, 18](m/s) 
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3.4.3.2 Input selection 

After pre-processing the data, inputs for the ML-based predictive models have been selected. 

The objective has been to select the inputs that best predicts PV production with the three ML 

models. The R2 values obtained by each model when using different inputs are gathered in 

Table 3.2.  

Table 3.2. R2 results of the input combinations tested in the first phase  

Input combinations 
R2  

FFNN NARX SVR   

𝑺𝑺𝑷𝑷𝑺𝑺𝑺𝑺𝑷𝑷 𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝒊𝒊 0.893 0.828 0.913  

𝑺𝑺𝑷𝑷𝑺𝑺𝑺𝑺𝑷𝑷 𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝒊𝒊 + 𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 0.881 0.789 0.904  

𝑺𝑺𝑷𝑷𝑺𝑺𝑺𝑺𝑷𝑷 𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝒊𝒊 + 𝑾𝑾𝑷𝑷𝑷𝑷𝑷𝑷 𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝑷𝑷 0.879 0.794 0.906  

𝑺𝑺𝑷𝑷𝑺𝑺𝑺𝑺𝑷𝑷 𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝒊𝒊 + 𝑾𝑾𝑷𝑷𝑷𝑷𝑷𝑷 𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝑷𝑷_dq  0.870 0.776 0.905  

  

It can be clearly noticed that with solar irradiance alone all three models predict with higher 

accuracy. Therefore, in first and second phases, solar irradiance has been the single input selected.  

3.4.3.3 First phase 

a. Time Window Selection 

After selecting the model entries, the TW has been chosen. For that, a comparison has been made 

between the use of a TW of 5 days or 10 days analysing in which case the PV production is more 

accurately predicted. Finally, a TW of 10 days has been selected [185]. 

Therefore, 480 data samples have been introduced to the model during the training phase, in order 

to predict 48 values of the next day's PV production. Of these 480 data points, 70% has been used 

for training and 30% for model validation.  

b. Model hyperparameters adjustment 

Regarding NARX model, the hyperparameters that have been adjusted to improve the accuracy 

of the predictions for the month of July are the following: (a) the number of neurons in the hidden 

layer, (b) input and feedback delays and (c) the activation function in the hidden and output layers. 

It is also possible to add more than one hidden layer to the network. However, as it is considered 

a simple prediction problem, only one hidden layer has been used.  

Each of the possible combinations of the hyperparameters values defined in Table 3.3 constitutes 

a NARX model.  

 



PV PRODUCTION FORECASTING 
 

108 

 

 

Table 3.3. Simulation planning for NARX model design in first phase.  

N
A

R
X

 

Training 

characteristics 

Model structure Model hyperparameteres 

Input 

combination 

Time 

Window 

(TW) 

Activation function neurons 

input and 

feedback 

delays 

Learning 

algorithm: 

Levenberg-

Marquardt 

Solar 

irradiance (W) 
10 days 

Hidden = {linear, tansig} 

Output = {linear, tansig} 
[1, 2, 3, 4, 5, 10] 

[0, 1] and 

[1,2,3.4] 

Error = MSE 
Hidden = {linear, tansig} 

Output = {linear, tansig} 
[1, 2, 3, 4, 5, 10] 

[0, 1] and 

[1,2,3.4] 

Daily NARX 

training = 3 times 

Hidden = { linear, tansig} 

Output = { linear, tansig} 
[1, 2, 3, 4, 5, 10] 

[0, 1] and 

[1,2,3.4] 

Hidden = { linear, tansig} 

Output = { linear, tansig} 
[1, 2, 3, 4, 5, 10] 

[0, 1] and 

[1,2,3.4] 

 

For the selection of the number of neurons in the hidden layer, it has been found that the best 

results were acquired with 1 and 3 neurons, obtaining a significant improvement in the R2 metric 

(see Table 3.4).  

As for the activation function, the default tansig function has been set in the hidden layer and the 

linear function in the output layer. The sigmoid activation function is problematic in case of PV 

production forecasting due to its codomain being ]0, 1[ , it tends to give problems of stability in 

the output during the night when having to predict null values. 

In the adjustment of both delays, the predictions have been made with different combinations of 

input and feedback delays.  
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Table 3.4. Results obtained with NARX model combining different number of neurons and delays. 

Nº of Neurons Input delay Feedback delay MAE RMSE R2  

1 

0 1 186.253 306.610 0.850  

0 2 178.890 300.114 0.850  

0 3 170.447 285.746 0.863  

0 4 175.752 296.368 0.848  

1 1 178.735 297.446 0.856  

1 2 182.403 303.188 0.849  

1 3 178.704 300.948 0.843  

1 4 175.490 295.415 0.850  

3 

0 1 203.762 338.190 0.854  

0 2 233.423 375.512 0.812  

0 3 209.042 351.111 0.779  

0 4 178.290 305.830 0.842  

1 1 160.204 274.975 0.877  

1 2 148.465 255.714 0.881  

1 3 151.524 261.359 0.877  

1 4 190.125 327.298 0.810  

 

Therefore, looking at the results obtained, it can be concluded that the model that better forecasts 

the PV production is obtained by adding three neurons in the hidden layer and setting 1-time delay 

step in the input and 2 in the feedback. The training and validation processes of all modelled 

NARX structures have been analysed to corroborate that there is no overfitting by analysing the 

MSE obtained from the training and validation data. 

The selected model characteristics are described in Table 3.5. 

Table 3.5. Hyperparameter values of the proposed NARX model for PV production forecasting. 

Hyperparameters of NARX  

Hidden layers 
nº of hidden layers = 1 

number of neurons = 3 

Delay vectors 
Input = 1 

Feedback = 2 

Activation function Hidden layer = Hyperbolic tangent 
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Output layer = Linear function 

Training parameters Learning algorithm: Levenberg-Marquardt 

 

Regarding FFNN, few hyperparameters can be adjusted: (a) the number of neurons in hidden 

layer, and (b) the activation functions. As stated in Table 3.6, the hidden layer of FFNN is 

comprised by 5 neurons. As for the NARX, the training and validation process has been analysed 

to ensure that the network does not suffer from overfitting. 

Table 3.6. Results of tests for FFNN hyper-parameter adjustment. 

Nº of Neurons MAE RMSE R2   

2 143.60 253.23 0.8849   

4 131.62 237.86 0.8917   

5 130.07 235.69 0.8931   

6 132.53 239.13 0.8911   

8 131.75 238.03 0.8923   

10 131.91 238.61 0.8910   

15 132.04 241.99 0.8872   

20 133.02 243.59 0.8853   

 

Finally, the SVR model has been designed by adjusting the hyperparameters by means of a 

Bayesian optimisation algorithm. Table 3.7 gathers the values corresponding to the 

hyperparameters 𝐶𝐶, ɛ and 𝛾𝛾 defined in section 2.4.2 of Chapter 2. 

Table 3.7. Results of SVR hyper-parameter tuning based on Bayesian optimisation. 

𝑪𝑪 𝜺𝜺 𝜸𝜸  

166 0.002 0.003  

 

3.4.3.4 Second phase 
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Regarding input combination, the analysis carried out in the first phase has been used as a 

reference, selecting once again only solar irradiance as input for all models.  

a. Time Window Selection 

The analysis that has been done in the first phase regarding TW selection has been extended in 

this second phase. Together with using 10 days of TW, 15 days have also been employed. 15 days 

were selected due to the better results obtained. 

Taking into account that the sampling time in the second phase is of one hour, 360 training data 

points have been introduced, 70% of which have been used to train the model and 30% for 

validation. 

b. Model hyperparameters adjustment 

The hyperparameters of NARX that need to be tuned are stated in first phase. In this case too, a 

single hidden layer has been kept. Table 3.8 shows the values of each hyperparameter that have 

been combined in order to choose the NARX model.  

Table 3.8. Simulation planning for NARX model design in second phase. 

N
A

R
X

 

Training 

characteristics 

Model structure Model hyperparameteres 

Input 

combination 

Time 

Window 

(TW) 

Activation function neurons 

input and 

feedback 

delays 

Learning 

algorithm: 

Levenberg-

Marquardt 

Solar 

irradiance (W) 
15 days 

Hidden = {linear, tansig} 

Output = {linear, tansig} 

[2, 4, 5, 6, 7, 8, 

10, 15] 
[2, 4, 6, 8, 10] 

Error = MSE 
Hidden = {linear, tansig} 

Output = {linear, tansig} 

[2, 4, 5, 6, 7, 8, 

10, 15] 
[2, 4, 6, 8, 10] 

Daily NARX 

training = 3 times 

Hidden = { linear, tansig} 

Output = { linear, tansig} 

[2, 4, 5, 6, 7, 8, 

10, 15] 
[2, 4, 6, 8, 10] 

Hidden = { linear, tansig} 

Output = { linear, tansig} 

[2, 4, 5, 6, 7, 8, 

10, 15] 
[2, 4, 6, 8, 10] 

 

As for the activation functions, there is the same problem of using the sigmoid function, since this 

function destabilises the output during the night when its value is null. Therefore, tansig function 

has been applied in hidden layer and better results have been seen when applying linear function 

in output layer. Table 3.9 shows the value of the hyperparameters of the NARX, when it has been 
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trained with data from the three meteorological agencies both for predicting August and 

November PV generation. 

 

 

 

Table 3.9. Structure and hyperparameters values for proposed NARX model for each meteorological agencies and 

seasons. 

NARX 

Structure & Hyperparameters 

Independent input Solar irradiance (W) 

Time Window 15 days 

Activation Function 
Hidden layer = Hyperbolic tangent 

Output layer = Linear 

Weather Service MF MG ECMWF 

Season November August November August November August 

Number of neurons 4 5 4 2 10 10 

Delays 
Input 3 5 3 5 3 5 

Feedback 5 5 5 5 5 5 

 

Regarding FFNN, the best model characteristics for each data source are gathered in Table 3.10. 

A single hidden layer has been selected and to determine the number of neurons, the behaviour 

of the models have been compared by considering from 2 to 15 neurons. 

Table 3.10. Structure and hyperparameter values for proposed FFNN model for each meteorological agencies and 

seasons. 

FFNN 

Structure & Hyperparameters 

Independent input Solar irradiance (W) + Hour vector 

Time Window 15 days 

Activation 

Function 

Hidden layer = Sigmoid 

Output layer = Lineal 

Weather Service MF MG ECMWF 

Season November August November August November August 

Number of neurons 4 6 8 4 10 7 
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Finally, SVR has been considered following the same designing procedure as in the first phase. 
Table 3.11 summarizes the structure and design of selected SVR model. 

 

 

Table 3.11. Structure and hyperparameter values for proposed SVR model for each meteorological agencies and 

seasons. 

SVR 

Structure & Hyperparameters 

Independent input Solar irradiance (W) + Hour vector 

Time Window 15 days 

Weather Service MF MG ECMWF 

Season November August November August November August 

𝐶𝐶 64 64 2 64 64 64 

𝜀𝜀 4 0.1 64 4 4 4 

𝛾𝛾 0.25 0.5 2 0.5 0.125 2 
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3.5 RESULTS AND DISCUSSION 

3.5.1 First phase 

This subsection presents the results obtained after performing one-day-ahead forecasting of PV 

generation by three ML models and one AnM using historical measured data obtained from MF 

for training.  

To begin with, Table 3.12 shows the average of error metrics of each model. It can be observed 

that all the proposed models predict the month of July 2021 with an R2 above 0.88. Analysing the 

results in terms of R2, the SVR stands out from the other models with an R2 of 0.934.  

Table 3.12. Error metrics obtained for the prediction of PV generation during the month of July. 

Model MAE RMSE R2  

NARX 155.93 267.51 0.886  

FFNN 125.66 231.20 0.896  

SVR 141.81 252.46 0.934  

AnM 234.46 406.51 0.895  

 

Figure 3.13 shows the response of the NARX model of a single week taken from prediction results 

of the month of July. NARX predicts particularly well the cloudy days, represented in this graph 

by the production of 22nd and 23rd of July. Figure C.6, Figure C.7 and Figure C.8 in Annex C 

show the forecasting curves of FFNN, SVR and AnM models respectively in comparison of 

expected production during the same July week.  



PV PRODUCTION FORECASTING 
 

115 

 

Figure 3.13. Forecast of PV generation for a week of July with NARX model. 

Table 3.13 shows the R2 values of the predictions performed by the four models on sunny and on 

cloudy days. It can be concluded that it is the SVR, which again outperforms the rest of the models 

on both sunny and cloudy days. Moreover, while on sunny days, where the production is closer 

to a perfect bell shape, the R2 obtained is around 0.95, on cloudy days the R2 drops to 0.8.  

Table 3.13. Results of the four models for five sunny days and five cloudy days. 

Type of day Date 
R2  

FFNN  NARX  SVR  AnM   

Sunny days 

05/07/2021 0.963 0.943 0.962 0.897  

09/07/2021 0.980 0.927 0.968 0.881  

10/07/2021 0.980 0.971 0.978 0.915  

19/07/2021 0.981 0.973 0.982 0.894  

26/07/2021 0.971 0.953 0.977 0.906  

Cloudy days 

06/07/2021 0.780 0.779 0.871 0.758  

07/07/2021 0.676 0.670 0.813 0.726  

08/07/2021 0.662 0.670 0.802 0.728  

13/07/2021 0.824 0.839 0.902 0.834  

06/07/2021 0.780 0.779 0.871 0.758  
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3.5.2 Second phase 

Figure 3.14 and Figure 3.15 show the R2 of the predictions made by each model in August and 

November months. The two horizontal lines that can be seen in each bar chart represent the R2 

value obtained by benchmark models, i.e. the persistence and random models. 

 

Figure 3.14. R2 results for all proposed models and three different meteorological data sources, for November. 

Starting by looking at how the November month is predicted, several conclusions can be drawn. 

A notable difference can be seen in the results of all models when trained with MF irradiance data 

and when trained with the predicted MG and ECMWF irradiance data. All four models are able 

to overcome the R2 of 0.70 of the persistence model when using measured MF data. In contrast, 

when using predicted data from the two aforementioned agencies, the models present more 

problems to surpass the persistence, especially when using irradiance data from ECMWF, with 

which only the FFNN is able to improve the R2 of 0.7 of the persistence. 

As for the AnM, it is able to predict very accurately (with a R2 of 0.9) when modelled with 

measured MF irradiance data. This contrasts with the results obtained by the AnM when using 

predicted data, since in these cases it fails to outperform the persistence model.  
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Figure 3.15. R2 results for all proposed models and three different meteorological data sources, for August. 

As for the August month, compared with the November results, there is a noticeable improvement 

in the R2 values of all models. This is because in August the production curves are much closer 

to a perfect bell shape due to also bell-shaped irradiance curves (see Figure 3.9 and Figure 3.10).  

Once again, the models predict more accurately when trained with irradiance data from MF than 

with predicted solar irradiance data. Anyway, ML models trained with predicted data (MG and 

ECMWF) have proven to be able to outperform the persistence model, which obtains a R2 of 0.82. 

As for the AnM, in the case of August, a difference in its response can also be observed when 

modelled with measured MF irradiance data and predicted data from both meteorological 

agencies. Although it surpasses the persistence model in the case of MG, it does not manage to 

outperform it with ECMWF data, and even narrowly improves random model accuracy. 

With the R2 values grouped by model type in Table 3.14, it is possible to conclude that the FFNN 

is the best model to forecast PV production during the November month. It is followed by SVR 

and NARX. The SVR obtains a very good prediction result when it is trained with measured 

irradiance, but it predicts worse than the NARX model when trained with predicted irradiance. 

Table 3.14. Error metric values of all models for November.  

 
November 

MAE r R2 

Persistence model 245.32 0.82 0.70 

Random model 309.04 0.72 0.53 

FFNN 
MF 59.98 0.981 0.96 

ECMWF 171.03 0.85 0.74 
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MG 212.29 0.87 0.76 

SVR 

MF 55.41 0.962 0.96 

ECMWF 168.27 0.74 0.59 

MG 196.73 0.70 0.76 

NARX 

MF 176.60 0.86 0.75 

ECMWF 186.80 0.81 0.67 

MG 224.55 0.84 0.72 

AnM 

MF 233.80 0.95 0.90 

ECMWF 243.04 0.67 0.52 

MG 263.44 0.81 0.67 

 

In August as seen in Table 3.15, the best predictive model is still FFNN followed by SVR, which 

predicts somewhat worse than FFNN when trained with predicted irradiance. Although the AnM 

predicts more accurately than NARX in the case of using measured irradiance data, NARX 

improves the AnM when using predicted irradiance data, instead on summer trained with data 

from MG. 

Table 3.15. Error metric values of all models for August. 

 
August 

MAE r R2 

Persistence model 353.03 0.90 0.82 

Random model 422.12 0.86 0.75 

FFNN 

MF 77.49 0.994 0.99 

ECMWF 219.65 0.95 0.90 

MG 308.13 0.95 0.90 

SVR 

MF 62.13 0.985 0.99 

ECMWF 234.10 0.92 0.86 

MG 299.50 0.73 0.88 

NARX 

MF 272.52 0.93 0.88 

ECMWF 302.71 0.91 0.84 

MG 394.43 0.92 0.86 

AnM 

MF 207.61 0.98 0.96 

ECMWF 338.24 0.86 0.76 

MG 295.95 0.93 0.88 

 

Finally, Figure 3.16 and Figure 3.17 have been added to show more graphically the responses of 

the NARX model predicting PV production in November and August. 
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The greater the variability, the greater the difficulty for NARX to follow the measured production 

curve. Comparing the NARX curve trained with MG and ECMWF data, it is concluded that it 

follows the real production curve better when trained with MG data. It can be seen that with the 

ECMWF data, the model predicts the production, in general, significantly below the expected 

values, except the high peak that predicts the 24th of November. This might be related to the 

conservative solar irradiance predictions made by ECMWF agency shown in Figure 3.10. 

 

Figure 3.16. NARX model prediction results in November when training with different data sources. 

The increase in the R2 values obtained in August (see Table 3.15), translates into improved 

tracking of all the NARX models to the expected production curve as can be seen in Figure 3.17.  

 

Figure 3.17. NARX model prediction results in August when training with different data sources. 

It can be seen that there is not so much difference between the tracking of the model trained with 

MF data and that of the models trained with predicted MG and ECMWF irradiance data. Anyway, 
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it should be noted that NARX model sometimes predicts with errors that might not have a clear 

explanation. 
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3.6 CONCLUSIONS 

This third chapter introduces the design, development and analysis of a NARX-type NN model 

to predict the PV energy generated at ESTIA 1 in order to use it in the optimisation-based EMS 

described in Chapter 5. 

The ML based NARX, FFNN and SVR models together with the AnM proposed in the first phase 

have been trained with measured solar irradiance data obtained from MF. The results show that 

for the prediction of July 2021 the NARX is able to predict with a R2 of 0.886, 5.12% worse than 

the SVR, which is the one that best predicts the month with an average R2 of 0.934. The SVR also 

outperforms the FFNN and the AnM, predicting 4.07% and 4.18% better respectively.  

Regardless of the model used, it has been found that sunny days are predicted more accurately 

than cloudy days. This is related to the irregular shape that solar irradiance acquires on cloudy 

days, which makes higher the variability of the PV production curve and forecasting becomes 

harder. 

In a second phase the analysis has been extended to see how the ML models and the AnM perform 

day-ahead production forecasting instead of using measured solar irradiance data as input, using 

predicted irradiance data from MG and ECMWF. This second approach is compulsory for the 

real operation of the EMS. 

FFNN has been the model that forecasts with the highest accuracy, which surpasses the rest of 

the models in almost all the cases. Anyway, even in November or August, NARX has managed 

to follow the PV production curve with high accuracy. Of particular note is the case of NARX 

trained with predicted ECMWF data. The ECMWF solar irradiance data, especially in November, 

shows great variability and the NARX model is able to outperform the SVR and the AnM in both 

August and November with a R2 of 0.84 and 0.67 respectively. 

The AnM presents a significant difference in accuracy when using measured and predicted 

irradiance data. In the case of November, the R2 difference obtained when using measured 

irradiance and predicted irradiance data from MG and ECMWF is 42.22% and 25.56% 

respectively. Being compared with ML models, the last ones are able to predict with higher 

accuracy when they are trained with predicted data. This shows that to some extent ML models 

are able to compensate the errors of solar irradiance predictions.  

It has also been found that the proposed models perform better when trained with MG irradiance 

data. In the case of November, on average, the models based on MG data predict with a R2 of 0.72 

while those based on ECMWF irradiance data predict with a R2 of 0.63. In August, models trained 
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with MG irradiance data predict on average with a R2 of 0.88 and those trained with ECMWF 

irradiance data with a R2 of 0.84. 

Furthermore, it can also be concluded that in August all ML models outperform persistence and 

random models without great difficulty. In November, all the proposed models exceed random 

model but in case of SVR and NARX models trained with predicted irradiance data from 

ECMWF, are not able to outperform the persistence model.  

In this work it has been shown that with a small data set it is feasible to propose ML models to 

forecast in short-term PV production. The results show that the NARX model can perform short-

term forecast with high accuracy even when it is trained with a small data set of predicted solar 

irradiance data.  
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4 CHAPTER 4 

3. BUILDING THERMAL MODEL 

 

The fourth chapter is dedicated to the design of the thermal model for the building under analysis. 

This chapter aims to model HVAC system and its associated building thermal capacity.  

It begins with an overview of the most relevant studies conducted to date in this field, narrowing 

down to those that model a building under conditions similar to the ones determined in the case 

study analysed. This leads to a presentation of the established objectives and the contributions of 

this chapter. The case study has been then presented and the methodology employed to develop 

the modelling of the building’s thermal behaviour is introduced, followed by the presentation of 

the results. The chapter ends with a section discussing the conclusions drawn. 

  



BUILDING THERMAL MODEL 
 

125 

4.1 PROBLEM STATEMENT 

There is no denying the importance of the need to reduce global energy consumption. This is 

evidenced by laws and directives promoted by international institutions, more or less persistently 

implemented by states, in order to potentially reverse the environmental issue we face.  

Given the large share that buildings play in global consumption, building sector holds substantial 

potential for energy savings and load shifting, crucial for mitigating high demand peaks.  

To achieve these objectives and effectively reduce building consumption it is imperative to design 

tools and methods for enhancing building electrical efficiency [186], [187]. However, this task 

can prove challenging without a comprehensive understanding of consumption patterns across 

different building types. 

Numerous factors influence a building's energy performance, including occupant behaviour, 

occupancy levels, lighting systems, weather conditions, and HVAC system [188]. Among these 

loads, the HVAC system stands out as having the most significant impact on total energy 

consumption, typically constituting around half of a building's total energy usage [189]. 

Moreover, employing advanced strategies for the HVAC control can facilitate the integration of 

RES [190]. 

Given these considerations, energy management assumes fundamental importance. Building 

energy management is often facilitated by an EMS, which it has proved to be a very interesting 

tool for SC and similar applications. 

EMSs use to operate by managing the FLs of buildings. HVAC systems and the associated 

building thermal capacity are identified as one of the most interesting FL for energy savings [191]. 

Consequently, the literature frequently explores the development of EMSs with HVAC use 

optimisation as a central focus [192], [193], [194], [195]. To optimise this FL, it is necessary to 

model both HVAC system and the associated thermal capacity of the building. Therefore, it is 

imperative to review different models applied for modelling both. 

An initial classification distinguishes between static and dynamic models. Static models, 

characterised by their ability to describe thermal behaviour exclusively in steady-state conditions, 

lack the capacity to represent transient stages. On the contrary, dynamic models incorporate the 

evolution of thermal loads, calculating heat transfer between various building elements. The 

literature commonly features dynamic modelling approaches, often employing equivalent 

electrical circuits to represent thermal dynamics. 
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A second classification based on modelling approach, differentiates models into three types: (a) 

white-box or physical models, (b) grey-box, and (c) black-box or data-driven models. Figure 2.3 

of Chapter 2 depicts the mentioned classification.  

White-box models have traditionally dominated building modelling [196]. These highly detailed, 

high-order models rely on physical equations and building material parameters. However, their 

complex nature and demand for comprehensive understanding of environmental phenomena 

render them unsuitable for applications such as MPC [197]. 

Grey-box models, in contrast, mix a physical model with data-driven models. These simplified 

models, requiring less complexity than white-box models during design, are better suited for 

control applications. Moreover, they often require less data than black-box models, as they can 

extrapolate system behaviour beyond the training data's operational range. The resistor-capacitor 

(RC) thermal network, based on an equivalent electrical circuit, is an example of grey-box 

modelling in the thermal analysis of buildings [198], [199].  

Black-box or data-driven models require historical data for model identification. The spreading 

of data availability has increased interest in data-driven models among researchers. Notably, 

ANNs and in general, ML models have gained prominence over traditional physical models [95]. 

However, challenges persist in real-world applications, including data accessibility issues, 

monitoring limitations, and incomplete data sets. While SA models are characterised by simplicity 

and low computational overhead, their performance may vary depending on the system's 

complexity [200]. AR models hold particular significance on modelling purposes. They 

incorporate lagged terms of the same variable, thus allowing the dynamics of the system to be 

taken into account. Further details on AR models are available in Annex B. 

4.1.1 Building thermal capacity model 

The building's thermal capacity, associated with its HVAC system, constitutes a critical element 

for modelling. The operation of the air conditioning system is linked to the thermal capacity of 

the building and both constitute a FL in which the EMS can act [201]. Consequently, the creation 

of a thermal model of the building serves an important purpose: it effectively describes the thermal 

performance of the building, i.e. the indoor temperature variation, facilitating the assessment of 

the effects of energy improvement measures on the building. By assessing the impact of such 

measures on the building's thermal behaviour, optimal energy-efficient options can be identified 

[202]. In essence, the thermal model, among other things, serves to forecast the energy 

requirements of the building. 

For many years, physical models, particularly white-box models, have been extensively employed 

for modelling indoor temperature (𝑇𝑇𝑖𝑖𝑖𝑖). Despite their dependence on detailed structural 
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parameters, advancements in software technologies have simplified the modelling process. 

Notably, the EnergyPlus software utilising plugins such as OpenStudio SketchUp exemplifies this 

trend [196]. By incorporating specific building characteristics, these models can accurately follow 

𝑇𝑇𝑖𝑖𝑖𝑖 evolution and corresponding energy consumption. In the case of [99], building thermal model 

is built in EnergyPlus with the target of generating temperature data to train a data driven HVAC 

system model.  

Likewise, RC models are also highly appropriate for thermally characterizing a building. 

Sometimes due to the large number of structural elements that make up a building, the creation 

of a RC thermal network can also become a difficult task. In [203] a methodology is proposed 

that consists of first creating a complex RC structure based on physical principles and iteratively 

eliminating non-identifiable parameters in order to create a structure simple enough to be able to 

follow the 𝑇𝑇𝑖𝑖𝑖𝑖 with even better results than with more complex structures. A complex structure 

of the RC model includes many parameters to reflect the detailed thermal interactions between 

the different building components. There are also works where not only a RC model is used, but 

this is complemented or derived from other types of models. This is the case of the model 

proposed in [204], where it is initially proposed a relatively simple RC model in order to provide 

physical interpretability to the parameters and convert this RC model into an autoregressive 

model. The main advantage that the designed model offers in addition to being computationally 

light is that it can be scalable and therefore adapt to modelling various buildings. 

Leaving aside physical models and grey-box models, numerous papers have been find that 

propose NNs and other ML models to see how a building thermally behaves. When it comes to 

SA based models, the most used for this case are AR models. It is the example in [205] where a 

building capacity is thermally modelled using several independent variables such as occupancy, 

lighting, relative humidity, etc. to see how they affect in 𝑇𝑇𝑖𝑖𝑖𝑖. In this case, an ARMAX model 

combined with Normalised Mutual Information (NMI) is used, which allows obtaining the exact 

variables that influence the 𝑇𝑇𝑖𝑖𝑖𝑖, serving as a guide for the ARMAX. Likewise, it compares the 

mentioned model with an ARX model, concluding that the model that combines the NMI with 

the ARMAX is the one that operates best. Another interesting example is the one proposed in 

[206], where the energy flexibility of an institutional building wants to be quantified. For this 

purpose, an ARX model is used to model the thermal behaviour of the mentioned building taking 

into account the optimal operating points of a geothermal heat pump that operates powered by a 

PV system. Thanks to the strategy proposed to take advantage of the flexibility, a 40% reduction 

in demand at peak hour is obtained during morning hours and a 30% reduction during the 

afternoon.  
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The Box Jenkins method is usually applied to models such as ARIMA or ARIMAX. As the work 

presented in [201] that aims to propose an ARMA and ARIMAX  models to thermally 

characterize a building. To do this, ARMA and ARIMAX (with Box-Jenkins method) models are 

designed, obtaining significantly better results than those of previous works using models such as 

ARX. In [207], different stochastic algorithms such as Box-Jenkins, ARX, ARMAX and output 

error (OE) models are proposed to identify the thermal behaviour of an office of a commercial 

building. The BJ model outperforms the rest of the proposed models which, according to the 

authors, its noise management is more adequate than that of other algorithms.   

Box-Jenkins method is applied to linear time series based models. It is therefore essential to 

initially analyse whether the system to be modelled can contain nonlinearities. 

Regarding ANNs, one of the examples can be seen in [208], where a backpropagation NN 

(BPNN) with only three layers is used to model both 𝑇𝑇𝑖𝑖𝑖𝑖 and relative humidity in function of 

𝑇𝑇𝑖𝑖𝑖𝑖,𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒  and relative humidity. It is concluded that the BPNN model obtains very good results 

when following both 𝑇𝑇𝑖𝑖𝑖𝑖 and relative humidity curves. The authors of [209] present a simple NN 

where only certain meteorological variables and previous 𝑇𝑇𝑖𝑖𝑖𝑖 values are used as inputs to the 

model, leaving aside occupancy or the HVAC system consumption. Even so, it is able to follow 

𝑇𝑇𝑖𝑖𝑖𝑖 curve with a RMSE of 0.85ºC.  

It must be taken into account that ANNs, and in general black-box models, require large amounts 

of data so that the model can learn, if feasible, all possible cases. This might be particularly 

important since these models can present generalization problems when introducing completely 

new data, that is, data that they have not been trained on. In addition, since black-box models are 

purely data-driven, they are not guaranteed to follow the underlying physics, so the interpretability 

of their operation is practically impossible. That is why studies can find like [210], in which 

despite betting on NNs compared to the classic RC model, proposes a new ANN architecture 

based on physics, managing to achieve a MAE 40% lower than a classic RC model. 

Studying the literature, it has been observed that black-box models present a series of advantages 

that make this type of models more flexible and more adaptable to controllers such as MPCs. This 

is verified in [211] where a physical model designed using Termolog software and a black-box 

modelling approach based on RF are compared. It is seen that in addition to the fact that the 

latter’s response is more accurate, the white-box hardly offers the possibility of improving the 

performance of MPC. Is in [212] where an ANN-based MPC system model is also used to model 

the variation of 𝑇𝑇𝑖𝑖𝑖𝑖. In this case the ANN is fed with data provided by a physical model based on 

a simulation software, so the model integrated in the MPC could be considered as a grey box 

model. The MPC that optimises with a prediction horizon of 24h and with the objective of 
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reducing the electricity consumption of the building, manages to reduce the consumption for 

cooling and heating by 23.74% and 39.02%, respectively, compared to an On/Off control strategy. 

4.1.2 HVAC model 

Despite having seen numerous works focused on analysing thermal capacity of buildings, 

particular emphasis can be seen in literature on modelling HVAC systems. Modelling these 

systems facilitates an optimal use of them, a crucial aspect for enhancing building's electrical 

efficiency due to their substantial energy consumption. Similar to thermal capacity modelling 

approaches for buildings, various types of models are employed to model HVAC systems.  

Physical models, such as the one introduced in [213] where authors opt for highly detailed 

physical HVAC models, accounting for dynamic regulation characteristics under three operation 

modes: regulation of the temperature of the cold source, regulation of the final fan and integrated 

coordinated regulation. Their findings highlight the substantial potential to control of HVAC 

systems, particularly through integrated control methods. 

Despite the prevalence of studies employing physical principles to model HVAC systems, there 

is a rising trend towards utilising black-box models, particularly ML and DL techniques. Common 

ML and DL techniques include recurrent neural networks (RNNs) or deep neural networks such 

as LSTM. 

For instance, [214] utilises three different LSTM-based RNN models to represent HVAC system 

consumption, achieving an nRMSE of 0.13. Notably, these models perform even better with a 

one-hour horizon (nRMSE of 0.052) than with 24 hour horizon. Additionally, [215] presents three 

different ML models to represent district-level heating energy consumption, concluding that the 

autoregressive RNN (ARNN) outperforms other models with an R2 of 0.9899. 

The increasing adoption of diverse ML techniques to model HVAC systems is largely due to their 

ability to capture the nonlinear behaviour exhibited by these systems. It is also important to note 

that software tools like EnergyPlus may become inefficient, as they often require users to input 

system characteristics and values from datasheets. These data may differ significantly from real-

world conditions due to factors like system degradation and reduction in the coefficient of 

performance (COP) of heat pumps.  

Finally, grey-box models are also widely used in literature for modelling HVAC system. As 

demonstrated in [216], the combination of EnergyPlus software and LSTM model can serve for 

HVAC system modelling. Similarly, [217] integrates thermal building modelling using an RC 

model with HVAC system modelling employing a hybrid ML model, exhibiting successful 

application in buildings with nRMSE below 10%. Although hybrid models have proven to be a 
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very interesting approach to modelling building thermal capacity and HVAC system, they require 

deep knowledge to carry out complex process of designing, as they combine two or more types 

of models. 

4.1.3 Conclusions 

Given the wide range of modelling techniques used in the literature for both building thermal 

behaviour and HVAC systems, it becomes imperative to evaluate different models to determine 

which one is best suited to the case study under analysis. 

The most common types of models to be found in the literature are ML-type models, among which 

mainly SA and ANN models dominate. RC thermal network type models can also be found, but 

not so many of them are then applied in a MPC.  

Also notable is the lack of examples in the literature of modelling with small datasets. In most 

cases, especially in the case of ANNs, models trained on data sets of years are proposed, which 

contrasts with the inability in many cases to make large data sets available.  

Finally, it is noteworthy that many of the papers are committed to designing linear models, since 

it is true that these models can be integrated, for example, in an MPC so that the computational 

cost is not so high. However, linear models are not able to represent nonlinear systems such as 

HVAC systems.  
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4.2 OBJECTIVES & CONTRIBUTIONS 

The main target of this chapter has been to build the control model of the MPC. For that, the FL 

of the building has been modelled, i.e. the HVAC system associated with the thermal capacity of 

ESTIA 2 building. A linear model has been adopted aiming the reduction of the computational 

cost of the MPC. The outputs of the linear models are the internal temperature and the heat pump 

consumption. 

With regard to secondary objectives, three main ones can be highlighted. 

 Since the system to be modelled contains nonlinearities, a NARX type NN model has 

been proposed to see if it is able to capture these nonlinearities. 

 It has been attempted to analyse how the training performed with small data set affects 

the response of the NARX model. 

 The NARX model can be daily linearised at the most convenient operating point (OP). 

Therefore, the aim has been to analyse whether linearised NARX models are able to 

improve the response of a linear model such as Box-Jenkins (BJ). 

Regarding the contributions of this chapter, some noteworthy points merit mention.  

 In contrast to the majority of papers in the literature that propose models trained with 

large data sets, a NARX model and a Box-Jenkins linear model build with a small data 

set have been designed.  

 The models have been trained and validated not with data taken from simulation, but 

with data obtained from excitation tests conducted in a real building, enhancing the 

practical applicability of the proposal. 
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4.3 CASE STUDY 

4.3.1 Main features of the HVAC system 

In the subsequent section, an analysis of the air conditioning system of the case study has been 

undertaken. 

The HVAC system comprises 10 DAIKIN brand heat pumps, each equipped with two 

compressors. Comprehensive details regarding the key attributes of these heat pumps are 

referenced in the Table C.6 of Annex C. 

The outdoor units are linked to a network of 73 indoor units (see Figure 4.1) which include 

ventilation systems and thermostats. Each outdoor unit interfaces with between 5 and 8 indoor 

units. Among the indoor units, 60 are master units that receive  𝑇𝑇𝑐𝑐𝑝𝑝 and 13 are slave units. 

 

Figure 4.1. Simplified diagram with the elements that make up the HVAC system. 

The heat pump or outdoor unit to be chosen for modelling is referred to as Group 16 (GR16), 

REYQ10M7W1B model. This group consists of two compressors. The characteristics of both 

compressors can be seen in Table 4.1. 

Table 4.1. Technical characteristics of the heat pump compressors model REYQ10M7W1B. 

Compressors 

Technical characteristics 

Speed (rpm) Engine power output 
(kW) 

Starting 
method 

Crankcase 
heater (W) 

1 Inverter 1,900~6,480 2.2 Direct online 33 

2 ON-OFF 2,900 4.5 Direct online 33 
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Table 4.2 provides a breakdown of the indoor units linked to outdoor GR16, alongside their 

respective locations across floors and rooms. 

Table 4.2. Internal elements connected to GR 16 and their location in the building. 

External group Indoor unit Floor Room/Office 

GR16 

L2.302 Ground floor ESTIA Recherche office 

L2.304 Ground floor Platform 

L2.303 Ground floor Platform 

L2.305 First floor office 

L2.306 First floor office 

L2.307 First floor office 

 

The excitation tests that have been descripted in next section have been carried out in a specific 

area of ESTIA 2 building named Platform. The reason behind selecting the Platform to perform 

the excitation tests is because it is a large space in which thermal excitation can be performed. 

The aim was first to model this space in a simple way and then to model the entire building, a 

rather more complex model. Although the aim was to excite the building as a whole, there has not 

been time to extend the study within the framework of the Thesis. The indoor units located in 

Platform are connected to GR16. That is why this heat pump has been selected for modelling.  

From this it can be understood that the control model developed in this chapter represents the 

thermal behaviour of the Platform area and the GR16 heat pump. Nevertheless, in order to test 

the correct functioning of the EMS optimisation introduced in Chapter 5, the model has been 

considered to represent the thermal behaviour of the whole building and the HVAC system. 

When modelling an existing building constructed years ago, it is common to find a lack of modern 

monitoring systems that can provide huge amount of historical data. In the case of ESTIA 2, 

comprehensive data on temperature (internal, set point, etc.) and heat pump consumption is 

limited because the old monitoring system did not have the functionality to store historical 

building data. In addition, there have been registration problems with temperature sensors and 

with the operation of some of the heat pumps of the building.  

Furthermore, the decision has been made to model the HVAC system in heating mode. This is 

due to the available data obtained from excitation tests being sourced from a winter period 

(between March and April 2023) and the prevailing climate conditions in the area, where the 

HVAC system predominantly operates in heating mode. 
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4.3.2 Used data analysis 

An initial analysis of quality and quantity of available data is essential, as these data require pre-

processing to be suitable for the building thermal capacity model and the HVAC model.  

On the one hand, meteorological data has been obtained from OpenWeather. Various data points 

such as  𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, humidity, wind speed, and wind direction have been downloaded, all at a frequency 

of 10 minutes (see Table C.7 of Annex C). Among these parameters, particular attention has been 

paid to 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 data. 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 plays a significant role in 𝑇𝑇𝑖𝑖𝑖𝑖 variation, thus it has been considered a 

primary input for the building's thermal modelling. 

On the other hand, data from the excitation tests are available. As can be seen in Table C.8 of 

Annex C there are records of both 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑐𝑐𝑝𝑝, as well as of the electricity consumption data of 

the heat pump (accumulated energy). 

In Figure 4.2, Figure 4.3, and Figure 4.4, the data from the three data sets is plotted after outlier 

removal and fixing the same sampling time. 

 

Figure 4.2. Pre-processed data of Training data set. 

The data set chosen for training is referred to as the Training data set (Figure 4.2). This data set 

not only reflects a wide range of  𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, but also contains significant consumption peaks and 

variations. It consists of 145 data points recorded every 20 minutes during the weekend from 

March 24th to March 26th of 2023. 

The validation of the proposed models has been conducted with two data sets corresponding to 

two consecutive weekends named Test 1 data set and Test 2 data set. 
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Figure 4.3. Pre-processed data of Test 1 data set. 

On the one hand, the Test 1 data set (Figure 4.3) corresponds to data acquired during the weekend 

from March 31st to April 2nd. It contains 153 data points. The 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 in this case covers a 

considerably smaller range, in concrete from 9ºC to 14ºC. 

 

Figure 4.4. Pre-processed data of Test 2 data set 

On the other hand, the models are validated with the Test 2 data set (Figure 4.4). This data set, 

which contains 166 data points, has a significantly wider range in terms of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒.  

Table 4.3 gathers the characteristics of the three data sets used for training and testing the models 

after the data has been pre-processed. 
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Table 4.3. Data sets obtained from the excitation tests and pre-processed in order to train and validate models. 

Data sets Considered variables Sampling time Data points 

Training data set 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝑇𝑇𝑖𝑖𝑖𝑖, 𝑇𝑇𝑐𝑐𝑝𝑝, 𝑄𝑄ℎ𝑝𝑝 20 min 145 

V
al

id
at

io
n Test 1 data set 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝑇𝑇𝑖𝑖𝑖𝑖, 𝑇𝑇𝑐𝑐𝑝𝑝, 𝑄𝑄ℎ𝑝𝑝 20 min 153 

Test 2 data set 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝑇𝑇𝑖𝑖𝑖𝑖, 𝑇𝑇𝑐𝑐𝑝𝑝, 𝑄𝑄ℎ𝑝𝑝 20 min 166 

 

The different lengths of the data sets are related to the conditions under which the tests have been 

conducted. Sometimes the tests have been able to last a few hours longer. 

Anomalous behaviour can be identified halfway through Test 2 data set (around 13:00 on April 

9th). During this period, despite 𝑇𝑇𝑐𝑐𝑝𝑝 reaching 23ºC, 𝑇𝑇𝑖𝑖𝑖𝑖 continues to decrease to 19.5ºC because 

there is no heat provided. This is because the outdoor unit registers a high 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and the compressor 

turns off because it understands that heat is not needed inside the Platform. 

As mentioned earlier, the HVAC system operates in heating mode, with the 𝑇𝑇𝑐𝑐𝑝𝑝 changing between 

20°C and 23°C. As shown in Figure 4.2, Figure 4.3 and Figure 4.4, increasing 𝑇𝑇𝑐𝑐𝑝𝑝 to 23°C results 

in a peak of 𝑄𝑄ℎ𝑝𝑝, followed after a sampling time by an increase in 𝑇𝑇𝑖𝑖𝑖𝑖. 

The presence of system hysteresis must be also taken into account. The indoor units are affected 

by a hysteresis related to the indoor temperature. This hysteresis has been modelled and takes on 

a value of ∆𝑇𝑇ℎ𝑦𝑦𝑐𝑐𝑒𝑒 = ±0.5ºC. First, the indoor unit, depending on the heat stored in the heat-

carrying liquid, will try to reach the 𝑇𝑇𝑐𝑐𝑝𝑝. If there is not enough heat stored, the outdoor unit 

depending on the heat-carrying liquid temperature turns on the compressor.  
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4.4 METHODOLOGY 

4.4.1 Methodology description 

Being the HVAC system and the associated thermal capacity of the ESTIA 2 building FLs in 

which the EMS will act, both have been modelled. 

The first equation, named Equation 1, represents the thermal capacity of the building. It defines 

the variation of the building  𝑇𝑇𝑖𝑖𝑖𝑖 as a function of one or several inputs. In addition to including 

these inputs, this equation also incorporates a recurrent term taken into account previous values 

of 𝑇𝑇𝑖𝑖𝑖𝑖. The recurrent term is necessary to take into consideration the dynamics of the system. 

The second equation named Equation 2 represents the HVAC system and it involves determining 

the heat pump consumption (𝑄𝑄ℎ𝑝𝑝) through inputs of the model. 

Both equations are recursive. The parameters of the equations have been derived through 

identification or training, which is conducted using excitation tests data. The models need to be 

updated daily. 

Two techniques have been proposed to model Equation 1 and Equation 2: a NARX NN and a 

model based on Box-Jenkins method, known both for their simplicity and accuracy. The 

methodology followed for model construction, validation and comparison is depicted in Figure 

4.5. 

 

Figure 4.5. Methodology followed in the construction of the thermal model. 
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First, excitation tests have been carried out to identify or train the NARX NN and Box-Jenkins. 

After obtaining the data, various processing techniques have been applied to the data in order to 

meet the requirements of each type of model.  

Then, the selection of inputs has been carried out, i.e. the selection of the variables that explain 

the output, in this case 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝. This selection has been made by observation, analysing 

initially available data showed in Figure C.9 of Annex C and seeing which variables affect 𝑇𝑇𝑖𝑖𝑖𝑖 

and 𝑄𝑄ℎ𝑝𝑝. 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑄𝑄ℎ𝑝𝑝 have been the variables selected to describe the behaviour of 𝑇𝑇𝑖𝑖𝑖𝑖 (Equation 1) and 

𝑇𝑇𝑐𝑐𝑝𝑝, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and the system hysteresis (𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇) the ones to describe the heat pump consumption 

(Equation 2). 

4.4.1.1 NARX neural network 

First, a NARX model has been considered for the modelling of Equation 1 and Equation 2. A 

NN-based model has been selected because in this case the same conditions exist as when 

designing predictive models of consumption and PV production: 

 Little data available for model training. 

 Need for a simple model with low computational cost. 

NARX model has been designed searching values for the hyperparameters. The hyperparameters 

have been selected following the same criterion as in Chapter 2 and Chapter 3. In this case, the 

NARX has been trained with data from a weekend, meaning with Training data set. As the NNs 

randomly initialise the values of the weights each time they are trained, the weekend prediction 

has been performed three consecutive times and each time 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 and R2 has been calculated. 

The process is repeated for each combination of hyperparameter values, i.e. for each model 

constructed. The model with the highest average 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 and R2 has been selected. 

The NARX model is capable of capturing nonlinearities, and can be linearised at the desired OPs 

to represent well the dynamic behaviour of the system. Figure 4.6 describes followed approach in 

order to linearise NARX models. 
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Figure 4.6. Steps to get daily linearised NARX model. 

For Equation 1, two variables have been considered as inputs: 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑄𝑄ℎ𝑝𝑝. The values of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 

selected as OPs have been determined according to next day predictions of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒. The 𝑄𝑄ℎ𝑝𝑝 will 

always be the same and is determined in the range between 0W and the maximum consumption 

of the heat pump. That said, each day 10 values of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑄𝑄ℎ𝑝𝑝 have been selected and the NARX 

linearisation has been performed on 100 OPs. 100 OPs have been chosen to analyse the operation 

of the NARX at each of these OPs.  

For Equation 2 the process is repeated this time considering 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝑇𝑇𝑐𝑐𝑝𝑝 and 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 as inputs. The 10 

selected values of day-ahead 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 prediction data and 10 values of 𝑇𝑇𝑐𝑐𝑝𝑝 have been combined to 

obtain 100 OPs where the NARX has been linearised. As said, in addition to 𝑇𝑇𝑐𝑐𝑝𝑝 and  𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 

has been used as input. Being a binary input, NARX has been linearised in both cases, when it 

acquires the value 0 and 1. Therefore, in total 200 linear models have been defined. 

Among all the linearised models, the models with the best 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 for Equation 1 and Equation 

2 have been selected.  

That said, in case of a real-time application, the problem arises that in the absence of day-ahead 

values of 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝, the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 of NARX linear models cannot be calculated (see Equation 

(4.3)). Therefore, in cases of real-time operation, the NARX model will be linearised at the OP 

corresponding to the average value of 𝑄𝑄ℎ𝑝𝑝 and day-ahead average value of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒. 

The methodology used in this work serves to see if a NARX model trained on small data set is 

feasible to build a thermal model of a building and can outperform the operation of a linear model 

such as the Box Jenkins.  

4.4.1.2 Box Jenkin method (BJ) 

The Box-Jenkins method can be applied using "System Identification Toolbox" of MATLAB. 

This approach primarily focuses on the identification, estimation, and diagnosis of ARIMA or 
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other type of statistical model, which are capable of capturing patterns, variations and trends in 

time series data. 

The general equation of an ARIMA model would be expressed as shows Equation (4.1): 

 
𝐸𝐸(𝑇𝑇) = �

𝐵𝐵𝑖𝑖(𝑞𝑞)
𝐹𝐹𝑖𝑖(𝑞𝑞)

𝑇𝑇𝑖𝑖(𝑇𝑇 − 𝑓𝑓𝑘𝑘𝑖𝑖)
𝑖𝑖𝑐𝑐

𝑖𝑖=𝑙𝑙

+
𝐶𝐶(𝑞𝑞)
𝐷𝐷(𝑞𝑞) 𝜀𝜀

(𝑇𝑇), (4.1) 

 where 𝐸𝐸 is the system output, 𝑇𝑇𝑖𝑖 are each of the inputs that describe the output, 𝑓𝑓𝑐𝑐 is the 

number of inputs, 𝑓𝑓𝑘𝑘𝑖𝑖 is the input delay in units of samples, 𝜀𝜀 represents the error and 𝑞𝑞 represent 

the delay operator.  

The polynomials to be estimated would be defined as shows Equation (4.2): 

 𝐵𝐵(𝑞𝑞) = 𝑏𝑏0 + 𝑏𝑏1𝑞𝑞−1 + ⋯+ 𝑏𝑏𝑖𝑖𝑏𝑏𝑞𝑞
−𝑖𝑖𝑏𝑏+1, 

 

𝐶𝐶(𝑞𝑞) = 1 + 𝑐𝑐0𝑞𝑞−1 + ⋯+ 𝑐𝑐𝑖𝑖𝑐𝑐𝑞𝑞−𝑖𝑖𝑐𝑐 , 

 

𝐷𝐷(𝑞𝑞) = 1 + 𝑑𝑑0𝑞𝑞−1 + ⋯+ 𝑑𝑑𝑖𝑖𝑝𝑝𝑞𝑞−𝑖𝑖𝑝𝑝 , 

 

𝐹𝐹(𝑞𝑞) = 1 + 𝑓𝑓0𝑞𝑞−1 + ⋯+ 𝑓𝑓𝑖𝑖𝑐𝑐𝑞𝑞−𝑖𝑖𝑐𝑐, 

(4.2) 

 

where, 𝑓𝑓𝑏𝑏, 𝑓𝑓𝑐𝑐, 𝑓𝑓𝑝𝑝, and 𝑓𝑓𝑐𝑐 define the order of the mentioned polynomials and that need to 

be defined in the model design process. 

The Box-Jenkins method provides numerous advantages. It offers high flexibility to adapt to 

different types of time series data, which may have various types of trends, nonlinear patterns, 

etc. The final step of the method, which consists of diagnosing the model residuals, allows for the 

identification of deficiencies in the model, thereby improving the accuracy of its response. 

Box-Jenkins method requires a slightly different data pre-processing compared to NARX model. 

The mean values of each data set (training and validation) have been subtracted from the 

corresponding data of the data set. Subtraction of the mean allows to obtain data sets with a mean 

of 0, which enables comparisons between different data sets. Additionally, the model does not 

require data normalisation. 

The orders of the polynomials of Equation (4.2) have been defined. The model orders have been 

determined based on the results obtained in the validation stage. The orders have been increased, 

evaluating whether increasing the orders and, consequently, its complexity, enhances the 

improvement response of the model. 
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4.4.2 Evaluation Metrics 

The choice of evaluation metrics depends on the specific scope of the problem, as well as the type 

of data employed and the desired outcome. Considering that the objective is to analyse the 

response of 𝑇𝑇𝑖𝑖𝑖𝑖  (Equation 1) and of 𝑄𝑄ℎ𝑝𝑝 (Equation 2), two metrics have been selected.  

Firstly, the 𝑅𝑅2 has been used as an evaluation metric (see Equation (2.2)). Thanks to this metric, 

it is possible to quantify how well the response of a model is adjusted to the real curve. 

Secondly, 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 which measures the goodness of fit between the model's response and the 

measurement data (in percentage) has been calculated (see Equation (4.3)).  

 
𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 = �1−

|�𝐸𝐸𝑗𝑗 − 𝐸𝐸𝚥𝚥� �|
|�𝐸𝐸𝑗𝑗 − 𝑚𝑚𝑇𝑇𝑉𝑉𝑓𝑓�𝐸𝐸𝑗𝑗��|

�𝑇𝑇100[%] (4.3) 

where 𝐸𝐸𝑗𝑗 is the validation data output and 𝐸𝐸𝚥𝚥�  is the output of model. 

4.4.3 Application of methodology 

As mentioned before the inputs of each model have been selected observing Figure C.9 of 

Annex C and analysing which variables affect 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝 . Equation (4.4) and Equation (4.5) 

represent in general terms, the structure of both models. 

 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇) = 𝑓𝑓�𝑞𝑞−𝑓𝑓𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇),𝑞𝑞−𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇),𝑞𝑞−𝑓𝑓𝑄𝑄ℎ𝑝𝑝(𝑇𝑇)� (4.4) 

 𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) = 𝑓𝑓�𝑞𝑞−𝑖𝑖𝑄𝑄ℎ𝑝𝑝(t),𝑞𝑞−𝑖𝑖𝑇𝑇𝑐𝑐𝑝𝑝(𝑇𝑇), 𝑞𝑞−𝑖𝑖𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇), 𝑞𝑞−𝑖𝑖𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇(𝑇𝑇)� (4.5) 

being 𝑞𝑞−𝑖𝑖  the n-sample delay operator. 

Equation (4.4) represents 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇) as a function of its previous values, 𝑞𝑞−𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇) and the current 

and previous values of the following variables: external temperature, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) and the heat pump 

consumption 𝑄𝑄ℎ𝑝𝑝(𝑇𝑇).  

Equation (4.5) represents the energy consumed by the heat pumps (𝑄𝑄ℎ𝑝𝑝(𝑇𝑇)), from the previous 

consumption values, 𝑞𝑞−𝑖𝑖𝑄𝑄ℎ𝑝𝑝(𝑇𝑇), the set point temperature, 𝑇𝑇𝑐𝑐𝑝𝑝(𝑇𝑇), and the external 

temperature, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇). Additionally, a term called 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇(𝑇𝑇) has been included.  

4.4.3.1 Excitation tests 

Excitation tests are necessary to identify most of the frequencies of the system, i.e. to identify the 

values of the model parameters. The tests have been designed to excite the area Platform marked 

in Figure 4.7 and the associated external group (GR16).  
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Within this thermal zone, designated units L2.303 and L2.304 operate, with the former serving as 

the master unit and the latter as the slave. There is a delay of 10 seconds between a 𝑇𝑇𝑐𝑐𝑝𝑝 change is 

sent and the indoor unit receives it.  

 

Figure 4.7. Ground floor of ESTIA 2 with the area called Platform framed 

Conducting thermal excitation tests in an occupied building presents challenges because these 

tests involve adjusting 𝑇𝑇𝑐𝑐𝑝𝑝, potentially affecting occupants' thermal comfort. Users should also be 

prevented from disturbing the tests. Consequently, tests have been scheduled for weekends when 

the space is unoccupied, imposing a time constraint of approximately 60 hours. 

Test design incorporates as input pseudorandom binary sequence signal (PRBS). PRBS is a binary 

sequence in which its rectangular pulses can be modulated in width. They are called pseudo-

random because even if they are characterize by the random variation of the pulses, in large time 

horizons they have a periodic behaviour [218]. 

The PRBS sequence's maximum length is determined by 2𝑁𝑁 − 1. Moreover, to correctly identify 

the steady-state gain of a dynamic model, the maximum pulse duration (𝑇𝑇𝑖𝑖𝑐𝑐) must be determined, 

which needs to be greater than the rise time (𝑇𝑇𝑅𝑅). In the analysed system 𝑇𝑇𝑅𝑅 takes the value of 2 

hours (see Figure 4.8).  
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Figure 4.8. A zoom from Figure C.9 to see the rise time of the system. 

Being the maximum duration of the pulse 𝐼𝐼 ∗ 𝑇𝑇𝑐𝑐, the condition represented in Equation (4.6) must 

be fulfilled. 

 𝑇𝑇𝑖𝑖𝑐𝑐 = 𝐼𝐼 ∗ 𝑇𝑇𝑐𝑐 > 𝑇𝑇𝑅𝑅  (4.6) 

where 𝐼𝐼 is the number of cells in the shift register and the sampling period is 𝑇𝑇𝑐𝑐. 

The need to carry out excitation tests during weekends, constraints the test duration (𝐿𝐿) to 60h.  

 2𝑁𝑁−1𝑇𝑇𝑐𝑐 < 𝐿𝐿  (4.7) 

In order to fulfil the condition described by Equation (4.6) and the one specified in Equation (4.7) 

a sampling time (𝑇𝑇𝑐𝑐) of 20 minutes and 𝐼𝐼 = 7 has been chosen for the PRBS.  

Figure 4.9 shows the PRBS signal of length 27 − 1 = 127 pulses that represents almost 44h. This 

is the PRBS signal used for the tests that have been conducted in the area Platform.  

 

Figure 4.9. PRBS sequence used in the excitation tests carried out in ESTIA 2. 

𝑇𝑇𝑅𝑅 
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4.4.3.2 Data pre-processing 

A series of steps have been followed to pre-process each of the data sets. Initially, outliers have 

been observed, especially in the 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 data. These visually identifiable outliers have been fixed 

using linear interpolation. The next step has been to identify both data repetitions and missing 

data. Regarding the former, it has been found that the daylight saving time change occurred during 

one of the weekends when the building excitation test was conducted (26/03/2023 02:00am), 

resulting in repeated data points that have been removed. As for missing data, each instance had 

to be identified and restored using linear interpolation. Most of the missing data belonged to 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and involved gaps of no more than two sampling periods, i.e., 20 minutes. Since 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒  is not 

highly variable, linear interpolation proved to be an efficient solution.  

Additionally, the sampling time of all recorded variables was not the same. 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒  has been 

recorded every 10 minutes, while 𝑄𝑄ℎ𝑝𝑝 every 5 minutes. Similarly, the sampling time for 𝑇𝑇𝑖𝑖𝑖𝑖 and 

𝑇𝑇𝑐𝑐𝑝𝑝  has been 20 minutes in all three tests conducted. As a sampling time of 20 minutes has been 

settled for the PRBS, the sampling time of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, 𝑄𝑄ℎ𝑝𝑝 and 𝑇𝑇𝑐𝑐𝑝𝑝 has been adjusted by calculating the 

mean every 20 minutes. 

Finally, but only for the data used for the NARX, normalisation has been performed. 

Normalisation has been carried out to map the data to the range [0, 1], thus avoiding the 

disproportionate impact of any parameter used as input on the final results due to its large 

magnitude values. Table 4.4 show the ranges that have been used for normalizing 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑄𝑄ℎ𝑝𝑝. 

Table 4.4. Normalisation ranges for all the measured variables in excitation tests. 

Normalisation 
Test 1 data set Test 2 data set 

[min, max] [min, max] 

𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 [-10, 40] (ºC) [-10, 40] (ºC) 

𝑸𝑸𝒉𝒉𝒔𝒔 [30, 2010] (Wh) [30, 2010] (Wh) 

 

Box-Jenkins method does not require data normalisation, so normalisation step has been skipped. 

4.4.3.3 Equation 1: ESTIA 2 thermal capacity model 

a. NARX neural network 

Regarding NARX design, the adjusted hyperparameters have been (a) the number of neurons in 

the hidden layer, (b) the activation function of the hidden and output layers, and (c) the input and 
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feedback delays. It is also possible to add hidden layers, although in this case a single layer has 

been kept. 

Starting with the selection of the activation function for both layers, it has been clearly shown that 

the hyperbolic tangent (tansig) is the one that best traces the output. The number of neurons that 

compose the hidden layer is 4 and a delay of 2 for both the input and the feedback has been 

applied.  

Table 4.5 shows the characteristics of the designed model in more detail. 

Table 4.5. Hyperparameter values of the proposed NARX model for Equation 1. 

NARX hyperparameters Equation 1 

Hidden layers 
nº of hidden layers = 1 

number of neurons = 4 

Delay vectors 
Input = 2 

Feedback = 2 

Activation fcn 
Hidden layer = Hyperbolic tangent 

Output layer = Hyperbolic tangent 

Training parameters Learning algorithm: Levenberg-Marquardt 

 

NARX has been trained with Training data set and validated with the other two data sets: Test 1 

data set and Test 2 data set. 

b. Linearisation  of the NARX model (lmNARX) 

The NARX model has been built in Simulink and by means of "Model Lineariser”, performing a 

linear analysis of the NARX. The linear analysis has consisted on linearizing NARX at the 

selected OPs and observing how accurately each of the lmNARX are able to follow the measured 

𝑇𝑇𝑖𝑖𝑖𝑖 curve in case of both validation data sets: Test 1 data set (see Figure 4.10) and Test 2 data set 

(see Figure 4.11).  

The 3D plots (Figure 4.10 and Figure 4.11) show the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values for 100-lmNARX models. 

The values of both figures are gathered in Table C.9 and Table C.10 of Annex C respectively. 
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Figure 4.10. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 1 data set. 

Figure 4.10 shows that the highest 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values are around 15ºC-20ºC of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and between 

0Wh-500Wh of  𝑄𝑄ℎ𝑝𝑝. The OP selected to perform the linearisation has been: 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 17º𝐶𝐶 

and 𝑄𝑄ℎ𝑝𝑝 = 30𝑊𝑊ℎ. The lmNARX obtained linearizing in the mentioned OP for the case of Test 1 

data set is defined by Equation (4.8). 

 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇)

=
( 0.4317𝑞𝑞−1  − 0.2192𝑞𝑞−2)𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) + (0.1494 𝑞𝑞−1 − 0.0285𝑞𝑞−2) 𝑄𝑄ℎ𝑝𝑝(𝑇𝑇)

1 − 0.4865𝑞𝑞−1  − 0.1568 𝑞𝑞−2
 

(4.8) 

As Figure 4.11 shows, the ranges where best 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values have been obtained in Test 2 data 

set are the range between 15ºC and 20ºC of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑄𝑄ℎ𝑝𝑝 ranging from 0Wh to 500Wh. The 

selected OP in this case has been 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 19º𝐶𝐶 and 𝑄𝑄ℎ𝑝𝑝 = 400𝑊𝑊ℎ.  

 

Figure 4.11. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 2 data set. 
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The best lmNARX selected for the case of Test 2 data set is defined by Equation (4.9). 

 𝑇𝑇𝑖𝑖𝑖𝑖(𝑇𝑇)

=
�−0.006252𝑞𝑞−1 + 0.01284𝑞𝑞−2)𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) + (0.1994𝑞𝑞−1 − 0.0482𝑞𝑞−2)𝑄𝑄ℎ𝑝𝑝(𝑇𝑇�

1 − 0.5713𝑞𝑞−1 − 0.086𝑞𝑞−2
 

 

(4.9) 

c. Box-Jenkins (BJ) 

The design of the model has started by establishing the orders of the polynomials in the model. 

The orders have been set to 4. The result is not improved by increasing the orders and, with lower 

orders of 2 or 3, the results worsen. The criterion for determining the orders of the model is to 

obtain the model that best fits the real 𝑇𝑇𝑖𝑖𝑖𝑖 curve, i.e. the aim is to maximise the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 metric. 

As provided by the MATLAB “System Identification Toolbox”, optimisation features have been 

added to the model. The initial conditions of the model have been set to zero for the parameter 

estimation stage. In the same way, a zero-order hold (zoh) has been set. This optimisation feature 

keeps the input signal constant between samples during data acquisition. 

The accuracy of the model has been evaluated using compare function from "System 

Identification Toolbox", which uses as evaluation metric 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 defined by Equation (4.3). 

The model obtained is the one defined by both transfer functions of Equation (4.10). 

 
𝑇𝑇𝑖𝑖𝑖𝑖 (𝑇𝑇) =

0.05794𝑞𝑞−1 − 0.156𝑞𝑞−2 + 0.1856𝑞𝑞−3 − 0.08122𝑞𝑞−4

1 − 1.795𝑞𝑞−1 + 1.473𝑞𝑞−2 −  0.4206𝑞𝑞−3 − 0.1843𝑞𝑞−4
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) 

𝑇𝑇𝑖𝑖𝑖𝑖 (𝑇𝑇)

=
0.001041𝑞𝑞−1 + 0.0008034𝑞𝑞−2 − 6.941𝑇𝑇 − 05𝑞𝑞−3 − 0.0006418𝑞𝑞−4

1 + 0.2832𝑞𝑞−1 − 0.5892𝑞𝑞−2 − 0.7004𝑞𝑞−3 + 0.2398𝑞𝑞−4
𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) 

(4.10) 

 

4.4.3.4 Equation 2: HVAC system model 

Some aspects must be taken into consideration in the design of HVAC system model. The 

operation of HVAC system not only depends on the variations of 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, but also on the 

temperature of the system's heat-carrying liquid (R-410A), which does not change in the same 

way as 𝑇𝑇𝑖𝑖𝑖𝑖. In addition, the change in coefficient of performance (COP) due to humidity 

and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 introduces nonlinear trends to the system.  

It is also important to note that, as mentioned above, the modelled heat pump contains two type 

of compressors. These are an inverter driven compressor (PI controller) with an output power of 
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2.2kW and a second On/Off compressor with an output power of 4.5kW (see Table 4.1). The 

problem is that the operating criteria for both is unknown. This means that it is not known when 

the PI-controlled compressor is used and when the On/Off compressor is activated. Therefore, it 

is essential to use models that can capture nonlinearities and unknown a priori elements of the 

system operation. All this makes NARX an interesting option in order to be able to capture these 

behaviours efficiently. 

a. NARX neural network 

Having already defined the inputs, the hyperparameters of the model have been adjusted. As in 

the case of Equation 1, the hyperparameters to be tuned are (a) the number of neurons in the 

hidden layer (b) the delays introduced in the input and feedback and (c) the activation functions 

of both layers: hidden and output layers. In this case too, a single hidden layer has been 

maintained. 

As for Equation 1, the criterion to select the hyperparameter values has been to search the 

maximum 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 and R2 values. 

Starting with the latter, the hyperbolic tangent (tansig) has been established as the activation 

function for both layers. The hidden layer is composed of 8 neurons. As for the delays, 2 delays 

for the inputs and 4 for the feedback have been chosen.  

The characteristics of the designed NARX model are given in Table 4.6. 

Table 4.6. Hyperparameter values of the proposed NARX model for Equation 2. 

NARX hyperparameters Equation 1 

Hidden layers 
nº of hidden layers = 1 

number of neurons = 8 

Delay vectors 
Input = 2 

Feedback = 4 

Activation fcn 
Hidden layer = Hyperbolic tangent 

Output layer = Hyperbolic tangent 

Training parameters Learning algorithm: Levenberg-Marquardt 
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b. Linearised model of NARX (lmNARX) 

In order to linearise NARX model, the process that has been followed is explained in section 

4.4.1.1. As explained in the mentioned section, 100 linear models of the NARX have been 

obtained when 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 is 0 and another 100 linear models when 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 acquires a value of 1.  

The 3D plots (Figure 4.12 and Figure 4.13) aggregates the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values for each of the 100-

lmNARX models when the hysteresis is 0 and when it is 1 in case of Test 1 data set respectively. 

The 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of both figures are gathered in Table C.11 and Table C.12 of Annex C 

respectively. 

 

Figure 4.12.  𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 1 data set when Hyst = 0. 

 

Figure 4.13. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 1 data set when Hyst = 1. 
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The model with the highest 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 value has been linearised in the OP: 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 7.5º𝐶𝐶,𝑇𝑇𝑐𝑐𝑝𝑝 =

23º𝐶𝐶 𝑉𝑉𝑓𝑓𝑑𝑑 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 = 0 and is defined by the transfer function described in Equation (4.11). 

 
𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =

0.4421𝑞𝑞−1 − 0.2581𝑞𝑞−2

1 − 0.1247𝑞𝑞−1 − 0.002997𝑞𝑞−2 − 0.02852𝑞𝑞−3 − 0.1636𝑞𝑞−4
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =
0.09989𝑞𝑞−1 + 2.807𝑞𝑞−2

1 − 0.1247𝑞𝑞−1 − 0.002997𝑞𝑞−2 − 0.02852𝑞𝑞−3 − 0.1636𝑞𝑞−4
𝑇𝑇𝑐𝑐𝑝𝑝(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =
0.4033𝑞𝑞−1 − 0.6493𝑞𝑞−2

1 − 0.1247𝑞𝑞−1 − 0.002997𝑞𝑞−2 − 0.02852𝑞𝑞−3 − 0.1636𝑞𝑞−4
𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇(𝑇𝑇) 

(4.11) 

 

For the case of Test 2 data set, Figure 4.14 and Figure 4.15 show the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values obtained for 

the lmNARX when maintaining the hysteresis value at 0 and 1 respectively. In the same way, the 

𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of both figures have been given by Table C.13 and Table C.14 of Annex C. 

 

 

Figure 4.14. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 2 data set when Hyst = 0. 



BUILDING THERMAL MODEL 
 

151 

 

Figure 4.15. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of lmNARX response plotted in 3D for Test 2 data set when Hyst = 1. 

In the case of Figure 4.15, the 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 values of a vast majority of models is zero, meaning that 

those linear models are unable to follow the curve of 𝑄𝑄ℎ𝑝𝑝 properly. In this case, the lmNARX that 

achieves the best 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 is linearised at 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 13º𝐶𝐶, 𝑇𝑇𝑐𝑐𝑝𝑝 = 20.5º𝐶𝐶 and 𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇 =  0.  

The best lmNARX selected for the case of Test 2 data set is defined by Equation (4.12).ñ 

 
𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =

0.1203𝑞𝑞−1 − 0.1811𝑞𝑞−2

1 − 0.01652𝑞𝑞−1 + 0.0382𝑞𝑞−2 + 0.01565𝑞𝑞−3 + 0.0274𝑞𝑞−4
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =
0.3255𝑞𝑞−1 + 0.6951𝑞𝑞−2

1 − 0.01652𝑞𝑞−1 + 0.0382𝑞𝑞−2 + 0.01565𝑞𝑞−3 + 0.0274𝑞𝑞−4
𝑇𝑇𝑐𝑐𝑝𝑝(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =
0.2238𝑞𝑞−1 + 0.02216𝑞𝑞−2

1 − 0.01652𝑞𝑞−1 + 0.0382𝑞𝑞−2 + 0.01565𝑞𝑞−3 + 0.0274𝑞𝑞−4
𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇(𝑇𝑇) 

(4.12) 

 

c. Box-Jenkins (BJ) 

For Equation 2, the orders of the model have also been set to 4. No improvement has been 

achieved increasing or decreasing the orders values. The same criterion as in Equation 1 has been 

followed for the selection of the model orders. 

As for the treatment of the initial conditions of the model during parameter estimation, as in the 

case of Equation 1, initial conditions to zero and option zero-order hold (zoh) have been set for 

defining the constant behaviour of the model between input samples. The model obtained based 

on Box-Jenkins method is described by the transfer functions defined in Equation (4.13). 
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𝑄𝑄ℎ𝑝𝑝(𝑇𝑇) =

−6.052𝑞𝑞−1 + 17.18𝑞𝑞−2 − 10.13𝑞𝑞−3 − 1.907𝑞𝑞−4

1 − 0.3391𝑞𝑞−1 − 1.49𝑞𝑞−2 −  0.3411𝑞𝑞−3 + 0.5789𝑞𝑞−4
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝  (𝑇𝑇) =
41.29𝑞𝑞−1 − 97.06𝑞𝑞−2 + 89.37𝑞𝑞−3 − 30.98𝑞𝑞−4

1 − 1.776𝑞𝑞−1 + 1.37𝑞𝑞−2 − 0.3187𝑞𝑞−3 + 0.02363𝑞𝑞−4
𝑇𝑇𝑐𝑐𝑝𝑝(𝑇𝑇) 

𝑄𝑄ℎ𝑝𝑝  (𝑇𝑇) =
470.4𝑞𝑞−1 − 708.5𝑞𝑞−2 + 575.7𝑞𝑞−3 − 70.88𝑞𝑞−4

1 − 1.749𝑞𝑞−1 + 1.724𝑞𝑞−2 − 0.6512𝑞𝑞−3 + 0.1892𝑞𝑞−4
𝐻𝐻𝐸𝐸𝐻𝐻𝑇𝑇(𝑇𝑇) 

(4.13) 
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4.5 RESULTS AND DISCUSSION 

This section presents the results obtained from the models introduced in the previous section. In 

this sense, it is considered important to analyse, above all, two aspects of the results: the validity 

of the proposed models and, the comparison between the performance of Box-Jenkins and the 

selected lmNARX. This analysis is carried out for both Equation 1 and Equation 2. 

 

4.5.1 Equation 1: ESTIA 2 thermal capacity model 

The NARX has been first evaluated by plotting its response and calculating the evaluation metrics. 

Afterwards, the chosen lmNARX and Box-Jenkins outputs have been compared to the measured 

𝑇𝑇𝑖𝑖𝑖𝑖 of both Test 1 data set and Test 2 data set. 

4.5.1.1 NARX neural network 

As it can be seen in Figure 4.16, NARX model seems to be able to track accurately the rapid 

variations of 𝑇𝑇𝑖𝑖𝑖𝑖. Taking into account the variable trend of the curve, we consider a R2 of 0.93 to 

be a good result. 

 

Figure 4.16. NARX model response of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Table 4.7. Fitting and R2 values NARX model response of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Test 1 data set fitting (%) R2 

NARX model 73.81 0.93 
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As it can be seen in Figure 4.17, 𝑇𝑇𝑖𝑖𝑖𝑖 suffers an unexpected drop during the afternoon of April 9th 

(see section 4.3.2). Although NARX does not reach the recorded minimum of the unexpected 

drop, it is able to represent and follow it.  

 

Figure 4.17. NARX model response of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 2 data set.  

Table 4.8. Fitting and R2 values of lmNARX and Box-Jenkins responses of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Test 2 data set fitting (%) R2 

NARX model 57.07 0.81 

 

To conclude, NARX model represents the behaviour of 𝑇𝑇𝑖𝑖𝑖𝑖 of Test 1 data set considerably better 

than 𝑇𝑇𝑖𝑖𝑖𝑖 of Test 2 data set (73.81% vs 57.07%). This may be by the fact that Test 2 data set 

contains 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 values that are outside the range of the temperatures used to train NARX model (see 

Figure 4.2). In contrast, in Test 1 data set the range of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is much smaller, between 9ºC and 

14ºC approximately. 

4.5.1.2 Comparison between lmNARX and BJ  

The response of the selected lmNARX (Equation (4.8)-(4.9)) and Box-Jenkins (Equation (4.10)) 

have been compared with the measured 𝑇𝑇𝑖𝑖𝑖𝑖 for both cases: Test 1 data set (see Figure 4.18) and 

Test 2 data set (see Figure 4.19). 
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Figure 4.18. Comparison of lmNARX and BJ responses of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Table 4.9. Fitting and R2 values of lmNARX and BJ responses of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Test 1 data set fitting (%) R2 

lmNARX 61.47 0.85 

Box-Jenkins model 52.15 0.77 

 

lmNARX responds with somewhat sharper peaks than BJ. Both models show the ability to follow 

the rapid variability of the internal temperature. 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 and R2 values of Table 4.9 give a more 

clear idea of how lmNARX is able to represent 𝑇𝑇𝑖𝑖𝑖𝑖 curve with almost 9% better fitting (see Table 

4.9). 

Observing the curves in Figure 4.19, it is possible to appreciate a convulsive initial phase where 

none of the models manages to represent the initial temperature of 22ºC. Both models start from 

a higher initial temperature than the measured temperature. This lag requires a stabilisation time 

of approximately 4 hours before the curve can be tracked again. 
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Figure 4.19. Comparison of lmNARX and Box-Jenkins responses of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 2 data set. 

Table 4.10. Fitting and R2 values of lmNARX and Box-Jenkins responses of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

Test 2 data set fitting (%) R2 

lmNARX 56.23 0.81 

Box-Jenkins model 57.25 0.82 

 

It can be concluded by comparing the evaluation metrics that BJ, with a very narrow margin of 

less than 2% 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓, is able to represent 𝑇𝑇𝑖𝑖𝑖𝑖 curve of the Test 2 data set more accurately than 

𝑇𝑇𝑖𝑖𝑖𝑖 curve of the Test 1 data set. Anyway, both models are able to represent it with a R2 of at least 

0.81 (see Table 4.10). 

4.5.2 Equation 2: HVAC system model 

4.5.2.1 NARX neural network 

It is important to note that the HVAC system exhibits a high level of variability. As can be seen 

in Figure 4.20, NARX model has been clearly capable of capturing them. However, NARX model 

fails to reduce consumption during the afternoon of April 2nd (marked with a yellow square in 

Figure 4.20), during which consumption remains more or less constant below 700Wh. Despite 

this fact in conjunction with the fact that there are times when the output does not reach the 

consumption peaks, the NARX is able to represent 𝑄𝑄ℎ𝑝𝑝 curve with an R2 of 0.83 (see Table 4.11). 
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Figure 4.20. NARX model response of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set. 

Table 4.11. Fitting and R2 values of NARX model response of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set. 

Test 1 data set fitting (%) R2 

NARX model 58.47 0.83 

 

Regarding Figure 4.21, the measured consumption does not have an initial period where its value 

is zero. This is because, even though 𝑇𝑇𝑐𝑐𝑝𝑝 is maintained at 20ºC in this initial period, 𝑇𝑇𝑖𝑖𝑖𝑖 is below 

20ºC, causing the HVAC system to turn on and hence the peaks of around 1.2kW can be observed. 

A slight mismatch can be observed in the output related to the first two consumption peaks, where 

NARX follows the curve with a slight delay, especially during the first peak. This delay of the 

model output with respect to the measured consumption in the first hours of the test greatly 

reduces the fit, which is more than 14% lower than in the case of the Test 1 data set (see Table 

4.12). 
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Figure 4.21. NARX model response of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set. 

Table 4.12. Fitting and R2 values of NARX model response of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set. 

Test 2 data set fitting (%) R2 

NARX model 44.32 0.69 

 

4.5.2.2 Comparison between lmNARX and BJ  

Next step has been to analyse how best lmNARX (Equation (4.11)-(4.12)) and Box-Jenkins 

(Equation (4.13)) are able to represent the measured 𝑄𝑄ℎ𝑝𝑝 curve of the Test 1 data set and Test 2 

data set. 

Several observations can be made by simply looking at Figure 4.22. Both models satisfactorily 

capture the high variability of the consumption curve. However, the response of the Box-Jenkins 

model deserves highlighting, as it gives negative consumption values in the early hours of the test 

where the 𝑄𝑄ℎ𝑝𝑝 is nearly zero. Despite this, is the BJ the one that most accurately represents the 

𝑄𝑄ℎ𝑝𝑝 curve with a 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 of 61.39% (see Table 4.13). 
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Figure 4.22. Comparison of lmNARX and Box-Jenkins responses of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set. 

Table 4.13. Fitting and R2 values of lmNARX and Box-Jenkins responses of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set. 

Test 1 data set fitting (%) R2 

lmNARX 51.59 0.77 

Box-Jenkins model 61.39 0.85 

 

Regarding Figure 4.23 and numerical results gathered in Table 4.14, in general terms, 

significantly worse results have been obtained when tracking 𝑄𝑄ℎ𝑝𝑝 curve of Test 2 data set. 

 

 

Figure 4.23. Comparison of lmNARX and Box-Jenkins responses of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set. 
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Table 4.14. Fitting and R2 values of lmNARX and Box-Jenkins responses of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set. 

Test 1 data set fitting (%) R2 

lmNARX 20.79 0.65 

Box-Jenkins model 8.73 0.18 

 

Both models exhibit a chaotic response at the beginning of the validation, deviating significantly 

from the consumption curve. Box-Jenkins also makes the mistake of representing negative 

consumption values, which is clearly a major factor contributing to the low 𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 value 

achieved (8.73%).  
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4.6 CONCLUSIONS AND FUTURE WORKS 

The aim of this fourth chapter has been to model the HVAC system and the thermal capacity of 

the building so that both models can be used as a control model in the MPC developed in Chapter 

5. The outputs of the model have been the consumption of the modelled heat pump and the 𝑇𝑇𝑖𝑖𝑖𝑖 of 

the modelled area. The control model is a linear model that is updated daily. Linear models can 

reduce the computational cost of the MPC, which is one of the objectives of the proposed MPC 

approach.  

Due to the nonlinear characteristics of the system to be modelled, a NARX model has been 

chosen. The NARX captures the nonlinearities while being able to be linearised at convenient 

OPs, thus capturing the dynamic trend of the system. However, conditions have not made it 

possible to perform excitation tests during longer periods than concrete weekends. Therefore it 

has been impossible to obtain large amounts of data to train the model. Training the NARX model 

with little data set has meant that the results obtained are not as good as they could be. Despite 

this, the NARX trained with little data manages to represent 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝 with a R2 of 0.93 and 

0.81 respectively in the case of Test 1 data set and with an R2 of 0.81 and 0.69 for 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝 in 

the case of Test 2 data set.  

The linearisation of the NARX has been performed on 100 OPs to model the thermal capacity of 

the building and on 200 OPs to model the HVAC system. The objective has been to analyse how 

the NARX operates at these OPs and to select the linear model that best represents 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝 

curves. The lmNARX used to model the thermal capacity of the building has been able to 

represent the 𝑇𝑇𝑖𝑖𝑖𝑖 curve of Test 1 data set with a R2 of 0.85 and with a R2 of 0.81 the 𝑇𝑇𝑖𝑖𝑖𝑖 curve of 

Test 2 data set. The response of lmNARX when modelling the HVAC system has been somewhat 

lower, representing with a R2 of 0.77 the 𝑄𝑄ℎ𝑝𝑝 curve of Test 1 data set and with 0.65 the 𝑄𝑄ℎ𝑝𝑝 curve 

of Test 2 data set. Taking into account the limited data for training the NARX model and the high 

variability of the curves to be represented, we believe that the results are acceptable. However, it 

would be interesting to conduct more tests to obtain more data used to train the NARX model so 

that it can learn from more scenarios. 

The model based on Box-Jenkins method has proven to be suitable for building thermal 

modelling; however, the inability to capture nonlinearities might lead to errors in the 

representation especially of HVAC system consumption.  

Only the Platform area has been modelled in this study, a large space in the ESTIA 2 building. 

The idea of modelling this space was to start with something simple to model and then extend the 

model to the whole building. It was also an accessible space where the tests could be carried out. 
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However, there was not enough time to be able to extend the field of study and model the building 

as a whole. Nevertheless, the modelling of the Platform has allowed the proposed methodology 

to be validated. One of the possible future works could be to perform tests in the rest of the ESTIA 

2 building in order to model thermally the entire building. Moreover, considering the problems 

with testing, as well as the various problems we have experienced with the operation of sensors 

and with the heat pumps themselves, it would be interesting to choose a new building and apply 

the methodology developed in this chapter. 

Finally, it is worth mentioning the possible improvements in the design process of the NARX 

model, since the adjustment of the hyperparameters could be optimised through the use of genetic 

algorithms (GAs).  
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5. CHAPTER 5 

OPTIMISATION PROBLEM OF THE EMS 

 

In this fifth chapter, the optimisation task of the EMS is presented. This chapter synthesizes and 

builds upon the work presented in the preceding chapters. 

The chapter opens with expanding the literature review on optimisation-based EMS started in 

subsection 1.2.2 of Chapter 1. Subsequently, the main and related secondary objectives are 

presented. Following this, the methodology employed and the case study that served as the 

application context are introduced. The results are discussed and the main conclusions are drawn. 

  



OPTIMISATION PROBLEM OF THE EMS 

165 

5.1 INTRODUCTION 

Model Predictive Control (MPC) is a widely used control strategy, renowned for its ability to 

handle multi-variable systems with constraints. The MPC make use of a dynamic control model 

to predict the future behaviour of a system over a finite prediction horizon [219]. Based on these 

predictions, an optimisation problem is solved at each time step to compute the control signals 

that minimise a predefined cost function, while ensuring that all constraints are respected.  

5.1.1 State of the art  

In Chapter 1, a comprehensive review of the literature on MPC applications in various energy-

related scenarios has been presented. Several key studies have been discussed, highlighting the 

versatility of MPC when applied to contexts such as Smart Grids, ECs, and SC frameworks. These 

studies demonstrate the growing interest in optimising energy management in decentralised 

systems, particularly where coordination among multiple actors or consumers is required, as is 

the case with CSC scenarios. 

Additionally, Chapter 1 examines a range of MPC strategies proposed in the literature that pursue 

diverse optimisation goals. Among these, particular emphasis is placed on approaches that aim to 

minimise operational costs [75], maximise the use of RES [77] and enhance the SCR [82]. 

There are several papers proposing EMS applied to Microgrid schemes, which aim to encourage 

self-consumption. In [220], they develop a two-level hierarchical MPC applied to a Microgrid 

composed by a single building with battery systems and PV generation. The improved EMS they 

propose is powered by a module to identify the real-time parameters of the battery model, which 

increases the SCR by 4% compared to a simple RB-EMS. Authors of [221] also introduce a 

hierarchical MPC that includes EVs and a PV installation and aims to maximise SCR. The 

proposal has proven to be able to increase the SCR by 7% over a case of uncontrolled strategy.  

In the specific case of SC scenarios, EMS usually aim to encourage self-consumption as much as 

possible, since, as highlighted in Chapter 1, one of the great advantages offered by SC schemes 

is that if a high SCR is reached, the associated consumers can save on their electricity bills. This 

is the example of [222], which proposes a MPC that aims to optimise the use of electric water 

heaters (EWHs) by taking advantage of unused PV generation to increase the economic benefit 

and SCR within a CSC framework. It proposes several control strategies and finally compares 

them with the performance of a RB-EMS, which fails to outperform any of the proposed 

strategies. Also [223] introduces a proposal that includes BESS and PV installation managed by 
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a MPC type EMS that aims the maximisation of SCR and the minimisation of battery degradation. 

The MPC is able to achieve a SCR of 99.5% and a reduction of 6% of battery degradation. 

One subset of MPC that has gained considerable attention is prediction-based MPCs. In Chapter 

1 examples of predictive model-based EMS approaches have been included, demonstrating how 

these methods incorporate future predictions into the control strategy to achieve superior 

performance [78], [79]. In particular, in [77] the authors compare three MPC-based strategies 

involving PV panels, controllable and uncontrollable loads and BESS. Two of the strategies 

include forecasts and it is concluded that EMS based on predictions outperform the third one, 

which does not include predictions. This type of MPC leverage prediction models to improve its 

performance by offering more accurate estimates of future system states [77].  

When the EMS aims to maximise the SCR, it becomes important to have predictions of energy 

production and the energy to be consumed. When it comes to PV production forecasts, in [224] 

PV production and electricity market price forecasts are used for the EMS to adjust PV generation 

to compensate for power fluctuations. In fact, two actions are also defined when the production 

forecasts fall below or exceed the actual production. On the one hand, electricity is bought from 

the grid or discharged from the ESS in case the predictions have not reached the actual value and, 

on the other hand, the battery is charged when it is over-predicted. The prediction errors of both 

production and consumption depend to a large range of factors as the weather or the occupancy 

level and behaviour of the users of a building. This can lead to prediction errors which, as 

demonstrated in [225], influence the decision-making process of an EMS. In [223], it is proved 

how the uncertainties of forecasts (consumption and PV production) can lead to deterioration of 

the EMS performance. The results show that the EMS without forecasts achieves a SCR of 99.5% 

while including forecasts the SCR reduces to 96.5%. Therefore, it is important to properly select 

predictive models that are able to reduce prediction errors as much as possible.  

The forecasting of energy consumption of buildings and PV production are often performed by 

nonlinear predictive models, which are able to capture the nonlinearities that the system might 

have. To model these nonlinear systems, ML models and more specifically neural networks have 

gained relevance. The problem lies in the fact that some NNs need to be trained with large data 

sets and have complex structures, i.e. several layers composed of many neurons. These complex 

models entail a higher computational cost.  

Nevertheless, NNs can enhance the operation of an optimisation-based EMS because they can 

substantially improve its performance. This is evidenced by [80] where the authors implement in 

a building an EMS based on NN models that forecast the building consumption, weather 

conditions and building’s comfort specifications aiming minimization of energy consumption and 
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ensuring occupants comfort. The MPC is implemented in simulation using EnergyPlus software 

and its performance is compared with a second MPC that does not include predictions as inputs. 

They conclude that the MPC fed with forecasts outperforms the conventional MPC. In any case, 

the characteristics of the model that feeds predictions to the MPC must be in accordance with the 

performance requirements of the MPC. If it is necessary to design a MPC with low processing 

time or generally low computational cost, complex NNs may not be the most appropriate. 

MPCs make use of a control model, which can be either a linear model or a nonlinear model. In 

[226] a MPC and a NARX type NN are combined. The combination is approached in two different 

ways; by a nonlinear MPC (NMPC), and by a MPC using a local linearisation strategy. The first 

one has as a control model a NARX that represents the operation of an EV and forces to perform 

a nonlinear optimisation. In the second approach, the NARX is linearised in real-time and a 

quadratic problem is solved. The results show that the NMPC delivers superior results but it is 

computationally demanding compared with the local linearisation approach. Anyway, it is also 

conclude that the introduction of simple NARX models lead to a reduction in the computational 

time, making them more suitable for real-time applications. 

When an EMS is implemented in a building, the control model usually represents the thermal 

behaviour of the building. The building thermal model is intended to represent the thermal 

dynamics of the building and it can be very useful for the control of indoor temperature variation 

and/or heat related with the HVAC system. Thus, in [227] MPC using a RC thermal network type 

model is proposed to represent the thermal dynamics of the building. The MPC aims at 

minimizing energy consumption and cost. The designed MPC is compared with an On/Off control 

and with a PID controller, concluding that it is the MPC that outperforms the rest. However, 

physical models or even grey-box models such as the RC thermal network, being in general high 

order models they might hinder the MPC performance. High-order models may not be the most 

appropriate in cases where a MPC with a low computational cost needs to be designed.  

The utilization of nonlinear models as control models might also hinder the MPC performance 

requiring more complex solvers. However, this type of models are the most appropriate ones to 

capture the nonlinearities that a system like HVAC can contain. Nevertheless, in the case of 

wanting the MPC to use a simpler control model in order to avoid complex solvers, the 

linearisation of the nonlinear model can be performed. One of the most common approach for 

linearisation is local linearisation, where a linear model around a specific OP approximates the 

nonlinear system. This method is effective for small deviations from the OP, but loses accuracy 

as the system moves further away from it. Although there are other linearisation techniques for 

nonlinear systems such as input-output linearisation or linear parameter varying (LPV) [228], 

local linearisation offers the advantages of being easy to implement and to ensure stability over 
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small operating ranges. It is this latter characteristic that may be appropriate for implementation 

in real-time control applications, in which the system may operate around a certain operating 

point.  

There is also the possibility to enhance performance choosing a suitable MPC strategy for the 

application. A widely used one in literature is the mixed integer programming (MIP) [229], and 

more specifically, mix-integer linear programming (MILP). MILP is an extension of linear 

programming (LP) that allows to define variables to be both integer and continuous. This feature 

makes it conducive to solving more realistic problems, especially when the decisions to be made 

by the MPC involve discrete variables such as binary decisions. MILP is applied when the cost 

function that needs to be optimised is a linear function, as well as the constraints that the problem 

include. MILP has proven to be effective with handling constraints and optimizing [230]. In the 

case of working with a nonlinear cost function or nonlinear constraints, it will be dealing with 

nonlinear programming (NLP). This is the case where, for example, in an EMS applied to a 

building, the thermal dynamics of the building or the behaviour of the air conditioning system are 

represented with nonlinear equations that comprise the control model of the MPC. There is also 

the possibility of having to solve a nonlinear problem but working with variables that are both 

integer and continuous. In this case we would be dealing with mix-integer nonlinear programming 

(MINLP). In order to know which type of strategy fits the optimisation problem to be solved, it 

is necessary to analyse the models and the cost function to see if they are linear or nonlinear, as 

well as, if it is necessary to declare any integer variable. However, it is also necessary to analyse 

the computational requirements of each type of problem defined, since, especially the nonlinear 

ones can be very computationally demanding.  

5.1.2 Conclusions 

There is a wide variety of optimisation-based EMS in the scientific literature used to encourage 

self-consumption by maximizing SCR. Several papers have also shown that EMS that include 

predictions outperform EMS that do not include them. That is why proposals that introduce 

prediction-based EMS are increasingly growing. ML models and in particular NNs have proven 

to be feasible solutions to feed MPCs with predictions. 

Furthermore, as mentioned before, there are NMPCs, which use a nonlinear control model and 

therefore perform nonlinear optimisation. However, as several analysed papers point out, this type 

of optimisation is more computationally demanding. In order to reduce computational cost, some 

authors use linear models as the control model of the MPC, but in this case, the MPC performance 

can be low when the controlled system is very nonlinear. Regarding physical and RC thermal 

network models, there are often high order models, which might increase the computational cost 
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of the MPC. Therefore, a good solution could be to design a nonlinear model to capture the 

nonlinear dynamics of the system and to linearise it regularly at the OP of interest. Thus, a new 

linear control model can be considered each time the MPC operates, ensuring lower 

computational cost and taking into account the dynamical behaviour of the system in the 

corresponding OP.  
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5.2 OBJECTIVES 

After reviewing the existing literature on studies related to optimisation problems of MPCs, a set 

of concrete objectives have been established for this research. The purpose is to explore and 

justify each of these objectives in this chapter, with a focus on demonstrating their relevance and 

applicability within the context of EMS applied to SC. 

The main objective of this chapter has been to undertake and evaluate the optimisation problem 

of the proposed EMS. As shown in Figure 1.5 of Chapter 1, the optimisation development phase 

brings together the work done in Chapter 2, Chapters 3 and Chapters 4. The MPC has as inputs 

the day-ahead predictions of energy consumption (without the consumption associated to the 

HVAC system) and PV production both developed in Chapter 2 and Chapter 3 respectively. In 

conjunction, it uses the HVAC system and the associated building thermal model developed and 

presented in Chapter 4 as the MPCs control model. 

In order to evaluate whether the optimisation module is operating correctly, several aspects have 

been analysed, which can be defined as secondary objectives. 

 The EMS aims to maximise the SCR; therefore, the analysis of the correct performance 

of the optimisation problem has been conducted to see if its application leads to an 

increase in the SCR. 

 Together with the maximisation of SCR, the EMS must ensure thermal comfort of 

occupants of the building ESTIA 2, and consequently, certain internal temperature limits 

are established. It is therefore necessary to check whether the optimisation respects the 

thermal comfort zone at all times. 

 The EMS controls the heating related to the HVAC system by optimally generating the 

set point temperature. Therefore, the last objective is to analyse the correct operation of 

the optimisation module by checking the effect of its output, the set point temperature. 

By pursuing these goals, the study aims to contribute to the development of an EMS that optimise 

the performance of HVAC systems in a building. 
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5.3 METHODOLOGY 

The MPC has been developed under the approach of being suitable for a real time implementation 

and which it does not have a high computational cost.  

As depicted in Figure 1.5 of Chapter 1, the MPC makes use of day-ahead predictions of energy 

consumption (without the effect of the HVAC system) and PV production. The predictive models 

have been designed so that, when trained with little data and with a simple structure, they can 

feed the MPC with accurate predictions. In addition, a linear model has been applied as the control 

model used by the MPC, more specifically the thermal behaviour of the building and the 

associated HVAC model. Thanks to the model, it is able to represent the thermal dynamics of the 

building and thus to control the needed heat produce by the HVAC by means of the set point 

temperature. The main objective of the MPC is ultimately to maximise the SCR while ensuring 

the thermal comfort of the building. As the thermal model has been developed in the heating 

operation of the heat pump, the optimisation has also been conducted in the same case. This means 

that in this Thesis, the cooling case is not studied. .  

5.3.1 Prediction horizon and sampling time 

The MPC has a prediction horizon of one day, i.e. it provides the set point temperature for the 

next 24 hours. Regarding the sampling time used, the SCR is calculated in France every half hour. 

This said, due to the restrictions mentioned in Chapter 4 regarding the excitation test 

characteristics, the thermal model has been built with a sampling time of 20 minutes and therefore, 

the optimisation has been performed every 20 minutes. Furthermore, the predictive models built 

at Chapter 2 and Chapter 3 forecast with a sampling time of one hour. This decision was taken 

because, at first, the models were intended to be applicable to Spain, where the SCR is calculated 

on an hourly basis. In addition, the meteorological data used as inputs to the predictive models 

are available with a sampling time of one hour. Therefore, in order to integrate the consumption 

and PV production forecasts in the optimisation module, the sampling period of both has been 

changed to 20 minutes by interpolation. After all, the Thesis has been a process where certain 

things have been redefined over time. The lack of time has meant that certain improvements could 

not be made, among others, the adjustment of the sampling time of the predictions. 
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5.3.2 Optimisation problem 

The MPC developed in this Thesis is a strategy based on the optimisation of a cost function and 

makes use of a control model and predictions of consumption and PV production to provide as 

control signal the set point temperature. 

In this study, the EMS uses as control model a linear model that represents the HVAC system and 

the associated thermal capacity of the building. The model is represented with Equation (4.8) and 

Equation (4.11) of Chapter 4. 

Once the model developed and the prediction horizon set, it has been necessary to define: 

(a) The cost function 𝐽𝐽 of the problem that need to be optimised. 

(b) The constraints that the problem need to satisfy. 

The cost function represented in Equation (5.1) has been defined where all the terms are energy 

related terms (kWh). In this way, the function sums in each sampling time 𝑘𝑘 the absolute value 

of the difference between all the three energy terms.  

 
𝑚𝑚𝑓𝑓𝑓𝑓𝑄𝑄ℎ𝑝𝑝  𝐽𝐽 = 𝑚𝑚𝑓𝑓𝑓𝑓𝑄𝑄ℎ𝑝𝑝 ��𝑄𝑄𝑝𝑝𝑝𝑝(𝑘𝑘)− 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐(𝑘𝑘)− 𝑄𝑄ℎ𝑝𝑝(𝑘𝑘)�

𝑖𝑖

𝑘𝑘=1

 (5.1) 

 where 𝑄𝑄𝑝𝑝𝑝𝑝(𝑘𝑘) is the predicted PV energy in kWh in each sampling time 𝑘𝑘 and 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 is 

the predicted building energy consumption without HVAC system consumption in kWh at each 

sampling time 𝑘𝑘. 𝑄𝑄ℎ𝑝𝑝(𝑘𝑘) is the energy consumption of the HVAC system in kWh at each 𝑘𝑘 and 

𝑓𝑓 represents the total number of samples.  

The aim is to minimize 𝐽𝐽 and thus ensure that the EMS keeps the consumption curve of the 

building following the production curve for as long as possible. Thus, ensuring to maximise the 

SCR as much as possible. The constraints that have been defined are related to the thermal comfort 

zone.  

5.3.3 Thermal comfort representation 

The EMS needs to ensure that the indoor temperature is maintained inside specified ranges. 

Aiming to define these ranges Dear and Brager model has been used as reference [85]. Dear and 

Brager model was developed as a basis for the standards of the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE). 
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The authors define a comfort temperature (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) as the ideal temperature to be maintained in 

the building. Therefore, they propose the 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 calculation in function of the previous day 

average external temperature, named 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑒𝑒𝑚𝑚𝑖𝑖, as shown in Equation (5.1) 

 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.31 ∗ 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑒𝑒𝑚𝑚𝑖𝑖 + 17.8 (5.2) 
   

Dear and Brager model proposed (see Figure 5.1) a temperature range corresponding to a thermal 

acceptability of 90% and 80%. These acceptability margins are defined around the comfort indoor 

temperature.  

 

Figure 5.1.Proposed adaptive comfort standard (ACS) for ASHRAE Standard 55 [231]. 

Therefore, a minimum and maximum indoor temperature have been defined for both 80% and 

90% of acceptance. For that, the mean external temperature (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑒𝑒𝑚𝑚𝑖𝑖) of the previous day that 

needs to be optimised has been calculated. 

Taking the calculated 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as a reference, the internal temperature limits have been established 

taking into consideration 90% and 80% of acceptability.  

 𝑇𝑇𝑖𝑖𝑖𝑖,min90% ≤  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑖𝑖𝑖𝑖,max90% (5.3) 

 𝑇𝑇𝑖𝑖𝑖𝑖,min80% ≤  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑖𝑖𝑖𝑖,max80% (5.4) 

The 90% of acceptance temperature range has been considered as the first constraint to meet 

during the work hours take from 08am to 06pm. Due to the low external temperatures that usually 

are registered in the early hours, it has been decided to apply as a second constraint the 80% 

acceptance temperature range from 06.40am to 08am. The aim is to preheat in order to do not 

have a high consumption peak to reach the minimum temperature of 𝑇𝑇𝑖𝑖𝑖𝑖,min90% needed at 08am. 
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5.3.4 Programming of the optimisation problem  

The optimisation problem has been defined and solved in Python using pyomo environment. After 

defining the cost function and the constraints and knowing which variables need to be declared, 

it can be concluded that, by using linear models and a linear cost function, a simple linear 

programming (LP) problem has to be solved. The heat pump model includes a priori the hysteresis 

term that must acquire an integer value, specifically a value of 0 or 1. By declaring the internal 

temperature, the set point temperature or the heat pump consumption as continuous variables, a 

MILP problem has arisen. The selection of the employed solver has been made accordingly. 

Given the inability of the glpk solver to find a solution to the optimisation problem, it was decided 

to use the ipopt solver. The glpk solver is designed to solve LP problems but can present 

difficulties when optimising problems with continuous or numerically complex variables. The 

ipopt solver is designed to solve nonlinear problems, but it is nevertheless capable of optimising 

linear problems and can provide advantages in the face of certain numerical instabilities. 
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5.4 CASE STUDY 

Before validating the performance of the EMS by verifying the increase of the SCR after the 

implementation of the optimisation, the case study selected to perform such validation is first 

presented. 

The selected day has been the 21st of April 2023, Friday, a day of low temperatures during the 

night and early hours of the day that require turning on the heating in the building. The external 

temperature data is predicted data obtained from Meteo Galicia and is plotted in Figure 5.2.  

 

Figure 5.2. External temperature of 21st of April 2023. 

The temperature data have been predicted with a sampling time of one hour needing to use linear 

interpolation to set the 20 minutes of sampling time required by the optimisation, as explained in 

section 1.3.  

The PV production curve and building consumption curve without taking into considerations the 

consumption of the HVAC system of 21st of Abril are plotted in Figure 5.3. The forecasting has 

been done in both cases with a sampling time of one hour, therefore, linear interpolation has been 

applied to fix the sampling time of 20 minutes. Moreover, a third curve has been included in order 

to see the difference of the total consumption and the one without heat pump consumption.  
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Figure 5.3. Consumption and PV production curves of 21st of April 2023. 

In addition, as described in section 1.3 of Chapter 1, an expansion of the PV power plant is 

planned within the EKATE project framework, which will be implemented in the short term. 

Thus, the total PV power will increase from 5.6 kWp to 117.17kWp. It has therefore been decided 

to multiply the PV production by a gain (𝐺𝐺𝑃𝑃𝑃𝑃) of 20 in order to emulate this case (see calculations 

in section 1.3).  

Furthermore, since PV production and consumption of the building have been predicted in terms 

of average power, both the consumption and PV production curves have been transformed into 

energy terms. 

Finally, the thermal model has been initially designed to represent the thermal dynamic of a zone 

of the building named Platform. However, as already mentioned in Chapter 4, the model has been 

considered in the optimisation as the one that represents the thermal dynamics of the whole 

building.  

Having defined the case study, the temperature constraints that need to be included in the 

optimisation problem have been fixed. As explained before, the temperature constraints have been 

set to ensure the thermal comfort zone defined by Dear and Brager model proposal. Therefore, 

the previous day mean external temperature has been calculated (see Figure 5.4).  
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Figure 5.4. The external temperature of 20th of April 2023. 

Being the external mean temperature of 20th of April 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑒𝑒𝑚𝑚𝑖𝑖 = 14.5º𝐶𝐶, the ideal indoor 

temperature for 21st of April is 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 22.3º𝐶𝐶. Therefore, the minimum and maximum indoor 

temperatures have been limited into 90% and 80% of acceptance (see (5.5) and (5.6)). 

 19.8º𝐶𝐶 ≤  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 24.8º𝐶𝐶 (5.5) 

 18.8º𝐶𝐶 ≤  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 25.8º𝐶𝐶 (5.6) 
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5.5 RESULTS AND DISCUSSION 

The results have been shown according to the objectives set out in section 5.2. Therefore, first 

consumption curves of 21st of April without applying optimisation have been plotted (see Figure 

5.5) aiming to see if an increase in SCR has been achieved when optimisation is carried out.  

 

Figure 5.5. Energy curves and SCR of 21st of April without optimisation. 

Figure 5.5 shows the PV production curve and the consumption of the building, which includes 

the heat pump consumption. A third curve has been introduced which represents the self-

consumed energy every 20 minutes. A SCR of 86.78% is achieved on the chosen day without 

optimisation being applied. When no optimisation is applied, the indoor temperatures that were 

registered during work hours can be seen in Figure 5.6.  

 

Figure 5.6. Indoor temperatures when optimisation isn’t applied. 
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Although most of the recorded temperatures are within the 90% range of acceptability, in the early 

hours of the day, which are usually critical due to low temperatures, the comfort temperature is 

not respected and remains below 19ºC until 09:40am.  

Figure 5.7 shows the consumption curves that have been obtained after applying optimisation. 

 

Figure 5.7. Energy curves of the case study optimised. 

The PV production curve is drown in yellow while the building consumption curve is in dark 

blue. The light blue is the consumption of the heat pump and finally the garnet curve represents 

the sum of building and heat pump consumptions.  

As said in section 1.3, the control model has been built with a sampling time of 20 minutes due 

to the excitation test characteristics. Therefore, the optimisation has been done with the same 

sampling time and that is why all quantities represented in Figure 5.7 are values of energy 

produced or consumed every 20 minutes. 

On the one hand, there are two consumption peaks of the heat pump at 06:20am and 07:40am 

specifically. These peaks represent the consumption that the heat pump needs to provide to meet 

the minimum temperature restrictions set as constraints. It is understood that the consumption 

peaks that can be seen in the graph do not strictly represent reality. The thermal model obtained 

in Chapter 4 based on the excitation tests carried out in the Platform area of the building has been 

used. The models representing the thermal behaviour of a single zone of the building and a single 

heat pump (GR16) have been used as the representative models for the building as a whole and 

for the 10 heat pumps. Therefore, the optimisation problem tries to use the whole HVAC system 

to reach the minimum temperature included as a constraint. This increases the consumption 

considerably, which would not be the case in reality. This is clearly a limit to the modelling. 
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Nevertheless, it has been proven that the optimisation problem is able to achieve the main 

objective: to leverage the PV generation surplus to turn on the heat pump consumption making 

the consumption curve follow the production curve. Thus, it can be seen that from 11:20am to 

03:00pm, it is able to use all the excess PV energy for supplying the heat pump consumption. 

During the first and last hours of the range where 𝑄𝑄𝑝𝑝𝑝𝑝 > 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐, the total consumption curve 

(garnet curve) is not able to follow the PV generation curve. This is due to the higher consumption 

that the heat pump needs to provide to respect the thermal comfort zone constraint.  

Figure 5.8 shows the indoor temperature obtained during the day when applying the optimisation. 

The indoor temperature values represented by red markers in the figure are the temperatures given 

by the optimisation problem during the hours that thermal comfort zone must be respected, that 

is from 08:00am to 06:00pm.  

 

Figure 5.8. Indoor temperature values when optimisation is applied. 

It can be seen that in addition to the fact that the optimisation has managed to increase the SCR 

by 13.22%, it respects the internal temperature restrictions that have been established to ensure at 

all times the thermal comfort of the occupants of ESTA 2 building.  
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5.6 CONCLUSIONS AND FUTURE WORK 

The objective of the work presented in this chapter has been to develop the optimisation module 

of the proposed Energy Management System designed to control the HVAC system of the 

building by adjusting the set point temperature. The approach has aimed to maximise the SCR 

while ensuring occupant thermal comfort and minimising MPC computational cost. 

In order to evaluate the performance of the optimisation, the SCR obtained before and after the 

application of the optimisation has been compared. Without the application of the optimisation, a 

SCR of 86.78% has been obtained, while the optimisation achieves 100% SCR i.e. in the case 

study analysed, everything that is produced is consumed. Therefore, the optimisation leads to an 

increase of 13.22% in SCR. The optimisation also meets the temperature restrictions established 

to ensure the thermal comfort of the occupants, maintaining the indoor temperature in the comfort 

range of 90% of acceptability practically at all times during the hours the building is occupied.  

There are several problems with the thermal model developed in Chapter 4 and used in the MPC. 

As it was not possible to perform the thermal excitation tests on the whole building, the thermal 

dynamics of the building could not have been modelled and the 10 heat pumps neither. Therefore, 

it has been assumed that the models of the Platform area and the GR16 heat pump represent the 

whole building and the HVAC system. This has led to inconsistencies of the operation of the 

HVAC system, as the optimisation gives outliers that could not occur in a real situation, such as 

the consumption peaks at 06:20am and 07:40am. In addition, it is worth mentioning that the 

excitation tests could only be carried out in a period of low temperatures, so the modelling has 

been only carried out for the heating mode, leaving aside the modelling in cool mode.  In addition 

to only being able to test during low temperature periods, the tests have only been carried out on 

weekends, a very short period of time, which has limited significantly the availability of data for 

modelling. 

The objective of optimising the set point temperature has not been achieved. This makes it 

necessary to revise and improve the thermal model because the used model might not be the good 

one. On the one hand, it seems that there is some unidentified problem in the HVAC system model 

because the model is not able to correctly represent the relationship between consumption and set 

point temperature. This may be due to not having considered the indoor temperature in the HVAC 

system model directly by means for example of the difference between set point and indoor 

temperature. Moreover, it has been shown that the HVAC system does not operate in a narrow 

operating range, but that the operating point at which it works is constantly changing. This means 

that the linearised model at one operating point used as a control model may not represent the 

dynamics of the system properly.  
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As future work it deserves special attention to improve the thermal modelling of the building to 

obtain better optimisation results. This will require the possibility to obtain more and better data 

from thermal excitation tests. It could be interesting to carry out the tests in another building, 

which would allow the possibility to optimise a more centralised HVAC system and to test the 

whole building and not only one area. In this case, multi-zone optimisation could be performed 

in order to optimise the temperature regarding, for example, the orientation and isolation of 

different zones of the building. In addition, the tests could also be carried out in times of high 

temperatures in order to be able to model in cold mode. The building in which this methodology 

can be applied should also have quality, reliable data and ensure to some extent that there are no 

problems with sensors or the operation of air conditioning or other systems. 

Furthermore, the optimisation should also be applied in more days in order to be able to generalise 

the correct performance of the proposed optimisation problem. 

Finally, considering that the SCR in France is calculated every 30 minutes, it would be convenient 

to perform the optimisation every 30 minutes and therefore thermally model the building with a 

30-minute sampling time. The possibility of being able to perform further tests in another building 

could provide the chance to make such a change.  
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CHAPTER 6 

6. GENERAL CONCLUSIONS  

& FUTURE LINES 

 

This chapter outlines the key conclusions of the Thesis, highlighting its principal contributions 

and proposing potential directions for future research on the subject.  
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6.1 GENERAL CONCLUSIONS 

The main objective of this Thesis has been to develop an intelligent EMS implemented in a single 

building and based on forecasting models. The EMS is designed to meet the energy demand of 

ESTIA 2 building by utilising the PV energy generated in the frame of SC, with the goal of 

maximising the SCR and ensuring occupants thermal comfort.  

The aim in Chapter 1 has been to set out the general objectives of the Thesis by providing a 

context to frame these objectives. Based on this, the EMS proposal is presented from which the 

tasks and stages necessary to complete its design are derived.  

The main objective of Chapter 2 has been to predict the hourly electricity consumption for the 

next 24 hours for the ESTIA 2 building using a NARX type neural network daily trained on small 

data sets. Circumstances have forced to design models that use little data for training, having to 

train the model with a small data set of 21 previous days. Training with little data and a simply 

structured NARX model allows the possibility of training the models on a daily basis and 

obtaining MAPE results of less than 14%. This allows, in addition to predicting with a low 

computational cost, to take into account substantial changes that may occur in the consumption 

pattern, such as the integration of high consumption elements (heavy machinery, building 

extension...). The LSTM, unlike the NARX, has a complex structure and is more suitable for cases 

where it is important to learn long-term data dependencies. In this case, as it does not have a large 

data set and has to use a reduced time window, the NARX has more potential. In addition, when 

predicting time series, the recurrent term of the NARX has a great advantage compared to models 

that do not include it, and this has been proven by the substantial improvement of the SVR 

predictions when introducing a time vector as input. Only in this way has been SVR able to 

outperform the accuracy with which NARX predicts. 

With regard to the prediction of PV production developed in Chapter 3, emphasis has been placed 

on specifying the various models that have been used in the literature to predict PV production. 

The focus has been on those models that can best deal with the problems that the intermittent 

nature of solar irradiance can generate in the PV production curve. Therefore, ML models and an 

analytical model have been developed to make day-ahead hourly PV production forecasts using 

measured and predicted solar irradiance data from different meteorological agencies. Firstly, it 

has been found that by introducing only solar irradiance as input, the best prediction results are 

achieved. In addition, the comparison of the operation of ML models with the analytical model 

has led to the conclusion that ML models are able to compensate to a certain extent for errors in 

the solar irradiance prediction data. Although the ML models show larger errors in their results 
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when trained with predicted data instead of measured irradiance data, the difference is not as 

noticeable as that of the analytical model, which predicts 42.22% worse with predicted data. 

After having designed the predictive models, the development of the thermal model of ESTIA 2 

building where the EMS is to be applied, has been introduced in Chapter 4. This model is the 

control model of the MPC, a dynamic model that the MPC uses to predict the future behaviour of 

the system and thus to maximise the SCR. Regarding the first objective defined, it can be stated 

that the NARX model has been able to model capturing the nonlinearities of the thermal behaviour 

of the building and the HVAC system. Proof of this is the accuracy of the NARX responses of 

𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑄𝑄ℎ𝑝𝑝: a R2 of 0.93 and 0.81 in case of 𝑇𝑇𝑖𝑖𝑖𝑖 of Test 1 data set and Test 2 data set respectively 

have been achieved. In case of 𝑄𝑄ℎ𝑝𝑝. R2 of 0.83 and 0.69  of Test 1 data set and Test 2 data set 

respectively have been obtained. 

However, there have been problems in carrying out excitation tests on the entire ESTIA 2 

building. This has meant that the designed model only represents the thermal dynamics and 

operation of a single area (Platform) and a single heat pump (GR16). The Platform area, together 

with being a large space, was the area in which we were able to perform the excitation tests. 

Furthermore, we wanted to start with a simple model and then move on and extent to a model of 

the whole building, which was a much more complex model. However, in the context of this 

Thesis there has not been time to carry out the extension. Therefore, the thermal model of the 

Platform has been used as if it represented the thermal dynamics of the building as a whole and 

the 10 heat pumps that make up the HVAC system.  

Moreover, the excitation tests have only been possible to perform at weekends. The lack of 

sufficient data has meant that the training of the NARX model has had to be done with very small 

data sets. Since NARX is not trained with many data, if it is sometimes linearised at operating 

points not covered by the training, can present inaccuracy problems. This may be the reason why 

in some cases the linear NARX models do not improve the accuracy of the proposed Box-Jenkins 

linear model. 

Finally, the sampling time of 20 minutes forces the optimisation to be carried out every 20 

minutes, which does not fit in with the SCR calculation that must be carried out in France every 

30 minutes. This also contrasts with the sampling time of the predictive models, which predict 

every hour. Although the aim was to establish a consistent sampling time in all the phases of the 

Thesis, the accessibility of the data and the circumstances surrounding the case study did not make 

it possible.  

Chapter 5 integrates the work done in previous chapters to conform the optimisation of the EMS 

that has had the task of controlling the HVAC system by means of the set point temperature in 
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order to increase the SCR as much as possible. Thus, a comparison of a case study is introduced 

where the SCR is calculated with and without the application of the optimisation. It is concluded 

that the MPC-based EMS increases the SCR up to 100% while ensuring the thermal comfort of 

the occupants at all times.  

In spite of this, not all the expected objectives have been achieved, as the MPC does not manage 

to optimise the set point temperature due to an unidentified inconsistency in the HVAC system 

model. Two possible errors have been identified, which might cause the model to be not right and 

need to be revised. On the one hand, the heat pump model does not include the indoor temperature 

variable in the way we believe it should. The difference between the indoor temperature and the 

set point temperature is not taken into account to determine the consumption that the heat pump 

should provide. On the other hand, it has been seen that the heat pump model does not keep 

operating at a small operating range, but its operation range is wider. This means that by 

linearising the model to a single OP, the model is not able to describe the dynamics of the system 

at all times. 
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6.2 FUTURE LINES 

Having reviewed the conclusions drawn chapter by chapter, i.e. considering each part of the EMS, 

the following section defines the research lines that can be developed in the future. 

 As for the data pre-processing process carried out before the design of the predictive 

models, methods such as Principal Component Analysis (PCA) could be applied. This 

mathematical technique helps to reduce the complexity of the data, reducing its 

dimensionality and helping to obtain key information from these data. These features 

could make the selection of inputs and the time window of the predictive model perhaps 

more effective [157]. 

 Prediction models have been designed through error trials to reduce as much as possible 

the selected error metric. This may mean that the values selected for the hyperparameters 

might not be optimal, as we may be in a local minimum. In the future, techniques for the 

optimisation of the hyperparameters such as genetic algorithms could be applied. 

 HVAC system can be modelled using Spectral Decomposition. This technique could help 

to decompose the used data in different frequencies helping to adjust better each model 

to each frequency. By working with separate models for different frequencies, the overall 

accuracy of the model can be improved, because it focuses better on representing different 

signal behaviours [232]. 

 There has not been time to extend the study to cases of e.g. slightly higher temperatures 

or more irregular PV production days. However, in order to be able to generalize the 

results of the optimisation problem, it should be applied in more than one day.  

 Taking into account that the control model must represent a nonlinear systems such as 

the HVAC system, a nonlinear optimisation could be carried out and the results could be 

compared with those obtained following the methodology introduced in the Thesis.  

The problem with data accessibility has been a transversal issue throughout this Thesis process. 

After having validated the methodology, contributions could be extended by choosing a new case 

study where the availability of data is wider. In this sense, we have started collaborating with 

ULMA Packaging, a company located in Oñati (Gipuzkoa), in order to use some of their buildings 

equipped with PV panels as possible case studies. ULMA is made up of five buildings with PV 

production facilities in some of them and heat pumps that the EMS could use as FLs. In addition, 

this company has more detailed data stored for each of the consumption elements of ULMA's 

buildings, as well as indoor and outdoor temperature data. Furthermore, real occupancy data is 

available, which has been proved to be an interesting input for models to forecast building energy 

consumption. Thus: 
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 EMS could have models predicting consumption and production trained with more and 

better quality data that can further improve its operation. In addition, together with having 

available real occupancy data of the buildings, meteorological predicted data from Meteo 

Galicia could be obtained with a resolution of 4km.  

 As the set point temperature data is also available, the building thermal model could be 

built with a NARX model trained with extensive data sets and thus be able to represent a 

wider range of scenarios. In addition, the modelling of the HVAC system could be 

simpler because the operation of the system is simpler and more centralised than the 

analysed case in this Thesis: in ESTIA 2 building the heat pumps were connected to a 

network of 73 indoor units located throughout the building and the indoor units in each 

office could be started independently obtaining chaotic and decentralised performance of 

the HVAC system. 

 By having data from not just one building but from the five that comprise ULMA, the 

self-consumption could be extended to a framework of collective self-consumption, 

where the PV production generated could meet the consumption of several buildings of 

the company.  

Finally, the work done in this Thesis could be extended by increasing the scope of the MPC. In 

this work the MPC has sought to maximise the SCR, however, economic criteria could be added 

to this objective. It could be interesting to calculate the economic benefit that could come with 

increasing the SCR, since economic savings are also an important factor to be taken into account 

for the possible participants in SC or in the case of CSC. 
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A.ANNEX A 

 

RECURRENT NEURAL NETWORKS 

RNNs have been widely used for forecasting purposes, particularly for predictions in the energy 

sector [1], [2], [3]. Various types of RNNs have been used to predict resource demand in a power 

distribution network. Therefore, numerous works can be found where some type of RNN is used 

to predict the electricity consumption of one or several consumption points associated with the 

power grid [4], [5]. They have also been used to predict the production of PV installations [6, 7] 

to foresee the state of charge of electric vehicle batteries [8], [9] or of battery systems (BSS) 

associated with a MG [10], [11].  

RNNs are nowadays one of the most frequently used ANNs and are characterised by their 

capability to process several nonlinear dynamic systems, creating complex representations from 

input to output sequences. 

RNNs have the characteristic of handling very well the properties that time series present. These 

properties include the saturation effect, the exponential effect, or the nonlinear interactions that 

may exist between different variables [12].  

Figure A.1 shows a diagram of a simple RNN, where the input, 𝑇𝑇, hidden, ℎ, and output, 𝐸𝐸, 

represent the nodes in the layer. Similarly, 𝑊𝑊𝑖𝑖, 𝑊𝑊ℎ  y 𝑊𝑊𝑐𝑐 represent the weight matrices located 

in each layer. Finally, 𝑧𝑧−1 is the unit delay operator, and the polygon represents the nonlinear 

function, known as the activation function, applied by the neurons. 

 

Figure A.1. Simple RNN arquitecture. 

RNNs, regardless of their type, have the characteristic of possessing a recurrent term, another 

aspect that makes them suitable for cases where dealing with time series is required. As 

mentioned, RNNs, given their well-known universal approximation property, seemingly have the 
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capability to model any type of dynamic system, but the training phase becomes particularly 

important for this. 

Proper training of a model involves estimating the model's hyperparameters in such a way that, 

through certain inputs, a target variable can be estimated accurately. However, various 

methodologies can be employed for this training, often depending on the structure of the NN. In 

the absence of a standardised methodology for training RNNs, in most cases, the adjustment of 

weights and biases is performed using Gradient Descent (GD). 

GD is one of the most commonly used optimisation algorithms for adjusting the weights and 

biases of NNs, together with the backpropagation algorithm. The latter seeks to minimise a cost 

function by propagating the calculated gradients of the error with respect to each of the network's 

weights backwards. 

The cost function can be generally expressed in Equation (A.1) [12]: 

 𝐿𝐿𝑘𝑘 = 𝐸𝐸(𝑇𝑇,𝐸𝐸∗;𝑊𝑊𝑘𝑘) + 𝑅𝑅λ(𝑊𝑊𝑘𝑘) (A.1) 

In this equation, 𝑊𝑊𝑘𝑘 represents the set of weights and biases of the NN, with 𝑇𝑇 being the inputs 

introduced to the model and 𝐸𝐸∗ the desired output, all recorded in epoch 𝑘𝑘 of the optimisation 

process. 

𝐸𝐸 is the function that evaluates the prediction error of the NN: 

 𝐸𝐸 = 𝑀𝑀𝑀𝑀𝐸𝐸(𝐸𝐸, 𝐸𝐸∗) =
1

|𝑇𝑇|�(𝐸𝐸 − 𝐸𝐸∗)2 (A.2) 

In Equation (A.2) the regularisation term (𝑅𝑅λ) is added, which depends on the value of the set of 

weights and biases of the model and is used to improve the generalisation capability of the model. 

The training is conducted following these steps: first, the values of the weights and biases of the 

model are randomly initialised. Subsequently, the partial derivative of the cost function with 

respect to each of the weights is calculated, i.e., the gradient is calculated, or in other words, the 

slope of the cost function is determined. 

 
𝐺𝐺𝐸𝐸𝑉𝑉𝑑𝑑𝑓𝑓𝑇𝑇𝑓𝑓𝑇𝑇 =

∂𝐸𝐸
∂𝑊𝑊𝑘𝑘

 (A.3) 

Using the backpropagation method, this gradient calculation is propagated backwards to adjust 

the values of the weights. The weight values will be updated so that they move in the direction of 

the descending slope, i.e., in the direction opposite to the gradient. This process is repeated 

iteratively until the cost function is minimised as much as possible. 
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However, in addition to determining whether the new weight value should increase or decrease 

to minimise the cost function, it is also necessary to determine by how much the value should be 

increased or decreased. This amount is determined by Equation (A.4) [13]. 

 
𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 + η

∂𝐿𝐿𝑘𝑘
∂𝑊𝑊𝑘𝑘

, (A.4) 

It can be seen that η, the learning rate, determines how much the weight values should increase. 

Therefore, η, will be another hyperparameter to tune in many types of RNNs. 

As mentioned previously, during the backpropagation algorithm, the gradients are propagated 

backwards through the network layers. Due to the calculations that must be performed during 

gradient propagation, various problems can arise depending on the value of the gradient. The most 

well-known and reviewed in the literature are the Vanishing Gradient and Exploding Gradient 

problems [14].  

The Vanishing Gradient problem occurs when gradients acquire very small values and propagate 

through several layers. The use of the logistic sigmoid activation function makes this problem 

more likely to occur, as the derivatives of this function take on values much smaller than 1, 

causing the gradients of the weights in the network layers to be very low. The low value of the 

gradients means that during the backpropagation algorithm, the layers receive very little 

significant information, which not only hinders the learning process but also slows down 

convergence. 

In contrast, the Exploding Gradient problem arises when the gradient increases exponentially. 

This occurs when the gradient takes on values greater than 1 and propagates backwards through 

the different layers of the network. This can lead to unstable training and numerical issues. 

Although the Vanishing Gradient problem is strongly related to the logistic sigmoid activation 

function, both problems can have different causes. 

Other common problems in NN are underfitting and overfitting. A model suffers from underfitting 

when it lacks the general capacity to learn the problem, resulting in poor performance during both 

training and when new data is introduced. Underfitting can be addressed by increasing the model's 

capacity to fit functions that can map the model's input to its output. Increasing the model's 

capacity means enhancing its structure, for instance, by adding more layers to the network and/or 

more neurons to these layers. 

Overfitting, on the other hand, presents itself as a generalisation problem that the model may 

have. This means the model learns too well, too much in detail, during the training phase and 

lacks the generalisation capacity for new unseen data. When overfitting occurs, we will see that 
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while the training dataset error decreases significantly with each iteration, the error for unseen 

data increases with each iteration. 

To address this problem, the model's structure can be reduced to lower its complexity. Another 

possible solution is to limit the values of the weights. This latter method is one of many that fall 

under regularisation methods, which improve the model's generalisation capability. Another 

widely used regularisation method is called Early Stopping. It involves monitoring the model's 

performance during the validation phase and stopping training before performance degrades. 

According to this method, training stops when the validation error increases for six successive 

iterations. 

It will be important to adapt the type of training, the structure, and the regularisation method 

according to the type of RNN to be used, which in turn depends on the available data and the 

complexity of the system we want to represent. 

Among the most well-known types of RNNs are, for example, LSTM or GRU networks, both 

used in time series applications and characterised by their gated architecture. The recurrence in 

this type of network is guaranteed by the architecture itself, which includes elements like memory 

cells that allow them to remember past values. 

This is not the case for other types of networks, which have a simpler architecture and include a 

recurrent term through feedback terms. This is the case for NARX networks, widely used in STLF 

applications, and distinguished by their simplicity and ease of implementation. 

A.1 NARX neural network 

 

NARX neural networks are considered a type of Recurrent Neural Network (RNN) that have been 

widely used in the literature for time series prediction due to, on the one hand, their easy 

implementation and, on the other hand, their fast training procedures. As it can be seen in Figure 

A.2, the prediction of dynamic NNs, such as NARX, is driven by the input-output pairs, as well 

as, by the previous states of the network, that is to say, by the input and feedback delays. 

 
Figure A.2. General NARX diagram used for forecasting purposes in operational mode. 
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where 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑖𝑖𝑗𝑗 are the weight matrix, 𝑏𝑏 𝑖𝑖and 𝑏𝑏𝑗𝑗 are the bias and finally, the D block represents 

the delays, that is to say the number of time delay steps applied to the input and the feedback 

(output). Finally, 𝑓𝑓1and 𝑓𝑓2represents the activation function of each layer. 

NARX neural networks can be based on MLP structure, which consist on an input layer, one or 

more hidden layers and output layer that are connected by adjustable weights. Neurons that 

compose the hidden and output layer are associated with bias values [15]. The weights and biases 

are adjusted during the training process of the network. 

In each layer, each neuron carries out a scalar multiplication of the input vector 𝑇𝑇𝑗𝑗 and the weight 

matrix 𝑤𝑤𝑖𝑖𝑗𝑗. Likewise, the activation function (𝜑𝜑) is added, obtaining Equation (A.5) in the output 

of each neuron: 

 
𝐸𝐸𝑖𝑖 = 𝑓𝑓(�𝑇𝑇𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖𝑗𝑗

𝑖𝑖

𝑗𝑗=1

) (A.5) 

The design of the NARX is done by adjusting the hyperparameters of the network. 

Hyperparameters are those variables that determine the structure of the network and the ones that 

determine how the neural network is trained. Among the hyperparameters that can be adjusted 

are a) the number of hidden layers, b) the number of neurons in the hidden layer, c) the number 

of delays of input and feedback, d) the activation function of both the hidden and output layers 

and, finally, e) the training algorithm.  

 

One of the hyperparameters to adjust in a NARX network is the activation function for the hidden 

and output layers. The activation functions commonly used in neural networks are three: the linear 

(lin), the logistic sigmoid (logsig), and the hyperbolic tangent (tansig) activation function (see 

Table A.1). 

 
Table A.1. Activation functions used in neural networks. 

Functions Definition 

Linear 𝐸𝐸 =  𝑇𝑇 

Logistic sigmoid (logsig) 𝐸𝐸 =  
1

1 + 𝑇𝑇−𝑒𝑒
 

Hyperbolic tangent (tansig) 𝐸𝐸 =  
𝑇𝑇𝑒𝑒 − 𝑇𝑇−𝑒𝑒

𝑇𝑇𝑒𝑒 + 𝑇𝑇−𝑒𝑒
 

 

Equation (A.6) shows the input-output relationship using a NARX, considering several 

independent inputs: 
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 𝐸𝐸𝑒𝑒+1� = 𝑓𝑓(𝑇𝑇1𝑒𝑒,𝑇𝑇1𝑒𝑒−1,𝑇𝑇1𝑒𝑒−2, … , 𝑇𝑇𝑃𝑃
𝑒𝑒−𝐷𝐷𝑥𝑥𝑝𝑝 ,𝐸𝐸𝑒𝑒 ,𝐸𝐸𝑒𝑒−1,𝐸𝐸𝑒𝑒−2, … ,𝐸𝐸𝑒𝑒−𝐷𝐷𝑦𝑦) (A.6) 

where 𝐸𝐸𝑒𝑒+1 is the future value of the target variable, 𝑃𝑃 is the total exogenous inputs, 

𝐷𝐷𝑒𝑒𝑝𝑝 is the delay of each exogenous input 𝑇𝑇𝑝𝑝and 𝐷𝐷𝑦𝑦 is the delay of the targeted values. The input 

and feedback delays represent one of the hyperparameters to be adjusted. 

 

The number of time delay steps of the output, 𝐷𝐷𝑦𝑦, is the one that gives recurrence to the NARX, 

in contrast to the structures of other RNNs, in which the recurrence is given by the internal state 

of the network [12]. Additionally, f is the nonlinear mapping function performed by the MLP. 

MLP is a powerful structure very appropriate to learn any kind of nonlinear mapping [16].  

 

The NARX operates in two different phases or stages: training stage and prediction stage. In this 

first phase, NARX structure can be based on a MLP structure, in which the model has input 

neurons with only outgoing connections, output neurons with only incoming connections, and 

hidden layer neurons with both [12]. This configuration (see Figure A.3) is also commonly 

referred to as an open-loop configuration or series-parallel architecture. The data used as inputs 

consist of external and independent inputs as well as historical data of the variable to be predicted. 

A training algorithm is implemented for adjusting the weights and during training, the data flow 

forward from input to output, similar to a FFNN. 

 

 
 

Figure A.3. Open- loop or series-parallel arquitecture of a NARX. 

 

Levenberg-Marquardt (lm) is a commonly used training algorithm that adjusts weights and biases 

by adaptively varying the update of the Gradient Descent (GD) and Gaussian-Newton algorithms 

[17]. It has become a standard technique for nonlinear least squares problems [18] although it 

only finds the local minimum, which does not necessarily have to be the global minimum. One 

of the major advantages is its ability to train a NN between 10 and 100 times faster than the 

backpropagation gradient descent method. There are also other algorithms in order to train a NN, 

among others, Bayesian Regularization (trainbr) appropriate for noisy or small problems or 

Scaled Conjugate Gradient (trainscg) [19].  
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On the other hand, we have the prediction stage. After training the model in open-loop, it is 

understood that the model is now capable of making future predictions of the target variable. This 

stage is also referred to as the simulation stage or the operational mode of the NN. In this phase, 

the structure of the network changes from open loop to closed loop, also known as parallel 

architecture (see Figure A.4). 

 

Figure A.4. Closed-loop or parallel arquitecture of a NARX. 

Now instead of introducing the historical data of the target variable along with the independent 

inputs, the network will now be fed back with the variable being predicted. By closing the loop 

and introducing the predicted values of 𝐸𝐸 as inputs, multi-step ahead predictions can be made, 

unlike in the training phase in open-loop, where predictions are made one-step ahead. 

A.2 LSTM neural network and SVR 

 
Regarding LSTMs, according to extensive literature, this type of RNN performs well in predicting 

time sequences and have high capacity to learn from large datasets. Each LSTM layer consists of 

multiple memory cells that are composed of several "gates" (see Figure A.5). These gates serve a 

specific function: the input gate adds new data, the forget gate removes unnecessary data, the cell 

state maintains long-term memory, and the output gate transmits data to the next cell [20]. 

 

Figure A.5. LSTM general diagram. 

The last designed model is a ML model widely used for prediction purposes in the literature: 

SVR. This model aims to find a function that approximates the relationship between input 

variables and a continuous target variable while minimizing prediction error. As for 
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disadvantages, SVRs are highly dependent on hyperparameters, and the selection of parameters 

determines the model's prediction effectiveness [21]. 
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B. ANNEX B 

REGRESSION ANALYSIS 

For many years, regression models, both linear and nonlinear, have been employed to predict the 

internal temperature of buildings. Regression analysis is a technique used to model the 

relationship between variables. Through regression analysis, we can quantify how a target 

variable (𝐸𝐸) changes depending on the value of one or more independent variables (𝑇𝑇) [22]. The 

relationship between these variables is described by a function, which includes a term related to 

the error (ɛ). 

 𝐸𝐸 = 𝛽𝛽𝑇𝑇 + 𝜀𝜀 (B.1) 

This mathematical relationship consist of a finite number of parameters that need to be estimated 

from data. It is for this reason that regression models are classified as grey-box models. 

Among the most common regression models observed in the literature for making predictions are 

multiple linear regression (MLR) models and nonlinear regression (NLR) models. Both are 

characterised, unlike simple linear regression models, by taking into account multiple 

independent variables (𝑇𝑇) for the estimation of the variable (𝐸𝐸). This is a fundamental 

consideration when thermally modelling a building, as the variation in internal temperature is 

often multifactorial. 

Equation (B.2) represents a case of MLR.  

 𝐸𝐸 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇1 + ⋯+ 𝛽𝛽𝑖𝑖𝑇𝑇𝑝𝑝 + 𝜀𝜀, (B.2) 

 where 𝐸𝐸 is the value of the target variable and the term 𝛽𝛽𝑖𝑖𝑋𝑋𝑝𝑝 represents the effect of the 

variation of the independent variable 𝑇𝑇 on the variable 𝐸𝐸. 𝛽𝛽0 is the intersection on 𝐸𝐸, that is, the 

offset or the value of 𝐸𝐸 when the rest of the parameters are 0. The last term 𝜀𝜀 represents the error 

associated with the variation in the estimation of 𝐸𝐸. 

Autoregressive Models (AR) 

Autoregressive processes are stationary processes, meaning they have constant mean (𝜇𝜇) and 

variance (𝜎𝜎2), thus remaining constant over time. In addition to being stationary, autoregressive 

processes are stochastic processes, which means that besides having constant mean and variance 

over time, the value of covariance (𝛾𝛾) between two periods depends only on the distance or lag 

and not on the time at which this covariance is calculated. This means that these three statistical 

values remain unchanged over time, regardless of when they are measured [23]. 
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 𝑀𝑀𝑇𝑇𝑉𝑉𝑓𝑓   𝜇𝜇 = 𝐸𝐸(𝑋𝑋𝑘𝑘) = 𝐸𝐸(𝑋𝑋𝑒𝑒+𝑘𝑘) 

𝑉𝑉𝑉𝑉𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓𝑐𝑐𝑇𝑇   𝜎𝜎2 = 𝑉𝑉(𝑋𝑋𝑒𝑒) = 𝑉𝑉(𝑋𝑋𝑒𝑒+𝑘𝑘) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓𝑐𝑐𝑇𝑇   𝛾𝛾𝑘𝑘 = 𝐸𝐸[(𝑋𝑋𝑒𝑒 − 𝜇𝜇)(𝑋𝑋𝑒𝑒+𝑘𝑘 − 𝜇𝜇)] 

(B.3) 

 where 𝛾𝛾k, the autocovariance at lag 𝑘𝑘, is the covariance of the period between the values 

𝑋𝑋t and 𝑋𝑋(t+k) which would be separated by a period also 𝑘𝑘. 

One of the characteristics of these stochastic processes is the associated white noise, where the 

values are independently and identically distributed over time with zero mean and equal variance. 

 𝑀𝑀𝑇𝑇𝑉𝑉𝑓𝑓   𝜇𝜇 = 0; 

𝑉𝑉𝑉𝑉𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓𝑐𝑐𝑇𝑇   𝜎𝜎2 = 0; 

𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓𝑐𝑐𝑇𝑇   𝛾𝛾𝑘𝑘 = 0; 

(B.4) 

Unlike multiple regression models that predict a target variable by a linear combination of 

multiple predictors, autoregressive models are based on the combination of past values of a 

variable. That is, they include autoregressive terms so they predict future values based on past 

values.  

 𝑌𝑌𝑒𝑒 = 𝜙𝜙0 + 𝜙𝜙1𝑌𝑌𝑒𝑒−1 + ⋯+ 𝜙𝜙𝑝𝑝𝑌𝑌𝑒𝑒−𝑝𝑝 + 𝜀𝜀𝑒𝑒, (B.5) 

 where 𝜙𝜙𝑝𝑝 are constants, the parameters to be identified. (𝑇𝑇−𝑝𝑝) represents the lagged term 

of order 𝑝𝑝, and 𝜀𝜀𝑒𝑒 is the white noise with mean, variance, and covariance of 0. 

Depending on 𝑝𝑝, the number of lagged terms taken into account to make the prediction determines 

the order of the model. An autoregressive process AR (1), of order 1, is one in which the current 

value is based on the immediately preceding value, while an AR (2) process is one in which the 

current value is based on the two preceding values, and so on. 

 𝑀𝑀𝑅𝑅 (1)  𝑌𝑌𝑒𝑒 = 𝜙𝜙0 + 𝜙𝜙1𝑌𝑌𝑒𝑒−1 + 𝜀𝜀𝑒𝑒; 

𝑀𝑀𝑅𝑅 (2)   𝑌𝑌𝑒𝑒 = 𝜙𝜙0 + 𝜙𝜙1𝑌𝑌𝑒𝑒−1+𝜙𝜙2𝑌𝑌𝑒𝑒−2 + 𝜀𝜀𝑒𝑒 
(B.6) 

ARX Model 

Autoregressive model with external input (ARX) is a linear representation of a dynamic system, 

and unlike the AR model, the ARX model includes an external input term. Representing a model 

in ARX form is the basis of many process dynamics and control analysis methods. The structure 

of the ARX model is given by the following equation: 

 𝑀𝑀(𝑞𝑞)𝐸𝐸(𝑇𝑇) = 𝐵𝐵(𝑞𝑞)𝑇𝑇(𝑇𝑇 − 𝑓𝑓𝑘𝑘) + 𝜀𝜀(𝑇𝑇), (B.7) 
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 where 𝑇𝑇, 𝐸𝐸, and 𝜀𝜀 are the input, output, and white noise, respectively, and 𝑞𝑞 is the term 

representing the lag. More specifically, there are two equations: 

 𝑀𝑀(𝑞𝑞) = 1 + 𝑉𝑉1𝑞𝑞−1 + ⋯+ 𝑉𝑉𝑖𝑖𝑎𝑎𝑞𝑞
−𝑖𝑖𝑎𝑎; 

𝐵𝐵(𝑞𝑞) = 𝑏𝑏1 + 𝑏𝑏2𝑞𝑞−1 + ⋯+ 𝑏𝑏𝑖𝑖𝑏𝑏𝑞𝑞
−𝑖𝑖𝑏𝑏+1; 

(B.8) 

 where 𝑓𝑓𝑚𝑚  is the number of previous output terms, and 𝑓𝑓𝑏𝑏  is the number of previous input 

terms used to predict the current output. 𝑓𝑓𝑘𝑘, also known as the dead time, represents the number 

of input samples that occur before the input affects the output. The coefficient vector [𝑉𝑉1, 𝑉𝑉𝑖𝑖𝑎𝑎, 

… , 𝑏𝑏1, 𝑏𝑏𝑖𝑖𝑏𝑏] represents the weighting applied to the regression terms. 

ARMAX Model 

An ARMAX (Auto-Regressive Integrated Moving Average with exogenous input) model 

combines autoregressive (AR) and moving average (MA) models with exogenous variables (X) 

to model the relationship between a target variable and other independent variables. The MA 

term, unlike an AR model, which applies total weighting to previous values, considers that the 

target variable depends linearly on the current value and numerous previous values of a random 

term [24].  

 𝑀𝑀(𝑞𝑞)𝐸𝐸(𝑇𝑇) = 𝐵𝐵(𝑞𝑞)𝑇𝑇(𝑇𝑇 − 𝑓𝑓𝑘𝑘) + 𝐶𝐶(𝑞𝑞)𝜀𝜀(𝑇𝑇) (B.9) 

More specifically, 

 𝑀𝑀(𝑞𝑞) = 1 + 𝑉𝑉1𝑞𝑞−1 + ⋯+ 𝑉𝑉𝑖𝑖𝑎𝑎𝑞𝑞
−𝑖𝑖𝑎𝑎; 

𝐵𝐵(𝑞𝑞) = 𝑏𝑏0 + 𝑏𝑏1𝑞𝑞−1 +⋯+ 𝑏𝑏𝑖𝑖𝑏𝑏𝑞𝑞
−𝑖𝑖𝑏𝑏+1; 

𝐶𝐶(𝑞𝑞) = 1 + 𝑐𝑐1𝑞𝑞−1 +⋯+ 𝑐𝑐𝑖𝑖𝑐𝑐𝑞𝑞
−𝑖𝑖𝑐𝑐 , 

(B.10) 

where 𝑓𝑓𝑚𝑚 ,𝑓𝑓𝑏𝑏𝐸𝐸 𝑓𝑓𝑐𝑐 represent the order of the ARMAX model. 
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C. ANNEX C 

SUPPLEMENTARY MATERIAL 

C.1 Chapter 2: Supplementary data  

Table C.2. MAPE results obtained with LSTM model combining different TW and number of neurons. 

Input 

combinations 

Time 

Window 
Nº Neurons 

LSTM MAPE 

Winter Summer 

Temperature + 

Occupancy 

7 days 2 23,99 16,81 

7 days 3 24,1 17,14 

7 days 4 24,15 16,97 

7 days 5 23,65 17,03 

7 days 10 23,89 16,92 

7 days 15 24,19 17,02 

7 days 20 24,01 17,05 

7 days 50 24,1 17,22 

14 days 2 23,72 14,84 

14 days 3 23,31 14,94 

14 days 4 23,44 15,24 

14 days 5 23,36 15,05 

14 days 10 22,65 14,79 

14 days 15 22,16 15,21 

14 days 20 22,18 14,99 

14 days 50 23,25 15,75 

21 days 2 19,38 14,82 

21 days 3 19,76 14,91 

21 days 4 19,63 14,13 

21 days 5 20,23 14,7 

21 days 10 19,79 14,85 

21 days 15 18,85 14,63 

21 days 20 19,46 14,54 

21 days 50 20,34 15,09 

28 days 2 21,14 13,84 

28 days 3 20,61 13,79 
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28 days 4 21,02 13,73 

28 days 5 20,96 13,65 

28 days 10 21,03 13,73 

28 days 15 19,99 13,67 

28 days 20 20,64 13,6 

28 days 50 21,07 14,03 

 

Table C.3. MAPE results obtained with SVR combining different TW 

Input 

combinations 

Time 

Window 

Winter Summer 

C γ 
SVR 

MAPE 
C γ 

SVR 

MAPE 

Temperature 

+ Occupancy 

7 days 0.040 1.1587 19.25 56.9375 0.0029 16.14 

14 days 0.4945 0.7109 20.00 0.7314 1.7969 15.29 

21 days 14.4654 0.0600 17.19 3.9961 2.0133 14.24 

28 days 3.0190 0.0268 18.21 100 0.0090 12.95 

 

 

C. 2. Chapter 3: Supplementary data 

Table C.4. Sunrise and sunset hours during the month of November 2021 

Date Sunrise Sunset 
22/10/2021 8:29 19:12 
23/10/2021 8:30 19:10 
24/10/2021 8:31 19:09 
25/10/2021 8:33 19:07 
26/10/2021 8:34 19:06 
27/10/2021 8:35 19:04 
28/10/2021 8:36 19:03 
29/10/2021 8:38 19:01 
30/10/2021 8:39 19:00 
31/10/2021 7:40 17:59 
01/11/2021 7:42 17:57 
02/11/2021 7:43 17:56 
03/11/2021 7:44 17:55 
04/11/2021 7:46 17:53 
05/11/2021 7:47 17:52 
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06/11/2021 7:48 17:51 
07/11/2021 7:49 17:50 
08/11/2021 7:51 17:49 
09/11/2021 7:52 17:47 
10/11/2021 7:53 17:46 
11/11/2021 7:55 17:45 
12/11/2021 7:56 17:44 
13/11/2021 7:57 17:43 
14/11/2021 7:59 17:42 
15/11/2021 8:00 17:41 
16/11/2021 8:01 17:40 
17/11/2021 8:02 17:40 
18/11/2021 8:04 17:39 
19/11/2021 8:05 17:38 
20/11/2021 8:06 17:37 
21/11/2021 8:07 17:36 
22/11/2021 8:09 17:36 
23/11/2021 8:10 17:35 
24/11/2021 8:11 17:34 
25/11/2021 8:12 17:34 
26/11/2021 8:13 17:33 
27/11/2021 8:15 17:33 
28/11/2021 8:16 17:32 
29/11/2021 8:17 17:32 
30/11/2021 8:18 17:32 
01/12/2021 8:19 17:31 
02/12/2021 8:20 17:31 

 

Table C.5. Sunrise and sunset hours during the month of August 2021. 

Date Sunrise Sunset 

08/08/2021 7:04 21:19 
09/08/2021 7:05 21:18 
10/08/2021 7:06 21:17 
11/08/2021 7:07 21:15 
12/08/2021 7:08 21:14 
13/08/2021 7:09 21:12 
14/08/2021 7:10 21:11 
15/08/2021 7:11 21:09 
16/08/2021 7:12 21:08 
17/08/2021 7:14 21:06 
18/08/2021 7:15 21:05 
19/08/2021 7:16 21:03 
20/08/2021 7:17 21:01 
21/08/2021 7:18 21:00 
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22/08/2021 7:19 20:58 
23/08/2021 7:20 20:57 
24/08/2021 7:21 20:55 
25/08/2021 7:22 20:53 
26/08/2021 7:24 20:52 
27/08/2021 7:25 20:50 
28/08/2021 7:26 20:48 
29/08/2021 7:27 20:46 
30/08/2021 7:28 20:45 
31/08/2021 7:29 20:43 
01/09/2021 7:30 20:41 
02/09/2021 7:31 20:40 
03/09/2021 7:32 20:38 
04/09/2021 7:34 20:36 
05/09/2021 7:35 20:34 
06/09/2021 7:36 20:32 
07/09/2021 7:37 20:31 
08/09/2021 7:38 20:29 
09/09/2021 7:39 20:27 
10/09/2021 7:40 20:25 
11/09/2021 7:41 20:23 
12/09/2021 7:42 20:22 
13/09/2021 7:44 20:20 
14/09/2021 7:45 20:18 
15/09/2021 7:46 20:16 
16/09/2021 7:47 20:14 
17/09/2021 7:48 20:13 
18/09/2021 7:49 20:11 

 

 
Figure C.6. Forecast of PV generation for a week of July with FFNN model. 
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Figure C.7. Forecast of PV generation for a week of July with SVR model. 

 

 
Figure C.8. Forecast of PV generation for a week of July with OpenModelica model. 
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C. 3. Chapter 4: Supplementary data 

Table C.6. Technical characteristics of each of the heat pumps that make up the ESTIA 2 building HVAC system. 

  Operation Range 
Nominal Capacity 

(kWh) 
EER & COP Power Input (kW) 

Group Range 
Cooling 

(ºCBD) 

Heating 

(ºCWB) 
Cooling Heating Cooling Heating Cooling Heating 

1 RXYQ5M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 14 16 3,69 3,69 3,79 4,34 

2 RXYQ8M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 22,4 25 3,21 3,63 6,97 6,89 

3 RXYQ12M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 33,5 37,5 3,16 3,47 10,6 10,8 

4 RXYQ8M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 22,4 25 3,21 3,63 6,97 6,89 

5 RXYQ12M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 33,5 37,5 3,16 3,47 10,6 10,8 

8 RXYQ5M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 14 16 3,69 3,69 3,79 4,34 

9 RXYQ5M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 14 16 3,69 3,69 3,79 4,34 

10 REYQ10M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 28 31,5 3,11 3,38 9 9,31 

11 REYQ12M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 33,5 37,5 3,16 3,47 10,6 10,8 

16 REYQ10M7W1B [ -5 ; 43 ] [ -20 ; 15,5 ] 28 31,5 3,11 3,38 9 9,31 

 

Table C.7. Characteristics of the weather data downloaded from Open Weather.  

Data sets time period Measured Parameters 
Sampling 

Time 

02/05/2022 – 

11/04/2023 

Text External Temperature (ºC) 

10min 

p Pressure (mb) 

rh Relative humidity (%) 

w Wind speed (m/s) 

w_dq Wind direction (0-360º) 
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Table C.8. Characteristics of the data sets obtained from the excitation tests carried out in the Platform. 

Data sets 
Data sets time 

period 
Measured Parameters 

Sampling 

Time 

Training data 

set 

24/03/2023 - 

26/03/2023 

Tin Indoor Temperature (ºC) 
20min 

Tsp Set Point Temperature (ºC) 

QHP 
Consumption data of the Heat Pump 

(Wh) 
5 min 

Test 1 data set 
31/03/2023 - 

02/04/2023 

Tin Indoor Temperature (ºC) 
 

Tsp Set Point Temperature 

QHP 
Consumption data of the Heat Pump 

(Wh) 
5min 

Test 2 data set 
08/04/2023 - 

10/04/2023 

Tin Indoor Temperature (ºC) 
20min 

Tsp Set Point Temperature (ºC) 

QHP 
Consumption data of the Heat Pump 

(Wh) 
5min 

 

 

Figure C.9. Initial data set used as reference to determine system characteristics 

 

Table C.9. Fitting values collected from all lmNARX response of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 1 data set. 

 𝑸𝑸𝒉𝒉𝒔𝒔 (Wh) 

 0 30 120 250 400 541 700 900 1300 1830 

𝑻𝑻 𝒊𝒊
𝒆𝒆𝑷𝑷

  

(7 -0.20 -0.16 -0.01 0.25 0.71 1.41 2.54 5.80 13.36 5.97 
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9 1.03 1.17 1.67 2.70 4.76 9.39 39.50 26.06 13.11 5.90 

11 5.20 5.77 8.09 14.84 33.72 52.59 37.95 25.39 12.90 5.83 

13.6 28.31 33.88 53.99 0 43.44 50.35 36.63 24.73 12.65 5.74 

15 49.95 56.60 54.06 0 46.35 49.48 36.07 24.43 12.53 5.69 

17 58.70 61.47 54.06 0 49.43 48.40 35.35 24.02 12.36 5.655 

19 51.03 51.44 46.96 0 51.99 47.34 34.65 23.64 12.25 5.81 

20 39.89 40.05 39.13 13.93 53.29 46.67 34.26 23.45 12.26 6.16 

22 12.42 14.37 23.12 38.54 53.22 43.87 32.99 23.09 12.78 6.96 

23 2.66 5.91 18.50 38.65 48.59 40.83 31.69 22.81 13.07 5.87 

 

 

Table C.10. Fitting values collected from all lmNARX response of 𝑇𝑇𝑖𝑖𝑖𝑖 for Test 2 data set. 

 𝑸𝑸𝒉𝒉𝒔𝒔 (Wh) 

 0 30 120 250 400 541 700 900 1300 1830 

𝑻𝑻 𝒊𝒊
𝒆𝒆𝑷𝑷

 (º
C

) 

7 0 0 0 0 0 0 0 0 9.10 3.47 

9 0 0 0 0 0 0 32.32 19.93 8.98 3.44 

11 0 0 0 0 40.16 47.36 31.43 19.53 8.85 3.39 

13.6 0 0 0 0 50.20 45.57 30.42 19.04 8.68 3.33 

15 0 0 5.91 0 52.81 44.70 29.93 18.78 8.58 3.29 

17 14.69 18.72 30.72 0 55.13 43.51 29.23 18.42 8.43 3.19 

19 0 0 10.76 3.85 56.23 42.08 28.41 17.95 8.16 2.79 

20 0 0 0 14.96 55.64 40.87 27.74 17.53 7.81 2.10 

22 0 0 0 7.29 41.11 33.44 23.55 14.69 5.05 0 

23 0 0 0 0 23.78 23.67 17.51 10.42 1.58 0 
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Table C.11. Fitting values collected from all lmNARX response of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set when Hyst= 0. 

Hyst = 0 
𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 (ºC) 

7.5 9 11.5 13 15 17 18.5 20 21.5 23 

𝑻𝑻 𝒔𝒔
𝒔𝒔
 (º

C
) 

7.5 -0.79 0.36 13.12 33.38 33.63 8.70 2.40 12.28 36.60 51.59 

19 -0.73 0.78 8.83 26.55 39.57 16.62 5.42 16.25 43.9 39.98 

19.5 -0.52 0.88 5.07 17.71 39.40 20.96 0 4.00 24.35 5.13 

20 -0.28 0.48 3.82 13.92 36.54 23.30 0 0 0 0 

20.5 0.23 -0.12 2.76 10.18 31.05 28.14 0 0 0 0 

21 0.79 -0.51 2.09 7.56 24.95 33.67 0 0 0 0 

21.5 0.95 -0.66 1.75 6.14 20.67 36.44 0 0 0 0 

22 0.73 -0.75 1.51 5.06 16.95 36.89 0 0 0 0 

22.5 0.27 -0.80 1.34 4.25 13.87 35.00 0 0 0 0 

23 -0.16 -0.82 1.23 3.64 11.42 31.58 0 0 0 0 

 

 
Table C.12. Fitting values collected from all lmNARX response of 𝑄𝑄ℎ𝑝𝑝 for Test 1 data set when Hyst= 1. 

Hyst = 1 
𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 (ºC) 

7.5 9 11.5 13 15 17 18.5 20 21.5 23 

𝑻𝑻 𝒔𝒔
𝒔𝒔
 (º

C
) 

7.5 -0.41 1.25 17.84 40.47 16.38 0 0 0 0 0 

19 -0.33 1.87 12.03 33.63 30.78 0 0 0 0 0 

19.5 -0.02 2.02 6.90 22.85 40.32 0 0 0 0 0 

20 0.33 1.44 5.19 17.98 40.79 0 0 0 0 0 

20.5 1.07 0.56 3.71 13.08 37.08 9.00 0 0 0 0 

21 1.89 -0.01 2.77 9.61 30.74 22.16 0 0 0 0 

21.5 2.12 -0.24 2.28 7.70 25.70 31.15 0 0 0 0 

22 1.80 -0.36 1.92 6.25 21.10 37.16 0 0 0 0 

22.5 1.14 -0.43 1.65 5.15 17.21 39.10 0 0 0 0 

23 0.50 -0.47 1.45 4.31 14.06 37.50 0 0 0 0 
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Table C.13. Fitting values collected from all lmNARX response of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set when Hyst= 0. 

Hyst = 0 
𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 (ºC) 

7.5 9 11.5 13 15 17 18.5 20 21.5 23 

𝑻𝑻 𝒔𝒔
𝒔𝒔
 (º

C
) 

0 -0.41 1.25 17.84 40.47 16.38 0 0 0 0 0 

19 -0.33 1.87 12.03 33.63 30.78 0 0 0 0 0 

19.5 -0.02 2.02 6.90 22.85 40.32 0 0 0 0 0 

20 0.33 1.44 5.19 17.98 40.79 0 0 0 0 0 

20.5 1.07 0.56 3.71 13.08 37.08 9.00 0 0 0 0 

21 1.89 -0.01 2.77 9.61 30.74 22.16 0 0 0 0 

21.5 2.12 -0.24 2.28 7.70 25.70 31.15 0 0 0 0 

22 1.80 -0.36 1.92 6.25 21.10 37.16 0 0 0 0 

22.5 1.14 -0.43 1.65 5.15 17.21 39.10 0 0 0 0 

23 0.50 -0.47 1.45 4.31 14.06 37.50 0 0 0 0 

 

Table C.14. Fitting values collected from all lmNARX response of 𝑄𝑄ℎ𝑝𝑝 for Test 2 data set when Hyst= 1. 

Hyst = 1 
𝑻𝑻𝒊𝒊𝒆𝒆𝑷𝑷 (ºC) 

7.5 9 11.5 13 15 17 18.5 20 21.5 23 

𝑻𝑻 𝒔𝒔
𝒔𝒔
 (º

C
) 

0 -0.51 -0.50 0 0 0 0 0 0 0 0 

19 -0.51 -0.49 0 0 0 0 0 0 0 0 

19.5 -0.51 -0.46 0 0 0 0 0 0 0 0 

20 -0.51 -0.42 0 0 0 0 0 0 0 0 

20.5 -0.51 -0.30 0 0 0 0 0 0 0 0 

21 -0.50 -0.05 0 0 4.28 9.42 8.86 1.52 0 0 

21.5 -0.48 0.27 0 6.05 14.33 18.15 18.34 13.57 3.95 0 

22 -0.45 0.78 0.78 7.07 12.70 15.60 15.96 11.75 0.97 0 

22.5 -0.40 1.42 0 1.75 6.84 9.89 10.41 5.67 0 0 
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23 -0.30 1.98 0 0 1.52 4.90 5.35 -0.97 0 0 
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