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Résumé
Cette thèse vise à approfondir notre compréhension de la Mort Cellulaire Immunogène (ICD) et de
son potentiel à améliorer l’efficacité des traitements chimiothérapeutiques. En adoptant une approche
multidisciplinaire qui intègre la biologie expérimentale et computationnelle, cette recherche aborde
des questions clés essentielles à l’avancement des études sur l’ICD.

Malgré les progrès réalisés dans le décryptage des mécanismes moléculaires de l’ICD, des lacunes
importantes subsistent dans notre compréhension. Cette thèse s’efforce de combler ces lacunes en
identifiant les facteurs et les voies critiques impliqués dans l’ICD et en développant des modèles
computationnels pour prédire et renforcer l’immunogénicité des agents chimiothérapeutiques.

Un axe central de ce travail a été l’identification d’une signature moléculaire distincte de l’ICD,
au-delà des marqueurs traditionnels tels que les DAMPs libérés et exposés à la surface. Une telle
signature pourrait servir de biomarqueur fiable pour prédire le potentiel immunogène des
chimiothérapies. De plus, la recherche a exploré les facteurs sécrétés, en particulier les cytokines, qui
jouent un rôle crucial dans l’initiation du cycle immunitaire anticancéreux en recrutant et activant
les cellules immunitaires. Comprendre ces facteurs est essentiel pour optimiser le potentiel
immunogène des régimes chimiothérapeutiques.

En outre, la thèse s’est penchée sur les voies cellulaires qui régulent la sécrétion et la libération des
DAMPs liés à l’ICD. En explorant les réseaux de signalisation et les mécanismes moléculaires impliqués,
l’étude visait à découvrir des voies influençant l’immunogénicité des cellules mourantes, avec l’objectif
potentiel d’identifier de nouvelles cibles pour amplifier la réponse immunitaire via l’induction de l’ICD.

Sur la base de ces résultats, la recherche a également exploré la possibilité de recréer l’ICD in
silico. En intégrant à la fois les marqueurs établis et nouvellement identifiés dans des modèles
computationnels, la thèse visait à simuler les processus de l’ICD, prédire les résultats des traitements
et orienter les futures expérimentations.

Enfin, la thèse a évalué la capacité prédictive des modèles in silico développés pour évaluer
l’immunogénicité des médicaments chimiothérapeutiques. L’objectif ultime était d’utiliser ces
modèles pour optimiser les formulations médicamenteuses et les protocoles de traitement, renforçant
ainsi leur efficacité immunothérapeutique et contribuant au développement de stratégies de médecine
personnalisée.

En conclusion, cette thèse apporte des contributions significatives au domaine de l’ICD en
combinant validation expérimentale et modélisation computationnelle innovante. Elle établit une
base pour une compréhension plus intégrée de la manière dont les thérapies anticancéreuses peuvent
être optimisées pour exploiter pleinement le potentiel du système immunitaire dans la lutte contre le
cancer.
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Abstract
This thesis aims to advance our understanding of Immunogenic Cell Death (ICD) and its potential to
enhance the efficacy of chemotherapeutic treatments. By employing a multidisciplinary approach that
integrates experimental and computational biology, this research addresses key questions essential for
the progression of ICD research.

Despite the progress made in unraveling the molecular mechanisms of ICD, significant gaps in our
knowledge remain. This thesis seeks to bridge these gaps by identifying critical factors and pathways
involved in ICD and by developing computational models to predict and enhance the immunogenicity
of chemotherapeutic agents.

A central focus of this work was the identification of a distinct molecular signature of ICD beyond
the traditional hallmarks, such as released and surface-exposed DAMPs. Such a signature could serve
as a reliable biomarker for predicting the immunogenic potential of chemotherapies. Additionally, the
research investigated the secreted factors, particularly cytokines, that play a crucial role in initiating
the cancer immunity cycle by recruiting and activating immune cells. Understanding these factors is
key to optimizing the immunogenic potential of chemotherapeutic regimens.

Furthermore, the thesis delved into the cellular pathways that regulate the secretion and release
of ICD-related DAMPs. By exploring the signaling networks and molecular mechanisms involved,
the study aimed to uncover pathways that influence the immunogenicity of dying cells, potentially
identifying new targets to amplify the immune response through ICD induction.

Building on these findings, the research also explored the feasibility of recapitulating ICD in silico.
By integrating both established and newly identified hallmarks into computational models, the thesis
aimed to simulate ICD processes, predict treatment outcomes, and guide future experimental efforts.

Finally, the thesis evaluated the predictive power of the developed in silico models in assessing the
immunogenicity of chemotherapeutic drugs. The ultimate goal was to use these models to optimize
drug formulations and treatment protocols, thereby enhancing their immunotherapeutic efficacy and
contributing to the development of personalized medicine strategies.

In conclusion, this thesis makes significant contributions to the field of ICD by combining
experimental validation with innovative computational modeling. It establishes a foundation for a
more integrated understanding of how cancer therapies can be optimized to fully exploit the immune
system’s potential in combating cancer.

Keywords : Immunogenic Cell Death, Systems Biology, Cytokines, In silico Modeling
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Chapter 1
Introduction

In this chapter I will introduce the founding principles of Immunogenic Cell Death in the
context of cancer therapy. To complement the latter, general features of cancer biology
and immunology will be provided.

Aims

1 Insights into the biology and epidemiology of cancer

1.1 Definition and epidemiology of cancer

The term cancer refers to a class of pathologies that show deregulations in cellular behavior.

A broader definition of cancer states that a cancer occurs when cells undergo uncontrolled

proliferation far beyond their physiological boundaries causing the insurgence of diseases in the

region where they are located and potentially, invading other tissues, and any other part of the

organism.1

Cancer is today the second main cause of death in the world. The last report issued by the

United Nations Agency for Research on Cancer estimated that in 2022 almost 20 million new cases

of cancer were registered, as well as approximately 9.7 million deaths related to cancers [190].

Age-standardized estimates indicate Europe, North America, Japan, and Oceania as the world areas

in which cancer has the highest rate of incidence, between 258.5 and 462.5 new cases every 100,000

individuals considering both male and female populations (Fig. 1.1 A). Worldwide, the rate of
1The term cancer, is a word derived from the latin term "cancĕr", which in turn is derived from the greek word karkinós

(καρκινoς) and means literally "crab". The first one to use the word in his writings was the ancient Greek physician
Hippocrates (~460-370 B.C.). Even though originally indicated as a mythological monster, the word karkinós has been
used by Hippocrates to indicate non-healing swelling or ulcerous formation, while the word karkinoma to describe non-
healing "cancers" [100]. Previous testimony about diagnoses attributable to cancer also comes from Mesopotamian and
Egyptian ancient civilizations, indicating the never-lasting occurrence of this phenomenon throughout history.
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incidence for men and women is respectively of 238.3 and 196.4 new cases every 100,000 individuals

[52]. The male population is primarily affected by lung cancer, followed by prostate and colorectal

cancers, while the female population is predominantly impacted by breast cancer (Fig. 1.1 B)

In Europe, cancer incidence estimates show that Russia has the highest rate (14.2 % of total

cases in Europe), followed closely by Germany (13.5 %), France (10.8 %) and the United Kingdom

(10.2 %).

Breast cancer is the most common cancer affecting women in Europe (29 % of reported new cases),

although the incidence rate is significantly higher than the corresponding mortality rate. For every

100,000 women, there are 147.6 new cases, while the mortality rate stands at 34.8 per 100,000.

Other major cancers affecting the female population are colorectal, tracheal, bronchial, and

pulmonary cancers2. The European male population is primarily affected by prostate cancer (22.4 %

of incidence), malignancies of the trachea-bronchus-lung system (13.9 %) and colorectal cancers (13.3

%). The mortality rate for the trachea-bronchus-lung maligancies is 22.8 %, 12.4 % for colorectal

cancer and 10.9 % for prostate cancer [47].

In France (Fig. 1.1 D), cancer tragically stands as the leading cause of death. According to the

French National Institute for Demographic Studies (INED), in 2020, 186 out of every 100,000 men and

94 out of every 100,000 women were affected. Epidemiological studies grouping both genders indicate

lung cancer as the most frequent, followed by breast and colorectal cancers.

The leading causes of cancers can be grouped into three main categories: biological (e.g., bacteria,

viruses), chemical (e.g., formaldehyde, alcohol, tobacco, cadmium), and physical (e.g., ionizing and

UV radiation). Additionally, aging represents a comorbidity factor as the risk of contracting cancer

increases with age. Such incidence increases due to life-span accumulated genetic mutations that

augment mutational burden and the concomitant decrease in the performance of DNA repair [112].
2https://ecis.jrc.ec.europa.eu/ Retr. 24/04/2024
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Figure 1.1: IARC - WHO 2022 report on worldwide cancer incidence: a) age-standardized-rate world
distribution of cancer cases in 2022, b) male vs. female world incidence distribution, c) number of new cancer cases (all
types, both sexes) in 2022 in Europe, d) number of new cancer cases in France by cancer type and 2045 projection (in
red). https://gco.iarc.fr/today/en. Retrieved on 24/04/2024.
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1. Insights into the biology and epidemiology of cancer

1.2 General features and mechanisms of tumorigenesis

The origin of cancers is a process known as oncogenesis and it is due to an incorrect process of DNA

reparation, thus compromising gene functionality. Cell division may be impaired due to mutations

responsible for i) the inactivation of genes identified as tumor suppressors (i.e., controlling the

machinery of DNA replication), such as BRCA2, and ii) the constitutive activation of pro-oncogenic

factors (i.e., genes encoding factors that drive cell proliferation), like PDGF or ERBB2. Mutations

induced in those genes can be conserved because of incorrect DNA reparation and promote clonal

expansion of the mutated cells, finally leading to tissue hyperplasia. The accumulation of additional

genetic modifications allows pre-malignant cells to pass from a tumor promotional phase to a

progression stage. As a consequence, malignant cells can invade the adjacent tissues or even migrate

to other sites and form metastasis. The uniqueness of the processes leading to the accumulation of

mutations within each cancer type (and each individual) helps shape the intrinsic complexity in the

identification of general and effective diagnostic tools and treatment programs.

In 2000, the foundational paper titled "The Hallmarks of Cancer, [71] identified six common

features shared by several cancer types. The authors defined the scientific paradigm for cancer as

a multifaceted phenomenon characterized by a limitless replication potential, the ability to invade

other tissue and induce metastasis, its capability to induce angiogenesis, to evade apoptosis, the

autocrine supply of growth signals, and the insensitivity to anti-growth signals. Within the last

twenty years, the set of hallmarks increased first to ten[72] including genome instability and mutational

potential, deregulation in cellular energetic balance, tumor-induced and sustained by the tumor, and

the avoidance of immune destruction. As a follow-up publication, the same authors updated the list to

fourteen[70] hallmarks, with the addition of the non-mutational epigenetic reprogramming of cancer

precursor, the pro-tumorigenic effect of senescent cells, plasticity in phenotypic differentiation and

the interplay between cancer and microbiota modulating factors such as growth, inflammation and/or

immune evasion.

In a recent perspective article, Swanton and colleagues [170] insisted on the need for a shift in

the approach used by the scientific community to understanding cancer pathogenesis, moving from

dogmatic reasoning based on the hallmarks of cancer to a broader view of cancer as a complex systemic

disease (fig: 1.2). A new systemic approach to decipher cancer pathogenesis is therefore focused

on dynamical properties influenced by various factors, including age, environmental exposures, and

systemic changes induced by cancer. Moreover, cancer development involves a complex interplay of

genetic mutations and environmental factors, with significant influence from the tumor micro- and

macro-environments.
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The tumor microenvironment. The tumor microenvironment, or TME, is composed of several

cell populations encompassing cancer cells, tumor-associated stromal cells (i.e., cancer-associated

mesenchymal stem cells (MSCs), fibroblasts, adipocytes, pericytes, and endothelial cells), as well as

immune cells (fig: 1.3) e.g., macrophages, dendritic cells (DCs), neutrophils, T cells. [3].

These populations of the TME form cellular niches that interact dynamically and play crucial

roles in tumor behavior, treatment response, and immune surveillance. The potential to improve

therapeutic interventions relies on understanding these niches, in order to manipulate specific cell types

or signaling pathways. Moreover, the significance of cellular niches becomes especially apparent in the

context of metastatic colonization, where specific components within dormant niches play a crucial

role in maintaining metastatic cells in a quiescent state, thereby enabling their eventual outgrowth.

However, the characteristics of these dormant niches and how they evolve over time are still not

well understood. Advancements in spatially-resolved omics technologies have enabled researchers

to further characterize these cellular niches within the TME, revealing their complex nature and

spatial organization [148]. This understanding has led to the identification of tissue-intrinsic immune-

regulatory landscapes, regenerative programs, and other phenotypic states associated with some tumor

niches, paving the way for new classifications of tumors.
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Figure 1.2: The hallmarks of Cancer and the "clouds of complexity". This image presents a holistic view of
cancer pathogenesis. At the center, the hallmarks of cancer are depicted, underpinned by established mechanistic effectors
that regulate and promote cancer initiation and progression, although a complete understanding of these processes
remains elusive. At the top, the clouds represent factors that significantly influence cancer pathogenesis and progression,
but whose impacts are not yet fully understood. Image from Swanton C et al., Embracing cancer complexity: Hallmarks
of systemic disease. Cell. 2024
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Figure 1.3: The tumor microenvironment: A. Left: The antitumor immune microenvironment composed of
heterogeneous immune cell populations contributes to tumor surveillance and suppresses tumor formation. Right: an
alternative scenario is given by other immune cell types playing pro-inflammatory and pro-tumorigenic roles. B. Non-
immune cells populating the TME regulate angiogenesis, proliferation, invasion, and metastasis by secreting growth
factors and cytokines. Image adapted from Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020

The tumor macro-environment. The term "tumor macro-environment" refers to the wide set of

factors - systemic and environmental - affecting and affected by tumor development and progression.

Among these factors, we can list physiological, metabolic, and immunological elements from distant

organs and tissues, as well as systemic responses to tumor growth and progression (e.g., cachexia).

Moreover, tumor-induced changes in the immune system extend beyond the local environment,
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significantly altering the systemic immune landscape during cancer progression: molecules secreted

by cancer cells, immune, and non-immune stromal cells can influence the organism globally. Key

mechanisms include tumor’s autocrine effects, therapy-induced secretory phenotypes[113], DNA

damage responses in genetically unstable tumor cells (e.g., the secretion of type 1 interferon

[IFN-I])[24], microbial influences from diet and environment, and stress-induced metabolites [49].

These factors contribute to dysregulated myelopoiesis and a pro-tumorigenic macro-environment.

Furthermore, systemic immune responses are influenced by physiological changes such as circadian

rhythms and, as mentioned before, stress.

In the following subsection, I will delineate the principles underlying the influence of immunity in

antitumor therapy. This discussion will include the mechanisms through which the immune system

identifies and attacks tumor cells, the function of immune checkpoints, and the therapeutic approaches

designed to amplify antitumor immune activity.

1.3 Cancer treatments

Although surgery still constitutes most point-wise interventions in cancer treatment lines, surgical

removal of malignant neoplasms is often supported by additional therapies. Until the 1960s,

radiation therapy and surgery have been the primary options in the treatment of solid cancer. In the

case of radiation therapy, for more than a century, ionizing radiation has been utilized in cancer

treatment, exploiting the vulnerability of rapidly dividing cancer cells compared to normal cells. Its

primary impact on tissues is direct cell death, largely through DNA damage, leading to reduced cell

populations and impaired function. Ionizing radiation can directly damage cellular molecules or

indirectly generate free radicals through the ionization or excitation of water molecules. However,

the emergence of micrometastases and cancer recurrence after these treatments prompted the rise of

combination chemotherapy as a significant strategy in cancer management.

Chemotherapy is a term that encompasses a class of drugs that aims to halt the proliferation

of cells and the spread of tumors, thus preventing invasion and metastasis. Tumor growth inhibition

occurs at various levels within the cell and its surroundings. Conventional chemotherapy agents can be

categorized based on their mechanism of action. Overall, by interfering with DNA, RNA, or protein

synthesis, or by affecting their activity, chemotherapies can disrupt macromolecular synthesis and

impair cancerous cell functions. This interference, when sufficient, leads to cell cycle arrest and death,

particularly apoptosis. Repeated doses of chemotherapy may be necessary to achieve a response. The

efficacy of cytotoxic drugs is most pronounced during the S phase of the cell cycle when DNA synthesis

occurs. Yet, alkaloids and taxanes act during the M phase, by blocking mitotic spindle formation.

Combination chemotherapy is often employed to elicit adequate responses and appears to hinder
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the emergence of resistant cell clones by enhancing cytotoxicity in both resting and dividing cells.

The cellular mechanisms governing proliferation and differentiation are complex. Numerous receptors

and signal transduction pathways are at work, regulating cell differentiation, growth, and survival, as

well as tumor angiogenesis and metastasis. Some of these pathways can be selectively inhibited with

molecularly targeted therapies.

Chemotherapy can be administered in various modalities, including neoadjuvant3, adjuvant4, and

combined with additional treatments. Adjuvant therapy has become standard practice for breast,

lung, colorectal, and ovarian cancers. Combined modalities, including chemotherapy and radiation,

are utilized to shrink tumors before surgery or with curative intent in cancers such as those affecting

the head and neck, lungs, or anus.

Aside from chemotherapy, immunotherapy has emerged as a groundbreaking development in cancer

treatment. The application of immunological findings to cancer therapy has steadily risen in recent

decades, driven by major breakthroughs that have propelled the field of research forward. In the

following section, we will outline the significant milestones that have shaped the advancement of

immunology-based research in cancer therapy over the past century, and we will also delve into the

current approaches in the field of immunotherapy.

3Neoadjuvant treatments are given as a first step to shrink a tumor before the main treatment, which is usually surgery.
They include chemotherapy, radiation therapy, and hormone therapy. It is a type of induction therapy. (NIH, Dictionary
of Cancer Terms https://www.cancer.gov/publications/dictionaries/cancer-terms/def/neoadjuvant-therapy.
Retrieved on 24/04/24)

4Adjuvant therapies are given after the primary treatment to lower the risk of cancer relapse. They include
chemotherapy, radiation therapy, hormone therapy, targeted therapy, or biological therapy. (NIH, Dictionary of Cancer
Terms https://www.cancer.gov/publications/dictionaries/cancer-terms/def/adjuvant-therapy. Retrieved on
24/04/2024)
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2. Immune system and cancer

2 Immune system and cancer

2.1 From Immunoediting to Immunotherapy: The Evolution of Cancer Treatment

The immune system plays a dual role in the context of cancer, known as immunoediting. This process

includes both the identification and elimination of cancer cells (immunosurveillance) and the selection

of cancer cells that can escape immune detection, leading to tumor development. Immunoediting can

be divided into three phases: elimination, equilibrium, and escape.

During the elimination phase, the immune system identifies and eradicates cancer cells. Cytotoxic

CD8+ T cells recognize tumor antigens presented on major histocompatibility complexes (MHC-I, II)

on the surface of tumor cells, leading to their destruction. On one hand, these tumor antigens can be

self-antigens with aberrant/abnormal expression, also referred to as tumor-associated antigens (TAAs).

For instance, NY-ESO1 (New York esophageal squamous cell carcinoma 1) is normally expressed

in the testis but can be detected in several tumors, such as esophageal, lung, and hepatocellular

carcinomas [178]. On the other hand, tumor antigens can be non-self-antigens, also referred to as

tumor-specific antigens (TSAs). These latter can be derived from oncogenic viruses or result from

mutations accumulated during carcinogenesis and are known as neoantigens.

In the equilibrium phase, some cancer cells that survive the initial immune response undergo

genetic and epigenetic changes that enhance their resistance to immune attack. This phase represents

a dynamic state where the immune system continuously exerts selective pressure on the cancer cells,

leading to the survival of more resistant variants.

Finally, during the escape phase, cancer cells that have acquired resistance to immune detection

proliferate uncontrollably, resulting in the emergence of tumors. This model is supported by

observations that tumors from immunodeficient mice are more immunogenic than those from

immunocompetent mice [155].

The discovery of the role played by cytokines such as interferon γ (IFNG) in immunosurveillance

and the increasing understanding of immunoediting have laid the foundation for the development of

cancer immunotherapies. These therapies aim to restore and enhance the immune system’s ability to

recognize and destroy cancer cells, counteracting the mechanisms that allow tumors to evade immune

detection.

2.2 General features of antitumor immunity

2.2.1 Innate and adaptive immunity

The immune system orchestrates a sophisticated defense against cancer, deploying a multifaceted

response to eliminate malignant cells. Comprising innate and adaptive immunity, these defense
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mechanisms cooperate to detect and eradicate tumors. Innate immunity acts as the frontline, swiftly

recognizing cancerous cells via diverse receptors. Both innate and adaptive immune cells secrete

cytokines such as IFNs, tumor necrosis factors (TNFs), and interleukins (ILs), further modulating

the immune response against cancer. Macrophages, neutrophils, DCs, and natural killer (NK) cells

form the cornerstone of the innate arm, initiating inflammation, phagocytosis, and cytokine release

to combat tumors (Fig. 1.3 A). On the other side, T lymphocytes are key adaptive

mediators/effectors of antitumor activity. However, as reported in the previous sections, tumor

progression reshapes the immune microenvironment by releasing proinflammatory ligands like

TNF-α, IL-1, and IL-6, transforming growth factor (TGF)-β, which contribute to altering immune

responses and ensure cancer survival.

Adaptive immunity tailors responses upon encountering tumor antigens. Antigen-presenting cells

(APCs), predominantly DCs, capture and present tumor antigens via MHC molecules to T cells.

DCs serve as crucial mediators bridging the innate and adaptive immune responses, especially in the

realm of cancer. Upon the immunogenic demise of cancer cells, a cascade of damage-associated

molecular patterns (DAMPs) is unleashed and constitutes the repertoire of alarm signals that trigger

immune system activation. Equipped with pattern recognition receptors (PRRs), DCs discern these

DAMPs, prompting their maturation and upregulation of co-stimulatory molecules and MHC

molecules. Subsequently, mature DCs migrate to the lymph nodes, where they present tumor

antigens to T cells, fostering the proliferation and differentiation of antigen-specific T and B cells.

Crucial in this process, cytotoxic T lymphocytes (CTLs) and helper T cells coordinate cellular

immunity against cancer.
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Figure 1.4: Co-stimulatory and co-inhibitory landscape: Co-stimulatory cues, like the interaction between CD28
on T cells and CD80/86 on DCs, combined with the recognition of major histocompatibility complex class I and II (MHC-
I/II) molecules on cancer cells by the T cell receptor (TCR), stimulate T cell activation and proliferation, bolstering the
immune response against cancer. Conversely, inhibitory signals, such as PD-1 on T cells engaging with PD-L1 on cancer
cells or CTLA-4 outcompeting CD28 for CD80/86 binding, inhibit T cell activity, enabling cancer cells to evade immune
surveillance.

2.3 Immunogenic Cell Death in Cancer Therapy

2.3.1 Forms of Cell Death

In response to microenvironmental challenges, mammalian cells activate signaling pathways aimed at

restoring cellular homeostasis. However, if these challenges exceed cellular repair capacities, the same

molecular cascades initially supporting cytoprotection, shift towards promoting regulated cell death

(RCD)[171]. RCD can occur via various mechanisms, depending on factors such as the nature of the

perturbation and cellular characteristics.

The classification of cell death modalities has long been a subject of debate in cell biology.

Historically, it was relying onthe morphological and structural features of the dying cells. Among the

classical forms of cell death, type 1 cell death - commonly referred to as apoptosis - is characterized

by cell shrinkage, membrane blebbing as well as DNA fragmentation, and chromatin condensation.

Type 2 cell death refers to autophagy-dependent forms of cell death. Type 3 cell death refers to

13



Chapter 1. Introduction

necrosis, which is characterized by a general loss of integrity of the cell membrane and a consequent

spillage of subcellular components. While necrosis has been considered an unregulated form of cell

death, necroptosis constitutes its regulated counterpart.

Currently, cell death modalities are separated into two main categories: accidental cell death

(ACD) and RCD, based on functional aspects. ACD occurs when cellular homeostatic controls are

overruled by unpredictable events that compromise cellular stability. On the other hand, regulated

forms of cell death include specific signaling pathways and molecular effectors. Among RCD

modalities, apoptosis, necroptosis, ferroptosis, parthanatos and autophagy-dependent cell death can

be listed. Some forms of RCD are furthermore characterized by their efferocytosis-like features and

immunologically silent/tolerogenic: cells degraded following the activation of one of the RCD

programs are phagocytated without activating any immune response. This is a property of standard

apoptosis. Conversely, some forms of RCD activate an immune response and are thus

non-tolerogenic/immunogenic; this aspect will be expanded in the next section.

Efferocytosis is therefore a fundamental process in maintaining homeostasis and preventing

dysfunctional inflammatory processes; dysregulations in its mechanism promote disease

establishment. Efferocytosis ensures the production of anti-inflammatory cytokines while

simultaneously repressing proinflammatory cytokines, therefore promoting inflammation resolution.

2.3.2 The Hallmarks of Immunogenic Cell Death

Some forms of cell death - whether they are RCD or ACD - can engage an adaptive immune response

against antigens captured from deceased cells. This phenomenon has been identified as "immunogenic

cell death" (ICD). In opposition to silent efferocytosis, considered to be a tolerogenic process, some

RCD modalities are able - under specific circumstances - to trigger an adaptive immune reactivity.

To benefit from the immunosurveillance functions exerted by actors of adaptive immunity, such as

conventional T cells, three conditions need to be filled: dying cells need to provide i) adjuvanticity,

as well as ii) antigenicity, to attract and activate the immune sentinels and effectors, and iii) the

microenvironment needs to be permissive to the establishment of such local immune recruitment and

reactivity [96].

Antigenicity arises from the capture of TSA and TAA from dying cells by APCs, and their

subsequent cross-presentation on MHC molecules to T cells. These latter can achieve clearance of

surviving malignant cells sharing an immunopeptidome homology (i.e. common antigen epitopes

presented onto MHCs). Of note, stress conditions imposed on cancer cells via immunogenic

interventions are capable of enhancing both the production of tumor antigens, notably neoantigens,

and the expression of MHC molecules on tumor cells’ surface [205].
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To overcome peripheral tolerance or prevent T cell energy, antigenicity must be complemented by

adjuvanticity. The latter property stimulates APC recruitment and activation, and their subsequent

ability to provide proinflammatory and co-stimulatory signals required for T cell priming (Fig. 1.4)

[154]. Adjuvanticity originates from the release of DAMPs by cancer cells stressed/dying upon

cytotoxic interventions. These danger signals can be detected by PRRs, on APCs’ surface [121, 66].

Within the last two decades, intensive investigation has been conducted on the release of DAMPs by

cancer cells induced by several therapeutic approaches such as conventional chemotherapeutic [27],

radiotherapy [136], photodynamic therapy [59], and oncolytic virotherapy [115]. Scientific

community-driven initiatives have endeavored to delineate the repertoire of DAMPs, elucidating the

features contributing to defining a common set of features for ICD across diverse therapeutic

contexts [55].

2.3.3 Molecular features of ICD

The set of DAMPs that are considered characteristic hallmarks of ICD comprises: the chaperone

protein Calreticulin (CALR), extracellular detected adenosine triphosphate (ATP), high mobility

group box 1 (HMGB1), type I interferon response, and Annexin A1 (ANXA1). Although a

consensus has been established for the first three, the two latter appear to be contextual to a type of

ICD induced by chemotherapies [11, 183] and have been less investigated than CALR, ATP and

HMGB1. In this section, we will provide a compendium on the available knowledge circa the

mechanistic machinery regulating the exposure and the release of the different DAMPs constituting

the molecular signature of chemotherapy-induced ICD.

CALR exposure CALR is a 60 kDa endoplasmic reticulum (ER) resident protein. Under

homeostatic conditions, CALR serves as an essential molecular chaperone within the ER lumen

where it operates in concert with calnexin for protein quality control and with protein

disulfide-isomerase A3 (PDIA3 or ERp57) for protein folding. In contrast to calnexin, which is

anchored to ER membrane, CALR can freely move within the ER lumen, and supply the Ca2+

needed for both proteins to exert their chaperone functions via its high capacity calcium binding

C-domain [126].

Under stress conditions initiated by ICD inducers, CALR is exposed on the surface of dying cancer

cells with other ER chaperone proteins, including heat shock protein 70 and 90 (HSP70, HSP90) as

well as the above-mentioned PDIA3. The absence of phosphatidylserine when CALR is exposed on

cell membranes indicates that apoptosis has not occurred yet and that the presence of CALR is not

a consequence of membrane modifications following the apoptotic program [136].

The path to CALR exposure involves a signaling cascade originating from the ER stress caused by
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Figure 1.5: ER stress activated pathways leading to CALR exposure. A ER stress activates three pathways: (i)
PERK-mediated eIF2α phosphorylation leading to ATF4 translation, (ii) IRE1 dimerization causing XBP1 alternative
splicing, and (iii) ATF6 translocation to the Golgi for cleavage and nuclear translocation. These processes aim to
eliminate or repair misfolded proteins. B. Immunogenic cell death (ICD) inducers like anthracyclines or oxaliplatin only
mediate PERK-dependent eIF2α phosphorylation. Image adapted from [17]

ICD inducers resolved by the activation of the unfolded protein response pathway (UPR). Downstream,

the UPR diversifies its mechanism through three different branches including the eukaryotic translation

initiation factor 2-alpha kinase 3 (eIF2AK3), also known as the dsRNA activated protein kinase-

like ER kinase (PERK), the activating transcription factor 6 (ATF6), and serine/threonine-protein

kinase/endoribonuclease inositol-requiring enzyme 1α (IRE1α). These three molecular sensors interact

with BiP/GRP78, with stress triggering BiP/GRP78 dissociation and UPR activation.

ATF6 is a type II ER transmembrane protein with a transcriptional activation domain in its

cytosolic region. ATF6 has two isoforms, ATF6α and ATF6β. ATF6β regulates CALR gene expression,

vital for neuronal survival and ER Ca2+ balance under stress conditions, thereby enhancing ER Ca2+

capacity. This upregulation supports augmented ER-mitochondrial contacts, enabling Ca2+ transfer

to mitochondria for ATP production, crucial for energy maintenance during stress. On the other hand,

upon dissociation from BiP, ATF6α moves from the ER membrane to the Golgi, where it is cleaved

by site 1 and site 2 proteases (S1P and S2P). This cleavage generates an active basic leucine zipper

(b-ZIP) factor, the N-terminal fragment of ATF6α, which then translocates to the nucleus to activate

UPR genes, including those that promote protein folding by overexpressing chaperones, X-box binding

protein 1 (XBP1), and BiP.

IRE1α, a type I ER transmembrane endoribonuclease/kinase, has a kinase domain and an

endoribonuclease domain in its cytosolic N-terminal luminal domain. The activation of IRE1α occurs

through dimerization and autophosphorylation and facilitates the downstream splicing of XBP1

mRNA. The spliced XBP1 encodes a b-ZIP transcription factor (TF) that upregulates UPR genes
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involved in ER-associated protein degradation (ERAD) and protein folding.

The third viable UPR branch involves the dissociation of eIF2AK3 from BiP. This process

induces the phosphorylation of eukaryotic initiation factor 2α (eIF2α) resulting in the attenuation of

messenger RNA (mRNA) translation by inhibiting the formation of cap-dependent ribosomal

initiation complexes. Moreover, phosphorylated EIF2α specifically promotes the translation of

mRNA encoding ATF4, a b-ZIP TF (Fig 1.5). ATF4 induces growth arrest and enhances the

expression of genes related to chaperones, antioxidants, XBP1, and DNA damage-inducible

transcript 3 (DDIT3). In the context of ICD-inducing chemotherapies, the exposure of CALR is

achieved through the EIF2α phosphorylation, mediated by EIF2AK3. Cell lines used for these

observations included murine methylcholanthrene-induced fibrosarcoma MCA205, human

osteosarcoma U2OS, and colon carcinoma CT26. However, recent studies have shown that in human

melanoma cells, anthracyclines induce EIF2α phosphorylation through other kinases: EIF2AK2 or

EIF2AK4. Under UPR activation, the translocation of CALR from the ER lumen to the cell’s

membrane occurs via the Golgi apparatus: a complex formed by CALR and PDIA3 is finally able to

reach the external membrane in an exocytotic manner with N-ethylmaleimide-sensitive-factor

attachment protein receptors (SNARE).

Once exposed, CALR provides an "eat-me signal" for myeloid cells. Proximal DCs (and

macrophages) expressing the CALR-binding lipoprotein receptor-related protein 1 (LRP1) can

uptake the antigens loaded on MHC molecules presented on the surface of dying cancer cells.

Extracellular release of ATP. Prior to an "eat-me" signal, it is crucial for APCs to receive a "find-

me" signal that would play a chemotactic role and favor APC migration to dying tumor cells undergoing

ICD. The ATP released by stressed cells constitutes an adjuvant signal and provides such pro-migration

signaling. ATP is an essential metabolite that fuels most of the biochemical processes in eukaryote

organisms. Under normal circumstances, the ATP concentration within a cell ranges between 3 and

10mM, while in the proximal extracellular space, the concentration normally shrinks to 10nM. The

concentration levels (inner and outer) are preserved by the activity of ectonucleoside triphosphate

diphosphohydrolase 1 (ENTPD1, also known as CD39) and 5’-nucleotidase (NT5E or CD73). These

two enzymes hydrolyze ATP into adenosine diphosphate (ADP), adenosine monophosphate (AMP)

with ENTPD1 and ultimately in adenosine (ADO) via NT5E [161]. The two enzymes are expressed

in both tumor cells and immune cells, with a particular predominance for ENTPD1.

ATP binds to two classes of receptors, called purinergic receptors: P2XR which is an ATP-gated

ion channels, and P2YR G protein-coupled receptors (Fig. 1.6. Both receptors are expressed by

several cancer cell lines and primary tumors, as well as host cells such as immune cells, notably DCs.

Moreover, by binding to P2X7R receptors expressed by DCs, extracellular ATP is also responsible for
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the up-regulation of maturation markers such as CD80 or CD86 and, in human PBMCs for class II

MHC [140].

The presence of extracellular ATP has been positively correlated with type 1 helper CD4+ T cells

(Th1) and CD8+ T cells, as a consequence of APC activation and maturation, such as for DCs. On

the other hand, extracellular ADO favors some immunosuppressive features of the TME, for instance

promoting CD4+ T cell differentiation into regulatory T cells (Tregs) and their immunosuppressive

function by binding to their adenosine A2A receptor (A2AR)[161]. Adenosine receptors are also

expressed on dendritic cells: for immature DCs, extracellular ADO increases their chemotaxis but for

mature ones, adenosine receptor activation induces pro-inflammatory, angiogenic, immuno-suppressive,

and tolerogenic factors, reducing de facto their cross-presentation potential [2].
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Figure 1.6: ATP release mechanisms in the TME. ATP is released into the TME through various mechanisms:
cell death-induced efflux, plasma membrane transporters, exocytosis, and microvesicle shedding. In the TME, ATP can
either bolster antitumor immunity or foster immunosuppression. It activates NLRP3 inflammasome in macrophages
and DCs, triggering cytokine release and antigen presentation. ATP breakdown by ectonucleotidases generates
ADP, AMP, and adenosine (ADO), impacting purinergic receptors on tumor and immune cells. ADO promotes
immunosuppression by inhibiting DC antigen presentation, fostering M2 macrophages, and recruiting MDSCs, creating
a highly immunosuppressive TME.

Moreover, in a TME characterized by a low concentration of extracellular ATP, myeloid cells

such as tumor-associated macrophages (TAMs) or myeloid-derived suppressor cells (MDSCs) favor an

immune-inhibitory environment. For instance, when ATP binds to the purinergic receptors expressed

by MDSCs, it drives the accumulation of arginase and the following release of proinflammatory signals

such as IL10, or TGFβ, thus promoting the recruitment and differentiation of Tregs within the TME.

ATP can be released due to several possible stimuli, such as inflammation, hypoxia, tissue

damage, and other cell stress. Among these stimuli, ICD-inducing therapies are capable of triggering
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the extracellular release of ATP. Immune cells, as well as cancer cells, express pathways that support

ATP accumulation in the TME, with pannexin 1 (PANX1) being a key pathway for ATP efflux in

many cell types. PANX1 plays a crucial role in purinergic signaling and features a feedback

inhibition mechanism where ATP binding to its low-affinity extracellular site prevents excessive ATP

accumulation. Additionally, PANX1 is activated during chemotherapeutic drug-induced apoptosis

via effector CASP3. Upon ICD induction, ATP can also be released by tumor cells via autophagy.

This phenomenon is a process that involves the engulfment of cytoplasmatic material into

double-membrane vesicles, the autophagosomes. The latter then fusion with lysosomes to create

autolysosomes, where the engulfed material is degraded. In anthracycline-induced ICD, the

autophagic pathway is activated and intracellular ATP is secreted through autolysosomes that are

transported to the cell membrane via lysosomal-associated membrane protein 1 (LAMP1). Under

the administration of anthracyclines, the down-regulation or knock-down of autophagy factors, such

as the autophagy proteins 5, 7, 10, 12 (ATG5, ATG7, ATG10, ATG12), Beclin 1 (BECN1) or

LAMP1, have been associated with reduced ATP release and, consequently, with ICD failure and a

diminished T cell activation [127] However, autophagy is not necessary for ICD induced by

hypericin-based PDT and its inhibition can enhance immune cell activation [57].

Extracellular release of HMGB1. High mobility group box 1 (HMGB1) is a phylogenetically

conserved nuclear protein (99% homology between human and mouse [53]) and highly expressed in

all mammalian cells. Under normal circumstances, HMGB1 binds to chromatin, and stress

conditions can activate pathways that lead to its release from the nucleus and, consequently, its

shuttling to the cytoplasm. Post-translational modifications to the nuclear localization signals (NLS)

of HMGB1 (NLS1 and NLS2) are responsible for its release [174]. Such modifications comprise the

acetylation or deacetylation operated by histone acetyltransferases (HATs), such as acetyltransferase

2B (KAT2B), CREB-binding protein (also known as CREBBP or KAT3A) and histone

acetyltransferase p300 (EP300), and by histone deacetylases (HDACs). In any case, once HMGB1

has been released from its nuclear binding site, the acetylation of lysine in the NLS prevents its

return to the nucleus. Under persistent oxidative stress, HMGB1 binds to nuclear exporter exporting

1 (XPO1) and gets transferred to the cytoplasm following acetylation. Release of HMGB1 from the

nucleus via its (de)acetylation can be triggered by various pathways including sirtuin 1 (SIRT1)

[194], Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT1) [114], or

protein kinase C (PKC), which also phosphorylates serine residuals (Ser35,Ser39 and Ser42) in the

the two NLS[137]. Release mechanisms have been divided into two categories: active and passive.

Active processes have been studied since the first observations made on HMGB1 release following

lipopolysaccharide (LPS) stimulation [187]. HMGB1 is not secreted through the conventional
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ER-Golgi secretory machinery. Most of the active release models indicate that in response to stimuli,

HMGB1 translocates from the nucleus to the cytoplasm and its release occurs via lysosomes (or

autophagosomes) and the consequent fusion with the cell membrane. Alternatively, in case of

necrosis, the compromised cell membrane allows passive diffusion of HMGB1 in the extra-cellular

medium. Modulators of active secretion include reactive oxygen species (ROS), calcium ions, XPO1,

and Tumor Protein 53 (TP53). Oxidative stress is regulated by the NFE2-like b-ZIP transcription

factor (NFE2L2 or NRF2), which enhances the transcription of antioxidant genes, including heme

oxygenase-1 (HMOX1). HMOX1 plays a role in inhibiting the oxidative stress-induced translocation

of HMGB1 into the cytosol, establishing a feedback loop that mitigates cellular damage triggered by

oxidative stress. This feedback mechanism helps maintain cellular homeostasis by counteracting the

harmful effects of oxidative stress [128].

Supporting evidence of HMGB1 active release indicates that in human colon cancer cells, in

response to oxidative stress or starvation, the extra-nuclear shuttling of HMGB1 increases the

autophagic flux [172]. Calcium ions behave as second messengers in many cellular processes.

Regulation of calcium ions’ intracellular concentration and transport is mediated by several channels

and pumps; any disruption of intracellular calcium signaling may induce cell damage. HMGB1

translocation and release are mediated by calcium ions in several in vitro cancer models [50]. XPO1

is a nuclear protein involved in the recognition and export of leucine-rich nuclear export signals

(NES) and plays a major role in transporting RNA or proteins from the nucleus to the cytoplasm.

Heat shock protein family A member 1A (HSPA1A) inhibits the binding between XPO1 and

HMGB1 in macrophages. Given that XPO1-mediated export of tumor suppressor proteins has been

documented in various cancer types [186], it is plausible that HMGB1 is also translocated by XPO1

in cancer cells.

In cancer cells, TP53 and HMGB1 are mutual regulators. DNA repair is regulated by the

complex formed by the two proteins [110]. TP53 activation controls neoplastic inflammation by

inducing the release of HMGB1. On the other hand, passive mechanisms rely on several types of cell

death. Modulators of HMGB1 passive release are constitutive of such forms of cell death, including

pyroptosis, ferroptosis, necroptosis, necrosis, and apoptosis. Passive processes are regulated by

several factors. The persistence of DNA damage overactivates Poly(ADP-Ribose) Polymerase 1

(PARP1) in mammalian cells, inducing a high demand for nicotinamide adenine dinucleotide

(NAD+) and consequent ATP depletion. PARP1 activation induces the release of HMGB1 during

necrosis caused by DNA-damaging drugs [92]. During necroptosis, which can be triggered by

chemotherapy, the formation of necrosomes is regulated by members of the receptor-interacting

serine-threonine kinase (RIPK) family. Among them, RIPK3 appeared involved in the release of
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DAMPs, including HMGB1 [44]. Other molecular effectors of cell death control HMGB1 release.

This is the case of the initiator and executor caspase signaling, whose activation is observed in

multiple types of RCD. During immunogenic apoptosis, the release of cytochrome c from

mitochondria activates CASP9 followed by CASP3, which, along with CASP7, leads to HMGB1

release.

Once released in the extracellular milieu, HMGB1 can bind to toll-like receptor 4 (TLR4) and

glycosylation end product-specific receptor (AGER or RAGE) 5. Additionally, HMGB1 can form a

heterocomplex with CXCL12, which enhances T cell recruitment by binding to CXCR4. This binding

induces a structural conformation distinct from that induced by CXCL12 alone [151].

When HMGB1 binds to TLR4 receptors expressed on innate immune cells, it can activate the

NF-kB pathway via Myeloid differentiation primary response 88 protein (Myd88) and the interferon

regulatory pathway 3 (IRF3) via TIR-domain-containing adapter-inducing interferon-β (TRIF). TLR4

is expressed on several type of myeloid cells such as DCs, MDSC, Tregs and macrophages (Mϕ) (Fig.

1.7).

These HMGB1-stimulated pathways trigger the production of cytokines and mediate a systemic

inflammatory response. Conversely, binding of HMGB1 to CD24 or hepatitis A virus cellular

receptor 2 (HAVCR2, best known as TIM3) harbor immunoinhibitory effects. In conventional DCs

(cDCs) infiltrating the TME, the capture of HMGB1 (together with DNA) inhibits HAVCR2

immunosuppressive function, and restores stimulator of interferon response cGAMP interactor 1

(STING1)-dependent production of type I IFNs [40].

In pancreatic cancer, HMGB1 stimulates the expression of PDL1 via hypoxia-inducible factor 1

subunit alpha (HIF1A) after binding to AGER [104]. Despite its double-edged sword nature,

HMGB1 release in the context of immunogenic cell death (ICD) is considered essential for a

successful outcome. HMGB1 stimulates DC maturation and their production of the cytokine IL12

[125], thus driving the establishment of a type 1 adaptive immune response. Shreds of evidence

supporting this theory come from studies on TLR4-/- and MYD88-/- mice treated with

anthracyclines or the platinum salt oxaliplatin (OXA), which showed no antitumor activity.

Moreover, co-culture experiments with impaired HMGB1 functionality showed a reduced ability of

DCs to perform cross-presentation [4].
5HMGB1 protein binds to TLR4 with higher affinity than in the case with AGER8. Given the bacterial origin of

recombinant HMGB1, several studies argued that HMGB1 alone would have less affinity for TLR4 and that is the
contamination with bacterial LPS that confers it its affinity for TLR4
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Figure 1.7: Immunosuppressive and immunostimulatory functions of HMGB1. A HMGB1
immunosuppressive effects: When HMGB1 binds to AGER (advanced glycosylation end product-specific receptor)
receptors expressed on myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 macrophages, it
triggers the release of pro-inflammatory cytokines such as IL-10. In the case of M2 macrophages, TGF-β is also released.
Furthermore, autocrine stimulation via AGER receptors in cancer cells, particularly in pancreatic cancer, induces the
expression of PD-L1, contributing to immune evasion. B. In the absence of treatment, tumors often release pro-
inflammatory signals that contribute to immunological tolerance, effectively dampening the antitumor immune response
and allowing the tumor to evade immune detection. However, cancer therapies such as chemotherapy and radiotherapy
can induce the release of HMGB1 as a consequence of cancer cell death. When HMGB1 is recognized by TLR4 receptors
on dendritic cells (DCs), it promotes their maturation and stimulates the production of crucial ligands necessary for
robust T-cell activation, thereby enhancing the antitumor immune response. Adapted from Daolin Tang et al [173]

HMGB1 and its receptor TLR4 are targets of interest for cancer therapy. Epidemiological analysis

of patient cohorts revealed that breast cancer patients harboring loss-of-function polymorphisms of

TLR4 experience more frequent relapse after receiving anthracycline-based treatments [182, 4]. In

the case of melanoma patients, DC-based vaccine efficacy is affected by TLR4 loss-of-function [179],

as well as for colorectal cancer patients treated with OXA [177] and head-and-neck squamous cell

carcinoma treated with systemic treatment [15].
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Type 1 Interferon signaling. Type 1 interferons (IFN-I) are cytokines that can be produced by

most cell types. Such production follows the stimulation of PRRs present on the cell surface, as well as

in the cytosol or within endosomes (Fig. 1.8 A). PRRs can sense nucleic acids, freed from the nucleus

of dying/dead cells. Nucleic acid receptors include RNA sensors such as melanoma differentiation-

associated gene 5 (MD15 or IFIH1) as well as retinoic acid-inducible gene I (RIG-I or DDX58) or

DNA sensors like DNA-dependent activator of IFN-regulatory factors (DAI or ZBP1). Moreover,

IFN-I production has been associated with sensing by other intracellular receptors like DEAD-box

and DEAH-box helicases as well as the nucleotide-binding oligomerization domain (NOD)-containing

proteins NOD1 and NOD2. Similarly, surface receptors such as TLRs (TLR4, TLR3) are strong

activators of IFN-I response [123, 36].

Downstream of these receptors, several pathways are responsible for the transcription of genes

encoding IFNA/B by activating a few master regulators like interferon regulatory factors (IRFs),

notably IRF3 and IRF7. The activatory phosphorylation of IRF3 and IRF7 is mainly mediated by IκB

kinase-ϵ (IKKϵ) and TANK-binding kinase 1 (TBK1). Once activated, IRF3 and IRF7 stimulate the

transcription of IFN-I-encoding genes, notably IFNB and IFNA4. Depending on the PRRs activated,

the NF-kB pathway can be activated and further contribute to the transcription of IFN-I genes. Once

secreted, IFN-I bind to ubiquitous IFNA/IFNB receptor (IFNAR) and activates the downstream

JAK1 and tyrosine kinase 2 (TYK2) adapters which, in turn, phosphorylate STAT1 and STAT2

in the cytosol [123, 36]. Phospho-STAT1/2 homo/heterodimers will be able to interact with IRF9

and form the interferon-stimulated gene factor 3 (ISGF3) complex. This latter will translocate to

the nucleus and control the second wave of production of IFN and an array of interferon-stimulated

genes (ISGs). ISGs include activators (e.g., IRF7 [152]) and inhibitors (e.g., USP18 [12]) of the IFN

response, as well as regulators of cell survival and immunoregulatory genes (e.g., the pro-inflammatory

cytokine CXCL10 [43, 106]), among others.

In the TME, IFN-I exhibits multifaceted roles that on one side bolster antitumor immunity (Fig.

1.8 B). Locally, IFN-I can be produced by several cell types such as cancer-associated fibroblasts

(CAFs), TAMs, and other innate and adaptive immune cells. In DCs, the production is triggered

following the detection of DNA via the cGAS-cGAMP-STING pathway. Alternatively, binding of

extracellular HMGB1 to TLR4 stimulates DCs to produce IFN-I through myeloid differentiation

factor 88 (MyD88) signaling [4]. IFN-I are vital for the maturation and activation of NK cells,

subsequently increasing their cytotoxicity [169]. IFN-I also promotes DC differentiation, maturation,

and migration into lymph nodes, facilitating the activation of CD8+ T cells and increasing

intratumoral DC accumulation. In cancer cells, IFN-I upregulates tumor antigen [68] and MHC class

I expression [22], facilitating antigen uptake and cross-presentation by DCs, enhancing tumor cell
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visibility to the immune system. Additionally, IFN-I reduces Treg [74] infiltration and proliferation

within the tumor, thereby mitigating their immunosuppressive effects. Also, they inhibit neutrophil

infiltration, longevity, and chemokine production, which can otherwise support tumor progression.

Lastly, IFN-I decreases the differentiation and maturation of MDSCs which prevents the downstream

activity of cytotoxic CD8+ T cells.
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Figure 1.8: Type 1 interferon response and production in cancer cells. A Type 1 IFN production modalities
and stimuli. Adapted from Yu et al. [199], B. Immunostimulatory effects of IFN-I [199] C. Pro-survival effects of IFN-I
in cancer cells expressing high levels of PD-L1 [35]
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In cancer cells, IFN-I can have both prosurvival and immunostimulatory effects, according to the

strength and the duration of the stimulation [34]. Examples of the protumoral effects of IFN-I come

from cancers harboring mutations in the Ataxia-telangiectasia mutated (ATM ) gene [34] or in TP53

[101]. In both cases, these mutations lead to a constitutive IFNβ expression that can compromise

the efficacy of DNA-damaging agents. In addition, high constitutive levels of PD-L1 enhance the

production of IFN-I by activating the STING1 pathway. Moreover, IFN-related DNA damage-resistant

signature (IRDS) genes are also up-regulated in lung carcinoma [35]. On the contrary, following the

administration of DNA-damaging chemotherapies, such as anthracyclines (e.g., doxorubicin [DOX]),

the activation of TLR3 receptors sense RNA released by dying cancer cells. TLR3 activity, in turn,

favors the release of chemokine C-X-C motif ligand 10 (CXCL10), hence boosting the chemotaxis of

T-cells expressing the conjugate receptor CXCR3. The in vivo neutralization of CXCR3 compromises

the efficacy of doxorubicin in mounting an antitumor response by reducing the chemotactic effects

sparkled by the autocrine release of IFN-I [157]. Other DNA-damaging cancer therapeutics, such as

ionizing radiation in breast cancer, also up-regulate the production of IFN-I [189].

ANXA1/FPR1-2 axis. Annexin A1 (ANXA1) is part of a protein superfamily of the annexins

and its phospholipid-binding mechanism relies on Ca22+. The superfamily shares the same

C-terminal while the N-terminal varies according to the member and is the location for most

post-translational modifications. First observations on ANXA1 indicated its role in mediating

anti-inflammatory response to glucocorticoids by inhibiting phospholipase A2. This process occurs

through the binding of ANXA1 to formyl peptide receptor 1 and 2 (FPR1, FPR2) [141].

ANXA1 is expressed in several cell types including epithelial cells and immune cells such as

neutrophils and macrophages. Recent investigations highlighted its multiple contributions in several

processes: on one side ANXA1 has antitumorigenic features given by its potential to reduce

inflammation and on the other hand it can promote invasion and metastasis (only for late-stage

cancers) [19]. In the case of breast cancer, ANXA1 actively regulates the NF-kB pathway inducing

the expression of matrix metalloproteinase 9 (MMP9), thus enhancing the invasion potential.

Furthermore, ANXA1 is a caspase-dependent ligand [5], required for apoptotic cell engulfment.

The importance of ANXA1 in ICD has been assessed using -/- cancer cells and Fpr1-/- mice, proving

the critical role of ANXA1 binding to formyl peptide receptor 1 (FPR1) on the surface exposure of

CALR under the administration of ICD-inducing treatments such as DOX or mitoxantrone (MTX).

Such genetic modifications negatively impacted ICD induction through impairment of DC activity

[11]. In any case, the precise mechanisms regulating ANXA1 release and production are currently

under investigation.

Epidemiological studies on breast carcinoma cohorts have revealed that the recurrence of metastasis
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in patients treated with anthracyclines is frequently associated with a loss-of-function mutation in

FPR1, attributed to single-nucleotide polymorphism (SNP) [182]. Similarly, colorectal cancer patients

treated with the platinum-based drug OXA who carry FPR1 polymorphisms exhibit poorer overall

survival and a less favorable metastasis-free prognosis [182]. Recent research on breast cancer cell lines

[159] has highlighted the role of post-translational modifications of ANXA1, where serine protease 22

(PRSS22 or tryptase ε), transcriptionally initiated by E2F1, modifies ANXA1, a known substrate of

PRSS22. This modification appears to facilitate breast cancer metastasis through the FPR2/ERK

signaling pathway.

Inhibition of transcription. Recently, the work of Dr. Juliette Humeau in the team provided

evidence of an additional hallmark of ICD, namely the inhibition of transcription [81]. Starting with

an in silico screening of a large library of chemical compounds, clusters of bona fide ICD inducers were

detected by computing a predictive ICD score taking into account the impact of these drugs on the

release of the abovementioned ICD-related DAMPs. Among these compounds emerged Actinomycin D

(DACT), an antibiotic commonly employed in clinical settings for the care of several cancer types such

as testis, some ovarian cancers, and Ewing’s Sarcoma. Preclinical investigations using DACT evidenced

a correlation between the release of DAMPs and the inhibition of RNA synthesis. Furthermore,

inhibition of transcription was observed for other ICD inducers such as the anthracyclines MTX and

DOX, and the platinum salt OXA.

2.3.4 Cancer immunotherapies

Cancer immunotherapies encompass heterogeneous approaches aimed at reinvigorating cancer

immunosurveillance. Immune checkpoint inhibitors (ICI) and other immunomodulatory monoclonal

or bispecific antibodies have shown impressive transversality, with remarkable efficacy across

multiple oncological indications. Other immunotherapeutic approaches currently approved in the

clinics include cancer vaccines, cytokines, or again adoptive cell therapy. Furthermore,

cytotoxic/lytic interventions that induce ICD and stimulate antitumor immunity also join the

immunotherapeutic arsenal.

• Immune checkpoint inhibitors. Immune checkpoints function as regulatory elements,

governing the activity of T cells and restraining their attack on cancer cells. Central to this

regulatory network are programmed cell death protein 1 (PD-1) and cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4). PD-1, found on activated T cells, plays a

critical role in suppressing immune responses to maintain tolerance and prevent autoimmune

reactions. Upon interaction with its ligands, programmed death-ligand 1 (PD-L1) and PD-L2,
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PD-1 transmits inhibitory signals that suppress T cell activity, enabling cancer cells to evade

immune surveillance.[168] Nivolumab and Pembrolizumab are ICIs consisting of monoclonal

antibodies targeting PD-1 and preventing its interaction with PD-L1. Similarly, CTLA-4 acts

as a negative regulator of T cell activation, primarily during the immune response’s initiation

phase. By binding to CD80 and CD86 on antigen-presenting cells, CTLA-4 competes with the

costimulatory molecule CD28, dampening T cell activation and proliferation (Fig. 1.4). The

ICI Ipilimumab targets CTLA-4 and block its function, empowering T cell responses against

tumor antigens and augmenting antitumor immunity. Although these mechanisms preserve the

immunological potential of T cells, long-term effects related to excessive immune responses are

still under investigation [86].

• Cancer vaccines. Cancer vaccines aim to stimulate an adaptive antitumor response by

overexpressing a tumor antigen inside the tumor microenvironment and/or in peripheral

tissues where APCs patrol. They can be prophylactic, such as the HPV vaccine for preventing

cervical cancer, or therapeutic, designed to treat established tumors [51].

• Cytokines. Cytokine therapy relies on the administration of proinflammatory cytokines. In

particular, IL-2 and IFN-α have been approved by the FDA for cancer treatment: IL-2 for

advanced renal carcinoma and metastatic melanoma, and IFN-α for hairy cell leukemia and

melanoma [16]. Systemic delivery of these cytokines remains infrequent in clinical practice

due to limited response rates and severe adverse events, notably due to the short half-life of the

molecules and their potent inflammatory activity [77] Current research on optimizing the clinical

use of cytokines for the care of cancer is now focusing on three key aspects: i) favoring a local,

rather than systemic, administration, ii) improving the pharmacokinetic, and iii) identifying

synergies with other immunotherapies, notably ICIs.

• Adoptive cell therapy. Adoptive cell transfer (ACT) is an advanced immunotherapeutic

approach that entails the isolation and ex vivo expansion of autologous or allogeneic T cells,

which are subsequently reinfused into the patient to target and eradicate cancer cells. These T

cells can be genetically engineered ex vivo, mostly to edit their TCR. ACT has demonstrated

significant efficacy in treating blood cancers and some solid tumors like melanoma. However,

challenges persist in optimizing T cell persistence and functionality, as well as managing adverse

effects such as cytokine release syndrome [83]. Among the available options for ACT, CAR-T

cell therapy relies on the adoptive transfer of T lymphocytes whose TCR has been genetically

substituted by a chimeric antigen receptor (CAR). The latter mostly consists of a single-chain

variable fragment (scFv) that is specific to a surface cancer antigen. Although intrinsically

29



Chapter 1. Introduction

complex and expensive, this targeted approach is clinically approved for the efficient treatment

of certain leukemia, lymphoma, and myeloma.[20].

ICD inducers. A wide array of cytotoxic/cytolytic interventions can trigger cancer ICD,

mediating antigen spreading together with exposure and release of DAMPs, and ultimately

promoting antitumor immune response.

The gold standard assay to determine the ability of an intervention to drive cancer ICD relies on

a vaccination-rechallenge experiment. In detail, murine cancer cells are first treated in vitro with

the agent. Once cell mortality reaches a specific threshold (50% to 70%), these treated (dying

and dead) cells are suspended and injected subcutaneously into one flank of immunocompetent

mice of the same genetic background. After a 7-15-day period, these mice are injected with

live, non-treated, cancer cells of the same line in the opposite flank [80]. Then, tumor growth

is monitored. An absence of tumor development validates the ICD-related vaccination potential

of the agent. Indeed, effective ICD inducers provide long-term immune-mediated protection

against the re-injected cancer cells, a phenomenon not replicated by cells treated with cytotoxic

compounds unable to induce ICD [27].

ICD-inducing agents have been classified according to their mechanism of action ( Fig. 1.9).

Type 1 ICD inducers act on cancer cells by inducing danger signaling via ER stress while

triggering cell death through ER stress-unrelated pathways, for instance at the level of

mitochondria or nuclei (e.g., by impairing DNA replication and repair mechanisms).

Conversely, Type 2 ICD inducers selectively trigger both DAMP release and cell death via ER

stress targets (e.g., ROS production, and altered ribosomal biosynthesis).

The first drugs recognized for their immunogenic potential were evidenced in mice and consisted

of the anthracyclines DOX, daunorubicin, and idarubicin [27]. Another anthracycline, MTX

[136, 138], along with the platinum derivative OXA [116, 135, 138, 150], the alkylating agent

cyclophosphamide [30, 62, 150], the proteasome inhibitor bortezomib [28, 37, 41, 160], the RNA

polymerase II inhibitor lurbinectedin [192], the cyclin-dependent kinase inhibitor dinaciclib [76],

the topoisomerase inhibitor teniposide [188], the bromodomain inhibitor JQ1 [146], and the

antibiotics bleomycin [25] , wogonin [197], and septacidin [166] exhibit similar characteristics.

Additionally, some anticancer treatments involving physical signals such as radiotherapy [4, 116,

136], photodynamic therapy [59, 64, 94, 95, 93, 97], ultraviolet C (UVC) light [135, 138, 150, 195],

electrical pulses [133, 134], high hydrostatic pressure [54], microwave thermal ablation [200], and

photochemotherapy [175] have demonstrated immunogenic properties. Similarly, some targeted

therapies, such as the epidermal growth factor receptor (EGFR) antibody [144, 60], certain
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oncolytic peptides [203], oncolytic viruses [21, 91, 201], and specific bacterial toxins [167] also

exhibit these properties. (see Table 2.3.4).

Some chemotherapies like etoposide, mitomycin C, and cis-dichlorodiammineplatinum(II)

(cisplatin, CIS) fail to trigger ICD as they do not trigger CALR exposure [120, 136]. However,

these agents can gain immunogenic properties when combined with agents that target the

endoplasmic reticulum (ER) and activate CALR translocation, such as the ER stressor

thapsigargin or the eIF2α phosphatase inhibitor salubrinal [136]. Although crizotinib [108] and

cardiac glycosides [124] exhibit all the hallmarks of ICD in vitro, they only effectively induce

ICD when complemented with cytotoxic agents like CIS or mitomycin C.

Figure 1.9: Type I ICD inducers, such as mitoxantrone (MTX), doxorubicin (DOXO) or Oxaliplatin (OXP) act on cells
by inducing danger signaling via ER stress and induce cell death on targets non associate to ER stress acting for instance
on mitochondria and cells nuclei. Type II ICD inducers act exclusively on ER stress-associated targets. Adapted from
[58]
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List of ICD-inducers.

Drug peIF2α DAMPs Immune infiltrate Vax-

Mem

Ort.Valid. References

ICD inducers
Anthracyclines

(mitoxantrone,

doxorubicin,

epirubin,

iadarubin,

daunorubicin)

Yes CALR ATP

HMGB1 ANXA1

↑: DCs, CD8+, gd T

17, IL-1β, IFNγ IFN-I

↓: tregs, MDSCs

Yes Abolished (nu/nu

mice) depletions:

CD8+, IFNγ, IL-17,

IL-17R

[117, 127, 136,

138, 182]

Oxaliplatin Yes CALR ATP

HMGB1

↑: DCs, CD8+, γδ T

17, IL-1B, IFNγ

Yes Abolished (nu/nu

mice) depletions:

CD8+, IFNγ, IL-17,

IL-17R

[127, 138, 142,

177]

Bortezomib Yes CALR ↑: Dcs, CD8+ Yes Abolished (nu/nu,

Rag-/-, CD8+

depletion)

[37]

Cyclophosphamide nd. CALR HMGB1

ATP

↑: DCs, CD8+, IL-17,

IFNγ, NK, IFN-I

↓:

MDSCs,

Tregs

Yes

n.d. [30, 62, 63, 150,

184]

Bleomycin Yes CALR ATP

HMGB1

↑: CD8+, IFNγ, Tregs,

TGF-β

Yes Abolished (CD8, IFNγ

depletion)

[25]

Lurbinectedin Yes CALR ATP

HMGB1

↑: IFN-I Partial Abolished (CD4+ and

CD8+ depletion)

[192]

Septacidin nd. CALR ATP

HMGB1

n.d. Yes Abolished (nu/nu

mice)

[166]

Wogonin Yes CALR ATP

HMGB1 ANXA1

↑: DCs, lymphocytes Yes n.d. [197]

Teniposide nd. CALR HMGB1 ↑: DCs, CD8+, IL2,

IFNγ, IFN-I

Yes n.d. [186]

Bromodomain

inhibitor JQ1

Yes CALR ATP

HMGB1

↑: DCs, CD8+, ↓:

MDSCs

Yes Reduced (nu/nu mice) [13, 146]

Cetuximab (EGFR

antibody)

nd. CALR HMGB1 ↑: DCs, CD8+ Yes n.d. [144]

7A7 (EGFR

antibody)

Yes CALR ↑: DCs, CD8+, CD4+,

IFNγ

Yes Abolished (CD8+

depletion)

[60]

Dinaciclib (CDK

inhibitor)

nd. CALR ATP

HMGB1

↑: DCs, CD8+, CD4+,

IFNγ

Yes Abolished (Rag-/-

depletion)

[76]

Oncolytic peptides

DTT-205,DTT-304

nd. CALR HMGB1 ↑: IFN-I Yes Abolished (CD8+ and

CD4+ depletion)

[204]

Oncolytic peptide

LTX-315

No CALR ATP

HMGB1

↑: DCs, macrophages,

CD8+, Th1, CD4+,

IL-1β, IL-6, IFN-I, ↓:

MDSCs, Tregs

Yes n.d. [26, 46, 196,

203]

Oncolytic peptide

LTX-401

ROS CALR ATP

HMGB1

↑: CD3+, IFNγ, IFN-I Yes n.d. [45, 122, 193,

203]
Radiotherapy nd. CALR HMGB1 ↑: DCs, CD8+, γδ T

17, IFNγ

Yes Abolished (nu/nu

mice)

[4, 116, 136]

Photofrin-based

PDT

nd. CALR HMGB1 ↑: monocytes,

neutrophils, CD8+,

NK

Yes Abolished (CD8+

depletion)

[93, 94, 95, 97]

Continued on next page
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Continued from previous page

Drug peIF2α DAMPs Immune infiltrate Vax-

Mem

Ort.Valid. References

Hypericin-based

PDT

No

(PERK

and ROS)

CALR ATP ↑: DCs, IL-1β Yes n.d. [59]

Redaporfin-based

PDT

Yes CALR ATP

HMGB1

n.d. Partial n.d. [64]

Microwave thermal

ablation

nd. CALR ATP

HMGB1

↑: CD8+, TNFα, IFNγ Yes Abolished (CD8+) [200]

8-methoxypsolaren

photochemotherapy

nd. CALR ATP

HMGB1

↑: DCs, monocytes,

CD8+, NK, IFN-I

Yes Abolished (CD8+,

CD4+, spleen, NK

depletion)

[175]

Electrical

nanopulses

nd. CALR ATP

HMGB1

↑: CD8+ Partial n.d. [134, 133]

UVC light nd. CALR*,

HMGB1*

↑: DCs, CD8+, IFNγ Yes n.d. [136, 138, 150,

195]
Oncolytic virus T-

VEC

nd. CALR ATP

HMGB1

↑: CD8+, IL-1β,

TNFα, IFN-I

Yes n.d. [21]

Newcastle diseases

virus

nd. CALR HMGB1 ↑: DCs, CD8+, CD4+,

NK, NKT, IFNγ ↓:

MDSCs

Yes Abolished (Rag2-/-

mice, CD8+ depletion)

[91, 201]

Clostridium

difficile toxin

B

ROS CALR ATP

HMGB1

n.d. Yes n.d. [167]

Cardiac glycosides

(digoxin and

digitoxin)

nd. CALR ATP

HMGB1

↑: CD8+, CD4+, γδ T

17, IFNγ

Yes

(with

CDDP

or

mytomicin

C)

Abolished (nu/nu

mice)

[124]

Crizotinib Yes CALR ATP

HMGB1

↑: DCs, CD8+, NKT,

IL-17, IFN-I ↓: Tregs

Yes

(with

CDDP

or

mitomycin

C)

Abolished (nu/nu

mice)

[108]

Metformin n.d. CALR ATP

HMGB1

↑: DCs, CD8+, CD4+ n.d. n.d. [33]

ICD inducers are agents that can delay tumor growth and are recognized as such only if they prompt the release
of antigens along with damage-associated molecular patterns (DAMPs) during cell death. This dual action, which
also contributes to a partial vaccination effect, is necessary for an agent to be classified as an ICD inducer. *Not
activated in all the investigated cell lines. ANXA1, annexin A1; ATP, adenosine triphosphate; CALR, calreticulin;
CTLs, cytotoxic T lymphocytes; CY-1-4 NP, nano-encapsulated tryptanthrin derivative CY-1-4; DCs, dendritic cells;
IL-17, interleukin-17A–producing T cells; HMGB1, high mobility group box 1; ID, immunodeficient; IFN, interferon;
IFN1, type I interferon; KP1339/IT-13, ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)-ruthenate(III)];
MDSC, myeloid-derived suppressor cells; n.d., not determined; peIF2α eukaryotic initiation factor 2 phosphorylation;
PDT, photodynamic therapy; rCALR, recombinant calreticulin; SCID, severe combined immunodeficiency; Th, helper
T cells; Treg, regulatory T cells; T-VEC, talimogene laherparepvec; ROS, reactive oxygen species; n.d. not determined;
UVC, ultraviolet C. Adapted from Humeau J. [79]
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2.3.5 Platinum Salts and ICD

Platinum compounds are among the most clinically employed and investigated chemotherapy agents.

CIS represents the most emblematic among the first-generation platinum-based compounds. It is

used to treat various cancers, including advanced testicular, ovarian, bladder, cervix, head and neck,

esophageal, small cell lung cancers, and some pediatric cancers. The second-generation compound,

carboplatin, is used primarily for ovarian cancer. OXA, a third-generation compound, was FDA-

approved only in 2002, and its application in the care of colon cancer has become a standard therapy

line [145].

Side effects accompanying platinum salt treatments require careful follow-up and adjustments

based on the patient’s tolerance and response to therapy. CIS, carboplatin, and OXA commonly induce

myelosuppression, which is moderate with CIS and OXA but can be dose-limiting with carboplatin

(thrombocytopenia being more frequent than leukopenia and anemia). Hypersensitivity reactions can

be observed with prolonged administration of carboplatin, and less frequently with OXA. Neurotoxicity

is witnessed upon platinum salt treatments, with peripheral neuropathy being the most prominent side

effect with CIS and OXA, especially with cumulative doses. Nephro- and oto-toxicities are recurrently

reported upon carboplatin and CIS treatments. Gastrointestinal disturbances (diarrhea, nausea, and

vomiting) are also observed under platinum salt [198].

Platinum-based compounds diffuse passively into cells and form lethal adducts with both nuclear

and mitochondrial DNA, with a higher frequency in mitochondrial DNA. In comparison to CIS,

carboplatin forms adducts more slowly, while OXA induces more double-strandbreaks in DNA adducts

[84].

The efficacy of platinum agents is limited by intrinsic cellular resistance, involving multiple

resistance mechanisms at each step of their action. Intracellular platinum accumulation is modulated

by membrane transporters affecting influx and efflux, while platinum agents are deactivated in the

cytoplasm, and adducts are increasingly repaired. DNA synthesis continues in some cells despite CIS

treatment, suggesting a bypass mechanism known as translesion synthesis, which influences drug

sensitivity, resistance, and mutagenicity. Pol I transcribes more DNA than Pol II, and its inhibition

may cause ribosome biogenesis stress, contributing to OXA anticancer properties [23]. Classical

platinum agent cytotoxicity relies on inhibiting DNA and RNA synthesis and the inability of cells to

repair platinum lesions effectively.

Differences in the geometry of CIS- and OXA-induced DNA adducts affect translesion synthesis

efficiency, with polymerases (η and β) bypassing OXA lesions more readily than CIS lesions.

Structural characterization of OXA DNA adducts suggests hydrogen bond formation between the

platinum adduct and the DNA backbone, contributing to justify the different properties of the two
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drugs. CIS primary mechanism is thought to be transcription inhibition, arresting the cell cycle at

G2/M. Recent experimental evidence has identified key differences in how CIS and OXA induce cell

death. Unlike CIS, OXA does not trigger a DNA damage response but kills cells by causing

ribosomal biogenesis stress. CIS acts as a DNA cross-linker, while OXA has a mechanism similar to

transcription/translation inhibitors like rapamycin and DACT [81]. Further studies showed that

OXA causes fewer double-strand DNA breaks and is less sensitive to gene silencing involved in

homologous recombination and interstrand cross-link repair compared to CIS. Supporting the idea

that OXA induces cell death through ribosome biogenesis stress is the observation that pre-rRNA is

upregulated after treatment, while RNA Pol II transcripts remain stable [23]. Additionally, knocking

down Rpl11, essential for ribosome function, makes certain cancer cells resistant to OXA. Ribosome

biogenesis stress leads to the overexpression of Rpl11 subunits that bind to Mdm2, preventing its

interaction with TP53, thereby reducing TP53. Epidemiological studies show that cancer types with

a better response to OXA, such as colorectal cancer, have higher ribosomal gene expression than

cancer types with a better response to CIS [23]. This establishes the clinical relevance of the

different mechanisms by which CIS and OXA kill cancer cells.

Preclinical models showed that platinum salts harbor different immunogenic potential, that can

vary depending on the type of cancer and interactions with other drugs. In the study by Martins et al.,

[120], both CIS and OXA induced similar mitochondrial perturbations in sarcoma and colorectal cancer

cells (U2OS, MCA205, CT26). However, their ability to induce ER stress and thus to promote surface

exposure of the eat-me signal CALR differed. Cancer cell immunogenicity was experienced upon

CIS treatment only when co-administered with thapsigargin, an inhibitor of the Sarco/ER Ca(2+)-

ATPase. This ER stressor restored exposure of CALR at the surface of CIS-treated cells; a property

observed upon standalone OXA treatment. In another work by Parks et al. [139], a comparison of CIS

and OXA was conducted in models of head and neck and oral cancers and found that OXA and CIS

induced similar weak immunogenicity, with both failing to trigger robust release of HMGB1 and ATP.

In vivo, prophylactic experiments supported the dampened potential of both platinum salts to induce

antitumor immunity as a consequence of their lack of ICD promotion. Interestingly, ICD inducers can

sensitize cells to immune checkpoint inhibitors [90]. Along this line, in the clinical management of

gastric cancers, chemotherapy based on OXA but not CIS showed synergistic interaction with PD-1

blockade (especially in combination with 5-fluorouracil) [109].
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3 System Biology in oncoimmunology

In biomedical research, Systems Biology emerges as a holistic approach that offers a broader

perspective on biological phenomena, striving to comprehend the intricate interplays between

organisms, tissues, and cells by scrutinizing their interconnectedness. This approach diverges from

traditional reductionist biology, which dissects systems into smaller, isolated components for

analysis. Thus, systems biologists employ a multifaceted workflow, harnessing theoretical knowledge,

data analysis techniques, and computational modeling to formulate and test hypotheses.

Systems Biology makes extensive use of various omics datasets (such as genomics, transcriptomics,

or proteomics) to elucidate the intricate molecular interactions driving tumorigenesis and metastasis.

By dissecting the signaling networks and regulatory pathways underlying cancer progression,

potential therapeutic targets can be identified, unveiling mechanisms of drug resistance.

Similarly, in immunology, Systems Biology approaches aim at understanding the dynamic

interplay between immune cells and pathogens, facilitating the development of novel

immunotherapeutic strategies against infectious diseases and autoimmune disorders.

Systems Biology modestly contributes to advancing our understanding of complex biological

processes, offering promising avenues for personalized medicine and targeted interventions in the

fight against disease.

3.1 Modeling Approaches to Biology

Despite the apparent unambiguity of the word ’model,’ in Biology —especially in Systems Biology—

this word takes on extremely different meanings depending on the context.

To an experimental biologist, the term encompasses biological experimental settings and specific

biological entities used to ’model’ a certain phenomenon. This means that when an experimental

biologist studies a ’model,’ he/she typically refers to living organisms or biological systems that serve

as representatives for studying particular biological processes. Features such as genetic simplicity,

short generation times, or physiological similarities to humans make these organisms reliable tools for

studying genetic, developmental, or disease-related questions.

In contrast, within the field of Systems Biology, the term ’model’ often refers to a computational

or mathematical representation of biological systems. Here, a ’model’ is not a physical entity but

rather a set of equations, algorithms, or simulations that aim to describe and predict the behavior

of biological processes. These models can range from simple representations of a single biochemical

pathway to highly complex simulations of entire cells or tissues. They are used to integrate vast

amounts of biological data, generate hypotheses, and test the effects of different variables in silico

before proceeding to experimental validation.
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Thus, the word ’model’ in Biology spans a spectrum from tangible organisms used in the lab

to abstract mathematical constructs used to understand and predict biological behavior. This term

duplicity highlights the intrinsic interdisciplinary nature of biological research, where more and more

empirical data and theoretical frameworks contribute one to each other to provide deeper insights into

the complexities of life.

3.1.1 Biological models

In vitro. In vitro models are a class of experimental systems that use cell cultures or tissues in

a decontextualized biological setting (e.g., primary cancer cells cultivated in incubators and treated

under sterile conditions). This setting excludes systemic conditioning and enhances the controllability

of the process under investigation with a specific and predefined environment.

Motivated by the technical limitations of assessing a phenomenon within a living organism, in vitro

models provide a viable surrogate alternative to investigate processes in fields such as cell biology,

pathogenesis, disease mechanisms, and drug responses. Due to the intrinsic lack of interaction with

other components of biological systems (as found in a living organism), claims based on in vitro

findings still need subsequent validation steps, i.e., their application to an in vivo context. Traditional

in vitro models include 2-D cell culture experiments in which the biological complexity is simplified by

reducing possible cellular interactions and extracellular matrix interfaces. These beneficial properties

of such a modeling approach come with a price: as anticipated above, experimental results are often

difficult to translate into in vivo systems, due to substantial differences within the microenvironment

and to the physical features of the artificial culture environment.

To compensate for such differences, technological advancements have been made in the field of in

vitro models. 3-D models allow a more pertinent representation of tissue compared to 2-D monolayer

cultures aiming to replicate the biological complexity of organized tissues. For instance, 3-D models

can be used to mimic the architecture or the functioning of organs like in the case of stem cell-derived

organs (organoid models). In tumor biology, 3-D models are used to better understand how tumors

respond to drugs in a context that more closely resembles their natural environment.

In vivo. To gain insights into systemic responses within biological systems, in vivo models still stand

as paramount tools for researchers. These models have served as indispensable means to observe and

comprehend physiological as well as pathophysiological processes. Animals have served as fundamental

components in modeling and studying various diseases and biological phenomena. Invertebrate models,

such as zebrafish, Caenorhabditis elegans, or Drosophila melanogaster, have significantly contributed

to fields like neuroscience, genetics, and cancer research. Similarly, vertebrate models encompassing

species like rats, mice, or rabbits, are pivotal for translational studies in biomedical sciences.
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Advancements in genetic engineering have further bridged the gap between biological reality and

experimental models, facilitating the creation of animals with targeted genetic mutations that mirror

human conditions. Thus, the typical trajectory of biomedical research involves initial in vitro

experiments, followed by preclinical in vivo studies utilizing animal models, and ultimately, clinical

validation on human subjects. Human in vivo experiments are predominantly restricted to clinical

trials, representing the definitive validation phase for novel therapeutic approaches and the

evaluation of new compounds’ safety profiles.

Ethical considerations have shaped regulatory frameworks over time, leading to stringent

guidelines — such as those enforced by the European Union (Directive 2010/63/EU) — that

advocate for minimizing animal use in research and promoting the development of alternative,

non-animal-based methodologies in biological studies.

3.1.2 In silico models

The objective of Systems Biology as a discipline has always been to bridge abstraction with biological

context, integrating experimental data with computational simulations to comprehensively explore

biological systems from molecules to organisms. This approach advances research in biomedicine and

ecological sciences by providing a holistic understanding of biological processes.

In silico models encompass a diverse range of computational and mathematical approaches used

to extract knowledge from abstract representations of biological processes and comprehensively

simulate biological phenomena. For instance, purely data-based in silico approaches leverage large

datasets to develop predictive models, such as statistical models or machine learning algorithms,

that analyze biological data to uncover patterns and predict outcomes. On the other hand,

mechanistic representations of biological systems allow researchers to simulate and predict outcomes

based on underlying biochemical or physiological mechanisms. These models enable researchers to

simulate and explore complex biological processes in a virtual environment, providing insights that

inform experimental design and deepen biological understanding.

Data-based modeling. Statistical models encompass a wide range of methodologies, including

linear models for assessing linear relationships, analysis of variance (ANOVA) for comparing group

means, linear mixed-effects models to handle hierarchical data structures, and survival analysis for

studying time-to-event outcomes. The intrinsic interpretability of the results and the possibility to

integrate prior biological knowledge within the analytical workflows enable these models to be a reliable

choice for researchers to extract meaningful insights, identify significant factors influencing biological

processes, and make informed decisions in clinical and research settings.
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Machine learning models utilize sophisticated algorithms to analyze extensive datasets, enabling

tasks such as predicting protein structures and identifying potential drug candidates. The emergence of

omics technologies, propelled by advancements in molecular biology, has facilitated the application of

these models to process vast data from high-throughput technologies like single-cell analysis, thereby

enhancing model performance and refinement. State-of-the-art applications span various biological

research fields, with significant emphasis on predicting protein features such as structure, folding, and

interactions (e.g., AlphaFold). Moreover, machine learning models are accelerating advancements in

emerging technologies such as multiplexed immunohistological imaging, providing essential support

for researchers in these fields.

Network models are another class of in silico data-based models used to formalize relationships

within biological systems. Examples of this class include protein-protein interaction networks, gene

regulatory networks, and metabolic and signaling networks. These models aim to uncover system

properties by representing biological entities as nodes and their interactions as edges. Nodes and edges

can get different meanings according to the biological context. For instance, protein-protein interaction

networks (PPINs) are graphs used to map physical interactions, revealing protein complexes and

cellular pathways. An example of such representations is available in fig. 1.10, where we present the

PPI network obtained for the tumor protein 53 (TP53) using the STRING database. Gene regulatory

networks (GRNs) describe gene transcription dynamics under specific conditions. Topological studies

on network composition and features allow discriminating between biological elements contributing

the most to a biological process and those that are marginal to the realization of a biological process.
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Figure 1.10: Protein-protein interactions network of tumor protein 53 (TP53). Data retrieved from STRING-db.org

Networks can be undirected, as in the case of PPINs, or directed like in the case of GRNs, where

directionality is needed to establish relations of causality between the model’s components. Given its

relatively easy and understandable representation of biological systems, the network approach is

particularly convenient in Systems Biology, and in addition to that it can also be easily translated to

a mathematical model on top of which simulations can be made.

3.1.3 Network Inference

Recent reviews have explored methods to infer GRNs directly from bulk or single-cell RNAseq data

[131] or from time series [119].

Networks can also be inferred from prior knowledge and a tool facilitating the construction of these
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networks from a predefined list of genes will be presented in chapter 3.

3.2 Towards simulating biological systems: mathematical models for biology

These networks can be interpreted dynamically and translated into mathematical models. These

mechanistic models primarily exist in two flavors: quantitative and qualitative.

Mechanistic quantitative models employ mathematical equations grounded in physical and

chemical principles to describe specific biological mechanisms. These models embed biological

features in mathematical representations, often utilizing ordinary or partial differential equations

(ODE or PDE) to capture the system’s variations through its components. That way, the

concentration or activity of a protein, interacting with other proteins, can be followed over time.

To illustrate this approach, we can consider a small example of a motif widely observed in biology,

a negative feedback regulation: the system is composed of a protein that inhibits its corresponding

protein-coding gene by interfering with its transcription.

Let x1 be the mRNA of a gene and x2 the corresponding encoded protein. Let k1 be the

transcription rate of that gene into an mRNA molecule, and k2 the translation rate of the mRNA

into a protein, with γ1 and γ2 the corresponding degradation rates. If we indicate the negative

feedback inhibition with a function h(x2, θ, n), with θ and n as parameters of that function, the set

of equations representing the feedback mechanism is given by:

dx1
dt

= k1h−(x2, θ, n)− γ1x1 (1.1)

dx2
dt

= k2x1 − γ2x2 (1.2)
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A. Graphical representation of a protein inhibiting the transcription of its corresponding protein-coding gene (negative
Feedback loop). B. Mathematical representation of the system using 1.1 and 1.2 following the expression of each entity
over time

Such a simplistic representation already holds a powerful predictive capability once the parameters

characterizing the equations are well identified and assessed. Difficulties arise when trying to infer such

parameters on bigger networks and more complex processes as the data for synthesis or degradation

rates, or binding affinities are not easy to find and very often context-specific. Accurate parameter

estimation is crucial for the model to reliably predict biological behavior. This frequently necessitates

new experiments to determine the specific parameters required for precise predictions. However, in

some cases, conducting these experiments to quantify certain system parameters may prove to be

unfeasible.

3.3 Boolean Modeling

3.3.1 Boolean networks

Boolean models are built on networks designed to qualitatively capture the interactions among

various components of the biological system being represented. These networks, grounded in

biological phenomenology, can be adapted to reflect different aspects of cellular processes occurring

at various scales, such as post-translational modifications or gene regulatory mechanisms, by

appropriately structuring the model’s components and rules.

While this framework serves as a rough approximation of biological evidence, it offers an effective

representation of the qualitative dynamic behavior of biological processes. For instance,

post-translational modifications can be incorporated by adding components to represent different

states of a molecule, such as phosphorylated or unphosphorylated forms. Transition rules governing
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these components can then capture the effects of such modifications on the molecule’s activity or

interactions with other components.

Similarly, gene regulatory mechanisms can be modeled by including components that represent

transcription factors, promoters, and regulatory elements. Rules can then dictate how these

components interact to influence gene expression levels. Biologists often adopt a binary perspective

when analyzing specific system features—for example, viewing gene expression as a Boolean state

representing whether a gene is "on" or "off."

The practicality of Boolean modeling is further demonstrated by its ability to approximate

regulatory processes. Many of these processes involve concentration levels that can be modeled as

Hill functions, which are effectively represented using step functions. This simplifies the system by

restricting the set of possible values to [0,1], capturing essential dynamics without unnecessary

complexity.

In this framework, the elements composing the biological system (e.g., genes, proteins, complexes)

can be represented as nodes in a network. Their activity is positively or negatively influenced by

other entities, simplifying the modeling of systems where molecular interaction details are not always

known. This method is particularly useful for representing complex processes and signaling pathways.

Boolean networks consist of interacting nodes, where the edges represent the interactions between

nodes. These edges define the logical equations governing the behavior of each node.

(a) (b)

Figure 1.11: An example of a network representation of a biological system. (a) A ligand C binds to a receptor A,
which is attached to a mobile subunit D. Upon binding with C, A releases D, enabling it to form a complex with protein
E. The complex formed by E and D can block the transcription of gene B. (b) The biological system in (a) is adapted to
a directed network of influence, where red edges and green edges indicate inhibitory and stimulatory effects, respectively.

Let N be a network containing n nodes. The state of the network, i.e., the collection of the states

of each node, can be represented using a vector of Boolean states:
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S = {Si}, Si ∈ {0, 1}, i = 1, . . . , n (1.3)

Here, Si represents the state of the i-th node in the network, and the entire set of S values defines

the network state S. For a given node i, consider the subset of nodes in the network that interact with

i (its neighbors), denoted as Ni. Since the logical state of i depends on the states of its neighbors, we

can express the state of node i using a Boolean function fi, which represents its incoming edges:

Si(t) = fi(SNi(t)) (1.4)

This function is formulated using logical operators such as & (AND), | (OR), and ! (NOT).

Depending on the type of updating scheme used in Boolean network simulations, the state of a node

i at the time t + 1 can be expressed as:

Si(t + 1) = fi(SNi(t)), (1.5)

where SNi(t) represents the states of the neighbors of i at time t.

In Boolean modeling, the system’s components are discretized into binary states, typically

representing "on" (1) or "off" (0), eliminating the need for precise parameter fitting. Each node (or

component of the system) has a logical equation determining its activity status: the component is

active when its logical equation is satisfied (true) and inactive when not (false).

The model state is represented as a vector of Boolean variables that defines the status of all

components (nodes) under specific conditions.

All possible transitions between network states form a structure known as the transition graph (or

state transition graph). These transitions can be conceptualized as time steps. While they do not

represent the actual timing of biological processes, they correspond to the time required to observe an

event in the network, such as a change in its state.

For a Boolean network with n interacting nodes, the total number of possible network states is 2n.

Within the framework of Boolean modeling, transition graphs can be classified into two types based

on the strategy used to update the network state: synchronous and asynchronous Fig. 1.12.

The synchronous transition graph arises when all nodes in the network are updated simultaneously

in a single transition. In contrast, the asynchronous transition graph is generated when only one node,

randomly selected from the set of all nodes, is updated during each transition.
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Mathematically, the asynchronous transition between a generic pair of network states, (S, S‘), is

defined as follows:

Sj′ = Bj(S) for a given j, (1.6)

Si′ = Si for i ̸= j, (1.7)

where Bj(S) represents the Boolean function associated with the j-th node, evaluated based on the

entire network state S at the given time.

(a)

(b)

Figure 1.12: Examples of STGs realized using different updating strategies. In (a) an STG built using a synchronous,
where plain arrows show one change of value in the vector of variables, and dashed arrows show more than one change,
and in (b) asynchronous updating. The network used for the simulations is the same as presented in Fig. 1.11.

To complement the nomenclature of Boolean modeling, we can introduce a possible outcome of

the dynamical processes occurring on the network such as the reach of stable states, also known as

fixed points or attractors. These are model states that, once reached, do not transition to any other

state. In other words, when the system reaches a stable state, no further changes occur, indicating

that the model has reached equilibrium. These stable states are significant because they often

represent steady conditions in biological systems, such as the sustained activation of a gene

regulatory network responsible for a specific cellular function. In contrast, limit cycles represent a

sequence of model states through which the system cycles indefinitely. Limit cycles are characterized
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by a repetitive pattern of states that the model revisits in a fixed order. These cycles can represent

periodic behaviors in biological systems, such as oscillations in the concentration of certain proteins

or other molecular entities. The system moves through a predetermined sequence of states, returning

to the starting point after completing the cycle, and then repeats this sequence continuously.

Therefore, the solutions of a Boolean model are either stable states, where the system settles into a

single, unchanging configuration, or limit cycles, where the system exhibits a repeating pattern of

states. Both types of solutions are crucial for understanding the long-term behavior of the modeled

system, with stable states representing persistent outcomes and limit cycles representing periodic

dynamics. Whenever possible, these solutions are correlated with phenotypic observations, such as

apoptosis, cell division, or cell cycle arrest.

This formalism is coarse-grained and provides limited predictive potential. Moreover, as stated

above the number of nodes that can be handled is restricted because the size of the STG is 2n. To

address this issue, the solution of simulations of the model can be provided through a probabilistic

sampling of the STG, using a stochastic approach. In the following section after having introduced the

baseline concept of stochastic processes and Markov chains, I will introduce MaBoSS [163]. MaBoSS

is a tool developed to simulate dynamical processes on Boolean networks using Markov processes on

the STG. This feature allows the estimation of the solutions in a probabilistic manner rather than

computing them in a deterministic fashion.

3.3.2 Stochastic processes on Boolean networks

This paragraph provides the essential knowledge to understand the mathematical key concepts that

constitute the baseline for the approach that can be used to simulate dynamical processes on Boolean

networks. I will first introduce generalities on stochastic processes and how to use this formalism to

simulate a dynamic on the Boolean network.

A broad definition of the stochastic process indicates that it is essentially a collection of random

variables indexed with a parameter, usually time. Alternatively, a stochastic process can be seen as a

rule established to assign a value to a function of random variables [87].

s: t→ s(t),t ∈ I ⊂ R (1.8)

With I as an interval of real values and S(t) represents a random variable assigned to each element

t in I. Now, let consider that s(t) can take values from possible configurations of the network and let

us call this space Σ. For each of the random variables, we can define their probability to assume a
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specific value as:

P[s(t) = S] ∈ [0, 1] ∀S ∈ Σ and
∑
S∈Σ

P[s(t) = S] = 1 (1.9)

A Markov process is a mathematical object that describes a stochastic process for which the

probability of each event depends exclusively on the event that occurred right before it: this feature

is indicated as the Markov property [88].

Markov processes are characterized by an initial condition:

P[s(0) = S] ∀S ∈ Σ (1.10)

It is worth noting that s(t) is not independent for all t, therefore:

P[s(t) = S, s(t′) = S′] ̸= P[s(t) = S] ·P[s(t′) = S′]

and to fully describe a Markov process we also need to define the conditional probabilities:

P[s(t) = S|s(t′) = S′] ∀S, S′ ∈ Σ; ∀t,t′ ∈ I; t < t′ (1.11)

The need for the definition of conditional probabilities derives from the fact that Markov processes

are featured by the Markov property:

P[s(ti) = S(i) | s(t1) = S(1), s(t2) = S(2), . . . , s(ti−1) = S(i−1)] = P[s(ti) = S(i) | s(ti−1) = S(i−1)]

(1.12)

which in other terms indicates that present events are not conditioned by either the past nor the

future.

Markov processes are divided into two main categories, contextually with the definition of time

used. In the case of a stochastic process for which the Markovian property holds, in which time is

considered as a discrete variable (t ∈ {t0, t1, ..., tn}), this object takes the name of Markov chain. In

this case, the conditional probabilities are function of transition probabilities: P[s(ti) = S(i)|s(ti−1) =

S(i−1)].

If time is considered as a continuous variable (t ∈ I = [t0, tf ]), conditional probabilities are function of

transition rates: ρS→S′ . We can also describe discrete transitions between states of a continuous-time

Markov process (jump process): in this case, the transition probability is given by:

PS→S′ = ρS→S′∑
S′′∈Σ ρS→S′′
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In the following section, only jump processes will be considered. This kind of stochastic process and

the relative formulation of the probability of transition are time-independent. In order to characterize

a jump process on a Boolean Network, a deeper description of the state transition graph is needed.

Let S a state transition graph for which all possible network states S form the network space Σ. If

we assume a continuous-time Markov process, we need to take into consideration transition rates and

if ρS→S′ > 0 it means there is an edge of the network S to S′. In the case of a discrete-time Markov

process, we can use transition probabilities as in 1.12. If we consider an asynchronous updating

strategy on the network, we can see that this can be alternatively seen as a discrete-time Markov

process. Using the formalism of the previous section, N is a directed network of n nodes. For the

i-th node we can specify its behavior using a Boolean function as in 3.3.1. This function depends on

the state of the j-th node directed to i. For a generic pair of states (S, S′) ∈ Σ, the asynchronous

transitions are implemented as for 3.3.1.

where Bj(S) represents the Boolean function associated with the j-th node, evaluated based on

the entire network state S at the given time. If we want to describe the transition from a state S to

a state S′ we can take the definition of conditional probability for a Markovian process: P[s(ti) =

S(i) | s(ti−1) = S(i−1)]. Let us consider γ(S) as the number of possible transitions from one network

state S to another state S′. Furthermore, we can state that:

P[s(ti) = S′ | s(ti−1) = S] = 1
γ(S) if S→ S′ is an asynchronous transition,

P[s(ti) = S′ | s(ti−1) = S] = 0 if S→ S′ is NOT an asynchronous transition.

(1.13)

If an initial condition is specified, the two conditions illustrated above allow us to describe the

asynchronous updating of a dynamical process on a Boolean network as a discrete-time Markov

process [165] (proofs available in the Appendix).

In order to deal with continuous time, we can derive the continuous-time Markov process from the

discrete-time one. First, we need to consider transition rates instead of probabilities, and next in

order to define a continuous-time Markov process, we need to provide an initial condition and a set

of transition rates. Instant probability P[s(t) = S] and joint probabilities are solutions of the

following master equation.

d

dt
P[s(t) = S] =

∑
S′

ρ(S′→S)P[s(t) = S′]−
∑
S′

ρ(S→S′)P[s(t) = S] (1.14)

The generalization of asynchronous Boolean dynamics is specified by defining transition rates ρS→S′

that are non-zero values only if the two network states S and S′ differ by one node. Each Boolean

function is replaced by two functions R
up/down
i (S) ∈ [0,∞[. Let be i a node in a network of n nodes
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and S, S′ two different network states; if i is the node that differs from S to S′, we can define transition

rates ρS→S′ as:

ρS→S′ = Rup
i (S) if Si = 0ρS→S′ = Rdown

i (S) if Si = 1 (1.15)

where Rup
i and Rdown

i are the activation and inactivation rates of the node i. For continuous-time

Markov processes, it can be proved that instantaneous probabilities always converge to a stationary

distribution. In the Markovian case, the term stationary distribution refers to a set of instantaneous

probabilities of a stationary Markov process that have the same transition probabilities of the given

Markov process, whether its time dynamics is discrete or continuous. This means that given a

stationary Markov process, for every joint probability P[s(t1) = S(1), s(t2) = S(2), ...] and ∀τ it

holds that:

P[s(t1) = S(1), s(t2) = S(1), ...] = P[s(t1 + τ) = S(1), s(t2 + τ) = S(1), ...] (1.16)

where P[s(t) = S], the instantaneous probability of a stochastic process, is time-independent. To

describe continuous-time Markov process asymptotic behavior, we use indecomposable stationary

distributions, i.e. stationary distributions that can not be expressed as linear combinations of other

stationary distributions. A complete characterization of the asymptotic behaviors then can be given

with a linear combination of indecomposable stationary distributions to which the process converges.

Periodic behavior is also possible, according to the definition of cycle and oscillation. A cycle,

essentially a loop in the transition graph, does not depend on the particular value of a transition rate

instead, it reflects the topology of the model. A cycle with no outgoing edges represents to all effects

an indecomposable stationary distribution. In order to associate periodic behavior with instantaneous

probabilities, we can only assume that such probabilities cannot be perfectly periodic. Nevertheless,

they can exhibit a damped oscillatory behavior, defined as a continuous time Markov process with at

least one instantaneous probability with an infinite number of possible extrema. Details are available

in the Appendix. To conclude this section, we recall the necessity to compute conditional probabilities

in order to solve the master equation coupled with our problem [89]. This calculation can be carried

out by computing the exponential of a transition matrix :

d

dt
P̃ (t) = M P̃ (t) (1.17)

Because of the large size of the transition matrix (2n×2n), this calculation soon becomes unfeasible.

For the purposes of modeling a biological process, interpreted as a continuous-time Markov process

on a Boolean network, we will proceed by using the numerical algorithm implemented by Stoll et al.

in 2012 [165], whose characterization will be illustrated in the following section.
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3.3.3 Boolean Kinetic Monte Carlo algorithm

The Boolean Kinetic Monte Carlo (BKMC) algorithm is a refined version of the Kinetic Monte Carlo

algorithm, commonly known as the Gillespie algorithm, first introduced in the 1940s. It was developed

to model natural processes, with particular emphasis on chemical reactions. This class of algorithms

is a powerful tool for exploring the probability space of a Markov process.

Specifically, the BKMC algorithm was designed to address the lack of modeling tools for

phenomena represented as Boolean networks. By computing the statistically possible outcomes of a

stochastic process—where activation and inactivation rates are known—the algorithm determines

the time evolution of the system being investigated.

The BKMC algorithm is particularly suitable for networks fully described in terms of logical rules

assigned to their nodes and transition rates that govern the activation and inactivation of these nodes.

During model development, these transition rates can be assigned to align with the biological process’s

time evolution. Exact values are not necessary, as BKMC interprets transition rates as relative speeds

of reactions within its computations.

The algorithm relies on multiple simulations, followed by a sampling of the probability space by

evaluating time trajectories (or realizations) generated during these simulations. A trajectory Ŝ(t) is

formally defined as:

Ŝ(t) : t ∈ [0, tmax] 7−→ Σ (1.18)

where Σ represents the set of all possible states of the system.

By using a complete set of time trajectories, the Markov process can be fully characterized, as

probability computations are based on these trajectories. The algorithm generates this finite set of

trajectories and calculates the associated transition probabilities. The process is iterative, beginning

from an initial state S(t = t0), and computes a time interval δt during which a transition to a new

state S′ occurs. This state is determined by the algorithm. The time trajectory Ŝ(t) is described by:

S(t) = Ŝ for t ∈ [t0, t0 + δt] and Ŝ(t0 + δt) = S′ (1.19)

This process repeats until a predefined maximum simulation time is reached. At each step, given

the current state S, two random numbers u and u′ are drawn from a uniform distribution in [0,1].

The following steps are then performed:

•1. Compute Total Transition Rate: All possible transitions from S are evaluated to calculate the

total rate.

ρtot ≡
∑
S′

ρ(S→ S′)
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2. Calculate Transition Time: The time until the next transition is computed as:

δt ≡ − log(u)/ρtot

3. Reorder States: Possible states S′(j), j = 1, ... are reordered, along with their corresponding

transition rates: ρj = ρ(S → S′(j)

4. Determine New State: The algorithm identifies the new state S′(k) such that:

k−1∑
j=0

ρj < (u′ρtot) <
k∑

j=0
ρj

The stochastic trajectories produced by the BKMC algorithm are crucial for relating continuous-

time probabilities to the real-world process being modeled. To achieve this, a time window ∆t is

defined, allowing the derivation of a discrete stochastic process s(τ) (with τ ∈ N from the continuous-

time Markov process:

P[s(τ) = S] ≡ 1
∆t

∫ (τ+1)∆t

τ∆t
dt P[s(τ) = S]

The BKMC algorithm provides estimates of P[s(τ) = S] through two primary steps:

1. For each trajectory j, the algorithm computes the time for which the system is in the state S,

in the time window [τ∆t, (τ + 1)∆t].

2. This duration is divided by ∆t, yielding the estimated probability for the trajectory j:

P̂j [s(τ) = S]

By averaging over all trajectories j, the algorithm calculates the overall estimate P̂[s(τ) = S] with

its error: √
var(P̂[s(τ) = S])/Nr. of trajectories

In this study, we utilized MaBoSS (Markovian Boolean Stochastic Simulator), a tool based on the

BKMC algorithm. Developed by the group of Stoll et al., MaBoSS is part of a suite for constructing

models, running simulations, and analyzing results. Detailed information on this software is provided

in the following sections.
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3.3.4 The MaBoSS environment

MaBoSS (Markovian Boolean Stochastic Simulator) is a tool developed by Institut Curie that utilizes

continuous-time Markov processes and implements the BKMC algorithm to estimate the activity of

nodes in a Boolean network, simulating its dynamics. The tool provides a robust platform to study

individual cellular dynamics [165].

MaBoSS, whose libraries are implemented in C++, operates using two essential input files: a

Boolean network description file (.bnd) and a configuration file (.cfg). Every simulation based on an

influence network requires these two files to proceed.

The .bnd defines the logical rules and transition rates for each node in the network. Nodes are

represented with their logical functions and associated transition rates, as illustrated below:

Node A {

logic = ( B & !C ) | D;

rate_up = ($logic? $rate_uA : 0.0);

rate_down = ($logic? 0.0 : $rate_dA);

}

In this example, the node A is governed by a logical rule based on the states of nodes B, C and D. If

B is active and C is not active, or if D is active A is activated with an "up" transition rate of rateuA;

otherwise, it is deactivated with a "down" transition rate of ratedA. Transition rates can be explicitly

defined in the .bnd file or implicitly specified in the .cfg file.

This latter is a file needed to specify the initial conditions and other parameters for the simulation.

Initial conditions include setting the values of certain nodes and defining which nodes are considered

inputs. For input nodes, their values are fixed at the start of the simulation, while other nodes

are assigned random initial values. The .cfg file also allows for defining global variables used to

parameterize the transition rates defined in the .bnd file.

At the end of the simulation MaBoSS generates several types of outputs, including the stationary

distribution of the network, the time-dependent probabilities of network states over a specified time

window.

UPMaBoSS Conversely, for studies concerning the interactions among different cell types within

multicellular systems, UPMaBoSS emerges as a valuable tool, facilitating the exploration of complex

multicellular behaviors [164, 29]. UpMaBoSS, can be considered as an extension of the preexisting

MaBoSS framework. The tool explicitly manages the processes of cell division (reproduction) and

cell death within a population, whether the population is homogeneous or heterogeneous.
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Parameter Description

timetick This parameter is used to evaluate estimates of the
probabilities of network states. It sets the minimum time
interval for nodes to change their state. Additionally, it
regulates the convergence of probability estimates: a larger
value for the time tick improves convergence.

max_time The simulation generates trajectories over a specific duration
determined by the value of max_time. If the biological
timing of the process is known, this value can be explicitly
defined. However, if this information is unavailable,
max_time should be set to a value greater than the inverse
of the smallest transition rate.

sample_count This parameter specifies the number of simulations that
MaBoSS executes concurrently to further evaluate the
probabilities of network states.

Description of key MaBoSS parameters.

Furthermore, this framework enables the representation of the microenvironment influencing all cells

in the model, as well as the activation of signaling pathways, whether direct or mediated. This

approach is formalized through the concept of the MetaCell. The model focuses on capturing all

relevant signaling pathways within a single framework. It allows us to model a mixed population of

different cell types by assuming that many signaling pathways are shared across various cell types.

The portion of the network corresponding to these shared pathways can be reused among the

different cell types. Using this paradigm, different cell states within various populations can be

represented as configurations of specific sets of nodes.

PhysiBoSS Additionally, to enhance the physical characterization of cellular environments,

MaBoSS has been combined with an agent-based modeling tool, PhysiCell [61], focused on spatial

cellular organization [102]. Physicell provides a modeling framework aimed to introduce a pertinent

characterization of the simulation space at the physical level: this includes the introduction of

chemical substrates that impact cellular behaviors and also the tuning of the physics of cells.

Properties such as

Together, these tools offer a comprehensive suite for modeling and simulating biological systems,

empowering researchers to unravel the complexities of cellular dynamics and multicellular interactions.

Motivation for using Boolean models Despite its simplicity, Boolean modeling can provide

insights into the qualitative behavior of biological systems, detect emergent properties, and identify

key regulatory mechanisms. Its intuitive nature and computational efficiency make it a powerful tool

for hypothesis generation and validation in various biological contexts.
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Boolean modeling has been applied for many years to study diseases and how dysregulations in

signaling pathways can lead to unexpected phenotypes and undesired cellular responses [65, 129, 73].

There exist many tools that can simulate Boolean dynamics. A logical-modeling-community-based

initiative, CoLoMoTo, has listed them highlighting the interoperability of the tools developed by the

community. For this thesis, we will focus on two of them, MaBoSS, and its cell population version,

UPMaBoSS, both based on a stochastic simulation of the Boolean network.

In this thesis, we used both approaches. MaBoSS was used to simulate what we refer to as the core

model (chapter 4, section 3.3), and UPMaBoSS was applied to the ICD cycle including the interactions

between cell types (chapter 4 section 3.2, [29]).

Data integration into Boolean models Models are constructed using generic biological

knowledge, but to accurately predict differences between conditions—such as the downstream effects

of two chemotherapeutic agents—it is crucial to integrate specific data into the Boolean model.

Experimental data can be employed to manually set the initial conditions for model simulations or

to use automated tools designed to configure either the initial conditions, model parameters (such as

transition rates), or both.

The relevance of the type of data used depends on the biological layer being modeled. Ideally, if the

model aims to represent post-translational interactions, proteomics data is the most suitable option for

configuring simulations. Conversely, if the goal is to model a gene regulatory network, gene expression,

and epigenetic data provide a better fit. Due to the widespread availability of transcriptomics data,

gene expression profiles are frequently used as proxies to configure both the initial conditions and

transition rates in simulations. Technical details regarding automatic model personalization will be

provided in Chapter 3, section 3.4.
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Chapter 2
Ph.D. research aims

The primary objective of this thesis was to enhance our understanding of Immunogenic Cell Death

(ICD) and its potential to improve the effectiveness of chemotherapeutic treatments. By employing

an interdisciplinary approach that spans experimental and computational biology, this research aims

to address some key questions that represent the next steps in advancing ICD research.

Although some molecular mechanisms underlying ICD have been explored, there remain significant

gaps in our knowledge that require focused investigation. This thesis endeavors to fill some gaps by

identifying crucial factors and pathways involved in ICD and by developing computational models to

predict and enhance the immunogenicity of chemotherapeutic drugs.

Beyond the well-established hallmarks of ICD consisting of released/surface exposed DAMPs, a

major focus of this work was to determine whether a distinct molecular signature of ICD can be

identified. The latter could serve as a convenient biomarker to predict the immunogenic potential of

chemotherapeutic agents.

Understanding the secreted factors that contribute to the immunogenicity of chemotherapies is

another key aspect of this research. The initiation of the cancer immunity cycle by ICD-inducing

treatments is complex, involving the release of DAMPS, including the secretion of cytokines, that

play crucial roles in recruiting and activating immune cells. By characterizing these secreted factors,

my PhD work further aimed to provide insights into optimizing the immunogenic potential of

chemotherapies through manipulation of the related secretome.

Additionally, this research explored the key cellular pathways that regulate the secretion and release

of ICD-related DAMPs. By investigating the signaling networks and molecular mechanisms governing

these processes, this study aimed to identify the pathways that influence the immunogenic potential

of dying cells. This understanding could reveal new targets for boosting the immune response through

ICD induction.

Building on the identification of molecular signatures and pathways, the thesis will also investigate
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the feasibility of recapitulating ICD in silico. By integrating both established and newly identified

hallmarks of ICD into computational models, the research aims to simulate ICD processes, predict

treatment outcomes, and suggest directions for future experimental validation.

Finally, the thesis will evaluate whether the developed in silico model can effectively predict the

immunogenicity of chemotherapeutic drugs. The ultimate goal is to leverage this model as a tool for

optimizing drug formulations and treatment regimens, thereby enhancing their immunotherapeutic

efficacy and offering a potential framework for personalized medicine.
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Chapter 3
Materials and Methods

n this chapter, we detail the experimental and computational approaches used to
investigate the molecular mechanisms of Immunogenic Cell Death (ICD). We describe the
methodologies employed for cell culture, treatment protocols, and data collection, as well
as the computational tools and analytical techniques used to interpret the results. This
section provides the foundation for reproducing the experiments and analyses presented
in this thesis.

Aims

1 In vitro

1.1 Cell culture

MCA205 cells, derived from 3-methylcholanthrene-induced fibrosarcoma in C57BL/6 mice, were grown

in a complete cell culture medium composed of RPMI 1640 (Gibco) supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin.

1.2 In vitro treatments

The drugs MTX and OXA (both from Sigma-Aldrich) were dissolved in ultrapure water prior to

dilution in the cell culture medium. CIS was obtained in suspension (Mylan) from the pharmacy of

Institut Gustave Roussy and diluted in the culture medium. Cells were treated with MTX at 0.5, 1,

2, and 4µM. OXA was tested at 37.5, 75, 150, and 300 µM, and CIS at 3.375, 6.75, 12.5, and 25 µM.

1.3 Cell viability assay

Viability was assessed at 12, 18, 24, 36, and 48h post-treatment by flow cytometry following staining

with the cell-permeant dye DiOC6(3) (3,3’-dihexyloxacarbocyanine iodide), selective for the
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mitochondria of live cells, and the cell-impermeant dye DAPI (4’,6-diamidino-2-phenylindole). Data

were analyzed with the software FlowJo v10.8.2.

1.4 Assessment of established ICD hallmarks

For CRT and ATP assays, cells were seeded in 96-well culture plates at 5000 cells/well. For HMGB1

assay, 24-well plates were seeded at 50000 cells/well. One day later, cells were treated with the drugs

for 3, 6, 12, 18, and 24 hours before harvest of cells and culture supernatants. Exposure of CRT at

the surface of cancer cells stressed/dying upon treatments was detected by flow cytometry (cytometer

BD Fortessa) after staining with Live/Dead Yellow dye and an anti-CRT (ab2907, Abcam) coupled

to the fluorochrome AlexaFluor 488. Extracellular ATP and HMGB1 were detected using the Enliten

luciferase-based kit (Promega), and by ELISA (Tecan), respectively. Signals were measured using the

microplate reader Victor Nivo (Perkin Elmer).

1.5 RNA sequencing of in vitro treated cells

106 MCA205 cells were plated in 10 cm-diameter Petri dishes. The day after, cells were treated with

MTX at 0.5 µM, OXA at 300 µM, and CIS at 25 µM for 3, 6, 12, 18 and 24 hours. Total mRNAs

were extracted using the RNeasy kit (QIAGEN). Library preparation and mRNA sequencing was

performed at the Genomic Platform of IBENS by Oumi Seydi (ENS). Quality control, alignment, and

quantification have been realized at Institut Curie using the automated workflow of Institut Curie’s

bioinformatic platform by Théo Lassalle.

1.6 Phosphoproteome analysis

Cells were plated and treated following the same procedure as for transcriptomics investigations

mentioned above. Next, dry cell pellets (n=3 technical replicates per treatment condition), were

shipped to Tebu Bio laboratory for analysis on an array of antibodies specific to 1300

phosphorylated and corresponding total proteins (Antibody Explorer Array, Full Moon BioSystems).

Candidates identified through this screening approach as differentially phosphorylated between

treatments are currently validated by western-blot.

1.7 Cytokine profiling

Cells were plated and treated following the same procedure as for transcriptomics investigations

mentioned above. Next, cell culture supernatants were shipped to Tebu Bio laboratory for cytokine

profiling (n=4 biological replicates per treatment condition). Samples were analyzed using an array

able to detect 200 cytokines by immunofluorescence (Mouse Cytokine Array GS4000, Raybiotech)
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and delivering semi-quantitative measurements. The main targets identified through this screening

approach were validated by ELISA (Abcam or BioLegend) using cell culture supernatant collected

from 24-well plates seeded with 50000 cells and treated as mentioned above. To get a timewise

overview of the different secretomics profiles associated with the different treatments, we sampled

cell culture supernatants at earlier time points for a total of 5 time points: 3, 6, 12, 18, and 24 hours.

Concentrations of cytokines were measured using a microplate reader (Victor Nivo, Perkin Elmer).

2 In vivo and ex vivo experimentations

2.1 Animals

Experimentations were carried out in 8-week-old immunocompetent C57BL/6 female mice (Envigo,

Gannat, France) hosted in a pathogen-free, temperature-controlled environment with 12h light/dark

cycles according to the FELASA guidelines, EU Directive 63/2010, and French legislation.

2.2 Cancer vaccination-rechallenge

MCA205 cells were treated in vitro for 32 hours with MTX at 0.5µM, OXA at 300µM, and CIS at 25µM.

Under these conditions, as assessed by flow cytometry following DIOC-DAPI staining, viable/dying

cells represent 30-50% of the population while the remaining 50-70% correspond to dead entities. 3x105

treated cells were resuspended in 100 µl of PBS and injected subcutaneously into the left flank of each

mouse. To investigate the role of cytokines in ICD, some cell extracts were supplemented in cytokines

prior to in vivo administration: IL6 at 4.1 ng/injection, CCL5 at 1.67 ng/injection, or CCL20 at 2.12

ng/injection. One week later, mice were rechallenged with live untreated MCA205 cells, and tumor

growth was closely monitored. If cells succumbed in vitro to ICD rather than non-immunogenic cell

death (e.g., necrosis, apoptosis), their challenge would work as a cancer vaccine and protect against

tumor development upon rechallenge. This assay is the gold standard to validate the ICD potential

of therapeutic interventions36.

2.3 In vivo treatments

3x105 syngeneic MCA205 fibrosarcoma cells were implanted subcutaneously in the right flank of the

mice. Once palpable, tumors were treated by intraperitoneal injections of 200 ul of PBS (untreated

control group), MTX at 5.17 mg/kg, OXA at 10 mg/kg, or CIS at 10 mg/kg. To study the role of

cytokines in the efficacy of chemotherapies, some animals were administered intraperitoneally at day

-1, 0, and +1 post-treatment with neutralizing antibodies targeting IL6 at 32 µg/mouse and CCL5

at 100 µg/mouse. Tumor size was measured at 2-3-day intervals using a digital caliper and mouse
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survival was monitored daily.

2.4 RNA sequencing of tumors

Tumors were collected and preserved in a conserving solution RNAlater (Thermo Fisher). Portions

from the external, middle, and inner rim of the tumor tissue were processed using a lysis buffer

(QIAGEN) supplemented with β-mercaptoethanol) in a tube containing microbeads. Extractions were

performed using RNeasy kit (QIAGEN). Library preparation and mRNA sequencing were performed

at the sequencing platform of Institut Cochin (Genom’IC, Paris).

2.5 Immune cell phenotyping

MCA205 tumors were harvested at days 3, 11, and 22 post-treatment. Tumors were dissociated using

a mouse tumor dissociation kit and the gentle MACS Octo dissociator following the manufacturer’s

instructions (Miltenyi Biotec). Single-cell suspensions were labeled with the LiveDead Yellow viability

dye (ThermoFisher) and stained with purified anti-CD16/32 (BD FcBlock). Immune cells infiltrating

tumor and lymphoid tissues (draining lymph node, spleen) were phenotyped by flow cytometry using

two panels of fluorescent antibodies targeting the surface markers (Panel 1: CD11c, B220, CD11b,

PD-L2, Live Dead Yellow, MHC-II (I-A/I-E), CD8a, PD-L1, Ly-6C, CD103, Ly-6G, F4/80, CD45,

PD-1. Panel 2: CD4, CD3, Live Dead Yellow, NK1.1, CD8, CD25, Foxp3 (intranuclear), IL-4, IL-17a,

CD69, IFNg, CD45).

2.6 Spatial proteomics

Samples were collected at days 3, 11, and 22 post-treatment and preserved in 4% solution of

paraformaldehyde for 24 hours and then transferred in 70% ethanol for 48 hours. Samples were

embedded in paraffin at the Histology, Cytometry, and Imaging Centre of Centre de Recherche des

Cordeliers (CHIC, CRC, Paris). Microtome cuts and slide mounting have been realized by Floriane

Arbaretaz (CHIC). Technical optimization of the assay is being finalized by Dr. Maria Perez-Lanzon,

a postdoctoral fellow in our group. The run for spatial proteomics on the NanoString GeoMX device

is scheduled in the coming months.

2.7 Statistical Analysis

Data analyses were conducted using Python packages (edgeR limma-voom [147], SciPy [185], lifelines

[39]), R and GraphPad Prism v10.2.3. Continuous variables were compared using Dunn’s test, or

Kruskal-Wallis H test with Bonferroni correction. ROUT test (Q=10%) was applied to identify and

exclude outliers. Randomization of mice was performed using the RandoMice software. Kaplan–Meier
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survival curves were analyzed with a log-rank test. Differences were considered statistically significant

when p-value (two-tailed) < 0.05.
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3 In silico

3.1 Data Analysis

3.1.1 Alignements and fastq processing

Fastq files were processed uysing the CurieCoreTech Bioinformatics (CUBIC) pipeline for bulk RNA-

seq data processing. Quality control of raw reads was assessed using fastqc(v0.11.9) before passing

to the trimming and filtering step using Trim Galore! (0.6.7). Subsequently, reads were aligned to

the reference murine genome (GRCm39) using STAR (2.7.6a) and quality of alignements was controlled

using Samtools (1.12), RseQC (4.0.0) and Qualimap (2.2.2). Duplicates were finally removed from the

aligned BAM files using Picard (2.25.3) and normalized coverage files was obtained using bamCoverage

(3.5.1). Finally, raw counts table was obtained using HTseq counts (0.10.0).

Differential expression analysis The table of raw counts has been initially purged of genes having

less than 10 counts across all conditions. The analysis of transcriptomic data was then realized using

R-based software edgeR and Limma-Voom [147].

The workflow included preparing raw read count data and metadata, importing data using the

edgeR package to create a DGEList object, and filtering out lowly expressed genes. Then we normalized

data to account for technical biases. Next, we used the voom function to transform the count data

to log-CPM with precision weights and created a design matrix for the experimental design. A linear

model is fitted to the transformed data using lmFit, and empirical Bayes moderation was applied to

improve the reliability of the statistics.

3.1.2 Proteomics

For all slides, raw data were collected on an Excel file and all values were subtracted by local

background values and outliers (spots for which the signal exceeded 35% above the median value of

the quadruplicate spots) were removed. The Average table provided the average values of

quadruplicate spots, excluding outliers. The Normalization table presented normalized values based

on POS-Ave, calculated from the equal contribution of the two positive controls. Finally, the Chart

sheet generated a clustered column chart for visualizing individual markers and positive controls.

Data were exported to .csv format for subsequent analysis. For visualization purposes, only

cytokines for which statistical significativity was detected were represented for each treatment in

volcano plots (for each signal in all samples, we subtracted the corresponding signal measured in the

sample containing only cell culture medium) and globally in clustermap using the Python package

Seaborn. Statistical analysis was realized using one-way ANOVA and Dunnett’s pairwise comparison
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test with the Python package Scipy [185].

3.1.3 Phospho-proteomics screening

Each signal corresponding to the protein was normalized by the median signal within each slide

(remember it was one slide per sample and only one sample per condition: it means no statistical

consideration but only partial speculation on this results). We filtered out undetected values and

then considered that calculated the Phospho-protein / total protein for all 4 conditions. Next, we

normalized to the control in order to get a relative estimate of the impact of each drug compared to

the control. Results were filtered based on FC (>2.0 and < 0.5)

3.2 Transcriptomics data analysis and functional inference

In the following sections, I will detail the methods used for the development of networks and logical

models of ICD.

3.2.1 Enrichment analysis

Enrichment analysis on differentially expressed genes (DEGs) has been realized using the R packages

clusterprofile and enrichplot [191]. DEGs were first filtered from the table of results obtained using

edgeR and Limma-Voom and genes with adjusted p-values above 0.05 were discarded. Genes were then

ranked by multiplying their "logFC" value by their "adj.P.Val". The analysis has been realized for

all treatments at all timepoints separately. Gene sets considered include gene ontology (GO) molecular

functions (MF), cellular components (CC), and biological processes (BP). Enrichment analysis results

were filtered based on the p-value calculated during the enrichment process and the top 20 terms were

ranked based on the percentage of representation of the individual term within the dataset (prop.

overlap). Additionally, for the first three elements, we calculated individual enrichment scores.

3.2.2 Functional enrichment

Functional enrichment such as estimation of TFs activity analysis and pathway activity analysis was

realized using the python package decoupleR [10]. For both pathways and TFs we used a univariate

linear model:

Y = β0 + β1X + ϵ (3.1)

Where β1 represents the matrix with containing the activities for the TFs considered, X represents

the vector containing the information relative to gene expression for each sample. Using the output
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of the differential expression analysis made with limma-Voom, we took the t-statistic of each gene

compared to the control, for all conditions.

The TF-target relationships needed to determine what genes to consider in 3.1 were inferred from

collecTRI [130]. CollecTRI is a dataset built upon literature, text-mining and manual curation and

provides the a reference network for the targets of TFs, providing references and informing if a gene

is either repressed or activated by a TF.

For pathway activities, for which we used the same linear model (3.1), we used the signatures

provided by PROGENy [153], a dataset containing the characterization of 13 different pathways

(EGFR, Hypoxia, JAK-STAT, NFkB, VEGF, TGFb, PI3K, p53, Trail, TNFa, MAPK, Androgen,

Estrogen and WNT pathway). Key features of ProgenY include constructing pathway signatures

from perturbation experiments, where activators or inhibitors are used to measure gene expression

changes. This approach enhances accuracy, providing more precise estimates of pathway activities

compared to methods that use only static gene sets.

3.2.3 Dynamical time warping

In this study, we employed the Dynamic Time Warping (DTW) algorithm [1] to evaluate similarities

between the expression profiles of genes coding for ligands, receptors, or TFs associated with some

targets of interest.

DTW is an algorithm that measures the similarity between two temporal sequences by

calculating the optimal alignment, thereby minimizing the cumulative distance between them. The

DTW algorithm allows for shifts and distortions in time, enabling a robust comparison of sequences

that may have different lengths or temporal misalignments. To implement this, we first compute the

Euclidean distance between each pair of expression values from the sequences being compared. The

DTW algorithm then constructs a cost matrix to accumulate these distances and determines the

path that minimizes the overall distance between the sequences.

By aligning the expression patterns of TFs and their identified cytokine-encoding target genes,

DTW facilitates the identification of regulatory relationships and temporal correlations.

64



3. In silico

1: Function dtw_distance(s1, s2)
2: Input: s1, s2 (array-like sequences to be compared)
3: Output: Dynamic Time Warping distance between s1 and s2
4: len_s1← length(s1)
5: len_s2← length(s2)
6: Initialize cost_matrix with zeros of size (len_s1, len_s2)
7: for i← 0 to len_s1− 1 do
8: for j ← 0 to len_s2− 1 do
9: cost← abs(s1[i]− s2[j])

10: if i = 0 and j = 0 then
11: cost_matrix[i][j]← cost
12: else if i = 0 then
13: cost_matrix[i][j]← cost + cost_matrix[i][j − 1]
14: else if j = 0 then
15: cost_matrix[i][j]← cost + cost_matrix[i− 1][j]
16: else
17: cost_matrix[i][j]← cost+min(cost_matrix[i−1][j], cost_matrix[i][j−1], cost_matrix[i−

1][j − 1])
18: end if
19: end for
20: end for
21: return cost_matrix[len_s1− 1][len_s2− 1]
22: End Function

Algorithm 1 Calculate DTW Distances for Each Row Compared to Every Other Row
1: Function calculate_dtw_distances(df)
2: Input: df (dataframe containing sequences as rows)
3: Output: List of tuples with indexes and DTW distances
4: distances← []
5: for i← 0 to length(df)− 1 do
6: for j ← i + 1 to length(df)− 1 do
7: s1← df [iloc[i]]
8: s2← df [iloc[j]]
9: distance← dtw_distance(s1, s2)

10: indexes← (df [index[i]], df [index[j]])
11: Append (indexes, distance) to distances
12: end for
13: end for
14: return distances
15: End Function

The dtw_distance function calculates the Dynamic Time Warping (DTW) distance between two

sequences s1 and s2. The cost matrix in this function is constructed to compute the cumulative cost

of aligning two sequences s1 and s2 using the DTW algorithm, where the cost is calculated from the

Euclidean distance between two elements of the sequences.

It begins by initializing the length of the sequences and creating an empty cost matrix filled with

zeros. The function then iterates through each element of the sequences, computing the cost as
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the absolute difference between the elements, and updating the cost matrix based on the minimum

cumulative cost path (insertion, deletion, match). The DTW distance for the two sequences is obtained

from the bottom-right cell of the matrix.

The get_dtw_path function is designed to find the optimal alignment path in the cost matrix

that was computed during the Dynamic Time Warping (DTW) process. This path represents the

best alignment between the two sequences, indicating how each element in one sequence maps to an

element in the other sequence.

We checked the expression for ligands and receptors using several sources (Cytoreg [149],

iCELLNET [132], CellChatdb [85]), and TF activity (regulating the expression of ligands and

receptors of interest) was also estimated by using decoupleR [10]. To expand the network of possible

interacting TFs, we relied on additional datasets (TRRUST [69], TFlink [105], HTFTarget [202]),

and tried to establish a prioritization on the resulting regulatory network. For this task, we relied on

unbiased prioritization tools, such as GENIE3 [82]. This method belongs to a class of ensemble

learning algorithms and is based on decision trees to infer the regulatory relationships between genes

in a given gene expression dataset.

The possibility of inferring the interactome of differentially expressed genes was also taken into

account by using a novel modeling framework based on Pypath-Omnipath, developed by Dénes Türei

(see section 3.3).

3.3 Network inference methods: from manual literature-based curation to NeKo

The development of the NeKo tool aiming to infer networks from a list of genes was led by Dr. Marco

Ruscone from Institut Curie and in collaboration with Dr. Eirini Tsirvouli (NTNU, Trondheim), and

Dr. Denés Turei (EMBL, Heidelberg, Germany).

The construction of the networks on which the Boolean models are built is a tedious task. It

requires a thorough search of the literature linking genes and proteins that play a major role in

the studied biological process. To facilitate this process, we created a python package that extracts

knowledge from public curated pathway databases to build the first version of a network that will

become the basis for the construction of the Boolean model. The network then needs manual curation

but represents a first effort towards a more comprehensive model.

In 2016, an important effort was made by the group of Julio Saez Rodriguez to unify available

knowledge from various databases into a single and comprehensive resource, Ominpath [181].

OmniPath allows users to infer the interactions of a biological entity by consulting the available

knowledge collected in a single metadatabase. To query the database, a Python package known as

Pypath was developed.
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Although equipped with an enriched database, Pypath still lacks usability, and its application

to network construction requires several efforts to go from a set of biological entities to a biological

network.

To facilitate custom network construction, we developed a tool named NeKo. It builds networks

from a list of genes provided by the user and will output a network from available knowledge in

databases from Omnipath and beyond with all the annotations. Indeed, the user can manually add

datasets to the available resources with an appropriate syntax and data structure.

At first, the nodes provided by the users are linked via interactions with their first neighbors via the

function connect_nodes. The existing interactions can be of different types (e.g. binding, correlation,

influence) according to the resource specified when characterizing the workspace and supported by

referenced experimental evidence. Some available resources focused on signaling pathways, directly

derived from OmniPath, such as SIGNOR [111], encompass transcriptional, post-transcriptional, or

post-translational interactions.

The genes or proteins from the initial list are connected via different algorithms looking for the

shortest paths between nodes. The method complete_connections aims to fully connect the

disconnected network. The algorithm searches for new paths between the connected nodes via

connect_nodesand those for which the initial search on the first neighbors did not give positive

outcomes and for which an undirected path has to be inferred in the annotation databases. The user

can choose what algorithm to use to complete the connections.

Available choices are ’breadth-first search’ (BFS) and ’depth-first choice’ (DFS) algorithms. The

first one allows a faster search by exploring all neighbors at a specific graph depth before moving on

to vertices at the next following depth level when the property of being connected to the previous

depth layer is satisfied. By contrast, DFS percolates the tree as far as possible before backtracking

the possible detected connections 3.1.
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Figure 3.1: Schematic representations of network exploration algorithms available in Neko. A Breadth-first
search and Depth-first search B

For both algorithms, non-connected nodes are used as seeds or roots for the search. In the case

of the BFS, the algorithm keeps track of visited nodes during the search creating a queue. Although

requiring more memory than DFS, BFS ensures finding the shortest path from the input nodes (not

connected) to at least one of the output nodes (those belonging to the connected network). On the

other hand, the use of DFS algorithm to complete a network does not provide a guarantee to complete

it [42, 98]. In addition to that, DFS does not necessarily find the shortest path: longer paths can

be found before shorter ones. According to the type of exploration one wants to realize, the two

algorithms can be more or less suitable for a particular purpose.

Once the network has been created it can be visualized and exported as a .SIF file.

Neko also allows users to export the network into a logical model template by embedding the

edges in a format compatible with logical modeling frameworks such as .bnet format. This feature is

applicable to signed interactions, indicating whether a node or group of nodes activates or inhibits its

target.

I specifically contributed to the tool with the conception, code testing and debugging, and minor

code development, mainly related to network visualization.

3.4 Model Personalization with PROFILE

To build one model per patient, or one model per cell, we rely on a tool called pyPROFILE, which

is a Python software derived from an original R package developed by Jonas Béal [14]. This tool

integrates various types of omics data into the Boolean model to tune nodes’ activity, transition

rates, and initial conditions of the model, tailoring stochastic simulations on logical models to specific

real-case scenarios.

Personalizing models based on experimental data involves constraining variables corresponding to
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altered genes by setting model nodes to inactive (0) or active (1) states, and adjusting initial values

and parameters to maintain these states during simulation.

These model modifications will modify the solution space (state transition graph, STG) and the

probabilities for reaching a solution associated with a biological phenotype (e.g., cyclins’ activity is

used as a proxy for proliferative phenotypes and caspases’ activity to apoptotic states).

PROFILE software performs both normalizations and binarization of gene expressions to

personalize logical models. The process starts with evaluating gene expressions across a dataset,

discarding genes that do not vary significantly. An admissibility test ensures a gene’s expression falls

within a sufficient range compared to others (above one-tenth of the median amplitude across all

genes) and contains at least 5% non-zero values. If a gene passes this test, its distribution is

evaluated for bimodality using Hartigan’s dip test, the Bimodality Index, and kurtosis. Genes not

following a bimodal distribution are tested for zero inflation or unimodal distribution. Unimodal

distributions are transformed via a sigmoid function for normalization, while zero-inflated genes are

linearly transformed to preserve their distribution density peak.
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Chapter 4
Results

This chapter summarizes the key findings of my thesis, detailing various experiments
conducted and their application in supporting in silico models’ development.
The first section presents the main results obtained from both in vitro and in vivo
experimentations. We initially assessed ICD hallmarks, followed by complementary
investigations inferring the secretome and transcriptome of MCA205 cells treated with
ICD inducers and non-inducers. Next, we tested in vivo the contribution of the molecular
factors identified as potential contributors to cell death immunogenicity. This section
highlights the differences between chemotherapies and identifies additional potential
hallmarks of ICD.
In the second section of this chapter, we present a functional analysis linking experimental
evidence with the construction of in silico models. We estimated pathway activity from
expression data using curated databases and assessed TF activity by measuring their
downstream targets. To improve accuracy, we validated this approach by applying the
Dynamic Time Warping (DTW) algorithm to expression data for TF-cytokine pairs.
To conclude, the third section of the chapter illustrates the construction of three
distinct in silico models, each capturing a particular aspect of ICD. These models were
developed by combination prior knowledge and new experimental data. Additionally, two
supplementary networks are provided as complementary results of the analyses conducted
in the previous sections.

Aims

1 Experimental results

1.1 Profile of ICD-related hallmarks and immunogenicity of fibrosarcoma cells

treated with cisplatin, oxaliplatin, or mitoxantrone.

MCA205 fibrosarcoma cells were treated in vitro with various dosages of CIS, OXA, and MTX before

assessing viability and a series of ICD hallmarks. The objective consisted of determining their relative

immunogenicity. Cell viability was evaluated using flow cytometry after staining with DiOC6(3)
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and DAPI, which monitor mitochondrial membrane potential sustainability and membrane integrity,

respectively (Fig. 4.1 A). Median lethal dose (LD50), referring to 50% of DiOC6(3)-negative and

DAPI-positive dead cells, was achieved at 30 hours with the highest doses of the platinum salts

CIS and OXA, and the lowest dose of the anthracycline MTX (Fig. 4.1A). Except for the highest

concentration (2 µM) of MTX, cell death did not exceed 40% after 24 hours of chemotherapy, regardless

of the chemical nature and dose of the drug tested (Fig. 4.1A, B).

Several ICD-related damage-associated molecular patterns (DAMPs), namely the release of ATP

and HMGB1 in the cell culture medium, or the translocation of CALR at the surface of the plasma

membrane, were monitored during the first 24 hours of drug-induced stress (Fig. 4.1C-H).

Using bioluminescence assays, an early, elevated, and acute release of ATP was observed upon

MTX, peaking at 6 hours at all concentrations. By contrast, both platinum salts CIS and OXA

provoked an early, moderate, and prolonged liberation of the nucleotide (Fig. 4.1 C). At 24 hours,

the level of extracellular ATP remained at a significantly higher magnitude in MCA205 cells treated

with the highest doses of platinum salts than untreated cells. Inversely, at that time point, the

concentration of ATP detected in the culture medium of MTX-treated MCA205 cells was comparable

to that of controls (Fig. 4.1 C, D).

Exposure of the ER chaperone CALR on the outer layer of the plasma membrane was significantly

enhanced on live cells (i.e., LIVE/DEAD negative) stressed upon MTX and OXA, mainly at the most

elevated doses, as compared to untreated (PBS) controls (Fig. 4.1 E, F). By contrast, treatment with

CIS triggered marginal signal at all concentrations tested (Fig. 4.1 E, F).

To complete the assessment of the ICD hallmarks, we measured by ELISA the concentration

of HMGB1 released in the supernatant of cells treated with effective doses of CIS (25 µM), OXA

(300µM), and MTX (0.5 µM). Extracellular HMGB1 was detected in all conditions but with distinct

dynamics. On one side, cells incubated with CIS and MTX showed leaked nuclear protein at 18 hours

post-treatment, with a marked and similar increase at 24 hours (Fig. 4.1 G, H). On the other side,

the detection of cell-free HMGB1 only started at 24 hours in the presence of OXA (Fig. 4.1 G, H).
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Figure 4.1: Profiles of ICD-related hallmarks upon CIS, OXA and MTX treatments of MCA205
fibrosarcoma cells in vitro. Cell viability (A), extracellular ATP (B), CALR exposure at the surface of non dead
(i.e., L/D-negative) cells (n=9; pool of 3 experiments) (E), and extracellular HMGB1 (G) were measured in MCA205
fibrosarcoma cell cultures at 3, 6, 12, 18, and 24 hours of treatment with the indicated doses of CIS (green - left), OXA
(red - middle), or MTX (blue - right).
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Cell viability (B), extracellular ATP (C), surface-exposed CALR (E), and extracellular HMGB1 (H) are compared at
24 hours post-treatment with the doses chosen for subsequent in vitro analyses: CIS 25 µM, OXA 300 µM, and MTX 0.5
µM. (I-K) Assessment of ICD induction through in vivo tumor vaccination-rechallenge. Extended tumor-free survival
(I) and mean (J) and individual (K) slowed down tumor growth are indicators of ICD induction. CIS, cisplatin; CALR,
calreticulin; HMGB1, high mobility group box 1; ICD, immunogenic cell death; L/D, Live/Dead viability dye; MTX,
mitoxantrone; OXA, oxaliplatin.

At last, we performed a vaccination-challenge assay to compare the overall immunogenicity of

MCA205 cells succumbing to each chemotherapy. For this purpose, cells were incubated for 32 hours

with either MTX at 0.5 µM, OXA at 300 µM, or CIS at 25 µM. These experimental settings resulted

in comparable populations composed of 30-50% viable/dying cells, with the remaining fraction

encompassing dead entities. Each of these populations was injected subcutaneously into

immunocompetent C57Bl/6 mice. One week later, the animals were challenged with live MCA205

cells and tumor growth monitored; induction of ICD would translate into protection against cancer

development. Median and long-term tumor-free survivals were significantly extended and tumor

growth was delayed upon vaccination with MTX-treated cells, as compared to non-vaccinated

controls. By contrast, CIS demonstrated much lower immunogenicity, with a short extension of

tumor-free survival, whereas OXA showed an intermediate protective effect (Fig. 4.1 I-K).

Altogether, only MTX appeared to trigger bona fide ICD in fibrosarcoma cells. Intermediate

immunogenicity associated with OXA could originate from a discrepancy in the kinetics of DAMP

emission (prolonged ATP, late HMGB1). As reported in the literature [120], the limited

immunogenicity of CIS coincided with restricted CALR exposure over time.

1.2 Transcriptomics identifies a signaling receptor activity signature associated

with ICD in fibrosarcoma cells

To further characterize the premortem stress experienced upon each chemotherapy, we performed

transcriptomics analyses of MCA205 cells treated in vitro with effective doses of MTX (0.5 µM), CIS

(25 µM) and OXA (300 µM) for 3, 6, 12, 18 and 24 hours.

For simplicity, only the 24h timepoint data has been illustrated in the present report.

Our objective was to pinpoint molecular features of ICD by comparing the mRNA profile of cells

treated with ICD versus non-ICD inducers. Out of the 16631 genes analyzed, the expression of 5728

genes was modulated (|log2 fold change| > 2; adjusted p-value < 0.05) upon chemotherapy: 4785 upon

CIS, 3794 upon OXA, and 1091 upon MTX (Fig. 4.2 A, B).

Among them, 715 were shared between the three treatments whereas 2332 (1579 up-regulated, 753

down-regulated) were affected only by the two platinum salts, and 196 (115 up, 81 down) were proper

to MTX treatment (Fig. 4.2 A, B).

Functional gene set enrichment analysis was performed on the list of differentially expressed genes
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(DEGs) using Gene Ontology (GO) (molecular functions, biological processes) and MSigDatabase

(Fig. 4.2 C). Out of the 20 most enriched GO terms, pathways related to plasma membrane receptor

activity were abundant. In particular, cell-extracellular matrix (ECM) and cell-cell interactions seemed

affected upon treatments, with a recurrence for immune and neuron-connected processes.

Notably, the term “signaling receptor activity” (GO:0038023) was enriched across all three

chemotherapy conditions (Fig. 4.2 C). Out of the 2465 genes constitutive of this term, 240 were

up-regulated while 145 were down-expressed across the different therapy conditions in comparison to

untreated controls (Fig. 4.2 D). Interestingly, the expression pattern of genes associated with

“signaling receptor activity” could distinguish between the platinum salts and the ICD-inducing

anthracycline MTX.

More precisely, 7 genes were dysregulated (2 down- and 5 over-expressed) in MTX while remaining

unaffected in both CIS and OXA. These latter encode G-coupled protein receptors (e.g., ADGRA2,

GPR156), the cation channel TRPA1, the PRR MRC1 (best known as CD206), the cadherin family

member CELSR1, the intranuclear receptor PPARG, and the adhesion receptor PTPRF.

In parallel, 111 genes were dysregulated (63 down- and 48 over-expressed) upon platinum salt

therapy while remaining unaffected in the presence of MTX. These DEGs encode a variety of

signaling molecules such as PRRs (e.g., AGER, NLRP6, NOD1/2, FPR2, TLR4/7/9, TRIM30A/D),

cytokine receptors (e.g., CX3CR1, CXCR5, CSF1R, IL1R1, IL1RAP, IL17RD/RE, IL18R1,

IL22RA2), immune checkpoints (e.g., FAS, LAG3, SLAMF8, TREM2), growth factor receptors (e.g.,

FGFR2, NRP2, PDGFRB, TGFBR2/3L), cholinergic receptors (e.g., CHRNA1/A10/B2), G-coupled

protein receptors (e.g., ADGRA3, ADRA2A/2B, GPR15/35/83/85/141/152, LGR4/6, LPAR1,

P2RY10B/14, PTGER1, TAS1R1/3, TAS2R108/137, TBXA2R), other adhesion-involved factors

(e.g. CELSR2), ATP-binding cassette (ABC) transporters (e.g., ABCA1), and nuclear receptors

(e.g., AR, NR1H3, NR2C2, NR4A3, NR6A1, RARB, RORA, RORC, ROR2) (Fig. 4.2 D - red

frames).

Finally, one gene showed opposite dysregulation between treatments: P2rx1. The latter encodes a

purinergic receptor and was overexpressed in MCA205 cells treated with the ICD inducer MTX but

down-expressed upon both platinum salts.

Collectively, the transcriptomics analysis revealed a signature of DEGs related to signaling receptor

activity and associated with ICD induction in fibrosarcoma cells.
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Figure 4.2: Transcirptomics profiles of MCA205 cell lines treated with ICD-inducers and non-ICD
inducers highlights distinct transcriptional signature for signaling receptors. A. Volcano plot of differentially
expressed genes (DEGs) at 24 hours post treatment. B. Venn-diagram representing the intersections between the sets
of DEGs for each treatment. C. Enrichment analysis on DEGs at 24h post-treatment. D. Focus on signaling receptor
activity ontology term.
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1.3 Transcriptomics investigation reveals a secretory signature associated with

cell death immunogenicity

Considering the differential expression of surface receptors between ICD and non-ICD inducers, we

extended our investigations to the transcriptomic signature of proteins with autocrine, paracrine,

juxtacrine and endocrine activity. A set of 255 murine genes encoding secreted factors was extracted

from the literature. These latter encompassed chemokines, interleukins, interferons, growth-regulating

factors, hormones (e.g., adipokines), and sculptors of the ECM. Fifty five percent of the genes (n =

141) showed detectable expression during the first 24 hours of treatment in MCA205 fibrosarcoma

cells (Fig. 4.3 A). Of them, 114 genes were significantly modulated as compared to untreated controls

(|log2 fold change| > 2; adjusted p-value < 0.05; Fig. 4.3B, C).

On one side, the absent/limited immunogenicity of the two platinum salts CIS and OXA

coincided with altered levels of 45 mRNAs encoding secreted factors. Among them, 15 were

increased and included some cytokines (IL11, IFNAB, LTA/B), factors promoting cell growth and

tissue development (AMH, EFNB3, FGF17/18/20, NTN3), regulators of cell survival (FASL, PSPN)

and metabolism (APOE, BGLAP3), and peptidase SERPINF2 which supports vascular co-option.

The remaining 30 mRNAs exhibited decreased levels along both platinum salt treatments. They

encoded other chemokines/cytokines (CCL2/7, CXCL12, IL7/15/34), some factors regulating cell

proliferation, differentiation, migration (e.g., BDNF, BTC, CSF1, EDA, EFNA5, FGF7, GREM1,

MET, NRG1, PDGFB/C, PTX3, SLIT2, WNT7B), adhesion (e.g., ADAMTS12), and angiogenesis

(e.g., ANGPT1, CHRDL1, NTN4, VEGFC) (Fig. 4.3B-D).

On the other side, a 11-gene signature appeared specific to ICD induction, with 1 gene

downexpressed (Mmp3) and 10 upregulated exclusively in MTX-treated cells (Fig. 4.3 C). In details,

these latter DEGs encoded the cytokines CCL20, CXCL1, and IL33, the growth factors CCN3,

CSF2 and FGF1/21, the vascular regulators ANGPTL4 and EDN1, and the hormone inactivator

MME (Fig. 4.3 C).

Some similarities and discrepancies were witnessed between ICD and non-ICD-inducing

treatments (Fig. 4.3 C). First, 29% of the secretome-related DEGs (n=33/114) were shared between

all therapeutic interventions, thus excluding their contribution to the overall cell death

immunogenicity. Surprisingly, they included Cxcl10 whose product plays a well-acknowledged role in

attracting the CXCR3+ T cell mediators of antitumor immunity, in particular following ICD

induction [157]. Second, a limited number of DEGs was shared between MTX and one of the two

platinum salts. The chemokine-encoding Ccl5 gene and Tnfsf18, which expresses the transmembrane

and soluble immune checkpoint GITRL, were activated upon both MTX and OXA treatments. The

pro-angiogenic and anti-apoptotic factor ANGPT2 was upregulated upon both MTX and CIS
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treatments. Inversely, Mme was repressed upon CIS and OXA chemotherapies, but stimulated in

MTX-treated MCA205 cells (Fig. 4.3 C).

Furthermore, the longitudinal follow-up evidenced a prolonged dysregulation of most DEGs.

Notably, Ccl20, Cxcl1, Il33, Csf2, and Fgf1 experienced a sustained transcription with the ICD

inducer MTX, without discontinuation starting at 6 or 12 hours of treatment (Fig. 4.3 A,C,D).

Overall, differences in immunogenicity between the platinum salts CIS and OXA and the

anthracycline MTX coincided with distinct secretory signatures predisposing to immunomodulation

and restructuring of the TME. More precisely, the dysregulated cytokines, growth regulators, and

other ecto-enzymes, can potently attract myeloid and lymphocytic cells, and interfere with the

differentiation, proliferation, adhesion, and survival of both parenchymal (epithelial, endothelial, and

nerve cells) and mesenchymal (immune and fibroblastic cells) entities.
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Figure 4.3: Transcriptomics profile of secreted immunomodulators distinguishes between fibrosarcoma
cells treated with the ICD inducer MTX and the less immunogenic platinum salts.
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A. Heatmap of the relative expression of 140 mRNAs encoding secreted immunomodulatory molecules detected within
the transcriptomics dataset. Expression is displayed as relative to untreated controls.
B. Volcano plot of DEGs at all time points post treatments.
C. Stacked histograms representing the number of time points a gene was overexpressed (upper bar plot) or downregulated
(lower bar plot) for each treatment.
D. Venn diagram representing the intersections between the sets of DEGs for each treatment, regardless of the time
point. DEG, differentially expressed genes.

1.4 At the protein level, the secretome of fibrosarcoma cells treated with OXA,

but not CIS, resembles that of their immunogenic MTX-treated counterpart.

Transcriptomics analyses highlighted differences in the secretome of fibrosarcoma cells under

chemotherapy with the anthracycline MTX or the platinum salts CIS and OXA. To corroborate such

findings at the protein level, we screened 200 secreted molecules in the culture supernatant of

MCA205 cells treated for 24 hours. Among them, 80 proteins showed differential secretion between

control and treated conditions (Fig. 4.4 A, B).

Euclidean clustering evidenced a homology between the profile of factors released upon MTX and

OXA, whereas the secretome of CIS-treated cells segregated with controls (Fig. 4.4 A). As compared

to controls, 24 significant modulations (20 up, 4 down) were observed upon MTX (|log2 fold change|

> 1.7; -log10 false discovery rate > 1.3). Of them, 11 appeared specific to the ICD-inducing drug.

They consisted of a non-degradation of soluble TNFSF12 provided by the culture medium and a

non-production of PRL as compared to untreated controls; the latter observation being witnessed at

a lesser extent upon both platinum salts. In parallel, MTX was also responsible for an extracellular

enrichment of CCL19, CRP, FRZB, LGALS7, VEGFB and PSPN. Inversely, the anthracycline-treated

cells demonstrated exclusive consumption of CSF2RB, SPINT1, and TNFRSF19 (Fig. 4.4 B, C).

In OXA-treated cells, the secretion of 24 molecules was affected (21 up, 3 down). Remarkably,

46% of these dysregulations (n=11) were shared with MTX but not CIS. They encompassed ADIPOQ,

ARTN, CCL5, CCL20, CD36, CXCL1, CXCL7, GZMB, and TNFSF11, which all displayed enhanced

levels (Fig. 4.4 B). Conversely, MTX and OXA-treated MCA205 cells harbored enhanced consumption

of IL33 as compared to CIS and untreated controls.

By contrast, the secretory profile of cells exposed to CIS showed distinct characteristics. Notably,

the non-ICD inducer was responsible for a potent production of IL6 and CCL4; the latter being also

detected, yet to a lesser extent, in the supernatant of OXA-treated MCA205 cells (Fig. 4.4 B).

Significant decrease of TGFB1, CD6, GPNMB, LCN2, METRN, and PRSS22 levels were also

evidenced.

To consolidate these results, experiments were repeated and the production of selected cytokines,
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Figure 4.4: Secretomics array uncovered distinct cytokine profiles between cells treated with the ICD-
inducer MTX and the non-ICD-inducer CIS. A. Heatmap representation of raw abundancies of 80 cytokines
whose secretion by MCA205 cells appeared modulated upon chemotherapy as compared to untreated controls (p-value
< 0.05). B. Volcano plot illustrating the cytokines with deregulated secretion in CIS, OXA and MTX-treated cells at
24h. Statistics have been assessed using an ANOVA model and p-values were corrected using Bonferroni correction. C.
Venn-diagram summarizing intersections between treatment groups for up-regulated and down-regulated cytokines.
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namely CCL4, CCL5, CCL20 and IL6, was monitored by ELISA, and ultimately compared with the

longitudinal transcriptomics data.

Secretion of IL6 was confirmed to be specific to the non-ICD inducer CIS (Fig. 4.5 A). This robust

stimulation was also detectable at the transcriptional level (Fig. 4.5 B).

ELISA and in vitro transcritpomics data comforted a major production of CCL4 by MCA205 cells

treated by CIS, as opposed to lower levels in OXA and MTX-treated groups (Fig. 4.5 C, D).

Surprisingly, CCL5 secretion was witnessed at a similar magnitude upon both CIS and MTX

treatments, while an apparent consumption or absence of secretion of the chemokine occurred upon

OXA (Fig. 4.5 E). These ELISA results were in contradiction with the conclusions of both the cytokine

array (Fig. 4.4 A, B) and transcriptomics (Fig. 4.5 F), where CCL5 production was superior in OXA

and MTX-treated cells than with CIS.

Regarding CCL20, all three assays comforted a strong expression and secretion following cell

exposure to the ICD inducer MTX (Fig. 4.4 A, B; Fig. 4.5 G, H). As opposed to mRNA, CCL20

protein was detected in the culture supernatants of MCA205 cells treated with platinum salts, with a

trend toward superior levels in the presence of OXA than CIS (Fig. 4.4 A, B; Fig. 4.5 G, H).

Altogether, our work revealed an association between the profile of some secreted factors, like IL6

and CCL20, and the (lack of) immunogenicity of cell death. Importantly, their transcriptional level

was reflecting their extracellular concentration, thus supporting our hypothesis of a transcriptomics

signature of ICD induction.
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Figure 4.5: mRNA levels of IL6, CCL4, CCL5, and CCL20 mirror their secreted levels. Levels of IL6 secreted
in the culture supernatant of MCA205 cells treated for 24 hours with CIS, OXA, or MTX, measured by ELISA (A), and
corresponding longitudinal mRNA expression profile measured by RNA-seq (B). Same measurements for CCL4 (C-D),
CCL5 (E-F), and CCL20 (F-G). For ELISA assay, stats were calculated using a One-way ANOVA with Benjamini-
Hochberg correction. For longitudinal gene expression, a Kruskal-Wallis and Dunn’s test was performed. For all assays,
n=3-5 replicates per group. Ctrl, untreated control; CIS, cisplatin; MTX, mitoxantrone; OXA, oxaliplatin.
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1.5 Fibrosarcoma tumors treated by MTX and platinum salts demonstrated

qualitative and dynamic distinctions of their secretory profile.

By taking into consideration the critical function of secreted factors in shaping the malignant

microenvironment, we extended in vivo our in vitro investigations of the secretome. Mice bearing

subcutaneous MCA205 fibrosarcoma were treated with CIS, OXA, or MTX and tumors were

harvested after 3, 10 or 22 days for transcriptomics analysis. At these timepoints, innate, peak and

late (i.e., exhausted) adaptive immune responses are expected to occur within the TME [103, 117].

Out of the 255 genes considered for their production of secreted factors, 110 (43 %) were detected

in at least one of the conditions (Fig. 4.6 A).

Among them, 104 underwent significant modulation upon chemotherapy (|log2 fold change| > 0.7;

adjusted p-value < 0.05). A dichotomic imprint could be evidenced, with limited (n = 8) overlap

between platinum salt and anthracycline-based treatments (Fig. 4.6 B, C).

On one hand, 23 genes were dysregulated upon both CIS and OXA, in their majority upregulated

at day 10, and encoded chemokines (CCL3/4/5/9/17, CXCL2/3/9), interleukins (IL18/24/33), or

again granzymes (e.g., GZMB) (Fig. 4.6A-D).

Thirty-three additional DEGs were specific to OXA-treated tumors at 10 days post-chemotherapy

administration (Fig. 4.6A-C). Notably, they included a 6-fold increase of the mRNA encoding IFNγ,

indicative of an active type-1 immunity.

On the other hand, MTX-treated tumors were characterized by a 37-DEG secretory signature,

with 11 overexpressed and 26 downregulated genes. As opposed to platinum salt therapies, most of

these dysregulations (92%) were documented early in the malignant tissue, 3 days post-MTX. The

production of numerous chemokines (CCL11/17/22/24/27A, CXCL5/9/14), soluble/membrane-bound

immune checkpoints (TNFSF10, best known as TRAIL, and TNFSF11), growth factors (e.g., EREG,

IGF1, FGF10/13/23, GDF9, HGF, PDGFD, PGF), angiogenic regulators (e.g., ANGPT1/2/L4), and

hormone-related factors (ADIPOQ, MME) appeared affected.

Among them, CCL17, CXCL9, FGF10, PDGFD, or again TNFSF11 experienced contrasting

regulations along MTX and platinum salt treatments (Fig. 4.6 D).

Moreover, MTX shared with OXA an early (day 3) downregulation of the gene encoding the

immunosuppressive cytokine IL10, together with a late upregulation (day 10) of the mitogenic factor

PDGFD (Fig. 4.6 D).

Unexpectedly, the archetypal effector molecules of antitumor immune response IFNγ, GZMB,

and CXCL9 were either not detected or downregulated in tumors treated by the ICD inducer MTX,

in contrast to the supposedly less immunogenic CIS and/or OXA treatments. Therefore, their

mRNA levels may not embody relevant in vivo markers of ICD-stimulated cancer-immunity cycle in
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fibrosarcoma tumors.
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Figure 4.6: Transcriptomics profile of secreted immunomodulators of fibrosarcoma tumors treated with
CIS, OXA, and MTX.
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A. Heatmap displaying the expression of 110 genes encoding secreted factors with immunomodulatory function and
detected in MCA205 tumors 3, 10 or 22 days post-intraperitoneal injection of CIS, OXA, or MTX. Gene expression
is displayed as relative to untreated (PBS) tumor tissues. Hierarchical clustering of dysregulated mRNA based on
Euclidean distance measure. B. Volcano plot representation, incorporating all time points within each treatment, of the
transcriptomic dataset focusing on genes associated with immunomodulation. A log2FC threshold of 0.7 and an FDR of
5% were applied to highlight significant changes. C. Venn diagram showing the size of the intersection of differentially
expressed genes within all treatments, regardless of the time point. D. Stacked histograms representing the number of
time points a gene from the immunomodulation signature was found overexpressed (upper bar plot) or downregulated
(lower bar plot) for each treatment. For all timepoints and conditions: n=4. CIS, cisplatin; OXA, oxaliplatin; MTX,
mitoxantrone; CTRL, control.

Figure 4.7: Transcriptomics overlap between fibrosarcoma cells and tumors treated with the platinum
salts CIS or OXA, or the anthracycline MTX. Venn diagrams representing genesets intersections between in vivo
and in vitro experiments.

Afterward, we confronted the in vitro and in vivo data (Fig. 4.3 and 4.6) to search for markers

indicative of (an absence of) ICD induction at the malignant cell level and that would persist in the

TME. The comparison revealed 81 genes modulated upon chemotherapies at both early (hours; in

vitro) and late (days; in vivo) timepoints (Fig. 4.7). Among them, only a limited number of secreted

factors showed deregulation in both MCA205 cells and tumors. They included a downregulation of

Col6a1/a2 mRNAs upon the non-ICD inducer CIS, and a downexpression of Prl2c upon the ICD

inducer MTX (Fig. 4.7). This set of genes shows interest in predicting (lack of) immunogenicity and

will be the subject of additional in silico (e.g., GO analysis, prognostic/predictive value through public

database interrogation) and experimental investigations.

Furthermore, we observed an expression pattern of interest of the gene Prss22. Indeed, transcript
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levels of Prss22 were downregulated in vitro upon non-ICD-inducing platinum salts (Fig. 4.3 C) and

upregulated in vivo upon the ICD inducer MTX (Fig. 4.6 C). Interestingly, PRSS22 controls through

proteolytic cleavage the activation and extracellular availibility of the ICD hallmark ANXA1 [159, 99].

Thus, this gene may also embody a candidate of value to predict immunogenicity.

Collectively, our in vitro and in vivo analyses uncovered a set of immunomodulatory and TME-

reshaping secreted factors and receptors with interest to readily define tumor immunogenicity during

chemotherapeutic interventions, and thus better guide the implementation of complementary or

compensatory immunotherapeutic interventions.

1.6 Estimating the expression of receptors corresponding to the cytokines released

by MCA205 cells upon treatment.

To evaluate and validate the hypothesis of potential autocrine regulation occurring in MCA205 cells

in response to the three different compounds, we investigated the expression levels of receptors

corresponding to cytokines (see table below) identified as differentially secreted using the cytokine

array assay (see the section 1.4 of this chapter).

Ligand Full Name Gene

symbol

Receptor Full Name Gene

symbol
Interleukin-6 Il6 Interleukin-6 Receptor Il6ra
Interleukin-6 Il6 gp130 (IL6 Signal Transducer) Il6st
C-C Motif Chemokine Ligand 4 Ccl4 C-C Chemokine Receptor Type 5 Ccr5
C-C Motif Chemokine Ligand 20 Ccl20 C-C Chemokine Receptor Type 6 Ccr6
Kinase Insert Domain Receptor Kdr Vascular Endothelial Growth Factor Receptor

1

Flt1

Colony Stimulating Factor 3 Csf3 Colony Stimulating Factor 3 Receptor Csf3r
Granzyme B Gzmb Perforin 1 Prf1
C-C Motif Chemokine Ligand 5 Ccl5 C-C Chemokine Receptor Type 5 Ccr5
C-C Motif Chemokine Ligand 25 Ccl25 C-C Chemokine Receptor Type 9 Ccr9
C-X-C Motif Chemokine Ligand 1 Cxcl1 C-X-C Chemokine Receptor Type 2 Cxcr2
Adiponectin Adipoq Adiponectin Receptor 1 Adipor1
Adiponectin Adipoq Adiponectin Receptor 2 Adipor2
Tumor Necrosis Factor Ligand Superfamily

Member 11

Tnfsf11 Receptor Activator of Nuclear Factor Kappa-

B

Tnfrsf11a

C-C Motif Chemokine Ligand 4 Ccl4 C-C Chemokine Receptor Type 5 Ccr5
Inhibin Beta A Inhba Activin A Receptor Type 1B Acvr1b
C-X-C Motif Chemokine Ligand 7 Cxcl7 C-X-C Chemokine Receptor Type 2 Cxcr2
Artemin Artn GDNF Family Receptor Alpha-3 Gfra3
Artemin Artn Rearranged During Transfection Ret
C-C Motif Chemokine Ligand 20 Ccl20 C-C Chemokine Receptor Type 6 Ccr6
C-X-C Motif Chemokine Ligand 7 Cxcl7 C-X-C Chemokine Receptor Type 2 Cxcr2
Persephin Pspn GDNF Family Receptor Alpha-1 Gfra1
Persephin Pspn Rearranged During Transfection Ret
Granzyme B Gzmb Perforin 1 Prf1
C-C Motif Chemokine Ligand 19 Ccl19 C-C Chemokine Receptor Type 7 Ccr7
C-Reactive Protein Crp Fc Gamma Receptors Fcgrs
Tumor Necrosis Factor Ligand Superfamily

Member 11

Tnfsf11 Receptor Activator of Nuclear Factor Kappa-

B

Tnfrsf11a

Artemin Artn Rearranged During Transfection Ret
Artemin Artn GDNF Family Receptor Alpha-3 Gfra3
C-C Motif Chemokine Ligand 5 Ccl5 C-C Chemokine Receptor Type 5 Ccr5
Adiponectin Adipoq Adiponectin Receptor 1 Adipor1
Galectin-7 Lgals7 Adiponectin Receptor 2 Adipor2
Vascular Endothelial Growth Factor B Vegfb Solute Carrier Family 2 Member 5 Slc2a5
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Ligand Full Name Gene

symbol

Receptor Full Name Gene

symbol
C-X-C Motif Chemokine Ligand 1 Cxcl1 Fms-Related Tyrosine Kinase 1 Flt1
Cluster of Differentiation 36 Cd36 C-X-C Chemokine Receptor Type 2 Cxcr2
Protease Serine 22 Prss22 Cluster of Differentiation 36 Cd36
Lipocalin 2 Lcn2 Cluster of Differentiation 6 Cd6
Pentraxin 3 Ptx3 Lipocalin 2 Receptor Lcn2r
Hepatitis A Virus Cellular Receptor 1 Havcr1 Toll-Like Receptor 4 Tlr4
Hepatitis A Virus Cellular Receptor 1 Havcr1 Complement Component 1q C1q
Pentraxin 3 Ptx3 Fc Gamma Receptors Fcgrs
Granulin Grn T-Cell Immunoglobulin and Mucin Domain 1 Timd1
Prolactin Prl Sortilin 1 Sort1
Granulin Grn Prolactin Receptor Prlr
Pentraxin 3 Ptx3 Prolactin Receptor Prlr
Lipocalin 2 Lcn2 Low-Density Lipoprotein Receptor-Related

Protein 2

Lrp2

The table above provides an overview of the pairs ligands-receptors, and their corresponding murine gene symbols.
The list include only most relevant receptors for the ligand measured using the cytokines array (see section 1.4). CIS:
Cisplatin, OXA: Oxaliplatin, MTX: Mitoxantrone. Additional details available in Glossary section

Overall, the amplitude of differential expression in cells treated with different compounds segregates the

three treatments into two main groups: cells treated with MTX show a weaker differential expression

(both up-regulated and down-regulated) compared to the same genes in cells treated with platinum

salts (Fig. 4.8).

Interestingly, although receptor expression in cells treated with platinum salts follows a similar trend

to the ligands, some differences persist for specific receptors. Generally, these treatments induce a

down-regulation of receptor expression, with the effect becoming more pronounced over time.

For MCA205 cells treated with OXA, we observed differential expression of Adipor2 (Fig. 4.8 A,C,E)

- the receptor for Adipoq - but not Adipor1 (Fig. 4.8 B,D,F), which is up-regulated in both CIS-

and MTX-treated cells, albeit with smaller amplitude for MTX (Fig. 4.8 E). Activin A receptor type

I (Acvr1b, the receptor for Inhibin beta A Inhba) is down-regulated for all three treatments, except

in MTX-treated cells at 3 hours post-treatment (where it is weakly up-regulated) and at 6 hours

post-treatment (where no differential expression is observed).

The GDNF family receptor alpha-1 (Gfra1, which binds to Persephin Pspn) shows a similar trend for

both platinum salts (Fig. 4.8 A,C) but is mildly down-regulated in MTX-treated cells at 3 and 18

hours post-treatment (Fig. 4.8 E). On the other hand, its corresponding ligand Pspn is strongly up-

regulated in platinum salts-treated cells (Fig. 4.8 B,D) but not differentially expressed in MTX-treated

cells (Fig. 4.8 F).

The two subunits of the IL-6 receptor (Il6ra and Il6st) are both down-regulated in cells treated with

platinum salts (Fig. 4.8 A,C), while in cells treated with MTX (Fig. 4.8 E), the receptor subunits

are consistently down-regulated. In contrast, OXA-treated cells show up-regulation of Il6 at 6 and 24

hours post-treatment (logFC < 2.0, Fig. 4.8 D) . For CIS-treated cells, Il6 expression is increasingly

up-regulated from 12 hours onward (logFC > 6.0, Fig. 4.8 B), whereas for MTX-treated cells, the
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maximal differential expression amplitude is around logFC = 4.0 (Fig. 4.8 F).

The expression of Toll-like receptor 4 (Tlr4 ) follows a trend similar to Acvr1b, with increasing

differential expression over time for cells treated with platinum salts (Fig. 4.8 A,C). For MTX-

treated cells, differential expression is weaker, showing only slight up-regulation at 3 and 6 hours

post-treatment (Fig. 4.8 E), which diminishes at later time points. Similarly, tumor necrosis factor

receptor superfamily member 11a (Tnfrsf11a) is down-regulated for platinum salts (Fig. 4.8 A, C)

and exhibits a time-dependent monotonic decrease in MTX-treated cells, similar to Tlr4 (Fig. 4.8 E).

The receptor for progranulin (Grn), Sortilin 1 (Sort1 ), is down-regulated starting from 12 hours post-

treatment in cells treated with platinum salts. This trend is observed in CIS-treated cells (Fig. 4.8

A), albeit to a lesser extent than in OXA-treated cells (Fig. 4.8 C). In cells treated with OXA, a

weak up-regulation of vascular endothelial growth factor receptor 1 (Flt1 ) is detected at 18 hours

after treatment (Fig. 4.8 C). Conversely, Flt1 is down-regulated at all time points in CIS-treated cells

(except at 18 hours Fig. 4.8 A) and up-regulated in MTX-treated cells (Fig. 4.8 E).

Lastly, while Low-Density Lipoprotein Receptor-Related Protein 2 (Lrp2, a potential receptor for

Lipocalin-2 Lcn2 ) is not differentially expressed in cells treated with MTX (Fig. 4.8 E), its expression

is down-regulated in cells treated with CIS at 6, 12 and 18 hours after treatment. For cells treated

with OXA, it is down-regulated only at 18 hours after treatment.

Together, these observations provide a framework to hypothesize potential autocrine regulation

mechanisms within MCA205 cells in response to different treatments. Based on evidence in

the literature regarding receptor regulation after ligand stimulation, it is plausible that some of

these receptors, corresponding to ligands measured at the proteomic level and re-assessed at the

transcriptomic level, contribute to autocrine signaling. For example, the ligand-receptor pairs Pspn-

Gfra1 and Il6 -Il6ra/Il6st illustrate scenarios where ligand overexpression is coupled with receptor

down-regulation, suggesting their involvement in autocrine signaling dynamics.
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Figure 4.8: Timewise representation of differentially expressed genes associated with ligands released
by MCA205 cells and their conjugate receptors.Temporal representation of differential expression patterns for
ligands secreted by MCA205 cells (right) following treatment with CIS (B), OXA (D) and MTX (F) along with their
corresponding receptor expressions (A,C,E) . Cytokines identified as differentially secreted at the protein level are
analyzed at the transcriptional level to assess their gene expression. Simultaneously, the temporal expression profiles of
their respective receptors are also evaluated.
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1.7 In vivo supplementation of CCL5 and IL6, but not CCL20, seems to impede

immunogenicity of chemotherapy-treated cells

To confirm or infirm the interest of some candidates evidenced by transcriptomics and secretomics as

potential predictors of tumor immunogenicity upon chemotherapy, we performed additional functional

investigations. These assays consisted of supplementing or neutralizing some selected secreted factors

in prophylactic (i.e., vaccination with dying MCA205 cells treated in vitro followed by a challenge with

live tumor cells) or therapeutic (i.e., chemotherapy of established ectopic MCA205 tumors) settings.

Our preliminary experiments were conducted with a first selection of 3 cytokines, namely CCL5,

CCL20, and IL6. These latter were co-administered at low doses with the suspension of in vitro-treated

MCA205 cells administered subcutaneously for tumor vaccination attempts. Then, their impact on

the immunogenicity was evaluated by monitoring tumor incidence and growth (Fig. 4.9,4.10,4.11).

As previously observed, CIS and OXA-treated cells conferred poor protection against tumor

development. Supplementation of CCL5 had no impact on tumor immunogenicity upon platinum salts

(Fig. 4.9). Similarly, neither CCL20 nor IL6 supplementation impacted median tumor-free survival

and tumor growth in hosts administered with CIS and OXA-treated MCA205 cells (Fig. 4.10,4.11).

By contrast, a reduced immunogenicity of MTX-treated MCA205 cells was witnessed when the vaccine

suspension was supplemented with CCL5 (Fig. 4.9) or IL6 (Fig. 4.11), whereas CCL20 enrichment

had no impact (Fig. 4.10). Thus, these preliminary data indicate that CCL5 and IL6 production

seems to be detrimental to the immunogenicity of chemotherapy-induced cell death. The release of

CCL20 upon ICD does not appear critical to the overall immunogenicity.

Replicates of the above-described experiments, and complementary tests in vivo involving the

treatment of wild-type and cytokine-KO MCA205 tumors, in the presence or absence of systemic

or local cytokine neutralization in vivo, are required prior definite conclusion about the role of these

secreted markers in ICD. These assays will be extended to additional cancer types (e.g. colorectal

cancer, breast cancer) and candidates (e.g., PRL, PRSS22).

Ultimately, our work will identify some hallmarks of ICD readily assessable with standard molecular

techniques and that could orientate therapeutic adjustments for improved efficacy through enhanced

antitumor immune response.
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Figure 4.9: CCL5 supplementation reduces the immunogenicity of MTX-treated fibrosarcoma cells.
Individual tumor growth curves (n=10) for mice under prophylactic regimen with CIS (A), OXA (D), and MTX (G).
Following the same order, panels B,E,H illustrate mean tumor growth curves for the three conditions. Panels C, F and
I illustrate the percentage of tumor-free mice. Stats have been calculated using a linear-mixed effect model in B, E, H
and log-Rank for C, F, I. (*: 0.05 > p-val > 0.01, **: 0.01 > p-val > 0.001, ***:0.001 > p-val. CIS, cisplatin; OXA,
oxaliplatin; MTX, mitoxantrone; CTRL, control)
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Figure 4.10: Co-supplementation of CCL20 has no impact on cell immunogenicity. Individual tumor growth
curve (n=10) for CIS (A), OXA (D), and MTX (G). Following the same order, panels B,E,H illustrate mean tumor
growth curves. Panels C, F and I illustrate the percentage of tumor-free mice in mice vaccinated with CIS, OXA, and
MTX respectively. Stats have been calculated using a linear-mixed effect model B-E-H and log-Rank test C-F,I (*:
0.05 > p-val > 0.01, **: 0.01 > p-val > 0.001, ***:0.001 > p-val. CIS, cisplatin; OXA, oxaliplatin; MTX, mitoxantrone;
CTRL, control)
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Figure 4.11: Co-supplementation of IL6 impedes immunogenicity of MTX-treated fibrosarcoma cells.
Individual tumor growth curve (n=10) for CIS (A), OXA (D), MTX (G). Following the same order, panels B,E,H
illustrate mean tumor growth curves. Panels C, F and I illustrate the percentage of tumor-free mice. Stats have been
calculated using a linear-mixed effect model (*: 0.05 > p-val > 0.01, **: 0.01 > p-val > 0.001, ***:0.001 > p-val. CIS,
cisplatin; OXA, oxaliplatin; MTX, mitoxantrone; CTRL, control)
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2 Extrapolating pathway and TF activities from transcriptomic

profiles

To select additional genes to include in the model, we performed an in-depth analysis of the

transcriptomics data using dedicated algorithms.

We focused on i) longitudinal transcriptional profiling of active pathways following therapy

administration and ii) measured TF activity based on the expression of their identified target genes.

For both tasks, we used decoupler-py [10]. To complement the latter, we cross-validated our findings

about the TF activity using a dynamical time-warping algorithm (DTW) and measured similarities

between longitudinal transcriptional trajectories. This additional data analysis step is important to

evaluate the pertinence of the features and components to embed in a new model recapitulating the

differences between treatments and contributing to their immunogenicity.

2.1 Pathway analysis with ProgenY highlights a unique signature associated with

MTX.

Direct and indirect techniques can be applied to measure the activity of cellular pathways. Direct

measurement of the activation status of key proteins constituting a given pathway remains the gold

standard approach, using methods like western blotting or immunofluorescence. However, considering

the large set of genes of interest extracted from our transcriptomics analysis, we first inferred pathway

activity indirectly using bioinformatics approaches, as a prerequisite for future direct experimental

assessment.

Traditional in silico methods, like Gene Set Enrichment Analysis (GSEA), can infer the occurrence of a

biological process by detecting the expression of a set of related genes. However, they disconsider post-

translational modifications that determine actual pathway activity. As an intermediate alternative,

we applied PROGENy, a manually curated model to infer pathway activity from key gene expression

profiles. The tool consists of one of the largest pathway signature datasets available to date and allows

the evaluation of the activity of 13 cellular pathways (see section 3.2.2).

For each pathway, the assessment of their activity across all conditions and time points was summarized

in a cluster map (see Fig. 4.12 A). The clusterization segregated the MTX-treated cells from the two

platinum salt treatments (Fig.4.12 B).

Across all treatments and time points, the JAK-STAT and TP53 pathways, which control cytokine

production and stress response, respectively, appeared significantly stimulated, while the WNT and

VEGF pathways, which regulate cell adhesion and angiogenesis, respectively, were negatively regulated

(Fig.4.12 B).
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The PI3K signaling, which controls the cell cycle, decreased in activity, most notably upon CIS. The

pathways associated with the estrogen and androgen hormones, which impact cancer cell migration

and proliferation, demonstrated a repressed activity, particularly upon MTX (Fig.4.12 B).

The NFkB signaling, which controls immunity, inflammation, and stress responses, also displayed

a reduced activity at 3h before experiencing a stimulation at 6h upon each intervention, the latter

stimulation being maintained over time only in the presence of MTX (Fig.4.12 B, C).

Along this line, MTX treatment harbored contrasting activities of the MAPK, TRAIL, EGFR, and

TNFa pathways compared to the platinum salts. The MAPK cascades integrate stimuli regulating

cell proliferation, differentiation, and death. The TRAIL pathway induces apoptosis. The EGFR

signaling controls cell growth, proliferation, and survival as well as the production of pro-inflammatory

cytokines. The TNFa signaling encompasses multiple pathways, including the NFkB, PI3K, and

MAPK pathways. It controls cell demise (e.g., apoptosis or necroptosis), synthesis of inflammatory

mediators (secreted and membrane-bound), components of intracellular signaling (including receptors

and TFs), and remodeling of the extracellular matrix (Fig.4.12 B).

In detail, MCA205 cells treated with the ICD-inducing anthracycline displayed early (3-12h) and

late (>=18h) stimulation of the TNFa and MAPK pathways, respectively. Conversely, these cells

experienced concomitant down-regulation of the TRAIL and EGFR signaling (Fig.4.12 B, C).

These modulated pathway activities reflected the response to cell stress and death triggered by

chemotherapies and provided some insights into the differential secretomes observed (Fig. 4.4, Fig.

4.3). As anticipated, differential activities of the TNFa and NFkB pathways appeared associated

with the contrasting and fluctuating modulations of several secreted immunomodulators like PTX3,

CXCL1, CCL20 and IL6. By contrast, the EGFR, TRAIL, and MAPK pathways seemed less involved

in the secretion of immune regulators (Fig.4.12 C).

Overall, immunogenicity witnessed upon MTX might result from the singular dysregulations of the

activity of signaling intermediate and transcription factors controlled by the NFkB, TNFa, MAPK,

TRAIL, and EGFR pathways; the former two actively shaping the secretory signature.
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Figure 4.12: PROGENy analysis of transcriptomics data identifies a profile of pathway activity specific
to the ICD inducer MTX. A. Progeny rationale: A matrix with t-statistics of all genes for all samples is multiplied
by a matrix containing pathway signatures composed of genes. B. Clustermap summarizing the activity score associated
with the pathways available in PROGENy. Statistical significance was determined by applying the survival function
to the t-distribution of the coefficients from the linear model fitted using decoupleR.(*: 0.05 > p-val > 0.01, **:
0.01 > p-val > 0.001, ***:0.001 > p-val, for more detail see: [10]. C. Top-30 genes defining pathway signatures for
TNFa and EGFR at 12 hours, NFkB at 18 hours, and TRAIL and MAPK at 24 hours post-treatments. CIS, cisplatin;
OXA, oxaliplatin; MTX, mitoxantrone.
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2.2 Overview of the transcriptional regulation of cytokine-coding genes

To further decipher the molecular mechanisms responsible for treatment-related differences in the

secretome of MCA205, we aimed to identify some TFs that control the production of cytokines, notably

CCL4, CCL5, CCL20 and IL6, whose profile could contribute to cancer cell death immunogenicity. For

this purpose, we analyzed our transcriptomics data set using decoupleR [10] and CollecTRI [130] to

investigate the activity of TFs based on the expression of their target genes. We applied an univariate

linear model (ULM) for each sample and transcription regulator (Fig. 4.13 A).

Out of the 50 TFs harboring the strongest variation of their activity (Fig. 4.13 B), BACH2, FOXO3,

KDM5D, NANOG, JUN, and STAT3 experienced an enhanced activity upon MTX while being

repressed upon both platinum salts. Opposite effects were witnessed for ZNF316, KLF17, HDAC1,

and MAFG.

We identified 16 that are involved in the transcriptional regulation of the Ccl4, Ccl5, Ccl20, and

Il6 genes (Fig. 4.13 B). For Il6, all 16 identified TFs play a role in its transcription, with negative

regulators including FOXO3, IRF5, ATF4, BACH1, and DDIT3 (also known as CHOP), while the

others act as activators. Similarly, DDIT3 is a negative regulator of Ccl5.

Our analysis, utilizing decoupleR for TF analysis, corroborated previous findings established with

PROGENy, specifically regarding NFkB activity. For instance, the TFs NFKB1 and RELA exhibited

higher activity scores in MTX-treated samples compared to platinum salts. In contrast to MTX and

CIS, OXA treatment appeared to downregulate the activity of both NFKB1 and RELA at 24 hours.

Both TFs are integral in regulating cytokine expression, including CCL4, CCL5, CCL20, IL6, or again

CXCL10. TFs like BACH1, FOXM1, NR1D1, and FOXO3 showed distinct regulation patterns when

comparing MTX to platinum salts, influencing the control of IL6. Along this line, the TFs JUN and

STAT3 were remarkably differentiating the MTX and platinum salt treatments. The ICD inducers

MTX and OXA showed increased activity for HOXA9, ALX1, BRCA1, ZNF316, KLF17, KLF8, and

SATB2, further differentiating MTX from other treatments. Moreover, the TF activity profiles of

MTX at 3h and 6h cluster together, while those at 12h and 18h form a separate subcluster distinct

from 24h. Similarly, OXA and CIS cluster together at 3h and 6h post-treatment, segregating at 12h

with their 18h counterparts, and at 24h, both have distinct TF activity profiles. The negative activity

of E2F7 and OLIG2 for MTX at 3h highlights the differential response to treatment. Additionally,

early time points of MTX treatment show increased activity for E2F family TFs, including activators

E2F1, E2F2, and E2F3, and repressors E2F5 and E2F7. JUN and STAT3 exhibited higher activity for

MTX at all time points, with increasing values from 6h onwards. Notably, SREBF2 is active across

all treatment groups at 3h and 6h.
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Figure 4.13: Analysis of transcription factor activity using decoupleR and CollecTRI. A operating scheme
of TF-activity estimation used in decoupleR. Figure adapted from [10]. In B, the clustermap shows the activity score
for the top-50 most variable TFs. A color code on the left side of the heatmap indicates some cytokines controlled by
the TF among the list of cytokines individuated in section 1.4 (grey if no reported regulatory activity their expression).
In C, the plots show the distribution of target genes that are repressed (left) or activated (right) by a TF. Target genes
t-statistic at 24 hours for 5 TFs: RELA, NFKB1, BACH1, STAT3 and DDIT3. For every TF, the activity is calculated
by estimating the slope of the best-fitting line among t-statistic values calculated from differential expression analysis
of those genes that are repressed (weight = −1) and activated (weight = +1) by the TF. Statistical significance was
calculated with a survival function applied to the t-distribution of the coefficients of the linear model fitted with decoupleR
(*: 0.05 > p-val > 0.01, **: 0.01 > p-val > 0.001, ***:0.001 > p-val, for more detail see: [10]; TF, transcription factor;
CIS, cisplatin; OXA, oxaliplatin; MTX, mitoxantrone; CTRL, control).
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The expression of CCL20 is notably elevated in MTX-treated samples, although its protein is also

detected in the supernatant of OXA-treated MCA205 cells at 24 hours post-treatment. In the heatmap

presented in Fig. (4.13 B), Ccl20 is regulated by five of the 16 TFs (SP1, JUN, STAT3, RELA,

NFKB1), despite being regulated by at least 17 TFs within CollecTRI. Ccl5 is regulated by eight of

the 50 most active TFs, including DDDIT3, NFKB1, RELA, IRF5, IRF2, JUN, STAT3, and SP1, with

39 TFs regulating its expression overall. Ccl4, with 16 available regulators in CollecTRI, is influenced

by four highly variable TFs: NFKB1, RELA, JUN, and IRF5. IL6, the cytokine with the highest

number of regulators (128 out of 200), is influenced by 16 TFs identified with decoupleR: NFKB1,

FOXM1, DDIT3, RELA, SSRP1, IRF5, BACH1, IRF2, KAT7, ATF4, E2F3, STAT3, JUN, FOXO3,

SP1, and NR1D1. Notably, DDIT3 acts as a repressor for both MTX and CIS treatments.

Mapping these TFs onto the dataset containing transcriptomic signatures of pathways indicates a

correspondence between TFs and pathways only in the cases of the NFkB pathway (RELA, NFKB1)

and the TNFα pathway (NFKB1). Interestingly, Ccl5 and Il6 are regulated by a TF with opposing

effects: IRF5 activates Ccl5 expression but represses Il6, while literature indicates that DDDIT3

represses both cytokines. Additionally, Ccl4, also regulated by IRF5, shows up-regulation in CIS-

treated cells. IRF5 is typically activated as an NFkB target upon TLR activation by LPS or HMGB1.

A closer look at the expression of TLR-coding genes revealed constitutive expression of Tlr2, Tlr3,

and Tlr4 in MCA205 cells. For both Tlr2 and Tlr3, their expressions are comparable to the control in

both MTX and CIS-treated cells. This observation contrasts with their down-regulation upon OXA

administration

2.3 Dynamic time warping to prioritize TFs activity based on trajectory

similarities

Although CollecTRI constitutes a practical tool to infer the activity of TFs, the curated annotations

composing the backbone of the transcriptional relations dataset still contain contradictory information.

For instance, in the case of Il6 and Ddit3 (Fig. 4.13 C) multiple sources introduce discrepancies between

the possible role of Ddit3 in regulating the expression of Il6 [56, 67].

To leverage this ambiguity, we opted for a data-driven approach. Numerous algorithms and tools

have been developed to specifically assess the impact of transcription factors (TFs) on gene expression

and construct gene regulatory networks from bulk RNA-seq data. Among these, ARACNE [118]

estimates pairwise gene expression mutual information to infer regulatory relationships, while GENIE3

utilizes regression trees for the same purpose. Despite their intended robustness, these methods have

demonstrated poor performance on both experimental and simulated data [82]. Multiple benchmarking

[32, 131] of these methods revealed their inability to accurately reconstruct networks from simulated
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gene expressions, highlighting the need for an alternative method that can more effectively and reliably

perform this critical task. Consequently, we applied a more naive approach using the Dynamic Time

Warping (DTW) algorithm, a powerful tool for measuring similarity between two temporal sequences.

We assumed that a positive correlation between the expression of a TF and its corresponding target

could indicate effective transcriptional regulation, where the TF is actively driving the expression of

its target gene.

Figure 4.14: Schematization of the working principle of the DTW algorithm. A The longitudinal expression
of a TF and its target cytokines are confronted and B the cumulative cost matrix is calculated by estimating the euclidean
distance between the two trajectories at each time point.

We selected the TF pinpointed via decoupleR (Fig. 4.13 C) playing a role in the transcription of

cytokines such as Ccl4, Ccl5, Il6 and CCl20 and we extended the list of regulators from other TF-

target databases (Trrust [69] and CytReg [149]) (see table below). The inherent imbalance in the

available information on the regulation between TFs and cytokines inevitably limits our ability to

infer specific relationships for certain cytokines, such as Ccl4, which has a significantly smaller list of

known regulators compared to others. In contrast, cytokines like IL6 are influenced by a much larger

set of regulators, making it more critical to prioritize and analyze the activity of these regulators.
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List of TFs regulating the expression of Ccl4, Ccl5, Ccl20 and Il6

Cytokines TFs (sources: CollecTRI, TTrust, CytReg)

Ccl4 Atf3, Bcl6, Cebpb, Cebpe

Ccl5 Batf2, Ddit3, Fos, Hdac1, Irf1, Irf5, Irf8, Jun, Jund, Klf13, Nfkb1, Nfkb1, Rel, Rela, Spi1

Ccl20 Foxa2, Foxo1, Nr4a2, Nfkb1, Pias4, Rela, Relb, Stat3, Trim32

Il6 Ahr, Atf3, Atf4, Bcl6, Cebpb, Cebpd, Cebpe, Cebpg,Crebbp, Creb1, Ctr9, Elk1, Ep300,

Fos, Hdac1, Jun, Ddit3, Fli1, Foxo1, Foxp1, Gbx2, Irf5, Junb, Klf4, Nfat5, Nfatc3,

Nfe2l2, Nfkb1, Nr1i2, Nr4a1, Ppara, Prdm1, Rela, Relb, Smad4, Sirt1, Sp1, Sp3,

Stat1, Stat3 Stat1, Zfp64
This list includes both available interactions present in the collectTRI dataset as well as available information retrieved
from manually curated databases Trrust and CytReg

For each list of transcription factors (TFs) and their corresponding target genes, we applied the

Dynamic Time Warping (DTW) algorithm to normalized raw count matrices, measured in transcripts

per million. This approach allowed us to infer the similarity between the longitudinal transcriptomic

trajectories of TFs and their corresponding target genes under different experimental conditions.

By using the DTW algorithm, we could accurately quantify and analyze the relationships between

TFs and their target cytokines, even when their expression patterns were delayed or accelerated. The

DTW distances served as a proxy to prioritize TFs based on their role in regulating specific cytokines

according to the treatment applied.

If our hypothesis about the similarity between longitudinal expression profiles holds, then the

regulation of Il6 in CIS-treated cells would primarily be influenced by the TFs Nfkb1, Irf5, Creb1,

and Foxp1. In contrast, for MTX-treated cells, Il6 regulation appears to be driven by Stat1, Nr4a1,

Elk1, and to a lesser extent, Creb1 and Crebbp. In OXA-treated cells, Irf5 and Foxp1 seem to play a

significant role in regulating Il6 expression.

On the other hand, the regulation of Ccl5 shows less variability across conditions. The prioritization

profiles indicate that Irf8 and Rel are the major contributors in all conditions. Specifically, in CIS-

and OXA-treated cells, Klf13 plays a prominent role in regulating Ccl5 expression.

In CIS-treated cells, Ccl20 expression is regulated by Foxo1 and Stat3, both of which are known

activators of Ccl20, with some involvement from Pias4. Interestingly, while Pias4 acts as a repressor

of Ccl20 and its expression is downregulated in CIS-treated cells, the reduced signal associated with

Pias4 in MTX- and OXA-treated cells suggests it may not be actively regulating Ccl20 under these

treatments.

Lastly, Ccl4 expression appears to be uniquely affected by Bcl6, although in MTX-treated cells, Atf3
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may also be involved in Ccl4 regulation.

Figure 4.15: Prioritization of TF regulating cytokine expression by measuring similarity between
longitudinal expression profiles. For each cytokine we evaluated the similarity between its longitudinal expression
and the one of TFs that could regulate their expression. For A Il6, B Ccl5, C Ccl20, and D CCl4 we evaluated the
similarity for each pair cytokine-TF in MTX, CIS, OXA, and CTRL treated samples

3 Modeling immunogenic cell death

3.1 Motivation and limitations

Models are essential for understanding the complexity of interactions within and between cells and

can help explain why some treatments are more effective than others. By describing these processes
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in detail, we can gain valuable insights into the underlying mechanisms. Additionally, reasoning via

in silico models allows us to interpret the data obtained from experiments and propose strategies

for enhancing responses, particularly for treatments that are not inducers of immunogenic cell death

(ICD).

There are some limitations, though. First, it is important to note that the predictive power of these

computational models is somehow limited. They rely on choices made by the modeler to abstract the

knowledge that will answer the questions. These choices are related to the following questions: what

are the genes, proteins, and pathways to include; how many of these pathways are needed; which cell

types to consider?

Then, the type of data used to build and simulate these models may not fit exactly the description

of the model itself. Indeed, the data that are often used to build or personalize these models are

transcriptomics data. However, the models describe more post-transcriptional events. Thus, the

transcriptomics data can only be used as proxies for the outputs of the models.

Finally, these models allow researchers to recapitulate the different cell types, pathways, and

entities that need to be monitored and that could play a role. However, predicting the precise

targets or drug dosage is beyond the capabilities of the models presented in this thesis. To do

so, other mathematical formalisms such as ODE/PDE models for the mechanistic descriptions and

pharmacokinetics/pharmacodynamics models for the drug effect could be more appropriate.

Here, we will focus on one model of population dynamics using UPMaBoSS, and on a collection of

intracellular models of the tumor, for what we will refer to as the core model, using MaBoSS. We will

also provide an example of a 3D toy model showing how dendritic cells interact with the T cells to

differentiate into different Th cells using PhysiBoSS.
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3.2 A population model of immunogenic cell death

A model was developed in 2020 [29] to simulate cell population dynamics following a chemotherapeutic

treatment. The model describes cell-cell interactions between these cell types: Tumor cells, immature

and mature dendritic cells, naive CD4, Treg, Th1, Th2, Th17, naive CD8+ cytotoxic T cells (CTL), in

undifferentiated (preCTL) and fully differentiated states (CTL) (Fig. 4.16A). The model encompasses

52 entities including cell types, DAMPS, and diverse ligands including cytokines such as IL1B, IL2,

IL4, or IL6.

Overall, this model effectively simulates the immune response to tumor cells undergoing Immunogenic

Cell Death (ICD) and the subsequent release of DAMPs. Tumor cells undergoing ICD release DAMPs,

such as ATP, HMGB1, and CALR, which signal danger to the immune system. Immature dendritic

cells (iDCs) recognize and respond to these DAMPs, leading to their activation and maturation,

marked by increased expression of surface molecules like MHC class I and II and CD86. Activated

dendritic cells (aDCs) then migrate to the lymph nodes, where they present tumor antigens to naive

T cells (CD4+ and CD8+). This antigen presentation, along with cytokine signals, stimulates naive

CD4+ T cells to differentiate into various subsets (Th1, Th2, Th17, or regulatory T cells) and naive

CD8+ T cells to differentiate into cytotoxic T lymphocytes (CTLs). The differentiated CTLs then

migrate to the tumor site, recognize tumor cells presenting the specific antigens on their MHC class I

molecules, and induce apoptosis in these tumor cells through the release of perforin and granzymes,

effectively killing the tumor cells.

The model was simulated with UPMaBoSS [164] and allows the computation of the population size over

time in different conditions (Fig. 4.16 B-D). These simulations highlight the crucial consecutive steps

of the immune response, from the initial recognition of tumor cells to the targeting and destruction

of these cells by CTLs, emphasizing the role of dendritic cells in antigen presentation and T cell

activation, as well as the critical functions of cytokines in directing T cell differentiation.

While this model accurately describes some processes occurring along the cancer-immunity cycle, it

still lacks intracellular details. Moreover, its scope could be extended by including elements identified

through recent experiments. A portrayed description of different secretomic profiles is presented in

the previous section 1.5.

This population model could also be complemented by adding new cell types that participate in

shaping the tumor microenvironment and are affected by immunogenic cell death (ICD). Besides

dendritic cells, other immune cell populations have not been intensively studied in the context of ICD.

In silico modeling could help predict or simulate possible biological scenarios involving these additional

cell types.
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Figure 4.16: Dynamical Boolean Modeling of ICD. A model of ICD. A: the network representing DCs (purple
nodes), T cells (in green) and tumor cells interacting through DAMPs and cytokines to drive both DCs activation and
T cell differentiation. B,C,D: UPMABoSS simulations of the variable probability of being active over time. After an
early differentiation of DCs into activated DCs, T cells start differentiating and the peak of CD8+ CTLs occurs after
200 hours ( 10 days). The production of perforin is directly linked to the size of the CTL population, which decreases
soon after the decrease of differentiated CTLs. Moreover, tumor cells are killed when perforin is released by the CTLs.

This model provides information on the size of the cell populations, the expression of cytokines

produced by the different cells, and the downstream effects of a single perturbation caused by a

therapy administration. Although based on literature-based evidence, this preliminary model lacks a

precise characterization of tumor intracellular behavior in response to an ICD-inducing drug.

The current model does not include some important details: the release of the DAMPs by the

dying tumor cells is caused by DNA damage response pathways, ER stress, and mitochondrial stress.

Additionally, our recent results (see section 1.4) revealed that MCA205 cells release some cytokines

as an effect of stress induced by different compounds, even those not sharing the same mechanisms of

action.

By incorporating these additional factors, the model can enhance our understanding of the complex

interactions within the tumor microenvironment and potentially identify new therapeutic targets.

In the following section, I will present the advancement we made towards building a more complete
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model of ICD by approaching the issue from different perspectives.

3.3 The core ICD model

There is no univocal consensus on the specific processes initiating ICD, although efforts in the

classification of ICD-inducers provide a distinction between treatments according to the target of

their mechanism of action.

As illustrated in the introduction, it is still not fully understood why some stress inducers trigger

ICD while others do not or what kind of stress is necessary to trigger a specific DAMP release, and

how long this stress must be maintained. Answering these questions remains complex using either

experimental or in silico methods.

Previous efforts in describing the molecular features characterizing the entire pathway of exposure of

specific DAMPs have revealed details on "how" DAMPs are produced or released. For instance, the

pathway of CALR exposure has been well characterized in the context of ICD [138, 18, 206].

Combining experimental and in silico approaches can provide a more comprehensive understanding

of ICD and its mechanisms. For this reason, during my thesis, we developed a model of the tumor,

referred to as the core ICD model. The adjective ’core’ refers to the model trying to embody the

strictly necessary elements that characterize the most emblematic processes of ICD.

This model is currently composed of four distinct modules: the first module describes the exposure

of CALR on the cell membrane, the second represents the translocation of nuclear HMGB1 to the

cytoplasm, the third focuses on the DNA damage response, and the fourth module outlines the

activation of downstream pathways that lead to the transcription, translation, and release of cytokines

by the cancer cell. In the future, we plan to combine these modules into a comprehensive model of

early ICD. This task is difficult and will require fine-tuning of the inputs and outputs of each module.

Some pathways, such as CALR exposure and HMGB1 release, have been more extensively studied and

characterized in numerous publications. However, ICD-related research has predominantly focused on

the characterization of the components of the immune synapses that emerge from the interactions

between DAMPs released by cancer cells and the conjugate receptors on immune cells. With the

’core’ ICD model, we focus on the cancer cells, aiming to combine different sources of experimental

data and integrate the extracted information into a model of the cancer cell experiencing stress induced

by type 1 ICD-inducers, i.e., at both the DNA and ER levels.

CALR exposure module The submodule designed to represent CALR exposure on the cell surface

of cells undergoing immunogenic cell death (ICD) is constructed based on literature evidence [206].

We first built a network based on available knowledge of CALR translocation mechanisms (Fig. 4.17

A), then translated it into a MaBoSS model and simulated the effect of an ICD-inducing therapy on

107



Chapter 4. Results

CALR exposure.

The network. We defined as input, a node named ICD_inducer, whose activation is impaired with a

self-inhibitory loop. The rate-up for this node is set to 0.0, while the rate-down corresponds to the

decay rate, which reflects the inverse of a generic compound’s half-life. This self-inhibitory mechanism

models the drug’s natural degradation over time, allowing it to expire in a self-limiting manner.

In our simulation, we initiated the drug administration by initially activating the ICD_inducer, then

allowed it to progressively decay over time, simulating the gradual reduction in drug efficacy. The

negative interaction between the ICD_inducer and the Tumor node simplifies the process of cell death

induction by the ICD-inducing treatment and also affects the induction of reactive oxygen species

(ROS). The activation of the PERK pathway in response to ROS generation, or the inhibition of the

PP1-GADD34 complex, induces phosphorylation of eIF2α, promoting the unfolded protein response

(UPR) and the subsequent translocation of the PDIA3 (Erp57)-CALR complex.

The model. The initial conditions include all nodes set to 0 except for the nodes representing the tumor

cell, the ICD inducer, the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) that regulates

calcium homeostasis, and BAP31 that regulates ER homeostasis all set to 1.

We defined the rate-down of the node representing an ICD-inducing treatment to 24 hours and

simulated the behavior of the model in WT conditions. The comparison between the results of

the simulation realized on WT conditions (Fig 4.17 B) and the experimental data (Fig. 4.1 E,F)

demonstrates a qualitative agreement, though the model does not capture the specificity of different

treatment types in the simulations.

The model analysis. To validate the model, we simulated the effect of a point mutation in eIF2α

by setting both the initial condition and transition rates to 0. This mutation effectively disrupts the

machinery required for CALR translocation following ICD induction [18], resulting in its failure to be

exposed on the cell surface (Fig. 4.17 C).

Prior to its embedding within a core model of ICD, further developments of this module may require the

personalization of simulation parameters based on experimental data and the verification of eventual

cross-talking existing with the other submodules.
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Figure 4.17: CALR exposure module. A The network represents the post-translational regulations determining
the translocation of CALR in response to ER-stress induced by ICD-inducing treatments. B MaBoSS simulation on the
model initialized under wild-type (WT) conditions. The generation of ROS drives the ER stress and the consequent
phosphorylation of eIF2α. C MaBoSS simulation of the K/O on the node representing eIF2α: although the presence of
ROS and the activation of PERK, the permanent inhibition of eIF2α impairs completely the exposure of CALR.

HMGB1 release module The module relative to the release of HMGB1, encompasses the

description of the translocation of HMGB1 into the cytoplasm as a consequence of ICD induction.

The description provided by the model focuses on the effects of both DNA damage and ER stress in

promoting the deacetylation of the two NLS preventing the shuttling of HMGB1 from the nucleus to

the cytoplasm.
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The network. To support the construction of a MaBoSS model we initially built a network using

information available on the mechanistic detail of HMGB1 mobilization [31]. Additional details have

been gathered using available online post-translational interactions databases such as SIGNOR3.0

[111]. The network includes 43 nodes corresponding to elements associated with biological processes

such as DNA damage recognition, induction of apoptosis, cell cycle regulation, ER stress, and nuclear

protein translocation.

The model. The model does not detail the exocytosis processes occurring after HMGB1 reaches the

cytoplasm. Instead, it provides a snapshot of the processes following the administration of an ICD-

inducer, similar to the approach used in the CALR exposure module. Like the CALR module, this

model includes components related to the induction of apoptosis (e.g., BAX, BAK, CytC) and nodes

associated with ER stress induction (e.g., ROS). Additionally, this submodule includes nodes that

regulate cell cycle arrest (e.g., CDK1, CDK2, CDC25) following DNA damage detection and response

(e.g., ATM, ATR).

Assuming an ICD-inducing treatment that decays over 24 hours, the model simulates DNA damage

that promotes apoptosis, generates ROS, and culminates in HMGB1 mobilization. The constitutively

expressed nuclear export protein XPO1 facilitates the shuttling of HMGB1 to the cytoplasm.

The node HMGB1 represents the fraction of HMGB1 mobilized when the two nuclear localization signals

(NLS) are deacetylated, a process modeled as their deactivation due to PKC activation and SIRT1

inactivation. In this context, the NLS nodes are regulated by SIRT1 and PKC [194]. This deactivation

allows HMGB1 to be "mobilized" from the nucleus. The export of HMGB1 is mediated by XPO1,

which also regulates the nuclear localization of SIRT1. To limit XPO1 activity, its logical rule depends

on both NLS1 and NLS2.[8, 9]

The model analysis. The MaBoSS simulations for this module were conducted under both wild-type

(WT) conditions and in scenarios where treatment is absent (ICD_inducer OFF) or nuclear export is

impaired (XPO1 K/O). The initial conditions for the WT simulations include a basal level of HMGB1

(10 % ON) with the nodes representing nuclear localization signals (NLS1 and NLS2) fully active. Given

the homeostatic role of XPO1 in regulating nuclear protein export, we set the initial condition of XPO1

to be equally probable to be active or inactive (50% ON, 50% OFF). In contrast, the ICD_inducer

node, which represents the input signal initiating downstream DNA damage activation, was set to full

activation.
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Figure 4.18: HMGB1 release module. A The network represents the post-translational regulations determining
the mobilization of HMGB1 and its consequent shuttling to the cytoplasm in response to several stimuli including DNA
damage and ER-stress induced by ICD-inducing treatments. B MaBoSS simulation on the model initialized under wild-
type (WT) conditions. The deacetylation of the NLS anchoring HMGB1 in the nucleus following DNA damage induction,
with SIRT1 driving the inhibition of these nodes allows the nuclear export of HMGB1 through the activity of XPO1. C
MaBoSS simulation of scenario in which the generic IDC-inducing treatment is not active: a small fraction of HMGB1
appears to be translocated into the cytoplasm. D The simulation of the K/O of XPO1, shows that the silencing of this
component prevents the translocation of HMGB1 to the cytoplasm.

As a result, the ICD-inducing treatment first triggers a rapid activation of the DNA damage node,

which leads to a temporary deactivation of the two NLS nodes due to SIRT1 activation. This, in turn,
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results in the activation of mobilized HMGB1 (HMGB1). The subsequent activation of XPO1 facilitates

the translocation of HMGB1 to the cytoplasm.

Simulations that represent the system’s behavior in the absence of an ICD-inducing treatment (Fig.

4.18 C) reveal that a small fraction of HMGB1 still translocates to the cytoplasm even in the

absence of DNA damage or ROS. This observation suggests the presence of underlying regulatory

mechanisms that enable HMGB1 mobilization and translocation to the cytoplasm, which requires

further investigation before integration into the core ICD model.

Finally, simulations modeling the effect of a point mutation silencing XPO1 result in a complete

inhibition of HMGB1 translocation to the cytoplasm (Fig. 4.18 D).

This submodule only considered the SIRT1-dependent axis activated in response to DNA damage.

Future improvements should incorporate additional pathways leading to HMGB1 translocation, such as

the JAK/STAT pathway [114]. Furthermore, characterizing the mechanisms responsible for the release

of HMGB1 into the extracellular space will be necessary for a more comprehensive and exhaustive

model of HMGB1 release.

The DNA damage module As anticipated in chapter 1 sections 2.3.4 and 2.3.5, the three

compounds used in this study, share similar features in terms of mitochondrial stress but act differently

when inducing ER stress [120].

OXA and MTX supposedly behave similarly as they both belong to the same class of ICD-inducers

(type 1). MTX is an intercalating agent and while inducing both single-strand breaks and double-

strand breaks, it is supposed to generate ribosomal stress: its impact in causing ER stress is likely due

to NADPH cytochrome C reductase reacting with MTX and the consequent generation of ROS [48].

On the other hand, both platinum compounds interfere with DNA by forming DNA-platinum cross-

links and eventually double-(and single) strand breaks, recruiting several branches of the molecular

machinery needed for DNA repair. In addition to that, recent observations have been hypothesizing

that the administration of OXA and CIS leads to different therapeutic outcomes because of the way the

two compounds induce DNA damage. Remarkably, the ribosomal stress is also induced by oxaliplatin.

The scope of this submodule is to describe the relationships between DNA lesion detection, DNA

repair mechanism, and cell cycle regulators.

This module, in turn, is composed of two submodules related to cell cycle and DNA damage response.

The construction of the backbone network has been realized using NeKo (see section 3.3), by providing

a list of genes representative of the most relevant DNA damage response processes and some key

components of the cell cycle.

The list of genes was mainly inspired by the work of Slyskova and colleagues [158], in which they

evaluated the impact of pointwise K/O of genes contributing to DNA damage sensing and repair in
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colon cancer cell lines.

NeKo provides a first draft of a connected network but requires subsequent manual curation. It

contains several bimodal interactions inferred from Omnipath [181]. Subsequently, the draft of the

network has been manually refined, by determining the type of interactions represented by the edges

given the context using additional sources [162, 78]. Next, we removed unnecessary vertexes (i.e. dead

end target nodes not having downstream interactions with other model’s components) and manually

added a set of nodes necessary to establish a proxy for the cell cycle (e.g. CHEK1, CHEK2, CDC25A/C,

CSNK1A etc), using available information on SIGNOR3.0 [111]. We concluded by connecting the nodes

relative to the cell cycle component to those involved in DNA damage repair and creating new nodes

representing different types of DNA damage (e.g: DSB, SSB).

We introduced a node called Treatment representing a generic treatment inducing all types of DNA

damage, including double-strand break (DSB), single-strand break SSB, intra-(and inter-) strand DNA-

protein crosslinks (Intra_XLINK, Inter_XLINK). The "Treatment" node features a self-inhibitory

loop, with its rate-up set to 0.00.0, while the rate-down represents the decay rate, corresponding

to the inverse of the compound’s half-life. This self-inhibitory mechanism models the drug’s natural

degradation over time, allowing it to expire in a self-limiting manner. In our simulation, we modeled

the administration of the drug by activating it at the start and then allowing it to progressively

decay over time, reflecting the gradual reduction in its efficacy. For the simulations of Fig. 4.20, we

considered a generic compound characterized by a half-life of 24 hours.

The logical rules assigned to each node in the model have been inferred via NeKo using its default

translation rules: all positive inputs are connected with an OR gate and negative inputs with an AND

NOT. This formulation allows to switch off a node even if a single inhibitor is active.

The rules were then manually curated to account for some expected node behaviors. For instance,

the template logical rule provided by Neko for DNA repair protein RAD51 homolog 1 (RAD51) is

affected by a bimodal interaction with BRCA2 and interaction with other elements that have been

either removed from the network or whose interactions have been limited to proximal interactions. In

the case of RAD51, the original rule provided by Neko is:

RAD51 = (BRCA2 or TP53 or E2F1 or CASP3 or ABL1) & !(BRCA2 or TP53 or CASP3 or ABL1)

Interactions with both ABL1 and CASP3 have been suppressed, to limit the scope of the model to

cell cycle and DNA damage response. To simplify the logic and preserve the biological coherence [75],

the logical rule was updated and simplified in the following form:

RAD51 = (BRCA2)

To characterize the rules of nodes representing the different types of DNA damage, we considered that

these nodes are conditioned by two factors contributing to their activity, i.e., the effect of a treatment,
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Figure 4.19: DNA damage response network inferred from prior knowledge databases with NeKo. The
radial layout shows all connections inferred using Neko and the merging with the additional relations existing with nodes
representing the cell’s cycle. This network corresponds to the union of processes taking part to both cell cycle regulation
and DNA repair (top left). Nodes are colored according to the DNA repair pathway they belong to. The edges in the
network represent the signed interactions between nodes inferred using all interactions available in Omnipath: red edges
represent inhibitory effects, green stimulatory/activating effects, and yellow edges correspond to bimodal interactions
(i.e., interactions with dual assignment). The network visualization has been realized with Cytoscape.
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represented as a "Treatment" node, and the repair mechanism that corresponds to the type of damage

(e.g., logic(DSB) = Treatment & !(DSB_repair)).

These pathways activate downstream events that aim to repair the damage.

To validate the model and ensure that it could reproduce experimental observations, we personalized

the model with PROFILE [14] using expression data of 79 colon cancer cell lines retrieved from DepMap

[180]. The choice of this type of cell lines has been dictated by experimental evidence provided in

Slyskova’s work, where all experiments were conducted on colon cancer cell lines, among the most

sensitive targets for platinum salts.

We then evaluated the model’s performance by simulating the impact of individual gene knockouts

on the simulation outcomes. Specifically, we tested the knockout of 36 genes associated with various

DNA damage response pathways. These genes were part of a CRISPR K/O array used in Slyskova’s et

al. work to investigate the impairment of DNA repair mechanisms upon CIS and OXA administration

[158] (see Table 4.2).

To validate our model, we utilized the findings of Slyskova et al., who conducted gene inhibition

studies on 10 colon cancer cell lines. These studies employed various techniques, including the use

of sgRNAs targeting specific genes and a CRISPR/SpCas9 array, to identify genes whose inhibition

might impact cell viability through alterations in DNA repair mechanisms (see table below). We

initially concentrated on the DLD1 cell line, where cell viability assays were performed to evaluate

the effects of gene knockouts on DNA repair processes, particularly when the cells were treated with

oxaliplatin (Fig. 4.21 D).

DNA damage response pathway Genes

Base excision repair PARP1, XRCC1, POLB, LIG3, RPA1

Nucleotide excision repair XPC, XPA, DDB2, ERCC8, ERCC6, ERCC1,
ERCC4, ERCC5, RAD23B

Fanconi anemia pathway FANCD2, FAN1, MUS81, FANCI, FANCA,
FAAP24, SLX4, DCLRE1A, FANCM, TOPBP1

Homologous recombination DCLRE1B, RAD50, RAD51, RAD54L, BRCA1,
BRCA2, MRE11, POLR2A, NBN

Translesion synthesis REV3L

Non-homologous end-joining XRCC4, LIG4

Table 4.2: Summary of DNA damage response pathways and associated genes.

The simulations ran on WT conditions indicate that models personalized on expression data of cell

lines activate different DNA damage pathways.

In Fig. 4.20 A, to compactify the visualization of simulation results, we show stacked histograms

representing the sum of the probability of the nodes representing the different DNA repair mechanisms,
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including DSB, SSB, intra-strand and inter-strand crosslinking repair. Smaller bars indicate that DNA

lesions have been recovered earlier within the simulation. We consider that if the cells proceed through

the cell cycle and activate S and M phases, they have been able to recover the damage. This is true

if the would have turned off the nodes representing the treatment. Alternatively, it could be possible

to still go through the cell cycle and have damage maintained, which eventually would lead to mitotic

catastrophe; by observing only the activity of genes associated to the cell cycle we cannot conclude

anything on the possible occurrence of mitotic catastrophe. Thus, making the assumption that using

cell cycle phases can be used as a proxy of cell recovery (Fig. 4.20 B), we observe that several cell

lines, for which recovery from damage appears successful, have well-established cell cycle phases.

This behavior is observed in simulations personalized using expression data from C80, C84, C99, CL14,

CL40 and SNU1033 cell lines. In contrast, CL11 cell line shows activity in cell cycle phases although

DNA lesions are still present at the end of the simulations.

Overall, at the end of the simulations, most cell lines continue to exhibit significant DNA damage,

with their cell cycles appearing to be stalled in the G1 phase. Pearson correlation analysis of the final

node probabilities, across all simulations using models tailored to different cell lines (Fig. 4.20 C),

suggests that the current model structure predominantly favors non-homologous end joining (NHEJ)

for the repair of both interstrand crosslinks and double-strand breaks (DSBs), as well as homologous

recombination (HR) for interstrand crosslink repair. Although these observations seem reasonable,

they show poor concordance with experimental results from studies on colon cancer cell lines treated

with platinum salts, which identify nucleotide excision repair (NER) as the most prominent repair

pathway for these cells. This discrepancy underscores the need for a thorough revision and potential

restructuring of the model to better align with empirical data.
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Figure 4.20: DNA damage response module. A. B. C. D. Uncalibrated models in E. Top 10 cell lines recovering
from intra-strand crosslinking lesions.
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To test how the node Treatment impacts the activity of downstream nodes, we first ran (fig 4.20 D)

a simulation with all nodes set to 0, except for the node representing the treatment. In this setting,

the simulations show that some DNA repair mechanisms (such as intra-strand crosslink repair) fail to

be activated although the corresponding DNA lesion is present. Conversely, when the model’s initial

configuration is personalized to data, the intra-strand crosslink DNA repair pathway gets activated

(fig 4.20 E).

To compare the behavior of DLD1 with a cell line that exhibits different characteristics in terms of

DNA repair and cell cycle regulation, we also simulated the effects of gene knockouts using a model

personalized with expression data from the C84 cell line (Fig. 4.21 A-B). The comparison between

the simulations specific to each cell line reveals no significant effects on cell cycle regulation or DNA

repair within models personalized to a single cell line. Distinct behaviors were only observed when

comparing models based on data from different cell lines (Fig. 4.20). In the work of Slyskova et

al.[158],in order to assess the impact of the K/O of genes belonging to a certain DNA repair pathway,

cell viability has been assessed on mutant clones of DLD1 (Fig 4.21 D). Among mutants, variation in

cell viability assed experimentally can reach even 60 % while in our simulations variations are almost

neglectable.

Further analysis of transcriptomic data from in vitro experiments with MCA205 revealed highly

heterogeneous behaviors even within models personalized to untreated samples from the same

experimental group, despite differing time points. While wild-type simulations displayed some

variation in outcomes, the knockout mutants again failed to produce significant results.

These findings indicate that the model struggles to account for differences between cell lines. The

discrepancies may arise from an incomplete network structure lacking key elements, logical rules that

inadequately capture component behaviors or the personalization method’s reliance on transcriptomics

data for post-translational events. Future work will focus on refining the model to address these

limitations.
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Figure 4.21: Simulations of genes’ K/O on DLD1 and C84 cell lines do not reflect experimental evidence
and indicate poor response of the model to DNA repair related nodes Barplot representing cumulative final
states for simulations on DLD1 and C84 cell lines. In A. final state probability for nodes representing the cell cycle,
the DNA damage B. and the corresponding DNA repair mechanisms C. Regardless of the gene silenced, models’ final
states are essentially the same for both models tailored with DLD1 and C84 cell lines data. D. The figures realized by
Slyskova et al.[158], shows the impact that the K/O of a gene belonging to a certain DNA repair pathway, has on DLD1
cell line viability. Among mutants, variation in cell viability assed experimentally can reach even 60 %.

As expected, several key conclusions can be drawn. First, the model requires further refinement,

either by incorporating additional genes that could account for the experimental results observed in

the cell line or by adjusting the logical rules within the current version of the model. Additionally,

the presence of feedback mechanisms that could influence repair processes may impact the outcomes.

This aligns with challenges faced by many published Boolean models of DNA repair, where the repair

process is gradual and time-sensitive—factors that Boolean models often struggle to capture effectively

[6]. Furthermore, while the personalization method appears ill-suited for this type of data—given

that most observations are at the protein level, whereas the data used for model personalization are

transcriptomic—future improvements to the model could benefit from insights drawn from existing

models already available
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Transcriptional regulation of cytokines associated with ICD-inducers The results from

the transcription factor (TF) activity analysis provided a foundation for constructing a network

that describes the regulation of cytokine expression. The collecTRI dataset served as a reference

for determining the sign of interactions and offered a baseline for estimating TF activity from

transcriptional profiles. However, intrinsic biases and bimodal annotations within collecTRI prompted

us to consider additional methods for prioritizing TFs in regulating cytokine expression (see Section

2.3).

References to the transcriptional roles of specific TFs were drawn from the sources used in collecTRI,

and we initially constructed a network based on the 16 TFs regulating the expression of CCL4, CCL5,

CCL20, and IL6 (Fig. 4.22 A). This preliminary network was derived by first identifying the top 50

highly variable TFs across all conditions and then filtering for those involved in regulating the target

cytokines.

To refine this network, we incorporated results from a complementary analysis using the Dynamic

Time Warping (DTW) algorithm. This approach not only expanded the set of potentially active TFs

but also provided a benchmark for the observations obtained through decoupleR (see Section 2.2).

We used the DTW results, focusing on the final cost—a proxy for trajectory similarity—and filtered

interactions to the second percentile to capture the top hits for all cytokines across conditions.

The filtered results were then used to create individual visualizations of the network tailored to each

treatment (Fig. 4.22 B-D). The edge colors represent the similarity between the trajectories of the two

nodes, with lighter shades indicating higher similarity and darker shades indicating lower similarity.

In the network based on similarity profiles from CIS-treated cells, IL6 is regulated by 16 TFs, with

Stat1 and Foxo1 as the most prominent regulators, while Ccl5 expression is predominantly regulated

by Irf8.

For CIS-treated cells, filtering to the second percentile reduced the pool of TFs regulating IL6 from

42 to 17, with Stat1, Foxo1, and Crebbp as the top three hits. Similarly, for Ccl5, only 5 out of 15

TFs remained, including Irf8, Klf13, and Irf5. Ccl4 retained only Bcl6 out of 4 TFs, while Ccl20 kept

5 out of 9 TFs, with Foxo1, Stat3, Nfkb1 as well as Pias4 among the key regulators (Fig. 4.22 B). In

OXA-treated cells, filtering left 22 out of 42 TFs regulating IL6, with Stat1, Foxo1, and Ahr as the

top hits. For Ccl5, 7 out of 15 TFs were retained, including Irf8, Klf13, and Irf5. Ccl4 kept only Bcl6

out of 4 TFs, while Ccl20 retained 4 out of 9 TFs, with Foxo1, Stat3, and Pias4 as key players (Fig.

4.22 C). In MTX-treated cells, filtering left 15 out of 42 TFs for IL6, with Stat1, Cebpd, and Foxo1

as the top hits. For Ccl5, 4 out of 15 TFs remained, with Irf8, Fos, and Rel standing out. As with the

other treatments, Ccl4 retained only Bcl6 out of 4 TFs, while Ccl20 kept 5 out of 9 TFs, with Foxo1,

Nr4a2, and Stat3 as key regulators (Fig. 4.22 D).
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3. Modeling immunogenic cell death

Figure 4.22: Transcriptional regulation of cytokines associated with ICD-inducers. A Influence network
derived from CollecTRI, focusing on the top 50 most variable transcription factors (TFs) involved in regulating the
expression of cytokines CCL4, CCL5, CCL20, and IL6. B Network customized based on the similarity between expression
profiles of TFs and cytokines using data from CIS-treated samples. C Network for OXA-treated samples. D Network
for MTX-treated samples. In all networks, lighter edge colors indicate higher similarity between the connected nodes,
while darker edges represent lower similarity relationships. For all networks lighter edge colors correspond to higher
similarity between the two ends of the edge and darker colors to relationships with lower similarity. CIS, cisplatin; OXA,
oxaliplatin; MTX, mitoxantrone
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To further develop this research, these networks could be integrated into a more comprehensive model

that includes upstream regulators of the transcription factors, such as signaling pathways. These

pathways would need to be linked to the specific initiators activated by different treatments. The

resulting model, built upon these networks, could then be embedded within the core ICD model to

provide deeper insights into the regulation of cytokine expression. However, it is important to note that

post-transcriptional and translational regulation are still missing from this framework. Incorporating

these aspects is crucial for uncovering the mechanistic details of cytokine fate, such as IL6. For

example, in MTX-treated samples, IL6 expression is observed, but its release into the extracellular

space is absent (see Section 1.4). This necessary upgrade could help clarify such discrepancies and

provide a more complete understanding of cytokine regulation.

Building a network of post-translational interaction from phosphoproteome screening

Most of the information available in OmniPath includes post-translational interactions between

proteins. Therefore, the ideal input for models built using data from interaction datasets should

be estimated protein levels and phosphorylation profiles.

In this project, we conducted a phosphoproteomic screening on cell pellets treated with MTX, OXA,

and CIS (see Chapter 3, section 3.1.3). The phosphoproteome was estimated using an antibody

array to obtain a relative quantification of total protein and the phosphoprotein counterpart. The

experiment was conducted in simplicate. For each protein within the array, we measured the fold-

change with respect to the control. We applied thresholds of 0.5 and 2.0 for the fold change ratio to

identify downregulated and upregulated phosphoproteins, respectively. This approach allowed us to

identify a distinct set of proteins for each of the three treatments (CIS, OXA, and MTX), which we

then used to reconstruct a network using Neko for each of the treatment (Fig. 3.3).

Initial results from the Phospho-explorer array indicate a similar trend for both ICD inducers OXA and

MTX for tumor suppressor protien NF2 (also known as Merlin) and its phosphorylated form (Ser51)

as the most prominent result of the screening. We took the opportunity to investigate Profiling results

inherent to this phospho-protein show a strong signal in both ICD-inducers MTX and OXA, with the

latter characterized by a bigger intensity of the signal. Our focus was on the phosphoproteins that

were either significantly downregulated or upregulated in response to each treatment.

For both MTX and OXA, we identified 25 upregulated and 22 downregulated phosphoproteins.

In contrast, for cell pellets treated with CIS, we observed 3 upregulated phosphoproteins and 57

downregulated ones.

Following this, we constructed networks based on the top hits from each treatment. We obtained a

network for MTX composed of 167 nodes and 1179 edges, 159 nodes and 1164 edges for OXA, and 181

nodes and 1036 edges for CIS. Next we selected the network resulting from the intersection of these
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individual networks to identify shared or distinct signaling pathways affected by the treatments. The

resulting network contain 68 nodes and 404 edges(Fig. 4.23).
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Figure 4.23: Reference network for a model based on phosphorylation-profiles.The network constitutes the
backbone for a MaBoSS model and is the result of the intersection between networks obtained via NeKo, using up-
regulated and down-regulated phospho-proteins measured in cell pellets treated with MTX, OXA and CIS. Green edges
represent activating interactions, red inhibitory, and purple bimodal interactions.
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The network inferred from a phospho-proteomic array analysis has provided a first exploration of the

interactions between the identified phospho-proteins and other elements for which no role has been

determined in the context of immunogenic cell death (ICD). The current objective is to refine this

inferred network and develop a MaBoSS model that can be integrated into the core ICD model, thereby

providing an additional layer of information related to post-translational interactions following ICD

induction.

However, there are challenges at both experimental and modeling levels. One key difficulty lies in

validating the phosphorylation of certain proteins. On the other hand, the large number of bimodal

interactions identified using Neko requires careful adjustment and manual curation. These challenges

may slow progress, as confirming specific types of interactions could necessitate individual experiments

for each, an approach that is far from optimal.

To address this, once the top hits have been further validated, we can consider constructing a smaller,

more focused network. This network would consist of a restricted set of nodes and aim to identify

overlapping nodes with other models. Such an approach would facilitate the integration of this refined

model into a broader model that details the intracellular processes of cancer cells undergoing ICD.

3.4 A toy model of cell differentiation

This model was built in the context of a tutorial for the tool PhysiBoSS [102, 143]. The tool is a

multi-scale modeling framework embedding stochastic Boolean simulations on networks and physics-

based cell-cell interactions. The purpose of the work was to showcase its possible applications, by

implementing four different models. Among those models, we included a very simplified representation

of how naive CD4+ T cells differentiate into several subtypes. The model integrates some spatial

considerations that may appear crucial in some contexts. In this model, we defined two different

types of cells encoded as agents. Each agent can either represent a T cell, whose intracellular model

encompasses signaling pathways leading to differentiated cells, or a DC that, upon contact with T

cells, regulates their expression.

To do so we started by adapting an existing model of Boolean T cell differentiation developed by

Corral-Jara and colleagues [38] to be suitable for PhysiBoSS simulations.

Although the model of Corral-Jara was initially meant to recapitulate the transcriptional program

leading to the expression of IL-17A/F. We adapted it to describe how, upon the effect of external

stimuli, a naive T cell can differentiate into either a Type 1 helper cell (Th1), a T helper 17 cell

(Th17), or a regulatory T cell (Treg). Note that the model was booleanized to be simulated in

MaBoSS.

We developed a toy model for DCs with a small set of nodes to describe their behavior in response to
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external stimuli. This second model (4.24 A) encompasses 4 nodes: 3 inputs (Maturation, Contact,

CCL21) and 1 phenotype node (Migration).

As a general assumption for this model we assumed that under the chemoattractant effect of the CC

motif chemokine ligand 21 (CCL21), a cytokine constitutively expressed in secondary lymphoid organs

(such as lymph nodes), a population of mature DCs (mDCs) migrates to draining lymph nodes. If

the two nodes CCL21 and Maturation are active, the node Migration will be activated.

For simplicity, we created a single endothelial cell secreting CCL21 in an area representing the lymph

node. Additionally, we placed a population of T0 cells in the same area and a distant population of

dendritic cells (Fig.4.25 A). The initial state of the PhysiBoSS simulation assumes that the dendritic

cells are mature and expressing CCR7, a receptor that drives the migration of mature DCs (mDCs)

toward secondary lymphoid structures like, in this case, the lymph nodes. We then mapped the

amount of CCL21 present in the same voxel occupied by the DC to the CCL21 node in the DC model.

Activation of the CCL21 node within the DC network causes mDCs to move towards the CCL21

source, following its gradient combined with a random walk.

Once in the lymph node, DCs move randomly, as hypothesized in [7]. To achieve this, we created a

rule where the stochasticity of chemotaxis depends on the quantity of CCL21, resulting in a saturating

effect that progressively lowers migration bias as CCL21 quantity increases.

Moreover, we assumed that mDCs release a set of ligands activating the process of differentiation for

the T0 population: differentiation of T0 cells into 3 different subsets of CD4+ T cells occurs when

mDCs have reached the lymph nodes. This set of ligands included IL-12, IL-1β, as well as IL-6 or

TGF-β. Because Corral-Jara’s MaBoSS model (for T cells) already included nodes representing the

above-mentioned ligands, we made the assumption that mDCs are responsible for the production of

these ligands, but we chose to not include them in the model of DCs and instead chose to represent

them by a single node, Contact. This means that when a mDC is in contact with a T0 cell, it can

release these cytokines by activating the input nodes within the model of T cells. To stop the migration

of mDCs once they meet a T0, the node Contact inhibits the node Migration.

The migration process restarts when a T cell has differentiated. In this model, T0 serves as an input for

the contact node. PhysiBoSS considers the spatial distribution of cells, encoding contact between cells

based on the overlap of their radii. If the overlap exceeds a certain threshold, the simulator assumes

the cells are in contact receptors of the MaBoSS T cell models are activated to trigger downstream

pathways.

Since the activation of ligand nodes drives the differentiation of T0, once differentiation into other cell

types occurs, the simulator detects that the input node for the DC model (T0) is no longer active.

This triggers the resumption of migration, allowing the dendritic cell (DC) to reach other naive T cells
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and initiate their differentiation program.

The T cell model in turn includes 3 master transcription factors that are assumed to be markers of

differentiated T cells: RORgt (for Th17), FOXP3 (for Treg) and Tbet (for Th1). Based on these

nodes, we added three phenotype nodes (Th1, Treg, and Th17), that became output nodes of the

model, to provide a better representation of the different cell types. The activation of the phenotypes

is mutually exclusive.

The model was tested with various mutants to identify potential targets influencing the differentiation

probabilities of the three T cells. These mutants, introduced at the beginning of the simulation, do not

immediately trigger T0 cell differentiation but instead impact the process after contact with mDCs.

Among the mutants, we found that inhibiting API, NFKB, LCK, TCR, RAS, ITK, ERK, cFOS, cJUN, or IKK

leads to cells differentiating exclusively into Treg. Inhibition of IL1RAP, IL1R1, IL1R, FOXP3_2, or

activation of MINA results in a mix of Th1 and Th17. Inhibition of STAT1, Tbet, or PLCG produces a

mix of Treg and Th17.

We also explored the impact of modifying activation rate parameters to better control Treg proportions.

For example, lowering the activation rate of NFKB increases the proportion of Treg, while lowering the

activation rate of FOXP3_2 reduces their proportion.
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Figure 4.24: Toy model of cell differentiation: the migration of dendritic cells. A mDCs migrate to the
lymph node under the chemoattractant effect of CCL21. B Network from initial published model C PhysiBoSS graphical
interface of the model. D. Cell size population over time for the each cell type of the model
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Figure 4.25: Simulation of the T cell differentiation model in 2 and 3 dimensions. A Initial population
of T cell (gray), with an endothelial cell (pink) secreting CC21. A population of dendritic cells (blue) is attracted
towards the source of CCL21. B Upon contact, the dendritic cells trigger the receptors of the naive T cell, which start
the differentiation process according to the outputs of the intracellular model, into Treg (red), Th1 (yellow), and Th17
(green). C Simulation of the T cell differentiation with NFkB knock-out, resulting in only Treg. D Simulation of the T
cell differentiation with FOXP3 knock-out, resulting in only Th1 and Th17.

This is only a toy model to showcase the possible application of PhysiBoSS, yet it demonstrates its

potential in describing complex processes involving multiple cell types and their spatial interactions.

While the simulation results from this model are not assumed to be realistic, they show the future

possible applications of PhysiBoSS. The model incorporates spatial dimensions and intracellular

details, particularly for T cells, and serves as a significant continuation of the previous work on

the cancer-immunity cycle initiated upon ICD induction [29].

Given the multi-scale nature of these simulations, the most suitable data sources are multi-omics

paired datasets, including spatial data such as spatial proteomics (e.g., multiplexed-histology) and

spatial transcriptomics. These datasets provide essential features for configuring simulations, such

as cell phenotype, position, gene expression, and protein levels. Although the high costs of these

emerging technologies limit their availability for simulations, they embody the perfect candidates as

data sources to configure this type of simulations.
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3.5 Concluding remarks

One of the aim of this project is to develop a comprehensive model of the processes occurring

following the administration of ICD-inducing treatments that integrates multiple layers of biological

information, aiming to elucidate the complex interplay between these layers, from transcriptional to

post-transcriptional regulation. While some components, such as the two submodules describing the

manifestation of ICD hallmarks, such as CALR exposure and HMGB1 release, are nearing readiness for

integration, others—like the module representing the cellular response to DNA damage—still require

significant improvements and possibly simplification to achieve a more cohesive and functional model.

These various modules can eventually be integrated through key biological processes, including DNA

damage response, cell cycle regulation, ER stress, and apoptotic mechanisms for which overlapping

nodes facilitate their integration into a single organic model.

Throughout this section, we have highlighted the inherent challenges in validating mathematical

models against real-world data, like in the case of the DNA damage response module. Constructing

these models is a complex and labor-intensive task that cannot be easily accomplished using existing

knowledge databases alone. Although automatic network inference offers valuable support for

exploring interaction spaces within a defined set of entities, it remains a multi-step process that

demands substantial refinement before reaching maturity.

The initial ICD model, published in 2020 [29], was manually constructed and successfully reproduced

known phenomena. Despite being based on broad assumptions and lacking detailed intracellular

regulation, it provided a satisfactory framework for describing intercellular communication. The focus

of the core ICD model then shifted to detailing intracellular processes, specifically aiming to capture

both the manifestation of ICD-associated DAMPs and their relationship with DNA damage induction.

The first two submodels, "CALR exposure module" and "HMGB1 release module", were manually

curated and produced simulations that qualitatively aligned well with experimental results.

The "DNA damage module" was designed to detail processes involved in the DNA damage response,

including repair mechanisms and cell cycle regulation. Leveraging recent observations on DNA repair

pathways activated by platinum salts, we selected hallmark genes representative of each repair pathway

and used curated databases to infer networks supporting the construction of this module. However,

while the inferred network demonstrated some consistency, further refinement in both structure and

configuration is needed to adapt it into a MaBoSS model. This ongoing work will be discussed in

more detail in an upcoming article covering the construction of the core ICD model based on our in

vitro results (see Chapter 4, Section 1).

The final model presented in this section, the "toy model of cell differentiation", is part of a series of

models presented in an article currently under its second round of review in the journal "Briefings in
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Bioinformatics." This toy model represents one of the first PhysiBoSS models to include multiple cell

types. My role in this project included providing feedback on the biological coherence of the model

adaptation and collaborating on its transition from a GINsim model to its MaBoSS counterpart.
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My PhD thesis emerged from an interdisciplinary project integrating experimental and computational

approaches to model ICD. Central to this work is investigating whether ICD possesses a distinct

molecular signature, alongside a secretory profile that enhances the immunogenicity of chemotherapies.

Additionally, the research delves into the cellular pathways that regulate the secretion and release of

ICD-related DAMPs. By integrating both known and newly identified hallmarks of ICD, this research

aims to recapitulate ICD in silico, ultimately seeking to predict the immunogenicity of drugs and

improve their efficacy in immunotherapy.

This thesis started with the experimental validation of established evidence, confirming that CIS

and MTX treatments confer low and high immunogenicity, respectively, to dying murine fibrosarcoma

cancer cells. This observation, well-documented in numerous publications, provided a solid foundation

for our project. One of our initial assumptions, based on the literature, was that OXA would be

an effective chemotherapy due to its strong immunogenic potential. However, contrary to previous

reports in other cancer models identifying OXA as a potent ICD inducer, we observed only moderate

immunogenic effects in our study.

We then evaluated the extent to which standard ICD hallmarks manifested and analyzed the differences

between treatments in triggering a specific protective adaptive tumor immunity. Our findings revealed

that discrepancies in treatment efficacy were linked to variations in the magnitude and timing of CALR

surface exposure and HMGB1 release.

In the case of OXA, the observed reduction in immunogenicity and unexpected in vivo cytotoxicity

were traced to changes in its formulation, as noted by the manufacturer. This detail proved crucial,

as ICD inducers are known to exhibit a dosage effect: higher doses can lead to increased cytotoxicity

while diminishing their immunogenic potential. This phenomenon was evident for OXA in our study

with fibrosarcoma cells and has been similarly reported in the literature for colorectal cancer cells

[177].
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Given the challenges in determining the immunogenicity of therapy-induced cell death based on the

extracellular release of labile DAMPs, we aimed to identify cell-intrinsic molecular determinants

of ICD. By employing transcriptomics and proteomics approaches, this research identified a

transcriptomic signature composed of surface receptors and secreted proteins with immunomodulatory

and TME shaping activities, whose modulation correlates with the level of cancer cell immunogenicity

induced by chemotherapeutic interventions. This mRNA signature has been partially confirmed at

the proteomic level through protein screening via immunofluorescence and targeted ELISA-based

validations.

To further explore the impact of these findings, functional studies have been initiated to assess the

roles of identified markers such as IL6, CCL20, and CCL5. These investigations involved in vivo

assays, including both supplementation and neutralization of these cytokines in prophylactic and

therapeutic settings.

Preliminary results from the prophylactic regimen and co-supplementation assays revealed that the

addition of these cytokines did not enhance the immunogenicity induced by vaccination with cells

pre-treated with either ICD inducers or non-ICD inducers. Notably, in the case of CCL5, co-

supplementation reduced the immunogenicity observed when cells treated with MTX were injected,

suggesting a potential negative impact on the immune response in this context.

Moreover, our proposed signature has the potential to outcompete other secreted factors, namely type-I

IFN and CXCL10, previously reported as indicators of immunogenicity but unvalidated in the present

work in fibrosarcoma. Despite the well-acknowledged role of CXCL10 in attracting the CXCR3+

T cell mediators of antitumor immunity, especially following ICD induction [157], our analysis of

transcriptomic data retrieved from in vitro experiments revealed an upregulation of Cxcl10 across all

treatments. This observation suggests either that CXCL10 might be necessary but insufficient for

the completion of the cancer-immunity cycle triggered by ICD, or that mRNA levels do not relate to

secreted protein levels.

Additionally, we did not measure in vitro the type-I IFN response, which normally culminates into

the transcription of some genes coding chemoattractant ligands like CXCL10, across treatments.

Figure 5.1 provides a comprehensive summary of our major in vitro findings, integrating various

layers of information derived from direct measurements of protein abundances and transcripts, as well

as indirect assessments of pathway activity and potential transcriptional circuitry. This integrated

analysis suggests the presence of an autocrine loop, potentially driven by the release of factors such

as ADIPOQ, GRN, INHBA, LCN2, PTX3, TNFSF11, VEGFB, and IL6.

For each cytokine, we provided a qualitative score indicating the magnitude of its release by MCA205
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Figure 5.1: Recapitulating In Vitro Findings. The figure summarizes the results of our in vitro analyses across
several layers of biological information. The top section displays the relative abundances of cytokines released by
MCA205 cells following treatment with CIS, OXA, and MTX. Directly below, the expression levels of the corresponding
binding receptors are shown relative to the control group. The subsequent layer depicts pathway activity, with arrows
linking upstream receptors to pathways for which causal relationships have been established in the literature. Further
downstream, we list transcription factors (TFs) that are potentially influenced by these pathways. The bottom layer
illustrates the ranked contributions of each treatment to transcription factors regulating the expression of CCL4,
CCL5, CCL20, and IL6. Both TF contributions and pathway activities are derived from indirect measurements: TF
contributions are ranked using the dynamic time warping (DTW) algorithm, while pathway activities are inferred using
the ULM model with Progeny enrichment analysis. For further methodological details, please refer to Chapter 4.

cells following stimulation with MTX, OXA, or CIS, compared to untreated cells. Additionally, we

examined the expression of corresponding receptors to identify those capable of binding these secreted

factors. These results were also contextualized against the control group, with all analyses focused on

the 24-hour time point.
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Pathway activities were further summarized, highlighting downstream transcription factors that could

potentially be modulated by each pathway. Using dynamic time warping (DTW), we prioritized

the contribution of transcription factors in regulating the expression of key cytokines analyzed in this

thesis, including CCL4, CCL5, CCL20, and IL6. This enabled us to hypothesize potential contributors

to pathway activation and their relationships to the autocrine signaling of the cells.

The EGFR pathway was found to be controlled by receptors such as Adipor1, Adipor2, and Tlr4. It

displayed markedly higher activity in response to platinum salts, particularly CIS, which correlated

with increased expression of Adipor1/2 in CIS-treated cells relative to the control group.

The JAK-STAT pathway showed the highest activity in MTX-treated cells. This aligns with the

upregulation of the two subunits of the IL6 receptor (Il6st and Il6ra) and Tlr4 under these conditions.

Similarly, the MAPK pathway exhibited mild activity overall, except in cells treated with MTX,

where activity was elevated. Among its potential regulators, the IL6 receptors emerged as the most

prominent contributors.

The NF-κB pathway was previously identified as a key discriminant between treatments (MTX vs.

platinum salts). In this study, it displayed higher activity in MTX-treated cells, with upstream

receptors such as Tlr4, Il6st, Il6ra, and Tnfrsf11a upregulated in MTX conditions. This provides a

rationale for the observed pathway activation.

The PI3K pathway showed low activity in OXA-treated cells. However, most receptors influencing this

pathway were not upregulated under these conditions, except for Vascular Endothelial Growth Factor

Receptor 1 (Flt1). The TGF-β pathway demonstrated slightly increased activity in MTX-treated

cells, despite the downregulation of its controlling receptors (Lrp2 and Acvr1b) across all treatments.

Meanwhile, the TNF-α pathway exhibited moderate activity in MTX-treated cells, with its regulators

consistently upregulated under these conditions.

To further refine these observations, we also summarized the contributions of transcription factors

regulating the expression of CCL4, CCL5, CCL20, and IL6. The results of the DTW algorithm

are presented qualitatively, ranking individual transcription factor contributions. While this

framework provides valuable insights, validating these contributions would require extensive follow-up

experiments beyond the scope of this thesis.

In conclusion, this figure provides an invaluable tool for summarizing the in vitro behavior of MCA205

cells treated with MTX, OXA, and CIS, offering hypotheses on the mechanisms underlying cytokine

release and pathway regulation. This comprehensive analysis lays the groundwork for future studies

to explore the intricate dynamics of autocrine signaling and its implications in therapeutic contexts.

In vivo, the archetypal effector molecules of antitumor immune response IFNγ, GZMB, and CXCL9

were unexpectedly either not detected or downregulated in tumors treated by the ICD inducer MTX,
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in contrast to the supposedly less immunogenic CIS and/or OXA treatments. This observation echoed

the enhanced level of Ifnab mRNA in vitro upon both platinum salts but not MTX or the dysregulated

expression of Cxcl10 commented in the previous paragraph. Consequently, we hypothesize that both

type-I IFN response and CXCL10 may not serve as universal markers of ICD induction.

In examining the treatment groups, we observed that chemotherapies not only vary in the extent of

their ICD hallmark manifestations but also in the distinct secretome profiles they induce. Beyond

the recruitment of conventional dendritic cells, other immune actors responding to ligands released by

cancer cells undergoing ICD may significantly modulate the TME. While in vitro analysis of secretomes

identified cytokines likely to play a major role in ICD-induced immunity upon chemotherapy, in vivo

flow cytometry data will offer additional insights into the immune cell populations infiltrating the

tumor in response to each treatment. A retrospective comparison of the cytokine landscape with the

corresponding immune cells present at the tumor site could reveal important details about previously

understudied cell types in the context of ICD.

To further investigate the role of the identified targets in cell immunogenicity induced by

chemotherapeutic regimens, future studies will monitor ICD triggering upon neutralization of these

targets. Along this line, MCA205 cells with targeted knockouts for selected markers have been

generated. The impact of these deletions on immunogenicity will be assessed through functional

in vivo assays, allowing for direct comparisons with their wild-type counterparts. The experimental

framework has been expanded to include in vivo therapeutic and prophylactic regimens using these

genetically modified cancer cell lines. Once the role of these targets in shaping the immunogenicity of

tumor cells treated with ICD chemoinducers is confirmed, further validations in other cell lines will

be necessary.

To support our preliminary in vitro findings, we plan to conduct additional validations, focusing on

molecular targets identified through phospho-protein profiling assays. Previous attempts to validate

these targets via Western blotting were inconclusive. To gain a more comprehensive understanding, we

also intend to complete a panel of cell death assessments, including pyroptosis, necroptosis, apoptosis,

and ferroptosis. Characterizing the specific forms of cell death induced by each treatment will be

crucial for understanding the cellular mechanisms that drive cytokine production and release.

Furthermore, to deepen our understanding of the impact of ICD inducers on cancer cells and the

TME, it is crucial to investigate the spatial distribution of tumor-infiltrating immune cells. Although

this analysis was initially planned, challenges related to protocol optimization delayed our ability to

explore and characterize ICD at the spatial (histological) level during this PhD. We had intended

to use the Nanostring GeoMX digital spatial profiler to map cell and protein abundances and their

distribution across the tumor tissue. Future investigations in this direction will add another layer of
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information to the existing data.

The data gathered from this spatial analysis could also serve as a foundation for constructing and

configuring agent-based models of ICD. While this approach extends beyond the scope of this thesis,

it is increasingly relevant as we enter an era of spatially resolved molecular biology. Beyond generating

new insights into the spatial properties of biological systems, simulation tools that incorporate spatial

dimensions offer a valuable complement to experimental activities, enhancing our ability to model

complex biological processes.

Although the experimental work did not fully uncover the details regulating the processes that

may influence the immunogenicity of ICD-inducing treatments, the functional enrichment analysis

performed on the collected data provided valuable insights into the pathways activated following

treatment administration. The abundance of expression data has spurred the development of new

computational tools designed to elucidate biological processes indirectly. Notably, analyses using

decoupleR and pathway activity estimation through the manually curated dataset, Progeny, allowed us

to identify potential contributions from the NFkB, MAPK, TRAIL, and EGFR pathways in response

to ICD-inducing treatments like MTX.

While these findings have been further supported by indirect analyses, such as the estimation of TF

activity, targeted experimental validations are necessary to confirm these results. This is particularly

important given that the manually curated dataset used is limited to a restricted number of pathways.

The estimation of TF activity also provided a comprehensive overview of the downstream effects of

different treatments, revealing the specific transcriptional programs they induce. This information

proved crucial for identifying some regulators of the cytokines secreted by MCA205 cells following

treatment administration. Among the 50 most variable TF activities, 16 are known regulators of

the cytokines identified earlier to be associated with (lack of) immunogenicity. This observation

was further strengthened by additional analyses, including the estimation of similarity between

transcriptional trajectories over time using a dynamic time-warping algorithm.

Building on observations obtained directly from experiments and indirectly through functional

enrichment analysis, we sought to integrate the gathered information into a comprehensive model

that recapitulates our current understanding of ICD.

The initial effort in constructing a model focused on the intercellular communication between cancer

cells and immune cells following the induction of ICD, leading to the development of the first in silico

model of ICD [29]. However, due to my limited knowledge and time constraints, this project offered

a simplified description of the molecular mechanisms driving the cancer-immunity cycle triggered by

ICD.
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In this thesis, we focused on delving deeper into the intracellular processes occurring within cancer

cells undergoing ICD. Our goal was to build a core model of ICD that captures the intricate

interplay between the various branches of molecular machinery responsible for the manifestation of

ICD hallmarks in response to stress or damage.

To achieve this, we adopted a modular approach, developing distinct modules representing different

aspects of ICD’s classical hallmarks. One module focused on the mechanistic description of CALR

translocation from the ER to the cell surface in response to ER stress, while another modeled the

release of HMGB1, specifically its translocation from the nucleus to the cytoplasm. Simulations

of these modules aligned well with experimental observations and existing mechanistic descriptions.

Notably, these modules share several components, facilitating their integration into a future unified

model.

Given the extensive literature on the mechanisms of action of the compounds used in this

project—primarily the induction of DNA damage, although both MTX and OXA also induce ER

stress—we further developed a module to explore the interplay between chemotherapy-induced DNA

damage and downstream repair mechanisms. Driven by enthusiasm for research advancements related

to these compounds, I took the opportunity to develop a model representing DNA damage induction

and the subsequent activation of repair pathways. However, this module and its simulations revealed

the need for further refinement. Attempts to validate the model using expression data and automated

model personalization techniques were unsuccessful. Much like the myth of Icarus, my expectations

were set too high, and the model failed to perform as expected. Fortunately, existing models that

describe DNA repair processes for specific types of damage will be insightful for further refining this

module.

As a next step in developing a comprehensive representation of the processes triggered by ICD

induction, we utilized preliminary phospho-proteomics profiles (data not shown) associated with each

treatment. From these profiles, we constructed a network using the top hits and further explored

their interactors with the automatic network construction tool, Neko, to which I contributed to

its development. Although the resulting network is currently limited by intrinsic biases and the

abundance of bimodal interactions within the dataset, it holds the potential for bridging different

layers of biological information, such as pathway activity and transcriptional programs. However, it

is not yet ready for adaptation into a model.

Additionally, in preparation for integrating this network into the core ICD model, we focused on

refining a transcriptional regulation network initially based on the cytokine signature identified as

potential novel ICD-related hallmarks. By expanding the list of regulators of each cytokine, we

measured the DTW distance to assess the similarity between these TFs and their target cytokines.
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This approach allowed us to create networks personalized to each treatment type, which are promising

candidates for adaptation into simulation-ready models.

The insights gained from our analytical work have led to the formulation of new hypotheses regarding

previously unknown molecular mechanisms in the context of ICD. By measuring secreted molecules

at both the proteomic and transcriptomic levels, such as IL6 and CCL5, we were able to infer the

activity of the TFs regulating these molecules through indirect analysis. For example, we inferred

IRF8 activity in the regulation of Ccl5, drawing parallels with similar processes observed in T cells

[107]. Through pathway activity estimation using the PROGENy method, we identified pathways

likely involved in the regulation of these TFs. Notably, NFkB activity was found to be particularly

high in response to MTX and CIS treatments (see 4, section 2.1). However, to fully understand this

regulatory loop, we still need to identify the molecular mediators responsible for inducing the stress

that activates the NFkB pathway [156]. Given the experimental conditions — specifically, treated

cell cultures —several possibilities emerge, including the activation of TLR receptors following the

recognition of endogenous HMGB1, as reported in other contexts [176]. Although preliminary, these

findings illustrate the potential of a systemic approach that considers all investigated features together,

enabling the formulation of new scientific hypotheses for experimental verification. For instance, could

blocking TLR receptors on cancer cells inhibit ICD-related cytokine secretion? And how might this

impact the shaping of the TME?

This project set out with the ambitious goal of constructing a comprehensive model that captures

both the phenomenology and the intricate mechanisms underlying ICD. The complexity inherent to

nearly all biological processes is particularly pronounced in the case of ICD, making this endeavor

both challenging and fascinating.

As I progressed through this PhD thesis project, each step forward led to the emergence of new

questions about the regulation of specific processes and how to infer the full range of mechanistic

details from the initiation of ICD to its conclusion. This journey highlighted the profound complexity

of biological systems, challenging our ability to fully comprehend natural phenomena in their entirety.

While reductionist approaches have been essential in advancing science, the desire to integrate and

unify the various components of an interacting system into a cohesive framework remains a compelling

and necessary goal.

ICD has been meticulously dissected into its parts by numerous dedicated researchers, each

contributing valuable insights to our understanding of this process. This thesis aimed to begin the

integration of this collective knowledge into a systemic framework, combining established insights with

new findings derived from experiments, computational analyses, and modeling.

Looking ahead, the next objective will be to merge the refined modules into a unified model. It
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is important to recognize that capturing every single process that occurs following the induction

of ICD is humanly unfeasible, just as it would be for any other complex biological phenomenon.

However, integrating these refined modules will bring us closer to a more comprehensive and functional

representation of the key processes involved.

Transitioning from a background in physics to both experimental and computational biology was

challenging, but it fueled my curiosity and passion, driving the work I have accomplished and

motivating the research that lies ahead. Constant exposure to new experimental techniques, insights,

and findings has sparked a continual desire to learn more and to better represent the behavior of

complex systems. My background in complex systems physics has instilled in me the belief that,

through the accurate description of processes at the scale of individual model components, it is possible

to observe the emergence of systemic behaviors. This conviction continues to guide and inspire my

work in understanding the multifaceted nature of ICD.
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DNA damage response .bnd file

1 Node Treatment {

2 logic = (! Treatment );

3 rate_up = @logic ? $u_Treatment : 0;

4 rate_down = @logic ? 0 : $d_Treatment ;

5 }

6 Node DSB {

7 logic = ( Treatment & ! DSB_repair );

8 rate_up = @logic ? $u_DSB : 0;

9 rate_down = @logic ? 0 : $d_DSB ;

10 }

11 Node SSB {

12 logic = ( Treatment & ! SSB_repair );

13 rate_up = @logic ? $u_SSB : 0;

14 rate_down = @logic ? 0 : $d_SSB ;

15 }

16 Node Inter_XLINK {

17 logic = ( Treatment & ! Inter_XLINK_repair );

18 rate_up = @logic ? $u_Inter_XLINK : 0;

19 rate_down = @logic ? 0 : $d_Inter_XLINK ;

20 }

21 Node Intra_XLINK {

22 logic = ( Treatment & ! Intra_XLINK_repair );

23 rate_up = @logic ? $u_Intra_XLINK : 0;

24 rate_down = @logic ? 0 : $d_Intra_XLINK ;

25 }

26 Node Inter_XLINK_repair {

27 logic = (! NHEJ & !GGNER & !TCNER & HR) | (! NHEJ & !GGNER & TCNER) | (! NHEJ &

GGNER) | (NHEJ);

28 rate_up = @logic ? $u_Inter_XLINK_repair : 0;

29 rate_down = @logic ? 0 : $d_Inter_XLINK_repair ;

30 }

31 Node Intra_XLINK_repair {

32 logic = (! GGNER & TCNER) | (GGNER);
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33 rate_up = @logic ? $u_Intra_XLINK_repair : 0;

34 rate_down = @logic ? 0 : $d_Intra_XLINK_repair ;

35 }

36 Node DSB_repair {

37 logic = (! NHEJ & HR) | (NHEJ);

38 rate_up = @logic ? $u_DSB_repair : 0;

39 rate_down = @logic ? 0 : $d_DSB_repair ;

40 }

41 Node SSB_repair {

42 logic = (BER);

43 rate_up = @logic ? $u_SSB_repair : 0;

44 rate_down = @logic ? 0 : $d_SSB_repair ;

45 }

46 Node RPA {

47 logic = ( Intra_XLINK );

48 rate_up = @logic ? $u_RPA : 0;

49 rate_down = @logic ? 0 : $d_RPA ;

50 }

51 Node CSA {

52 logic = ( Intra_XLINK );

53 rate_up = @logic ? $u_CSA : 0;

54 rate_down = @logic ? 0 : $d_CSA ;

55 }

56 Node CSB {

57 logic = ( Intra_XLINK );

58 rate_up = @logic ? $u_CSB : 0;

59 rate_down = @logic ? 0 : $d_CSB ;

60 }

61 Node POLR2A {

62 logic = ( Intra_XLINK & POLR2A );

63 rate_up = @logic ? $u_POLR2A : 0;

64 rate_down = @logic ? 0 : $d_POLR2A ;

65 }

66 Node Comp911 {

67 logic = (SSB);

68 rate_up = @logic ? $u_Comp911 : 0;

69 rate_down = @logic ? 0 : $d_Comp911 ;

70 }

71 Node TOPBP1 {

72 logic = (SSB);

73 rate_up = @logic ? $u_TOPBP1 : 0;

74 rate_down = @logic ? 0 : $d_TOPBP1 ;

75 }

76 Node PARP1 {

77 logic = (SSB);

78 rate_up = @logic ? $u_PARP1 : 0;

79 rate_down = @logic ? 0 : $d_PARP1 ;
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80 }

81 Node gH2AX {

82 logic = (DSB);

83 rate_up = @logic ? $u_gH2AX : 0;

84 rate_down = @logic ? 0 : $d_gH2AX ;

85 }

86 Node TP53BP1 {

87 logic = (DSB);

88 rate_up = @logic ? $u_TP53BP1 : 0;

89 rate_down = @logic ? 0 : $d_TP53BP1 ;

90 }

91 Node FANCM {

92 logic = ( Inter_XLINK & FAAP24 );

93 rate_up = @logic ? $u_FANCM : 0;

94 rate_down = @logic ? 0 : $d_FANCM ;

95 }

96 Node MRE11 {

97 logic = (MRE11);

98 rate_up = @logic ? $u_MRE11 : 0;

99 rate_down = @logic ? 0 : $d_MRE11 ;

100 }

101 Node RAD50 {

102 logic = (RAD50);

103 rate_up = @logic ? $u_RAD50 : 0;

104 rate_down = @logic ? 0 : $d_RAD50 ;

105 }

106 Node NBS1 {

107 logic = (NBS1);

108 rate_up = @logic ? $u_NBS1 : 0;

109 rate_down = @logic ? 0 : $d_NBS1 ;

110 }

111 Node ATM {

112 logic = (! gH2AX & ! TP53BP1 & !MRE11 & !ATR & XPC) | (! gH2AX & ! TP53BP1 & !MRE11 &

ATR) |

113 (! gH2AX & ! TP53BP1 & MRE11 & !RAD50 & !ATR & XPC) | (! gH2AX & ! TP53BP1 & MRE11 & !

RAD50 & ATR) |

114 (! gH2AX & ! TP53BP1 & MRE11 & RAD50 & !NBS1 & !ATR & XPC) |

115 (! gH2AX & ! TP53BP1 & MRE11 & RAD50 & !NBS1 & ATR) |

116 (! gH2AX & ! TP53BP1 & MRE11 & RAD50 & NBS1) |

117 (! gH2AX & TP53BP1 ) | (gH2AX);

118 rate_up = @logic ? $u_ATM : 0;

119 rate_down = @logic ? 0 : $d_ATM ;

120 }

121 Node ATR {

122 logic = (! RPA & ! POLR2A & ! Comp911 & ! TOPBP1 & DDB2) | (! RPA & ! POLR2A & ! Comp911

& TOPBP1 ) | (! RPA & ! POLR2A & Comp911 ) | (! RPA & POLR2A ) | (RPA);

123 rate_up = @logic ? $u_ATR : 0;

157



Annexes

124 rate_down = @logic ? 0 : $d_ATR ;

125 }

126 Node CHEK1 {

127 logic = (! RPA & ! Comp911 & ! TOPBP1 & ATR) | (! RPA & ! Comp911 & TOPBP1 ) | (! RPA &

Comp911 ) | (RPA);

128 rate_up = @logic ? $u_CHEK1 : 0;

129 rate_down = @logic ? 0 : $d_CHEK1 ;

130 }

131 Node CHEK2 {

132 logic = (ATM);

133 rate_up = @logic ? $u_CHEK2 : 0;

134 rate_down = @logic ? 0 : $d_CHEK2 ;

135 }

136 Node CDC25A {

137 logic = (! CHEK2);

138 rate_up = @logic ? $u_CDC25A : 0;

139 rate_down = @logic ? 0 : $d_CDC25A ;

140 }

141 Node CDC25C {

142 logic = (! CHEK1);

143 rate_up = @logic ? $u_CDC25C : 0;

144 rate_down = @logic ? 0 : $d_CDC25C ;

145 }

146 Node TP53 {

147 logic = (! ATM & !CHEK2 & !MDM2 & CDK2) | (! ATM & CHEK2 & !MDM2) | (ATM & !MDM2);

148 rate_up = @logic ? $u_TP53 : 0;

149 rate_down = @logic ? 0 : $d_TP53 ;

150 }

151 Node MDM2 {

152 logic = (! ATM & !ATR & TP53);

153 rate_up = @logic ? $u_MDM2 : 0;

154 rate_down = @logic ? 0 : $d_MDM2 ;

155 }

156 Node CSNK1A {

157 logic = (TP53 & ! CSNK1A );

158 rate_up = @logic ? $u_CSNK1A : 0;

159 rate_down = @logic ? 0 : $d_CSNK1A ;

160 }

161 Node CDKN1B {

162 logic = (CDK6 & !CDK2);

163 rate_up = @logic ? $u_CDKN1B : 0;

164 rate_down = @logic ? 0 : $d_CDKN1B ;

165 }

166 Node CDK4 {

167 logic = (! CSNK1A & CCND1);

168 rate_up = @logic ? $u_CDK4 : 0;

169 rate_down = @logic ? 0 : $d_CDK4 ;
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170 }

171 Node CDK6 {

172 logic = (! CSNK1A );

173 rate_up = @logic ? $u_CDK6 : 0;

174 rate_down = @logic ? 0 : $d_CDK6 ;

175 }

176 Node CDK1 {

177 logic = ( CDC25C & ! CSNK1A & !WEE1);

178 rate_up = @logic ? $u_CDK1 : 0;

179 rate_down = @logic ? 0 : $d_CDK1 ;

180 }

181 Node CDK2 {

182 logic = (! CDC25A & !WEE1 & CCNE1) | ( CDC25A & !WEE1);

183 rate_up = @logic ? $u_CDK2 : 0;

184 rate_down = @logic ? 0 : $d_CDK2 ;

185 }

186 Node AURKA {

187 logic = (TPX2);

188 rate_up = @logic ? $u_AURKA : 0;

189 rate_down = @logic ? 0 : $d_AURKA ;

190 }

191 Node TPX2 {

192 logic = (AURKA);

193 rate_up = @logic ? $u_TPX2 : 0;

194 rate_down = @logic ? 0 : $d_TPX2 ;

195 }

196 Node PLK1 {

197 logic = (CDK1 & CDK2 & AURKA & CCNA2);

198 rate_up = @logic ? $u_PLK1 : 0;

199 rate_down = @logic ? 0 : $d_PLK1 ;

200 }

201 Node WEE1 {

202 logic = (CHEK1 & !PLK1);

203 rate_up = @logic ? $u_WEE1 : 0;

204 rate_down = @logic ? 0 : $d_WEE1 ;

205 }

206 Node G1 {

207 logic = (CCND1 & !CCNA2);

208 rate_up = @logic ? $u_G1 : 0;

209 rate_down = @logic ? 0 : $d_G1;

210 }

211 Node S {

212 logic = (! CCNA2 & CCNE1) | (CCNA2);

213 rate_up = @logic ? $u_S : 0;

214 rate_down = @logic ? 0 : $d_S;

215 }

216 Node G2_M {
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217 logic = (CCNB1);

218 rate_up = @logic ? $u_G2_M : 0;

219 rate_down = @logic ? 0 : $d_G2_M ;

220 }

221 Node CCND1 {

222 logic = (! CCNA2 & !CCNB1 & !CCNE1);

223 rate_up = @logic ? $u_CCND1 : 0;

224 rate_down = @logic ? 0 : $d_CCND1 ;

225 }

226 Node CCNA2 {

227 logic = (CDK2);

228 rate_up = @logic ? $u_CCNA2 : 0;

229 rate_down = @logic ? 0 : $d_CCNA2 ;

230 }

231 Node CCNB1 {

232 logic = (! CDC25A & CDC25C & ! CSNK1A & CCNA2) | ( CDC25A & ! CSNK1A & CCNA2);

233 rate_up = @logic ? $u_CCNB1 : 0;

234 rate_down = @logic ? 0 : $d_CCNB1 ;

235 }

236 Node CCNE1 {

237 logic = (CDK2 & !CCNB1);

238 rate_up = @logic ? $u_CCNE1 : 0;

239 rate_down = @logic ? 0 : $d_CCNE1 ;

240 }

241 Node XRCC1 {

242 logic = (PARP1);

243 rate_up = @logic ? $u_XRCC1 : 0;

244 rate_down = @logic ? 0 : $d_XRCC1 ;

245 }

246 Node POLB {

247 logic = (XRCC1);

248 rate_up = @logic ? $u_POLB : 0;

249 rate_down = @logic ? 0 : $d_POLB ;

250 }

251 Node XPC {

252 logic = (! ATR & DDB2) | (ATR);

253 rate_up = @logic ? $u_XPC : 0;

254 rate_down = @logic ? 0 : $d_XPC ;

255 }

256 Node DDB2 {

257 logic = ( Inter_XLINK & TP53 & DDB2);

258 rate_up = @logic ? $u_DDB2 : 0;

259 rate_down = @logic ? 0 : $d_DDB2 ;

260 }

261 Node ERCC6 {

262 logic = (ERCC6);

263 rate_up = @logic ? $u_ERCC6 : 0;
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264 rate_down = @logic ? 0 : $d_ERCC6 ;

265 }

266 Node ERCC5 {

267 logic = (ERCC5);

268 rate_up = @logic ? $u_ERCC5 : 0;

269 rate_down = @logic ? 0 : $d_ERCC5 ;

270 }

271 Node XPA {

272 logic = (! ATR & ERCC8) | (ATR);

273 rate_up = @logic ? $u_XPA : 0;

274 rate_down = @logic ? 0 : $d_XPA ;

275 }

276 Node ERCC1 {

277 logic = (XPA);

278 rate_up = @logic ? $u_ERCC1 : 0;

279 rate_down = @logic ? 0 : $d_ERCC1 ;

280 }

281 Node ERCC8 {

282 logic = (ERCC8);

283 rate_up = @logic ? $u_ERCC8 : 0;

284 rate_down = @logic ? 0 : $d_ERCC8 ;

285 }

286 Node ERCC4 {

287 logic = (! XPA & SLX4) | (XPA);

288 rate_up = @logic ? $u_ERCC4 : 0;

289 rate_down = @logic ? 0 : $d_ERCC4 ;

290 }

291 Node FANCD2 {

292 logic = (! ATM & !ATR & BRCA1) | (! ATM & ATR) | (ATM);

293 rate_up = @logic ? $u_FANCD2 : 0;

294 rate_down = @logic ? 0 : $d_FANCD2 ;

295 }

296 Node FAN1 {

297 logic = ( FANCD2 );

298 rate_up = @logic ? $u_FAN1 : 0;

299 rate_down = @logic ? 0 : $d_FAN1 ;

300 }

301 Node MUS81 {

302 logic = (! DCLRE1B & RAD54L ) | ( DCLRE1B );

303 rate_up = @logic ? $u_MUS81 : 0;

304 rate_down = @logic ? 0 : $d_MUS81 ;

305 }

306 Node FANCI {

307 logic = (! ATM & ATR) | (ATM);

308 rate_up = @logic ? $u_FANCI : 0;

309 rate_down = @logic ? 0 : $d_FANCI ;

310 }
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311 Node FANCA {

312 logic = (! ATM & !ATR & FAAP24 ) | (! ATM & ATR) | (ATM);

313 rate_up = @logic ? $u_FANCA : 0;

314 rate_down = @logic ? 0 : $d_FANCA ;

315 }

316 Node FAAP24 {

317 logic = ( FAAP24 );

318 rate_up = @logic ? $u_FAAP24 : 0;

319 rate_down = @logic ? 0 : $d_FAAP24 ;

320 }

321 Node SLX4 {

322 logic = (! ATM & FANCD2 ) | (ATM);

323 rate_up = @logic ? $u_SLX4 : 0;

324 rate_down = @logic ? 0 : $d_SLX4 ;

325 }

326 Node DCLRE1B {

327 logic = ( DCLRE1B );

328 rate_up = @logic ? $u_DCLRE1B : 0;

329 rate_down = @logic ? 0 : $d_DCLRE1B ;

330 }

331 Node DCLRE1A {

332 logic = (! ATM & ATR) | (ATM);

333 rate_up = @logic ? $u_DCLRE1A : 0;

334 rate_down = @logic ? 0 : $d_DCLRE1A ;

335 }

336 Node RAD54L {

337 logic = ( RAD54L );

338 rate_up = @logic ? $u_RAD54L : 0;

339 rate_down = @logic ? 0 : $d_RAD54L ;

340 }

341 Node BRCA1 {

342 logic = (! RAD50 & !ATM & !ATR & !CDK4 & !CDK1 & CDK2) | (! RAD50 & !ATM & !ATR & !

CDK4 & CDK1) | (! RAD50 & !ATM & ATR & !CDK4) | (! RAD50 & ATM & !CDK4) | (

RAD50 & !CDK4);

343 rate_up = @logic ? $u_BRCA1 : 0;

344 rate_down = @logic ? 0 : $d_BRCA1 ;

345 }

346 Node BRCA2 {

347 logic = (! ATR & FANCD2 ) | (ATR);

348 rate_up = @logic ? $u_BRCA2 : 0;

349 rate_down = @logic ? 0 : $d_BRCA2 ;

350 }

351 Node RAD51 {

352 logic = (BRCA2);

353 rate_up = @logic ? $u_RAD51 : 0;

354 rate_down = @logic ? 0 : $d_RAD51 ;

355 }
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356 Node REV3L {

357 logic = (TP53);

358 rate_up = @logic ? $u_REV3L : 0;

359 rate_down = @logic ? 0 : $d_REV3L ;

360 }

361 Node MAD2L2 {

362 logic = ( MAD2L2 );

363 rate_up = @logic ? $u_MAD2L2 : 0;

364 rate_down = @logic ? 0 : $d_MAD2L2 ;

365 }

366 Node LIG4 {

367 logic = (LIG4);

368 rate_up = @logic ? $u_LIG4 : 0;

369 rate_down = @logic ? 0 : $d_LIG4 ;

370 }

371 Node LIG3 {

372 logic = (PARP1 & XRCC1);

373 rate_up = @logic ? $u_LIG3 : 0;

374 rate_down = @logic ? 0 : $d_LIG3 ;

375 }

376 Node XRCC4 {

377 logic = (XRCC4);

378 rate_up = @logic ? $u_XRCC4 : 0;

379 rate_down = @logic ? 0 : $d_XRCC4 ;

380 }

381 Node NHEJ {

382 logic = (LIG4 & XRCC4);

383 rate_up = @logic ? $u_NHEJ : 0;

384 rate_down = @logic ? 0 : $d_NHEJ ;

385 }

386 Node GGNER {

387 logic = (XPC & RAD23B );

388 rate_up = @logic ? $u_GGNER : 0;

389 rate_down = @logic ? 0 : $d_GGNER ;

390 }

391 Node TCNER {

392 logic = (CSA & CSB & POLR2A );

393 rate_up = @logic ? $u_TCNER : 0;

394 rate_down = @logic ? 0 : $d_TCNER ;

395 }

396 Node BER {

397 logic = (XRCC1 & POLB & LIG3);

398 rate_up = @logic ? $u_BER : 0;

399 rate_down = @logic ? 0 : $d_BER ;

400 }

401 Node HR {

402 logic = (BRCA1 & BRCA2 & RAD51);
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403 rate_up = @logic ? $u_HR : 0;

404 rate_down = @logic ? 0 : $d_HR;

405 }

406 Node TL {

407 logic = (REV3L & LIG4);

408 rate_up = @logic ? $u_TL : 0;

409 rate_down = @logic ? 0 : $d_TL;

410 }

411 Node FA {

412 logic = (ERCC1 & FANCD2 & FAN1 & SLX4);

413 rate_up = @logic ? $u_FA : 0;

414 rate_down = @logic ? 0 : $d_FA;

415 }

416 Node RAD23B {

417 logic = ( RAD23B );

418 rate_up = @logic ? $u_RAD23B : 0;

419 rate_down = @logic ? 0 : $d_RAD23B ;

420 }

Listing 7.1: Node Definitions

CALR exposure module .bnd file

1

2 Node ICD_inducer {

3 logic = ! ICD_inducer ;

4 rate_up = @logic ? $u_ICD_inducer : 0.0;

5 rate_down = @logic ? 0.0 : 1/24;

6 }

7

8 Node ROS {

9 logic = ( ICD_inducer );

10 rate_up = @logic ? $u_ROS : 0;

11 rate_down = @logic ? 0 : $d_ROS ;

12 }

13

14 Node iNOS {

15 logic = ( ICD_inducer );

16 rate_up = @logic ? $u_iNOS : 0;

17 rate_down = @logic ? 0 : $d_iNOS ;

18 }

19

20 Node eIF2a {

21 logic = (ROS & (PERK | ! PP1_GADD34 ));

22 rate_up = @logic ? $u_eIF2a : 0;

23 rate_down = @logic ? 0 : $d_eIF2a ;

24 }
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25

26 Node PERK {

27 logic = (ROS);

28 rate_up = @logic ? $u_PERK : 0;

29 rate_down = @logic ? 0 : $d_PERK ;

30 }

31

32 Node PP1_GADD34 {

33 logic = (eIF2a);

34 rate_up = @logic ? $u_PP1_GADD34 : 0;

35 rate_down = @logic ? 0 : $d_PP1_GADD34 ;

36 }

37

38 Node SERCA_Ca2 {

39 logic = ( ICD_inducer );

40 rate_up = @logic ? $u_SERCA_Ca2 : 0;

41 rate_down = @logic ? 0 : $d_SERCA_Ca2 ;

42 }

43

44 Node TRAIL {

45 logic = ICD_inducer & SERCA_Ca2 & PERK;

46 rate_up = @logic ? $u_TRAIL : 0.0;

47 rate_down = @logic ? 0.0 : $d_TRAIL ;

48 }

49

50 Node CASP8 {

51 logic = (TRAIL);

52 rate_up = @logic ? $u_CASP8 : 0;

53 rate_down = @logic ? 0 : $d_CASP8 ;

54 }

55

56 Node BAP31 {

57 logic = (! CASP8);

58 rate_up = @logic ? $u_BAP31 : 0;

59 rate_down = @logic ? 0 : $d_BAP31 ;

60 }

61

62 Node BAX {

63 logic = (! BAP31 & CASP8);

64 rate_up = @logic ? $u_BAX : 0;

65 rate_down = @logic ? 0 : $d_BAX ;

66 }

67

68

69 Node BAK {

70 logic = (! BAP31 & CASP8);

71 rate_up = @logic ? $u_BAK : 0;
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72 rate_down = @logic ? 0 : $d_BAK ;

73 }

74

75 Node translocation {

76 logic = (BAX & BAK & PP1_GADD34 );

77 rate_up = @logic ? $u_translocation : 0;

78 rate_down = @logic ? 0 : $d_translocation ;

79 }

80

81 Node actin {

82 logic = ( translocation );

83 rate_up = @logic ? $u_actin : 0;

84 rate_down = @logic ? 0 : $d_actin ;

85 }

86

87 Node VAMP1 {

88 logic = ( translocation & actin);

89 rate_up = @logic ? $u_VAMP1 : 0;

90 rate_down = @logic ? 0 : $d_VAMP1 ;

91 }

92

93 Node SNAP23 {

94 logic = (VAMP1 & translocation );

95 rate_up = @logic ? $u_SNAP23 : 0;

96 rate_down = @logic ? 0 : $d_SNAP23 ;

97 }

98

99 Node ERp57_CRT {

100 logic = ( SNAP23 );

101 rate_up = @logic ? $u_ERp57_CRT : 0;

102 rate_down = @logic ? 0 : $d_ERp57_CRT ;

103 }

Listing 7.2: Node Definitions

HMGB1 release module .bnd file

1

2 Node ICD_inducer {

3 logic = ! ICD_inducer ;

4 rate_up = @logic ? $u_ICD_inducer : 0.0;

5 rate_down = @logic ? 0.0 : 1/24;

6 }

7

8 Node NLS1 {

9 logic = (PKC & !SIRT1);

10 rate_up = @logic ? $u_NLS1 : 0.0;
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11 rate_down = @logic ? 0.0 : $d_NLS1 ;

12 }

13

14 Node HMGB1 {

15 logic = (! NLS2 & !NLS1 & !HMOX1);

16 rate_up = @logic ? $u_HMGB1 : 0.0;

17 rate_down = @logic ? 0.0 : $d_HMGB1 ;

18 }

19

20 Node SIRT1 {

21 logic = XPO1;

22 rate_up = @logic ? $u_SIRT1 : 0.0;

23 rate_down = @logic ? 0.0 : $d_SIRT1 ;

24 }

25

26 Node NLS2 {

27 logic = (PKC & !SIRT1);

28 rate_up = @logic ? $u_NLS2 : 0.0;

29 rate_down = @logic ? 0.0 : $d_NLS2 ;

30 }

31

32 Node PKC {

33 logic = PKC | ROS ;

34 rate_up = @logic ? $u_PKC : 0.0;

35 rate_down = @logic ? 0.0 : $d_PKC ;

36 }

37

38 Node Parp1 {

39 logic = Chk1 | ERK;

40 rate_up = @logic ? $u_Parp1 : 0.0;

41 rate_down = @logic ? 0.0 : $d_Parp1 ;

42 }

43

44 Node DNA_damage {

45 logic = ICD_inducer ;

46 rate_up = @logic ? $u_DNA_damage : 0.0;

47 rate_down = @logic ? 0.0 : $d_DNA_damage ;

48 }

49

50 Node CASP3 {

51 logic = Apoptosome & !XIAP;

52 rate_up = @logic ? $u_CASP3 : 0.0;

53 rate_down = @logic ? 0.0 : $d_CASP3 ;

54 }

55

56 Node CASP7 {

57 logic = CytC & !XIAP;
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58 rate_up = @logic ? $u_CASP7 : 0.0;

59 rate_down = @logic ? 0.0 : $d_CASP7 ;

60 }

61

62 Node XIAP {

63 logic = AKT & MOMP;

64 rate_up = @logic ? $u_XIAP : 0.0;

65 rate_down = @logic ? 0.0 : $d_XIAP ;

66 }

67

68 Node TP53 {

69 logic = (ERK & !TP53 & Mdm2) | (Parp1 & !TP53 & Mdm2) | CDK2 ;

70 rate_up = @logic ? $u_TP53 : 0.0;

71 rate_down = @logic ? 0.0 : $d_TP53 ;

72 }

73

74 Node ROS {

75 logic = Nox1 | DNA_damage ;

76 rate_up = @logic ? $u_ROS : 0.0;

77 rate_down = @logic ? 0.0 : $d_ROS ;

78 }

79

80 Node H2AX {

81 logic = ! DNA_damage & !H2AX;

82 rate_up = @logic ? $u_H2AX : 0.0;

83 rate_down = @logic ? 0.0 : $d_H2AX ;

84 }

85

86 Node Rac1 {

87 logic = Rac1 & !H2AX;

88 rate_up = @logic ? $u_Rac1 : 0.0;

89 rate_down = @logic ? 0.0 : $d_Rac1 ;

90 }

91

92 Node Noxa1 {

93 logic = Noxa1 & !H2AX;

94 rate_up = @logic ? $u_H2AX : 0.0;

95 rate_down = @logic ? 0.0 : $d_H2AX ;

96 }

97

98 Node Nox1 {

99 logic = Noxa1 & Rac1;

100 rate_up = @logic ? $u_Nox1 : 0.0;

101 rate_down = @logic ? 0.0 : $d_Nox1 ;

102 }

103

104 Node Mdm2 {
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105 logic = (TP53 & !ATM) | (AKT & !ATM) | (AKT & !ATM & TP53);

106 rate_up = @logic ? $u_Mdm2 : 0.0;

107 rate_down = @logic ? 0.0 : $d_Mdm2 ;

108 }

109

110 Node Chk1 {

111 logic = ATR;

112 rate_up = @logic ? $u_Chk1 : 0.0;

113 rate_down = @logic ? 0.0 : $d_Chk1 ;

114 }

115

116 Node ATM {

117 logic = ( DNA_damage | ATR) | (ROS & ATR);

118 rate_up = @logic ? $u_ATM : 0.0;

119 rate_down = @logic ? 0.0 : $d_ATM ;

120 }

121

122 Node ATR {

123 logic = DNA_damage ;

124 rate_up = @logic ? $u_ATR : 0.0;

125 rate_down = @logic ? 0.0 : $d_ATR ;

126 }

127

128 Node AKT {

129 logic = CASP3;

130 rate_up = @logic ? $u_AKT : 0.0;

131 rate_down = @logic ? 0.0 : $d_AKT ;

132 }

133

134 Node Chk2 {

135 logic = ATM;

136 rate_up = @logic ? $u_Chk2 : 0.0;

137 rate_down = @logic ? 0.0 : $d_Chk2 ;

138 }

139

140 Node BIM {

141 logic = CDK1 & !AKT | !ERK;

142 rate_up = @logic ? $u_BIM : 0.0;

143 rate_down = @logic ? 0.0 : $d_BIM ;

144 }

145

146 Node PUMA {

147 logic = TP53;

148 rate_up = @logic ? $u_PUMA : 0.0;

149 rate_down = @logic ? 0.0 : $d_PUMA ;

150 }

151
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152 Node ERK {

153 logic = DNA_damage ;

154 rate_up = @logic ? $u_ERK : 0.0;

155 rate_down = @logic ? 0.0 : $d_ERK ;

156 }

157

158 Node Bcl_2 {

159 logic = (! PUMA & !BIM) | Bcl_2 | Bcl_XL | ERK;

160 rate_up = @logic ? $u_Bcl_2 : 0.0;

161 rate_down = @logic ? 0.0 : $d_Bcl_2 ;

162 }

163

164 Node Bcl_XL {

165 logic = (! PUMA & Bcl_XL & !BAD & !BID) | (! BAD & !PUMA & !BID);

166 rate_up = @logic ? $u_Bcl_XL : 0.0;

167 rate_down = @logic ? 0.0 : $d_Bcl_XL ;

168 }

169

170 Node BAK {

171 logic = PUMA & ! Bcl_XL ;

172 rate_up = @logic ? $u_BAK : 0.0;

173 rate_down = @logic ? 0.0 : $d_BAK ;

174 }

175

176 Node BAD {

177 logic = Bcl_XL ;

178 rate_up = @logic ? $u_BAD : 0.0;

179 rate_down = @logic ? 0.0 : $d_BAD ;

180 }

181

182 Node BAX {

183 logic = PUMA & BID & Bcl_XL ;

184 rate_up = @logic ? $u_BAX : 0.0;

185 rate_down = @logic ? 0.0 : $d_BAX ;

186 }

187

188 Node MOMP {

189 logic = BAX | BAK;

190 rate_up = @logic ? $u_MOMP : 0.0;

191 rate_down = @logic ? 0.0 : $d_MOMP ;

192 }

193

194 Node CytC {

195 logic = MOMP;

196 rate_up = @logic ? $u_CytC : 0.0;

197 rate_down = @logic ? 0.0 : $d_CytC ;

198 }
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199

200 Node BID {

201 logic = TP53;

202 rate_up = @logic ? $u_BID : 0.0;

203 rate_down = @logic ? 0.0 : $d_BID ;

204 }

205

206 Node Apoptosome {

207 logic = CytC;

208 rate_up = @logic ? $u_Apoptosome : 0.0;

209 rate_down = @logic ? 0.0 : $d_Apoptosome ;

210 }

211

212 Node CDC25 {

213 logic = !CDK2 & (! Chk1 | !Chk2) & CDK1;

214 rate_up = @logic ? $u_CDC25 : 0.0;

215 rate_down = @logic ? 0.0 : $d_CDC25 ;

216 }

217

218 Node CDK2 {

219 logic = CDC25;

220 rate_up = @logic ? $u_CDK2 : 0.0;

221 rate_down = @logic ? 0.0 : $d_CDK2 ;

222 }

223

224 Node CDK1 {

225 logic = CDC25;

226 rate_up = @logic ? $u_CDK1 : 0.0;

227 rate_down = @logic ? 0.0 : $d_CDK1 ;

228 }

229

230 Node NFE2L2 {

231 logic = PKC & ROS;

232 rate_up = @logic ? $u_NFE2L2 : 0.0;

233 rate_down = @logic ? 0.0 : $d_NFE2L2 ;

234 }

235

236 Node HMOX1 {

237 logic = NFE2L2 ;

238 rate_up = @logic ? $u_HMOX1 : 0.0;

239 rate_down = @logic ? 0.0 : $d_HMOX1 ;

240 }

241

242 Node XPO1 {

243 logic = (NLS1 & NLS2);

244 rate_up = @logic ? $u_XPO1 : 0.0;

245 rate_down = @logic ? 0.0 : $d_XPO1 ;
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246 }

247

248 Node HMGB1_translocation {

249 logic = XPO1 & HMGB1;

250 rate_up = @logic ? $u_HMGB1_translocation : 0.0;

251 rate_down = @logic ? 0.0 : $d_HMGB1_translocation ;

252 }

Listing 7.3: Node Definitions

Mathematical proofs of MaBoSS

Lemma 1. Consider a stationary continuous time Markov process s(t). Let G(Σ, E) the graph
associated with the transition rates (transition graph). Let H(V, F ) ⊂ G a sub-graph without outgoing
edges. Let ∂V the set of nodes with an edge to H. ∀S ∈ ∂V, P[s(t) = S] = 0.

Proof. Consider the master equation applied to the sum of probabilities on V . Using the definition of
V and ∂V and the fact that the markov process is stationary:

0 =
∑
S∈V

d

dt
P[s(t) = S]

=
∑

S∈V,S′∈(V ∪∂V )
(ρS′→SP [s(t) = S′]− ρS→S′P [s(t) = S])

=
∑

S∈V,S′∈∂V

ρS′→SP[s(t) = S′]

align*
By definition of V and ∂V , ∀S′ ∈ ∂V, ∃S ∈ V such that ρS′→S is non-zero. The equation above
implies that P[s(t) = S′] = 0.

Theorem 0.1. Consider a continuous time Markov process s(t) that is stationary. Let G(Σ, E) the
graph associated with the transition rates (transition grpah). Let FG = {Φk(ϕk, ek), k = 1, ..., s} be the
set of connected component with no outcoming edges. The set {S s.th. P[s(t) = S] > 0} is the union
of some of the ϕk .

Proof. If a state S has a zero instantaneous probability P[s(t) = S], all states S′ that have a connection
S′ → S in G have also zero instantaneous probability. Demonstrable by applying the master equation
to P[s(t) = S]. Consider all states with a connection with on of the ϕk, according to lemma 1 they
have zero instantaneous probability. By applying this argument iteratively all states that are not in
ϕk have zero instantaneous probability.
If a state that belongs to one of the ϕk has a non-zero instantaneous probability, all states in ϕk have
non-zero probability.
Suppose this is not true, which means ∃S, S′ ∈ ϕk such that P[s(t) = S] = 0 and P[s(t) = S′] > 0.
Because of the definition of strongly connected component, there exists a path in Φk from S′ to
S. With this argument applied iteratively to statements at the beginning of the proof, we have a
contradiction.
Corollary 0.1. Consider a set of transition rates. Let G(Σ, E) be the graph associated with the
transition rates (transition graph). Let F = {Φk(ϕk, ek), k = 1, ..., s} be the set of connected
components with no outcoming edges- Any stationary continuous time Markov process that is
indecomposable has a support in FG

Proof. Use results of previous theorem (0.1).
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Theorem 0.2. Assume two different stationary Markov processes with the same transition rates
and same support (states with non-zero instant probabilities). If both stationary distributions are
indecomposable (i.e. associated to the same strongly connected component), they are identical.

Proof. In vector notation, let M be the transition matrix, P̃ and ˜̃P are such that

MP⃗ = ⃗̃P = 0 and
∑

µ

Pµ =
∑

µ

P̃µ = 1

Let P⃗(α) = αP⃗+(1−α)⃗̃P with α ∈ [0, 1], P⃗(α). For such α, P⃗(α) is a stationary distribution according
to M.
If α /∈ [0, 1], P⃗(α) may not be a stationary distribution. Let’s consider αm for which it holds that:

αm = maxα{α < 0 s.t. ∃µ for which P⃗(α)
µ = 0}

We know that at least there is one µ such that Pµ ̸= P̃. Moreover, since the sum of their components
always sum up to 1 by definition, there exists a ν such that Pν > P̃ν . If so it is, P(α)

ν is a linear
function of α, with positive slope and can be set to zero by negative values of α. This set of α values
exists and is finite, hence αm exists. With this definition of αm, P⃗(αm) is a stationary distribution for
M that has all positive components except one.
The support of P⃗(αm) is smaller than P⃗ and ⃗̃P, causing contradiction with the previous theorem
(0.1).

Theorem 0.3. Consider a continuous time Markov process s(t) whose initial condition has its support
in a strongly connected component with no outgoing edges ϕ. The infinite time average of instantaneous
probabilities converges to the stationary distribution associated to the same transition rates with support
in ϕ.
Proof. The average on finite time of a probability is: PT (S) ≡ 1

T

∫ T
0 dtP[s(t) = S]. In vector notation,

let M be the transition matrix, P̃(t) be P[s(t) = S] and P̃T as PT(S). By definition the components
P̃(t) are non-negative and their sum is equal to 1.
We apply M to P⃗T , therefore:

MP⃗T = 1
T

∫ T

0
dt

d

dt
P⃗T = 1

T
[P⃗T (T )− P⃗(0)]

We see that because every component of P⃗(t) is bounded, limT →∞MP⃗T = 0. Moreover, the space of
P⃗T is compact there exists a converging sub-sequence P⃗Ti , i = 1, ....
P⃗ ≡ limi→∞P⃗T , is therefore a stationary distribution associated to M . Choosing an initial condition,
instantaneous probabilities are zero for states outside ϕ: this means the support of P⃗ is in ϕ. Because
of previous theorem it exists only one stationary distribution with these features, each converging sub-
sequence of P⃗T has the same limit. P⃗T converges to the unique indecomposable stationary distribution
with its support in ϕ.

Theorem 0.4. Let s(t) a continuous time Markov process whose initial condition has its support in a
strongly connected component with no outgoing edges ϕ. The limit t→∞ of instantaneous probabilities
converges to the indecomposable stationary distribution associated to ϕ.
Proof. Using a vector notation and considering only strongly connected component ϕ of the state
space Σ, the master equation is: d

dtP⃗(t) = MP⃗(t). With statements of 0.3 we know that ∃!P⃗(0) such
that: MP⃗(0) = 0 and where P(0)

i ∈]0, 1[ ∀i = 1, ... and ∑
i Pi(0) = 1.

On top of that, any solution with an initial condition satisfying the following, Pi(0) ∈ [0, 1] ∀i = 1, ...
and ∑

i Pi(0) = 1 holds the property that: Pi(t) ∈]0, 1[ ∀i = 1, ... ∀t > 0.
Assume now the converse. Because solutions to the master equation are continuous, consider the
smallest t̃ > 0 such that ∃S̃ with P[s(t) = S̃] = 0. However we have the resulting:

d

dt
P[s(t) = S̃] =

∑
S′

ρS′→S̃P[s(t̃) = S̃′] ≥ 0

The case d
dtP[s(t) = S̃] ≥ 0 is impossible: before t̃ all instantaneous probabilities are non-negative, by

definition, and because the master equation solutions are continuous. d
dtP[s(t) = S̃] = 0 at t = t̃ and
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all states mapped to S̃ have also a zero probability.
If we apply the statement iteratively, since the system is restricted to strongly connected component,
all states have zero probability at time t̃, which is a contradiction. For t > 0, all states have non-zero
positive probability. Because the sum of probabilities is equal to one, Pi(t) ∈]0, 1[ ∀i = 1, ... ∀t > 0.
Moreover, let’s consider the spectral decomposition of M : {λi, v⃗(i)}, P⃗(0) = v⃗(i) for λi = 0.
Any solution can be expressed as ∑

i βi exp(tλi)v⃗i (if M not-diagonalizable, the exp can be multiplied
by a polynomial in t). In order to have ∑

i Pi(t) = const, one should have ∑
j vi

j = 0 for i such
that λi ̸= 0. Any solution with ∑

i Pi(t) = 1 is the linear combination of P⃗(0) and any other time
varying solution. The constant coefficient in front of time varying solutions can be set as small
as possible, such that the initial conditions of probabilities are in [0,1]. In that case, the property
Pi(t) ∈]0, 1[ ∀i = 1, ... ∀t > 0 implies that ℜλi ≤ 0 ∀λi.
To show that an oscillatory solution is impossible, (i.e. ℜλi < 0∀λi ̸= 0) we assume it is possible.
Let P⃗ = αP⃗(0) + βP⃗(s)(t) be a solution of the master equation, with P⃗(s)(t) an oscillatory solution.
For particular choices of α and β such that ∑

i Pi(t) = 1 and Pi(t) ∈]0, 1[ ∀i = 1, ... ∀t > 0. It is
possible to choose βm such that ∃(j, t̃ > 0) with Pj(t̃) = 0 and Pi(t) ∈ [0, 1] ∀i = 1, ... ∀t > 0†.
But we proved before that it is impossible, thus ℜλi < 0 for λi ̸= 0 and any time varying solution
converges to the stationary solution P⃗(0).

Corollary 0.2. For a continuous time Markov process to a finite state space, the limit t → ∞ of
instantaneous probabilities converges to a stationary distribution.
Proof. With the usual notation, we consider the spectrum of M , i.e. λi, v⃗(i). Because for every solution∑

i Pi(t) = const, ∑
j v

(i)
j = 0 for i such that: λi ̸= 0. With the same arguments of previous theorem

ℜλi < 0∀λi.
Take P⃗ = αP⃗(0) + βP⃗(s)(t) where P⃗(s)(t) is an oscillatory solution. Like we did before, we can tune
α and β such that Pj(t̃) = 0 for given j and t̃. Again all states that have non-zero transition rate to
state j have also zero probability at time t̃.
The smallest sub-graph H ⊂ G(Σ, E), containing the state j and without any incoming edges, has
nodes with zero probability at time t̃. Because there are no incoming edges, nodes probability is zero
also when t > t̃. Because of uniqueness of solutions for any system of linear differential equations,
this result can be extended to t > 0. With this argument, applying it to a state outside H, P⃗(s)(t)=0
everywhere. We can conclude that ℜλi < 0 if λi ̸= 0 and any time varying solution converges to a
stationary one.
Theorem 0.5. Consider a continuous time Markov process to a discrete state space Σ. Time average
along a single trajectory converges to a stationary distribution.
Proof. As before, consider the Markov process as a stationary one, restricting it in a single strongly
connected component with no outcoming edges: there is a finite time τ after which the trajectory
belongs to a strongly connected component with no outcoming edges. For t > τ , the trajectory also
belongs to the stationary Markov process associated with this strongly connected component with
no outcoming edges. If time average starting at τ converges, then time average starting at any time
converges to the same value.
Formally the set of trajectories represents the set of elementary events ω ∈ Ω, with the right definition
of the probability measure P on a given σ-algebra F . The stationary sequence is given by the
instantaneous probabilities P[s(ti) = S] defined on equidistant discrete time ti = v ∗ i, i = 1, ...,. In
fact the stationaritu of continuous time Markov process and definition of ti implies that the discrete
process is stationary and Markovian.
Formally a trajectory ω is a function R → Σ, t 7→ ωt and the stationary sequence is a set of random
variables N×Ω→ Σ, (ω, i) 7→ ωti . An invariant set A ∈ F is such that there exists B = B1 ×B2 × ...
with Bi ⊂ Σ, such that for all n ≥ 1, A = {ω s.th. (ωtn , ωtn+1 , ...) ∈ B}.
If B = Σ × Σ × ..., then A = Ω and P(A) = 1. Consider the biggest set B that is smaller than
Σ × Σ × .... It consists of removing one element in one of the Bi. With no loss of generality, let us
consider that B1 = Σ \ {S}. In that case A = {ωs.thωtn ̸= S,∀n ≥ 1} and using Markovianity:

P(A) = P[s(t1) ̸= S, s(t2) ̸= S, ...]
= lim

x→∞

∑
S(1)...S(n) ̸=S

P[s(t1) = S(1)]×

×P[s(t2) = S(2)|s(t1) = S(1)]×P[s(tn) = S(n)|s(tn−1) = S(n−1)]
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Using theorem (0.4), any solution of master equation has non-zero probabilities (except for the initial
condition). Because transition probabilities are computed by using solutions of the master equation,∑

S′ ̸=S
P[s(t1) = S′|s(t1) = S′′] ≤ k ≤ 1

because P[s(t1) = S′|s(t1) = S′′] ≥ 0. So, P(A) ≤ limn→∞
∑

S(1) ̸=S P[s(t1) = S(1)]kn−1 = 0 If A has
zero probability, any sub-set has also zero probability. The stationary sequence is ergodic. Applying
the ergodic theorem, time average of the stationary sequence converges to instantaneous probability
distribution. If any discrete average converges to the same distribution, continuous time average
converges also to the stationary distribution.

Theorem 0.6. Consider a set of transition rates. It is possible to construct a damped oscillatory
Markov process with these transition rates if and only if the transition matrix has at least a non-real
eigenvalue

Theorem 0.7. A transition matrix, whose transition graph has no cycle, has only real eigenvalue.

Proof. Consider a master equation:
d

dt
P[s(t) = S] =

∑
S′

{ρ(S′→S)P[s(t) = S′]− ρ(S→S′)P[s(t) = S]}

it can be expressed as:
d

dt
P[s(t) = S] +

∑
S′

ρ(S→S′)P[s(t) = S] =
∑
S′

ρ(S′→S)P[s(t) = S′]

or eventually:
d

dt
P[s(t) = S] + KP[s(t) = S] = F (t)

Then P[s(t) = S] = e−Kt +
∫ t

0 F (s)eK(s−t)ds. F (t) depends only on instantaneous probabilities of
upstream states (in the transition graph). Because the transition graph has no cycle, probabilities
of upstream states do not depend on P[s(t) = S]. Therefore, every P[s(t) = S] can be obtained
iteratively by computing it starting at states that have no in-coming edges in the transition graphs.
Because the iterative procedure consists in integrating exponential, it will never produce oscillatory
function. The transition matrix has only real eigenvalues.

Theorem 0.8. Consider a transition matrix (m × m), whose transition graph is a unique cycle with
identical transition rates. If the matrix dimension is bigger than 2 × 2, the matrix has at least one
non-real eigenvalue.

Proof. Assume we order states along the cycle, the transition matrix becomes:

M |µ,ν = δµ,ν(−ρ) + δµ,ν+1ρ forµ < m

M |µ,m = δµ,m(−ρ) + δµ,1ρ

where ρ is the transition rate. The characteristic polynomial of M is pM(λ) = (λ+ρ)m−ρm. Because
of the definition of determinant of M, the eigenvalues of M are

λk = ρei2πk/m − 1 with k = 1, .., m

Therefore if m > 2 there is at least on λk that is non-real, producing a damped oscillatory process.

Corollary 0.3. Consider a graph with at least one cycle. There exists a set of transition rates
associated with this graph, whose transition matrix has at least one non-real valued eigenvalue.

Proof. Let M0 be a transition matrix whose transition rates are identical to those associated with the
cycle of the transition graph, and all other are set to zero. According to theorem (0.8), M0 has one
non-zero eigenvalue and so has damped oscillatory solution. Consider now Mp, a perturbation of M0,
which consists in adding small transition rates associated with other links in the graph. Because any
solution of the master equation is analytic in the transition rates, a small perturbation of damped
oscillatory solution will remain ’qualitatively’ the same. Therefore Mp has also a damped oscillatory
behavior if the new transition rates are small enough. It follows that Mp has at least one non-real
eigenvalue.
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ABC - ATP-Binding Cassette: A family of
transporters that utilize ATP to translocate
substrates across cellular membranes.
ABCA1 - ATP-Binding Cassette Subfamily A
Member 1: A protein involved in the regulation
of cellular cholesterol and phospholipid efflux.
ABL1 - ABL Proto-Oncogene 1: A tyrosine
kinase involved in cell differentiation, division,
adhesion, and stress responses.
ADAMTS12 - A Disintegrin And Metalloprotease
With Thrombospondin Motifs 12: An enzyme
involved in tissue remodeling and inflammatory
processes.
ADAR - Adenosine Deaminase Acting on RNA:
An enzyme that modifies RNA molecules through
adenosine-to-inosine editing.
ADGRA2 - Adhesion G Protein-Coupled
Receptor A2: Involved in cellular adhesion and
signaling.
ADGRA3 - Adhesion G Protein-Coupled
Receptor A3: Similar to ADGRA2, plays a role in
cellular communication.
ADIPOQ - Adiponectin: A hormone secreted
by adipose tissue, involved in regulating glucose
levels and fatty acid breakdown.
ADO - Adenosine Deaminase Deficiency (ADO):
A genetic condition leading to severe combined
immunodeficiency.
ADP - Adenosine Diphosphate: A key molecule
in cellular energy metabolism and signaling.
ADRA2A - Adrenergic Receptor Alpha 2A: A
receptor involved in norepinephrine signaling and
the autonomic nervous system.
AGER - Advanced Glycation End-Product
Receptor: Plays a role in inflammatory and
oxidative stress responses.
AGER8 - Variant of the AGER gene involved in
similar pathways.
AKT - AKT Serine/Threonine Kinase: A
critical regulator of cell survival, metabolism, and
proliferation.
ALX1 - ALX Homeobox 1: A transcription factor
involved in craniofacial development.
AMPK - AMP-Activated Protein Kinase: A
cellular energy sensor regulating metabolism.
ANGPT1 - Angiopoietin 1: A protein involved
in angiogenesis and vascular stability.
ANGPT2 - Angiopoietin 2: Functions in

vascular remodeling and inflammation.
ANGPTL4 - Angiopoietin Like 4: Regulates
lipid metabolism and angiogenesis.
ANOVA - Analysis of Variance: A statistical
method for comparing means across groups.
ANXA1 - Annexin A1: Involved in anti-
inflammatory responses and membrane repair.
APOE - Apolipoprotein E: Involved in lipid
transport and metabolism, with links to
Alzheimer’s disease.
ARACNE - Algorithm for the Reconstruction of
Accurate Cellular Networks: Computational tool
for inferring regulatory networks.
ARTN - Artemin: A growth factor in the GDNF
family that supports neuronal survival.
ATF4 - Activating Transcription Factor 4:
Regulates stress responses and amino acid
metabolism.
ATF6 - Activating Transcription Factor 6: A key
regulator in the unfolded protein response.
ATG10 - Autophagy Related 10: Involved in the
autophagy process, particularly in the formation
of autophagosomes.
ATG12 - Autophagy Related 12: Plays a role
in autophagosome elongation and autophagy
regulation.
ATG5 - Autophagy Related 5: Essential for the
formation of autophagosomes.
ATG7 - Autophagy Related 7: An E1-like enzyme
required for autophagy regulation.
ATM - Ataxia Telangiectasia Mutated: A kinase
involved in DNA damage response and repair.
ATR - Ataxia Telangiectasia and Rad3 Related:
Works with ATM to repair damaged DNA.
AURKA - Aurora Kinase A: Involved in cell
cycle regulation, particularly in mitotic spindle
formation.
BACH1 - BTB And CNC Homology 1: A
transcription factor that regulates oxidative stress
responses.
BACH2 - BTB And CNC Homology 2:
Plays a role in immune regulation and B cell
differentiation.
BAK - BCL2 Antagonist/Killer: A pro-apoptotic
protein involved in mitochondrial apoptosis.
BAP31 - B-Cell Receptor Associated Protein 31:
A protein involved in apoptosis and endoplasmic
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reticulum function.
BAX - BCL2 Associated X Protein: Promotes
apoptosis by facilitating cytochrome c release from
mitochondria.
BDNF - Brain-Derived Neurotrophic Factor: A
neurotrophin essential for neuronal survival and
synaptic plasticity.
BECN1 - Beclin 1: A key regulator of autophagy
and apoptosis.
BFS - Biochemical Failure-Free Survival: A
metric used in oncology to measure treatment
success.
BGLAP3 - Bone Gamma-Carboxyglutamate
Protein 3 (Osteocalcin): Involved in bone
formation.
BID - BH3 Interacting Domain Death Agonist:
A pro-apoptotic member of the BCL2 family.
BIM - BCL2 Interacting Mediator Of Cell Death:
Promotes apoptosis by activating BAX and BAK.
BKMC - Boolean-kinetic Monte Carlo algorithm.
BRCA1 - Breast Cancer 1: A tumor suppressor
gene involved in DNA repair.
BRCA2 - Breast Cancer 2: Works with BRCA1
in homologous recombination to repair DNA.
BROS - May refer to bioinformatics tools or
unpublished terms (context required).
BSR20180250 - Likely refers to a specific
research or dataset identifier (context-dependent).
BTC - Betacellulin: A growth factor involved in
epithelial cell growth and wound healing.
CALR - Calreticulin: A calcium-binding protein
involved in cellular calcium signaling and folding.
CAR - Chimeric Antigen Receptor: A synthetic
receptor designed for engineered T cells in cancer
immunotherapy.
CASP3 - Caspase 3: A critical executioner
caspase in the apoptosis pathway.
CASP7 - Caspase 7: Another effector caspase
involved in apoptosis.
CASP8 - Caspase 8: Initiates apoptosis through
the extrinsic death receptor pathway.
CASP9 - Caspase 9: Initiator caspase of the
intrinsic mitochondrial apoptosis pathway.
CBP - CREB Binding Protein: A transcriptional
coactivator and histone acetyltransferase.
CCL11 - Chemokine (C-C Motif) Ligand
11: Involved in eosinophil recruitment during
inflammation.
CCL17 - Chemokine (C-C Motif) Ligand 17:
Attracts T-helper 2 cells and plays a role in
immune response.
CCL19 - Chemokine (C-C Motif) Ligand 19:
Involved in T cell and dendritic cell migration.
CCL2 - Chemokine (C-C Motif) Ligand 2: Also
known as MCP-1, recruits monocytes to sites of

inflammation.
CCL20 - Chemokine (C-C Motif) Ligand 20:
Attracts lymphocytes and dendritic cells to
inflammation sites.
CCL21 - Chemokine (C-C Motif) Ligand 21:
Attracts naive T cells to secondary lymphoid
tissues.
CCL3 - Chemokine (C-C Motif) Ligand 3: Plays
a role in inflammation and immune responses.
CCL4 - Chemokine (C-C Motif) Ligand 4:
Involved in the recruitment of immune cells during
inflammatory responses.
CCL5 - Chemokine (C-C Motif) Ligand 5:
Also known as RANTES, involved in recruiting
immune cells to inflammation sites.
CCN3 - Cellular Communication Network Factor
3: Regulates cell adhesion, migration, and growth.
CCNA2 - Cyclin A2: A cyclin protein that
regulates the cell cycle during S phase.
CCNB1 - Cyclin B1: Essential for the control of
mitosis in the cell cycle.
CCND1 - Cyclin D1: Regulates cell cycle
progression through the G1/S checkpoint.
CCNE1 - Cyclin E1: Promotes the transition
from G1 to S phase in the cell cycle.
CCR7 - C-C Motif Chemokine Receptor 7:
Regulates T cell migration to lymph nodes.
CDC25 - Cell Division Cycle 25: A family of
phosphatases involved in cell cycle progression.
CDC25A - A subtype of CDC25 phosphatase
that regulates G1/S transition.
CDC25C - A subtype of CDC25 phosphatase
that regulates the G2/M transition in the cell
cycle.
CDDP - Cisplatin: A chemotherapy drug used
to treat various cancers.
CDK - Cyclin-Dependent Kinase: A family of
protein kinases that regulate the cell cycle.
CDK1 - Cyclin-Dependent Kinase 1: Critical for
the G2/M transition in the cell cycle.
CDK2 - Cyclin-Dependent Kinase 2: Regulates
cell cycle progression during S phase.
CDK4 - Cyclin-Dependent Kinase 4: Works with
Cyclin D in the G1 phase.
CDK6 - Cyclin-Dependent Kinase 6: Similar
to CDK4, involved in regulating G1 phase
progression.
CDKN1B - Cyclin-Dependent Kinase Inhibitor
1B (p27): Inhibits CDK2 activity to control cell
cycle progression.
CELSR1 - Cadherin EGF LAG Seven-Pass G-
Type Receptor 1: A protein involved in planar
cell polarity and neural development.
CELSR2 - Cadherin EGF LAG Seven-Pass G-
Type Receptor 2: Plays a role in cell adhesion and

177



Chapter 7. Glossary

signaling.
CHEK1 - Checkpoint Kinase 1: Key player in
the DNA damage response and cell cycle arrest.
CHEK2 - Checkpoint Kinase 2: Works alongside
CHEK1 to regulate DNA damage repair.
CHIC - Could refer to CHIC Family Proteins:
Known for cell signaling roles (context-
dependent).
CHOP - C/EBP Homologous Protein: A
transcription factor that promotes apoptosis
under stress.
CHRDL1 - Chordin-Like 1: Inhibits BMP
signaling and is involved in neural development.
CHRNA1 - Cholinergic Receptor Nicotinic
Alpha 1 Subunit: Involved in synaptic
transmission at neuromuscular junctions.
CII - Collagen Type II Alpha 1 Chain: Found in
cartilage tissue.
CIS - Cisplatin.
CNRS - National Center for Scientific Research
(France).
CPM - Counts per milion.
CRC - Colorectal Cancer: A term used to
describe cancers of the colon and rectum / Centre
de Recherche des Cordeliers.
CREB - cAMP Response Element Binding
Protein: A transcription factor involved in
memory and neuronal plasticity.
CREBBP - CREB Binding Protein: A co-
activator with acetyltransferase activity, critical
for transcriptional regulation.
CRISPR - Clustered Regularly Interspaced
Short Palindromic Repeats: A genome-editing
tool used for precise DNA modifications.
CRM1 - Chromosome Region Maintenance 1:
A nuclear export receptor involved in protein
trafficking.
CRP - C-Reactive Protein: A marker of
inflammation produced by the liver.
CRT - Calreticulin: A multifunctional protein
involved in calcium homeostasis and quality
control in the ER.
CSA - Cockayne Syndrome A: A gene involved
in DNA repair and transcription-coupled repair
processes.
CSB - Cockayne Syndrome B: Works with CSA
in DNA repair mechanisms.
CSF1 - Colony Stimulating Factor 1:
Promotes the differentiation and proliferation of
monocytes/macrophages.
CSF1R - Colony Stimulating Factor 1 Receptor:
Receptor for CSF1, involved in macrophage
development.
CSF2 - Colony Stimulating Factor 2: Also known
as GM-CSF, stimulates growth of white blood
cells.

CSF2RB - Colony Stimulating Factor 2 Receptor
Beta: Mediates the action of GM-CSF, IL-3, and
IL-5.
CSNK1A - Casein Kinase 1 Alpha: Involved in
various signaling pathways, including Wnt and
circadian rhythms.
CTL - Cytotoxic T Lymphocytes: Immune cells
that destroy virus-infected cells and tumors.
CTLA - Cytotoxic T Lymphocyte Antigen: Plays
a role in regulating immune responses.
CTLA4 - Cytotoxic T Lymphocyte Antigen
4: An inhibitory receptor that downregulates
immune responses.
CTRL - Control.
CXCL1 - Chemokine (C-X-C Motif) Ligand 1:
Attracts neutrophils to sites of inflammation.
CXCL10 - Chemokine (C-X-C Motif) Ligand
10: Plays a role in immune cell trafficking and
inflammation.
CXCL12 - Chemokine (C-X-C Motif) Ligand 12:
Also known as SDF-1, it plays a role in stem cell
trafficking and cancer metastasis.
CXCL2 - Chemokine (C-X-C Motif) Ligand
2: Involved in neutrophil recruitment during
inflammatory responses.
CXCL5 - Chemokine (C-X-C Motif) Ligand 5:
Mediates neutrophil migration and activation.
CXCL7 - Chemokine (C-X-C Motif) Ligand
7: Plays a role in platelet activation and
inflammation.
CXCL8 - Chemokine (C-X-C Motif) Ligand 8:
Also known as IL-8, a key mediator in neutrophil
recruitment and inflammation.
CXCL9 - Chemokine (C-X-C Motif) Ligand 9:
Attracts T cells to inflamed tissues.
CXCR3 - C-X-C Motif Chemokine Receptor 3:
Binds CXCL9, CXCL10, and CXCL11 to mediate
immune responses.
CXCR4 - C-X-C Motif Chemokine Receptor 4:
Critical for hematopoiesis, immune cell trafficking,
and cancer metastasis.
CXCR5 - C-X-C Motif Chemokine Receptor
5: Guides the movement of B cells in lymphoid
tissues.
DACT - Actinomycin D.
Chemotherapeutic agent.
DAMPS - Damage-Associated Molecular
Patterns: Molecules released by stressed cells to
trigger immune responses.
DAPI - 4’,6-Diamidino-2-Phenylindole: A
fluorescent stain used to label DNA in cells.
DCLRE1A - DNA Cross-Link Repair 1A: A
protein involved in DNA repair processes.
DCLRE1B - DNA Cross-Link Repair 1B: Also
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plays a role in DNA repair mechanisms.
DDB2 - Damage Specific DNA Binding Protein
2: Involved in nucleotide excision repair.
DDDIT3 - DNA Damage Inducible Transcript
3 (CHOP): A stress-induced transcription factor
promoting apoptosis.
DDIT3 - Another name for CHOP (duplicate
term in some contexts).
DDX58 - DExD/H-Box Helicase 58: Also known
as RIG-I, recognizes viral RNA and activates
immune responses.
DEAD - DEAD-Box Helicases: Enzymes
involved in unwinding RNA during cellular
processes.
DEAH - DEAH-Box Helicases: Related to
DEAD, but distinct in substrate specificity and
function.
DEG - Differentially Expressed Genes: Genes
showing differences in expression between
conditions.
DFS - Disease-Free Survival: A clinical endpoint
indicating the length of time without disease
recurrence.
DIOC - DiOC6: A fluorescent dye used to assess
mitochondrial membrane potential.
DLD1 - A Human Colorectal Cancer Cell Line:
Frequently used in cancer research.
DNA - Deoxyribonucleic Acid: The molecule
carrying genetic information.
DOX - Doxorubicin: A chemotherapy drug used
to treat various cancers.
DOXO - Abbreviation for Doxorubicin
(alternative notation).
DSB - Double-Strand Break: A severe type of
DNA damage that can lead to genome instability.
DTT - Dithiothreitol: A reducing agent used in
molecular biology to stabilize proteins.
DTW - Dynamic Time Warping: An algorithm
used for pattern recognition and time series
analysis.
EBI - European Bioinformatics Institute: A
major center for biological data analysis and
storage.
EBP - Endothelial Binding Protein: Involved in
interactions with endothelial cells (specific context
needed).
ECIS - Electric Cell-Substrate Impedance
Sensing: A technique to measure cell adhesion
and behavior.
ECM - Extracellular Matrix: A network of
proteins and carbohydrates providing structural
support to cells.
EDA - Ectodysplasin A: A protein involved in
ectodermal development.
EDN1 - Endothelin 1: A vasoconstrictor involved
in blood pressure regulation.

EFNA5 - Ephrin A5: Plays a role in axon
guidance and cell-cell communication.
EFNB3 - Ephrin B3: Involved in neuronal
development and synaptic plasticity.
EGFR - Epidermal Growth Factor Receptor:
A receptor tyrosine kinase involved in cell
proliferation and cancer.
EIF2 - Eukaryotic Translation Initiation Factor
2: Regulates protein synthesis during stress.
EIF2AK2 - Eukaryotic Translation Initiation
Factor 2 Alpha Kinase 2: Activates EIF2 in
response to stress signals.
EIF2AK3 - Eukaryotic Translation Initiation
Factor 2 Alpha Kinase 3: Another regulator of
EIF2 under stress.
EIF2AK4 - Eukaryotic Translation Initiation
Factor 2 Alpha Kinase 4: Similar function as
EIF2AK2 and EIF2AK3.
ELISA - Enzyme-Linked Immunosorbent Assay:
A lab technique for detecting and quantifying
substances.
EMBL - European Molecular Biology
Laboratory: A research institution focusing on
molecular biology.
EMBO - European Molecular Biology
Organization: Promotes excellence in life sciences.
EMY - Emycin (context-dependent): Possibly
referring to erythromycin, an antibiotic.
ENS - Ensembl: A genomic database providing
information on genes, transcripts, and proteins.
ENTPD1 - Ectonucleoside Triphosphate
Diphosphohydrolase 1: Involved in purinergic
signaling by hydrolyzing nucleotides.
ERAD - Endoplasmic Reticulum-Associated
Degradation: A quality control mechanism for
protein degradation.
ERBB2 - Erb-B2 Receptor Tyrosine Kinase 2:
Also known as HER2, a receptor involved in cell
growth and cancer.
ERCC1 - Excision Repair Cross-Complementation
Group 1: Plays a role in DNA nucleotide excision
repair.
ERCC4 - Excision Repair Cross-Complementation
Group 4: Functions in the nucleotide excision
repair pathway.
ERCC5 - Excision Repair Cross-Complementation
Group 5: Also involved in DNA repair processes.
ERCC6 - Excision Repair Cross-Complementation
Group 6: Plays a role in transcription-coupled
DNA repair.
ERCC8 - Excision Repair Cross-Complementation
Group 8: Another key player in nucleotide
excision repair.
EREG - Epiregulin: A growth factor involved in
cell proliferation and differentiation.
ERK - Extracellular Signal-Regulated Kinase:
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Part of the MAP kinase pathway involved in cell
signaling.
ESO - Early Somatic Embryogenesis: A process
in plant and animal development.
ESO1 - Context-dependent, possibly referring to
embryonic stem cells (needs clarification).
FAAP24 - Fanconi Anemia Associated Protein
24: Involved in DNA repair within the Fanconi
anemia pathway.
FAN1 - Fanconi Associated Nuclease 1:
Functions in DNA interstrand crosslink repair.
FANCA - Fanconi Anemia Complementation
Group A: Critical for DNA repair in Fanconi
anemia patients.
FANCD2 - Fanconi Anemia Complementation
Group D2: A central player in the Fanconi anemia
repair pathway.
FANCI - Fanconi Anemia Complementation
Group I: Functions alongside FANCD2 in DNA
repair.
FANCM - Fanconi Anemia Complementation
Group M: A DNA repair protein that recognizes
damaged DNA.
FAS - Fas Cell Surface Death Receptor: Induces
apoptosis through the extrinsic pathway.
FASL - Fas Ligand: Binds to FAS receptor to
trigger apoptosis.
FDA - Food and Drug Administration: U.
S.
regulatory agency for food, drugs, and medical
devices.
FDR - False Discovery Rate: A statistical method
to control errors in multiple hypothesis testing.
FGF1 - Fibroblast Growth Factor 1: Involved in
angiogenesis and wound healing.
FGF10 - Fibroblast Growth Factor 10: Plays a
role in embryonic development and tissue repair.
FGF17 - Fibroblast Growth Factor 17:
Important in brain development and signaling.
FGF7 - Fibroblast Growth Factor 7: Also known
as keratinocyte growth factor, regulates epithelial
cell growth.
FGFR2 - Fibroblast Growth Factor Receptor 2:
A receptor for FGFs, involved in cell signaling and
growth.
FIRE - Functional Interpretation of Regulatory
Elements: A computational tool for genomic
analysis.
FOXM1 - Forkhead Box M1: A transcription
factor regulating cell cycle progression and
proliferation.
FOXO3 - Forkhead Box O3: A transcription
factor involved in cell cycle regulation and stress
responses.
FOXP3 - Forkhead Box P3: A key regulator
of Treg (regulatory T cell) function and immune
homeostasis.

FPR1 - Formyl Peptide Receptor 1: Involved in
immune cell chemotaxis.
FPR2 - Formyl Peptide Receptor 2: Plays roles
in inflammation and immune responses.
FRZB - Frizzled-Related Protein: A modulator
of Wnt signaling pathways.
FUS - Fused In Sarcoma: A RNA-binding protein
involved in gene regulation and DNA repair.
GADD34 - Growth Arrest And DNA Damage-
Inducible Protein 34: Plays a role in stress
response and apoptosis.
GDF9 - Growth Differentiation Factor 9:
Important for ovarian follicle development.
GENIE3 - Gene Network Inference with
Ensemble of Trees: A computational tool for
inferring gene regulatory networks.
GGNER - Global Genomic Nucleotide Excision
Repair: A pathway for repairing DNA damage
across the genome.
GITRL - Glucocorticoid-Induced TNF Receptor
Ligand: A costimulatory molecule for T cell
activation.
GPNMB - Glycoprotein Non-Metastatic
Melanoma Protein B: Involved in cell migration
and repair.
GPR15 - G Protein-Coupled Receptor 15: A
receptor involved in immune cell trafficking.
GPR156 - G Protein-Coupled Receptor 156:
Functions are not fully elucidated but likely
involved in signaling.
GREM1 - Gremlin 1: A BMP antagonist that
plays a role in development and disease processes.
GRP78 - Glucose-Regulated Protein 78: A
chaperone protein involved in protein folding and
ER stress.
GSEA - Gene Set Enrichment Analysis:
A computational method for analyzing gene
expression data.
GZMB - Granzyme B: A serine protease that
induces apoptosis in target cells.
HAVCR2 - Hepatitis A Virus Cellular Receptor
2: Also known as TIM3, regulates immune
responses.
HDAC1 - Histone Deacetylase 1: Involved
in chromatin remodeling and gene expression
regulation.
HGF - Hepatocyte Growth Factor: Promotes cell
growth, motility, and morphogenesis in various
tissues.
HIF1A - Hypoxia-Inducible Factor 1 Alpha:
Regulates cellular responses to low oxygen levels.
HMGB1 - High-Mobility Group Box 1: A
chromatin-associated protein with roles in
transcription and inflammation.
HMOX1 - Heme Oxygenase 1: Enzyme involved
in heme degradation and protection against
oxidative stress.
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HOXA9 - Homeobox A9: A transcription
factor involved in embryonic development and
hematopoiesis.
HPV - Human Papillomavirus: A virus
associated with cervical cancer and other
malignancies.
HSP70 - Heat Shock Protein 70: A molecular
chaperone involved in protein folding and stress
response.
HSP90 - Heat Shock Protein 90: A chaperone
protein critical for stabilizing and activating other
proteins.
HSPA1A - Heat Shock Protein Family A
Member 1A: Part of the HSP70 family involved
in protein quality control.
IARC - International Agency for Research on
Cancer: A specialized agency of WHO focusing
on cancer research.
IBENS - Institute of Biology of the ENS (École
Normale Supérieure).
ICD - Immunogenic Cell Death: A form of cell
death that activates the immune system.
ICELLNET - Integrated Cell Network:
A bioinformatics tool for studying cell-cell
communication.
ICI - Immune Checkpoint Inhibitors: Drugs that
block immune checkpoint proteins to enhance
immune responses against cancer.
IDC - Invasive Ductal Carcinoma: The most
common type of breast cancer.
IFIH1 - Interferon Induced With Helicase C
Domain 1: Also known as MDA5, recognizes viral
RNA to induce immune responses.
IFN - Interferon: A group of signaling proteins
involved in antiviral and immune responses.
IFN1 - Type I Interferon: Includes IFN-alpha
and IFN-beta, involved in antiviral defense.
IFNA - Interferon Alpha: A cytokine involved
in immune responses, particularly against viral
infections.
IFNAB - Type I Interferons Alpha and Beta:
Subtypes of interferons involved in antiviral
immunity.
IFNAR - Interferon Alpha/Beta Receptor:
Mediates the biological effects of type I
interferons.
IFNB - Interferon Beta: A cytokine with roles in
antiviral responses and immune modulation.
IFNG - Interferon Gamma: A type II interferon
that activates macrophages and enhances antigen
presentation.
IGF1 - Insulin-Like Growth Factor 1: A hormone
involved in growth and development.
IKK - IκB Kinase: A kinase involved in activating
NF-κB, a transcription factor regulating immune
responses.

INED - Institut National d’Études Démographiques
(French Demographic Institute).
INSERM - Institut National de la Santé et de la
Recherche Médicale: French National Institute of
Health and Medical Research.
IRDS - Interferon-Related DNA Damage
Signature: A set of genes upregulated in response
to DNA damage and interferon signaling.
IRE1 - Inositol-Requiring Enzyme 1: A sensor
of ER stress that activates the unfolded protein
response.
IRF2 - Interferon Regulatory Factor 2: A
transcription factor regulating type I interferons
and other genes.
IRF3 - Interferon Regulatory Factor 3: Activates
type I interferon genes in response to viral
infections.
IRF5 - Interferon Regulatory Factor 5: Plays
a role in antiviral immunity and inflammatory
responses.
IRF7 - Interferon Regulatory Factor 7: Essential
for the induction of type I interferons during viral
infections.
IRF8 - Interferon Regulatory Factor 8: Regulates
macrophage and dendritic cell differentiation.
IRF9 - Interferon Regulatory Factor 9: Forms
a complex with STAT1 and STAT2 to activate
interferon-stimulated genes.
ISGF3 - Interferon-Stimulated Gene Factor 3:
A transcription complex activated by type I
interferons.
ITK - IL-2-Inducible T-Cell Kinase: A tyrosine
kinase involved in T-cell receptor signaling
JAK - Janus Kinase: A family of tyrosine kinases
involved in cytokine signaling pathways.
JAK1 - Janus Kinase 1: Plays a key role in
signaling for cytokines and growth factors.
JUN - Jun Proto-Oncogene: A component of
the AP-1 transcription factor complex involved in
cellular proliferation.
KAT2B - Lysine Acetyltransferase 2B: Involved
in chromatin remodeling and transcriptional
regulation.
KAT3A - Lysine Acetyltransferase 3A (CBP):
Functions as a transcriptional coactivator.
KAT7 - Lysine Acetyltransferase 7: Regulates
chromatin dynamics and gene expression.
KDM5D - Lysine Demethylase 5D: A histone
demethylase involved in gene expression
regulation.
KLF17 - Kruppel-Like Factor 17: A
transcription factor involved in regulating
epithelial-mesenchymal transition.
KLF8 - Kruppel-Like Factor 8: Regulates cell
cycle and DNA repair processes.
LAG3 - Lymphocyte Activation Gene 3: An
immune checkpoint receptor involved in T-cell
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regulation.
LAMP1 - Lysosomal Associated Membrane
Protein 1: Involved in lysosome function and
autophagy.
LCK - Lymphocyte-Specific Protein Tyrosine
Kinase: Critical for T-cell receptor signaling.
LCN2 - Lipocalin 2: Plays a role in immune
responses and iron metabolism.
LGALS7 - Galectin 7: A protein involved in cell-
cell and cell-matrix interactions.
LGR4 - Leucine-Rich Repeat Containing G
Protein-Coupled Receptor 4: Functions in Wnt
signaling.
LIG3 - DNA Ligase 3: Involved in base excision
repair and other DNA repair processes.
LIG4 - DNA Ligase 4: Essential for non-
homologous end joining in DNA double-strand
break repair.
LIVE - Likely refers to viability in assays or live
imaging (context-dependent).
LPAR1 - Lysophosphatidic Acid Receptor 1:
Involved in cell signaling and migration.
LPS - Lipopolysaccharide: A component
of bacterial cell walls that triggers immune
responses.
LRP1 - LDL Receptor-Related Protein 1:
Involved in lipid metabolism and endocytosis.
LTA - Lymphotoxin Alpha: A cytokine involved
in inflammation and lymphoid organ development.
MACS - Magnetic-Activated Cell Sorting: A
technique for separating cell populations.
MAD2L2 - Mitotic Arrest Deficient 2 Like
2: Plays a role in DNA repair and cell cycle
regulation.
MAFG - MAF BZIP Transcription Factor G:
Regulates oxidative stress responses and cell
differentiation.
MAPK - Mitogen-Activated Protein Kinase:
A family of kinases involved in cell signaling
pathways.
MATE - Multi-Antimicrobial Extrusion Protein:
Involved in drug and toxin efflux.
MCA205 - A murine fibrosarcoma cancer cell
line.
MDM2 - Mouse Double Minute 2: A negative
regulator of the p53 tumor suppressor protein.
MDSC - Myeloid-Derived Suppressor Cells:
Immune cells that suppress T-cell activity and
promote tumor growth.
MET - MET Proto-Oncogene: Encodes the
hepatocyte growth factor receptor, involved in
cell growth and migration.
METRN - Meteorin: A protein involved in
neurogenesis and tissue repair.
MHC - Major Histocompatibility Complex: A
set of cell surface proteins essential for immune

recognition.
MME - Membrane Metalloendopeptidase:
Involved in degrading peptide hormones and
signaling molecules.
MMP9 - Matrix Metallopeptidase 9: Enzyme
involved in degrading extracellular matrix
components.
MOMP - Mitochondrial Outer Membrane
Permeabilization: A process central to apoptosis
regulation.
MRC1 - Mannose Receptor C-Type 1: Plays a
role in immune response and endocytosis.
MRE11 - Meiotic Recombination 11: A key
component of the MRN complex involved in DNA
repair.
MTX - Mitoxantrone.
Chemotherapy agent acting on DNA through
intercalation.
MUS81 - MUS81 Structure-Specific Endonuclease
Subunit: Involved in DNA damage repair and
genome stability.
MYD88 - Myeloid Differentiation Primary
Response 88: A key adapter protein in Toll-like
receptor signaling.
NAD - Nicotinamide Adenine Dinucleotide:
A coenzyme involved in redox reactions and
metabolism.
NADPH - Nicotinamide Adenine Dinucleotide
Phosphate: A coenzyme used in anabolic
reactions and oxidative stress response.
NANOG - Homeobox Protein NANOG: A
transcription factor critical for maintaining
pluripotency in stem cells.
NAR - Nucleic Acids Research: A scientific
journal (context-dependent term).
NBN - Nibrin: A DNA repair protein involved in
maintaining genome stability.
NBS1 - Nijmegen Breakage Syndrome 1: A
protein involved in DNA double-strand break
repair.
NEMO - NF-κB Essential Modulator: A
regulatory subunit of the IKK complex that
activates NF-κB signaling.
NER - Nucleotide Excision Repair: A DNA
repair mechanism that removes bulky DNA
lesions.
NES - Nuclear Export Signal: A sequence that
facilitates protein export from the nucleus.
NFE2 - Nuclear Factor, Erythroid 2: A
transcription factor involved in erythroid and
megakaryocyte development.
NFE2L2 - Nuclear Factor, Erythroid 2 Like
2 (NRF2): Regulates antioxidant response and
detoxification pathways.
NFKB - Nuclear Factor Kappa B: A
transcription factor regulating immune and
inflammatory responses.
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NFKB1 - Nuclear Factor Kappa B Subunit 1
(p50): A subunit of the NF-κB complex.
NHEJ - Non-Homologous End Joining: A DNA
repair pathway for double-strand breaks.
NIH - National Institutes of Health: A U.
S.
agency for medical research.
NKT - Natural Killer T Cells: A subset of T cells
with both innate and adaptive immune functions.
NLRP3 - NOD-Like Receptor Family Pyrin
Domain Containing 3: A component of
the inflammasome involved in inflammatory
responses.
NLRP6 - NOD-Like Receptor Family Pyrin
Domain Containing 6: Regulates gut microbiota
and inflammation.
NLS - Nuclear Localization Signal: A sequence
directing proteins to the nucleus.
NOD - Nucleotide-Binding Oligomerization
Domain: Intracellular proteins involved in
detecting pathogens.
NOD1 - Nucleotide-Binding Oligomerization
Domain Containing 1: Recognizes bacterial
peptidoglycans.
NOD2 - Nucleotide-Binding Oligomerization
Domain Containing 2: Involved in immune
responses to bacterial components.
NRF2 - Nuclear Factor Erythroid 2-
Related Factor 2: Activates antioxidant and
cytoprotective responses.
NRG1 - Neuregulin 1: A growth factor involved
in nervous system development and function.
NRP2 - Neuropilin 2: A receptor involved in
axonal guidance and vascular development.
NTN3 - Netrin 3: A guidance molecule for
neuronal migration and axon growth.
NTN4 - Netrin 4: Similar to NTN3, plays roles
in cell adhesion and migration.
OCT - Octamer-Binding Transcription Factor:
Refers to a family of transcription factors,
including OCT4, involved in stem cell
pluripotency.
OXA - Oxaliplatin.
OXP - Oxaliplatin.
PANX1 - Pannexin 1: A channel protein involved
in ATP release and purinergic signaling.
PARK2 - Parkin RBR E3 Ubiquitin Protein
Ligase: A gene mutated in Parkinson’s disease,
involved in mitophagy.
PARP1 - Poly (ADP-Ribose) Polymerase 1: A
DNA repair enzyme involved in base excision
repair.
PBS - Phosphate-Buffered Saline: A buffer
solution commonly used in biological research.
PDE - Phosphodiesterase: Enzymes that degrade
cyclic nucleotides like cAMP and cGMP.

PDGF - Platelet-Derived Growth Factor: A
growth factor involved in angiogenesis and wound
healing.
PDGFB - Platelet-Derived Growth Factor
Subunit B: A component of the PDGF signaling
pathway.
PDGFD - Platelet-Derived Growth Factor
Subunit D: Another subtype involved in cell
growth and development.
PDGFRB - Platelet-Derived Growth Factor
Receptor Beta: A receptor for PDGFB and
PDGFD, mediates cell signaling.
PDIA3 - Protein Disulfide Isomerase Family A
Member 3: Involved in protein folding in the
endoplasmic reticulum.
PDL1 - Programmed Death-Ligand 1: A protein
that suppresses immune responses, targeted in
cancer immunotherapy.
PDT - Photodynamic Therapy: A treatment
method using light and photosensitizing agents to
kill cancer cells.
PERK - Protein Kinase R (PKR)-Like
Endoplasmic Reticulum Kinase: Activates the
unfolded protein response under stress.
PGF - Placental Growth Factor: Regulates
angiogenesis and vascular development.
PINK1 - PTEN-Induced Kinase 1: Involved in
mitochondrial quality control and mitophagy.
PKC - Protein Kinase C: A family of enzymes
regulating various cellular processes, including cell
growth and differentiation.
PLK1 - Polo-Like Kinase 1: Regulates mitosis
and cell cycle progression.
PLOS - Public Library of Science: A nonprofit
publisher of open-access scientific journals.
POLB - DNA Polymerase Beta: Involved in base
excision repair.
POLR2A - RNA Polymerase II Subunit A: A
component of the transcription machinery for
mRNA synthesis.
POS - Position: Often used in genomic contexts
to indicate a specific nucleotide position.
PPARG - Peroxisome Proliferator-Activated
Receptor Gamma: Regulates lipid metabolism
and glucose homeostasis.
PRL - Prolactin: A hormone involved in lactation
and reproductive functions.
PROFILE - Software developed at Institut Curie
to deal with Boolean model personalization.
PRR - Pattern Recognition Receptor: Recognizes
pathogens and triggers immune responses.
PRSS22 - Serine Protease 22: Involved in tissue-
specific proteolytic processes.
PSC - Pluripotent Stem Cells: Cells capable of
differentiating into various cell types.
PSL - Université Paris Sciences et Lettres.
PSPN - Persephin: A growth factor in the GDNF
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family involved in neuronal survival.
PTGER1 - Prostaglandin E Receptor 1:
Mediates the action of prostaglandin E2 in various
tissues.
PTPRF - Protein Tyrosine Phosphatase
Receptor Type F: Regulates cell signaling and
adhesion.
PTX3 - Pentraxin 3: An acute-phase protein
involved in immune responses.
PUMA - p53 Upregulated Modulator of
Apoptosis: A pro-apoptotic protein in the BCL2
family.
RAD23B - RAD23 Homolog B: Involved in
nucleotide excision repair.
RAD50 - RAD50 Double Strand Break Repair
Protein: Part of the MRN complex for DNA
repair.
RAD51 - RAD51 Recombinase: Promotes
homologous recombination for DNA repair.
RAD54L - RAD54 Like: Involved in DNA strand
exchange and homologous recombination.
RAGE - Receptor for Advanced Glycation End
Products: Triggers inflammation and oxidative
stress.
RANTES - Regulated upon Activation, Normal
T Cell Expressed and Secreted: Also known as
CCL5, involved in immune cell recruitment.
RARB - Retinoic Acid Receptor Beta: Regulates
gene transcription in response to retinoic acid.
RAS - Rat Sarcoma Viral Oncogene Homolog:
A family of GTPases involved in cell growth
signaling.
RCD - Regulated Cell Death: A term for
programmed cell death mechanisms.
RELA - RELA Proto-Oncogene: A subunit of
NF-κB, involved in transcriptional regulation of
immune responses.
REV3L - DNA Polymerase Zeta Catalytic
Subunit: Functions in translesion DNA synthesis.
RIG - Retinoic Acid-Inducible Gene: Typically
refers to RIG-I, involved in antiviral responses.
RIP - Receptor-Interacting Protein Kinase: A
family of kinases involved in necroptosis and
inflammation.
RIP1 - Receptor-Interacting Serine/Threonine-
Protein Kinase 1: A key player in necroptosis.
RIPK - Receptor-Interacting Protein Kinase:
Another notation for RIP family kinases.
RIPK3 - Receptor-Interacting Protein Kinase 3:
Central to necroptosis and inflammation.
RNA - Ribonucleic Acid: Molecule involved in
coding, decoding, regulation, and expression of
genes.
ROR2 - Receptor Tyrosine Kinase-Like Orphan
Receptor 2: Plays a role in Wnt signaling.
RORA - RAR-Related Orphan Receptor

Alpha: Regulates circadian rhythms and lipid
metabolism.
RORC - RAR-Related Orphan Receptor C:
Involved in T cell differentiation and immuneresponses.
ROS - Reactive Oxygen Species: Molecules
involved in oxidative stress and cellular signaling.
ROUT - Statistical method to remove
experimental outliers.
RPA - Replication Protein A: Binds single-
stranded DNA during replication and repair.
RPA1 - Replication Protein A1: A subunit of the
RPA complex, critical for DNA metabolism.
RPMI - Roswell Park Memorial Institute
Medium: A culture medium used in cell biology.
SATB2 - Special AT-Rich Sequence-Binding
Protein 2: A transcription factor important for
craniofacial development.
SCCVII - A squamous cell carcinoma cell line
used in cancer research.
SCID - Severe Combined Immunodeficiency: A
condition of severe immune deficiency.
SERCA - Sarco/Endoplasmic Reticulum Ca2+-
ATPase: Regulates calcium levels in cells.
SERPINF2 - Serpin Family F Member 2:
Involved in inhibiting fibrinolysis.
SIGNOR - Signaling Network Open Resource:
A database for signal transduction pathways.
SIRT1 - Sirtuin 1: A protein involved in cellular
stress responses and metabolism.
SIRT6 - Sirtuin 6: Regulates genome stability
and metabolism.
SLAMF8 - SLAM Family Member 8: Plays a
role in immune responses.
SLC22A - Solute Carrier Family 22: A family of
transport proteins for organic ions.
SLC47A - Solute Carrier Family 47 Member A:
Functions as a multidrug transporter.
SLIT2 - Slit Guidance Ligand 2: Involved in
neural development and angiogenesis.
SLX4 - Structure-Specific Endonuclease Subunit
SLX4: Plays a role in DNA repair.
SMAD2 - SMAD Family Member 2: A key
mediator of TGF-beta signaling.
SNAP23 - Synaptosome-Associated Protein 23:
Involved in vesicle trafficking and exocytosis.
SNARE - Soluble NSF Attachment Protein
Receptor: A family of proteins mediating vesicle
fusion.
SNP - Single Nucleotide Polymorphism: A
variation in a single nucleotide in the genome.
SNU1033 - A human gastric cancer cell line used
in research.
SPINT1 - Serine Peptidase Inhibitor, Kunitz
Type 1: Regulates protease activity in tissue
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remodeling.
SREBF2 - Sterol Regulatory Element-Binding
Protein 2: Regulates cholesterol metabolism.
SSB - Single-Strand Binding Protein: Protects
single-stranded DNA during replication and
repair.
SSRP1 - Structure-Specific Recognition Protein
1: Involved in chromatin remodeling and
transcriptional regulation.
STAR - Steroidogenic Acute Regulatory Protein:
Regulates steroid hormone biosynthesis.
STAT - Signal Transducer and Activator of
Transcription: A family of transcription factors
in cytokine signaling.
STAT1 - Signal Transducer and Activator of
Transcription 1: Mediates interferon signaling.
STAT2 - Signal Transducer and Activator of
Transcription 2: Works with STAT1 in type I
interferon responses.
STAT3 - Signal Transducer and Activator of
Transcription 3: Involved in cell growth and
survival signaling.
STAT5A - Signal Transducer and Activator of
Transcription 5A: Regulates growth hormone
signaling.
STG - State transition graph.
STING - Stimulator of Interferon Genes:
Activates immune responses upon detecting
cytosolic DNA.
STING1 - Another name for STING,
emphasizing its gene form.
STRING - Search Tool for the Retrieval of
Interacting Genes/Proteins: A database of
protein-protein interactions.
TAA - Tumor-Associated Antigen: Antigens
expressed by tumor cells, recognized by the
immune system.
TAS1R1 - Taste Receptor Type 1 Member 1:
Involved in taste perception.
TAS2R108 - Taste Receptor Type 2 Member
108: A bitter taste receptor.
TBK1 - TANK-Binding Kinase 1: Plays a role in
antiviral responses and NF-κB activation.
TBXA2R - Thromboxane A2 Receptor:
Mediates the effects of thromboxane in blood
clotting and inflammation.
TCNER - Transcription-Coupled Nucleotide
Excision Repair: A sub-pathway of nucleotide
excision repair.
TCR - T Cell Receptor: A molecule on T cells
that recognizes antigens presented by MHC.
TGF - Transforming Growth Factor: A
family of proteins involved in cell growth and
differentiation.
TGFB1 - Transforming Growth Factor Beta 1: A
cytokine regulating immune responses and tissue

repair.
TGFBR2 - Transforming Growth Factor Beta
Receptor 2: Mediates TGF-beta signaling.
TIM - T Cell Immunoglobulin Mucin: A family
of proteins involved in immune regulation.
TIM3 - T Cell Immunoglobulin and Mucin
Domain-Containing Protein 3: An inhibitory
receptor on T cells.
TIR - Toll/Interleukin-1 Receptor: A signaling
domain found in immune receptors.
TLR - Toll-Like Receptor: A family of receptors
involved in pathogen recognition.
TLR3 - Toll-Like Receptor 3: Recognizes double-
stranded RNA, a marker of viral infections.
TLR4 - Toll-Like Receptor 4: Recognizes
lipopolysaccharides on Gram-negative bacteria.
TME - Tumor Microenvironment: The
environment around a tumor, including immune
and stromal cells.
TNF - Tumor Necrosis Factor: A cytokine
involved in inflammation and apoptosis.
TNFRSF19 - Tumor Necrosis Factor Receptor
Superfamily Member 19: Involved in apoptosis
and cell signaling.
TNFSF10 - Tumor Necrosis Factor Superfamily
Member 10 (TRAIL): Induces apoptosis in tumor
cells.
TNFSF11 - Tumor Necrosis Factor Superfamily
Member 11 (RANKL): Regulates bone
metabolism.
TNFSF12 - Tumor Necrosis Factor Superfamily
Member 12 (TWEAK): Promotes inflammation
and apoptosis.
TOPBP1 - Topoisomerase Binding Protein
1: Involved in DNA damage response and
replication.
TPX2 - Targeting Protein for Xklp2: Regulates
spindle assembly during mitosis.
TRAIL - TNF-Related Apoptosis-Inducing
Ligand: Promotes apoptosis in cancer cells.
TREM2 - Triggering Receptor Expressed on
Myeloid Cells 2: Regulates microglial function
in the brain.
TRIF - TIR-Domain-Containing Adapter-
Inducing Interferon-Beta: A key adapter in TLR
signaling.
TRIM30A - Tripartite Motif Containing 30A:
Involved in immune regulation and inflammatory
responses.
TRPA1 - Transient Receptor Potential Ankyrin
1: A sensor for pain and noxious stimuli.
TRRUST - Transcriptional Regulatory
Relationships Unraveled by Sentence-Based Text
Mining: A database of transcriptional networks.
TSA - Trichostatin A: An inhibitor of histone
deacetylases, affecting gene expression.
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TYK2 - Tyrosine Kinase 2: Mediates signaling
for several cytokines, including type I interferons.
ULM - Univariate linear model.
UPR - Unfolded Protein Response: A cellular
stress response triggered by misfolded proteins in
the ER.
USP18 - Ubiquitin Specific Peptidase 18:
Regulates type I interferon signaling.
UVC - Ultraviolet C: A type of UV radiation
used in sterilization processes.
VAMP1 - Vesicle-Associated Membrane Protein
1: A SNARE protein involved in vesicle fusion.
VEC - Vascular Endothelial Cadherin: Mediates
cell-cell adhesion in blood vessels.
VEGF - Vascular Endothelial Growth Factor:
Promotes angiogenesis and vascular permeability.
VEGFB - Vascular Endothelial Growth Factor
B: Involved in vascular development and energy
metabolism.
VEGFC - Vascular Endothelial Growth Factor
C: Regulates lymphangiogenesis.
WEE1 - WEE1 G2 Checkpoint Kinase:
Regulates entry into mitosis by inhibiting CDKs.
WHO - World Health Organization: A
specialized agency of the United Nations for global
health.

WNT - Wnt Signaling Pathway: Regulates cell
fate, proliferation, and migration.
WNT7B - Wnt Family Member 7B: Plays a role
in developmental signaling pathways.
XBP1 - X-Box Binding Protein 1: Regulates the
unfolded protein response.
XIAP - X-Linked Inhibitor of Apoptosis Protein:
Inhibits caspases to prevent apoptosis.
XPA - Xeroderma Pigmentosum Group A:
Involved in nucleotide excision repair.
XPC - Xeroderma Pigmentosum Group C: Plays
a role in DNA damage recognition.
XPO1 - Exportin 1: Mediates nuclear export of
proteins and RNAs.
XRCC1 - X-Ray Repair Cross-Complementing
Protein 1: Involved in base excision repair.
XRCC4 - X-Ray Repair Cross-Complementing
Protein 4: Essential for DNA double-strand break
repair.
ZBP1 - Z-DNA Binding Protein 1: Recognizes
viral DNA and triggers immune responses.
ZIP - ZRT/IRT-Like Protein: A family of zinc
transporters.
ZNF316 - Zinc Finger Protein 316: A
transcription factor involved in gene regulation.
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MOTS CLÉS
Mort Cellulaire Immunogène, Biologie des Systèmes, Cytokines, Modelisation en Silico

RÉSUMÉ
Cette thèse vise à approfondir notre compréhension de la Mort Cellulaire Immunogène (ICD) et de son potentiel à
améliorer l’efficacité des traitements chimiothérapeutiques. En adoptant une approche multidisciplinaire qui intègre la
biologie expérimentale et computationnelle, cette recherche aborde des questions clés essentielles à l’avancement des
études sur l’ICD.
Malgré les progrès réalisés dans le décryptage des mécanismes moléculaires de l’ICD, des lacunes importantes
subsistent dans notre compréhension. Cette thèse s’efforce de combler ces lacunes en identifiant les facteurs et les voies
critiques impliqués dans l’ICD et en développant des modèles computationnels pour prédire et renforcer l’immunogénicité
des agents chimiothérapeutiques.
Un axe central de ce travail a été l’identification d’une signature moléculaire distincte de l’ICD, au-delà des marqueurs
traditionnels tels que les DAMPs libérés et exposés à la surface. Une telle signature pourrait servir de biomarqueur
fiable pour prédire le potentiel immunogène des chimiothérapies. De plus, la recherche a exploré les facteurs sécrétés,
en particulier les cytokines, qui jouent un rôle crucial dans l’initiation du cycle immunitaire anticancéreux en recrutant et
activant les cellules immunitaires. Comprendre ces facteurs est essentiel pour optimiser le potentiel immunogène des
régimes chimiothérapeutiques.
En outre, la thèse s’est penchée sur les voies cellulaires qui régulent la sécrétion et la libération des DAMPs liés à l’ICD.
En explorant les réseaux de signalisation et les mécanismes moléculaires impliqués, l’étude visait à découvrir des voies
influençant l’immunogénicité des cellules mourantes, avec l’objectif potentiel d’identifier de nouvelles cibles pour amplifier
la réponse immunitaire via l’induction de l’ICD.
Sur la base de ces résultats, la recherche a également exploré la possibilité de recréer l’ICD in silico. En intégrant à
la fois les marqueurs établis et nouvellement identifiés dans des modèles computationnels, la thèse visait à simuler les
processus de l’ICD, prédire les résultats des traitements et orienter les futures expérimentations.
Enfin, la thèse a évalué la capacité prédictive des modèles in silico développés pour évaluer l’immunogénicité
des médicaments chimiothérapeutiques. L’objectif ultime était d’utiliser ces modèles pour optimiser les formulations
médicamenteuses et les protocoles de traitement, renforçant ainsi leur efficacité immunothérapeutique et contribuant au
développement de stratégies de médecine personnalisée.
En conclusion, cette thèse apporte des contributions significatives au domaine de l’ICD en combinant validation
expérimentale et modélisation computationnelle innovante. Elle établit une base pour une compréhension plus intégrée
de la manière dont les thérapies anticancéreuses peuvent être optimisées pour exploiter pleinement le potentiel du
système immunitaire dans la lutte contre le cancer.

ABSTRACT
This thesis aims to advance our understanding of Immunogenic Cell Death (ICD) and its potential to enhance the
efficacy of chemotherapeutic treatments. By employing a multidisciplinary approach that integrates experimental and
computational biology, this research addresses key questions essential for the progression of ICD research.
Despite the progress made in unraveling the molecular mechanisms of ICD, significant gaps in our knowledge remain.
This thesis seeks to bridge these gaps by identifying critical factors and pathways involved in ICD and by developing
computational models to predict and enhance the immunogenicity of chemotherapeutic agents.
A central focus of this work was the identification of a distinct molecular signature of ICD beyond the traditional hallmarks,
such as released and surface-exposed DAMPs. Such a signature could serve as a reliable biomarker for predicting
the immunogenic potential of chemotherapies. Additionally, the research investigated the secreted factors, particularly
cytokines, that play a crucial role in initiating the cancer immunity cycle by recruiting and activating immune cells.
Understanding these factors is key to optimizing the immunogenic potential of chemotherapeutic regimens.
Furthermore, the thesis delved into the cellular pathways that regulate the secretion and release of ICD-related DAMPs.
By exploring the signaling networks and molecular mechanisms involved, the study aimed to uncover pathways that
influence the immunogenicity of dying cells, potentially identifying new targets to amplify the immune response through
ICD induction.
Building on these findings, the research also explored the feasibility of recapitulating ICD in silico. By integrating both
established and newly identified hallmarks into computational models, the thesis aimed to simulate ICD processes, predict
treatment outcomes, and guide future experimental efforts.
Finally, the thesis evaluated the predictive power of the developed in silico models in assessing the immunogenicity
of chemotherapeutic drugs. The ultimate goal was to use these models to optimize drug formulations and treatment
protocols, thereby enhancing their immunotherapeutic efficacy and contributing to the development of personalized
medicine strategies.
In conclusion, this thesis makes significant contributions to the field of ICD by combining experimental validation with
innovative computational modeling. It establishes a foundation for a more integrated understanding of how cancer
therapies can be optimized to fully exploit the immune system’s potential in combating cancer.

KEYWORDS
Immunogenic Cell Death, Systems Biology, Cytokines, In silico Modeling
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