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Abstract 

Representation of feedback in human learning 

 The acquisition of cognitive and motor skills is vital at all stages of our life and 

it depends critically on feedback we received from the environment, providing 

information on whether and how improvement can be made. The dominant theoretical 

framework characterising feedback learning is provided by reinforcement learning. 

However, the primary focus of the reinforcement learning framework lies in how 

prediction errors guide learning, emphasising a relatively straightforward aspect of 

feedback – whether it is better or worse than expected. In reality, the context in which 

feedback is given and individuals' knowledge of their own actions significantly 

influence how we extract information from feedback. Furthermore, they play a pivotal 

role in determining the extent to which this information is utilised to facilitate the 

learning process. 

The objectives of this PhD project are to expand current conceptions of learning 

from feedback by exploring the rich forms of information that can be extracted from 

feedback to drive rapid and flexible learning. To achieve these objectives, we have 

conducted experiments focused on examining how feedback is utilized to improve 

learning and its application in decision-making, specifically in determining whether to 

continue learning the same task and when to stop exploration behaviours. This also 

involves taking into account the impact of individuals' internal estimates of their own 

performance and the reliability of feedback on the feedback evaluation and decision-

making processes. Additionally, we investigated the generation of action-effect 

predictions in different types of intention-based actions and the role of these 

predictions in error detection, as well as their impact on the neural processing of 

feedback and subsequent behavioural adjustments. 

Our findings demonstrated the presence of action-effect prediction in intention-

based actions, regardless of whether the action choice was based on the selection of 

action, the timing of action, or the decision to perform or withdraw from an action. This 

finding, the first of its kind, reveals that while different types of intentional actions may 

have distinct neurobiological underpinnings, these differences do not significantly 

influence the learning and prediction of action-associated effects. Having established 

a robust foundation regarding human ability to anticipate the consequences of 
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intentional behaviour, we then illustrated that the decision to give up on a task is not 

solely influenced by the valence of the feedback – whether positive or negative – but 

is also controlled by an individual’s estimation of their own performance. Furthermore, 

information about feedback reliability significantly impacts how feedback is processed, 

particularly in terms of its effect on people's confidence in their learning and the 

adaptation of behavioural strategies. 

Altogether, this thesis sheds light on the remarkable flexibility with which 

humans use feedback to facilitate learning, a process that extends far beyond the 

simple categorization of feedback as positive or negative. It reveals how individuals 

integrate a wealth of information about their behaviour and the feedback itself to make 

informed decisions on how and whether to utilise the feedback information. These 

findings enhance our understanding of how people learn from feedback in real-life 

scenarios and underscore the importance of incorporating contextual and individual 

factors, such as confidence, error awareness, and feedback reliability, into our 

research. These factors are crucial in determining how the brain processes feedback 

information and can significantly influence individual learning progress. 

 

Keywords: Feedback processing, Reinforcement learning, Action-effect predictions, 

Decision making 
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Résumé  

Représentations du feedback dans l'apprentissage humain 

 L'acquisition de compétences cognitives et motrices est vitale à tous les stades 

de notre vie et dépend de manière critique des retours que nous recevons de 

l'environnement, fournissant des informations sur si et comment des améliorations 

peuvent être apportées. Le cadre théorique dominant caractérisant l'apprentissage 

par retour d'information est fourni par l'apprentissage par renforcement. Cependant, 

l'accent principal du cadre d'apprentissage par renforcement réside dans la manière 

dont les erreurs de prédiction guident l'apprentissage, soulignant un aspect 

relativement simple du retour d'information – s'il est meilleur ou pire que prévu. En 

réalité, le contexte dans lequel le retour d'information est donné et la connaissance 

qu'ont les individus de leurs propres actions influencent considérablement la manière 

dont nous extrayons des informations du retour d'information. De plus, ils jouent un 

rôle pivot dans la détermination de la mesure dans laquelle cette information est 

utilisée pour faciliter le processus d'apprentissage. 

Les objectifs de ce projet de doctorat sont d'élargir les conceptions actuelles 

de l'apprentissage à partir du retour d'information en explorant les formes riches 

d'informations qui peuvent être extraites du retour d'information pour favoriser un 

apprentissage rapide et flexible. Pour atteindre ces objectifs, nous avons mené des 

expériences axées sur l'examen de la manière dont le retour d'information est utilisé 

pour améliorer l'apprentissage et son application dans la prise de décision, 

spécifiquement dans la détermination de savoir si continuer à apprendre la même 

tâche et quand arrêter les comportements d'exploration. Cela implique également de 

prendre en compte l'impact des estimations internes des individus de leur propre 

performance et la fiabilité du retour d'information sur les processus d'évaluation du 

retour d'information et de prise de décision. De plus, nous avons étudié la génération 

de prédictions d'effet d'action dans différents types d'actions basées sur l'intention et 

le rôle de ces prédictions dans la détection des erreurs, ainsi que leur impact sur le 

traitement neuronal du retour d'information et les ajustements comportementaux 

ultérieurs. 
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Nos découvertes ont démontré la présence de prédiction d'effet d'action dans 

les actions basées sur l'intention, que le choix de l'action soit basé sur la sélection de 

l'action, le moment de l'action, ou la décision d'effectuer ou de se retirer d'une action. 

Cette découverte, la première en son genre, révèle que bien que différents types 

d'actions intentionnelles puissent avoir des bases neurobiologiques distinctes, ces 

différences n'influencent pas significativement l'apprentissage et la prédiction des 

effets associés à l'action. Ayant établi une base solide concernant la capacité humaine 

à anticiper les conséquences du comportement intentionnel, nous avons ensuite 

illustré que la décision d'abandonner une tâche n'est pas seulement influencée par la 

valence du retour d'information – qu'il soit positif ou négatif – mais est également 

contrôlée par l'estimation qu'a un individu de sa propre performance. De plus, les 

informations sur la fiabilité du retour d'information influencent considérablement la 

manière dont le retour d'information est traité, en particulier en termes de son effet sur 

la confiance des gens dans leur apprentissage et l'adaptation des stratégies 

comportementales. 

Dans l'ensemble, cette thèse met en lumière la remarquable flexibilité avec 

laquelle les humains utilisent le retour d'information pour faciliter l'apprentissage, un 

processus qui va bien au-delà de la simple catégorisation du retour d'information 

comme positif ou négatif. Elle révèle comment les individus intègrent une richesse 

d'informations sur leur comportement et le retour d'information lui-même pour prendre 

des décisions éclairées sur comment et si utiliser les informations de retour 

d'information. Ces découvertes améliorent notre compréhension de la manière dont 

les gens apprennent à partir du retour d'information dans des scénarios de la vie réelle 

et soulignent l'importance d'incorporer des facteurs contextuels et individuels, tels que 

la confiance, la conscience des erreurs, et la fiabilité du retour d'information, dans 

notre recherche. Ces facteurs sont cruciaux pour déterminer comment le cerveau 

traite les informations de retour d'information et peuvent influencer de manière 

significative les progrès individuels dans l'apprentissage. 

 

Mots-clés: Traitement des retours, Apprentissage par renforcement, Prédictions 

d'effet d'action, Prise de décision 
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Résumé substantiel 

 L'acquisition de compétences cognitives et motrices est essentielle à toutes les 

étapes de notre vie et dépend de manière critique des retours que nous recevons de 

l'environnement. Ces retours fournissent des informations sur la possibilité et la 

manière d'apporter des améliorations. Actuellement, le concept d'apprentissage par 

renforcement est considéré comme le cadre théorique prédominant pour comprendre 

l'apprentissage par feedback. Ce cadre se compose essentiellement de modèles 

computationnels conçus pour capturer les mécanismes d'apprentissage de 

comportements optimaux à travers des résultats positifs (récompenses) et négatifs 

(punitions) au fil du temps et dans différents contextes. Bien qu'il puisse exister de 

nombreuses variantes parmi les différents modèles d'apprentissage par renforcement, 

le concept central est que l'apprentissage est motivé par l'erreur de prédiction. Plus 

précisément, la valeur d'un stimulus/action n'est mise à jour que lorsque la 

récompense reçue ne correspond pas à la récompense prédite. Parmi les nombreux 

modèles d'apprentissage par renforcement, le temporal-difference (TD) learning 

model, proposé par Sutton et Barto en 1998, est considéré comme le précurseur de 

la vision neuroscientifique cognitive moderne de l'apprentissage. Ceci est largement 

attribué à la découverte que le tir phasique des neurones dopaminergiques du 

mésencéphale ressemble à un signal très similaire à l'erreur de prédiction temporelle 

décrite dans le modèle (Bayer & Glimcher, 2005 ; Dayan & Sejnowski, 1996 ; Roesch 

et al., 2007 ; Schultz et al., 1997). 

 Sous la formule de TD learning model, la valeur d'un état/événement est prédite 

non seulement par la récompense immédiate reçue, mais aussi par la somme de 

toutes les récompenses futures attendues à partir de cet état et vers d'autres états 

dans le futur. De plus, les récompenses futures sont actualisées en fonction de leur 

éloignement dans le temps. Ces caractéristiques du TD learning model correspondent 

bien à ce que nous observons habituellement dans les comportements humains, où 

les récompenses futures sont considérées comme moins précieuses que les 

récompenses immédiates, et la valeur d'un état/événement ne repose pas seulement 

sur la récompense qu'il fournit immédiatement, mais aussi sur son potentiel à nous 

conduire vers un autre état/événement associé à une récompense plus élevée ou plus 

faible. De plus, TD learning fournit une explication directe de la manière dont les 
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humains et les animaux peuvent apprendre l'action optimale ou la séquence d'actions 

qui nous mène à des états avec des récompenses maximales. Étant donné que la 

valeur prédictive des états est apprise par TD learning, une personne doit simplement 

choisir l'action connue pour mener à l'état avec la récompense la plus élevée. Cela 

nécessite cependant de connaître les conséquences exactes de chaque action en 

termes d'état résultant. Dans ce cas, nous utilisons la même erreur de prédiction à 

différence temporelle pour comparer les valeurs de deux états consécutifs après 

qu'une action ait été choisie. Si l'action a conduit à un état ayant une valeur plus élevée 

que l'état précédent, cette erreur de prédiction est positive ; si l'état a une valeur 

inférieure à l'état précédent, alors l'erreur de prédiction est négative. 

 Le cadre d'apprentissage par renforcement a très bien caractérisé les 

propriétés de base de l'apprentissage en termes de sa nature motivée par la 

récompense. Cependant, lorsqu'il s'agit d'appliquer ce modèle à l'apprentissage par 

feedback chez les humains, certaines limitations deviennent évidentes. Le modèle 

emploie une approche plutôt simpliste pour caractériser le feedback – positif si la 

récompense est supérieure aux attentes, négatif lorsque la récompense est inférieure 

aux attentes. L'influence du feedback sur l'apprentissage est ainsi examinée 

exclusivement sous cet angle binaire. Bien que ce concept semble raisonnable pour 

des tâches simples et dans les études sur les animaux, où une récompense principale 

sert souvent de feedback, il peut ne pas être directement applicable aux humains.  

 Dans notre vie quotidienne, nous recevons des retours d'information sous 

diverses formes. Parfois, ils se contentent d'indiquer le résultat comme étant positif ou 

négatif. D'autres fois, ils peuvent offrir des perspectives sur notre performance et la 

manière de l'améliorer. De plus, nous recevons des retours internes de nos actions, 

qui jouent un rôle crucial dans la détection d'erreurs et dans notre performance 

d'apprentissage. Par conséquent, les informations issues des retours peuvent remplir 

plusieurs fonctions. Elles peuvent être utilisées pour apprendre la valeur des options 

comme suggéré dans le modèle d'apprentissage par renforcement, pour améliorer la 

performance lorsqu'elles contiennent des informations détaillées sur le comportement 

lui-même, ou même pour guider des décisions pertinentes pour l'apprentissage. Par 

exemple, nous nous demandons parfois si nous devons persister dans une tâche, 

chercher des conseils externes ou explorer des stratégies alternatives, et nous 
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fondons ces décisions sur les retours que nous avons reçus. La manière dont les 

humains utilisent les retours dans l'apprentissage est flexible et dynamique, variant 

selon le contenu spécifique du retour et les objectifs de l'individu. 

 De plus, dans le cadre du modèle d'apprentissage par renforcement, nous 

mettons à jour nos connaissances sur l'association stimuli/actions – résultat en 

fonction de la différence entre les résultats attendus et réels. Par conséquent, la valeur 

de l'association actions – résultat devrait augmenter, et l'action devrait être répétée 

lorsque la récompense est meilleure que prévu, et diminuer lorsque la récompense 

est pire que prévu. Cependant, ce qui semble être négligé dans le modèle est la 

mesure dans laquelle la valeur devrait augmenter ou diminuer pour chaque résultat 

positif et négatif. L'incertitude peut être le facteur qui contrôle le degré de mise à jour 

de la valeur du choix de comportement et impacte les ajustements futurs du 

comportement. Dans le monde réel, l'incertitude est un facteur constant, surtout en ce 

qui concerne les relations entre les stimuli, les actions et leurs résultats. Cette 

incertitude peut provenir de diverses sources : elle peut être due à la variabilité 

inhérente de l'environnement (Behrens et al., 2007; McGuire et al., 2014), à la nature 

des retours que nous recevons (Di Gregorio et al., 2019; Schiffer et al., 2017; Walsh 

& Anderson, 2011), aux erreurs dans l'exécution des actions (Akdoğan & Balcı, 2017; 

Gehring et al., 2018; Kononowicz & Van Wassenhove, 2019; McDougle et al., 2019), 

ou même au manque de précision dans nos prédictions internes sur l'effet sensoriel 

de nos actions (Frömer et al., 2021). La présence d'incertitude joue un rôle pivot dans 

la détermination de la perception de l'informativité des retours, de leur interprétation 

et de la probabilité de tout ajustement de comportement ultérieur basé sur eux. 

 Par conséquent, si nous souhaitons obtenir une image plus cohérente de la 

manière dont les humains utilisent les retours d'information pour améliorer 

l'apprentissage dans des scénarios de la vie réelle, il est essentiel de prendre en 

compte tous les facteurs mentionnés ci-dessus dans notre recherche et d'étudier 

comment leurs effets peuvent varier de manière prévisible d'un individu à l'autre. Dans 

ce projet de doctorat, nous avons exploré l'utilisation flexible des retours dans 

l'apprentissage et la prise de décision chez les humains. Nous avons mené une 

enquête systématique sur la manière dont divers facteurs contextuels et individuels, y 

compris la fiabilité des retours, la confiance subjective dans la progression de 
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l'apprentissage, la performance objective et la capacité d'un individu à prédire les 

résultats des actions, influencent le traitement et l'interprétation des retours, et l'effet 

des retours sur l'ajustement comportemental ultérieur. 

Nous avons mené trois expériences au cours de ce projet. Dans Experiment 1, 

nous avons étudié la génération de prédictions d'effet-action sous des actions 

intentionnelles. Comme mentionné précédemment, la capacité de prédire les 

conséquences sensorielles de notre action est cruciale pour la détection des erreurs 

et l'affinement de la performance motrice. Nous avons reconnu que la recherche 

antérieure traitait souvent les actions intentionnelles comme un concept unifié, malgré 

le fait qu'elles peuvent être catégorisées en trois types principaux, en fonction des 

décisions internes concernant le fait d'agir, quelle action effectuer et quand la réaliser. 

En utilisant l'EEG, nous avons mesuré si la prédiction des effets d'action était générée 

indépendamment du fait que l'effet soit lié au choix de l'action, au moment de l'action, 

ou à la décision de réaliser ou de se retirer d'une action. Plus précisément, nous avons 

accédé à la présence de prédictions d'effet-action indirectement en observant la 

réponse d'erreur de prédiction dans les données EEG lorsqu'un effet-action attendu 

est violé. Nos découvertes ont révélé que la prédiction d'effet-action se produit dans 

tous les trois types de décisions d'action. Ce résultat suggère que, malgré que des 

études de neuroimagerie antérieures (Krieghoff et al., 2009; Mueller et al., 2007) 

indiquaient qu'il existe des mécanismes neurobiologiques distincts sous-jacents à 

différents types d'actions intentionnelles, ces différences ne semblent pas influencer 

de manière significative le processus de formation des associations action – résultat. 

Les résultats de cette expérience enrichissent notre compréhension de la capacité 

humaine à prédire les conséquences de leurs propres actions. En même temps, cela 

ouvre la porte à des enquêtes plus détaillées sur la manière dont les prédictions issues 

de différents aspects de l'action peuvent interagir entre elles. Par exemple, le résultat 

de nos actions est généralement prédit conjointement par le choix de l'action et le 

moment de son exécution. 

Dans Experiment 2, nous avons étudié comment les gens utilisent les retours 

pour prendre des décisions concernant l'apprentissage, en particulier lorsqu'ils 

décident de poursuivre ou d'abandonner une tâche. Nous reconnaissons que les 

retours, qu'ils soient positifs ou négatifs, peuvent influencer les individus à persister 
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ou à arrêter l'apprentissage. Alors que les retours positifs peuvent motiver à continuer 

l'engagement dans une tâche, l'effort nécessaire pour de nouvelles tentatives sur la 

même tâche peut conduire à une décision de ne pas continuer. En revanche, les 

retours négatifs peuvent décourager de nouvelles tentatives, mais la perspective 

d'une récompense future possible peut motiver la persévérance. En combinant des 

mesures comportementales avec l'EEG, nous avons testé si la décision de continuer 

ou d'abandonner l'apprentissage peut être prédite par la valence des retours, les 

signatures neuronales du traitement des retours en EEG (FRN and P3), et la 

performance objective des participants. Plus précisément, nous avons conçu une 

tâche sensori-motrice où les participants devaient reproduire le temps total de 

présentation de stimuli visuels en maintenant enfoncée une touche du clavier, puis 

recevaient des retours positifs ou négatifs pour leur réponse. Par la suite, ils devaient 

décider de retenter ou non le même essai, où ils pouvaient recevoir une récompense 

ou une pénalité en fonction de leur performance. 

 Nous avons constaté que la décision de retenter une tâche dépendait 

significativement du retour reçu. Comme prévu, les retours positifs encourageaient la 

répétition du comportement. De manière importante, la performance objective des 

participants a également eu un impact significatif sur la décision. Les gens étaient 

capables de prendre leur décision en fonction de leur performance : si la performance 

était bonne, ils étaient enclins à réessayer ; si ce n'était pas le cas, ils étaient plus 

susceptibles de passer à l'essai suivant. Puisque les retours dans cette tâche ne 

signalaient pas la performance, cela suggère que les participants étaient capables 

d'estimer leur performance de manière interne et d'appliquer cette information dans la 

décision de retenter ou non la tâche. De manière intéressante, l'impact de la 

performance sur la décision se reflétait dans l'amplitude du FRN, un marqueur 

neuronal typique pour l'erreur de prédiction en apprentissage. Plus l'amplitude du FRN 

est grande, plus les participants sont susceptibles de prendre leur décision, qu'il 

s'agisse de réessayer l'essai actuel ou de passer au suivant, conformément à leur 

performance. Une grande amplitude du FRN pourrait indirectement indiquer une 

prédiction de résultat générée à partir d'un suivi interne du comportement. Cela est dû 

au fait que la présence d'une attente est supposée déclencher une plus grande 

réponse neuronale face au résultat réel, comparativement à une situation où aucune 

attente ne peut être formée (Holroyd et al., 2009 ; Hsu et al., 2015 ; Wurm et al., 2022). 
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De plus, nous avons observé qu'une augmentation de l'amplitude du P3 prédisait la 

décision de réessayer malgré une mauvaise performance, ce qui peut refléter une 

mise à jour du modèle cognitif et une augmentation de la valeur motivationnelle 

(Nieuwenhuis et al., 2005 ; Polich, 2007). Nos découvertes dans cette étude sont 

précieuses pour montrer que la décision de répéter un comportement ou de continuer 

à apprendre ne repose pas uniquement sur le fait que les retours reçus soient positifs 

ou négatifs. Les gens sont capables de générer une estimation interne de leur 

performance motrice et de l'utiliser pour optimiser leurs décisions. 

 Dans Experiment 3, nous avons étudié comment la fiabilité des retours, ainsi 

que leur nature positive ou négative, affecte les taux d'apprentissage individuels et les 

adaptations comportementales. De plus, nous avons obtenu une mesure subjective 

des évaluations de confiance des individus concernant leur progression 

d'apprentissage durant la tâche et avons évalué son impact sur l'évaluation des 

retours. Nous avons employé une tâche d'apprentissage probabiliste où les 

participants se fiaient aux retours pour améliorer progressivement leur performance 

et pour décider de continuer à explorer ou de s'engager dans leur choix 

comportemental afin de gagner des récompenses potentielles. De manière cruciale, 

nous avons manipulé la fiabilité des retours à travers différents blocs expérimentaux, 

la fixant à un niveau élevé (autour de 80 %) et bas (autour de 70 %). Les participants 

étaient informés de la fiabilité des retours au début de chaque bloc. De plus, ils étaient 

invités à évaluer leur niveau de confiance dans leur progression d'apprentissage au 

début de chaque essai de chaque bloc. 

 Les résultats de cette étude sont intrigants. Nous avons découvert que les 

retours n'affectaient les évaluations de confiance des participants que lorsqu'ils 

n'avaient pas encore démontré un apprentissage réussi. Cependant, une fois que la 

performance est restée constamment bonne, les retours n'influençaient plus leurs 

évaluations de confiance. Leur confiance était alignée sur leur performance, restant 

relativement élevée lorsque la performance était bonne, qu'ils reçoivent des retours 

positifs ou négatifs. Alors que les retours influençaient significativement la confiance 

pendant les périodes de mauvaise performance, cet effet était médiatisé par la fiabilité 

des retours. Les participants évaluaient leur confiance plus hautement après avoir 

reçu des retours positifs d'un bloc de haute fiabilité de retours comparé au même 
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retour dans un bloc de faible fiabilité. Cette ligne de résultats est cohérente avec des 

études précédentes qui ont montré une réduction de la réponse neuronale aux retours 

dans les dernières étapes d'une tâche d'apprentissage (Bellebaum et Daum 2008; 

Eppinger et al., 2008; Hajcak et al., 2007; Krigolson et al., 2009; Pietschmann et al., 

2008). De plus, d'autres études ont trouvé que la réduction de l'information de retour 

est corrélée à une amélioration de la performance d'apprentissage (Frömer et al., 2021; 

Sewell et al., 2018). Nos résultats démontrent en outre que la réduction des retours 

est également évidente dans une mesure explicite de la confiance du sujet. 

Dans cette étude, nous avons également analysé la tendance à l'exploration. 

Nous avons quantifié les comportements exploratoires par le degré de changement 

de réponse entre les essais et avons trouvé que, en général, l'évaluation de la 

confiance est un bon prédicteur du degré d'ajustement de la réponse. Typiquement, 

une confiance plus faible entraînait de plus grands changements. Intéressant, bien 

que nous ayons trouvé que la performance influençait également le degré de 

changement de réponse (avec un degré de changement plus petit lorsque la réponse 

précédente était exacte), cet effet n'était observable que dans les blocs de haute 

fiabilité de retours. Cela pourrait suggérer que les participants étaient généralement 

moins conscients de l'exactitude de leurs réponses dans des conditions de faible 

fiabilité de retours, et cette incertitude pourrait en même temps encourager un 

comportement exploratoire (Cavanagh et al., 2012; Nassar et al., 2010, 2016). 

Concernant la décision de s'engager dans une réponse pour gagner une récompense 

potentielle, nous avons trouvé que les participants étaient plus enclins à le faire après 

avoir reçu des retours positifs ou lorsque leur évaluation de confiance était élevée. 

Intéressant, la probabilité de s'engager dans une réponse était plus élevée dans les 

blocs de faible fiabilité de retours par rapport aux blocs de haute fiabilité. Nous 

soupçonnons que cette tendance peut représenter un comportement exploratoire, où 

les participants choisissent de vérifier s'ils ont reçu des retours précis plus tôt, même 

si cela comporte un coût mineur étant donné les chances limitées de gagner une 

récompense. Nos découvertes démontrent la flexibilité de la manière dont les 

apprenants humains utilisent les retours pour ajuster l'apprentissage, où l'impact des 

retours sur l'ajustement comportemental se réduit progressivement à mesure que 

l'apprentissage progresse, et la connaissance de la fiabilité des retours est prise en 

compte dans le traitement de l'information de retour. 
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Pour résumer, l'objectif de cette thèse est de fournir une meilleure 

compréhension de la nature complexe de l'apprentissage par feedback chez les 

humains. À travers notre travail, nous avons souligné l'importance d'intégrer des 

facteurs qui régissent le niveau d'incertitude dans les informations dans l'étude de 

l'apprentissage humain. De plus, nous avons démontré la capacité des apprenants 

humains à intégrer des informations provenant de diverses sources (par exemple, 

l'estimation interne de l'effet-action, la confiance subjective dans la performance, la 

connaissance de la crédibilité du feedback) pour les aider à interpréter les retours 

qu'ils reçoivent et décider comment appliquer cette information pour optimiser 

dynamiquement la performance. Nos découvertes sont précieuses pour contribuer au 

développement d'un cadre d'apprentissage plus efficace qui reflète avec précision la 

dynamique complexe des environnements d'apprentissage du monde réel.  
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1. INTRODUCTION 

1.1. Background   

The acquisition of cognitive and motor skills is vital at all stages of our life and 

critically depends on the feedback we receive from the environment. Feedback 

provides information on whether and how improvements can be made. Currently, the 

dominant theoretical framework characterizing feedback learning is reinforcement 

learning. According to this framework, learning critically depends on prediction error 

(PE), which concerns whether outcomes are better or worse than expected. While the 

reinforcement learning framework has proven to be a powerful tool for understanding 

human learning — as the existence and use of prediction errors in driving learning 

have been repeatedly documented in research over decades at both behavioural and 

neurophysiological levels (Daw & Doya, 2006; Pessiglione et al., 2006; Schultz et al., 

1997).  However, in real-life situations, using and interpreting feedback involves more 

than just the knowledge of whether it is better or worse than expected. 

Human learners possess the ability to integrate information from various sources, 

to help us interpret feedback and decide how to apply it to optimize performance. One 

key factor that significantly influences feedback processing is – the feeling of 

uncertainty. In our daily lives, we all consistently experience some level of uncertainty 

as there is seldom a deterministic relationship between stimuli/actions and outcomes. 

The level of uncertainty we experience conditioned the informativeness of feedback. 

Take environmental uncertainty as an example: in an environment that is consistently 

changing, unexpected feedback holds greater informational value as it is more likely 

to indicate the occurrence of real changes in the context. In contrast, in a stable 

environment, unexpected outcomes are more likely to be seen as exceptions and less 

likely to prompt any behavioural changes (Behrens et al., 2007). Another dimension 

of uncertainty is linked to our understanding of the feedback's properties, such as its 

reliability. Feedback reliability can be assessed based on experiences, explicit 

instructions, or the credibility of the source providing the feedback (e.g., the 

trustworthiness of the person offering the feedback). Previous studies have shown that 

the perceived reliability of feedback has a direct impact on the learning rate and on the 

modification of behavioural strategies in individuals (Carlebach & Yeung, 2023; 

Pescetelli et al., 2021; Schiffer et al., 2017). 
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In addition, humans possess metacognitive abilities, allowing us to consistently 

perform second-order evaluations regarding the accuracy of our estimations about the 

external world (i.e. what have we learned ?) (Meyniel et al., 2015; Yeung & 

Summerfield, 2012). The outcome of this evaluation is expressed as confidence. 

Confidence is a rational measure of performance during the learning process, as it has 

been reported that subjective confidence increases linearly with objective performance 

(Bounmy et al., 2023; Meyniel, Schlunegger, et al., 2015), and it has also been found 

to share similar neural markers with the processes of error detection and error 

monitoring (Boldt & Yeung, 2015; Yeung & Summerfield, 2012a). In the context of 

learning, the estimation of confidence modulates the effect of prediction error/surprise 

on learning adjustments. Smaller updates occur after a surprising outcome when 

confidence is high, conversely, larger updates occur when confidence is low (Meyniel, 

2020; Meyniel & Dehaene, 2017). This modulation effect has been demonstrated in a 

variety of studies across different task settings, e.g., probabilistic learning task with 

both visual and auditory stimuli (Meyniel, 2020; Meyniel, Schlunegger, et al., 2015), 

value-based decision making (E. Payzan-LeNestour et al., 2013) and motor learning 

(Frömer et al., 2021). Therefore, subjective confidence, along with the general volatility 

of the external context, conditions the effect of feedback on learning, beyond simply 

the degree of error indicated by the feedback. 

Furthermore, the processing of external feedback in motor learning is relatively 

underexplored in the reinforcement learning literature, as the tasks typically employed 

are often related to learning the underlying probabilities of events through feedback 

and observations. Motor learning tasks are more complex because they involve a 

credit assignment problem: how do we determine if the absence of a reward reflects 

an extrinsic property of the environment, an incorrect estimation of task parameters 

due to an insufficient amount of samples, or an intrinsic error in motor execution? 

Previous studies have demonstrated that humans can estimate the magnitude of 

motor errors reasonably accurately (Akdoğan & Balcı, 2017; Kononowicz et al., 2019; 

Kononowicz & Van Wassenhove, 2019). It has also been shown that when a motor 

execution error is detected, it is discounted in decision-making (McDougle et al., 2016), 

and the prediction error response is attenuated when an unexpected outcome is 

associated with an execution error compared to when the execution is successful 

(McDougle et al., 2019). These findings indicate that the impact of an observed 
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outcome on updating learning and decision-making can be modulated by internal 

motor feedback. 

Altogether, while the framework of reinforcement learning provides a strong 

foundation for understanding how feedback drives learning through prediction error. 

We are in need for a more complex framework that would take into account of the 

impact of uncertainty (whether if it is from the environment, the feedback itself or from 

our internal estimation of self-performance) and to understand in what way the effect 

of feedback in learning is affect by the level of uncertainty. Such a framework will 

eventually help us to better translate laboratory findings into real-world applications. 

 

1.2. Thesis objectives   

The objective of this PhD project is to address the limitations of the reinforcement 

model, where value estimates are updated solely based on prediction errors. We aim 

to demonstrate that human learners can dynamically and optimally adjust their use of 

feedback in learning, based on information beyond prediction error, such as 

knowledge about the quality of the feedback and individuals’ internal estimation of 

performance. Meanwhile, we are interested in exploring the impact of feedback on 

subsequent decision-making, specifically regarding whether to continue or give up on 

a task, and the decision to explore. These decisions are critical in the context of 

learning, as the ultimate goal of learning is to maximize potential rewards over the long 

term. To achieve this, learners must consistently use all available information to decide 

whether the effort required for further attempts is justified by the prospect of a possible 

future reward, and whether to explore other possible options, even at the expense of 

temporarily choosing less rewarding actions. We believe that the information from 

feedback plays a significant role in this decision-making process. 

To address these objectives, we conducted three experiments during the period of 

this project. In our first experiment, we examined the human ability to generate 

predictions about their own action effects across different types of actions, establishing 

the basics of human ability to monitor their action outcomes. In our second experiment, 

we explored the impact of feedback and motor performance on the decision to either 
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give up or continue in a motor learning task. This was the first time any study has 

investigated the interactive effect between internal motor feedback and external 

feedback in terms of the decision to give up or continue in a motor learning task. This 

study addresses previous findings that internal monitoring of motor performance 

affects decision-making and the effect of outcomes/feedback on learning. (Frömer et 

al., 2021; McDougle et al., 2016, 2019).We expected that external feedback would 

significantly impact the decision to continue learning, but the effect of the feedback 

would be modulated by the internal monitoring of motor performance.  

In the third experiment, we investigated how uncertainty regarding the feedback itself 

(by controlling feedback reliability) and subjective confidence regarding learning 

performance modulate the effect of feedback in learning. Additionally, we explored 

how the decision to continue exploring other possible options or remain with the 

chosen option is made in relation to feedback and uncertainty (about the quality of the 

feedback itself and about learning performance). Altogether, our findings will shed light 

on the role of feedback in learning adjustment and decision-making, and to gain a 

better understanding of how we use feedback to aid learning and decision-making in 

a flexible way. This involves taking into account other available information in the 

environment and our internal estimation of the context. 

 

1.3. Structure of the thesis   

The first part of this thesis offers an overview of the relevant literature for this PhD 

project, divided into two main sections. In the first section, we outline the basic 

concepts of reinforcement learning and present results from neuroimaging studies that 

support the reinforcement learning model. This provides readers with insights into how 

the reinforcement learning framework, initially a computational approach in machine 

learning, has become the leading framework for understanding human learning in 

cognitive neuroscience today. In the second section, we focus specifically on feedback 

learning. We discuss the neural basis of feedback processing and provide a detailed 

account of the different sources of uncertainty we consistently encounter in our daily 

lives. Furthermore, we describe how each source impacts the way feedback is 

interpreted and used in learning and decision-making at both the behavioural and 

neural levels, supported by previous findings. 
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In the second part of the thesis, we present the work conducted throughout this 

PhD project. We will present the results from three experiments. In the first experiment, 

we investigated the formation of action-effect predictions in intentional actions. 

Previous studies have repeatedly demonstrated that the execution of different types 

of actions—the selection of the action (what), the timing of the action (when), and the 

decision to perform or withdraw from an action (whether)—can be partly dissociated 

in different brain regions (Brass & Haggard, 2008; Krieghoff et al., 2009; Kühn & Brass, 

2010; Mueller et al., 2007; Zapparoli et al., 2017). However, no study has yet 

investigated the formation of action-effect predictions separately in these different 

types of action. The results of this study inform us whether action-effect predictions 

are generated under all three types of action and whether the strength of those 

predictions may differ depending on the type of action choice. After an in-depth 

examination of the human ability to monitor their action outcomes and learn the 

associations between their action and the sensory effects its caused. In our second 

experiment, we examined the role of external feedback and internal motor feedback 

in the decision of whether to give up or continue learning, using a sensorimotor task. 

It is well-established in the literature that external feedback can help improving motor 

learning performance, but less is known about the extent to which the decision to 

reattempt a task or not depends on the received feedback. Additionally, how this 

decision may also be informed by the internal estimations of motor performance, 

especially if we decorrelate the performance from the external feedback. The result of 

this study would illustrate the role of external feedback in decision-making, as well as 

the possible interaction effect between the external and internal motor feedback on 

both learning and decision-making. In the third experiment, we investigated how 

uncertainty regarding the feedback itself, along with subjective confidence about 

learning performance, modulates the effect of feedback on response adjustment and 

the decision to explore. We employed a learning task where participants had to rely 

on the feedback received on every trial to gradually improve their performance while 

we induced different levels of feedback reliability in the task. This approach allowed 

us to examine the degree of learning adjustment from one trial to the next, with varying 

levels of confidence and feedback reliability. Additionally, participants had the option 

to decide to stop sampling evidence and just remain with their chosen option, and we 

examined how this decision is made in relation to feedback, feedback reliability, and 

confidence. 
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 In the final part of the thesis, we discuss the experimental results obtained from 

the three experiments and offer insights into potential directions for future research. 

 

2. LITERATURE REVIEW 

2.1. What is reinforcement learning?   
 

Imagine driving to the supermarket every day. If you always go from home to the 

same supermarket, the activity becomes largely effortless. Although there may be an 

overwhelming number of sensory cues in the environment, your responses to those 

cues are well-established: turn right at Saint-Germain Street, make a left turn when 

you see the bakery, etc. Based on the received cue, you execute a pre-programmed 

response without the need to think about it or pay any attention to it. But how did you 

learn to execute this specific response? Why this response? Out of all the possible 

actions you could take (like scratching your nose or waving your hand), you learned 

to turn right at Saint-Germain Street.  

Formal research into conditioned responses can be traced back to the early 19th 

century, marked by the seminal works of Pavlov (1927) and Thorndike (1911). In the 

typical setup of what is now termed classical or Pavlovian conditioning, a conditioned 

stimulus (e.g., the sound of a bell) is paired with an unconditioned stimulus (e.g., food). 

The unconditioned stimulus typically signals a primary reward and elicits an 

observable biological reaction, referred to as the unconditioned response. The most 

intriguing observation within this framework is that, after repeated pairings of the 

conditioned stimulus with the unconditioned stimulus, the unconditioned response 

begins to occur ahead of time, triggered solely by the presentation of the conditioned 

stimulus. This phenomenon occurs because the organism now has learned to predict 

the reward upon the presentation of a previously neutral cue. This framework 

illustrates how an organism learns to predict events controlled by the environment 

through cues or the context.  

Nonetheless, as active agents in the world, we are capable of using actions to 

change the environment with the goal of maximising reward. Using the same example 

as earlier, food does not generally appear magically after the ringing of a bell, animals 
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in the wild has to go out and look for food. In this case, animals need to learn to 

produce the right behaviour in the given context in order to achieve their goals. This 

learning process was first formulated and described by Thorndike (1905, 1911, 1913) 

under the theory of the 'Law of Effect', which essentially states that behaviours 

followed by pleasant consequences are likely to be repeated, while those followed by 

unpleasant consequences are less likely to be repeated. One of his most famous 

experiments involved placing cats in a puzzle box, from which they could escape by 

triggering a mechanism, such as pulling a string or pressing a lever. Initially, the cats 

would move randomly and aimlessly, but over time, they learned to associate the 

specific action with escape and the subsequent reward. This observation 

demonstrates how animals learn and adapt their behaviours based on the outcomes 

they experienced. These data obtained from behavioural experiments in psychology 

have provoked great interest among researchers in computer science. They were 

inspired to build compact computational models that can capture this mechanism of 

learning optimal behaviours through positive and negative outcomes over time, and 

under a variety of contexts. These models are the basis for machine learning, and 

nowadays they are also powerful tools for understanding human learning mechanism 

within the field of neuroscience. Due to the discovery that the computational learning 

models are not only capable of predicting behaviours in animal and human but also 

parallel the actual neural processes observed in primates. Specifically, the 

dopaminergic neurons activities in the midbrain regions (will be described in more 

detail in later paragraphs).  

In the following section, I would provide examples of reinforcement learning model. 

Although the primary focus of this thesis is not on the computational aspect of 

reinforcement learning (for details, see Sutton & Barto, 2018) and it is also impossible 

to cover the exhaustive amount of learning models that exist to date. Two models, 

however, deserve special mention because they are widely considered to be the 

progenitors of the modern cognitive neuroscientific view of learning.  

2.1.1.  Reinforcement learning model 

Rescorla and Wagner (1972) described a model for learning the predictive value 

of conditioned stimuli (CS) in the case of Pavlovian conditioning. Here, the update rule 

for the value of the stimulus 𝐶𝑆! is according to 
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𝑉"#$(𝐶𝑆!) 	= 	𝛼𝛽[	𝜆(𝑈𝑆) 	−.𝑉%&'
!

(𝐶𝑆!)] 

The critical part of the Rescorla-Wagner model is that learning/the update of the value 

of the CSs is driven by prediction error – the discrepancy between what was predicted 

Σ!𝑉(𝐶𝑆!) (the sum of all the predictive value of the CSs presents in the trial) and what 

actually happened 𝜆(𝑈𝑆). 𝛼 and 𝛽 are learning rates related to the conditional and 

unconditional stimuli. While this model explains how the updating of stimulus values 

in an experimental trial could take place, there are two major shortcomings that make 

it difficult to apply to real-life learning. Firstly, the model treats conditioned and 

unconditioned stimuli as separate entities. This created the problem of it not being able 

to account for second-order conditioning, where if stimulus A predicts a primary reward 

and stimulus B predicts stimulus A, then stimulus B should also gain predictive value. 

This is exactly how monetary outcomes can be seen as reward to human leaners. 

Secondly, the Rescorla-Wagner model fails to account for the temporal evolution of 

events. The model explains the learning of the value for a series of conditional stimuli 

in a 'trial', without specifying the temporal relations between the conditioned and the 

unconditioned stimuli within the trial, or the effects of those temporal relations may 

have on the value of the stimuli.  

To address those limitations, Sutton and Barto (1998) proposed a model named 

– Temporal-difference (TD) learning. There are many variants of the TD learning 

model but the basis formula is as follow: 

𝑉(𝑆() = 	𝑉(𝑆() + 𝛼[𝑟()* 	+ 	𝛾𝑉(𝑆()*) − 𝑉(𝑆()] 

This formula is somewhat similar to the Rescorla-Wagner model in that it still relies on 

prediction error to update learning. However, it is now sensitive to the temporal 

structure of events within a trial. In TD learning, the value of a state/event 𝑉(𝑆() is 

predicted not only by the immediate reward received but also by the sum of all future 

rewards expected to be obtained, starting from that state and to other states in the 

future. However, these future rewards are discounted with the factor 𝛾 based on how 

distant they are in the future. The power of TD learning lies in the fact that even without 

any knowledge of the true reward probabilities in the environment, simply by 

recursively updating the value of the immediate reward received from the current state, 
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and the estimated rewards for the next state to which the current state leads to, the 

value estimates for each state gradually converge to their true values. The true value 

of a state is the expected sum of return when starting from that state.  

Simply by understanding the basic formula, we can already see how TD learning 

fits better with the learning behaviours of humans and animals that we observe in real 

life. Rewards in the future are usually seen as less valuable than immediate rewards, 

and the value of a state/event is not only based on the reward it provides immediately 

but also on its potential in leading us toward another state/event that is associated with 

a higher or lower reward. Again, we are not passive agents in the world. In some cases, 

it is true that we cannot do much more than just observe the transition between 

events/states one after another and try to learn the reward probability associated with 

each state and the transition probability between states through our experience and 

observation. However, most of the time, we are capable of taking action, and we can 

control the transition of states with our actions. Then, the question arises: how do we 

learn the action or action sequence (also termed the 'policy') that leads us to states 

with maximum rewards? 

The rule of TD learning can also be applied in this regard, with only minor 

modifications. Given that the predictive value of states is learned through TD learning, 

a person simply needs to select the action that is known to lead to the state with the 

highest reward. However, this requires knowing the exact consequences of each 

action in terms of the resulting state. Just like we usually do not have any idea about 

the true reward probabilities in an environment, we also need to learn the value of 

each action performed in each state – essentially, the value of all possible state-action 

pairs. In this case, we use the same temporal-difference prediction error 𝛾𝑉(𝑆()*) −
𝑉(𝑆(), to compare the values of two consecutive states after an action is chosen. If the 

action has led to a state with a higher value than the previous state, this prediction 

error is positive, if the state has a lower value than the previous state, then the 

prediction error is negative. Just as previously described in the Law of Effect 

(Thorndike 1905; 1911; 1913), the likelihood of performing actions that lead to positive 

outcomes should increase, while the probability of taking actions that lead to negative 

outcomes should decrease. Consequently, the agent can learn an explicit policy of 

how to act (e.g., always choosing the action that leads to the highest probability of 
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reward) by creating a probability distribution over all available actions at each state, 

assuming there has been sufficient exploration of all state-action pairs.   

While it is impressive how complex learning problems can be so elegantly solved 

by relatively simple computational models, the real interest in reinforcement learning 

models within cognitive neuroscience began to flourish for a specific reason. This 

interest was sparked when researchers discovered that the phasic firing of midbrain 

dopaminergic neurons resembles a signal very similar to the reward prediction error 

described in reinforcement learning models (Dayan & Sejnowski, 1996; Schultz et al., 

1997). In the following section, we will review the neural data on reinforcement learning, 

from single-unit recordings of dopaminergic neuron activity to whole-brain imaging 

studies using fMRI. 

2.1.2.  Neural data on reinforcement learning 

Dopamine has long been linked with reward processing, as evidenced by 

studies showing that blocking dopamine receptors reduces pleasure in response to 

previously rewarding stimuli in humans and animals (Wise, 2004; Wise et al., 1978). 

The pioneering work of Schultz et al. (1997) highlighted a direct correlation between 

the activity of dopaminergic neurons in the ventral tegmental area (VTA) of monkeys' 

midbrains and the prediction error signal described in the reinforcement models using 

a simple conditioning task.  In the experiment, monkeys received a sip of juice as the 

unconditioned stimulus (US), and they learned to associate a tone or light (CS) with 

this reward. As depicted in Figure 1, before the association between the CS and the 

US was established, the occurrence of the unpredicted US elicited a positive prediction 

error. Once the monkey learned to predict the occurrence of the US by the CS, the 

positive prediction error signal shifted to the moment of the CS presentation. 

Conversely, when the US, anticipated by the CS, was omitted, a negative prediction 

error was recorded at the expected delivery time of the US. These characteristics of 

the dopaminergic neurons closely resemble what would be expected of a prediction 

error signal and have since been replicated in many studies (Bayer et al., 2007; Bayer 

& Glimcher, 2005; Fiorillo et al., 2003; Tobler et al., 2003).  
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Figure 1. Dopamine activity under conditioning.  
(A). Before learning, dopaminergic neurons respond with a phasic burst of firing to the US. (B). After the occurrence 
Us is associated with a cue, the phasic response now accompanies the presentation of the predictive cue. (C). In 
“catch” trials, in which the food reward was unexpectedly omitted, dopaminergic neurons showed a below baseline 
firing rate at the time of the expected reward delivery. Adapted from Schultz, Dayan & Montague (1997).  

In later studies, it has been further demonstrated that the firing pattern of 

midbrain dopaminergic neurons also fit well with the characteristics of temporal-

difference prediction errors, where the prediction error signal is calculated based on 

not only the immediate reward but also the expected rewards in the future, with 

delayed rewards being discounted in their value. In a study of Bayer and Glimcher 

(2005), they trained monkeys to perform a saccade task where the amount of reward 

varied depending on the timing of making a saccade to the target. The longer the 

monkeys waited before making a saccade, the more juice they received, up to a certain 

deadline. This task design enabled the monkeys to learn the optimal timing to make a 

saccade to maximise their rewards. In this context, a wide range of prediction errors 

were observed during the learning process. They found that the dopaminergic neurons 

firing rates for the current reward were predicted by the difference between the value 

of the current reward and the weighted average of previous rewards in the last ten 

trials. Notably, when the current reward's value fell below the weighted average of past 

rewards, the dopamine neurons exhibited no response to the present reward. Also, in 

Roesch et al. (2007), they trained rats to perform an odor-discrimination task, where 

the rats learned that a specific odor cue can predict either a short or long delay reward. 
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Their results showed that the cue-evoked firing activity of VTA dopaminergic neurons 

was significantly lower for the cue that predict long-delay reward compared to short-

delay reward, even though the objective reward value was the same (Figure 2A). This 

effect was also mirrored behaviorally, with rats showing a preference to go to location 

that offer a shorter delay reward over a long-delay reward when given a choice (Figure 

2B). 

 
Figure 2. The impact of delay reward in dopaminergic neurons activity and behavioural choice. 
(A). Average dopaminergic neurons activity of short and long delay reward delivery (B). Choice behavior before 
and after the reward switch from short to long delay. Adapted from Roesch et al. (2007).  

 

So far, we have mainly focused on neural data collected from animals using 

single-unit recording. To study the impact of dopaminergic neuron activity on human 

learning and decision-making, nonetheless, would require techniques that are much 

less invasive. fMRI is the common choice of technique for human studies. Although it 

may not provide information as precise as single-unit recording, nor offer such 

excellent temporal resolution, it has the advantages of being non-invasive and capable 

of recording activity at the whole-brain level. 

Using fMRI, previous studies have identified several pathways of midbrain 

dopaminergic neuron projection (Figure 3). Dopaminergic neurons from the substantia 

nigra pars compacta (SNc) primarily target the striatum, while those from the VTA were 

mainly projected to the prefrontal cortical areas, including the nucleus accumbens, 

dorsal, ventral lateral prefrontal cortex, and orbitofrontal cortex (Berns et al., 2001; 

Knutson et al., 2001; Pagnoni et al., 2002). The pathway between the SNc and 
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striatum (termed the nigrostriatal pathway) is found to be primarily involved in motor 

control (Deumens et al., 2002; Rodríguez et al., 2000). The projections from the VTA 

to the nucleus accumbens and prefrontal cortex regions, constituting the 

mesocorticolimbic system. This system is believed to be responsible for the evaluation 

and updating of reward/motivational values associated with different action options 

(Björklund & Dunnett, 2007; Daw et al., 2011; Joel et al., 2002). Altogether, the 

functions of the dopaminergic neuron pathways are believed to be crucial for reward-

seeking behaviour, guiding the selection of actions based on their reward value (Arias-

Carrión et al., 2010; Pessiglione et al., 2006; Schönberg et al., 2007). 

 

Figure 3. Pathways of dopamine projection. 
Dopaminergic neurons are primary located in the midbrain structures substantia nigra (SNc) and the ventral 
tegmental area (VTA). Their axons project to the striatum, the dorsal and ventral prefrontal cortex. Adapted from 
Arisa-Carrión et al. (2010). 
 

 

2.1.3.  Summary 

In summary, the integration of reinforcement learning models with modern 

neuroscience techniques has markedly enhanced our grasp of learning and decision-

making processes in human and animal. The virtue of computational models is that all 

the parameters and computational processes required are explicated stated. This 

clarity has been instrumental in driving forward neuroscience research, allowing for a 

more sophisticated, model-based analysis of complex neural data. 

 



 37 

2.2. Feedback learning 
 

When considering how feedback is represented within the reinforcement learning 

framework, the concept is quite straightforward: any reward that exceeds expectations 

equates to positive feedback, while any situation where no reward is received or the 

reward is less than expected equates to negative feedback. Learning is then updated 

in proportion to the degree of mismatch between the received feedback and the 

expectation. This framework provides a solid foundation for understanding the basics 

of how feedback can drive learning through prediction error. However, the effect of 

feedback on learning is not solely modulated by the degree of prediction error, 

especially in the case of human learners. In this chapter, we aim to provide an 

overview of how the sense of uncertainty shapes learning. We will first briefly review 

the neural correlates of feedback processing. Then, we will discuss several forms of 

certainty that are commonly present in our daily lives, including external uncertainty 

that comes from the stochastic nature of the environment and internal uncertainties 

that are related to the state of knowledge and the precision of motor execution. We 

will focus on the impact of uncertainties on learning and the modulation effect they 

have on the processing of feedback, as well as subsequent behavioral decision-

making, especially regarding the decision between exploration and exploitation. 

 

2.2.1.  Neural processing of feedback 
 

The study of the neural correlates of feedback processing is primarily based on 

findings from EEG studies. The high temporal resolution of EEG makes it an ideal 

technique for capturing the brain's rapid response to feedback events and tracking the 

neural dynamics that occur during the process of evaluating and responding to 

feedback. The Feedback-Related Negativity (FRN) and P3 (or P300) ERP 

components have been identified as crucial neural markers in feedback processing 

(Holroyd et al., 2003; Holroyd & Coles, 2002; Nieuwenhuis et al., 2004; Yeung & 

Sanfey, 2004). 

The FRN, typically emerging about 200-300 milliseconds after feedback 

presentation, is observed as a negative deflection in the ERP signal and is most 

prominently detected at frontocentral scalp sites (Figure 4). The amplitude of the FRN, 
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believed to be linked to the brain's reward prediction error signal, is sensitive to the 

valence of the feedback. It is larger for negative feedback compared to positive 

feedback (Holroyd et al., 2003; Nieuwenhuis et al., 2004; Williams et al., 2021; Yeung 

& Sanfey, 2004, but see Holroyd et al., 2008). It is believed to reflect the brain's rapid 

evaluation of the outcome as worse than expected and also acts as a signal for 

increased cognitive control (Cohen et al., 2011; van de Vijver et al., 2011; Van Der 

Helden et al., 2010). The anterior cingulate cortex (ACC) is identified as the most likely 

neural generator of the FRN, given the frontocentral location of it, and it is also found 

to be more sensitive to negative than to positive outcomes in neuroimaging studies of 

reward processing (Holroyd & Coles, 2002; Knutson et al., 2000). On the other hand, 

the P3 component, also known as the P300, manifests as a positive ERP deflection 

typically occurring around 300-600 milliseconds post-feedback, often observed at 

parietal scalp locations. The P3 is associated with the allocation of attentional 

resources (Karayanidis et al., 2000; Luck & Kappenman, 2012) and the processing of 

the motivational significance of an event (Briggs & Martin, 2009; Carrillo-de-la-Peña & 

Cadaveira, 2000; Franken et al., 2011). In the context of feedback processing, studies 

have shown that the amplitude of the P3 component is larger when the feedback is 

more unexpected, carries higher motivational significance, or is considered to be more 

task-relevant (Donaldson et al., 2016; Walentowska et al., 2016). The P3 component 

is also believed to reflect the updating of cognitive models and behavioural strategies 

based on the feedback information (Chase et al., 2011; Schiffer et al., 2017). The 

generators of the P3 include a broad network of brain regions, encompassing the 

medial temporal and subcortical structures (such as the hippocampus, amygdala, and 

thalamus) and the lateral prefrontal cortex (Nieuwenhuis et al., 2005; Polich, 2007). In 

addition to the ERPs, neural oscillations have also been suggested to reflect specific 

aspects of feedback processing (Cohen et al., 2011). Theta band activity (around 4-8 

Hz) at the frontocentral electrodes has been suggested to signal the need for cognitive 

control, showing a significant decrease in power for negative feedback compared to 

positive feedback(Cavanagh, Zambrano-Vazquez, et al., 2012; Cohen, 2011). 

Furthermore, the degree of this power desynchronization is found to be related to 

behavioural adaptation, being correlated with learning success in the subsequent trial 

(Cavanagh, Figueroa, et al., 2012; Cohen, 2011).   
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To summarise, EEG studies have identified the Feedback-Related Negativity 

(FRN) and P3 components as key neural markers of feedback processing. The FRN 

signals the brain's response to feedback valence and prediction error, and its 

amplitude is linked to the increase in cognitive control. Meanwhile, the P3 component 

is associated with the allocation of attention and the processing of motivational 

significance, as well as the updating of the cognitive model, which may later lead to 

adjustments in behavioural strategies. Furthermore, theta band activity within neural 

oscillations has been observed to signal the need for cognitive control and correlates 

with subsequent behavioural successes. 

 

 

Figure 4. Example of the FRN waveform. 
A typical FRN waveform which displayed lager amplitude in response to negative feedback compared to positive 
feedback. Data from Fcz is commonly used for the analyse of the FRN due to its effect being the most prominent 
in the frontal-central region. Adapted from Cohen et al. (2011). 

 

2.2.2. The impact of uncertainty in learning 

In our daily experiences of interacting with the environment, outcomes do not 

always have a deterministic relationship with the stimuli and actions that precede them, 

owing to the inherent unpredictability and complexity of the real world. Under the 

framework of the reinforcement learning model, we update our knowledge about the 

stimuli/actions – outcome association based on the difference between expected and 

actual outcomes. Consequently, the value of the actions – outcome association should 

increase, and the action should be repeated when the reward is better than expected, 

and decrease when the reward is worse than expected. However, what seems to be 

overlooked in the model is the extent to which the value should increase or decrease 

for each positive and negative outcome. Uncertainty may be the factor that controls 
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the degree of updating of the value of the behaviour choice and impacts future 

behaviour adjustments. The general feeling of uncertainty can come from many 

different sources, such as the statistical regularities of the reward environment, the 

top-down knowledge of whether the feedback is reliable or not, it also depended on 

our ability to have a more or less precise prediction on our action execution and the 

sensory consequence of the action. 

In a study by Behrens et al. (2007), they demonstrated how the activation of the 

anterior cingulate cortex (ACC) and, behaviourally, the learning rate, change 

depending on whether the reward probability of the environment was stable or volatile. 

In their task, participants had to choose between a blue or green card, with only the 

correct choice being rewarded. During the stable phase, the probability of the blue 

card being the correct choice was 75% and remained stable. In the volatile phase, 

reward probabilities switched between 80% blue and 80% green every 30 or 40 trials. 

It is assumed that in a more volatile environment, the learning rate should be higher 

because it would be more important to keep track of every recent outcome in order to 

adapt behaviour flexibly. However, in a stable environment, the learning rate should 

be lower because behaviour adjustment is expected to be based on experiences from 

a more extended period of time. Their results showed that the average learning rate 

of the participants was significantly higher during the volatile phase, and the BOLD 

signal of the ACC was significantly larger during the trial outcomes monitoring period 

in the volatile phase, where the outcome is believed to have a greater influence on 

future actions (Figure 5). The role of the ACC in learning is believed to be related to 

the consistent monitoring of action outcomes, to represent and update decision values 

(Holroyd & Yeung, 2012). This finding highlights the impact of environmental volatility 

on the evaluation of feedback and showing that the updating of action value is 

significantly control by the environmental context in which the feedback is given. 

Subsequent studies have also obtained similar findings when environmental 

volatility is manipulated in their experimental design (McGuire et al., 2014; Nassar et 

al., 2010, 2019; Schiffer et al., 2017). In Schiffer et al. (2017), EEG activity was 

measured during feedback processing in a probabilistic learning task where 

participants needed to learn the correct mapping between two images and two 

response keys using the feedback they received on every trial, which was correct 75% 
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of the time. In the first experiment, environmental volatility was manipulated by 

providing instructions at the beginning of each experimental block about whether the 

rule was likely to remain stable or likely to change within the block.  

Rule reversals occurred in two-thirds of the blocks that were instructed as likely 

to change and in one-third of the blocks that were instructed as stable. A significantly 

larger FRN amplitude was observed in blocks labelled as volatile, in contrast to those 

marked as stable. Moreover, participants demonstrated quicker behavioural 

adjustments following a rule reversal in blocks with the volatile instruction. Similar to 

Behrens et al. (2007), the authors suggested that the increased FRN amplitude 

reflects the higher informativeness of feedback under a volatile environment compared 

to a stable environment. In a second experiment using the same task, the focus shifted 

to controlling feedback reliability instead of environmental volatility. Blocks were given 

either reliable or unreliable feedback instructions. In half of the blocks with unreliable 

feedback instruction, the feedback reliability was 62.5%, and in half of the blocks with 

reliable feedback instruction, the feedback reliability was 87.5%. The rest of the blocks 

had a feedback reliability of 75% but came with different instructions (either reliable or 

unreliable feedback). The results once again showed that the FRN amplitude was 

larger for feedbacks believed to be more informative, which occurred in the reliable 

feedback blocks, and this effect was evident even when the objective feedback 

reliability was the same but only accompanied by different instructions (for similar 

findings, see Di Gregorio et al., 2019). Altogether, these findings suggest a flexible 

learning system that integrates the environmental regularities and external information 

about feedback reliability (when available) to guide adaptive behaviour. 
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Figure 5. The impact of environmental volatility on the processing of behaviour outcome. 
(A). Average learning rates during the stable and volatile phases of the experiment (stable-first and volatile-first, 
respectively). (B). Volatility related activity in the ACC and a time series of correlations (signed r2) between the 
effect size in the ACC and the mean learning rate of the subjects. Adapted from Behrens et al. (2007).  
 

 

2.2.3.  Action-effect prediction 

  While external information is used to help us adjust our learning, we also rely 

on the internal representation of our actions to improve learning, especially in motor 

tasks. The two most prominent frameworks that describe the mechanisms behind the 

internal monitoring of one's action consequences are the forward model (Wolpert et 

al., 1995, 2011) and the ideomotor principle (Greenwald, 1970; Prinz, 1990, 1997). In 

the forward model, it is suggested that the actual effect of an action is systematically 

compared with an internal prediction of the action-effect, which is generated by an 

efference copy of the motor command (Figure 6). By comparing the actual sensory 

feedback with the internal prediction, any sensory effect that was predicted is 

cancelled out, and any discrepancies generate a prediction error that can be used to 

adjust motor commands accordingly. This model is commonly used to explain how 

one is able to distinguish action-effects that are self-generated or caused by others, 

and the phenomenon of one being less sensitive to self-caused effects, e.g., not being 

able to tickle oneself (Blakemore et al., 2000; Wolpert & Flanagan, 2016). On the other 

hand, the ideomotor principle posits that action is selected based on the anticipation 

of its sensory consequences and that actions and their sensory effects share a 

common representation in the brain once the association is formed (Hommel et al., 

2001; Prinz, 1990). In this way, we guide action selection by the intended effects we 
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aim to produce in the environment, and a prediction error is generated if the actual 

effect is not as intended. 

 
Figure 6. The forward model of action control.  
The actual sensory feedback of an action is compared with the internal prediction generated from the motor 
command. Adapted from Blakemore, Wolpert & Frith (2000).  

Both theories have received substantial empirical support from studies, and it is 

likely that both mechanisms are responsible for guiding action selection and the 

learning of action-effect associations depending on the situation. The crucial point here 

is that having an internal model of our action outcomes (both the sensory input in the 

body and a higher-order prediction regarding the effect it will cause in the environment) 

allows us to interpret feedback more optimally, extracting useful information for 

adjusting learning while discounting what may not be informative. Imagine that the 

same feedback can be caused by many different sources; sometimes, we may have 

a wrong idea about the correct action to take, but at other times, we may know exactly 

what to do but still make an execution error. In the former case, the feedback will be 

useful because it may indicate the correct move, but in the latter case, the feedback 

should be discounted. Since people are usually aware of their response errors and 

able to report them with reasonable accuracy (Akdoğan & Balcı, 2017; Kononowicz & 

Van Wassenhove, 2019; Maier & Steinhauser, 2013; Riesel et al., 2013; Yeung & 

Summerfield, 2012). It is possible to obtain an explicit measure of the internal 

representation of action-effect by simply asking individuals to estimate their motor 

errors. Furthermore, we can examine the precision of one’s action-effect predictions 

using a subjective confidence measure on their error estimation (Meyniel, Sigman, et 

al., 2015; Nassar et al., 2010; Pouget et al., 2016).   
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Previous research has shown that error detection and confidence share the same 

neural correlates (Boldt et al., 2019; Boldt & Yeung, 2015; Desender et al., 2019) and 

that people use confidence to regulate learning, as well as to make decisions, 

particularly regarding information-seeking/exploration behaviour (Meyniel et al., 2015; 

Meyniel & Dehaene, 2017).  

In a study by Frömer et al. (2021), they employed a modified time-estimation task 

where participants had to learn a prespecified time for holding down a key on the 

keyboard. On every trial, participants reported their estimation of motor error (ranging 

from too short to too long), their confidence in this estimation, and then received 

graded feedback on the same scale. They found that the FRN amplitude reflected 

prediction errors unaccounted for by the reported execution error, rather than the 

magnitude of the objective error itself. Moreover, they observed that individuals who 

were better at calibrating their confidence to the precision of their outcome predictions 

learned more quickly. The authors suggested that higher confidence amplifies the 

surprise experienced in any mismatch between feedback and error estimation as 

reflected by the increased P3, thus prompting learning. Altogether, it is evident that 

our ability to predict action-outcomes, coupled with our awareness of errors, 

significantly impacts the interpretation and processing of received feedback. More 

importantly, these factors influence the extent to which feedback information is used 

to enhance performance. 

2.2.4. Summary 

To conclude, some degree of uncertainty about stimuli/action outcomes is 

inevitable in real life, whether it comes from the environment, the properties of the 

feedback itself, or even within ourselves. The degree of uncertainty about the received 

feedback renders it more or less informative and significantly impacts the interpretation, 

the neural processing of the feedback, and subsequent behavioural adjustments. 

Therefore, it is important to incorporate factors that influence uncertainty into our 

research and study how their effects vary predictably across individuals. 
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3. EXPERIMENTAL CONTRIBUTIONS 

In this PhD project, we aim to explore how feedback can be used flexibly and to 

investigate factors that are important for feedback interpretation, processing, and 

subsequent adjustment of behaviour. We conducted three experiments during this 

project, and the research questions, along with the logical basis behind them, are 

explained as follows: 

Experiment 1 – ‘what’, ‘When’, and ‘Whether’ intentional actions: In this 

experiment, we investigated the generation of action-effect predictions under 

intentional actions. We recognised prior research often treated intentional actions as 

a unified concept despite they can be separated into three major types depend on the 

internal decisions regarding whether to act, what action to perform and when to 

perform it. Our objective here is to ascertain if action-effect predictions exist across all 

types of intentional actions and whether their strength varies depending on the action 

type. The result of this investigation aims will provide us a better understand of the 

extent of human’s ability to predict the outcome of intentional behaviour.   

Experiment 2 – The influence of external and internal feedback in learning 

decision: Here, we investigated how the decisions to engage in learning for potential 

rewards are influenced by the feedback we received, as well as, by our performance. 

The basic behind this experiment is that we are interested in understanding not only 

how people may use information from feedback to improve learning, but also how they 

make decisions that are relevant for learning based on it. While positive feedback 

might motivate continued engagement in a task, the effort required for further attempts 

at the same task can lead to a decision not to continue. In contrast, negative feedback 

may discourage further attempts at a task, but the prospect of a possible future reward 

may motivate perseverance. By combined behavioural measure with EEG, we tested 

if the decision to continuous or give up learning can be predicted by the valence of 

feedback, the neural signatures of feedback processing (FRN and P3), also by the 

objective performance of the participants.  

Experiment 3 – Impacts of confidence and feedback reliability in learning: In this 

experiment, we employed a learning task where participants can gradually improve 

their performance by trial and error. They need to rate their confidence level about 
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their learning progress during the task, also after they received feedback about their 

response, they need to make a decision of whether to commit to their selected 

response for the chance of earning potential reward. The reliability of the feedback 

(high/low) is explicitly control and the information was given to the participants. By 

using this design, we aim to investigate how the impact of feedback in behavioural 

adjustment depend on people’s confidence in their learning progress, as well as the 

reliability of the feedback itself. At the meantime, we address the limitation in 

experiment 1 by having a subjective measure of learning performance, as well as a 

learning task that would allow us to observed gradual leaming improvement in extend 

period.   

 

3.1. Experiment 1 – Action-effect predictions in ‘what’, 
‘when’ and ‘whether’ intentional action 

 
 
 
 
 
 
 
 

3.1.1.  Introduction 
 

In everyday life, behaviour is usually goal-directed. Performing an action that 

aims at a desired state presupposes the knowledge of action-effect relationships. 

Accordingly, the ideomotor principle assumes that action is selected based on the 

anticipation of its sensory consequences (Greenwald, 1970; Prinz, 1997). The 

common coding theory has taken the assumption of the ideomotor principle even 

further by suggesting that actions and their sensory effects share a common 

representation in the brain. In this way, the anticipation of a desired sensory effect can 

be used for, or rather is part of, action selection (Hommel et al., 2001; Prinz, 1990).  

Over the years, a number of studies have provided empirical evidence in 

support of the ideomotor principle and the common coding theory. For example, Elsner 

and Hommel (2001) showed that once participants acquired the associations between 

the action (right/left key press) and a certain tone (high/low pitch), the action that was 

previously associated with a specific tone was performed faster when the tone was 

This chapter is based on: Chung, W. Y., Darriba, Á., Korka, B., Widmann, A., 

Schröger, E., & Waszak, F. (2022). Action effect predictions in ‘what’, ‘when’ and 

‘whether’ intentional actions. Brain Research, 1791, 147992. 
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played. This finding suggested that the perception of the learned sensory effect primed 

the action that was previously associated with it, as reflected by the significantly faster 

reaction time of the performed action. In a neuroimaging study of Kühn and colleagues 

(2010), the authors showed an action-induced activity in the fusiform face area (FFA) 

and the parahippocampal place area (PPA) by simply having participants perform 

actions that were previously associated with the presentation of faces or house stimuli. 

This finding demonstrated that activation in traditionally called ‘perceptual’ networks 

were involved in action control, as the common coding theory suggests. 

The ideomotor principle postulates that the intention for action involves a 

prediction of the upcoming action-effect (Elsner & Hommel, 2001; Prinz, 1997). 

According to predictive coding models, an internal prediction mechanism compares 

the incoming sensory input with a model of the expected sensory input generated on 

the basis of previous experience/learning. The difference between top-down prediction 

and bottom up sensory data is then translated into prediction error (PE), which is used 

to correct the prediction from the higher level via a continuous process aimed at 

minimizing the PE (Friston, 2005). Many previous EEG experiments on ideomotor 

action have focused on this notion of PE. A common finding is that compared with 

externally generated stimuli or stimuli triggered by non-intentional actions (for example, 

TMS triggered movement), the amplitudes of the N1 and sometimes, also the 

amplitude P2 event-related potentials (ERP) components are found to be attenuated 

for self-generated stimuli (Bendixen et al., 2012; Horváth, 2015; Timm et al., 2014). 

These effects are usually interpreted as a consequence of reduced PE, since sensory 

effects resulting from self-generated actions can be better anticipated than sensory 

effects externally generated or resulting from involuntary action. There are other 

studies (Hughes et al., 2013; Korka et al., 2019; Le Bars et al., 2019) in which rather 

than comparing voluntary and involuntary action effects, expected and unexpected 

effects of voluntary actions are compared in an active oddball paradigm. In those 

studies, an attenuation of the N1 amplitude toward predicted action-effects (Hughes 

et al., 2013; Hughes & Waszak, 2011) and a smaller amplitude in the time range of P2 

for mispredicted action-effects has been described (Korka et al., 2019; Korka, 

Schröger, et al., 2021). This difference in the P2 amplitude between predicted and 

mispredicted action-effects has been linked to the mismatch negativity (MMN), an ERP 

component frequently reported in the literature of sensory predictive process in the 
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auditory system (Näätänen, 1990; Näätänen et al., 2007, 2011; Winkler et al., 1996) 

and considered to be an index of the learning/updating of the predictive model (Garrido 

et al., 2009). 

In most research on action control, intentional action was treated as a unitary 

concept. However, intentional action has been categorised into three different types 

based on the decision process in action planning, namely what to do, when to do it 

and whether to do it or not (see Brass & Haggard, 2008). Previous neuroimaging 

studies have provided supporting evidence of potentially dissociated neuroanatomical 

networks underlying the ‘what’ and ‘when’ actions. For example, Mueller et al. (2007) 

found that activity in the rostral cingulate zone (RCZ) was stronger when participants 

had to select what to do, relative to being instructed to perform an identical action. 

These authors also suggested that there could be a possible role for the 

presupplementary motor area (preSMA) in the internal timing of action (the ‘when’ 

component), as they found increased activity in preSMA in both internally and 

externally selected conditions in which participants were required to internally control 

the timing of their action based on the bisection point between the interval of the two 

visual stimuli in both conditions. In a later study, Krieghoff et al. (2009) presented visual 

cues to indicate if participants had to perform a particular action or were free to decide 

between two possible actions, and if they had to perform the action with a particular 

timing or were free to decide between two possible timings. In this design, they 

managed to separate the what and when actions in different trials, and they found that 

RCZ is involved in the decision of which action to perform, while an area of the superior 

frontal gyrus (SFG) in the left paramedian frontal cortex was shown to be involved in 

the decision of when to act. Regarding the ‘whether’ action, Kühn and colleagues 

(2009; 2010) have demonstrated that voluntary non-action/intentionally not to act 

closely resembles intentional action, as they found that intentional non-action activated 

brain areas that were involved in the processing of the auditory effect that the decision 

of not to act was previously associated with, as it could be expected in intentional 

action. A recent meta-analytic study from Zapparoli and colleagues (2017) have also 

identified different activation patterns of brain activity in regard to the what, when and 

whether action component. 
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So far, no study has investigated and compared the three types of intentional 

actions (what, when, whether) in the context of action-effect prediction. In the current 

work, we aim to study (1) whether action-effect predictions are generated under all 

three types of intentional actions, and (2) whether there are any differences between 

the three types of actions with regard to the strength of those predictions. In order to 

achieve these goals, we ran an experiment in which we used ERPs to measure the 

PE response provoked by the violation of the predicted effect resulting from each type 

of action. Participants underwent a learning and a test phase for each condition (what, 

when, whether). In the learning phase, they were required to learn the associations 

between certain actions (keypresses on a computer keyboard), and certain auditory 

stimuli (tones with different frequencies). There were two possible actions for each 

condition and each action was associated with a specific effect (tone). These 

associations held 100% valid during the learning phase. In the “What” condition, 

participants decided between two keys to make a response to a ‘Go’ signal presented 

on the screen; in the “When” condition, there were two ‘Go’ signals presented on each 

trial at different time points, and participants needed to make a decision on which of 

the ‘Go’ signals they wished to respond to (the earlier or the later one); in the “Whether” 

condition, participants had to decide whether to make a response or not to a single 

‘Go’ signal. In the test phase, the association between actions and tones acquired in 

the learning phase held valid only in 80% of the trials (standard tones). In the remaining 

20%, however, a tone different from that associated to each action (or non-action) was 

presented instead (deviant tones). We expected that the existence of action-effect 

predictions would be reflected on significant differences between the predicted 

(standard) and the mispredicted (deviant) tones in the time range of N1 and/or P2, 

with relatively larger N1 and smaller P2 amplitudes in response to mispredicted than 

predicted stimuli indicating a prediction error response. More importantly, if the action-

effect predictions in the three types of intentional actions are different from each other, 

those differences should reflect in the degree of the PE response indexed by those 

components. In this regard, we expect possible differences in terms of how well 

participants can predict the effects of their actions depending on the type of action 

performed,  firstly, due to the partially isolated neuroanatomical network responsible 

for the ‘what’ , ‘when’ ‘whether’ action  reported in previous studies (Krieghoff et al., 

2009; Mueller et al., 2007; Zapparoli et al., 2017), and secondly, due to the possible 

influence of our daily life experience, where we frequently encounter situations in 
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which choosing between two different actions results in two different consequences, 

while expecting different consequences depending on the timing with which an action 

is performed, or on whether we perform an action or not, may be less commonly 

experienced. More specifically, the more frequent daily experience of choosing 

between two different actions resulting in two different consequences may have a 

bottom-up influence in how well we can learn to predict the consequences of our own 

actions, and result in a larger degree of PE response in the ‘what’ action in relative to 

the ‘when’ and ‘whether’ action. 

3.1.2. Methods 
 

Participants 

 Data were collected from 30 participants who received monetary 

compensation for their participation. The number of participants was determined on 

the basis of previous studies on action-effect prediction in which significant statistical 

effects in the time range of N1-P2 were observed with smaller sample sizes (Korka et 

al., 2019; Timm et al., 2014). Two participants were excluded from the analyses due 

to the large amount of noise in the EEG signal. Thus, 28 participants remained in the 

final analyses (16 females, 12 males; 26 right-handed, 2 left-handed, mean age = 26.5, 

age range = 19-39 years). All participants reported normal hearing and normal or 

corrected-to-normal vision, and none reported any history of neurological conditions. 

Written informed consent was obtained and experimental procedures were 

undertaken in accordance with the Declaration of Helsinki and with the approval by 

the Comité de Protection des Personnes Ile de France II.  

Procedures 

The experiment consisted of three conditions, “What”, “When”, and “Whether”, 

representing the three different types of intentional action (Figure 7). Each condition 

included a learning phase followed by a test phase. In the learning phase (20 trials), 

participants were required to learn the associations between two possible actions 

(keypresses on a computer keyboard), and two different auditory stimuli (two tones, A 

and B, with different frequencies). These associations held 100% valid throughout the 

learning phase. The details of these associations are explained below. The learning 
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phases were designed to familiarize participants with the tasks as well as to allow them 

to build up the action-effect contingencies. The test phase of each condition consisted 

of 6 blocks in total, with 150 trials in each block, resulting in 900 trials overall. 

Participants completed in succession all the 6 blocks corresponding to each condition 

before switching to a different condition. In the test phases, the associations between 

actions and tones that were acquired as 100% reliable in the learning phase, held valid 

in 80% of the trials only (standard tones); in the remaining 20%, a tone different from 

that associated to each action (or non-action) was presented instead (deviant tones). 

All the conditions were designed with this 80/20 vs. 20/80 pattern for each of the two 

possible actions. The order of the conditions was counterbalanced across participants. 

The whole experiment took approximately 2.5 hours. Participants had short breaks 

between blocks within each experimental condition, and also at the beginning of each 

condition.  

  In the “When”condition (earlier response vs. later response), each trial began 

with the word “Ready” presented at the centre of the screen for 200 ms, followed by a 

fixation cross presented for 500 ms, and the word “Go” presented for 200 ms (Go1) 

afterwards. After the Go1 signal the fixation cross was presented for another 1000 ms, 

and followed again by the word “Go” presented for 200 ms (Go2). Participants’ task 

was to decide whether to respond to the first/earlier “Go” signal (Go1) or to the 

second/later “Go” signal (Go2) by pressing a key with their right hand (the “L” key on 

the keyboard). The two “Go” signals were presented in every trial, regardless of 

participants’ choice. Earlier responses triggered tone A in 80% of the trials (standard, 

frequent tone), while in the remaining 20% of the trials tone B was presented (deviant, 

rare tone). Later responses triggered tone B in 80% of the trials (standard, frequent 

tone), while in the remaining 20% of the trials tone A was presented (deviant, rare 

tone). 

  In the “What” (left vs right key) and “Whether” (press vs. no press) conditions 

each trial began with the word “Ready” presented at the centre of the screen for 200 

ms, followed by a fixation cross for either 500 ms or 1500 ms (randomized across trials 

with equal probability), and the word “Go” presented on the screen for 200 ms to 

indicate the time for participants to make a response. The reason for using two 

different fixation cross durations was to make these conditions more easily 
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comparable to the ‘When’ condition, where the interval between the Ready signal and 

the action could be either 500 ms or 1500 ms, since participants had to choose 

between an earlier action (Go1, 500 ms after the Ready signal), and a later action 

(Go2, presented 1500 ms after the Ready signal).  

  In the “What” condition (left vs right key), participants’ task was to respond 

with a key press on the computer keyboard with either their left or right hand (using 

the “S” and the “L” keys of the keyboard, respectively) whenever a “Go” signal 

appeared on the screen. Left-hand responses triggered tone A in 80% of the trials 

(standard, frequent tone), while in the remaining 20% of the trials tone B was 

presented (deviant, rare tone). Right-hand responses triggered tone B in 80% of the 

trials (standard, frequent tone), while in the remaining 20% of the trials tone A was 

presented (deviant, rare tone). 

  In the “Whether” condition (press vs no press), the procedure was the same 

as in the “What” condition described above, with the only difference being that instead 

of choosing between two actions, participants chose whether to press or not a key with 

their right hand (the “L” key on the keyboard) whenever a ‘go’ signal was presented. If 

no action was performed before the time for response was exceeded (1000 ms), it was 

considered that participants have intentionally chosen not to act, and a tone was 

played after the timeout (1000 ms from the “Go” signal onset) while the tone was 

played immediately after the keypress in all other conditions. Key presses triggered 

tone A in 80% of the trials (standard, frequent tone), while in the remaining 20% of the 

trials tone B was presented (deviant, rare tone). No key-press triggered tone B in 80% 

of the trials (standard, frequent tone), while in the remaining 20% of the trials tone A 

was presented (deviant, rare tone). 

  All visual stimuli were presented on the central of a 27-inch, 60 Hz LCD 

monitor against a grey background. The distance between the monitor and participants 

was one meter. Two tones with different frequency were used in this experiment, a 

high pitch tone (440 Hz) and a low pitch tone (261.63 Hz). The high/low frequency 

tone – standard/deviant tone patterns were counterbalanced among participants. In 

every condition, participants had 1000 ms to respond after the “Go” signals and were 

free to choose which action (depending on the condition) they would like to perform, 
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but they were asked to aim at selecting each of the two possible actions approximately 

the same number of times in each task. The inter trial interval was 1000 ms.  

 
Figure 7. Schematic representations of the three experimental conditions – what, when and whether. 

 

Data analysis 

 EEG recording and pre-processing. The experimental task was delivered with 

Psychtoolbox-3 (Kleiner et al., 2007) running on MATLAB. We recorded the EEG using 

the PyCorder system and actiCHamp amplifiers (BrainProducts GmbH, Gilching, 

Germany) in DC recording mode with a sampling rate of 2000 Hz. Continuous EEG 

data were collected from 60 actiCAP EEG electrodes (BrainProducts GmbH) mounted 

on an elastic cap and referenced to right mastoid. EEG electrodes were arranged 

following the extended 10-10 position system (Acharya et al., 2016). Additional 

electrodes were placed on the right/left mastoid and on the outer canthi of both eyes. 

EEGLAB (Delorme & Makeig, 2004) was used for the pre-processing of the 

EEG data. The EEG data was filtered offline (high pass: 0.1 Hz, low pass: 40 Hz), and 

re-referenced offline to linked mastoids. Bad channels were identified by visual 

inspection of the EEG raw data and the channels’ power spectra, and excluded from 

the next processing steps. Epochs were extracted from −200 ms to +1000 ms time-

locked to the stimuli onset, and were inspected for non-stereotyped artifacts and 
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removed if present. Stereotyped artifacts, including blinks, eye movements, and 

muscle artifacts were deleted via independent component analysis (ICA) using the 

extended infomax algorithm (Bell & Sejnowski, 1995). Components containing those 

artifacts were rejected by visual inspection and measures computed with the EEGLAB 

plug-in functions SASICA (Chaumon et al., 2015) and ADJUST (Mognon et al., 2011). 

Finally, channels that were deemed bad were reintroduced by interpolating data 

between neighbouring electrodes using spherical spline interpolation (Perrin et al., 

1987). 

Statistical analysis. We investigated ERP effects related to prediction by 

comparing ERPs for standard and deviant stimulus (defined by learned action-tone 

contingencies) in the three experimental conditions (what, when, whether). Single trial 

EEG data were analysed with a Bayesian linear mixed-model (LMM) analysis using 

the package brms (Bürkner, 2017), a high-level interface on Stan (Carpenter et al., 

2017) in R (RCore, 2016). Plots were made using brms and ggplot2 (Wickham, 2016). 

An advantage of LMMs over traditional approaches such as repeated measures 

ANOVA and paired sample t-tests is that a single model can take all sources of 

variance into account simultaneously. Furthermore, comparisons between conditions 

can be implemented in a single model. The coefficient estimates are expressed in 

credible intervals. Credible intervals reflect the intuitive notion of the value of a 

parameter falling within that interval with a given probability, 95% in this case.  

  The relevant time window and electrodes for the statistical analysis were first 

investigated by performing a clustered-based permutation analysis (Maris & 

Oostenveld, 2007), on aggregated data of the standard stimulus trials and deviant 

stimulus trials across the three conditions (what, when, whether) with the time window 

between 0 ms to 1000 ms from stimulus onset using Fieldtrip (Oostenveld et al., 2011) 

to explore the effect of prediction (deviant vs. standard tone). While this method does 

not permit to draw conclusions about the significance of specific timepoints and 

electrode locations, it allows for the identification of time windows and regions of 

interest for further investigation by providing evidence for a difference in the ERPs 

between conditions (Maris & Oostenveld, 2007; Sassenhagen & Draschkow, 2019). 

The clustered-based permutation test revealed a significant cluster (p =.009) extended 

from approximately 180 to 340 ms (Figure 8) which corresponds to the time range of 
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the P2 component observed in the grand-averaged waveform. No significant cluster 

was observed for the latency range of N1. Taking into account the results from the 

clustered-based permutation test, we limited our analysis to the P2 effect, on a 40 ms 

window with regard to the peak of the P2 (220 ms) on six frontocentral  electrodes 

(FC1, FC2, FCz, C1, C2, Cz) selected on the basis of the topographical distribution of 

the activity on the scalp (see Figure 3a) and on previous findings showing maximum 

amplitudes of P2 in the frontocentral region for auditory stimuli (Baess et al., 2009; 

Hughes et al., 2013; Näätänen et al., 2011).  

  We used a predefined model reflecting our experimental design (Barr et al., 

2013). Participant amplitudes were normally distributed and did not need 

transformation to their logarithmic function (Baayen & Milin, 2010). Amplitudes were 

z-scaled for ease of interpretation and comparison. In the model, observations were 

predicted by Condition (What vs. When vs. Whether), under which Action (Action 1 vs. 

Action 2, representing, respectively, Right vs. Left, Go1 vs. Go2, Press vs. No press) 

and Stimulus (standard vs. deviant) were nested in a full interaction. The model 

additionally included individual participant intercepts and slopes of Action, Stimulus 

and their interaction in order to account for individual variation. Contrasts of all 

categorical factors were centred using sum contrasts (Baayen, 2008), so the intercept 

of the model represents the grand mean. Planned pairwise comparisons were 

conducted via Bayesian hypothesis testing using the function Hypothesis in brms with 

Bonferroni correction. We used a generic weakly informative prior with mean 0 and 1 

SD over the fixed effects and kept all other priors at default. We used 4 chains of 2000 

iterations each per model, of which 1000 per chain were used for warm-up only, a 

maximum tree depth of 15 and a target acceptance rate (adapt delta) of .95. 

Convergence was verified through visual inspection of trace plots, and the Rhat of 

1.00 for each parameter. 

The model was specified as follows,  

brm ( formula : Scaled Amplitude ~ Condition / ( Action * Stimulus ) + (1 + Action * 

Stimulus | Participant) 
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Figure 8. Results of the cluster-based permutation analysis.  
Comparing the amplitude between standard to deviant stimuli (collapsed over conditions). Electrodes that are 
part of clusters with p-values < 0.05 are highlighted in the corresponding time windows. 

 

3.1.3. Results 

Behavioural results 

 The number of generations of the high pitch (440 Hz) and low pitch tone (261.63 

Hz) was not significantly different in any condition (“What” condition: high pitch tone, 

M = 439.14, SD = 31.74; low pitch tone, M = 440.71, SD = 35.08), t(27) = 0.14, p 

= .885; “When” condition: high pitch tone, M = 439.60, SD = 80.41; low pitch tone, M 

= 419.21, SD = 83.99), t(27) = 0.86, p = .501; “Whether” condition: high pitch tone, M 

= 460.75, SD = 93.46; low pitch tone, M = 439.07, SD = 93.60), t(27) = 0.61, p = .545). 

Hence, any observed effect in each experimental condition could not be due to the 

effect of tone frequency or to global differences in tone probability.  

ERP results 

According to the result of the cluster-based permutation test computed on the 

difference between deviant and standard tone trials, there were no significant 

differences between the predicted (standard) and the mispredicted (deviant) tones on 

the amplitude of N1. All the significant effects were observed in the analysis of P2.  

Figure 22 depicts the topographic map and the ERP waveforms at the ROI composed 

of six electrodes in the frontal-central region (FC1, FC2, FCz, C1, C2, Cz). 
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The results obtained in the statistical analyses are graphically illustrated in 

Figures 10 and 11. The analysis of P2 amplitudes revealed  effects of Stimulus in the 

“What”, “When”, and “Whether” conditions, indicating that standard stimuli elicited 

significantly larger amplitudes than the deviant ones in every condition (Figure 10), 

plus an Action x Stimulus interaction in the Whether condition (Figure 10). The planned 

comparisons showed that the size of the standard-deviant difference did not differ 

between conditions (Figure 11, upper panel). Finally, the planned comparisons ran to 

examine the Action x Stimulus interaction in the “Whether” condition showed that the 

difference between standard and deviant stimuli  was observed only when participants 

press a key, but not when they did not (Figure 11, lower panel).  

 

Figure 9. ERP grand-averages waveforms and topographic maps. 
A) ERP grand-averages waveforms and topographic maps. From the 6 frontocentral electrodes (FC1, FC2, FCz, 
C1, C2, Cz) for the standard and deviant tones in the What, When, Whether condition. (B) ERP grand-averages 
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waveforms and topographic maps from the 6 frontocentral electrodes (FC1, FC2, FCz, C1, C2, Cz) for the standard 
and deviant tones in the Press/action, No Press/nonaction trials in the Whether condition. 
 
 

 
 
Figure 10. Result of the Bayesian linear mixed effect model at the P2 time window.  
Medians and credible intervals (On the plot [A]: 50%, thick line; 90% thin line. On the table [B]: 95%) of parameter 
values in P2. Intervals that do not include zero have the denoted probability to be a true effect. 
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Figure 11. Result of the pairwise comparisons of between conditions.  
Upper panel. Medians and credible intervals (95%) of planned pairwise comparisons of condition estimates (what, 
when, whether), calculated with the function ‘hypothesis’ in the R package ‘brms’, for components in which 
significant effects were observed. Intervals that do not include zero have the denoted probability to be a true effect, 
i.e., differences between the indicated factors to be significant. Lower panel. Medians and credible intervals (95%) 
of planned pairwise comparisons of action estimates (press, no press) in the Whether condition, calculated with 
the function ‘hypothesis’ in the R package ‘brms’, for components in which significant effects were observed. 
Intervals that do not include zero have the denoted probability to be a true effect. 

 

3.1.4. Discussion 
 

In the current study, we used EEG to explore action-effect predictions in 

intentional actions based on three types of decision processes – what (selecting what 

to do), when (selecting when to act) and whether (to perform the action or not). We 

found evidence for action-effect prediction in all three types of action decision, as 

reflected by the significant P2 difference between standard and deviant tones (defined 

by the learned action-tone contingencies), while we did not observe significant 

difference between standard and deviant tones in the N1 ERP component in any of 

the conditions. Furthermore, when we compared the ERPs between the what, when 

and whether tasks, no significant difference was observed between any of them. 

Finally, when we looked more closely into the ‘whether’ action, we found that the P2 
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difference between standard and deviant tones was only significant when participants 

chose to execute an action, but not when they decided not to act, despite they have 

learned the consequence of the non-action. These results are discussed in the 

following paragraphs.    

The P2 component has been previously suggested to reflect the neural process 

of comparison between sensory inputs and internal predictions (Baldeweg, 2007; 

Jacobsen & Schröger, 2001; Näätänen et al., 1989; Winkler et al., 1996). The ERP 

difference observed here between predicted and mispredicted stimuli in P2 is 

compatible with the time range in which a mismatch negativity (MMN) was reported 

when comparing standard and deviant stimuli employing auditory oddball paradigms 

in studies on sensory-based predictions (Näätänen, 1982; Näätänen et al., 2007). The 

larger P2 amplitude observed in response to predicted compared to mispredicted 

stimuli is also congruent with previous works in which P2 enhancements were 

observed for expected relative to unexpected outcomes (Costa-Faidella et al., 2011; 

Hsu et al., 2015). The observed significant difference in the P2 time range between 

the standard and deviant tones in our experiment could reflect the comparison 

between the present auditory input and the predicted input resulting from previous 

experiences/learning (Garrido et al., 2009). Hence, the significant P2 differences in all 

of the conditions indicate that effect prediction took place regardless of whether the 

effects resulted from actions that were based on ‘what’, ‘when’ or ‘whether’ decisions. 

That is, unlike what could be expected on the basis of previous neuroimaging studies 

showing that different action decisions elicited activity in different brain region 

(Krieghoff et al., 2009; Mueller et al., 2007), our results suggest that the effect of 

action-effect prediction reflected on the EEG activity did not differ between the ‘what’, 

‘when’ and ‘whether’ conditions. At first sight, we may postulate that the effects we 

found in this study are action-type independent because they are based on an action-

unspecific predictive mechanism. However, we found that the P2 difference between 

standard and deviant tones was not significant in the decision of non-action (whether 

condition) despite participants clearly learned the consequence of non-action. This 

result appears to suggest a specific role of action in the prediction effect and will be 

discussed in more detail below. It might be argued that there are possibly differences 

in allocation of attention between the what, when, and whether conditions. However, 

note that these differences are in the nature of the three types of decision we studied 

in the present research. Note also that the lack of statistically significant differences 
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between the conditions speaks against this possibility and that the ERP results 

presented here suggest clearly that the action-associated sensory effects could be 

predicted equally well in the three types of action decision (what, when, whether). 

Further details about any potential differences between the different types of action 

decision like, for example, the mechanisms involved in the decisional process, the 

relative cognitive effort required or the attentional demands imposed, will need to be 

addressed in future experiments. 

The lack of auditory N1 attenuation effect in our results is somewhat surprising 

given several other experiments reporting such an effect in the literature (Bendixen et 

al., 2012; Horvath, 2015; Timm et al., 2014). However, there are previous studies in 

which also did not observe any N1 suppression effect toward predicted stimuli (e.g. 

Korka et al., 2019; Le Bars et al., 2019). For example, Korka and colleagues (2019), 

employing a paradigm similar to this study’s, found that the N1 suppression effect was 

sensitive to global regularities rather than to the predictability of the tone, and 

reasoned that the N1 attenuation effect presumably reflects a stimulus specific 

adaptation of the neuronal responses. Specifically, they ran an experiment in which 

the global tone probability was different between three experimental conditions – the 

“Regularity” condition where the standard tone was being presented overall 80% of 

time; the “Both” condition where  participants were instructed to press one of the 

buttons 80% of the time, which resulted in the standard tone of the frequently press 

button being presented more often compared to the other tone; the “Intention” 

condition which is similar to our experimental paradigm, the mapping of standards and 

deviants was inversely associated with the left and right keys, and both keys were 

pressed equally frequent, meaning that the two tones were overall presented with 

equal chances. They found that the N1 attenuation effect decreased as a function of 

global tone probability with no observable N1 effect in the “Intention” condition. In this 

case, our results replicated the findings of Korka et al. (2019) in terms of the N1 effect. 

As in their study, the two action choices in each condition of our paradigm (different 

action depending on the conditions) were inversely associated with a low and high 

pitch tone (the standard tone in one action is the deviant tone in the other action) and 

participants were instructed to select each of the two possible actions with the same 

approximately equally often. Therefore, there was not a global regularity for the stimuli 

in our study. Moreover, while most previous studies described the N1 attenuation 

effect in the context of Self-generated vs Externally generated stimulus (Sanmiguel et 
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al., 2013; Saupe et al., 2013; Timm et al., 2013), the comparison in our study was 

made between predicted and mispredicted sensory effects, and both were self-

generated. In a study of Baess et al. (2008), the authors showed that when they 

compared self-generated and externally generated stimuli, the N1 suppression effect 

was evident as long as the brain identifies its owner as the agent of the respective 

sound, even if the frequency of the sound cannot be precisely predicted (ranging from 

400 to 1990 Hz). However, they observed the N1 suppression effect to be the largest 

when both the frequency and the onset of the sound were predictable. In the case of 

our study, it is possible that mispredicted stimuli are also associated with some degree 

of N1 suppression, simply because the occurrence of the sound can be predicted via 

action. Although we would expect the predicted stimuli to show a stronger attenuation 

effect due to the more precise foreknowledge of the frequency of the sound, the 

difference in N1 amplitude between predicted and mispredicted stimuli would in the 

end turn out to be much smaller than the N1 difference observed in previous studies, 

where the comparisons were made between self-generated and externally generated 

stimuli.    

We see several possible explanations for our result of not observing any 

prediction effect in the ERPs when no action was executed in the “Whether” condition. 

Firstly, it could be that there simply was no prediction in the non-action trials. We, 

however, consider this possibility unlikely since participants were clearly aware of the 

resulting sensory effect of the decision of not to act and it has been shown in the 

literature that we can learn to predict sensory effects quickly and efficiently no matter 

whether the effect is action-related or not (Vroomen and Stekelenburg, 2010). 

Secondly, we might fail to observe the prediction effect in non-action trials due to some 

intrinsic differences between the action and non-action trials. For instance, since there 

is no explicit response in non-action trials, the tone was played 1000 ms after the 

presentation of the go signal if no action was detected, while the effect tone was played 

immediately after the execution of action in other conditions. In this regard, previous 

work has shown that differences in temporal control and temporal proximity of the 

action resulting sensory effect could affect the predictability as well as the neural 

response to the predicted stimuli (see Waszak et al., 2012). The delayed presentation 

of the tone or the fact that no action was executed may also cause participants to pay 

less attention to the tone, which resulted in a lack of attentional enhancement for the 

deviant stimulus (Hillyard et al., 1973; Näätänen, 1982). Thirdly, the lack of significant 
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differences between stimuli when no action was executed in the “Whether” condition 

might suggest a special role of action-related processing in the generation of the 

action-effect prediction. Conceptually, the prediction that was learned in the non-action 

trials of the “Whether” condition can be seen as different from those learned in other 

(action involving) trials in the sense that the former is a result of learning the arbitrary 

regularities introduced in an experiment on a cognitive level and the latter were learned 

via action-effect learning. Based on this difference, there could be extra processing for 

the experienced sensory effect when the effect is a resulting consequence of voluntary 

action (Korka, Schröger, et al., 2021; Korka, Widmann, et al., 2021). One possible 

assumption about this extra processing could be that the action-effect was already 

activated in the perceptual network before the effect was actually presented. 

According to the ideomotor principle (Hommel et al., 2001; Prinz, 1997), voluntary 

action selection is guided by the activation of the action-associated effect in the 

perceptual network and this process is rendered possible when a common 

representation is shared between the motor and perceptual network via the learning 

of action-effect association (Elsner & Hommel, 2001; Kühn et al., 2010). The observed 

difference in the ERPs between predicted and mispredicted action-effects was found 

in some studies to be a result of the reduction in sensory processing for the predicted 

inputs (Hughes et al., 2013; Hughes & Waszak, 2011) and this reduction of processing 

could be explained as the consequence of the pre-activation of sensory effect by 

assuming that activity of neurons sensitive to the sensory effect was inhibited in action 

trials when the actual action-effect is perceived due to the previous pre-activation of 

the predicted action effect (Waszak et al., 2012). This account of the differences 

between predicted and mispredicted action-effects parallels explanations proposed to 

explain the MMN manifesting and getting larger along the number of repetitions of 

standard stimuli in repetition suppression studies (Baldeweg et al., 2004; Haenschel, 

2005), in which predictions are based on sensory evidence. A neurophysiological 

model proposed by Näätänen (1990) and data from Javitt et al. (1996) have suggested 

that repeating stimuli lead to an increase in tonic inhibition of supragranular auditory 

neurons that are sensitive to the frequency of the standard stimulus while 

simultaneously decreasing the level of inhibition of neurons sensitive to other 

frequency. However, the similarity between the predictive mechanisms in action-effect 

based and sensory-based predictions, and their neurophysiological basis are beyond 

the scope of this study, and their relevance in this experiment is limited as we have no 
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clear evidence to indicate whether the prediction effect in the current study was 

resulted by attenuation of predicted inputs, enhancement of deviant events or both, 

and as we do not have an insight of the internal process of non-action decision in 

terms of how the prediction of sensory effect could be represented in those trials. 

Altogether, the lack of observable prediction effect in the ERPs in the non-action trials 

may be the result of the lack of timing information and temporal control of the stimuli 

in the non-action trial compared to other action-involved conditions or it can suggest 

that there are some unique properties in the motor system contributed to the predictive 

process of sensory effect. Future research is needed to understand whether the 

prediction of action effects is better explained with a general domain-nonspecific 

predictive mechanism or motor-specific framework.  

To conclude, we showed that action-effect prediction is evident in intentional 

action, regardless of whether the action choice was based on the selection of action 

(what), the timing of action (when) or the decision to preform/withdrawal action 

(whether), and we did not observe any PE difference between the what, when, whether 

action in the ERPs. This finding suggests that despite different types of intentional 

action may have different underlying neurobiological underpinnings as shown in 

previous neuroimaging studies (Krieghoff et al., 2009; Mueller et al., 2007), those 

differences did not reflect on the learning and the prediction of action associated effect. 

We also found that the ERPs signature for a prediction effect was no longer observable 

when no action was performed, which may suggest that action-related process when 

performing voluntary actions provides extra information for the formation of action-

effect predictions. This result, however, needs to be interpreted with caution as there 

are differences other than the movement itself between action and non-action trials 

such as, for example, temporal control and temporal proximity. More research is 

necessary to unambiguously separate the role of action in the predictive process of 

sensory effect.  

 

3.2. Experiment 2 – Give it a second try? The influence of 
feedback and performance in the decision of 
reattempting 

 
 
 This chapter is based on: Chung, W. Y., Darriba, Á., Yeung, N., & Waszak, F. (under 

review). Give it a Second Try? The Influence of Feedback and Performance in the 

Decision of Reattempting. Preprint available at: http://dx.doi.org/10.2139/ssrn.4580310 
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3.2.1.  Introduction 
 
 

Feedback on performance, either external or internal, is essential for cognitive 

and motor skill acquisition, since it provides information on whether and how 

improvement can be made. The neural mechanism behind feedback learning is well 

described within the framework of reinforcement learning theory. According to this 

view, learning depends fundamentally on prediction error (PE), i.e., the difference 

between the actual and the expected outcome of a given action, particularly regarding 

whether outcomes are better (more rewarding, less costly) or worse (less rewarding, 

more costly) than expected. PE can be used to form and adjust associations between 

actions/stimuli and their resulting effect. More importantly, PE can also guide decision 

making by signalling the need to adjust behaviour. Here, we aim to investigate how 

evaluation of action outcome as indexed by neural processing of external feedback, in 

particular, the FRN and P3 ERP components (Schiffer et al., 2017) could translated 

into appropriate adjustment of behaviour, in term of whether to give a second attempt 

on the same task or to move on to a new one.  

Previous studies using scalp-recorded EEG have revealed an event-related 

component called feedback related negativity (FRN) that might reflect a feedback-

related PE signal (Holroyd & Coles, 2002; Nieuwenhuis et al., 2004; Yordanova et al., 

2004). The FRN is a negative frontocentral deflection, peaking around 200-400 ms 

after feedback presentation, larger for negative compared to positive feedback. It has 

shown to be sensitive to the size of PE (Holroyd et al., 2003, 2009; Yasuda et al., 2004) 

and importantly, it has also being linked to the possibility of future behaviour 

adjustment (Cavanagh et al., 2010; Cavanagh, Figueroa, et al., 2012; Cohen et al., 

2011; Cohen & Ranganath, 2007; van de Vijver et al., 2011; Van Der Helden et al., 

2010). In this regard, for instance, it has been previously reported that a larger FRN 

amplitude precedes behaviour switch on a trial to trial basis (Cohen & Ranganath, 

2007; Sallet et al., 2013), and that individual differences in FRN magnitude are also 

predictive of the degree to which participants subsequently avoid decisions with 

negative outcomes (Frank et al., 2005). In other studies, nonetheless, the P3 ERP 

component, rather than the FRN, has been shown to be predictive of behaviour 

adjustment. Specifically, in those studies amplitude enhancements of P3 have been 

described in response to feedback, before behavioural switches, while the FRN only 
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reflected the degree of PE (Chase et al., 2011; Schiffer et al., 2017; Yeung & Sanfey, 

2004). 

In real life, any given feedback, be it positive or negative, can affect behavioural 

continuation or discontinuation. Positive feedback may encourage people to persevere 

in a given task, but the effort required for further attempting the same task, or the 

subjective estimate of their own performance, can make people decide not to continue. 

Likewise, negative feedback may discourage any further attempts in a task, but 

subjects can nevertheless be willing to persevere in order to obtain a possible future 

reward. Given that PE refers to the difference between the expected and received 

outcome, differences in expectation should modulate the size of PE. One critical factor 

that influences people’s expectation of feedback is their internal estimation of motor 

performance. In Experiment 1, we demonstrated that individuals can quickly and 

accurately form predictions about the outcomes of their own actions, regardless of 

whether these predictions are associated with the selection of an action and/or the 

timing of an action. Other studies have also found that individuals can report the 

gradual error of motor performance with reasonable accuracy (Akdoğan & Balcı, 2017; 

Kononowicz et al., 2019; Kononowicz & Van Wassenhove, 2019). This ability may be 

supported by reliance on internal models to predict the outcomes of movements (Prinz, 

1990, 1997; Wolpert et al., 1995, 2011). More importantly, it was reported in previous 

findings that individuals automatically discounted the sensorimotor error signal in the 

presence of prediction error. It was found that when the absence of a rewarding 

outcome can be attributed to a motor execution error, the value of the option that led 

to the undesired outcome is not updated based on the negative prediction error. 

Conversely, in the case of successful motor execution, the option that led to the 

undesired outcome is penalized, and behaviourally, individuals display a strong risk-

aversion bias in their subsequent decision-making (McDougle et al., 2016). On a 

neural level, an attenuation effect of the signal associated with negative reward 

prediction errors following execution failures has also been identified (McDougle et al., 

2019). In a later study that have a more specific focus on feedback learning (Frömer 

et al., 2021), the authors use a sensorimotor task to investigate how the estimation of 

motor performance, together with subjective confidence about the estimation of motor 

performance affects the neural signature of feedback processing in the EEG signal, 

and participants learning performance. They found that the FRN amplitude, as an 
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index of feedback-related PE, did not scale with the degree of error that was indicated 

in the feedback, but with the degree of execution error indicated by the feedback that 

was not already accounted for by participants’ estimation of their own motor 

performance. Moreover, it was also found that individuals with better confidence 

calibration (stronger correlation between the subjective confidence and the objective 

motor performance) displayed a faster learning rate. Altogether, these findings indicate 

that the sensorimotor error signal play a significant role in learning. It modulated neural 

response toward the predication error and its effect on value-based decision making, 

at the meantime, also influence feedback processing and support adaptive learning.  

In the present work, we examined the FRN and P3 components in response to 

feedback to investigate the influence of performance and feedback evaluation on the 

decision of persevering or not in a given task. Participants performed a time-estimation 

task in which they were prompted to reproduce the estimated total duration of a visual 

stimulus intermittently presented on a computer screen. Feedback, either positive or 

negative, was given after every response. Then participants had to decide whether to 

reattempt the same trial or move on to a new one. Participants were rewarded when 

successfully reattempted the same trial, and penalised when failed at this second 

attempt, while moving on to the next trial had no further implications. This approach 

allowed us to create situations where performance and feedback were decorrelated, 

enabling us to study their independent effects as well as the potential interactive 

effects they may have on the decision to reattempt. 

Given the sensitivity of the FRN to feedback’s valence, we expected the FRN 

to show a larger amplitude in response to negative than to positive feedback. Moreover, 

in light of the relationship between the FRN and feedback evaluation, and more 

specifically to the PE elicited by the mismatch between the expected and the received 

feedback, the FRN should be modulated by participants’ performance, which is 

assumed to be the main basis for participants’ expectations about the feedback. 

Accordingly, we expected feedback and performance to have an interactive effect on 

the FRN, so that it should show larger amplitudes when the feedback received 

(positive/negative) does not match performance (good/bad). We expected this 

interaction to show the role of those factors in participants’ decision to retry the current 
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trial or to move on to the next one. Additionally, the experiment should allow us to 

dissociate the differential contribution of these factors to the P3 component. 

 

3.2.2.  Methods 
 
Participants 

Participants gave written informed consent and experimental procedures were 

undertaken in accordance with the Declaration of Helsinki and with the approval by 

the Comité de Protection des Personnes Ile de France II. Participants received 

monetary compensation for their participation. All participants reported normal hearing 

and normal or corrected-to-normal vision, none of the them reported any history of 

neurological conditions. Data from one participant were excluded due to the 

withdrawal of experiment. In addition, data from five participants were excluded from 

analyses due to insufficient trials for reliable quantification of the ERPs in one of the 

experimental conditions. Data from one participant were excluded due to excessive 

number of noisy trials. The final sample consisted of 23 participants (14 females, 9 

males; 3 left-handed; mean age = 27.3, age range = 18 – 40). Previous research on 

feedback processing and behavioural adaptation have found significant statistical 

effects of the feedback-related potentials in EEG – the feedback-related negativity 

(FRN), P3a and P3b with similar if not smaller sample sizes (Chase et al., 2011; 

Schiffer et al., 2017). 

Stimuli and task  

Participants performed a time-estimation task with the primary goal of 

reproducing the total duration of visual stimulus being presented on the screen every 

trial. Participants received positive or negative feedback after their response followed 

by a question of whether they want to reattempt the task. The time-estimation task is 

well established for ERP analyses (Holroyd & Krigolson, 2007; Luft et al., 2014; Miltner 

et al., 1997).  

We used a black dot (visual angle: 0.44°) presented in the center of the screen 

as the visual stimuli. For each trial, the number of dots being presented was randomly 

chosen between 1 to 4. The duration for each of the dot was randomly selected from 
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300 ms to 1000 ms with a step size of 100 ms, and the interval between each of them 

(if the number of dots was more than one on that trial) was randomly selected from 

300 ms to 1200 ms with a step size of 300 ms. Participants were instructed to estimate 

the total duration of all the dots combined and to ignore the interval between each of 

the dot in their estimation. A black check mark and a black X were used as symbols 

for positive and negative feedback respectively (visual angle: 1.2°) in the first attempt 

trial. Positive and negative feedback was given randomly apart from situation where 

participants displayed an extremely good (the mismatch between the estimated 

duration and the total duration of presented stimuli was less than 5 % of the total 

duration of the presented stimuli) or bad performance (worse than 95 % of the time of 

participants’ previous performance based on preceding trials). Thus, establishing 

feedback validity.  

For the second attempt trials (if participants decided to repeated task), feedback 

was given based on participants’ performance. The feedback was represented using 

a scale from -5 to 5 points, excluding zero. A positive/negative number indicated 

positive and negative feedback respectively. If the mismatch between the estimation 

and total duration of the stimuli was no larger than 25% of the total duration of the 

presented stimuli, positive feedback is given. The point increased from 1 to 5 with the 

mismatch decreased from 25% to 5% with a step of 5%. Likewise, negative feedback 

was given when the mismatch is larger than 25% of the total duration of the presented 

stimuli, and the point went from -1 to -5 as the mismatch get larger from 25% to 50%, 

with a step of 5%. The point will be translated into monetary reward at the end of the 

experiment (1 point = 5 cents).   

All stimuli were presented at the centre of the screen against a grey background 

on a 27-inch, 60 Hz LCD display with a distance of 100 cm from the participants. The 

experiment comprised eight blocks of 60 trials each, with self-paced rests between 

blocks. The task was delivered with Psychotoolbox-3 (Kleiner et al., 2007) running on 

MATLAB. Prior to the experiment, participants received both written and verbal 

instructions that explained the procedure of the experiment and preformed 20 practice 

trials.  

Procedure 
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The procedure of a signal trial is illustrated in Figure 12. Each trial began with 

the word “Ready” presented at the centre of the screen for 200 ms, followed by a 

fixation cross presented for 300 ms. Then the visual stimuli (either a single black dot 

or a series of black dot with random interval in between) was presented on the screen. 

After the stimulus presentation, the word “Response” was presented on the screen to 

signal participants to give their response using the space bar on the keyboard. The 

response is given by holding down the space bar for the duration that participants 

estimated to be the total duration of the stimuli. A black dot was appeared on the 

screen during the key press to help participants visualise their estimation. Feedback 

is given 600 ms after the release of the key and stay on the screen for 1000 ms. 

Afterward, a question appeared to ask participants if they want to repeat the task, and 

the current number of points they are holding was also shown on the screen. 

Participants then used their right or left index finger to press the “S” or “L” key to 

indicate a “Yes” or “No” decision (the mapping between Yes/No and left/right key was 

counterbalanced across subjects). The question remained on the screen until 

participants made a response. If the decision was “Yes”, then trial repeated as 

described above. The only difference was that the feedback on the repeated trial was 

represented as number of points with a range of -5 to 5 (excluding zero). A negative 

number indicated negative feedback, and a positive number indicated positive 

feedback. If the decision was “No”, then a new trial began. The intertrial interval was 

1000ms. Participants was encouraged to maximize the number of points during the 

experiment. 
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Figure 12. Schematic representation of a trial structure.  
Participants learned to reproduce the duration of the presented stimuli for each trial by holding the space bar on 
the keyboard. Following each response, they received a positive or negative feedback. Then participants have to 
decide whether to give a second attempt for the same trial. The feedback on the second attempt was represented 
using a scale from -5 to 5 points, excluding zero. A positive/negative number indicated positive and negative 
feedback respectively. 

 

EEG data acquisition and preprocessing 

We recorded the EEG using the PyCorder system and actiCHamp amplifiers 

(BrainProducts GmbH, Gilching, Germany) in DC recording mode with a sampling rate 

of 2000 Hz. Continuous EEG data were collected from 60 actiCAP EEG electrodes 

(BrainProducts GmbH) mounted on an elastic cap and referenced to right mastoid. 

EEG electrodes were arranged following the extended 10-10 position system (Acharya 

et al., 2016). Additional electrodes were placed on the right/left mastoid and on the 

outer canthi of both eyes. Custom-built Matlab scripts with EEGLAB (Delorme & 

Makeig, 2004) functions was used for the pre-processing of the EEG data. The EEG 

data was filtered offline (high pass: 0.1 Hz, low pass: 40 Hz), and re-referenced to 

linked mastoids. Bad channels were identified by visual inspection of the EEG raw 

data and the channels’ power spectra. Independent component analysis (ICA) was 

performed to identify and remove components that were associated with blinks and 

eye movements. Subsequently, we removed all trials in which activity exceeded ± 100 
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μV to account for noise and large muscle artefacts, resulting in the average exclusion 

rate of 0.88% (SD = 1.77). Bad channels were reintroduced by interpolating data 

between neighbouring electrodes using spherical spline interpolation (Perrin et al., 

1987). Epochs were extracted from −200 ms to +1000 ms relative to feedback onset 

and baselines were corrected to the 200 ms pre-stimulus interval. 

The FRN was quantified in single-trial waveforms as the peak-to-peak 

amplitude at electrode FCz. Specifically, we identified the minimum voltage in the 200 

to 300 ms window, then subtract it from the preceding positive maximum in the window 

from -100 to 0 ms relative to the detected negative peak. For the P3, the amplitude 

was measured at a cluster of fronto-central region electrodes comprising FCz, FC1, 

FC2, Cz, C1, C2 in a time window from 318-418 ms post-feedback onset.  

Data analysis 

We included only the first attempt trials with random feedback in the analyses. 

Performance on each trial was measured as the absolute error in milliseconds 

between the total duration and the estimated duration of the stimuli. Trials with a 

magnitude of absolute error below the individual mean of each participant were 

labelled as good performance trials, and the rest were labelled as bad performance 

trials.  

We first used linear mixed model analyses to examine the effect of feedback 

and performance on FRN and P3 amplitudes separately. Then, in order to evaluate 

the joint effect of EEG activity, feedback and performance on the decision of whether 

to repeat or not a trial, we analysed decision using generalised linear mixed model 

with Feedback, Performance, and the amplitudes of FRN and P3 as predictors. The 

mixed effect model analysis has the advantages that it allows for parametric analyses 

of single-trial measures and robust to unequally distributed numbers of observations 

across participants. Furthermore, it allow us to take into account of the individual 

variance regarding experimental effects by including participants as random effect and 

the predictors as random slopes (Frömer et al., 2018). Variable that explained zero 

variance were excluded from the random effects structure to prevent 

overparameterization (Bates et al., 2015; Matuschek et al., 2017). We applied sliding 

difference contrasts for all the categorical predictors – feedback and performance. 
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Single-trial FRN, P3 amplitude in the generalised linear mixed model were mean-

centred and divided by 10 as the rescaling of the variables support model identifiability 

(Bates et al., 2015). The models were reduced stepwise by excluding non-significant 

interaction terms until the respectively smaller model explained the data significantly 

worse than the larger model. We reported the AIC (Akaike Information Criterion) and 

BIC (Bayesian Information Criterion), fit indices that are smaller for better fitting models. 

Statistical analysis were performed using R (R Core Team, 2022) with the lme4 

package (Bates et al., 2015), p-values were computed with the lmerTest package, 

using Satterthwaite approximation for degrees of freedom. Graphs were made using 

ggplot2 (Wickham, 2016) and effects package (Fox & Weisberg, 2019).  

 

3.2.3.  Results 
 
Behavioural data 

To test whether participants successfully performed the task, we checked the 

correlation between the stimuli actual duration and duration estimates in each 

participant. We found a significant positive correlation (p <.001) in all participants, 

indicating that they understood and were able to perform the task adequately (Figure 

13).  

 
Figure 13.Correlation between stimuli duration and duration estimates for each participant.   

ERP analysis: FRN and P3 
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Figure 14 illustrates the waveforms and topographies of the FRN and P3 ERP 

components as a function of feedback and performance. We applied linear mixed 

model analyses to examine the effect of feedback and performance on FRN and P3 

amplitude separately. The model estimates are summarised in Table 1. For the FRN 

(left part of Table 1), we observed a main effect of Feedback with larger FRN amplitude 

for negative feedback compared to positive feedback trials. We did not observe a 

significant effect of Performance nor significant Feedback by Performance interaction. 

The non-significant interaction term was excluded from the model. The reduction of 

the model did not result in a significant drop in the model fit (DX2(1) = 0.28, p = .600), 

moreover, the fit indices were smaller for the reduced model (AIC reduced-full = -2, BIC 

reduced-full = -9), indicating a better fit. 

 
Figure 14. ERP waveforms and topographies.   
(A) ERP waveforms corresponding to the frontocentral electrode cluster (FCz, FC1, FC2, Cz, C1, C2), showing 
FRN (200 – 250 ms) and P3 (310 – 418 ms). (B) Topographic maps of average amplitude in FRN time window and 
P3 time window for Negative feedback (left panel), Positive feedback (middle panel) and the difference between 
Negative and Positive feedback actions (right panel). The electrodes marked on the topographical maps represents 
the ones included in the FRN and P3 analysis respectively. 

 
For the P3 (right part of Table 1), we observed a main effect of Feedback with 

larger P3 amplitude for positive feedback compared to negative feedback trials. No 

significant effect of Performance nor significant Feedback by Performance interaction 

were observed. The final model was reduced by excluding the non-significant 

interaction term. The exclusion of the interaction terms did not significantly decrease 

model fit (DX2(1) = 0.29, p = .570) and the fit indices were smaller for the reduced 

model (AIC reduced-full = -2, BIC reduced-full = -9). 
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Table 1. Feedback and performance effects on ERPs 

 FRN P3     

Predictors       Estimates SE t        p 
    

Estimates 
   SE   t p 

    

(Intercept)     -19.13 1.00 -19.17 1.21e-15 11.72   
1.03 

11.32 6.99e-
11 

    

Feedback 2.30 0.37 6.29 1.96e-06 1.90  0.48 3.99 5.90e-
04 

    

Performance 0.01 0.17 0.07 0.949 0.30  0.31 0.98 0.335     

Random Effects                             SD                                                         SD     

Residuals  8.02 9.15     

Intercept  4.77 4.94     

Feedback  1.55 2.09      

Performance 
 

1.12     

Model Parameters       

N 23 23     

Observations 8830 8830     

Deviance 61961.3 62329     

log-Likelihood -30980.7 -32163     

Formula: FRN ~Feedback + Performance + (Feedback |participant);  
               P3 ~Feedback + Performance + (Feedback + Performance |participant) 

 

Brain-behaviour relationship    

We used a generalised mixed model to estimate the effect of Feedback, 

Performance, FRN amplitude, and P3 amplitude on participants’ decisions. Table 2 

displays the fixed-effects estimates, standard errors, z-values, as well as estimates of 

the square root of the variance components (SD) and goodness of fit parameters for 

the mixed effect model. The final model excluded all the non-significant interactions 

and the exclusion of those interaction terms did not significantly decrease model fit 

(DX2(7) = 3.83, p = .799). The fit indices were smaller for the reduced model (AIC 

reduced-full = -10, BIC reduced-full = -60), which indicated a better fit.  The results showed 

that feedback valence predicted the probability of decision, so that the probability of 

choosing to reattempt the ongoing trial was significantly higher after receiving positive 

feedback. A significant effect of Performance was also observed, indicating that the 

probability of reattempting the trial was significantly higher after good performance.  
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In addition, analysis also revealed significant performance by FRN interaction, 

FRN by P3 interaction and a three-way interaction between performance, FRN and 

P3. For the performance by FRN interaction, we observed that larger FRN amplitude 

was related to a higher probability of repeating the current trial in good performance 

trials, while this relationship reversed in bad performance trials, in which a larger FRN 

amplitude was associated with lower probability of retrying the trial (Figure 15). In other 

words, when the FRN amplitude was relatively large, the model predicted a large effect 

of Performance on decision, i.e., a decision coherent with performance, and this effect 

was predicted to get smaller along with smaller FRN amplitudes. 
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Figure 15. Model estimation of the Performance by FRN interaction.  
Performance by FRN interaction on the probability of repeating the current trial. The shaded regions represent 
95% confidence intervals. 

  

Furthermore, we observed a FRN by P3 interaction indicating a positive 

correlation between FRN amplitude and the probability of repeating task when the P3 

amplitude was small. This correlation became progressively more negative with 

increasing P3 amplitude (Fig 17A). The three-way interaction of performance, FRN 

and P3 further indicated that the aforementioned FRN by P3 interaction only took place 

in bad performance trials (Fig 17B).  

 

 
Figure 16. Model estimation of interaction between Performance, FRN and P3.  (A) Interaction of FRN and P3 
amplitude on the probability of repeating trial. (B) Interaction of FRN and P3 amplitude on the probability of 
repeating trial by Performance. 

 

3.2.4.  Discussion 
 

In the present study, we tested the influence of feedback and performance on 

the decision to retry or not the ongoing trial in a time estimation task. In the experiment, 

participants were asked to reproduce the total duration of an intermittently presented 

visual stimulus. Feedback was given after every response, and participants had to 

decide after the feedback whether to retry the same trial and try to earn reward points, 

or to move on to the next trial. Results showed that both performance and feedback 

influenced participants’ decision, since the probability of retrying the current trial was 

significantly higher after receiving positive feedback and after a good performance in 

the first try. We focused our analyses on the amplitudes of two feedback- and decision-

related ERP components, the FRN and the P3. The main results found concerned the 
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FRN. Previous works have shown the sensitivity of the FRN amplitude to feedback’s 

valence. In line with those studies, in the present experiment the FRN showed larger 

amplitude in response to negative than to positive feedback. Previous works have also 

related the amplitude of the FRN to the size of PE. Our results are also in agreement 

with this relationship, and provide further insight in how PE size influences participants’ 

decisions. Specifically, we found that the larger this PE is, the more likely participants 

are to make their decision, be this to reattempt the current trial or to move on to the 

next, in accordance to their performance and regardless of the feedback received. In 

the opposite direction, the smaller PE is the more likely participants will base their 

decision on the feedback received.  

The results obtained in the analyses showed that participants’ decision to retry 

the ongoing trials in order to earn a reward was influenced both by how good their 

performance was in their first attempt and by the valence of the feedback they received. 

Specifically, two independent main effects of Performance and Feedback were found, 

indicating that subjects were more likely to retry the current trial when performance 

was good and when feedback was positive. No interaction between these factors was 

observed. The influence of feedback on decision suggests that participants were not 

aware of the fact that positive and negative feedback were randomly given regardless 

of actual performance. The influence of performance on the likelihood to retry a trial 

indicates that participants had an internal estimate of their execution that they used to 

make their decisions, at least in some trials. The models including the ERP data 

provided more information about the circumstances under which performance 

information might have been used, as we will see in the next paragraphs.  

The first linear mixed model analysis, performed to investigate the influence of 

performance and feedback on FRN and P3 amplitudes, revealed that only the latter 

had any effect on both components, while performance had no significant effect on 

them and neither interacted in a significant way with feedback. Results revealed, as 

expected, that negative feedback was associated with larger FRN amplitude 

compared to positive feedback, in agreement with previous studies showing that FRN 

is in general associated with the degree of negative PE (Holroyd et al., 2004; Holroyd 

& Coles, 2002; Luft et al., 2014; Nieuwenhuis et al., 2004, but see Holroyd et al., 2008). 

Regarding P3, a larger P3 response was observed in response to positive compared 
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to negative feedback. This result is congruent with studies showing larger P3 

amplitude following positive feedback in motor learning tasks, in which positive 

feedback has been shown to be more relevant than negative feedback for 

performance improvement (Chiviacowsky & Wulf, 2007). It is also coherent with 

findings showing larger P3 response toward motivational significant stimuli 

(Nieuwenhuis et al., 2005), as positive feedback is likely to contain higher motivational 

significance in this task since it would signify a higher probability for future reward.  

A subsequent linear model analysis was performed to address the influence of 

performance, feedback, FRN amplitude, and P3 amplitude, on participants’ decisions. 

This analysis showed that the decision of whether to reattempt or not the same trial 

was heavily driven by feedback valence, as the probability of reattempting the current 

trial was significantly higher after positive than negative feedback. Importantly, this 

result also indicates that participants were not aware that positive and negative 

feedback were randomly given in our experimental design. Moreover, results revealed 

a significant effect of Performance, suggesting that participants were able to access 

and use information from their internal monitoring system to help in their decision 

making. This effect depended on the amplitude of the FRN, as reflected by the 

significant FRN by Performance interaction. Specifically, we observed that only when 

the FRN amplitude was relatively large, the model predicted a large effect of 

Performance on decision, and that, conversely, the effect was predicted to get smaller 

along with smaller FRN amplitudes. Given the established relationship between FRN 

amplitude and PE size, a larger FRN amplitude would indicate here that participants 

had an expectation about the valence of the upcoming feedback, resulting from a more 

or less accurate estimate of their performance. This expectation would be compared 

with the actual feedback received, and the degree of mismatch between expected and 

received feedback would be reflected on the FRN amplitude. Hence, the larger the 

FRN, the more likely that participants prefer to rely on their own performance estimate 

to make their decision instead of the feedback, making them more likely to retry the 

current trial when their performance was good, or to move on to the next one when 

performance was bad. According to this interpretation, a relatively smaller FRN could 

result from two possible circumstances. One possibility is that participants were able 

to correctly monitor their performance and the feedback received was in agreement 

with their estimate. As a result, PE would be small and consequently the amplitude of 



 80 

the FRN would also be reduced. In this case, participants should be more likely to retry 

a given trial when performance is good and feedback is positive, and more likely to 

move on to the next trial when performance is bad and feedback is negative. Our 

results do not support this interpretation, given the main finding that the larger the FRN, 

the more likely the decision is coherent with performance. Alternatively, a smaller FRN 

could result from participants being unable to monitor their performance in those trials 

and therefore not generating expectations about the feedback, so that PE in response 

to the feedback would be relatively smaller. Hence, decisions would not be based on 

performance in those trials, but rather on the feedback received, as indicated by the 

main effect of Feedback. This explanation would be in agreement with the notion that 

the absence of clear expectations diminishes effect of surprise (Hayden et al., 2011), 

and with previous studies in which a smaller FRN was described when participants 

cannot form a direct relation between the outcome and their behaviour (Holroyd et al., 

2009; Holroyd & Coles, 2002). It would also be in agreement with the notion that PE 

resulting from unpredicted stimuli is smaller than that resulting from mispredicted, and 

even predicted, stimuli (Hsu et al., 2015). Specifically, according to this notion, the 

presence of an expectation, be this accurate or not, would generate a larger PE (and 

thus larger FRN) compared to trials in which no expectation is present. Therefore, a 

relatively large FRN amplitude would in general be observed when participants have 

an internal estimate of their performance in a given trial. 

Finally, an interaction between FRN and P3, together with a three-way 

interaction between Performance, FRN, and P3 completed the results about the 

relationship between FRN amplitude and Performance by showing an exception to the 

pattern described above. Specifically, these interactions revealed that while a large 

FRN was more likely related to the participants’ decision to move on to the next trial 

when performance was bad, as they are more likely to make their decision according 

to their estimate of their own performance, a large FRN did not predict a decision 

according to performance when followed by an also large P3. Rather, in this case 

participants were more likely to retry the ongoing trial. It is not clear to us why a larger 

P3 amplitude would increase participants’ likelihood of retrying a given trial despite 

presumably being aware that their performance was bad. It has been previously 

reported that P3 amplitude varies with subjective confidence, being larger for higher 

confidence or certainty in a given response or estimate (Butterfield & Mangels, 2003; 
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Hillyard et al., 1971; Ye et al., 2019). It is therefore possible that there is a number of 

trials in which participants had high confidence in their ability to perform the task 

correctly regardless of their execution in their first attempt, and decided to give it a 

second try. Unfortunately, a limitation of our data is that they don’t allow us to test this 

hypothesis. Given the well-established role of confidence in decision-making (Rouault 

et al., 2019; Yeung & Summerfield, 2012b), future research should incorporate this 

variable to the experimental design to test its contribution to participants’ decision-

making.  

To summarise, our results show that participants used information from both 

external (feedback) and internal (performance monitoring) sources to make their 

decisions in the proposed experimental task. We found that both factors play a role in 

the decision process, as participants were in general more likely to repeat the current 

trial when performance was good, regardless of the feedback received, and when 

feedback was positive, regardless of their performance. The analyses of the P3, and 

particularly of the FRN component, allowed us to shed some light on how these factors 

influenced participants’ decisions. In line with previous studies pointing out the 

sensitivity of the FRN amplitude to feedback’s valence, the FRN showed larger 

amplitude in response to negative than to positive feedback. More importantly, in 

relation to previous works relating the amplitude of the FRN to the size of PE, our 

results revealed that the amplitude of the FRN, regardless of the valence of the 

feedback received, seems to indicate whether participants have a clear estimate of 

their performance and, consequently, will more likely rely on that estimate for their 

decision or, in the absence of such an estimate, will rather rely on the feedback 

received.  

It is important to note that an obvious limitation of our experimental design is 

that we did not explicitly ask participants to estimate their performance on every trial, 

since we wanted to avoid questions that could interfere with their decisions. Therefore, 

we do not have direct information about participants’ internal performance estimates 

on a trial basis, neither about how accurate these are nor about how confident 

participants felt about their estimates. Those factors may have an impact on the 

decision of whether to go for a further attempt in the task (Frömer et al., 2021) but 
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were only indirectly inferred in the present work. Future studies should address this 

issue for a better understanding of the results presented here. 

 

3.3. Experiment 3 – The impacts of confidence and 
feedback reliability in learning adjustment 

 

 

 

 

3.3.1.  Introduction 
  

In Experiment 2, our investigation centered on the influence of external and 

internal motor feedback on the decision of reattempting task. We found results which 

suggested that both type of feedback play a significant role in the decision and the 

amplitude of the feedback related potential – FRN predicted the effect of internal motor 

feedback on the decision by reflecting whether participants was able to form a clear 

prediction about their motor performance (Hayden et al., 2011; Holroyd et al., 2009; 

Hsu et al., 2015). While these results have provided valuable insights into the decision-

making process of reattempting in learning, certain limitations became apparent. 

Firstly, in the experiment design, participants at most were only given two attempt to 

perform the same task and we changed the task parameters on every trial to ensure 

that it would be clear for the participants that when they decided to move on to a new 

trial, it will be a new task. Under this experimental design, we are unable to observe 

the process of learning or to estimate any learning rate of the task with only data from 

two trials with the same task parameters. Secondly, despite our suggestion of the 

amplitude of the FRN could reflect an internal awareness of motor performance, we 

lack direct evidence to support it as we never asked participant to explicitly state any 

prediction they have on their performance after motor execution. More importantly, 

even if there was always a prediction of their motor performance due to internal motor 

model (Wolpert et al., 1995, 2011), it would still be curial to know how confidence 

participants felt about those predictions as this would have a direct impact on the 

This chapter is based on behavioural data collect in a pilot experiment designed by 

Chung, W. Y., Darriba, Á., Yeung, N., & Waszak, F. to investigate how the impact 

of feedback in behavioural adjustment depend on people’s confidence in their 

learning progress, as well as the reliability of the feedback itself.  



 83 

processing of feedback, action outcome, also the possible learning improvement 

(Frömer et al., 2021).  

We addressed the aforementioned limitations in the following experiment. In 

experiment 3, we employed a learning task where participants need to rely on the 

feedback, they received on every trial to progressively enhance their performance and 

learn the underlying distribution for each experimental block. Specifically, participants 

were told to imagine that they are playing a shooting game in a very windy forest, 

Therefore, in order to hit the target that is always present in the middle, they need to 

learn the optimal aiming location based on the wind strength at the time. The wind 

strength for each experimental block is control by a Gaussian distribution with a 

deviation of 5 and the mean value only change between block. Hence, participants 

would be able to gradually learned the mean value of the distribution of each block 

with trial and error.  

One critical factor of this experiment is that while the learning depends on 

feedback in this task, we induced uncertainty about the feedback itself by explicitly 

controlling for the feedback reliability between blocks, as to investigate the impact of 

external uncertainty on learning adjustment. Previous studies have reported that the 

degree to which learning is updated based on the prediction error on each observed 

outcome is modulated by the environmental uncertainty (Behrens et al., 2007; 

McGuire et al., 2014; Nassar et al., 2010). While in most studies, uncertainty is induced 

in the environmental context (e.g. abrupt change in the mean value of the underlying 

distribution). Since we have a specific focus on the effect of feedback in learning, we 

manipulated the uncertainty in the feedback itself instead of in the environment. We 

expected that learning would be in general improved with more reliable feedback 

compared to less reliable feedback, also the learning adjustment between trials based 

on received feedback would be more evident in high feedback reliability block, while 

participants would be more reserved and updating their behaviour in a slower rate in 

situation where they consider feedback to be less reliable.  

Furthermore, we also examined the impact of internal uncertainty on learning 

by asking participants to rate their confidence on their learning progress for the block 

(i.e. how well you think you have learn the wind strength for the current block?) at the 

beginning of every trial. Different from experiment 2 where the internal uncertainty was 
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regarding motor execution error, here with a non-motor task, the internal uncertainty 

is streamed from the state of knowledge (Kahneman & Tversky, 1982). Confidence 

about the state of knowledge is expected to improve with the number of observations 

and human learners usually demonstrated a rational measure of confidence where the 

confidence is linearly correlated with the accuracy and the precision of their estimation 

(Meyniel, Schlunegger, et al., 2015; Meyniel, Sigman, et al., 2015). Importantly, 

confidence has been repeatedly found to modulate the impact of observed outcomes 

on both the neural and behavioural levels. At the neural level, higher confidence has 

been shown to suppress the response to unexpected outcomes, while at the 

behavioural level, for an equivalent degree of surprise, the update of stimuli or action 

values is expected to be smaller with high confidence and larger with low confidence 

(Meyniel, 2020; Meyniel & Dehaene, 2017). This confidence-weighted learning 

phenomenon has been observed across various contexts and with different types of 

stimuli, including probabilistic learning with visual or auditory stimuli (Meyniel, 2020; 

Meyniel, Schlunegger, et al., 2015), motor learning (Frömer et al., 2021) and value-

based decision making (E. Payzan-LeNestour et al., 2013), suggesting that the use of 

confidence to modulate the effect of observed outcomes in updating learning is a 

general, modality-free phenomenon. In our experiment, we expect confidence to 

calibrate with performance. Furthermore, we anticipate that the effect of feedback on 

learning adjustment will be modulated by the level of confidence. Specifically, when 

confidence is high, the impact of feedback on the degree of response adjustment is 

lessened. 

Finally, we continue our investigation of the role of feedback in decision-making 

in this experiment. In experiment 2, we have shown that feedback is a significant factor 

for participants to decide whether or not they would give a second attempt in a task. 

Here in experiment 3, we investigated the role of feedback in the decision of 

exploration or exploitation (Schulz & Gershman, 2019; Wilson et al., 2021). After 

receiving feedback about their chosen aiming location in our task, participants can 

freely decide whether to fire a bullet at the selected location, despite the limited number 

of bullets available in each block. If the bullet hits the target, participants are rewarded. 

This decision reflects a scenario where participants opt to exploit the chosen option 

rather than continue exploring other possibilities. While rewards that are less than 

expected have consistently been shown to drive people to explore other options, 
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findings on whether uncertainty increases or decreases the propensity for exploration 

have been inconsistent (Cockburn et al., 2021; Frank et al., 2009; Gershman, 2018; 

É. Payzan-LeNestour & Bossaerts, 2012). In our study, we investigate to what extent 

the decision to explore or to stick with the chosen option depends on the received 

feedback and whether uncertainty about the feedback itself and about participants' 

learning performance also affects this decision. 

 

3.3.2. Methods 
 
Participants 

Data were collected from 6 participants (3 females, 3 males; 5 left-handed; 

mean age = 25.8, age range = 23 – 29). All participants reported normal hearing and 

normal or corrected-to-normal vision, and none reported any history of neurological 

conditions. Written informed consent was obtained and experimental procedures were 

undertaken in accordance with the Declaration of Helsinki and with the approval by 

the Comité de Protection des Personnes Ile de France II. Participants received 

monetary compensation for their participation (10€ per hour, plus reward depend on 

task performance).  

Stimuli and task  

Participants performed a shooting task where they needed to learn the average 

wind strength in each experimental block to increase their success rate in finding the 

aiming location that would result in hitting the target. During the introduction of 

experiment, we asked participants to imagine that they are playing a shooting game 

in a windy forest. As a result, they cannot simply aim directly at the target but had to 

adjust their aiming location depending on their estimation of the wind's strength. 

Participants were told that the wind strength would remain constant within each block 

and change dramatically between blocks. Therefore, they should try to learn the 

specific range of wind strength in each block (for example, if the wind strength could 

be from 0 to 100, the range in a block might be set between 80 and 90). To learn the 

wind strength, participants have the opportunity to fire a tracer (test shot) on every trial. 

Afterwards, they would receive feedback indicating whether firing at the selected 
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location would result in a hit or a miss of the target. Importantly, they were informed 

that the feedback from the tracer was not always accurate, its accuracy depended on 

the tracer's quality. If it was a high-quality tracer, the accuracy would be around 80%; 

if it was a low-quality one, the accuracy would be around 70%. After receiving feedback 

from the tracer, participants then can use this information to decide whether to fire a 

real bullet at the selected location, while the number of bullets per block was limited to 

25. Only hitting the target with a bullet would result in a reward (two coins). The goal 

of the task is to earn as much reward as possible with the limited number of bullets, 

and the reward will be translated into a monetary reward at the end of the experiment. 

At the beginning of each block, participants are informed about whether they 

will have a high- or low-quality tracer for the block. At the beginning of every trial, they 

have to rate their confidence level on how sure they feel that they have already learn 

the wind strength for the current block. This rating is done by sliding a small square 

(visual angle: 0.57°) along a scale bar and the response is confirmed by pressing the 

“C” key on the keyboard. Afterward, the target (a large square with a fixation cross 

inside, visual angle: 2.01°) is shown in the center of screen on a scale bar. Participant 

select the aiming location by sliding a small square (visual angle: 0.57°) on the scale 

bar. A number is displayed below the target square to indicates the value of the 

expected wind strength for the chosen location: the number is 0 when the small square 

is directly below the target, increasing from 0 to -100 as it moves to the left side of the 

target and from 0 to 100 as it moves to the right side of the target. After deciding on 

the aiming location, participants confirm their choice by pressing the space bar on the 

keyboard. For tracer feedback, the outcome is displayed above the selected aiming 

location, as “Hit!” or “Miss!”. If participants take longer than 10 seconds to select an 

aiming location, a “Too late!” feedback appears, and the trial end. For the feedback of 

the actual bullet shot, a successful hit of the target is indicated by an image of two 

coins, while a miss is marked by a black cross. 

The wind strengths in each block are controlled by a Gaussian distribution with 

varying mean value (Figure 18). The standard deviation of the Gaussian distribution 

is set at 5. In each trial, the wind strength is randomly drawn from this distribution, 

resulting in 68% of the wind strength values falling within -5 to +5 of the mean value, 

and 95% within -10 to +10 of the mean value. The mean value for the wind distribution 
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in each block was selected from [45, 65, 85], with the restriction that two consecutive 

blocks could not have the same mean value. Each mean value was used once for a 

high and once for a low feedback reliability block. This setup allows participants to 

gradually learn the mean of each block through trial and error. Additionally, we 

implemented a step-case procedure to accommodate a certain degree of mismatch 

between the response value and the actual wind strength value for each trial. The 

maximum mismatch can be up to 10, decreasing by one step after a correct response 

and increasing by one step after an incorrect response.  

All stimuli were presented at the center of the screen against a grey background 

on a 27-inch, 60 Hz LCD display, positioned 100 cm away from the participants. The 

experiment consisted of six blocks, with self-paced rests allowed between each block. 

A block concluded when participants exhausted their number of bullets. The task was 

ran using Psychotoolbox-3 (Kleiner et al., 2007) on MATLAB. Prior to the experiment, 

participants received both written and verbal instructions explaining the procedure and 

completed two practice blocks (one high feedback reliability block and one low 

feedback reliability block) to familiarize themselves with the task. 

 

 

Figure 17. An example of the wind strength distribution.  
The mean value of this wind strength distribution is 65 and approximately 68% of the time the wind 
strength is between 60 to 70, 95% of the time between 55 to 75.  
 
 

 
Procedure 
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The procedure of a single trial is illustrated in Figure 19. Each trial begins with 

a confidence rating scale, where participants rate their confidence level and use the 

'C' key to confirm their response. This is followed by a fixation cross presented for 200 

ms, after which the target appears in the middle of the screen, on top of a scale bar. 

Participants then see a moving wind image coming from either the right or the left side 

of the screen. The purpose of the moving wind image is to indicate the wind direction 

and to suggest which side of the target the aiming location should be (e.g., if the wind 

is coming from the left side of the screen towards the right, then the aiming location 

should be placed on the left side of the target). After the wind image disappears, 

participants have 10 seconds to select their desired aiming location for the tracer shot 

and confirm their response with the 'Space bar.' The tracer's feedback appears above 

the selected aiming location 500 ms after the response is given, with the words 'Hit!' 

and 'Miss!' indicating whether the tracer hit anything. After 1000 ms, a question 'Fire 

or not?' appears on the screen, accompanied by the options 'Yes' and 'No.' The 

remaining number of bullets and the currently earned reward for the block are also 

displayed. Participants can then decide whether to fire a bullet by clicking 'Yes' or 'No’ 

on the screen. If 'Yes' is selected and the bullet hits the target, an image of two coins 

is displayed for 1000 ms; if the bullet misses, a black cross is shown instead. If 'No' is 

selected, a new trial begins. The intertrial interval is 500 ms. Participants are 

encouraged to maximize their rewards, which will be converted into a monetary reward 

at the end of the experiment (1 coin = 5 cents). 
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Figure 18. An example of a single trial structure.  
In this example trial, positive feedback was received from the tracer and the participant made the 
decision to fire the bullet but the bullet did not result in a hit of the target.  
 

Data analysis 

Trials that exceeded response time limit and aiming location did not follow the 

indicated wind direction are excluded from the analysis (1.24% of total trials). We 

labelled trials as good performance trial if the response value is within one standard 

deviation of the mean value. Successful learning performance is accessed by entering 

the number of good performance trials into a repeated-measures ANOVA with the 

factors Time (first / second half of the block) and Block type (high / low feedback 

reliability). If the number of trials with good performance is significantly larger in the 

second half of the block compared to the first half, this would indicate successful 

learning over time. Moreover, we examined possible impact of feedback reliability on 

learning performance with the factor – Block type.  

We conducted linear mixed model analyses to examine the effects of 

confidence, previous trial feedback, previous trial performance, and block type on the 

degree of response adjustment (the difference in response value from one trial to the 

next). Additionally, we explored the impact of previous trial feedback, previous trial 

performance, and block type on confidence. Lastly, we analysed the decision of 

exploration (whether to fire a bullet) using a generalized mixed model, with feedback, 

performance, confidence, and block type as predictors. 

The mixed effect model analysis has the advantages that it allows for 

parametric analyses of single-trial measures and robust to unequally distributed 

numbers of observations across participants, which is suitable for the current 

experimental design since the number of trials for each block is not fixed but depended 

on when does the bullets ran out. Plus, this analysis allows us to use both category 

and continuous variables as predictors. Furthermore, it take into account of the 

individual variance regarding experimental effects by including participants as random 

effect and the predictors as random slopes (Frömer et al., 2018). Variable that 

explained zero variance were excluded from the random effects structure to prevent 

overparameterization (Bates et al., 2015; Matuschek et al., 2017). We applied sliding 

difference contrasts for all the categorical predictors – feedback, performance and 
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block type. Confidence rating is transformed using max-min scaling (0 to 1) based on 

each participant data. The models were reduced stepwise by excluding non-significant 

interaction terms until the respectively smaller model explained the data significantly 

worse than the larger model. We reported the AIC (Akaike Information Criterion) and 

BIC (Bayesian Information Criterion), fit indices that are smaller for better fitting models. 

Statistical analysis were performed using R (R Core Team, 2022) with the ez package 

and lme4 package (Bates et al., 2015). For the mixed effect models, p-values were 

computed with the lmerTest package, using Satterthwaite approximation for degrees 

of freedom. Graphs were made using ggplot2 (Wickham, 2016) and effects package 

(Fox & Weisberg, 2019).  

3.3.3.  Results 
 
Learning performance  

Figure 20 displays the changes in error value (the mismatch between the response 

value and the mean value) averaged across all blocks. To determine whether 

participants successfully learned the wind strength in each block and if learning 

performance was impacted by the feedback's reliability for the block, we conducted a 

repeated measures ANOVA with factors Time (first/second half of the block) and Block 

Type (high/low feedback reliability) on the number of good performance trials 

(responses that are within one standard deviation of the mean value). We observed a 

significant effect for Time, where the number of good performance trials was 

significantly larger in the second half of the blocks compared to the first half, F(1,5) = 

10.95, p = .021, η2 = .69. No significant effect was observed for Block Type, nor was 

there a significant interaction. Participants’ learning performance significantly 

improved in the second half of the block compared to the first half, suggesting that 

they successfully learned the wind strength over time, regardless of whether it was in 

the high or low feedback reliability block. 
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Figure 19. Changes in average error value over trials. 
Coloured lines show error value of individual participants averaged over all blocks. Black line shows average error 
value of all participants, with error bars showing standard error. 

 

Response adjustment 

The model estimates for the degree of response adjustment are summarised in 

Table 3. The final model excluded all the non-significant interactions and the exclusion 

of those interaction terms did not significantly decrease model fit (DX2(6) = 4.98, p 

= .546). The fit indices were smaller for the reduced model (AIC reduced-full = -7, BIC 

reduced-full = -40), which indicated a better fit. The significant Confidence x Feedback 

interaction suggested that the degree of response adjustment is modulated by 

confidence: participants shifted their response to a larger degree when confidence 

was low, whereas when confidence was high, the change in response was expected 

to be smaller. The interaction between confidence and feedback on the degree of 

response adjustment resulted from feedback having a significant effect on response 

adjustment only when confidence was relatively low, with negative feedback inducing 

a larger degree of response adjustment compared to positive feedback (Figure 21). 

 For the significant interaction between Performance and Block type, and the 

significant three-way interaction among Performance, Block type, and Confidence on 

the degree of response adjustment, the results showed that responses are adjusted 

according to performance. Changes in response were smaller after a good 

performance trial and larger after a poor performance trial. This effect was only present 

in blocks with high feedback reliability (Figure 22), suggesting improved learning in 

blocks with more reliable feedback as participants exhibited greater performance 
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awareness. Additionally, when performance showed an effect on response adjustment, 

this effect was also modulated by confidence. Similar to how confidence modulated 

the effect of feedback, the influence of performance on response adjustment was also 

only observed when confidence was relatively low, leading to the three-way interaction 

(Figure 23). 
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Figure 20. Model estimation of the Feedback by Confidence interaction on the degree of response adjustment. 
The shaded regions represent 95% confidence intervals. 

 

 
Figure 21. Model estimation of the Performance by Block type interaction on the degree of response shifting. 
The degree of response shifting between trial is predicted to be larger after bad performance but only low feedback 
reliability block. 
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Figure 22. Model estimation of interaction between Performance, Confidence and Block type on the degree of 
response shifting. 

 
Confidence 

The model estimates for confidence ratings are summarized in Table 4. 

Significant main effects of Performance, Feedback, and Block type were observed, 

along with a significant Performance x Feedback interaction and a significant three-

way interaction among Performance, Feedback, and Block type. Interpreting the 

results in conjunction with the interaction terms revealed that participants generally 

exhibited good calibration between subjective confidence ratings and performance, 

with confidence predicted to be higher following a good performance trial and lower 

after a poor performance. Feedback also impacted confidence, with negative feedback 

leading to lower confidence and positive feedback resulting in higher confidence. 

However, the effect of feedback on confidence was only evident when performance 

was poor, not when it was good—in which case, feedback did not affect confidence 

(Figure 24). Furthermore, when feedback did affect confidence, the effect was stronger 

in blocks with high feedback reliability (Figure 25). 
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Figure 23. Model estimation of the Feedback by Performance interaction.  
The effect of the previous trial feedback and performance on confidence rating. The error bars represent 
standard error.  
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Figure 24. Model estimation of interaction between Performance, Feedback and Block type. 
Feedback and Block type only shown significant interaction after bad performance trials. The error bars represent 
standard error.  

 
 

Decision of exploration 

We used a generalised mixed model to estimate the effect of Confidence, Feedback, 

Performance and Feedback reliability on participants’ decisions. Results are 

summarised in Table 5. The final model excluded all the non-significant interactions 

and the exclusion of those interaction terms did not significantly decrease model fit 

(DX2(16) = 22.40, p = .131). The fit indices were smaller for the reduced model (AIC 

reduced-full = -9, BIC reduced-full = -98). The model's results indicated that participants were 

more likely to stop exploring and stick with the chosen option for a possible reward 

after receiving positive feedback and when confidence was high, as well as in blocks 

with lower feedback reliability. The tendency to explore less in blocks with lower 

feedback reliability may be attributed to the lower quality of evidence obtained during 

the sampling process.  
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3.3.4.  Discussion 
 

In this study, we investigated the effect of feedback on learning adjustments 

under conditions of uncertainty. One source of uncertainty was derived from the 

feedback itself, which we manipulated by varying the reliability of the feedback. 

Another source of uncertainty arose from the participants' internal estimations of 

learning performance. We carefully studied the impact of these two sources of 

uncertainty on the feedback effect in learning adjustments using a task where 

participants were required to learn the mean value of wind strength distributions using 

feedback. We observed how the response value was adjusted after each piece of 

feedback and in relation to the reported confidence about learning progress in the trial. 

Moreover, we examined the decision to explore by creating a situation where, in every 

trial, participants could freely decide whether to fire for a possible reward, with a limited 

number of bullets available. This created a scenario where participants could choose 

to continue exploring other options or decide to stick with the previously chosen option. 

Firstly, our results demonstrated that participants displayed successful learning 

over time, with the response value getting closer to the mean value of the distribution 
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in the second half compared with the first half of the block. Moreover, feedback 

reliability did not significantly influence learning performance. This absence of any 

discernible impact of feedback reliability on learning performance may seems 

surprising, given that previous research has shown that lower feedback reliability lead 

to reduce learning performance (Di Gregorio et al., 2019; Schiffer et al., 2017; Wurm 

et al., 2022). This absence of an effect for feedback reliability on learning performance 

in our results is likely due to our analysis approach, which may have been too 

insensitive to detect any subtle effects. Specifically, we only ran a straightforward 

comparison of the number of good performance trials between the first and second 

half of the blocks, which can simply give us information about whether participants 

have successfully learned the task.  Given that feedback reliability in our study was 

maintained at approximately 70% even in the low feedback reliability blocks. We 

expected that participants would be able to learn the task in both the high and low 

feedback reliability conditions, and any difference between the two condition is 

probably subtle and require a finer separation of trials into discrete time bins. To 

uncover the influences of feedback reliability on learning, future analyses will benefit 

from adopting more sensitive analysis approaches, such as Bayesian learning rate 

estimation, computational modelling, and to expand the number of trials to better 

observe learning dynamics across discrete intervals.  

In terms of learning adjustment, we found that confidence is a significant factor 

in predicting the extent to which individuals would change their response from one trial 

to the next. Low confidence induced a greater change between trials, while under high 

confidence, responses were more stable and changed to a lesser degree from one 

trial to the next. More importantly, while we expected that feedback would be a 

significant factor in determining the degree of response adjustment, where negative 

feedback would lead to a greater change in response value, this effect of feedback 

was only observed when confidence was low. However, when confidence was high, 

response did not adjust based on feedback. This finding is consistent with previous 

studies which have shown that the effect of outcomes on updating learning or 

behaviour is modulated by confidence, and a smaller update is expected even for 

unexpected outcomes when confidence is high (Meyniel, 2020; Meyniel & Dehaene, 

2017). This result is also significant in demonstrating that the influence of feedback on 

learning is not merely a function of prediction error. Furthermore, we discovered that 
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participants also adjusted their response according to their actual performance. 

Specifically, if the response value was already within one standard deviation (SD) of 

the mean of the distribution, then there was little further adjustment in the response 

value. However, this pattern was only observed in blocks with high feedback reliability. 

We reasoned that this pattern of results could reflect improved learning under more 

reliable feedback compared to less reliable feedback, with participants showing 

greater awareness of their performance and displaying better knowledge in their 

estimation of the mean value of the distribution. Likewise, the effect of performance 

on response adjustment also interacts with the level of confidence, where adjustments 

based on performance occur only when confidence is low, and not when confidence 

is high. This suggests that confidence generally weights the updating of learning, 

regardless of the specific input causing the adjustment. 

In our analysis of confidence ratings, consistent with previous studies, we found 

that confidence was calibrated to performance, with higher confidence displayed for 

better performance and lower confidence after poor performance(Boldt & Yeung, 2015; 

Frömer et al., 2021; Yeung & Summerfield, 2012). We also observed an effect of 

feedback on confidence ratings, but this occurred only when performance was poor, 

which we believe indicated a diminished effect of feedback once the task is learned. 

Previous studies have observed a reduction in FRN amplitudes in response to 

feedback in the latter parts of learning tasks, where subjects demonstrated successful 

learning behaviourally. This indicated that feedback elicited a lesser degree of neural 

response once it was no longer needed for updating learning (Bellebaum and Daum 

2008; Eppinger et al., 2008; Hajcak et al., 2007; Krigolson et al., 2009; Pietschmann 

et al., 2008). Similarly, in our study, feedback no longer had the same effect on 

participants' confidence levels once the task was more or less learned, and feedback 

did not provide as much information compared to the beginning of the task, where 

learning depended on it. Moreover, when feedback influenced confidence about 

learning progress at the beginning of the task, the effect of feedback on confidence 

was more pronounced if the feedback was more reliable. This suggests that 

participants considered the reliability of the feedback and used this information to 

appropriately adjust their internal estimation of their performance.  
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Finally, regarding the decision to explore, we found that participants were more likely 

to stay with the chosen option when the received feedback was positive, when the 

confidence rating was high, and with less reliable feedback. The result about the 

feedback is aligns with previous findings that outcomes less than expected tend to 

encourage more exploratory behaviour (Schulz & Gershman, 2019; Wilson et al., 

2021). In terms of whether uncertainties drive exploration, it is interesting that we found 

uncertainty about learning performance encouraged participants to continue exploring 

other options, while uncertainty about feedback discouraged it. We reasoned that 

increasing the number of observations would help increase confidence about task 

knowledge, but at the same time, if the feedback reliability is low, then the informational 

value of each observation decreases. This realization ultimately reduces the tendency 

to sample more evidence.  

 Altogether, the results from our study demonstrated that the effect of feedback 

on learning adjustment is contingent on confidence, with learning more likely to be 

updated based on feedback only when confidence is low. We also reaffirmed that 

individuals are capable of developing a subjective confidence measure that closely 

aligns with their objective performance. Furthermore, feedback has an effect on 

confidence, but this effect is confined to the beginning of the task when it is not yet 

well learned. We observed an effect for feedback reliability in the way people adjust 

their confidence based on feedback, indicating that the information is used to adjust 

the impact of feedback information in terms of how much to update the internal 

estimation of performance based on the external feedback. These findings help us to 

demonstrated that the effect of feedback in learning is not limited perdition error and 

confidence regulated learning by controlling the degree of response adjustment based 

on each received outcome.  

 

4. GENERAL DISCUSSION 

At the beginning of this thesis, we have discussed how the reinforcement learning 

model, being a powerful tool in discerning the learning process towards optimal 

behaviours in both animal and human learning. It has significantly enhanced our 

understanding of the neural mechanisms involved in learning and decision-making by 
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providing explicit parameters for model-based analysis in complex neural data. 

However, when it comes to applying this model to feedback learning in humans, 

certain limitations become evident. The model employs a rather simplistic approach to 

characterizing feedback – positive if the reward is greater than expected, negative 

when the reward is less than expected. The influence of feedback on learning is thus 

examined exclusively from this binary perspective. While this method may be suitable 

for examining basic learning processes in highly controlled laboratory environments, 

it may not fully capture the nuances of human feedback learning in real life. 

In our daily life, we receive feedback in various forms. Sometimes, it simply 

contains the outcome as either positive or negative. Other times, it may offer insights 

into our performance and how it can be improved, if at all. Additionally, we receive 

internal feedback from our actions, which plays a crucial role in error detection and in 

our learning performance. Therefore, information from feedback can serves multiple 

purposes. It can be used to learn options value as suggested in the reinforcement 

learning model, to improve performance when it contains detailed information about 

the behaviour itself, or even to guide decisions that are relevant for learning. For 

example, we might sometime be wondering if we should persist with a task, seek 

external advice, or explore alternative strategies, and we based those decision on the 

feedbacks we received. The way human use feedback in learning is flexible and 

dynamic, varying according to the specific content of the feedback and the individual’s 

objectives.  

More importantly, learning in daily lives needs to incorporate the fact that we live 

in a world that is consistently changing and full of unpredictability. There is a significant 

amount of evidence showing that the sense of uncertainty shapes the way we learn 

(Boldt et al., 2019; Gallistel et al., 2014; Meyniel, Schlunegger, et al., 2015; E. Payzan-

LeNestour et al., 2013). Humans are naturally rather good at perceiving abrupt 

changes in the probability of their environment (Gallistel et al., 2014; Meyniel et al., 

2015), and more critically, it has been repeatedly reported that perceived uncertainty 

in the environmental context supports adaptive learning. In this process, we adjust the 

learning rate that controls the updating of the value of each event/action/stimulus in 

proportion to the prediction error (Behrens et al., 2007; McGuire et al., 2014; Nassar 

et al., 2010). This adaptability is essential for optimal learning, as it is beneficial to 
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adopt a steeper learning rate in an unstable environment in order to keep pace with 

constant changes in the world. Meanwhile, it is necessary to avoid a high learning rate 

in a stable environment, since learning the true underlying probability would be slow if 

we adjust our behaviour to every random fluctuation present in the environment. 

Moreover, as we adapt our learning based on the uncertainty perceived in the external 

context, due to the metacognitive abilities of human learners, we also possess a 

second level of uncertainty related to the accuracy of our estimations at the first level. 

This second level of uncertainty regarding our internal estimations is commonly 

expressed as confidence. The sense of confidence has been defined as "a belief about 

the validity of our own thoughts, knowledge, or performance that relies on a subjective 

feeling" (Grimaldi et al., 2015). This general feeling of confidence is present in any 

kind of internal estimation we might have and is not limited to a specific type of task or 

learning. For example, confidence can be about the estimation of reward probability in 

a decision-making task or about how different two stimuli are in a visual perception 

task. Importantly, it has been demonstrated that confidence is a rational measure 

closely correlated with the accuracy of a prediction, as well as the precision of that 

prediction. This correlation is then utilized to modulate learning in such a manner that, 

for a given discrepancy between observation and prediction, the update of the 

prediction based on the observation is smaller when the confidence associated with 

the prediction is higher (Meyniel & Dehaene, 2017).  

At the conception of this PhD project, we realized that the framework of feedback 

learning nowadays is still predominantly dominated by the perspective of 

reinforcement learning models, where feedback simply drives learning by the degree 

of prediction error it elicits. Hence, one of our goals in this project is to investigate the 

impact of uncertainty in feedback learning. Moreover, apart from uncertainty, we also 

recognized that the mechanisms of reinforcement learning are still poorly understood 

in the context of motor skill acquisition. Motor learning differs from non-motor learning 

tasks in the way that we receive feedback about our motor execution error and already 

have a prediction of our own action-effect from the internal model of motor executions 

(Blakemore et al., 2000; Hommel et al., 2001; Prinz, 1997; Wolpert et al., 2011). 

Previous studies have found that humans are able to discount their motor execution 

error when updating the value of their decision based on the received outcome. 

Specifically, the value of the decision does not decrease after an undesired negative 
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outcome if it can be attributed to a motor error. Furthermore, the neural response for 

prediction error is also found to be suppressed if the outcome can be associated with 

a failure in motor execution (McDougle et al., 2016, 2019). While external feedback is 

helpful and commonly used to improve performance in motor learning tasks, we are 

still in need of a more comprehensive framework that informs us of the impact of 

internal motor feedback on the processing of external feedback and how it may affect 

the way we apply external feedback to improve motor skills. Additionally, we recognize 

that beyond its role in learning adjustment, feedback plays a crucial part in subsequent 

decision-making. This includes decisions on whether to continue or give up on learning, 

as well as exploring other potential options. Therefore, in this project, we also explored 

the role of feedback in decision-making, taking into account how these decisions could 

be influenced not only by feedback but also by confidence and internal motor feedback. 

In our first experiment, we quantified people's ability to generate predictions of 

the sensory outcomes caused by their own actions and demonstrated that the 

generation of action-effect predictions is evident across different types of actions. 

Individuals were able to predict the effects of their own actions equally well, whether 

the effect was associated with the selection of action or the timing of performing an 

action. Following this, we conducted a second experiment to investigate the impact of 

internal motor feedback and external feedback on the decision to attempt a 

sensorimotor task a second time. The results showed that external feedback 

significantly influenced the decision on whether to continue learning. Internal motor 

feedback also had a significant effect on this decision-making process, although its 

impact was not as consistent as that of external feedback. We observed that the 

influence of performance on the decision seemed to depend on the precision of the 

internal prediction of motor performance. Specifically, an impact of motor performance 

on the decision was observed only when there was an increased amplitude of the 

feedback-related negativity (FRN) following the presentation of feedback. The 

increased amplitude of FRN in this context is likely indicative of a more precise 

prediction of performance. A more precise prediction typically led to a heightened 

prediction error response toward the observed outcome (Press et al., 2020). 

Additionally, previous findings have also reported a diminished effect of surprise, as 

reflected by a smaller FRN amplitude, when there was an absence of clear 

expectations (Hayden et al., 2011). While we did not ask participants to reported their 
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estimation of performance and their confidence about their estimation. We believe that 

the result where only a precise performance prediction impacted the neural signal of 

feedback processing and decision-making behaviour serves as supporting evidence 

for the confidence weighting principle in learning regulation. According to this principle, 

for a given surprise, the update is smaller when the confidence about the prediction is 

higher (Meyniel, 2020). Confidence should reflect the precision of an estimate, 

characterized by whether the distribution is spread (indicating low confidence) or 

concentrated (indicating high confidence) around the estimate. In practice, confidence 

is often formalized as the precision of the probability distribution of a prediction (its 

inverse variance), a formulation that aligns well with individuals' self-reported 

confidence (Friston, 2009; Meyniel, Schlunegger, et al., 2015; Meyniel & Dehaene, 

2017), Our result of observing an impact when the prediction of motor performance is 

more precise could suggests that a higher confidence level is assigned to this 

prediction, even though we did not explicitly inquire about it in the task. This influenced 

the effect of feedback, where participants decided to base their decision on their 

internal estimation of performance instead of external feedback. On the other way 

around, when the precision of the prediction about performance is low, individuals tend 

to rely more on external feedback to make their decision.  

In experiment 3, we gained a clearer understanding of how confidence is used 

to regulate learning from feedback. In this experiment, we explored the impact of 

subjective confidence about performance and feedback on learning adjustment, as 

well as the decision to explore. To address the limitation in experiment 2, where we 

did not ask participants to report their confidence about their performance, in this task, 

participants were required to report their confidence level about their learning progress 

for the block at the beginning of every trial. Furthermore, we addressed another 

limitation from experiment 2, where we were only able to study the effect of feedback 

and performance on decision-making but not on learning rate or response adjustment, 

due to participants being limited to repeating the same task at most twice. To 

overcome this, we employed a learning task where participants needed to learn the 

mean value of an underlying distribution using the feedback received on every trial. 

Specifically, participants were instructed to imagine they were playing a shooting game 

in a forest with variable wind conditions, where the wind strength in each block was 

relatively consistent, governed by a normal distribution. In this scenario, if participants 
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learned to aim at a location where the distance between the aiming location and the 

target closely matched the mean value of the wind strength distribution, then their 

shots would have a higher probability of hitting the target. In this task, we observed 

that the effect of feedback on learning adjustment is modulated by subjective 

confidence about learning performance, where negative feedback only induced 

greater response adjustment when confidence was low but had no effect when 

confidence was high. Moreover, in this task, we investigated not only the impact of 

internal uncertainty about task performance but also external uncertainty about the 

feedback itself by manipulating feedback reliability. While we did not observe a clear 

effect of feedback reliability on learning adjustment, feedback reliability had an impact 

on how strongly feedback influenced participants’ confidence about their learning 

performance at the beginning of the task. More reliable feedback influenced 

confidence more compared to less reliable feedback. However, feedback stopped 

having any impact on confidence once the task was more thoroughly learned. For the 

decision of exploration, we discovered that participants were more inclined to cease 

exploring and stick with the chosen option when they received positive feedback, when 

their confidence rating was high, and notably, when feedback reliability was low. This 

observation suggests that negative feedback and high uncertainty regarding learning 

performance prompt exploration. Furthermore, with high feedback reliability, the 

informational value of each observation increased compared to scenarios with low 

feedback reliability, this potentially heightened the propensity to use exploration as a 

means to sample the reward probability of other possible options. 

Our studies demonstrated significant impact of feedback on both learning 

adjustments and subsequent decision-making. This is particularly evident in decisions 

about whether to persist with a task or abandon it, and when to continue exploring or 

to stop. A key objective of this PhD project was to explore how uncertainty affects the 

processing of feedback and its subsequent impact on learning adjustments. Our 

findings indicate that an individual's confidence in their internal assessment of task 

performance heavily influences the effect of feedback on learning adjustments. 

Feedback plays a significant role in modifying learning adjustments primarily when 

confidence levels are low. Conversely, at high levels of confidence, the impact of 

feedback on learning is markedly reduced. This underscores the pivotal role of 

confidence in bridging feedback and learning adjustments, highlighting that an 
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individual's perception of their performance is crucial in determining how feedback 

influences their learning process. Importantly, this illuminates that feedback's role in 

learning extends beyond mere prediction error, with confidence acting as a key 

regulator by controlling the extent of learning adjustment following feedback.  

While confidence plays a significant role in regulating learning, it's important to 

note that the term "confidence" is used broadly in the literature, yet it represents slightly 

different concepts depending on the nature of the internal estimation being evaluated. 

For instance, in our second experiment, where the internal estimation relates to motor 

execution, confidence does not linearly correlate with performance. In this context, 

one can be highly confident in making a motor error, as well as in executing a 

movement perfectly. Here, the relationship between confidence and performance is 

more U-shaped. Conversely, in our third experiment, confidence is tied to the internal 

estimation of state knowledge. In this scenario, confidence linearly correlates with the 

number of observations (or the amount of received feedback in our case), meaning 

higher confidence always suggests better performance. This nuanced understanding 

of what confidence represents in different task contexts is crucial for dissecting the 

specific ways feedback effects are modulated.  Furthermore, a key distinction between 

an internal estimation of motor performance and the estimation of the state of 

knowledge is the reliance on external feedback. In tasks involving motor performance, 

such as in Experiment 2 where feedback was predominantly random, we observed 

participants making decisions based on their performance rather than on feedback. 

This suggests that confidence assignment in motor tasks does not necessarily depend 

on external feedback. Conversely, for estimations regarding the state of task 

knowledge, external feedback, or observed outcomes, become the primary source for 

constructing our performance and confidence estimates. Therefore, we might expect 

internal estimations regarding motor performance to be more pronounced against 

environmental uncertainty and uncertainty related to the feedback itself. For non-motor 

tasks, feedback is expected to interact more bidirectionally with confidence. This 

interaction was observed in the results of Experiment 3, where feedback significantly 

influenced the level of confidence at the beginning of the task. Only when the 

performance estimation began to stabilize due to an increased number of observations 

did feedback start to impact confidence less. Simultaneously, the impact of feedback 

was strengthened when participants knew the feedback was more reliable. This 
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dynamic showcases how feedback and confidence interact differently, depending on 

whether the task involves motor performance or the estimation of state knowledge. 

 

4.1. Conclusion 

While the reinforcement learning framework offers a robust basis for grasping 

how feedback facilitates learning through prediction errors, there's a pressing need 

to expand upon it. We should strive to develop a more nuanced framework that 

integrates factors ubiquitous in our daily lives and crucial for information processing 

and learning. Such an enriched framework would significantly enhance our ability to 

translate laboratory findings into practical real-world applications. By acknowledging 

and incorporating these everyday factors, we can gain a deeper and more accurate 

understanding of learning processes as they occur in natural settings, paving the 

way for more effective learning strategies and interventions.  
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