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Chapter 1 
 
Introduction  
 
1.1 Introduction to protein-protein and protein-peptide 
interactions 
 
Evolution has optimized the interactions of proteins with other proteins and molecules. 
Biological processes like signaling networks, DNA repair, metabolism, gene expression, 
replication, transport, and folding are all carried out by proteins at the cellular level in living 
creatures. Protein interactions with molecules like other proteins, peptides, carbohydrates, 
lipids, or nucleic acids enable them to accomplish these functions. The most prevalent of these 
interactions are protein-protein interactions, 15-40% of which are mediated by a short peptide 
stretch [1]. Signaling, regulatory networks, cell localization, protein degradation, and 
immunological response are all impacted by protein-peptide interactions. Moreover, many 
studies demonstrated that protein-peptide interactions could serve as a pharmacological target 
and that the peptides themselves could make good drug candidates [2]. The molecular 
association of a protein-protein or a protein-peptide achieved through weak intramolecular 
forces is a key process in both chemical and biological recognition, with the interaction 
possibly associated with a conformational change leading to the activation of a biological 
pathway [3, 4]. Therefore, understanding the molecular interaction between a ligand (e.g., 
primarily a small molecule or a peptide) and its target (e.g., the surface of a protein) is a 
strategic approach to understanding the mechanisms triggering biological communication [4] 
and designing new drugs [5]. 
 
 

1.2 Protein-protein interactions impact for therapeutic 
uses in Drug Discovery 
 
Protein-protein interactions are an appealing target for therapeutic intervention in drug 
discovery because they are essential for many biological functions and signaling pathways [6, 
7]. New drugs that can be developed to treat a wide range of diseases, such as cancer, viral 
infections, and autoimmune disorders, may be developed by being able to selectively disrupt 
or modulate these interactions [8]. The development of anti-cancer drugs that target the 
interaction between the Bcl-2 family of proteins and pro-apoptotic proteins is one of the most 
well-known examples that highlights the potential of targeting protein-protein interactions for 
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therapeutic applications [9]. Recent years have seen a major advancement in our knowledge of 
protein-protein interactions [10-12]. To find and define prospective therapeutic targets, a 
number of methods, including high-throughput screening and structural biology, have been 
built. For the purpose of detecting and developing inhibitors or modulators of protein-protein 
interactions, the use of computational tools and machine learning algorithms have also become 
increasingly crucial [11, 12]. Drug discovery continues to be impacted by protein-protein 
interactions, which has the chance to completely impact how many diseases are treated.  
 

1.3 Peptide potential therapeutic uses in Drug Discovery 
 
Therapeutic peptides are a distinct class of pharmacological drugs consisting of a succession 
of amino acids (AA) with molecular weights ranging from 500 to 5000 Da (Dalton) [13]. 
Fundamental studies into therapeutic peptides began with investigating natural hormones such 
as insulin, oxytocin, vasopressin and GnRH (Gonadotropin-releasing hormone) [14]. These 
studies shed light on their particular physiological functions in the human body, which sparked 
interest in therapeutic peptide research. Ultimately, more than 80 therapeutic peptides have 
been approved globally since the production of the first therapeutic peptide insulin, in 1921, 
thanks to the significant advancements in the field [15]. Thus, the production of peptide 
medications became one of the greatest areas of pharmaceutical research due to its evolutionary 
progress. Common actions of therapeutic peptides include those of hormones, growth factors, 
neurotransmitters, ion channel ligands and antibiotics. Similarly, to biological agents, such as 
therapeutic proteins and antibodies, they bind to cell surface receptors with high affinity and 
specificity and cause intracellular effects. However, in contrast to biological agents, therapeutic 
peptides exhibit less immunogenicity and cost less to produce than biological agents [16-19]. 
Therapeutic peptides present several advantages compared to costly small pharmaceutically 
developed molecules. Apart from their competitive price advantages, therapeutic peptides are 
better inhibitors of protein-protein interaction (PPI) surfaces. Due to their larger size and 
flexible backbone, they cover larger PPI regions compared to small molecules [20]. However, 
therapeutic peptides also come with drawbacks, such as possessing a low membrane 
permeability and poor in vivo stability [14, 16]. One promising approach to overcome the 
problem of poor cellular membrane penetration of therapeutic peptides is the use of cell 
penetrating peptides (CPPs), which have shown potential in enhancing the intracellular 
delivery of proteins due to their ability to efficiently cross cellular membranes [21]. These 
fundamental benefits and drawbacks of peptides give potential for peptide drug design and 
optimization as well as challenges for peptide medication development.  
 
 

1.4 Computational approaches for predicting protein-
protein and protein-peptide interactions 
 
There are three major types of computational approaches for predicting protein-protein and 
protein-peptide interactions: 1) Molecular Docking, 2) Molecular Dynamics (MD) simulations 
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and 3) Machine Learning. Of course, each method is dependent on the amount of information 
provided to initiate the prediction. This information includes prior knowledge of a potential 
interaction between both partners, the three-dimensional structure of the peptide or the protein, 
details about the binding region or the residues involved in the protein-peptide interaction, and 
the type of signaling pathway through which this interaction is involved to understand its 
subsequent effects. 
 
1.4.1 Molecular Docking 
 
Protein and peptide docking is a traditional and efficient method that predicts the conformation 
and the binding mode of the bound protein or peptide [22, 23]. Because of its success in small 
molecule-protein docking and ease of use such as through webservers and standalone software, 
this method for virtual screening in the early stages of drug discovery has grown in popularity 
[24]. This success has been transferred into the field of protein-protein docking, as 
demonstrated by the evolution of predictions in the CAPRI (Critical Assessment of PRediction 
of Interaction) competition [25]. Protein-protein docking is a great approach to fully understand 
protein interactions when a complex is not available. It also provides the capacity to predict the 
effects of mutations and screen many compounds once the interactions are identified. Similarly, 
protein-peptide docking gives important information about the identification of potential 
candidates for drug development that can mimic the binding of large protein domains. Despite 
these successes, protein-protein and protein-peptide docking remains a more challenging 
problem and represents a critical issue in structural biology [11, 26]. Protein-protein docking 
can face the challenge of the great computational complexity and the difficulty of predicting 
conformational changes that occurs upon binding. As for protein-peptide docking, many of the 
issues can be addressed with prior knowledge of the peptide conformation, which can provide 
more accurate results. Understanding which residues are buried in the binding pocket allows 
researchers to replicate these contacts during the therapeutic design process. Furthermore, the 
flexibility of peptides significantly increases the sampling problem in comparison to small 
molecule docking and limits sampling native-like poses, reducing the docking approach 
success [27]. In fact, many computational docking approaches have concentrated on small 
molecules, with peptide docking methods being understudied. As a result, additional steps such 
as improving the scoring functions and using molecular modeling tools including MODELLER 
[28] or AlphaFold2 [29] may be required to gather information about the conformation of the 
biological partners. Indeed, rational design of peptide-based therapeutics necessitates atomistic 
understanding of protein-peptide complexes. Thus, again, many challenges come across when 
studying peptides. Although the use of computational pipelines in the early phases of drug 
discovery for small molecules is well-defined, peptides present some unique challenges that 
have limited the progress of computational pipelines for inhibitory peptide design. Plus, 
peptides interact with proteins in a wide range of ways. 1) as coils through specific amino acid 
interactions; 2) as well-defined secondary structures (e.g., hairpins or alpha helices); and 3) as 
discontinuous interactions along the peptide chain. Peptide flexibility is important in these 
interactions because they are often intrinsically disordered in their free form and adopt well-
defined structures upon binding - unlike small molecules, which have more limited flexibility. 
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Nonetheless, several approaches that achieve good accuracy in general biological contexts have 
recently been developed (e.g., Rosetta FlexPepDock ab initio [30], CABS-dock [31], 
MDockPeP2 [32], Autodock CranckPep [33], HPEPDOCK [34] etc.). These approaches rely 
on either template-based [35, 36] or template-free [37, 32] docking. Although Smina [38] 
which is a molecular docking program that is based on AutoDock Vina and was primarily 
developed for small molecule docking, it has been modified to handle protein-peptide docking 
as well. The AlphaFold2-multimer [39] software can also ensure that the complex is accurate 
and provides good results when results are compared to native-like poses. Another strategy for 
overcoming the docking limitations is improving the curation of protein-protein and protein-
peptide databases which is a critical method for systematic testing, benchmarking, and 
evaluating these docking methods [40]. 
 
1.4.2 Molecular Dynamics simulations 
 
Because of the nature of MD simulations, it is possible to obtain thermodynamics, kinetics, and 
mechanistic understanding of the protein-protein and protein-peptide binding and unbinding 
processes [41]. As with other biological applications, MD is limited by the precision of the 
quantum mechanics model used and the ability to sample the biological complex energy 
landscape, which typically entails computational resources beyond our existing capacity. 
Although quantum mechanics can theoretically predict molecule interactions, large 
biomolecules remain unaffordable in practice [41]. There are important distinctions between 
small molecule and peptide binding to proteins which makes the latter more computationally 
challenging. Therefore, usually MD is used as a refinement tool rather than a high-throughput 
method to routinely assess the structures of protein-peptide complexes when the bound state is 
unknown. Thus, MD is commonly used to 1) refine docking results [42], 2) estimate binding 
affinities [43], and 3) use integrative modeling strategies to determine a protein-protein or a 
protein-peptide complex structure [44]. For instance, short MD simulations are frequently used 
as the final stage in docking calculations to remove steric overlap, account for local 
conformational changes, and identify structures based on physicochemical principles. Second, 
remarkable efforts have been made to determine protein-protein and protein-peptide complexes 
by combining and integrating computational modelling approaches with experimental data. 
Using modeling software such as MODELLER [28] or AlphaFold2 [29] can in some cases 
provide sample protein and peptide conformations that match experimental results when these 
are limited. When the experimental structure of the complex is known or has been modeled 
with molecular modeling approaches, MD can be used to determine the binding affinities of 
the complex using the most common methods of MM-GBSA (Molecular Mechanics 
Generalized Born Surface Area) and MM-PBSA (Molecular Mechanics Poisson-Boltzmann 
Surface Area) [45]. It is important to note the robustness of these approaches. However, the 
results obtained remain estimations as important factors such as flexibility, solvation and 
entropy can limit the accuracy of the results [46]. Free energy perturbation (FEP), a pathway-
based free energy calculation method, has made remarkable accuracy in modeling protein 
binding with small molecules for a broad range of ligands [47].  
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1.4.3 Machine Learning 
 
Since AlphaFold2 recent success in protein structure prediction, Machine Learning (ML) 
approaches are rapidly evolving [48]. Some ML results have shown high quality when 
compared to models generated with nuclear magnetic resonance (NMR) data [49] or docking 
approaches [29], demonstrating the success and importance of this field in protein-protein and 
protein-peptide complex prediction. With these great advances, programs using deep learning 
methods have emerged to predict protein-peptide complexes [50]. Thus, we can imagine that 
combining ML pipelines with structure-based approaches is a good strategy to study and 
analyze in depth a biological complex. 
 
 

1.5 Thesis organization 
 
Drug discovery requires a thorough understanding of the molecular interactions between 
protein-protein and protein-peptide. The significance of protein-protein and protein-peptide 
interactions and their effect on the biological functions of proteins, and the development of 
potential drugs are examined in this thesis and are thoroughly explained in the first chapter. 
Two biological systems are studied in this thesis. The protein-protein complex involving the 
Spike protein receptor-binding domain (RBD), and the human angiotensin-converting enzyme 
2 (ACE2) receptor was examined in this thesis. The protein-peptide interactions were centered 
on the Preimplantation Factor (PIF) which is a critical peptide that is necessary for successful 
implantation and the development in the early stages of pregnancy. It is important to note that 
this work has been funded by the Agence Nationale de la Recherche (ANR) under the PIF21 
project (No. ANR-19-CE18-0023). The research was a collaborative effort, involving multiple 
contributors who provided valuable insights, experimental analyses, validations, and fruitful 
exchanges throughout the study (Annex 1). The study included both in vitro and in silico 
research. Our team concentrated on in silico analysis, using computational approaches to 
investigate protein-protein and protein-peptide interactions. 
 
 In the second chapter, we introduce the aim of studying the Spike protein and ACE2 
interaction. The third chapter examine the interactions of protein-protein interactions, 
particularly those between the human ACE2 receptor and the Spike protein RBD. A thorough 
bioinformatics research procedure was applied to study RBD-ACE2 interactions using a range 
of approaches, including molecular modeling, MD simulations, MM-PBSA analysis and 
druggable pocket tracking. This methodology was carefully created to be applicable to 
additional possible protein targets of PIF in addition to the Spike protein RBD and ACE2 
receptor. Application of the bioinformatics protocol to study the Spike protein led to the 
identification of three potential druggable sites, providing potential targets for the development 
of drugs aimed at inhibiting its activity. The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) variants of concern are studied in the fourth chapter and are their effect on 
the RBD-ACE2 are analyzed as well. Another focus of the thesis that has been discussed in the 
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fifth chapter is the analysis of PIF-protein interactions and the application of bioinformatics 
techniques to their solution. Many bioinformatics tools have been used to investigate PIF in 
detail. One strategy has been to use molecular docking and MD simulations to find possible 
protein targets of PIF.  
 
The sixth chapter discusses how IDE was recognized as a possible protein target of PIF in 
earlier studies. Molecular docking and experimental studies, however, failed to support this 
interaction. Nonetheless, this research inspired a thorough examination of IDE and provided 
significant new information about its function in a variety of biological processes. Although 
IDE may not be a protein target of PIF directly, the development in IDE research brought about 
by this study offers crucial insights into its biological function and prospective therapeutic uses. 
Due to its function in cellular growth and differentiation as well as its participation in numerous 
signaling pathways crucial for the control of neuronal development, DYRK1A was also 
investigated as a potential target of PIF. In order to research the potential relationship between 
DYRK1A and PIF, experimental and computational methods, like AlphaFold2-multimer [39], 
were used. The direct relationship between DYRK1A and PIF, however, was unable to be 
established despite significant efforts. A deep learning tool was also used to look through 
experimental proteomics data in addition to conventional bioinformatics methods to find 
possible PIF target proteins. With the use of this technique, it was possible to create an 
interaction score that identified proteins with a significant possibility of interacting with PIF. 
Thus, the use of the deep learning method enhanced the possibility of finding novel interactions 
between PIF and its protein targets as well as gave more prospective protein targets for study. 
Using a variety of methods from genomics, the genetic origin of PIF has also been carefully 
studied and explored in the seventh chapter. More research is being done to better understand 
PIF regulation at the transcriptional and post-transcriptional levels. We now have a better 
understanding of the potential protein targets of PIF thanks to the findings of this thesis, which 
also served as a foundation for additional experimental verification of these interactions. The 
eighth and final chapter concludes this thesis and offers perspectives that might be interested 
to explore. Overall, this research has paved the way for future investigations looking into the 
interactions between PIF and its protein targets and has offered significant new insights into 
the mechanisms underlying protein-protein interactions.  
 

 
 
 
 
 



 16 

 
 

Chapter 2 
 
 
Due to the COVID-19 pandemic and the challenges it provided to our research timetable, the 
primary focus of my thesis, which focused on the study of the PIF peptide and its possible 
protein partners, encountered delays in obtaining the experimental data that was needed to 
confirm its protein targets. Consequently, to utilize the available time effectively, a strategic 
decision was made to shift the research focus towards the structural analysis of SARS-CoV-2 
proteins. This decision aimed to develop a methodology that could later be applied to the study 
of PIF and its potential protein partners. Therefore, collaborating with my Ph.D. colleague, 
Sarah Naceri, we proceeded on the examination of the interaction between the Spike protein 
RBD domain and the human receptor ACE2. This collaborative work resulted in the 
publication of two articles [51, 52], further contributing to the scientific understanding of 
SARS-CoV-2 and its protein interactions. 
 

2.1 Structural Analysis of SARS-CoV-2 Proteins: 
Insights, Strategies, and Therapeutic Prospects in the 
Fight against COVID-19 
 
The emergence of the COVID-19 viral infection, caused by SARS-CoV-2, represented a 
significant global threat, leading to a devastating impact on public health [53]. Hence, because 
of the virus's highly infectious nature and severe clinical symptoms, important scientific 
research was required to understand its biology and develop effective countermeasures [54]. 
Consequently, structural analysis of SARS-CoV-2 proteins played a crucial role in elucidating 
the molecular mechanisms underlying this viral infection. As of the most recent available data, 
an impressive number of protein structures reaching more than 200,000 structures have been 
resolved and deposited in the Protein Data Bank (PDB) [55], providing valuable insights into 
the virus's architecture (Figure 1).  
 
Among the key proteins targeted for structural analysis, The Spike protein was one of the 
primary proteins selected for structural investigation because of its critical involvement in viral 
entrance into host cells [56]. The Spike protein facilitates viral entrance by mediating the 
interaction between the viral particle and the human ACE2 receptor [56]. Other proteins, such 
as the main protease (Mpro) [57] and the papain-like protease (PLpro) [58], were also subjected 
to thorough structural studies since they played major roles in viral maturation and replication. 
Thus, numerous articles emerged, outlining diverse strategies for targeting SARS-CoV-2, often 
complemented by experimental analyses [59]. These studies demonstrated the potential of 
various molecules, including small molecules [60], monoclonal antibodies [61], and vaccine 
candidates [62], as promising therapeutic interventions. Notably, molecules such as remdesivir 
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[63], a nucleotide analog targeting viral RNA synthesis, and monoclonal antibodies, such as 
bamlanivimab [64] and casirivimab/imdevimab [65], gained significant attention and 
underwent extensive testing to validate their efficacy against SARS-CoV-2.  
 
Additionally, fighting the COVID-19 pandemic has been made significantly more difficult by 
the introduction of SARS-CoV-2 mutations. These variations are brought about by genetic 
modifications in the viral genome, which alter the viral properties of infectivity, 
transmissibility, and immune evasion [66]. Variants such as the Alpha (B.1.1.7), Beta (B.1.351), 
Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have garnered particular attention 
due to their global spread and potential impacts on public health [66]. 
 
With this in mind, our research focused on investigating the inhibition of the interaction 
between the Spike protein RBD domain and the human ACE2 receptor as a potential 
therapeutic strategy. By elucidating the structural details of this interaction and employing 
computational approaches, we aimed to identify druggable pockets that can be targeted with 
effective inhibitors disrupting the virus critical viral entry step [51]. Another focus was made 
on the SARS-CoV-2 variants of concern to better understand their mechanism and their impact 
on the affinity between RBD and ACE2 [52]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2 The Spike protein-ACE2 interaction 
 
The Spike protein is a crucial viral protein that plays a central role in viral entry and infection 

Figure 1. Simple representation of the SARS-CoV-2 architecture including the papain-like protein, the 
main protease protein, and the Spike protein. 
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[56]. Structurally, it is a trimeric glycoprotein composed of three identical subunits, each 
consisting of two functional domains: the S1 domain and the S2 domain. The S1 domain 
contains the RBD, which specifically interacts with the ACE2 receptor (Figure 2). The S2 
domain mediates membrane fusion and facilitates viral entry into host cells [56]. 
 
Additionally, the Spike protein exists in two distinct conformations: an active form and an 
inactive form. These conformational states are associated with the “open” and “closed” states 
of the Spike protein. In the active form, the RBD adopts an “up” conformation, exposing the 
receptor-binding motif and facilitating interaction with the ACE2 receptor. This open 
conformation is thought to be critical for efficient viral entry. Conversely, in the inactive form, 
the RBD is in the “down” conformation, being less accessible for receptor binding (Figure 2) 
[56].  
 
Studying the interaction between the Spike protein and ACE2 in the context of COVID-19 is 
of great importance for several reasons. Firstly, understanding the molecular details of this 
interaction can provide insights into viral entry mechanisms and uncover the key interactions 
involved between these two proteins. Secondly, targeting this interaction offers potential 
therapeutic opportunities. By developing inhibitors that disrupt the Spike protein-ACE2 
interaction, it may be possible to prevent viral attachment and entry, thereby reducing viral 
load and mitigating the severity of COVID-19. Moreover, studying this interaction can aid in 
the design of vaccines and immunotherapies that target the Spike protein, aiming to elicit an 
immune response against the virus and provide protective immunity. 
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Figure 2. (A) Representation of the two different conformations of the Spike protein in its active and inactive 
forms. The RBD is also represented in its up and down conformations. (B) Representation of the interaction 
between RBD and ACE2. 
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Chapter 3 
 

Protein-protein interaction: Structural 
exploration of the SARS-CoV-2 RBD and the 
human receptor ACE2 interaction 
 
We therefore focused on the Spike protein RBD-ACE2 interaction to examine protein-protein 
interactions. In the following paper [51], we used a variety of bioinformatics methods, such as 
MD simulations, MM-PBSA free energy calculations and pocket druggability tracking. The 
purpose of this study was to develop a compelling protocol that considers the structural 
flexibility of RBD and incorporates machine learning techniques. This would enable us to 
locate potential druggable binding sites on the RBD for use in drug discovery and design. For 
this reason, we examined the structural flexibility of both the RBD-ACE2 complex and the 
unbound RBD using MD simulations. We also identified hot spots, which are important 
residues involved in the RBD-ACE2 interaction, using MM-PBSA energetics computation. 
Using a supervised machine learning technique developed in the lab, we assessed the pockets 
on the protein surface during the MD simulations. The pockets were then classified in terms of 
druggability scores. We next performed unsupervised hierarchical classification on the large 
set of estimated pockets using pocket similarity in terms of residue composition. Binding sites 
are frequently observed along MD simulations and represent primary pocket clusters that group 
pockets with comparable residue compositions. In terms of the main residue's contribution to 
the binding site and its druggability, residue localization, frequency, variability, and 
druggability permitted the identification of three promising druggable pockets. Furthermore, 
the study covers the potential mechanistic effects of SARS-CoV-2 mutations on the selected 
druggable binding sites situated in critical areas of the RBD surface and key hot spots. In 
conclusion, this research presents a promising method for comprehending protein-protein 
interactions and developing possible therapeutics. 
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Figure 3. Representation of the bioinformatics protocol used to study RBD-ACE2 interaction. 
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a b s t r a c t

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral 
infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting 
enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to 
block its function with inhibitors by combining the protein structural flexibility with machine learning 
analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. 
Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated 
RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering 
pockets based on their residue similarity. This protocol successfully identified three druggable sites and 
their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key 
residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by 
several mutations of the variants of concern. Two highly druggable sites, located between the spike protein 
monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute 
to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid 
the activation of the spike protein trimer.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
responsible for the COVID-19 outbreak [1,2]. It was originally dis-
covered in Wuhan, China, in late December 2019. The World Health 
Organization (WHO) labeled this epidemic a pandemic in March 
2020 and reported nearly 760 million confirmed cases of COVID-19 
and 6.8 million deaths by the end of March 2023 (https://covid19.-
who.int/). Important variants of the SARS-CoV-2 virus have emerged 
in the UK, Brazil, India, and South Africa from December 2020 to the 
end of November 2021. Five variants have been recognized by the 
WHO as variants of concern and are labeled as coronavirus variants: 
Alpha, Beta, Gamma, Delta, and Omicron [3–5]. SARS-CoV-2 is an 
extremely unstable virus [6,7], which is favorable for the develop-
ment of new variants.

COVID-19 vaccines have enabled the reduction of the spread, 
severity, and death caused worldwide. Eight drugs were approved in 

May, 2022. Three of these drugs are biologics, which aim to block 
viral attachment and entry into human cells [8–10]. Two are a 
combination of two monoclonal antibodies intended to prevent 
mutational escape: casirivimab/imdevimab (commercialized under 
the name Ronapreve) [8] and bamlanivimab/etesevimab [9]. The 
third drug, sotrovimab (Xevudy) [10], is also a monoclonal antibody. 
Although monoclonal antibodies are an important therapeutic ad-
vancement, their manufacturing costs are high, and they are not 
convenient for patients because they are administered in-
travenously. Small molecules are often cheaper and easier to pro-
duce than protein- or peptide-based drugs [11]. They can withstand 
a wide range of delivery modalities, including oral administration, 
making them a preferred choice among pharmaceutical chemists. 
Currently, four small-molecule drugs are available for the treatment 
of COVID-19. Remdesivir and molnupiravir exert their antiviral ac-
tion by perturbing viral RNA replication. Baricitinib attenuates the 
uncontrollable inflammatory response by the immune system owing 
to SARS-CoV-2 infection, referred to as a cytokine storm, by speci-
fically inhibiting Janus kinases. From the end of December 2021, a 
fourth drug, named Paxlovid, has become available for people who 
are at high risk of developing severe COVID-19 symptoms [12]. 
Paxlovid is a combination of two antiviral medications, nirmatrelvir 

Computational and Structural Biotechnology Journal 21 (2023) 2339–2351

https://doi.org/10.1016/j.csbj.2023.03.029 
2001-0370/© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/). 

]]]] 
]]]]]]

⁎ Corresponding authors.
E-mail addresses: gautier.moroy@u-paris.fr (G. Moroy),  

anne-claude.camproux@u-paris.fr (A.C. Camproux).
1 These authors contributed equally



 23 

 
 
 
 

and ritonavir, administered orally. Several repurposed drugs and 
new drug candidates are currently in phase III and IV trials. However, 
it is still crucial to develop drugs that can alleviate the severity of 
COVID-19 in individuals who are at high risk for progression to se-
vere COVID-19.

The instability of the SARS-CoV-2 genome and the high possibi-
lity of new variants emerging make the discovery of new treatments 
and effective maintenance of already discovered drugs challenging 
[13]. Therefore, it is crucial to understand the interaction mechan-
isms of SARS-CoV-2 at the molecular level and the impact of its 
variants on these interactions.

The SARS-CoV-2 genome encodes four structural proteins: the 
spike, envelope, membrane, and nucleocapsid proteins, and 16 
nonstructural proteins. Spike, envelope, and membrane proteins 
form the viral envelope, and the nucleocapsid protein binds to the 
RNA genome [14–16]. The spike protein is a homotrimeric glyco-
protein and each monomer is composed of 1273 residues [17]. In 
coronaviruses, the spike protein can interact with human angio-
tensin-converting enzyme 2 (ACE2) to initiate fusion with host cells 
[18]. The receptor-binding domain (RBD) of the spike protein is re-
sponsible for the interaction with ACE2 [19]. Therefore, the RBD is a 
crucial protein target for the development of COVID-19 drugs. The 17 
residues on the RBD that interact directly with ACE2 have been 
grouped under the name of the receptor-binding motif (RBM). Tar-
geting the RBM using small molecules, therapeutic peptides, and 
neutralizing antibodies was determined to be an attractive method 
to inhibit the ability of the spike protein to bind ACE2, owing to its 
low glycosylation [20–22].

Advancements in structural biology and structural bioinformatics 
methods have enabled the elucidation of molecular and dynamic 
mechanisms of protein-protein or protein-molecule interactions. It 
is possible to design molecules capable of disrupting protein-protein 
interactions using structure-guided approaches. For this purpose, it 
is important to first understand the flexibility of the structures and 
to identify the residues essential for stabilizing the interaction, 
commonly named “hot spots”.

However, the interaction between a drug and a target protein 
depends on a few key residues as well as on a larger protein cavity or 
pocket, referred to as the binding site, which must have physico-
chemical and geometrical properties in agreement with those of the 
ligand [23]. Therefore, it is also crucial to determine which regions of 
the protein surface have the suitable druggability profile that can be 
targeted by therapeutic molecules.

The first SARS-CoV-2 spike protein structure was resolved in 
February 2020 [24]. The number of available spike protein structures 
has increased rapidly, explaining the structural mechanisms that 
allow SARS-CoV-2 entry into the host cell. According to cryo-elec-
tron microscopy (cryo-EM) structures of the spike protein, RBD ex-
ists in two states: a closed (or “down”) and an open (or “up”) state. In 
the latter state, the RBD is less buried and can interact directly with 
ACE2 [24]. At the beginning of this study, three crystal structures of 
the wild-type ACE2/RBD complex were available: PDB IDs 6M0J [25], 
6LZG [26], and 6VW1 [27].

With the release of the experimental structures of the SARS-CoV- 
2 RBD-ACE2 complex, numerous studies have been performed to 
elucidate the molecular and dynamic mechanisms involved in this 
protein-protein interaction.

Considering the flexibility of the protein partners improved the 
identification of hot spot residues. Spinello et al. identified 12 hot 
spot residues using SARS-CoV-1 and SARS-CoV-2 PDB structures and 
the molecular mechanics Poisson Boltzmann surface area (MM- 
PBSA) method [28,29]. Using structural comparisons between the 
SARS-CoV-1 RBD-ACE2 X-ray structure and a SARS-CoV2 RBD-ACE2 
model built by homology and the MM-PBSA method, the authors 
identified ten hot spots for the affinity of the SARS-CoV-2 RBD for 

ACE2 [30]. Recently, a combination of molecular dynamics (MD) si-
mulations and the Molecular mechanics-generalized Born surface 
area (MM-GBSA) method enabled the identification of 13 hot spot 
residues [31]. Overall, the hot spot residues assessed using these 
different methods showed coherency but clear dependency on the 
employed experimental structures and the protocol used.

Identification of these hot spot residues is a key step in the de-
sign of drug molecules capable of disrupting protein-protein inter-
actions. However, the protein surface region or binding site to be 
targeted by therapeutic compounds also requires characterization in 
terms of the physicochemical and geometrical properties inherent to 
its flexibility. The binding sites must be druggable and possess 
physicochemical and geometrical properties that allow them to bind 
to drug-like molecules [23].

Some studies have focused on the determination of druggable 
sites on SARS-CoV-2 spike RBD, in which occupancy could reduce, 
directly or through an allosteric mechanism, the interaction between 
the RBD and ACE2 [32–35]. Trigueiro-Louro et al. identified drug-
gable pockets from different spike protein structures using con-
sensus from pocket estimations [32]. They concluded that the RBD is 
one of the two most promising conserved druggable regions. They 
identified four to seven RBD pockets from three RBD-ACE2 complex 
experimental structures (PDB IDs 6VW1, 6LZG, and 6M0J) without 
considering protein flexibility. They selected two pockets char-
acterized as druggable, observed in the three RBD structures. Carino 
et al. [33] identified 300 putative pockets in the whole trimeric 
structure of the spike protein using the Fpocket estimation program 
[36]. They selected six pockets on the RBD structure based on their 
potential druggability, structural rigidity, and sequence conservation 
between the SARS-CoV-2 and SARS-CoV-1 RBD. They identified two 
continuous pockets in the central β-sheet core of the spike RBD that 
were targetable by steroidal molecules based on virtual screening of 
FDA-approved drugs on these six RBD pockets. Using in vitro assays, 
they confirmed that several compounds highlighted by virtual 
screening can reduce the ability of the RBD to bind to ACE2.

Although these studies are promising, they have been performed 
only on static protein structures. The dynamic aspect of the struc-
ture, as well as the flexibility of the pockets, were not considered. To 
identify reliable druggable binding sites for drug design, the im-
portance to consider the presence of cryptic, transitory, and flexible 
pockets, have been underlined by Stank et al. [37], Abi Hussein et al. 
[38], and Kuzmanic et al. [39]. Recent research conducted by Do-
kainish et al. [40] stressed the importance of considering the in-
trinsic flexibility of the SARS-CoV-2 spike protein receptor domains. 
They identified cryptic pockets from RBD intermediate states de-
termined using MD simulations and concluded that the intrinsic 
flexibility of the spike protein must be taken into consideration 
when developing vaccines or antiviral medications.

In this study, we proposed a protocol considering the structural 
flexibility of RBD while combining machine learning approaches to 
identify promising RBD druggable binding sites for drug design de-
velopment.

For this purpose, we performed a structural flexibility analysis of 
both unbound RBD and RBD-ACE2 complex using MD simulations. 
We also identified hot spots (crucial residues involved in the RBD- 
ACE2 interaction) using MM-PBSA energetics computation. Using a 
large number of conformations extracted from the MD simulations, 
we estimated the pockets on the protein surface during the MD si-
mulations and characterized them in terms of the druggability score 
using a supervised machine learning method developed in the la-
boratory [41,42]. We then performed unsupervised hierarchical 
classification on the large set of estimated pockets using pocket si-
milarity in terms of residue composition. Main pocket clusters re-
grouping pockets with a similar residue composition correspond to 
binding sites, frequently observed along DM simulations. Analysis of 
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these pocket clusters in terms of residue localization, frequency, 
variability, and druggability allowed the identification of promising 
druggable pockets and of their key residue in terms of contribution 
to the binding site and its druggability. Additionally, the potential 
mechanistic impact of mutations of SARS-CoV-2 variants of concern 
on the selected druggable binding sites located in key regions of the 
RBD surface and hot spots is discussed.

2. Materials and methods

2.1. Protein preparation

Three crystal structures of the SARS-CoV-2 RBD complexed with 
the human ACE2 receptor were considered (PDB IDs 6VW1 [25], 
6M0J [26], and 6LZG [27]). Overall, the three structures are very si-
milar, with a maximum backbone root mean square deviation 
(RMSD) of 1.25 Å. However, 6VW1 is based on a chimeric SARS-CoV- 
2 RBD protein and displays poorer resolution than the 6M0J and 
6LZG structures. Coordinates of 6M0J and 6LZG crystal structures 
were determined at 2.45 Å and 2.50 Å, respectively. Therefore, our 
study focused only on the 6M0J and 6LZG structures. Each complex 
was protonated at physiological pH (7.4) using the PROPKA tool [43].

2.2. MD simulations

MD simulations were performed on these two crystallographic 
structures to study the dynamic behavior and stability of the ACE2- 
RBD complex. They were also performed to study the dynamic be-
havior of the unbound state of the RBD initially extracted from the 
ACE2-RBD complex.

MD simulations were performed using the GROMACS software 
package [44] with the CHARMM36m all-atom additive protein force 
field [45] under periodic boundary conditions. A dodecahedron 
water box of TIP3P water molecules was used to run the simulations. 
The full simulation system consisted approximately of 12,500 atoms. 
Non-bonded interactions were truncated at a cut-off distance of ten 
Å for electrostatic twin-range cut-off and van der Waals cut-off. 
Neighbor searching was performed every 10 steps. The energy of the 
system was minimized over approximately 1000 steps using the 
steepest descent algorithm for energy minimization after the ion 
addition and neutralization of the systems. Each system was equi-
librated with an NVT (Number of particles, Volume, and Tempera-
ture) ensemble during 1 ns at a temperature of 300 K and a coupling 
constant of 0.1 ps. Subsequently, each simulation was performed 
under number of particles, pressure, and temperature conditions, 
coupling the system to a heat bath using the Berendsen algorithm 
and setting the temperature at 300 K and the pressure at 1 bar 
during 1 ns. For the production step, ten independent runs of 100 ns 
with different initial velocities were performed. The LINCS algorithm 
[46] was applied to all the bond lengths to constrain them, and an 
integration time step of 2 fs was used. The electrostatic interactions 
were cut off at 1.2 nm and were calculated using the particle mesh 
Ewald method. As for Lennard-Jones interactions, they were cut off 
by 1.2 nm by using the potential shift Verlet method [47]. Periodic 
boundaries conditions were also applied to all systems. The tem-
perature was maintained at 300 K with a V-rescale thermostat [48]
and τT coupling constant of 0.1 ps. The pressure was maintained at 
1 bar with a τP constant of 2.0 ps and a compressibility of 4.5 × 10−5 

bar−1using the Parrinello-Rahman barostat [49].
For each PDB structure, the trajectories were merged for the 

analyses, resulting in a total of 1 μs. The RMSD analysis measures the 
average distances between the starting structure and each structure 
obtained over time. The root-mean-square fluctuation (RMS 
Fluctuation) was analyzed to identify flexible residues.

Trajectory analysis was performed using the GROMACS tool (v 
2019.5). They were visualized using VMD (v. 1.9.4a38) [50]. The plots 

were generated using R (v. 3.1.1) [51] and GNUPLOT (v. 5.2) [52]. 
Figures were generated using PyMOL [53].

2.3. Identification of hot spot residues

The MM-PBSA method is widely used for binding free energy 
calculations from conformations extracted from the MD trajectory 
[54]. In this study, MM-PBSA calculations were performed on MD 
simulations of the RBD-ACE2 complexes (6M0J and 6LZG). The re-
presentative conformations of each independent MD simulation 
were extracted through cluster analysis using the GROMACS gmx 
cluster tool. The frames were selected in such a way as to cover a 
wide range of trajectories and to sample different conformational 
spaces of the complex. Accordingly, representative frames of each of 
the determined clusters were extracted for every MD simulation 
using the Gromos algorithm [55] and the best optimal backbone 
RMSD cutoff was selected. To choose a reasonable cut-off value for 
each trajectory, we varied the backbone RMSD cutoff between 0.9 
and 1.5 Å. Thereby, we found dominant clusters that captured >  70% 
of the trajectory for each MD simulation. Thus, for every dominant 
cluster (seven clusters/MD), we extracted one representative con-
formation, which was subjected to MM-PBSA calculations.

A free energy decomposition analysis was performed using MM- 
PBSA residue decomposition to retrieve the contribution energy of 
each amino acid represented on the binding interface of both RBD 
and ACE2. The total free energy and its individual components for 
each individual system (6M0J and 6LZG) were averaged and 
weighted based on the cluster populations, that is, a higher weight 
was assigned to the conformations extracted from more populated 
clusters.

We used the g_mmpbsa package for MM-PBSA computations 
[56]. The dielectric relative constant ε was set to eight for proteins 
and 80 for water [57]. In this approach, the binding free energy 

Gbind between the protein and ligand/protein includes different 
energy terms and can be calculated as follows:

= +
= +
= + + +

Gbind Gcomplex (Gprotein Gligand)

EMM T S Gsol
Evdw Eelec T S GPB GSA

where EMM is the gas-phase interaction energy, which is the sum of 
the van der Waals energy Evdw and the electrostatic energy Eelec. 

Gsol is the sum of the polar solvation energy GPB and nonpolar 
solvation energy GSA. The polar solvation energy was calculated 
using the Poisson Boltzmann (PB) approximation model, whereas 
the nonpolar solvation energy was estimated using the solvent-ac-
cessible surface area (SASA). The entropy contribution (− T S) was 
ignored in this study because of its high computational cost. After 
the calculation, the binding free energies were decomposed into 
each residue. We considered hot spots as residues with binding 
energy below − 1 (favorable) or above + 1 kcal.mol−1 (unfavorable). It 
is important to note that the more negative the energy, the more 
favorable is the contribution. In contrast, positive energy values in-
dicate unfavorable interactions and a poor contribution to the 
complex.

2.4. Pocket estimation, druggability prediction and tracking along the 
MD simulations

The estimation of the RBD pockets was first performed on the 
static structures from the PDB.

Pockets were estimated with PockDrug tool based on the auto-
mated geometry-based method from Fpocket [36] independent of 
ligand proximity information. The ensemble of pockets was then 
characterized in terms of 19 physicochemical and geometrical 
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properties and druggability score using PockDrug [41,42]. PockDrug 
provides a prediction of the druggability score which, if greater than 
50%, indicates a druggable pocket.

Secondly, pocket tracking was run on the sample of MD gener-
ated conformations of the RBD unbound and bound states. This al-
lows the identification of new pockets during dynamics or changes 
in pocket properties between the PDB conformations or conforma-
tions observed during MD. This approach can also detect some se-
paration or fusion of pockets resulting from both local and global 
alterations, including those occurring in transient and allosteric 
pockets.

To consider the flexibility of the RBD, we estimated the pockets 
from conformations obtained from the RBD MD simulations. A total 
of 1000 RBD conformations were sampled from MD simulations at 
regular intervals. RBD pockets estimated from this series of 1000 
conformations were merged into a pocket set.

2.5. Clustering of pockets and identification of druggable binding sites

We performed unsupervised hierarchical classification using re-
sidue pocket similarity to identify binding sites frequently observed 
along MD simulations, corresponding to main pocket clusters.

The similarity of the RBD pockets can be quantified using binary 
distance based on common residues. A binary distance of 0 corre-
sponds to two identical pockets in terms of residues. Hierarchical 
classification of the pockets was performed using the binary dis-
tance, Ward metric (ward.D2) [58], and R Hclust package [59]. 
Dendrogram visualizations were performed using the Heatmaps2 
package in R39 [51] to illustrate pocket similarity in terms of re-
sidues. The dendrogram lengths between the pockets and/or pocket 
clusters are proportional to their binary distances.

The resulting pocket classification allows the identification of the 
main clusters of pockets similar in terms of residues composition, 
corresponding to binding sites frequently observed along MD si-
mulations. The dissimilarity between the pockets or pocket clusters 
increased with dendrogram lengths between pockets or clusters. 
Main pocket clusters were compared i) between pocket sets ex-
tracted from two PDB IDs (6LZG and 6M0J) to assess the impact of 
the initial PDB structure and ii) extracted from bound and unbound 
RBD conformations to assess the influence of ACE2 interaction.

The number of similar pockets within one cluster indicates the 
frequency of the appearance of its corresponding binding site. The 
flexibility of the binding site is described by the residue variability of 
its corresponding pockets. Analysis of pocket clusters was performed 
in terms of frequency, residue contributions and variability, RBD 
localization, and druggability scores. Finally, we combined these 
statistical and flexibility analyses to select binding sites based on the 
criteria of frequency and residue stability, localization in key regions 
of the RBD, accessibility, and druggability scores.

We also crossed the binding site analysis with the hot spot in-
formation obtained from the MM-PBSA analysis and evaluated the 
potential structural impact of mutations observed in the five SARS- 
CoV-2 variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) 
on these selected hot spots and binding sites to identify the drug-
gable binding sites that can also be targeted in mutated systems.

2.6. Protocol of identification of druggable binding sites and their 
flexibility

Combining supervised and unsupervised machine learning 
techniques with a traditional flexibility study through MD simula-
tions and MM-PBSA energetic computation analysis yields a com-
prehensive protocol. This three-step protocol identify druggable 
binding sites frequently observed on the RBD protein and their key 
residues in terms of druggability and contribution to stability 
(Fig. S1).

3. Results and discussion

3.1. RBD-ACE2 structures

Several PDB structures have elucidated the interaction network 
between the ACE2 protein and RBD spike protein [25–27]. The RBM 
is composed of 17 residues (K417, G446, Y449, Y453, L455, F456, 
A475, F486, N487, Y489, Q493, G496, Q498, T500, N501, G502, and 
Y505) that are in contact with ACE2 residues to stabilize the complex 
interaction [60,61]. With a cutoff distance of 4 Å, the complex was 
maintained with 13–18 hydrogen bonds and a salt bridge (Fig. 1). 
SARS-CoV-2 forms distinct patches of residues that spread along the 
interaction surface. Two hydrogen bonds were formed between 
Y489 and Y83, and between N487 and Q24 (Fig. 1 A). Q493 interacts 
with both K31 and E35 ACE2 residues through hydrogen bonding 
and its two crystallized side chains (Fig. 1B). A single salt bridge 
formed between K417 and D30 (Fig. 1B). On the other side of the 
surface, two large patches of residues establish strong intra- and 
intermolecular interaction networks [62]. This network includes 
hydrogen bonding, hydrophobic, and π–π interactions [63]. The 
complex is stabilized by hydrogen bonds between G446-Q42, Y449- 
D38, Q498-Q42, T500-Y41, N501-Y41, N501-N330, G496-K353, 
Q498-K353, G502-K353, Y505-E37, D355-R357, and Y505-R393 
(Fig. 1 C, Fig. 1D, and Fig. 1E). Residues involved in hydrophobic and 
van der Waals interactions played an important role in the affinity of 
the complex (Fig. S2). T27 interacted with Y473, A475, and F456 
through hydrophobic packing. F28 interacts with Y489, and H34 
with Y453 and Q493 through van der Waals interactions. Other 
hydrophobic patches were found on both protein surfaces, including 
L45 with V445, G446, and Q98, L79 with F486 and Y489, and Y505 
with K353.

3.2. RBD-ACE2 flexibility

Proteins are dynamic molecules with intrinsic flexibility and 
often undergo conformational changes upon partner binding. 
Therefore, it is essential to consider their dynamic behavior to pre-
dict which surface regions may be of interest.

RBD flexibility was studied with and without ACE2 by MD si-
mulations. Mean Cα RMSDs have been found to stabilize for both 
bound proteins systems (6M0J and 6LZG) around 2.5 Å with fewer 
fluctuations (Fig. S3 and Fig. S4). These results highlight the stability 
of the SARS-CoV-2 RBD and ACE2 complex throughout all the si-
mulations (Fig. S3A and Fig. S4A). The low mean Cα RMSD values 
indicated that the unbound RBD was stable (Fig. S3D and S4D). No 
major flexibility variation was observed between the bound and 
unbound RBD (Fig. S3C, Fig. S3D, Fig. S4C and Fig. S4D), considering 
both unbound and bound RBD simulations, have not been reported 
in other studies. To examine the flexibility and local changes in the 
complex, Cα RMSF versus the residue number of both RBD systems 
were investigated (Fig. S5). RMSF analysis revealed that the RBM 
region flexibility increased to a greater extent in the unbound RBD 
structure than in the bound RBD and increased from approximately 
1.5 to 2.0 Å. This was not surprising, as the RBM mediates contact 
with ACE2, which tends to be more stable when the complex is 
formed (Fig. S5A and Fig. S5C) than in unbound RBD (Fig. S5B and 
Fig. S5D).

3.3. Hot spot residue analysis

MM-PBSA calculations were performed to assess the binding free 
energies of the ACE2-RBD complexes and to estimate the contribu-
tion of residues in this interaction. The MM-PBSA calculations were 
applied to specific frames of representative states that were ex-
tracted from the MD trajectories after clustering analysis. Clustering 
analysis was based on a specific series of 23 residues for the RBD and 
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22 residues for ACE2. The residues corresponded to the amino acids 
spanning the binding interface with a cut-off of 4.0 Å. These residues 
are K417, G446, G447, Y449, Y453, L455, F456, Y473, A475, G476, 
S477, E484, F486, N487, Y489, F490, Q493, G496, F497, Q498, T500, 
N501, and G502 for the RBD and S19, Q24, T27, F28, D30, K31, H34, 
E35, E37, D38, Y41, Q42, L45, L79, M82, Y83, N330, K353, G354, D355, 
R357, and R393 for ACE2.

Based on the MM-PBSA calculations, SARS-CoV-2 RBD binds to 
ACE2 with a ∆Gbind of − 41.2  ±  20.2 and − 47.1  ±  21.8 kcal.mol−1, for 
6M0J and 6LZG structures, respectively (Table 1). The binding free 
energies of the two complexes are similar.

Free energy decomposition analysis was also performed to obtain 
a detailed insight into the interactions between each residue in the 
binding interface of the two proteins. The binding interaction of each 
residue included four terms: molecular mechanics contribution, 
polar contribution, apolar contribution, and total energy contribu-
tion. The individual components of each residue were averaged for 
each system (6M0J and 6LZG). The hot spot residues on the RBD 
surface were essentially the same for the core interactions in 6M0J 
and 6LZG (Fig. 2).

Notably, residues F486 and Y489 inserted into a hydrophobic 
pocket on the surface of ACE2 formed by residues including T27, F28, 
L79, and M82. Thus, the presence of aromatic amino acids in the 
pocket may provide an additional binding force through π-stacking 
interactions (Fig. 3A) and explain the favorable ∆EMM, which is 
mainly due to the favorable contribution of ∆Evdw. The residue K417 
showed a significant ∆Epolar contribution that reaches 
11.0 kcal.mol−1. However, the fact that this residue formed a salt 
bridge and a hydrogen bond with residue D30 led to a more negative 
∆ΕMM contribution of − 14.0 kcal.mol−1 (Fig. 3B) and, consequently, it 
counterbalanced the unfavorable polar solvation energy. Moreover, 

Table 1 
Average binding free energy and standard deviations in the MD simulations of the 
RBD-ACE2 complex for PDB IDs 6M0J and 6LZG. 

PDB ID Binding energy components (kcal.mol−1)

∆EMM ∆EPolar ∆EApolar ∆Gbind

6M0J -59.3  ±  3.7 85.1  ±  21.6 -7.7  ±  0.6 -41.2  ±  20.2
6LZG -59.2  ±  3.9 82.8  ±  22.9 -7.7  ±  0.6 -47.1  ±  21.8

Fig. 1. Interaction networks of the SARS-CoV-2 RBD and ACE2 complex (PDB: 6M0J). (A) Hydrogen bonds with Q24-N487 and Y83-N487. (B) Salt bridge between D30 and K417 
and hydrogen bonds with K31-Q493 and E35-Q493. (C) Hydrogen bonds between Q42-G446 and D38-Y449. (D) Hydrogen bonds between Y41-T500, N330-T500, and Y41-N501. 
(E) Hydrogen bonds between K353-G496, K353-Q498, E37-Y505, and G502-K353. ACE2 is indicated in blue and RBD in pink. Interactions were configured using PyMOL software. 
Only the side chains of the residues are represented, excluding for glycine residues.(For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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ACE2 residue Y41 interacted with Q498 and Y505 through van der 
Waals interactions and formed two hydrogen bonds with residues 
T500 and N501 through its side chain (Fig. 3C). Although ACE2 

residue H34 was not directly involved in any intermolecular hy-
drogen bond with RBD, it nonetheless provided favorable polar 
contacts with the side chain of L455 of the virus protein (Fig. 3D). 

Fig. 2. (A) The energy components of the nine residues on the RBD that contribute significantly to the ∆G of binding with ACE2. The average binding energy components and 
standard deviations are calculated from the MD simulations of the RBD-ACE2 complex (PDB IDs 6M0J and 6LZG). (B) RBD displayed in cartoon representation. The hot spot 
residues are indicated by cyan sticks.

Fig. 3. Contact residues of ACE2-RBD interface issued from MM-PBSA analysis. ACE2 is colored in blue and RBD is indicated in pink. Amino acids are represented by sticks and 
colored based on their respective proteins. A) Hydrophobic pockets, including F456, F486, and Y489, B) K417 and D30 salt-bridge, and C) ACE2 Y41 interacts with T500 and N501, 
D) L455 and H34 interactions, and E) E484 negative repulsive charges with E35 and E75. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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L455 also formed intermolecular van der Waals interaction with D30 
(Fig. 3D). Interestingly, E484 displayed a large positive EMM con-
tribution that reaches 10.0 kcal.mol−1 (Fig. 2). Thus, E484 free energy 
contribution (ETOT) was found to be disfavoring complex binding and 
formation. Two negatively charged residues, E35 and E75, sur-
rounded E484, which creates long-range opposing repulsive charges 
and explains the unfavorable contribution of this residue to the 
complex (Fig. 3E).

Altogether, our analysis shows that among the residues com-
prising the ACE2-RBD interface, some critical amino acids are known 
as the evolutionary signature of RBD, and major hot spots of both 
proteins contribute favorably to complex stability and formation 
[27]. In conclusion, eight favorable hot spot residues (K417, L455, 
F456, F486, Y489, T500, N501, and Y505) and one unfavorable hot 
spot residue (E484) have been identified as important SARS-CoV-2 
residues that are critical for ACE2 binding.

These results are in good agreement with other studies in which 
the authors identified 10–13 hot spot residues using similar bioin-
formatics methods on different RBD structures, that is, X-ray struc-
tures or models built by homology modelling, from SARS-CoV-1 or 
SARS-CoV-2 [29–31,64–66].

3.4. Tracking of RBD pockets during the MD simulations

We first examined pockets that were extracted from the unbound 
RBD system from static PDB. From the initial 6M0J and 6LZG PDB IDs, 
we estimated four and seven pockets on the unbound RBD, respec-
tively, using the PockDrug program [41,42]. This is consistent with 
the observation of a variable number of pockets estimated by Tri-
gueiro-Louro et al. on the same PDB structures [32].

We secondly examined pockets that were extracted from the 
unbound RBD systems considering their flexibility. We extracted two 
sets of pockets from two datasets of 1000 conformations sampled 
from each of the unbound RBD structures 6M0J and 6LZG during the 
MD simulations. The average number of RBD pockets by conforma-
tion in these two sets were highly similar (5.1 versus 5.8) despite the 
different number of pockets estimated on the two static PDBs. The 
frequency of druggable pockets (50.4% versus 54.0%) and the fre-
quency of pockets located at the interface (31.0% versus 25.0%) were 
also highly similar within both 6M0J and 6LZG MD trajectories. The 
consistency of the results obtained from the MD simulations, re-
gardless of the initial structure, shows the importance of integrating 
the protein and pocket structural flexibility for binding site identi-
fication and selection.

The results were consistent for both the 6M0J and 6LZG PDBs; 
therefore, we decided to focus only on the 6M0J MD trajectory. The 
average number of 5.1 pockets in the RBD conformation (from one to 
a maximum of nine pockets) results in a total set of 5065 pockets. Of 
these pockets, 50.4% were predicted to be druggable (druggability 
score ≥ 50%), and 40.6% of these pockets were highly druggable 
(druggability score ≥ 75%). Nearly one-third of the pockets (31.0%) 
included at least one of the 17 main RBM interacting residues and 
were located at the RBD-ACE2 interface. We also combined pocket 
analysis with the hot spot results obtained from the MM-PBSA study 
to identify the druggable binding sites containing these hot spots. 
Interestingly, almost all of these interface pockets (98.5%) included 
at least one of the nine hot spot residues (identified in Section 3.3). 
This is consistent with the fact that hot spot residues involved in 
energetic interactions have physicochemical properties and loca-
tions that promote pocket accessibility.

To determine how ACE2 affects RBD conformation and binding 
regions, we subsequently examined pockets extracted from the 
bound RBD system. The same pocket tracking protocol was applied 
to 1000 RBD conformations extracted from MD simulations of 6M0J 
in the RBD-ACE2 complex form. Therefore, a set of 4428 pockets 
with a pocket druggability frequency of 50.1% was extracted from 

the 6M0J RBD-ACE2 complex trajectory. This is close to the pocket 
druggability frequency of 50.4% of the 5065 pockets extracted from 
the unbound RBD trajectory. Fewer pockets (approximately 640 
pockets) were observed in the RBM region of bound RBD. This can be 
explained by the presence of ACE2, which limits pocket formation in 
the RBM region. These results clearly show that consideration of the 
flexibility of the structure leads to the identification of comparable 
and replicable RBD pockets when utilizing isolated or complex 
forms, with the exception of the area in contact with ACE2. 
Comparable steady results were also obtained using 6LZG MD si-
mulations (not shown).

3.5. RBD pockets clustering based on pocket residue similarity

After quantifying the druggable pockets on the two different 
systems, we performed a hierarchical classification of the pockets 
extracted from the 6M0J unbound RBD trajectory based on residue 
similarity. This classification of pockets based on residue composi-
tion allows the identification of clusters of pockets with common 
residues, corresponding to binding sites frequently observed along 
the MD simulations. Furthermore, the variability in residues within a 
pocket cluster illustrates the residue flexibility of the corresponding 
binding site. Highly similar classification results were obtained for 
pocket sets extracted from MD simulations of the 6M0J and 6LZG 
PDB. Here, the classification obtained for the 5065 pockets extracted 
from the 6M0J unbound RBD trajectory is presented. This classifi-
cation resulted in the identification of eight main pocket clusters, 
enumerated as clusters I to VIII (Fig. 4). We analyzed these main 
clusters in terms of frequency, residue localization, stability, and 
druggability scores.

These eight clusters were observed in at least one-third of the 
1000 conformations, and did not correspond to rare pockets (Table 
S2). They were regularly observed during the MD simulations. The 
least frequent (cluster VI) was observed in 32.3% of the conforma-
tions, whereas the most frequent (cluster I) was observed in ap-
proximately 90% of the conformations.

Moreover, these eight clusters were well-characterized in terms 
of druggability (Fig. 4 and Table S2). Four clusters were mainly 
druggable (II, III, V, VII, including 68.9–99.2% of druggable pockets), 
whereas four others identified clusters included a weak or moderate 
part of druggable pockets (I, IV, VI, VIII including 0.2–27.9% of 
druggable pockets). Interestingly, each cluster was defined by spe-
cific residues that constituted pockets that were well differentiated 
and localized in different regions of the RBD (Fig. 4). Clusters I, II, III, 
IV, and VI regrouped very similar pockets, as indicated by the small 
distances between the pockets within each cluster. Clusters V and 
VIII showed less pocket similarity in terms of residues, and each 
could be split into two main homogeneous sub-clusters. Cluster VII 
was the most variable and included three main subclusters (Fig. 4).

3.6. Selection of RBD druggable binding sites

A more detailed analysis was performed to study the properties 
and localization of the eight main clusters resulting from RBD pocket 
classification (Fig. 4) in order to extract druggable binding sites of 
interest. Six clusters (II to VII) were distant from the RBD-ACE2 in-
terface, and two clusters (I and VIII) were located close to the RDB- 
ACE2 interface.

Two clusters (IV and VI) were moderately observed in the 1000 
RBD conformations (48.8% and 32.3%) and were weakly druggable 
(27.9% and 7.4%, respectively). The cluster pockets corresponded to 
two exposed protein cavities in both the closed and open states of 
the spike protein trimer. These cavities did not establish contact 
with the ACE2 interface or another RBD monomer. Consequently, 
they did not form valuable target sites. The other four clusters (II, III, 
V, and VII) were observed in approximately half or more of the 1000 
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conformations and included mainly druggable pockets (> 68%). 
Cluster II was frequent (47.9%) and mainly druggable (99.2%). 
However, its pockets were located between the two spike protein 
interfaces in both states and are thus buried. Thus, this cluster 
cannot be targeted by therapeutic molecules. Cluster V was highly 
frequent (87.3%) and most of its pockets were druggable (93.0%). The 
corresponding pockets were highlighted as sites of interest in a 
previous study [33]. However, this cluster included N343, which is 
covalently linked to N-acetylglucosamine in the RBD. Notably, N- 
acetylglucosamines were not used in the MD simulations in this 
study. Therefore, even without this information, our protocol could 
identify a region matching an N-linked glycosylation site. We do not 
consider this cluster of pockets a priority to be targeted by ther-
apeutic molecules due to the presence of N-acetylglucosamine.

Cluster III was observed in half of the conformations (52.4%) and 
mainly included druggable pockets (85.9%) (Table S2). The pockets 
were located on the interface region between two RBD proteins in 
the closed state of the spike protein trimer (Fig. S6). This cluster 
regroups similar pockets (with 17 residues observed in more than 
15% of its pockets) (Table S2). It is noteworthy that Carino et al. 
highlighted one potential druggable pocket from the static spike 
protein trimer (PDB ID:6VSB), but it corresponded only to a partial 
sub-pocket of ten residues of our cluster of pockets [33]. Therefore, it 
may be of interest to design molecules that bind this cluster of 17 
residue pockets to stabilize the closed state and avoid the activation 
of the spike protein trimer. This frequent and druggable cluster, 
named site 1 (Table 2), is a potential site of interest for the design of 
new therapeutic molecules.

Table 2 
The three selected potential binding sites with their residue composition (only residue observed in more than 15% of their associated pockets), their occurrence on 1000 RBD 
conformations and the percentage of druggable pockets within each site. Hot spot residues are in bold. 

Selected sites 
(sub-Cluster)

Residues occurrence Druggable pockets 
frequency 
(%)

Site 1 
(Cluster III)

S375, T376, K378, Y380, G404, E405, V407, R408, I410, A411, Q414, V433, A435, V503, G504, 
Y508, V510

52.4 85.9

Site 2 
(sub-cluster VII)

A363, D364, Y365, S366, L368, Y368, N370, F374, F377, C379, V382, P384, T385, L387, N388, D389, 
L390, C391, F392, C432, I434, L513, F515, V524, G526

35.0 87.7

Site 3 
(sub-cluster VIII)

R403, D405, E406, R408, Q409, T415, G416, K417, I418, Y453, L455, S494, Y495, G496, F497, Q498, 
N501, Y505

35.0 13.1

Fig. 4. Hierarchical classification of 5065 RBD pockets extracted from 1000 conformations of unbound RBD (6M0J). Each column corresponds to a pocket. First-color bars are 
colored according to four levels of druggability scores: respectively in black, grey, pink, and garnet for the non-druggable [0.00, 0.25], less druggable [0.25, 0.50], moderately 
druggable [0.50, 0.75] and highly druggable [0.75, 1.00] pockets, as predicted using PockDrug [41]. Second-color bars are colored based on the eight main clusters of pockets 
(noted I to VIII). At the bottom, the residues are ordered according to the numbering of the protein sequence and indicated in black when involved in the pocket. The three blue 
rectangles indicate the three sub-cluster of pockets corresponding to selected sites of interest.(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Cluster VII was frequent (70.4%) and included pockets mainly 
structurally located at the bottom end of the RBD and partially 
buried in the spike protein trimer. However, this cluster regroups 
pockets that vary in terms of residues; thus, cluster VII can be de-
composed into four main pocket sub-clusters. Interestingly, the most 
frequent sub-cluster, named site 2, which was also observed in 35% 
of the conformations, corresponded to homogeneous and druggable 
pockets (87.8%) (Table 2). The pockets point toward another spike 
protein monomer and are consequently partially buried. This sub- 
cluster coincides with the pocket identified by Toelzer et al., in 
which linoleic acid is bound [67]. Linoleic acid appears to stabilize 
the spike protein in its closed state and induces a reduced ACE2 
interaction in vitro. Therefore, our protocol was successfully iden-
tified and characterized in terms of druggability and residue stability 
in this specific region, called site 2, which corresponds to the ex-
perimentally known binding site entrance of a small molecule.

We also extracted two frequent clusters, I and VIII, which were 
located close to the RBD-ACE2 interface. Cluster I was quasi per-
manent (86.6%), although it displayed no druggability (0.2%). It 
contains nearby pockets located on the RBD loop between residues 
T470 and P491 and thus excluded the association of every RBM re-
gion. Moreover, cluster I pockets were exposed to the solvent in both 
the closed and open states of the spike protein. Due to its location 

and undruggable properties (Table S2), cluster I is not suitable for 
targeting therapeutic molecules.

Our results showed that cluster VIII was frequent (78.0%) and 
partially druggable (21.7%). It is relatively variable and regroups 
three main subclusters located at the ACE2 interface. The most fre-
quent sub-cluster, named site 3, was observed in 35.0% of the con-
formations and included 13.1% of druggable pockets (Table 2). It is 
centralized at the interface and includes three hot spots, K417, N501, 
and Y505, among the 18 residues constituting this pocket. Conse-
quently, site 3 is particularly appealing as a targeted therapeutic 
molecule.

Considering their occurrence, residue similarity, druggability 
score, and localization, three sites of interest (sites 1, 2, and 3) were 
selected for further study (Fig. 5).

These sites are observed in more than 30% of the conformations 
and are associated with an average druggability score range of 
13.1–87.7%. The pockets of these three sites included 20 residues on 
average (Table 2). The contribution of residues to their pocket 
cluster, as well as the druggability score, was made available for the 
three selected sites in Fig. S7. Along with these results, we have 
shown that the two most frequent sites, 1 and 2, are distant from the 
RBM, even though they display significant druggable scores. In 
contrast, site 3 has been classified as less frequent yet druggable. 

Fig. 5. Representation of the three sites of interest selected on the RBD surface (site 1 represents the trimerization pocket, site 2 indicates a highly druggable pocket capable of 
holding a drug candidate, and site 3 corresponds to the interface region pocket).
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Compared to the other sites, an important feature of site 3 is its 
location, which is close to the RBD-ACE2 interface, and it includes 
three highly contributing hot spots: K417, N501, and Y505.

Dokainish et al. identified several pockets with residues over-
lapping with those of binding site 3 [40]. This site was targeted by 
nilotinib. The latter study, as many others, validates our protocol 
because we identified the same site. This site includes four hot spot 
residues, suggesting the significance of targeting it to disrupt the 
interaction between RDD and ACE2.

Ten representative pockets were selected for each of the three 
sites to illustrate the binding site and their flexibility (pocket PDB, 
residues, and global properties) that could be used for the design of 
novel compounds that target the spike protein. Table S3 provides 
descriptions of physicochemical, geometrical, and druggability 
scores. The ten selected pockets and their corresponding RBD con-
formations are freely available in the PDB format (https://data.-
mendeley.com/datasets/xhnjgfbgzr/1).

3.7. Potential impact of mutations on RBD hot spot and binding sites

It is known that the mutations associated with five variants of 
concern, Alpha, Beta, Gamma, Delta, and Omicron, cause a sub-
stantial increase in their transmissibility, virulence, and antigenic 
escape ability. During the evolution of the SARS-CoV-2 genome, RBD 
mutations had an impact on spike protein affinity for ACE2 to im-
prove virus transmissibility and/or decrease its affinity for antibodies 
to improve its antigenic escape ability. The Alpha variant includes 
only one mutated residue, N501Y, whereas Beta, Gamma, and 
Omicron variants include both N501Y and K417N/T and E484K/A 
mutated residues. The Omicron variant also has 12 supplementary 
mutated residues (G339D, S371L, S373P, S375F, N440K, G446S, 
S477N, T478K, Q493R, G496S, Q498R, and Y505H). The Delta variant 
includes two specific mutations (L452R and T478K).

It is of interest to analyze the potential structural impact of RBD 
mutations of these variants of concern, notably, relative to the nine 
hot spots we have identified. These mutations directly impacted 
sites 1 and 3 and three hot spot residues, which correspond to the 
most frequent mutations, from site 3 (Table 3).

Two mutations (N501 and K417) corresponded to hot spots and 
played an important role in the stabilization of the interaction be-
tween RDB and ACE2. This confirms that these mutations can di-
rectly affect the affinity of the RBD for ACE2 and the interactions 
with antibodies targeting the RBM. The mutation N501Y is observed 
in Alpha, Beta, Gamma, and Omicron variants, suggesting that it 
provides SARS-CoV-2 with a selective advantage. E484 and K417 
mutations are present in the N501Y mutation in the Beta, Gamma, 
and Omicron variants. The N501Y mutation counterbalances the 
decrease in ACE2 affinity due to mutations in K417 and E484, 
whereas the latter tends to enhance the ability of the variant to 
escape from neutralizing antibodies. This explains why these three 
mutations were selected simultaneously during the SARS-CoV-2 
evolution. More specifically, the N501 hot spot is stabilized by a 

hydrogen bond with residue Y41 and contributes favorably to the 
binding free energy of the complex (Fig. 1D and Figs. 2A and 3C). It is 
surrounded by a K353 hydrophobic alkyl chain and Y41 benzene 
ring. Understandably, a tyrosine switch is a better choice because a 
more favorable interaction can be made with the hydrophobic 
pocket, particularly π-π stacking with residue Y41. Thus, the muta-
tion of N501 in Y501 can explain the enhanced affinity of the RBD to 
the ACE2 receptor [68].

E484 mutations are present with N501Y and K417 mutations in 
the Beta, Gamma, and Omicron variants. In the Beta and Gamma 
variants, the E484K mutation swaps the charge of the side chain. It is 
a considerable switch from negatively charged glutamic acid (−) to a 
positively charged lysine (+). In the Omicron variant, the E484A 
mutation also induces loss of the negative charge carried by the E 
residue. It is important to note that E484 is located on the RBD loop 
(amino acids 470–490) and is enclosed by several negatively charged 
residues, E35 and E75, from the ACE2 receptor. The position of three 
neighboring glutamic acids could be unfavorable due to repulsive 
forces; thus, introducing a positively charged residue or a small 
neutral residue might create a more favorable interaction between 
the two proteins. This may explain the unfavorable free energy de-
composition of E484 during MM-PBSA analysis (Fig. 2 A). Similar to 
N501, E484 is a critical epitope residue for SARS-CoV-2 neutralizing 
antibodies. Therefore, charge change can also be a method to alter 
the electrostatic complementarity of known antibodies binding to 
this region, leading to better virus adaptation [69].

Concerning the K417 mutations, some studies showed that they 
may be responsible for increased binding with ACE2 and a decreased 
affinity for SARS-CoV-2 antibodies when combined with N501Y and 
E484K [70]. K417 forms a steady salt-bridge with residue D30 and 
has a favorable energy contribution to the complex (Figs. 1B, 2 A, and 
3B). Consequently, abolishing this strong interaction decreases the 
binding affinity of the RBD and ACE2 complexes. However, the K417 
mutation is only present with the N501 and E484 mutations, which 
may compensate for the loss of affinity with the ACE2 receptor by 
forming new favorable interactions. Additionally, a recent study 
showed that K417 is another critical epitope that forms strong salt 
bridges with SARS-CoV-2 antibody residues [68]. Thus, the reason 
behind the K417 abrupt change to asparagine is that viral adaptation 
is vital and overrides the binding affinity. In fact, with this triple 
mutation, SARS-CoV-2 may be harder to handle and can easily es-
cape antibodies. The explanation for the K417 change to N or T may 
be a viral adaptation to decrease the affinity of antibodies for spike 
protein and evade the immune system. Regardless of the reasons for 
the K417 mutation, the replacement of a residue with a positive 
charge by residues with a hydrophilic side chain should be con-
sidered for drug design.

These mutations directly impacted three hot spot residues, which 
corresponded to the most frequent mutations. Thus, we analyzed the 
potential structural impact of RBD mutations of these variants on the 
three selected binding sites. These mutations directly affected sites 1 
and 3. Additionally, site 3 would be greatly impacted by three hot 
spot residues, which correspond to the most common mutations in 
the variants of concern (Table 3).

For the Delta variant, L452 and T478 mutations did not occur in 
residues forming the highlighted sites and were far from the hot spot 
residues, indicating that inhibitors targeting these sites would not 
require adaptation to treat this variant.

The Omicron variant was found to be highly mutated. For ex-
ample, 15 mutated residues were found in the RBD region alone 
(G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, 
E484A, Q493R, G496S, Q498R, N501Y, and Y505H). Only the Omicron 
S375F mutation has been observed to impact site 1 (Fig. 6A). Cur-
rently, there is no available scientific information on how this mu-
tation affects the SARS-CoV-2 life cycle. S375 was exposed to the 
solvent in both the open and closed states of the spike protein trimer 

Table 3 
Mutations in RBD observed in the SARS-CoV-2 variants of concern. The hot spot re-
sidues identified by the MM-PBSA analyze are in bolt. 

WHO label Mutations in RBD Impact on three selected sites

Alpha N501Y Site 3 (N501Y)
Beta K417N, E484K, N501Y Site 3 (K417N, N501Y)
Gamma K417T, E484K, N501Y Site 3 (K417N, N501Y)
Delta L452R, T478K No site
Omicron G339D, S371L, S373P, S375F, 

K417N, 
N440K, G446S, S477N, 
T478K, E484A, 
Q493R, G496S, Q498R, 
N501Y, Y505H

Site 3 (K417N, N501Y, G496S, 
Q498R, Y505H) 
Site 1 (S375F)
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and did not form a non-covalent bond with any other residue. As a 
result, it does not appear to play a special role in the spike protein 
trimer action. Because the alcohol group in the spike residue was 
replaced by an aromatic cycle in the F residue, the S375F mutation 
only slightly altered the shape and hydrophobic properties of site 1. 
Therefore, site 1 seems to be relatively well-conserved among the 
variants of concern.

In summary, site 3 is located on the RBD-ACE2 interaction in-
terface and is formed by several hot spot residues; therefore, it may 
be of interest to focus on this region with the aim of targeting it with 
inhibitory molecules.to focus on this region with the aim of targeting 
it with inhibitory molecules. However, because of several mutations 
that occur in different variants of concern, site 3 is difficult to block, 
in contrast to sites 1 and 2. Even though site 1 seems to be weakly 
affected by only one mutation, site 2 is currently not affected by any 
mutation. These two sites can be targeted by inhibitors that would 
be effective for all currently known variants.

Sites 1 and 2 are contiguous on the RBD surface. Interestingly, a 
neutralizing antibody isolated from convalescent Covid-19 patients 
and named CR3022, can bind to the RBD surface corresponding to 
sites 2 and 3 [71]. This interaction occurs only when two of the three 
spike proteins in the spike protein trimer are in an open state. 
Therefore, these sites are accessible to the inhibitory molecules. In 
the case of mutations that prevent the binding of neutralizing an-
tibodies, targeting these sites by inhibitory molecules seems to be a 
promising therapeutic approach; notably, site 2 is currently not af-
fected by any mutation.

4. Conclusions

In this study, we analyzed the dynamic behavior of the unbound 
RBD in complex with the ACE2 protein to identify binding sites that 
can be targeted by inhibitory molecules. We proposed a protocol 
combining MD simulations, hot spot identification, pocket tracking 
along the simulations, and pocket druggability prediction using a 
supervised method. Then, an unsupervised machine learning ana-
lysis was applied to cluster similar RBD pockets in terms of residue 
composition. This protocol allows the identification of druggable 
binding sites frequently observed along the MD simulations, the 
characterization of their residue flexibility and of key residues con-
tributing to the druggability.

The stability of these pocket clusters was verified on different 
PDBs, in apo and holo forms, which allowed us to select the most 
pertinent druggable binding sites. Based on their RBD localization 
and druggability assessments, these three sites seem to be particu-
larly promising. The potential effect of mutations in the variants of 
concern on these three binding sites was investigated.

Site 3 is located at the RBD-ACE2 protein interaction region and is 
formed by four hot spot residues. It is therefore an interesting target 
to disrupt the interaction between the spike protein and ACE2 pro-
tein and, consequently, to prohibit SARS-CoV-2 entry into the cell. 
However, several mutations of residues forming this site have been 
observed in SARS-CoV-2 variants. This suggests that if an inhibitory 
molecule can be designed against this site, it should be efficient for 
only a limited number of variants. Site 2, in which linoleic acid in-
teracts to lock the spike protein in closed form, is relevant to the 
target. It is highly druggable, undergoes only one mutation in the 
Omicron variant, and is consequently an interesting site for tar-
geting. Site 1 is highly druggable, accessible and no mutations were 
observed at this site. To our knowledge, this is the first time it has 
been characterized using in silico methods. In the spike protein 
trimer, we can observe that three sites 1 observed on each spike 
protein monomer are near in space (Fig. S6). This is also a promising 
target region. This suggests that the design of molecules able to bind 
to at least two sites 1 located within two RBD monomers may pro-
hibit the transition between the inactive closed form and the active 
open form of the spike protein.

In summary, our combined protocol provides new insights and 
highlight opportunities on three binding sites for the development 
of inhibitors of the RBD of the spike protein.
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Chapter 4 
 

A comparative structural study of the mutations 
in SARS-CoV-2 RBD variants of concern on 
the interaction with the ACE2 receptor  
 
 
The emergence of SARS-CoV-2 variants of concern has significantly impacted the COVID-19 
pandemic. This demonstrates the severity of mutations that the wild-type strains have subjected. 
The Spike protein, which plays a critical role in binding to human cells and pathogenesis, has 
been identified as a potential therapeutic target to inhibit. In the submitted paper below [52], a 
common protocol was applied to reconstruct SARS-CoV-2 variant of concern (Alpha, Beta, 
Gamma, Delta, and Omicron) structures and perform MD simulations to evaluate the ACE2-
RBD complex's stability in each variant. MM-PBSA calculations were also carried out to 
compare the binding and biophysical properties in each SARS-CoV-2 variants of concern when 
interacting with the human receptor ACE2. In this study, new key residues have been identified 
playing an important role in maintaining RBD-ACE2 interaction stronger. Our results showed 
that the variants of concern showed higher affinities for ACE2, with specific mutations such as 
Q498R or N501Y. These results support experimental data and offer insightful information 
about how the virus interacts with its receptor in a detailed protocol.  
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Figure 4. Representation of the bioinformatics protocol used to study SARS-CoV-2 variants of concern 
and their impact on the RBD-ACE2 interaction. 
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5 ABSTRACT: SARS-CoV-2 strains have made an appearance across the
6 globe, causing over 757 million cases and over 6.85 million deaths at the
7 time of writing. The emergence of these variants shows the amplitude of
8 genetic variation to which the wild-type strains have been subjected.
9 The rise of the di!erent SARS-CoV-2 variants resulting from such
10 genetic modification has significantly a!ected COVD-19’s major impact
11 on proliferation, virulence, and clinics. With the emergence of the
12 variants of concern, the spike protein has been identified as a possible
13 therapeutic target due to its critical role in binding to human cells and
14 pathogenesis. These mutations could be linked to functional
15 heterogeneity and use a di!erent infection strategy. For example, the
16 Omicron variant’s multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint
17 to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-
18 CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2−RBD complex in each
19 variant. We also carried out free energy calculations to compare the binding and biophysical properties of the di!erent SARS-CoV-2
20 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that
21 were essential for preserving a balance between maintaining a high a"nity for ACE2 and the capacity to evade RBD-targeted
22 antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher a"nity for ACE2 compared
23 to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and
24 N501Y are specifically mutated to strengthen RBD a"nity to ACE2 and, thereby, increase the viral e!ect of the COVID-19 virus.

1. INTRODUCTION
25 SARS-CoV-2’s high transmissibility and mutation rates,
26 combined with a lack of robust preexisting immunity in
27 hosts and a slow rate of immunization through vaccinations,
28 have caused COVID-19 cases to surge to over 572 million
29 worldwide by July 2022, as reported by the WHO.1 Although
30 numerous antibodies have been shown to neutralize the wild-
31 type (WT) virus or the Wuhan strain, their e"cacy against
32 developing variations, particularly those that have been shown
33 to avoid the host immune response and develop an antibody
34 escape mechanism, should be closely studied.2−5

35 The spike or S protein of the SARS-CoV-2 virus facilitates
36 viral entrance into the cell.6−8 Viral entrance occurs when the
37 spike protein binds to receptors on the host cell, causing the
38 cell membrane to fuse. The S protein is a structural
39 polypeptide with two subunits, S1 and S2, that engage with
40 the ACE2 receptors and fuse the viral and host cell
41 membranes.9 Moreover, the homo-trimeric spike glycoprotein

f1 42 (residues 1−1273) (Figure 1) has two structural states: active
43 (up) and inactive (down), and it is highly conserved across all
44 human coronaviruses.10 The S protein has been the main focus
45 of several studies since it is the key protein for the virus’s

46attachment to the cell host.11 More precisely, most of the
47studies have focused on the receptor binding domain (RBD;
48residues 331−524) of the SARS-CoV-2 S protein because of its
49function in binding the angiotensin-converting enzyme 2
50(ACE2) receptor (Figure 1) and immune system recogni-
51tion.12−16 Moreover, the RBD (Figure 1) contains the receptor
52binding motif (RBM) region (residues 437−508), which is
53responsible for maintaining contact with the ACE2 protein.8 It
54is also important to note that treatments against the SARS-
55CoV-2 virus are developing around the RBD since it is the
56most crucial protein in the viral process.17−21 The RBD region
57is also the most a!ected part of the virus, where several
58emerging mutations occurred in di!erent lineages.17−21 Due to
59the RBD’s variability and its fast mutation rate, most of the
60treatments are focused on targeting the RBD with numerous
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61 antibodies issued from COVID-19 patients or other antibody
62 therapies under investigation.22−24 With all this information,
63 we focused on analyzing the RBD to decipher the mutation
64 mechanism and also give more insight into future mutation
65 e!ects.
66 Many COVID-19 variants and sub-variants of concern are
67 currently under investigation. However, five variants of
68 concern (Alpha, Beta, Gamma, Delta, and Omicron) have
69 been classified as dangerous and are evolving rapidly all over
70 the world by the WHO.1 Among these, the Alpha variant was
71 first discovered in the United Kingdom in December 2020 and
72 was declared a variant of concern in December 2020.25,26 It
73 di!ers from the original Wuhan strain due to many significant
74 alterations in the spike protein.27,28 For instance, one is the
75 N501Y mutation located in the RBD region, which increases
76 the virus’s contagiousness by improving the spike protein
77 binding to cellular receptors.28−31 It also has a D614G
78 mutation, which is likely to aid viral replication,32−37 and a
79 P681H mutation,38 whose function is unknown, but which has
80 appeared many times spontaneously. Moreover, the Alpha
81 variant is predicted to be roughly 50% more transmissible than
82 the original Wuhan strain.25 It is also assumed to be linked to
83 worsening illness severity, but this is not clear.39 However,
84 COVID-19 vaccinations and monoclonal antibody therapies
85 have been reported to be still highly e!ective against it.40−48

86 The Beta variant was discovered for the first time in South
87 Africa in December 2020.1 In addition to three of the
88 alterations seen in the Alpha variant,24,27,28 The Beta variant
89 has a K417N mutation located in the RBD region, which may
90 enable the virus resistance to neutralize antibodies produced by
91 vaccination or previous infection.49−51 Although it is expected

92to be 50% more transmissible than prior variants, there is
93minimal evidence that Beta is linked to more severe diseases
94including severe gastrointestinal problems, hearing loss, blood
95clots that cause tissue death, and gangrene.52,53 Reduced
96neutralization by antibodies generated by vaccination or as a
97result of a previous infection is the main source of concern.
98Despite this, recent vaccines appear to provide e!ective
99protection against the Beta variant.54,55
100The Gamma variant was first discovered in Brazil in January
1012021.1 It contains the E484K, N501Y, and D614G mutations,
102as do some other variants of concern.56−58 It also carries a
103K417T/N mutation, which is linked to greater binding to
104human cells, potentially making the virus easier to transmit,59
105and a H655Y mutation, whose function is uncertain.60,61
106Moreover, according to a recent study published by Faria and
107co-workers,58 the Gamma variant is 1.7−2.4 times more
108transmissible than non-variants of concern. However, existing
109COVID-19 vaccinations appear to be e!ective at preventing
110the Gamma variant.54,62
111The Delta variant was first reported in India in May 2021. It
112has since been confirmed in multiple locations throughout the
113globe,1 quickly displacing other variants to become the
114dominant variant in several countries. Delta has the D614G
115mutation as well as a few other mutations not reported in other
116variants of concern.63 These include a L452R mutation on the
117RBD, which is expected to enhance infectivity and may help
118the virus escape immune cell destruction.64−68 The Delta
119variant contains the T478K mutation also located on the RBD,
120which is thought to assist the virus avoid immune
121detection.69−72 Finally, this variant of concern has a P681R
122mutation, which is linked to an increased ability to cause

Figure 1. Representation of the interaction between the ACE2 human receptor and the SARS-CoV-2 spike protein. The left panel shows a surface
representation of the ACE2 human receptor (upper panel) in a transversal view and the trimeric structure of the SARS-CoV-2 spike protein in a top
view (middle panel) and transversal view (lower panel). The middle panel o!ers a more detailed cartoon representation of the complex formed by
the RBD (in blue) and the distal region of ACE2 (in red). The right panel shows the most recurrent mutations in the RBM region. The most
recurrent mutations in the five variants of concern are labeled with a red star.
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123 serious illnesses.73 The Delta variant is thought to be 40−60%
124 more transmissible than the Alpha variant and nearly twice as
125 transmissible as the original Wuhan strain.68,75 Although data
126 suggest that vaccines are slightly less e!cient in avoiding
127 infection with the Delta form,44,63 they are still quite e"ective
128 in preventing serious disease.76,77
129 The first verified Omicron infection was discovered in a
130 sample collected on November 9, 2021.1 The Omicron variant
131 has been authenticated in several areas throughout the world,
132 including sections of North and South America, Europe, Africa,
133 Asia, and Australia.1 Omicron has a lot of mutations, some of
134 which were identified as dangerous.78 Fifteen mutations can be
135 already found on the RBD: G339D, S371L, S373P, S375F,
136 K417N, N440K, G446S, S477N, T478K, E484A, Q493R,
137 G496S, Q498R, N501Y, and Y505H.79−83 It is unclear whether
138 Omicron is easier to spread from person to person than other
139 variants or if infection with it causes more severe disease.
140 There is currently no evidence that the symptoms associated
141 with Omicron are distinct from those associated with other
142 variations.84,85 The emergence of the BA.2 sub-lineage, on the
143 other hand, has raised concerns because it looks to be more
144 transmissible.86 Being currently the most transmissible variant,
145 three other sub-lineages (BA.3, BA.4, and BA.5) of Omicron
146 have emerged and are suspected to become the most dominant
147 variants.86 The capacity of BA.4 and BA.5 to avoid immune
148 protection brought on by earlier infection and/or vaccination
149 is presumably the cause of their current observed growth
150 advantage, especially if this immunity has weakened over
151 time.87−89 Currently, there is no evidence that the severity of
152 BA.4 and BA.5 will vary in comparison to earlier Omicron
153 lineage infections.74
154 It is also important to note that many of these variants can
155 contain additional mutations not yet confirmed or only
156 detected in a minority of samples. For instance, the WHO is
157 also monitoring the spread of an Alpha variant with an extra
158 E484K mutation, which could enable the virus to get past the
159 body’s immune defenses by evading neutralizing antibodies
160 produced by vaccination or previous infection.90−92 Another
161 example is the finding of the ’Delta plus’ variant, which was
162 first found in Nepal and carries an extra K417N muta-
163 tion.77,93−95 These observations show how versatile and
164 adaptable the virus is.
165 Crystallography96−102 and cryo-EM6,103−111 techniques, as
166 well as computational analyses112−117 and antibody-binding
167 assays106,118−127 have been used to study the SARS-CoV-2
168 variants RBD−ACE2 complexes. Deep scanning mutagene-
169 sis128−131 and in vitro evolution5,132−134 have also been used to
170 investigate SARS-CoV-2 variants e"ects. Several research
171 papers attempted to map out di"erent classes of antibodies
172 and link them to mutation studies.135,136 To our knowledge, a
173 detailed comparative investigation regrouping all variants of
174 concern utilizing structure-based simulations and free energy
175 approaches is still lacking to understand and have a general
176 view on the SARS-CoV-2 mechanism and particularly of its
177 variants of concern.
178 In this paper, we used the same protocol to reproduce
179 reliable results for a more accurate comparison between all
180 systems (WT, Alpha, Beta, Gamma, Delta, and Omicron). We
181 present results from structure-based in silico modeling and a
182 full-atomic molecular dynamics (MD) simulation protocol of
183 the RBD−ACE2 complex. These analyses were performed to
184 evaluate the binding free energies of the five variants of

t1 185 concern on the RBD (Table 1). Our results also showed the

186di"erences in interactions formed with the ACE2 protein to
187give more insight on the variants’ mechanisms.

2. MATERIAL AND METHODS
1882.1. Structural Preparation of the Spike Protein
189Variants. Our study only focuses on WT SARS-CoV-2 RBD
190with the human ACE2 receptor and its comparison with five
191di"erent COVID-19 variants of concern (Alpha, Beta, Gamma,
192Delta, and Omicron) (RBD residues 331−524). The crystal
193structure of the ACE2−RBD (PDB: 6M0J97) was then
194retrieved from the RCSB Protein Data Bank in PDB format.137
195In fact, here, we focused on the ACE2−RBD complex rather
196than the glycosylated states of the proteins since we are looking
197to compare their binding a!nities and identify the RBM
198hotspots. We decided to model Alpha, Beta, Gamma, and
199Delta mutations since no PDB structures were available at the
200time the analyses were made. As for the Omicron variant, the
201respective 7T9L cryo-EM structure was taken from the PDB
202database.138 The Omicron PDB was used in this study since
203several crystal structures of this variant of concern were
204available at the time our analyses were conducted. Another
205reason is that the majority of papers have mostly focused on
206this variant of concern due to its many mutations located on
207the RBD. Additionally, to validate our approach and verify the
208consistency of our results, we also constructed an Omicron
209variant model containing all of the RBD mutations, which we
210will compare with the experimental 7T9L Omicron variant
211structure.
212Therefore, using the 6M0J structure, the Alpha, Beta,
213Gamma, Delta, and Omicron mutations were introduced using
214the “mutations wizard” in the PyMOL molecular modeling
215package (Schrodinger LLC). All residue rotamers were chosen
216according to the most probable side chain orientation
217suggested by the program and displaying the least amount of
218steric clashes within the structure. As our study only focused
219on the RBD−ACE2 interaction, all glycans were removed from
220the complexes. Afterward, each complex was protonated
221according to a physiological pH (pH = 7.4) using PROPKA.139
2222.2. MD Simulations. MD simulations were performed on
223six systems (WT, Alpha, Beta, Gamma, Delta, and Omicron)
224using the GROMACS tool with the 2020 version.140 The
225CHARMM36m force field141 was selected along with an
226explicit solvent TIP3P model.142 A dodecahedron shaped box
227with an adjusted 12 Å distance between the protein complexes,
228and the box was used to fit the solvated systems. Then, NA+

229ions were introduced to neutralize the whole system. Once the

Table 1. Variants of Concerns’ Lineages, Date of
Emergence, and the Location of Their Mutations on the
RBD

variants lineage
date of

emergence mutations on the RBD
Alpha B.1.1.7 September

2020
N501Y

Beta B.1.351 August 2020 K417N, E484K, N501Y
Gamma P.1 December

2020
K417T/N, E484K, N501Y

Delta B.1.617.2 October
2020

L452R, T478K

Omicron B.1.1.529 November
2021

G339D, S371L, S373P, S375F,
K417N, N440K, G446S, S477N,
T478K, E484A, Q493R, G496S,
Q498R, N501Y, Y505H

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c01467
J. Phys. Chem. B XXXX, XXX, XXX−XXX

C



 40 

 

 
 
 

230 solvated and electroneutral systems were assembled, a full
231 50,000-step energy minimization was performed to avoid steric
232 clashes using the “steepest descent” algorithm. Each complex
233 was equilibrated with an NVT (number of particles, volume,
234 and temperature) ensemble for 1 ns at a temperature of 300 K
235 and a coupling constant of 0.1 ps. Subsequently, an NPT
236 (number of particles, pressure, and temperature) ensemble was
237 running by setting the temperature at 300 K, and the pressure
238 at 1 bar for 1 ns. As for the electrostatic interactions, they were

239calculated using the particle-mesh Ewald method.143 Upon the
240completion of the two equilibration phases, the production
241phase for each system was performed for 100 ns in triplicate (3
242× 100 ns). Originally, 3 runs were performed for each system
243(WT, Alpha, Beta, Gamma, Delta, and Omicron) for
244reproducibility purposes (Supporting Information Figures
245S1−S3). Accordingly, the average C α rmsd and RMSF values
246for each system were calculated to have an overall view of the
247protein’s stability. The VMD program144 was used to calculate

Figure 2. (A) Average C α rmsd values of the ACE2, RBD, and ACE2−RBD complex over 100 ns simulation time for each system. (B) Average C
α RMSF values of the ACE2 and the RBD versus the residue number for each system. Highly flexible regions on the ACE2 protein are highlighted
with circles and colored in red to easily locate them on the protein. These regions correspond to the circled peaks on the RMSF graph as well.
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248 all hydrogen-bond (HB) and salt bridge (SB) occupancy rates
249 with the angle and distance between the donor and acceptor
250 set to 30° and 3.5 Å, respectively.
251 2.3. MM-PBSA Calculations. The MM-PBSA (molecular
252 mechanics-Poisson Boltzmann surface area) methodology and
253 the g_mmpbsa program145 were used to compute the binding
254 free energies of each RBD−ACE2 complex as well as their
255 residue decomposition energies. The g_mmpbsa program is a
256 tool that integrates functions from GROMACS140 and
257 APBS146 in order to calculate the binding free energies of
258 protein−protein or protein-ligand complexes.
259 In this approach, the binding free energy Gbind between
260 protein and ligand/protein includes di!erent energy terms and
261 could be calculated as

= +G G G G( )bind complex protein ligand

= +E TS GMM sol

= + + +E E TS G Gvdw elec PB SA

262 The gas-phase interaction energy EMM is equal to the sum of
263 van der Waals energy Evdw and electrostatic energy Eelec. The
264 polar solvation energy GPB and the non-polar solvation energy
265 GSA are added together to form Gsol. The Poisson−Boltzmann
266 (PB) approximation model is used to determine the polar
267 solvation energy, whereas the solvent accessible surface area
268 (SASA) is used to estimate the non-polar solvation energy.
269 Owing to the high computational cost and the fact that
270 considering the entropy, even if it improves the agreement with
271 the experimental values of the binding free energy, it does not
272 change the global profile of the energy,147 the entropy
273 contribution (−TS) is omitted in this work. The binding free

274energies were decomposed to each residue after computation.
275It is worth noting that the more negative the energy, the more
276beneficial the contribution. Positive energy values, on the other
277hand, indicate unfavorable interactions and a low contribution
278to the complex. For each binding complex, MM-PBSA
279calculations were carried out on a total of 90 di!erent
280conformations for each MD simulation, as in the calculations
281started from 10 ns simulation time and skipped every 1 ns.

3. RESULTS AND DISCUSSION
2823.1. Construction of Variant Models. We had to verify
283that our in silico ACE2−RBD variant models show the root-
284mean-square deviation (rmsd) values for less than 1 Å
285(Supporting Information Table S1), which are representative
286of good models. RBD’s Alpha, Beta, Gamma, Delta, and
287Omicron variants showed a backbone rmsd of only 0.2, 0.1,
2880.2, 0.5, and 0.5 Å from the most recently resolved
289crystallographic and cryo-EM structures (PDB IDs: 7EKF,97
2907EKG,97 7EKC,97 7WBQ,99 and 7T9L14) and aligned well
291against them. Thus, all models are valid to use for further steps.
2923.2. Structure Flexibility and Stability of the
293Simulation Systems. 3.2.1. SARS-CoV-2 WT and Variant
294Systems. In this section, we report a thorough analysis to
295evaluate the stability of the ACE2 protein and the RBD of
296SARS-CoV-2 in the WT and variant systems. Only the
297Omicron variant is based on experimental data, but the variant
298systems comprise all modeled structures for the Alpha, Beta,
299Gamma, Delta, and Omicron variants. Throughout the 100 ns-
300simulation runs, the stability profiles of SARS-CoV-2 RBD of
301each system in complex with human ACE2 were analyzed
302 f2using GROMACS (Figure 2). C α rmsd values of ACE2 and

Figure 3. (A) Structural overlay of the MD-averaged Omicron model (magenta) and 7T9L structures (green) with the resolved cryo-EM 7T9L
structure (cyan). The 15 mutated residues of the RBD in the Omicron variant have been highlighted and represented in boxes. The backbone RBD
rmsd has been specified as well.
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303 RBD were also studied separately to have detailed information
304 of each of the proteins’ stability (Figure 2A).
305 ACE2 average C α rmsd values are steady and stable,
306 ranging between 2 and 2.5 Å from the initial structure. The
307 Alpha variant shows more fluctuations, with values increasing
308 progressively until reaching a plateau at 3.5 Å (Figure 2). On
309 the other hand, SARS-CoV-2 RBD showed steady C α rmsd
310 values overall (1−2 Å) with no obvious fluctuations (2−2.2 Å)
311 within the Omicron variant (Figure 2). Similarly, ACE2−RBD
312 complexes have proven to be stable during the MD simulations
313 (2−2.5 Å) apart from the Alpha variant, which displayed the
314 same variations as the ACE2 protein with C α rmsd values
315 reaching a maximum of 3.9 Å, stabilizing at the end of the MD
316 simulation (Figure 2). Therefore, the Alpha variant behavior
317 can be explained by the high flexibility of the ACE2 protein
318 and its constant shifting around the RBD toward the end of the
319 MD simulation trajectory (Supporting Information Figures
320 S1A and S3A). As shown in Supporting Information Figures S4
321 and S5, there were no significant di!erences in the rmsd values
322 of the resolved and the constructed Omicron variant structures
323 for the ACE2, RBD, and ACE2−RBD complex, supporting the
324 reliability of our protocol.
325 Then, we computed the average root-mean-square fluctua-
326 tion (RMSF) of the C α atoms versus the systems’ residue
327 numbers to explore the detailed residual atomic fluctuations
328 (Figure 2). It is also helpful to compare this further with the
329 experimentally obtained B-factors from crystallography, which
330 exhibit similar tendencies but with significantly less overall
331 flexibility because of the cryogenic temperatures and lattice
332 conditions that a protein is subjected to in a crystal. Thus, C α
333 RMSF calculations of the 3 MD runs belonging to each of the
334 variants were added in the Supporting Information Figures S6
335 and S7 for more details. Three major peaks regions can be
336 observed on the ACE2 protein, all corresponding to the highly
337 flexible loops. We discovered a slightly high fluctuation area
338 specific to the Alpha variant, which is a random coil (P490−
339 P500) reaching maximum C α RMSF values of ∼2 Å.
340 Otherwise, no significant changes in terms of structural
341 flexibility were observed in the Alpha variant as both ACE2
342 and RBD remained stable and showed similar C α RMSF
343 values to the other variants. Therefore, the increased
344 fluctuations of the ACE2 protein belonging to the Alpha
345 variant (Figure 2B) might be modulated by conformational
346 changes within the protein in order to stabilize itself. As for the
347 RBD, we noticed a slight increase in the RMSF values in the
348 Omicron variant, which corresponds to coiled structured
349 regions of the protein. Similar results were observed for the
350 studied cryo-EM structure as well as the constructed Omicron
351 variant model, with RMSF values displaying the same tendency
352 (Supporting Information Figures S8 and S9). The RBM

353region, which is the binding region of the RBD, remained
354stable for all variants, and no significant changes were
355observed. In order to understand potential changes in the
356conformations, the 7T9L structure was further compared to
357the MD-averaged Omicron model and cryo-EM resolved
358structural complexes. The MD-averaged conformations were
359 f3superimposed with the 7T9L structure, as seen on Figure 3. To
360properly analyze protein structures, accurate protein side-chain
361modeling is required. Hence, when comparing the MD-
362averaged Omicron conformations to the experimental
363Omicron structure, we computed the rmsd on a basis of all
364side chain atoms, excluding hydrogen atoms (Table S2). Lower
365side chain rmsd values produce ensure more precise results.148
366One of the few di!erences that can be observed is the flexibility
367of the side chains of the mutated residues located on the RBD
368surface (G339D, S371L, S373P, S375F, and N440K). The side
369chain rmsd values of the residues on the RBD surface ranged
370from 0.37 to 4.08 Å. The conformations’ high quality was
371confirmed by the fact that residues spanning the RBD
372interaction surface did not exceed side chain rmsd of 2.3 Å.
373In fact, it’s essential to remember that the side chains of the
374residues are flexible components, which explains why there are
375a few minor variations in the structures. The backbone RBD
376rmsd values for the MD-averaged Omicron model and cryo-
377EM resolved structure complexes, respectively, showed excep-
378tionally low values of 0.75 and 0.87 Å when overlaying both
379structures to the experimental complex (Figure 3). Hence, by
380doing a direct structural analysis, agreement with experimental
381structure data for each complex was verified. Overall, C α rmsd
382and RMSF results showed stable systems over time and can be
383used further for additional analyses.
3843.3. Binding Free Energy Analysis. The binding a"nity
385values have been reported using the molecular mechanics-
386generalized Born surface area (MM-GBSA) and MM-PBSA
387approaches in earlier investigations using the WT protein and
388one of the many SARS-CoV-2 variants.80,149−154 In this study,
389we compared all known variants of concern that have emerged
390since the beginning of the pandemic using the MM-PBSA
391method with the aim of studying the e!ects of the mutations
392on the binding energy of the ACE2−RBD complex.
393The results showed that the binding free energy of the WT
394system (−51.5 ± 32.0 kcal mol−1) is lower than that in the
395 t2other systems (Table 2). On the other hand, the Omicron
396variant displayed the highest free energy with a value of −142.6
397± 31.4 kcal mol−1. This is mostly due to the introduction of
398several charged residues with favorable interactions making the
399ΔEElec energy the key driving factor in the binding process of
400RBD with ACE2. This is the case of the Alpha variant
401(N501Y), the Beta variant (E484K and N501Y), the Gamma
402variant (E484K and N501Y), the Delta variant (L452R and

Table 2. Summary of the Average Energy Terms ΔEvdw, ΔEElec, ΔEPolar, ΔEApolar, and ΔGbind of the Six Di!erent ACE2−RBD
Complexes (WT, Alpha, Beta, Gamma, Delta, and Omicron)a

binding energy components (kcal mol−1)

ACE2−RBD complex ΔEvdw ΔEElec ΔEPolar ΔEApolar ΔGbind

WT −77.3 ± 6.3 −78.3 ± 5.2 114.1 ± 33.0 −10.0 ± 0.9 −51.5 ± 32.0
Alpha −68.7 ± 15.1 −80.3 ± 12.2 85.6 ± 41.7 −8.5 ± 2.0 −72.0 ± 32.9
Beta −77.5 ± 6.0 −96.2 ± 4.4 67.7 ± 27.9 −9.1 ± 0.9 −112.3 ± 27.6
Gamma −75.7 ± 5.6 −96.2 ± 5.4 78.2 ± 31.1 −9.3 ± 0.9 −103.1 ± 29.3
Delta −77.1 ± 5.4 −121.5 ± 5.4 108.6 ± 35.2 −10.0 ± 0.9 −100.0 ± 33.8
Omicron −77.8 ± 5.3 −187.4 ± 5.4 129.3 ± 32.8 −10.3 ± 0.9 −142.6 ± 30.4

aAll computed energies are expressed as mean ± standard deviation.
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403 T478K), and the Omicron variant (N440K, T478K, Q493R,
404 Q498R, and N501Y). It can be easily proven with the
405 increasing trend of ΔEElec values of each system reaching −78.3
406 ± 5.2, −80.3 ± 12.2, −96.2 ± 4.4, −143.6 ± 6.1, −121.5 ± 5.4,
407 and −187.4 ± 5.4 kcal mol−1 for the WT, Alpha, Beta, Gamma,
408 Delta, and Omicron variants, respectively. As for the ΔEvdw,
409 ΔEPolar, and ΔEApolar energy terms, they all seem to be very
410 similar for all systems with no significant changes. The binding
411 free energy of the constructed Omicron variant and the
412 Omicron variant’s cryo-EM structure were also examined. Very
413 similar results have been obtained for both systems, as shown
414 in Supporting Information Table S3. For the Omicron variant
415 model and the resolved Omicron variant structures,
416 respectively, the results showed ΔGbind values of −144.8 28.0
417 and −142.6 30.4 kcal mol−1. Therefore, these results confirm
418 the reliability of our method of analysis.
419 Then, we carried out our study with a per-residue

f4 420 decomposition energy comparison analysis (Figure 4). To
421 further ensure the accuracy of our findings, we examined the
422 two systems and applied the same protocol for the 7T9L
423 Omicron variant and the Omicron model variant structures
424 (Supporting Information Figure S11). First, we verified that
425 only RBM residues that are within 6 Å of the ACE2 binding
426 region are examined because these are the essential amino
427 acids that play a role in the RBD−ACE2 interaction. The same
428 analysis was also applied in our previously published paper,155
429 where 8 hot spots were identified (K417, L455, F456, F486,
430 Y489, T500, N501, and Y505) on the WT RBM. Thus, we

431extended this analysis on the mutated complexes we built for
432the five variants of the RBD to determine whether the WT
433RBM residues are remaining hot spots on the five variants
434under study as well as to detect new hot spots brought on by
435the insertion of the mutations.
436Among the residues (K417, L455, F456, F486, Y489, T500,
437N501, and Y505) that have been detected as hot spots on the
438WT RBD, five of them (L455, F456, F486, Y489, and T500)
439were observed to remain key hot spots on the five variants
440(Alpha, Beta, Gamma, Delta, and Omicron) (Supporting
441Information Figure S10). Evidently, the same analysis was
442performed on the cryo-EM Omicron variant and the
443constructed Omicron variant structures, where both systems
444displayed identical results (Supporting Information Figure
445S12). Moreover, these residues are conserved in all variants of
446concern. Residue L455 forms intermolecular van der Waals
447interactions and polar contacts with ACE2 residues D30 and
448H34, respectively. On the other hand, residues F456, F486 and
449Y489 are inserted in a hydrophobic pocket on the right edge of
450the RBM region, which is formed by residues T27, F28, L79,
451and M82. Thus, the presence of aromatic residues in the
452pocket may provide additional binding force via π-stacking
453interactions. For instance, F456−T27, F486−L79, and Y498−
454F28 interact through hydrophobic interactions. Residue F486
455forms an additional interaction through a π−π stacking with
456residue Y83, while Y489 forms a HB with Y83. Thus, L455,
457F456, F486, Y489, and T500 can be considered crucial amino

Figure 4. Bar plots of the free energy component of the RBM hot spots in kcal mol−1. Mutated residues are colored according to the variant color
(dark blue for the WT system, green for the Alpha variant, cyan for the Beta variant, pink for the Gamma variant, yellow for the Delta variant, and
orange for the Omicron variant). Hot spot residues are considered when their decomposition energy is equal to or greater than −1 kcal mol−1. All
computed free energy components are displayed with error bars.
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458 acids that have been conserved in all RBD variants, with the
459 key role of maintaining tight binding with ACE2.

f5 460 As shown in Figure 5, the Delta mutations T452R and
461 T478K were also represented as they are located close to the
462 key unchanged hot spots of the RBM. However, very weak to
463 no interaction was made between these residues and the ACE2
464 binding region. L452R and T478K are located at a distance
465 above 6 Å of the ACE2 binding surface. Moreover, L452R is
466 facing the opposite side of the RBM region, while T478K is
467 mainly exposed to the solvent and too far from ACE2 residue
468 E87 (∼15 Å), which makes it di!cult to maintain steady
469 interactions with ACE2. Both T478K and L452R roles are still
470 uncertain. We can speculate that both types of mutations can
471 improve RBM contacts with the negatively charged and
472 hydrophilic ACE2 interface by making the RBD more
473 positively charged and hydrophilic. However, as stated
474 previously, T478K cannot interact with any ACE2 residues
475 due to its constant exposure to the solvent and great distance
476 from the ACE2 binding surface. On the other hand, T478K
477 can play an important role in the trimeric conformation of the
478 spike protein, where the introduction of a positive mutated
479 residue, a lysine (K), might tighten the RBD interactions to
480 reinforce the closed/inactive state. The L452R mutation is still
481 debated in several studies66,156 since it does not play a crucial
482 role in the interaction with ACE2. However, a paper by Forest-
483 Nault and co-workers157 suggests that the L452R mutation
484 abrogates a hydrophobic patch formed by residues L452, L492,
485 and F490. The loss of this patch could impact the stability of
486 the RBD and possibly its complexation with ACE2, where

487faster association and dissociation of the RBD have been
488observed.157
489New hot spots have also been detected on the RBM surface
490due to the introduction of several mutations in each variant.
491The N501Y mutation is common to the Alpha, Beta, Gamma,
492and Omicron variants, indicating this mutation confers strong
493advantages to the SARS-CoV-2 virus. As shown in Figure 4,
494N501 residue has its binding free energy increased from −1.41
495kcal mol−1 in the WT system or from −1.72 kcal mol−1 in the
496Delta variant to −3.37, −3.88, −3.58, and −3.97 kcal mol−1 in
497the Alpha, Beta, Gamma, and Omicron variants, respectively.
498In the crystallographic structure of WT RBD−ACE2 complex,
499N501 residue is known to interact with residue Y41 through a
500HB. It is also surrounded by the K353 hydrophobic alkyl chain
501and the Y41 benzene ring (Figure 5). The phenol group on the
502Y501 side chain in the N501Y mutant can interact through a
503cation−π interaction with the amine group of the K353 side
504chain and form a π−π stacking interaction with residue Y41.
505The higher binding a!nity of the N501Y mutant with ACE2 is
506attributed to these additional stable intermolecular π-
507interactions with K353 and Y41 (Figure 5). Our results are
508also in agreement with other studies.30,31 Thus, we can suggest
509that the N501Y mutation is responsible for improving the
510binding a!nity of the RBD−ACE2 complex, which is directly
511linked to the enhanced transmissibility of the virus.158 On the
512other hand, N501Y has been proven to have little e"ect on the
513neutralization of antibodies.159
514Among the Omicron mutations, residue Q498R showed a
515high contributing energy (−8.49 kcal mol−1),160 which may be
516due to its interaction with residue D38 through the formation

Figure 5. (A) Representation of the conserved key hot spots of the RBM (L455, F456, F486, and Y489) and their interaction with the ACE2
residues within a 6 Å distance. Mutated residues L452R and T478K were also represented to show their absence of interaction with the ACE2
binding region. (B) Representation of the new key hot spots of the RBM (N501Y and Q498R), the conserved T500 hot spot, and their interaction
with the ACE2 residues within a 6 Å distance. Mutated residues N440K and Y505H were also represented to show their weak or absent interaction
with the ACE2 binding region. (C) Representation of the new positive and negative key hot spots of the RBM (E484K, E484A and K417N/T), the
mutated Q493R residue, and their interaction with the ACE2 residues within a 6 Å distance. Mutated residues are specified with a red star.
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517 of an SB (Figure 5). Y505H also had its contribution energy
518 decreased (−1.26 kcal mol−1).160 The Omicron Y505H
519 mutation causes the hydrogen bonding connections between
520 WT RBD Y505 and ACE2 E37 and R393 to be disrupted,
521 which might explain its lower decomposition energy (Figure
522 4). As for N440K, the location of the mutated residue is too far
523 (∼15−19 Å) from ACE2 residue E329 to form an SB. It is also
524 often exposed to the solvent and cannot interact correctly with
525 the ACE2 interface region. However, like T478K, it might play
526 a role in making the trimeric form of the spike protein stronger
527 by enhancing the interaction of the neighboring RBDs.
528 E484 is also a shared mutation between several variants
529 (Beta, Gamma, and Omicron) and a hallmark of numerous
530 SARS-CoV-2 lineages. E484 is drastically mutated to a
531 positively charged residue in the Beta and Gamma variants
532 as a lysine (K). However, E484 is altered to an alanine (A) in
533 the Omicron variant. These findings demonstrate E484’s
534 intricate influence and variety of behaviors. As a result, it is not
535 surprising that variants with this mutation have high trans-
536 missibility as well as a high rate of antibody escape.161 E484 is
537 positioned on a highly flexible loop of the RBM region. In prior
538 research155 as well on other published papers,150,162−164 we
539 discovered that E484 had extremely positive decomposition
540 energy, as shown in Figure 4 (15.74 kcal mol−1) and was
541 classified as an unfavorable hot spot for the interaction with
542 ACE2. The Alpha (14.22 kcal mol−1) and Delta (14.69 kcal
543 mol−1) variants still show the unfavorable tendency of E484
544 (Figure 4). This is primarily due to E484’s proximity to
545 negatively charged ACE2 residues like E35 and E75 (Figure 5).
546 The E484K mutation, on the other hand, had a completely
547 di!erent e!ect, as it not only changed the nature of the residue,
548 but also rendered E484K (−12.96 and −12.98 kcal mol−1 for
549 the Beta and Gamma variants, respectively) a major positive
550 and contributing hot spot for ACE2 binding. As shown in
551 Table 1, the Beta and Gamma variants free energies increased
552 significantly compared to the WT strain. This is consequently
553 due to the important increase of the ΔEElec energies. Thus,
554 E484K is able to bind E75 by forming a SB and using the
555 flexible loop to create a more suitable environment (Figure 5).
556 Both the Beta and Gamma versions carry the same E484K
557 mutation, and particular attention has been given to these
558 specific residue alterations. In fact, the E484K mutation may
559 have a stronger transmissibility than the original strain.161
560 Additionally, it revealed a reduction in the neutralization
561 activity of some tested antibodies, which could a!ect how
562 e!ective the existing vaccines are.5,161,165 As a result, our

563findings indicated that the E484K mutation may enhance the
564RBD−ACE2 complex’s binding a"nity through more favor-
565able electrostatic forces and tighter interactions on the RBM
566surface. These findings suggest that the E484K mutation-
567carrying variants are more transmissible. With several antibod-
568ies, other investigations have shown decreased binding
569a"nities, which can result in an immune response escape.
570This may possibly be because the E484K mutation alters the
571electrostatic interaction on the RBD surface, decreasing the
572potency of antibodies. Alternatively, the Omicron E484A
573mutation did not have any impact on the decomposition
574energy but rather nullified it (−0.05 kcal mol−1). Thus, the
575Omicron binding free energy is primarily due to a mixture of
576additional mutations that function as a compensation for the
577E484K positive e!ect.
578Similarly, residue K417 is an important hot spot contributing
579favorably to the ACE2−RBD in the WT SARS-CoV-2 through
580its SB formation with residue D30 of ACE2 (Figure 5). K417
581has been changed to an asparagine (N) in the Beta and
582Omicron variants, while it was altered to either an asparagine
583(N) or a threonine (T) in the Gamma variant. As shown in
584Figure 4, the decomposition energies of K417 are highly
585favorable compared to the other variants. Moreover, K417 of
586the Alpha variant shows a higher (−5.76 kcal mol−1) energy
587than the one observed in the WT strain (−4.26 kcal mol−1)
588and the Delta variant (−3.27 kcal mol−1). This might be
589explained by the presence of surrounding mutations that
590impact the conformation of the RBD and the chemical
591environment of the residues. It is also clearly shown in Figure 4
592that the alteration of the lysine (K) residue considerably
593reduces the energy of the amino acid. The decomposition
594energies of K417 have dropped to −0.33, −0.25, and −0.23
595kcal mol−1, for the Beta, Gamma, and Omicron variants,
596respectively. Overall, with the use of other favorable mutations,
597variants with an altered K417 were able to maintain high
598binding a"nities with ACE2 (Table 2).151
599In comparison with the WT, the mutated residue, residue
600Q493R did show a slight increase in its decomposition energy
601when comparing the WT with Omicron. However, no
602significant changes were observed in terms of structure. As
603shown in Figure 5, in both WT and Omicron systems, Q493R
604forms a HB with ACE2 residue E35. The non-significant
605decomposition energy might be due to the non-steady bond
606formed between those pairs of residues or the constant
607intramolecular SB interaction of E35 and K31, making
608Q493R−E35 HB less present.

Table 3. Average RBD−ACE2 Non-covalent Interaction Occupancy (%) During MD Simulations (3 Trajectories for Each
System of 100 ns Each)a

HB and SB occupancy (%)

RBD ACE2 WT Alpha Beta Gamma Delta Omicron
417 D30 SB:94% SB:80.0% NI (K417N) NI (K417T) SB:98.0% NI (K417N)
484 K31 SB:58.7% SB:58.3% NI (E484K) NI (E484K) SB:59.4% NI (E484A)
484 E75 NI NI SB:19.7% (E484K) SB:33.7% (E484K) NI NI (E484A)
498 D38 NI NI NI NI NI SB:60.34% (Q498R)
498 Q42 HB:32.1% HB:32.8% HB:48.3% HB:41.07% HB:23.7% NI (Q498R)
498 K353 HB:6.1% NI NI NI HB:11.9% NI (Q498R)
505 E37 HB:71.2% HB:47.1% HB:45.9% HB:34.04% HB:56.4% NI (Y505H)
505 K353 NI NI NI NI NI HB:24.6% (Y505H)

aAll SB bonds were set to a cuto! distance of 10 Å. NI (no interactions) indicates no interaction was formed between residues or occupancies were
lower than 5%. For each pair of residues, the type of interaction is specified (SB or HB). The mutated amino acid of each pair of residues is added
between brackets under the occupancy rate.
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609 In summary, out of all mutations that define the Alpha, Beta,
610 and Gamma variants, N501Y promotes association with ACE2
611 through π-stacking and hydrogen bonding interactions, while
612 E484K contributes through electrostatic attractions, resulting
613 in a higher a!nity for the double Gamma variant and the triple
614 Beta variant. The third main mutation in the Beta and
615 Omicron variants, K417N, acts as an unfavorable residue
616 decreasing the ACE2-binding a!nity. On the other hand,
617 K417N might help control the infectivity of the di"erent
618 a"ected variants rather than focusing on tightening the ACE2
619 interaction. T478K and L452K mutations might be involved in
620 boosting the Delta variant RBD’s a!nity for ACE2 by inducing
621 conformational changes on the RBM binding regions,
622 triggering an antibody escape mechanism. As for the rest of
623 the mutations, mostly in the Omicron variant, it is crucial to
624 keep an eye on their impacts because they could be incredibly
625 important for antibody a!nities and epitope key site
626 determination. For instance, a combination of these hot
627 spots might increase the strong a!nity of the complex formed

628with ACE2 and RBD. The Delta variant might acquire new
629mutations like the N501Y or the Q498R, rendering the virus to
630bind more tightly to human cells. It is, of course, important to
631also consider other mutations that might be important in the
632immune escape strategies of SARS-CoV-2. Hence, it remains
633necessary to monitor the existing mutations and study their
634e"ects to predict new possible “gain-of-function” mutations or
635variants that might gain additional antibody resistance and
636drastic viral transmission, leading to more aggravating diseases.
6373.4. HB and SB Analysis. To analyze the interactions
638between the ACE2 and the RBD and to highlight the various
639bonds that were formed and abolished within each system, HB
640 t3and SB occupancy calculations were performed (Table 3). We
641chose to illustrate the most significant changes in each system
642by measuring HB and SB occupancy exceeding 5%.
643The first SB formed between ACE2 D30 and RBD K417 is
644significantly present in the WT (94.0%), Alpha (80.0%), and
645Delta (98.0%) systems as no mutations were introduced to the
646417 residue (Figure 5 and Table 3). However, because K417

Figure 6. (A) Bar plots of the atomic distance within the formed SB between ACE2 D30 and WT, Beta, and Gamma K417N/T. (B) Histogram of
the average SB occupancy (%) of D30-K417N/T in each system (WT, Alpha, Beta, Gamma, Delta, and Omicron). Mutations are marked with a
red star. All SB occupancies are displayed with error bars.
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647 has been altered to an asparagine (N) or a threonine (T) in the
648 remaining systems, the SB with D30 is no longer present
649 (occupancy < 5%). The average atomic distance between the
650 two residues was also calculated over the simulation time (3 ×
651 100 ns), and the results were compared with those of the WT

f6 652 and Beta systems. Figure 6 illustrates a clear distinction
653 between the two systems, with the distance between D30 and
654 K417 remaining constant with an average distance value of 4 Å,
655 while the distance in Beta is closer to 8−10 Å. As a result, we
656 can assume that the K417N/T mutation, which causes the loss
657 of one of the strongest interactions at the RBD interface, might
658 constitute a convergent strategy employed to avoid being
659 neutralized by antibodies.
660 Two other SBs are formed between residues E484−K31 and
661 K484−E75 (Table 3). When E484 is non-mutated, a stable SB
662 can be produced with ACE2 residue K31 because the two
663 residues are close to one another. HB occupancy rates of the
664 E484-K31 in the WT, Alpha, and Delta variants are 58.7, 58.3,
665 and 59.4%, respectively. Also, for the majority of the
666 simulation, another stable HB is produced between residues
667 Q493 and K31, which explains why the SB only occurs 50% of
668 the time over the trajectories. On the other hand, a newly
669 formed SB can be observed with ACE2 residue E75 when
670 E484 is changed to a lysine (K). This SB can be seen in both
671 Beta (19.7%) and Gamma (33.7%) systems. This finding
672 supports the dynamic RBD movements that allow for the
673 formation of new bonds to enhance the molecular system’s
674 a!nity. As for the Omicron variant, all bonds are abolished
675 when residue E484 is mutated to an alanine (A). E484A, being
676 a small and hydrophobic residue and mostly present in a
677 negatively charged environment, has little to no interaction
678 with the other surrounding residues of the binding interface
679 (Figure 5C and Supporting Information Figure S13A,B).
680 The ACE2 residues D38, Q42, and K353 can form three
681 distinct HB bonds with Q498, as illustrated in Table 3.
682 Interestingly, Q498 interacts with residue Q42 through an HB
683 throughout all systems (WT 32.1%, Alpha 32.8%, 48.3% Beta,
684 41.0% Gamma, and 23.7% Delta) with the exception of
685 Omicron. Another important observation is that Q498 is able
686 to form another HB with residue K353 in the WT and Delta
687 systems (Table 3 and Supporting Information Figure S35E).
688 These findings highlight how closely WT and Delta interact, as
689 well as how similar their structural conformations are. On the
690 other hand, to compensate for the loss of the HB originally
691 formed with residues K353 and Q42, the Omicron Q498R
692 mutation allowed the addition of a new SB interaction with
693 residue D38 with a steady SB occupancy rate of 60.3%
694 (Supporting Information Figure S13C).
695 Y505 did not experience any changes, apart from the
696 Omicron variant, where it is mutated to an histidine (H)
697 residue. Y505-E37 appears to be the most common HB, with
698 occupancy rates of 71.2% in WT, 47.1% in Alpha, 45.9% in
699 Beta, 34.0% in Gamma, and 56.4% in Delta (Table 3 and
700 Supporting Information Figure S13F). To overcome the loss of
701 the Y505−E37 HB in the Omicron system, the Y505H
702 mutation interacts with the ACE2 K353 residue with a stable
703 HB occupancy rate of 24.6% (Supporting Information Figure
704 S13G).
705 A variety of computational studies have been conducted and
706 continue to be performed, comparing the a!nities of SARS-
707 CoV-2 variants of concern with the ACE2 receptor. Several
708 methods, such as MM-PBSA or MM-GBSA,80,149−154 FEP,166
709 and neural network models,167 were applied in this research.

710These computational methods have made it possible to
711compare various variants of concern and predict future
712mutations, as seen in several neural network models.167
713Nevertheless, despite the advances in this research, none
714have examined the precise pathogenic circulating variants of
715concern (WT, Alpha, Beta, Gamma, Delta, and Omicron) with
716the same structural details using the same approach for
717compatibility and reproducibility purposes, which makes our
718study distinctive. In addition, our findings are consistent with
719experimental data, providing further validation of our
720computational approach and increasing confidence in our
721results.4,98,99,103 Furthermore, it is important to note that while
722some studies have compared some sets of variants, most of
723these did not undertake a comprehensive investigation of all
724variants of concern. Our study, on the other hand, seeks to
725close the gap by analyzing all the current variants of concern to
726have a better understanding of the interaction between ACE2
727and RBD. When compared to other studies, our study revealed
728a comparable trend in a!nity and residue decomposition
729energies. Our research could help in the development of new
730inhibitors by identifying the binding sites for antibodies that
731can assist in the prevention of the interaction between ACE2
732and RBD. As a result, our study provides a critical
733understanding of the relationship between SARS-CoV-2
734variants of concern and the ACE2 receptor, which may aid
735in the development of strategies to prevent COVID-19.
736In summary, our results demonstrate the newly formed HB
737and SB interactions resulting from various mutations and being
738introduced at critical hot spots of the RBD interface. Most of
739the variations were seen in the RBD binding surface residues
740K417N/T, E484K/A, Q498R, N501Y, and Y505H. It also
741provides information on the selection of mutations for which
742SARS-CoV-2 inquired, primarily to increase its a!nity for the
743ACE2 protein and avoid being eliminated by RBD-targeted
744antibodies.

4. CONCLUSIONS
745In this work, we studied the impact of the various mutations of
746the SARS-CoV-2 RBD WT, Alpha, Beta, Gamma, Delta, and
747Omicron systems and their a!nities with the ACE2 protein.
748This is the first analysis to overlook all variants and their e"ects
749with an identical combination of di"erent computational
750methods. Molecular modeling enabled the construction of
751highly similar molecular models of the di"erent RBD−ACE2
752systems that fully comply with crystallographic structures. By
753maintaining the same protocol throughout this study, we were
754able to ensure the clarity of our work and the reliability of our
755findings. As a result, even though we were aware that the
756Omicron model structure would be di!cult to accurately
757model, it contains most of the known mutations in the SARS-
758CoV-2 virus. Yet, by constructing an Omicron model structure,
759we were able to confirm the consistency of our approach. In
760fact, it has been demonstrated that the Omicron model and the
761resolved cryo-EM Omicron variant structures give results that
762are very consistent across all the di"erent analyses that we
763performed. MD simulation results showed the stability of all
764systems and pointed out flexible regions on both proteins
765through rmsd and RMSF analyses. The results from the MM-
766PBSA analysis indicated new hot spots playing crucial roles in
767enhancing RBD a!nity with ACE2. It also showed the impact
768of the di"erent mutated regions and their ways of increasing
769the spike protein a!nity for ACE2 and mainly escaping RBD-
770targeted neutralizing antibodies. K417N/T SB has been
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771 observed to be abolished when mutated to an asparagine (N)
772 or a threonine (T) residue. The L452R residue is not involved
773 in any interaction; however, it is believed that its mutation is
774 involved in the complex association and dissociation rates.
775 E484K/A mutations are also involved in the formation of a
776 steadier SB with residue E75 when mutated to a lysine (K) in
777 the Beta and Gamma variants and show no interaction when
778 mutated to an alanine (A) in the Omicron variant. The Q498R
779 mutation is involved in the creation of a new SB with residue
780 D38, one of the numerous newly formed bonds in the
781 Omicron variant. The N501Y mutation, which is present in
782 nearly all variants, interacts quite strongly with ACE2 residues
783 through hydrophobic interactions, which increase almost more
784 than twice the decomposition energy of the originally
785 unchanged residue. Therefore, it acts as a crucial hot spot in
786 the mutated ACE2−RBD complex. The Y505H mutation in
787 the Omicron variant shows the abolishment of Y505−R393
788 and Y505−E37 HB in the rest of the systems and its
789 compensation with the formation of a more dominant
790 interaction with ACE2 residue K353.
791 Overall, our results demonstrate a strong connection
792 between the computed binding free energies and decom-
793 position energy trends of each variant and its viral e!ect. It also
794 gives a general view of all variants of concern and their e!ects
795 at a molecular level, focusing on a variety of key mutations that
796 becoming the new hot spots of the RBD and might be
797 responsible for additional e!ects in new variants if combined
798 together.
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Chapter 5 
 

Targeting PIF partners for a DS prenatal 
treatment 
 
The focus of this chapter is a thorough analysis of the PIF peptide, including the study of its 
functions, origin, and potential protein partners. Despite being a crucial peptide in reproductive 
biology, little is known about its exact mode of action. The purpose of this chapter is to close 
this knowledge gap by thoroughly examining a variety of PIF-related topics. Therefore, a 
variety of bioinformatics methods had to be used to clarify the peptide's characteristics and 
identify its interactions with other protein targets. The findings of this study will serve as the 
foundation for the next chapter, which will explore protein-peptide interactions in greater detail 
and make use of a variety of bioinformatics methods to develop a better understanding of these 
interactions. Essentially, the main goal of this work is to further our understanding of protein-
peptide interactions by the exploration of the PIF potential protein partners and the use of the 
bioinformatics techniques that have been developed in prior chapters to examine these 
interactions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Representation of the protocol used to study PIF functions, origin, and protein partners. 
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5.1 PIF functions 
 
PIF is a multifunctional peptide that increases embryo viability and functions as a 
neuroprotective agent [67]. Here, we will focus on the importance of PIF functions, particularly 
its prenatal roles throughout pregnancy, its neuroprotective benefits, and its implications in 
cancer. 
 

5.1.1 Prenatal roles during pregnancy 
 
The PIF peptide is one of many significant peptides that the human placenta produces [67, 68]. 
PIF is observed during the first trimester of pregnancy and is expressed by both the mammalian 
embryo and placenta [68]. PIF serves as a biomarker for identifying viable pregnancies; its 
absence indicates no pregnancy [68]. PIF increases endometrial embryo receptivity and the 
window for implantation, promotes embryo adhesion, controls apoptosis, and stimulates 
trophoblast invasion. Placentation and pregnancy outcomes are significantly influenced by 
trophoblast invasion, and PIF controls maternal immunological tolerance [69]. 
 

5.1.2 PIF neuroprotective effects 
 

PIF function as a protective factor and its significant impact on postnatal therapy have been 
suggested by a variety of studies [67-71]. By reducing oxidative stress and protein misfolding, 
PIF aids in efficient embryonic-maternal communication and completes essential trophic and 
neuroprotective functions [72]. Additionally, PIF promotes brain regeneration via local and 
systemic effects and inhibits severe paralysis controlling oxidative stress and protein 
misfolding [72]. PIF also enhances the expression of genes related to axonogenesis, signal 
transduction, and neuronal differentiation [73]. The peptide can target actins and the neuronal 
protein tubulin, both of which are crucial for visceral and muscular development, suggesting 
that it may also be involved in pathways for postnatal nervous system repair [73]. 
 

5.1.3 PIF expression in cancer  
 
PIF controls cell proliferation [69] and apoptosis [73], two processes that are crucial for the 
progression of cancer. PIF induces apoptosis and cell cycle arrest in many cancer cell types [74, 
75]. Moreover, PIF therapy controls cell migration and invasion while preventing tumor growth 
and invasion. PIF also promotes tumor cell apoptosis through Caspase 3 activation and Bcl-2 
downregulation [76]. 
 
5.1.4 PIF therapeutic uses 
 
PIF has been substantially investigated as a possible therapeutic agent in both reproductive and 
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non-reproductive medical contexts due to its broad activity, which includes autoimmune, 
neuroprotective, and anti-apoptotic actions [67]. A benefit of PIF is its readily replicated 
biochemical structure. Another would be its ability to cross the blood-brain barrier in intact 
form, which is critical to achieve its activity [77]. PIF has been investigated as a therapeutic 
target for infertility in reproductive contexts. The sPIF (synthetic PIF) 
(MVRIKPGSANKPSDD) which is a synthetic analogue of PIF and commonly used 
abbreviation in scientific papers [67-77], protects against fetal loss - likely through modulation 
of inflammatory response in murine models [78]. Another study [79] showed that sPIF acts as 
a rescue factor in recurrent pregnancy loss patients and limits adverse agents during pregnancy. 
This was the first study to sponsor trials to use sPIF for treatment of non-pregnant immune 
disorders and schedule it in the US Food and Drug Administration (FDA) mandated toxicology 
studies. Additionally, PIF kept demonstrating its benefits in clinically relevant models in the 
treatment of various immunological and transplantation disorders due to its immune regulatory 
and regeneration actions [69, 77, 80-84]. These investigations set the path for a FAST-TRACK 
Phase I study in patients with autoimmune diseases to be completed successfully and for the 
FDA to grant orphan medicine designation status. Phase I research revealed that PIF is risk-
free and free of toxicity or harmful side effects, paving the way for Phase II clinical studies 
(NCT02239562). Numerous other non-reproductive scenarios have also been used to study PIF. 
PIF possesses special immune-modulatory qualities that can be used to prevent autoimmune 
diseases like multiple sclerosis [85] and juvenile diabetes mellitus [80], as well as the 
emergence of graft-versus-host disease after semi-allogeneic transplant in pre-clinical models 
[86]. In individuals with neurodegeneration, PIF also helps to revert paralysis and stimulates 
the formation of new neurons [72].  
 

5.1.5 PIF as a prenatal treatment for DS  
 

Trisomy 21, often known as Down Syndrome (DS), is a genetic condition carried on by an 
extra copy of chromosome 21 [87]. Reduced cognitive function, developmental problems, 
congenital heart defects, distinct facial features, and other comorbidities are a few of the clinical 
symptoms of this condition [87]. Additionally, poor muscle tone is a characteristic of babies 
with DS that is almost always present [87]. Seizures and dementia-like symptoms as they age 
are among the many neurodevelopmental issues that DS patients frequently experience [87]. 
 
As for its evaluation, DS is diagnosed during pregnancy using a variety of methods, such as 
ultrasonography, amniocentesis, and chorionic villus sampling [87]. There are non-invasive 
prenatal diagnostic methods that can also identify DS using fetal cells or cell-free fetal DNA 
in maternal serum or blood [87]. 
 
Despite the lack of specific treatment for DS, persons with this condition can benefit from 
physical and developmental therapies [88]. Clinical research has revealed that dietary 
supplements and medications are either dangerous or ineffective despite their development [89]. 
A recent study revealed the possibility of GnRH injection therapy to improve DS patients' 
cognitive ability [90]. However, it is crucial to remember that while DS therapy has advanced 
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significantly, it still does not fully address all the additional health issues that persons with DS 
may experience. As a result, DS has a variety of symptoms that necessitate lifelong care, and 
ongoing research is being done to enhance therapies and treatments. Specific to this study, sPIF 
testing and evaluation as a prenatal treatment in “DS in mice” models also demonstrated great 
results and opened a new suggestion for the use of PIF as a therapeutic agent for chromosomally 
affected embryos with DS in early stages of pregnancy. Hence, we assessed the PIF peptide as 
a prospective and potential prenatal treatment for DS with the aim of reducing the symptoms 
after birth. Therefore, PIF has been the subject of numerous bioinformatics studies aimed at 
exploring its potential protein targets and mode of action.  
 

5.2 PIF discovery, origin, and structure 
 

PIF plays a crucial role in early fetal and maternal signaling as early as the two-cell stage in 
mice, the four-cell stage in humans, and the six-cell stage in bovines [69, 80, 91]. By using a 
lymphocyte platelet-binding test, PIF was discovered in 1994 by Barnea where its primary role 
was to be an early biomarker of pregnancy [92]. The lymphocyte platelet-binding assay was 
performed in pregnant women and non-pregnant women to examine and compare the immune 
responses and proteins. Consequently, the study led to the discovery of PIF [92]. In order to 
determine whether the proteins were unique to female reproductive organs, the experiment also 
compared immune responses with those of men [92]. The preliminary study’s findings 
demonstrated that PIF was only expressed in pregnant women [92]. PIF was also discovered 
on the fourth day following embryo transfer among women who had successfully undergone 
in vitro fertilization, indicating that it played a part in determining the viability of the embryo. 
The AA sequence of the native peptide was identified using MALDI-TOF (Matrix Assisted 
Laser Desorption Ionisation/Time Of Flight), Edman degradation, and HPLC (High 
Performance Liquid Chromatography) confirmation; it was labeled as PIF and consisted of 
linear peptides with a length of 9 (PIF9) (MVRIKPGSA) to 15 AA (PIF15) (MVRIKPGSA-
MVRIKPGSANKPSDD) [92]. Moreover, after the last decade, a synthetic version of the 
peptide (sPIF) was generated and has the same biological activity as the native PIF [67]. With 
the availability of the sPIF and the fact that it is easily generated due to its simple linear 
structure, it obviates the need of using the native peptide in either pre-clinical or clinical studies. 
Interestingly, when both peptides are compared to each other, the shorter peptide is also 
biologically active in vitro [69]. Both PIF9 and PIF15 exerted a similar significant inhibitory 
effect in human peripheral blood mononuclear cells proliferation, an in vitro study where 
regulatory effects of PIF on global immune response were tested [69]. 
The genomic origin of PIF is still undetermined compared to the large information about its 
functions. PIF has undergone multiple purification and characterization processes, however 
efforts to discover its gene have so far been ineffective [71]. We do know that the peptide 
sequence is novel, and not homologous to any known protein. Some studies have suggested 
that the 2-12AA (VRIKPGSANKP) region shares similarity with a significant malarial CSP 
(Circumsporozite protein/plasmodium falciparum) that is linked to pathogenic invasion [92, 
93]. However, we do believe that these results are aberrant since a placental peptide cannot be 
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obtained from a parasite, let alone perform the same functions. In this manuscript, we do 
provide directions and some perspectives concerning the origin of PIF. Our results also need 
experimental analysis to further validate our conclusions. Under the worst-case scenarios, we 
believe that it is possible that the gene containing the PIF sequence resides within a highly 
complex and structured repetitive chromosomal region that has not yet been sequenced and 
annotated in the human genome.  
 
The structure of PIF is currently under investigation. Several studies utilizing in silico tools 
suggest that the peptide sequence confers PIF either a simple linear structure or an alpha-helix 
folding [94]. However, more in-depth studies have been carried out in our lab, combining 
different bioinformatics tools like MD simulations, where PIF stable structure takes the form 
of a beta sheet motif. 
 
 

5.3 PIF protein targets  
 
Identifying PIF targets is still a challenging task with the little information available on the 
peptide origin and structure. A few studies [95], majorly conducted by Barnea [72, 73, 96] , 
have tried to elucidate potential protein targets able to interact with PIF and induce an effect 
through different modes of interactions. Here, we present some of the potential protein partners 
of PIF, including those that were chosen for further studies as well as those that were excluded 
due to feasibility constraints. 
 

5.3.1 Insulin-Degrading Enzyme (IDE) 
 
Using the ProtoArray method (9000 proteins), Barnea and his group discovered that IDE and 
two transcript variants (1 and 3) of the K+ voltage-gated channel, shaker-subfamily, beta1 
(KCNAB1) gene were the top two candidates for protein-peptide interactions with PIF [73]. 
Given its activities in degrading a variety of peptides as well as its affiliations to numerous 
neurodegenerative diseases including Alzheimer’s, IDE stood out among these proteins as the 
most promising target to study. IDE, commonly referred to as Insulysin, is a zinc-based 
metalloprotease of the M16 family [97-100]. In vitro insulin degradation and high-affinity 
insulin binding are mostly carried out by IDE, which was the enzyme’s main function when it 
was first discovered. IDE is crucial in the prevention of type 2 diabetes [101-104] as well as 
many other illnesses including Alzheimer’s [105-111]. It is known that IDE plays a crucial role 
in the clearance of Alzheimer’s amyloid-β (Aβ), and other peptides including insulin, glucagon 
and amylin [112-117]. Therefore, IDE is considered to be among the most significant enzymes 
in the human body due to these features. Additionally, as IDE is directly linked to these 
illnesses, it offers a promising therapeutic target for the development of effective regulators 
[118, 119]. The large cavity (15,000 A3) of IDE, where peptides are degraded based on their 
size, charge distribution, and amyloidogenic potential, is a crucial component and feature of 
the protein [112-117]. However, IDE remains a challenging target as few information about its 
mechanism is known until this day. Nonetheless, being a strategic protein involved in 
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neurodegenerative diseases, where peptides trigger its function and a potential partner to PIF 
according to research [73, 96, 120], encouraged us to study its mechanism. Plus, IDE 
pleiotropic action makes it an interesting therapeutic target for both type 2 diabetes and 
Alzheimer’s disease through genetic linkage. IDE inhibitors can act as a therapeutic approach 
for the treatment of diabetes while effective IDE activators can be used for Alzheimer’s disease. 
In fact, a study by Maianti et al. [119] generated a selective anti-diabetic IDE inhibitor called 
6bk that was tested in vivro with the goal of increasing the circulation of insulin and decreasing 
its degradation. 
 
Since IDE is linked to both diseases, its inhibition may raise a potential issue of an adverse 
effect which would prevent IDE to cleave misfolded and amyloidogenic peptides, like Aβ. 
There is no clear answer on which specific strategy should be used on IDE. The key is to 
develop potent and selective IDE modulators that can be used for therapies of both diseases 
while evaluating their long-term effects on IDE to avoid these adverse effects. Therefore, our 
goal was to first understand IDE mechanism through MD simulations and confirm 
experimentally PIF through western blot and immunoprecipitation analysis to verify the direct 
association between PIF and IDE. Later, we further analyse their interaction with different 
docking tools. 
 
5.3.2 Protein Disulfide-Isomerase (PDI) 
 
In 2014, an article by Barnea et al. detailed the use of a microarray assay analysis with both 
cultured murine and equine embryos [72]. Complementary isolation methods in murine embryo 
extracts were followed using Liquid Chromatography tandem Mass Spectrometry 
(LC/MS/MS) and immunohistochemistry to identify protein-protein interactions involving PIF. 
These methods revealed that PDI and HSP are the PIF major protein interacting groups [72]. 
One of the most high-ranking group protein’s interacting with PIF found by the Barnea group 
was PDI (PDI, PDIA4, PDIA6-like) [72]. PDI was the first protein folding catalyst discovered 
and is expressed in almost all mammalian tissues [121] and it has two main biological functions 
[95]. With its ability to reduce, oxidize, and isomerize disulfide bonds, PDI functions as a 
dithiol-disulfide oxidoreductase through its antioxidant thioredoxin domain (TRX) [121]. In 
addition to its redox activity, PDI can function as a chaperone both in vivo and in vitro 
conditions [121]. The TRX domain of PDI has been proven to be implicated in oocyte 
maturation, gamete fusion, monospermy, and proliferation [122], which delays the death of 
inner cell masses. However, little is known about PDI partners. For example, the 16F16 
molecule has been shown to be neuroprotective in cellular and animal models of inflammatory 
diseases, such as multiple sclerosis, and to inhibit the production of pro-inflammatory 
cytokines and chemokines, such as IL-6 (Interleukin 6) and IL-8 (Interleukin 8) [123]. A 
Barnea study performed in 2017 used docking to show that PIF could interact close to the 
potential PDI binding site of the 16F16 inhibitor [123]. Other protein partners of PDI have been 
studied such as ubiquilin [124] and ERO1 (Endoplasmic Reticulum Oxidoreductase 1) [125]. 
However, no confirmed PDI-protein or PDI-peptide crystallographic complex is available to 
this day. PDI also has the particularity of binding CD4 (cluster of differentiation 4) [126]. In 
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multiple studies directed by Barnea, it has been proven that PIF targets and interacts with 
immune cells (CD4/CD8 (cluster of differentiation 8)) and attenuates the severity of several T 
cell driven autoimmune diseases in animal models [92, 127]. However, the methods through 
which PIF controls immunological responses and plays a part in maternal circulation are still 
poorly understood. On the other hand, we do know that during the maternal immune tolerance 
phase, several antigenic peptides are presented to class I MHC (Major Histocompatibility 
Complex) molecules through CD4 binding [128]. We speculate that the PIF sequence’s 
similarity with the malarial CSP and supportive findings about its interaction with an oxidative 
stress inhibiting protein, such as PDI, could trigger an immune response as seen during 
pregnancy and cancer. However, since little information is provided about this protein target, 
we decided to focus on other proteins like IDE.  
 
5.3.3 Heat Sock Protein (HSP) 
 
The same study claimed that PIF binds protective HSP proteins (HSP70 and HSP90) [46]. HSP 
proteins are well known ubiquitously expressed molecular systems [129]. They are crucial 
components of the cell’s machinery for folding proteins, serving as chaperones, and assisting 
in shielding cells from the damaging effects of physiological stresses [129]. Both HSP70 and 
HSP90 act as protective protein chaperones and are involved in protein folding, intracellular 
transport and oxidative stress [129]. They are also investigated as anti-cancer drugs due to their 
role in apoptosis and stabilization of mutant proteins [130, 131]. HSP proteins are essential 
modulators of neurotoxicity in Alzheimer’s, Parkinson, and Huntington’s diseases because 
they prevent the aggregation of unfolded and misfolded polypeptides, aid in refolding, and 
contribute to the solubilization of stable protein aggregates [129]. The HSP also shares a similar 
overall structure [132] and presents a peptide binding domain that recognizes a wide range of 
unrelated substrates [132]. However, we have little information about the peptide binding 
mechanism, where to this day, only one crystal structure representing an HPS70-peptide 
interaction has been resolved [133]. 
 
Given this information, HSP proteins could be promising targets to regulate increased 
conditions of oxidative stress in DS. However, the lack of structural studies and details about 
the binding mode of peptides, and the lack of peptide specificity from HSP, can be challenging. 
 
5.3.4 Myosin Heavy Chain 10 (MYH10) 
 
In order to understand the molecular mechanisms by which PIF promotes trophoblast invasion, 
another study was conducted by Yang et al. [95] to identify and create a profile of the proteins 
that interact with PIF. In this study, inactive PIF and biotin-labeled sPIF were 
immunoprecipitated with cytoplasmic proteins. MS and isobaric tags for relative and absolute 
quantification were used to evaluate the protein profiles. The interactions between PIF and 
MYH10 were evaluated using western blot and immunoprecipitation studies which confirmed 
their interaction. These results are also concordant with PIF known functions as the interaction 
between PIF and MYH10 significantly enhanced the invasion and migration capabilities of 
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HTR(Human Throphoblast)-8 trophoblast cells. However, little is known about the potential 
partners of MYH10 which makes it difficult to target a specific binding site. Additionally, 
MYH10 being composed of 1,976AA made the study not feasible, as it will require important 
computational resources to study PIF-MYH10 interaction through MD simulations. 
 
 
5.3.5 Dual specificity tyrosine-(Y)-phosphorylation-Regulated Kinase 
1A (DYRK1A) 
 
Trisomy 21, also known as DS, is caused by an extra copy of chromosome 21 [86]. Its 
prevalence makes DS the most prevalent hereditary developmental condition, affecting 1 in 
800 live births. All people with DS share intellectual disability and an early beginning of 
Alzheimer’s disease, notwithstanding the complexity and variability of its clinical traits [86]. 
People with DS have a delayed cognitive development and altered nervous system 
development, which results in mental retardation and several daily life complications. The 
understanding of how the additional copy of chromosome 21 affects the DS phenotype has 
seen significant progress in the last decade. One of the most studied proteins in DS is DYRK1A, 
due to several of its important roles in neurodevelopment [134]. Due to its location on human 
chromosome 21’s DS crucial area, the human DYRK1A gene was recognized as a potential 
gene for the condition [134]. Moreover, overexpression of DYRK1A has also been associated 
with neurodegenerative diseases [134]. Similarly, DYRK1A loss of function is also associated 
with neurodevelopmental defects and mental retardation [134]. Like most protein kinases, 
DYRK1A can adopt distinct active and inactive states [134, 135]. These states are regulated by 
reversible phosphorylation of conserved serine, threonine or tyrosine residues in the centrally 
located activation loop which is also positioned in the catalytic domain [134, 135]. The 
phosphorylation of the activation loop is essential to stabilize a conformation with a suitably 
positioned substrate binding site [135]. Several proteins regulate DYRK1A through 
phosphorylation events [136, 137]. Also, much progress has been made in the discovery of 
efficient inhibitors of DYRK1A, such as synthetic and natural compounds, again in the last 
decade [138]. Moreover, multiple crystal structures of DYRK1A complexed with small 
inhibitory compounds [139] are available on the PDB [55]. Although, it is important to mention 
that identifying an inhibitor that specifically or preferentially inhibits DYRK1A, a kinase, 
remains a challenge. So far, scientific research has focused on the discovery of small 
compounds to inhibit DYRK1A [139]. It was not until recently, in a study by Soundararajan 
M., et al. [135], that a natural peptide serving as a DYRK1A substrate and having a significant 
level of sequence homology with PIF was discovered [135]. Given this information, our study, 
combined with experimental results, focused on the discovery of the binding mode of PIF with 
DYRK1A which may also be a substrate of this kinase. 
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Chapter 6 
 

Protein-peptide interaction: A bioinformatics 
study of IDE and DYRK1A as potential protein 
partners of PIF 
 
The focus of this chapter is on the investigation of protein-peptide interactions and the 
challenges that occur while conducting such studies. We focus on PIF-protein interactions, and 
more specifically, with its potential protein partners, IDE and DYRK1A. Here, we provide an 
overview of the current techniques for modeling protein-peptide interactions. We breakdown 
this challenge into several smaller steps, such as 1) modeling the receptor protein, 2) predicting 
the peptide binding site, and 3) sampling peptide conformations. We outline each stage's 
available tools, methods, and reported results. To further validate the potential protein partners 
of the PIF peptide, we conducted experimental analyses in collaboration with Pr. Janel's team. 
To evaluate the interaction between PIF and IDE or DYRK1A, co-immunoprecipitation 
experiments were performed. Parallelly, due to the biological significance of IDE ad complex 
structure, we also decided to explore its molecular functions through MD simulations. 
Interestingly, our results suggested that these proteins may not be the correct protein partners 
of PIF. While studying IDE, the results obtained through docking and co-immunoprecipitation 
demonstrated that PIF does not bind to IDE. As for DYRK1A, we suggested hypotheses, 
including the possibility that PIF may be binding and being phosphorylated to DYRK1A, but 
in another adjacent or further far region on the protein. In fact, DYRK1A structure contains an 
intrinsically disordered region known as PEST [140]. Due to the absence of a well-defined 
three-dimensional structure and the dynamic nature of the PEST region make the task of 
accurate peptide docking and binding site predictions unfeasible. Even though our results did 
not support the initial hypothesis of PIF binding to IDE and DYRK1A, the findings of our 
study show the critical importance of thoroughly examining and confirming protein-peptide 
interactions.  
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Figure 6. Representation of a simplified protocol to study IDE-PIF and DYRK1A-PIF interactions. 
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6.1 IDE: a potential PIF target 
 
In a protein array analysis carried out by Barnea et al. [73] in 2010, one of the top candidates 
for interacting protein-protein interactions was found to be IDE. It was the first publication to 
mention an interaction between IDE and PIF. In order to find additional PIF targets in extracts 
from 10-day-old murine embryos, the Barnea group used PIF-based affinity chromatography 
and an LC/MS/MS study in 2014. Due to the failure of both analytical methods to detect IDE, 
they turned to immunochemistry, a more accurate technique, to examine the Biotin-PIF 
positive fractions. According to the findings, out of a total of 96 protein fractions, a PIF 
interaction was only discovered in 3 of them. To identify an IDE activity, the analysis had to 
be conducted several times on specific fractions. Because of these findings, it is possible to 
hypothesize that IDE might not be PIF major protein target, and this hypothesis is supported 
by the absence of a substantial interaction between IDE and PIF. Another paper in 2018 
examined the potential connection between IDE and PIF [96]. In silico methods were used in 
the paper to demonstrate the PIF-IDE interaction mechanism.  
 
IDE being our major track as PIF most promising target, we decided to test their interactions 
in silico and in vitro, respectively. 
 

6.2 In silico and in vitro analyses of IDE-PIF interaction 
 
6.2.1 Exploring IDE-PIF interaction through molecular docking 
 
Before establishing our protocol, we investigated the IDE binding site and the location of its 
bioactive peptides in its crypt. The homo-dimeric protein IDE was already addressed in section 
3.3.1. Each IDE monomer is composed of four structurally similar domains: domain 1 (D1: 43-
285), domain 2 (D2: 286-515), domain 3 (D3: 542-768), and domain 4. (D4: 769-1019). The 
N-terminal domains form D1 and D2 (IDE-N), while the C-terminal domains are constituted 
of D3 and D4 (IDE-C). These domains have less than 25% sequence similarity and share 
similar secondary structures. Additionally, IDE has a 26-residue linker (residues 516-541) that 
joins the IDE-N and IDE-C portions. The IDE-N and IDE-C domains interact strongly and 
bury a large surface (15,000 A3) with good shape complementarity. All four domains contribute 
to the surface of the inner chamber as IDE-N and IDE-C make extensive contact to produce an 
enclosed catalytic chamber that encloses its substrates [112-117]. Although IDE-N D1 contains 
IDE catalytic site, IDE-C is also required for the catalytic activity of IDE. Regarding substrate 
binding IDE can adopt one of two "open" or "closed" conformations. Therefore, IDE needs to 
transition between these two states in order to trigger the catalytic mechanism. Substrates are 
able to freely enter and exit the catalytic chamber in the open state. In the close state, the 
catalytic chamber is sealed, and the previously bound substrates are repositioned to facilitate 
hydrolysis. In fact, the D2 region possess an exosite (residues 336-342 and 359-363) that 
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participates in the binding of substrates and which role is to accommodate the N-terminus of 
the bound peptides. This repositioning of substrates is considered as the initial stage of peptide 
binding. Once the peptide bound to the exosite, it undergoes conformational changes. However, 
the peptides interacting with IDE exosite were partially resolved with X-ray crystallization 
[112-117]. With this understanding, we knew the exosite had to be the PIF N-terminus binding 
region and that we would need to see PIF establishing some sort of interaction with that 
particular region. 
 
Therefore, we considered two alternatives for analyzing the IDE-PIF interaction: flexible 
restricted/binding site-based docking on the IDE protein or accelerated MD simulations to 
capture the naturally occurring binding of PIF in the IDE cavity. We chose to use the quicker 
and less time-consuming first alternative because IDE mostly occurs as a homodimer and each 
monomer is 1,019AA long. However, we also need to mention that peptide-docking has its 
own limitations. As to this day, peptide-docking remains a challenging task even for short 
peptides which are highly flexible biomolecules. In fact, addressing the flexibility of peptides 
is one of the main challenges when predicting the structures of protein-peptide complexes. Due 
to their high flexibility, peptides are commonly the focus of current approaches for predicting 
complex structures. These methods typically concentrate on short- or medium-sized peptides. 
This restriction is mostly brought on by the high degree of flexibility connected to peptides. 
Another major obstacle is developing an effective scoring function for ranking potential 
binding modes. An ideal scoring function should efficiently distinguish native or near-native 
binding configurations from numerous decoys generated by sampling algorithms. 
Unfortunately, existing scoring functions are still far from achieving perfection. These 
challenges significantly hinder the application of current computational methods in peptide-
based drug discovery and development.  
 
Also, we employed a diverse range of computational methods to obtain complementary insights 
into the binding mechanisms and dynamics of PIF with IDE. For this protocol, we used several 
tools such as: Smina [38], Autodock CranckPep [33], MDockPeP2 [32], and AlphaFold2-
multimer [39]. By utilizing different software tools with distinct scoring functions, we sought 
to compare the results obtained and increase the sampling of PIF conformations. This strategy 
also enhanced the chances of capturing the correct conformation as observed by IDE-bound 
structures. Additionally, in order to assess and enhance the accuracy of the docking results, a 
redocking step was additionally performed using the Aβ peptide as a test case, allowing for an 
evaluation of the software’s performance in reproducing known binding poses and interactions. 
 
Therefore, we started the first stage of our research by using the computational tool Smina 
while we awaited further experimental confirmation of the direct interaction between IDE and 
PIF from our collaborators and simultaneously with our exploration of IDE structure. Smina is 
fork of AutoDock Vina that is customized to better support scoring function development and 
high-performance energy minimization [38]. Smina has been successfully used for peptide 
docking. We chose Smina because 1) it is faster and performs better than Autodock Vina, 2) 
possesses multiple scoring functions, and 3) it is free to use and user-friendly. We made the 
decision to perform binding site-based or restricted docking since it focuses on a predefined 
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region of the protein surface that is known or suspected to be involved in the interaction. Since 
we presumed that the exosite could be the main binding site according to the literature, it 
allowed us for a more targeted exploration providing detailed insights into the binding 
mechanism and specific residues involved. It is also a good way to compare the predicted 
binding conformations and interactions of PIF with known bound-IDE peptides.  
 
Autodock CrackPep is a specialized software specifically designed for peptide-protein docking 
[33]. It focuses on exploring potential binding sites and evaluating the interactions between 
peptides and proteins at an atomistic level. Autodock CranckPep also considers the flexibility 
of peptides by allowing the exploration of multiple conformations during the docking process. 
This software, however, is more suitable for short to medium-length peptides, as the exhaustive 
sampling of longer peptide sequences may become computationally challenging. It is important 
to note that the conformation of the peptide is required for both Smina and Autodock 
CranckPep.  
 
In the subsequent steps, MDockPeP2 and AlphaFold2-multimer were selected since they solely 
rely on sequence information. These software tools employ distinct methodologies to predict 
protein-peptide interactions, providing valuable insights into their underlying binding 
mechanisms. MDockPeP2 utilizes an efficient sampling approach, systematically generating 
and evaluating binding poses between the protein and peptide. Moreover, it employs a hybrid 
scoring function, enabling a comprehensive assessment of binding affinity and 
complementarity. However, a limitation of MDockPeP2 is the restricted AA length, as it is not 
suitable for peptides exceeding 35AA. On the other hand, AlphaFold2-multimer is a great tool 
for structure prediction, leveraging deep learning techniques and extensive training on known 
protein structures to accurately forecast their conformation and, in some instances, their 
interactions with partners. 
 
In this section, we will also discuss the limits of this protocol as well as the findings that were 
obtained. In parallel, we also investigated a direct interaction between IDE and PIF with the 
help of Pr. Janel using the co-immunoprecipitation technique. 
 
6.2.2 PIF flexible docking  
 
 
We started the analysis by gathering our inputs. The IDE structure was retrieved from the PDB 
database (PDB ID: 2JG4) [141]. Missing residues and mutations were fixed with the 
MODELLER software [28] to recover the wild-type conformation of IDE. In this case, we only 
used IDE monomer as we were only interested in IDE-PIF interaction. To simultaneously 
compare our results with the literature, we also decided to redock the Aβ peptide to insure the 
validity of our protocol. As Smina requires three-dimensional structures of both the protein and 
the ligand, we used the PEP-FOLD software [142] to predict the secondary structure of IDE 
different potential peptides. Only a fraction of the resolved Aβ conformation has been used for 
this investigation since the Aβ conformation is not entirely resolved within the IDE-Aβ 
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complex.  
 
Both the ligands and IDE structures were pre-treated according to Smina requirements and 
multiple docking scoring functions (Vina [143], Vinardo [144] and dkoes [38]) were used for 
comparison. Using multiple scoring functions in protein-peptide docking can provide a more 
comprehensive and accurate assessment of the predicted binding affinity and binding mode of 
a peptide ligand with its protein receptor. Moreover, this approach can help to identify the most 
likely binding mode and binding affinity, as well as provide insights into the strengths and 
weaknesses of different scoring functions in modeling protein-peptide interactions. 
Additionally, MGLTools [145] scripts were used to generate the correct format of IDE 
structure, as well as the fully flexible peptides files with added atom types and partial charges 
for Smina docking. We manually defined the box around the exosite region. The exosite region 
was enclosed and the box was large enough to hold the peptides. However, the peptides failed 
to bind properly (Figure 7).  
 
We obtained the same results with the additional tools we used for PIF-IDE docking (Table 1). 
AutoDock CrankpPep was unable to determine the proper orientation of Aβ, which left 
ambiguity about the PIF results. MDockPEP2 and AlphaFold2-multimer also failed to capture 
the right position and the binding conformation of PIF (Figure 1). These results highlight the 
potential limitations of docking, where the accuracy of the results rely on the IDE structure 
employed. Hence, in this case, the flexibility of IDE must be thoroughly examined to have a 
better understanding of its function as well as the peptide mode of action.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We came to the conclusion that this protocol has different challenges because: 1) the three-

Figure 7. (A) Representation of crystallized IDE bound to its substrates (Aβ (PDB:2G47), Amylin 
(PDB:2G48), Insulin (PDB:2G54), IGF-2 (PDB:3E4Z), TGFα (PDB:3E50). The exosite and the 
catalytic site are highlighted. (B) Smina, Autodock CranckPep, MDockPeP2 and AlphaFold2-multimer 
docking results.  
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dimensional structure of PIF has been modeled, however we require the resolved structure to 
guarantee the validity of our results; 2) Flexible docking can be useful in obtaining interesting 
results about the various conformations a peptide can adopt within its receptor, but it also 
generates a high number of degrees of freedom, which can be extremely challenging and a 
time-consuming process; 3) Although the N-terminus must be the initial part of the peptide to 
engage with the exosite, the binding orientation of PIF into the IDE exosite can still be 
challenging because there is no experimental evidence to support our findings; 4) Most of the 
peptides are partially resolved in the crystallographic structures and several portions are 
missing, which can also lead to uncertainty; 5) The placement of a peptide into the proper 
location with the correct conformation takes place after a number of events in a highly dynamic 
and cryptic protein such as IDE. Since molecular mechanisms like peptide binding significantly 
depend on the dynamic and functional behavior of the receptor, this final element may be one 
of the most crucial ones to take into account when studying a protein such as IDE. 
 

Docking tool Scoring function Result Limitations 
Smina Vina, Vinardo, dkoes  

 
failed 

1,3 

MDockPeP2 PepProScore (hybrid) 1 

AutoDock CrankPep Hybrid 2,3 

AlphaFold2-multimer deep learning network 1 

Table 1. Summary of the docking tools used to dock PIF with IDE and the limitations encountered for 
each one of them: 1) need prior information about the peptide binding region, 2) need prior information 
about the peptide binding region and it is time consuming, 3) accurate binding region but IDE dynamic 
behavior plays a crucial role leading the impossibility of predicting PIF correct conformation. 
 
Thus, docking may not be the optimal method for predicting the proper conformation of PIF in 
the IDE cryptic cavity. Considering that IDE is a flexible protein, docking may be one of the 
initial steps used to produce a set of solutions that need to be refined. MD simulations can then 
be used to construct a relaxed system with a peptide that can explore various conformations 
until it finds one that is stable, after which the findings can be analyzed. However, due to 
several challenges with IDE peptide partners, the time-consuming nature of the task, and the 
experimental uncertainty of IDE as a PIF protein partner which was confirmed while leading 
this study, we chose to focus instead on IDE dynamic behavior since the results from this 
particular research provided critical insights into IDE biological function and potential 
therapeutic applications.  
 

6.2.3 Experimental analysis of IDE-PIF interaction 
 
Pr. Janel's assistance allowed for the experimental investigation of IDE and PIF interaction. In 
order to demonstrate or invalidate a direct relationship between IDE and PIF, we chose to 
combine an experimental analysis. We would then be able to apply alternative techniques or 
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improve our approach in this respect. Pr. Janel's lab undertaken a co-immunoprecipitation 
technique which is a powerful technique often used to identify protein-ligands direct 
interactions. Co-immunoprecipitation concept is very simple. It works by selecting an antibody 
that targets a known protein (IDE in this case) that is believed to be a member of a larger 
complex of proteins. By targeting this known member of a complex with an antibody, it is 
possible to pull the entire protein complex out of solution and thereby identify unknown 
members of the complex. For this study, an IDE antibody was selected with the presence of 
IDE and PIF in solution. The study was conducted several times for reproductivity reasons. 
However, no IDE-PIF complex has been identified which suggests that IDE might not be a 
potential target of PIF. This result confirms in a way the difficulties encountered in targeting 
IDE in the 2014 paper of Barnea’s group [72] and in our protocol. Thus, the fractions containing 
the IDE-PIF complexes described in Barnea’s paper [72] might be the result of a high 
concentration of PIF or other various reasons.  
 

6.2.4 IDE: a therapeutic protein in Alzheimer's and type 2 diabetes 
diseases 
 
Even though our results did not meet the expectations of our original study, IDE has been the 
subject of extensive research due to its critical role in Alzheimer’s disease and Type 2 diabetes. 
As IDE represents a fundamental research topic in the scientific field, we decided to continue 
investigating its dynamic behavior and use MD simulations to examine its allosteric activities 
and cryptic structure. The first paper to be published during this Ph.D. program was focused 
on this work and was cited twice.  
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Abstract: Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that de-
grades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential thera-
peutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer’s disease. IDE
catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded.
However, the molecular mechanism of the IDE function and peptide recognition, as well as its
conformation changes, remains elusive. Our study elucidates IDE structural changes and explains
how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a
free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure
of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to
witness IDE conformational dynamics switching from a closed to an open state. The description of
IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover,
the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the
simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of
different approaches to study IDE with different substrates and inhibitors, while taking into account
the conformational states resolved in our study.

Keywords: molecular dynamics simulation; insulin-degrading enzyme; therapeutic target

1. Introduction
Insulin-degrading enzyme (IDE), also known as Insulysin, is a zinc protease of the

M16 metalloprotease family [1–5]. IDE was originally discovered and named since it is
the major enzyme responsible for insulin degradation, in vitro, and insulin binding with
high affinity (~10 nM) [6]. IDE plays a major role in preventing type II diabetes [6–9] and
other diseases, such as Alzheimer’s [10–16]. These characteristics make it one of the most
important enzymes in the human body. Moreover, IDE directly links with these diseases,
making it a promising therapeutic target to design efficient regulators [17,18]. IDE rapidly
breaks down insulin and other peptides to prevent toxic amyloid formation [2,4,6,10]. An
important feature of IDE is its large cavity (~15,000 A3), where peptides are degraded based
on their size, charge distribution, and amyloidogenic nature [19–24]. IDE is a catalytic
protein known to switch between a closed and an open state. The transition from the closed
to the open conformation is triggered by the achievement of a specific interaction between
the IDE catalytic chamber and its substrates. Thus, substrates cannot enter the cavity when
IDE is closed, which is why IDE needs to undergo an opening state to capture its substrates
inside the catalytic chamber. IDE open form is also required for the exit of proteolytic
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products. On the other hand, substrates can also lock IDE in the closed conformation to
efficiently activate the proteolytic process [24].

Consistent with this, IDE is known to exist as an equilibrium of monomers, dimers,
and oligomers [25]. Although IDE majorly exists as a homodimer and is more active than
the monomeric form, the latter form does retain its enzymatic activity (Figure 1) [25]. Each
monomer has 1019 amino acids and consists of four domains. An extended 26-residue loop
connects the N-terminal domains (IDE-N: D1 and D2) and the C-terminal domains (IDE-C:
D3 and D4). The N-terminal domains (IDE-N) D1 (residues 43–285) and D2 (residues
286–515) contain several charged, polar, and hydrophobic patches [24]. The surface of
IDE-N is also largely neutral or negatively charged [24]. The catalytic site (residues H108,
E111, H112, and E189) is located in IDE-N [24]. The exosite (residues 336–342 and 359–363),
which is also present in IDE-N, is located approximately 30 Å from the crypt. This exosite
is a key site in positioning peptides before degradation takes place. It is also the major
site where the N-terminus of substrates are anchored [3,17,24]. On the other hand, the
C-terminal domains (IDE-C) D3 (residues 542–768) and D4 (residues 769–1019) have a
positively charged surface [24]. Although the catalytic site is situated in IDE-N, IDE-
C is crucial for substrate recognition. Studies have shown that both IDE-N and IDE-C
are essential for IDE activity and mutations of catalytic residues can severely decrease
its function. For instance, IDE E111Q mutation renders the protein nonfunctional [26].
Moreover, site-directed mutagenesis of IDE H108 (H108L and H108Q) inhibits IDE catalytic
activity but retains its ability to bind insulin [27]. Similarly, mutation of R824 and Y831 to
alanine significantly reduces the catalytic rate of IDE [24].

Figure 1. Representation of IDE structure and D1, D2, D3, and D4. IDE-N and IDE-C, as well as the
linker (L), the exosite, and the catalytic site, are specified.

IDE is a very challenging protein. Hence, the mechanism through which peptides
are recognized is still elusive. The different forms that IDE structure adopts (open-closed)
during the catalytic cycle need further investigation as well. Another challenging aspect is
the detailed mechanism of IDE allostery that also remains unsolved [24,28]. Solving the
detailed and defined allosteric path along the discovery of specific and potent allosteric
modulators, triggering the activity of IDE, awaits future work. Moreover, only the closed
and holo-conformations of IDE have been solved [19–24]. As for the open state, it has been
assessed with Fab-assisted CryoEM at best (Figure S1, Supplementary File 1) [28].
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The current information about the conformational changes of IDE, as well as its
dynamics information at the atomic level, is not sufficient yet. Moreover, although IDE
makes the perfect therapeutic target for both type 2 diabetes and Alzheimer’s disease,
its dual linkage can also be a challenge for the development of potent modulators. For
instance, inhibition of IDE might raise a potential issue of an adverse effect, which would
prevent its action to cleave misfolded and amyloidogenic peptides, such as amyloid beta.
IDE modulators will also require a long-term evaluation to avoid the adverse effects [18].
Therefore, it is essential to further explore the atomic-level molecular mechanism involved
in the structural transitions of IDE for the development of efficient, but also selective
inhibitors, and uncover the substrate recognition process that might hold the key to cure
many diseases [29,30]. This information would also be crucial to finally decipher the
complete role of IDE.

Here, we combine different bioinformatics approaches, such as structural modeling
and molecular dynamics (MD) simulations, to address these questions and to complement
the existing information concerning IDE and its structural mechanism.

2. Results and Discussion
2.1. MD Simulations Analysis

IDE biological function is directly related to its conformational transitions. With that
in mind, we ran 7 MD simulations of the IDE monomer in its unbound state to recover the
protein structural changes. Hence, the total simulation time for this system is 7.5 µs.

2.1.1. Root Mean Square Deviation (RMSD) Evaluation of IDE Structure
To analyze the stability of each system, we performed a RMSD analysis of all our

MD trajectories (Figure 2). In our study, seven systems were simulated for a total of at
least 1 µs. However, run 4 was simulated for a longer time (1.5 µs) since it displayed
extremely high RMSD values until 1 µs. As shown in Figure 2A, Cα RMSD was found to
stabilize the IDE system with values reaching 2.5 to 4 Å, with fewer fluctuations for most
of the trajectories. On the other hand, the fourth and fifth trajectories displayed the largest
fluctuations compared to the others.

The RMSD values of the fourth run increased towards 600 ns until they reached their
highest values at 1 µs then decreased at 1.1 µs to form a plateau until the end of the trajectory.
Thus, the behavior of IDE in run 4 may have been due to the exploration of another state.
This state is different from the initial closed structure of IDE, which might explain the
excessive fluctuations in the RMSD values. Consequently, the large crypt movements and
the flexibility of IDE can be explained through the exploration of an open state.

The RMSD values of the fifth run also increased, starting from 300 ns to reach a plateau
with a constant value of 5.0 Å. This result also indicates a conformational change in the
structure of IDE. With these observations in mind, for each of the third, fourth, and fifth
runs, we extracted a frame at 1 µs, where IDE fluctuates the most. This relates to the results
gathered from the RMSD with the changes occurring in the structure of IDE. As shown
in Figure 2A, a noticeable twisting motion on D1 and D4 differentiated IDE of the fifth
run from the other extracted frames. The helices and loops at the entry of the catalytic
chamber witnessed a slight twist while D2 and D3 remained rigid. These movements can
be described as rigid-body swing motions of the IDE gate [30]. It was fully explained by
McCord et al. [30] that this twisting motion is characterized by a small rigid movement
of D1 moving away from D4. Additionally, these movements were further analyzed with
a quasi-harmonic analysis to confirm these observations (data not shown). In our case,
this distinct state cannot be considered as open enough to enclose short peptides and did
not differ significantly from the closed state, as only very small movements occurred in
IDE. However, it is an interesting observation, and it enhances the fact that IDE can exist
in a mixture of different conformations, and can explore several transient states, while
remaining stable.
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Figure 2. Evaluation of IDE MD simulations and major states of IDE. (A) Left: Cα RMSD evaluation
of IDE trajectories and comparison of IDE structures from run 3 (closed), run 4 (open), and run 5
(swinging door) at 1 µs. Right: domain structural analysis: only D1 and D4 are highlighted according
to their designed run color, to see the conformational changes of the IDE door. (B) Evolution of
IDE cavity volumes. (C) IDE cavity volume frequency for each MD trajectory. (D) Cα RMSF of IDE
different domains. (E) Center of mass distance between two domains: D1 and D4. (F) Major states of
IDE explored during MD simulations.
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Altogether, RMSD results showed that IDE exhibited interesting variations. These
RMSD fluctuations can be correlated to the structural changes that IDE adopts to be
stabilized. Moreover, RMSD fluctuations can be directly linked with IDE cavity changes,
which are responsible for the protein structural rearrangements.

2.1.2. IDE Cavity Volume and Hydration Analysis
Accordingly, the cavity volumes of IDE were calculated to examine the expansions of

its structural flexibility and potential different states. As shown in Figure 2B, all trajectories,
apart from the fourth, explored the same volumes with values ranging between ~15,000 and
~25,000 A3. The fourth run reached its highest value at 950 ns with a volume of ~35,000 A3,
then a prompt decrease appeared at 1.2 µs, which ended in a plateau until the end of the
simulation. Thus, these results are perfectly correlated with the RMSD values previously
observed. Considering that the cavity of IDE has an initial volume of ~15,000 A3 in its
closed state [15], the frequency distributions of IDE volumes were calculated and plotted in
Figure 2C. Similarly, most of the trajectories displayed volumes corresponding to closed or
semi-open states. On the other hand, the fourth run clearly showed the exploration of at
least two different states. Indeed, the trajectory is divided into two separate and uneven
populations. A more occupied population of volumes defined the closed or semi-open
state, whereas a lesser population represented the open state. Therefore, IDE explored at
least three different states (closed, semi-open, and open) during the MD simulations. We
hypothesize that most of the trajectories have met the closed and semi-open states while
the fourth trajectory, which displayed volumes more than twice the initial one, has met
the fully open state. With the combination of these results, the IDE open-closed switch
represented in the fourth trajectory was displayed (Video S1, Supplementary File 1) to
capture IDE movements.

Water molecules are important components in maintaining the functions of proteins.
Since the RMSD and the cavity volume analyzes indicated major structural changes in
the IDE structure, the solvent molecules, and the total solvent accessible surface area
(SASA) were calculated for all trajectories. The SASA analysis stands for the solvent
accessible area. Low values or a decrease in the SASA indicate a closed state of the protein
structure with very few hydrophobic areas accessible to the solvent. On the other hand,
high values, or an increase in the SASA, describe a certain degree of protein’s flexibility
and the strong exposure of the cavity to the aqueous environment of the system. Thus, the
higher the values of SASA, the more the cavity is exposed to the solvent and witnesses
several conformational changes. As shown in Figure S1A, SASA values mostly ranged
between 39,000 Å2 and 48,000 Å2, with various fluctuations. As expected, the fourth
system displayed the most important values of SASA with its highest value reaching
~49,000 Å2 corresponding to the expansion of IDE cavity. The fourth system also witnesses
an important decrease of the SASA that correlates with the drop of the solvent molecules
(Figure S2B, Supplementary File 1). This event was due to an IDE cavity volume decrease
that was accompanied by the simultaneous expulsion of the water molecules. Thus, the
SASA analysis, together with the RMSD and the volume cavity calculations, summarize
that these results were coupled to protein conformational changes. These results also
support the hypothesis that IDE switches from a closed to an open state through an
allosteric behavior.

2.1.3. Root Mean Square Fluctuation (RMSF) of IDE Structure
To further analyze the flexibility and local changes in the structure of IDE, Cα RMSF

of each residue has been calculated (Figure 2D). RMSF analysis revealed that D1, D4, and
an adjacent region to the linker are the most flexible parts of IDE. These fluctuations are
mostly observed for the fourth run. Cα RMSF values reached about 4 Å compared to
the rest of the MD trajectories (2.0–2.5 Å). These observations agree with experimental
data where the swinging door of IDE is mostly carried out by the movements of both
D1 and D4, which are the principal regions causing the protein to undergo different
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states [28,30]. Figures S2 and S3 illustrates the most flexible regions of the protein along
with the residues exhibiting the highest Cα RMSF values. Interestingly, the represented
amino acids (Figure 2D) displayed the same pattern of fluctuations in all the trajectories,
but with higher Cα RMSF values for the fourth one. As expected, most of the residues are
positioned on solvent-exposed regions, such as loops (Figure S4, Supplementary File 1).
Therefore, the high fluctuations of these residues can be explained through their intramolec-
ular and intermolecular interactions within the protein and with the solvent. The most
flexible residues positioned on D1 and D4 are also solvent exposed but were observed
to play major roles in maintaining D1–D4 interactions along the IDE gate. For example,
residue Q828 (D4) has been identified to be a key residue interacting with different residues
of D1 (R181, E182, and N184) [24]. Residue Q828 exhibits a Cα RMSF value of 4.1 Å
when IDE is open against a value of 2.1 Å when IDE is closed. Accordingly, in the closed
conformation of IDE, residues R181, E182, and N184 display values of 1 Å, 0.8 Å, and
1 Å, respectively. However, these residues present higher values when IDE is open with
values reaching 4.3 Å, 3.8 Å, and 4.0 Å, respectively. Additionally, the flexibility of the
exosite and the catalytic site residues were also examined. For all trajectories, both regions
exhibited very low Cα RMSF in all trajectories, which did not exceed 1 Å, indicating their
structural stability.

To support these results, the distance between the center of mass (COM) of D1 and D4
was plotted in Figure 2E. Interestingly, we observed the same pattern as the previous graphs.
D1 and D4 were seen to be moving closer to each other at the beginning of the MD trajectory.
Then, both domains moved away to reach their maximum distance value at ~59 Å followed
by the recovery of their initial distance towards 1.1 µs. As shown in Figure 2F, the different
major states of IDE are illustrated in the complementation of previous results. Furthermore,
to rule out the hypothesis that the IDE open state might be an artifact, we analyzed the
backbone RMSD of each domain during the fourth trajectory (Figure S5, Supplementary
File 1), which appeared to be stable along the simulation time. It is a simple way that serves
as an indicator of conformational stability in the system during the simulation.

2.1.4. IDE Hinge Dynamics Analysis
IDE must undergo a hinge-like motion to transition from a closed to an open confor-

mation. This transition is required for the entry of substrates and the release of proteolytic
products. IDE possesses a hinge loop or a linker (516–541) connecting D2 and D3. This
linker is critical for the proper pivoting motion between the IDE-N and IDE-C. Therefore,
the hinge loop is an important region to regulate the allostery of IDE.

To study the hinge loop dynamics and its role in the domains pivoting movements,
we used a quasi-harmonic approximation implemented in the gmx anaeig module of
GROMACS [31]. Cα atoms of IDE were selected to carry out the analysis. We compared
only the movements projected on the first eigenvector as they exposed the major differences.
Figure 3A shows the superposed extreme projections of the linker along the first eigenvector.
As shown in Figure 3A, we compared the behavior of the major motions of the hinge-loop,
both when IDE is open and closed. Surprisingly, the loop remained stable and only slight
movements can be noticed in the hinge. In the closed conformation, the hinge displayed
minimal back and forth movements coinciding with the protein domain fluctuations. As
for the open conformation, the linker represents more fluctuations as it moves along with
the extension of the cavity. Accordingly, Figure 3B shows the Cα RMSF evaluation of the
linker in each run after extraction of the frames of the quasi-harmonic analysis. The loop
exposed higher flexibility in the open conformation, compared to the closed one, with
RMSF values ranging between 1.0 and 2.0 Å. The main explanation as to how the loop stays
stable is because of the very tight interactions made within the protein. Indeed, the linker
is a conserved region of the M16 metalloproteinase proteins [30,32].
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Figure 3. Quasi-harmonic analysis of the IDE hinge-loop. (A) The superposed frames of the third
(closed) and fourth (open) trajectories are projected onto the first eigenvector. A total of 100 frames
were sampled for each trajectory. Colors range from blue (first frame) to red (last frame). (B) Cα

RMSF evaluation of the linker represented in the 100 sampled frames after the quasi-harmonic
analysis. (C) Characterizing the hinge-loop motion and angle measurements by taking the COM of
D1 and D4 combined with the COM of the linker. The angles were measured along the trajectories.
(D) Probability of the angle values for each trajectory. (E) Representation of the most probable
closing/opening angles.

Almost every residue of the loop interacts with either the D2 or the D3 domain through
hydrogen bonding, hydrophobic interactions, and salt bridges (Figure S6, Supplementary
File 1). For example, K521, K527, and E541 form salt bridges with residues E349, E529,
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and K735, respectively. Several hydrogen bonds are formed among N528, E413, and A610.
E536 and L538 form two hydrogen bonds with N732. T533 interacts with D636 and K637.
Similarly, residue N543 interacts with D636 as well. As for E541, it also interacts with Q563
through hydrogen bonding. There are multiple hydrophobic patches formed with D2 and
D3 through the hinge loop. Residue L524 forms hydrophobic interactions with L401 and
W409. F530, which is a crucial residue for the maintenance of the catalytic role of IDE [30],
interacts with Y607, A611, L616, I640, and L641. Finally, F535 interacts with V420 and F424.
These extensive interactions are also conserved in both the closed and open state of IDE;
hence, the preservation of a stable linker structure.

Next, we measured the opening angle of IDE to describe, in further detail, the hinge-
type motion (Figure 3C–E). Taking the COM of D1 and D4, combined with the COM of
the linker, yields an opening angle of a maximum of 106 degrees (run 4) compared to
~68 degrees when it is closed (runs 1, 2, 3, 6, and 7). As expected, the angle values of the
fourth trajectory follow the same pattern as the previous results (Figure 2A,F). The angle
values fluctuate extensively until reaching their maximum at ~990 ns. A prompt decrease is
observed at 1.1 µs, coinciding with the closing of the IDE cavity. Interestingly, the swinging
door state (run 5) displayed a distinct angle spanning between 75 and 80 degrees. Therefore,
the latter observation confirms the slight opening and twisting motions characterizing
the swinging door motion of IDE. This leads to the conclusion that the description of
the opening angle, using the hinge-loop as the center point, results in a more accurate
distinction between the open and closed states.

2.1.5. Gibbs Free Energy Landscape Analysis
Protein allostery is fundamental to understanding protein functions. Intra-protein

atoms distances work via many allosteric processes with a defined path and the catalytic
activity of IDE was proposed to be allosterically regulated in several papers [33–35]. How-
ever, the detailed mechanism of IDE allostery remains unknown. Here, we describe and
retrace the allosteric communication of IDE as a series of local structural changes using the
free energy landscape (FEL) approach. To study IDE dynamics movements, all trajectories
were concatenated and the final free energy landscape for the first two most contribut-
ing principal components (PC) were calculated. To achieve this, a covariance matrix is
constructed using the protein backbone coordinates. Then, the diagonalization of this
matrix yields a set of eigenvectors and eigenvalues describing the collective modes of the
fluctuations of the protein. Generally, the eigenvector with the largest eigenvalue or PC
represents the large-amplitude collective motions of the protein. Since we have a system
displaying significant movements, we selected the first two PCs characterizing these domi-
nant motions. Moreover, it is very important that protein systems are locally equilibrated,
and the determined pathways do not represent artifacts of the chosen coordinates. Thus,
given the previous results, the FEL analysis was only used for the converged trajectories,
which excluded the fourth MD simulation. These trajectories were concatenated into one
single MD simulation to produce the FEL map.

The FEL of IDE is shown in Figure 4A. The lowest energies are represented in blue,
whereas high energies are indicated in red. This means that the blue regions represent
stable states of the protein, while the red areas describe the unstable states explored
during the MD simulations. Moreover, several bins with minimum energies mean that the
protein explores different conformations through transition states. Accordingly, the global
minimum conformations of IDE were extracted regarding the stable and unstable FEL bins
to differentiate them.

The projection of the backbone trajectories along the PCs revealed three major bins
((I), (II), and (III)). The investigation of these bins revealed that the first bin enclosed the
structures of the first, third, second, and seventh trajectories, making it the major energy
minima and the most occupied basin. Interestingly, the sixth system visited the first bin
from 0 to ~47 ns, then jumped off from the major local minimum (I) and moved towards a
more distant region of the conformational space, the second basin (II). Additionally, the
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fifth system explored the first basin (I) from 0 to 300 ns, then transited to the third basin
(III) corresponding to the RMSD jump observed in Figure 2A.

Figure 4. (A) Gibbs free energy landscape (FEL) analysis (B) with representative IDE structures
extracted from the MD simulations. Free energy values are represented in kJ/mol, and their colors are
detailed in the color bar. The representative IDE structures are represented in cartoons and display
each basin.

Visual examination of the lowest energy structures belonging to their corresponding
bins revealed a very similar structure (Figure 4B). Thus, the closed conformations belonged
to a single state but their mapping onto different space coordinates shows that structural
changes appeared during the MD simulations. Therefore, to understand the conformational
changes reflecting the different bins, we extracted one representative IDE structure from
each bin (Figure 4B). Compared to most of the MD simulations, the sixth system revealed a
slight greater flexibility in the alpha helices of the different domains, describing the constant
dynamic movements of the protein. Overall, an RMSD of 2.0 Å was calculated between
state (I) and state (II). For the fifth system, a higher RMSD value (2.6 Å) was calculated
between state (I) and state (III). The fifth trajectory has already been described in the
previous results as a different state on its own with a specific dynamic motion displaying
a particular angle between D1 and D4. Therefore, the FEL map regrouped the different
structural changes of IDE in terms of energy and highlighted important transitions in the
cycle of IDE.

2.1.6. Non-Covalent Interactions
Residue interactions play major roles in IDE dynamic movements and allostery. Know-

ing that IDE is a flexible protein, it is very important to check the stability of the hydrogen
bonds using MD simulations rather than inspecting only the crystal. Thus, the number
of hydrogen bonds (HB) between D1 and D4, and between D2 and D3 were calculated
(Figures 5 and S7, Supplementary File 1). Notably, the number of HB varied throughout
the simulations and significant changes were observed.
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Figure 5. Number of hydrogen bonds formed between D1 and D4 along the MD simulations. Black,
red, green, blue, purple, orange, and cyan are respectively for runs 1, 2, 3, 4, 5, 6, and 7.

In most of the trajectories, the number of HB between D1 and D4 remained approxi-
mately stable and witnessed only little fluctuations. For example, for all the trajectories,
the number of hydrogen bonds averaged between 5 and 7 (Figure 5). However, during the
fourth trajectory, we can clearly observe a total disruption coinciding with the frame time
of IDE open state exploration (900 ns–1.1 µs). Indeed, the drop of the number of HB, going
from ~15 to 0, clearly defined the closed-open switch of IDE that was similarly witnessed in
the previous results. Then, a recovery of the number of HB can be seen around 1.1 µs (8 HB)
when IDE regains its closed conformation. The same analysis was applied for the D2–D3
complex (Figure S7, Supplementary File 1). Similarly, D2 and D3 HB were stable during the
MD simulations. The number of bonds averaged between 7 and 9. As expected, the fourth
trajectory also displayed a decrease of the number of HB at the same frame time of D1–D4
HB disruption. However, this decrease was less important than the one observed between
D1 and D4. Therefore, these results reinforce the fact that D1 and D4 are the main “gate”
domains of the IDE closed-open switch. These results also suggest that D2 and D3 are still
sustained during the open switch of IDE to maintain a certain stability of the protein.

To identify the residues involved in HB formation between the different domains of
IDE, HB occupancy was calculated. In Table 1, HB and salt-bridges (SB) observed across
D1–D4 and D2–D3 binding interfaces are listed, together with their average occupancy
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percentage during the simulations. We isolated only the most frequent interactions with a
threshold of 10% and with a cutoff distance of 4.0 Å.

Table 1. D1–D4 non-covalent interactions occupancy (%) during MD simulations. HB and SB were
reported only if they exist for >= 10% of the investigated period. Backbone (bb) and side chain (sd)
interactions were specified.

Domain 1 Domain 4
Non-Covalent

Interaction Type
Occupancy (%)

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

D84 (sd) K898 (sd) SB 31.7 73.2 39.7 35.8 92.0 76.3 37.4
E133 (sd) K884 (sd) SB 100.0 98.0 100.0 73.1 59.7 100.0 100.0
E182 (sd) R824 (sd) SB 57.6 100.0 86.5 26.9 0.0 26.9 88.5
S132 (sd) E817 (sd) HB 82.3 39.4 34.1 0.0 0.0 35.8 27.1
K85 (sd) D895 (sd) SB 90.8 80.0 60.3 43.3 35.1 52.0 100.0

N184 (sd) Q828 (bb) HB 70.6 0.0 0.0 0.0 0.0 0.0 0.0
N184 (sd) Q828 (sd) HB NA 0.0 0.0 0.0 0.0 11.0 0.0
R181 (sd) Q828 (sd) HB NA 0.0 12.9 0.0 0.0 0.0 0.0
N184 (sd) Q828 (sd) HB NA 14.9 0.0 0.0 0.0 0.0 0.0

Four pairs of residues (K898-D84, K884-E133, R824-E182, and K85-D895) formed
SB between D1 and D4. The salt bridge formed by K898 and D84 remained stable for
all the trajectories (Figure 6). In run 5, the HB occupancy was particularly high due to
the angle formed by D1 and D4 (Figure 3). This angle, creating a favorable interaction
together with an important lifetime K898–D84 bond, was completely disrupted during
run 4. However, it recovered completely when IDE regained its closed conformation at the
end of the MD simulation. Residue K884 formed a stable SB with E133. The SB occupancy
ranged from 59.7% to 100.0%, attesting to the bond strength and sustainability. The bond
created between R824 and E182 was positioned at the main gate of IDE. Interestingly, the
R824–E182 bond was observed to be maintained in all trajectories, except for the fifth one.
The swinging door motion did not allow the bond to be formed since D1 and D4 might
have been too far away from each other and too flexible. As for the fourth trajectory, the
R824-E182 interaction witnessed a low percentage of occupancy due to the IDE closed
state recovery. The S132-E817 bond was positioned on two helices of IDE that were only
accessible through the bottom side of the protein (Figure 6). The HB was well maintained
in all simulations (34.1% to 82.3%) except for runs 4 and 5. As expected, in this case, the two
domains were not close enough to form the HB. The fourth SB formed with K85 and D895
was also stable with higher occupancy when IDE was closed. Finally, Q828, which is a key
residue positioned at the main gate of IDE, was revealed to interact with N184 and R181.
Yet, Q828 was observed to form a stable bond only in a few simulations. This appears to
be related to the high flexibility of the residue (Figures 1D and S4, Supplementary File 1).
Altogether, the interaction patterns across the D1 and D4 interface agree with those known
from experiments [24] and the main interactions were recovered in our analysis.

Compared to D1 and D4, more residues were observed to maintain the stability of the
D2–D3 domains and 7 SB were formed in the D2–D3 complex (Table S1 and Figure S8, Sup-
plementary File 1). Residue D309 interacted with several residues, excepts in simulations
3 and 7. D309 was found to interact with N672 through its backbone in runs 2, 4, 5, and
6. The absence of this interaction was compensated by the interaction of D309 with either
N671 or R668. K657 formed a stable SB with E382 in all the trajectories apart for the fifth
run, where K657 interacted with E381 (96.7%) instead. Additionally, K571 connected the
D2–D3 complex in all MD simulations with residues D426 and F424, where they occupied
approximately 80% and 40% of the simulation time, respectively. It is also important to
note that the SB contributed by K351 interplay with E606 and D602 to stabilize the protein.
Moreover, the H336-Y609 stable HB interaction was mainly found in all simulations. Inter-
estingly, H336 was replaced by H340 in the second trajectory to connect with Y609 (22.7%).
Finally, residue R311 formed a stable SB with E664, the interaction occupied approximately
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~70–100% of the trajectories. On the other hand, R311-E664 did not appear possible in the
fifth simulation due to the angle formed by the swinging door conformation. As for the
sixth run, R311 preferably interacted with R668 (21.7%) and, alternatively, E664 formed an
HB with E381 (~37%) (data not shown).

Figure 6. Hydrogen bonds and salt bridges formed between D1 and D4. The color code was
conserved, according to the simulation number. Grey, red, green, blue, purple, orange, and cyan are
respectively for runs 1, 2, 3, 4, 5, 6, and 7.
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To further explore the dynamics and the movements of the residues relative to IDE
allostery and support the previous results, we calculated the COM distance of each pair
of residues along each trajectory (Figures S9 and S10, Supplementary File 1). As shown
in Figure S8, residues K888-E133, D895-K85, and K898-D84 displayed the most stable
distances, which agree with the results observed in Table 1 and Figure 6. Apart from
the fourth simulation (~30.0–48.0 Å), the COM distances exhibited little fluctuations and
did not exceed 10.0 Å. Thus, these observations support the sustainability of K888–E133,
D895–K85, and K898–D84 interactions within the D1 and D4 domains. As expected, the
fourth simulation displayed a prompt increase representative of the opening of IDE, as
tediously described in previous results. As for residues S132–E817, a clear increase of the
COM distances can be observed for the fifth trajectory. Indeed, in the fifth MD simulation,
residue, E817 does not interact with S132, hence the large distance between the two amino
acids. Similarly, in this same trajectory, residue R824 and Q828 interact with E191 instead
of E182 and N184, respectively. Thus, these observations explain the larger COM distance
in run 5 for those residues.

The same analysis was applied on the D2–D3 complex in Figure S9. A first observation
is that compared to the D1 and D4 interactions, little fluctuations are observed on the
COM distance plots for D2 and D3. This result support the fact that D2 and D3 tend to
follow rigid body movements among the large-scale motions of IDE. However, this does
not exclude that a few residues witnessed higher fluctuations and larger COM distances.
For example, D309-N672, D309-N672, D309-R668, E382-K657, E381-K657 and R311-E664
are the main residues displaying the largest distances (~20.0–25.0 Å). It should be noted
that these amino acids are located on the front surface of IDE. On the other hand, residues
D424-K571, F424-K571, K351-E606, K351-D602, H336-Y609 and H340-Y609, exhibited lower
and stable COM distances (~10.0 Å). These residues are located on the back surface of IDE.
Additionally, these same observations can be noticed for the D1–D4 complex. With these
results, we suggest that fluctuations mostly occur in the front side of IDE while the back
side and the rest of the protein is mainly stable. These results were interesting as they
confirm that the main entrance of peptides and solvent is the most flexible region of the
protein while the rest of the protein structure tend to have restricted motions to stabilize
the ensemble of the four domains. Altogether, our results prove that the described residues
are the main partaker in IDE dynamic movements and forming gate.

3. Materials and Methods
3.1. Protein Modeling

Homology modeling was performed to get the full-length structure and wild type/active
form of the IDE protein [24]. For this purpose, the substrate-free 3D crystal structure of
human IDE was retrieved from the RCSB Protein Data Bank in PDB format [36] (PDB
ID: 2JG4, resolution: 2.80 Å) [37]. We selected the PDB ID: 2JG4 as it represents the only
crystallized structure of the closed substrate-free IDE with the lowest resolution. Other IDE
closed conformations can be found in the RCSB Protein Data Bank. However, these PDB
structures are resolved with either Cryo-EM, FAB antibodies, peptides, or inhibitors, and
can have poor resolutions. From this perspective, we fully focused our study on the closed
form of the IDE free of substrates to concentrate on its conformational changes through
MD simulations.

The crystal structure contains one mutation at the catalytic site (Y831F). The structure
also lacks residues 971–978 and 1012–1019 in the fourth domain. Therefore, the homology
model building was carried out using the MODELLER software (v10.1) [38] with PDB:2JG4
as a template. Correct side-chain orientations of the catalytic site residues (H108, E111,
H112, and E189) were verified to avoid any clash with other residues and the zinc atom. For
validation, the model with the lowest value of the DOPE assessment score [39] was selected
for further analysis and VERIFY 3D [40] was used for further endorsement (Figure S11,
Supplementary File 1). The final model comprised 15,880 atoms corresponding to the 977
residues (43–1019) of the full-length IDE. The protonation states of ionizable residues in the



 83 

 

 
 
 
 

Int. J. Mol. Sci. 2022, 23, 1746 14 of 18

IDE model were assigned using PROPKA [41] and the pH was set at a physiological value
of 7.5.

3.2. Molecular Dynamics Simulations
We ran 7 large-scale simulations of 1 to 1.5 µs each. MD simulations were carried

out with the GROMACS (v2019.5) software package [31] and we used the CHARMM36m
force field [42] for both the protein and zinc parameters. The protein was placed in a
dodecahedron-shaped water box (TIP3P) and a minimum of 10 Å was preserved between
each atom of the system and the walls of the box. All runs were run at a 300 K temperature
and with a time step of 2 fs. All bonds were constrained using the LINCS algorithm [43]
for the protein and the SETTLE algorithm [44] for the water. The energy of the system
was minimized over 1000 steps using the Steepest descent algorithm after ion addition
and system neutralization. The minimization convergence was set at a maximum force of
1000 kJ/moL/nm. The number of particles, volume, and temperature (NVT) equilibration
was performed for 1000 ps at a temperature of 300 K with a coupling constant of 0.1 ps.
number of particles, pressure, and temperature (NPT) was run by setting the temperature to
300 K and the pressure to 1 bar. Electrostatic forces were calculated with the particle-mesh
Ewald algorithm [45]. For trajectory analysis, we used GROMACS packages, VMD (v. 1. 9.
4a38) [46], PyMOL [47], and GNUPLOT (v. 5. 2) [48]. The volume of the IDE crypt, as well
as the number of solvent molecules, were computed using the trj_cavity_v2.0 program [49].

RMSD and RMSF analyses were led with GROMACS. The RMSD analysis measures
average distances (in Å) of the studied systems from the corresponding starting structure
over the simulation period. RMSD is defined as:

RMSD(t) =

[
1
M

ΣN
i=1mi

∣∣∣∣ri(t)− rref
i

∣∣∣∣
2
]1/2

where M = Σimi is the total mass, mi is the mass of atom i, N is the number of atoms, and
ri(t) is the position of atom i at time t after least square fitting the structure to the reference
structure. In our study, the calculation and fitting of the protein were done on the Cα atoms.

To examine the flexibility and the local changes in the structure, Cα RMSF versus the
number of IDE systems were investigated. The RMSF equation is defined as:

RMSFi =

[
1
T

ΣN
tj=1

∣∣∣∣ri
(
tj
)
− rref

i

∣∣∣∣
2
]1/2

where T is the time over which the mean coordinate is calculated regarding the rref
i (reference

position of particle i). The RMSF was computed from the atomic coordinates of the Cα
atoms as well.

3.3. Gibbs Free Energy Landscapes
The Gibbs Free energy landscapes were performed to describe IDE motions and

different states through the simulations. We applied the gmx covar, gmx anaeig, and gmx
sham modules of GROMACS to calculate the two-dimensional representations of the FEL.
The FEL of each run was constructed using the projections of their first (PC1) and second
principal components (PC2) or eigenvectors.

∆G(PC1, PC2) = −KBTln P(PC1, PC2)

where KB is the Boltzmann constant, T is the temperature of the simulation, P(PC1, PC2)
illustrates the probability distribution of the system along with the first two principal
components. PC1 and PC2 usually display the dominant fluctuations in residues for a
protein, hence why they were studied in this project.
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4. Conclusions
The catalytic activity of IDE is mediated by several structural transitions. These

conformational changes are allosterically regulated by its substrates, ATP, and other protein
partners [10,33–35,50]. In this paper, we suggest that IDE allostery is conducted by the
collective motions of the numerous atoms forming IDE structure. Based on our data, we
present a model of IDE in its active state to explain how the allostery of IDE is coordinated
by the equilibrium between IDE closed and open states. Our MD simulations revealed that
IDE undergoes several states and is a flexible system. RMSD (Figure 2A) and IDE cavity
volume calculations have put forth at least three different explored conformations. These
different conformations are defined by a closed, a swinging door, semi-open (intermediate
state), and an open state. We believe that the probability to recurrently exploring IDE
states or new conformational changes can increase and enhance with further computational
methods. Notably, future work can focus on the required transition energy to switch from
a closed state to an open state with additional MD sampling.

Interestingly, all states were explored during the fourth trajectory with a complete
cycle of IDE closed–open–closed transition. Such motions can explain how allostery
regulates and governs the IDE biological structure but also suggest additional ways in
how IDE may function. Furthermore, the swinging door motion state [30] was explored
by one of the simulated trajectories (RMSD: ~4.0–5.0 Å (Figure 2A)). Thus, we completed
these results with an RMSF analysis to define the dynamic domains responsible for IDE
flexible movements (Figure 2D). RMSF results revealed that D1 (RMSF: ~4.5 Å) and D4
(RMSF: ~4.0 Å) are the main actors of IDE distinct motions, which agree with different
published studies [26,30]. These results were supported by the calculation of IDE cavity
volumes over time (Figure 2B). The description of the volumes described the different
states explored during the MD simulations. The closed and semi-open state volumes
ranged between ~15,000 and ~25,000 A3, while the open state reached higher values
(~15,000 A3 to ~35,000 A3). Thus, our data agree with the experimental data, where
the average cavity volumes (~35,600 A3) and domain distances reaching their highest
values at ~37 Å and ~55 Å are very similar to the simulated semi-open and open states,
respectively [26]. Additionally, the cavity analysis was complemented with a SASA study
(Figure S2, Supplementary File 1). Moreover, we investigated the hinge dynamics through
a quasi-harmonic study (Figure 3). The linker connecting IDE-N and IDE-C was shown
to be extensively flexible as the IDE cavity opens, yet stable enough to maintain D2 and
D3 connected. Additionally, the angles formed between the D1-linker-D4 in the different
simulations were calculated with the aim of supporting the previous results (Figure 3). The
determined angles were 68◦, 87◦, and 106◦ for the closed, swinging door, and the open
sate, respectively. The obtained results confirmed that the angles match with the different
structural states observed during MD. It was also observed that IDE is a very dynamic
protein and can go through several conformational changes. Therefore, we ran a Gibbs FEL
analysis to explore the stability of the explored states of IDE (Figure 4). Only converged MD
simulations were used to construct the FEL map. Previous conformation changes observed
in IDE protein were confirmed and explored in terms of energy in the FEL analysis. Three
major bins were visited by IDE structures, displaying the protein dynamic and its closed
state. Moreover, the swinging door motion of IDE was explored as a separate state, which
confirms previous results. The open state is still a very challenging conformation to capture.
Hence, these observations support the fact that IDE is unstable and needs a substrate to
be stabilized in its open conformation. It is also known that extensive contacts are shared
between IDE-N and IDE-C, so the IDE structure can be maintained (Figure 5). Thus, the
residues maintaining these contacts, as well as the effect of IDE opening, were determined
(Tables 1 and S1, Figures S9 and S10, Supplementary File 1). With these results, several
mutations, MD simulations, and docking studies with different IDE substrates can be
directed to complete the full biological cycle and allostery mechanism of IDE.
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6.3 Studying DYRK1A and new potential PIF targets 
 
As previously described in section 5.3.5, DYRK1A plays a crucial role in DS. It also binds a 
similar peptide with a strong homology sequence (ARPGTPAL) (Figure 5) with PIF. For this 
reason, we made the decision to determine whether there is a direct interaction between PIF 
and DYRK1A and, if so, explore a potential inhibitory impact of PIF using both in vitro and in 
silico techniques. We simultaneously used AlphaFold2-multimer to reconstruct the DYRK1A-
substrate complex, and since the results were reliable, we also used the same method to 
construct a PIF-DRYK1A complex to inspect if PIF binds at the same region as the DYRK1A 
substrate. 
 
In the other section of this chapter, we also describe the use of a Convolutional Attention-based 
Neural Network for Multi-level Peptide-protein Interaction Prediction (CAMP) tool [146] to 
investigate new potential protein targets of PIF. By utilizing the set of proteins sequences used 
in the proteomics experiment and the PIF sequence as inputs, we aimed to calculate a binding 
score for each pair of PIF-protein complex and compare the CAMP results with the proteomics 
results. This approach was selected to find any possible protein targets that might be commonly 
identified by both experimental and AI(Artificial intelligence)-based techniques. It is important 
to note that if there is an overlap of the results from both approaches, it might indicate the 
likelihood of a potential target that can be further researched as a protein partner of PIF. The 
use of CAMP as an additional tool for protein-peptide interaction prediction can be another 
strategy to enhance the accuracy and comprehensiveness of such studies and may lead to the 
discovery of novel protein targets. 
 

6.3.1 PIF-DYRK1A AlphaFold2-multimer results 
 
In the primary step of our analysis, we retrieved the DYRK1A complex structure in the PDB 
that has a substrate with a comparable sequence to PIF (PDB:2WO6) [135]. Our goal was to 
use AlphaFold2-multimer to regenerate the DYRK1A-substrate complex. We also wanted to 
verify if the reconstruction made with AlphaFold2-multimer reproduces the same position of 
the peptide in the right binding site of DYRK1A. We also examined if the same interactions 
were maintained which describes the accuracy of the models created. To provide a more varied 
selection of models, specific AlphaFold2-multimer characteristics, such as the dropout option, 
were applied. We set this parameter with an increased number of cycles, as this consistently 
leads AlphaFold2-multimer to generate better models than running just a single time. We next 
carried out the same protocol using the PIF sequence to see if it could also bind to the same 
binding site where the substrate is on DYRK1A and to confirm once again whether the 
interactions were conserved for the common AA.  
 
AlphaFold2-multimer consequently predicted five models that were highly comparable to the 
original DYRK1A-substrate complex. All five models essentially replicated the interactions 
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between the peptide and DYRK1A found in the original structure. However, when the same 
procedure is applied on PIF, the created models showed that PIF was located on another region 
of the protein different from the substrate binding area.  
 
Our results suggest two possible hypotheses. First, DYRK1A may not be the appropriate 
protein partner for PIF, like IDE. This hypothesis is supported by the AlphaFold2-multimer 
results, which indicate that PIF may not be located in the same binding region as the substrate 
and do not maintain the same interactions. Secondly, PIF may bind to DYRK1A, but the 
binding site may be located in a region that is either adjacent or further away from the substrate 
binding site. To test the latter hypothesis, additional experimental evidence is required. Hence, 
experimental analyses to examine these ideas were conducted in cooperation with Pr. Janel's 
team. 

 

 
 

Figure 8. A) Structure of DYRK1A and its domain organization. Autophosphorylation of Y321 in the 
catalytic domain is critical for full activity of DYRK1A and is highlighted. B) The AlphaFold structure 
prediction of the full structure of DYRK1A. The PEST domain is represented in red. C) AlphaFold2-
multimer results of the reference substrate and DYRK1A complex. D) AlphaFold2-multimer results of PIF-
DYRK1A complex. 
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6.3.2 Co-immunoprecipitation results 
 
The results of the co-immunoprecipitation experiment suggested that DYRK1A may 
phosphorylate PIF which implies that PIF does bind to DYRK1A. However, this event takes 
place in a disordered region of the protein, the PEST (a C-terminal domain enriched in proline 
(P), glutamic acid (E), serine (S), and threonine (T)) domain, which makes this task even more 
challenging even when using the latest techniques like AlphaFold2-multimer. Disorder regions 
in proteins are frequently unstructured portions that cannot be modeled, making it difficult to 
demonstrate a potential interaction. However, these results support earlier findings made with 
the AlphaFold2-multimer. Therefore, PIF do not bind on the kinase domain of DYRK1A, but 
it might play another role by interacting with the PEST domain. Unfortunately, these results 
require further studies with the use of experimental approaches. 
 

6.4 Using a deep-learning framework to identify new PIF 
partners 
 
With the help of Pr. Janel’s lab, MS-based proteomics was used for identifying and quantifying 
proteins interacting with PIF. In the study, proteins from mice brains along with the addition 
of biotinylated PIF were analyzed to pull down potential interacting proteins. Then, the 
resulting protein mixture was subjected to LC/MS/MS analysis to identify and quantify the 
proteins partners of PIF. For reproducibility purposes, the experiment has been performed 
twice and several samples have been analyzed (Tables 2 and 3). A couple of factors were 
looked at in order to find potential PIF-protein interactions. These parameters include the 
coverage percentage and the number of unique peptides identified for a given protein. The 
coverage percentage represents the proportion of the protein sequence that is covered by 
peptides identified through MS. Also, proteins with higher coverage percentage and more 
unique peptides are generally considered to be more confidently identified. Another parameter 
that has been considered is the -10LgP or the score which represents the statistical significance 
of the peptide identification. This score is commonly used as a cutoff to filter out low-
confidence identifications. Therefore, higher -10LgP values indicate a more significant peptide 
identification. 
 
On the other hand, the CAMP tool predicts protein-peptide interactions using a deep learning 
algorithm. It takes in the AA sequences of both the peptide and the protein and converts them 
into high-dimensional vectors called dense vectors, using an embedding layer that captures the 
underlying relationships between the AA. The sequences are then processed by convolutional 
layers that detect local patterns and features primarily generated by third-party software. The 
output of these layers is then passed through an attention mechanism that assigns weights to 
different parts of the input sequence based on their importance for predicting the interaction. 
This allows the algorithm to focus on the most relevant parts of the protein-peptide complex. 
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The attention mechanism is essentially a mechanism that allows the algorithm to selectively 
emphasize important regions of the input. The outputs of the attention mechanism are then 
transformed using fully connected layers that perform non-linear operations on the input 
features. Non-linear operations are essentially mathematical operations that enable the 
algorithm to capture complex and non-linear relationships between the input features. The fully 
connected layers are trained to map the input sequences to a single output value, which 
represents the predicted likelihood of interaction between the peptide and protein. 
 
Therefore, for the PIF study, the inputs we used in CAMP were the 796 protein sequences from 
the proteomics experimental data and the PIF sequence. After obtaining the results from CAMP, 
we decided to combine them with the results obtained from MS-based proteomics to further 
investigate potential interactions between PIF and proteins. The CAMP tool scripts were then 
modified to fit our specific requirements, and the output displayed the prediction score for each 
protein-peptide complex. It is worth noting that the prediction score ≥0.5 indicates that there is 
an interaction between the given protein-peptide pair, and <0.5 indicates no interaction. This 
threshold value was selected based on the ROC curve analysis of the model's performance on 
a validation set [146].  
 
A set of proteins with the highest scores, coverage percentages, number of unique peptides, 
and prediction scores above 0.5 were identified (Tables 2 and 3). Among them, the Serine-
threonine kinase receptor-associated protein [147], Dynein light chain 2 [148], Platelet-
activating factor acetylhydrolase IB subunit beta [149], Nucleolin [150], Calcium/calmodulin-
dependent protein kinase type II subunit beta [151], Receptor of activated protein C kinase 1 
[152], Protein phosphatase 1 regulatory subunit 7 [153], Heterogeneous nuclear 
ribonucleoprotein A/B [154], and Dual specificity mitogen-activated protein kinase kinase 1 
[155] stood out. Interestingly, most of the highly ranked proteins belong to the kinase family. 
Further analysis revealed that three of these proteins, the dynein protein, the 
Calcium/calmodulin-dependent protein kinase, and the Heterogeneous nuclear 
ribonucleoprotein A/B have known bound peptides and available PDB structures [156-165]. 
These results and the availability of PDB structures of these proteins with known bound 
peptides can highly facilitate further docking analyses with PIF and comparison studies. 
Additionally, these proteins have been linked to a variety of signaling pathways, including the 
Mitogen-Activated Protein Kinase (MAPK), the PhosphoInositide 3-Kinase (PI3K), and the 
Protein Kinase C (PKC) pathways. In fact, these pathways are directly related to the biological 
functions of the PIF peptide, which is known to regulate immune responses, promote tolerance, 
and reduce inflammation. A further network protein analysis can also be performed to gain a 
better understanding of the relationship and interaction between the identified proteins and their 
potential roles in cellular pathways related to PIF potential functions.  
 
Interestingly, the Peroxiredoxin-6 (PRDX6) [166] protein which shares the same gene as the 
PDI protein and has an antioxidant role as well exhibits good results regarding the MS-based 
proteomics experiment but an average CAMP score of 0.39. These results can be explained by 
the fact that the PRDX6 protein could have unique characteristics or structural features that are 
not well-represented in the existing neural network-based model of CAMP. It is also possible 
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that the CAMP tool has limitations or biases in predicting certain types of proteins and should 
be explored further. However, this result remains interesting and the PRDX6 could be a 
potential protein partner of PIF as it is also linked to DS [167].  
 
On the other hand, DYRK1A and IDE exhibited poor CAMP scores of 0.31 and 0.03, 
respectively. Additionally, DYRK1A has not been identified through the MS-based proteomics 
experiment. These results compared to the co-immunoprecipitation and AlphaFold2-multimer 
results might explain that the binding site of PIF may not reside in the kinase domain of 
DYRK1A. As for IDE, these experimental results also complement the results obtained with 
docking and co-immunoprecipitation and prove that IDE might not be the correct protein 
partner of PIF.  
 
This study combined an AI-based computational tool with an experimental technique to 
evaluate the biological roles of a set of proteins and their connection to PIF. The results 
obtained from this analysis were consistent with what is currently known about the proteins 
biological functions and how they can be possibly interacting with PIF. These findings may 
lead to new insights into the structural mechanisms between PIF and these proteins with the 
aim of underlaying their biological functions in various physiological processes.  
 
 

Accession Name Score (-10LgP) Coverage % 
(Sample 1) 

Coverage % 
(Sample 2) 

Number of 
unique 

peptides 

CAMP 
prediction 

score 
Q9Z1Z2 Serine-threonine kinase 

receptor-associated protein 
241.6 31.71 32.29 10 0.89 

Q9D0M5 Dynein light chain 2 212.76 64.04 14.61 4 0.88 
P63005 Platelet-activating factor 

acetylhydrolase IB subunit 
beta 

244 38.78 3.66 12 0.85 

P09405 Nucleolin 289.57 27.72 26.03 18 0.79 
P28652 Calcium/calmodulin-

dependent protein kinase type 
II subunit beta 

235.63 23.8 10.15 4 0.75 

P68040 Receptor of activated protein 
C kinase 1 

165.29 18.93 8.83 5 0.68 

Q3UM45 Protein phosphatase 1 
regulatory subunit 7 

183.66 20.22 2.49 6 0.65 

Q99020 Heterogeneous nuclear 
ribonucleoprotein A/B 

171.4 19.65 12.98 3 0.51 

P31938 Dual specificity mitogen-
activated protein kinase 

kinase 1 

187.16 23.16 8.4 9 0.5 

O08709 Peroxiredoxin-6 220.76 57.14 32.59 11 0.39 
Q61214 Dual specificity tyrosine-

phosphorylation-regulated 
kinase 1A 

x x x x 0.31 

Q9JHR7 Insulin-degrading Enzyme 61.57 1.18 0 1 0.03 

Table 2. Summary results of the first MS-based proteomics experiment with biotin-PIF in two samples 
and bound proteins, along with CAMP results. Identified bound proteins are ordered with the CAMP 
scores. PRDX6, IDE and DYRK1A proteins are added for score comparison.  
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Accession Name Score (-10LgP) Coverage % 
(Sample 1) 

Coverage % 
(Sample 2) 

Coverage % 
(Sample 3) 

Coverage % 
(Sample 4) 

Number 
of unique 
peptides 

CAMP 
prediction 

score 
Q9Z1Z2 Serine-threonine 

kinase receptor-
associated 

protein 

203.28     20.57             10.29         22.57 0 6 0.89 

Q9D0M5 Dynein light 
chain 2 

244.65 51.69             26.97         65.17 26.97 6 0.88 

P63005 Platelet-
activating factor 
acetylhydrolase 
IB subunit beta 

253.94 3.66            0        33.66 36.83 14 0.85 

P09405 Nucleolin 230.64 1.98            0         16.83 19.09 12 0.79 
P28652 Calcium/calmodu

lin-dependent 
protein kinase 
type II subunit 

beta 

251.14 7.75             7.75          29.34 18.82 5 0.75 

P68040 Receptor of 
activated protein 

C kinase 1 

166.295 5.05               0          18.3 0 5 0.68 

Q3UM45 Protein 
phosphatase 1 

regulatory 
subunit 7 

188.92 0       5.54           29.64 5.82 9 0.65 

Q99020 Heterogeneous 
nuclear 

ribonucleoprotein 
A/B 

233.81    11.23             12.98             35.79 24.91 8 0.51 

P31938 Dual specificity 
mitogen-

activated protein 
kinase kinase 1 

171.35 15.01             11.45             20.36 8.14 6 0.5 

O08709 Peroxiredoxin-6 303.86 58.48             59.82             74.11 46.88 19 0.39 
Q61214 Dual specificity 

tyrosine-
phosphorylation

-regulated 
kinase 1A 

x x           x             x x x 0.31 

P68040 Insulin-
degrading 
Enzyme 

x x            x              x x  x 0.03 

Table 3. Summary results of the second MS-based proteomics experiment with biotin-PIF in two 
samples and bound proteins, along with CAMP results. Identified bound proteins are ordered with the 
CAMP scores. PRDX6, IDE and DYRK1A proteins are added for score comparison.  
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Chapter 7 
 
 

A large-scale genomic study of PIF-encoding 
gene 
 

7.1 PIF-encoding gene search 
 
The search of PIF-encoding gene has been one of the most challenging task. In fact, a study by 
Mueller M. et al. [71] also failed to identify the coding gene of the PIF peptide. Our work 
focused on testing different tools in the aim of identifying a region that could be labeled as PIF 
coding location. We also specified the limitations of our protocol as well as the lack of the 
available information to characterize this type of peptide. 
 
7.1.1 Basic Local Alignment Search Tool (BLAST) search 
 
The first step to undertake when looking to identify an unknown AA sequence is to perform a 
BLAST search [168]. However, the BLAST search only suggests a 100% homology with the 
malarial CSP for the 2-12AA (VRIKPGSANKP) PIF region. Moreover, the region coincides 
with a T-cell epitope of the Th3R domain of the malarial circumsporozoite protein [169]. Plus, 
the 3-11AA PIF sequence (RIKPGSANK) has been described as an HLA A03-restricted class 
I epitope that is part of the CSP long synthetic peptide vaccine candidate that elicited potent T 
cell responses in malaria naïve adults [170]. Despite the fact that these findings are 
« interesting », it is difficult to envision a placental peptide being classified as part of a malarial 
protein area. Therefore, due to the lack of the BLAST tool sensitivity for short peptides and 
considering these results as aberrant, we decided to move forwards with more specified tools 
and designed protocols to identify PIF-encoding gene. 
 

7.1.2 Space-Efficient Spliced Alignment (SPALN) search 
 
Not being able to find a matching sequence to PIF due its unique and short sequence, we 
decided to perform a large-scale genomic mapping of PIF onto the human genome. To do so, 
PIF sequence was fragmented into different AA lengths. The resulting sequences were 
fragmented in a way where we obtained different combinations of continuous sequences of PIF 
going from 3 to 15AA. SPALN [171] is a tool that is able to map and align a set of cDNA 
(complementary DeoxyriboNucleic Acid) and protein sequences onto a whole genome. Thus, 
we used SPALN and the latest version of the human genome (GRCh38 (Genome Reference 



 95 

Consortium Human Build 38 Organism: Homo sapiens (human))/hg38 (human genome 38)) 
[172] to perform the genome search. 171 transcript segments homologous to the PIF sequence 
were identified. Then, among these transcripts, we filtered our data so that only those that were 
distinct and had PIF-unique sequences with a maximum sequence length of 6AA were retained. 
 
We identified 21, 9 and 2 transcript segments corresponding to 6AA, 7AA, and 8AA, 
respectively that perfectly match the PIF sequence. As a result, we focused on the transcripts 
with the largest number of AA matches. The first transcript (PGSANKPS) is situated in an 
mRNA (messenger RiboNucleic Acid) region on an identified area of chromosome 8 
(18q11.22). This chromosomal position lacked relevant information. We attempted to find this 
transcript on the mouse genome (GRCm38 (GRCm38: Genome Reference Consortium Mouse 
Build 38 Organism: Mus musculus (house mouse)/mm10 (mus musculus 10)) [173], but we 
were unsuccessful. The second transcript, however, (VRIKPGSA), corresponds to a non-
coding portion of the NRXN3 (Neurexin-3) gene located on chromosome 14 (14q24.3). 
Interestingly, we were also able to identify this transcript in the mouse and gorilla [174] 
genomes which might suggest the conservation of this region.  
 
The identification of the native PIF peptide in previous studies included peptides with lengths 
ranging from 9 to 15AA, as stated in section 3.2 (MVRIKPGSA-MVRIKPGSANKPSDD). We 
were successful in identifying a crucial physiologically active region of the PIF peptide despite 
the fact that the discovered transcript lacks the M residue. These findings led to a number of 
explanations as to why it was challenging to find PIF in databases of known expressed peptides 
or proteins, as well as to numerous hypotheses regarding the identification and production of 
the peptide. Additional research is currently being conducted to verify these results. 

 
7.1.3 The genetic origin of PIF 
 
Our results were successful in identifying a biologically active region of PIF in the human 
genome. However, this determined sequence corresponds to a non-coding region of 
chromosome 14 (14q24.3). The majority of the mammalian genome is pervasively transcribed, 
as is well known. Plus, the majority of these transcripts are categorized as non-coding RNAs 
(ncRNAs) and over two-thirds of human genes are practically only translated into ncRNAs, 
which do not encode any known proteins [175]. Long non-coding RNAs (lncRNAs) and short 
non-coding RNAs (sncRNAs) are two prevalent categories for ncRNAs. LncRNAs are 
distinguished from sncRNAs by having a length of >200 nt (nucleotide). An ncRNA that codes 
for peptides is often defined as a transcript that was initially annotated as non-coding but was 
later found to include a short open reading frame (smORF) that encodes a peptide with less 
than 100AA [176, 177]. While peptides from coding areas are translated from well-known 
short coding sequences, smORFs, the biogenesis of non-coding peptides appears to be different 
from that of other peptides. Plus, in terms of biology, it is currently unclear how non-coding 
peptides vary from traditional coding region-derived peptides in terms of their use, biogenesis, 
or structural characteristics.  
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Currently, ribosome profiling and MS are the two main high throughput whole-genome 
laboratory-based techniques that are being widely used to empirically confirm smORFs. 
However, these techniques also have their limitations like biased results or the high cost of the 
performed procedure making the discovery of new smORFs a challenging task in the field of 
genomics. On the other hand, some studies have also proven that certain lncRNAs had smORFs 
(< length 300 nt) that might encode a short peptide with essential biological functions [178]. 
The existence of functional short peptides encoded by lncRNAs raises the possibility that these 
lncRNAs might serve two functions, interacting with both RNA and peptides, and should be 
classed as bifunctional RNAs. In the case of PIF, the two hypothesis could be valid. Thus, PIF 
can be labeled as an ncRNA-encoded smORF peptide or a portion of an lncRNA-encoded 
smORF peptide. A recent paper of Yang, L., et al. 2013 [179] looks at performing single-cell 
RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Among their 
results, they determined a novel lncRNA that matches the PIF non-coding region on 
chromosome 14 which might also support our hypothesis. Overall, these findings explain the 
absence of PIF in multiple databases of known expressed proteins and peptides. 
 
We do not know exactly the reason behind why only a portion of PIF has been determined in 
the human genome. We might speculate that the lack of the genome annotation or the existence 
of PIF variants may be the reason. Therefore, a focused analysis should be conducted to take 
into account these limitations. 
 
7.1.4 Differential expression of PIF during the preimplantation phase 
 
Human embryonic genome activation starts between the two and eight-cell stages [154]. PIF 
is a peptide that trophoblast cells secrete in the early stages of embryonic development before 
the formation of the placenta [69, 72, 90]. PIF expression in human embryos starts at the 4-cell 
stage, increases by the morula stage, and continues through the first trimester [90]. Additionally, 
PIF expression in the blastocyst was found to be an early predictor of the viability of multiple 
pregnancies. Therefore, we decided to identify critical genes to embryonic implantation that 
might coincide with PIF expression in early, middle and late stages of human blastocytes. The 
aim of this study is to determine which genes and gene pathways are differentially expressed 
during preimplantation and determine transcript-level differential expressions of PIF. This 
future study can also be applied on other different stages of the preimplantation period. For 
further validation and analysis, this protocol can also be used on RNA-seq or single-cell data 
of hyperplastic endometriotic lesions and advanced uterine or prostate cancer since PIF has 
been detected by immunohistochemistry under those conditions.  
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Chapter 8 
 

Conclusion 
 
This thesis focused on the study and contributed significantly to the understanding of protein-
protein and protein-peptide interactions, particularly the interactions between the Spike protein 
RBD domain and the ACE2 receptor, and the interactions of the PIF peptide with its protein 
targets.  
 
The development of a bioinformatics protocol including molecular modeling, MD simulations, 
free energy calculations and druggable pocket tracking approaches has enabled the 
identification of three potential druggable pockets in the RBD-ACE2 binding surface. These 
results offer promising targets for the development of therapeutic molecules that can inhibit 
the viral reaction caused by the Spike protein. Additionally, a thorough study focusing on the 
COVID-19 variants of concern has provided valuable insights into the molecular interactions 
of the mutated RBD and its receptor ACE2. It also highlighted several hot spots that can be 
targeted with small molecules or antibodies in order to block the Spike protein with ACE2.  
 
Protein-peptide interactions are known to be challenging molecular systems. Our work focused 
on the PIF peptide and used several bioinformatics tools to identify its potential protein partners. 
Using different techniques such as molecular modeling, MD simulations and deep learning, we 
were able to investigate potential PIF targets such as IDE and DYRK1A, but also identify new 
potential partners. While limitations were encountered in some of these interactions and some 
targets have been overruled with experimental validation, these results have provided crucial 
information on the biological functions of these proteins and offered new potential targets to 
consider. Additionally, the genomic origin of PIF has also been highlighted, providing 
promising results for future research to better understand the regulation of PIF during 
pregnancy at the transcriptional and post-transcriptional levels.  
 
Overall, we are confident that these results have the potential to inform and guide future drug 
discovery and development research. Also, we hope that this work will inspire and inform 
further investigations into protein-protein and protein-peptide interactions, ultimately leading 
to the development of more effective and targeted therapies for COVID-19 and DS. 
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Perspectives 
 
There is substantial scope for further work to complement and support the findings in this thesis. 
The exploration of protein-protein interactions, specifically the Spike protein RBD and ACE2 
complex, has uncovered three druggable pockets on the binding surface of the RBD-ACE2 
complex. Another study has revealed regions that are susceptible to the effects of mutations on 
RBD-ACE2 affinity. Consequently, several steps can be undertaken to advance this research. 
One approach involves docking multiple inhibitors onto the identified druggable pockets to 
identify promising candidates capable of efficiently inhibiting the RBD-ACE2 complex. Also, 
identifying common druggable pockets for different RBD systems (Wild-type, Alpha, Beta, 
Gamma, Delta, and Omicron) and evaluating the possibility of small compounds to target these 
pockets and disrupt the RBD-ACE2 complex might be an additional topic of research. To 
complement these results, collaboration with experimental teams would be crucial to validate 
the results obtained and identify effective inhibitors. 
 
In the case of the PIF peptide, additional investigations can be interesting to complete and 
validate the findings of this thesis. It can be extremely interesting to perform a thorough 
analysis of PIF protein partners using additional different methodologies. For instance, after 
employing the CAMP tool to obtain protein candidates, in vitro and in silico investigations 
testing the direct interactions between PIF and these proteins may offer insightful information. 
Cross docking, where PIF is docked against multiple receptor structures obtained from the PDB, 
could also enable a comprehensive exploration of PIF binding modes and affinities by 
considering a diverse range of receptor conformations. An ambitious yet promising approach 
would involve developing a machine learning model utilizing a large dataset of experimentally 
validated protein-peptide complexes to predict the specific amino acids or protein surfaces to 
which PIF could bind. Furthermore, completing the genomics analysis would significantly 
contribute to determining the differentially expressed genes and gene pathways during 
preimplantation, providing a better understanding on transcript-level differential expressions 
of PIF. This comprehensive investigation would enhance our understanding of the mode of 
action of PIF and provide greater control over its functions.  
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Annex 2: 
 

Résumé détaillé 
 
 
L’étude détaillée des interactions moléculaires entre les protéines et leurs partenaires est 
nécessaire pour une meilleure compréhension des phénomènes biologiques et faciliter la 
conception de molécules thérapeutiques. Ainsi, la présente thèse porte sur l'importance de la 
caractérisation des interactions protéine-protéine et protéine-peptide et leur impact sur le 
développement de potentiels médicaments. Au cours de cette thèse, nous nous sommes 
concentrés sur deux systèmes moléculaires différents. Le premier est une interaction protéine-
protéine impliquant la protéine Spike du SARS-CoV-2 (Severe Acute Respiratory Syndrome-
Coronavirus 2) et son récepteur humain ACE2 (Angiotensin-Converting Enzyme 2). Le second 
porte sur l’identification des interactions entre le peptide PIF (Preimplantation Factor) et de 
potentielles protéines partenaires. 
 
L’étude de l’interaction entre la protéine Spike du SARS-CoV-2 et le récepteur humain ACE2 
est d’une importance capitale puisque cette interaction est nécessaire pour l’entrée du virus 
dans les cellules humaines. L’étude structurale approfondie de ce complexe, comprenant le 
RBD (Receptor Binding Domain) de la protéine Spike et ACE2, s'est concentrée sur deux axes 
essentiels ayant abouti à deux publications. Premièrement, une analyse du complexe ACE2-
RBD a été entreprise, afin d’identifier les résidus les plus importants pour la mise en place et 
la stabilité de ce complexe. Dans ce but, un protocole de recherche de bioinformatique 
structurale a été mis au point en ayant recours à plusieurs approches complémentaires, de 
modélisation moléculaire, telles que des simulations de dynamique moléculaire (DM) et des 
calculs d’énergies libres avec la méthode MM-PBSA (Molecular Mechanics/Poisson-
Boltzmann Surface Area), mais également à des outils d’analyse statistique afin de caractériser 
et de suivre au cours des simulations de DM les régions à la surface du RBD pouvant être 
ciblées par des molécules médicamenteuses, appelées poches druggables. Deuxièmement, une 
étude approfondie a été menée pour évaluer l'impact des variants préoccupants du SARS-CoV-
2 (Alpha, Beta, Gamma, Delta et Omicron) sur l'affinité du RBD avec ACE2, ainsi que sur la 
stabilité de ce complexe, permettant ainsi une compréhension plus complète des mécanismes 
moléculaires mis en jeu. 
 
La modélisation moléculaire a permis de construire des modèles tridimensionnels précis du 
RBD et des mutations impliquées dans les différents variants. Les simulations de DM ont été 
essentielles pour étudier le comportement des protéines et capturer les fluctuations et les 
mouvements moléculaires qui peuvent influencer les interactions entre RBD et ACE2. Des 
simulations de DM ont permis d'explorer les états conformationnels d’ACE2 et de RBD, offrant 
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ainsi un aperçu détaillé de leur flexibilité respective à l’état isolée ou en complexe, ainsi que 
de leur impact sur les interactions étudiées. 
 
Les calculs d'énergies libres MM-PBSA ont permis d'évaluer quantitativement l'affinité entre 
RBD et ACE2. Cette méthode a fourni des informations détaillées sur la force et la stabilité des 
interactions étudiées. De plus, 9 résidus clés (K417, L455, F456, E484, F486, Y489, T500, 
N501 et Y505), ou "hot spots", ont été identifié à la surface du RBD comme étant cruciaux 
pour son interaction avec ACE2. Ces résidus clés ont été identifiés en évaluant les contributions 
énergétiques individuelles de chaque résidu dans l'interaction entre le RBD et ACE2. Cette 
analyse a donc permis de mettre en évidence les régions du RBD qui sont essentielles pour la 
reconnaissance et la liaison à ACE2. La méthode MM-PBSA a également été utilisée pour 
évaluer l'effet des résidus mutés sur l'interaction entre RBD et ACE2. En introduisant des 
mutations observées dans le RBD chez les variants les plus préoccupants du SARS-CoV-2, il 
a été possible d'évaluer comment ces changements affectent l'affinité et la stabilité de 
l'interaction avec ACE2. Nos résultats montrent que le variant Omicron présente une affinité 
accrue avec ACE2 en raison de ses nombreuses mutations au niveau du RBD. Ces constatations 
sont cohérentes avec les données expérimentales, ce qui confirme le caractère hautement 
virulent et contagieux du variant Omicron. Cette analyse a fourni d’autres informations utiles 
sur l'importance fonctionnelle de certains résidus et leur rôle dans la liaison entre RBD et ACE2. 
Grâce à cette étude, nous avons pu observer la présence de plusieurs interactions hydrogène ou 
de ponts salins, qui ont été abolis ou créées pour compenser et conférer une spécificité à chaque 
variant. Par exemple, le résidu K417, qui est l'un des hot spots les plus importants et qui 
contribue positivement à l'affinité du complexe ACE2-RBD, ne présente plus d'interaction avec 
son résidu partenaire D30 situé à la surface d'interaction d'ACE2. Cependant, malgré cette perte 
d'interaction, la présence d'autres mutations, notamment au sein d’Omicron, a démontré leur 
capacité à compenser cette perte en possédant des propriétés physico-chimiques favorables à 
la création d'un environnement plus propice à l'interface ACE2-RBD. Dans l'ensemble, nos 
résultats mettent en évidence une corrélation significative entre les énergies de liaison calculées, 
les variations dans la décomposition énergétique de chaque résidu muté et leur effet viral au 
sein du variant concerné. Cette étude permet également d'obtenir une vision globale de tous les 
variants préoccupants et de comprendre leurs effets sur l’interaction entre le RBD et ACE2 au 
niveau moléculaire. 
 
A partir d’un échantillonnage représentatif des différentes conformations du domaine RBD 
issues des simulations de DM, une recherche de poches druggables a été effectuée à l’aide de 
l’outil PockDrug développé au sein de notre équipe. Une analyse approfondie des poches et de 
leur évolution au cours des simulations de DM a été effectuée sur le RBD, qu'il soit lié ou non 
à ACE2, afin d'identifier et de classer les poches druggables qui pourraient être ciblées par des 
molécules inhibitrices. Les poches extraites lors des simulations de DM ont été caractérisées 
en termes de propriétés physico-chimiques, de géométrie et de druggabilité. Elles ont 
également été classées en fonction de la similarité des résidus afin d'identifier des poches 
stables et fréquemment druggables tout au long des simulations. PockDrug a ainsi permis 
d'identifier trois sites dans lesquels des molécules inhibitrices pourraient se lier de manière 
spécifique et perturber l'interaction avec ACE2 ou inhiber l’activation de la protéine Spike. Ces 
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sites sont prometteurs pour le développement de médicaments car ils sont prédits druggables 
et se situent à des endroits à la surface de la protéine Spike qui sont importants pour son activité 
biologique. En effet, les sites 1 et 2 sont situés entre 2 monomères de la protéine Spike. Cette 
région joue un rôle crucial dans l’activation de Spike grâce à un changement conformationnel 
qui permet à RBD de se lier à ACE2. Par conséquent, il serait possible de maintenir Spike dans 
un état inactif en ciblant ces 2 sites. Il est à noter que notre étude met en évidence pour la 
première fois que le site 1 est une région à fort potentiel thérapeutique. Enfin, le site 3, lui, se 
situe sur la région qui permet au RBD d’interagir avec ACE2. 
 
 
La seconde partie de ce manuscrit porte sur les interactions impliquant le peptide PIF 
(MVRIKPGSANKPSDD) et des protéines partenaires. Cette étude nous a permis de confirmer 
ou d'infirmer les cibles potentielles de PIF, tout en ouvrant la voie à l'exploration de nouveaux 
partenaires potentiels. 
 
 Le peptide PIF a été démontré comme étant essentiel au cours des premiers stades de la 
grossesse. La sécrétion de PIF est importante pour l’implantation et le développement de la 
grossesse. De plus, PIF possède des propriétés neuroprotectrices et est capable d’atténuer 
certains phénomènes inflammatoires observés dans le cerveau. Il pourrait donc potentiellement 
jouer un rôle thérapeutique de premier plan pour aider à traiter la trisomie 21. Cependant, les 
cibles protéiques potentielles du peptide PIF restent largement inconnues, bien que certaines 
d’entre elles ont été discutées dans des articles antérieurs. Parmi ces cibles, l'une des plus 
prometteuses semblait être la protéine IDE (Insulin-Degrading Enzyme). IDE joue un rôle 
crucial dans la dégradation de plusieurs peptides tels que l'insuline et les amyloïdes bêta, et est 
donc impliquée dans des maladies telles que la maladie d'Alzheimer et le diabète. De plus, la 
structure dynamique de la protéine IDE est étroitement liée à son rôle biologique. Des études 
ont révélé que IDE peut adopter des conformations différentes, ce qui lui permet d'interagir 
avec différents substrats de manière spécifique. Les changements conformationnels de l'IDE 
en forme ouverte ou fermée sont essentiels pour son activité enzymatique et sa capacité à 
reconnaître et à dégrader les peptides cibles. La combinaison de différentes méthodes in silico, 
telles que les DM et le docking moléculaire, et d'approches in vitro, comme 
l'immunoprécipitation, nous a amené à conclure qu'il n'existe pas d'interaction directe entre le 
peptide PIF et IDE. Cependant, nous avons décidé de poursuivre nos études de DM sur cette 
protéine pour mieux comprendre sa flexibilité, car elle représente une cible importante dans 
plusieurs maladies et joue un rôle important dans le développement de stratégies thérapeutiques. 
Une étude approfondie du comportement dynamique et de la flexibilité d’IDE a été menée à 
l'aide de techniques comme la modélisation moléculaire et les simulations de DM. Les 
mouvements d'ouverture et de fermeture d’IDE liés à sa fonction d'enzyme cryptique ont ainsi 
pu être décrits pour la première fois, ce qui a conduit à une publication de ces résultats. Nous 
avons réussi non seulement à capturer les différents états d’IDE mais aussi à identifier de 
manière précise les résidus impliqués dans ces changements conformationnels. En effet, 
comprendre comment ces mouvements sont impliqués dans la liaison des inhibiteurs ou des 
modulateurs de l'IDE peut aider à concevoir des stratégies de développement de médicaments 
ciblant cette protéine. Ainsi, bien que l'interaction directe entre le peptide PIF et IDE n'ait pas 
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été confirmée, nos travaux ont contribué à une meilleure compréhension de la flexibilité d’IDE 
directement liée à sa fonction biologique. Par conséquent, ces résultats ouvrent la voie à de 
futures études pour explorer davantage le rôle d'IDE dans divers processus biologiques et 
développer des solutions thérapeutiques pour cette protéine clé.  
 
En raison de sa fonction dans la croissance et la différenciation cellulaires, ainsi que sa 
participation à de nombreuses voies de signalisation cruciales pour le contrôle du 
développement neuronal, DYRK1A (Dual Specificity Tyrosine Phosphorylation Regulated 
Kinase 1A) également été considérée comme une cible potentielle du peptide PIF. DYRK1A 
joue un rôle significatif dans la trisomie 21, faisant de cette protéine une cible d'intérêt. De 
manière intéressante, lors de notre étude structurale de DYRK1A, nous avons identifié une 
importante similarité de séquence entre un peptide substrat de DYRK1A et PIF. Ce peptide 
substrat se lie spécifiquement au domaine kinase de DYRK1A. Par conséquent, nous avons 
cherché à examiner plus en détail la relation potentielle entre DYRK1A et PIF afin de 
déterminer s'il existe une interaction fonctionnelle entre ces deux systèmes moléculaires. Dans 
ce but, nous avons utilisé le programme AlphaFold2-multimer qui est capable de prédire avec 
une grande précision la structure de complexes protéiques. AlphaFold2-multimer utilise le 
score pLDDT pour évaluer ses prédictions structurales. Ce score peut prendre des valeurs entre 
0 et 100 et plus il est important, plus AlphaFold2-multimer accorde une grande confiance dans 
sa prédiction. D’après nos résultats, AlphaFold2-multimer est capable de retrouver la structure 
connue expérimentalement de DYRK1A en interaction avec un peptide qui possède une taille 
proche de celle du peptide PIF. Concernant l’interaction entre DYRK1A et le peptide PIF, 
AlphaFold2-multimer propose des modèles ayant des scores pLDDT élevés, c’est-à-dire entre 
50 et 90, qui laissent à penser que nous pouvons être confiants dans ses prédictions structurales 
du complexe DYRK1A-peptide PIF. Cependant, nous n'avons pas pu obtenir, malgré nos 
multiples tentatives, une structure satisfaisante de l’interaction entre PIF et DYRK1A qui aurait 
dû, d’après les résultats expérimentaux de nos collaborateurs, impliquer le domaine PEST (C-
terminal domain enriched in proline (P), glutamic acid (E), serine (S), and threonine) une 
région intrinsèquement désordonnée de DYRK1A qui est, par essence, complexe à modéliser 
et donc difficile à étudier. Toutefois, ces résultats ont permis de conclure que PIF ne présente 
pas une spécificité de substrat envers le domaine kinase de DYRK1A. 
 
Étant donné que deux des cibles partenaires potentielles de PIF identifiées précédemment n'ont 
pas été confirmées par les méthodes in silico et expérimentales, nous avons entrepris une étude 
approfondie de PIF en utilisant diverses approches afin de rechercher de nouveaux partenaires 
potentiels. Ces approches intègrent deux méthodes, à savoir la protéomique quantitative par 
spectrométrie de masse effectuée par nos collègues expérimentalistes du projet ANR (Agence 
Nationale de Recherche) PIF et de deep learning. En combinant ces deux approches, notre 
objectif était de croiser les résultats, les filtrer et identifier des protéines d'intérêts pour PIF. À 
l'aide du programme CAMP (Convolutional Attention-based Neural Network for Multi-level 
Peptide-protein interaction Prediction), basé sur du deep learning, nous avons identifié 
plusieurs cibles protéiques présentant des scores de prédiction élevés suggérant une possible 
interaction avec PIF. Par la suite, ces résultats ont été croisés avec les données obtenues 
expérimentalement par une méthode de protéomique quantitative par spectrométrie de masse. 
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Le croisement de ces méthodes a permis l’identification de 10 protéines d'intérêt, dont plusieurs 
kinases, qui sont impliquées dans les mêmes processus biologiques que PIF. Ainsi, plusieurs 
cibles susceptibles d’interagir avec PIF ont été identifiées : la protéine STRAP (Serine-
threonine kinase receptor-associated protein), DYNLL2 (Dynein light chain 2), PAFAH1B2 
(Platelet-activating factor acetylhydrolase IB subunit beta), Nucléoline, CAMKB2 
(Calcium/calmodulin-dependent protein kinase type II subunit beta), RACK1 (Receptor of 
activated protein C kinase 1), PPP1R7 (Protein phosphatase 1 regulatory subunit 7), 
HNRNPAB (Heterogeneous nuclear ribonucleoprotein A/B), and MAP2K1 (Dual specificity 
mitogen-activated protein kinase kinase 1) et PRDX6 (Peroxiredoxin-6). En outre, il est 
intéressant de noter que plusieurs de ces protéines sont connues expérimentalement pour 
interagir aves des peptides pour exercer leur activité biologique. Cette caractéristique nous 
donne la possibilité de comparer ultérieurement ces résultats avec ceux prédits pour les 
interactions impliquant PIF et valider une cible thérapeutique.  
 
Malgré les rôles importants de PIF, son origine génétique n’a jamais pu être identifiée. Par le 
biais de méthodes génomiques, l'origine génétique du PIF a été soigneusement étudiée, et des 
recherches supplémentaires sont en cours pour mieux comprendre la régulation du PIF aux 
niveaux transcriptionnels et post-transcriptionnels. En effet, PIF se distingue par sa petite taille 
et une combinaison unique d'acides aminés, ce qui le rend non homologue à tout autre peptide 
humain répertorié dans les bases de données disponibles comme BLAST (Basic Local 
Alignment Search Tool). Par conséquent, pour identifier le gène codant de PIF dans le génome 
humain, nous avons utilisé le programme SPALN (Space-Efficient Spliced Alignment). Nous 
avons également refait l’étude sur le génome du gorille et de la souris. Cette analyse 
approfondie a révélé la présence d'une partie du peptide PIF (VRIKPGSA) dans une région 
non codante du gène NRXN3 (Neurexin-3-alpha) située sur le chromosome 14 humain. En 
conclusion, la séquence unique et non homologue du PIF par rapport aux peptides humains 
connus dans les bases de données disponibles soulève des questions sur son origine génétique. 
Nos résultats indiquent que PIF pourrait être un peptide codé par une région non codante du 
chromosome 14, soit en tant que smORF (small open Reading Frame) d'un ARN non-codant, 
soit en tant que partie d'un ARN long non-codant bifonctionnel. Pour mieux comprendre 
l'origine et les fonctions biologiques de PIF, des études futures devraient se concentrer sur 
l'exploration de ces hypothèses. 
 
 
Grâce aux découvertes de cette thèse, nous avons maintenant une meilleure compréhension des 
protéines cibles potentielles du PIF, ce qui a également servi de base à une vérification 
expérimentale supplémentaire de ces interactions. Dans l'ensemble, cette recherche ouvre la 
voie à de futures investigations sur les interactions entre le PIF et ses protéines cibles, offre de 
nouvelles perspectives importantes sur les mécanismes sous-jacents aux interactions protéine-
protéine, ainsi qu’à l'identification de cibles thérapeutiques potentielles dans divers contextes 
pathologiques. Pour compléter ces résultats, une collaboration avec des équipes expérimentales 
serait cruciale pour valider les résultats obtenus et identifier des inhibiteurs efficaces, 
notamment dans le contexte du SARS-CoV-2. Cette approche permettrait de confirmer 
l'importance potentielle des poches identifiées en tant que cible thérapeutique pour lutter contre 
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les infections virales. De plus, l'application du protocole utilisé pour étudier le complexe 
ACE2-RBD pourrait être appliqué à PIF et à l’étude de ses interactions avec de nouvelles cibles 
protéiques pour les quantifier et les caractériser, afin d’aboutir à une meilleure compréhension 
des mécanismes moléculaires impliqués dans le contexte d’interactions protéine-peptide. 
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Abstract 
 
A bioinformatics analysis of therapeutic proteins: studying protein partners for the 

preimplantation factor (PIF) and of SARS-CoV-2 proteins 
 
Protein-protein and protein-peptide interactions are the basis for many biological processes. 
Therefore, understanding the molecular and structural mechanisms of these interactions can 
aid in the design of therapeutic molecules. 
 
This thesis examines the importance of protein-protein and protein-peptide interactions in drug 
discovery and biological processes. The aim is to explore protein-protein interactions between 
the human ACE2 receptor and the Spike protein RBD, as well as protein-peptide interactions 
between the PIF peptide and its protein targets. A structural bioinformatics protocol including 
molecular modeling, MD simulations, MM-PBSA calculations and druggable pocket tracking 
was developed to study RBD-ACE2 interactions. This methodology led to the identification of 
three potential druggable sites on the Spike protein. A second study investigated the impact of 
SARS-CoV-2 variants of concern mutation and their effects on ACE2 affinity. Furthermore, 
we also used molecular docking, MD simulations and genomics approaches to investigate 
potential PIF protein partners such as IDE and DYRK1A. This work let to the examination of 
the IDE protein and offered crucial insights into its biological function and prospective 
therapeutic uses. Moreover, the AlphaFold2-multimer program was used to predict the 
structural arrangement of the interaction between DYRK1A and PIF.  
 
Keywords: molecular dynamics simulations, molecular docking, molecular modeling, MM-
PBSA calculations, therapeutic targets, protein-protein interactions, protein-peptide 
interactions, SARS-CoV-2, Preimplantation Factor peptide (PIF) 
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Résumé 
 

Analyse bioinformatique des protéines thérapeutiques : étude des protéines 
partenaires du facteur de préimplantation (PIF) et des protéines du SARS-CoV-2 

 
Les interactions protéine-protéine et protéine-peptide sont essentielles pour de nombreux 
phénomènes biologiques. Ainsi, comprendre les mécanismes de ces interactions pourrait aider 
à la conception des molécules thérapeutiques. 
 
L'objectif de cette thèse est d’étudier les interactions protéine-protéine entre le récepteur ACE2 
humain et le domaine RBD de la protéine Spike du SARS-CoV-2, ainsi que les interactions 
protéine-peptide entre le peptide PIF et ses cibles protéiques. Un protocole de bioinformatique 
structurale comprenant des approches de modélisation moléculaire, de simulations de 
dynamique moléculaire, de calculs MM-PBSA et de suivi des poches druggables a été appliqué 
pour étudier les interactions RBD-ACE2. Cette approche a principalement permis 
l'identification de trois sites druggables sur la protéine Spike. Un second travail a permis 
d’étudier les impacts des mutations des principaux variants de la protéine Spike et leurs 
conséquences sur son affinité avec ACE2. Concernant l’étude du peptide PIF et ses partenaires 
potentiels tels qu’IDE et DYRK1A, nous avons utilisé des approches de modélisation 
moléculaire, de docking moléculaire, de simulations de dynamique moléculaire et de 
génomique. Ce travail portant sur la protéine IDE a permis de mieux comprendre les 
mouvements à l’origine de sa fonction biologique et pourrait être la base du développement de 
molécules thérapeutiques.  
 
Mots-clefs : simulation de dynamique moléculaire, docking moléculaire, modélisation 
moléculaire, calculs MM-PBSA, cibles thérapeutiques, interactions protéine-protéine, 
interaction protéine-peptide, SARS-CoV-2, facteur de préimplantation (PIF) 


