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Introduction Générale

La science économique a connu un « tournant appliqué » (Backhouse and Cherrier (2014)) ces dernières

décennies. Dans les années 1960, plus de la moitié des articles publiés dans l’American Economic

Review, le Journal of Political Economy et le Quarterly Journal of Economics — trois des revues

généralistes les plus respectées de la discipline — étaient des travaux purement théoriques. Cette

part est tombée à moins de 28% au début des années 2010 (Hamermesh (2013)). L’une des causes

identifiées de ce basculement a été le développement et la promotion de meilleures méthodes empiriques,

permettant de mieux distinguer corrélation et causalité, dans un mouvement que Angrist and Pischke

(2010) ont qualifié de « révolution de la crédibilité ». La méthode la plus fiable pour identifier des

effets causaux, en termes de validité et de robustesse des estimations statistiques, repose sur les

expériences avec assignation aléatoire. C’est le principe des essais cliniques en médecine : deux

groupes sont générés aléatoirement à partir d’une même population, l’un bénéficiant d’un traitement et

l’autre servant de groupe témoin. L’effet causal moyen du traitement peut alors être mesuré en comparant

les résultats moyens entre le groupe traité et le groupe témoin. L’évaluation des politiques publiques par

assignation aléatoire a démontré, par exemple, l’effet causal positif de l’assurance maladie universelle

sur l’utilisation de soins et l’état de santé de diverses sous-populations (Finkelstein et al. (2012)) et a

prouvé l’efficacité de nombreux programmes visant, par exemple, à améliorer l’assiduité des élèves à

l’école (e.g. Miguel and Kremer (2004), Parker and Todd (2017)) ou les résultats sur le marché du travail

pour les personnes au chômage (e.g. LaLonde (1986)). Toutefois, les expériences randomisées sont

coûteuses, chronophages et parfois impossibles à mettre en œuvre. Il est ainsi difficile d’imaginer la mise

en place d’une expérience aléatoire évaluant, par exemple, l’effet de l’immigration sur l’économie d’un

pays hôte. Cependant, il existe de nombreuses situations où des groupes traités et non traités peuvent

être construits à partir d’un événement externe, naturel, qui agit « comme si » la population avait été

divisée aléatoirement. Étant donné que l’événement crée des conditions similaires à une assignation

aléatoire, ces expériences naturelles peuvent être utilisées pour établir des relations causales. Plusieurs

méthodes quasi-expérimentales d’analyse des politiques ont été développées pour concevoir des groupes

témoins pertinents et crédibles. Les méthodes les plus utilisées sont les variables instrumentales (IV),
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les méthodes de régression sur discontinuité (RD) et les différences-en-différences (DiD). Les modèles

IV sont généralement employés lorsque l’assignation du traitement est corrélée avec d’autres facteurs

confondants, ce qui empêche d’isoler les effets causaux du traitement. La variable instrumentale est un

facteur tiers corrélé à l’assignation du traitement mais qui n’a aucun effet direct sur la variable d’intérêt,

si ce n’est par son lien avec la variable traitement. Les méthodes RD exploitent souvent les critères

d’éligibilité arbitraires d’un programme, où les unités situées au-dessus d’un seuil sont éligibles et celles

en dessous ne le sont pas. Les méthodes DiD estiment l’effet causal d’un traitement en comparant les

changements d’une variable d’intérêt au fil du temps entre un groupe traité et un groupe non traité, en

supposant que, sans l’existence du traitement, les deux groupes auraient suivi des tendances similaires.

Des estimateurs statistiques intuitifs sont associés à chacune de ces méthodes. Pour les méthodes

IV, l’estimateur est celui des doubles moindres carrés (2MC) (Angrist and Imbens (1995)). Pour les

méthodes RD, il s’agit des régressions linéaires locales autour du seuil de discontinuité (Thistlethwaite

and Campbell (1960)). Pour les méthodes DiD, l’estimateur est celui des moindres carrés ordinaires

(MCO) issu d’une régression à double effets fixes (TWFE) (e.g. Bertrand et al. (2004)).

Lorsque les effets des traitements sont homogènes, ces trois méthodes quasi-expérimentales peuvent

en principe, tout comme les expériences randomisées, estimer un effet causal moyen. Cependant, cette

condition est rarement satisfaite. Lorsque cette hypothèse n’est pas vraie, l’interprétation causale des

estimateurs associés à ces trois méthodes quasi-expérimentales est modifiée de diverses manières.

Dans les RD, les estimations peuvent être interprétées comme l’effet causal moyen pour les unités

situées juste autour du seuil. Dans les modèles IV, les conséquences de l’hétérogénéité des effets

du traitement sur l’interprétation causale ont été étudiées par Angrist et al. (1996). Des restrictions

supplémentaires, comme l’hypothèse de monotonie, sont nécessaires pour interpréter l’estimateur des

2MC comme un effet causal. Une vaste littérature étudiant l’inférence causale en présence d’effets

de traitement hétérogènes utilisant des variables instrumentales a émergé à partir de ce projet initial

(voir, par exemple, Angrist et al. (2000), Heckman and Vytlacil (2005), Mogstad and Torgovitsky (2018),

Heckman and Pinto (2018)). Dans le design canonique de DiD avec un traitement binaire, deux groupes

et deux périodes temporelles, le coefficient associé à la variable de traitement dans une régression

TWFE peut être interprété comme un effet causal moyen au sein du groupe ayant reçu le traitement lors

de la deuxième période, à condition que l’hypothèse de tendance commune soit satisfaite. Cependant,

dans les designs comportant plus de deux groupes et/ou plus de deux périodes temporelles, même

si l’hypothèse de tendance commune est satisfaite pour toutes les périodes temporelles consécutives,

De Chaisemartin and d’Haultfoeuille (2020), Imai and Kim (2021), Goodman-Bacon (2021), Sun and

Abraham (2021) et Borusyak et al. (2024) ont récemment démontré que l’estimateur des moindres carrés

ordinaires (MCO) fondé sur la régression TWFE n’identifie pas un effet causal pertinent lorsque les effets
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de traitement sont hétérogènes entre les groupes et/ou les périodes temporelles. Cet estimateur identifie

une moyenne pondérée des différents effets de traitement, avec des poids qui, bien que sommant à

un, peuvent être négatifs. Par conséquent, il est possible d’obtenir un estimateur négatif alors même

que les effets de traitement pour chaque groupe et pour toutes les périodes, sont positifs. De nouveaux

estimateurs robustes aux effets de traitement hétérogènes ont été mis au point pour des designs de

différences-en-différences avec une adoption d’un traitement binaire potentiellement échelonnée dans le

temps à travers les groupes (Callaway and Sant’Anna (2021), De Chaisemartin and d’Haultfoeuille (2020),

Sun and Abraham (2021), Borusyak et al. (2024)). Toutefois, le cadre des différences-en-différences

avec plusieurs groupes et/ou périodes temporelles a également été utilisé pour évaluer les effets de

variables de traitement continues, comme des tarifs douaniers (par exemple, Fajgelbaum et al. (2020))

ou des taxes sur des biens de consommation (par exemple, Li et al. (2014)). Pourtant, l’estimateur MCO

issu d’une régression TWFE se comporte également mal en termes d’inférence causale dans ce cadre,

lorsque les effets de traitement sont hétérogènes entre les groupes, comme l’ont récemment démontré

Callaway et al. (2024). Le premier chapitre de cette thèse, rédigé en collaboration avec Clément de

Chaisemartin, Xavier D’Haultœuille, Doulo Sow et Gonzalo Vasquez-Bare, développe deux nouveaux

estimateurs de paramètres causaux pertinents dans un cadre de différences-en-différences avec une

variable de traitement continue. Le scénario classique envisagé est celui d’un économètre disposant

d’un panel de nombreux groupes observés sur deux périodes. Tous les groupes peuvent être déjà

traités lors de la première période, mais à des doses différentes. Entre les deux périodes, certains

groupes, appelés switchers, subissent une modification de la dose de traitement qu’ils reçoivent. En

revanche, d’autres groupes, appelés stayers, conservent la même dose de traitement au cours des deux

périodes. Le premier paramètre considéré, appelé AS, correspond à la pente moyenne de la fonction des

"résultats potentiels" pour les switchers pendant la seconde période, entre leur dose de traitement de la

première période et celle de la seconde période. Le second paramètre, appelé WAS, est une version

pondérée de cette moyenne, où chaque switcher reçoit un poids proportionnel à la valeur absolue du

changement de sa dose de traitement entre les deux périodes. L’identification et l’estimation de ces deux

paramètres reposent sur une nouvelle hypothèse de tendance commune : en l’absence de modification

de leur dose de traitement entre les deux périodes, les groupes switchers auraient, en moyenne, connu la

même évolution de leur variable de résultat que les groupes stayers ayant reçu la même dose initiale de

traitement. Cette hypothèse de tendance commune présente l’avantage d’être testable par une méthode

"placebo", en comparant les évolutions des résultats des switchers et des stayers avant les modifications

de la dose de traitement des switchers. D’un point de vue économique, les paramètres AS et WAS

n’ont pas vocation à servir les mêmes objectifs. Sous des restrictions de forme sur la fonction des

résultats potentiels, le paramètre AS peut être utilisé pour inférer l’effet d’autres modifications des doses
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de traitement que celles observées entre les périodes 1 et 2. Le WAS peut être utilisé pour effectuer

une analyse coût-bénéfice des modifications des doses de traitement effectivement observées. Les

résultats concernant l’identification et l’estimation de ces paramètres sont ensuite étendus à d’autres

configurations. En particulier, ils sont adaptés à un cadre avec variables instrumentales. Ce type de

design est couramment utilisé dans les études visant à estimer l’élasticité-prix de la demande pour un

bien. Par exemple, les taxes variant entre différentes régions peuvent être utilisées comme instrument

pour les prix de vente moyens du bien dans les régions. Nous montrons que le rapport entre l’effet

WAS de l’instrument sur la variable de résultat et l’effet WAS de l’instrument sur la dose de traitement

correspond à une moyenne pondérée des pentes des résultats des switchers par rapport au traitement,

les switchers dont la dose de traitement réagit le plus fortement aux variations de l’instrument recevant

un poids plus élevé. Ces résultats sont appliqués pour estimer l’élasticité-prix de la consommation

d’essence, en utilisant un panel de données au niveau des États pour la période 1966-2008 compilé par

Li et al. (2014).

Dans la grande majorité des études évaluant des politiques, qu’elles reposent sur un design ex-

périmental ou une expérience naturelle, l’interprétation causale des quantités estimées repose sur une

condition essentielle : la Stable Unit Treatment Value Assumption (SUTVA). Cette hypothèse stipule que

le statut de traitement d’une unité n’affecte pas les résultats des autres unités de la population, qu’elles

reçoivent ou non le traitement. Lorsque cette condition est violée, le groupe de contrôle — composé

d’unités ne recevant pas le traitement — ne peut plus servir de base de comparaison valide, car ses

membres ont pu modifier leur comportement en réponse à l’existence du traitement. Cependant, les

effets de débordement (spillover effects), qui violent l’hypothèse SUTVA, sont courants en sciences

sociales, du fait de l’existence d’effets de pairs et d’interactions sociales. Tenir compte de ces effets de

pairs est donc essentiel pour évaluer l’impact causal de politiques ou de programmes. Prenons, par

exemple, une intervention dans un lycée visant à réduire le taux d’abandon scolaire. L’intervention a un

impact direct sur les élèves qui y participent, et certains décident de rester dans le système éducatif alors

qu’ils auraient abandonné autrement. Mais les élèves sont également influencés par les décisions de

leurs pairs : voir un ami rester dans le système scolaire peut inciter un autre élève à faire de même. Ainsi,

l’impact initial de l’intervention est amplifié par les effets de pairs. Dans d’autres contextes, cependant,

les interactions sociales peuvent atténuer les effets d’une politique. Cette dynamique est connue sous le

nom d’effet du multiplicateur social (social multiplier effect). Un décideur politique a intérêt à connaître

le sens et l’ampleur de ces effets de pairs afin de concevoir au mieux les programmes et maximiser

leurs effets recherchés. Pour autant, les effets de pairs sont complexes. Premièrement, les effets

de pairs peuvent prendre différentes formes. Le comportement d’un individu peut répondre soit aux

caractéristiques exogènes du groupe auquel il appartient, soit au comportement du groupe. Manski
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(1993) qualifie le premier type d’effets de pairs exogènes, et le second d’effets de pairs endogènes.

Deuxièmement, les effets de pairs peuvent découler de divers mécanismes sociaux, avec des sens et

des magnitudes différents. L’exemple précédent reflète un phénomène de conformisme, où les élèves

imitent le comportement de leurs pairs. Mais d’autres mécanismes existent. Dans certains cas, un

groupe d’individus (type A) influence un autre groupe (type B) sans réciprocité : les individus de type

A servent alors de modèles. Dans d’autres cas, le groupe peut se polariser : les individus de type A

ont des comportements conformistes entre eux mais leurs comportements divergent de ceux adoptés

par les individus de type B, et vice versa. Les outils économétriques standards pour évaluer les effets

de pairs présentent des limites. Bien que les modèles basés sur les réseaux puissent théoriquement

tenir compte de la complexité des interactions sociales (voir Bramoullé et al. (2020) pour une revue de

cette littérature), ils nécessitent des données détaillées sur l’ensemble du réseau, souvent indisponibles.

Par conséquent, la plupart des études s’appuient sur le modèle linéaire en moyennes (Linear-In-Means,

LIM) introduit par Manski (1993). Dans le modèle de Manski, le comportement d’un individu dépend

linéairement du comportement moyen du groupe, des caractéristiques moyennes du groupe et de facteurs

inobservés. Cependant, ce modèle impose l’hypothèse restrictive selon laquelle les individus répondent

de manière homogène aux changements de comportement de leurs pairs, ce qui le rend mal adapté

pour saisir la diversité des mécanismes sociaux. Le deuxième chapitre de cette thèse, fruit d’un travail

conjoint avec Pauline Rossi et Zheng Wang, étend le modèle LIM en introduisant une hétérogénéité

dans la composante endogène. Notre modèle permet aux individus d’être influencés différemment par

le comportement de leurs pairs, selon qu’ils partagent ou non la même identité. Cela distingue notre

approche de celle de Masten (2018), premier travail à notre connaissance qui considère également un

modèle LIM avec effets endogènes hétérogènes. Dans le modèle de Masten (2018), les individus sont

influencés à des degrés divers par leurs pairs, mais l’influence des pairs est homogène quelle que soit

leur identité. Dans la version de base de notre modèle, l’identité est définie par l’éligibilité à un programme

mis en œuvre au niveau du groupe. Nous développons un méthodologie fondée sur une expérimentation

en population partielle (partial population experiment) pour identifier les différentes composantes de

l’effet causal moyen total du programme. Concrètement, nous supposons qu’un échantillon de plusieurs

groupes est observé. Au sein de chaque groupe, des individus sont éligibles au programme. Cette

part d’individus éligibles est connue et varie entre les groupes. Lorsqu’un groupe est sélectionné pour

faire partie du programme, tous les individus éligibles participent au programme tandis qu’aucun des

individus non-éligibles ne le fait. Notre stratégie compare ensuite les groupes traités et non traités ayant la

même proportion d’individus éligibles. Cette approche est compatible avec des expériences randomisées

ainsi qu’avec des designs de différences-en-différences, à condition qu’une hypothèse de tendance

commune soit respectée. Cette stratégie d’identification est par ailleurs adaptée à des contextes où
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l’identité pertinente pour les effets de pairs hétérogènes est orthogonale à l’éligibilité au programme. En

reprenant l’exemple précédent, si l’intervention visant à réduire le risque d’abandon scolaire cible des

élèves issus de milieux socio-économiques défavorisés, notre stratégie de base estime un effet causal

total qui tient compte des effets de pairs hétérogènes entre élèves défavorisés et élèves davantage

favorisés. Cependant, si le genre des individus constitue l’identité la plus pertinente pour les effets de

pairs hétérogènes, notre approche alternative permet d’aborder cette complexité. Ces deux dernières

caractéristiques distinguent notre méthode de celle de Arduini et al. (2020), qui, à notre connaissance,

est la seule autre étude à considérer un modèle LIM avec effets de pairs endogènes hétérogènes basés

sur l’identité des pairs. À partir de ces stratégies d’identification, nous développons des estimateurs

par la méthode des moments généralisés (Generalized Method of Moments, GMM) et démontrons la

convergence et la normalité asymptotique de ces estimateurs. Nous appliquons notre méthodologie à

l’étude de Progresa, un programme de transferts monétaires conditionnels mis en place au Mexique

visant à réduire l’abandon scolaire chez les élèves issus d’un milieu financièrement défavorisé. Notre

analyse estime l’effet direct du transfert monétaire sur les élèves issus d’une famille pauvre, l’effet indirect

sur les élèves issus de familles non pauvres, ainsi que l’amplification de ces effets par les interactions

sociales.

De nombreuses politiques publiques ne peuvent pas être évaluées à l’aide de méthodes expérimen-

tales ou quasi-expérimentales, faute de groupe de contrôle approprié, ou du moins observable. Ce défi

est amplifié lorsqu’il existe des interactions complexes entre les agents impliqués dans l’expérience,

comme illustré dans le chapitre précédent, où il devient difficile de trouver un groupe de contrôle adéquat.

Dans de tels cas, la solution consiste à introduire plus de structure dans le modèle, en s’appuyant sur la

théorie économique. Bien que l’interprétation causale des résultats issus de modèles structurels repose

généralement sur des hypothèses fortes, ajouter de la structure présente des avantages. Les paramètres

estimés peuvent être utilisés pour évaluer les effets ex ante de politiques publiques alternatives. Le

dernier chapitre de cette thèse développe un tel modèle structurel pour évaluer les effets des politiques

publiques modifiant les conditions d’accès à l’aide à domicile non-médicalisée pour les personnes âgées

dépendantes, sur différentes sous-populations de ménages. Traditionnellement, les membres de la

famille nucléaire sont les premiers à fournir le soutien nécessaire lorsqu’une personne âgée n’est plus en

mesure de réaliser de manière autonome les tâches essentielles du quotidien (voir, par exemple, Capuano

(2018)). Cependant, le vieillissement de la population, la baisse des taux de fécondité, l’augmentation

de la participation des femmes au marché du travail et la complexification des structures familiales

réduisent la disponibilité des soins informels sur lesquels une personne âgée dépendante peut compter.

Cette situation exerce une pression accrue sur les aidants familiaux restants, en particulier les conjoints,

s’ils sont présents, car ils tendent à être les plus disponibles. En raison de ces évolutions sociales
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et démographiques, un marché formel de prise en charge de la dépendance a émergé dans les pays

développés. Dans ce marché, des organisations fournissent des services d’aide et d’accompagnement à

domicile. Les services rendus par les employés de ces organisations sont totalement substituables à

l’aide informelle fournie par les proches de la personne âgée dépendante. Par conséquent, les personnes

âgées et leurs familles prennent en compte cette aide professionnelle, également dite formelle, lorsqu’ils

planifient la prise en charge de la dépendance. L’intervention publique joue un rôle clé pour garantir

l’accès à l’aide à domicile formelle pour l’essentiel des ménages. Cependant, avec l’augmentation

continue de la population âgée, le débat sur la conception de politiques plus soutenables financièrement

prend de l’ampleur. Pour ce faire, il est essentiel de considérer tous les effets générés par une hausse

des financements publics sur ce type d’aide. Plusieurs études, basées sur des expériences naturelles,

ont montré qu’un meilleur accès au marché formel de l’aide à domicile non-médicalisée augmente

l’offre de travail des filles des personnes âgées dépendantes (voir, par exemple, Løken et al. (2017),

Shen (2021), Chen and Lin (2022)) tout en améliorant la santé des personnes âgées (voir, par exemple,

Massner and Wikström (2023), Frimmel et al. (2020)). Cependant, peu d’études ont examiné l’impact

des changements de ces conditions d’accès sur l’aide informelle fournie par le conjoint d’une personne

âgée dépendante, bien que ce dernier soit souvent le principal aidant lorsque la personne âgée est en

couple. De plus, plusieurs travaux ont démontré que le rôle d’aidant a un effet négatif sur la santé du

conjoint (voir, par exemple, Wagner and Brandt (2018), Barbosa et al. (2020)). Étant donné que les

conjoints sont eux-mêmes souvent âgés, fournir de l’aide informelle de manière intensive peut conduire

à une dépendance plus rapide ou à une utilisation accrue de services de santé, qui sont coûteux pour

le senior mais aussi pour la puissance publique. Comprendre comment l’aide informelle apportée par

le conjoint réagit à des variations du coût de l’aide formelle à la charge des ménages, selon le type

de ménage considéré, est crucial pour concevoir des politiques publiques alternatives efficaces. C’est

précisément l’objet du troisième chapitre de cette thèse. La principale contribution de ce chapitre est le

développement, dans un cadre statique, d’un modèle d’offre et de demande pour le marché de l’aide

à domicile non-médicalisée. À notre connaissance, il s’agit du premier projet à prendre en compte

l’offre. Du côté de la demande, les ménages composés d’une personne âgée dépendante et de son

conjoint décident ensemble de la consommation d’aide formelle et de la provision d’aide informelle

fournie par le conjoint. Le bien-être de la personne âgée dépendante dépend de l’ensemble de l’aide

reçue, les aides formelle et informelle étant considérée comme entièrement substituables. Les ménages

sont hétérogènes dans leurs caractéristiques observables et leurs préférences. Du côté de l’offre, le

modèle tient compte d’une certaine différenciation horizontale entre les fournisseurs d’aide à domicile

professionnelle non-médicalisée. Les ménages peuvent choisir entre payer une prestation auprès d’un

service d’aide et d’accompagnement à domicile (SAAD) ou d’employer directement une aide à domicile
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professionnelle. Un marché de concurrence parfaite est supposé au sein de chaque type de fournisseur

d’aide professionnelle. L’identification et l’estimation de ce modèle d’offre et de demande exploitent le

fait que le marché de l’aide à domicile non-médicalisée est administré localement, ce qui génère une

variation géographique exogène des prix à la charge des ménages pour une heure d’aide à domicile

professionnelle. Les paramètres structurels du modèle de demande sont estimés par maximum de

vraisemblance, en utilisant les données de l’enquête CARE-Ménages. Cette enquête représentative

de la population française de plus de 60 ans fournit des informations détaillées sur les aides humaines

et financières reçues par les personnes âgées pour les activités quotidiennes, qu’il s’agisse d’aide

fournie par la famille ou auprès de prestataires professionnels. Les résultats préliminaires suggèrent

que, toutes choses égales par ailleurs, les conjoints fournissant de l’aide informelle de sexe masculin

et les conjoints âgés sont plus sensibles à une variation du prix de l’aide à domicile non-médicalisée

professionnelle. Les paramètres structurels du modèle d’offre sont estimés par la méthode des doubles

moindres carrés, en utilisant des données sur les marchés locaux, y compris l’enquête CARE-Ménages,

des données démographiques publiques et la base administrative française appariant les employeurs et

les employés. Les résultats préliminaires indiquent que les services de soins personnels et sociaux à

domicile fonctionnent à coûts marginaux constants.
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General Introduction

Economics has known, in the last decades, an "applied turn" (Backhouse and Cherrier (2014)). In

the 1960s, more than half of the articles published in the American Economic Review, the Journal of

Political Economy and the Quarterly Journal of Economics - three of the discipline’s most respected

generalist journals - were purely theoretical works. This share fell to less than 28% in the early 2010s

(Hamermesh (2013)). One of the identified causes for this shift was the development and the advocacy

of better empirical research designs, that allow to better distinguish between correlation and causation,

in a movement that Angrist and Pischke (2010) coined the "credibility revolution". The best design for

uncovering causal effects, in terms of reliability and validity of statistical estimates, are experiments with

random assignment. It is the principle of clinical trials in medicine. Two groups are randomly selected

from the same population. One benefits from a treatment while the other serves as a control. The

average causal effect of the treatment can be measured by comparing the average outcome within the

group that benefited from the treatment with the average outcome within the control group. Random

assignment policy evaluation has demonstrated, for instance, the positive causal effect of health insurance

on healthcare use and health outcomes (Finkelstein et al. (2012)) and has proven the efficacy of numerous

programs that aimed at, for example, at improving school attendance (e.g. Miguel and Kremer (2004),

Parker and Todd (2017)) or labor market outcomes for unemployed people (e.g. LaLonde (1986)). But

randomised experiments are time-consuming, expensive, and may not always be practical. It’s difficult

to imagine the setting-up of a randomised experiment to evaluate, for instance, the effect of immigrants

on the economy of the host country. Nevertheless, there exist many situations in which a treatment

group and a control group can be formed based on an "as-if random" naturally occurring external event.

Since the event create conditions that are similar to random assignment, these natural experiments

can be used to make causal claims. Several quasi-experimental policy-analysis designs have been

developed to conceive relevant and credible control groups. The most often used designs in studies

exploiting a natural experiment are instrumental variables (IV), regression discontinuity methods (RD) and

difference-in-differences (DiD). IV designs are typically used when treatment assignment is correlated

with some other confounding factors, which prevents from isolating the causal effects of the treatment.
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The instrumental variable is a third factor that is correlated with treatment assignment but that has no

direct effect on the outcome, except through its connection with treatment assignment. RD designs exploit,

most often, the arbitrary eligibility criteria of a program, whereby units above a certain threshold are

eligible to the program while those below are not. The average outcome of units that are just above the

cutoff is compared with the average outcome of units that are just below. Since those near the threshold

are similar in most ways except for taking part in the program, any sudden change in outcomes at the

cutoff is attributed to the effect of the program itself. DiD designs estimate the causal effect of a treatment

by comparing the changes in outcomes over time between a group that receives the treatment and a

group that does not. The main identification assumption is that, without the treatment, both groups would

have followed similar trends. By looking at the difference in outcomes before and after the intervention for

both groups, the design isolates the effect of the treatment from other factors that may have influenced

the outcomes. Intuitive statistical estimators have been associated with each of these designs. For IV

designs, it is the double least squares (2SLS) estimator (Angrist and Imbens (1995)). For RD designs,

this estimator is based on local linear regressions around the discontinuity threshold (Thistlethwaite and

Campbell (1960)). For DiD designs, it is the ordinary least squares (OLS) estimator from a two-way fixed

effect (TWFE) linear regression (e.g. Bertrand et al. (2004)).

If treatment effects are homogeneous, these three quasi-experimental methods can in principle, just

like randomised experiments, estimate an average causal effect of the treatment. But this condition is,

most of the time, very unlikely to be satisfied. When this assumption fails, the causal interpretation of

the estimators associated with these three quasi-experimental designs is modified in different ways. The

RD design estimates can be interpretated as the average causal effect of the treatment for units that are

located at the cutoff, as long as units that are just above and just below this threshold are still similar. In

the context of instrumental variables, the consequences of the presence of heterogeneous treatment

effects on the causal interpretation of the double least squares estimator were highlighted by Angrist

et al. (1996). The addition of new restrictions on the design of the experiment, such as the monotonicity

condition, is necessary to be able to interpret the 2SLS estimator as a sensible causal effect. A vast

literature studying causal inference in the presence of heterogeneous treatment effects using instrumental

variables has stemmed from this initial project (e.g. Angrist et al. (2000), Heckman and Vytlacil (2005),

Mogstad and Torgovitsky (2018), Heckman and Pinto (2018)). In the baseline difference-in-difference

design with a binary treatment with two groups and two time periods, the coefficient associated to the

treatment variable in the TWFE regression can be interpreted as an average causal effect within the

group that received the treatment for the second period, as long as the common trend condition holds.

But in DiD designs with more than two groups and/or more than two time periods, even if the common

trend condition holds for each time period, De Chaisemartin and d’Haultfoeuille (2020), Imai and Kim
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(2021), Goodman-Bacon (2021), Sun and Abraham (2021) and Borusyak et al. (2024) have recently

demonstrated that the OLS estimator based on the TWFE regression does not identify a valuable causal

effect if treatment effects are heterogeneous across groups and/or across time periods. The estimator

identifies a weighted average of the different treatment effects with weights that sum to one but that can

be negative. It is therefore possible to obtain a negative estimator while the treatment effects of every

group, across all time period, are positive. New estimators that are robust to heterogeneous treatment

effects have been introduced for these DiD designs with potentially staggered adoption (Callaway and

Sant’Anna (2021), De Chaisemartin and d’Haultfoeuille (2020), Sun and Abraham (2021), Borusyak et al.

(2024)). However, the difference-in-difference framework with multiple groups and/or time periods has

also been used to evaluate the effects of continuous treatments such as custom tariffs (e.g Fajgelbaum

et al. (2020)) or taxes on consumption goods (e.g. Li et al. (2014)). Yet, the OLS estimator from a

TWFE regression also behaves poorly in terms of causal inference within this framework when treatment

effects are heterogeneous across groups, as shown recently by Callaway et al. (2024). The first chapter

of this thesis, that is joint work with Clément de Chaisemartin, Xavier D’Haultœuille, Doulo Sow and

Gonzalo Vasquez-Bare, introduces two new estimators of valuable causal parameters within a difference-

in-differences design with a continuous treatment variable. In its basic version, the observational study

relies on a panel of numerous groups observed over two periods. The groups may already all be treated

in the first period, albeit at different doses. Between the two periods, some groups, called switchers,

experience a change in the dose of treatment they receive. In contrast, some groups, called stayers, keep

the same treatment dose over both periods. The first considered parameter, called AS, corresponds to

the average slope of the "potential outcome" function in the second period for switchers, between their

treatment dose in the first period and that in the second period. The second parameter, called WAS, is

a weighted version of the previous average, where each switcher receives a weight proportional to the

absolute value of the change in their treatment dose between the two periods. The identification and

estimation of these two parameters rely on a novel common trend assumption: in the absence of a change

in their treatment dose between the two periods, the switcher groups would have experienced, on average,

the same evolution in their outcome variable as the stayer groups with the same initial treatment dose.

This parallel trends assumption has the advantage of being placebo testable, by comparing switchers’

and stayers’ outcome evolutions before switchers’ treatment changes. Economically, the AS and WAS

parameters can serve different purposes. Under shape restrictions on the potential outcome function, the

AS parameter can be used to infer the effect of other treatment changes than those that took place from

period one to two. The WAS can be used to conduct a cost-benefit analysis of the treatment changes

that effectively took place. The results on the identification and estimation of these parameters are then

extended to other designs. In particular, they are adapted to a design with instrumental variables. This
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design is commonly encountered in studies that aim to estimate the price elasticity of demand for a good.

For instance, taxes that vary across regions can be used as an instrument for prices. We demonstrate

that the reduced-form WAS effect of the instrument on the outcome, divided by the first-stage WAS

effect is equal to a weighted average of switchers’ outcome-slope with respect to the treatment, with

greater weight given to switchers who experience a larger first-stage effect. These findings are applied to

estimate the price elasticity of gasoline consumption, using the state-level panel dataset from 1966 to

2008 compiled by Li et al. (2014).

In the vast majority of policy analysis studies, whether they are based on an experimental design

or on a natural experiment, the interpretation of the estimates as valuable causal quantities relies on

an essential condition: the Stable Unit Treatment Value Assumption (SUTVA). SUTVA asserts that the

treatment status of one unit does not affect the outcomes of other units in the population, whether or not

they receive the treatment. When this condition is violated, the control group—composed of units that do

not receive the treatment—can no longer serve as a valid comparison because its members may alter

their behavior in response to the treatment’s existence. However, spillover effects, which violate SUTVA,

are common in the social sciences, particularly due to peer effects and social interactions. Considering

these effects is crucial when assessing the causal impact of policies or programs. For example, consider

an intervention in high school aimed at reducing dropout rates. The intervention directly impacts the

students who participate, and some decide to stay in school when they might have dropped out otherwise.

But students are also influenced by their peers’ decisions. Seeing a friend stay in school may motivate

another student to do the same. In this way, the initial impact of the intervention is amplified by peer effects.

In other contexts, however, social interactions can dampen the effects of a policy. This dynamic is known

as the social multiplier effect. A policymaker may want to understand the magnitude and direction of these

peer effects in order to design interventions that minimize dropout risk. Yet, peer effects are complex and

multifaceted. Firstly, peer effects can take different forms. An individual’s behavior may respond either to

the exogenously determined characteristics of the group they belong to or to the group’s behavior. Manski

(1993) describes the first type as exogenous peer effects and the second as endogenous peer effects.

Secondly, peer effects can arise from various social mechanisms, with differing signs and magnitudes.

The earlier example reflects a conformist pattern, where students imitate their peers’ behavior. But other

mechanisms exist. In some cases, one group of individuals (type A) influences another (type B) without

reciprocation. Here, type A individuals serve as role models. In yet other cases, the group may polarize:

type A individuals conform to each other but diverge from type B, and vice versa. Standard econometric

tools for evaluating peer effects face limitations. While network-based models can, in theory, account for

the complexity of social interactions (see Bramoullé et al. (2020) for a review), they require detailed data

on the entire network, which is often unavailable. Consequently, most studies rely on the linear-in-means
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(LIM) model introduced by Manski (1993). In Manski’s model, an individual’s behavior depends linearly on

the group’s average behavior, the group’s average characteristics, and unobserved factors. However, this

model imposes the restrictive assumption that individuals respond homogeneously to changes in their

peers’ behavior, making it ill-suited for capturing the diversity of social mechanisms. The second chapter

of this thesis, joint work with Pauline Rossi and Zheng Wang, extends the LIM model by introducing

heterogeneity in the endogenous component. Our model allows individuals to be influenced differently

by their peers’ behavior, depending on whether or not they share the same identity. This distinguishes

our approach from that of Masten (2018), the first work to our knowledge that also considers a LIM

model with heterogeneous endogenous effects. In Masten (2018)’s model, individuals are more or less

influenced by their peers to varying degrees, but this influence remains homogeneous across peers. In

the baseline version, identity is defined by eligibility for a program implemented at the group level. We

develop a partial population experiment design to identify the different components of the total average

causal effect of the program. Specifically, we observe several groups, each with a known share of eligible

individuals, which varies across groups. When a group is selected to benefit from the program, all eligible

individuals participate, while none of the ineligible ones do. Our strategy then compares treated and

untreated groups with the same share of eligible individuals. This approach works with both randomized

experiments and DiD designs, provided a common trend condition holds. Moreover, this design can

be adapted to settings where the relevant identity for peer effects is orthogonal to program eligibility.

Returning to the earlier example, if the intervention targets students from disadvantaged socio-economic

backgrounds, our baseline strategy estimates the total causal effect while accounting for heterogeneous

peer effects between poor and non-poor students. However, if gender is the more relevant identity, our

extended approach addresses this complexity. These two last features of our method set it apart from

that of Arduini et al. (2020), which, to our knowledge, is the only other work to consider a LIM model

with heterogeneous endogenous peer effects based on peer identity. From these identification strategies,

we develop Generalized Method of Moments (GMM) estimators and establish their consistency and

asymptotic normality. We apply our methodology to the study of Progresa, a conditional cash transfer

program in Mexico aimed at reducing school dropout among poor students. Our analysis estimates the

direct effect of the cash transfer on poor students, the indirect effect on non-poor students, and the extent

to which these effects are amplified by social interactions.

Many public policies cannot be evaluated using quasi-experimental methods because no suitable

control group exists, or at least none is observed. This challenge is amplified when there are complex

interactions between agents involved in the experience, as illustrated in the previous chapter, where

finding an appropriate control group becomes difficult. In such cases, the solution is to introduce more

structure into the model, that is based on economic theory. While the causal interpretation of results
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from structural models typically relies on strong assumptions, adding structure has its advantages. The

estimated parameters can be used to assess the ex-ante effects of alternative public policies. The

final chapter of this thesis develops such a structural model to evaluate the effects of public policies

that modify access conditions to personal and social home care for dependent elderly individuals on

different subpopulations. Traditionally, nuclear family members are the first to provide the necessary

support when a senior can no longer perform essential daily tasks independently (e.g. Capuano (2018)).

However, population aging, declining fertility rates, increasing female labor market participation, and the

complixification of family structures are reducing the availability of informal care that a dependent senior

can rely on. This situation puts additional pressure on the remaining family caregivers, particularly on

the spouses, if present, as they tend to be the most available. Due to these social and demographic

changes, a formal market for long-term care (LTC) has emerged in developed countries. Within this

market, organizations provide personal and social home (PSH) care services. The services delivered

by the home care workers in these organizations are fully substitutable for the informal help provided

by the senior’s relatives. As a result, seniors and their families take this formal alternative into account

when organizing care. Public intervention plays a critical role in ensuring access to formal home LTC for

households. However, as the elderly population continues to grow, there is increasing debate on how to

design more financially sustainable policies. To achieve this, it is crucial to consider all the effects that

additional public spending on this type of care generates. Several studies, based on natural experiments,

have shown that better access to the formal PSH care market increases labor supply among the daughters

of dependent seniors (e.g., Løken et al. (2017), Shen (2021), Chen and Lin (2022)) while also improving

the health of the senior (e.g., Massner and Wikström (2023), Frimmel et al. (2020)). However, few studies

have examined the impact of changes in access conditions on the informal care provided by the spouse of

a dependent senior, despite the fact that the spouse is often the primary caregiver when the senior is in a

couple. Moreover, several studies have demonstrated that being a caregiver has a negative effect on the

spouse’s health (e.g., Wagner and Brandt (2018), Barbosa et al. (2020)). Given that spouses are typically

elderly themselves, providing informal care too intensively can lead to a faster decline into dependency

or increased reliance on costly health care services. Understanding how spousal caregiving responds

to changes in the out-of-pocket costs of formal care in different types of households is therefore crucial

for designing effective public policies. This is precisely the focus of the third chapter of this dissertation.

The main contribution is the development in a static framework of a supply and demand model of the

PSH care market. To our knowledge, it is the first project that accounts for the supply. On the demand

side, households consisting of a dependent senior and their spouse jointly decide on their consumption

of formal care and the amount of informal care provided by the spouse. The senior’s well-being is

influenced by both types of care, which are treated as substitutes. Households are heterogeneous in
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observed characteristics and in preferences. On the supply side, the model accounts for some horizontal

differentiation of formal personal and social care providers. Households can choose between paying for

personal and social care services from a firm or hiring a self-employed home care assistant. A market

of perfect competition within a type of provider is assumed. The identification and estimation of this

supply and demand model exploit the fact that the PSH care market is administered at a local level, which

leads to exogeneous geographic variation in out-of-pocket prices for an hour of formal PSH care. The

structural parameters of the demand model are estimated using maximum likelihood, drawing on data

from the CARE-Ménages survey. It is a representative survey of the French population over 60 which

provides detailed information on the human and financial assistance seniors receive for daily activities,

whether through family or formal services. Preliminary results suggest that, all other things being equal,

male and older caregiving spouses are more responsive to a variation in the price of formal PSH care.

The structural parameters of the supply model are estimated using two-stage least squares (2SLS),

drawing from data on local markets, including data from the CARE-Ménages survey, publicly available

demographic data, and the French matched employer-employee administrative database. Preliminary

results indicate that personal and social home care services operate under constant marginal costs.

21



22



Chapter 1

Difference-in-Differences for

Continuous Treatments and

Instruments with Stayers

with Clément de Chaisemartin, Xavier D’Haultfœuille, Doulo Sow

and Gonzalo-Vasquez-Bare

We propose difference-in-differences estimators in designs where the treatment is continuously distributed

at every period, as is often the case when one studies the effects of taxes, tariffs, or prices. We assume

that between consecutive periods, the treatment of some units, the switchers, changes, while the

treatment of other units remains constant. We show that under a placebo-testable parallel-trends

assumption, averages of the slopes of switchers’ potential outcomes can be nonparametrically estimated.

We generalize our estimators to the instrumental-variable case. We use our estimators to estimate the

price-elasticity of gasoline consumption.

1.1 Introduction

A popular method to estimate the effect of a treatment on an outcome is to estimate a two-way fixed

effects (TWFE) regression that controls for unit and time fixed effects:

Yi,t = αi + γt + βTWFEDi,t + ui,t,
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where Di,t is the treatment of unit i at time t. de Chaisemartin and D’Haultfœuille (2023a) find that 26 of

the 100 most cited papers published by the American Economic Review from 2015 to 2019 have estimated

at least one TWFE regression. De Chaisemartin and d’Haultfoeuille (2020), Goodman-Bacon (2021), and

Borusyak et al. (2024) have shown that under a parallel trends assumption, TWFE regressions are not

robust to heterogeneous effects: they may estimate a weighted sum of treatment effects across periods

and units, with some negative weights. Owing to the negative weights, βTWFE could be, say, negative,

even if the treatment effect is positive for every unit × period. Importantly, the result in De Chaisemartin

and d’Haultfoeuille (2020) applies to binary, discrete, and continuous treatments.

Several alternative heterogeneity-robust difference-in-difference (DID) estimators have been proposed

(see Table 2 of de Chaisemartin and D’Haultfœuille (2023b)). Some apply to binary and staggered

treatments (see Sun and Abraham (2021), Callaway and Sant’Anna (2021), Borusyak et al. (2024)).

Some apply to designs where all units start with a treatment equal to 0, and then get treated with

heterogeneous, potentially continuously distributed treatment intensities (see de Chaisemartin and

D’Haultfœuille (2023a), Callaway and Sant’Anna (2021), de Chaisemartin and D’Haultfœuille (2024)).

However, treatments continuously distributed at every period, including the first one in the data, are

ubiquitous in applied work. For instance, taxes (see Li et al. (2014)) or tariffs (see Fajgelbaum et al.

(2020)) are often continuously distributed at all periods. No difference-in-difference estimator robust to

heterogeneous effects is available for such designs. Proposing such estimators is the purpose of this

paper.

We assume that we have a panel data set, whose units could be geographical locations such as

counties. We start by considering the case where the panel has two time periods. From period one to

two, the treatment of some units, hereafter referred to as the switchers, changes. On the other hand, the

treatment of other units, hereafter referred to as the stayers, does not change. We consider two target

parameters. The first one is the average slope of switchers’ period-two potential outcome function, from

their period-one to their period-two treatment, hereafter referred to as the Average of Slopes (AS). Our

second target is a weighted average of switchers’ slopes, where switchers receive a weight proportional

to the absolute value of their treatment change, hereafter referred to as the Weighted Average of Slopes

(WAS). We propose a novel parallel trends assumption on the outcome evolution of switchers and stayers

with the same period-one treatment, in the counterfactual where switchers’ treatment would not have

changed. Because it conditions on units’ period-one treatment, this parallel-trends assumption does not

impose any restriction on effect heterogeneity. This parallel trends assumption is also placebo testable,

by comparing switchers’ and stayers’ outcome evolutions before switchers’ treatment changes. We view

the possibility of placebo-testing it as an important advantage of our assumption, as placebo tests are
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an essential step in establishing the credibility of an identifying assumption in observational studies

(Imbens et al. (2001), Imbens and Xu (2024)). We show that under our placebo-testable parallel-trends

assumption, the AS and the WAS are identified. This contrasts with other target parameters, like the dose-

response function or the average marginal effect, which can only be identified under non-placebo-testable

assumptions.

Economically, the AS and the WAS can serve different purposes, so neither parameter dominates the

other. Under shape restrictions on the potential outcome function, the AS can be used to infer the effect

of other treatment changes than those that took place from period one to two. Instead, the WAS can be

used to conduct a cost-benefit analysis of the treatment changes that effectively took place. On the other

hand, when it comes to estimation, the WAS unambiguously dominates the AS. First, we show that it

can be estimated at the standard parametric rate even if switchers can experience an arbitrarily small

change of their treatment between consecutive periods. Second, we show that under some conditions,

the asymptotic variance of the WAS estimator is strictly lower than that of the AS estimator. Third, unlike

the AS, the WAS is amenable to doubly-robust estimation, which comes with a number of advantages.

Then, we consider the instrumental-variable (IV) case. For instance, one may be interested in

estimating the price-elasticity of a good’s consumption. If prices respond to demand shocks, the

counterfactual consumption trends of units experiencing and not experiencing a price change may not

be parallel. On the other hand, the counterfactual consumption trends of units experiencing and not

experiencing a tax change may be parallel. Then, taxes may be used as an instrument for prices. In

such cases, we show that the reduced-form WAS effect of the instrument on the outcome divided by the

first-stage WAS effect is equal to a weighted average of switchers’ outcome-slope with respect to the

treatment, where switchers with a larger first-stage effect receive more weight. Hereafter, we refer to

this effect as the IV-WAS effect. The ratio of the reduced-form and first-stage AS effects is also equal

to a weighted average of slopes, with arguably less natural weights, so in the IV case the WAS seems

both economically and statistically preferable to the AS. Importantly, we show that the reduced-form

parallel-trends assumption implicitly restricts treatment-effect heterogeneity. Such restrictions can be

alleviated by controlling for groups baseline treatment in the IV specification, but the resulting estimator

still restricts effects’ heterogeneity across units.

We consider other extensions. First, we extend our results to applications with more than two time

periods. Importantly, with several time periods our estimators rely on a parallel-trends assumption over

consecutive periods, rather than over the entire duration of the panel. Second, we propose a placebo

estimator of the parallel-trends assumption underlying our estimators.

Finally, we use the yearly, 1966 to 2008 US state-level panel dataset of Li et al. (2014) to estimate
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the effect of gasoline taxes on gasoline consumption and prices. Using the WAS estimators, we find a

significantly negative effect of taxes on gasoline consumption, and a significantly positive effect on prices.

The AS estimators are close to, and not significantly different from, the WAS estimators, but they are also

markedly less precise: their standard errors are almost three times larger than that of the WAS estimators.

This shows that our theoretical result on the precision ranking of the WAS and AS estimators, which we

derive under strong assumptions, still holds in a real-life application where those assumptions probably

do not hold. The precision losses attached to using the AS have consequences. The AS estimator of

the effect of taxes on prices is not statistically significant, so with that estimator one cannot use taxes as

an instrument to estimate the price-elasticity of consumption, because the instrument does not have a

first-stage. This contrasts with the WAS, whose first-stage t-stat is around 7. We compute an IV-WAS

estimator of the price elasticity of gasoline consumption, and find a fairly small elasticity of -0.67, in line

with previous literature (for instance, Hausman and Newey (1995) find a long-run elasticity of -0.81). Our

placebo estimators are small, insignificant, and fairly precisely estimated, thus suggesting that our parallel

trends assumption is plausible.

Our estimators are computed by the did_multiplegt_stat Stata package, available from the SSC

repository. Our package allows estimators with control variables and weights, see the help file and the

package’s companion paper for further details.

Related Literature

Our paper builds upon several previous papers in the panel data literature. Chamberlain (1982) seems

to be the first paper to have proposed an estimator of the AS parameter. Under the assumption of no

counterfactual time trend, the estimator therein is a before-after estimator. Then, our paper is closely

related to the work of Graham and Powell (2012), who also propose DID estimators of the AS (see their

Equation (21)) when the treatment is continuously distributed at every time period. Their estimators rely

on a linear effect assumption and assume that units experience the same evolution of their treatment

effect over time, a parallel-trends-on-treatment-effects assumption. By contrast, our estimator of the

AS does not place any restriction on treatment effects. But our main contribution to this literature is to

introduce the WAS, and to contrast the pros and cons of the AS and WAS estimators. Our results are

also related to Hoderlein and White (2012), who consider the average marginal effect of a continuous

treatment with panel data. However, their target parameters and identifying assumptions are different.

For instance, they rule out systematic changes of the outcome over time.

With respect to the aforementioned heterogeneity-robust DID literature, we make two contributions.

First, in the non-IV case we propose estimators that can be used even if units’ treatment varies at baseline.
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Thus we usefully complement previous literature, that has mostly focused on the case where all units

have a baseline treatment equal to zero (see Sun and Abraham (2021), Callaway and Sant’Anna (2021),

Borusyak et al. (2024), Callaway and Sant’Anna (2021), de Chaisemartin and D’Haultfœuille (2024)). One

exception predating this paper is De Chaisemartin and d’Haultfoeuille (2020), who allow for a non-binary

discrete treatment at baseline in their Web Appendix, and propose estimators comparing switchers and

stayers with the same baseline treatment. However, that paper does not allow for continuously distributed

treatments, and comparing switchers and stayers with the same baseline treatment is no longer feasible

with a continuously distributed treatment.1 Second, in the IV case, previous IV-DID literature has only

considered classical designs with two periods and binary instrument and treatment (de Chaisemartin

(2010), Hudson et al. (2017)), as well as fuzzy DID designs, a special case of IV-DIDs (de Chaisemartin

and D’Haultfœuille (2018)). Instead, this paper proposes broadly applicable IV-DID estimators, and also

highlights that IV-DID estimators impose restrictions on treatment effect-heterogeneity, which can be

mitigated by controlling for the baseline treatment.

Importantly, our estimators require that there be some stayers, whose treatment does not change

between consecutive periods. This assumption is unlikely to be met when the treatment is say, precipita-

tions: for instance, US counties never experience the exact same precipitations over two consecutive

years. In de Chaisemartin et al. (2023), we discuss the (non-trivial) extension of the results in this paper

to applications without stayers.

Organization of the paper. In Section 1.2, we present the set-up, introduce notation and discuss our

main assumptions. In Section 1.3, we introduce the AS and discuss its identification and estimation.

Section 1.4 then turns to the WAS. Section 1.5 extends our previous results to an instrumental variable

set-up. We consider other extensions in Section 1.6. Finally, our application is developed in Section 1.7.

The proofs are collected in the appendix.

1.2 Set-up, assumptions, and building-block identification result

1.2.1 Set-up

A representative unit is drawn from an infinite super population, and observed at two time periods. This

unit could be an individual or a firm, but it could also be a geographical unit, like a county or a region.2

All expectations below are taken with respect to the distribution of variables in the super population. We

1Another exception, posterior to this paper, is de Chaisemartin and D’Haultfœuille (2023a), who extend the estimators in this
paper to models with dynamic effects in Section 1.10 of their Web Appendix.

2In that case, one may want to weight the estimation by counties’ or regions’ populations. Extending the estimators we propose
to allow for such weighting is a mechanical extension.
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are interested in the effect of a continuous and scalar treatment variable on that unit’s outcome. Let D1

(resp. D2) denote the unit’s treatment at period 1 (resp. 2), and let D1 (resp. D2) be the set of values D1

(resp. D2) can take, i.e. its support. Let S = 1{D2 ̸= D1} be an indicator equal to 1 if the unit’s treatment

changes from period one to two, i.e. if they are a switcher.

For any d ∈ D1 ∪ D2, let Y1(d) and Y2(d) respectively denote the unit’s potential outcomes at periods

1 and 2 with treatment d, and let Y1 and Y2 denote their observed outcomes at periods 1 and 2. Our

potential outcome notation assumes that Y1 does not depend on units’ period-two treatment, thus

ruling out anticipation effects, a commonly-made assumption in the DID literature. Our notation also

assumes that Y2 does not depend on units’ period-one treatment, thus ruling out dynamic effects. When

the treatment is continuously distributed at period one, allowing for dynamic effects opens up the so-

called initial-conditions problem. As units receive heterogeneous doses at period one, they may have

experienced treatment changes before period one. With dynamic effects such changes may still affect

their outcome over the study period, but they cannot be accounted for because they are not observed.

Ruling out dynamic effects allows us to abstract from this thorny issue, but could yield misleading results

if dynamic effects are present. To alleviate this concern, in Section 1.6.3 we propose a modified version

of our estimators, robust to dynamic effects up to a pre-specified treatment lag.

In what follows, all equalities and inequalities involving random variables are required to hold almost

surely. Finally, for any random variable observed at the two time periods (X1, X2), let ∆X = X2 −X1

denote the change of X from period 1 to 2.

1.2.2 Assumptions

We make the following assumptions.3

Assumption 1 (Parallel trends) For all d1 ∈ D1, E(∆Y (d1)|D1 = d1, D2) = E(∆Y (d1)|D1 = d1).

Assumption 1 is a parallel trends assumption, requiring that ∆Y (d1) be mean independent of D2,

conditional on D1 = d1.

Assumption 2 (Bounded treatment, Lipschitz and bounded potential outcomes)

1. D1 and D2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (d, d′) ∈ D2
t , there is a random variable Y ≥ 0 such that |Yt(d)−Yt(d′)| ≤

Y |d− d′|, with sup(d1,d2)∈Supp(D1,D2)E[Y |D1 = d1, D2 = d2] <∞.

3Throughout the paper, we implicitly assume that all potential outcomes have an expectation.
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Assumption 2 ensures that all the expectations below are well defined. It requires that the set of values

that the period-one and period-two treatments can take be bounded. It also requires that the potential

outcome functions be Lipschitz (with a unit-specific Lipschitz constant). This will automatically hold if

d 7→ Y2(d) is differentiable with respect to d and has a bounded derivative.

Finally, for estimation and inference we assume we observe an iid sample with the same distribution

as (Y1, Y2, D1, D2):

Assumption 3 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2)1≤i≤n, that are independent and identically

distributed vectors with the same probability distribution as (Y1, Y2, D1, D2).

Importantly, Assumption 3 allows for the possibility that Y1 and Y2 (resp. D1 and D2) are serially

correlated, as is commonly assumed in DID studies (see Bertrand et al., 2004).

1.2.3 Building-block identification result

Assumption 1 implies the following lemma, our building-block identification result.

Lemma 1 If Assumption 1 holds, then for all (d1, d2) ∈ D1 ×D2 such that d1 ̸= d2 and P (S|D1 = d1) < 1,

TE(d1, d2|d1, d2) :=E
(
Y2(d2)− Y2(d1)

d2 − d1

∣∣∣∣D1 = d1, D2 = d2

)
=E

(
∆Y − E(∆Y |D1 = d1, S = 0)

d2 − d1

∣∣∣∣D1 = d1, D2 = d2

)
.

Proof:
E (Y2(d2)− Y2(d1)|D1 = d1, D2 = d2)

=E (∆Y |D1 = d1, D2 = d2)− E (∆Y (d1)|D1 = d1, D2 = d2)

=E (∆Y |D1 = d1, D2 = d2)− E (∆Y (d1)|D1 = d1, D2 = d1)

=E (∆Y |D1 = d1, D2 = d2)− E (∆Y |D1 = d1, S = 0)

=E (∆Y − E (∆Y |D1 = d1, S = 0)|D1 = d1, D2 = d2) ,

where the second equality follows from Assumption 1. This proves the result □

Intuitively, under Assumption 1 the counterfactual outcome evolution switchers would have experienced

if their treatment had not changed is identified by the outcome evolution of stayers with the same period-

one treatment. If a unit’s treatment changes from two to five, we can recover its counterfactual outcome

evolution if its treatment had not changed, by using the average outcome evolution of all stayers with a

baseline treatment of two. Then, a DID estimand comparing switchers’ and stayers’ outcome evolutions
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identifies E (Y2(d2)− Y2(d1)|D1 = d1, D2 = d2), and we can scale that effect by d2− d1 to identify a slope

rather than an unnormalized effect.

Note that in a canonical DID design where D1 = 0 and D2 ∈ {0, 1}, Lemma 1 only applies to

(d1, d2) = (0, 1), TE(0, 1|0, 1) reduces to the ATT, and the estimand reduces to the canonical DID estimand

comparing the outcome evolutions of treated and untreated units. Note also that in a design where all

units are untreated at period one, d1 = 0, and

TE(0, d2|0, d2) = E

(
Y2(d2)− Y2(0)

d2

∣∣∣∣D2 = d2

)
,

an effect closely related to the ATT (d|d) effect in Callaway and Sant’Anna (2021). Thus, the effects we

consider are extensions of those effects to applications with a treatment continuous at all periods.

Lemma 1 shows that under Assumption 1,

(d1, d2) 7→ TE(d1, d2|d1, d2)

is identified. Of course, one may be interested in other parameters, like

(d, d′) 7→ TE(d, d′) := E

(
Y2(d)− Y2(d

′)

d− d′

)
,

a function which, unlike (d1, d2) 7→ TE(d1, d2|d1, d2), applies to the entire population rather than to specific

subpopulation that depend on (d1, d2). Alternatively, one could also be interested in the average marginal

effect

E (Y ′
2(D2)) .

What is the appeal of TE(d1, d2|d1, d2) with respect to those other parameters? Conditional on D1 =

d1, D2 = d2, Y2(d2) is observed, so estimating TE(d1, d2|d1, d2) only requires estimating Y2(d1), switchers’

counterfactual outcomes if their treatment had not changed. By definition, Y1(d1) is observed. If the

data contains a third period 0 and the treatment of some units does not change from period 0 to 1, then

Y0(d1) is also observed for some switchers and stayers. Then, as explained in further details in Section

1.6.2, one can placebo-test Assumption 1, by comparing the outcome evolutions of switchers and stayers

from period 0 to 1. This shows that TE(d1, d2|d1, d2) is identified under a placebo-testable parallel-trends

assumption. On the other hand, estimating TE(d, d′) requires estimating, for most units, two unobserved

counterfactual outcomes. This cannot be achieved under a placebo-testable assumption as we only

observe one potential outcome at each date. When D1 = 0, Callaway and Sant’Anna (2021) propose a

“strong parallel-trends” assumption under which the dose-response function, a parameter closely related
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to TE(0, d′) are identified, but their “strong parallel-trends” assumption is not placebo testable. Similarly,

estimating E
(

Y2(D2)−Y2(d
′)

D2−d′

)
requires estimating Y2(d

′), which cannot be achieved under a placebo-

testable assumption because Y1(d′) is not observed for all units. As Y ′
2(D2) = limd′→D2

Y2(D2)− Y2(d
′)

D2 − d′
,

the same issue applies to E (Y ′
2(D2)).

Variability in TE(d1, d2|d1, d2) across values of (d1, d2) conflates a dose-response relationship that

may be of economic interest, and a selection bias due to the fact that units with different period one and

two treatments may have heterogeneous treatment effects (Callaway and Sant’Anna, 2021). Moreover,

Lemma 1 shows that estimating TE(d1, d2|d1, d2) requires estimating the values of two conditional

expectations with respect to continuous variables, at points D1 = d1, D2 = d2 and D1 = d1. Unless one is

willing to make parametric functional-form assumptions, the resulting estimator will converge at a slower

rate than the standard
√
n− parametric rate. For these two reasons, in this paper we focus on averages

of the slopes TE(d1, d2|d1, d2), that can be estimated non-parametrically at the standard
√
n− parametric

rate, and we do not focus on the function (d1, d2) 7→ TE(d1, d2|d1, d2).

Finally, our DID estimands compare switchers and stayers with the same period-one treatment.

Instead, one could propose estimands comparing switchers and stayers, without conditioning on their

period-one treatment. To recover the counterfactual outcome trend of a switcher going from two to

five units of treatment, one could use a stayer with treatment equal to three at both dates. On top of

Assumption 1, such estimands rest on two supplementary conditions:

(i) E(∆Y (d)|D1 = d) = E(∆Y (d)).

(ii) For all (d, d′) ∈ D2
1, E(∆Y (d)) = E(∆Y (d′)).

(i) requires that all units experience the same evolution of their potential outcome with treatment d, while

Assumption 1 only imposes that requirement for units with the same baseline treatment. Assumption 1

may be more plausible: units with the same period-one treatment may be more similar and more likely to

be on parallel trends than units with different period-one treatments. (ii) requires that the trend affecting

all potential outcomes be the same: to rationalize a DID estimand comparing a switcher going from two

to five units of treatment to a stayer with treatment equal to three, E(∆Y (2)) and E(∆Y (3)) should be

equal. Rearranging, (ii) is equivalent to

E(Y2(d)− Y2(d
′)) = E(Y1(d)− Y1(d

′)) : (1.1)

the treatment effect should be constant over time, a strong restriction on treatment effect heterogeneity.

Assumption 1, on the other hand, does not impose any restriction on treatment effect heterogeneity, as it

only restricts one potential outcome per unit.
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1.3 Estimating the average of switchers’ slopes

1.3.1 Target parameter

In this section, our target parameter is

δ1 := E

(
Y2(D2)− Y2(D1)

D2 −D1

∣∣∣∣S = 1

)
, (1.2)

the average of the slopes of switchers’ potential outcome functions, between their period-one and their

period-two treatments. Hereafter, δ1 is referred to as the Average of Slopes (AS).

The AS is a local effect: it only applies to switchers, and it measures the effect of changing their

treatment from its period-one to its period-two value, not of other changes of their treatment. Still, the AS

can be used to point or partially identify the effect of other treatment changes under shape restrictions.

First, assume that the potential outcomes are linear: for t ∈ {1, 2},

Yt(d) = Yt(0) +Btd,

where Bt is a slope that may vary across units and may change over time. Then, δ1 = E (B2|S = 1): the

AS is equal to the average, across switchers, of the slopes of their potential outcome functions at period

2. Therefore, for all d ̸= d′,

E(Y2(d)− Y2(d
′)|S = 1) = (d− d′)δ1 :

under linearity, knowing the AS is sufficient to recover the ATE of any uniform treatment change among

switchers. Of course, this only holds under linearity, which may not be a plausible assumption. Assume

instead that d 7→ Y2(d) is convex. Then, for any ϵ > 0,

E (Y2(D2 + ϵ)− Y2(D2)|S = 1) ≥ ϵδ1.

Accordingly, under convexity one can use the AS to obtain lower bounds of the effect of changing the

treatment from D2 to larger values than D2. For instance, in Fajgelbaum et al. (2020), one can use this

strategy to derive a lower bound of the effect of increasing tariffs’ to even higher levels than those decided

by the Trump administration. Under convexity, one can also use the AS to derive an upper bound of the

effect of changing the treatment from D1 to a lower value than D1. And under concavity, one can derive

an upper (resp. lower) bound of the effect of changing the treatment from D2 (resp. D1) to a larger (resp.

lower) value.4 Importantly, the AS is identified even if those linearity or convexity/concavity conditions fail.

4See D’Haultfœuille et al. (2023) for bounds of the same kind obtained under concavity or convexity.
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But those non-placebo testable conditions are necessary to use the AS to identify or bound the effects of

alternative policies.

1.3.2 Identification

To identify the AS, we use a DID estimand comparing switchers and stayers with the same period-one

treatment. This requires that there be no value of the period-one treatment D1 such that only switchers

have that value, as stated formally below.

Assumption 4 (Support condition for AS identification) P (S = 1) > 0, P (S = 1|D1) < 1.

Assumption 4 implies that P (S = 0) > 0, meaning that there are stayers whose treatment does not

change. While we assume thatD1 andD2 are continuous, we also assume that the treatment is persistent,

and thus ∆D has a mixed distribution with a mass point at zero.

To identify the AS, we also start by assuming that there are no quasi-stayers: the treatment of all

switchers changes by at last c from period one to two, for some strictly positive c.

Assumption 5 (No quasi-stayers) ∃c > 0: P (|∆D| > c|S = 1) = 1.

We relax Assumption 5 just below.

Theorem 1 If Assumptions 1-5 hold,

δ1 = E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣S = 1

)
.

If there are quasi-stayers, the AS is still identified. For any η > 0, let Sη = 1{|∆D| > η} be an indicator

for switchers whose treatment changes by at least η from period one to two.

Theorem 2 If Assumptions 1-4 hold,

δ1 = lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣Sη = 1

)
.

If there are quasi-stayers whose treatment change is arbitrarily close to 0 (i.e. f|∆D||S=1(0) > 0), the

denominator of (∆Y − E(∆Y |D1, S = 0))/∆D is close to 0 for them. On the other hand,

∆Y − E(∆Y |D1, S = 0)

=Y2(D2)− Y2(D1) + ∆Y (D1)− E(∆Y (D1)|D1, S = 0)

≈∆Y (D1)− E(∆Y (D1)|D1, S = 0),
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so the ratio’s numerator may not be close to 0. Then, under weak conditions,

E

(∣∣∣∣∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣ ∣∣∣∣S = 1

)
= +∞.

Therefore, we need to trim quasi-stayers from the estimand in Theorem 1, and let the trimming go to 0,

as in Graham and Powell (2012) who consider a related estimand with some quasi-stayers. Accordingly,

with quasi-stayers the AS is irregularly identified by a limiting estimand.

1.3.3 Estimation and inference

With no quasi-stayers, E ((∆Y − E(∆Y |D1, S = 0))/∆D|S = 1) can be estimated in three steps. First,

one estimates E(∆Y |D1, S = 0) using a non-parametric regression of ∆Yi on Di,1 among stayers.

Second, for each switcher, one computes Ê(∆Y |D1 = Di,1, S = 0), its predicted outcome evolution given

its baseline treatment, according to the non-parametric regression estimated among stayers. Third, one

lets

δ̂1 :=
1

ns

∑
i:Si=1

∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

∆Di
,

where ns = #{i : Si = 1}.

To estimateE(∆Y |D1, S = 0), we consider a series estimator based on polynomials inD1, (pk,Kn(D1))1≤k≤Kn .

We make the following technical assumption.

Assumption 6 (Conditions for asymptotic normality of AS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] <∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I.

3. P (S = 1) > 0 and supd∈I P (S = 1|D1 = d) < 1.

4. The functions d 7→ E[(1 − S)∆Y |D1 = d], d 7→ E[S|D1 = d] and d 7→ E[S/∆D|D1 = d] are four

times continuously differentiable.

5. The polynomials d 7→ pk,Kn
(d), 1 ≤ k ≤ Kn, are orthonormal on I and K12

n /n→ +∞, K7
n/n→ 0.

Point 3 is a slight reinforcement of Assumption 4. In Point 5, K12
n /n→ ∞ requires that Kn, the order of

the polynomial in D1 we use to approximate E(∆Y |D1, S = 0), goes to +∞ when the sample size grows,

thus ensuring that the bias of our series estimator of E(∆Y |D1, S = 0) tends to zero. K7
n/n→ 0 ensures

that Kn does not go to infinity too fast, thus preventing overfitting.
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Theorem 3 If Assumptions 1-3 and 5-6 hold,

√
n
(
δ̂1 − δ1

)
d−→ N (0, V (ψ1)),

where

ψ1 :=
1

E(S)

{(
S

∆D
− E

(
S

∆D

∣∣∣∣D1

)
(1− S)

E[1− S|D1]

)
[∆Y − E(∆Y |D1, S = 0)]− δ1S

}
.

Theorem 3 shows that without quasi-stayers, the AS can be estimated at the
√
n−rate, and gives an

expression of its estimator’s asymptotic variance. With quasi-stayers, we conjecture that the AS cannot be

estimated at the
√
n−rate. This conjecture is based on a result from Graham and Powell (2012). Though

their result applies to a broader class of estimands, it implies in particular that with quasi-stayers,

lim
η↓0

E

(
∆Y − E(∆Y |S = 0)

∆D

∣∣∣∣Sη = 1

)

cannot be estimated at a faster rate than n1/3. The estimand in the previous display is closely related to

our estimand

lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣Sη = 1

)
in Theorem 2, and is equal to it if E(∆Y |D1, S = 0) = E(∆Y |S = 0). Then, even though the assumptions

in Graham and Powell (2012) differ from ours, it seems reasonable to assume that their general conclusion

still applies to our set-up: here as well, owing to δ1’s irregular identification, this parameter can probably

not be estimated at the parametric
√
n−rate with quasi-stayers. This is one of the reasons that lead us to

consider, in the next section, another target parameter that can be estimated at the parametric
√
n−rate

with quasi-stayers.

1.4 Estimating a weighted average of switchers’ slopes

1.4.1 Target parameter

In this section, our target parameter is

δ2 :=E

(
|D2 −D1|

E(|D2 −D1||S = 1)
× Y2(D2)− Y2(D1)

D2 −D1

∣∣∣∣S = 1

)
=
E (sgn(D2 −D1)(Y2(D2)− Y2(D1))|S = 1)

E(|D2 −D1||S = 1)

=
E (sgn(D2 −D1)(Y2(D2)− Y2(D1)))

E(|D2 −D1|)
.
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δ2 is a weighted average of the slopes of switchers’ potential outcome functions from their period-one to

their period-two treatments, where slopes receive a weight proportional to switchers’ absolute treatment

change from period one to two. Accordingly, we refer to δ2 as the Weighted Average of Slopes (WAS).

δ2 = δ1 if and only if

cov
(
Y2(D2)− Y2(D1)

D2 −D1
, |D2 −D1|

∣∣∣∣S = 1

)
= 0 : (1.3)

the WAS and AS are equal if and only if switchers’ slopes are uncorrelated with |D2 −D1|.

Economically, the AS and WAS serve different purposes. As discussed above, under shape restrictions

on the potential outcome function, the AS can be used to identify or bound the effect of other treatment

changes than the actual change switchers experienced from period one to two. The WAS cannot serve

that purpose, but under some assumptions, it may be used to conduct a cost-benefit analysis of the

treatment changes that took place from period one to two. To simplify the discussion, let us assume in

the remainder of this paragraph that D2 ≥ D1. Assume also that the outcome is a measure of output,

such as agricultural yields or wages, expressed in monetary units. Finally, assume that the treatment is

costly, with a cost linear in dose, uniform across units, and known to the analyst: the cost of giving d units

of treatment to a unit at period t is ct × d for some known (ct)t∈{1,2}. Then, D2 is beneficial relative to D1

if and only if E(Y2(D2)− c2D2) > E(Y2(D1)− c2D1) or, equivalently,

δ2 > c2 :

comparing δ2 to c2 is sufficient to evaluate if changing the treatment from D1 to D2 was beneficial.

1.4.2 Identification

Let S+ = 1{D2 −D1 > 0}, S− = 1{D2 −D1 < 0} and

δ2+ :=
E (Y2(D2)− Y2(D1)|S+ = 1)

E(D2 −D1|S+ = 1)
,

δ2− :=
E (Y2(D1)− Y2(D2)|S− = 1)

E(D1 −D2|S− = 1)
.

Hereafter, units with S+ = 1 are referred to as “switchers up”, while units with S− = 1 are referred to as

“switchers down”. Thus, δ2+ is the WAS of switchers up, and δ2− is the WAS of switchers down. One has

δ2 =
P (S+ = 1|S = 1)E(D2 −D1|S+ = 1)

E(|D2 −D1||S = 1)
δ2+

+
P (S− = 1|S = 1)E(D1 −D2|S− = 1)

E(|D2 −D1||S = 1)
δ2−. (1.4)
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To identify δ2+ (resp. δ2−) we use DID estimands comparing switchers up (resp. switchers down) to

stayers with the same period-one treatment. This requires that there be no value of D1 such that some

switchers up (resp. switchers down) have that baseline treatment while there is no stayer with the same

baseline treatment, as stated in Point 1 (resp. 2) of Assumption 7 below.

Assumption 7 (Support conditions for WAS identification)

1. 0 < P (S+ = 1), and 0 < P (S+ = 1|D1) implies that 0 < P (S = 0|D1).

2. 0 < P (S− = 1), and 0 < P (S− = 1|D1) implies that 0 < P (S = 0|D1).

Theorem 4 1. If Assumptions 1-2 and Point 1 of Assumption 7 hold,

δ2+ =
E (∆Y − E(∆Y |D1, S = 0)|S+ = 1)

E(∆D|S+ = 1)
(1.5)

=
E (∆Y |S+ = 1)− E

(
∆Y P (S+=1|D1)

P (S=0|D1)
P (S=0)
P (S+=1)

∣∣∣S = 0
)

E(∆D|S+ = 1)
. (1.6)

2. If Assumptions 1-2 and Point 2 of Assumption 7 hold,

δ2− =
E (∆Y − E(∆Y |D1, S = 0)|S− = 1)

E(∆D|S− = 1)
(1.7)

=
E (∆Y |S− = 1)− E

(
∆Y P (S−=1|D1)

P (S=0|D1)
P (S=0)
P (S−=1)

∣∣∣S = 0
)

E(∆D|S− = 1)
. (1.8)

3. If Assumptions 1-2 and Assumption 7 hold,

δ2 =
E [sgn(∆D) (∆Y − E(∆Y |D1, S = 0))]

E[|∆D|]
(1.9)

=
E [sgn(∆D)∆Y ]− E

[
∆Y P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1)
P (S = 0)

∣∣∣S = 0
]

E[|∆D|]
. (1.10)

Point 1 of Theorem 4 shows that δ2+, the WAS of switchers-up, is identified by two estimands, a

regression-based and a propensity-score-based estimand. Point 2 of Theorem 4 shows that δ2−, the

WAS of switchers down, is identified by two estimands similar to those identifying δ2+, replacing S+ by

S−. Finally, if the conditions in Point 1 and 2 of Theorem 4 jointly hold, it directly follows from (1.4) that

δ2, the WAS of all switchers, is identified by a weighted average of the estimands in Equations (1.5) and

(1.7), and by a weighted average of the estimands in Equations (1.6) and (1.8). Those weighted averages

simplify into the expressions given in Point 3 of Theorem 4. Point 3 of Theorem 4 also implies that δ2 is
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identified by the following doubly-robust estimand:

E
[(
S+ − S− − P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1)
(1− S)

)
(∆Y − E(∆Y |D1, S = 0))

]
E[|∆D|]

. (1.11)

1.4.3 Estimation and inference

The regression-based estimands identifying δ2+ and δ2− can be estimated following almost the same

steps as in Section 1.3.3. Specifically, let

δ̂r2+ :=

1
n+

∑
i:Si+=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1
n+

∑
i:Si+=1 ∆Di

δ̂r2− :=

1
n−

∑
i:Si−=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1
n−

∑
i:Si−=1 ∆Di

,

where n+ = #{i : Si+ = 1} and n− = #{i : Si− = 1}, and where Ê(∆Y |D1, S = 0) is the series estimator

of E(∆Y |D1, S = 0) defined in Section 1.3.3 of the paper. Then, let

ŵ+ =

n+

n × 1
n+

∑
i:Si+=1 ∆Di

n+

n × 1
n+

∑
i:Si+=1 ∆Di − n−

n × 1
n−

∑
i:Si−=1 ∆Di

,

and let
δ̂r2 =ŵ+δ̂

r
2+ + (1− ŵ+)δ̂

r
2−

be the corresponding estimator of δ2.

We now propose estimators of the propensity-score-based estimands identifying δ2+ and δ2− in

Equations (1.6) and (1.8). Let P̂ (S+ = 1) = n+/n (resp. P̂ (S− = 1) = n−/n, P̂ (S = 0) = (n − ns)/n)

be an estimator of P (S+ = 1) (resp. P (S− = 1), P (S = 0)). Let P̂ (S+ = 1|D1) (resp. P̂ (S− = 1|D1),

P̂ (S = 0|D1)) be a non-parametric estimator of P (S+ = 1|D1) (resp. P (S− = 1|D1), P (S = 0|D1)) using

a series logistic regression of Si+ (resp. Si−, 1− Si) on polynomials in D1 (pk,Kn
(D1))1≤k≤Kn

. We make

the following technical assumption.

Assumption 8 (Conditions for asymptotic normality of propensity-score WAS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1
(d) > 0.

2. E[∆Y 2] <∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I

3. 0 < E[S+] < 1, 0 < E[S−] < 1, E[S] > 0 and supd∈I E[S|D1 = d] < 1.

4. The functions d 7→ E[∆Y (1−S)|D1 = d], d 7→ E[S|D1 = d], d 7→ E[S+|D1 = d] and d 7→ E[S−|D1 =

d] are four times continuously differentiable.
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5. The polynomials d 7→ pk,Kn
(d), k ≤ 1 ≤ Kn are orthonormal on I and Kn = Cnν where 1/10 < ν <

1/6.

Let

δ̂ps2+ :=

1
n+

∑
i:Si+=1 ∆Yi −

1
n−ns

∑
i:Si=0 ∆Yi

P̂ (S+=1|D1=Di1)

P̂ (S=0|D1=Di1)

P̂ (S=0)

P̂ (S+=1)

1
n+

∑
i:Si+=1 ∆Di

δ̂ps2− :=

1
n−

∑
i:Si−=1 ∆Yi −

1
n−ns

∑
i:Si=0 ∆Yi

P̂ (S−=1|D1=Di1)

P̂ (S=0|D1=Di1)

P̂ (S=0)

P̂ (S−=1)

1
n−

∑
i:Si−=1 ∆Di

,

and let

δ̂ps2 =ŵ+δ̂
ps
2+ + (1− ŵ+)δ̂

ps
2−

be the corresponding estimator of δ2. Let

ψ2+ :=
1

E(∆DS+)

{(
S+ − E(S+|D1)

(1− S)

E(1− S|D1)

)
(∆Y − E(∆Y |D1, S = 0))− δ2+∆DS+

}
ψ2− :=

1

E(∆DS−)

{(
S− − E(S−|D1)

(1− S)

E(1− S|D1)

)
(∆Y − E(∆Y |D1, S = 0))− δ2−∆DS−

}
ψ2 :=

1

E(|∆D|)

{(
S+ − S− − E(S+ − S−|D1)

(1− S)

E(1− S|D1)

)
× (∆Y − E(∆Y |D1, S = 0))− δ2 |∆D|

}
.

Theorem 5 1. If Assumptions 1-3 and 6 hold,

√
n
(
(δ̂r2+, δ̂

r
2−)

′ − (δ2+, δ2−)
′
)

d−→ N (0, V ((ψ2+, ψ2−)
′)).

and √
n
(
δ̂r2 − δ2

)
d−→ N (0, V (ψ2)).

2. If Assumptions 1-3 and 8 hold,

√
n
(
(δ̂ps2+, δ̂

ps
2−)

′ − (δ2+, δ2−)
′
)

d−→ N (0, V ((ψ2+, ψ2−)
′)).

and √
n
(
δ̂ps2 − δ2

)
d−→ N (0, V (ψ2)).

Based on (1.11), we can also estimate δ2 using the following doubly-robust estimator:

δ̂dr2 =

∑
i

(
Si+ − Si− − P̂ (S+=1|D1=D1i)−P (Si−=1|D1=D1i)

P (Si=0|D1=D1i)
(1− Si)

)
(∆Yi − Ê(∆Yi|D1 = D1i, Si = 0))∑

i |∆Di|
.
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This estimator has an important advantage. While our regression-based (resp. propensity-score-based)

estimator is nominally non-parametric, in practice it requires choosing a polynomial order to estimate

E(∆Y |D1, S = 0) (resp. P (S+ = 1|D1) and P (S− = 1|D1)), and the rate conditions onKn in Assumptions

6 (resp. 8) do not give specific guidance on the choice of this tuning parameter. With the doubly-robust

estimator above, one can choose this tuning parameter in a data-driven manner, using cross-validation

(CV). Results in Section 4 of Andrews (1991) imply that a series estimator of a nonparametric regression

model with a polynomial order chosen by CV is optimal: the ratio of its mean-squared error and that

of an oracle estimator using the best polynomial order given the sample size converges to one. Then,

as D1 is a scalar variable, series estimators of E(∆Y |D1, S = 0), P (S+ = 1|D1), and P (S− = 1|D1)

with CV-chosen polynomial orders converge at a rate strictly faster than n1/4, as long as one assumes

that those nuisance functions are twice differentiable. Then, we conjecture that one can show, following

arguments similar to those in Farrell (2015), that δ̂dr2 with CV-chosen polynomial orders in the estimation

of the nuisance functions is
√
n−consistent, with asymptotic variance V (ψ2).

Finally, we now show that under some assumptions, the asymptotic variance of the WAS estimator is

lower than that of the AS estimator.

Proposition 1 If Assumption 1 holds, (Y2(D2) − Y2(D1))/(D2 − D1) = δ for some real number δ,

V (∆Y (D1)|D1, D2) = σ2 for some real number σ2 > 0, D2 ≥ D1, and ∆D ⊥⊥ D1,

V (ψ1) =σ
2

[
E(1/(∆D)2|S = 1)

P (S = 1)
+

(E(1/∆D|S = 1))
2

P (S = 0)

]

≥σ2 1

(E(∆D|S = 1))
2

[
1

P (S = 1)
+

1

P (S = 0)

]
= V (ψ2),

with equality if and only if V (∆D|S = 1) = 0.

Of course, the constant treatment effect and the homoscedasticity assumptions underlying Proposition 1

are strong, but one often has to make strong assumptions to be able to rank estimators’ variances. The

question then is whether this ranking still holds in real-life applications, where those assumptions are

unlikely to hold. Put differently, all models are wrong but some are useful, and the question is whether

Proposition 1 is useful. In our empirical application, we find that the variance of δ̂1 is indeed much larger

than that of δ̂dr2 , as predicted by Proposition 1.

1.5 Instrumental-variable estimation

There are instances where the parallel-trends condition in Assumption 1 is implausible, but one has at

hand an instrument satisfying a similar parallel-trends condition. For instance, one may be interested in
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estimating the price-elasticity of a good’s consumption, but prices respond to supply and demand shocks,

and therefore do not satisfy Assumption 1. On the other hand, taxes may not respond to supply and

demand shocks and may satisfy a parallel-trends assumption.

1.5.1 Notation and assumptions

Let (Z1, Z2) denote the instrument’s values at period one and two and Zt be the support of Zt. For any

z ∈ Z1∪Z2, let D1(z) and D2(z) respectively denote the unit’s potential treatments at periods 1 and 2 with

instrument z. Let SC = 1{D2(Z2) ̸= D2(Z1), Z2 ̸= Z1} be an indicator equal to 1 for switchers-compliers,

namely units whose instrument changes from period one to two and whose treatment is affected by that

change in the instrument.

We replace Assumption 1 by the following assumption.5

Assumption 9 (Reduced-form and first-stage parallel trends) For all z ∈ Z1,

1. E(Y2(D2(z))− Y1(D1(z))|Z1 = z, Z2, D1) = E(Y2(D2(z))− Y1(D1(z))|Z1 = z,D1).

2. E(D2(z)−D1(z)|Z1 = z, Z2, D1) = E(D2(z)−D1(z)|Z1 = z,D1).

Point 1 of Assumption 9 requires that Y2(D2(z))− Y1(D1(z)), units’ outcome evolutions in the counter-

factual where their instrument does not change from period one to two, be mean independent of Z2,

conditional on Z1 and D1. Unlike Assumption 1, this condition imposes some restrictions on treatment

effect heterogeneity, and the goal of conditioning on D1 is to minimize the stringency of those restrictions.

To see this, note that the two following conditions are sufficient for Point 1 of Assumption 9 to hold:

E(Y2(D1(z))− Y1(D1(z))|Z1 = z, Z2, D1) = E(Y2(D1(z))− Y1(D1(z))|Z1 = z,D1) (1.12)

E(Y2(D2(z))− Y2(D1(z))|Z1 = z, Z2, D1) = E(Y2(D2(z))− Y2(D1(z))|Z1 = z,D1). (1.13)

(1.12) requires that Y2(D1(z))− Y1(D1(z)), units’ outcome evolutions in the counterfactual where their

instrument and their treatment does not change from period one to two, be mean independent of

Z2, conditional on Z1 and D1. Thanks to the conditioning on D1, (1.12) is a standard parallel trends

assumption that does not impose any restriction on treatment effect heterogeneity, like Assumption 1. If

D1 was not conditioned upon, (1.12) would require parallel trends among units with different baseline

treatments, which implicitly assumes homogeneous treatment effects over time, as discussed in Section

1.2. (1.13), on the other hand, is a restriction on treatment effect heterogeneity across units. Essentially, it

requires that switching the treatment from D1(Z1) to D2(Z1), the natural treatment change happening over
5Note that with our notation where potential outcomes do not depend on z, we also implicitly impose the usual exclusion

restriction.
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time even without any change in the instrument, has an effect on the outcome that is mean independent

of Z2 conditional on Z1 and D1. Importantly, note that Point 1 of Assumption 9 is placebo testable, by

comparing the outcome evolutions of instrument-switchers and instrument-stayers before instrument-

switchers experience a change of their instrument. Finally, Point 2 of Assumption 9 requires that units’

treatment evolutions under Z1 be mean independent of Z2, conditional on Z1 and D1. Because D1 is

conditioned upon, this parallel trends condition is equivalent to a sequential exogeneity assumption (see

Robins, 1986, Bojinov et al., 2021).

Point 1 of Assumption 9 is related to identifying assumptions previously proposed in the literature.

de Chaisemartin (2010) and Hudson et al. (2017) also consider IV-DID estimands, in classical designs

with two periods and a binary instrument that turns on for some units at period two. Both papers introduce

a “reduced-form” parallel trends assumption similar to Point 1 of Assumption 9, but without noting that it

imposes restrictions on effects’ heterogeneity, even in the simple designs considered by those papers.

We also make the following assumptions.

Assumption 10 (Monotonicity and strictly positive first-stage) i) For all (z, z′) ∈ Z2
2 , z ≥ z′ ⇒ D2(z) ≥

D2(z
′), and ii) E(|D2(Z2)−D2(Z1)|) > 0.

i) is a monotonicity assumption similar to that in Imbens and Angrist (1994). It requires that increasing

the period-two instrument weakly increases the period-two treatment. This condition is plausible when

the instrument is taxes and the treatment is prices, as is the case in our application. ii) requires that the

instrument has a strictly positive first stage.

Assumption 11 (Bounded instrument, Lipschitz and bounded reduced-form potential outcomes and

potential treatments)

1. Z1 and Z2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variable Y ≥ 0 such that |Yt(Dt(z)) −

Yt(Dt(z
′))| ≤ Y |z − z′|, with sup(z1,z2)∈Supp(Z1,Z2)E[Y |Z1 = z1, Z2 = z2] <∞.

3. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variableD ≥ 0 such that |Dt(z)−Dt(z

′)| ≤

D|z − z′|, with sup(z1,z2)∈Supp(Z1,Z2)E[D|Z1 = z1, Z2 = z2] <∞.

Assumption 11 is an adaptation of Assumption 2 to the IV setting we consider in this section.

Assumption 12 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2, Zi,1, Zi,2)1≤i≤n, that are independent and

identically distributed with the same probability distribution as (Y1, Y2, D1, D2, Z1, Z2).
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1.5.2 Target parameter

In this section, our target parameter is

δIV :=E

(
|D2(Z2)−D2(Z1)|

E(|D2(Z2)−D2(Z1)||SC = 1)
× Y2(D2(Z2))− Y2(D2(Z1))

D2(Z2)−D2(Z1)

∣∣∣∣SC = 1

)
.

δIV is a weighted average of the slopes of compliers-switchers’ period-two potential outcome functions,

from their period-two treatment under their period-one instrument, to their period-two treatment under their

period-two instrument. Slopes receive a weight proportional to the absolute value of compliers-switchers’

treatment response to the instrument change. δIV is just equal to the reduced-form WAS effect of the

instrument on the outcome, divided by the first-stage WAS effect of the instrument on the treatment. With

a binary instrument, such that Z1 = 0 and Z2 ∈ {0, 1}, our IV-WAS effect coincides with that identified in

Corollary 2 of Angrist et al. (2000), in a cross-sectional IV model.

We could also consider a reduced-form AS divided by a first-stage AS. The resulting target is a

weighted average of the slopes Y2(D2(Z2))−Y2(D2(Z1))
D2(Z2)−D2(Z1)

, with weights proportional to D2(Z2)−D2(Z1)
Z2−Z1

. It

seems more natural to us to weight compliers-switchers’ slopes by the absolute value of their first-stage

than by the slope of their first-stage.6

1.5.3 Identification

Let SI = 1{Z2 − Z1 ̸= 0}, SI
+ = 1{Z2 − Z1 > 0}, and SI

− = 1{Z2 − Z1 < 0}.

Assumption 13 (Support conditions for IV-WAS identification)

1. 0 < P (SI
+ = 1), and 0 < P (SI

+ = 1|Z1, D1) implies that 0 < P (SI = 0|Z1, D1).

2. 0 < P (SI
− = 1), and 0 < P (SI

− = 1|Z1, D1) implies that 0 < P (SI = 0|Z1, D1).

Theorem 6 If Assumptions 9-11 and 13 hold,

δIV =
E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, D1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, D1, SI = 0))]
(1.14)

=
E [sgn(∆Z)∆Y ]− E

[
∆Y

P (SI
+=1|Z1,D1)−P (SI

−=1|Z1,D1)

P (SI=0|Z1,D1)
P (SI = 0)

∣∣∣SI = 0
]

E [sgn(∆Z)∆D]− E
[
∆D

P (SI
+=1|Z1,D1)−P (SI

−=1|Z1,D1)

P (SI=0|Z1,D1)
P (SI = 0)

∣∣∣SI = 0
] . (1.15)

The regression-based (resp. propensity-score-based) estimand identifying δIV is just equal to the

regression-based (resp. propensity-score-based) estimand identifying the reduced-form WAS effect of

6If the first-stage effect is homogenous and linear, the weights in the IV-AS effect reduce to one, and one recovers a standard AS
effect. However, linearity and homogeneity of the first-stage effect are strong assumptions.
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the instrument on the outcome controlling for D1, divided by the regression-based (resp. propensity-

score-based) estimand identifying the first-stage WAS effect controlling for D1.

1.5.4 Estimation and inference

Let

δ̂rIV =

1
n

∑n
i=1 sgn(∆Zi)

(
∆Yi − Ê(∆Y |Z1 = Zi,1, D1 = Di,1, S

I = 0)
)

1
n

∑n
i=1 sgn(∆Zi)

(
∆Di − Ê(∆D|Z1 = Zi,1, D1 = Di,1, SI = 0)

) , (1.16)

where Ê(∆Y |Z1, D1, S
I = 0) and Ê(∆D|Z1, D1, S

I = 0) are series estimators of E(∆Y |Z1, D1, S
I = 0)

and E(∆D|Z1, D1, S
I = 0) defined analogously to the series estimator in Section 1.3.3.

Let us define

δ̂psIV =

1
n

∑n
i=1 sgn(∆Zi)∆Yi − 1

n

∑
i:SI

i =0 ∆Yi
P̂ (SI

+=1|Z1=Zi1,D1=Di1)−P̂ (SI
−=1|Z1=Zi1,D1=Di1)

P̂ (SI=0|Z1=Zi1,D1=Di1)

1
n

∑n
i=1 sgn(∆Zi)∆Di − 1

n

∑
i:SI

i =0 ∆Di
P̂ (SI

+=1|Z1=Zi1,D1=Di1)−P̂ (SI
−=1|Z1=Zi1,D1=Di1)

P̂ (SI=0|Z1=Zi1,D1=Di1)

, (1.17)

where P̂ (SI
+ = 1|Z1, D1) (resp. P̂ (SI

− = 1|Z1, D1), P̂ (SI = 0|Z1, D1)) is a series logistic regression

estimator of P (SI
+ = 1|Z1, D1) (resp. P (SI

− = 1|Z1, D1), P (SI = 0|Z1, D1)) defined analogously to the

series logistic regression estimators in Section 1.4.3.

For any variable X, let

δX = E
[
sgn(∆Z)

(
∆X − E(∆X|Z1, D1, S

I = 0)
)]

ψX =
1

E(|∆Z|)

{(
SI
+ − SI

− − E(SI
+ − SI

−|Z1, D1)
(1− SI)

E(1− SI |Z1, D1)

)
× (∆X − E(∆X|Z1, D1, S

I = 0))− δX |∆Z|
}
.

Then, let

ψIV =
ψY − δIV ψD

δD
.

Under technical conditions similar to those in Assumptions 6 and 8, one can show that

√
n
(
δ̂rIV − δIV

)
d−→ N (0, V (ψIV )),

√
n
(
δ̂psIV − δIV

)
d−→ N (0, V (ψIV )).
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1.6 Extensions

In this section, we return to the case where the treatment, rather than an instrument, satisfies a parallel-

trends condition. Combining the extensions below with the IV case is possible.

1.6.1 More than two time periods

In this section, we assume the representative unit is observed at T > 2 time periods. Let (D1, ..., DT )

denote the unit’s treatments and Dt = Supp(Dt) for all t ∈ {1, ..., T}. For any t ∈ {1, ..., T}, and for any

d ∈ Dt let Yt(d) denote the unit’s potential outcome at period t with treatment d. Finally, let Yt denote their

observed outcome at t. For any t ∈ {2, ..., T}, let St = 1{Dt ̸= Dt−1} be an indicator equal to 1 if the

unit’s treatment switches from period t− 1 to t. Let also S+,t = 1{Dt > Dt−1} and S−,t = 1{Dt < Dt−1}.

We assume that the assumptions made in the paper, rather than just holding for t = 1 and t = 2, actually

hold for all pairs of consecutive time periods (t− 1, t). For instance, we replace Assumption 1 by:

Assumption 14 (Parallel trends) For all t ≥ 2, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 = d,Dt) = E(∆Yt(d)|Dt−1 =

d).

Assumption 14 requires that E(∆Yt(d)|Dt−1 = d,Dt = d′) be constant across d′: groups of units with

the same period-t− 1 treatment but different period-t treatments all have the same expected outcome

evolution in the counterfactual where their period-t− 1 treatment would not have changed. Importantly,

note that because Assumption 14 is conditional on Dt−1, it cannot be “chained” across pairs of time

periods: it requires parallel trends over pairs of consecutive time periods, not over the entire duration of

the panel. To preserve space, we do not restate our other assumptions with more than two periods.

Let

δ1,t = E

(
Yt(Dt)− Yt(Dt−1)

Dt −Dt−1

∣∣∣∣St = 1

)
,

δ2,t =
E (sgn(Dt −Dt−1)(Yt(Dt)− Yt(Dt−1)))

E(|Dt −Dt−1|)
.

Let

δT≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

δ1,t,

δT≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2E(|∆Dk|)

δ2,t

be generalizations of the AS and WAS effects to applications with more than two periods. Note that in

line with the spirit of the two effects, we propose different weights to aggregate the AS and WAS across
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time periods. For the AS, the weights are just proportional to the proportion of switchers between t− 1

and t. For the WAS, the weights are proportional to the average absolute value of the treatment switch

from t− 1 to t.

Theorem 7 If Assumption 14 and generalizations of Assumptions 2-5 to more than two periods hold,

δT≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

E

(
∆Yt − E(∆Yt|Dt−1, St = 0)

∆Dt

∣∣∣∣St = 1

)
.

Theorem 8 If Assumption 14 and generalizations of Assumptions 2 and 7 to more than two periods hold,

δT≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2E(|∆Dk|)

E (sgn(∆Dt) (∆Yt − E(∆Yt|Dt−1, St = 0)))

E(|∆Dt|)

=

T∑
t=2

E(|∆Dt|)∑T
k=2E(|∆Dk|)

E [sgn(∆Dt)∆Yt]− E
[
∆Yt

P (S+,t=1|Dt−1)−P (S−,t=1|Dt−1)
P (St=0|Dt−1)

P (St = 0)
∣∣∣St = 0

]
E(|∆Dt|)

.

Theorems 7 and 8 are straightforward generalizations of Theorems 1 and 4 to settings with more than

two time periods.

Let

ψ1,t =
1

E(St)

{(
St

∆Dt
− E

(
St

∆Dt

∣∣∣∣Dt−1

)
(1− St)

E[1− St|Dt−1]

)
[∆Yt − E(∆Yt|Dt−1, St = 0)]− δ1,tSt

}
,

ψ2,t =
1

E(|∆Dt|)

{(
S+,t − S−,t − E(S+,t − S−,t|Dt−1)

(1− St)

E(1− St|Dt−1)

)
(∆Yt − E(∆Yt|Dt−1, St = 0))− δ2,t|∆Dt|

}
.

After some algebra, one can show that the influence function of the AS estimator with several periods is

ψT≥3
1 :=

∑T
t=2(P (St = 1)ψ1,t + (δ1,t − δT≥3

1 )(St − P (St = 1)))∑T
t=2 P (St = 1)

, (1.18)

while the influence function of the WAS estimators with several periods is

ψT≥3
2 :=

∑T
t=2E(|∆Dt|)ψ2,t + (δ2,t − δT≥3

2 )(|∆Dt| − E(|∆Dt|))∑T
t=2E(|∆Dt|)

. (1.19)

Importantly, those influence functions allow the unit’s treatments and outcomes to be arbitrarily serially

correlated.

1.6.2 Placebo tests

With several time periods, one can test the following condition, which is closely related to Assumption 14:
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Assumption 15 (Testable parallel trends) For all t ≥ 3, t ≤ T , for all d ∈ Dt−1, E(∆Yt−1(d)|Dt−2 =

Dt−1 = d,Dt) = E(∆Yt−1(d)|Dt−2 = Dt−1 = d).

To test that condition, one can compute a placebo version of the estimators described in the previous

subsection, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of consecutive time periods

(t− 1, t), to units whose treatment did not change between t− 2 and t− 1. Thus, the placebo compares

the average ∆Yt−1 of the t− 1-to-t switchers and stayers, restricting attention to t− 2-to-t− 1 stayers.

If one finds that from t − 2-to-t − 1, t − 1-to-t switchers and stayers are on parallel trends, this lends

credibility to Assumption 14.

Assumption 14 can only be placebo tested among t − 2-to-t − 1 stayers. Then, as a robustness

check one may restrict the estimation of δ1 and δ2 to t − 2-to-t − 1 stayers, to ensure that effects are

only estimated in a subsample for which the identifying assumption can be placebo tested. The resulting

estimator relies on the following identifying assumption:

∀t ≥ 3, t ≤ T, d ∈ Dt−1 : E(∆Yt(d)|Dt−2 = Dt−1 = d,Dt) = E(∆Yt(d)|Dt−2 = Dt−1 = d),

the exact analogue of Assumption 15 but one period ahead.

1.6.3 Estimators robust to dynamic effects up to a pre-specified treatment lag.

Importantly, the robustness check in the previous section also yields an estimator robust to dynamic

effects up to one treatment lag. If units’ current and first treatment lag affect their current outcome, our

t − 1-to-t estimators in the subsample of t − 2-to-t − 1 stayers are unbiased for effects of the current

treatment on the outcome under the following assumption:

∀t ≥ 3, t ≤ T, d ∈ Dt−1 : E(Yt(d, d)−Yt−1(d, d)|Dt−2 = Dt−1 = d,Dt) = E(Yt(d, d)−Yt−1(d, d)|Dt−2 = Dt−1 = d).

Similarly, if one wants to allow for effects of the first and second treatment lags on the outcome, one just

needs to restrict the estimation sample to t− 3-to-t− 1 stayers. However, the more robustness to dynamic

effects one would like to have, the smaller the estimation sample becomes.

1.7 Application

Data and research questions. We use the yearly 1966-to-2008 panel dataset of Li et al. (2014),

covering 48 US states (Alaska and Hawaii are excluded). In view of the long duration of this panel, it is

important to keep in mind that our estimators only assume parallel trends across pairs of consecutive
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years, not over the panel’s entire duration. For each state×year cell (i, t), the data contains Zi,t, the total

(state plus federal) gasoline tax in cents per gallon, Di,t, the log tax-inclusive price of gasoline, and Yi,t,

the log gasoline consumption per adult. Our goal is to estimate the effect of gasoline taxes on gasoline

consumption and prices, and to estimate the price-elasticity of gasoline consumption, using taxes as

an instrument. Instead, Li et al. (2014) jointly estimate the effect of gasoline taxes and tax-exclusive

prices on consumption, using a TWFE regression with two treatments. Between each pair of consecutive

periods, the tax-exclusive price changes in all states, so this treatment does not have stayers and its

effect cannot be estimated using the estimators proposed in this paper. Thus, our estimates cannot be

compared to those of Li et al. (2014).

Switching cells, and how they compare to the entire sample. Let S be the set of switching (i, t) cells

such that Zi,t ≠ Zi,t−1 but Zi′,t = Zi′,t−1 for some i′. The second condition drops from the estimation

seven pairs of consecutive time periods between which the federal gasoline tax changed, thus implying

that all states experienced a change of their tax. S includes 384 cells, so effects of taxes on gasoline

prices and consumptions can be estimated for 19% of the 2,016 state×year cells for which Zi,t − Zi,t−1

can be computed. Table 1.1 below compares some observable characteristics of switchers and stayers.

Switchers seem slightly over-represented in the later years of the panel: t is on average 2.5 years larger

for switchers than for stayers, and the difference is significant. On the other hand, switchers are not more

populated than stayers, and their gasoline consumption and gasoline price in 1966 are not significantly

different from that of stayers. Thus, there is no strong indication that the cells in S are a very selected

subgroup.

Distribution of taxes. As an example, the top panel of Figure 1.1 below shows the distribution of Zg,1987

for 1987-to-1988 stayers, while the bottom panel shows the distribution for 1987-to-1988 switchers. The

figure shows that there are many values of Zg,1987 such that only one or two states have that value, so

Zg,1987 is close to being continuously distributed. Moreover, all switchers g are such that

min
g′:Zg′,1988=Zg′,1987

Zg′,1987 ≤ Zg,1987 ≤ max
g′:Zg′,1988=Zg′,1988

Zg′,1987.

Thus, Assumption 4 seems to hold for this pair of years. (1987, 1988) is not atypical. While Zi,t varies

less across states in the first years of the panel, there are many other years where Zi,t is close to being

continuously distributed. Similarly, almost 95% of cells in S are such that ming′:Zi′,t=Zi′,t−1
Zi′,t−1 ≤

Zi,t−1 ≤ maxg′:Zi′,t=Zi′,t−1
Zi′,t−1. Dropping the few cells that do not satisfy this condition barely changes

the results presented below.

48



Distribution of tax changes. Figure 1.2 below shows the distribution of Zi,t − Zi,t−1 for the 384 cells

in S. The majority experience an increase in their taxes, but 38 cells experience a decrease. The average

value of |Zi,t − Zi,t−1| is equal to 1.61 cents, while prior to the tax change, switchers’ average gasoline

price is equal to 112 cents: our estimators leverage small changes in taxes relative to gasoline prices.

Finally, min(i,t)∈S |Zi,t − Zi,t−1| = 0.05 : some switchers experience a very small change in their taxes.

Table 1.1: Comparing switchers and stayers

Dependent Variables: t Adult Population log(quantity)1966 log(price)1966

Constant 1,986.7 3,691,608.0 -0.5161 3.471

(0.2739) (577,164.0) (0.0210) (0.0054)

1{Zi,t ̸= Zi,t−1} 2.481 39,588.0 -0.0099 0.0014

(0.7519) (320,342.1) (0.0096) (0.0029)

N 2,016 2,016 2,016 2,016

Notes: The table show the results of regressions of some dependent variables on a constant and an indicator for switching cells.

The standard errors shown in parentheses are clustered at the state level.
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Figure 1.1: Gasoline tax in 1987 among 1987-to-1988 switchers and stayers
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Figure 1.2: Distribution of tax changes between consecutive periods

Reduced-form and first-stage AS and WAS estimates. Table 1.2 below shows the AS and doubly-

robust WAS estimates of the reduced-form (Panel A) and first-stage (Panel B) effects of taxes on quantities

and prices. We follow results from Section 1.5, and estimate the reduced-form and the first-stage control-

ling for lagged prices Dt−1, to ensure that the resulting IV estimator is robust to heterogeneous effects

over time. Reduced-form and first-stage estimators where Dt−1 is not controlled for are not very different,

but controlling for Dt−1 reduces the standard error of the first-stage estimator. In Column (1), the estima-

tors are computed using a polynomial of order 1 in (Zt−1, Dt−1) to estimate E(∆Yt|Zt−1, Dt−1, St = 0),

E(∆Dt|Zt−1, Dt−1, St = 0), and the propensity scores P (S+,t = 1|Zt−1, Dt−1), P (S−,t = 1|Zt−1, Dt−1),

and P (St = 0|Zt−1, Dt−1). In Column (2), a polynomial of order 2 is used in those estimations. 10-folds

cross-validation selects a polynomial of order two for E(∆Dt|Zt−1, Dt−1, St = 0), and a polynomial of

order one for all the other conditional expectations. Thus, polynomials of order 1 and 2 are in line with

those selected by cross validation. Standard errors clustered at the state level, computed following (1.18)

and (1.19), are shown below the estimates, between parentheses. All estimations use 1632 (48× 35)

first-difference observations: 7 periods have to be excluded as they do not have stayers. Finally, the last

line of each panel shows the p-value of a test that the AS and WAS effects are equal. In Panel A Column

(1), the AS estimate indicates that increasing gasoline tax by 1 cent decreases quantities consumed by

0.55 percent on average for the switchers. That effect is significant at the 5% level, but it becomes smaller

and insignificant when one uses a quadratic model to estimate E(∆Yt|Zt−1, Dt−1, St = 0). The WAS

estimates are slightly lower than, but close to, the AS estimates, and they are significant irrespective of the

polynomial order used in the estimation. As predicted by Proposition 1, the standard errors of the WAS

estimators are almost 3 times smaller than that of the AS estimators. Equality tests that the AS and WAS
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effects are equal are not rejected. In Panel B, the AS estimates of the first-stage effect are insignificant.

Importantly, this implies that an IV-AS estimator of the price elasticity of gasoline consumption cannot be

used: this estimator does not have a significant first stage. The WAS estimates are significant, and they

indicate that if gasoline tax increases by 1 cent on average, prices increase by around 0.5 percent on

average for the switchers. Again, the differences between the AS and WAS effects of taxes on prices are

insignificant.

Table 1.2: Effects of gasoline tax on quantities consumed and prices

(1) Linear model (2) Quadratic model

Panel A: Reduced-form effect of taxes on quantities consumed

AS -0.0055 -0.0034

(0.0027) (0.0032)

WAS -0.0038 -0.0034

(0.0010) (0.0011)

Observations 1,632 1,632

P-value 0.4482 0.9974

Panel B: First-stage effect of taxes on prices

AS 0.0042 0.0047

(0.0024) (0.0025)

WAS 0.0056 0.0056

(0.0009) (0.0008)

Observations 1,632 1,632

P-value 0.4729 0.6798

Notes: All estimators in the table are computed using the data of Li et al. (2014). Panel A (resp. B) shows the AS and doubly-robust

WAS estimates of the reduced-form (resp. first-stage) effect of taxes on quantities (resp. prices). All estimates control for the lag of

prices. In Column (1), estimates are computed using a polynomial of order 1 in (Zt−1, Dt−1) to estimate E(∆Yt|Zt−1, Dt−1, St =

0) and the propensity scores P (S+,t = 1|Zt−1, Dt−1), P (S−,t = 1|Zt−1, Dt−1), and P (St = 0|Zt−1, Dt−1). In Column (2),

estimates are computed using a polynomial of order 2 in those estimations. Standard errors clustered at the state level, computed

following (1.18) and (1.19) are shown below the estimates, between parentheses. All estimations use 1632 (48× 35) first-difference

observations: 7 periods have to be excluded as they do not have stayers. Finally, the last line of each panel shows the p-value of a

test that the AS and WAS effects are equal.

Placebo analysis. Table 1.3 below shows placebo AS and doubly-robust WAS estimates of the reduced-

form and first-stage effects. The placebo estimators are analogous to the actual estimators, but they

replace ∆Yt by ∆Yt−1, and they restrict the sample, for each pair of consecutive time periods (t− 1, t), to

states whose taxes did not change between t− 2 and t− 1. The placebo WAS estimates are small and
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insignificant, both for quantities and prices. The placebo AS estimates are larger for quantities, but they

are insignificant, and less precisely estimated. This placebo analysis shows that before switchers change

their gasoline taxes, switchers’ and stayers’ consumption of gasoline and gasoline prices do not follow

detectably different evolutions. As a robustness check, we reestimate the AS and WAS in the placebo

subsample, to ensure that effects are estimated in a subsample for which the identifying assumption can

be placebo tested, and also because in that subsample estimators remain valid if the first lag of taxes

affect current gasoline prices and quantities. WAS reduced-form effects are very close to those in Table

1.2. WAS first-stage effects are 25 to 35% smaller, though they are still positive and highly significant.

Table 1.3: Placebo effects of gasoline tax on quantities consumed and prices

(1) Linear model (2) Quadratic model

Panel A: Reduced-form placebo effect of taxes on quantities consumed

AS 0.0039 0.0055

(0.0035) (0.0036)

WAS 0.0001 0.0012

(0.0017) (0.0017)

Observations 1,059 1,059

Panel B: First-stage placebo effect of taxes on prices

AS 0.0006 0.0009

(0.0056) (0.0053)

WAS 0.0014 0.0013

(0.0017) (0.0015)

Observations 1,059 1,059

Notes: The table shows the placebo AS and doubly-robust WAS estimates of the reduced-form and first-stage effects of taxes on

quantities and prices. The estimators and their standard errors are computed as the actual estimators, replacing ∆Yt by ∆Yt−1,

and restricting the sample, for each pair of consecutive time periods (t− 1, t), to states whose taxes did not change between t− 2

and t− 1.

IV-WAS estimate of the price-elasticity of gasoline consumption. Table 1.4 shows doubly-robust

IV-WAS estimates of the price-elasticity of gasoline consumption. As the instrument’s first stage is

not very strong and the sample effectively only has 48 observations, asymptotic approximations may

not be reliable for inference. In line with that conjecture, we find that the bootstrap distributions of the

three estimators in Table 1.4 are non-normal, with some outliers. Therefore, we use the percentile

bootstrap for inference, clustering the bootstrap at the state level. Reassuringly, these confidence
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intervals have nominal coverage in simulations tailored to our application.7 The IV-WAS estimates are

negative, significant, and larger than -1, though their confidence intervals contain -1. We compare those

estimates to a 2SLS-TWFE estimator, computed via a 2SLS regression of Yi,t on Di,t and state and year

fixed effects, using Zi,t as the instrument. The 2SLS-TWFE coefficient is equal to -1.0836 (bootstrap

confidence interval=[−2.1207,−0.4405]), which is 60% larger in absolute value than the IV-WAS estimate

in Column (1), and almost 80% larger than that in Column (2), though the 2SLS-TWFE coefficient

does not significantly differ from the two IV-WAS estimates (P-value = 0.320 and 0.232 , respectively).

Interestingly, the confidence interval of the 2SLS-TWFE coefficient is almost 80% wider than that of the

IV-WAS coefficient in Column (1) and 27% wider than that in Column (2), thus showing that using a more

robust estimator does not always come with a substantive precision cost.

Table 1.4: IV estimators of the price-elasticity of gasoline consumption

(1) Linear model (2) Quadratic model

IV-WAS -0.6773 -0.6130

[-1.2101,-0.2622] [-1.3183,-0.0004]

Observations 1,632 1,632

Notes: The table shows doubly-robust IV-WAS estimates of the price-elasticity of gasoline consumption, computed using the data of

Li et al. (2014). Bootstrap confidence intervals are shown below the estimates. They are computed with 500 bootstrap replications,

clustered at the state level.

1.8 Conclusion

We propose new difference-in-difference (DID) estimators for continuous treatments. We assume that

between pairs of consecutive periods, the treatment of some units, the switchers, changes, while the

treatment of other units, the stayers, does not change. We propose a parallel trends assumption on the

outcome evolution of switchers and stayers with the same baseline treatment. Under that assumption,

two target parameters can be estimated. Our first target is the average slope of switchers’ period-two

potential outcome function, from their period-one to their period-two treatment, referred to as the AS. Our

second target is a weighted average of switchers’ slopes, where switchers receive a weight proportional

to the absolute value of their treatment change, referred to as the WAS. Economically, the AS and WAS

serve different purposes, so neither parameter dominates the other. On the other hand, when it comes to
7Here is the DGP used in our simulations. We estimate TWFE regressions of Yi,t on state and year fixed effects and Zi,t, and of

Di,t on state and year fixed effects and Zi,t. We let γ̂Y
i + λ̂Y

t + β̂Y Zi,t + ϵYi,t and γ̂D
i + λ̂D

t + β̂DZi,t + ϵDi,t denote the resulting
regression decompositions. In each simulation, the simulated instrument is just the actual instrument, while the simulated outcomes
and treatments are respectively equal to Y s

i,t = γ̂Y
i + λ̂Y

t + β̂Y Zi,t + ϵY,s
i,t , and Ds

i,t = γ̂D
i + λ̂D

t + β̂DZi,t + ϵD,s
i,t , where the

vector of simulated residuals (ϵY,s
g,1 , ..., ϵ

Y,s
g,T , ϵD,s

g,1 , ..., ϵD,s
g,T ) is drawn at random and with replacement from the estimated vectors of

residuals ((ϵY
g′,1, ..., ϵ

Y
g′,T , ϵD

g′,1, ..., ϵ
D
g′,T ))g′∈{1,...,G}. Thus, the first-stage and reduced-form effects, the correlation between the

reduced-form and first-stage residuals, and the residuals’ serial correlation are the same as in the sample.
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estimation, the WAS unambiguously dominates the AS. First, it can be estimated at the parametric rate

even if units can experience an arbitrarily small treatment change. Second, under some conditions, its

asymptotic variance is strictly lower than that of the AS estimator. Third, unlike the AS, it is amenable to

doubly-robust estimation. In our application, we use US-state-level panel data to estimate the effect of

gasoline taxes on gasoline consumption. The standard error of the WAS is almost three times smaller

than that of the AS, and the two estimates are close.

We also consider the instrumental-variable case, as there are instances where units experiencing/not

experiencing a treatment change are unlikely to be on parallel trends, but one has at hand an instrument

such that units experiencing/not experiencing an instrument change are more likely to be on parallel

trends. Then, we propose widely applicable IV-DID estimators, that are robust to heterogeneous effects

over time but impose some restrictions on effects’ heterogeneity across units.
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Chapter 2

Estimating heterogeneous peer effects

with partial population experiments

with Pauline Rossi and Zheng Wang

The standard linear-in-means model of peer effects assumes that the endogenous peer effect parameter

is homogeneous. We relax this assumption by allowing individuals to respond differently to the outcomes

of other group members depending on the identity of these members. Specifically, we distinguish peer

effects within members sharing the same identity and peer effects between members of different identities.

We propose a simple methodology to identify and estimate the model using partial population experiments

(i.e. designs in which only some individuals in a group are eligible for treatment) with variation in the share

of eligible individuals across groups. We discuss two cases: randomized experiments and differences-

in-differences. The estimation procedure builds on the Generalized Method of Moments. We are able

to quantify the direct effect on the eligibles, the indirect effect on the non-eligibles and the population

multipliers. We apply our methodology to study peer effects in school attendance using a conditional

cash transfer program targeting the poor in Mexico.

2.1 Introduction

In the field of peer effects, applied economists often use the linear-in-means model. The model postulates

that individuals are influenced by the average outcome in a given reference group. This is a way to

formalize the concept of conformism: people incur a cost when their behavior is different from the average

behavior. An important parameter in this model is the endogenous peer effect, which captures the change
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in the outcome of an individual in response to a change in the group average outcome. The endogenous

peer effect is assumed to be homogeneous, in the sense that (i) all individuals in a reference group

respond to the change in the same way, and (ii) all individuals have the same weight in the group average.

This assumption fails to account for complex group dynamics, such as polarization, social distinction,

or role models. Sociologists have long documented that the relevant reference group may consist of

several sub-groups who do not necessarily interact in a symmetric way. Some individuals may put

more weight on their own sub-group; other individuals may put more weight on the other sub-groups,

either emulating them or opposing them. These dynamics depend on what defines the identity of these

sub-groups, their number and relative size, as well as the social hierarchy.

In this paper, we relax the homogeneity assumption by allowing individuals to respond differently to

changes in the outcomes of other group members depending on the identity of these members. We

distinguish peer effects within members sharing the same identity and peer effects between members

of different identities. We propose a methodology to identify and estimate these parameters using

experiments in which only a share of the population is eligible for treatment. These designs are called

partial population experiments. We discuss two cases: (i) controlled experiments, where the treatment is

randomly allocated to groups; and (ii) natural experiments, more specifically differences-in-differences,

where the treatment is allocated to different groups at different times and the common trend condition

holds.

First, we show that we can identify within and between peer effects when the share of eligible

individuals varies across groups; in theory, three values are enough for identification. Second, we

propose a simple estimation procedure building on the Generalized Method of Moments (GMM). Third,

we consider several extensions. The first extension allows the between and within parameters to vary

across sub-groups. The second extension considers designs where the identity that matters for the

heterogeneous peer effect dimension is orthogonal to treatment eligibility. The last extension shows how

to include covariates to improve the plausibility of the common trend assumption.

Estimating endogenous peer effects is particularly important from a policy evaluation perspective

because they generate population multipliers. The treatment is a shock affecting the behaviors of eligible

individuals; then, non-eligibles respond to the change in eligibles’ behaviors; and the shock propagates

further (between and within sub-groups) until a new equilibrium is reached. Our estimates are useful

to quantify (i) the direct effect of the policy on the eligibles, (ii) the indirect effect of the policy on the

non-eligibles and (iii) the population multipliers, i.e. by how much the direct and indirect effects are

amplified by social interactions between and within sub-groups. In contrast, research designs based

on the random allocation of peers cannot separately identify whether individuals are influenced by the
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behavior of their peers (endogeneous peer effects) or by the characteristics of their peers (exogeneous

peer effects). Separating both effects is crucial since only the endogenous component gives rise to

population multipliers.

We apply our methodology to explore peer effects in school attendance using a conditional cash

transfer program in Mexico – Progresa. This program has been extensively studied: it was randomly

allocated across villages and it targeted poor households. Previous research finds a positive effect on

school attendance of the eligibles and a positive spillover effects on school attendance of the non-eligibles

belonging to the same group, defined as grade × village. For instance, Lalive and Cattaneo (2009)

estimate a direct effect of 3p.p.: in the absence of social interactions, school attendance among the poor

should increase by 3 percentage points in treated villages. They estimate an homogeneous endogenous

peer effect parameter of 0.5: the individual probability of attending school increases by 5 percentage

points when the average attendance in a group increases by 10 percentage points. When we allow for

heterogeneity, we estimate a “between" peer effect of 0.31, a “within" peer effect of 0.24, and a direct

effect of 5p.p.. Yet, we cannot reject the null that all those parameters are zero.

Other potential applications cover important topics in education (e.g. estimate peer effects in grad-

uation rates using scholarships targeting some categories of students and variation across majors),

labor (e.g. estimate peer effects in parental leave take-up using collective agreements targeting some

professions and variation across neighborhoods), health (e.g. estimate peer effects in contraception

take-up using rules specific to minors and variation across classes), political economy (e.g. estimate

peer effects in support for local authorities using public infrastructure devoted to the elderly or to young

children and variation across neighborhoods), and crime (e.g. estimate peer effects in criminal activities

using interventions targeting at-risk youth and variation across classes). Our methodology is adequate

in settings where the non-eligibles are affected by the treatment only through changes in the eligibles’

outcomes. By assumption, we rule out any direct effect on the non-eligibles.1

Our paper is at the intersection of two streams of literature. First, it relates to the literature using partial

population experiments to identify the endogenous peer effect parameter in linear-in-means models

(Moffitt et al. (2001), Bobonis and Finan (2009), Brown and Laschever (2012), Hirano and Hahn (2010)).

We contribute to this literature by allowing for heterogeneous parameters. Relaxing the homogeneity

assumption is important because this assumption restricts the shape of the population multipliers: they

have to be the same for eligibles and non-eligibles, and they have to be linear in the share of eligibles

(s). For instance, the population multiplier is equal to 2s in Lalive and Cattaneo (2009) This restriction

1For instance, in the case of Progresa, this assumption could be violated if cash transfers were shared with non-poor households,
or if they caused inflation in the village: the treatment would directly affect the non-eligibles’ budget constraint. Lalive and Cattaneo
(2009) provide arguments to rule out these possibilities.
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implies that the total effect on the eligibles and the total effect on the non-eligibles should be linear in

s, a prediction which is not always verified in the data. By allowing for different “between" and “within"

parameters, we can rationalize diverse empirical patterns: convex or concave, increasing or decreasing,

depending on the relative magnitudes and on the signs of the “between" and “within" parameters. In the

case of Progresa, we find that the total effects are increasing and slightly concave, and that the multiplier

is larger for the eligibles than for the non-eligibles.

Second, it relates to the literature on the estimation of spillover effects in experiments. Previous

research has studied how the outcome of an individual is affected by the treatment status of her peers in

a non-parametric way (Hudgens and Halloran (2008), Tchetgen and VanderWeele (2012)). In particular,

Vazquez-Bare (2023) discusses the case of heterogeneous spillover effects in a flexible framework,

allowing the treatment status of peers to have heterogeneous effects depending on the characteristics of

the peers. The interpretation of the parameters in this approach is reduced-form, in the sense that they

capture different mechanisms: endogenous peer effects, exogenous peer effects, general equilibrium

effects through prices, etc. In contrast, our approach focuses on a specific mechanism. We can only

study a subset of the questions explored in the literature. However, for these questions, we have a

structural interpretation of the parameters and we learn something fundamental about the drivers of

behaviors. We learn about how individuals weigh other members of their reference groups, whether they

imitate some members in particular, or try to distinguish themselves from other members. Our results

are useful to deepen our understanding of social influence, in particular to study dynamics going beyond

plain conformism.

At this intersection, we are aware of two other papers. The first one is Masten (2018) that considers a

linear-in-means models with random coefficients on the endogenous variable. This model implies that

individuals respond differently to the average behavior of their peers. On the contrary, in our model,

individuals respond differently to their peers’ behavior depending on their peers’ identity. The second one

is Arduini et al. (2020). We consider the same linear-in-means model as them but we develop a different

estimation strategy. Our strategy does not require the share of eligibles to be exogenous to the treatment

and is therefore compatible with natural experiments.

The remainder of the paper is organized as follows. Section 2.2 introduces notations, presents our

baseline model and discusses our main assumptions. Section 2.3 explains our identification strategy.

Section 2.4 presents our estimation results. Section 2.5 details our extensions. Finally, section 2.6 deals

with our application : Progresa.
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2.2 Set-up, notations and main assumptions

We start by describing the set-up with randomized treatment assignment and then turn to the difference-

in-difference.

2.2.1 Randomized experiment

We consider a setting inspired by Moffitt et al. (2001). We suppose that G reference groups are observed.

Group g contains ng units (indexed by i); and a share sg of those units are eligible for a binary treatment,

denoted Dg. Some groups receive the treatment while others don’t. Let Eig be the binary variable

indicating whether or not unit i in group g is eligible for the treatment and let Dig be a binary variable

indicating whether or not unit i has received the treatment. We suppose perfect compliance. None of the

ineligible individuals may receive the treatment, i.e. P (Dig = 1|Eig = 0) = 0. And if group g is treated, all

of the eligible units receive the treatment, i.e. P (Dig = 1|Eig = 1, Dg = 1) = 1. Let nEg =
∑ng

i=1Eig = sgng

and nNg =
∑ng

i=1(1− Eig) = ng − nEg be the number of units that are respectively eligible and non-eligible

for the treatment in group g. We consider the case where eligibility Eig is not randomly determined:

eligibility reflects an observable characteristic, that we call "identity". In our application that evaluates the

effects of Progresa, a reference group corresponds to a grade level associated to a village, the treatment

corresponds to Progresa’s conditional cash transfer that was randomly allocated across villages, and

eligibility status is determined by a threshold on the income distribution.

We start from the commonly used linear-in-means (LIM) model of social interactions (Manski (1993),

Blume et al. (2011), Bramoullé et al. (2009)), defined as

yig = αg + x′igη0 + z′gγ + δ0Dig + θ0 ×
1

ng

ng∑
i=1

yig + εig (2.1)

where yig is individual i’s scalar outcome, zg is a vector of attributes characterising individual i’s

reference group g, including peer characteristics within the group, xig and εig are respectively individual

i’s observed (resp. unobserved) attributes that directly affect yig. If θ0 ≠ 0, this model expresses an

endogenous peer effect: individual i’s outcome varies with the average outcome of her peers in group g.

It is standard to rule out explosive trajectories by assuming that |θ0| < 1. The vector (η0, δ0) captures the

exogenous effects while αg captures the correlated effects, as defined by Manski (1993). Moffitt et al.

(2001) shows that all parameters, and thus all different types of effects, are identified as long as δ0 ̸= 0.

We extend the standard model by allowing for heterogeneous endogenous peer effects. Individuals

may be differently influenced by their peers’ outcomes depending on whether they share the same

"identity" or not. In the following, for any variable w, we denote the average among eligibles and the
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average among non-eligibles as follows: w̄E
g =

1

nEg

∑
i∈Eg

wE
ig and w̄N

g =
1

nNg

∑
i∈Og

wN
ig where nEg =

∑ng

i=1Eig

and nNg = ng − nEg . We make the following assumptions.

Assumption 1 (Linear-in-means model) Within each group g ∈ {1, . . . , G} of the i.i.d sample, the

outcome of individual i is defined as

yig = Eigy
E
ig + (1− Eig)y

N
ig

with

yEig = θw0 sg ȳ
E
g + θb0(1− sg)ȳ

N
g + δ0Dig + eEig (2.2)

yNig = θb0sg ȳ
E
g + θw0 (1− sg)ȳ

N
g + eNig (2.3)

The parameters of interest are δ0, θb0 and θw0 , with δ0 ∈ R∗ and θb0, θ
w
0 ∈ (−1, 1). δ0 represents the

direct effect of the treatment on the eligible individuals that receive it. It is assumed to be homogeneous

across groups. θw0 is the coefficient for the endogenous peer effects from peers who share the same

identity as the individual while θw0 is the one for endogenous peers from peers of a different identity.

For a given group g, when ȳEg and ȳNg both increase by 1, the outcome of an eligible unit will increase

by θw0 sg + θb0(1 − sg) and the outcome of a non-eligible unit will increase by θb0sg + θw0 (1 − sg). These

quantities are convex combinations of the within and between endogenous peer effects, weighted by the

share of the eligible units. To illustrate the interpretation of (θw0 , θb0), consider a scenario where sg = 0.5,

indicating an equal number of eligible and non-eligible units within a group. Under this condition, a

simultaneous increase in ȳEg and ȳNg by respectively ∆E and ∆N results in an increase in an eligible

individual’s outcome by 1
2 (θ

w
0 ∆

E +θb0∆
N ). This demonstrates that (θw0 , θb0) quantifies the relative impact of

within-group and between-group peer effects. Conversely, when θw0 = θb0, the increase in an eligible unit’s

outcome depends linearly on the group composition, reflecting a stronger response to peers’ average

outcomes when they constitute a larger proportion of the group. For conciseness, the residual terms eEig

and eNig capture all the individual, exogenous and correlated effects. Because our focus is on θb0 and θw0 ,

we do not express explicitly all these effects in our baseline model. One may think of these terms, for

example, as

eEig = αE
g + x′igη

E
0 + z′gγ

E
0 + εEig

eNig = αN
g + x′igη

N
0 + z′gγ

N
0 + εNig

Two features of this baseline model have to be emphasized at this stage. First, eligibility to the

treatment corresponds to the “identity” that matters when evaluating the heterogeneity of peer effects. In

our Progresa application for instance, we evaluate how the action of a child coming from a poor (resp.

relatively rich) family is impacted by the actions of her peers who also come from the same economic
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background and by the actions of her peers coming from a different economic background. In Section

2.5, we consider a setting where identity is orthogonal to treatment eligibility. In the Progresa application,

for example, one may want to consider gender as a more relevant identity to model the complex social

mechanisms regarding a child’s decision to drop-out as boys may be more influenced by the actions

of other boys than by the actions of girls. Second, by allowing for heterogeneous peer effects, we may

uncover social mechanisms beyond the conventional LIM model, such as polarisation. This mechanism

happens when θb0 < 0 and θw0 > 0. For instance, a disruptive child might have a negative influence on his

friends’ attitudes towards school while prompting other children to exert more effort.

From Assumption 1, we can average respectively yEig and yNig among eligible (resp. non-eligible) units

in group g to get

ȳEg = θw0 sg ȳ
E
g + θb0(1− sg)ȳ

N
g + δ0Dg + ēEg

ȳNg = θb0sg ȳ
E
g + θw0 (1− sg)ȳ

N
g + ēNg

After some development, we get the following reduced forms

ȳEg =
θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg

+
1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg (2.4)

+ δ0

(
1 + sg.

θw0 − (1− sg)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
])Dg

ȳNg =
1− θw0 sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēNg

+
θb0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg (2.5)

+
δ0θ

b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg

Then, we specify the treatment assignment across groups.

Assumption 2 (Randomized Experiment) The group level treatment Dg is randomly assigned, i.e.

(ēNg , ē
E
g , sg) ⊥⊥ Dg (2.6)

Assumption 2 states that treatment is randomly assigned. In particular, groups receive the treatment

independently of their share of eligible units. We also impose a restriction on the support of Dg conditional
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on the share of eligible units sg. Let S ⊆ (0, 1] be the support of shares that are observed in the sample,

Assumption 3 (Common Support) For each s ∈ S,

0 < P (Dg = 1|s) < 1 (2.7)

Assumption 3 states that for any share of eligible units that is observed in the population of reference

groups, there exist some groups that are treated and some that are not.

2.2.2 Natural Experiment

The second type of designs we consider are natural experiments. It is a panel extension of the previous

subsection. The G groups may be observed over T time periods indexed by t. Group g treatment status

for period t is given by Dgt. Let Eigt be the eligibility status of individual i in group g at time t. For

k ∈ {E,N}, ȳkgt =
(
nkgt
)−1∑nk

gt

i=1 y
k
igt where nkgt is the number of individuals whose "identity" is k at time

period t.

Assumption 1’ (Linear-in-means model with panel data) Within each group g in {1,. . . , G} present in

an i.i.d panel, for each time period t ∈ {1, . . . , T}, the outcome of an individual i is defined as

yigt = Eigty
E
igt + (1− Eigt)y

N
igt

with

yEigt = θw0 sgtȳ
E
gt + θb0(1− sgt)ȳ

N
gt + δ0Dgt + eEigt (2.8)

yNigt = θb0sgtȳ
E
gt + θw0 (1− sgt)ȳ

N
gt + eNigt (2.9)

Assumption 1’ is the counterpart of Assumption 1 in a panel data context. Note that we rule out time

dependence, in the sense that former own outcomes and former peers’ outcomes do not directly influence

current outcomes. As before, we can average the outcomes of eligible and non-eligible units in group g

for each time period t and develop to get the following reduced forms

ȳEgt =
θb0(1− sgt)

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēNgt

+
1− θw0 (1− sgt)

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēEgt (2.10)

+ δ0

(
1 + sgt.

θw0 − (1− sgt)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
])Dgt
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ȳNgt =
1− θw0 sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēNgt

+
θb0sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēEgt (2.11)

+
δ0θ

b
0sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
]Dgt

For the rest of the paper, we suppose that T = 2. However, the natural experiment setting we consider

could potentially be extended to multiple periods. In this setting, treatment assignment may not be random

but we make other restrictions on the distribution of the data.

Assumption 2’ (Stable Shares) For all (g, t) ∈ {1, . . . , G} × {1, 2},

sgt = sg

Assumption 2’ states that, for each group, the share of eligible units does not change from period 1

to period 2. It implies in particular that the composition of groups is not affected by the treatment. This

assumption is thus credible in designs where the time span between the 2 periods is short.

Assumption 3’ (Treatment Distribution)

Dg1 = 0 a.s and for all s ∈ S, 0 < P (Dg2 = 1|s) < 1 (2.12)

Assumption 3’ states, first, that no group is treated at the initial period. Second, for all the values of

shares of eligible units that are observed in the population, there are some treated groups and some

control groups.

Assumption 4’ (Conditional Common Trends) For any k ∈ {NE,E},

E[ekg2 − ekg1|sg, Dg2 = 1] = E[ekg2 − ekg1|sg, Dg2 = 0] (2.13)

Assumption 4’ is a common trend assumption conditional on the share of eligible units. Intuitively,

we form pairs of treated and control groups with the same share of eligibles. For each pair, we assume

that, in the absence of the treatment, the average change in the aggregate outcome among eligible

units in treated groups would have been the same as the average change in the aggregate outcome

among eligible units in control groups. We make the same assumption regarding the average change in

aggregate outcome among non-eligible units. Note that the value of the conditional trend may be different

for the eligible and the non-eligible sub-populations.
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2.3 Identification

In this section, we show how one can identify the different parts that contribute to the overall effect of the

policy.

2.3.1 Intuition

Figure 2.1 illustrates how the initial shock (the treatment received by the eligibles) propagates to the

whole group through social interactions. δ0 is the direct effect of the treatment, loosely defined as the

first step in the causal chain (the effect of the treatment on the eligibles before any social interaction

takes place). δ0θ
b
0 is the indirect effect of the treatment, loosely defined as the second step in the

causal chain (the response of the non-eligibles to changes in the eligibles’ outcomes before any other

social interaction takes place). ME(s) and MN (s) are the population multipliers for the eligible and

non-eligible individuals, loosely defined as the third step in the causal chain (the propagation of the

initial shock through social interactions). With these definitions, the direct effect and the indirect effect

are independent of population structure, while the intensity of the population multipliers depends on the

population structure, as illustrated in Figure 2.2. Indeed, s influences M in two ways:

• Through the initial shock: the strength of the shock is proportional to the share of eligible individuals

• Through the propagation: the shock is amplified by social interactions in a non-linear way that

depends on the relative magnitudes of θb0 and θw0 . Intuitively, if θw0 > θb0 (within peer effects are more

intense than between peer effects), the amplification is stronger in homogeneous groups (low s

and high s) than in mixed groups (s ≈ 1
2 ). Conversely, if θw0 < θb0, the amplification is weaker is

homogeneous groups than in mixed groups.

As formally shown in the next section, the treatment effects and the population multipliers for the

eligible and the non-eligible individuals can be written as follows:

τE(s) = δ0M
E(s) and τN (s) = δ0θ

b
0M

N (s)

and

ME(s) = 1 + sPE(s) and MN (s) = sPN (s)

where PE(s) and PN (s) capture the strength of the propagation in the eligible and non-eligible sub-

populations. These functions have a U-shape when θw0 > θb0 and an inverted-U shape when θw0 < θb0. They

are different in the eligible and non-eligible sub-populations because their situations are not symmetric:

e.g. a low s implies a lot of “between" interactions for eligibles and a lot of “within" interactions for

non-eligibles. By contrast, in the homogeneous case where θw0 = θb0 = θ, these functions are identical
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for the eligibles and the non-eligibles, and they do not depend on s: we have PE = PN = 1
1−θ . As a

consequence, the population multiplier is linear in s.

The shapes of τE(s) and τN (s) are informative about δ0, θb0, θw0 . As an illustration, Figure 2.3 plots

τE(s) and τN (s) as a function of s in the case when θw0 > θb0 and in the case when θw0 < θb0. We can get

an intuition of the identification by looking at the limits:

τE(s) → δ0 τE(s) → δ0
1− θw0

τN (s) → δ0θ
b
0

1− θw0

s→ 0 s→ 1 s→ 1

First, looking at eligibles in groups with a very low fraction of eligibles is informative about the direct

effect. Second, looking at eligible individuals in groups with a very high fraction of eligible individuals is

informative about “within" peer effects. Third, looking at non-eligibles in groups with a very high fraction

of eligibles is informative about “between" peer effects. In practice, we observe few eligibles in groups

with low s and few non-eligibles in groups with high s. That is why our procedure exploits the whole

distribution of s, and not only the limits. The next section derives the formulas for τE(s) and τN (s) and

discusses more formally the identification in the case of randomized experiments and in the case of

natural experiments.

2.3.2 Randomized Experiment

This subsection presents how the treatment effects and population multipliers can be recovered in the

randomized experiment setting described in section 2.1.

Proposition 1 Provided Assumptions 1, 2 and 3 hold and all the mentioned conditional expectations are

well-defined, we have

τE(s) = E
[
ȳEg |sg = s,Dg = 1

]
− E

[
ȳEg |sg = s,Dg = 0

]
= E

[
Dg − Pr(Dg = 1)

Pr(Dg = 1)(1− Pr(Dg = 1))
.yEg

∣∣∣sg = s

]
(2.14)

= δ0

(
1 + s.

θw0 − (1− s)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
]) (2.15)

and

τN (s) = E
[
ȳNg |sg = s,Dg = 1

]
− E

[
ȳNg |sg = s,Dg = 0

]
= E

[
Dg − Pr(Dg = 1)

Pr(Dg = 1)(1− Pr(Dg = 1))
.yNg

∣∣∣sg = s

]
(2.16)

=
δ0θ

b
0s

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
] (2.17)
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Hence,

PE(s) :=
θw0 − (1− s)

[
(θw0 )

2 − (θb0)
2
]

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
] (2.18)

PN (s) :=
1

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
] (2.19)

Proof: see Appendix

Proposition 1 provides closed-form solutions for the total average treatment effects on the average

outcome within the eligible (respectivily non-eligible) sub-population, for a given share of eligible individuals

s, as well as for the strength of the propagation shock. The difference of conditional expectations between

treated and untreated groups can be expressed as a single conditional moment of a weighted outcome,

as shown by equations (2.14) and (2.16), whose weights are based on a transformation process à la

Abadie (2005). We rewrite the treatment effects in this way because we want to replace two conditional

expectations by one. This will allow us to combine the different conditional expectations into a single

unconditional expectation, as explained in the estimation section. This alternative formulation leads to

some natural conditional moment conditions, as expressed by the following corollary.

Corollary 1 (Conditional Moment Conditions - Randomized Experiment) Let I be an interval on R\{0}

and λ0 = (δ0, θ
w
0 , θ

b
0) ∈ Θ := I × (−1, 1)× (−1, 1), be the true value of the parameters. For any s ∈ (0, 1),

provided Assumptions 1, 2 and 3 hold and all the mentioned conditional moments are well-defined,

E
[
uR(yEg , y

N
g , Dg, sg;λ0)|sg = s

]
=

 E
[
uR,E(yEg , Dg, sg;λ0)|sg = s

]
E
[
uR,NE(yNg , Dg, sg;λ0)|sg = s

]
 = 0 (2.20)

where for all λ ∈ Θ,

uR,E(yEg , Dg, sg;λ) = ωR(Dg)y
E
g − δ (1− θw(1− sg))

1− θw + sg(1− sg) [(θw)2 − (θb)2]

uR,NE(yNg , Dg, sg;λ) = ωR(Dg)y
N
g − δθbsg

1− θw + sg(1− sg) [(θw)2 − (θb)2]

and ωR(Dg) =
Dg − P (Dg = 1)

P (Dg = 1)(1− P (Dg = 1))

Proof: It is an immediate consequence of Proposition 4 since the right-hand sides of equations (2.15)

and (2.17) are functions of s.
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2.3.3 Natural Experiment

In this subsection, we show that similar results are obtained in the natural experiment design. In the

following, for all k ∈ {E,N}, we use the conventional notation for first differenced variables:

∆ykg = ykg2 − ykg1

Proposition 2 Suppose Assumptions 1’, 2’, 3’, and 4’ hold and that all the mentioned conditional

expectations are well-defined. Then, we have

τE(s) = E
[
∆ȳEg |sg = s,Dg = 1

]
− E

[
∆ȳEg |sg = s,Dg = 0

]
= E

[
Dg2 − Pr(Dg2 = 1|sg = s)

Pr(Dg = 1|sg = s)(1− Pr(Dg = 1|sg = s))
.∆yEg

∣∣∣sg = s

]
(2.21)

= δ0

(
1 + s.

θw0 − (1− s)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
]) (2.22)

and

τN (s) = E
[
∆ȳNg |sg = s, Tg = 1

]
− E

[
∆ȳNg |sg = s,Dg = 0

]
= E

[
Dg2 − Pr(Dg2 = 1|sg = s)

Pr(Dg2 = 1|sg = s)(1− Pr(Dg2 = 1|sg = s))
.∆yNg

∣∣∣sg = s

]
(2.23)

=
δ0θ

b
0s

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
] (2.24)

Proposition 2 is the counterpart of Proposition 1 in the natural experiment setting. There are two

main differences. First, the outcomes of interest here are the first differenced aggregate outcomes within

the eligible and non-eligible subpopulations. Second, the weighting function ωDiD is now a function of

both the treatment assignment variable and the share of eligible individuals in the group. In this design,

treatment assignment is allowed to be correlated with the share of eligible units. Once again, immediate

conditional moment conditions arise, as stated by the following corollary.

Corollary 2 (Conditional Moment Conditions - Natural Experiment) Let I be an interval on R\{0}.

Let λ0 = (δ0, θ
w
0 , θ

b
0) be the true value of the parameters with λ0 ∈ Θ := I × (−1, 1) × (−1, 1). For any

s ∈ (0, 1), provided Assumptions 1’, 2’, 3’ and 4’ hold and all the mentioned conditional moments are

well-defined,

E
[
uDiD(∆yEg ,∆y

N
g , Dg2, sg;λ0)|sg = s

]
=

 E
[
uDiD,E(∆yEg , Dg2, sg;λ0)|sg = s

]
E
[
uDiD,NE(∆yNg , Dg2, sg;λ0)|sg = s

]
 = 0 (2.25)
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where for all λ ∈ Θ,

uDiD,E(∆yEg , Dg2, sg;λ) = ωDiD(Dg2, sg)∆y
E
g − δ (1− θw(1− sg))

1− θw + sg(1− sg) [(θw)2 − (θb)2]

uDiD,NE(∆yNg , Dg2, sg;λ) = ωDiD(Dg2, sg)∆y
N
g − δθbsg

1− θw + sg(1− sg) [(θw)2 − (θb)2]

and ωDiD(Dg2, sg) =
Dg2 − P (Dg2 = 1|sg)

P (Dg2 = 1|sg)(1− P (Dg2 = 1|sg))

Proof: immediate consequence from Proposition 2

2.3.4 Sufficient Conditions for Identification

The following proposition provides some sufficient conditions to ensure the identification of λ0, the vector

of the true parameters, quantifying the direct treatment effect and the within and between endogenous

effects.

Proposition 3 (Sufficient Conditions for Identification of λ0) Provided δ0 ̸= 0 and θb0 ̸= 0, if Assump-

tions 1, 2 and 3 hold OR if Assumptions 1’, 2’, 3’ and 4’ hold and if one of the two following conditions is

satisfied

1. there exist at least 2 shares s1, s2 ∈ (0, 1), s1 ̸= s2 that have positive probability mass and for which

both τN and τE are well-defined

2. there is a continuum of shares Is ⊆ (0, 1] such that P (s ∈ Is) > 0 and both τN (s) and τE(s) are

well-defined, for any s ∈ Is

then λ0 is the unique vector defined on Θ that satisfies equation (2.20)

Proof: see Appendix

2.4 Estimation

In this section, we show how the vector of true parameters λ0 := (δ0, θ
w
0 , θ

b
0) can be estimated. Both the

randomized and natural experiment settings lead to conditional moment restrictions of the form

E [u(Zg;λ0)|sg] = 0

where u(Zg;λ) is a 2-dimensional vector of known functions of the i.i.d random vector of observed

variables Zg and λ ∈ Θ.
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When we want to estimate these conditional moments, we may not have enough groups for a given

value of s, especially when s is continuous. To overcome this issue, we combine the different conditional

moments into a single unconditional moment using the law of iterated expectations. In particular, we

consider the following unconditional moment restrictions

E [w(s)u(Zg;λ0)] = 0

where w is a k × 2 matrix, with k ≥ 3, whose entries are functions of sg. In the application, we set

arbitrarily that, for any s ∈ (0, 1]

w(s) =



s 0

0 s1(s < 1)

s2 0

0 s21(s < 1)


We picked this form as it provides 4 moments conditions to recover 3 coefficients, it is a vector

of polynomials transformations of s and it puts a weight equal to 0 on groups whose share of eligible

individuals is 1 for the moment conditions that are related to the non-eligible sub-population. We consider

the class of Generalized Method of Moments (GMM) estimators of the form

λ̂ := argmin
λ∈Θ

(
1

G

G∑
g=1

m(Zg, λ, p)

)′

Ŵ

(
1

G

G∑
g=1

m(Zg, λ, p)

)
(2.26)

with m(Zg, λ, p) =
1

G

G∑
g=1

w(sg)û(Zg, λ, p) where û is a 2-dimensional vector of known functions of

observed characteristics Zg, of a vector of parameters λ = (δ, θw, θb) and of a propensity score p, which

is function of s. Ŵ is a non-negative definite, symmetric matrix such that Ŵ p−→W .

2.4.1 Randomized Experiment

In the randomized experiment setting, the propensity score function is supposed to be known and

independent of the share of eligible units, so that for any s ∈ S, p(s) = P (D = 1). In this particular design,

mR(Z, λ, p) = mR(Z, λ)

= w(s)uR(Z, λ)

= w(s)

ωR(D)Ȳ − δ

ϕ(s, λ)

1− (1− s)θw

sθb



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with Ȳ = (ȳE , ȳN ), ωR(D) =
D

P (D = 1)
− 1−D

1− P (D = 1)
and

ϕ(s, λ) = 1− θw + s(1− s)
[
(θw)2 − (θb)2

]
Then, we have the following result

Proposition 4 (GMM Estimator in the Randomized Setting) Let (Zg)g=1,...,G be an i.i.d sample of G

groups, where Zg = (yEg , y
N
g , Dg, sg). Supposing that

1. Assumptions 1, 2 and 3 hold and identification of λ0 is ensured

2. Θ := I1 × [−K,K]× [−K,K] where I is a compact subset of R with 0 /∈ I and K ∈ (0, 1)

3. E[|yEg |2] < +∞ and E[|yNg |2] < +∞

Then

λ̂∗ =


δ∗

θw∗

θb
∗

 := argmin
λ∈Θ

(
1

G

G∑
g=1

mR(Zg, λ)

)′

V̂ −1
G

(
1

G

G∑
g=1

mR(Zg, λ)

)
(2.27)

where V̂G
p−→ V0 := E

[
mR(Z, λ0)m

R(Z, λ0)
′] is a consistent estimator of λ0, whose asymptotic distribu-

tion is
√
G(λ̂∗ − λ0)

d−→ N
(
0,
[
M ′

0V
−1
0 M0

]−1
)

(2.28)

with λ0 := (δ0, θ
w
0 , θ

b
0) and M0 := E

[
∂

∂λ′
mR(Z, λ0)

]
Proof: see Appendix

2.4.2 Natural Experiment

In the natural experiment setting, we consider

mDiD(Z, λ, µ̂D) = w(s)

ω̂DiD(Zg, µ̂D)Ȳ − δ

ϕ(s, λ)

1− (1− s)θw

sθb




with

ω̂DiD(Z, µ̂D) =
D2

µ̂D(s)
− 1−D2

1− µ̂D(s)

and for any s ∈ S, µ̂D(s) is a non-parametric estimator of µD(s) = E [D2|s] based on a series logistic

regression of D2 on polynomials in s, denoted (pk,KG
(s))1≤k≤Kg

. We make the following technical

assumption
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Assumption 5’ (Technical Conditions for Asymptotic Normality of the 2-step GMM)

1. s is continuously distributed on S and infx∈S fs(x) > 0, with fs the pdf of s

2. E
[∣∣ȳE∣∣] < +∞, E

[∣∣ȳN ∣∣] < +∞

3. s 7→ E
[∣∣ȳE∣∣ |s] and s 7→ E

[∣∣ȳN ∣∣ |s] are bounded on S

4. The functions s 7→ E
[
Ȳ D2|s

]
, s 7→ E

[
Ȳ (1−D2)|s

]
and s 7→ E [D2|s] are four times continuously

differentiable

5. The polynomials s 7→ pk,KG
(s), 1 ≤ k ≤ KG, are orthonormal on S and KG = C.Gν with

1
10 < ν < 1

6

Proposition 5 (GMM Estimator in the Natural Experiment Setting) Let (Zg)g=1,...,G be an i.i.d sam-

ple of G groups, where Zg = (∆yEg ,∆y
N
g , D2g, sg). Let

V̂G
p−→ V0 := E

[{
mDiD(Z, λ0, µD) + α(Z)

}{
mDiD(Z, λ0, µD) + α(Z)

}′]

with

α(Z) = −w(s)
(
µ1(s)

µD(s)2
+

µ0(s)

(1− µD(s))2

)
(D2 − µD(s))

where, for any s ∈ S, µ1(s) = E[Y D2|s] and µ0(s) = E[Y (1−D2)|s]. Let

m̃DiD(Z, λ0) =
∂

∂λ′
mDiD(Z, λ0, µD)

which does not depend on the propensity score. Supposing that

1. Assumptions 1’, 2’, 3’, 4’ and 5’ hold and identification λ0 is ensured

2. Θ := I1 × [−K,K]× [−K,K] where I is a compact subset of R with 0 /∈ I and K ∈ (0, 1)

Then

λ̂∗ := argmin
λ∈Θ

(
1

G

G∑
g=1

mDiD(Zg, λ, µ̂D)

)′

V̂ −1
G

(
1

G

G∑
g=1

mDiD(Zg, λ, µ̂D)

)
(2.29)

is a consistent estimator of λ0 whose asymptotic distribution is

√
G(λ̂∗ − λ0)

d−→ N
(
0,
[
M ′

0V
−1
0 M0

]−1
)

with λ0 := (δ0, θ
w
0 , θ

b
0) and M0 := E

[
m̃DiD(Z, λ0)

]
Proof : see Appendix
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Despite a non-parametric first stage, our estimator converges at parametric rate even in the natural

experiment design. Note that this estimation procedure can be easily adapted to allow for the inclusion of

covariates in the model, as explained in B.4.

2.5 Extensions

2.5.1 Identity-specific “within” and “between” influences

Our baseline model imposes that θw0 and θb0 are homogeneous for eligible and non-eligible units. Yet, one

may want to allow for different "within" peer effects among eligible and among non-eligible individuals as

well as asymmetric "between" influences between eligible and non-eligible individuals. We thus consider

the more flexible scenario with two distinct "within" parameters, θw,E
0 and θw,N

0 , and two distinct "between"

parameters, θb,E,N
0 and θb,E,N

0 , defined as follows

Assumption 1* (Linear-in-means model - 5 parameters) Within each group g ∈ {1, . . . , G} of the i.i.d

sample, the outcome of individual i is defined as

yig = Eigy
E
ig + (1− Eig)y

N
ig

with

yEig = θw,E
0 sg ȳ

E
g + θb,E,N

0 (1− sg)ȳ
N
g + δ0Dig + eEig (2.30)

yNig = θb,N,E
0 sg ȳ

E
g + θw,N

0 (1− sg)ȳ
N
g + eNig (2.31)

By allowing for these asymmetries in peer effects, new social mechanisms can be identified, such

as the role model phenomenon. It would arise when, for instance, θb,N,E
0 > 0 and θb,E,N

0 = 0. In B.2,

we show how that our identification and estimation results can be easily adapted to this refinement.

Although we demonstrate that our GMM estimator is asymptotically normal, our simulations show that

the asymptotic variance is very large. We explain this imprecision by the difficulty the estimator has in

distinguishing the “between” effect of the non-eligible individuals on the eligible individuals from the direct

effect of the treatment.

2.5.2 Identity orthogonal to treatment eligibility

In this extension, we suppose that the identity that matters in social interactions is orthogonal to eligibility

to treatment. In the context of Progresa, we may suppose that boys (resp. girls) are more influenced by
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the actions of their male (resp. female) peers than by their female (resp. male) peers. Peers’ gender is

orthogonal to eligibility, which is only based on households’ income. We consider the following LIM model

Assumption 1† (Linear-in-means model - orthogonal identity) For a group g ∈ {1, . . . , G} of the i.i.d

sample, the outcome of individual i is defined as follow

yig = yMig Mig + yFig(1−Mig)

yMig = θw,M
0 sMg ȳ

M
g + θb,M,F

0 (1− sMg )ȳFg + δ0DigEig + eMig (2.32)

yFig = θb,F,M
0 sMg ȳ

M
g + θw,F

0 (1− sMg )ȳFg + δ0DigEig + eFig (2.33)

with Mig ∈ {0, 1} equals 1 if the individual is from the "male" identity and Eig ∈ {0, 1} equals 1 if the

individual is eligible to the treatment. sMg :=Mg, i.e. it is the share of "male" individuals in the peer group.

In this design, both “male” and “female” individuals can be treated. In B.3, we show that our

identification and estimation strategies can be adapted to assess the different components of the total

treatment effect, within each “community”. The main adjustment resides in the need to compare treated

and control groups that have the same proportion of “male”, eligible “male” and eligible “female” individuals.

2.5.3 Including Covariates

One may want to include covariates in the model to improve the plausibility of the common trends

assumption in the case of a natural experiment setting. In B.4, we provide alternative moment conditions

that are based on a new conditional common trends assumption. Intuitively, we compare treated and

control groups that have the same share of eligible units and that experience the same evolution of their

observed covariates from period 1 to 2. Then, we assume that, in the absence of the treatment, the

average change in the aggregate outcome among eligible units in treated groups would have been the

same as the average change in the aggregate outcomes among eligible units in control groups. We make

the same assumption regarding the change in group average outcome among non-eligible units.

2.6 Application: Conditional cash transfers in Mexico (Progresa)

Progresa is a conditional cash transfer (CCT) program introduced in Mexico in 1997 and aimed at

developing the human capital of poor households. The program conditioned cash payments on children

regularly attending school and health checkups at clinics. The program was means tested, with a two-step

targeting procedure. First, the poorest villages were identified using socio-economic characteristics in

census data. Second, within a village, the poorest households were identified using a specific survey
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collecting data on assets and demographic composition. Only the poorest households were eligible for

the program.

Progresa has been widely studied for two reasons. First, it was one of the earliest CCT implemented

at a large scale; since then, similar programs spread around the world. Second, the implementation of

the program was experimental during the first 18 months. In the spring 1998, among the 506 poorest

villages, 320 were randomly chosen to participate in the program and eligible households started receiving

transfers. The program was extended to the 186 control villages at the end of 1999, and then gradually to

a larger set of villages. The randomization was exploited by several studies to estimate the short-term

impact on education (see Parker and Todd (2017) for a review). Most studies focus on eligible households.

A few others also estimate the treatment effect on the non-eligibles, taking advantage of the fact that

post-program evaluation surveys interviewed all households, including non-eligible households, in treated

and control villages.

Of particular interest for us is a study by Lalive and Cattaneo (2009) who use Progresa as a partial-

population design to study peer effects in school attendance. They define the reference group as all

children living in the same village who have reached the same grade level. Using the interaction between

treatment and share of kids from eligible households as an instrument for average group attendance in

October 1998, they estimate an endogenous peer effect parameter of θ = 0.5 (95% CI=[0;1]). This implies

that increasing the average attendance in a child’s group by 10 percentage points will raise her likelihood

to attend school by 5 percentage points. The population multiplier is equal to 1
1−θ s = 2s. Furthermore,

they estimate a direct effect of δ0 = 0.03 (95% CI=[0;0.06]), which represents a 4% increase compared to

the control mean of 0.69.

We use the same data and implement our procedure allowing for heterogeneous θ. Figure 2.4 plots

the distribution of s, by treatment status, supporting the validity of the common support condition. Table

2.1 provides some descriptive statistics on peer groups, that support the correct randomization of the

treatment. In total, we observe 1,798 peer groups, in 496 villages. Based on our simulations, the number

of observations is enough to provide us consistent estimates of the parameters and of their associated

standard errors in our baseline scenario. However, it is too small to add several pre-program control

variables, as in Lalive and Cattaneo (2009), or to consider a model with four distinct parameters for the

endogenous peer effects. We only add the number of kids in the peer group in a specification, as we

believe it is more reasonable to compare groups of the same size. Estimates are reported in Table 2.2.

We find a “between" peer effect of θ̂b = 0.31, relatively close to the homogeneous θ estimated by

Lalive and Cattaneo (2009). This makes sense because their instrumental variable strategy exploits the

response of non-eligible children to the introduction of Progresa in the peer group. In other words, their
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identification of θ comes from “between" interactions. However, our estimate is noisy and we cannot reject

the null hypothesis that the poor children have no influence on non-poor children. We get an estimate

of the “within" peer effects θ̂w that is equal to 0.24. Once again, we cannot reject the null that students

are not influenced by their peers’ actions. Our estimates suggest that conformism is the main social

mechanism at play in this context. For example, suppose that one poor child drops out of school in a

group of 10 children (the average number of peers in our sample). In the rest of the group, the likelihood

that a child attends school decreases by 1
10 × 0.24 = 2.4 percentage points among the poor. 2. This is

the effect ceteris paribus, looking at the response of a given child and holding the attendance of other

children constant. These magnitudes can be compared with the direct effect of Progresa. We find that

δ̂ = 0.048.

Our estimate of δ0 is greater than the estimate of Lalive and Cattaneo (2009) (although it belongs

to their confidence interval). However, it is insignificant while Lalive and Cattaneo (2009)’s not. This

can potentially explained by the fact that we include all their control variables in our specification. The

fact that our estimate is greater than Lalive and Cattaneo (2009)’s may suggest that, in this context, the

homogeneity assumption leads to an amplification bias. Our explanation is the following: θ is estimated

through “between" interactions; since θ̂b > θ̂w, the homogeneity assumption leads to overestimating

the strength of peer effects, and consequently to overestimating the total effect when s is very high and

“within" interactions matter a lot; therefore, the procedure underestimates δ0 in order to fit the data (recall

that τE(s = 1) = δ0
1−θw

0
).

In terms of policy evaluation, Figure 2.5 represents the total effects and the population multipliers as a

function of s. Figure (a) plots the estimates of τE and τN . In groups with a very low share of poor children

(s → 0), Progresa raises school attendance by 4.7 percentage points for the (very rare) poor children

and this is not enough to trigger any response by non-poor children. As the fraction of poor increases,

the effects on poor and non-poor increase in a slightly concave way. In groups with a very high share

of poor children (s→ 1), Progresa raises school attendance by 6.2 percentage points for poor children

and by 2 percentage points for the (very rare) non-poor children. The population multipliers are equal to

1
1−θ̂w

= 1.32 when s = 1. The dotted line plots the total effect of the policy: sτE + (1− s)τN . Magnitudes

range from 0 when s = 0 to 6.2 percentage points when s = 1. The total effect for the average s in our

sample (roughly 70%) is equal to 5.9 p.p. for eligible children and 1.4p.p. for non-eligible children. We

conclude that the policy effect is mildly magnified by peer effects.

To better understand why the total effects are slightly concave, Figures (b) and (c) plot the population

2In this example, the total effect is independent of s because two effects cancel out: when s is large, (i) a change in the average
attendance of poor children matters more, and (ii) the average attendance of poor children changes less in response to one poor
dropping out. Going back to structural equations, the change in yEi is equal to θw0 s −1

10s
and the change in yNi is equal to θb0s

−1
10s

.
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multipliers, M(s), for the non-eligibles and for the eligibles, respectively. Recall that the population

multipliers are the products of two components: the first one, s, captures the strength of the initial shock;

the second one, P (s), may be not linear in s and captures the propagation of the shock. In the case of

Progresa, P (s) has an almost linear shape because θ̂w and θ̂b are not very different. This application

does not allow us to fully illustrate the potential of our methodology.

2.7 Conclusion

We propose a simple methodology to estimate heterogeneous endogenous peer effects using partial

population experiments. We discuss the case of randomized experiments and differences-in-differences.

The procedure requires the following conditions: (i) there is no direct effect of the treatment of the

non-eligibles; (ii) there is sufficient variation in the share of eligibles across groups and common support in

the distribution by treatment status; (iii) there is a sufficient number of groups. Intuitively, we match treated

and control groups with a similar share of eligibles. For each pair, we estimate the treatment effect on the

eligibles and the treatment effect on the non-eligibles. The relationship between the treatment effects and

the share of eligibles is informative about the propagation of the initial shock through peer effects. Our

methodology provides an estimate of (i) the endogenous peer effects “between" the sub-populations of

eligibles and non-eligibles; (ii) the endogenous peer effects “within" each sub-population; (iii) the direct

effect of the policy; (iv) the population multipliers. These estimates are useful in two ways. First, they

help us understand how social influence works: who is influenced by whom, and how much. Second, we

can compute the policy effect and decompose the total effect into a direct effect and an indirect effect

generated by peers. Models with homogeneous peer effects strongly restrict the relationship between

the policy effects and the share of eligibles, while our model with heterogeneous peer effects is less

restrictive.The estimation procedure relies on GMM. It is easy to implement with standard statistical

software and is not computationally intensive. Therefore, we think that our methodology has the potential

to be used broadly by applied economists interested in peer effects and/or policy evaluation.
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Figures and Tables

Figure 2.1: Decomposition of Total Treatment Effects

Step 1 : direct treatment effect on eligible individuals

D ȳE ȳN
δ0

Step 2 : indirect treatment effect of non-eligible individuals

D ȳE ȳN
δ0 δ0θ

b
0

Step 3 : amplification of initial effects through social interactions

D ȳE ȳN
δ0 δ0θ

b
0

ME(s)

MN (s)

Note: The figure illustrates how the initial shock to eligible individuals propagates through peer effects. First, the eligible individuals

respond to the treatment: yE changes by δ0 (direct effect). Second, the non-eligible individuals respond to the change in yE :

yN changes by δ0θb0 (indirect effect). Third, these initial changes lead to a cascade process, in which eligible and non-eligible

individuals keep responding to each other (in proportion to θb0) and also respond to other members of their own sub-group (in

proportion to θw0 ).
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Figure 2.2: Population Multipliers by Population Structure

Small share of eligible individuals

D
δ0

θw0

θb0

θw0

θb0

Medium share of eligible individuals

D
δ0

θw0

θb0

θw0
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High share of eligible individuals

D
δ0

θw0

θb0

θw0

θb0

Note: The figure illustrates how the process intensity varies with the share of eligible individuals, s, represented in blue. First, the

initial shock mechanically affects more individuals in the group when s is higher. Second, the propagation depends on s: arrows

originating from the blue area are proportional to s while arrows originating from the white area are proportional to (1− s). In this

illustration, we consider the case when |θw0 | > |θb0| and we vary the size of the arrows accordingly (arrows within blue area and

within white area are thicker than arrows between blue and white areas).
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Figure 2.3: Treatment effects on eligibles and non-eligibles

Note: The figure plots the total effect on the eligibles τE(s), in black, and the total effect on the non-eligibles τN (s), in gray, as a

function of s. The graph on the left illustrates the case when θb < θw and the graph on the right illustrates the case when θb > θw .

As shown in Section 2.3, τE(s) = δME(s) and τN (s) = δθbMN (s), where:

ME(s) = 1 + sPE(s),MN (s) = sPN (s), PE(s) =
θw − (1− s)

[
(θw)2 − (θb)2

]
1− θw + s(1− s)

[
(θw)2 − (θb)2

] , PN (s) =
1

1− θw + s(1− s)
[
(θw)2 − (θb)2

]

Figure 2.4: Progresa - Common Support Assumption
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Figure 2.5: Results - Progresa

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

𝜏!"(𝑠)

𝜏"(𝑠)

𝑠𝜏"(𝑠) + (1 − 𝑠)𝜏!"(𝑠)

(a) Total effect on eligibles and non-eligibles
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(b) Population multipliers for non-eligibles

Note: The figure shows the total effects and population multipliers based on the Progresa estimates reported in Table 2.2.

Graph (a) plots the total effect on the eligibles τE(s), in black, and the total effect on the non-eligibles τN (s), in gray, as a function

of s. The dotted line plots the total effect of the policy in the peer group.

Graph (b) plots the population multiplier M(s), in dashed lines, and the propagation function P (s), in solid lines. See formulas in

the note below Figure 2.3.
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Figure 2.5: Results - Progresa

(c) Population multipliers for eligibles
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Note: The figure shows the total effects and population multipliers based on the Progresa estimates reported in Table 2.2.
Graph (c) plots the population multiplier M(s), in dashed lines, and the propagation function P (s), in solid lines. See formulas in
the note below Figure 2.3.

Table 2.1: Descriptive Statistics - Progresa

Control Peer Groups Treated Peer Groups

N 658 1140

Average Peer Group Size 8.72 8.31

(6.08) (5.74)

Share of Poor 0.68 0.69

(0.24) (0.24)

Share Grade 4 0.25 0.25

(0.43) (0.43)

Share Grade 5 0.24 0.24

(0.43) (0.43)

Share Grade 6 0.25 0.25

(0.43) (0.43)

Share of Males 0.51 0.51

(0.23) (0.23)

Note: this table describes the 658 peer groups (a grade in a village) that were treated and the remaining 1,140 that were not. On

average, a peer group has 8.31 members in treated villages and 8.71 members in control villages.
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Table 2.2: Estimation results - Progresa

(1) (2)

θ̂b 0.463 0.308

(0.366) (0.225)

θ̂w 0.352 0.241

(0.592) (0.635)

δ̂ 0.037 0.048

(0.027) (0.031)

Control No Yes

# peer groups 1,798 1,798

# villages 496 496

Note: The table reports the estimates of our three parameters of interest: the “between" peer effect parameter θb, the “within" peer

effect parameter θw, and the direct effect δ. We implement the procedure described in section 2.4 using Progresa evaluation data.

Standard errors are clustered at the village level. Specification (1) is the basic specification while in Specification (2), we control for

the number of kids in the peer group.
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Chapter 3

Elderly Home Care Market and Spousal

Informal Care Supply

This project develops and estimates a demand and supply model for the elderly personal and social home

care in France. It is aimed at understanding how the provision of informal care by spouses of dependent

elderly individuals responds to a change in the access to formal personal and social home care. On the

demand side, households make decisions on their consumption, on the informal care provision by the

spouse and on the use of formal personal care. On the supply side, two types of firms are modeled: home

care and support services firms and self-employed care assistants. Despite this horizontal differentiation,

all the services that are provided are homogeneous. The model is estimating using the CARE-Ménages

survey and administrative matched employer-employee data. On the demand side, preliminary results

suggest that, all other things equal, the informal care provision of male and older caregiving spouses is

more responsive to a variation of the price of formal care. On the supply side, organizations providing

formal personal and social home care appear to operate under constant marginal costs.

3.1 Introduction

Population aging, declining fertility rates, rising female workforce participation, and the diversification of

family structures are reshaping how the care of the frail elderly is managed. Traditionally, families and

close relatives have been the primary source of support for seniors who are no longer able to perform

daily tasks on their own. However, these socio-demographic shifts are reducing the availability of informal

family care while placing greater strain on the remaining caregivers. In response, developed countries

—where these changes are the most pronounced— have seen the rise of a formal long-term care (LTC)
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market. Services such as nursing homes and in-home care now cater to the growing demand for elderly

care, tailored to the individual needs. The focus of this project is on the Personal and Social 1 Home

(PSH) care sector, as it may serve as a substitute for informal family care. Seniors and their informal

family carers determine how many hours of PSH care to purchase from PSH formal care providers and

how much informal care to provide themselves. On the informal care side, the focus is on the spouses

of dependent seniors, who have been regularly identified as the main informal caregivers (Bertogg and

Strauss (2020) for review).

The goal of the project consists in understanding how a change in access to formal PSH care affects

the provision of informal care by the caring spouses of dependent seniors. Public intervention plays a

significant role in ensuring access to formal LTC. As the elderly population in need of care continues to

grow, there is increasing debate about how to develop more financially sustainable policies to organize

and fund this care. While the provision of care has been shown to deteriorate the informal carers’ health

(e.g. Hiel et al. (2015), Wagner and Brandt (2018), Barbosa et al. (2020)), improving access to formal

PSH care could possibly meet these objectives. The services that home care assistants provide not

only enhance the well-being of dependent seniors but can also ease the burden on their relatives. Being

less affected, the caring spouses may have less costly healthcare needs and/or delay their entry into

dependency. A robust evaluation of any reforms on the LTC market must consider their impacts on both

the demand for and supply of professional care, as well as the well-being of informal caregivers.

The main contribution of the project is the development of an analytical framework to identify optimal

policies for organizing the PSH care sector. A supply and demand model is built and estimated. To our

knowledge, it is the first project that accounts for the supply. On the demand side, households consisting

of a dependent senior and their spouse jointly decide on their consumption of formal care and the amount

of informal care provided by the spouse. The senior’s well-being is influenced by both types of care,

which are treated as substitutes. Households are heterogeneous in observed characteristics (gender

of the dependent elderly, social position, income, etc.). They are also heterogeneous in unobserved

preferences. On the supply side, the model accounts for some horizontal differentiation of formal personal

and social care providers. Households can choose between paying for personal and social care services

from a firm or hiring a self-employed home care assistant. Whatever their choice, the services that are

provided are supposed to be identical.

The identification and estimation of this supply and demand model exploit the specific features of

the French market. While the national government defines the regulatory framework for personal and
1Following the WHO/OECD definitions (Barber et al. (2021)), personal LTC services provide help with activities of daily living

(ADL) such as eating, bathing, washing, dressing, getting in and out of bed, getting to and from the toilet and managing incontinence.
Social LTC consists of assistance services that enable a person to live independently. It relates to help with instrumental ADL such
as shopping, laundry, cooking, performing housework, managing finances, etc.
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assistance care services, local authorities known as départements manage its operation. Any person

over the age of 60 in France who experiences a loss of autonomy and who wants to remain in the

community can partially finance their non-medical home care needs through the Allocation Personnalisée

d’Autonomie à domicile (APA), a means- and needs-tested allowance, associated with a 50% tax

credit on the remaining out-of-pocket expenses not covered by the APA. Each département manages

the administration of the APA and determines funding based on its financial resources and political

priorities, which leads to exogeneous variation in out-of-pocket costs for households across different

départements. While the département is the relevant unit for market regulation, the market is defined at

the arrondissement level —a smaller administrative division within each département—which typically

spans a geographic area of up to 15 km in urban settings and 30 km in rural areas. This scale better

reflects the operational range of personal care services. During the study period, market entry was

unrestricted. Given that the production of PSH care services require minimal capital investment, that

it relies on low-skilled labor and that there is no vertical differentiation, a market of perfect competition

(within a type of provider) is assumed.

The structural parameters of the demand model are estimated using maximum likelihood, drawing

on data from the CARE-Ménages survey, that was implemented in 2015. This representative survey of

the French population over 60 living in the community provides detailed information on the human and

financial assistance seniors receive for daily activities, whether through family or formal services. The

preliminary estimated parameters can be used to assess the cross-elasticity of the provision of informal

care with respect to the out-of-pocket price of formal PSH care. They suggest that, all other things

being equal, male and older caregiving spouses are more responsive to a variation in the price of formal

PSH care. The structural parameters of the supply model are estimated using two-stage least squares

(2SLS), with data on firm-reported employee information from the French matched employer-employee

administrative database, data on the prices set by the départements from the CARE-Ménages, and

publicly available socio-demographic data at the arrondissement level. Preliminary results reveal that

personal and social home care services operate under constant marginal costs.

Related Literature

This project contributes to the literature on the substitution mechanisms between formal and informal

care. Previous studies, such as Van Houtven and Norton (2004) and Bonsang (2009), have estimated

substitution elasticities between these two types of care. However, they do not explore how policies that

alter access to the formal care market impact both the consumption of formal care and the provision of

informal care. More recent research has examined these mechanisms by exploiting exogenous shocks
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that reduce the cost of professional PSH care, such as changes in public subsidies (Løken et al. (2017),

Shen (2021), Massner and Wikström (2023)) or migration shocks that increase the supply of professional

care assistants (Frimmel et al. (2020)). While these studies focus on specific shocks, they do not allow for

ex-ante evaluations of alternative counterfactual policies—an approach this study aims to address. The

closest related work is Perdrix and Roquebert (2020), which estimates a substitution elasticity between

formal and informal PSH care in France using the same CARE survey and the decentralized nature of the

French market. However, their analysis is limited to the price effect on seniors who already use formal

care. In contrast, our study accounts for all seniors who require care, and includes households that

do not consume formal care nor informal care. Additionally, unlike their work, our model incorporates

heterogeneous personal care and assistance service providers, offering a more comprehensive view of

the market dynamics. Finally, they don’t have results on the specific informal care provision of spouses.

This project is also related to the literature evaluating the effects of different formal care subsidy policies

through a structural demand model that accounts for the informal care provided by family members. This

literature includes studies developing dynamic models of interactions between the senior’s household

and an adult child’s household. At each period, these two households decide on their consumption

and savings. The child decides on the allocation of their time between work, informal care, and leisure.

Mommaerts (2015) and Ko (2022) use such models to determine the mechanisms leading to the observed

low demand for long-term care insurance contracts. Barczyk and Kredler (2018) uses a model of this

type to evaluate policies subsidizing informal or formal care. However, these studies, focusing on the

American market, define formal care as being institutional care. The focus of this project is on PSH care

sector, where the substitution mechanisms between formal and informal cares appear clearer. Chen and

Lin (2022) is an exception for this type of model, as it explicitly considers personal and social home care

services. However, this study aims at examining the effects of a decrease in the cost of formal care on

the labor market participation of the senior’s children, which is not the objective of our project. Unlike all

studies in this field of literature, our project considers a static framework, and the partial equilibrium in

PSH care market is modeled.

In terms of methodology, this project draws on the literature that models the childcare market, which

shares many similarities with the Long-Term Care market. Professional carers can substitute parental

care. Firms in this sector face minimal fixed costs and primarily rely on labor to provide their services.

Public authorities intervene in the market through subsidy and regulatory policies that are highly similar

to those in the LTC market. The key issues surrounding the organization of both markets are identical:

reducing the burden on informal caregivers to increase their labor supply, promoting higher-quality care

to enhance child development or improve the condition of the elderly, and limiting public expenditures.
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The work most closely related to this project is the article by Berlinski et al. (2024), which models the

childcare market within a static framework. In this model, parents decide on their level of consumption, the

number of hours of informal care they provide, and their labor supply, taking into account their potential

hourly wage and the availability of professional childcare. The market is assumed to be characterized by

monopolistic competition with firms differentiated both vertically and horizontally. This project adapts this

model to the PSH care market, accounting for the French specificities and available data. For instance,

financial resources of a dependent elderly household are assumed to be exogenous, as household

members are considered retired.

The remainder of the chapter is organized as follows. Section 2 explains the institutional setting.

Section 3 presents the model. Section 4 describes the data that are used and provides a quantitative

overview of the French PSH care market. Section 5 presents the empirical approach and the results.

Section 6 discusses future developments.

3.2 Institutional Setting

In France, the LTC sector and its financing can be analyzed along 2 dimensions: the type of care and the

location where the care is provided. The first dimension separates medical care from personal care and

social care. The location can either be the senior’s home or in a specialized residential facility.

3.2.1 French LTC Providers

The most prevalent type of residential care facilities in France are Établissements d’Hébergement pour

Personnes Âgées Dépendantes (EHPADs). These medical nursing homes account for over 85% of the

total capacity of residential facilities for elderly individuals. EHPADs provide a comprehensive range

of services, combining personal, social, and medical care. The primary caregivers in EHPADs are

paramedical staff, such as certified nursing assistants and registered nurses, who typically work in

collaboration with a part-time physician and a psychologist. The majority of EHPAD residents suffer

from a significant loss of autonomy (Bozio et al. (2016)).The remaining share of residential facilities offer

hybrid models where elderly residents live independently in private accommodations but still benefit from

collective personal, social care services, and communal amenities. For elderly individuals who remain

at home, medical care is generally provided by independent self-employed nurses or nurses employed

by a home-care nursing service. Although these nurses should technically only provide only medical

care, they frequently perform personal care as well. Personal and social care services are primarily

delivered by organizations called Services d’Aide et d’Accompagnement à Domicile (SAADs), whose
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care assistant employees help with both Activities of Daily Living (ADLs) and Instrumental Activities of

Daily Living (IADLs). SAADs supply approximately 75% of home care in France (Libault (2019)). Most

SAADs are private non-profit organizations (60%), with the remainder comprising 11% public and 29%

for-profit firms. SAADs operate under one of two legal regimes. The first one is the autorisation regime. It

is granted by the département. The SAADs that are autorisés are priced every year by departmental

councils, based on past year total costs and output. The price of an hour of care is set to ensure that the

SAAD does not make any profit. A SAAD can otherwise fall under the agrément regime. It is granted by

the representative of the national authority in the département. The SAADs that are agréés set their own

prices, but can only change their rates within a regulated range once a year. As an alternative, elderly

individuals can directly hire a home care worker. Self-employed home care assistants are free to set their

own prices. Finally, regardless of whether they live at home or in residential facilities, 75% of dependent

elderly individuals receive personal and social care from family caregivers, predominantly their spouses

or children (Bozio et al. (2016)).

The typical trajectory of a French senior entering dependency begins with remaining at home. As their

level of dependency increases and requires constant supervision, they typically transition into an EHPAD,

where they spend their final years. However, this transition is contingent on the senior’s ability to finance

significant out-of-pocket expenses, which are not fully covered by public funding.

3.2.2 LTC Funding

Whether care is provided at home or in a residential facility, all medical services related to loss of

autonomy are fully covered by the national universal health insurance system, through the Long-Term

Care scheme. In contrast, the funding of personal and social care is more complex. Départements (local

administrative units) are responsible for the management of the medico-social care sectors. Metropolitan

France is divided into 95 départements. Each département is governed by a council elected by universal

suffrage which sets local policy for personal and social care, regulates SAADs, and manages the primary

allowance for financing care for the elderly: the Allocation Personnalisée d’Autonomie (APA). The APA is

a social allowance that is available to all individuals living in France that are aged 60 or over and who

require assistance with daily activities. The APA can be used to finance personal and social care, either

at home or in a residential facility. Since this project focuses exclusively on home care, only the at-home

aspect of the APA will be discussed. Once an elderly person applies for the APA, the département sends

a medico-social team to assess the applicant’s level of dependency using the national AGGIR grid, which

evaluates the individual’s ability to perform 10 ADLs and 7 IADLs. Based on this evaluation, a dependency

score (GIR score) is assigned, ranging from 1 (most dependent, requiring constant supervision) to 6
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(least dependent, self-sufficient). Those classified in GIR levels 1–4 are eligible for the APA. As the

eligible elderly individual remains at home, the medico-social team, in collaboration with the senior and

family caregivers, creates a "care plan" that outlines the senior’s specific needs. This plan specifies the

number of hours of personal and social care required, as well as any needs for day-care services or home

modifications. The plan also identifies the SAAD or self-employed home care assistant chosen to provide

these services. The care plan is then converted into a monetary amount, based on the département ’s

pricing grid, with a national ceiling for care costs that varies according to the individual’s GIR score.

Each département sets its own reference prices for services, often applying a standardized rate for

self-employed personal carers and SAADs under the agrément regime. However, these reference prices

may differ from actual market rates. For SAADs under the autorisation regime, the département sets

individualized APA rates that match the actual cost of services. Finally, the senior’s co-payment rate is

calculated, based on their individualized income. In 2015, seniors with monthly incomes below C739

paid no co-payment, while those earning more than C2,945 had a co-payment rate of 0.9. Between

these thresholds, the co-payment rate increases linearly with income. The senior’s out-of-pocket cost is

determined by multiplying the co-payment rate by the total care plan amount, and adding the difference

between the market price and the reference price set by the département multiplied by the number of

hours of care provided (which is equal to 0 for a SAAD autorisé). Seniors can also claim a 50% tax credit

on total out-of-pocket expenses. If a senior is ineligible for the APA, they may seek financial assistance

from their pension fund for home cleaning services, although these plans are generally less generous

than the APA. In such cases, seniors are still eligible for a 50% tax credit on personal and social care

expenses. The following formula summarizes the out-of-pocket price pOOP
s an elderly individual faces for

an hour of personal and social care provided by a SAAD or self-employed care assistant s, based on

their level of disability and individualized monthly income R:

pOOP
s =


1

2
× (c(R)ts + (ps − ts)) if APA recipient & care plan ceiling not reached

1

2
× ps otherwise

(3.1)

where c(.) denotes the co-payment rate, which is a function of the senior’s monthly income, ps

represents the market price of service s, and ts is the rate set by the département for service s under the

APA care plan.
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3.3 Model

The market of the elderly home personal and social care market is supposed to be composed of

households and firms.

3.3.1 Households

Households are composed of a frail elderly and their spouse. Together, they "jointly" decide the type of

care provider they prefer (hiring a self-employed home care worker (DE) or purchasing services from a

SAAD (SP )), the spouse’s provision of informal care and the consumption of formal care. For a given

mode of care s ∈ {DE,SP}, the household’s utility function is defined as

Us = h(F, I)αhcαcℓαℓ (3.2)

where I denotes the daily amount of informal care provided, F the daily amount of formal care consumed,

c the daily consumption of a numeraire and ℓ the spouse’s "free" time. It is supposed that αc+αℓ+αh = 1.

The function h represents the amount of care received by the frail elderly. In the model, it takes the form

h(F, I) = F + I + 1 (3.3)

Since the spouse and professional carer perform the same task, formal and informal care are consid-

ered as being perfect substitutes. A baseline unit of care is assumed to ensure that the total care received

is never zero. The parameters αh, αc and αℓ are parameters that determine the relative importance

of care, consumption, and leisure in the utility function. Observed and unobserved heterogeneity in

characteristics and in preferences are included into the α parameters. More specifically, α is such that

αℓ =
exp(vℓ)

1 +
∑

k∈{ℓ,c} exp(vk)

αc =
exp(vc)

1 +
∑

k∈{ℓ,c} exp(vk)

αh =
1

1 +
∑

k∈{ℓ,c} exp(vk)

where (vℓ, vc) follows a distribution N (µ,Σ) and whose mean parameter µ may depend on household’s

observed characteristics. For instance, we may expect that the elderly’s frailty is severe, the greater is

αh. If the elderly’s spouse is fairly old, we may expect two things. First, the valuation of free time by the

spouse will be more important. Second, formal care will be relatively more efficient than informal care.

We may thus expect a relatively greater αℓ and/or a relatively lower αc. The household has some daily
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income R, which is supposed to be exogenous as both the elderly and the spouse are supposed to be

retired. They face the following constraints:

pOOP
s F + c = R (3.4)

ℓ+ I = 18 (3.5)

I ≤ 16 (3.6)

c > 0, I ≥ 0, F ≥ 0 (3.7)

Equation (3.4) corresponds to the budget constraint. Equation (3.5) corresponds to the spouse’s daily

total time endowment. Constraint (3.6) corresponds to the maximal amount of daily informal care that

can be provided. It is assumed that spouses have at least two hours of "free time" per day. (3.7) states

that all quantities must be positive. From this utility function, the household’s care "demand" function is

(ID, FD) =



(16, 0) if
evℓ ≤ 2

17

evc ≥ R

17pOOP
s

(0, 0) if
evℓ ≥ 18

evc ≥ R

pOOP
s

(16, F ∗(16)) if
evℓ ≥ 2pOOP

s evc

R+ 17pOOP
s

evc ≤ R

17pOOP
s

(0, F ∗(0)) if
evℓ ≥ 18pOOP

s (1 + evc)

R+ pOOP
s

evc ≤ R

pOOP
s

(I∗(0), 0) if
2
17 ≤ evℓ ≤ 18

evc ≥ R(1 + evℓ)

pOOP
s 19

(I∗(F ∗), F ∗(I∗)) otherwise

with

F ∗(x) =
αh

αh + αc

R

pOOP
s

− αc

αh + αc
(x+ 1)

I∗(x) =
αh

αh + αℓ
18− αℓ

αh + αℓ
(x+ 1)
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Households choose the type of formal care they prefer, between hiring a self-employed care assistant

and buying care services from a SAAD. We assume that the services that are provided by a SAAD and

an independent home care assistant are the same. Thus, the differentiation between the two types of

services is only horizontal. We define a "real price" for each mode, that accounts for unobserved extra

costs. For service providers, this "real cost" of an hour of care corresponds to the out-of-pocket price

pOOP
SP . For direct employment, this "real cost" also includes the administrative burden of declaring a

worker. This burden is modeled by an unobserved random variable eξ, with ξ ∼ N (µξ, 12). It is assumed

that ξ ⊥⊥ (vℓ, vc). A household is assumed to choose direct employment over service provision if the

marginal "real cost" of an hour of care from a service provider is strictly greater than the "real marginal

cost" of direct employment, i.e. formally

pOOP
SP > pOOP

ED + exp(ξ)

3.3.2 Firms

On the supply side, a different cost function is modeled for the SAADs, indexed by SP , and the self-

employed care assistants, indexed by DE. SAADs are firms that have multiple employees who visit

different seniors throughout the day according to a variable daily schedule. The distinction between

SAADs autorisés and SAADs agréés is not made as, apart from the way their market price is set, they

are exactly the same. The services that provided by SAADs and self-employed care assistants are the

same, there is no vertical differentiation. However, they are treated differently as the costs incurred by the

senior and their family are different. First, SAADs and self-employed carers are not subsidized the same

way, as the départements set different prices. Second, the senior and their family incur an additional

administrative cost when declaring the self-employed carer. Although these two markets are supposed

to be distinct, they share common characteristics. First, firms are assumed to face no fixed costs. This

assumption is quite realistic as the only production costs are the employees’ working hours and travel

expenses (Haut Conseil de la Famille, de l’Enfance et de l’Âge (2020), page 77). Secondly, there are no

entry barriers. This assumption is also relatively weak as obtaining an approval is relatively easy to get

from the representatives of the national authority in the département. Except for allowing new entrants,

the representative of the national authority is not in charge of regulating the personal and social care

local market and is not responsible for the funding of the APA. Moreover, no qualification is needed to

become a care assistant. Labor market frictions are supposed to be limited. Thirdly, there are many firms

in the market, and none is large enough to influence prices alone. This assumption is also quite credible

given the large number of firms per arrondissement. All these assumptions make it plausible that the

2The variance of ξ is set to 1 to ensure identification
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market operates under conditions of perfect competition. On the market for the care mode s ∈ {SP,DE},

a firm f is going to maximize the hours of formal care it produces for a given price ps, i.e.

F s,∗
f (ps) = argmax

F
ps.F − Cs

f (F )

where Cs
f (F ) denote the cost associated to the production of F hours of formal EHC for firm f of type s.

The price ps,∗ on the market satisfies the market clearing condition

Ds(ps,∗) =

Ns
f∑

f=1

F s,∗
f (ps,∗)

where Ns
f is the total number of firms on the market. We suppose that

Cs
f (F ) = ζfs + (W ′λs + νs + ϵsf )F +

κs

2
F 2 (3.8)

where W is a set of observed factors influencing costs, νs corresponds to the unobserved market factors

influencing costs and ζsf , ϵ
s
f are unobserved firm-specific factors influencing costs. Then,

ps,∗ =
∂

∂F
Cf

s (F
s,∗
f ) = κsF s,∗

f +W ′λs + νs + ϵsf (3.9)

Supposing that E[ϵsf ] = 0 and that Ns
f is large (which is consistent with perfect competition), then taking

the average over all firms, we get, using the law of large numbers,

ps,∗ = κs
Ds(ps,∗)

Ns
f

+W ′λs + νs (3.10)

The equilibrium price, ps,∗, is thus a function of the average demand per firm.

3.4 Data

The data used in this project are the results of the CARE - Ménages survey, a subset of the Base Tous

Salariés, the French employer-employee dataset as well as publicly available socio-demographic data at

the arrondissement level.

3.4.1 CARE - Ménages

The Capacités, Aides et REssources des seniors (CARE) surveys were conducted in October 2015 by

the French Directorate for Research, Studies, Evaluation and Statistics (Drees). They aimed at better
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understanding the living conditions of individuals aged 60 and over. One part of the CARE surveys covers

seniors living in residential care facilities. We only consider the second part that covers the seniors living

in the community : the CARE - Ménages survey. This CARE - Ménages survey is, itself, divided into two

sections. First, around 11,000 seniors were surveyed on their living conditions, on their relationships

with those around them, on their difficulties in performing daily activities and on the financial and human

assistance they receive to overcome these difficulties. Their self-assessment of difficulties in performing

certain daily activities allowed for the estimation of a "subjective" GIR (Groupe Iso-Ressources) for each

senior. Second, all the informal carers that were cited by respondents were surveyed on their relationship

with the senior, on the type and amount assistance they provide, as well as on their health condition

and on the impact their informal care have on their professional, social and emotional life. The survey

results of the "Senior" section were matched with fiscal and social data from INSEE. Additionally, the

DREES requested each department to provide the names of their SAADs autorisés as well as their list of

reference prices for self-employed personal and social carers and SAADs agréés as well as the rates

they set for their SAADs autorisés. This information allows us to know relatively precisely the price paid

by a senior for an hour of home care.

Table 3.1 presents some raw data from the CARE - Ménages database, with and without the weights

that make the sample representative of the French population over 60. The proportion of individuals aged

75 and over is overrepresented in the sample, as is the proportion of dependent individuals. Seniors in

the sample are also poorer than the general senior population, which could be explained by the fact that

there are more single individuals. Table 3.2 provides information on the consumption of formal PSH care

and on the provision of informal care, according to the senior’s marital status and their estimated level

of dependence. It appears that, when the senior lives with a partner, the partner is by far the primary

caregiver: the informal care provided by the partner is nearly 7 times greater than that provided by all

the children combined. In the absence of a partner, the informal care provided by children is greater but

still does not, on average, reach the level of care provided by a partner. A greater reliance on formal

care is also observed in the absence of a partner. The estimated GIR estimated based on seniors’

self-assessment of their difficulties is imperfect (some seniors evaluated as GIR 5 and 6 still receive APA),

but it nonetheless appears to be a good proxy for the actual GIR, as the share of APA recipients and the

average amount of care received do increase with the self-assessed level of dependency.
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Table 3.1: CARE-Ménages - Summary Statistics

Unweighted Weighted

Women Share 60% 54%

Share in a relationship Share 50% 64%

Age

mean 76.3 72.17

med. 77 70

Q1 68 65

Q3 84 78

GIR 1

Share

1% 0.2%

GIR 2 6% 1.5%

GIR 3 6% 1.5%

GIR 4 20% 6.8%

GIR 5 11% 6.3%

GIR 6 56% 83.7%

APA recipient Share 18% 4.5%

Ind. monthly income

mean 1,753 2,015

med. 1,473 1,686

Q1 1,096 1,241

Q3 2,036 2380

Number of obs. 10,126 13,727,058

Note: this table presents statistics on the individuals in the CARE-Ménages database, with and without the weights that make the

sample representative of the French population over 60. Lecture notes: in the sample, 33% of the individuals are assessed to be

dependent (i.e. have an estimated GIR score between 1 and 4). In the French population aged 60 or more, the share of dependent

individuals is estimated to be around 10%.
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Table 3.2: Care by level of dependency and relationship status

Seniors in a relationship

"Subjective" GIR score 1 2 3 4 5 6

Number of observations 52 262 225 727 514 3296

Share of APA recipients 61.5% 50.8% 38.2% 17.7% 9.14% 1.52%

Share receiving informal care 65.4% 75.2% 78.7% 62.2% 44% 12.3%

Share receiving care from spouse 59.6% 62.6% 65.3% 54.1% 35.2% 9.83%

Average daily hours of care from children (if any) 1.25 0.70 0.42 0.33 0.24 0.05

Average daily hours of care from spouse (if any) 7.19 5.66 4.23 2.03 1.06 0.274

Average daily hours of PSH care for APA recipients 1.01 0.86 0.60 0.46 0.40 0.37

Single or widowed seniors

"Subjective" GIR score 1 2 3 4 5 6

Number of observations 50 340 380 1252 662 2366

Share of APA recipients 66% 68.5% 61.6% 37.7% 22.1% 6.5%

Share receiving informal care 60% 61.2% 58.4% 45.1% 34.1% 17.7%

Average daily hours of care from children (if any) 3.38 2.97 1.85 0.88 0.63 0.27

Average daily hours of PSH care for APA recipients 1.72 1.36 0.90 0.78 0.65 0.65

Lecture note: in the CARE-Ménages database, there are 727 seniors that are in a couple and whose answers to questions regarding

the abilities to perform daily activities led them to be assessed as having a GIR 4. 17.7% of them are APA recipients. For those who

receive care from their spouse, their spouse provides on average 2.03 hours of care per day.
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From the "Carer" section of the CARE-Ménages database, several patterns emerge when looking

at spouses identified as caregivers. First, Table 3.3 reveals that a significant proportion of caregiving

spouses report that providing care affects their health. This proportion increases with the age of the

spouse and is between one and a half to two times higher among female caregivers compared to male

caregivers. However, nearly three-quarters of caregivers do not view their caregiving as leading to

sacrifices, with the vast majority seeing it as a pleasant moment of sharing, and almost all consider

it as a normal behaviour. Therefore, it seems that providing care is a voluntary and desired choice,

even though it impacts caregivers’ health. On the one hand, these descriptive statistics tend to support

the modeling choices. One could alternatively see the optimization problem as being the one from

the spouse’s perspective. On the other hand, these statistics may suggest that spouses do not fully

internalize the costs of the care they provide. While they feel in poorer health, spouses face a higher risk

of becoming dependent themselves. They may also require more medical care, which is more expensive

than LTC costs. One-fifth of men and nearly one-third of women caregivers express a desire for some

or more respite. While nearly a quarter of spouses providing care at age 80 or more manage to get

moments of respite through the use of PSH care, policies aimed at improving access to non-medical

formal home care could be a lever to encourage households to take decisions that are more optimal in

terms of inter-temporal welfare.

For the estimation of the demand side of the model, the considered sample consists of seniors from

the survey who are in a couple, with a ’subjective’ GIR score between 1 and 4 (i.e. that are dependent).

Table 3.4 describes the sample. Nearly 30% of seniors receive neither assistance from their spouse

nor professional care. 40% rely solely on informal care from their spouse, while 12.2% receive only

professional help. Lastly, about 15% of seniors benefit from both informal care from their spouse and

professional assistance simultaneously. When spouses provide care, they spend an average of 5 hours

and 45 minutes per day doing so. In contrast, households that receive professional care get approximately

50 minutes of daily assistance on average. The out-of-pocket cost for one hour of formal home care is, on

average, C3.27 for households purchasing services from a home care provider (SAAD) and C2.70 for

those hiring an independent home care worker.
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Table 3.3: Health and feelings among caring spouses, by gender and age

Men Women

Share 95% CI Share 95% CI

Caring affects health

Spouse age : 60-69 13.7% [9.30 ; 18.1] 29.4% [25.0 ; 33.8]

Spouse age : 70-79 19.7% [15.0 ; 27.3] 36.3% [30.5 ; 42.1]

Spouse age : 80+ 27.7% [22.8 ; 32.7] 41.7% [34.2 ; 49.1]

Wish for some or more respite

Spouse age : 60-69 27.0% [20.4 ; 33.6] 32.2% [27.2 ; 37.2]

Spouse age : 70-79 21.9% [15.8 ; 28.1] 30.4% [24.1 ; 36.6]

Spouse age : 80+ 15.5% [10.8 ; 20.1] 36.9% [28.6 ; 45.2]

Respite thanks to PSH care

Spouse age : 60-69 8.3% [4.14 ; 12.4] 3.9% [1.69 ; 6.07]

Spouse age : 70-79 28.6% [21.6 ; 35.5] 11.5% [7.01 ; 16.1]

Spouse age : 80+ 23.7% [18.1 ; 29.3] 27.1% [19.0 ; 35.2]

Agreement to "I feel that caring..."

"...leads to sacrifices"

No 72.5% [70.3 ; 74.6]

Yes, a little 17.9% [16.0 ; 19.7]

Yes, a lot 9.66% [8.24 ; 11.1]

"...is a time of connection"

No 11.1% [9.58 ; 12.6]

Yes, a little 31.8% [29.5 ; 34.0]

Yes, a lot 57.1% [54.8 ; 59.5]

"... is normal"

No 1.48% [0.09 ; 2.05]

Yes, a little 9.73% [8.31 ; 11.2]

Yes, a lot 88.8% [87.3 ; 90.3]

Number of observations: 1,556

Lecture Notes: 27.7% of male caring spouses that are 80 or more affirm that caring affects their health. 88.8% of caring spouses

declare fully agree that caring is normal.
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Table 3.4: Subsample for estimation of the demand - summary statistics

Variable Shares

Woman 42.6 %

Former white collar 13.6 %

"Subjective" GIR : 1 4.0 %

"Subjective" GIR : 2 18.1 %

"Subjective" GIR : 3 16.6 %

"Subjective" GIR : 4 61.3 %

Care received from spouse 56.0 %

Care received from spouse and formal PSH care 14.3 %

Consumption of formal PSH care 26.5 %

Formal care from a SAAD (if formal care received) 71.4 %

At least one child lives "in the same region" 81.7 %

Variable 1st Quartile Median Mean 3rd Quartile

Daily hours of care from spouse (if care received) 2 3.5 5.75 8.09

Daily hours of formal PSH care (if care received) 0.428 0.658 0.809 1.02

Age 70 78 77.32 84

Spouse’s age 68 77 75.19 83

Daily Income 59.6 75.5 86.4 99.5

Out-of-pocket price - SAAD 1.28 2.59 3.27 4.68

Out-of-pocket price - Self-employed care assistant 1.50 2.42 2.70 3.62

Number of observations: 1,129

Lecture note: 16.6% of the seniors in the sample used for the estimation of the demand are assessed to have a GIR 3, based on

their answers to the questions on their difficulties to perform activities of daily livings. On average, the out-of-pocket price for an

hour of formal care from a SAAD is 3.27 euros for a senior in the sample.

The prices for one hour of professional care from SAADs in an arrondissement are inferred from the

pricing grids of the départements, that were provided as supplementary material in the CARE-Ménages

survey. Prices set by independent home care workers are obtained from the Base Tous Salariés (BTS),

which is the French administrative matched employer-employee database. For each employee, the

database includes information such as job type and qualifications, start and end dates of the pay period,

number of salaried hours, employment conditions (full-time, part-time), and the remuneration that was

paid. The BTS-Postes section provides details about the job position, individual employee characteristics

(e.g. age, gender), and some information about the employer, including its sector of activity. Employees
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hired directly by households are also recorded in this database, which allows for the retrieval of all

employment contracts for independent home care assistants. The gross hourly wage of the home care

assistant is considered as the price per hour of care. Additionally, the BTS database provides data on the

number of SAAD providers and independent home care workers by district. Table 3.5 outlines the sample

used to estimate the supply equations. On average, each arrondissement has 78 SAADs employing

19 home care assistants, along with approximately 800 contracts for independent home care workers.

These figures tend to support the assumption that the PSH care market operates under conditions of

perfect competition. Additional publicly available socio-demographic data have been added to the sample.

Arrondissements exhibit considerable heterogeneity in terms of population density and demographics. In

one-quarter of metropolitan French arrondissements, there are at least 1.5 individuals over 65 for every

teenager, whereas in another quarter, there is less than one individual over 65 for each person under 20.

Table 3.5: Subsample for the estimation of the supply - summary statistics

Variable 1st Quartile Median Mean 3rd Quartile

SAAD

Market price 20.48 21.06 21.01 22.02

Regulated rate - SAADs agréés 17.80 18.87 18.99 19.96

N. firms 32 61 78.31 100

N. paid hours of labor 11,840 15,747 16,052 19,780

N. care assistants (FTE) 14.43 18.87 19.32 23.33

Self-employed

Market price 12.48 13.2 13.31 13.95

Regulated rate 11.06 11.93 11.52 12.33

N. firms 337 578 791.51 991

N. paid hours of labor 282 324 332.48 359

Arrondissements - Variable (reference year : 2014)

Population Density 45.21 80.51 489.77 168.83

Unemployment Rate 11.50 % 13.20 % 13.34 % 14.90 %

Share of pop. over 75 8.60 % 10.20 % 10.43 % 12.10 %

Aging Index (pop. over 65 / pop. below 20) 68 83 88.41 105

Share of people over 75 living alone 35.6 % 37.6 % 37.55 % 39.40 %

Poverty rate among people over 75 8.0 % 9.9 % 10.24 % 12.0 %

Median monthly income 20,880 21,630 22,008 22,688

Number of arrondissements 286

Notes: This table contains information on the formal PSH care market at the arrondissement level, in 2015. Lecture notes: the

median number of SAADs in an arrondissement is 61. The median unemployment rate in an arrondissement, in 2014, is 13.20%
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3.5 Estimation

3.5.1 A supply with constant marginal costs

One of the main findings of the project is that firms providing PSH care face constant marginal costs.

In other words, the price set by these firms does not depend on the demand they face. The supply

equation is estimated at the arrondissement level, distinctly for SAADs and independent home care

workers. Equation (3.10) is approximated with

ps,∗m = κsF̄ s
m +W ′

mλ
s + νsm (3.11)

where F̄ s
m is the average demand (or supply equivalently, by the clearing market condition) per firm

for the mode of care s in market m. For the self-employed home care assistants, a firm is equivalent

to a contract in the BTS database. The production per firm is thus directly observed. For SAADs, the

average supply per firm is unknown as the hours in the contracts of care workers both include the hours

spent providing care as well as the hours of commuting between customers. Consequently, the average

demand per firm is estimated using the APA care plans from the full CARE-Ménages database. To infer

the total demand of care from SAADs, the observed demand of observation i living in arrondissement d

is weighted by

w̃id = wid ×
Pd∑nd

j=1 wjd

where wid is the original weight of individual i in the CARE sample, Pd is the population of people

over 60 in arrondissement d and nd is the number of observations living in arrondissement d observed

in CARE. In some arrondissements, there is no senior from the CARE-Ménages survey that consumes

formal care from SAADs. The demand is thus inferred from the total number of hours worked by care

assistants in SAADs, using the BTS data. The relationship between the logarithm of the estimated

demand and the logarithm of the total number of hours worked by personal carers, in an arrondissement ;

is close to being linear, as shown by Figure C.1. This linear fit is used as a proxy for the demand of

SAADs in all the arrondissements.

The average demand per firm has to be instrumented. The département rates of APA care plans

for the SAADs agréés for the service providers and the rate used for independent home care workers

are natural candidates. They affect directly the demand as a greater département rate reduces the

out-of-pocket price, without influencing directly the production costs. However, these rates only varies at

the département level. The small variation of these rates affects the precision of the estimation. This is

why others variables have been considered as potential relevant instruments. The relative size of the
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elderly population should naturally increase demand. This is why variables such as the proportion of the

population over 75 and the aging index, which corresponds to the ratio of the population aged over 65

to those under 20, are thought as potentially relevant instrumental variables. The income level of the

population, particularly for individuals over 75, may also influence the demand for formal care without

directly affecting firms’ production costs. Therefore, the logarithm of the median income and the share of

people over 75 living below the poverty line are also included in the vector of potential instruments.

The vector W of (3.11) includes variables that are thought to directly influence firms’ production

costs. The variables that have been retained are the unemployment rate and the population density.

They are included in the regression in a very flexible way (a polynomial of order 2 and in a logarithmic

transformation for the density). The unemployment rate is a proxy of the labor market dynamism. It

can provide information on the wages of care assistants. Population density can be seen as a proxy of

"technology". In less dense areas, the time spent in commuting is greater so that the share of paid hours

dedicated to care is lower than in dense urban areas. To select flexibly the best instrumental variables

and covariates, the algorithm proposed by Chernozhukov et al. (2015) was used. Table 3.6 presents the

results

Table 3.6: Supply - IV estimates

Price - SAADs Price - Independent home care workers

F̄ s -0.000219 -0.00421

(0.000188) (0.00582)

F Statistic - 1st stage 17.78 12.18

Selected Instrument(s) Share of pop. over 75
Log. of median income

Poverty rate among people over 75

N 286 286

Lecture note: this table presents the coefficients associated with firm-level demand in the regression (3.11) estimated using

the double machine learning method developed by Chernozhukov et al. (2018). The vector of control variables W consists of

transformations of the unemployment rate and population density in the arrondissement. The first column refers to the SAADs

market, while the second corresponds to independent workers. In both cases, it is impossible to reject the hypothesis that the

theoretical coefficient is zero, implying constant marginal costs.

For direct employment, only one instrument has been selected by the algorithm: the share of people

over 75. All the covariates in W have been selected. For the service providers design, two instrumental

variables were selected: the share of people over 75 that were below the poverty rate and the logarithm

of the median income in the arrondissement. The vector of covariates include the population density, the

logarithm of the population density and the square of the unemployment rate. Whether for SAADs or

102



independent home care assistants, the null hypothesis that prices are not influenced by the level of the

average demand faced by a firm cannot be rejected at any level. In other words, it seems reasonable to

assume that the marginal cost of providing home care services remains constant. While this assumption

is common in the care literature (e.g., Berlinski et al. (2024)), to our knowledge, it has not been formally

tested. One key implication of this result is that supply-side considerations can be disregarded when

designing counterfactual policy interventions on the demand side.

3.5.2 A greater reaction of male caregiving spouses to a change in the out-of-

pocket formal home care price

Table 3.7: Demand - Maximum Likelihood estimates

Parameters - α Parameters - αℓ Parameters - αc Parameters - ξ

µℓ -2.38 βwoman
ℓ -0.39 βwoman

c -0.12 µξ 0.44

(0.81) (0.19) (0.30) (0.13)

µc 11.93 βage
ℓ -0.02 βage

c -0.04 βrich
ξ 1.42

(1.35) (0.02) (0.03) (0.16)

σℓ 2.59 βspouse.age
ℓ 0.08 βspouse.age

c -0.05

(0.09) (0.02) (0.03)

σc 3.34 βclose.child
ℓ 0.41 βclose.child

c 1.16

(0.14) (0.22) (0.34)

ρ 0.52 βwhite.collar
ℓ 0.42 βwhite.collar

c 2.10

(0.04) (0.48) (1.15)

Lecture note: this table presents the coefficients of the demand model for professional and informal PSH care for households

consisting of a dependent senior and a (potentially caregiving) spouse, estimated using maximum likelihood. Lecture note: the

estimated coefficient βspouse.age
ℓ is significantly positive. This implies that, all else being equal, a household with an older spouse

places relatively more weight on the free time available to the spouse than on the care provided to the dependent senior or on

consumption.

The demand side of the model is estimated using maximum likelihood. The likelihood function is

detailed in the appendix. In the model, the vector µ, representing the expected values of the random

utility parameters (αℓ, αc), is assumed to depend linearly on observed household characteristics. This

approach allows for some heterogeneity in household preferences to be both controlled and measured.

In this framework, the senior’s gender, their age, their spouse’s age, whether at least one child lives in the

same (broadly defined) region, and whether the man in the household held a white-collar job during his
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career, are all incorporated as explanatory variables. Additionally, the expected value µξ of the variable ξ,

which captures the unobserved costs of hiring an independent care worker versus using the services of

a home care agency (SAAD), is modeled as a function of household income. Specifically, an indicator

variable takes the value of 1 for households whose income exceeds the sample median. The convergence

of the maximum likelihood estimator is verified through simulations, with results provided in the appendix.

Table 3.7 presents the preliminary coefficient estimates. The results suggest that having an older spouse

significantly increases the importance placed on leisure time, while having a male spouse reduces it.

Households with at least one child living in the same region exhibit stronger preferences for both leisure

and consumption, likely because these children themselves contribute informal care.

Based on the demand function, it is possible to derive a closed-form expression for the elasticity of

informal care provision by a spouse in response to changes in the out-of-pocket price of formal home

care services. For households that consume both formal and informal care, he formula is as follows:

εIpOOP =

(
pOOP

R

(
18

αℓ
− 19

)
− 1

)−1

(> 0) (3.12)

Knowing this elasticity across different household groups helps identify which households are more

likely to adjust their informal care provision in response to a reduction in the price of formal home care

services. This elasticity increases with αℓ. Therefore, households that place less value on their free

time are the most responsive to price changes of formal care. Preliminary results suggest that, all else

being equal, households with a male spouse are more likely to reduce their provision of informal care in

response to a change of formal care price. Similarly, older couples are expected to react more strongly to

changes in the price of formal care services, all other factors remaining constant. At this stage of the

project, these findings are primarily qualitative.

3.6 Future Developments

This project is intended to be developed in several dimensions. First, the model’s quality still needs to be

improved. It is currently being evaluated in-sample by calculating the root mean squared error (RMSE) on

predicted care quantities. Additionally, the model’s performance should be assessed out-of-sample. The

cross-price elasticity mentioned in the previous paragraph, which has so far been evaluated qualitatively,

will also be estimated. Second, this modeling approach aims to be used for evaluating the effects of

counterfactual policies, to understand how different households might respond to changes in access to

the professional home care market. The first experiment would involve an ex ante assessment of certain

measures from the Adaptation of Society to Aging (ASV) law. This law, passed in December 2015 and
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officially implemented in March 2016, notably changed the way the copayment rate (the share of the

APA care plan paid by seniors) is calculated. The rate now depends not only on household income but

also on the amount of formal care consumed. Third, an interesting aspect would be to account for the

health costs borne by the spouse providing informal care, which are not internalized in current evaluations

of public policy. Data from the CARE-Ménages survey has been matched with health insurance data,

offering a valuable opportunity to explore these broader costs associated with home-based dependency

care.

3.7 Conclusion

Caring for the elderly with dependency is one of the major challenges associated with population aging.

Currently, much of this care still relies on the seniors’ relatives. When a dependent senior is in a couple,

it is the spouse who provides the majority of the care. Having a spouse is, in fact, the main source of

inequality in access to care among seniors who become dependent. However, the spouse is often elderly

as well, and providing care affects their health. By offering assistance, they increase their own risk of

becoming dependent and needing healthcare. In many countries, a market for professional non-medical

home care has emerged to replace the informal care provided by relatives. The goal of this project

is to understand how informal care provided by the spouses of dependent seniors evolves when the

conditions for accessing the formal care market change, based on household characteristics. To achieve

this, a model of the supply and demand for non-medical home care is developed. On the demand side,

households consisting of a dependent senior and their spouse decide on their consumption, the amount

of informal daily care provided by the spouse, and the number of formal care hours purchased from home

care services. The supply side is also modeled to understand how it responds to changes in demand. The

model takes advantage of the specific features of the French market, which is largely decentralized. The

data used comes from the CARE-Ménages survey, which provides information on the French population

over 60, supplemented by data from the French matched employer-employee database. Preliminary

estimates from the model suggest that, on the supply side, personal and social home care services face

constant marginal costs. An initial interpretation of this result implies that supply is not a significant factor

in assessing subsidy policies for the demand for formal personal and social home care. However, the

price set by the sector may be too low, especially given that the quality of services provided is difficult

to measure, whether by legislators or potential consumers. On the demand side, early results suggest

that the level of informal care provided by the spouse, when the spouse is male, reacts more significantly

to changes in the price of formal care, all else being equal. The same holds for households where the

spouse is older, all else being equal.
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Conclusion

As the collection of information becomes less challenging thanks to new information and communication

technologies and access to new datasets is easier, the evaluation of public policies is becoming more

systematic. At the same time, econometric tools and procedures used to measure causal effects have

significantly improved. In particular, the use of experimental and quasi-experimental designs is becoming

the norm. However, the causal interpretation of results derived from conventional estimation methods

associated with these evaluation designs relies on assumptions, some of which impose a homogeneity of

parameter values across observations. This thesis develops several alternative estimation methods that

are robust to the fact that some parameters may vary across observations.

The first chapter presents a new method within the difference-in-differences (DiD) design, which is one

of the most widely used designs for evaluating the causal effects of public policies.3 In its standard form,

the DiD design consists in comparing the evolution of the mean of an outcome variable in a group affected

by the policy (treatment group) with that of a non-affected group (control group). The identifying of the

average causal effect post-treatment in the treated group hinges on a common trend assumption: the

average evolution of the outcome variable in the group affected by the policy would have been the same

as in the control group, had the policy not been implemented. Under this assumption, the causal effect

can be estimated through a two-way fixed effects regression (group and period) on panel data. However,

in designs with multiple groups and/or multiple time periods, several studies (e.g., De Chaisemartin and

d’Haultfoeuille (2020), Goodman-Bacon 2021, Imai and Kim (2021), Sun and Abraham (2021), Borusyak

et al. (2024)) have demonstrated that the coefficient estimated by a two-way fixed effects regression has

no longer a relevant causal interpretation when the policy effects are not assumed to be homogeneous

across groups and periods. Callaway et al. (2024) further shows that this negative result also holds

in designs where the treatment variable is continuous (i.e. when groups experience different doses of

a treatment over time). This first chapter introduces two new estimators for newly defined, valuable

causal parameters within the DiD framework with a continuous treatment variable, which are robust to

3According to the survey by De Chaisemartin and d’Haultfoeuille (2020), 20% of papers published in the American Economic
Review between 2010 and 2012 employed a DiD design.
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heterogeneous treatment effects. The identification and estimation of these two parameters rely on a

novel common trend assumption: in the absence of a change in their treatment dose between the two

periods, the switcher groups would have experienced, on average, the same evolution in their outcome

variable as the stayer groups with the same initial treatment dose.

The second chapter presents a new method to evaluate the causal effects of a binary treatment in

the presence of peer effects. In the absence of detailed information on the structure of social networks,

the conventional strategy to identify both the direct effect of the treatment on treated individuals and

the sign and magnitude of the social multiplier effect is to estimate a linear-in-means model within a

partial population experiment. However, the standard linear-in-means model overlooks the complexity

of social interactions. This second chapter adapts the linear-in-means model by allowing individuals to

respond differently to the behaviors of other group members, depending on whether or not they share

the same identity. The identification and estimation of the model’s parameters still rely on a partial

population experiment but the proportion of individuals eligible for the treatment has to be known even

within groups that do not receive the treatment. The magnitude of the direct effect of the treatment on

eligible individuals, the indirect effect on non-eligible individuals, and the social multiplier effects can be

assessed by comparing groups that receive the treatment with those that have the exact same proportion

of eligible individuals that do not receive the treatment.

The third chapter introduces a new structural model to evaluate the effects of policies that change

access to the personal and social home care market for dependent elderly individuals, that allows for

rich unobserved heterogeneity, within the French institutional context. On the demand side, house-

holds—comprising a dependent senior and their spouse—make decisions regarding their consumption,

the informal care provided by the spouse, and the use of professional home care services. These

households are heterogeneous in both their characteristics and preferences. As a result, the informal care

provided by caregiving spouses of dependent seniors respond differently depending on the household.

On the supply side, two types of providers are modeled: firms that offer personal and social home care

services, and self-employed personal home care assistants. Within each type of care provider, firms

exhibit different cost functions, which allows for a more nuanced understanding of the market dynamics

and how different providers respond to policy changes.
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Appendix A

Difference-in-Differences for

Continuous Treatments and

Instruments with Stayers

A.1 Proofs

Hereafter, Supp(X) denotes the support of X. Note that under Assumption 2, one can show that for all

(t, t′) ∈ {0, 1}2, E(Yt(Dt′)) exists.

A.1.1 Theorem 1

The result is just a special case of Theorem 2, under Assumption 5 □

A.1.2 Theorem 2

First, observe that the sets {Sη = 1} are decreasing for the inclusion and {S = 1} = ∪η>0{Sη = 1}. Then,

by continuity of probability measures,

lim
η↓0

P (Sη = 1) = P (S = 1) > 0, (A.1)

where the inequality follows by Assumption 4. Thus, there exists η > 0 such that for all η ∈ (0, η),

P (Sη = 1) > 0. Hereafter, we assume that η ∈ (0, η).

We have Supp(D1|Sη = 1) ⊆ Supp(D1|S = 1) and by Assumption 4, Supp(D1|S = 1) ⊆ Supp(D1|S =
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0). Thus, for all (d1, d2) ∈ Supp(D1, D2|Sη = 1), d1 ∈ Supp(D1|S = 0), so E(Y2(d1) − Y1(d1)|D1 =

d1, S = 0) = E(Y2(d1)− Y1(d1)|D1 = d1, D2 = d1) is well-defined. Moreover, for almost all such (d1, d2),

E(Y2(d1)− Y1(d1)|D1 = d1, D2 = d2) =E(Y2(d1)− Y1(d1)|D1 = d1, D2 = d1)

=E(∆Y |D1 = d1, S = 0), (A.2)

where the first equality follows from Assumption 1. Now, by Point 2 of Assumption 2, [Y2(D2)−Y2(D1)]/∆D

admits an expectation. Moreover,

E

(
Y2(D2)− Y2(D1)

∆D

∣∣∣∣Sη = 1

)
=E

(
E(Y2(D2)− Y1(D1)|D1, D2)− E(Y2(D1)− Y1(D1)|D1, D2)

∆D

∣∣∣∣Sη = 1

)
=E

(
E(∆Y |D1, D2)− E(∆Y |D1, S = 0)

∆D

∣∣∣∣Sη = 1

)
=E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣Sη = 1

)
, (A.3)

where the first equality follows from the law of iterated expectations, the second follows from (A.2), and

the third again by the law of iterated expectations. Next,

δ1 = Pr(Sη = 1|S = 1)E

[
Y2(D2)− Y2(D1)

∆D

∣∣∣∣Sη = 1

]
+ E

[
(1− Sη)

Y2(D2)− Y2(D1)

∆D

∣∣∣∣S = 1

]
.

Moreover,

∣∣∣∣E [(1− Sη)
Y2(D2)− Y2(D1)

∆D

∣∣∣∣S = 1

]∣∣∣∣ ≤ E

[
(1− Sη)

∣∣∣∣Y2(D2)− Y2(D1)

∆D

∣∣∣∣ ∣∣∣∣S = 1

]
≤ E

[
(1− Sη)Y |S = 1

]
,

where the second inequality follows by Assumption 2. Now, by (A.1) again, limη↓0(1 − Sη)Y = 0 a.s.

Moreover, (1− Sη)Y ≤ Y with E[Y |S = 1] <∞. Then, by the dominated convergence theorem,

lim
η↓0

E

[
(1− Sη)

Y2(D2)− Y2(D1)

∆D

∣∣∣∣S = 1

]
= 0.

We finally obtain

δ1 = lim
η↓0

E

[
Y2(D2)− Y2(D1)

∆D

∣∣∣∣Sη = 1

]
. (A.4)

The result follows by combining (A.3) and (A.4) □
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A.1.3 Theorem 3

Let ∆Y = Y2 − Y1, ∆D = D2 −D1, µ1(D1) = E[(1− S)Y |D1], µ2(D1) = E[1− S|D1]. In what follows we

let µ(D1) = (µ1(D1), µ2(D1))
′. From Theorem 1, the parameter δ1 is characterized by the condition:

0 = E

[
S

∆D

(
∆Y − δ1∆D − µ1(D1)

µ2(D1)

)]

Define:

g(Z, δ, µ) =
S

∆D

(
∆Y − µ1(D1)

µ2(D2)

)
− Sδ1

where Z = (Y1, Y2, D1, D2). Also define:

L(Z, µ, δ1, µ̃) = − S

∆D
· 1

µ̃2(D1)

(
µ1(D1)−

µ̃1(D1)

µ̃2(D1)
µ2(D1)

)

We verify conditions 6.1 to 6.3, 5.1(i) and 6.4(ii) to 6.6 in Newey (1994). Following his notation, we let

µ0 = (µ10, µ20)
′ and δ10 represent the true parameters, and g(Z, µ) = g(Z, δ10, µ).

Step 1. We verify condition 6.1. First, since S is binary E[(S − E[S|D1])
2|D1] = V [S|D1] ≤ 1/4. On

the other hand, E[((1− S)∆Y − E[(1− S)∆Y |D1])
2|D1] ≤ E

[
∆Y 2|D1

]
<∞ by part 2 of Assumption 6.

Thus, condition 6.1 holds.

Step 2. We verify condition 6.2. Since pK(d1) is a power series, the support of D1 is compact and

the density of D1 is uniformly bounded below, by Lemma A.15 in Newey (1995) for each K there

exists a constant nonsingular matrix AK such that for PK(d1) = AKp
K(d1), the smallest eigenvalue

of E[PK(D1)P
K(D1)

′] is bounded away from zero uniformly over K, and PK(D1) is a subvector of

PK+1(D1). Since the series-based propensity scores estimators are invariant to nonsingular linear

transformations, we do not need to distinguish between PK(d1) and pK(d1) and thus conditions 6.2(i)

and 6.2(ii) are satisfied. Finally, because p1K(d1) ≡ 1 for all K, for a vector γ̃ = (1, 0, 0, . . . , 0) we have

that γ̃′pk(d1) = γ̃1 ≠ 0 for all d1. Since AK is nonsingular, letting γ = A−1
K

′
γ̃, γ′P k(d1) = γ̃′A−1

K PK(d1) is

a non-zero constant for all d1 and thus condition 6.2(iii) holds.

Step 3. We verify condition 6.3 for d = 0. Since pK(d1) is a power series, the support of D1 is compact

and the functions to be estimated have 4 continuous derivatives, by Lemma A.12 in Newey (1995) there is

a constant C > 0 such that there is π with
∥∥µ− (pK)′π

∥∥ ≤ CK−α, where in our case α = s/r = 4 since

the dimension of the covariates is 1 and the unknown functions are 4 times continuously differentiable.

Thus, condition 6.3 holds.
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Step 4. We verify condition 5.1(i). By part 3 of Assumption 6, µ20(D1) = E[1− S|D1] = 1−E[S|D1] ≥

1− cM for some constant cM>0. Let C = 1− cM . For µ such that ∥µ− µ0∥∞ < C/2,

|g(Z, µ)− g(Z, µ0)− L(Z, µ− µ0, δ10, µ0)|

=

∣∣∣∣ S∆D
∣∣∣∣ ∣∣∣∣µ1(D1)

µ2(D1)
− µ10(D1)

µ20(D1)
− 1

µ20(D1)

(
µ1(D1)− µ10(D1)−

µ10(D1)

µ20(D1)
(µ2(D1)− µ20(D1))

)∣∣∣∣
≤ 1

c

∣∣∣∣µ1(D1)

µ2(D1)
− µ10(D1)

µ20(D1)
− 1

µ20(D1)

(
µ1(D1)− µ10(D1)−

µ10(D1)

µ20(D1)
(µ2(D1)− µ20(D1))

)∣∣∣∣
≤ 1

c
· 2 (1 + |µ10(D1)| / |µ20(D1)|)

C2
max {|µ1(D1)− µ10(D1)| , |µ2(D1)− µ20(D1)|}2

≤ 1

c
· 2 (1 + |µ10(D1)| / |µ20(D1)|)

C2
∥µ− µ0∥2∞

where the first inequality follows from Assumption 5 and the second inequality follows from Lemma S3 in

the Web Appendix of de Chaisemartin and D’Haultfœuille (2018). Thus, condition 5.1(i) holds.

Step 5. We verify condition 6.4(ii). First, E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞. For power series, by

Lemma A.15 in Newey (1995), ζd(K) = sup|λ|=d,x∈I

∥∥∂λpK(x)
∥∥ ≤ CK1+2d so setting d = 0,

ζ0(K)
(
(K/n)1/2 +K−α

)
≤ CK

(
(K/n)1/2 +K−α

)
= C

(√
K3

n
+K1−α

)
→ 0

since α = 4 > 1/2, K7/n→ 0 and K → ∞. Finally,

√
nζ0(K)2

(
K

n
+K−2α

)
≤ C2

√
nK2

(
K

n
+K−2α

)
= C

(√
K6

n
+

√
n

K4α−4

)
→ 0

since K7/n→ 0 and for α = 4, K4α−4/n = K12/n→ ∞. Hence condition 6.4(ii) holds.

Step 6. We verify condition 6.5 for d = 1 and where |µ|d = sup|λ|≤d,x∈I

∥∥∂λµ(x)∥∥. Since E[(1 +

|µ10(D1)| / |µ20(D1)|)2] <∞,

|L(Z, µ, δ10, µ0)| =
∣∣∣∣ S∆D · 1

µ20(D1)

(
µ1(D1)−

µ10(D1)

µ20(D1)
µ2(D1)

)∣∣∣∣
≤ 1

c(1− cM )

(
1 +

∣∣∣∣µ10(D1)

µ20(D1)

∣∣∣∣) |µ|1 .

Next, the same linear transformation of pK as in Step 2, namely PK is, by Lemma A.15 in Newey

(1995), such that
∣∣PK

k

∣∣
d
≤ CK1/2+2d. As a result,

(∑
k

∣∣PK
k

∣∣2
1

)1/2
≤ CK1+2d. Then, for d = 1,
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(∑
k

∣∣PK
k

∣∣2
1

)1/2(√
K

n
+K−α

)
≤ CK3

(√
K

n
+K−α

)
= C

(√
K7

n
+K3−α

)
→ 0

since K7/n→ 0 and K3−α = K−1 → 0 for α = 4. Thus, condition 6.5 holds.

Step 7. We verify condition 6.6. Condition 6.6(i) holds for

δ(D1) = [−E[S/∆D|D1]/µ20(D1)](1,−µ10(D1)/µ20(D1)).

Because the involved functions are continuously differentiable, by Lemma A.12 from Newey (1995) there

exist πK and ξK such that:

E
[∥∥δ(D1)− ξKp

K(D1)
∥∥2] ≤ ∥∥δ − ξKp

K
∥∥2
∞ ≤ CK−2α

and

E
[∥∥µ0(D1)− πKp

K(D1)
∥∥2] ≤ ∥∥µ0 − πKp

K
∥∥2
∞ ≤ CK−2α

were we recall that α = 4. Thus, the first part of condition 6.6(ii) follows from

nE
[∥∥δ(D1)− ξKp

K(D1)
∥∥2]E [∥∥µ0(D1)− πKp

K(D1)
∥∥2] ≤ CnK−16 → 0.

Next,

ζ0(K)4
K

n
≤ C

K5

n
→ 0

and finally

ζ0(K)2E
[∥∥µ0(D1)− πKp

K(D1)
∥∥2] ≤ CK2−2α → 0

and

E
[∥∥δ(D1)− ξKp

K(D1)
∥∥2] ≤ CK−2α → 0.

Thus, condition 6.6 holds.

By inspection of the proof of Theorem 6.1 in Newey (1994), condition 6.4(ii) implies 5.1(ii) therein,

conditions 6.5 and 6.2 imply 5.2 therein, and condition 6.6 implies 5.3 therein. Then, conditions 5.1-5.3

inNewey (1994) hold, and thus by his Lemma 5.1,

1√
n

∑
i

g(Zi, δ10, µ̂) =
1√
n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1) →d N (0, V )
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where

α(Z) = δ(D1)

∆Y (1− S)− µ10(D1)

(1− S)− µ20(D1)

 = −
E
(

S
∆D

∣∣D1

)
E[1− S|D1]

(1− S)(∆Y − µ0(D1))

and V = E
[
(g(Zi, µ0) + α(Zi)) (g(Zi, µ0) + α(Zi))

′]. Finally note that:

√
n(δ̂1 − δ10) =

n∑
i Si

· 1√
n

∑
i

g(Zi, δ10, µ̂) =
1

E[S]
· 1√

n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1)

and the result follows defining ψ1 = [g(Zi, µ0) + α(Zi)]/E[S]. □

A.1.4 Theorem 4

We only prove the first point, as the proof of the second point is similar and (1.9)-(1.10) follow by combining

these two points. Moreover, the proof of (1.5) is similar to the proof of Theorem 1 so it is omitted. We

thus focus on (1.6) hereafter.

For all d1 ∈ Supp(D1|S+ = 1), by Point 1 of Assumption 7, d1 ∈ Supp(D1|S = 0). Thus, E(∆Y |D1 =

d1, S = 0) is well-defined. Then, using the same reasoning as that used to show (A.2) above, we obtain

E(Y2(d1)− Y1(d1)|D1 = d1, S+ = 1) = E(∆Y |D1 = d1, S = 0).

Now, let Supp(D1|S+ = 1)c be the complement of Supp(D1|S+ = 1). For all d1 ∈ Supp(D1|S =

0) ∩ Supp(D1|S+ = 1)c, P (S+ = 1|D1 = d1) = 0. Then, with the convention that E(∆Y |D1 = d1, S+ =

1)P (S+ = 1|D1 = d1) = 0,

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)

=E(Y2(d1)− Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).

Combining the two preceding displays implies that for all d1 ∈ Supp(D1|S = 0),

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)

=E(Y2(d1)− Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).

114



Hence, by repeated use of the law of iterated expectation,

E

(
∆Y

P (S+ = 1|D1)

P (S = 0|D1)

P (S = 0)

P (S+ = 1)

∣∣∣∣S = 0

)
=E

(
E[Y2(D1)− Y1(D1)|D1, S+ = 1)

P (S+ = 1|D1)

P (S = 0|D1)

P (S = 0)

P (S+ = 1)

∣∣∣∣S = 0

)
=E

(
E[Y2(D1)− Y1(D1)|D1, S+ = 1)

P (S+ = 1|D1)

P (S = 0|D1)

1− S

P (S+ = 1)

)
=E

(
E[Y2(D1)− Y1(D1)|D1, S+ = 1)

P (S+ = 1|D1)

P (S+ = 1)

)
=E

(
E[Y2(D1)− Y1(D1)|D1, S+ = 1)

S+

P (S+ = 1)

)
=E (Y2(D1)− Y1(D1)|S+ = 1) .

The result follows after some algebra. □

A.1.5 Theorem 5

We prove the result for the propensity-score-based estimator and drop the “ps” subscript to reduce notation.

Let µ1(d) = E[S+|D1 = d], µ2(d) = E[1 − S|D1 = d], µ3(d) = E[S−|D1 = d] and µY (D1) = E[∆Y (1 −

S)|D1]. The logit series estimators of the unknown functions µj(d) are given by µ̂j(d) = Λ(PK(d)′π̂j)

where Λ(z) = 1/(1 + e−z) is the logit function and

0 =
∑
i

(Sji − Λ(PK(D1i)
′π̂j))P

K(D1i)

for Sji equal to 1− Si, Si+ or Si−. Under Assumption 8, there exists a constant πj,K that satisfies:

∥∥∥∥log( µj

1− µj

)
− (PK)′πj,K

∥∥∥∥
∞

= O(K−α)

and we let µji,K = Λ(PK(D1i)
′πj,K). We suppress the n subscript on K to reduce notation and let

µji := µj(D1i) and µ̂ji := µ̂j(D1i). Under Assumption 8 part 1, Lemma A.15 in Newey (1995) ensures

that the smallest eigenvalue of E[PK(D1)P
K(D1)

′], is bounded away from zero uniformly over K. In

addition, Cattaneo (2010) shows that under Assumption 8, the multinomial logit series estimator satisfies:

∥µj,K − µj∥∞ = O(K−α), ∥π̂j − πj,K∥ = OP

(√
K

n
+K−α+1/2

)

and

∥µ̂j − µj∥∞ = OP

(
ζ(K)

(√
K

n
+K−α+1/2

))
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where ζ(K) = supd∈I

∥∥PK(d)
∥∥. Newey (1994) also shows that for orthonormal polynomials, ζ(K) is

bounded above byCK for some constantC, which implies in our case that ∥µ̂j − µj∥∞ = OP

(
K
(√

K
n +K−α+1/2

))
.

Throughout the proof, we also use the fact that by a second-order mean value expansion, there exists a

π̃j such that:

µ̂ji − µji,K = Λ(PK(D1i)
′π̂j)− Λ(PK(D1i)

′πj,K)

= Λ̇(PK(D1i)
′πj,K)PK(D1i)

′(π̂j − πj,K) + Λ̈(PK(D1i)
′π̃j)(P

K(D1i)
′(π̂j − πj,K))2

where both Λ̇(z) and Λ̈(z) are bounded. We start by considering the δ2+ parameter and omit the “ps”

superscript to reduce notation. Recall that

δ̂2+ =
1∑

i ∆DiSi+

∑
i

{
∆YiSi+ −∆Yi(1− Si)

µ̂1i

µ̂2i

}
.

Thus,

√
n(δ̂2+ − δ2+) =

1

E[∆DS+]
· 1√

n

∑
i

{
∆YiSi+ −∆Yi(1− Si)

µ̂1i

µ̂2i
− δ2+E[∆DS+]

}
+ oP (1).

Define:

Vi = ∆YiSi+ −∆Yi(1− Si)
µ̂1i

µ̂2i
− δ2+E[∆DS+].

Let ψ2+,i be the influence function defined in the statement of the theorem. Using the identity:

1

b̂
− 1

b
= − 1

b2
(b̂− b) +

1

b2b̂
(b̂− b)2
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we have, after some rearranging,

1√
n

∑
i

Vi = E[∆DS+] ·
1√
n

∑
i

ψ2+,i

− 1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ̂1i − µ1i)

+
1√
n

∑
i

(∆Yi(1− Si)− µY i)
µ1i

µ2
2i

(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1− Si)
µ1i

µ2
2iµ̂2i

(µ̂2i − µ2i)
2

+
1√
n

∑
i

∆Yi(1− Si)

µ2
2i

(µ̂1i − µ1i)(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1− Si)

µ2
2iµ̂2i

(µ̂1i − µ1i)(µ̂2i − µ2i)
2

+
1√
n

∑
i

µY i

µ2i
(Si+ − µ̂1i)

− 1√
n

∑
i

µYi
µ1i

µ2
2i

(1− Si − µ̂2i).

which we rewrite as:
1√
n

∑
i

Vi = E[∆DS+] ·
1√
n

∑
i

ψ2+,i +

7∑
j=1

Aj,n

where each Aj,n represents one term on the above display. We now bound each one of these terms.

Term 1. For the first term, we have that:

−A1,n =
1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ̂1i − µ1i)

=
1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ̂1i − µ1i,K)

+
1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ1i,K − µ1i)

= A11,n +A12,n.

Now, by a second-order mean value expansion,

A11,n =
1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
Λ̇(PK(D1i)

′πj,K)PK(D1i)
′(π̂K − πK)

+
1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
Λ̈(PK(D1i)

′π̃)(PK(D1i)
′(π̂K − πK))2

= A111,n +A112,n.
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Next note that

|A111,n| ≤ ∥π̂K − πK∥

∥∥∥∥∥ 1√
n

∑
i

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
Λ̇(PK(D1i)

′πj,K)PK(D1i)
′

∥∥∥∥∥ .
Now, ∥π̂K − πK∥ = OP

((√
K/n+K−α+1/2

))
. Let

Ui = (U1
i , ...U

K
i )′ :=

(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
Λ̇(PK(D1i)

′πj,K)PK(D1i)
′.

We have E[Ui] = E[E[Ui|D1i]] = 0 and

E
[
∥Ui∥2

]
≤E

[(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)2 ∥∥PK(D1i)
∥∥2]

≤CE
[∥∥PK(D1i)

∥∥2]
=CE

[
trace{PK(D1i)

′PK(D1i)}
]

=C × trace
(
E
[
PK(D1i)P

K(D1i)
′])

=CK, (A.5)

since the polynomials can be chosen such that E
[
PK(D1i)P

K(D1i)
′] = IK , see Newey (1997), page

161. Hence,

E

∥∥∥∥∥ 1√
n

∑
i

Ui

∥∥∥∥∥
2
 =E

 K∑
j=1

(
1√
n

∑
i

U j
i

)2


=

K∑
j=1

1

n

∑
i,i′

E
[
U j
i U

j
i′

]

=

K∑
j=1

1

n

n∑
i=1

E
[
U j2
i

]
=E

[
∥U1∥2

]
.

Therefore, by Markov’s inequality,

A111,n = OP

(
K1/2

(√
K

n
+K−α+1/2

))
.
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Next,

|A112,n| ≤ C
√
n ∥π̂K − πK∥2 1

n

∑
i

∣∣∣∣∆Yi(1− Si)

µ2i
− µY i

µ2i

∣∣∣∣ ∥∥PK(D1i)
∥∥2

= OP

[√
n

(
K

n
+K−2α+1

)
E

(∣∣∣∣∆Yi(1− Si)

µ2i
− µY i

µ2i

∣∣∣∣ ∥∥PK(D1i)
∥∥2)]

= OP

(√
nK

(
K

n
+K−2α+1

))
,

where the first inequality follows by Cauchy-Schwarz inequality, the second by Markov’s inequality and

the third by the same reasoning as to obtain (A.5). Hence,

A11,n = OP

(
K1/2

(√
K

n
+K−α+1/2

))
+OP

(√
nK

(
K

n
+K−2α+1

))
.

Finally, for A12,n we have that

E

[(
∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ1i,K − µ1i)

∣∣∣∣D1

]
= 0

and

E

[∥∥∥∥(∆Yi(1− Si)

µ2i
− µY i

µ2i

)
(µ1i,K − µ1i)

∥∥∥∥2
]
≤ C ∥µ1,K − µ1∥2∞ = O(K−2α)

and therefore

A1,n = OP

(
K1/2

(√
K

n
+K−α+1/2

))
+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K

−α).

Term 2. This follows by the same argument as that of Term 1 and we obtain:

A2,n = OP

(
K1/2

(√
K

n
+K−α+1/2

))
+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K

−α).

Term 3. For the third term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2, for n large

enough

|A3,n| ≤
√
n ∥µ̂2 − µ2∥2∞

1

C

1

n

∑
i

|∆Yi(1− Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))
.

Term 4. For the fourth term,

|A4,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥∞

1

C

1

n

∑
i

|∆Yi(1− Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))
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Term 5. For the fifth term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2, for n large

enough

|A5,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥2∞

1

C

1

n

∑
i

|∆Yi(1− Si)| = OP

(
√
nK3

((
K

n

)3/2

+K−3α+3/2

))
.

Term 6. For the sixth term, let γ6,K be the population coefficient from a (linear) series approximation to

the function µY (D1)/µ2(D1). Then we have that

A6,n =
1√
n

∑
i

(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(Si+ − µ̂1i) +

1√
n

∑
i

PK(D1i)
′γ6,K(Si+ − µ̂1i)

=
1√
n

∑
i

(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(Si+ − µ̂1i)

because the last term in the second line equals zero by the first-order conditions of the logit series

estimator. Next, we have that

1√
n

∑
i

(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(Si+ − µ̂1i) =

1√
n

∑
i

(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(Si+ − µ1i)

− 1√
n

∑
i

(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(µ̂1i − µ1i)

= A61,n +A62,n.

Now, for A61,n, we have that

E

[(
µY i

µ2i
− PK(D1i)

′γ6,K

)
(Si+ − µ1i)

∣∣∣∣D1

]
= 0

and

E

[
(Si+ − µ1i)

2

∥∥∥∥(µY i

µ2i
− PK(D1i)

′γ6,K

)∥∥∥∥2
]
≤ O(K−2α)

so that

A61,n = OP (K
−α).

On the other hand, for A62,n, we have that

|A62,n| ≤
√
n

∥∥∥∥µY

µ2
− (PK)′γ6,K

∥∥∥∥
∞

∥µ̂1 − µ1∥∞ = OP

(
√
nK1−α

(√
K

n
+K−α+1/2

))
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from which

A6,n = OP

(
√
nK1−α

(√
K

n
+K−α+1/2

)
+K−α

)
.

Term 7. This follows by the same argument as that of Term 6 and we obtain

A7,n = OP

(
√
nK1−α

(√
K

n
+K−α+1/2

)
+K−α

)
.

Collecting all the terms, if follows that under the conditions

K6

n
→ 0,

K4α−6

n
→ ∞, α > 3

we obtain
√
n(δ̂2+ − δ2+) =

1√
n

∑
i

ψ2+,i + oP (1).

Setting α = 4, this implies
K6

n
→ 0,

K10

n
→ ∞.

These conditions are satisfied when K = nν for 1/(4α− 6) < ν < 1/6 or in this case 1/10 < ν < 1/6.

By an analogous argument, we can show that under the same conditions

√
n(δ̂2− − δ2−) =

1√
n

∑
i

ψ2−,i + oP (1)

and the result follows by a multivariate CLT. Finally, notice that letting µ1−(d) = E[S−|D1 = d] and

µ̂ji− = µ̂1−(D1i), and using that sgn(∆Di) = Si+ − Si− and |∆Di| = ∆Di(Si+ − Si−), after some simple

manipulations:

δ̂2 =
1∑

i |∆Di|
∑
i

{
∆Yi(Si+ − Si−)−∆Yi(1− Si)

(
µ̂1i − µ̂1i−

µ̂2i

)}

which is analogous to δ̂2+ replacing Si+ by (Si+ − Si−) and the denominator by
∑

i |∆Di|. Thus, under

the same conditions
√
n(δ̂2 − δ2) =

1√
n

∑
i

ψ2,i + oP (1)

where ψ2,i is defined in the statement of the theorem □

121



A.1.6 Proposition 1

If D2 ≥ D1 and ∆D ⊥⊥ D1,

ψ1 =
1

E(S)

{(
S

∆D
− E

(
S

∆D

)
(1− S)

E[1− S]

)
[∆Y − E(∆Y |D1, S = 0)]− δ1S

}
,

ψ2 =
1

E(∆D)

{(
S − E(S)

(1− S)

1− E(S)

)
× (∆Y − E(∆Y |D1, S = 0))− δ2∆D

}
.

If (Y2(D2)− Y2(D1))/(D2 −D1) = δ, then δ1 = δ2 = δ, and ∆Y = ∆Y (D1) +∆Dδ, so after some algebra

the previous display simplifies to

ψ1 =
1

∆D

(
S

E(S)
− (1− S)

E[1− S]

∆D

E(S)
E

(
S

∆D

))
× (∆Y (D1)− E(∆Y (D1)|D1, S = 0)).

ψ2 =
1

E(∆D)

(
S − (1− S)

E(S)

1− E(S)

)
× (∆Y (D1)− E(∆Y (D1)|D1, S = 0)).

Then, under Assumption 1,

E(ψ1|D1, D2) = E(ψ2|D1, D2) = 0.

Then, using the law of total variance, the fact that V (∆Y (D1)|D1, D2) = σ2, and some algebra,

V (ψ1) =E(V (ψ1|D1, D2))

=σ2E

[ S
∆D − 1−S

1−E(S)E
(

S
∆D

)
E(S)

]2
=σ2

[
E(1/(∆D)2|S = 1)

P (S = 1)
+

(E(1/∆D|S = 1))
2

P (S = 0)

]
,

and

V (ψ2) =E(V (ψ2|D1, D2))

=σ2E


S − (1− S) E(S)

1−E(S)

E(∆D)

2


=σ2 1

(E(∆D|S = 1))
2

[
1

P (S = 1)
+

1

P (S = 0)

]
.
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The inequality follows from the convexity of x 7→ x2, the convexity of x 7→ 1/x on R+ \ {0} and ∆D|S =

1 ∈ R+ \ {0}, Jensen’s inequality, and x 7→ x2 increasing on R+, which together imply that

E(1/(∆D)2|S = 1) ≥ (E(1/∆D|S = 1))
2 ≥ 1

(E(∆D|S = 1))
2 .

Finally, Jensen’s inequality is strict for strictly convex functions, unless the random variable is actually

constant. The last claim of the proposition follows.

A.1.7 Theorem 6

The parameter δIV can be written as:

δIV =
E[sgn(∆Z) (Y2(D2(Z2))− Y2(D2(Z1))) |SC = 1]

E[|D2(Z2)−D2(Z1)| |SC = 1]
. (A.6)

The regression-based estimand is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]
.

Following previous arguments, the conditional expectations are well-defined under Assumption 13. For

the denominator,

E
[
sgn(∆Z)

(
∆D − E(∆D|Z1, S

I = 0, D1)
)]

=E [sgn(∆Z) (D2(Z2)−D2(Z1))] + E
[
sgn(∆Z)

(
D2(Z1)−D1(Z1)− E(∆D|Z1, S

I = 0, D1)
)]

=E [sgn(∆Z) (D2(Z2)−D2(Z1))]

because

E
[
sgn(∆Z)

(
D2(Z1)−D1(Z1)− E(∆D|Z1, S

I = 0, D1)
)]

=E
{
E
[
sgn(∆Z)

(
D2(Z1)−D1(Z1)− E(∆D|Z1, S

I = 0, D1)
)
|Z1, Z2, D1

]}
=E

{
sgn(∆Z)

(
E (∆D(Z1)|Z1, Z2, D1)− E(∆D(Z1)|Z1, S

I = 0, D1)
)}

=0,
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by Assumption 9. On the other hand,

E [sgn(∆Z) (D2(Z2)−D2(Z1))] =E [sgn(∆Z) (D2(Z2)−D2(Z1)) |D2(Z2) ̸= D2(Z1)]

× P (D2(Z2) ̸= D2(Z1))

=E [|D2(Z2)−D2(Z1)| |SC = 1]P (SC = 1),

where the last equality follows from monotonicity (Assumption 10) and the definition of switchers-compliers.

Next, the numerator is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1 = 0)
)]

=E
[
sgn(∆Z)

(
Y2(D2(Z2))− Y1(D1(Z1))− E(∆Y |Z1, S

I = 0, D1 = 0)
)]

=E [sgn(∆Z) (Y2(D2(Z2))− Y2(D2(Z1)))] ,

using the parallel trends assumption as before. Then,

E [sgn(∆Z) (Y2(D2(Z2))− Y2(D2(Z1)))]

=E [sgn(∆Z) (Y2(D2(Z2))− Y2(D2(Z1))) |SC = 1]P (SC = 1),

and thus, in view of (A.6),

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]
= δIV .

For the propensity-score estimand, notice that

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]

=
E [sgn(∆Z)∆Y ]− E

[
sgn(∆Z)E(∆Y |Z1, S

I = 0, D1)
]

E [sgn(∆Z)∆D]− E [sgn(∆Z)E(∆D|Z1, SI = 0, D1)]
.
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Then, using sgn(∆Z) = SI
+ − SI

−, the law of iterated expectations and Assumption 9,

E
[
sgn(∆Z)E(∆D|Z1, S

I = 0, D1)
]
= E

[
(SI

+ − SI
−)E

(
∆D(1− SI)

P (SI = 0|Z1, D1)

∣∣∣∣Z1, D1

)]
= E

[
E(SI

+ − SI
−|Z1, D1)E

(
∆D(1− SI)

P (SI = 0|Z1, D1)

∣∣∣∣Z1, D1

)]
= E

[
E

(
∆D(1− SI)E(SI

+ − SI
−|Z1, D1)

P (SI = 0|Z1, D1)

∣∣∣∣Z1, D1

)]
= E

[
∆D(1− SI)E(SI

+ − SI
−|Z1, D1)

P (SI = 0|Z1, D1)

]
= E

[
∆D

E(SI
+ − SI

−|Z1, D1)

P (SI = 0|Z1, D1)
P (SI = 0)

∣∣∣∣SI = 0

]
= E

[
∆D

P (SI
+ = 1|Z1, D1)− P (SI

− = 1|Z1, D1)

P (SI = 0|Z1, D1)

∣∣∣∣SI = 0

]
× P (SI = 0),

as required. The same argument replacing ∆D by ∆Y completes the proof □

A.1.8 Theorem 7

Using the same steps as in the proof of Theorem 1, one can show that for all t ≥ 2,

δ1t = E

(
Yt − Yt−1 − E(Yt − Yt−1|Dt−1, St = 0)

Dt −Dt−1

∣∣∣∣St = 1

)
.

This proves the result □

A.1.9 Theorem 8

The proof is similar to that of Theorem 7, and is therefore omitted.
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Appendix B

Estimating heterogeneous peer effects

with partial population experiments

B.1 Proofs

B.1.1 Reduced forms in the randomized experiment design

Let’s start from the aggregated model, based on Assumption 1

ȳEg = θw0 sg ȳ
E
g + θb0(1− sg)ȳ

N
g + δ0Dg + ēEg

ȳNg = θb0sg ȳ
E
g + θw0 (1− sg)ȳ

N
g + ēNg

Plugging-in the expression of ȳEg into the one of ȳNg , we get

yNg =
θb0sg

1− θw0 sg

(
θb0(1− sg)ȳ

N
g + δ0Dg + ēEg

)
+ θw0 (1− sg)ȳ

N
g + ēNg

Rearranging terms, we get

[
1− θw0 + sg(1− sg)((θ

w)2 − (θb)2)
]
yNg = θb0sg(δ0Dg + ēEg ) + (1− θw0 sg)ē

N
g
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Hence,

yNg =
1− θw0 sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēNg

+
θb0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg

+
δ0θ

b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg

Now, plugging-in the reduced form expression of ȳNg into ȳEg and developping, we get

ȳEg =
1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg

+
θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēNg (B.1)

+
δ0(1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg

=
θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēNg

+
1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] ēEg

+ δ0

(
1 + sg.

θw0 − (1− sg)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
])Dg

B.1.2 Proposition 2

Suppose Assumptions 1, 2 and 3 are satisfied. For any k ∈ {E,N} and any s ∈ S,

τk(s) =E
[
ȳkg |Dg = 1, sg = s

]
− E

[
ȳkg |Dg = 0, sg = s

]

This quantity exists as long as Assumption 3 holds and the relevant conditional expectations are well-

defined. Let’s show first that

τk(s) =E
[
ωR(Dg)ȳ

k
g |sg = s

]
with ωR(Dg) =

Dg − P (Dg = 1)

P (Dg = 1)(1− P (Dg = 1))
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E
[
ωR(Dg)ȳ

k
g |sg = s

]
= E

[
Dg − P (Dg = 1|sg = s)

P (Dg = 1|sg = s)(1− P (Dg = 1|sg = s))
ȳkg |sg = s

]
= P (Dg = 1|sg = s)E

[
Dg − P (Dg = 1|sg = s)

P (Dg = 1|sg = s)(1− P (Dg = 1|sg = s))
ȳkg |sg = s,Dg = 1

]
+ P (Dg = 0|sg = s)E

[
Dg − P (Dg = 1|sg = s)

P (Dg = 1|sg = s)(1− P (Dg = 1|sg = s))
ȳkg |sg = s,Dg = 0

]
=

P (Dg = 1)(1− P (Dg = 1))

P (Dg = 1)(1− P (Dg = 1))
E
[
ȳkg |sg = s,Dg = 1

]
− (1− P (Dg = 1))P (Dg = 1)

P (Dg = 1)(1− P (Dg = 1))
E
[
ȳkg |sg = s,Dg = 0

]
= E

[
ȳkg |sg = s,Dg = 1

]
− E

[
ȳkg |sg = s,Dg = 0

]
= τk(s)

The second equality is obtained using the law of iterated expectations and Assumption 2, in particular the

fact that Dg ⊥⊥ sg. The third and forth equalities are algebra. Now,

E
[
ȳEg |sg = s,Dg

]
=

θb0(1− s)

1− θw0 + s(1− s)
[
(θw0 )

2 − (θb0)
2
]E [ēNg |sg = s

]
+

1− θw0 (1− sgt)

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
]E [ēEg |sg = s

]
+ δ0

(
1 + sg.

θw0 − (1− sg)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
])Dg

Since, by Assumption 2, Dg ⊥⊥ (ēEg , ē
N
g ). It follows that

τE(s) = δ0

(
1 + sg.

θw0 − (1− sg)
[
(θw0 )

2 − (θb0)
2
]

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
])

Similarly, one can show that

τN (s) =
δ0θ

b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]

Finally, equations (2.18) and (2.19) are immediately identified, based on the definition of the population

multipliers.
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B.1.3 Proposition 2

From Assumption 1’, using the same steps as in Appendix A.1, we get

ȳEgt =
θb0(1− sgt)

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēNgt

+
1− θw0 (1− sgt)

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēEgt

+
δ0 (1− θw0 (1− sgt))

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
]Dgt

ȳNgt =
1− θw0 sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēNgt

+
θb0sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
] ēEgt

+
δ0θ

b
0sgt

1− θw0 + sgt(1− sgt)
[
(θw0 )

2 − (θb0)
2
]Dgt

Using Assumptions 2’ and the first part of 3’, we get

∆ȳEg =
θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] (ēNg2 − ēNg1)

+
1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] (ēEg2 − ēEg1)

+
δ0 (1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

∆ȳNg =
1− θw0 sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] (ēNg2 − ēNg1)

+
θb0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
] (ēEg2 − ēEg1)

+
δ0θ

b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

Then, since there are supposed to be well-defined, we can take the conditional expectations of these
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quantities with respect to (Dg2, sg), we get

E
[
∆ȳEg

∣∣∣Dg2, sg

]
=

θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēNg2 − ēNg1

∣∣∣Dg2, sg

]
+

1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēEg2 − ēEg1

∣∣∣Dg2, sg

]
+

δ0 (1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

E
[
∆ȳNg

∣∣∣Dg2, sg

]
=

1− θw0 sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēNg2 − ēNg1

∣∣∣Dg2, sg

]
+

θb0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēEg2 − ēEg1

∣∣∣Dg2, sg

]
+

δ0θ
b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

Now,

E
[
∆ȳEg

∣∣∣Dg2 = 1, sg

]
− E

[
∆ȳEg

∣∣∣Dg2 = 0, sg

]
=

δ0 (1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]

E
[
∆ȳNg

∣∣∣Dg2 = 1, sg

]
− E

[
∆ȳNg

∣∣∣Dg2 = 0, sg

]
=

δ0θ
b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]

using Assumption 4’. Then, using the same steps as in the proof for Proposition 4, one can show that, for

any k ∈ {E,N} and any s ∈ S,

τk(s) =E
[
ωDiD(Dg2, sg)∆ȳ

k
g |sg = s

]
with ωDiD(Dg2, sg) =

Dg2 − P (Dg2 = 1|sg)
P (Dg2 = 1|sg)(1− P (Dg2 = 1|sg))
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B.1.4 Proposition 3

Let s1, s2 be two elements of (0, 1), such that s1 ≠ s2. Whether Assumptions 1, 2 and 3 hold together or

Assumptions 1’, 2’, 3’ and 4’ hold together, we have the following conditions

τE(s1) =
δ0 (1− θw0 (1− s1))

1− θw0 + s1(1− s1)
[
(θw0 )

2 − (θb0)
2
] (B.2)

τN (s1) =
δ0θ

b
0s1

1− θw0 + s1(1− s1)
[
(θw0 )

2 − (θb0)
2
] (B.3)

τE(s2) =
δ0 (1− θw0 (1− s2))

1− θw0 + s2(1− s2)
[
(θw0 )

2 − (θb0)
2
] (B.4)

τN (s2) =
δ0θ

b
0s2

1− θw0 + s2(1− s2)
[
(θw0 )

2 − (θb0)
2
] (B.5)

where equations (B.2) and (B.4) are written in the reduced form, as derived in (B.1). Note that for any

s ∈ (0, 1) and for any (x1, x2) ∈ (−1, 1)× (−1, 1),

1− x1 + s(1− s)
[
(x1)

2 − (x2)
2
]
> 0

Dividing (B.3) by (B.2) and (B.5) by (B.4), we get

τN (s1)

τE(s1)
=

θb0s1
1− θw0 (1− s1)

(B.6)

τN (s2)

τE(s2)
=

θb0s2
1− θw0 (1− s2)

(B.7)

which can be expressed as new moment conditions

(1− θw0 (1− s1))τ
N (s1)− θb0s1τ

E(s1) = 0 (B.8)

(1− θw0 (1− s2))τ
N (s2)− θb0s2τ

E(s2) = 0 (B.9)

Solving the system composed of (B.8) and (B.9), provided s1 ̸= s2, leads to
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
θb0 =

(1− θw0 (1− s1))τ
N (s1)

s1τE(s1)

θw0 =
τN (s2)− s2τ

E(s2)θ
b
0

τN (s2)(1− s2)

=⇒


θb0 =

(1− θw0 (1− s1))τ
N (s1)

s1τE(s1)

θw0 =
s1τ

E(s1)τ
N (s2)− s2τ

E(s2)τ
N (s1)

s1τE(s1)(1− s2)τN (s2)− (1− s1)τN (s1)s2τE(s2)

=⇒


θw0 =

s1τ
E(s1)τ

N (s2)− s2τ
E(s2)τ

N (s1)

s1(1− s2)τE(s1)τN (s2)− (1− s1)s2τN (s1)τE(s2)

θb0 =
τN (s1)τ

N (s2)(s1 − s2)

s1(1− s2)τE(s1)τN (s2)− (1− s1)s2τN (s1)τE(s2)

Hence, θb0 and θw0 are identified. As a consequence, δ0 is also identified based on (B.2), (B.4), (B.3) or

(B.5)

B.1.5 Proposition 4

Let

λ̂∗ =


δ∗

θw∗

θb
∗

 := argmin
λ∈Θ

(
1

G

G∑
g=1

w(sg)u
R(Zg, λ)

)′

V̂ −1
G

(
1

G

G∑
g=1

w(sg)u
R(Zg, λ)

)

with

Zg := (yEg , y
N
g , Dg, sg)

uR(Z, λ) = ωR(D)Ȳ − δ

ϕ(s, λ)

1− (1− s)θw

sθb



and V̂G
p−→ V0 := E

[(
w(s)uR(Z, λ0)

) (
w(s)uR(Z, λ0)

)′]. According to Theorem 2.6 of Newey and

McFadden (1994), if

1. V0 is positive semi-definite and E
[
w(s)uR(Z, λ)

]
= 0 only if λ = λ0

2. Θ is compact

3. w(s)uR(Z, λ) is continuous at each λ ∈ Θ almost surely

4. E
[
supλ∈Θ

∥∥w(s)uR(Z, λ)∥∥] < +∞

Then, λ̂∗ is a consistent estimator of λ0.

133



By assumptions, Conditions 1 and 2 are satisfied (1 holds for instance when the conditions of

Proposition 3 are met). Since uR is differentiable with respect to λ on Θ, it is also continuous with respect

to λ. So Condition 3 is also satisfied. Finally, since for k ∈ {E,N}, E
[∣∣yk∣∣] < +∞ and s ∈ (0, 1], there

exists κ ∈ R+ such that for any λ ∈ Θ,

δ

ϕ(s, λ)
×max(sθb, 1− (1− s)θw) < κ

which implies that E
[
supλ∈Θ

∥∥w(s)uR(Z, λ)∥∥] < +∞ so Condition 4 is also satisfied. As a conclusion, λ̂∗

is a consistent estimator of λ0. Then, according to Theorem 3.4 of Newey and McFadden (1994), if

1. λ0 ∈ Int(Θ)

2. w(s)uR(Z, λ) is continuous differentiable in a neighborhood of λ0, almost surely

3. E
[
w(s)uR(Z;λ0)

]
= 0 and E

[∥∥w(s)uR(Z, λ0)∥∥2] < +∞

4. E
[
supλ∈Θ

∥∥ ∂
∂λ′u

R(Z, λ)
∥∥2] < +∞

5. M ′
0V

−1
0 M0 is non-singular with M0 := E

[
w(s)

∂

∂λ′
uR(Z, λ0)

]
Then,

√
G(λ̂∗ − λ0)

d−→ N
(
0,
[
M ′

0V
−1
0 M0

]−1
)

By assumption, Condition 1 holds. Since uR(., λ) is twice differentiable with respect to λ on Θ, it is

continuously differentiable, so condition 2 holds as well. Since, for k ∈ {E,N}, E
[∣∣ȳk∣∣2] < +∞ and

s ∈ (0, 1], then Assumption 3 holds as well. Points 4 and 5 hold as well, due to the restriction on the

distribution of yk and from the definitions of S and Θ.

B.1.6 Proposition 5

Let Zg := (Y
E

g , Y
N

g , Dg, sg) and

mDiD(Z, λ, p) = w(s)

ω(Z, p)Y − δ

ϕ(s;λ)

1− (1− s)θw

sθb




where

w(s) =



s 0

0 s1(s < 1)

s2 0

0 s21(s < 1)


, Y =

Y E

Y
N


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ω(Z, p) =
D

p(s)
− 1−D

1− p(s)

and

ϕ(s;λ) = 1− θw + s(1− s)((θw)2 − (θb)2)

Let µD(s) = E[D|s]. The logit series estimator of the unknown function µD is given by µ̂D(s) = Λ(PK(s)′π̂)

where Λ(z) = 1/(1 + e−z) is the logit function, PK(s) is the vector of the K first powers of s (with a

constant) and

0 =

G∑
g=0

(Dg − Λ(PK(sg)
′π̂))PK(sg)

Under Assumption 5’, there exists a constant πK that satisfies:

∥∥∥∥log( µD

1− µD

)
− (PK)′πK

∥∥∥∥
∞

= O(K−α)

and we let µD,K(sg) = Λ(PK(sg)
′πK). We suppress the G subscript on K to reduce notation. Under

Assumption 5’, Lemma A.15 in Newey (1997) ensures that the smallest eigenvalue of E[PK(s)PK(s)′], is

bounded away from zero uniformly over K. In addition, Cattaneo (2010) shows that under Assumption 5’,

the multinomial logit series estimator satisfies:

∥µD,K − µD∥∞ = O(K−α), ∥π̂ − πK∥ = OP

(√
K

G
+K−α+1/2

)

and

∥µ̂D − µD∥∞ = OP

(
ζ(K)

(√
K

G
+K−α+1/2

))

where ζ(K) = sups∈S
∥∥PK(s)

∥∥ and α = d/r = 4 where d, the degree of continuous differentiability of

µD, is supposed to be equal to 4 and r, the number of covariates, is equal to 1. Newey (1994) also

shows that for orthonormal polynomials, ζ(K) is bounded above by CK for some constant C. Notice

that, in the case without covariates, since s ∈ (0, 1], ζ(K) ≤ K, which implies that ∥µ̂D − µD∥∞ =

OP

(
K
(√

K
G +K−α+1/2

))
Throughout the proof, we also use the fact that by a second-order mean

value expansion, there exists a π̃ such that:

µ̂D(sg)− µD,K(sg) = Λ(PK(sg)
′π̂)− Λ(PK(sg)

′πK)

= Λ̇(PK(sg)
′πK)PK(sg)

′(π̂ − πK) + Λ̈(PK(sg)
′π̃)(PK(sg)

′(π̂ − πK))2

where both Λ̇ and Λ̈ are bounded.
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Let µ1(s) = E[Y D|s] and µ0(s) = E[Y (1 −D)|s]. Under Assumption 5’ and based on Lemma A.12 in

Newey (1997), for any i ∈ {0, 1}, there exists constant population coefficients πi,K that satisfies:

∥∥µi − (PK)′πi,K
∥∥
∞ = O(K−α)

We consider the following optimisation problem

λ̂ = argmin
λ∈Θ

(
1

G

G∑
g=1

mDiD(Zg, λ, µ̂D)

)′

Ŵ

(
1

G

G∑
g=1

mDiD(Zg, λ, µ̂D)

)

The associated first order condition is

(
1

G

G∑
g=1

∂

∂λ
mDiD(Zg, λ̂, µ̂D)

)′

Ŵ

(
1

G

G∑
g=1

mDiD(Zg, λ̂, µ̂D)

)
= 0

Let’s notice, at this stage, that

∂

∂λ
mDiD(Z, λ, p) =

∂

∂λ
mDiD(Z, λ)

and define

M̂(λ) =
1

G

G∑
g=1

∂

∂λ
mDiD(Zg, λ)

Using a Taylor expansion, we get

√
G(λ̂− λ0) = −

(
M̂(λ̂)′ŴM̂(λ̄)

)−1

M̂(λ̂)′Ŵ

(
1√
G

G∑
g=1

mDiD(Zg, λ0, µ̂D)

)

Let’s first show that

1√
G

G∑
g=1

mDiD(Zg, λ0, µ̂D) =
1√
G

G∑
g=1

{
mDiD(Zg, λ0, µD) + α(Zg)

}
+ oP (1)

with

α(Z) = −w(s)
(
µ1(s)

µD(s)2
+

µ0(s)

(1− µD(s))2

)
(D − µD(s))

First, notice that, for any fixed a ∈ (0,+∞), and for any x,

(
a

x
− 1− a

1− x

)
=

(
a

x0
− 1− a

1− x0

)
−
(
a

x20
+

1− a

(1− x0)2

)
(x− x0) +

(
a

x20x
− 1− a

(1− x0)2(1− x)

)
(x− x0)

2
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Using this property and rearranging terms, we get

1√
G

∑
g

mDiD(Zg, λ0, µ̂D) =
1√
G

G∑
g=1

{
mDiD(Zg, λ0, µD) + α(Zg)

}
− 1√

G

∑
g

w(sg)

(
Ȳ Dg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µ̂D(sg)− µD(sg))

+
1√
G

∑
g

w(sg)

(
ȲgDg

µD(sg)2µ̂D(sg)
− Ȳg(1−Dg)

(1− µD(sg))2(1− µ̂D(sg))

)
(µ̂D(sg)− µD(sg))

2

+
1√
G

∑
g

w(sg)

(
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
(Dg − µ̂D(sg)).

which we can rewrite as:

1√
G

∑
g

mDiD(Zg, λ0, µ̂D) =
1√
G

∑
g

{
mDiD(Zg, λ0, µD) + α(Zg, µD)

}
+

3∑
j=1

Aj,G

where each Aj,G represents one term on the above display. We now bound each one of these terms.

Term 1. For the first term, we have that:

−A1,G =
1√
G

∑
g

w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µ̂D(sg)− µD(sg))

=
1√
G

∑
g

w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µ̂D(sg)− µD,K(sg))

+
1√
G

∑
g

w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µD,K(sg)− µD(sg))

=A11,G +A12,G.

Now, by a second-order mean value expansion,

A11,G =
1√
G

∑
g

w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
Λ̇(PK(sg)

′πK)PK(sg)
′(π̂K − πK)

+
1√
G

∑
g

w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
Λ̈(PK(sg)

′π̃)(PK(sg)
′(π̂K − πK))2

= A111,G +A112,G.

Next, letting

f(Ȳg, sg) =
Ȳ Dg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2
=

f1(Ȳg, sg)
f2(Ȳg, sg)


137



we get

∥A111,G∥ ≤ ∥π̂K − πK∥

∥∥∥∥∥ 1√
G

∑
g

w(sg)f(Ȳg, sg)Λ̇(P
K(sg)

′πK)PK(sg)
′

∥∥∥∥∥ .
Now, ∥π̂K − πK∥ = OP

((√
K/G+K−α+1/2

))
. Let

Ug = (U1
g , ...U

K
g )′ := w(sg)f(Ȳg, sg)Λ̇(P

K(sg)
′πK)PK(sg)

′.

and

∥Ug∥2 = trace(Λ̇(PK(sg)
′πK)2PK(sg)f(Ȳg, sg)

′w(sg)
′w(sg)f(Ȳg, sg)P

K(sg)
′)

= Λ̇(PK(sg)
′πK)2 (w(sg)f(Ȳg, sg))

′w(sg)f(Ȳg, sg)︸ ︷︷ ︸
1×1

trace(PK(sg)P
K(sg)

′)

= Λ̇(PK(sg)
′πK)2

(
s2(1 + s2)

(∥∥f1(Ȳg, sg)∥∥+ 1(s < 1)
∥∥f2(Ȳg, sg)∥∥)) trace(PK(sg)P

K(sg)
′)

≤ κtrace(PK(sg)P
K(sg)

′)

where κ is a bound of
∥∥f1(Ȳg, sg)∥∥+ ∥∥f2(Ȳg, sg)∥∥ (well-defined from Assumption 5’). We have E[Ug] =

E[E[Ug|sg]] = 04×K and

E
[
∥Ug∥2

]
≤E

[
κtrace(PK(sg)P

K(sg)
′)
]

=κE
[
trace(PK(sg)P

K(sg)
′)
]

=κ× trace
(
E
[
PK(sg)P

K(sg)
′])

=κK, (B.10)

since the polynomials can be chosen such that E
[
PK(sg)P

K(sg)
′] = IK , see Newey (1997), page 161.

Hence,

E

∥∥∥∥∥ 1√
G

∑
g

Ug

∥∥∥∥∥
2
 =E

[
trace

((
1√
G

∑
g

Ug

)′(
1√
G

∑
g

Ug

))]

=
1

G

∑
g,g′

E
[
trace(U ′

gUg′)
]

=
1

G

∑
g,g′

trace
(
E
[
U ′
gUg′

])
=

1

G

G∑
g

trace
(
E
[
U ′
gUg

])

138



E

∥∥∥∥∥ 1√
G

∑
g

Ug

∥∥∥∥∥
2
 =

1

G

G∑
g

E
[
∥Ug∥2

]
=E

[
∥U1∥2

]
.

Therefore, by Markov’s inequality,

A111,G = OP

(
K1/2

(√
K

G
+K−α+1/2

))
.

Next,

∥A112,G∥ ≤ κ̃
√
G ∥π̂K − πK∥2 1

G

∑
g

∥∥w(sg)f(Ȳg, sg)∥∥∥∥PK(sg)
∥∥2

= OP

[√
G

(
K

G
+K−2α+1

)
E
(∥∥w(sg)f(Ȳg, sg)∥∥∥∥PK(sg)

∥∥2)]
= OP

(√
GK

(
K

G
+K−2α+1

))
,

where κ̃ is a bound on Λ̈. The first inequality follows by Cauchy-Schwarz inequality, the second by

Markov’s inequality and the third by the same reasoning as to obtain (B.10). Hence,

A11,G = OP

(
K1/2

(√
K

G
+K−α+1/2

))
+OP

(√
GK

(
K

G
+K−2α+1

))
.

Finally, for A12,G we have that

E

[
w(sg)

(
ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µD,K(sg)− µD(sg))

∣∣∣∣ sg] = 0

and

E

[∥∥∥∥w(sg)( ȲgDg − µ1(sg)

µD(sg)2
+
Ȳg(1−Dg)− µ0(sg)

(1− µD(sg))2

)
(µD,K(sg)− µD(sg))

∥∥∥∥2
]
≤ κ ∥µD,K − µD∥2∞ = O(K−2α)

and therefore

A1,G = OP

(
K1/2

(√
K

G
+K−α+1/2

))
+OP

(√
GK

(
K

G
+K−2α+1

))
+OP (K

−α).
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Term 2. For the second term, since µD is uniformly bounded and µ̂D converges uniformly to µD, for G

large enough

|A2,G| ≤
√
G ∥µ̂D − µD∥2∞ .κ2.

1

G

∑
g

∥∥Ȳg∥∥ = OP

(√
GK2

(
K

G
+K−2α+1

))
.

where κ2 is a bound on
∣∣∣∣ 1

µD(sg)2µ̂D(sg)
+

1

(1− µD(sg))2(1− µ̂D(sg))

∣∣∣∣

Term 3. For the third term, let γK be a 2 ×K matrix of population coefficients from a (linear) series

approximation to the (2× 1) function µ1(s)/µD(s)2 + µ0(s)/(1− µD(s))2. Then we have that

A3,G =
1√
G

∑
g

((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(Dg − µ̂D(sg))

+
1√
G

∑
g

γKP
K(sg)× (Dg − µ̂D(sg))

=
1√
G

∑
g

((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(Dg − µ̂D(sg))

because the last term in the second line equals zero by the first-order conditions of the logit series

estimator. Next, we have that

1√
G

∑
g

((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(Dg − µ̂D(sg))

=
1√
G

∑
g

((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(Dg − µD(sg))

− 1√
G

∑
g

((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(µD(sg)− µ̂D(sg))

=A31,G +A32,G.

Now, for A31,G, we have that

E

[((
µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

)
(Dg − µD(sg))

∣∣∣∣ sg] = 0

and by Lemma A.12 from Newey (1997)

E

[
(Dg − µD(sg))

2

∥∥∥∥( µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

∥∥∥∥2
]
≤ OP (K

−2α)
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since the involved functions are continuously differentiable. Hence,

A31,G = OP (K
−α).

On the other hand, for A32,G, we have that

|A32,G| ≤
√
G

∥∥∥∥( µ1(sg)

µD(sg)2
+

µ0(sg)

(1− µD(sg))2

)
− γKP

K(sg)

∥∥∥∥
∞

∥µ̂D − µD∥∞

= OP

(
√
GK1−α

(√
K

G
+K−α+1/2

))

based on Assumption to be defined. Hence,

A3,G = OP

(
√
GK1−α

(√
K

G
+K−α+1/2

)
+K−α

)
.

Collecting all the terms, if follows that under the conditions

K6

G
→ 0,

K4α−6

G
→ ∞, α ≥ 4

we obtain
1√
G

∑
g

mDiD(Zg, λ0, µ̂D) =
1√
G

G∑
g=1

{
mDiD(Zg, λ0, µD) + α(Zg)

}
+ oP (1)

Setting α = 4, this implies
K6

G
→ 0,

K10

G
→ ∞.

These conditions are satisfied when K = Gν for 1/(4α − 6) < ν < 1/6 or in this case 1/10 < ν < 1/6.

Then, by a standard multivariate CLT, we get that

1√
G

∑
g

mDiD(Zg, λ0, µ̂D)
d−→ N (0,Ω)

where

Ω = E
[(
mDiD(Z, λ0, µD) + α(Z)

) (
mDiD(Z, λ0, µD) + α(Z)

)′]
Now, since

∥∥ ∂
∂λm

DiD(Z, λ)
∥∥ is a bounded quantity in any neighbourhood of λ0,

M̂(λ̂)
p−→M0 = E

[
∂

∂λ
mDiD(Z, λ0)

]

Supposing that Ŵ p−→W and M ′
0WM0 is invertible, then by Slutsky’s lemma,
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√
G(λ̂− λ0)

d−→ N
(
0, (M ′

0WM0)
−1M ′

0WΩWM0(M
′
0WM0)

−1
)

B.2 Identity-specific “within" and “between" influences

In this section, we consider the more general LIM model that allows for 2 different "within" endogenous

peer effects for eligible and non-eligible individuals. They are denoted by θw,E and θw,N . Moreover, we

suppose that influences may be non-symmetric between eligible and non-eligible individuals. Let θb,N,E

be the "between" endogenous effects from eligible individuals on non-eligible individuals and θb,E,N be

the "between" endogenous effects from non-eligible individuals on eligible individuals. We remind the

Assumption 1* (Linear-in-means model - 5 parameters) Within each group g ∈ {1, . . . , G} of the i.i.d

sample, the outcome of individual i is defined as

yig = Eigy
E
ig + (1− Eig)y

N
ig

with

yEig = θw,E
0 sg ȳ

E
g + θb,E,N

0 (1− sg)ȳ
N
g + δ0Dig + eEig

yNig = θb,N,E
0 sg ȳ

E
g + θw,N

0 (1− sg)ȳ
N
g + eNig

B.2.1 Identification

Averaging, within group g, the outcome variables for eligible and non-eligible individuals, we get the

following expressions

ȳEg = θw,E
0 sg ȳ

E
g + θb,E,N

0 (1− sg)ȳ
N
g + δ0Dg + ēEg

ȳNg = θb,N,E
0 sg ȳ

E
g + θw,N

0 (1− sg)ȳ
N
g + ēNg

Then, plugging-in the expression of ȳEg into the one of ȳNg , we get

yNg =
θb,N,E
0 sg

1− θw,E
0 sg

(
θb,E,N
0 (1− sg)ȳ

N
g + δ0Dg + ēEg

)
+ θw,N

0 (1− sg)ȳ
N
g + ēNg
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Rearranging terms, we get

[
1− sgθ

w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

)]
yNg = θb,N,E

0 sg(δ0Dg + ēEg ) + (1− θw,E
0 sg)ē

N
g

Hence,

yNg =
1− θw,E

0 sg

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēNg
+

θb,N,E
0 sg

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēEg
+

δ0θ
b,N,E
0 sg

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

)Dg

Now, plugging-in the reduced form expression of ȳNg into ȳEg and developing, we get

ȳEg =
1− θw,N

0 (1− sg)

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēEg
+

θb,E,N
0 (1− sg)

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēNg (B.11)

+
δ0(1− θw,N

0 (1− sg))

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

)Dg

=
1− θw,N

0 (1− sg)

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēEg
+

θb,E,N
0 (1− sg)

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) ēNg
+ δ0

1 + sg.
θw,E
0 − (1− sg)

[
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0 )
]

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

)
Dg

We then get the following proposition

Proposition 6 Provided Assumptions 1*, 2 and 3 hold and all the mentioned conditional expectations
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are well-defined, we have

τE(s) = E
[
ȳEg |sg = s,Dg = 1

]
− E

[
ȳEg |sg = s,Dg = 0

]
= E

[
Dg − Pr(Dg = 1|sg = s)

Pr(Dg = 1|sg = s)(1− Pr(Dg = 1|sg = s))
.yEg

∣∣∣sg = s

]

= δ0

1 + sg.
θw,E
0 − (1− sg)

[
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0 )
]

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

)
 (B.12)

and

τN (s) = E
[
ȳNg |sg = s, Tg = 1

]
− E

[
ȳNg |sg = s,Dg = 0

]
= E

[
Dg − Pr(Dg = 1|sg = s)

Pr(Dg = 1|sg = s)(1− Pr(Dg = 1|sg = s))
.yNg

∣∣∣sg = s

]
=

δ0θ
b,N,E
0 sg

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.13)

Hence,

PE(s) :=
θw,E
0 − (1− sg)

[
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0 )
]

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.14)

PN (s) :=
1

1− sgθ
w,E
0 − (1− sg)θ

w,N
0 + sg(1− sg)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.15)

Similarly, we could state the analogous proposition to proposition 2 in the 5 parameter scenario,

provided Assumptions 1*, 2’, 3’ and 4’ hold.

We also have the following proposition

Proposition 7 (Sufficient Conditions for Identification of λ0 := (δ0, θ
w,E , θw,N , θb,N,E , θb,E,N )) Provided

δ0 ̸= 0 and θb0 ̸= 0, if Assumptions 1*, 2 and 3 hold and if one of the two following conditions is satisfied

1. there exist at least 3 shares s1, s2, s3 ∈ (0, 1), s1 ̸= s2 ≠ s3, that have positive probability mass and

for which both τN and τE are well-defined

2. there is a continuum of shares Is ⊆ (0, 1] such that P (s ∈ Is) > 0 and both τN (s) and τE(s) are

well-defined, for any s ∈ Is
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then λ0 is the unique vector defined on Θ that satisfies the moment condition

E
[
ũ(yEg , y

N
g , Dg, sg;λ0)|sg = s

]
=

E
[
ũE(yEg , Dg, sg;λ0)|sg = s

]
E
[
ũN (yNg , Dg, sg;λ0)|sg = s

]
 = 0 (B.16)

where for all λ ∈ Θ,

ũE(yEg , Dg, sg;λ) = ωR(Dg, sg)y
E
g −

δ
(
1− θw,N (1− sg)

)
1− sgθw,E − (1− sg)θw,N + sg(1− sg) (θw,Eθw,N − θb,N,Eθb,E,N )

ũN (yNg , Dg, sg;λ) = ωR(Dg, sg)y
N
g − δθb,N,Esg

1− sgθw,E − (1− sg)θw,N + sg(1− sg) (θw,Eθw,N − θb,N,Eθb,E,N )

and ωR(Dg, sg) =
Dg − P (Dg = 1|sg)

P (Dg = 1|sg)(1− P (Dg = 1|sg))

Proof: let s1, s2, s3 be three distinct elements of (0, 1), such that s1 ≠ s2 ≠ s3. Supposing that

Assumptions 1*, 2 and 3 hold, we have the following conditions

τE(s1) =
δ0

(
1− θw,N

0 (1− s1)
)

1− s1θ
w,E
0 − (1− s1)θ

w,N
0 + s1(1− s1)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.17)

τN (s1) =
δ0θ

b,N,E
0 s1

1− s1θ
w,E
0 − (1− s1)θ

w,N
0 + s1(1− s1)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.18)

τE(s2) =
δ0

(
1− θw,N

0 (1− s2)
)

1− s2θ
w,E
0 − (1− s2)θ

w,N
0 + s2(1− s2)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.19)

τN (s2) =
δ0θ

b,N,E
0 s2

1− s2θw,E − (1− s2)θ
w,N
0 + s2(1− s2)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.20)

τE(s3) =
δ0

(
1− θw,N

0 (1− s3)
)

1− s3θ
w,E
0 − (1− s3)θ

w,N
0 + s3(1− s3)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.21)

τN (s3) =
δ0θ

b,N,E
0 s3

1− s3θ
w,E
0 − (s3)θ

w,N
0 + s3(1− s3)

(
θw,E
0 θw,N

0 − θb,N,E
0 θb,E,N

0

) (B.22)

Note that for any s ∈ (0, 1) and for any (x1, x2, x3, x4) ∈ (−1, 1)4,

1− x1s− x2(1− s) + s(1− s) [x1x2 − x3x4] > 0

Dividing (B.18) by (B.17) and (B.20) by (B.19), we get

145



τN (s1)

τE(s1)
=

θb,N,E
0 s1

1− θw,N
0 (1− s1)

(B.23)

τN (s2)

τE(s2)
=

θb,N,E
0 s2

1− θw,N
0 (1− s2)

(B.24)

which can be expressed as new moment conditions

(1− θw,N
0 (1− s1))τ

N (s1)− θb,N,E
0 s1τ

E(s1) = 0 (B.25)

(1− θw,N
0 (1− s2))τ

N (s2)− θb,N,E
0 s2τ

E(s2) = 0 (B.26)

Solving the system composed of (B.25) and (B.26), provided s1 ̸= s2, leads to


θw,N
0 =

s1τ
E(s1)τ

N (s2)− s2τ
E(s2)τ

N (s1)

s1(1− s2)τE(s1)τN (s2)− (1− s1)s2τN (s1)τE(s2)

θb,N,E
0 =

τN (s1)τ
N (s2)(s1 − s2)

s1(1− s2)τE(s1)τN (s2)− (1− s1)s2τN (s1)τE(s2)

Hence, θb,N,E
0 and θw,N

0 are identified. As a consequence, δ0 is also identified based on (B.21), (B.22)

and one equation from (B.17) to (B.20) can be used to identify the 3 other parameters.

B.2.2 Estimation

The true vector of parameters λ0 := (δ0, θ
w,E
0 , θw,N

0 , θb,N,E
0 , θb,E,N

0 ) can be estimated via an adapted

version of our Generalized Method of Moments (GMM) estimators. Let Zg := (yE , yN , sg, Dg),

λ̂∗ := argmin
λ∈Θ

(
1

G

G∑
g=1

m(Zg, λ, p̂)

)′

V̂ −1
G

(
1

G

G∑
g=1

m(Zg, λ, p̂)

)
(B.27)

with

m(Zg, λ, p̂) = w(sg)

( Dg

p̂(sg)
− 1−Dg

1− p̂(sg)

)yE
yN

− δ

ϕ(sg, λ)

1− (1− sg)θ
w,N

sθb,N,E




and

ϕ(sg, λ) = 1− θw,Esg − θw,N (1− sg) + sg(1− sg)
(
θw,Eθw,N − θb,N,Eθb,E,N

)
w(sg) is a k × 2 matrix of functions of sg with k ≥ 5. p̂(sg) is a series logit estimate of µD(sg) := P (Dg =
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1|sg). Finally,

V̂G
p−→ V0 := E

[
mDiD(Z, λ0, µD)mDiD(Z, λ0, µD)′

]
with

mDiD(Z, λ0, µD) = m(Z, λ0, µD)− w(s)

(
E
[
Y D|s

]
µD(s)2

+
E
[
Y (1−D)|s

]
(1− µD(s))2

)
(D − µD(s))

and Y =

(
yE yN

)′

. We get the following result

Proposition 8 (GMM Asymptotic Properties) Provided Assumptions 1*, 2, 3 and technical conditions

hold,
√
G(λ̂∗ − λ0)

d−→ N
(
0,
[
M ′

0V
−1
0 M0

]−1
)

with M0 := E

[
∂m

∂λ
(Z, λ0)

]
In practice, standard errors can be estimated via bootstrap.

B.2.3 Simulations

We evaluate our estimation procedure for the 3 and 5 parameter scenarios via simulations. The following

Data Generating Process. An i.i.d sample of G groups is simulated. For each group g, a vector

Zg = (∆yEg ,∆y
N
g , sg, Dg,∆X

E
g ,∆X

N
g ) is drawn such that


yEg = (αE

g + βEXE
g ) + θw0 sgy

E
g + θb0(1− sg)y

N
g + δ0Dg

yNg = (αN
g + βNXN

g ) + θb0sgy
E
g + θw0 (1− sg)y

N
g

with (βE , βN ) = (−1,−2) and

sg ∼ U(0,1]

Dg ∼ B(1/2)

αE
g

αN
g

XE
g

XN
g


∼ N (µα,X ,Σα,X)

300 simulations were performed. Figures B.1 and B.2 show that having 1,000 or 10,000 groups is

not enough to obtain consistent estimators in the 5 parameter scenario. It appears that θ̂b,N,E and θ̂w,E

converge relatively fast while θ̂b,E,N , θ̂w,N and δ̂ are quite imprecise. Global convergence is assured for

sample of a million groups, as shown by Figure B.3. We explain this slow convergence, coming from a
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large asymptotic variance, by the difficulty to disentangle the endogenous peer effects from non-eligible

to eligible individuals, θb,E,N
0 , from the direct effect of the treatment δ0. In our baseline scenario with 3

parameter, convergence is faster. Asymptotic normality is almost reached with 1,000 groups, as shown

by Figure B.4.
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Figure B.1: Simulations - 4 endogenous peer effects parameters - 1,000 groups
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Figure B.2: Simulations - 4 endogenous peer effects parameters - 10,000 groups

Note: the dotted red line represents the true values of the coefficients, in order δ0, θw,E
0 , θw,N

0 , θb,N,E
0 and θb,E,N

0
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Figure B.3: Simulations - 4 endogenous peer effects parameters - 1,000,000 groups
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Figure B.4: Simulations - 2 endogenous peer effects parameters - 1,000 groups

Note: the dotted red line represents the true values of the coefficients.

150



B.3 Orthogonality between Eligibility and Identity

In this extension, we suppose that the identity that matters in social interactions is orthogonal to eligibility.

For instance, in the context of Progresa, we may suppose that boys (resp. girls) are more influenced by

the actions of their male (resp. female) peers than by their female (resp. male) peers. Gender, which the

relevant identity for social interactions, is orthogonal to being eligible to Progresa, since eligibility is only

based on households’ income. Formally, here is the model that we consider in this extension

Assumption 1† (Linear-in-means model - orthogonal identity) For a group g ∈ {1, . . . , G} of the i.i.d

sample, the outcome of individual i is defined as follow

yig = yMig Mig + yFig(1−Mig)

yMig = θw,M
0 sMg ȳ

M
g + θb,M,F

0 (1− sMg )ȳFg + δ0DigEig + eMig (B.28)

yFig = θb,F,M
0 sMg ȳ

M
g + θw,F

0 (1− sMg )ȳFg + δ0DigEig + eFig (B.29)

with Mig ∈ {0, 1} equals 1 if the individual is from the "male" identity and Eig ∈ {0, 1} equals 1 if the

individual is eligible to the treatment. sMg :=Mg, i.e. it is the share of "males" in the peer group.

Averaging, within group g, the outcome variables for "male" and "female" individuals, we get the

following expressions

ȳMg = θw,E
0 sMg ȳ

M
g + θb,M,F

0 (1− sMg )ȳFg + δ0s
E,M
g Dg + ēMg

ȳFg = θb,F,M
0 sMg ȳ

M
g + θw,F

0 (1− sMg )ȳFg + δ0s
E,F
g Dg + ēNg

where sE,M
g =

∑ng

i=1EigMig∑ng

i=1Mig

and sE,F
g =

∑ng

i=1Eig(1−Mig)∑ng

i=1(1−Mig)
are, respectively, the share of "males"

(resp. "females") that are eligible to the treatment. Then, plugging-in the expression of ȳFg into the one of

ȳMg , we get

yMg = θw,MsMg y
M
g +

θb,M,F
0 (1− sMg )

1− θw,F
0 (1− sMg )

(
θb,F,M
0 sMg ȳ

M
g + δ0s

E,F
g Dg + ēFg

)
+ δ0s

E,M
g Dg + ēMg

Rearranging terms, we get

[
1− sMg θ

w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

)]
yMg

= δ0

(
θb,M,F
0 sE,F

g (1− sMg ) +
(
1− θw,F (1− sMg )

)
sE,M
g

)
Dg + θb,M,F (1− sMg )ēFg +

(
1− θw,F

0 (1− sMg )
)
ēMg
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Hence,

yMg =
1− θw,F

0 (1− sMg )

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) ēMg
+

θb,M,F (1− sMg )

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) ēFg
+

δ0

(
sE,F
g θb,M,F

0 (1− sMg ) + sE,M
g

(
1− θw,F (1− sMg )

))
1− sMg θ

w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

)Dg

Now, plugging-in the reduced form expression of ȳMg into ȳFg and developing, we get

ȳFg =
θb,F,MsMg

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) ēMg
+

(1− θw,MsMg )

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) ēFg (B.30)

+
δ0
(
sE,F
g (1− θw,MsMg ) + sE,M

g θb,F,MsMg
)

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

)Dg

We then make the following "adapted" assumptions

Assumption 2† (Randomized Experiment) The group level treatment Dg is randomly assigned, i.e.

(ēFg , ē
M
g , s

M
g , s

E,F
g , sE,M

g ) ⊥⊥ Dg (B.31)

Assumption 2† states that treatment is randomly assigned. In particular, groups receive the treatment

independently of their share of eligible units for both identities and of their share of "males" in the group.

We also impose a restriction on the support of Dg conditional on the share of eligible units sg. Let

S ⊆ (0, 1] be the support of shares that are observed in the sample,

Assumption 3† (Common Support) For each (sM , sE,F , sE,M ) ∈ SM × SE,F × SE,M ,

0 < P (Dg = 1|sM , sE,F , sE,M ) < 1 (B.32)

Assumption 3† states that for any share of "males", of eligible "males" and of eligible "females" that is

observed in the population of reference groups, there exist some groups that are treated and some that

are not.
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Proposition 9 Provided Assumptions 1†, 2† and 3† hold and all the mentioned conditional expectations

are well-defined, we have

τM (sM , sE,F , sE,M ) = E
[
ȳM |sM , sE,F , sE,M , D = 1

]
− E

[
ȳM |sM , sE,F , sE,M , D = 0

]
= E

[
D − Pr(D = 1|sM , sE,F , sE,M )

Pr(D = 1|sM , sE,F , sE,M )(1− Pr(D = 1|sM , sE,F , sE,M ))
.yM

∣∣∣sM , sE,F , sE,M

]

=
δ0

(
sE,F θb,M,F

0 (1− sM ) + sE,M
(
1− θw,F (1− sM )

))
1− sMθw,M

0 − (1− sM )θw,F
0 + sM (1− sM )

(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) (B.33)

and

τF (sM , sE,F , sE,M ) = E
[
ȳF |sM , sE,F , sE,M , D = 1

]
− E

[
ȳF |sM , sE,F , sE,M , D = 0

]
= E

[
D − Pr(D = 1|sM , sE,F , sE,M )

Pr(D = 1|sM , sE,F , sE,M )(1− Pr(D = 1|sM , sE,F , sE,M ))
.yF
∣∣∣sM , sE,F , sE,M

]
=

δ0
(
sE,F (1− θw,MsM ) + sE,Mθb,F,MsM

)
1− sMθw,M

0 − (1− sM )θw,F
0 + sM (1− sM )

(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

) (B.34)

In the following, for conciseness, we define, for any g ∈ {1, . . . , G}, sg := (sMg , s
E,F
g , sE,M

g ) and we let

λO0 := (δ0, θ
w,F , θw,M , θb,F,M , θb,M,F )

Proposition 10 (Sufficient Conditions for Identification of λO0 := (δ0, θ
w,F , θw,M , θb,F,M , θb,M,F )) Provided

δ0 ̸= 0, if Assumptions 1†, 2† and 3† hold and if one of the two following conditions is satisfied

1. there exist at least 4 different vectors of shares (sM1 , s
E,F
1 , sE,M

1 ), (sM2 , s
E,F
2 , sE,M

2 ), (sM3 , s
E,F
3 , sE,M

3 )

and (sM4 , s
E,F
4 , sE,M

4 ) ∈ (0, 1)3 that have positive probability mass and for which both τM and τF

are well-defined

2. there is a continuum of shares Is ⊆ [0, 1]× [0, 1]× [0, 1] such that P (s ∈ Is) > 0 and both τF (s) and

τM (s) are well-defined, for any s ∈ Is

then λO0 is the unique vector defined on Θ that satisfies the moment condition

E
[
uO(yMg , y

F
g , Dg, sg;λ0)|sg = s

]
=

E
[
uO,M (yMg , Dg, sg;λ

O
0 )|sg = s

]
E
[
uO,F (yFg , Dg, sg;λ

O
0 )|sg = s

]
 = 0 (B.35)
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where for all λ ∈ Θ,

uO,M (yMg , Dg, sg;λ) = ωO(Dg, sg)y
M
g −

δ0

(
sE,F
g θb,M,F

0 (1− sMg ) + sE,M
g

(
1− θw,F (1− sMg )

))
1− sMg θ

w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

)
uO,F (yFg , Dg, sg;λ) = ωO(Dg, sg)y

F
g −

δ0
(
sE,F
g (1− θw,MsMg ) + sE,M

g θb,F,MsMg
)

1− sMg θ
w,M
0 − (1− sMg )θw,F

0 + sMg (1− sMg )
(
θw,M
0 θw,F

0 − θb,M,F
0 θb,F,M

0

)

and ωO(Dg, sg) =
Dg − P (Dg = 1|sg)

P (Dg = 1|sg)(1− P (Dg = 1|sg))
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B.4 Inclusion of Covariates

In this section, we show how the model can be adapted, in the natural experiment setting, so as to make

the common trends assumption more plausible.

B.4.1 Identification

Let ∆Xg denote a vector of observed changes of some of group g’s exogenous characteristics and let

X denote the support of ∆Xg. Let’s suppose Assumption 4’ does not hold but, instead, the following

condition is satisfied

Assumption 3” (Extended Conditional Common Trends) For any k ∈ {E,NE},

E
[
ekg2 − ekg1|sg,∆Xg, Dg2 = 1

]
= E

[
ekg2 − ekg1|sg,∆Xg, Dg2 = 0

]
Intuitively, we are going to compare pairs of treated and control groups with the same share of eligible

units and the same evolution of the covariates X from period 1 to 2. Then, we assume that, in the

absence of the treatment, the change in the average aggregate outcome among eligible units in treated

groups would have been the same as the change in the average aggregate outcome among eligible

units in control groups. We make the same assumption regarding the change in group average outcome

among non-eligible units. Finally,

Assumption 4” (Extended Conditional Common Support) For every (g, t) ∈ {1, . . . , G} × {1, 2},

Dg1 = 0 a.s and for all s ∈ S and x ∈ X , 0 < P (Dg2 = 1|s, x) < 1

Then, the previous results can be adapted to this new context

Proposition 11 (Conditional Moment Conditions - Natural Experiment with Covariates) Let I be an

interval on R\{0}. Let λ0 = (δ0, θ
w
0 , θ

b
0) be the true value of the parameters with λ0 ∈ Θ := I × (−1, 1)×

(−1, 1). For any s ∈ (0, 1), provided Assumptions 1’, 2’, 3” and 4” hold and all the mentioned conditional

moments are well-defined,

E
[
uDiDX(Zg;λ0)|sg = s,∆Xg = x

]
=

 E
[
uDiDX,E(Zg;λ0)|sg = s,∆Xg = x

]
E
[
uDiDX,NE(Zg;λ0)|sg = s,∆Xg = x

]
 = 0
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where Zg := (∆yEg ,∆y
N
g , Dg2, sg,∆Xg) and for all λ ∈ Θ,

uDiDX,E(Zg;λ) = ωDiDX(Dg2, sg,∆Xg)∆y
E
g − δ (1− θw(1− sg))

1− θw + sg(1− sg) [(θw)2 − (θb)2]

uDiDX,NE(Zg;λ) = ωDiDX(Dg2, sg,∆Xg)∆y
N
g − δθbsg

1− θw + sg(1− sg) [(θw)2 − (θb)2]

and ωDiDX(Dg2, sg,∆Xg) =
Dg2 − P (Dg2 = 1|sg,∆Xg)

P (Dg2 = 1|sg,∆Xg)(1− P (Dg2 = 1|sg,∆Xg))

Proof: Provided they are well-defined, the conditional expectations of ∆yEg and ∆yNg with respect to

(Dg2, sg,∆Xg) are

E
[
∆ȳEg

∣∣∣Dg2, sg,∆Xg

]
=

θb0(1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēNg2 − ēNg1

∣∣∣Dg2, sg,∆Xg

]
+

1− θw0 (1− sg)

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēEg2 − ēEg1

∣∣∣Dg2, sg,∆Xg

]
+

δ0 (1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

E
[
∆ȳNg

∣∣∣Dg2, sg,∆Xg

]
=

1− θw0 sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēNg2 − ēNg1

∣∣∣Dg2, sg,∆Xg

]
+

θb0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]E [ēEg2 − ēEg1

∣∣∣Dg2, sg,∆Xg

]
+

δ0θ
b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]Dg2

Now,

E
[
∆ȳEg

∣∣∣Dg2 = 1, sg,∆Xg

]
− E

[
∆ȳEg

∣∣∣Dg2 = 0, sg,∆Xg

]
=

δ0 (1− θw0 (1− sg))

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]

E
[
∆ȳNg

∣∣∣Dg2 = 1, sg,∆Xg

]
− E

[
∆ȳNg

∣∣∣Dg2 = 0, sg,∆Xg

]
=

δ0θ
b
0sg

1− θw0 + sg(1− sg)
[
(θw0 )

2 − (θb0)
2
]

using Assumption 3”. Finally, using the same steps as in the proof for Proposition 4, one can show

that, for any k ∈ {E,N},

156



E
[
ωDiDX(Dg2, sg,∆Xg)∆ȳ

E
g |sg,∆Xg

]
= E

[
Dg2 − P (Dg2 = 1|sg,∆Xg)

P (Dg = 1|sg,∆Xg)(1− P (Dg = 1|sg,∆Xg))
∆ȳkg |sg,∆Xg

]
=

P (Dg2 = 1|sg,∆Xg)(1− P (Dg2 = 1|sg,∆Xg))

P (Dg2 = 1|sg,∆Xg)(1− P (Dg2 = 1|sg,∆Xg))
E
[
∆ȳkg |sg,∆Xg, Dg2 = 1

]
− (1− P (Dg2 = 1|sg,∆Xg))P (Dg2 = 1|sg,∆Xg)

P (Dg2 = 1|sg,∆Xg)(1− P (Dg2 = 1|sg,∆Xg))
E
[
∆ȳkg |sg,∆Xg, Dg2 = 0

]
= E

[
∆ȳkg |sg,∆Xg, Dg2 = 1

]
− E

[
ȳkg |sg,∆Xg, Dg2 = 0

]

B.4.2 Estimation

We consider

mDiD(Z̃, λ, µ̂X
D) = w̃(s,∆X)

ω̂DiDX(Z̃, µ̂X
D)Ȳ − δ

ϕ(s, λ)

1− (1− s)θw

sθb




where w̃(s,∆X) is a r × 2 matrix of functions of (s,∆X) such that r ≥ 4,

ω̂DiDX(Z̃, µ̂X
D) =

D

µ̂X
D(s,∆X)

− 1−D

1− µ̂X
D(s,∆X)

and µ̂X
D(s,∆X) is a non-parametric estimator of µX

D(s,∆X) = E [D2|s,∆X] based on a series logistic

regression of D2 on a power series of (s,∆X). To prove asymptotic normality, the technical condition on

KG in Assumption 5’ - point 5 has to be adapted, by requiring that KG goes at a slower rate to infinity, so

as to avoid overfitting. The greater the dimension of ∆X, the slower will be the rate. Then, one can show

that

Conjecture 1 (GMM Estimator in the Natural Experiment Setting with Covariates) Let (Z̃g)g=1,...,G

be an i.i.d sample of G groups, where Z̃g = (∆yEg ,∆y
N
g , D2g, sg,∆Xg). Let

V̂G
p−→ Ṽ0 := E

[{
mDiD(Z̃, λ0, µ

X
D) + α(Z̃)

}{
mDiD(Z̃, λ0, µ

X
D) + α(Z̃)

}′
]

with

α(Z̃) = −w̃(s,∆X)

(
µ̃1(s,∆X)

µX
D(s,∆X)2

+
µ̃0(s,∆X)

(1− µX
D(s,∆X))2

)
(D2 − µX

D(s,∆X))

where, for any s ∈ S, µ̃1(s,∆X) = E[Y D2|s,∆X] and µ̃0(s,∆X) = E[Y (1−D2)|s,∆X]. Let

˜mDiD(Z̃, λ0) =
∂

∂λ′
mDiD(Z̃, λ0, µ

X
D)
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which does not depend on the propensity score. Supposing that

1. Assumptions 1’, 2’, 3’, 4’ and 5’ hold and identification λ0 is ensured

2. Θ := I1 × [−K,K]× [−K,K] where I is a compact subset of R with 0 /∈ I and K ∈ (0, 1)

Then

λ̂∗ := argmin
λ∈Θ

(
1

G

G∑
g=1

mDiD(Z̃g, λ, µ̂
X
D)

)′

V̂ −1
G

(
1

G

G∑
g=1

mDiD(Z̃g, λ, µ̂
X
D)

)
(B.36)

is a consistent estimator of λ0 whose asymptotic distribution is

√
G(λ̂∗ − λ0)

d−→ N
(
0,
[
M̃ ′

0Ṽ
−1
0 M̃0

]−1
)

with λ0 := (δ0, θ
w
0 , θ

b
0) and M̃0 := E

[
˜mDiD(Z̃, λ0)

]
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Appendix C

Elderly Home Care Market and Spousal

Informal Care Supply

C.1 Figures
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Figure C.1: Linear fit between the total contract hours of home care workers employed by a SAAD and
the estimated demand for home care hours for SAADs based on data from the CARE-Ménages survey
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C.2 Likelihood Formula

The likelihood function associated to the Xn i.i.d sample of n observations and the 15 possible events

that are described in Table C.1 is:

L(θ) =

n∏
i=1

15∏
j=1

P (Ej | θ)I(Ej is observed for i)

where θ is the vector of parameters of dimension 6+ 2×m+ p where m is the dimension of the vector

of observed variables influencing the preference parameters while p is the dimension of the vector of

observed variables that may influence the unobserved costs of hiring a self-employed home care worker.

j Event Ej Marginal Density

1
pOOP
SP ≤ pOOP

DE
fvℓ,vc

(
log

(
18−I

F+I+1

)
, log

(
R−pOOP

SP F

pOOP (F+I+1)

))
0 < I < 16, F > 0

2
pOOP
SP ≤ pOOP

DE
fvℓ

(
log

(
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Table C.1: Marginal Densities - Likelihood Function
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C.3 Simulations

Simulations were carried out to check that the maximum likelihood estimator is consistent and asymptoti-

cally normal. An i.i.d sample of 1,000 observation was simulated. For each observation, values were

drawn for:

• daily income R, generated from a Gamma distribution with shape 13 and scale 2.8, truncated at 96;

• market price for SAADs pSP , generated from a Gamma distribution with shape 3 and scale 2,

truncated at 10;

• market price for independent home care workers pDE , generatedfrom a uniform distribution between

12 and 15;

• a binary variableD, that is generated as the sum of two independent Bernoulli trials with probabilities

0.3 and 0.4;

• a continuous variable X, drawn from a standard normal distribution;

• another binary variable Z, that is generated as the sum of two independent Bernoulli trials with

probabilities 0.5 and 0.2;

• unobserved heterogeneity terms vℓ and vc, drawn from a bivariate gaussian with mean µ =

(β1
ℓ + βX

ℓ X + βD
ℓ D,β

1
c + βX

c X + βD
c D) and variance-covariance matrix Σ

• unobserved heterogeneity term ξ drawn from a gaussian distribution with expectation µξ = β1
ξ +β

Z
ξ Z

and variance 1

Based on these simulated data, the vector of parameters α is computed. Out-of-pocket prices are also

generated using the APA copayment rate formula. The number of hours of formal care consumed and the

number of hours of informal care provided, both obtained by maximizing the utility function presented in

Section 2, are calculated. The simulated dataset is then used to verify the convergence of the estimator.

Table C.2 shows the values of the estimates along with the associated analytical standard errors. The

maximum likelihood estimator considered is shown to be convergent and asymptotically normal, with all

parameters identified.
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Table C.2: Simulations - Estimates

Parameter True value Estimate Standard error

β1
ℓ 0 -0.2067 0.1570

β1
c 1 0.8578 0.1322

σℓ 3 3.0021 0.1214

σc 2 1.9143 0.0596

ρ 0.4 0.3871 0.0394

β1
ξ -1 -0.7831 0.1920

βX
ℓ -2 -2.0232 0.1379

βD
ℓ 1 1.1057 0.1719

βX
c 3 2.7929 0.1025

βD
c -1 -0.7979 0.1133

βZ
ξ 1 1.2051 0.2047

163



164



Bibliography

A. Abadie. Semiparametric difference-in-differences estimators. The review of economic studies, 72(1):

1–19, 2005.

D. W. Andrews. Asymptotic optimality of generalized cl, cross-validation, and generalized cross-validation

in regression with heteroskedastic errors. Journal of Econometrics, 47(2-3):359–377, 1991.

J. D. Angrist and G. W. Imbens. Two-stage least squares estimation of average causal effects in models

with variable treatment intensity. Journal of the American statistical Association, 90(430):431–442,

1995.

J. D. Angrist and J.-S. Pischke. The credibility revolution in empirical economics: How better research

design is taking the con out of econometrics. Journal of economic perspectives, 24(2):3–30, 2010.

J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental variables.

Journal of the American statistical Association, 91(434):444–455, 1996.

J. D. Angrist, K. Graddy, and G. W. Imbens. The interpretation of instrumental variables estimators in

simultaneous equations models with an application to the demand for fish. The Review of Economic

Studies, 67(3):499–527, 2000.

T. Arduini, E. Patacchini, and E. Rainone. Treatment effects with heterogeneous externalities. Journal of

Business & Economic Statistics, 38(4):826–838, 2020.

R. Backhouse and B. Cherrier. Becoming applied: The transformation of economics after 1970. Depart-

ment of Economics, University of Birmingham, 2014.

S. L. Barber, K. van Gool, S. Wise, M. Wood, Z. Or, A. Penneau, R. Milstein, N. Ikegami, S. Kwon, P. Bakx,

et al. Pricing long-term care for older persons. World Health Organization, 2021.

F. Barbosa, G. Voss, and A. Delerue Matos. Do european co-residential caregivers aged 50+ have an

increased risk of frailty? Health & Social Care in the Community, 28(6):2418–2430, 2020.

165



D. Barczyk and M. Kredler. Evaluating long-term-care policy options, taking the family seriously. The

Review of Economic Studies, 85(2):766–809, 2018.

S. Berlinski, M. M. Ferreyra, L. Flabbi, and J. D. Martin. Childcare markets, parental labor supply, and

child development. Journal of Political Economy, 132(6):2113–2177, 2024.

A. Bertogg and S. Strauss. Spousal care-giving arrangements in europe. the role of gender, socio-

economic status and the welfare state. Ageing & Society, 40(4):735–758, 2020.

M. Bertrand, E. Duflo, and S. Mullainathan. How much should we trust differences-in-differences

estimates? The Quarterly Journal of Economics, 119(1):249–275, 2004.

L. E. Blume, W. A. Brock, S. N. Durlauf, and Y. M. Ioannides. Identification of social interactions. In

Handbook of social economics, volume 1, pages 853–964. Elsevier, 2011.

G. J. Bobonis and F. Finan. Neighborhood peer effects in secondary school enrollment decisions. Review

of Economics and Statistics, 91:695–716, 2009.

I. Bojinov, A. Rambachan, and N. Shephard. Panel experiments and dynamic causal effects: A finite

population perspective. Quantitative Economics, 12(4):1171–1196, 2021.

E. Bonsang. Does informal care from children to their elderly parents substitute for formal care in europe?

Journal of health economics, 28(1):143–154, 2009.

K. Borusyak, X. Jaravel, and J. Spiess. Revisiting event-study designs: robust and efficient estimation.

Review of Economic Studies, page rdae007, 2024.

A. Bozio, A. Gramain, C. Martin, and A. Masson. Quelles politiques publiques pour la dépendance?

Notes du conseil d’analyse économique, 35(8):1–12, 2016.

Y. Bramoullé, H. Djebbari, and B. Fortin. Identification of peer effects through social networks. Journal of

econometrics, 150(1):41–55, 2009.

Y. Bramoullé, H. Djebbari, and B. Fortin. Peer effects in networks: A survey. Annual Review of Economics,

12(1):603–629, 2020.

K. M. Brown and R. A. Laschever. When they’re sixty-for: Peer effects and the timing of retirement.

American Economic Journal: Applied Economics, 4:90–115, 2012.

B. Callaway and P. H. Sant’Anna. Difference-in-differences with multiple time periods. Journal of

econometrics, 225(2):200–230, 2021.

166



B. Callaway, A. Goodman-Bacon, and P. H. Sant’Anna. Difference-in-differences with a continuous

treatment. Technical report, National Bureau of Economic Research, 2024.

C. Capuano. Que faire de nos vieux? Une histoire de la protection sociale de 1880 à nos jours. Presses

de Sciences Po, 2018.

M. D. Cattaneo. Efficient semiparametric estimation of multi-valued treatment effects under ignorability.

Journal of Econometrics, 155(2):138–154, 2010.

G. Chamberlain. Multivariate regression models for panel data. Journal of econometrics, 18(1):5–46,

1982.

K.-M. Chen and M.-J. Lin. Understanding adult children’s labor supply responses to parents’ long-term

care needs. Available at SSRN 4051859, 2022.

V. Chernozhukov, C. Hansen, and M. Spindler. Instrumental variables estimation with very many

instruments and controls. 2015.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Dou-

ble/debiased machine learning for treatment and structural parameters, 2018.

C. de Chaisemartin. A note on instrumented difference in differences. 2010.

C. de Chaisemartin and X. D’Haultfœuille. Fuzzy differences-in-differences. The Review of Economic

Studies, 85(2):999–1028, 2018.

C. de Chaisemartin and X. D’Haultfœuille. Difference-in-differences estimators of intertemporal treatment

effects. arXiv preprint arXiv:2007.04267, 2023a.

C. de Chaisemartin and X. D’Haultfœuille. Two-way fixed effects and differences-in-differences with

heterogeneous treatment effects: A survey. Econometrics Journal, 26(3):C1–C30, 2023b.

C. de Chaisemartin and X. D’Haultfœuille. Two-way fixed effects and differences-in-differences estimators

in heterogeneous adoption designs. arXiv preprint arXiv:2405.04465, 2024.

C. De Chaisemartin and X. d’Haultfoeuille. Two-way fixed effects estimators with heterogeneous treatment

effects. American economic review, 110(9):2964–2996, 2020.

C. de Chaisemartin, X. D’Haultfœuille, and G. Vazquez-Bare. Difference-in-differences estimators with

continuous treatments and no stayers. 2023.

X. D’Haultfœuille, S. Hoderlein, and Y. Sasaki. Nonparametric difference-in-differences in repeated

cross-sections with continuous treatments. Journal of Econometrics, 234(2):664–690, 2023.

167



P. D. Fajgelbaum, P. K. Goldberg, P. J. Kennedy, and A. K. Khandelwal. The return to protectionism. The

Quarterly Journal of Economics, 135(1):1–55, 2020.

M. H. Farrell. Robust inference on average treatment effects with possibly more covariates than observa-

tions. Journal of Econometrics, 189(1):1–23, 2015.

A. Finkelstein, S. Taubman, B. Wright, M. Bernstein, J. Gruber, J. P. Newhouse, H. Allen, K. Baicker, and

t. Oregon Health Study Group. The oregon health insurance experiment: evidence from the first year.

The Quarterly journal of economics, 127(3):1057–1106, 2012.

W. Frimmel, M. Halla, J. Paetzold, and J. Schmieder. Health of elderly parents, their children’s labor

supply, and the role of migrant care workers. 2020.

A. Goodman-Bacon. Difference-in-differences with variation in treatment timing. Journal of econometrics,

225(2):254–277, 2021.

B. S. Graham and J. L. Powell. Identification and estimation of average partial effects in “irregular”

correlated random coefficient panel data models. Econometrica, 80(5):2105–2152, 2012.

D. S. Hamermesh. Six decades of top economics publishing: Who and how? Journal of Economic

literature, 51(1):162–172, 2013.

J. A. Hausman and W. K. Newey. Nonparametric estimation of exact consumers surplus and deadweight

loss. Econometrica: Journal of the Econometric Society, pages 1445–1476, 1995.

Haut Conseil de la Famille, de l’Enfance et de l’Âge. Emplois et services à domicile

pour les personnes Âgées en perte d’autonomie. Report by the Conseil de l’Âge, April

2020. URL https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/

hcfea_conseil_de_l_age_rapport_emplois_et_services_a_domicile_vf_avril_2020-2.pdf.

J. J. Heckman and R. Pinto. Unordered monotonicity. Econometrica, 86(1):1–35, 2018.

J. J. Heckman and E. Vytlacil. Structural equations, treatment effects, and econometric policy evaluation

1. Econometrica, 73(3):669–738, 2005.

L. Hiel, M. A. Beenackers, C. M. Renders, S. J. Robroek, A. Burdorf, and S. Croezen. Providing personal

informal care to older european adults: should we care about the caregivers’ health? Preventive

medicine, 70:64–68, 2015.

K. Hirano and J. Hahn. Design of randomized experiments to measure social interaction effects. Eco-

nomics Letters, 106(1):51–53, 2010.

168

https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/hcfea_conseil_de_l_age_rapport_emplois_et_services_a_domicile_vf_avril_2020-2.pdf
https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/hcfea_conseil_de_l_age_rapport_emplois_et_services_a_domicile_vf_avril_2020-2.pdf


S. Hoderlein and H. White. Nonparametric identification in nonseparable panel data models with

generalized fixed effects. Journal of Econometrics, 168(2):300–314, 2012.

M. G. Hudgens and M. E. Halloran. Toward causal inference with interference. Journal of the American

Statistical Association, 103(482):832–842, 2008.

S. Hudson, P. Hull, and J. Liebersohn. Interpreting instrumented difference-in-differences. Metrics Note,

Sept, 2017.

K. Imai and I. S. Kim. On the use of two-way fixed effects regression models for causal inference with

panel data. Political Analysis, 29(3):405–415, 2021.

G. Imbens and Y. Xu. Lalonde (1986) after nearly four decades: Lessons learned. arXiv preprint

arXiv:2406.00827, 2024.

G. W. Imbens and J. D. Angrist. Identification and estimation of local average treatment effects. Econo-

metrica, 62(2):467–475, 1994.

G. W. Imbens, D. B. Rubin, and B. I. Sacerdote. Estimating the effect of unearned income on labor

earnings, savings, and consumption: Evidence from a survey of lottery players. American economic

review, 91(4):778–794, 2001.

A. Ko. An equilibrium analysis of the long-term care insurance market. The Review of Economic Studies,

89(4):1993–2025, 2022.

R. Lalive and M. A. Cattaneo. Social interactions and schooling decisions. The Review of Economics and

Statistics, 91(3):457–477, 2009. URL http://www.jstor.org/stable/25651352.

R. J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data. The

American economic review, pages 604–620, 1986.

S. Li, J. Linn, and E. Muehlegger. Gasoline taxes and consumer behavior. American Economic Journal:

Economic Policy, 6(4):302–342, 2014.

D. Libault. Grand âge, le temps d’agir. La documentation française, 2019.

K. V. Løken, S. Lundberg, and J. Riise. Lifting the burden: Formal care of the elderly and labor supply of

adult children. Journal of Human Resources, 52(1):247–271, 2017.

C. F. Manski. Identification of endogenous social effects: The reflection problem. The review of economic

studies, 60(3):531–542, 1993.

169

http://www.jstor.org/stable/25651352


P. Massner and J. Wikström. Does it matter who cares? formal vs. informal care of the elderly. Working

Paper, 2023.

M. A. Masten. Random coefficients on endogenous variables in simultaneous equations models. The

Review of Economic Studies, 85(2):1193–1250, 2018.

E. Miguel and M. Kremer. Worms: identifying impacts on education and health in the presence of

treatment externalities. Econometrica, 72(1):159–217, 2004.

R. A. Moffitt et al. Policy interventions, low-level equilibria, and social interactions. Social dynamics, 4

(45-82):6–17, 2001.

M. Mogstad and A. Torgovitsky. Identification and extrapolation of causal effects with instrumental

variables. Annual Review of Economics, 10(1):577–613, 2018.

C. Mommaerts. Long-term care insurance and the family. 2015.

W. K. Newey. The asymptotic variance of semiparametric estimators. Econometrica, 62(6):1349–1382,

1994.

W. K. Newey. Convergence rates for series estimators. In G. Maddala, P. Phillips, and T. Srinivasan,

editors, Advances in Econometrics and Quantitative Economics: Essays in Honor of Professor C. R.

Rao. Basil Blackwell, 1995.

W. K. Newey. Convergence rates and asymptotic normality for series estimators. Journal of econometrics,

79(1):147–168, 1997.

W. K. Newey and D. McFadden. Large sample estimation and hypothesis testing. Handbook of econo-

metrics, 4:2111–2245, 1994.

S. W. Parker and P. E. Todd. Conditional cash transfers: The case of progresa/oportunidades. Journal of

Economic Literature, 55(3):866–915, 2017.

E. Perdrix and Q. Roquebert. Does an increase in formal care affect informal care? evidence among the

french elderly. 2020.

J. Robins. A new approach to causal inference in mortality studies with a sustained exposure period-

application to control of the healthy worker survivor effect. Mathematical modelling, 7(9-12):1393–1512,

1986.

K. Shen. Who benefits from public financing of home care for low-income seniors? Technical report,

Working paper, Harvard University. https://scholar. harvard. edu/files/kshen . . . , 2021.

170



L. Sun and S. Abraham. Estimating dynamic treatment effects in event studies with heterogeneous

treatment effects. Journal of econometrics, 225(2):175–199, 2021.

E. J. T. Tchetgen and T. J. VanderWeele. On causal inference in the presence of interference. Statistical

methods in medical research, 21(1):55–75, 2012.

D. L. Thistlethwaite and D. T. Campbell. Regression-discontinuity analysis: An alternative to the ex post

facto experiment. Journal of Educational psychology, 51(6):309, 1960.

C. H. Van Houtven and E. C. Norton. Informal care and health care use of older adults. Journal of health

economics, 23(6):1159–1180, 2004.

G. Vazquez-Bare. Identification and estimation of spillover effects in randomized experiments. Journal of

Econometrics, 237(1):105237, 2023.

M. Wagner and M. Brandt. Long-term care provision and the well-being of spousal caregivers: An analysis

of 138 european regions. The Journals of Gerontology: Series B, 73(4):e24–e34, 2018.

171



Titre: Évaluation Robuste des Politiques Publiques à des Effets Hétérogènes

Mots clés: Microéconométrie, Inférence causale, Différences de différences, Effets de pairs,
Vieillissement

Résumé: Cette thèse développe de nouveaux
designs méthodologiques pour évaluer des poli-
tiques publiques dont les effets causaux sont
hétérogènes et/ou complexes. Le premier
chapitre développe deux nouveaux estimateurs
de paramètres causaux importants dans le cadre
d’un design de différence-de-différences avec
une variable de traitement continue. Dans sa ver-
sion de base, l’étude observationnelle repose sur
un panel d’une multitude de groupes observées
sur deux périodes. Les groupes sont potentielle-
ment déjà tous traités à la première période, à
des doses différentes. Entre les deux périodes,
certains groupes, appelés switchers, connaissent
un changement dans la dose de traitement qu’ils
reçoivent. A l’inverse, certains groupes, appelés
stayers, gardent la même dose de traitement
sur les deux périodes. Le premier paramètre
considéré, appelé AS, correspond à la pente
moyenne de la fonction « variable de résultat po-
tentielle » de 2nde période des switchers, entre
leur dose de traitement à la 1ère période et celle
à la 2nde période. Le second paramètre, appelé
WAS, est une version pondérée de la moyenne
précédente, où chaque switcher reçoit un poids
proportionnel à la valeur absolue de l’évolution
de sa dose de traitement entre les deux péri-
odes. L’identification et l’estimation de ces deux
paramètres reposent sur une hypothèse de ten-
dance commune inédite : en l’absence d’un
changement de leur dose de traitement entre
les deux périodes, les groupes switchers au-
raient connu, en moyenne, la même évolution
de leur variable de résultat que les groupes stay-
ers ayant la même dose de traitement initial. Les
résultats sont adaptés à un design avec vari-
able instrumentale. Ils sont utilisés pour estimer
l’élasticité-prix de la consommation d’essence.
Le deuxième chapitre développe une nouvelle
méthode d’estimation des effets d’un traitement
binaire dans un design avec des effets de pair
endogènes hétérogènes. Le modèle linéaire
en moyennes conventionnel est modifié de telle

sorte à ce que les individus puissent réagir dif-
féremment aux actions des membres de leur
groupe, selon qu’ils partagent ou non la même
identité qu’eux. L’identification et l’estimation
des paramètres du modèle reposent sur une ex-
périence en population partielle, c’est-à-dire sur
l’observation d’un panel de groupes d’individus
au sein duquel la part d’individus éligibles au
traitement binaire (qui est connue pour chaque
groupe) varie d’un groupe à l’autre. La procédure
d’estimation repose sur la méthode des moments
généralisés. La méthode développée permet de
quantifier l’effet direct du traitement sur les in-
dividus éligibles, l’effet indirect sur les individus
non-éligibles et les multiplicateurs sociaux. La
méthodologie est employée pour évaluer les ef-
fets de Progresa, un programme mexicain de
transfert d’argent conditionnel ciblant les élèves
issus de familles défavorisés et visant à réduire
l’abandon scolaire. Le troisième chapitre mod-
élise le marché français de l’aide à domicile non-
médicalisée pour personnes âgées dépendantes.
Du côté de la demande, des ménages, consti-
tué d’un senior dépendant et de son conjoint,
prennent des décisions concernant leur consom-
mation, l’aide informelle fournie par le conjoint et
le recours des aides à domicile professionnelles.
Du côté de l’offre, deux types d’entreprises sont
modélisés : des services d’aide et de soins à
domicile et des aides à domicile indépendants.
Le modèle est estimé à l’aide de l’enquête CARE-
Ménages et de la Base Tous Salariés. Le modèle
est utilisé pour identifier les conjoints des person-
nes âgées dépendantes les plus susceptibles de
réagir à une modification des conditions d’accès
à l’aide à domicile formelle. Les premiers ré-
sultats suggèrent, côté demande, que, toutes
choses égales par ailleurs, les conjoints aidants
de sexe masculin et plus âgés réagissent davan-
tage à une variation du prix de l’aide formelle.
Côté offre, les services d’aide à domicile font
face à des prix constants.



Title: Robust Evaluation of Public Policies to Heterogeneous Effects

Keywords: Microeconometrics, Causal Inference, Difference-in-differences, Peer Effects, Aging

Abstract: This thesis develops new methodolog-
ical designs to evaluate public policies with het-
erogeneous and/or complex causal effects. The
first chapter introduces two new estimators of
valuable causal parameters within a difference-
in-differences design with a continuous treatment
variable. In its basic version, the observational
study relies on a panel of numerous groups ob-
served over two periods. The groups may al-
ready all be treated in the first period, albeit at
different doses. Between the two periods, some
groups, called switchers, experience a change in
the dose of treatment they receive. In contrast,
some groups, called stayers, keep the same treat-
ment dose over both periods. The first consid-
ered parameter, called AS, corresponds to the
average slope of the "potential outcome" func-
tion in the second period for switchers, between
their treatment dose in the first period and that
in the second period. The second parameter,
called WAS, is a weighted version of the pre-
vious average, where each switcher receives
a weight proportional to the absolute value of
the change in their treatment dose between the
two periods. The identification and estimation of
these two parameters rely on a novel common
trend assumption: in the absence of a change
in their treatment dose between the two periods,
the switcher groups would have experienced, on
average, the same evolution in their outcome
variable as the stayer groups with the same ini-
tial treatment dose. The results are adapted
to a design with instrumental variables. They
are used to estimate the price elasticity of gaso-
line consumption. The second chapter devel-
ops a new method for estimating the effects of
a binary treatment in a design with heteroge-
neous endogenous peer effects. The conven-
tional linear-in-means model is modified so that

individuals can respond differently to the actions
of group members, depending on whether or not
they share the same identity. The identification
and estimation of the model’s parameters rely
on a partial population experiment, that is, the
observation of a panel of groups of individuals
within which the proportion of individuals eligible
for the binary treatment (known for each group)
varies from one group to another. The estimation
procedure is based on the generalized method
of moments. The method allows to assess the
magnitude of the direct effect of the treatment
on eligible individuals, the indirect effect on non-
eligible individuals, and of the social multipliers.
The methodology is used to evaluate the effects
of Progresa, a Mexican conditional cash transfer
program targeting students from disadvantaged
families that aimed at reducing school dropout.
The third chapter models the French elderly per-
sonal and social home care market. On the de-
mand side, households, consisting of a depen-
dent senior and their spouse, make decisions
regarding their consumption, the informal care
provided by the spouse, and the use of profes-
sional home care services. On the supply side,
two types of providers are modeled: firms pro-
viding personal and social home care and self-
employed personal home care assistants. The
model is estimated using the CARE-Ménages
survey and the Base Tous Salariés database.
The model is used to identify the spouses of de-
pendent elderly individuals most likely to respond
to a change in access conditions to formal home
care. Preliminary results suggest, on the demand
side, that, all other things being equal, male and
older caregiving spouses are more responsive
to a variation in the price of formal care. On the
supply side, home care providers face constant
marginal costs.
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